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Abstract

This thesis details the effective integration of global navigation satellite systems
(GNSS) with an inertial navigation system (INS) to meet the requirements for use
in small, mass-market unmanned aerial vehicles (UAVs). A key focus is on the
addition of the input from the vehicle dynamic model (VDM).

The dominant navigation system for most small, mass-market UAVs is based
on INS/GNSS integration. The integration of the two systems provides a
navigation solution with both short-term and long-term accuracy. However,
during a GNSS outage, the navigation solution drifts. This can happen due to severe
multipath, intentional or unintentional interference, even against
cryptographically secured GNSS signals, rapid dynamics and loss of line of sight to
the satellites. Most small UAVs use low-cost inertial sensors, which during a GNSS
outage, will cause the navigation solution to drift rapidly. Traditionally, additional
aiding sensors such as cameras and range finders have been used to reduce the
rapid drift of the navigation solution. However, this approach adds extra weight
and additional cost to the overall system. More recently, the use of a VDM in
providing improved navigation performance has gained research popularity,
especially for small, mass-market UAVs. This approach preserves the autonomy of
the navigation system while avoiding extra cost, additional weight, and power
requirements, essential for low-cost applications.

This thesis presents a VDM navigation architecture suitable for a fixed-wing
UAV fitted with low-cost inertial sensors and a GNSS receiver during periods of
extended GNSS outage. The thesis presents and examines state-of-the-art VDM
navigation techniques, quantifies their limitations and identifies approaches to
reduce navigation solution drift during GNSS outages. An integration algorithm
that implements the approaches and overcomes these limitations is developed
and evaluated via a Monte Carlo simulation study. The integration algorithm is
then tested on real flight data gathered from a test flight using a small fixed-wing
UAV.

The thesis identifies that most current VDM integration schemes use a loosely
coupled configuration, using position and velocity measurements from a GNSS
receiver. This work shows that the VDM navigation solution can drift significantly
with this configuration during an extended GNSS outage. A novel VDM-based
architecture is then developed to reduce the navigation solution drift during
extended GNSS outages. The architecture, referred to as a tightly coupled VDM-
based integration architecture (or simply TCVDM), uses raw GNSS observables
and measurements from inertial sensors to aid the navigation solution even when
tracking less than four satellites. The architecture uses an extended Kalman filter
(EKF) to estimate the navigation solution errors. A software-based GNSS
measurement simulator is also developed to generate the raw GNSS observables.

Simulation results reveal significant improvements in navigation accuracy
during GNSS outages. In the case of a GNSS outage lasting over two minutes,



results show that position accuracy improves by one to two orders of magnitude
compared to a tightly coupled INS/GNSS integration scheme (TCINS) and by a
factor of four compared to the state-of-the-art VDM integration architecture. In
addition to the navigation states, the filter also estimates wind velocity
components, VDM parameters and the receiver clock offset and drift. The
estimation of wind velocity components is achieved even without an air data
system. It is found that the architecture only resolves 40% of the initial error in
the model parameters. This is found to be sufficient for navigation with randomly
distributed errors of 10% in the model parameters.

The developed architecture is also tested on real flight data gathered using a
small fixed-wing UAV. A custom flight control system (FCS) that houses a low-cost
inertial measurement unit (IMU), barometer and a data logging module is used on
the UAV. The FCS is used for guidance, navigation and logging control inputs and
different measurements. Three GNSS receivers are installed on the UAV and used
to derive a reference position, velocity and attitude solution. Test results show
that the position error estimation performance for the TCVDM scheme improves
by a factor of 43 compared to a TCINS scheme with two satellites visible during a
GNSS outage. The velocity error estimation performance for the TCVDM scheme
improves by a factor of 7 across all channels compared to a TCINS scheme during
the outage. However, the TCVDM scheme shows poor attitude estimation
performance. This is attributed to the lack of accurate VDM parameters, especially
the torque coefficients, which leads to significantly worse yaw angle estimation
performance.

This work presents an alternative, low-cost navigation scheme for small UAVs
that uses sensors usually available in most UAVs. The navigation scheme can work
alongside existing integration architectures to provide a secondary navigation
solution for improved reliability and integrity monitoring.
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1 Introduction

1.1. Background

Navigation involves the determination of the position and velocity of a moving
object with respect to a known reference and guiding it to a specific destination.
Navigation techniques usually fall into two main categories, namely position fixing
and dead reckoning.

Position fixing refers to the different techniques used to determine the position
and velocity of an object using measurements with respect to known reference
points. Usually, the measurements are via radio frequency (RF) transmission, and
one such system is the global navigation satellite system (GNSS). As the name
dictates, position fixing alone does not offer the spatial orientation of an object
(Tawk, 2013).

Dead reckoning (DR) is a relative positioning technique in which the current
position is determined from the previous position and measurements of the
direction of motion and distance travelled. A DR system’s performance depends
on the accuracy of the initial states and the accuracy with which velocity and
orientation can be determined. An inertial navigation system (INS) is an example
of a DR system. Error accumulation with time is the limiting factor for most DR
systems (Tawk, 2013).

An inertial navigation system consists of a system of inertial sensors, also
called an inertial measurement unit (IMU), which measure specific force and
angular velocity with respect to an inertial frame. An INS also includes a
computing element that calculates a moving object's position, velocity, and
orientation. Inertial sensors consist of accelerometers and gyroscopes (gyros). An
INS is self-contained. It does not depend on exteroceptive sensing in the
computation of the navigation states upon initialisation, thus making it immune to
jamming, spoofing and interference. Figure 1.1 shows the main blocks of a simple
INS.

’

Gyroscopes

N\ Position
Accelerometers g
: : Velocity
i Processin
IMU | g >
-i- o

\,

Figure 1.1. A simple INS setup.



An INS integrates measurements from inertial sensors to estimate a moving
object's position, velocity, and orientation through its computing element.
Therefore, any initial errors or measurement errors build up to significant
navigational errors. The rate of divergence of the navigation solution depends on
the quality of the inertial sensors used. Different types of errors corrupt inertial
sensors’ measurements, such as random noise, scale-factor, bias instability, bias
variation with temperature and cross-coupling errors. To prevent error growth,
an INS is usually integrated with other sensors and systems such as GNSS,
magnetometers, and range finders.

Unmanned aerial vehicles (UAVs) have found wide use in so-called ‘D-D-D’
(Dull-Dangerous-Dirty) fields (Jiménez Lopez and Mulero-Pazmany, 2019). Aerial
photography, mapping, search and rescue, surveillance and reconnaissance,
resource management, border patrol and inspections, anti-poaching campaigns
are amongst a few areas where UAVs are being used. UAVs are dominated by two
main types, fixed-wing conventional aircraft and rotary-wing vertical take-off and
landing (VTOL) aircraft, as shown in Figure 1.2 (a, b) (Saeed et al,, 2015).

(a) A fixed-wing UAV

(c) A hybrid UAV (tilt-rotor)
Figure 1.2. Different types of UAVs (Yu et al, 2016).

Each type has its limitations on endurance, payload capacity, range, controllability
and manoeuvrability. For instance, fixed-wing UAVs have significantly better
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endurance and payload capacity as opposed to the rotary-wing type. Rotary-wing
VTOL UAVs can easily take off and land without requiring a dedicated runway. The
inherent limitations of the two types have led to the development of fixed-wing
VTOL UAVs or hybrid UAVs (shown in Figure 1.2 (c)) that inherit both types'
advantages (Saeed et al., 2015). In the United Kingdom, the basic rules for
operating UAVs are governed by the Air Navigation Order (ANO) 2016. At the time
of this writing, this has been amended by Air Navigation (Amendment) Orders
2017/1112, 2018/623 and 2018/1160. The ANO defines a small UAV as any
unmanned aircraft other than a balloon or a kite with a mass not exceeding 25 kg
(CAA, 2016).

A navigation system is an integral part of a UAV estimating its position,
velocity, and attitude used in guidance and control of the aircraft, as shown in
Figure 1.3.

Real vehicle movements
| I
v v
Inertial sensors GNSS. others v
Iﬁ #’
Guidance Nl Navigation g Control
\ 4 v v
How should the
What is the controls be
What is the desired current position, manipulated to get to
path/target {Pges}? —  velocity and — {Pges} without -
orientation? compromising
stability?
J 7'y
How should the
velocity and
orientation change to
getto {Pdes} ?

Figure 1.3. Guidance, Navigation and Control architecture. In the figure, {P,.} represents
the set of desired states.

Improved navigation reliability has been achieved through hardware redundancy
which increases cost, power consumption, and weight. Technological
advancements from ring laser gyros (RLG), fibre optic gyros (FOG) to micro-
electro-mechanical systems (MEMS) inertial sensors alongside developments in
GNSS have paved the way to a wealth of new commercial applications (Tawk,
2013). MEMS-based inertial sensors have enabled a dramatic reduction in INS
size, weight, and power consumption, allowing its use in new applications and
instruments such as wildlife tracking, medical instruments, and smartphones
(Nusbaum and Klein, 2017). Moreover, the significant reduction in size, weight,
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and power consumption of MEMS-based inertial sensors has enabled the use of
INS for guidance, navigation and control (GNC) in small-scale to large-scale UAVs.
The quality of the inertial sensors used determines the grade of the INS. Table 1.1
summarises three broad categories based on error characteristics and cost. MEMS
inertial sensors usually include a triad of sensors on a single silicon wafer. The
significant reduction in size of the sensing elements has imposed performance
limits for MEMS-based sensors.

Table 1.1. Different grades of IMU (Hide, 2003; Honeywell, 2018; Xsens, 2018).

Grade Navigation Tactical Automotive
Example Honeywell HG9900 Northrop LN200 Xsens MTi 100
Dimensions (cm) 13.91x16.26x13.56  8.9x8.9x8.5 5.7x4.2x2.35
Cost (£ approx.) >100k 20k 1.5k
Gyro Ring laser Fibre Optic MEMS
Bias (°/h) 0.0035 1-10 <720
Scale Factor (ppm) 5.0 100 <1%
Noise (°/h/vHz) 0.002 0.04-0.1 <36
Accelerometer Silicon Silicon Silicon
Bias (mg) 0.025 0.2-1 <5
Scale Factor (ppm) 100 300 <+1%
Noise (m/s/vhr) 7ug 0.03 <0.15

1.2. Research Question and Motivation

The research question being addressed is:

“To what extent can knowledge of the vehicle dynamic model and associated control
inputs be used with low-cost MEMS-grade inertial sensors and mass-market GNSS
receivers to reduce drift in the navigation solution during a GNSS outage ?”

The GNSS market report by the European GNSS Agency (2019) indicated that
the number of GNSS units shipped on UAVs (Drones) of different categories
exceeded 10 million units in 2018. Further, the report highlighted that UAVs have
become a third market segment for GNSS shipments and account for a large
proportion of installed units after the consumer solutions and road applications,
as shown in Figure 1.4.

Manned Aviation1.6%
Emergency Response2.3%
Critical Infrastructures 3.7%
Geomatics 3.9% N
Agriculture 4.8% ~

Rail 1.1%
Spacecraft 0.1%

Manned Aviation 1.4%
Spacecraft 0.1%

Emergency Response 2.6%

Critical Infrastructures 3.1%
Rail 3.5%
Geomatics 4.58%

Drones Drones

Agriculture

2019 62.4% 10.7% — 2029 556%
Total installed ’ Total installed
Maritime base: base:
20.1% 53.8 min 93.2 min
Maritime
18.2%

Figure 1.4. Installed GNSS base for categories other than consumer solutions and road
applications (European GNSS Agency, 2019).



The report also highlighted different efforts in developing UAVs for beyond visual
line of sight (BVLOS) operations and package delivery in urban environments,
which require accurate position information for mission success. It was indicated
that the reliance on GNSS for position information is expected to increase. In
Europe alone, the UAV service revenue in different service areas such as
surveying, rail inspections, agriculture, delivery, and e-commerce is projected to
increase from 50 million euros in 2019 to over 700 million euros in 2029. The
report also highlighted that even though the demand for GNSS positioning is
growing, GNSS alone can not meet the accuracy requirements for all
settings/environments.

Most low-cost, mass-market UAVs use an INS integrated with GNSS to provide
a navigation solution with both short-term and long-term accuracy (Kim and
Sukkarieh, 2003; George and Sukkarieh, 2005; Babu and Wang, 2009; Brown and
Hwang, 2012; Falco, Pini and Marucco, 2017). A GNSS receiver needs to track at
least four satellites to output the absolute position information that can be used
to correct the accumulated error in the inertial navigation solution. However,
problems tend to arise during a GNSS outage where the integrated navigation
solution drifts (Hide, 2003; Wang et al., 2004; Lau, Liu and Lin, 2013; Quinchia et
al, 2013). This can happen due to intentional or unintentional corruption (even
against cryptographically secured GNSS signals), rapid dynamics, and severe
multipath (Groves, 2008; Papadimitratos and Jovanovic, 2008; Tawk et al., 2014).
The rate of navigation solution drift depends on the quality of the inertial sensors
used. In most small UAVs, the quality of the inertial sensors is relatively low. As a
result, the position uncertainty is far from being of practical use after only a few
seconds of GNSS outage (Khaghani and Skaloud, 2016b).

Some authors used additional aiding sensors, such as cameras and range
finders, to reduce rapid drift in the navigation solution during GNSS outages (Kim
and Sukkarieh, 2003; Wang et al,, 2004; Madison et al., 2007; Vasconcelos et al.,
2010). Besides adding extra weight and additional costs, these sensors suffer from
inherent limitations due to dependency on external sensing. Other authors have
explored advanced integration schemes, while others have investigated advanced
error modelling schemes, saving on weight but introducing additional software
complexities (George and Sukkarieh, 2005; El-Diasty and Pagiatakis, 2009;
Quinchia et al, 2013; Tawk et al., 2014).

More recently, research has been conducted on the use of vehicle dynamic
models (VDM) to reduce the drift of the navigation solution during periods of
extended GNSS outage (Koifman and Bar-Itzhack, 1999; Bryson and Sukkarieh,
2004; Vasconcelos et al., 2010; Crocoll et al., 2013; Khaghani and Skaloud, 2016a).
This approach preserves the system’s autonomy and avoids extra cost and weight
on the host platform. Figure 1.5 shows the typical VDM integration schemes. In
contrast to a strapdown algorithm (SDA) which relies on inertial sensors to
propagate the navigation solution, a VDM relies on control inputs.
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Even though different in structure and implementation, the current VDM
integration schemes use GNSS position and velocity measurements to update the
navigation solution. As explained previously, these measurements will not be
available during a GNSS outage. When coupled with modelling assumptions and
errors in the VDM parameters will cause a VDM-based navigation solution to drift,
in some cases more rapidly than others (Bryson and Sukkarieh, 2004). However,
even when tracking less than four satellites, a GNSS receiver can still output useful
information, such as the pseudorange and Doppler frequency measurements.
These can be used to provide a quasi-continuous integrated VDM navigation
solution with reduced error growth.

1.3 Research Aim and Objectives

The aim of this research is to investigate and test a VDM navigation architecture
suitable for a fixed-wing UAV fitted with low-cost MEMS-grade inertial sensors
and a GNSS receiver during periods of extended GNSS outage. The term ‘low-cost’
is used to represent MEMS-grade sensors that cost typically less than £5,000 for
an IMU assembly.

A fixed-wing UAV is considered in this research due to its advantages over
rotary-wing VTOL UAVs, such as better range, endurance, and payload capacity.
The increased range and endurance of fixed-wing UAVs makes them ideal for
BVLOS operations. Most BVLOS operations involving fixed-wing UAVs are
autonomous, and therefore it is important that the GNSS receiver used is able to
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provide a navigation solution at all times. The lack of this navigation solution can
compromise the stability of the aircraft resulting in property damage and even
loss of the aircraft. Most small rotary-wing VTOL UAVs usually operate within
visual line of sight. In the case of compromised stability, an operator may be able
to perform a controlled flight to land. Since most BVLOS operations and other
similar operations involving fixed-wing UAVs will be in open sky conditions, the
GNSS receivers on these platforms can become increasingly susceptible to
intentional and unintentional GNSS signal interference. This may result in a GNSS
outage for an extended period. In this case and other similar scenarios where a
GNSS outage could occur, a VDM integration architecture may offer a navigation
solution that allows the continued and safe operation of the aircraft without
adding extra weight and cost to the overall platform.

Therefore, to achieve the research aim, the following objectives were determined:

e To investigate the navigation performance and quantify limitations of the
current state-of-the-art VDM navigation scheme(s) during GNSS outages.

e To propose a novel integration algorithm that reduces drift in the
navigation solution during an extended GNSS outage lasting over one
minute without adding extra weight and cost to small UAVs.

e To undertake simulated data testing and practical testing of the proposed
integration algorithm.

1.4 Contribution to Knowledge

This thesis makes a contribution to knowledge in the area of VDM navigation with
specific applications to fixed-wing UAVs. This is demonstrated by the publication
of three journal papers and one conference paper, which can be found in the List
of Publications. The contribution is made in six steps:

i The review of existing VDM integration algorithms and identification of
architectures that give the most robust navigation solution during GNSS
outages using low-cost sensors.

ii. The development of a six-degree-of-freedom (6DOF) fixed-wing
aircraft model to generate GNSS and IMU datasets to investigate the
performance of the integration architecture(s).

iii. The identification of approaches that can mitigate rapid error growth
during GNSS outages without adding extra weight and cost to a fixed-
wing UAV.

iv. The development and testing of a novel integration architecture that
implements the approaches in (iii) using the available dataset from (ii).

V. The characterisation of the aerodynamic and propulsion model of a

small (MTOW < 4 kg) off-the-shelf fixed-wing UAV to obtain model
parameters used to test the developed architecture.

vi. The testing of the developed algorithm using flight data gathered from
the small UAV fitted with a MEMS-grade IMU and a GNSS receiver to
validate the results obtained in simulation.



1.5 Thesis Outline

Chapter 2 gives an overview of GNSS principles and strapdown inertial navigation.
The GPS L1 signal is introduced as well as the different errors affecting the signal.
The errors exhibited by inertial sensors are also be presented, followed by a
review of common integration architectures and filters. The chapter then presents
a detailed review of different VDM navigation schemes, highlighting their
strengths and weaknesses.

Chapter 3 gives an overview of the main building blocks of a 6DOF aircraft
model used in this research. Different ways of representing the aircraft’s attitude
are discussed, and the equations of motion are presented. The chapter then goes
on to highlight the atmospheric model and gravity model used in this research.
The aerodynamic and propulsion models are also presented, followed by the
implementation of the 6DOF aircraft model in a simulation environment.

Chapter 4 evaluates the navigation performance of the current state-of-the-art
VDM navigation techniques. The chapter identifies and quantifies the limitations
of the most recent VDM navigation scheme by comparing its performance to a
model-based navigation architecture developed during the research. The chapter
then presents the characteristics of the navigation solution errors in a VDM
navigation scheme during different GNSS outage intervals followed by
reacquisitions. The chapter concludes by highlighting the main limitations of
state-of-the-art VDM navigation techniques and reframes the research question.

Chapter 5 details the development of a novel, tightly coupled VDM-based
integration architecture that reduces the growth of the navigation solution errors
during GNSS outages compared to state-of-the-art techniques. The architecture
uses a VDM as the main process model, while raw GNSS observables alongside IMU
measurements aid the navigation solution. The chapter also details the
development of a software-based GNSS measurement simulator alongside the
error models used to generate the raw GNSS observables. The chapter then
presents the simulation setup used to evaluate the performance of the developed
algorithm, followed by a detailed discussion of the results.

Chapter 6 presents the flight testing campaign to validate simulation results of
the proposed architecture using flight data gathered from a small fixed-wing UAV.
The chapter then presents the characterisation of the aerodynamic and propulsion
models using a combination of wind tunnel testing, full-scale oscillation tests and
a geometry-based technique. The chapter then describes the test flight conducted
to gather data used to test the architecture. The derivation of the reference
position, velocity and attitude solution is described, followed by a discussion of
the results.

Finally, in Chapter 7, a detailed summary is presented. Conclusions are drawn
alongside recommendations for future work.

Figure 1.6 shows a breakdown of the objectives and a high-level overview of
the work carried out in this thesis, including the main highlights of each chapter
as outlined in this section.
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2 Background and Literature Review

2.1. Introduction

The primary function of an aircraft navigation system is to provide an accurate
and consistent estimate of the aircraft’s position, velocity and attitude. UAVs
commonly use an inertial navigation system (INS) integrated with a global
navigation satellite system (GNSS) to provide a filtered and quasi-continuous
navigation solution. In low-cost applications, the quality of inertial sensors used is
relatively low, affecting the performance of the integrated navigation solution,
especially during a GNSS outage. Therefore, this chapter reviews the different
systems and sensors found on most small UAVs used to provide an integrated
navigation solution.

This chapter is organised as follows: Section 2.2 presents an overview of GNSS
principles, focusing on the United States (U.S.) Global Positioning System (GPS).
Section 2.3 discusses strapdown inertial navigation. The section focuses on low-
cost MEMS-grade inertial sensors suitable for use in small UAVs. Different errors
exhibited by these sensors are discussed, followed by a brief overview of
integration architectures and filters. Justification for integrating an INS with a
GNSS is also provided by briefly outlining the complementary characteristics of
the two systems. Section 2.4 presents the current VDM navigation architectures,
highlighting their strengths and weaknesses. Section 2.5 presents a summary of
this chapter.

2.2. GNSS Principles

This section gives a brief overview of GNSS principles. The current systems are
briefly discussed, followed by a review of different segments. The GPS signal
acquisition and tracking principles are also briefly reviewed. The section places
emphasis on different errors affecting GNSS ranging signals. A complete
description of different GNSS systems and methods is beyond the scope of this
section; instead, the reader is directed to works such as Kaplan and Hegarty
(2017), Hofmann-Wellenhof, Lichtenegger and Wasle (2008), and Groves (2013).

Global navigation satellite systems have now been available for civilian use for
almost three decades. The primary use for most civilian applications is in absolute
positioning and timing. With knowledge of satellite positions, GNSS receivers can
compute the absolute position through a process called trilateration. The range to
each satellite is determined using a binary code signal borne on a radio frequency
carrier signal and used to estimate the receiver’s position. The GNSS signal
propagating from the satellite is influenced by different error sources, which
eventually reduce the accuracy of the computed navigation solution. The vast
majority of GNSS receivers use a quartz oscillator, with more using temperature-
compensated crystal oscillators (TCX0) as the frequency standard (Groves, 2013).
For instance, the u-blox NEO-M8N, NEO-MS8T, and the NoVAtel OEMStar GNSS
receivers use a TCXO (NovAtel, 2011; u-blox, 2020). These oscillators are
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relatively low cost. They can introduce significant errors to the computed solution
due to the lack of synchronisation with the transmitting satellites. The lack of
synchronisation between the receiver and transmitting satellites leads to a
common timing offset for all received satellite signals. This common offset also
needs to be resolved for the receiver to output useful position information. For
this reason, a GNSS receiver needs to track at least four satellites to resolve the
absolute position and timing offset fully. There are usually more than four
satellites in view at any given time, and therefore the position can be refined and
consistency checks performed.

2.2.1. Current Systems

The first satellite navigation system was called TRANSIT, also known as NAVSAT
(Navy Navigation Satellite System). The system was operative from 1964 and used
by the U.S. Navy to periodically calibrate inertial systems on their submarines
(Capuano, 2016). Position determination was accomplished using Doppler shift of
radio signals transmitted by a limited number of satellites (in Earth orbit ~ 1100
km), providing a fix only every hour or more. Russia operated a similar system
around the time known as Tsikada (Groves, 2008).

At the time of this writing, operational GNSS include the Global Positioning
System (GPS), owned and operated by the U.S government, GLONASS, owned and
operated by Russia, Galileo, funded by the European Union and managed by the
European Space Agency (ESA), and BeiDou, owned and operated by China. The
status of these systems at the time of this writing is presented in Table 2.1.

Table 2.1. Status of current GNSS systems (European Union, 2016; Russian Space Systems,
2016; China Satellite Navigation Office, 2017; Dunn, 2018).

System Country Coding Orbital height  Operational Status
and Period satellites

GPS us CDMA 20,200 km = 30 Operational
12h

GLONASS Russia FDMA 19,100 km > 23 Operational

CDMA 11.3h

Galileo EU CDMA 23,222km >24 Operational
14.1h

BeiDou China CDMA 21,528 km >35 Operational
12.6h

2.2.2. GNSS Segments
Any GNSS can be divided into three main segments: the space segment, the user
segment, and the control segment, as shown in Figure 2.1.

11



__________________________

Space Segment

Control Segment User Segment

Figure 2.1. GNSS segments.

The space segment consists of the constellation of GNSS satellites used in
positioning and timing applications. Sufficient satellites are needed to ensure
global availability at all times. All current systems use satellites in medium earth
orbit (MEO), approximately 20,000 km from the Earth’s surface. The satellites
usually have different orbit configurations to meet specific needs and achieve a
certain level of performance. The satellites, otherwise called space vehicles,
broadcast signals to both the control and user segments. Each GNSS broadcasts a
range of different signals, many of which are open to all users free of charge.
Others are restricted to military users, emergency services, commercial
subscribers and security services.

A network of ground monitoring stations, uplink stations and one or more
control stations make up the control segment (CS). This segment continuously
monitors each satellite and provides ‘health warnings’ in the event of a
malfunction. The control stations compute the satellite orbits and produce
‘ephemerides’ to enable the user to compute the satellite position. Further, the
stations monitor the satellite clocks and provide correcting information in the
satellite transmitted message that the user can use to correct any clock errors.

The user segment consists of the GNSS receivers that utilise the information
received from the satellites for positioning and timing. Modern low-cost receivers
can have more than 50 channels and track multiple satellites from different
constellations, which improves availability and helps with integrity monitoring. It
is even possible to have relatively cheap (<£400) GNSS receivers that can track
satellite signals on multiple frequencies and multiple constellations, such as the u-
blox ZED-F9P. The use of multiple frequencies can significantly improve
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navigation performance by eliminating the ionospheric delay through linear
combinations of the measurements. These advantages were only available to high-
end receivers which generally have a larger form factor, require more power, and
specialised antennas.

2.2.3. GPS

The GPS is currently undergoing a modernisation process that began in 2000 that
aims to guarantee compatibility with other systems and facilitate interoperability.
The modernisation process is a multibillion-dollar effort to upgrade the features
and overall performance of the system. At the time of this writing, the GPS
constellation consists of a mix of new and old satellites. The current constellation
even includes GPS III/IIIF satellites, with the first one launched in 2018. The last
Block I1A (2nd generation, “Advanced”) satellite was decommissioned in 2019. The
Block IIA and Block IIR (“Replenishment”) satellites are categorised as legacy
satellites. Block IIR-M (“Modernised”), Block IIF (“Follow-on”), GPS III, and GPS
[IIF (“Follow-on”) are considered the modernised satellites. Figure 2.2 shows
different GPS blocks and the modernisation effort.

BLOCK IIA BLOCK IIR BLOCK IIR-M BLOCK IIF GPS IlI/IIF
Launch [\
1990-1997 1997-2004 2005-2009 2010-2016 2018+ >
///
Last one IR IIR-M ‘ IIF HI/NF
decommissioned
in 2019 C/A code on L1 || C/A code on L1 C/AcodeonlL1 —»{C/AcodeonlL1
P(Y) code on . P(Y) code on P(Y) code on Iy P(Y) code on
L1&L2 L1&L2 L1&L2 L1&L2
New civil signal |, 2nd civil signal |, 2nd civil signal
on L2 on L2 on L2
New military L, Military signal L, Military signal
signal
New civil signal | ,| 3rd civil signal
on LS onlL5
New civil signal
on L1

design lifespan, signal reliability, accuracy, advanced clocks

Figure 2.2. GPS satellite blocks showing the modernisation effort.

At the time of writing, there are eight Block IIR satellites in operation in
addition to seven Block IIR-M satellites, twelve Block IIF satellites and three GPS
[1I/IIIF satellites. This makes a total of thirty operational satellites in orbit.

The three frequencies bands used by GPS include L1 (1575.42 MHz), L2
(1227.6 MHz) and L5 (1176.45 MHz). Most low-cost mass-market GNSS receivers
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track the legacy GPS L1 C/A signal, and cheap dual-frequency receivers such as the
u-blox ZED-F9P can track both L1 C/A and the civil signal on L2 (L2C). Due to a
plethora of compatible low-cost GPS L1 C/A receiver equipment, the next section
and this thesis, in general, will focus on this signal.

2.2.4. GPSL1Open Signals

The GPS ‘course/acquisition’ (C/A) code is a 1023 bit pseudorandom binary code
(PRN) that exhibits excellent correlation properties allowing each satellite to
broadcast its unique code on the same frequency without significant interference.
This technique is called code division multiple access (CDMA), in which satellites
use different ranging codes that have low cross-correlation properties with
respect to one another (Tawk, 2013). The code is broadcast repeatedly with a
period of 1 ms. A ranging code and navigation message modulate the carrier wave
leaving a satellite. The navigation message carries information about the satellite’s
orbit and clock. The ranging signal enables the determination of the time of
transmission of the received signal. When used with the information in the
navigation message, the receiver’s position can be computed.

The C/A code is modulated on the L1 carrier phase signal using binary phase
shift keying (BPSK). With this modulation, for each bit transition in the C/A code
sequence, a phase shift of 180° is introduced to the carrier phase.

Besides information about the satellite’s orbit and clock, the navigation
message also contains information about the satellite’s health and almanac data.
The almanac can be used during signal acquisition since it contains coarse orbital
information about other satellites. The message is broadcast at 50 bits per second
and added to the C/A code before being modulated onto the carrier wave (Tawk,
2013).

Another civilian signal, L1C, also modulates the L1 carrier. The first satellite
featuring the L1C signal was launched in 2018, as shown in Figure 2.2. This signal
has a data and pilot channel. The pilot channel is useful in acquisition and tracking
because the absence of data bit transition allows longer integration, improving
sensitivity and robustness.

2.2.5. GPS Signal Acquisition and Tracking
A full description of the GPS signal acquisition and tracking is beyond the scope of
this section. A good description can be found in (Borre et al., 2007; Groves, 2013;
Tawk, 2013). A GPS receiver needs to process the received satellite signals to
output a navigation solution. The incoming carrier signal is first downconverted
from the original L-band radio frequency to a lower intermediate frequency (IF)
to allow a lower sampling rate to be used. The intermediate frequency has the
same modulation as the incoming signal. The signal is then digitised for further
processing including acquisition and tracking. Two parameters need to be
determined during signal acquisition so that all the visible satellites can be
identified. These parameters include the Doppler-shifted carrier frequency and
the code phase.

Relative motion between a satellite and a receiver introduces a Doppler shift
(Afj;llr(fr)). This Doppler shift can also occur due to local oscillator frequency
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drift. Determination of the code phase enables the receiver to determine the start
of the C/A code frame with respect to the receiver time (f,). The signal
transmission time (7%) can then be deduced, which in turn is used to estimate the
range from the receiver to the satellite. Because the satellite clocks and receiver
clock are not perfectly synchronised to the GPS system time, this estimate is
usually called a pseudorange (B5).

The signal acquisition process provides coarse estimates of the Doppler-
shifted carrier frequency and the code phase. The purpose of tracking is to refine
these values and keep track of their change over time. A phase lock loop (PLL) is
used to track the carrier phase (nga,r), and the code signal is tracked by a delay
lock loop (DLL). These loops are used to generate error signals which are fed back
to the oscillator to align the received signal with a locally generated replica. Figure
2.3 shows some of the blocks of a simple GPS receiver. The figure also shows some
of the measurements output by the ranging processor (which acquires and tracks
a satellite signal).
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Figure 2.3. Blocks of a simple GPS receiver showing the raw GNSS observables.

The availability of raw GNSS observables (pseudoranges, Doppler frequencies)
allows the receiver to compute its position and velocity. This is accomplished once
the tracking loops are in lock and the ephemeris information decoded from the
navigation data message. For GPS L1 C/A, the navigation message is a 1500 bit
long frame lasting 30 seconds. It contains five subframes, with each frame lasting
6 seconds. One frame is required for the ephemeris and 25 frames for the almanac.
The receiver synchronises to the start of each subframe using a unique preamble
to decode the ephemeris. By synchronising to the preamble on each channel, the
receiver can determine relative transit time with respect to a reference channel.
This enables the computation of the first set of pseudoranges which are then
propagated using the code phase measurements from the code tracking loop.

2.2.6. Error Sources
The derived pseudoranges alongside other observables are influenced by errors
from different sources. These are discussed in this section and the modelling effort
presented in Chapter 5.

The satellite clocks exhibit an error due to the cumulative effect of the
oscillator noise. The ground control stations continuously monitor the satellite
clocks, and clock correction parameters are made available to the receivers
through the navigation message. The residual range error due to the satellite clock
ranges from 0.3 m to 4 m, depending on the type of satellite and age of broadcast
(Kaplan and Hegarty, 2006).
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The control segment’s prediction of a satellite’s position will be different from
its actual position. Therefore, the ephemeris error is the error in the prediction of
the satellite positions. These errors are generally small in the radial direction
(from a satellite toward the Earth's centre). The along-track and cross-track
components are generally much larger and more difficult for the control segment
to observe because they do not project significantly onto the line-of-sight vector
toward the Earth. For the same reasons, a user does not experience large
measurement errors due to the largest ephemeris error components with an
effective range error on the order of 0.8 m (Kaplan and Hegarty, 2006).

The atmosphere influences the propagation speed of a GPS signal which
manifests as a bias in the derived pseudorange and carrier-phase. In GPS
processing, the atmosphere is usually modelled as being composed of two parts,
the ionosphere and the troposphere. For the most part, a signal leaving the
satellite travels at the speed of light in free space. However, as the signal enters
the atmosphere, the signal propagation speed changes. The ionosphere is the
electrically charged part of the atmosphere that extends from 70 km and extends
to 1000 km above the Earth’s surface. It is composed of charged particles that
influence the signal propagation speed. Ultraviolet rays from the sun ionise
portions of gas molecules and release free electrons. The electron density along
the signal propagation path influences the propagation speed. The electron
density varies throughout the day and time of the year, largely influenced by solar
activity. The error introduced by the ionosphere ranges from a few metres and can
reach 100 m (Pinchin, 2011). On the other hand, the troposphere is electrically
neutral and extends from the surface of the Earth to a height of about 40 km. The
error induced by the troposphere is a function of the local temperature, pressure,
relative humidity and receiver’s altitude. The uncompensated range equivalent of
this delay can vary from about 2.4 m for a satellite at the zenith and a receiver at
sea level to about 25 m for a satellite at a low elevation angle (Kaplan and Hegarty,
2006). The troposphere is usually modelled as being comprised of a dry part and
a wet part. The dry component consists mainly of dry air and constitutes 90% of
the total delay. The dry component can be predicted very accurately, while the wet
component is often difficult to predict due to the uncertainties in the atmospheric
distribution. The navigation message includes correction parameters for the
ionospheric error that can correct up to 50% of the error. This correction model
is useful for single-frequency users and is also utilised in this research, as
explained in Chapter 5. The residual ionospheric delay averaged over the globe
(and elevation angles) is around 7 m (Kaplan and Hegarty, 2006).

The receiver noise can be thought of as being comprised of system noise and
tracking loop noise. System noise is generated by the receiver electronic hardware
and includes thermal noise, which also includes the contribution of the antenna.
The quality of the components affects the receiver's performance, with lower
quality components producing more noise. The tracking loop noise is determined
by the loop bandwidth and the incoming signal strength (Pinchin, 2011;
Richardson, Hill and Moore, 2016). The range equivalent for this error has been
shown to have more variation with the incoming signal strength than its phase
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equivalent counterpart (Richardson, Hill and Moore, 2016). The receiver settings
can be changed to improve tracking loop performance to cope with high dynamics
situations at the expense of increased noise. Pinchin (2011) showed that platform
dynamics directly impact the tracking performance, which in his experiments
resulted in the loss of phase lock (indicated by cycle slips) and increased biases in
the code measurements. Most methods used within a receiver are proprietary, and
therefore the exact cause for loss of phase tracking and code biases was unknown.

Multipath can also significantly contribute to the pseudorange error budget.
This error is caused by reflected signals from a satellite arriving at the antenna in
addition to the direct signal. For air applications, most signal reflections are from
the host-vehicle body. The reflected signals arrive with a delay and a different
amplitude compared to the direct signal. These signals influence the correlation
properties of the line-of-sight signal and eventually influence the receiver’s
tracking performance. Consequently, this introduces ranging errors (code
multipath) and carrier-phase errors (carrier multipath). Because the wavelength
of the PRN code is much larger than the wavelength of the carrier, the multipath
error on code measurements is larger. Different techniques exist to mitigate
multipath, including antenna designs, improved correlation techniques, which are
mostly proprietary for most commercial receivers, and improved signal design
with new modulation schemes that improve correlation properties. Another
approach includes estimating the different multipath components and removing
their effects in the channel observations (Tawk, 2013). It is also important to
mention that the error also depends on the environment in which the receiver
operates and can be different even for receivers within one metre of each other
(Pinchin, 2011).

2.3. Strapdown Inertial Navigation

A strapdown inertial navigation system is a dead-reckoning form of navigation
with an IMU fixed and aligned with the orthogonal body axes of the host platform.
The performance, size and mass of inertial sensors within an IMU vary by several
orders of magnitude. In low-cost applications, the quality of the inertial sensors
used is relatively low. As explained in the previous chapter, if used alone, errors
in these sensors will cause the navigation solution to drift.

This section presents an overview of inertial sensors and, particularly, MEMS
inertial sensors. Typical errors affecting these sensors are also presented. State-
of-the-art INS/GNSS coupling techniques are also discussed, and some of their
limitations are highlighted.

2.3.1. MEMS Inertial Sensors

MEMS accelerometers usually consist of a proof mass constrained to move in a
single axis and a pickoff to sense the applied specific force. The common types of
accelerometers are pendulous and vibrating beams (Groves, 2008). With a
pendulous accelerometer, the proof mass forms a pendulum with the
accelerometer case. Vibrating-beam accelerometers consist of a vibrating beam
supporting the proof mass along the sensitive axis. Motion causes a change in the
beam’s resonant frequency, and this can be used to deduce the applied specific
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force in the sensitive axis. Vibrating-beam accelerometers tend to have higher
accuracy capability than pendulous types (Titterton and Weston, 2004). Other
types of MEMS accelerometers include the tunnelling type and electrostatically
levitated type. The tunnelling type accelerometer uses a control electrode to
deflect a cantilevered beam (proof mass) using electrostatic force into a position
called the tunnelling position. The control electrode registers an applied
acceleration force on the proof mass as the change in the applied potential to
maintain the beam tunnelling position. These devices, however, have a limited
dynamic range (Titterton and Weston, 2004).

Gyroscopes typically form the most expensive part of an inertial navigation
system, with their performance often being the limiting factor for the overall
navigation solution accuracy (Tawk, 2013). Low-cost MEMS-grade gyros contain
a vibrating silicon structure used to measure the angular rotation about an input
axis using the deflection caused by the Coriolis acceleration perpendicular to the
input axis and proportional to the input rotation (Hide, 2003). There are generally
three practical sensor configurations based on this principle, including simple
oscillators (single vibrating mass), balanced oscillators (tuning fork gyroscope)
and shell resonators (cylinder, ring oscillators) (Titterton and Weston, 2004).

As a result of high volume manufacturing using chemical etching and batch
processing, MEMS-based inertial sensors are generally low cost. They also have a
small size, low weight, rugged construction, and low power consumption (Tawk,
2013). Consequently, this size reduction creates challenges in attaining good
performance and has led to decreased sensitivity and an increase in noise
(Titterton and Weston, 2004). Figure 2.4 shows typical 3-axis MEMS
accelerometer and gyroscope chips found in most low-cost applications.

Figure 2.4. Typical 3-axis MEMS accelerometer and gyroscope chips (Barbour, 2011).

2.3.2. Error Characteristics
Inertial sensors exhibit different types of errors, including biases, scale-factor,
cross-coupling and random noise. The order of these errors depends on the
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quality of the sensors. Some systematic errors, such as temperature-dependent
bias variation, can be removed through a laboratory calibration routine, and
others can only be corrected by integrating with other navigation sensors.
Typically, stochastic processes are used to model different errors exhibited by
these sensors.

Sensor bias comprises a static component and a dynamic component. The
static component (also known as the turn-on-bias or bias repeatability) varies
from run to run but remains fixed during each run. The dynamic component is
usually referred to as in-run bias variation or bias instability and varies during
each run and incorporates a residual temperature-dependent variation following
a laboratory calibration.

Scale-factor, sometimes called sensitivity, is the ratio between the measured
output and the change in the sensed input. A deviation of this input-output
gradient is the scale-factor error. Scale-factor errors in low-cost MEMS-grade
sensors can be as high as 10% (Groves, 2013).

Cross-coupling errors arise from misalignment of the sensitive axes of the
sensors with respect to the orthogonal axes of the body on which the sensor
assembly is mounted. As a result of this misalignment, the inertial sensors along a
given sensitive axis become sensitive to inputs on other orthogonal axes. This can
result in additional scale-factor errors but are usually several orders of magnitude
smaller than the cross-coupling errors (Groves, 2013). It is possible to have cross-
coupling errors as a result of cross-talk between individual sensors.

Random noise can result from several sources. For very weak signals, electrical
noise could limit the resolution of the sensors, and for vibratory sensors, high-
frequency resonances could significantly degrade the performance. For
frequencies below 1 Hz, the spectrum for accelerometer and gyro noise is
approximately white (Groves, 2013). The lack of correlation of white noise
samples means it cannot be compensated. The direct integration of random white
noise results in random walk in attitude for the case of gyros and random walk in
velocity for the case of accelerometers. Operating in an environment with high
vibrations can effectively increase the random white noise exhibited by the
sensors. It can also potentially introduce time-correlated components if the
external vibration frequency is close to the inertial sensor’s resonant frequency.
Filtering and De-noising techniques can be used to reduce high-frequency noise
(Quinchiaetal, 2013). More recently, deep-learning techniques have been applied
to de-noise gyroscope measurements using a dilated convolutional neural
network (Brossard, 2020).

2.3.3. Error Modelling
Usually, different stochastic processes are used to model the different errors
exhibited by inertial sensors. The common stochastic processes used include a
random constant process, a random walk process, and a first-order Gauss-Markov
process.

A random constant process can be used to approximate a constant error for a
given time. The differential equation for this process is given by:
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x(t) =0 (2.1)

Xk+1 = X

where k represents the time index. The static component of the sensor bias can be
modelled by this process using information such as the mean and variance of the
error.

A random walk process is a result of integrating random white noise (w(t)).
The differential equation for this process is given by:

x(t) =w(t) (2.2)
Xp+1 = X + Wi

As previously explained, the integration of white noise in the specific force
measurements leads to velocity random walk, while the integration of white noise
in the gyroscope measurements leads to angle random walk.

A first-order Gauss-Markov process is usually used to describe a coloured
noise signal. Its differential equation is given by:

x(t) = —Bx(t) + w(t) (2.3)
Xpp1 = e PAx, +w,

where S is the inverse of the correlation time, 7., and At is the integration interval.
With a significantly large correlation time (as § approaches zero), the process
resembles a random walk process, while with a very short correlation time, the
process resembles white noise. The scale-factor errors and the dynamic
component of the sensor bias can be modelled as a first-order Gauss-Markov
process and estimated in an integration architecture.

2.3.4. Integration Architectures

The integration of INS and GNSS has been widely adopted to improve overall
navigation performance. The two systems have complementary characteristics,
which makes them a perfect match when integrated. An INS generally has good
short-term stability but poor long-term performance. On the other hand, GNSS has
good long-term stability and limited short-term performance. Errors in the
receiver tracking loops, clock instability, multipath, variation in satellite geometry,
and low received signal strength can significantly affect the accuracy of the
navigation solution output by a GNSS receiver. The integration of the two systems
leads to an integrated navigation solution with the combined advantages of the
two systems. Some of the main characteristics of the two systems are presented
in Table 2.2. An integrated navigation system provides both short- and long-term
stability, improved availability and greater integrity. When the quality of the
inertial sensors used is low, the INS solution in an INS/GNSS integration
architecture is typically corrected using a closed-loop implementation. The errors
estimated in a closed-loop implementation are continuously fed back to correct
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the INS. This keeps the estimated errors small. Other configurations include the
open-loop and total-state implementation discussed in detail in Groves (2013).

Table 2.2. Pros and Cons of INS and GNSS.

INS GNSS
Pros | High output data rate No initial information
required
Provides relative position, Provides absolute position,
velocity and attitude information | velocity and time
information
Good short-term stability Good long-term stability
Partially independent of the Time Independent
operating environment
Not susceptible to RF Time standard
interference
Cons | Needs a good initial estimate Susceptible to RF
interference
Poor long-term stability Limited short-term stability
Can be influenced by external Environment dependent
vibrations
Time-dependent Low data rate

The integration of INS and GNSS can be grouped into three typical integration
strategies: loosely coupled integration, tightly coupled integration, and deeply
coupled integration.

Loosely coupled integration architectures fuse independent position and
velocity solutions (P, V) from the two systems to provide a blended navigation
solution, as shown in Figure 2.5. This is the simplest method of integrating an INS
with a GNSS receiver.

INS error corrections

[P, V]ins

INS

Filter —» PVA

GNSS

[P,V] gnss

Figure 2.5. A loosely coupled integration architecture.

Usually, an extended Kalman filter (EKF) is used to blend the two solutions with
increased interest over the last decade in the use of non-linear estimators such as
the unscented Kalman filter (UKF) and even particle filters (Tawk, 2013). The two
filters, the EKF and UKF, will be explained further in the next section due to their
relevance to this research. Loosely coupled schemes inherently require at least
four satellites to provide a drift-free navigation solution. With less than four
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satellites, no position and velocity information from the GNSS receiver will be
available for the filter update step (assuming the receiver is outputting a single-
epoch PVT solution). Therefore during an outage (when tracking less than four
satellites), the accuracy of the integrated solution heavily depends on the quality
of the inertial sensors used.

Tightly coupled integration architectures fuse raw GNSS observables, typically
pseudorange and Doppler frequency measurements, with their INS estimates to
produce a single navigation solution, as shown in Figure 2.6. This generally
improves accuracy because the raw observables are not as correlated as the
position and velocity estimates used in the loosely coupled approach (Tawk,
2013). Further, such as scheme can take advantage of measurements available
even during a GNSS outage to limit the error growth. It is possible to have Doppler
aiding information fed back to the GNSS receiver in this architecture, as done by
Tawk et al. (2014). This can significantly improve tracking loop performance due
to narrower tracking-loop bandwidth leading to improved noise resistance and
sensitivity (Groves, 2008).

INS error corrections

v o ~oT
P, D’?]ins
INS
Filter » PVAT
GNSS ;
[Prs' Dﬁ] anss

Figure 2.6. A tightly coupled integration architecture. The vectors [ﬁrs, Ef]gnss and

[Prs,ﬁﬁ]?ns represent the measured and estimated pseudorange and Doppler frequency
from a receiver (r) to a satellite (s) by the GNSS receiver and INS, respectively.

Deep integration architectures combine both GNSS tracking and navigation
into a single integration filter, as shown in Figure 2.7.

INS <—|

( b v INS i
GNSS l F | error corrections
‘ Acquisition | [ —F > Filter »| PVAT
Tracking |
NCO NCO
carrier code
L t L

Figure 2.7. A deep integration architecture.
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In this architecture, the integrated navigation solution directly controls the
numerically controlled oscillators of the underlying tracking loops. Usually, the
tracking architecture is modified from scalar to vector, where all the channels are
dependent on each other and controlled by the integration filter. The integration
filter can be fed with information from the discriminators or the correlators. As a
result of improved tracking performance, this architecture has good performance
even during high dynamics, improved sensitivity to weak signals and even
improved anti-jamming performance (Groves, 2013). The benefits of deep
integration come at the expense of increased complexity and computation cost
with tight time synchronization.

2.3.5. Integration Filters

An integration filter is an estimator or a mathematical algorithm that
systematically combines information from multiple sources. A common estimator
used for integrating an INS and GNSS is the Kalman filter introduced by Kalman
(1960). Rather than a filter, it is a Bayesian estimation technique that works
recursively to update its estimates as a weighted average of the current
measurement data and previous estimates. A standard Kalman filter is structured
to produce an unbiased estimate for a linear system. For a nonlinear system or
measurement model, a standard Kalman filter is no longer optimal. The usual
approach is to linearise the models about a continually updated trajectory by new
measurements (Groves, 2008; Brown and Hwang, 2012; Tawk, 2013). The
resulting filter is called an extended Kalman filter (EKF).

An extended Kalman filter uses the first-order terms of the Taylor series
expansion of a nonlinear system and measurement model and applies the
standard Kalman filter theory (Gelb et al, 1974). A nonlinear system and
observation model is given by:

x(t) = f(x(b),uq, t) + GEW(L) (2.4)
z = h(x,t) + v(t) (2.5)

where: f is the nonlinear system model,
G is the noise shaping matrix,
w is the system noise vector assumed to be Gaussian,
U, is a deterministic forcing function,
h is the nonlinear observation model,
v is the measurement white noise vector,
x, z represent the state vector and measurement vector, respectively.

Assuming the error in the estimated states is much smaller than the states
themselves, a linear dynamic and measurement model is given by:

X=F-X+Gw(t) (2.6)
Z=H-X+v() (2.7)

where F is the linearised dynamic matrix, H is the linearised observation matrix,
and X is the state vector.
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The discrete propagation of the states and associated error states over an iteration
of the filter is given by:

R R t R ~ (2.8)
Xklk-1 = Xg-1jk-1 T f(& ug, t)dt
t—Tg

Xipee1 = P Xk—1je-1
and the associated predicted error covariance matrix is given by:
Pyje—1 = Pp—1Pro1jp-1Phoq + Qi1 (2.9)
The state transition matrix can be approximated as:
D1 = exp(F-17s) (2.10)

which can be computed as a power-series expansion of the dynamic matrix, F, and
propagation interval, z,:

> Ftm (2.11)
Dy =

m=0

m!

where the dynamic matrix is given by:

_0f(x,uq) | (2.12)

X = Xg-1|k-1 Ug = Ug-1

The simplest form of the process noise covariance, Q_4, is obtained by neglecting
the time propagation of the system noise over an integration interval (Groves,
2013). This is given by:

t ot (2.13)
Qx—1 = Gx_+1E f fw(t’)wT(t”)dt'dt" GI_,
t—T5 t—Tg

And in the limit, T, = 0, the equation simplifies to (the impulse approximation):
Qr-1= Gk—le,k—ng—lTs (2.14)
where Qg ;1 is the spectral density matrix.

The updated state estimate is given by:
Xk = Xijk—1 + Kk (zk — h()?k|k_1)) (2.15)

and the observation matrix is given by:

_ dh(x) ~
k= "oy X = Xk|k-1 (2.16)

and the updated state covariance matrix is given by:

P = (I — K Hi) Pyie-1(I — KieHi)™ + K R Kyp (2.17)
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where K}, is the Kalman gain and is computed as:

pklk_lH,f (2.18)

K, =
e HyPyje-1Hj, + Ry,

and Ry, is the measurement noise covariance matrix, and the denominator in the
computation of the Kalman gain is called the innovation covariance (Sy).

Terms such as efficiency and consistency are typically used when dealing with
Kalman filters. Here, these terms are briefly defined. If a second random variable,
y is related to x through a nonlinear transformation, the transformed statistics are
consistent given the following inequality (Julier and Uhlmann, 1997):

Py —E[{ly-yHy-y"1=0 (2.19)

where: ¥ is the mean and P, is the covariance of y.

If the statistics are not consistent, the value of P, is under-estimated. If the
Kalman filter uses the inconsistent set of statistics, it could lead to divergence
since the filter places too much weight on the information and underestimates the
covariance. Efficient transformation dictates that the value on the left-hand side
of the inequality is minimised, which implies the covariance of the transformed
random variable (P, ) should closely match the actual mean squared error. And
for an unbiased estimate: y = E[y]. The EKF uses the linearised system and
measurement models to propagate the mean and covariance of a random variable.
The approximation is accurate only if the second and higher-order terms of dx in
the mean, and fourth and higher-order terms of §x in the covariance are negligible
(Julier and Uhlmann, 1997). Therefore, for a highly nonlinear system and
measurement model, this linearisation can introduce biases that can significantly
affect the filter's performance. This problem is amplified when dealing with large
state errors and very precise measurements. In this case, applying the standard
extended Kalman filter equations leads to a condition where the covariance matrix
decreases more rapidly than the actual state errors. This under-estimation
eventually leads to the filter ignoring new measurements even in the presence of
large residuals (the filter no longer gives consistent estimates). It is possible to
include second-order terms, but this comes at a high computational cost. The
space shuttle, for example, utilised an ad hoc technique known as underweighting
to account for second-order terms (Zanetti DeMars and Bishop, 2009).
Underweighting slows down the convergence of the covariance matrix. For a
nonlinear measurement model, the innovations truncated to first-order are given
by:

€Ex = Zx — h(xk|k_1) =~ erk|k—1 + Vi (220)
where: ey ,_1 is the a priori estimation error.

And the innovation covariance matrix is given by:

Sk = HkPk“(_lH]’{ + Rk (221)
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The updated covariance matrix can be multiplied by H, and H} and represented
in the following form (Zanetti, DeMars and Bishop, 2009).

-1
HkPk|kH]’€ = HkPklk—lHIZ(HkPMk—lH]Z + Rk) Rk (222)

And if the contribution of the a priori estimation error HkPk“c_lH,f to the
innovation covariance is much larger than the measurement covariance matrix R,
as a result of very precise measurement, the EKF will produce an updated
covariance matrix that approximates the measurement noise covariance matrix.

HkPklkH,Z =~ Rk (223)

If the contributions of the second-order terms of the Taylor series expansion of
h(x) are given by By, and have a comparable magnitude to the measurement
error, the innovation covariance matrix is modified to:

Sk = HkPk|k—1H1€ + Bk + Rk (224)

Then the a posterior covariance can be approximated by: HkPk“{H,f ~ Ry + By.
Therefore, in the presence of nonlinearities and by truncating the Taylor series to
first-order, the EKF can underestimate the a posterior covariance. To overcome
some of these challenges (when using the EKF), the unscented Kalman filter is
briefly discussed.

The unscented Kalman filter uses a deterministic choice of sampling points,

usually called sigma points, to represent the state estimate’s conditional density
(Julier and Uhlmann, 1997; Brown and Hwang, 2012). The filter's name takes after
the Unscented Transform (UT). This is used to calculate the statistics of a random
variable following nonlinear transformation. The discrete sigma points are
projected through a nonlinear transform and the Unscented Transform provides
an estimate of the mean and covariance of the associated random variable. For a
Gaussian random variable, the UKF can accurately capture the posterior mean and
covariance to the third-order. For non-Gaussian inputs, approximations are
accurate to at least the second-order (Julier and Uhlmann, 1997).
For a given nonlinear function f(-) that maps x to y, the Unscented Transform uses
the mean and covariance information for x and set of sample points to estimate
the mean and covariance information for y. The sample points are selected from
the probability distribution of x. For an N-dimensional state, 2N + 1 points are
chosen to be a minimal set of the random variable over the probability distribution
domain of the variable.

The sigma points are generated using:

X (2.25)

f-{-(\/W) lzliON

f_(m)l . i=N+1,..2N

i—
where: 1 =a?(N +k)—N,
a determines the spread of the sigma points about X,

X; =
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K is a scaling factor,
N is the dimension of x.

The transformation of the generated sigma points is given by:
yi = f(x;) (2.26)

To compute the mean and covariance of the transformed points, weights need to
be defined. These are given by:

(om) A L (2.27)
=T =0
1
(m)
_ i T20+N) ‘
weights : < ©
C 2 .
f (A+N)+ a“+p i
1
©
W = ——— =1,..2N
T2+ N l

where: f is dependent on the knowledge of the distribution, a value of 2 is usually
used for Gaussian distributions,
W™ denotes the mean weights,
W (© denotes the covariance weights.

The weighted mean and associated covariance are then given by:

2N
y= Z Wy,
i=0
2N (2.29)
P= ) WO -Di-9
i=0
The unscented Kalman filter applies the Unscented Transform to both the system
and measurement model to compute the posterior mean and covariance matrices.
These are then used with the standard Kalman filter equations to update the
propagated states. For brevity, the individual steps are not repeated here as they
can be found in many references (Julier and Uhlmann, 1997; Wan and Merwe,
2000; Brown and Hwang, 2012).

(2.28)

2.4. VDM Navigation

The use of a vehicle dynamic model (VDM) for navigation is not an entirely new
concept. It dates back to the early 1990s (Koifman and Merhav, 1991). Research
explores two main concepts in using a VDM for navigation, namely model-aided
and model-based navigation. A model-aided approach employs an INS as the main
process model and a VDM as an aiding tool. A model-based approach is the less
common, more recent approach that uses a VDM as the main process model and
an INS as the aiding system. Essentially, the two schemes use control inputs from
either the autopilot system or manual flight commands to propagate a navigation
solution using a set of equations that describe the motion of a vehicle under the
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influence of applied forces and moments. A VDM operates on dead reckoning
principles, similar to an INS. If a VDM is operating alone, any errors in the initial
estimate will lead to rapid drift in the navigation solution. Even with perfect
knowledge of the vehicle dynamics, a VDM solution is still prone to numerical
errors, which will accumulate, leading to drift in the navigation solution. The two
schemes will be discussed in this section. The different VDM navigation schemes
are discussed in chronological order, highlighting the base integration
architecture, navigation performance results, and limitations of the adopted
scheme.

Koifman and Bar-Itzhack (1999) present one of the early works using the
aircraft dynamics model to aid an INS using an EKF. With perfectly known
dynamics, position error for the aided INS was below 30 km during the entire
flight (which lasted five hours), while for the pure INS case, the maximum error
reached 1000 km. In this case, it was assumed that the main sources of error stem
from the lack of knowledge of wind velocity and the IMU errors. To remedy this,
the state vector included both wind velocity components and IMU errors. It was
also indicated that without slalom-like manoeuvres with a period of 100 s and a
roll amplitude of 15°, the filter diverges and renders the integrated navigation
solution unusable. The manoeuvres enhanced the observability of the modes
which would otherwise be unobservable in a straight and level flight. The
integration approach considered both the VDM and the INS at the same level in a
multi-process model approach. It included duplicate states in position, velocity
and orientation, as shown in Figure 2.8. Additionally, the authors indicated using
low-grade inertial sensors, but the presented error stochastics suggest high-end
SEensors.
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U ]
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X, — IMUerrors 5x
D
U — control inputs @__, EKF L
Sxp — VDM states corrections 8x,
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fi}}g, af’b — specific force and rotation rate Xe
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Figure 2.8. A multi-process model scheme. In the figure Py, vy, qp; represent the
position, velocity and quaternion states computed by the VDM (D) and INS (I),
respectively; P}, D |, 4}, represent the corrected navigation states.
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A sensitivity analysis was performed by varying the VDM parameters from the
nominal values, one at a time. It was found that for the whole flight profile,
incorrect parameters in the order of 10% of the nominal values caused the
navigation error to grow, making the aided system unusable. It was also found that
the system's performance was more sensitive to errors in the aircraft lateral
dynamics. To improve the navigation performance, the state vector was
augmented to include 21 aerodynamic coefficients. This prevented divergence and
improved the navigation accuracy of the aided navigation system with perturbed
parameters. It was also suggested that not all parameters were estimated
individually but rather as groups. The estimation was deemed good enough for
navigation with the maximum position error during the entire flight being less
than 30 km, similar to the aided INS case with perfectly-known dynamics. Further,
the estimation of both wind velocity components and IMU errors was very similar
to the case without any uncertainty in the model parameters. The estimation of
wind velocity was possible even without an air data system.

Julier and Durrant-whyte (2003) investigated the role of vehicle process
models in sensor-based navigation systems for autonomous land vehicles using
an EKF. Using a high fidelity model of an automated ground vehicle implemented
in the multibody dynamics and motion analysis software (ADAMS), the study
showed that higher-order models suffer from observability problems in VDM
parameters. However, it was shown that imposing weak constraints (treating a
constraint as extra observation with a nonzero uncertainty) reduced the problem.
The authors showed that the error between the true vehicle dynamics and the
process model manifests itself in terms of a penalty that must be applied to the
process noise covariance. The nature of this penalty was found to be time-varying.
It was shown that some changes to the process model could reduce orientation
errors by 90% and position errors by 40%. The authors focused on land vehicles
using constraints in their process model, which are not directly applicable to fixed-
wing aircraft. Further, the error characteristics of the sensors used were not
clearly outlined. However, the general principles and deductions highlight the
importance of a VDM in improved navigation performance.

Bryson and Sukkarieh (2004) investigated the use of a VDM in aiding position,
velocity and orientation estimates provided by an INS with low-cost inertial
sensors for a fixed-wing UAV using an EKF. Two approaches were considered in
their investigation. The first approach is shown in Figure 2.9, and the second
approach in Figure 2.10. The first approach compared and corrected velocity and
attitude estimates as predicted by both the INS and VDM. The second approach
used the VDM'’s predicted acceleration and rotation rates to correct IMU errors
directly. In the second approach, the Jacobian matrix for the VDM acceleration
errors was evaluated numerically (the rate of change of the body axes acceleration
was evaluated for varying values of the rotation rate perturbed about the value
calculated by the VDM). In both configurations, the INS formed the main process
model, and VDM aiding was activated during a GNSS outage. In the first
configuration, the errors in the position states were not estimated in the filter due
to the lack of coupling between them and other states (Bryson and Sukkarieh,
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2004). It was argued that variations in atmospheric density with altitude or
rotation of the navigation frame as a function of position resulting from operating
over a large area of the Earth’s surface might induce weak coupling leading to the
observability of the position states.
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Figure 2.9. Configuration 1 of the model-aided architecture investigated by Bryson and
Sukkarieh.
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Figure 2.10. Configuration 2 of the model-aided architecture investigated by Bryson and
Sukkarieh.

With a 5% uncertainty on VDM parameters, the east position error was below
100m for the first configuration and above 800m for the second configuration
after 50 seconds of GNSS outage, indicating the first configuration's superior
performance. The good performance in the first configuration was attributed to
the marginal error growth in velocity and attitude that can be estimated and
rejected with greater ease than the rapid error dynamics in acceleration and
rotation rates. In both configurations, the mechanism to estimate wind velocity
and VDM parameters was not included. The final navigation solution was still
dependent on the INS, which would be disabled in case of IMU failure.
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Vissiére et al. (2008) reported a successful hovering flight of a Benzin
Acrobatic model helicopter from Vario™ with low-cost inertial sensors by adding
an accurate dynamics model, which improved the prediction of the EKF. CATIA
was used to model 688 different parts to obtain the mass moment of inertia matrix
and centre of gravity position (Vissiere et al, 2008). An autonomous outdoor flight
under a 20km/h wind showed that position errors were within 1 m vertically and
3 m horizontally. The estimated attitude errors remained bounded to within 3
degrees in roll and pitch. However, the estimated yaw angle error was within 15
degrees. The architecture did not include a mechanism to estimate or calibrate the
mass moment of inertia. Instead, CATIA was used for this purpose which can be
time-consuming.

Dadkhah, Mettler and Gebre-egziabher (2008) investigated the use of a
helicopter dynamic model to aid an attitude heading reference system (AHRS)
incorporating low-cost rate gyros using an EKF. The helicopter model was
developed using frequency-domain system identification using attitude and
position information gathered using six high-speed MX-40 cameras (Dadkhah,
Mettler and Gebre-egziabher, 2008). It was argued that parametric errors in the
EKF measurement stream resulting from the helicopter dynamic model were the
main cause of the suboptimal performance in the estimation of gyro biases. The
authors argued that state vector augmentation to account for correlation of the
model parameters could improve the solution. The online calibration of model
parameters was not considered, even though the authors mentioned the potential
benefits of such capability. Wind velocity components were neither estimated
directly nor modelled as unknown external disturbances in the system design in
which the final navigation solution was still dependent on an INS.

Vasconcelos et al. (2010) implemented an embedded INS with a VDM for a
model helicopter using low-cost inertial sensors. The navigation performance of
the embedded approach was compared to an external model-aided approach. The
embedded approach used both error states and total states, as can be seen in
Figure 2.11. In the embedded approach, the VDM was used to form the
measurement innovation using INS states in the equations of motion. This reduced
duplicate states and allowed choosing the appropriate dynamics (linear or
rotational) to include. The execution time of the embedded VDM was 400 seconds,
26.3% lower than external VDM aiding using both angular and linear velocity
inputs. With only linear velocity aiding, the execution time for the embedded
scheme was 310 seconds, 42.9% lower than external VDM aiding. However, both
external and embedded VDM aiding were computationally intensive as opposed
to the classical INS/GNSS integration scheme. The navigation performance of the
embedded VDM approach was similar to the external VDM approach. However,
the use of both total and error states presents a complex integration approach.
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Figure 2.11. The embedded INS with VDM.

Crocoll et al. (2013) investigated a unified INS and VDM approach using a
modified EKF. The unified approach incorporated two valid state predictions
(using the INS and VDM), achieving a reduced state vector size and computational
load over the classical model-aided scheme in Figure 2.8. It was shown analytically
that the inclusion of position states as pseudo-measurements leads to the
divergence of the navigation filter due to zero process noise. A higher update rate
using the predicted velocity and orientation states improved the accuracy of the
navigation solution. It was shown that the accuracy of the unified approach is
similar to that presented by Koifman and Bar-Itzhack (1999). The architecture
was then extended to include the capability for online VDM parameter calibration
(Crocoll and Trommer, 2014) and the capability to estimate wind velocity states
(Mueller, Crocoll and Trommer, 2016). Online parameter calibration and wind
estimation significantly improved the navigation performance of the architecture.
Further, it was shown that the quality of the IMU plays a vital role in wind velocity
estimation during a GNSS outage, with a higher grade IMU showing improved
wind estimation (Mueller, Crocoll and Trommer, 2016). However, the approach
only considered the translational dynamic model and ignored the rotational
model, and the architecture was only investigated for a quadrotor.

Sendobry (2014) completely avoids using duplicate states (position, velocity
and attitude) by propagating the state vector using the VDM only as opposed to
the unified scheme proposed by Crocoll et al. (2013). The state vector was
augmented to include vehicle accelerations and moment biases in the EKF and
applied to a quadrotor. The quadrotor propulsion model was parameterised
through wind tunnel testing. Simulation results showed the importance of
estimating the propulsion coefficients, which resulted in a consistent estimate of
the navigation solution. An experimental investigation showed the robustness of
the proposed solution using a ground vehicle. The position solution showed a
drift-free navigation performance near buildings where the GNSS solution
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presented erroneous measurements and sometimes even total outage. The
architecture, however, was not investigated during periods of extended GNSS
outage and simulation studies were based on a quadrotor and did not consider a
fixed-wing aircraft. The wind velocity components were not directly estimated in
the filter even though moment biases due to asymmetric mass distribution and
drag torque were estimated.

Khaghani and Skaloud (2016) presented an extension to the model-based
approach presented by Sendobry (2014), with specific application to fixed-wing
UAVs. Measurements from a GNSS receiver and a low-cost IMU were used to
estimate corrections to the VDM solution using an EKF, as shown in Figure 2.12.
With an initial uncertainty of 10% in the VDM parameters, simulation results
indicated two orders of magnitude improvement in position estimation as
opposed to conventional INS/GNSS integration for a GNSS outage lasting five
minutes. Similarly, roll and pitch angle estimation improved by more than two
orders of magnitude while yaw angle estimation improved by more than one order
of magnitude as opposed to an INS/GNSS scheme. In further developments,
experimental results indicated attitude errors of a VDM /GNSS integration scheme
(IMU not used) being one to two orders of magnitude greater than a conventional
INS/GNSS integration architecture (Khaghani and Skaloud, 2018b). This was
mainly attributed to unmodeled dynamics, especially in lateral moments that
failed to accurately track the vehicle movements in the absence of IMU data. The
architecture included the mechanism to estimate wind velocity even without an
air data system which reduced rapid growth in position error during a GNSS
outage. The architecture used the position and velocity measurements from a
GNSS receiver that are not available during a GNSS outage.
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Figure 2.12. VDM integration architecture proposed by Khaghani and Skaloud.

Zahran et al. (2018) derived a VDM from a hybrid machine learning scheme
utilising a bagged regression and classification technique to aid an INS during a
GNSS outage for a quadcopter. The machine learning module (regression and
classification) acted as a substitute to provide position and velocity information
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during periods of GNSS outage, as shown in Figure 2.13. An EKF with 21 states is
used as the fusion filter. Using both regression and classification schemes resulted
in lower position errors during GNSS outages as opposed to using only a
regression scheme. The classification step reduced the navigation solution drift by
using derived terms of the motors’ speeds to classify the vehicle movement into
specific modes (acceleration/deceleration, constant velocity and hover), which
acted as velocity and attitude constraints. Compound manoeuvres not included in
the training data seemed to degrade the performance during a GNSS outage. For
an outage lasting over 100 s, the position error reached 16.8 m with compound
manoeuvres as opposed to 5.5 m with single-axis manoeuvres, and both cases
showed an order of magnitude improvement in position estimation as opposed to
a pure INS case. The performance of the algorithm was investigated only through
simulations for a quadcopter and did not include the mechanism to estimate wind
velocity directly.
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Figure 2.13. A hybrid machine learning VDM integration architecture.

Youn et al. (2020) proposed a model-aided state estimation scheme for a high-
altitude long-endurance (HALE) fixed-wing solar-powered UAV developed by the
Korea Aerospace Research Institute (KARI). The approach used synthetic
measurements of angle of attack and sideslip angle derived using VDM parameters
and accelerometer measurements with small-angle approximations. Angular rate
measurements from gyros were used directly as measurements in the
architecture. Specific force measurements from the accelerometers were used to
derive synthetic measurements and propagate the airspeed, angle of attack, and
sideslip angle states. Other sensors considered included a magnetometer for
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heading derivation, airspeed sensors and a GPS receiver. The approach used a UKF
as the navigation filter. Results from real flight tests demonstrated that the
architecture accurately estimated critical states, including wind velocity states,
without direct measurements of angle of attack and sideslip angle. Even though
the approach included the mechanism to estimate wind velocity components, the
impact of the errors of VDM parameters on navigation performance was not
investigated. Further, the impact of a GNSS outage on navigation performance was
also not investigated.

2.5. Summary

This chapter has reviewed different technologies and systems used in forming an
integrated navigation solution typically used in small UAVs. GNSS principles
alongside strapdown inertial navigation system basics have been discussed. The
errors that affect GNSS signals and inertial sensors have been independently
discussed, and the complementary characteristics of the systems have been
tabulated. This has served as justification for integrating the two systems. Further,
different VDM navigation architectures have been discussed, identifying their
strengths and limitations.

Two concepts in using the VDM in an integrated architecture have been
discussed, namely model-aided and model-based schemes. It has been identified
that VDM navigation schemes can mitigate rapid error growth in the navigation
solution during GNSS outages following a clear mathematical structure
representing the dynamics of the host platform type and an accurate set of model
parameters. Some common limitations identified on the currently available
integrated VDM architectures include the lack of a mechanism to estimate wind
velocity and online parameter estimation. Further, the current VDM navigation
schemes tend to use a loosely coupled configuration, using available position and
velocity from a GNSS receiver in the fusion filter. This limits the performance of
the integrated VDM scheme during an outage leading to drift in the navigation
solution even with perfect knowledge of the vehicle dynamics. This limitation in
the currently available integrated VDM architectures serves as the main
motivation for the work carried out in this thesis.
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3 Vehicle Dynamics Modelling

3.1. Introduction

In the previous chapter, different VDM navigation schemes in the archival
literature were discussed. As previously highlighted, a VDM requires a clear
mathematical structure for the host platform type and an accurate set of model
parameters to provide useful information. This research aims to develop an
integrated navigation architecture that utilises the dynamic model of a fixed-wing
UAV. A six-degree-of-freedom (6DOF) model of a fixed-wing UAV is required to
evaluate such an architecture in a simulation environment. The 6DOF model is
essentially the physics or math model that defines the movement of an aircraft
under the forces and moments applied to it using the control inputs as well as
other external influences. For instance, the ability of a fixed-wing UAV to generate
enough lift to overcome the Earth’s gravitational force depends on the geometry
of its lifting surfaces, the local atmosphere and the relative airflow around the
UAV. A fully representative model will include the translational and rotational
dynamics of the UAV, a local model of the atmosphere, a gravity model and any
other external disturbances such as wind. Further, depending on the objectives of
the simulation, the 6DOF model can include simple models valid for a limited flight
regime or more complex models valid for a wider flight envelope. Once a 6DOF
aircraft model is defined, motion variables can be derived from it and used to
assess the performance of an integration architecture. Therefore, this chapter
provides the details of the dynamics modelling effort, including the definition of
the coordinate frames and different models used to develop a 6DOF aircraft model.

The chapter is organised as follows. Section 3.2 presents the coordinate frames
used in this research. Section 3.3 presents the different ways of representing the
relative orientation between coordinate frames (attitude). In Section 3.4, the rigid
body equations of motion used in this research are presented. These are
essentially the equations that will be used to obtain the motion variables from the
forces and moments applied to the aircraft. In Section 3.5, the atmospheric model
and gravity model used in this research are presented, and in Section 3.6, the wind
model is presented. Section 3.7 presents the aerodynamic and propulsion models
that characterise a fixed-wing UAV. The section also discusses some of the
limitations of the models. Section 3.8 presents the 6DOF aircraft model
implemented in a simulation environment and some details about the guidance
and control scheme utilised. The Chapter summary is given in Section 3.9.

3.2. Coordinate Frames

Figure 3.1 shows the main coordinate frames used in this research. An inertial
frame (not shown in the figure) is a non-rotating and non-accelerating frame with
respect to the rest of the universe. For the purpose of navigation, an Earth-centred
inertial frame is usually used. This frame is usually defined with its x-axis pointing
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from the Earth to the Sun at the vernal equinox (Groves, 2013). The z-axis points
along the direction of the Earth’s axis of rotation from the centre to the celestial
north pole. The y-axis completes the 3D right-handed Cartesian system. This
frame is denoted by the symbol i.

Figure 3.1. Coordinate frames, airspeed, and control surfaces.

A local navigation frame (X, Yy, Zp) also called a local level frame, is a local
geodetic frame usually used as the resolving frame for the navigation solution. The
origin of this frame is the point where the navigation solution is sought (centre of
mass of the aircraft). Its z-axis points along the normal to the surface of the
reference ellipsoid, as can be seen in Figure 3.2. The x-axis is the projection in the
plane orthogonal to the z-axis of the line that points to the north pole, and the y-
axis completes the orthogonal set (points east). This frame is usually abbreviated
to the NED frame (north-east-down).

A body-fixed frame (X}, Y}, Zp), denoted by the symbol b, has its origin at the
centre of mass of the aircraft, and the angle of attack («) and sideslip angle (f) are
defined relative to it. Its x-axis usually points in the forward direction, the z-axis
points down in the usual direction of gravity, and the y-axis completes the 3D
right-handed Cartesian system. For angular motion, the x-axis, y-axis, and z-axis
are usually referred to as the roll axis, pitch axis and yaw axis, respectively. The
speed of the aircraft relative to the surrounding air is called airspeed, denoted V.
This is usually aligned with the x-axis of the wind frame (X,,). The z-axis of the
wind frame (Z,,) is taken along the lift line of action (but points in the opposite
direction to the lift force) and the y-axis (Y,,) completes the right-handed
orthogonal set.

An Earth-centred Earth-fixed frame (ECEF), denoted by the symbol e, has its
origin at the centre of the ellipsoid modelling the Earth’s surface and is used as the
reference frame for the navigation solution. This frame remains fixed with respect
to the Earth. This has its x-axis pointing from the centre to the intersection of the
conventional zero meridian with the equator. The z-axis points along the Earth’s
axis of rotation to the true north pole, and the y-axis completes the orthogonal set,
as shown in Figure 3.2. In this work, the WGS84 realisation of the ECEF frame has
been used because it is the datum used by the GPS system.
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Figure 3.2. The ECEF frame and Local navigation (NED) coordinate frame.

The main parameters defining the WGS84 datum are (Dunn, 2018):
e Equatorial radius, R, = 6378137 m
e Flattening of the ellipsoid, f = 1/298.257223563
e Eccentricity, e = 0.0818191908426215
e Earth’s gravitational constant, uz = 3.9860050 x 10* m3/s?
e Earth’s rotation rate, w;, = 7.2921151467 x 107° rad/s

The airspeed magnitude, V, angle of attack, @, and sideslip angle, 3, are given

T
Vb — [be'VybIVZb] (31)
V=V (3.2)

vb) (3.3)

a = arctan (ib
v,
X

b

p = arcsin (V7y> (3-4)

Based on the airspeed vector and wind velocity vector, the aircraft’s ground
velocity vector in the NED frame is given by:

P =Y+ W (3.5)

In Equation (3.5), W™ is the wind velocity vector in the NED frame.
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3.3. Attitude Representation

The relative orientation between two coordinate frames is known as attitude. For
aircraft navigation, the orientation of the body-fixed frame relative to the local
navigation frame is usually of interest. Typically, an integrated architecture keeps
track of the change in the relative orientation between the frames. The relative
orientation between coordinate frames can be expressed in different ways. The
most common representations include direction cosines, Euler angles (three
successive scalar rotations), and quaternions (single rotation about a particular
axis).

3.3.1. Direction Cosine Matrix

A direction cosine matrix is a 3x3 matrix, denoted by the symbol R}} representing
the rotation from the body-fixed frame (b) to the navigation frame (n). The
elements of the matrix are the product of the unit vectors describing the axes of
the two frames. The rate of change of R} is given by (Titterton and Weston, 2004):

where 02, is the skew-symmetric form of the angular rate vector,wl, =
[wy, wy, w3]T, of the body frame with respect to the local navigation frame and
resolved in the body frame. The skew-symmetric matrix is given by:

0 -w3 w, (3.7)
Q?lb = [ (1)3 0 _wll
—w,  Wq 0

3.3.2. Euler Angles

Euler angles intuitively represent the orientation of one coordinate frame with
respect to another using three successive rotations. Euler rotations do not
commute because each rotation is performed in a different coordinate frame (the
order of the rotations is critical). They exhibit a singularity when the pitch angle
is + 90° such that roll and yaw become indistinguishable. The rotations may be
expressed as direction cosine matrices, and the most common rotation convention
for aircraft navigation is the 3-2-1 convention visualised as a yaw rotation, then a
pitch rotation and finally a roll rotation (10 = 6 — ¢). The corresponding rotation
matrices are given by:

Rrbz = R1(P)R,(O)R; () (3.8)
1 0 0 ”COSQ 0 —sinH” cosy siny O]

0 cos¢ sing 0 1 0 —siny cosy 0
0 —sin¢g cos¢pllsind 0 cosé 0 0 1

The propagation of Euler angles is given by:

d) Wy (3.9)
é = Rw |:w3/]l
¥ Wz
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1 tan@sing tan 8 cos ¢
R, =10 cos ¢ —sin¢
0 sin¢g /cosO cos¢ /cosB

3.3.3. Quaternions

A rotation from one coordinate frame to another may be completed by a single
rotation about some axis. A quaternion is a four-element vector that may be used
to represent rotation about this axis in three-dimensional space. A quaternion
vector is given by:

o (3.10)

_ %

1= q>

as
where the first element, q,, is the scalar part which defines the magnitude of
rotation and the other three elements, g4, g,, and g3, define the unit vector of the
axis of rotation. A quaternion vector representing the rotation from the body-fixed
frame to the navigation is denoted qj. A lot has been written about quaternions,
and in this work, only the relevant formulations are given. For a more
comprehensive review of the subject, the reader is directed to the appropriate
references (Kuipers, 1999; Titterton and Weston, 2004; Sola, 2017). The product

of quaternions, denoted by the symbol ®, may be expressed in matrix form as:

[Po —P1 —P2 —P3][40] (3.11)
p®q=[pl,-q= p1 Po —P3 P2 |91
D2 p3 Po —P1||492
|[P3 — D2 P1 Pol 193]
[do —q1 —q92 —q3][Po]
= [q] I A do q3 —qz2||P1
R P = q2 —q3 do q1||P2
43 92 —41 qol LIP3

where [p], and [q]z represent the left- and right-quaternion-product matrices
(Sola, 2017). In relation to the navigation frame and the body-fixed frame, the
propagation of a quaternion vector is given by:

.1 (3.12)
1=59Q [w]
[(U] = [OI w1, Wy, w3]T
The direction cosine matrix can be represented in quaternion form as:
q6 + a7 — a5 — a5 2(9192 — 90q3) 2(q193 *+ 9092) (3.13)

Ry =(2(qoqs + 9192) 4§ —qi + 4% — a3 2(9295 — qoq1)
2(q193 — 9092) 29293+ 90q1) 4§ —4i — a5+ a3

In this work, quaternions have been used to represent attitude because they do
not have the singularity exhibited by Euler angles at + 90° of pitch and are more
computationally efficient than the direction cosine matrix. Table 3.1 summarises
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some of the properties of the rotation matrix (direction cosine matrix) and the
quaternion.

Table 3.1. Properties of the rotation matrix and the quaternion (Sola, 2017).

Rotation matrix R Quaternion g
Parameters 3x3=9 1+3 =4
Identity I3x3 [1,0,0,0]7
Inverse RT q*
Composition RiR, q1®q,
Rotation operator | R = I + sin ¢[u]y g = cosi tu sing
+ (1 — cos ¢)[u]? 2 2
Rotation action Rx q®xQq*
Constraint RRT =1; q®q* = [1,0,0,0]7
det(R) = +1
ODE R = R[w]x Gg=1/2qQw
Exponential map R = exp([ugly) q = exp(u¢p/2)
Logarithmic map log(R) = [u¢]« log(q) = ug/2
Perturbations R(t) = R exp([ul¢]y) q(t) = q®dq

where: u is the axis of rotation, ¢ is the magnitude of rotation,
v = u¢ is a rotation vector,
26g = [0,67]".

3.4. Equations of Motion

This section presents the equations of motion for a rigid body. These equations
are used to generate the aircraft motion variables. The equations are generally
platform-independent but will be presented in relation to a fixed-wing UAV since
this is the platform used in this thesis. The inputs to these equations are the forces
and moments applied to the platform. These are generated using the control
inputs and also depend on the local atmosphere and the local airflow.

The main motion variables (navigation states) considered in modelling the
dynamics of a fixed-wing UAV include:

T
Xy = [.U: Ah, vgb,N' v;lb,E' v;lb,u' 4o, 91, 42, 43, Wy, Wy, Wy, n] (3.14)

where the geodetic position p, = [u, 4, h]T represents the latitude, longitude and
height of the UAV, respectively. The UAV’s velocity vector v}, =

T, , .

[v2 N vy 5 Ve, ] is expressed with respect to the ECEF frame and resolved in
the local navigation frame. The quaternion rotation vector gqj =
(90, 91, 92, 3] represents a rotation from the body frame to the NED frame. The

. . T . .
UAV’s rotation rate vector around its axes w}, = [a)x, Wy, a)Z] is expressed with
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respect to an inertial frame and resolved in the body frame, and n is the propeller
rotation rate.

The equations of motion, alongside a first-order model for the propeller
dynamics, used in this research are given by (Khaghani and Skaloud, 2016a):

T
. VebN Vep £ o (3.15)
Pb Ry +h ' (Rp + h)cos(u) * PP
vy = Rpfip + 9™ — QR + Q%) v, (3.16)
n _1 n b
== ® w
% =30 @ lon] (3.17)
1
=3 [wgb]ng
wb, = () Y(M - wf), X IPw}), (3.18)
p=re T (3.19)

n=-__
Tn Tn

Equation (3.16) and Equation (3.18) define the translational and rotational
dynamics of the UAV through the applied forces, fl-l,;, and moments, M. These can
generally be derived using Newton'’s laws of motion (which apply with respect to
inertial frames). For the interested reader, a brief discussion and derivation of the
linear and rotational dynamics is included in Section D.1 and Section D.2 of
Appendix D of this thesis.

In Equation (3.15), Ry and Rp represent the meridian radius of curvature and
prime vertical radius of curvature, respectively.

R Re(1-€?)
M ™ (1-e2 sin?(u))3/2 (3.20)
Rp = e 1
(1-e2 sin?(p))2 (3.21)

In Equation (3.16), the rotation matrix R} transforms vectors from the body-fixed
frame to the NED frame and £} is the specific force vector of the body frame with
respect to an inertial frame resolved in the body frame. g" is the gravity vector in
the NED frame. In Equation (3.17), w2, is given by:

why, = ol — (RPT (0} + wly) (3.22)
the transport rate, wy,, and the Earth’s rotation rate in the NED frame, w},, are
defined as (Groves, 2013):

n —7ri I o T

wg, =[Acospy —p  —Asinpu] (3.23)

n _ _ 3 T
wj, = [wgecosu 0 Wie Sin U]

(3.24)
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In Equation (3.18), I” represents the mass moment of inertia matrix. This gives
the body mass distribution around the origin. The mass moment of inertia matrix
is given:

Lyx _Ixy — I,
1° ==L, I, —I, (3.25)

_sz _Izy Izz

where Iy, I, and I, represent the moment of inertia terms about the aircraft's
x-, y-, and z-axis, respectively. Conventional fixed-wing UAVs are usually
symmetric about the x - z plane. As a result, the products of inertia, I, and I, are
assumed zero (Cork, 2014).

In Equation (3.19), n. and t,, represent the commanded propeller speed and time
constant, respectively.

In Section 3.1, it was mentioned that the applied forces and moments acting on
an aircraft also depend on the local atmosphere and local airflow. So, the next
section will first review the atmospheric and gravity model used in this research,
and the following section will give an overview of the wind model adopted.

3.5. Standard Atmosphere and Gravity Model

The international standard atmosphere may be used to represent the static
atmosphere (pressure, temperature, and density of the Earth’s atmosphere) void
of any dynamic effects such as wind and turbulence.

In this research, the International Civil Aviation Organization (ICAO) standard
atmosphere is used to model the static atmosphere. It consists of a tabulation of
values at various altitudes. In the standard atmosphere, the temperature within
different layers of the atmosphere is taken as a linear function of the altitude above
mean sea level (ICAO, 1993). The temperature, pressure and associated
temperature gradient (lapse rate) for some layers of the atmosphere are
presented in Table 3.2. The standard atmosphere exhibits both spatial and
temporal correlations, and therefore local variations in pressure, temperature and
density are not reflected in the model. However, this does not present a problem
in assessing the navigation performance of an integration architecture.

Table 3.2. The altitude, temperature, pressure and lapse rate within the troposphere and
stratosphere.

Layer ho [m] T, [K] P, [Pa] a [°C/m]
Troposphere 0 288.15 101,325 -0.0065
Tropopause 11,000 216.65 22,632 0.0

Stratosphere 20,000 216.65 5,475 0.0010
Stratosphere 32,000 228.65 868 0.0028

where: hy is the basepoint height above mean sea level for the specific layer,
T, is the basepoint temperature (sea level for the troposphere),
P, is the basepoint pressure (sea level for the troposphere),
a is the temperature lapse rate.
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The atmospheric data presented in Table 3.2 allows the calculation of the local air
temperature and density given by:

T =To|1+alemie]

(3.26)
Po[1+a_ham7§;—ho]5'2561 20
p= RqT (3-27)

where: R, is the gas constant for air (J/kg - K),
hamst is the height above mean sea level (m).

The approximate height above mean sea level h,,, is related to the geodetic
height h by:

Rumst = b — N(, ) (3.28)

where N is the height of the geoid (constant gravity potential model of the Earth’s
surface) relative to the ellipsoid. As depicted in Figure 3.3, Equation (3.28) is only
an approximation.

Terrain

Ellipsoid

Figure 3.3. Orthometric h,,,s; and Geodetic height h.

The WGS84 datum provides a simple representation of the acceleration due to
gravity at the surface of the reference ellipsoid given as a function of the latitude
at a particular location. The model is referred to as the Somigliana model (Groves,
2013). Other higher precision models exist, such as the EGM 2008 and EGM 96.
These contain a large set of coefficients used to compute a much higher precision
of the acceleration due to gravity. These are computationally intensive, especially
for low-cost applications involving UAVs that operate relatively close to Earth's
surface. The Somigliana gravity model is given by:

(1+0.001931853 sin? )
90 = Je =~ gz 5inz EE (3.29)
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where: g, is the theoretical gravity at the equator,
e is the first eccentricity of the ellipsoid,
u is the geodetic latitude.

For heights less than 10 km, the down component of the gravity model can be
approximated as:

2 w?,RER 3
n ie''0 p 2
(u, hy) = (u)[l——<1+ +—>h +—hl .
9b,p b Yo R, f e b R b (3.30)
where: g is the Earth’s gravitational constant,
R, is the equatorial Earth radius,
R, is the polar Earth radius,

f is the flattening of the ellipsoid.

3.6. Atmospheric Disturbances

To introduce unknown disturbances in the 6DOF aircraft model, an engineering
model of atmospheric disturbance is required. Various models exist that capture
the complex interaction of wind shear, vector shear, turbulence and gusts. The
most common models used in aircraft navigation are detailed in the military
specification document MIL-F-8785C (Moorhouse and Woodcock, 1982). The use
of different models is driven by the objectives of the simulation, such as the study
and evaluation of stability and control characteristics of an aircraft (flying
qualities). An empirical scale is also used to describe wind speed in relation to
observed conditions at sea or on land. This scale is referred to as the Beaufort scale
and is presented in Table 3.3. It provides a convenient interpretation of wind
speed.

Table 3.3. Beaufort wind scale.

Beaufort Mean wind Wind Limits Description

Scale [m/s] [m/s]

0 0.5 0.0-1.0 Calm

1 1.5 1.0 - 2.0 Light air

2 2.5 2.0-3.0 Light breeze
3 4.5 4.0-5.0 Gentle breeze
4 7.0 6.0 —8.0 Moderate breeze
5 10.0 9.0 —11.0 Fresh breeze
6 12.5 11.0 — 14.0 Strong breeze
7 15.5 14.0 —17.0 Near gale

8 19.0 17.0 — 21.0 Gale

9 22.5 21.0 — 24.0 Severe gale
10 26.5 25.0 — 28.0 Storm

11 30.5 29.0 — 32.0 Violent storm
12 - 33.0 + Hurricane

To study the navigation performance of different integration techniques, different
authors have proposed and used simpler models. For instance, Koifman and Bar-
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I[tzhack (1999) used a two-component wind model with a mean wind speed and a
gust component described by a first-order Markov process.

In this research, a stochastic wind model given by a Gauss-Markov process is
used to assess aircraft navigation performance. The wind velocity model has a
constant component of a southeasterly wind of 3.8 m/s magnitude, a correlation
time of 200 seconds, and a process uncertainty of 0.1 m/s. On the Beaufort scale,
this would be described as a gentle breeze.

3.7. Aerodynamics and Propulsion

This section presents the aerodynamic and propulsion models for a conventional
fixed-wing UAV. These models are used to provide the applied forces and
moments on the UAV during a flight through the combined effect of the control
inputs, local atmosphere and local airflow.

3.7.1. Mass, Inertia and Geometry

A UAV’s mass, inertia and geometrical characteristics are important parameters
in the aerodynamic model. They play a key role in the translational and rotational
dynamics of the aircraft. For a small UAV, its mass and geometry can easily be
derived using measurements. The mass moment of inertia, however, can be
difficult to derive with simple measurements. The mass moment of inertia of a
small UAV is usually derived from a CAD (computer-aided design) package or
experimentally from full-scale oscillation tests.

In this research, the aircraft is modelled as a rigid body. It is assumed that the
mass of the aircraft does not change. This is also the case for the mass moment of
inertia matrix. The aircraft’s geometry is also assumed to be fixed. This greatly
simplifies the translational and rotational dynamics. The mass, inertia and
geometrical properties of the UAV modelled in this research are presented in
Table 3.4. The reference values can also be found in Ducard (2007).

Table 3.4. Aircraft mass and inertia data.

Parameter Value Units
Mass m 28 kg
Roll moment of inertia L, 2.56 kg m?
Pitch moment of inertia I, 10.9 kg m?
Yaw moment of inertia I,, 11.3 kg m?
Product of inertia L, 05 kg m?
Product of inertia Ly, 0.0 kg m?
Product of inertia L, 0.0 kg m?
Wingspan b 3.1 m
Wing area S 1.8 m?
Mean aerodynamicchord ¢  0.58 m
Propeller diameter D 0.79 m
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3.7.2. Thrust

In most small fixed-wing UAVs, a propeller generates the required thrust force.
The propeller is usually installed on a brushless DC motor connected to a power
source (usually a battery) via a motor controller. The thrust force generated by a
propeller is given by:

FT =pn2D4CFTU) (331)

where the thrust coefficient CF; depends on the advance ratio and modelled
according to Khaghani and Skaloud (2016) and Ducard (2007).

CFr(J) = CFr + CFr, ] + CFr J?
(3.32)
%4
/= Dn

The model above ignores the variation of the thrust coefficient with propeller
rotational speed (Brandt and Selig, 2011). Typically, look-up tables are more
suited for characterising thrust coefficient with advance ratio and propeller
rotational speed. Brandt and Selig (2011) showed that the variation of the
coefficients is more significant around the high-efficiency region for propellers
typically used in small UAVs. For simplicity, the model also assumes that the thrust
vector is aligned with the aircraft's longitudinal axis, even though it is possible to
have other components of the thrust force vector that can be resolved into the
body frame.

3.7.3. LiftForce

The lift force coefficient is modelled as a linear function of the lift curve slope
(CFz,) and the lift coefficient at zero angle of attack (CFz,). For the purpose of
navigation and operating within a limited range of angles of attack, this simple
model is sufficient (Khaghani and Skaloud, 2016a).

FY = GSCF,(a) (3.33)
CFZ = CFZl + CFZaa

1
= _ _ VZ
9=5P

[t is not difficult to see that the lift equation above is only valid for a limited range
of angles of attack since it does not take into account nonlinear effects such as stall
and unsteady aerodynamics. For instance, a fixed-wing UAV with a sharp leading
edge and low aspect ratio wing design might experience trailing-edge separation
at high angles of attack and sometimes even leading-edge vortex breakdown. Thin
wings with sharp leading edges, such as delta wings, might cause leading-edge
vortices to form that travel down the wing and break down due to turbulence. The
breakdown of these vortices leads to a loss in vortex lift (Khan and Nahon, 2016).
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3.7.4. Lateral Force
Lateral force coefficient is modelled as a function of sideslip angle £ and is given
by:
Fy = qSCFy(B)
(3.34)
CFy = CFy1B

This model assumes that the aircraft is symmetric about the plane formed
between the body x-axis and z-axis.

3.7.5. DragForce

Drag is the force that resists the movement of an aircraft through air. There are
generally two contributions to the drag force acting on an aircraft: parasite drag
and lift induced drag. Parasite drag includes form drag (drag due to the shape of
the aircraft), interference drag, and skin friction. The lift induced drag results from
the downwash created by wingtip vortices. The wingtip vortices are created from
the spanwise flow of air from the lower surface (high pressure) to the upper
lower-pressure surface. To capture both parasitic and lift induced drag, the drag
coefficient is modelled as a function of both the angle of attack, , and the sideslip
angle, B, as found in Ducard (2007).

Fy’ = qSCFx(a, B)
(3.35)
CFX = CFXl + CFXa(X + CFXazaZ + CFxﬁzﬁz

Simple models exist that model the drag coefficient as a linear function of the angle
of attack. However, these models incorrectly predict the drag force when the angle
of attack becomes sufficiently negative (Beard and McLain, 2013).

3.7.6. Roll Moment

The dimensionless roll moment coefficient is modelled as a linear function of
aileron deflection, dimensionless roll rate (w, ), dimensionless yaw rate (w,) and
sideslip angle (Ducard, 2007).

M2 = gShCMy ( 8,, @y, @, B) (3.36)
CMX == CMX5a6a + CMX(T)x Ex + CMX(T)Z 52 + CMXﬁﬁ

The term CMXsa is associated with the deflection of the ailerons and is referred to

as the primary roll control derivative. The term C My, is roll damping derivative.

3.7.7. Pitch Moment
The dimensionless pitch moment coefficient is modelled as a linear function of the
elevator deflection, the dimensionless pitch rate (@, ), the dimensionless yaw rate

(w,), the angle of attack and the pitching moment coefficient at zero angle of attack
(Ducard, 2007; Khaghani and Skaloud, 2016a).

M = gScCMy( 8, ), a) (337)
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CMy = CMY566€ + CMY(T)y ay + CMYa a+ CMYl

The term CMy 5, 1S associated with the deflection of the elevator and is referred to

as the primary pitch control derivative. The term CMy_ is the longitudinal static
stability derivative and C Mymy is the pitch damping derivative.

3.7.8. Yaw Moment

The yawing moment coefficient is modelled as a linear function of rudder
deflection, dimensionless yaw rate (@,), and sideslip angle (Ducard, 2007;
Khaghani and Skaloud, 2016a).

M3 = qSbCM,( 5,,@,, B) (3.38)
CMZ = CMZ(STST + CMZLT)Z EZ + CMZB ﬁ
The term CMZ,sr is associated with the deflection of the rudder and is referred to

as the primary yaw control derivative. The term CMz, is the yaw damping

derivative and CM, g is the weathercock stability derivative.

In Equation (3.36) - (3.38), the dimensionless roll rate, pitch rate and yaw rate are
given by:
— wyb _— _ wyC _ wzb

W =Sy Wy T 1925y (3.39)

The control surface deflections are normalised such that the range is the same.

82,8, 8y € [~1,1] (3.40)

Table 3.5 shows the control surface sign convention used in this research.

Table 3.5. Control surface sign convention.

Control  Deflection Sense  Primary effect
O, Right aileron up + Positive roll moment
O Elevator up + Positive pitch moment
o Rudder right + Positive yaw moment

3.7.9. Propeller Torque

Typically in a small fixed-wing UAV, a motor spins the propeller to generate thrust.
This results in an equal and opposite torque applied by the propeller to the body
on which the motor-propeller assembly is mounted. This is given by:

M, = CM,pn®D> (341)

where CM,, is the torque coefficient. It is generally a function of the Reynolds’
number, tip Mach number, propeller design and the advance ratio. Knowledge of
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the torque load can also be used to estimate the power required to drive the
propeller. For a fixed-wing UAV, the effects of the propeller torque are usually
relatively minor. In this thesis, the propeller torque is ignored alongside other
gyroscopic effects.

The specific force vector can now be represented by:

OB (R (342)
fiv =—| Ry |F| +] 0
m rrl Lo
and the moment term can be represented by:
M = [mb, Mt M)
x,» My, Mz (3.43)

In Equation (3.42), RE is the vector transformation matrix from the wind frame
to the body frame and is given by:

cosacosff —cosasinf —sina
RE = sinf cospf 0 (3.44)
cosfsine —sinasinff  cosa

In this thesis, the reference values for the presented aerodynamic and
propulsion model are obtained from Ducard (2007). The values are also presented
in Table 3.6.

Table 3.6. Reference values for the aerodynamic and propulsion models presented.

Property Value Units Property Value Units
CFr, 8.42 - 1072 [—] CMy, —1.30-1072 [rad™!]
CFr, —136-1071 [—] CMx,, -1.92-1071 [—]
CFr, —9.28-1071 [—] CMy,,, 3.61-1072 [—]
CFx, —2.12-1072 [—] C My, 2.08 - 1072 [—]
CFy, —2.66-1072 [rad™'] CMy, —9.03-1072 [rad™!]
CFy,, —1.55 [rad—2] CMy;, 5.45-1071 [—]
CFy,, —4.01-10"1  [rad™?] CMy(By —9.83 [—]
CFz, 1.29-1072 [—] CMgz, 5.34- 1072 [—]
CFy, —3.25 [rad™1] CMgz,, —2.14-1071 [—]
CFy, —3.79-10"1  [rad™!] CMg, 8.67-1072 [rad™!]

CMy, 6.79 - 1072 [—] Tn 0.4 S
3.8. Matlab/Simulink Implementation

This section presents a high-level overview of the blocks defining the 6DOF
aircraft model based on the presented rigid body equations of motion alongside
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the aerodynamic, propulsion, gravity and atmospheric models. The 6DOF aircraft
model is implemented in Matlab/Simulink, as can be seen in Figure 3.4. Matlab
provides a seamless environment to develop and test algorithms. The Matlab-
based graphical programming language (Simulink) provides a customisable set of
block libraries ideal for model-based design, testing and even code generation to
other programming languages. The 6DOF aircraft model is used to generate IMU
and GNSS datasets to evaluate the navigation performance of VDM integration
architectures, as discussed in the following chapters.

i Autopilot Plant !
1
1 1
! RLLdem .
1
| »{ Plant HGTdem :
1
1
| SPDdem > aircraftdata !
1
| L1 Guidance Controllerw i
1
1
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! PTCHdem}|— |
1
| hgt_dem |
1
| ’—. THRdem|— » Plant Envi» Env plant > [A] ‘ i
1 —» eas_dem :
1
1
| ‘ TECS Environment :
1
1 1
| » plant aileron aileron |
1
: —» RLLdem deflections 1
1 elevator elevator —L :
| —» PTCHdem Commands I
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1o » measAccel logCMD | i
1
: THRdem Propspeed Propspeed e :
H . 1
| F InnerLoops Actuator Dynamics Aircraft |
1
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________________________________________________________________________________

Figure 3.4. Simulink implementation of the VDM.

The main implementation of the presented equations of motion is contained
within the aircraft block. The block contains the aerodynamic model and
propulsion model used to output the forces and moments acting on the aircraft, as
shown in Figure 3.5. These are then used to generate the motion variables and the
data used for the sensor models through the equations of motion presented in
Section 3.4 of this chapter. The implementation of the atmospheric and gravity
model in the simulation environment is contained within the environment block.
The block also contains a simple wind model previously explained in Section 3.6.

A simple mission planning interface has also been implemented in Matlab to
allow a user to quickly define a set of waypoints alongside autopilot settings at
each waypoint. This mission planning interface is shown in Figure 3.6 alongside a
small dialog box used to define the autopilot settings for each waypoint. Some of
these settings include the altitude of the waypoint, the waypoint radius, the
command at each waypoint, the aircraft speed at a particular waypoint and the
number of turns if the aircraft is commanded to loiter at a particular waypoint.
The interface can also be used to load waypoints defined in a text file and can also
be used to replay the flight. After defining the waypoints, the simulation is started,
and the data is recorded into a structure for further processing.
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Figure 3.5. Aerodynamics and propulsion block.

The autopilot system consists of a nonlinear guidance logic (L1 guidance
controller), a throttle and pitch controller (Total Energy Control System - TECS
controller) and inner loops to control roll, pitch and yaw angle demands. The
nonlinear guidance logic generates a lateral acceleration command based on the
cross-track error. The acceleration command is then used to generate a bank angle
command that returns the aircraft to the desired track. The TECS controller
decouples the dynamic response of altitude and airspeed, enabling their efficient
control using the combined effect of throttle and elevator inputs. In the
implementation, it is assumed that the throttle controls the total energy of the
aircraft, and the elevator controls the energy distribution (Balmer, 2015). Further
details of the controllers are given in Appendix A.

The autopilot system is manually tuned using nominal VDM parameters (Table
3.6) to achieve desired tracking performance. Tracking performance is then tested
against random changes in the VDM parameters reaching 10% of the initial values
for a simple trajectory, and the results are presented in Figure 3.7. The final 3D
position error does not exceed 60 metres for the presented flight segment.
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Figure 3.6. A simple mission planning interface. The dashed circles represent the
waypoints, and the arrows represent the direction of the flight. The radius parameter
determines the size of the circle.
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Figure 3.7. A simple trajectory generated by flying the aircraft between waypoints. The
grey lines represent the trajectory with random variations (10%) in VDM parameters.
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3.9. Summary

This chapter has presented the modelling of the aircraft dynamics used to develop
a six-degree-of-freedom (6DOF) model of a fixed-wing UAV. The chapter
highlighted the coordinate frames used and the set of equations that govern the
motion of the aircraft under the influence of applied forces and moments. The
chapter then presented the atmospheric and gravity models used in the 6DOF
aircraft model. An aerodynamic model for a conventional fixed-wing UAV was
presented, highlighting some of its limitations. For instance, the lift model adopted
is only valid for a limited range of angles of attack and ignores other effects such
as stall. The chapter then presented a high-level overview of the 6DOF aircraft
model implemented in Matlab/Simulink, highlighting the main blocks
corresponding to different models presented earlier in the chapter. The chapter
also presented a simple mission planning interface used to define the mission
profile, change the autopilot settings, and review a mission. The autopilot was
tested for random changes in the VDM parameters reaching 10% of the initial
values with the final position error not exceeding 60 metres.
The next chapter will use the developed 6DOF aircraft model to evaluate the

performance of the state-of-the-art VDM integration architecture.
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4  Loosely Coupled VDM

4.1. Introduction

In Chapter 2, two concepts in using the VDM in an integrated architecture were
introduced, namely model-aided and model-based schemes. Model-aided schemes
typically use the VDM to aid an INS solution, while in a model-based scheme, the
VDM is the main process model aided by available systems and sensors such as
GNSS and inertial sensors. Essentially, the two concepts use control inputs to
propagate navigation states using a set of equations that describe the motion of
the vehicle under the influence of applied forces and moments, as presented in the
previous chapter. An additional input to the VDM architecture is wind velocity, as
can be seen in Figure 4.1.

Aircraft Model Translational
U acceleration
> Forces >
wm A
02
|| Xp
| |
<
» __Moments : »
Rotational
acceleration

U= [50“66367‘3716}17 w" = [wN:wanD]T

Figure 4.1. VDM with control and wind velocity input.

The current VDM navigation schemes, presented in Section 2.4, tend to use a
loosely coupled configuration, using available position and velocity from a GNSS
receiver in the fusion filter. In most implementations, it is assumed that the mass
moment of inertia terms are perfectly known. The impact of the mass moment of
inertia errors on the navigation solution has not been analysed. In most cases, it is
assumed that a GNSS receiver does not recover following a GNSS outage.
Moreover, the characteristics of the resulting errors in different GNSS outage
intervals have not been examined. Having identified these challenges, the chapter
presents and analyses a VDM navigation scheme that estimates the mass moment
of inertia terms and compares its navigation performance to an existing model-
based integration approach during a GNSS outage. The chapter then goes on to
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present the error characteristics of a VDM navigation scheme during different
GNSS outage intervals followed by periods of reacquisition.

The chapter is organised as follows. In Section 4.2, the current state-of-the-art
VDM navigation approach is briefly presented. Section 4.3 presents a VDM
navigation scheme with inertia estimation. Section 4.4 presents the navigation
solution error characteristics of a VDM navigation scheme during different GNSS
outage intervals, and the chapter summary is presented in Section 4.5.

The work presented in this chapter has been published in Mwenegoha et al.
(2019a).

4.2. Current VDM Navigation

The current state-of-the-art VDM integration scheme falls under the model-based
category (shown in Figure 4.2). Since a VDM navigation architecture is simply a
mathematical model, it is robust against platform vibrations and thermal effects,
usually affecting other systems such as an INS, which rely on IMU data to
propagate the navigation states. This makes a model-based scheme more
attractive than a model-aided scheme, especially in applications where the quality
of the inertial sensors is low. Additionally, results presented by Khaghani and
Skaloud (2018b) demonstrate the resilience provided by a VDM /GNSS integration
approach in the absence of IMU data. Their simulation results show that a model-
based approach can provide a navigation solution that is sufficient for UAV
guidance and control in the absence of IMU measurements. This is unlike a model-
aided scheme that would disable the navigation solution altogether. Multi-process
models which rely on the INS for the final navigation solution, such as the one
proposed by Koifman and Bar-Itzhack (1999), have similar limitations to model-
aided schemes.
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Figure 4.2. Model-based integration architecture.
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Even though a model-based scheme is more attractive than a model-aided scheme,
it is still limited by initialisation errors, VDM parameter uncertainties, wind
velocity uncertainty and numerical integration errors. These limitations mean
that such a system also requires an absolute positioning system to provide an
error-bound navigation solution.

The implementation of the current state-of-the-art model-based integration
architecture for a fixed-wing UAV is shown in Figure 4.2. The architecture uses an
extended Kalman filter (EKF) alongside measurements from a GNSS receiver and
a MEMS-grade IMU to aid the solution. Other than the navigation states, the state
vector also includes IMU error states, wind velocity states and VDM parameters.

4.3. VDM with Inertia Estimation

This section presents and analyses a loosely coupled model-based scheme that
includes the mechanism to estimate the mass moment of inertia directly. The
architecture is tested using both GNSS and IMU measurements during an extended
GNSS outage. The unscented Kalman filter (UKF) is used as the fusion filter in
estimating corrections to the navigation states.

The architecture is evaluated via a Monte Carlo simulation study with a
predefined trajectory and a variable wind profile assuming commercial off-the-
shelf low-quality MEMS-grade inertial sensors. The assessment is made in terms
of navigation accuracy and filter consistency, especially during periods of
extended GNSS outage. This section addresses two key questions:

e [s the navigation performance significantly affected by any errors in the

moment of inertia terms, especially during a GNSS outage?

e Does the choice of the navigation filter significantly affect navigation

performance?
In addressing the questions, the architecture is briefly described, followed by a
description of the filtering methodology used to assess the performance of the
architecture. Simulation results are then presented at the end of the section.

4.3.1. Description

Figure 4.3 shows the architecture proposed to study the navigation performance
of aloosely coupled architecture in comparison to the state-of-the-art scheme. The
architecture uses the unscented Kalman filter to estimate corrections to the
navigation states using IMU and GNSS measurements. Other than the navigation
states X,,, the state vector is augmented to include wind velocity states X,,, IMU
error terms X,, and VDM parameters X,,. The VDM parameters also include the
moment of inertia terms. The difference between the state-of-the-art model-based
scheme and the presented architecture lies in the choice of the filter and the
augmentation of the state vector to include the mass moment of inertia terms.

As presented in the previous chapters, a VDM requires a set of parameters (Xp)
used to derive the moments and forces acting on the aircraft. Pre-calibration of
these parameters before a flight is possible, but this can be time-consuming and
usually requires expensive equipment defeating the whole purpose of a low-cost
routine. The VDM structure allows the calibration of these parameters during a
flight reducing the effort in obtaining accurate parameters.
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Figure 4.3. VDM-based UKF architecture.
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4.3.2. Filtering Methodology

The UKF is chosen to serve as the navigation filter in this study. This filter has been

discussed in Chapter 2.

The navigation filter uses a set of appropriately chosen weighted points to
parameterise the mean and covariance of a probability distribution. Figure 4.4
shows the underlying mechanism of generating the sigma points followed by
appropriate transformations and the calculation of the covariance matrices.
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Figure 4.4. The mechanism to generate sigma points.
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The navigation states are propagated using the standard rigid body equations
of motion presented in Chapter 3 with some simplifications. The aircraft is
assumed to be flying over a small region, and therefore the Earth is assumed to be
locally flat. Coriolis acceleration due to the rotation of the Earth is ignored, and a
local navigation frame (NED) fixed at the take-off point is considered the local
inertial frame. Therefore, the navigation states considered in this study include:
T

Xn = |xn, xg,xp, V2,02, 02, ¢, 0,9, wy, 0y, w,, 1] (4.1)
the position vector x™ = [xy, xg, xp]7 is in the NED frame relative to the take-off
point. Based on the assumptions, the simplified equations of motion are given by:

i = RIpb (4.2)
b — fill; + (RZL)Tgn _ w?b x pP (4.3)

$np = Ry w0}, (44)
wfy = (M) M — wh, X IPwf, (4.5)

T . . . .
where v? = [v?,v),v?] is the inertial velocity vector in the body frame. The
transformation matrix R} in terms of the Euler angles ¢,,;, = [¢, 6,9]7 is given by:

Ry = R;(Y)R3(O)R{ () (4.6)
and R, is given by:
1 tan@sing tan 8 cos ¢ (4.7)
R, =10 cos ¢ —sing¢

0 sing /cosf cos¢/cosb

It is assumed that the pitch angle 8 of the aircraft does not reach +90° and
therefore, the matrix R,, is always defined.

To capture slow transitions in wind velocity, a random walk process is used in
the navigation filter (Khaghani and Skaloud, 2016a). The wind velocity vector is
defined as:

Xw = [WN'WE'WD]T (4-8)

No deterministic part is considered in the process model, and only white noise is
considered to rule the transition in time. This process model is given by:

Xy = G, W, (4.9)

Gy = [1]3><3

where G, is the noise shaping matrix, W,, is the noise vector, and [I],,xn
represents the identity matrix with m rows and n columns (note: m = n).

A random walk process model is also used to model the IMU error terms. The
IMU error states are defined as:
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T
Xe - [bax; bay; baZ' ng, bgy, bgz] (410)

where bg[yy, 2 and by, represent the accelerometer and gyroscope biases,
respectively. The process model contains only white noise and is given by:

X, = G,W, (4.11)

G, = [1]6><6

where G, is the noise shaping matrix and I, is the noise vector for the IMU error
terms. In the simulation, the IMU error terms are modelled using a first-order
Gauss-Markov process with specific details given in the next section.

In the filter, VDM parameters are assumed to contain some initial uncertainty.
However, during a flight, these parameters are considered static. Twenty-two
model parameters and four mass moment of inertia terms are considered. These
are defined as:

 CFr,, CFn, CFy,  CFy, cr,, .1 (4.12)
"'CFX(ZZI CFXﬁZ’ CFZl' CFZal CFYl'
'"CMXtSa’ CMXB’ CMX(Bx’ CMXE,Z; CMy1,

p '"CMY(X’ CMY(Se’ CMY(TJy' CMZSr' CMZ(T)Z'
CMZB, TTU IXX' Iyy, IZZI
| I, ]

A random walk process with a small process noise is used to model the mass
moment of inertia terms and model parameters collectively referred to as VDM
terms (X,). The process model is formulated as:

Xp = Gpr (4.13)
Gp = [1]26x26

where G, is the noise shaping matrix and W, is the small noise vector. As
previously stated, during a flight, these parameters are considered fixed.
Therefore, the state vector considered in the architecture is given by:

T

X = [X7, X0, X2, %3] (4.14)
The measurement vector Z consists of the accelerometer and gyroscope
outputs as well as GNSS receiver measurements. The IMU measurements are given

by:

b (4.15)
ZIMU: ﬁZl+Xe+Wl
Wip

and the GNSS measurements are given by:

60



XN
XE
Xp

(4.16)

Zgnss = + wy

where w; and w, represent the residual error for the IMU and GNSS
measurements, respectively, modelled as Gaussian white noise. The measurement
covariance matrices are obtained from the simulated error characteristics
presented in the next section.

4.3.3. Simulation Setup

The trajectory used in the simulation is shown in Figure 4.5. The flight profile
includes a take-off segment, a climb segment to an altitude of 700 m, and a cruise
segment where a GNSS outage is induced, followed by a descent and approach
segment. The outage is induced 200 seconds into the flight and assumed to last for
the remainder of the flight (lasts for 140 seconds). The total flight time is 340
seconds.
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Figure 4.5. Trajectory used in the simulation (top left). Roll rate (top right), altitude
(bottom left) and aircraft speed (bottom right) during different flight phases.

The trajectory is derived using error-free sensors. In the simulation, guidance and
control are independent of the architecture under investigation. The control
inputs are assumed to be available from the autopilot system. Such an extended
GNSS outage may occur due to external interference, such as from a GNSS signal
jammer. Wilde et al. (2016) demonstrated how a 10 mW chirp jammer could cause
a GNSS outage in a low-cost receiver on a UAV for an extended range reaching 1
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km. During this period, the receiver did not output a navigation solution (no
position and velocity measurements).

The flight profile is categorised according to four flight characteristic regions
(FC) based on speed changes, altitude changes and aircraft manoeuvres. Table 4.1
shows the changes in speed, altitude, and aircraft manoeuvres during different
phases. A segment with a significant change in altitude coupled with compound
manoeuvres is denoted FC 1. The take-off segment constitutes FC 1. A segment
with a significant change in both speed and altitude is denoted FC 2, which in
Figure 4.5 includes the climb and descent segments. A segment with significant
manoeuvres and speed changes but with little or no change in altitude is denoted
FC 3. A constant speed and constant altitude phase without manoeuvres is
denoted FC 4 (straight and level, unaccelerated flight - SLUF).

The stochastic properties of the IMU considered in the simulation are given in
Table 4.2. Similar values have been used in Khaghani and Skaloud (2018). The
simulated IMU measurements are assumed to contain a random turn-on bias
component, a dynamic bias component given by a first-order Gauss-Markov
process and white noise. The simulated IMU is assumed to be sampled at 100 Hz,
and all other errors such as misalignment errors and scale-factor variations are
ignored. In practice, the true IMU error characteristics will not be known, and the
measurements from the IMU may contain unmodeled correlated components. To
overcome the limitations of models used in a Kalman filter, sufficient noise must
be modelled to overbound the real system’s behaviour (Groves, 2013). Therefore,
to maintain a situation close to reality, the navigation filter uses scaled values (in
the range from 1 to 2 applied to each axis).

Table 4.1. Flight characteristics.

FC Speed change  Altitude change Manoeuvre

No Significant

change Significant change

Table 4.2. IMU errors in the simulation.

Property Accelerometer Gyroscope
Random bias (o) 10 mg 1000 °/hr
White noise (PSD) 100 pg/vHz 21.6 °/hr/VHz
First-order Gauss-Markov (o) 0.05mg 20 °/hr
Correlation Time (1) 200s 200s
Sampling Frequency 100 Hz 100 Hz
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In the simulation, GNSS measurements are assumed to contain white noise
with a standard deviation of 1 m sampled at 1 Hz, similar to the modelling effort
in Khaghani and Skaloud (2016, 2018).

Table 4.3 presents the standard deviation of the initial error for the navigation
states and VDM terms. Here, the VDM solution is assumed to be initialised using a
different mechanism, such as from an INS/GNSS integration scheme.

Table 4.3. The standard deviation of the initial errors for the navigation states and VDM
terms.

State Standard deviation (10)
Position [1.0, 1.0, 1.0] m
Velocity [1.0, 0.5, 0.5] m/s
Attitude [3.5° 3.5° 5°
Rotation rates 1.5°/s
Propeller speed 15rad/s

Model parameters 10 %

Moment of Inertia terms 10%

The initial uncertainties for the navigation states range from one to two times the
initial errors described. The initial values for IMU error terms and wind velocity
components are set to zero. An initial uncertainty of 1.5 m/s is used for each wind
velocity component. The initial uncertainties in the state covariance matrix for the
IMU error terms are in general agreement with the IMU stochastic properties.

Table 4.4 presents the standard deviation of the tuned process noise used in
the filter.

Table 4.4. Process noise.

State Standard deviation (10)
Position 10°m
Velocity 0.008 m/s
Attitude 10 rad
Rotation rates 10 rad/s
Propeller speed 10 rad/s
Accelerometer Bias 2x107° m/s?
Gyroscope Bias 2%x107°6 rad/s
Wind 103 m /s

Model parameters 0.015% of True Values
Moment of Inertia 0.015% of True Values

One hundred Monte Carlo runs are performed in Matlab to evaluate the
autonomous navigation performance and investigate the system’s robustness
against random initialisation and sensor errors. The justification of the number of
simulations is described in Section B.1 of Appendix B.
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4.3.4. Results

This section presents the navigation performance results of the model-based
scheme using a UKF (UKF/VDM) compared to a model-based scheme using an EKF
(EKF/VDM). The UKF/VDM architecture includes the mechanism to estimate the
mass moment of inertia terms as described in the previous sections.

The position and velocity errors are presented in Figure 4.6 (w-I: with the mass
moment of inertia estimated, w/o-I: without estimating the mass moment of
inertia) in the NED and body-fixed coordinate frames, respectively. For the most
part, during periods of GNSS availability, the predicted confidence values (10) are
consistent with the empirical RMS of estimation errors except during short
periods of high dynamics between 34 seconds and 50 seconds. During this time,
the filter underestimates the longitudinal and lateral velocity errors leading to a
slight underestimation of north and east position errors. This is attributed to
unresolved initialisation errors. During periods of GNSS outage, position errors
grow gradually, reaching only 14.5m in the north channel, 8m in the east and 4.3m
in the down direction after 140 seconds of VDM coasting. Most of the velocity
errors seem to be estimated within the first 60 seconds of GNSS availability. The
error is seen to be less than 0.1m/s after 150 seconds of GNSS availability across
all channels. There is a marginal growth in velocity errors following a GNSS outage,
but these remain well within 0.1m/s across all channels.
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Figure 4.6. RMS of position errors for all 100 runs (left); RMS of velocity errors for all 100
runs (right).

Figure 4.7 shows the RMS of position errors for the proposed UKF/VDM
architecture with the perturbed and augmented moment of inertia terms
compared to the EKF/VDM architecture.

64



w
(9]
w
[&)]

[ IGNSS outage [ IGNSS outage
=== ukf-w-I error === ukf-w/o-I error )
=== ukf-w-I 1o prediction === ukf-w/0-| 10 prediction

w
o
w
o

=0 =ekf-w/o-| error =0 =ekf-w/o-| actual
= =ekf-w/o-1 1o prediction

=40 =ekf-w/o-1 1o prediction

.25 _25
E E
S 20 S 20
o ()
c c
S5 215
= =
o] o
o o

-

o
-
o

0 0
0 34 68 102 136 170 204 238 272 306 340 0 34 68 102 136 170 204 238 272 306 340
time [s] time [s]

Figure 4.7. RMS of 3D position errors for all 100 runs. UKF/VDM architecture with- (left)
and without- (right) moment of inertia terms.

Evidently, both setups show similar position error estimation performance. The
differences are well within the precision of the Monte Carlo runs. It is important
to note that these deductions are relatively similar for the remaining navigation
states.

Most roll and pitch angle errors are estimated well within the first 50 seconds
of GNSS availability. However, yaw angle errors are slightly delayed and only well
resolved after 160 seconds of GNSS availability, as shown in Figure 4.8.
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Figure 4.8. RMS of attitude errors (left) and angular velocity (right) errors for all 100 runs.

The lack of a direct heading reference and large initialisation errors in the yaw
angle might be the cause of the delayed yaw angle error estimation during GNSS
availability. The angular rates are quickly estimated within 20 seconds of GNSS
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availability due to the presence of direct observations from the gyroscopes. Roll
and pitch angle errors remain within 0.06 degrees after 140 seconds of GNSS
outage, while the yaw angle error increases gracefully to 0.65 degrees after 140
seconds of GNSS outage. The 10 predictions also seem to be consistent with the
empirical RMS of estimation errors even during periods of GNSS outage.

Figure 4.9 shows the RMS of estimation errors for the propeller speed and

wind speed for 100 Monte Carlo runs. Even without direct RPM measurements,
most of the error in the propeller speed seems to be estimated within the first 50
seconds of the flight. As a consequence of the first-order model used for the
propeller speed and the unresolved initial errors, some spikes are noticeable
during periods with significant commanded propeller speed inputs. However, the
error does not increase during the GNSS outage indicating the filter’s ability to
keep track of this error even in the absence of GNSS data.
Wind speed is estimated well within the first 60 seconds of GNSS availability, and
the errorisless than 0.12 m/s, 150 seconds into the flight. The error in wind speed
estimation is relatively small even after 140 seconds of GNSS outage, with the final
estimation error being less than 0.2m/s. The filter also seems to be consistent in
estimating wind speed, as can be seen from the predicted confidence values (10),
even without an air data system, attributed to correctness in the filter setup. The
navigation performance of a model-based approach is generally prone to errors
resulting from unknown external disturbances such as wind. Therefore, the filter’s
ability to estimate wind even without an air data system makes this approach
robust against external wind disturbances.
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Figure 4.9. RMS of propeller speed errors (left) and wind speed errors (right) for all 100
runs.

Figure 4.10 shows the accelerometer and gyroscope bias estimation errors.
The filter effectively and consistently estimates the accelerometer and gyroscope
biases within the first 50 seconds of GNSS availability. The filter resolves 98% of
the initial turn-on bias in the gyroscope measurements well within the first 100
seconds of GNSS availability. The estimation seems to improve even during 140
seconds of GNSS outage, thanks to the mitigation provided by the VDM. Also, the

66



predicted confidence values (10) seem to be consistent with the empirical RMS of
estimation errors, attributed to the correctness in filter setup.
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Figure 4.10. RMS of accelerometer errors (left) and gyroscope errors (right) for all 100
runs.

Results indicate that the z-axis and x-axis accelerometer biases (b, b,,) are
slightly delayed in their estimation. This might be attributed to the coupling
between the attitude and accelerometer errors under low dynamics, and more
separation and observability might be achieved with high dynamics.

The RMS of the mean error of the VDM terms is presented in Figure 4.11. With
an initial uncertainty of 10% considered in each of the VDM terms, the filter is
slightly optimistic in estimating VDM terms. Generally, the initial error in the VDM
terms is seen to reduce quickly during periods of GNSS availability and remains
bounded during periods of GNSS outage. The VDM terms error reduces quickly to
less than 7.5% within 50 seconds of GNSS availability and then gradually to 6.6%
at the onset of the GNSS outage. Strong coupling and correlation of the VDM terms
might be the reason for the slight inconsistent estimate, with the difference
between the mean error and the filter’s prediction being less than 19% at the end
of the flight. Perhaps more dynamic manoeuvres, exciting different modes, could
improve the overall estimation performance of the VDM terms, as demonstrated
in Laupré and Skaloud (2020). However, the current results are deemed well
enough for navigation due to the consistent estimate in navigation states. It is
worth mentioning that, for a similar setup, the EKF/VDM architecture, with
perturbed but not augmented inertia terms, is found to be overly inconsistent in
the estimation of the model parameters with a difference of 48.5% between the
mean error and the prediction at the end of the flight.
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Figure 4.11. RMS of the mean error of all VDM terms. UKF/VDM architecture with (left)
and without (right) moment of inertia terms.

This is not surprising and highlights the importance of estimating the moment of
inertia terms, especially when they contain some errors. This also shows that the
proposed architecture could be used with greater confidence in the presence of
inertia tensor perturbations saving both time and cost associated with inertia
modelling. Further, Figure 4.11 (on the right) shows the performance of both a
UKF/VDM and EKF/VDM architecture without the moment of inertia terms in the
state vector. The results show that the choice of the filter does not significantly
influence the estimation performance of the model parameters.

Figure 4.12 shows the mean estimation error for the thrust and drag force
coefficients. The navigation filter estimates about 45% of the initial error in the
thrust coefficients within the first 50 seconds of GNSS availability. The first 50
seconds of the flight make up the FC1 flight segment (see Table 4.1) marked by
significant manoeuvres and altitude changes. The errors do not grow during the
GNSS outage lasting 140 seconds. About 25% of the initial drag coefficient errors
are estimated within the first 50 seconds of GNSS availability. The drag force
coefficient errors also do not grow during the GNSS outage.
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Figure 4.12. RMS of the mean error for thrust force coefficients (left) and drag force
coefficients (right) for all 100 runs.
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Figure 4.13 shows the mean error in the estimation of lift and lateral force
coefficients.
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Figure 4.13. RMS of the mean error for lift force coefficients (left) and the lateral force
coefficient (right) for all 100 runs.

The estimation error of the lift force coefficients seems to reduce quickly in the
first 50 seconds of the flight. During this period, the aircraft experiences a
significant change in altitude and compound manoeuvres. A combination of
altitude changes and compound manoeuvres did not seem to improve the
estimation of the lateral force coefficient. Sharp turns with associated changes in
aircraft speed at constant altitude seem to improve the estimation of the lateral
force coefficient, indicated by the improved estimate around 136 seconds and 250
seconds. A GNSS outage does not seem to influence the estimation performance of
both the lift and lateral force coefficients.

Figure 4.14 shows the estimation error for the rolling and pitching moment
coefficients. Altitude changes and compound manoeuvres (FC1) seem to improve
the estimation of rolling moment coefficients gradually.
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Figure 4.14. RMS of the mean error for roll moment coefficients (left) and pitch moment
coefficients (right) for all 100 runs.
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On the other hand, sharp turns and significant speed changes (FC3) at constant
altitude seem to rapidly improve the estimation of rolling moment coefficients
even during a GNSS outage. The mean error of the pitching moment coefficients
seems to rapidly improve in the presence of altitude changes and compound
manoeuvres (FC1). The error improves slightly during sharp turns at constant
altitudes. There is also a noticeable difference between the UKF/VDM architecture
with mass moment of inertia error estimation and the EKF/VDM architecture that
does not estimate the mass moment of inertia error. The error in the mass moment
of inertia terms influences the torque derivatives because they are significantly
correlated.

Figure 4.15 shows the estimation error for the yawing moment coefficients
and propulsion unit time constant. The estimation of yawing moment coefficients
seems to improve only slightly during the GNSS availability period attributed to
the significant correlation within the terms, which limits their observability. More
dynamic manoeuvres might help improve the estimation of these coefficients.
Most of the error in the propulsion unit time constant seems to be estimated
during the GNSS availability period. Only 30% of the initial error remains at the
end of the flight. The estimation even improves during the GNSS outage period.
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Figure 4.15. RMS of the mean error for yawing moment derivatives (left) and the propeller
time constant (right) for all 100 runs.

The error in the estimation of the mass moment of inertia terms is presented
in Figure 4.16. With an initial uncertainty of 10% in the moment of inertia terms,
it can be seen that errors in the roll and pitch terms reduce quickly within the first
50 seconds of GNSS availability. However, the filter appears to be slightly
optimistic in estimating these terms. The estimated errors do not grow even
during periods of extended GNSS outage lasting 140 seconds. The difference
between the filter’s 10 prediction and the empirical RMS of estimation errors at
the end of the flight is 24.4% for the roll axis (/) and 33% for pitch axis (I, ). The
mass moment of inertia term in the yaw axis (/,,) seems to be resolved after the
initial errors in the roll and pitch terms have been resolved. The mass moment of
inertia term in the yaw axis continues to be observable even during periods of
GNSS outage, with a difference of 23% between the filter’s 10 prediction and the
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empirical RMS of estimation errors at the end of the flight. Sharp turns with rapid
changes in speed seem to significantly improve the estimation of the mass
moment of inertia term in the yaw axis. The estimation of the product of inertia
seems to improve in the initial phase of the flight within the first 30 seconds but
gradually diverges for the remainder of the flight. This might be attributed to the
degree of coupling and lack of enough excitation for the product of inertia to be
observable, and perhaps more dynamic manoeuvres could improve the overall
estimation.
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Figure 4.16. RMS of estimation errors for the mass moment of inertia terms for all 100
runs for the UKF/VDM scheme.

For a better understanding of the correlation properties between the different
states, a correlation matrix is presented in Figure 4.17. Generally, the mass
moment of inertial terms seem to be decorrelated from most of the navigation
states. However, they seem to be significantly correlated with the moment
derivatives which is not surprising, owing to the formulation of the rigid body
equations. Further, the moment derivatives show significant correlation within
groups. The pitching and yawing moment coefficients show significant cross-
correlation. The rolling moment coefficients seem to be decorrelated from the rest
of the moment derivatives. This is attributed to the high level of dynamics in the
roll axis, which improves their overall group observability. It is also important to
note that the model parameters showed some correlation with some navigation
states, which is essential for improved observability of the parameters. The wind
velocity states seem to be significantly correlated with the position and velocity
states and could help explain the significant growth in position error during
periods of GNSS outage.
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Figure 4.17. Correlation matrix at the end of the flight for one realisation.

4.3.5. Summary

This section presented and analysed a UKF/VDM integration architecture that
uses measurements from a MEMS-grade IMU and position measurements output
by a GNSS receiver with specific application to a fixed-wing UAV. The architecture
included the mechanism to estimate the mass moment of inertia terms directly,
which reduces the need for laborious routines in estimating these terms. The
performance of the architecture was compared to the state-of-the-art EKF/VDM
architecture, which does not include the mechanism to estimate the mass moment
of inertia terms. A Monte Carlo simulation study was used to evaluate the
architectures. The VDM scheme was assumed to be initialised from a different
integration approach, such as an INS/GNSS scheme. A GNSS outage was induced
200 seconds into the flight and lasted for 140 seconds. During the outage, position
measurements were not available to the filter.

Several deductions were made, and three important ones are highlighted here:

¢ In aVDM-based architecture that utilises IMU measurements and position
measurements from a GNSS receiver, errors (within 10% of the true
values) in the moment of inertia terms do not significantly influence the
estimation performance of the navigation states.

e With an initial uncertainty of 10% in the model parameters, the choice of
the navigation filter, either a UKF or EKF, does not significantly affect the
estimation performance of the navigation states.
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e Errors in the moment of inertia terms strongly influence the estimation
performance of the torque coefficients due to the significant correlation
between them. However, the estimation of inertia terms reduces the errors
in the torque coefficients.

The investigation in this section has addressed the two questions posed at the
beginning of the section. However, throughout the investigation, it has been
assumed that a GNSS outage occurred only once. The outage interval could vary,
and the navigation solution errors might present different characteristics with
different GNSS outage intervals. The next section investigates the characteristics
of these errors for different outage intervals.

4.4, VDM Error Characteristics

In the previous section, the navigation performance of a VDM-based integration
architecture was investigated assuming the GNSS outage occurs only once during
the flight. In a typical scenario, a GNSS receiver could recover tracking of the
satellites lost during the outage. Further, the outage interval could be different
based on the persistence of the conditions causing the outage. Therefore, this
section investigates the characteristics of the navigation solution errors of a
model-based integration architecture during different lengths of GNSS outage.

First, the integration architecture used in the investigation is described,
followed by a description of the filtering methodology. The simulation setup is
then described, followed by a discussion of the results.

4.4.1. Description

The model-based integration architecture used to characterise the navigation
solution errors during different lengths of GNSS outages is similar to that shown
in Figure 4.2. In this architecture, the dynamic model of a fixed-wing UAV is used
as the main process model. Both IMU measurements and position measurements
from a GNSS receiver are used in the navigation filter. Here, an EKF is used as the
fusion filter.

4.4.2. Filtering Methodology

The use of an EKF as the fusion filter requires the computation of the Jacobians
from the process and observation models. The process and observation models
are similar to those presented in Section 4.3.2. The process models are linearised
to provide dynamic matrices used in the EKF. The linearised process model is of
the form:

X = FX + GW, (4.17)
this is equivalent to the form:
):(n ann Eye By an] Xn G, 0 0 0 W, (4.18)
Xe| _|Fen Fee Fow Feo || Xe| [0 G, 0 O |V
Xw [Fwn Fye Fyw prJ Xw 0 0 Gy 0 Wy
X, Epn Fpe Bpw Fyp, [ LXp 0 0 0 Gpl (W
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the process models are linearised with respect to all the states given by:

The dynamic matrix has been evaluated analytically even though no significant
changes in the results were noticed with numerically evaluated matrices. The
numerical evaluation of the dynamic matrix is usually done using complex-step
derivatives (Squire and Trapp, 1998). The analytical form is numerically stable
and computationally efficient (Khaghani and Skaloud, 2016a). It is assumed that
the sub-state vectors are uncorrelated, and therefore the off-diagonal blocks in the
G matrix are all zero. For the navigation states, uncertainty terms apply only to
linear and rotational accelerations as well as the propeller rotational acceleration.
Therefore, the standard deviation of the driving noise on the navigation states is
given by:

B T (4.20)
O-Wn - O-‘l.ix’ O-‘l.ﬂyF O-I}ZI O-d)xl O-(;)yﬂ O-(,'_)Zl O-n

The process models for IMU errors and wind velocity components are linear, and
therefore, the noise vectors are similar to Equation (4.11) and (4.9), respectively.

The measurement vector consists of IMU measurements and position
measurements from a GNSS receiver.

Z =20 2] (421)

tmu’

To update the predicted state and covariance matrix, an EKF uses a linearised
observation model given by:

Z=HX+r (4.22)

where 1 is the measurement noise vector with covariance R. The measurement
covariance matrices are obtained from the simulated error characteristics
presented in the next section. The observation matrix, H, is given by:

T
= a_Z — a[ZZ;nu 'Zgnss] (423)
OX  o[xp,x7, x5, x5]"

_ [Himu,n Himu,e Himu,w Himu,p ]
Hgnss,n Hgnss,e Hgnss,w Hgnss,p

4.4.3. Simulation Setup

The trajectory used in the simulation is presented in Figure 4.18. It partly captures
what would be experienced in a typical mapping or surveying mission. The
trajectory consists of five GNSS outage segments of different intervals (10 s, 20 s,
30, 60s,and 90 s, respectively). The outages are induced when the aircraft turns,
followed by a reacquisition period upon completion of the turn. The entire flight
lasted 780 seconds. Three scenarios are investigated with the aircraft roll rate
limited to 15 deg/s, 30 deg/s and 60 deg/s. The initial 250 seconds of the flight
are used for convergence and are not included in the discussion.
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Figure 4.18. Trajectory used in the Monte Carlo simulation study.

Figure 4.19 shows the GNSS outage and reacquisition segments as well as the
roll rates and roll angles achieved during the three runs. The outage period is set
to 10's, 20 s, 30 s, 60 s, and 90 s, respectively, during each simulation run. In the
figure, VDM LC-15 represents the simulation run with a 15 deg/s rate limit; VDM
LC-30 represents the simulation run with a 30 deg/s rate limit; VDM LC-60
represents the simulation run with a 60 deg/s rate limit.

The stochastic properties of the IMU and GNSS receiver considered in the
simulation are presented in Table 4.5. This setup assumes the use of a low-grade
GNSS receiver. It is also assumed that the navigation solution is not used for
georeferencing in the mapping or surveying mission.

Table 4.5. Stochastic properties for IMU and GNSS receiver.

Sensor Type Value
Random bias (o) 10 mg
White noise (PSD) 100 pg/VHz
Accelerometer GM-Process 0.05 mg
Correlation time (1) 200s
Sampling Frequency 100 Hz
Random bias (o) 1000 °/hr
White noise (PSD) 21.6 °/hr/v/Hz
Gyroscope GM-Process 20 °/hr
Correlation time (1) 200 s
Sampling Frequency 100 Hz
GNSS Receiver White noise (o) 5m
Sampling Frequency 1 Hz
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Figure 4.19. Dynamics in terms of roll angle (a) and roll rate (b) for the three simulation
runs.

The reported position accuracy in some low-cost receivers is around 2.5 m
(Circular Error Probable - CEP) to 3.5 m (Spherical Error Probable - SEP) using
static data collected over 24 hours (u-blox, 2020). Further, GNSS positioning error
analysis shows that the positioning error contains correlated noise components
other than just simply white noise (Niu et al., 2014; Konrad et al., 2017). Dynamic
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performance results reported in Lim et al. (2019) show that the 3D position error
of a low-grade GNSS receiver can reach 4 m in stand-alone positioning when
mounted on a quadcopter flying a modest trajectory with four waypoints.

One hundred Monte Carlo runs are used to evaluate the autonomous
navigation performance and investigate the system’s robustness against random
initialisation and sensor errors. The values of the standard deviation of the initial
errors and the process noise covariance matrix values are the same as the ones
presented in Section 4.3.3.

4.4.4. Results
Results from the simulation study are presented in this section for the VDM-based
approach, and some comparison is made to a standard INS/GNSS approach
described in Section E.1 of Appendix E.

Position and velocity estimation performance results are presented in Figure
4.20.
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Figure 4.20. RMS of 3D position errors (left) and velocity magnitude errors (right) for the
VDM vs INS approach.

For GNSS outages lasting up to 60 seconds (fourth outage), the results showed that
position and velocity errors for the VDM-based approach with different rotation
rates were similar. The position error reached 8.5 m for the different rate cases,
well within the 20 of the GNSS receiver as opposed to 61 m for the INS/GNSS
integration architecture. Large rotation rates seemed to mostly influence the
position and velocity errors for a GNSS outage lasting 90 seconds (last outage
phase). For the VDM-based approach with a roll rate limit of 60 deg/s, the
maximum position error was 16 % greater than that observed with a rate limit of
15 deg/s. The maximum position error for the INS/GNSS approach reached 142
m. This was greater than the maximum position error for the VDM-based
approach by more than a factor of 7. Similarly, the maximum velocity magnitude
error for the INS/GNSS approach during the last GNSS outage reached 3.8 m/s,
which was greater than the error for the VDM-based approach (with a rate limit
of 60 deg/s) by more than a factor of 8. It is important to note that the use of the
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VDM allowed the velocity error to quickly converge to a lower RMS of estimation
error as opposed to the INS/GNSS scheme after each outage.
The attitude estimation errors are presented in Figure 4.21.
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Figure 4.21. RMS of attitude estimation errors for the VDM vs INS approach.

For different GNSS outage intervals, the rotation rate limit did not significantly
influence the roll and pitch angle errors for the VDM-based approach. Yaw angle
error was found to increase only when the aircraft turned. During the fourth
outage (470 seconds - 530 seconds), the aircraft experienced large rotation rates
during the last phase of the outage, leading to a maximum error of 0.5 degrees.
Between 470 seconds and 520 seconds, the aircraft was flying mostly straight and
level, causing only a slight growth in yaw angle error, as shown in Figure 4.21.
During a turn, the maximum rotation rate achieved was found to influence mostly
roll angle errors and slightly pitch angle errors reaching a maximum of 0.46
degrees (648 seconds) with a rate limit of 60 deg/s. With the VDM approach, the
roll angle error quickly recovered after short periods of rapid roll dynamics. The
large increase in roll angle error during sections with large rotation rates occurred
even with GNSS availability, as can be seen in the interval between 250 seconds
and 265 seconds. The large instantaneous error, correlated with the rotation rate,
is mainly attributed to the remaining part of the initialisation errors, especially in
the VDM parameters (see sensitivity analysis in Section B.2 of Appendix B). The
use of the VDM prevented further growth of the attitude errors following rapid
dynamics even in periods of extended GNSS outage lasting 90 seconds. On the
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other hand, with an INS/GNSS approach, the attitude errors increased rapidly,
with the maximum error observed being correlated with the length of the outage
period.

The accelerometer bias estimation errors are presented in Figure 4.22. After
the filter converged, the accelerometer bias estimation errors did not grow during
the GNSS outages for both the model-based approach and the INS/GNSS
integration scheme. The simple random walk model used to estimate the
accelerometer biases provided good results enabling good navigation
performance for the flight lasting 780 seconds with short periods of GNSS outage
in between. During an outage, large roll rotation rates did not seem to influence
the estimation performance of the accelerometer biases following the

convergence of the filter.
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Figure 4.22. RMS of accelerometer bias estimation errors for the VDM approach and
INS/GNSS architecture.

It is also noted that the use of the VDM allowed all the accelerometer biases to be
easily observable as opposed to the INS/GNSS approach. The bias on the y-axis for
the INS/GNSS approach was not fully converged by 250 s, which can be attributed
to the correlation with the attitude states.

The gyroscope bias estimation errors are presented in Figure 4.23. Ninety-five
percent of the initial gyroscope bias estimation errors are resolved well within
100 seconds of GNSS availability. Like the accelerometer biases, GNSS outages of
different lengths, 10 s, 20 s, 30 s, 60 s and 90 s, did not seem to influence the
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estimation error of the gyroscope bias owing to the use of the VDM and direct IMU
measurements during the outage. Further, large roll rotation rates reaching 60
deg/s during the GNSS outages did not seem to influence the estimation
performance of the errors in different gyroscope measurements. In contrast, the
INS/GNSS integration approach seemed to have lower RMS estimation errors even
though these seemed to increase during the outages. The relatively larger
estimation errors for the VDM-based approach as opposed to the INS/GNSS
approach might be attributed to the lack of enough manoeuvres to excite different
modes to make all the VDM parameters observable and, in turn, improve the
observability of the IMU error terms.

[ Joutage ===VDM-15 =——VDM-30 VDM-60 ==—=INS |
40
<
> %0 |
S, 20 VT N
P St
o
0
250 350 450 550 650 750
time [s]
<
(o))
(]
S,
3
<210
o

<
(@]
()
=,
S
o210
o
250 350 450 550 650 750
time [s]

Figure 4.23. RMS of gyroscope bias estimation errors for the VDM approach.

Figure 4.24 shows the RMS of wind magnitude errors. For the VDM-based
approach, the ability to estimate wind velocity improved the navigation solution
during GNSS outages as opposed to an INS/GNSS integration architecture. It was
found that GNSS outages lasting less than 60 seconds did not significantly
influence wind estimation performance. With a GNSS outage lasting 90 seconds
(fifth outage), the error in the estimated wind magnitude was found to grow
gradually, reaching only 0.2 m/s at the end of the fifth outage. The level of
dynamics, especially in the roll axis, did not seem to influence the estimation of
wind magnitude errors.
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Figure 4.24. RMS of wind speed estimation errors for the VDM approach.

The RMS of the mean error of twenty-two VDM parameters is presented in
Figure 4.25. A GNSS outage alone lasting up to 90 seconds did not seem to
influence the VDM parameter estimation performance. However, turning during a
GNSS outage led to improved observability of the VDM parameters thanks to the
availability of IMU measurements during this period. Further, a rotation rate of 15
deg/s in the roll axis led to slightly better observability of VDM parameters as
opposed to 60 deg/s, but the difference was less than 1%.
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Figure 4.25. RMS of the mean error of VDM parameters.
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4.5. Summary

This chapter presented and analysed state-of-the-art model-based navigation
architectures for fixed-wing UAVSs.

An improved model-based integration architecture was presented and
analysed. The proposed concept uses a VDM as the main process model to
propagate a navigation solution whilst IMU and GNSS measurements were fused
in a navigation filter to estimate corrections for the states. The architecture
utilised a UKF as the navigation filter and included the mechanism for estimating
the mass moment of inertia. The performance of the proposed concept was
compared to the state-of-the-art model-based architecture that utilises an EKF as
the navigation filter but does not include the mechanism for mass moment of
inertia estimation. A Monte Carlo simulation study was used to evaluate the
performance of the proposed scheme assuming the use of a fixed-wing UAV fitted
with low-cost MEMS-grade IMU. The proposed concept is referred to as the
UKF/VDM integration architecture, and the state-of-the-art model-based scheme
is referred to as the EKF/VDM integration architecture.

It was found that the approach consistently and efficiently estimated the
navigation states whilst also estimating model parameters. Further, it was found
that the filter was able to estimate the mass moment of inertia terms even with an
initial uncertainty of 10% in the nominal values. The filter was also able to
consistently estimate wind velocity without additional sensors. This improved the
navigation solution, especially during a GNSS outage, where the position error in
all directions was less than 14.5 m.

Other important conclusions include:

e Errors (10%-10 of the true values) in the moment of inertia terms did not

significantly influence the estimation performance of the navigation states.

e The choice of the navigation filter, either a UKF or EKF, did not significantly
influence the estimation performance of the navigation states.

e Errors in the moment of inertia terms strongly influenced the estimation
performance of the torque coefficients due to the significant correlation
between them. However, the estimation of inertia terms reduced the errors
in the torque coefficients.

e Sharp turns with rapid speed changes at constant altitude improved the
estimation performance of the lateral force coefficient (CFy,), rolling
moment coefficients (CMy ) and the yawing moment coefficients (CM, ).
Changes in altitude with associated compound manoeuvres improved the
estimation performance of the pitching moment coefficients (C My ) and the
lift force coefficients (CF;). Further, the estimation of thrust coefficients
seemed to improve when the aircraft manoeuvred and changed altitude.

e Little and in some instances, no improvement in VDM parameter
estimation was noticed in the absence of manoeuvres even when the
aircraft experienced a significant change in speed and altitude (FC2). This
was the case even during a GNSS outage.
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Throughout the investigation, it was assumed that a GNSS outage occurred
only once. In a typical scenario, the outage interval could vary, and the GNSS
receiver could reacquire the lost satellites. Therefore, the chapter then
investigated the characteristics of the navigation solution errors during different
GNSS outage intervals. The chapter evaluated a model-based integration
architecture during different GNSS outage intervals via a Monte Carlo simulation
study. Five different outage intervals were considered: 10 s, 20 s, 30 s, 60 s, and
90 s. Each outage interval was followed by a reacquisition phase where position
measurements were available to the navigation filter. The error characteristics
were evaluated at different rotation rate limits imposed on the aircraft ranging
from 15 deg/s, 30 deg/s and 60 deg/s. The performance was compared to a
standard INS/GNSS integration architecture.

Results showed that position error increased proportionally with roll rate for
an extended GNSS outage lasting 90 seconds. Attitude errors were not significantly
influenced by GNSS outages lasting up to 60 seconds, with extended outages (90
seconds) mostly influencing yaw error. Further, it was found that the VDM
parameters continued to be observable even during a GNSS outage provided the
aircraft manoeuvres during this period. Also, it was found that the level of
dynamics in the roll axis did not significantly influence the growth of wind
magnitude errors.

The presented architecture has shown superior navigation performance with
varying roll rates as opposed to an INS/GNSS approach operating with a modest
rate of 15 deg/s. The approach has the potential to work alongside a conventional
INS/GNSS integration architecture, especially in applications where the aircraft
could experience rapid dynamics or GNSS interference causing GNSS outages.

Current model-based and even model-aided integration architectures rely on
using position and velocity measurements from a GNSS receiver. This chapter has
shown that a VDM-based integration architecture will experience drift in the
navigation solution during a GNSS outage. This raises an interesting question and
is the main motivation behind the work carried out during the research. This
question reads:

Can the navigation performance of a VDM-based navigation scheme be improved
using the available raw GNSS observables (pseudoranges and Doppler frequencies)
when tracking less than four satellites?

This question will be addressed in the following chapter.
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5 Tightly Coupled VDM

5.1. Introduction

This chapter presents a novel, tightly coupled integration architecture for use in
fixed-wing UAVs.

Different VDM integration schemes available in the literature were discussed
in the previous chapters, and the state-of-the-art model-based scheme was
evaluated. The available schemes were found to rely on the position and velocity
measurements output by a GNSS receiver to provide a bounded navigation
solution in a so-called loosely coupled integration architecture. These
measurements from a GNSS receiver are usually not available during a GNSS
outage (when the receiver is tracking less than four satellites), as shown in Figure

5.1. This can cause the navigation solution to drift even when using a VDM, as
shown in the previous chapter.
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Figure 5.1. A GNSS outage scenario.

A loosely coupled INS/GNSS integration architecture is popular in most low-
cost UAV applications due to its simple implementation and relatively low
computational load. In low-cost applications, the quality of the inertial sensors
used is relatively low. In case of a GNSS outage, the noise in these sensors will
cause rapid drift in the navigation solution in a short time, and in case of an IMU
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failure, the navigation solution can be disabled altogether. Further, the use of
direct IMU measurements to drive the navigation solution can become unreliable
in the presence of significant thermal loading unless thermal models are used to
eliminate stochastic variations with temperature (El-Diasty and Pagiatakis, 2009).
Accurate IMU error modelling requires considerable time and effort and, in some
cases, special equipment. Moreover, INS-dependent solutions are generally
affected by secondary effects such as coning and sculling as a result of vibrations
on the host platform, which, if not compensated, can cause significant drift in the
navigation solution (Groves, 2008; Vissiere et al., 2008; Vasconcelos et al.,, 2010).
A model-based solution is unaffected by the platform’s vibrations making the
architecture considerably robust. Multi-process models, in which the final
navigation solution depends on the INS, have similar limitations to INS-based
integration architectures.

This chapter proposes an integration architecture that overcomes the
highlighted limitations and provides an alternative integration architecture
suitable for low-cost UAV applications. The chapter is organised as follows:
Section 5.2 presents the proposed concept. Section 5.3 presents the filtering
methodology. Section 5.4 presents the GNSS measurement simulator used to
derive raw GNSS observables. Section 5.5 presents the IMU model used in the
simulation study. The simulation setup is presented in Section 5.6, and simulation
results in Section 5.7. A summary is presented in Section 5.8.

The work presented in this chapter has been published in Mwenegoha et al.
(2019) and Mwenegoha et al. (2020).

5.2. Proposed Concept

An innovative, tightly coupled vehicle dynamic model-based integration
architecture (TCVDM) capable of taking full advantage of available raw
observables (pseudoranges and Doppler frequencies) from a GNSS receiver is
presented and analysed to address the challenges discussed. The architecture uses
measurements from a low-cost MEMS-grade IMU alongside raw GNSS observables
fused using an EKF to aid the navigation solution. The state vector includes
navigation states, IMU error terms, wind velocity components, VDM parameters
and the receiver clock bias and drift terms.

Figure 5.2 shows the proposed architecture. Control inputs, which include the
control surface deflections and the commanded propeller speed, are used to
propagate the navigation states using the rigid body equations of motion for a
fixed-wing UAV. An additional input to the VDM is the wind velocity vector. Most
fixed-wing UAVs are equipped with an air data system, but the proposed
architecture makes it possible to estimate wind velocity components within the
navigation filter itself. Since the VDM is used as the main process model, no
additional sensors other than an IMU and a GNSS receiver are required. An IMU,
unlike a VDM, is usually affected by platform vibrations and thermal effects. On
the other hand, GNSS signals can experience severe external interference, or a
receiver can be affected by platform dynamics leading to a GNSS outage. The use
of a VDM as the main process model ensures a continuous navigation solution
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regardless of the underlying conditions unless there is a hardware failure of the
navigation system. The state vector is augmented to include IMU errors and GNSS
receiver clock errors so that they can be estimated in the navigation filter. As
previously mentioned (in Section 2.4 of Chapter 2), a VDM requires careful
consideration of its structure because it depends on the host platform type.
Therefore, having an accurate model or a set of model parameters is essential for
successful VDM-based navigation. The proposed approach allows for the online
estimation of these parameters. This significantly reduces the effort required in
system identification and allows for some variation of the model parameters. This
is essential because it would allow changing some aspects of the aircraft, such as
the payload or the propeller, without a new system identification routine.
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Figure 5.2. Tightly coupled VDM-based integration architecture.

5.3. Filtering Methodology

An EKF is used to estimate the corrections to the navigation states using
measurements from an IMU and a GNSS receiver. The filter has a distinctive
predictor-corrector structure that is summarised in Table 5.1.

An EKF requires the linearisation of the process model (F = dX/dX) and
observation model (H = dZ/0X) to determine the appropriate jacobians used in
state propagation and update. The following sections will present the process and
observation models used.
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Table 5.1. EKF propagation and update

Propagation Update

Eie-1jxe-1 Pre-1jk-11 Xiele = Xpere—1 + Kie (Zk - h(’?kuc—l))

t
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5.3.1. Process Models

The navigation states are propagated using the rigid-body equations of motion
presented in Chapter 3. The navigation solution is sought in the local navigation
frame. This frame has been extensively explained in Chapter 3. The navigation
states include:

T
Xn = [ﬂ, /1' h, vgb,Nl vz’lb,E' v;lb,D' 0,491, 92, 43, Wy, wy' Wz, n] (51)

While the quaternion g} = [qo,q1,92,q3]" is used to represent the aircraft’s
attitude, the attitude error is captured by the rotation vector, ¢. Once the attitude
error has been estimated in the filter, it is then used to update the quaternion at
each measurement update (q7,,, < a{drpl ® qb ). This ensures that the

expected value of the a priori estimate of the rotation vector is always zero
(Pittelkau, 2003). In Chapter 3, the relationship between the quaternion error and
the rotation vector was given by: 286G = [0; §¢?]. This method allows the
architecture to be used in practice because it avoids the singularity exhibited by
three dimensional attitude representations such as Euler angles. For the
interested reader, a complete review is given by Pittelkau (2003) and Sola (2017).

A random walk process is used to model the IMU errors. A random constant
process is superposed in this model by setting the initial uncertainty of the IMU
errors to match the uncertainty of the turn-on-bias. The IMU error vector is given

by:

T
Xe = [Baxs ay, Baz, bgxs bgy, by (5.2)

ay’ gy’

A random walk process is also used to model wind velocity components. This
model captures smooth transitions in wind speed sufficiently. The wind velocity
vector is given by:

Xy = [wy, wg,wp]" (5.3)

In a typical flight, VDM parameters will be fixed. However, the accuracy to
which all the parameters are known varies based on the estimation and system
identification routine used. Therefore, a random walk process model with small
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driving noise is used to model the VDM parameters. The VDM parameters vector

is given by:

CFr, , CFr,,
. CFxqs,  CFxpa,
~CMy, , CMy,,
.CMy,, CMy,,
. CMZﬁ, Tn

CFx1,  CFy,, T (5.4)
CFz,,  CFyq,

Ox CMX(BZ' CMy,,

Yo CMZsr’ MZch""

The mass moment of inertia terms are assumed to be known a priori and therefore
not estimated in this setup. In Chapter 4, it was shown that errors in the mass
moment of inertia terms (up to 10%) do not significantly influence the navigation
performance of a model-based approach, especially during a GNSS outage.

A two-state random process is used to model the receiver clock errors. The

receiver clock error vector is given by:
— T
Xclk - [bclk' dclk]

where: b,y is the receiver clock bias from the system time (m),
d ik is the receiver clock drift (m/s).

(5.5)

A good representation of the presented process models is shown in Figure 5.3.

| VDM | n n T
g veb,N veb,E _vn
U = [8as e, 6rymc]” Po = R+ Rprhycos(u) *— VebD
b veb _Rbﬁ,b +g _(ZQ?Q-I_Q )veb
Forces / L P
Zb SN n b
i — qp = E qp [wnb]
P ) 1
o — & = = =_[w£b] ap
y b b
zb_(l ) (M w:b X I"w
Moments »N poTe_m
X X Tn Tn
p “Aw
IMU —= === i = [k gl i i gz}
X, =G, W,
. X = [wy wg wp]"
== = = = = = §
Wind Xw =G, W,
X
CFT;_ ’ CFTZ, CFTgr CFXl' CF}(Q, ’
wCFraz, CFygy, CFz1i,  CFzp  CFyy, ...
Parameters L — — — — i CMX&'C(’ CMXﬁ' CMXE)XJ CMXE)ZJ CMy-l, e
o CMYa' CMyﬁ , CMY(T)y' CMZA‘T’ CMZE)ZJ i
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Clock & | éclk:dclk + U
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Figure 5.3. Process models for the TCVDM architecture.

The general form of the linearised process model is given by:
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[Xn] Fan Fae Faw F”P Xn G, 0 0 0 Wa (5.6)
| Xe | _ | Fon Fee Fow Eep || Xe| |0 G, 0 O [ W
[X ] | Eon Foe Fow FppJ Xp 0 0 0 Gpl (W,

Based on the presented process models, the noise shaping matrices are presented
in Table 5.2. It is assumed that the sub-state vectors are uncorrelated (Khaghani
and Skaloud, 2016a). Therefore, the off-diagonal blocks in the ¢ matrix are all
zero. For the navigation states, uncertainty terms apply only on linear and
rotational accelerations as well as the propeller rotational acceleration.

Table 5.2. Noise shaping matrices for the states in the TCVDM architecture.

Navigation states Other states
000000 0 100000
0000000 010000
0000000 GZOOlOOO
1000000 ¢ 1000100
0100000 000010
0010000 000001

G,=[0000000 100
0000000 GW=[01O]
000000O0 001
0001000 Gp:[1]22x22
0000100 10
0000010 Gclk:[01
000000 1

5.3.2. Observation Models

The measurement vector (Z,) consists of IMU measurements (f2, @) and raw
GNSS observables, including pseudoranges and the Doppler frequencies (BS, D).
Here, the measurements are represented using a measurement function (h,,) such
that:

Zi = hin (i) + Wi (5.7)

where: xj is the true state vector at the current time index k,
Wy is the measurement error assumed to be white noise.

Defining E[] as the expectation operator, the measurement covariance Ry, is given
by:

R, = E[w, w'] (5.8)

Therefore, the observation model for the IMU is given by:

figl b+ Xx.([123) (5.9)
Zimy = ~b
@b lb+X(456)
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where w; is the measurement white noise vector. The measurement covariance
matrix is defined using the simulated error statistics, and the details will be given
in the following sections. The observation model for the GNSS observables (for
each satellite) is given by:

Z ps (5.10)
ﬁs p,‘f + Xclk(l) + I7§ + Trs + Mﬁ
J = , . . o +w
lDTgl _(]%L([Uees - Ueer]Ter§ + Xclk(z) + I7§ + Trs + Mlg) g

In Equation (5.10),I and T, represent the ionosphere and troposphere
propagation errors, respectively. These are partially corrected, but residual errors
remain in the pseudoranges. It is also assumed that the observations contain
errors due to multipath effects (M3). The residual ionosphere and troposphere
propagation errors as well as errors due to multipath are not estimated in the
filter. It is also assumed that the satellite clock corrections have been applied.
Details for the correction models are given in the next section. vS and vg.
represent the satellite and receiver velocity vectors in the ECEF frame. The
geometric range from the receiver to the satellite, p;, is given by :

Wie 5.11
p7§ = ||T‘e%—re";|| +T(yees xeer _xgs ygr) ( )

where: 78 = [x&, ¥, zE]T is the satellite position vector in the ECEF frame,
rl = [x¢., v, zE ] is the receiver position vector in the ECEF frame,
c is the speed of light in free space,

% (Vos Xer — X&s Yor) is called the Sagnac correction term, which
accounts for the increased range as a result of the rotation of the Earth
when using ECEF frame formulation.

The line-of-sight vector, e;, is given by:

Tees B rei" (5.12)

||rei —T'e(";,”

e; =

Since the navigation solution has been formulated in the local NED coordinate
frame, a transformation matrix from the NED to the ECEF frame is required. This
is given by:

—cos(A)sin(u) —sin(1) —cos(A)cos(u) (5.13)
Ry, = |—sin(A)sin(u)  cos(1) —sin(4)cos(u)
cos(u) 0 —sin(p)

This section has developed the process and observation models used in the
navigation filter. In practice, the IMU measurements and raw GNSS observables
(pseudoranges and Doppler frequencies) can be obtained directly from the IMU
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and GNSS receiver. In a simulation study, models of these sensors have to be used,
as shown in Figure 5.4.

Sensors Models

f ih
IMU ib—s by, bg,w; > ¥

- t

Figure 5.4. Measurements and error models for the IMU and GNSS receiver.

Therefore, the following sections will describe the modelling effort of the GNSS
and IMU measurements. Emphasis will be given to the GNSS measurement
simulator developed during this research.

5.4. GNSS Measurement Simulator

This section describes the development and testing of a GNSS measurement
simulator used to derive raw GNSS observables. The raw observables are used to
evaluate the performance of the proposed TCVDM architecture. Motivations
behind the development of the simulator are described, and the limitations of the
error models are explained in the ensuing.

5.4.1. Motivation
The motivations behind the development of a software-based GNSS measurement
simulator are explained below:

e The wuse of a software-based measurement simulator allows
comprehensive, repeatable, and  cost-effective  multi-system  multi-
constellation GNSS testing.

e The availability of a precise reference trajectory also makes using
simulated measurements preferable. Even though this applies to both
hardware and software simulators, the trajectory and measurement
generation is easily customisable in a software-based measurement
simulator, and the two can be directly integrated. Further, it is easy to set
up a Monte Carlo simulation study by defining the error characteristics for
the different models adopted in the simulator. This will make testing and
evaluating a navigation scheme easy under different conditions.

e Multiple GNSS receivers can easily be simulated, which can be useful to
study other applications in a controlled environment, such as GNSS attitude
and relative positioning.

e Usually, GNSS hardware simulators comprise heavy and expensive units
used to simulate GNSS signals arriving on a receiver. Most hardware-based
simulators require expensive licenses and upgrades to keep up to date,
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whilst the maintenance costs for a software-based measurement simulator
are low.

e Better control of the receiver dynamics. The level of control of the receiver
dynamics in a hardware simulator is fairly limited. Pinchin (2011) showed
that double differenced code residuals were affected by large biases during
turns or when the aircraft experienced rapid accelerations. As a result, the
receiver lost lock. It was argued that the operation of the receiver tracking
loops was the cause of the increased residuals to cope with the level of
dynamics experienced by the receiver. Since the methods used within a
receiver are proprietary, it was difficult to identify the exact cause. This
makes a software-based GNSS simulator an attractive alternative to a
hardware-based one since the receiver dynamics can be added or removed
as desired by the user.

5.4.2. Description
This section provides a detailed description of the GNSS measurement simulator
used to derive the raw observables.

Figure 5.5 shows the displayed GNSS constellation when running the
measurement simulator developed to simulate raw observables (pseudorange,
Doppler frequency, and carrier-phase measurements) output by a GNSS receiver.

Constellation Skyplot

15 30
2% 24
{ a5 {
300 60

5 { 6
w i

{,21 { ¢
210 150
180

Figure 5.5. GNSS constellation displayed when running the measurement simulator.

The user trajectory is input to the simulator to generate a series of pseudorange
and Doppler frequency measurements. Hourly ephemeris products archived by
the Crustal Dynamics Data Information System (CDDIS) are used to derive satellite
orbits and the user ephemeris structure object (Noll, 2010).

A UAV flight trajectory is generated in Simulink with the 6DOF aircraft model
presented in Chapter 3. The output contains a time series of the aircraft’s motion
variables, including the position and velocity vectors. The trajectory is generated
at 100 Hz, but the output of the GNSS measurement simulator can be adjusted to
a specific output rate (for instance, 1-10 Hz). As a result, the input trajectory will
be sub-sampled.
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The available outputs from the GNSS measurement simulator include:

e Timestamp information - GPS week; seconds of the week (SOW); the
number of leap seconds; day of the year (DOY).

e GNSS measurements - Pseudoranges; Doppler frequencies; carrier phases;
carrier power to noise density ratio (C/N,).

e lonospheric delay information - Perturbed coefficients for the Klobuchar
model used to simulate the first-order ionospheric delay; time-series of
simulated ionospheric delays for each satellite in view.

e Tropospheric delay information - Time series of the tropospheric delay
affecting the GNSS measurements for each satellite in view.

e Clock effects - Time series of the receiver clock offset and drift.

The outputs are packed into a Matlab structure object for each measurement
epoch and for each receiver modelled. This structure object contains, within it,
another structure object for each receiver channel.

The process of generating GNSS measurements is shown in Figure 5.6.

T . Read user .
Inputs > Initialise —>Read Ephemeris| > . —> Computations
motion
ime of flight i = q .
X
T g Receivers [q] Get # of sats Extract trajectory Initial Sat-pos and
T Rx#q# Nsats points to generate Sat-vel
measurements EonpUIERmEL
HH:nllm:ss [ receptllon time
Config Class : 3 0 Iterated:
i ' 17 li?lr(:':lcr:e(f%i(c)ig[s Initialise storage
AT?
[pf, T7]
: I
5 H / i 5
AT =T with new :
[nclude } structure object Populate re. 4t
[1,0] " } Mplqzn] with Keplerian | Nav-class [ frés, v
T ' parameters
‘Models/! Th
N Mp ! Classes ! la]
— | ot-la) 5T°(T*), 67 (T*)
o N [gzn)]
User motion file 1
‘ Nav C1C,L1C, D1C
i . ' | AP computation with
g R U 0] errors
T3 Tropospheric delay Thlg] Thermal noise
I Tonospheric delay 8t [q] Receiver q clock offset
Error due to multipath s -
Mp[qam] for receiver q and satn ol [qmn] Integer ambiguity

Figure 5.6. GNSS measurement simulator flow diagram. C1C, L1C, and D1C represent the
computed pseudorange, carrier phase and Doppler frequency measurement.
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The workflow is as follows:

Initialise: After loading the inputs and defining the error models to include
in the GNSS measurements, different classes for the delays and the
ambiguities are initialised. The classes define the different errors that
affect GNSS measurements.

Read Ephemeris: A GNSS navigation message file in the RINEX (Receiver
Independent Exchange) format is read, and the ionospheric coefficients are
extracted. These coefficients will be used in the computation of the
ionospheric delay for different measurements before being perturbed for
user processing. A Matlab structure object is created for the Keplerian
parameters for each space vehicle.

Read user motion: During the initialisation phase, a navigation class is also
initialised. This class contains position, velocity and attitude information
for a specific receiver. Here, the navigation class is populated with
information from the user motion file based on the desired output rate.
Computations: This is the main loop. The initial satellite position and
velocity vectors are computed at the time of signal reception. This will
allow the computation of the initial geometric ranges, which are then used
to iteratively calculate the signal transmission time alongside refining the
estimates of the satellite position and velocity vectors. After this, the
satellite clock offset and drift are calculated, followed by the computation
of the GNSS measurements with associated errors.

In the simulator, pseudorange (B°) and Doppler frequency (D;) measurements
are given by:

where:

PS = ps + c(dt,(t,) — dTs(Ts)) + IS + TS + Mp + €(p) (5.14)

D7f = - % ([vees(Ts) - vgr(tr)]Teff +c (

at,(t,) B 0T (Ts) s (5.15)
Jt Jt r

+ Tﬁ) + e(fp)

dt, is the receiver clock offset at reception time in seconds (t,),

dT; is the satellite clock offsets at transmission time in seconds (T),
I; is the ionospheric delay in metres,

TS is the tropospheric delay in metres,

M, is the error due to multipath in metres,

€(p) is the random thermal noise in range measurements in metres,
€(fp) includes multipath effects and random noise in the doppler
measurements in hertz.

The error sources are classified into three classes, transmission sources,
propagation sources and reception sources, as shown in Figure 5.7. The
transmission sources are largely due to the use of the broadcast orbit and clock
products. These are loosely modelled in this research using a small random
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constant bias in the measurements (for each satellite 1m — 1¢) (Kim and Kim,
2015). Propagation sources include effects of the ionosphere and troposphere,
and these are discussed in detail in the ensuing. Reception error sources include
multipath, thermal noise and the receiver clock, which are also discussed in detail
in this research. Other sources of error, such as the antenna phase centre offset
and variation, inter-frequency biases, and g-dependent oscillator errors are not

considered in the simulation.
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Figure 5.7. Different errors affecting raw GNSS observables considered in the simulator.

5.4.3. Ionospheric Model

The ionosphere is a dispersive medium and is a significant error source of the
GNSS error budget. It is located primarily in the region of the atmosphere between
70 km and 1000 km above the Earth’s surface (Kaplan and Hegarty, 2006). Sun
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rays ionise portions of gas molecules in this layer creating free electrons that
influence the propagation of electromagnetic waves. The electron density along
the path length is usually referred to as the total electron content (TEC). This can
be used to estimate the ionospheric delay affecting both the carrier-phase
(negative) and pseudorange measurement (positive). This is formulated as:

. 40.3 (5.16)
I} = i?STEC

In Equation (5.16), STEC is the slant total electron content as a result of
multiplying the vertical TEC by a slant factor. The electron content is a function of
the time of day, user location, satellite elevation angle, season, ionising flux,
magnetic activity and sunspot cycle (Kaplan and Hegarty, 2006).

Since the ionosphere is a dispersive medium, a significant amount of the
ionosphere induced range error can be removed through a linear combination of
dual-frequency observables at the expense of increased tracking noise and
multipath errors. However, single-frequency users require additional information
to correct this error. For the GPS constellation, ionospheric correction parameters
are transmitted as part of the navigation message to drive the ionospheric
correction algorithm (ICA) based on the Klobuchar model.

The Klobuchar model is used to approximate the diurnal variation of the
ionospheric delay using a cosine function with varying amplitude and period
based on the user’s geodetic position (Klobuchar, 1987). This model removes
about 50% of the RMS ionospheric delay and assumes that the electron content is
concentrated in a thin layer 350 km in height (Klobuchar, 1987; Kaplan and
Hegarty, 2006). Given the approximate user position and line-of-sight (LOS)
vector of the observed satellite, which also defines the elevation and azimuth
angles, the delay is computed through the following process:

a. Calculation of the Earth-centred angle (in semicircles) from the elevation

angle E*®.

_0.0137 0.022 (5.17)
e EsS+011

b. Computation of the latitude of the ionospheric pierce point (IPP in
semicircles) from the user’s latitude p, and the Earth-centred angle Y, and
azimuth angle Az.

Wpp = U+ 1P, cos Az (5.18)

c. Computation of the longitude of the IPP (in semicircles) from the user’s
longitude A, the Earth-centred angle 1, azimuth angle Az, and IPP latitude

Uipp-
P, sin Az (5.19)

Aipp=A+
e COS Ujpp
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d. Calculation of the geomagnetic latitude (in semicircles) from the IPP
latitude and longitude (u;pp, A;pp)-

Unac = Uipp + 0.064 COS(AIPP - 1617) (520)

e. Calculation of the local time (in seconds) at the IPP from the IPP longitude
A;pp and the local GPS time ¢t;ps.

t = 4‘320011}113 + tGPS (521)

f. Computation of the vertical ionospheric time delay.

_ 3 2 (5.22)
Ivi == 5 * 10 o + Zk=0 ak(llMAG)k (1 - x? + 926_4)

_ 2m(t—50400)
2 i=0 Br(tmac)®

where: ) i=0 a, (Upac) is the amplitude of the ionospheric delay in seconds,

Z i:o Br (Upac) is the period of the ionospheric delay also in seconds,

x is the phase of the ionospheric delay in radians.

The coefficients, a;, and B, are part of the GPS navigation message. These
parameters are perturbed with a standard deviation of 10% and then passed to
the user ephemeris structure object. A vertical residual ionospheric delay
(common to all satellites) modelled as a first-order Gauss-Markov (GM) process
with a standard deviation of 2 m and a time constant of 1800 seconds is added to
the computed vertical delay (in the ionosphere error generation).

g. Computation of the slant factor

F=1+16(0.53 — E5)3 (5.23)
h. Computation of the slant ionospheric time delay

/s = {(lui +GM)-F x| € 1.57 (5.24)
TT(-107°+6M) - F ;x| =157

Even though only the GPS L1 frequency was considered in this research, the model
can be extended to other frequencies and constellations. For a fixed user location,
the ionospheric delay is plotted for different satellite elevation and azimuth
angles, as shown in Figure 5.8. The ionospheric delay is calculated with a 10%
variation in the correction coefficients transmitted in the GPS navigation message
plus a common residual delay (Basile, Moore and Hill, 2019).

97



10

lonospheric delay [m]

300

20 200

40 60 100

80

Elevation [degrees] Azimuth [degrees]

Figure 5.8. lonospheric delay for a given user location.

As can be seen from Figure 5.8, the Klobuchar model is highly correlated and
therefore cannot represent rapid and short-term variations in the ionospheric
delay very well. The investigation of the impact of short-term variations of the
ionospheric delay on navigation performance is beyond the scope of this research.
However, the residual error introduced in the ionospheric delay is used to account
for these variations. Short-term variations in the ionosphere-induced range error
result from variations in the electron content above or below the daily average
captured by the Klobuchar model.

Figure 5.9 shows an ensemble of ten short-term variations in the zenith
ionospheric delay modelled using a first-order Gauss-Markov process.
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Figure 5.9. The zenith ionospheric delay due to short-term variations in the electron
content above(+) or below (-) the diurnal average.
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5.4.4. Tropospheric Model

The troposphere is a non-dispersive medium for frequencies up to 15 GHz (Kaplan
and Hegarty, 2006). In this medium, both the carrier and signal information are
equally delayed with respect to free-space propagation. The delay is a function of
the refractive index, which is a function of the local temperature, pressure and
relative humidity. About 90% of the delay arises from dry air and is usually
referred to as the dry or hydrostatic delay (Kaplan and Hegarty, 2006). The wet
component arises from water vapour and is usually difficult to predict due to
uncertainties in atmospheric distribution.

Different models to estimate the tropospheric delay exist, and a complete
review of all the models is beyond the scope of this research. A review of some
common models is given in Kaplan and Hegarty (2006) for the interested reader.
One accurate method of estimating the tropospheric delay was developed at the
University of New Brunswick (LaMance, Collins and Langley, 1996). The model is
referred to as the UNB3 model and provides look-up tables for average and
seasonal variation of the meteorological parameters, which can be used to
estimate the zenith total tropospheric delay. These meteorological parameters
include pressure (P), temperature (T), water vapour pressure (e) at mean sea
level, and temperature and water vapour lapse rates (f and n). These are
interpolated based on the specification of the user’s latitude. The UNB3 model
computes the tropospheric delay using the Saastamoinen models and the Niell
mapping functions. Some modifications to the UNB3 model, such as using different
mapping functions, has made it favourable for other satellite-based augmentation
systems such as the European Geostationary Navigation Overlay Service (EGNOS)
(Penna, Dodson and Chen, 2001).

In this research, a simplified UNB3 model that utilises the Black and Eisner
(1984) mapping function is used to model the troposphere. This model has been
referred to as the EGNOS tropospheric correction model by Penna, Dodson and
Chen (2001). The average values of the five meteorological parameters based on
the user’s latitude are given in Table 5.3.

Table 5.3. Average values of five meteorological parameters used in the EGNOS model.

Latitude [°] P, [mbar] Ty [K] eo [mbar] Sy [mK/m] Mo
<15 1013.25 299.65 26.31 6.30 2.77
30 1017.25 294.15 21.79 6.05 3.15
45 1015.75 283.15 11.66 5.58 2.57
60 1011.75 272.15 6.78 5.39 1.81
> 75 1013.00 263.65 411 4.53 1.55

The seasonal variation of the meteorological parameters is given in Table 5.4.
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Table 5.4. Seasonal variation of the five meteorological parameters used in the EGNOS
model.

Latitude [°] AP [mbar] AT [K] Ae [mbar] Af [mK/m] An
<15 0.00 0.00 0.00 0.00 0.00
30 -3.75 7.00 8.85 0.25 0.33

45 -2.25 11.00 7.24 0.32 0.46

60 -1.75 15.00 5.36 0.81 0.74
>75 -0.50 14.50 3.39 0.62 0.30

A linear interpolation scheme is used to compute the meteorological parameters
(C) based on the receiver’s latitude. Following linear interpolation, each
meteorological parameter is computed using:

{(u,D) = §o(u) — AJ(u) X COS<

where: u is the receiver’s latitude,
D is the day-of-year (starting with 1st of January),
Dinin is 28 for northern latitudes and 211 for southern latitudes,
(o and A{ represent the average and seasonal variation for each
meteorological parameter at the receiver’s latitude, respectively.

210(D — Dppin) (5.25)
365.25

The zenith total delay (ZTD) is computed and mapped appropriately based on
the elevation of the satellite. A residual zenith delay, modelled as a first-order
Gauss-Markov process with a standard deviation of 0.2 m and a time constant of
1800 seconds (Basile et al., 2018; Basile, Moore and Hill, 2019), is applied to all
satellites following appropriate mapping. The tropospheric delay is given by:

TS = (ZTDy + ZT Dy, + €cmn) X MF(ES) (5.26)

where: ZTD, is the zenith dry (hydrostatic) delay,
ZTD,, is the zenith wet delay,
MF (E®) is the mapping function for a given satellite elevation angle (E*®).

The zenith dry and wet delays are computed as:

g
BH1RB (5.27)
ZTDq = ZT Dy [1 S

m+Dg_ 5.28
AV (5.28)

BH
ZTD,, = ZTD,, [1 -

where: g is equal to 9.80665 m/s?,
H is the height of the receiver above mean sea level,
R, equals 287.054 ] /kg/K,
ZTDg4 o and ZTD,, o represent the zenith dry and wet delay at mean sea
level.
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The zenith dry and wet delays at mean sea level are computed using:

10~°k,R,P 5.29
ZTDgo = ———2%— (529)
Im
10=°k,R e 5.30
ZTD,, o = 2 d (>:30)

x_
gmMm+1) —BRq T

where: k; is equal to 77.604 K/mbar,
k, equals 382000 K? /mbar,
Jm equals 9.784 m/s?.

The Black and Eisner mapping function (Kaplan and Hegarty, 2006) is used to map
the zenith delays based on the receiver-to-satellite elevation. This is given by:

1.001 (5.31)
, Y
/0.002001 + sin2(ES)

MF(ES) =

y =1 —0.015 max(0,4 — ES)?
In Equation (5.31), y is applied to adjust for elevation angles below 4°.

Figure 5.10 shows the tropospheric delay based on the EGNOS model for different
satellite elevation angles and receiver altitude above mean sea level. The EGNOS
model is also highly correlated, and therefore short-term variations in the
tropospheric delay are not reflected. The common residual vertical delay
introduces short-term variations not captured by the EGNOS model, albeit in time
rather than space. An ensemble of ten realisations of this first-order process is
presented in Figure 5.11.
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Figure 5.10. Tropospheric delay based on the EGNOS model.
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Figure 5.11. The residual tropospheric delay.

5.4.5. Multipath

Multipath interference results from the reception of signals via multiple paths,
which may or may not include the direct path. The absence of the direct path is
known as non-line-of-sight (NLOS) reception. Multipath errors vary significantly
in magnitude based on the receiver operating environment, satellite elevation
angle, antenna gain pattern, and signal characteristics.

Simsky et al (2008) analysed 1.5 years of GIOVE-A satellite signals and
presented the multipath performance of different signals compared to the GPS-L1
C/A. The data was recorded on a rooftop of a building using the GETR receiver,
which was custom-built by Septentrio for the reception of GIOVE signals (Simsky
et al., 2008). The antenna was mounted on an elevated support structure which
was higher than the other objects on the rooftop. The results indicated that the
error due to multipath was largely dependent on the satellite elevation angle
during static periods. However, during dynamic periods the difference in
multipath suppression for the different signals was less pronounced (with
generally smaller code multipath errors). The results have been extracted and
curve-fitted. Three multipath groups are classified based on the performance of
the GIOVE-A signals vis-a-vis GPS-L1 C/A signal. A high multipath group is defined
based on the performance of the GPS L1 C/A signal; a medium multipath group is
defined based on the E6BC signal, and a low multipath group based on the
performance of the E5AItBOC. The three classes are shown in Figure 5.12. This
curve fitting facilitates the extraction of coefficients that can be used to define the
level of pseudorange noise resulting from multipath.
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Figure 5.12. Different multipath groups based on the performance of the GIOVE-A signals
tracked by a Septentrio GETR receiver.

It is not difficult to see that the error due to multipath has an exponential
relationship with the satellite elevation angle. Therefore, the standard deviation
of the multipath error is assumed to be dependent on the satellite elevation angle
and is given by:
ES (5.32)
Oy =Cyt+cp-ec
where: ¢y, ¢; and c, represent the coefficients for the given multipath group.

Table 5.5 shows the estimated coefficients for the three multipath groups
presented in Figure 5.12.

Table 5.5. Different multipath group exponential law fitting coefficients.

Coefficient Low Medium High
Co [m] 0.10 0.08 0.47
¢, [m] 0.19 0.46 0.78
¢, [deg] 50 45.60 20.91

It is important to note that the tabulated results are relevant in classifying
multipath in high-end receivers. Matera et al. (2019) characterised pseudorange
multipath errors using data collected on a low-cost GNSS receiver (u-blox M8T) in
an urban environment. They showed that the standard deviation for the high
multipath group could be an order of magnitude higher than for a high-end
receiver, especially for low-elevation satellites. However, the results from their
study contained significant NLOS signals, which resulted in non-symmetric
probability density functions with large means and standard deviations. In this
thesis, the presence of NLOS signals is not considered because fixed-wing UAVs

103



are generally operated in open sky environments (since they cannot hover, and
therefore flying in confined spaces is difficult). However, this assumption does not
hold for other types of UAVs, such as VTOL aircraft, which can be operated in
different environments, including dense urban settings.

Khanafseh et al. (2018) analysed ionospheric-corrected code-minus-carrier
data and showed that a first-order Gauss-Markov process could be used to model
multipath in an automotive setting. Using dual-frequency NovAtel antennas,
results for GPS L1 pseudorange indicated that multipath errors had a non-zero
mean ranging from 1 cm to 11 cm depending on the environment (open sky,
satellite elevation, nearby objects). Using folded cumulative distributions about
the median, the standard deviation of the multipath error was found to be in the
range from 75 cm to 156 cm. The time constant for the multipath error was
estimated from the intercept of the autocorrelation function of the multipath error
and the exp(—1) line. It was found that, for a static receiver the time constant
ranged from 40 seconds to 150 seconds and for a kinematic receiver it was
between 2 seconds and 65 seconds. On the other hand, carrier-phase results
indicated that the maximum standard deviation was 3 cm with very little
difference in the mean error between satellites with high and low elevation angles.
Even though the results reported by Khanafseh et al. (2018) are for GPS (L1, L2)
and GLONASS, the trend is very similar to the results reported by Simsky et al.
(2008).

A typical fixed-wing UAV flight will be comprised of six main segments: take-
off, climb, cruise, loiter, descent (approach), and landing. Like other airborne
receivers, the receiver on the aircraft will be subject to multipath from the
airframe but also from other sources depending on the flight segment and the
operating environment. For instance, a UAV may experience increased multipath-
induced errors during take-off and landing due to rapid changes in the geometry
between the aircraft, the satellites, and any multipath sources such as close
buildings, nearby objects, and even the ground (Murphy and Snow, 1997). During
the cruise segment, a UAV is typically in a straight and level, unaccelerated flight
(SLUF) configuration, resulting in less-rapid multipath variation (increased
correlation time), unlike the loiter segment marked by turns, speed and altitude
changes resulting in more rapid variation. Various multipath-induced error
profiles can occur during a typical flight, and a model that works well for one
segment might not work for other segments. Therefore, in the simulator,
multipath is modelled using a first-order Gauss-Markov process, similar to the
modelling effort in Khanafseh et al. (2018), with an elevation-dependent standard
deviation in the range of 0.5 m to 1.18 m. The time constant 7 for each satellite is
assumed to be normally distributed with a mean of 35 s and a standard deviation
of 10 s, similar to the modelling effort in Basile, Moore and Hill (2019).

_At (5.33)
Mp(tk) = Mp(tk—l) e T+ W(tk)
where: M, (t;) is the multipath error at the epoch ty,
w(t) is the driving noise term,
At is the propagation interval (s),
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7 is the correlation time constant (s).

The values for the coefficients used for the driving noise term are based on the
high multipath group.

5.4.6. Thermal Noise

To simulate thermal noise affecting the raw observables (pseudoranges and
Doppler frequencies), white noise with a standard deviation varying with the
carrier power to noise density ratio (C/N,) is applied to the measurements. For
the pseudorange measurements, this is given by:

e(p) = N(0,2(C/N®)) (534)
The standard deviation depends on the incoming signal strength and is given by:
C/Noy—b, (5.35)

0, =by+by-e b3
The coefficients for the exponential model of the standard deviation are
determined by fitting the results presented by Richardson, Hill and Moore (2016).
The authors analysed the Hatch filter residuals from multi-constellation datasets
from reference stations within the Veripos control network. The obtained
coefficients are given in Table 5.6. Even though not directly utilised in processing,
the simulator outputs carrier-phase measurements. The thermal noise affecting
these measurements is assumed to have a constant standard deviation of 1 mm.
similarly, the Doppler frequency measurements are assumed to exhibit random
noise with a constant standard deviation of 1 Hz.

Table 5.6. Coefficients for the standard deviation of the pseudorange noise for GPS (L1,
L2, and L5) and Galileo (E1 and E5, which includes E5a and E5b which can be tracked
individually).

Signal by [m] b; [m] b, [dB-Hz] b; [dB-Hz]
L1 0.05 1.05 28 8
L2 0.05 1.35 28 8
L5 0.02 0.65 28 8
E1l 0.02 0.55 28 9
E5b 0.02 0.40 28 9
E5a 0.02 0.25 28 9
E5 0.00 0.15 28 9

Figure 5.13 shows the pseudorange noise standard deviation for six GNSS signals.
The Legacy GPS pseudoranges, on L1 and L2, have much larger noise than the
Galileo signals. The modernised GPS signal on L5 seems to provide pseudoranges
with comparable noise to Galileo. The pseudorange error on Galileo E5 is the
smallest, largely due to its very large bandwidth of 51.15 MHz (Kaplan and
Hegarty, 2017).
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Figure 5.13. Multiconstellation pseudorange noise based on hatch filter residuals.

In this thesis, only the GPS constellation is used and therefore, only the L1
coefficients are used in the simulator. The signal strength values, C/N,, are
computed in the simulator based on Kaplan and Hegarty (2006).

C/NO :Pr+Ga_NO (536)

where: P, is the received signal power from a satellite at the antenna input
(dBW),
N, is the thermal noise power component in a 1-Hz bandwidth (dBW),
G, is the antenna gain toward a satellite (dBic).

The received minimum power levels, B., for Block IIA, IIR, IIR-M, IIF and III
satellites are given in Table 5.7.

Table 5.7. Received Minimum RF signal strength for different GPS blocks (20.46 MHz
Bandwidth) (GPS Directorate, 2019).

SV Blocks Channel Power: C/A or L2C
[dBW]
[IA/IIR L1 -158.5
L2 -164.5
[IR-M/IIF L1 -158.5
L2 -160.0
I11 L1 -158.5
L2 -158.5

Thermal noise power, Ny, is computed using:

Ny = 101ogo(k - (Tane + Tamp)) (5.37)
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where: T, is the antenna equivalent noise temperature assumed to be 100 K
(Kaplan and Hegarty, 2006),
Tamp is the amplifier noise temperature (K),

k is the Boltzmann'’s constant equal to 1.38 x 10723 (J/K).

When considering signal and noise paths through the front-end, one needs to
consider the noise figure, N, of various components. The noise figure provides an
estimate of the amount of noise added by an active component such as a low noise
amplifier or even a passive component. The noise figure is usually given by:

_ SNRyy, (5.38)
I~ SNR,,,

where: SNR;, is the signal-to-noise power ratio into the component (dB),
SNR,,; is the signal-to-noise power ratio after the component (dB).

The amplifier noise temperature can be related to its noise figure using:

Ny (5.39)
Tamp = 290 (1010 - 1)

where Ny is the amplifier noise figure at 290K equal to 4.3 dB (Kaplan and Hegarty,
2006). The amplifier noise temperature is estimated to be 490.5 K, and the
thermal noise power is computed to be -201 dBW. The CNO observations are
assumed to be affected by white noise with a standard deviation of 1 dB. The CNO
observations for a particular satellite will vary depending on the satellite elevation
angle due to differences in path loss and the satellite and receiver antenna gain
pattern. The antenna gain variation with satellite elevation angle for the simulated
receiver is shown in Figure 5.14. In the figure, the CNO observations (realisations)
are shown for the simulated receiver alongside observations for a 25 mm x 25 mm
patch antenna (u-blox ANN-MS) and 80 mm x 40 mm chip antenna (u-blox, 2019).
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Figure 5.14. Simulated antenna gain (left) and C /N, observations with elevation angle
(right).
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5.4.7. Receiver Clock
The GNSS receiver clock introduces a common ranging error that affects
measurements made to all satellites. The error is generally time-varying. The
error is the same for simultaneous satellite measurements. With enough
measurements, the error can be estimated and removed. Therefore, this error is
generally not included as a source of positioning error. However, during a GNSS
outage, where the receiver is tracking less than four satellites, this error can
significantly influence the position error.

In this research, the receiver clock error has been modelled using a two-state
random process model (Tawk et al, 2014). The two-state model represents
variations in both the oscillator frequency and phase, as shown in Figure 5.15.

uf
& T
Ug —> [ f > ] 22—
frequency phase

Figure 5.15. The receiver clock model.
This two-state receiver clock model is formulated as:
X = ug (5.41)
where: x, is the receiver clock phase,

X is the receiver clock frequency,
ur, Uy are the independent white noise components.

Brown and Hwang (2012) presented the spectral density components for the
Allan deviation for various timing standards, which have been presented in Table
5.8.

Table 5.8. The spectral densities for different timing standards.

Timing standard Ss[s] Sy [s7]
TCXO 1x1071° 4x10°1°
0CX0 1x 10725 1x 10723
Rubidium 1x 10722 2x1072°

5.4.8. Other Errors

All other errors, including the antenna phase centre offset (PCO), phase centre
variation (PCV), inter-frequency biases, and clock g-dependent errors, which can
become significant in applications involving very high-dynamics or high-
vibrations (Groves, 2013), have been ignored in the simulator.
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5.5. IMU Model

As described in Section 5.3, the proposed architecture uses raw GNSS observables
and IMU measurements to estimate corrections for the navigation states. The
mechanism to generate raw GNSS observables has been extensively described in
the previous section, and therefore in this section, the IMU model is also described.
Together, the GNSS measurement simulator and the IMU model simulate a GNSS
receiver and an IMU fitted on an aircraft. The error model for IMU measurements
includes a turn-on bias component, a dynamic bias component and white noise.
For the specific force measurements, this model is given by:

ﬁll; = fLIl; + bgs + bgq + Wi, (5:42)

where: f;2 is the true specific force vector from the user motion file,
b, is the accelerometer turn-on bias vector,
b, is the accelerometer dynamic bias vector,
w; , is the Gaussian white noise vector.

The accelerometer dynamic bias is modelled using a first-order Gauss-Markov
process.
The rotation rate measurements are given by:

@ = Wiy + bgs + bga + Wy, (5.43)

where: w?, is the true rotation rate vector from the user motion file,
bgs is the gyroscope turn-on bias vector,
bgq is the gyroscope dynamic bias vector,
Wi, is the Gaussian white noise vector for the gyroscope measurements.

The gyroscope dynamic bias is also modelled using a first-order Gauss-Markov
process, similar to the accelerometer dynamic bias. The IMU model ignores any
cross-coupling effects, scale-factors and g-dependent biases because their effects
can be crudely approximated by increasing the random walk in the bias term and
the noise vector, especially in a low-cost IMU. Table 5.9 shows the error
characteristics of the IMU model. These error characteristics are not used in the
filter to reflect a situation close to reality that the error characteristics cannot be
truly known. The error characteristics are similar to those presented in Tawk et
al. (2014) and are in general agreement with IMU used in the testing campaign
presented in the next chapter.

Table 5.9. IMU error characteristics.

Property Accelerometer Gyroscope
Random bias (o) 40 mg 1000 °/hr
White noise (PSD) 0.5 mg/VHz 126°/hr/vHz
First-order Gauss-Markov 0.05mg 20°/hr
Correlation Time (1) 200s 200s
Sampling Frequency 100 Hz 100 Hz
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5.6. Simulation Setup

This section presents the trajectory used in the simulation alongside the GNSS
outage scenario investigated. The navigation filter setup is also described in this
section. This includes the assignment of the initial uncertainties, process noise and
measurement noise (for the IMU and GNSS measurements). One hundred Monte
Carlo runs are used to investigate the performance of the proposed architecture.

5.6.1. Trajectory and GNSS Outage

The 3D trajectory used to investigate the performance of the proposed scheme is
presented in Figure 5.16. The blue line shows the actual flight profile and the red
line shows a sample realisation.

800

actual
realisation

600

2000
Xy [m] 0 0 x.. [m]

Figure 5.16. 3D Flight Profile.

The flight profile includes a take-off segment which the autopilot system
completes at an altitude of 200 m, a climb segment completed at 700 m, a cruise
segment and an approach segment (descent). The entire flight lasted 340 seconds.
The generated user motion file from the trajectory was used to generate raw GNSS
observables (pseudoranges and Doppler frequencies) and IMU measurements
using the GNSS measurement simulator and IMU model described in the previous
sections. A partial GNSS outage was induced 200 seconds into the flight, as can be
seen in Figure 5.17. The GNSS outage is induced by masking low elevation
satellites. This scenario can happen in a typical UAV flight due to high levels of in-
band GNSS interference from amateur radio (operating in the 23 cm band),
spurious emissions from terrestrial radio systems and GNSS Jammers (as
explained in the previous chapter). Jammers are a particular threat to UAVs since
they are designed to limit GNSS reception. Wilde et al. (2016) showed that a simple
L1 chirp jammer can cause large errors (over 100 m) in the navigation solution
output by a GNSS receiver and can even cause an extended GNSS outage where the
receiver does not output a navigation solution. It is shown that the jammer's effect
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could last over an extended range, and it is more pronounced in open sky
conditions, especially when the UAV is flying at higher altitudes.
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Figure 5.17. 2D Flight Profile with GNSS outage.

The authors show that there is a reduction in the carrier power to noise density
ratio (C/N,), which is more pronounced for lower elevation satellites. On the other
hand, an AsteRx4 receiver showed only about 2 dB in C/N, reduction for it'’s
highest elevation satellite due to an adaptive filtering strategy achieving a stand-
alone positioning error of less than 0.5 m (Wilde et al., 2016). For this reason, this
thesis considers only high elevation satellites being tracked by a receiver during
the partial GNSS outage. However, the reduction in C/N, for the high elevation
satellites is not considered in this work. Two cases are investigated with three and
two satellites tracked by a receiver during the outage as shown in Figure 5.18.
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Figure 5.18. Satellites visible during the induced GNSS outage. The left plot shows three
high elevation satellites and the right plot shows the remaining high elevation satellites
after masking PRN 13.
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In the GNSS measurement simulator, it was assumed that the flight took place in
GPS week 2042, on the 615t day of the year (DOY) and 568800 seconds into the
GPS week.

5.6.2. Initial Uncertainties

The navigation filter requires the initial uncertainties, process noise covariance
and measurement noise covariance to be defined. The standard deviation of the
initial uncertainty of the states is presented in Table 5.10. The initial error
considered for the states is such that 5x~N (0, 62) and the filter was not sensitive
to minor scaling (in the range of 1 to 2) of the initial error.

Table 5.10. Initial uncertainties for the states.

State Standard deviation (o)
Position [2,2,3] m
Velocity [1,0.5,0.5] m/s
Attitude [3.5°3.5°5°]
Rotation rates 1.5°/s
Propeller speed 15rad/s
Accelerometer biases [40,40, 40] mg
Wind velocity [1.5,1.5,1.5] m/s
Gyroscope biases [1000, 1000, 1000] deg/h
VDM parameters 10%

Clock offset 1074 m

Clock drift 10 m/s

5.6.3. Process Noise
In the EKF, the state covariance matrix is propagated by:

Pije-1 = Pr—1 Pr—1je-1Pl—1 + Qr—1 (5:44)

In Equation (5.44), Q,_; represents the process noise covariance matrix and is
usually calculated as:

Q-1 =E [ ftt_TS ftt_TS exp(Fy_q - (t — (5.45)
T
) Gis W& WS (") 6Ly exp(Fis - (¢ — ) de'de” ]

The equation above can be difficult to evaluate, especially when the dynamic
matrix is time-varying, as is the case with the proposed scheme. Therefore, the
equation is usually simplified in the computation of the process noise covariance
by ignoring the time propagation (0.01 s in this thesis) of the system noise over an
iteration of the filter (Groves, 2013). However, in some cases, this simplification
can lead to suboptimal performance. It is simple enough to show the actual
process noise for the receiver model because its dynamic matrix is constant.
Therefore, the GNSS receiver clock process noise covariance is given by:
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S 13 (5.46)
{ g3 o + SfTS SgT.g—I
Qck = Sgrz SZ |
gTs
2

In Equation (5.46), Sy =0.009m?*/s and S; = 0.0355m?/s® represent the
spectral amplitudes for the two receiver Gaussian white noise sources, us and uy.
The standard deviations of the main diagonal terms of the tuned discrete process
noise covariance are presented in Table 5.11. The values for the receiver clock
offset and drift are not listed in the table since their spectral amplitudes have
already been given.

Table 5.11. The standard deviation of the diagonal terms of the process noise covariance
matrix.

State Standard deviation (10)
Position 10* m

Velocity 10* m/s

Attitude 10 rad

Rotation rates 10 rad/s
Propeller speed 10 rad/s
Accelerometer Bias 2x10” m/s?
Gyroscope Bias 2x10® rad/s

Wind 5x107 m/s

Model parameters 0.15% of True Values

And the general form of the process noise covariance matrix is given by:

[Qxaazy 0 0 0 0] (5.47)
| 0 Qx 0 0 0 |
Qe=| 0 00Qx, 0 0 |
l 0 0 0@ O
0 0 0 0 9y

5.6.4. Measurement Noise
The variance values for the IMU measurement noise covariance matrix are
considered within the range of the error characteristics given in Table 5.9. Since
the IMU biases are estimated in the filter, their values are not included in the
covariance matrix.

For the pseudorange observables, an elevation-dependent covariance matrix
is used to match the characteristics of the presented models. This model is based
on the model presented in Pinchin (2011).

2
4

2 2 b 2 2 2 (5:48)
05 = Ra as + sin(ES) + Osclock + Oiono + O-tropo
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where: a, and b, are set to 0.03 m and 0.04 m, respectively,
R, is the code to carrier error ratio set to 100,
ES is the satellite elevation in radians,
Osclock 1S the standard the satellite clock error set to 1.0 m.

The empirical parameters a,, b,, and R, are determined by fitting the elevation-
dependent model to the combined standard deviation of the simulated multipath-
induced range error and the receiver thermal noise presented in Section 5.4.5 and
Section 5.4.6, respectively. In the filter, the values are slightly scaled (in the range
from 1 to 2) in each run to reflect a situation close to reality that the true error
characteristics can not be truly known. Following the correction of the ionospheric
delay using the Klobuchar model, the standard deviation of the residual
ionospheric delay is given by:

Oiono = 0.5 17 (5.49)
where I is the computed ionospheric delay between the receiver (r) and satellite
(s)- The tropospheric delay is corrected using the Saastamoinen model
(Martellucci and Prieto-Cerdeira, 2009). The standard deviation of the residual
tropospheric delay is given by:

B 0.2 (5.50)
trovo = Gin(E) + 0.1

Doppler frequency measurements are assumed to be affected by white noise with
a standard deviation of 0.75 Hz (Takasu and Yasuda, 2013). Even though the value
is in close agreement with the standard deviation of the simulated Doppler
frequency error presented in Section 5.4.6, it is slightly scaled in each run for the
same reason that the true error characteristics can not be truly known.

5.7. Simulation Results

This section presents the simulation results based on the setup described in the
previous section. Comparisons are made to a standard tightly coupled INS/GNSS
integration architecture (TCINS) described in Section E.2 of Appendix E and a
loosely coupled VDM-based integration architecture (LCVDM) described in
Section 4.4. The TCINS and LCVDM schemes used the same IMU error
characteristics presented in the previous section. The LCVDM scheme used
position measurements obtained directly from the simulation, with a random
noise component with a standard deviation of 1 m added to the measurements.

5.7.1. Position

Figure 5.19 shows the position error estimation performance for the TCVDM,
TCINS and LCVDM architectures with three satellites visible during the GNSS
outage. In the figure, the position errors are plotted against the predicted
uncertainties (1o). The final position error for the TCVDM scheme is 18.39 metres,
while for the TCINS scheme, it is 29.14 metres. This is an improvement by a factor
of about 1.6 for the TCVDM scheme over the TCINS scheme owing to the mitigation
provided by the dynamic model. The TCVDM scheme also shows an improvement
by a factor of 4.7 over the LCVDM scheme. The significant improvement in position
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error estimation by the TCVDM scheme over the LCVDM scheme is due to the use
of raw GNSS observables (pseudoranges and Doppler frequencies) that continue
to be available even when tracking less than four satellites.
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Figure 5.19. Position error with three satellites visible during the outage.

With two satellites visible during the outage, the position error at the end of
the flight for the TCINS scheme reaches 357 metres, an order of magnitude larger
than the TCVDM scheme, as can be seen in Figure 5.20.
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Figure 5.20. Position error with two satellites visible during the outage.

It is also important to mention that the filter seems slightly optimistic in height
estimation leading to an overall optimistic nature in the 3D position error. This is
attributed mostly to the residual range biases that are not directly estimated
within the filter, making the overall error slightly larger. The position error for the
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TCVDM scheme with two satellites visible during the outage increased by 54.5%
as opposed to the error with three satellites visible. This is still an improvement
by a factor of 3 as opposed to the LCVDM scheme.

5.7.2. Velocity
Figure 5.21 shows the velocity error estimation performance for the TCVDM,
TCINS and LCVDM architectures with three satellites visible during the GNSS
outage. In the figure, the velocity errors are plotted against the predicted
uncertainties (1¢). The velocity estimation performance in the east channel for
the TCVDM scheme is similar to the TCINS scheme. However, the final velocity
error for the TCINS scheme is greater than the error for the TCVDM scheme by a
factor of 1.45 in the north channel and by a factor of 1.8 in the down channel.
Around 260 seconds, the north and east velocity estimation errors for the LCVDM
scheme changed significantly. This also occurs after the outage is induced (200
seconds into the flight). This seems to indicate that most of the aircraft’s velocity
error is due to the cross-track wind component. For instance, around 260 seconds,
the aircraft turns and heads west with mostly a southerly wind leading to a
significant increase in the velocity error in the north channel, reaching 1.4 m/s at
the end of the outage. At the same time, this error only reaches 0.2 m/s for the
TCVDM scheme, an improvement by a factor of 7 compared to the LCVDM scheme.
With two satellites visible during the outage, the TCVDM scheme showed very
gradual growth in velocity errors reaching only 0.4m/s, 0.24m/s and 0.22 m/s in
the north, east and down directions, as can be seen in Figure 5.22. This is an order
of magnitude better in the north and east channels as opposed to the TCINS
scheme.
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Figure 5.21. Velocity estimation errors with three satellites visible during the outage.
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Figure 5.22. Velocity estimation errors with two satellites visible during the outage.

A close inspection of the correlation matrix for the TCINS scheme, presented in
Figure 5.23, shows that the horizontal velocity components are correlated
significantly with their respective position components. This is expected, and the
TCVDM correlation plot from a sample realisation shows a similar pattern in
Figure 5.24. However, inspecting this matrix reveals that the estimation of wind
velocity helps to reduce rapid error growth in the TCVDM architecture due to the
correlation between the wind velocity terms and the aircraft’s velocity
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Figure 5.23. Correlation plot for the INS-based scheme at the end of the flight with only
two satellites visible during the GNSS outage.
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Figure 5.24. Correlation plot for the TCVDM architecture at the end of the flight following
a GNSS outage with two satellites visible during the outage.

Figure 5.25 shows the correlation coefficient between the aircraft’s velocity vector
and the wind velocity vector.
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Figure 5.25. A realisation of the correlation coefficient (p.) between the aircraft’s velocity
vectors and wind velocity for the TCVDM architecture with two satellites visible during
the GNSS outage.
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Evidently, the aircraft’s horizontal velocity components are correlated with the
horizontal wind velocity components. In case an air data system is not available,
or wind velocity is not estimated within the filter, as is the case with a standard
INS-based scheme, errors will accumulate rapidly. Therefore the direct
mechanism to estimate wind velocity in the TCVDM and LCVDM architectures
helps mitigate this rapid error growth in the velocity vector.

5.7.3. Attitude

Figure 5.26 shows the attitude error estimation results and the predicted
uncertainties (1o0) for the TCVDM, TCINS and LCVDM schemes with three satellites
in view during the outage. Most attitude errors for the TCVDM architecture and
LCVDM scheme are resolved well within the first 100 seconds of GNSS availability.
The final pitch and yaw angle estimation errors for the TCVDM architecture seem
slightly higher than for the TCINS scheme. The pitch angle estimation error for the
LCVDM scheme is very similar to its TCVDM counterpart, while the roll and yaw
angle estimation errors for the LCVDM scheme are greater by a factor of 2.5 and 5
compared to their TCVDM counterparts.
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Figure 5.26. Attitude estimation errors with three satellites visible during the GNSS
outage.

Figure 5.27 shows the RMS of attitude estimation errors and the predicted
uncertainties (1o) for the TCVDM, TCINS and LCVDM schemes with two satellites
visible during the GNSS outage.

119



TCVDM =B =10 ——TCINS - © =10 LCVDM 1o

[_J2svs

0 34 68 102 136 170 204 238 272 306 340
time [s]

Figure 5.27. Attitude estimation errors with two satellites visible during the GNSS outage.

Generally, the final attitude estimation errors increase slightly compared to the
estimation errors with three satellites in view. The final roll angle estimation error
for the TCVDM scheme increases by a factor of 1.25 to 0.15° while for the TCINS
scheme, it increases by a factor of 2.5. On the other hand, the final pitch angle
estimation error for the TCVDM scheme stays the same while it increases by a
factor of 2 for the TCINS scheme. The final yaw angle estimation error increases
by 57% for the TCVDM scheme and by 26% for the TCINS scheme. Roll and pitch
angle estimation errors increase rapidly for the TCINS scheme and only gradually
for the TCVDM scheme with a decrease in the number of satellites in view during
the outage. This gradual growth of attitude estimation errors for the TCVDM
scheme is due to the extra mitigation provided by the dynamic model of the
aircraft. It is important to mention that, even though the growth in attitude errors
is gradual with decreasing number of satellites in view, the final yaw angle
estimation error for the TCVDM architecture is still larger than for the TCINS
scheme by almost 60%. In the TCVDM scheme, the yaw angle seems to be
correlated with the horizontal wind velocity components, which helps explain the
gradual accumulation of this error during the straight and level segment following
a turn (between 272 and 340 seconds). This is further indicated by the gradual
accumulation of this error by the LCVDM scheme reaching 3.7° at the end of the
flight.

5.7.4. IMU Errors

Figure 5.28 and Figure 5.29 show the RMS of accelerometer and gyroscope bias
estimation errors, respectively, with two satellites visible during the outage for all
100 runs. The filter estimates about 90% of the initial errors well within the first
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40 seconds of GNSS availability, and the estimation continues to improve even

during the GNSS outage.
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Figure 5.28. Accelerometer bias estimation errors for the TCVDM scheme with two
satellites visible during the GNSS outage.
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Figure 5.29. Gyroscope bias estimation errors for the TCVDM scheme with two satellites
visible during the GNSS outage.

Further, the filter’s predicted confidence values (10) seem to be consistent with
the empirical RMS error due to the correctness of the filter setup. The x-axis
accelerometer bias is slightly delayed in its estimation. However, its estimation
continues to improve even during the GNSS outage. The continued estimation of
both accelerometer and gyroscope biases even during the GNSS outage shows that
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the filter is able to keep track of these errors and is attributed to the use of the
VDM and direct IMU measurements.

5.7.5. Wind Velocity

Figure 5.30 shows the RMS of wind speed estimation errors and the predicted
uncertainties (1o0) for the TCVDM scheme with three and two satellites (TCVDM-
3 and TCVDM-2) visible during a GNSS outage compared to the LCVDM scheme.
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Figure 5.30. Wind velocity estimation errors.

The error in the estimation of wind speed seems to increase with decreasing
number of visible satellites during the outage. However, there is only a 10%
difference between the error estimated with three satellites in view to the error
estimated with two satellites in view during the outage. Turning seems to improve
the observability of wind errors slightly, as shown in Figure 5.30 around 260
seconds. However, a straight and level flight following a turn seems to reduce the
filter’s confidence in wind estimation, as can be seen from 272 seconds to the end
of the flight.

5.7.6. VDM Parameters

Figure 5.31 shows the RMS mean error in the estimation of VDM parameters for
all 100 runs. The estimation of VDM parameters does not seem to be affected by
the decrease in satellites visible during the GNSS outage, thanks to the available
IMU measurements. The filter seems to resolve only 40% of the initial VDM
parameter uncertainty due to correlation within groups of the parameters.
However, for an initial uncertainty of 10%, the performance enhancement is
sufficient for navigation due to the significant improvement in navigation
accuracy.

122



—_
N

[ JOutage
——TCVDM-3
12 =B =105
§ --= -'1I'CVDM-2
= o
g 10t Initial Error
©
xh
[ o g
© Ba
o \,_.E_.—-E—--' ’\‘ .
E 6 am ofo | o r~YJ
o
>
G 4
0]
=
2
0

0 34 68 102 136 170 204 238 272 306 340
time [s]

Figure 5.31. VDM parameters estimation errors and predicted uncertainties (10).
5.7.7. Receiver Clock
The RMS of the receiver clock bias and drift errors and their predicted

uncertainties (10) are presented in Figure 5.32 and Figure 5.33, with three and
two satellites visible during the GNSS outage.
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Figure 5.32. Receiver clock bias and drift estimation errors with three satellites visible
during the GNSS outage.

The error in the clock bias estimated by the TCVDM architecture increases
gradually, reaching only 17 meters with two satellites in view during the GNSS
outage. This is only 5% higher than with three satellites in view and an
improvement by a factor of 5 compared to the TCINS scheme. With two satellites
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visible during the outage, the final error in the clock drift estimated by the TCVDM
scheme is six times better than that estimated by the TCINS scheme. The improved
performance of the navigation states of the TCVDM scheme helped reduce rapid
growth in the clock bias and drift errors during the outage, unlike the TCINS
scheme. The predicted confidence values (1a) of the clock bias for both schemes
seemed optimistic during GNSS availability due to other range biases not
estimated within the filter leading to increased error in the clock bias and position
states.
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Figure 5.33. Receiver clock bias and drift estimation errors with two satellites visible
during the GNSS outage.

5.7.8. Uncertainty Evolution

The ratio of uncertainties, at different times, on the states allows a discussion of
their observability. The validity of this discussion stems from the close agreement
between the empirical errors and the predicted confidence values in the
covariance matrix for most navigation states and other auxiliary states.

Figure 5.34 shows the ratio of uncertainties on the states during the GNSS
availability period for the TCVDM scheme. The ratio is given by the uncertainties
at the end of the GNSS availability period (t=200s) to the uncertainties at
initialisation (t = 0s). Alternating colours are used to represent the sub-state
vectors that belong to different groups. For instance, the first three black columns
represent the uncertainties on the position states and the following three blue
columns represent the uncertainties on the velocity states. Generally, the
uncertainties on all navigation states and auxiliary states such as IMU errors, wind
velocity states, and the GNSS receiver clock errors decrease significantly during
the GNSS availability period. The uncertainties on most VDM parameters also
decrease during this period, with some showing significant reduction than others.
For instance, the uncertainties on static thrust coefficient (CFr, ) lift curve slope

(CFz,), pitching moment coefficient at the aerodynamic centre and pitch control
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derivative (CMy,, CMy,,) decrease greatly as opposed to other VDM parameters.
However, the uncertainties on the second-order thrust coefficient and most drag
coefficients decrease only slightly. This significant decrease in the uncertainties
on the parameters highlighted indicates that they are more observable than other
VDM parameters, perhaps due to the significant impact they have on position
accuracy (see sensitivity analysis in Section B.2 of Appendix B of this thesis).
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Figure 5.34. The ratio of uncertainties for the TCVDM scheme during GNSS availability.

Figure 5.35 shows the ratio of the uncertainties with three satellites in view
during the GNSS outage. The ratio is given by the uncertainties at the end of the
GNSS outage (t=340s) to the uncertainties at the beginning of the outage (t=200s).
The uncertainty on position states increases by at least a factor of 16, and for the
velocity states, it increases by at least a factor of 2. For the attitude states, the ratio
decreases to 0.8 for roll angle and to 0.95 for pitch angle, while it increases to 1.6
for yaw angle. The uncertainty on IMU errors decreases during the outage, which
indicates that they continued to be observable even during this period. The
uncertainty on some VDM parameters decreases during the outage, indicating that
the parameters continued to be observable during this period. The uncertainties
on the roll control derivative (CMy, ) and the roll damping derivative (C My, )

increase slightly during the outage. The uncertainty on the receiver clock bias
increases by a factor of 37, and on the receiver clock drift, it increases by a factor
of 3.

In comparison, Figure 5.36 shows the ratio of uncertainties during the GNSS
outage for the LCVDM scheme. During this period, the uncertainties on most
navigation states increase, with the uncertainty on position states increasing by at
least a factor of 140. Similarly, the uncertainty on the velocity states increases by
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at least a factor of 5.7. The uncertainties on most VDM parameters for the LCVDM
scheme are similar to the uncertainties for the TCVDM scheme with either two or
three satellites in view during the GNSS outage.
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Figure 5.35. The ratio of uncertainties for the TCVDM scheme with three satellites during

the outage.
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Figure 5.36. The ratio of uncertainties for the LCVDM scheme during the GNSS outage.
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The performance with two satellites during the outage is similar to the
performance with three satellites, with increased uncertainties on some
navigation states.

5.7.9. Correlation

Figure 5.37 and Figure 5.38 show a realisation of the correlation matrix for all
TCVDM states before the outage (100 seconds into the flight) and at the end of the
GNSS outage with only two satellites visible.
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Figure 5.37. Correlation matrix for the TCVDM scheme one hundred seconds into the
flight.

During GNSS availability, the clock bias seemed to be significantly correlated
with the down component of the position vector. The range biases not estimated
in the filter seem to influence the down component of the position vector
alongside the receiver clock bias. This helps explain the optimistic nature in the
estimation of the position error and the clock offset during GNSS availability.

During the outage, the clock bias and drift terms seemed to be significantly
correlated with the down components of position, velocity and wind vectors,
which helped mitigate rapid error growth during this period. VDM parameters
showed significant correlation within groups and some correlation with other
navigation states. The correlation with other navigation states is essential for the
overall VDM parameter observability. The observability of VDM parameters is
generally trajectory dependent, but even for a modest flight profile, 40% of the
initial uncertainty can be resolved.
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Figure 5.38. Correlation matrix for the TCVDM architecture at the end of the GNSS outage
with only two satellites visible.

5.8. Summary

In this chapter, an innovative, tightly coupled vehicle dynamic model-based
integration architecture (TCVDM) capable of taking full advantage of available raw
GNSS observables (pseudoranges and Doppler frequencies) during a GNSS outage
has been presented and analysed. A specific case to a fixed-wing UAV has been
investigated, which, alongside the raw observables, uses measurements from a
low-cost MEMS-grade IMU to aid the navigation solution.

A GNSS measurement simulator used to derive raw GNSS observables used in
the fusion filter is presented and analysed. The reasons for developing and using
a software-based measurement simulator are highlighted, and different inputs
and settings to the simulator are explained. One advantage of a software-based
simulator is the ability to decouple the receiver dynamics from the raw
observables. Different error models used in deriving the raw GNSS observables
are presented, and some of their limitations are discussed. A summary of the error
models used in the simulator is presented in Section B.3 of Appendix B. Following
the input of a user motion file, the simulator outputs raw GNSS observables used
in the fusion filter.

A Monte Carlo simulation study is used to evaluate the performance of the
proposed scheme. The key question being addressed was postulated in the
previous chapter. It reads:

e C(Can a VDM-based approach gain improved performance from raw GNSS

observables available even when tracking less than four satellites?
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Simulation results of the proposed architecture are presented and analysed, along
with comparisons to a tightly coupled INS/GNSS integration architecture as well
as aloosely coupled VDM scheme (TCINS and LCVDM). Simulation results revealed
that the proposed architecture could improve position estimation by one order of
magnitude with two satellites visible during an extended GNSS outage lasting over
two minutes as opposed to a TCINS. Further, it was found that for a modest
trajectory, the proposed architecture only captures about 40% of the initial
uncertainty in the VDM parameters due to the significant amount of correlation
within groups of the parameters. Other auxiliary states such as wind, IMU errors
and clock errors were well estimated even with only two satellites visible. The
online estimation of wind velocity also seemed to improve the estimation
performance of the aircraft’s velocity states due to the significant amount of
correlation between the states.
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6 Flight Test Measurements

6.1. Introduction

This chapter presents the flight test setup and test results of the proposed tightly
coupled VDM-based (TCVDM) integration architecture.

The chapter is organised as follows: The sensors and systems used on the
aircraft are described in Section 6.2 and Section 6.3, respectively. The aircraft
characterisation routine is explained in Section 6.4 and Section 6.5. Section 6.6
describes the test flight to gather data for testing the architecture. Section 6.7
presents the derivation of the reference navigation solution, and the results are
presented in Section 6.9 of this chapter.

The work presented in this chapter has been published in Mwenegoha et al.
(2020).

6.2. Platform Description

An off-the-shelf fixed-wing UAV (Riot V2) was modified and fitted with a custom
flight control system (FCS) to validate the performance of the proposed
integration architecture. More specifically, the on-board setup consisted of:

e A MEMS-grade IMU - The NXP 9DOF IMU consisting of the FXAS21002 3-axis
gyroscope and the FXOS8700 3-axis accelerometer and magnetometer was
used on the flight control system (NXP Semiconductors, 2015, 2017). The IMU
was sampled at 100Hz and used to measure the specific force and rotation
rates on the UAV. These were then used in guidance and control of the aircraft
and were also logged at 20 Hz to test the developed scheme. The IMU was
configured to raise an interrupt whenever data was ready for processing.

e A barometer - The Bosch Sensortec BMP388 sampled at 25Hz was used to
provide height measurements used in the flight control system (Bosch, 2018).
Data from the barometer was also logged but was not used to test the
performance of the developed architecture.

e GNSS receiver - Three multi-constellation, u-blox NEO-MS8T receivers with an
output rate of 4Hz were used on the platform with data from the modules used
in post-processing to validate the proposed architecture (u-blox, 2020). Each
receiver was installed at a specific location on the aircraft (see Figure 6.24).
The coordinates of each receiver relative to the centre of gravity of the aircraft
in the body-fixed frame were known and used to derive a GNSS attitude
solution used to assess the performance of the developed architecture.

e Flight control system - The ATmega2560, loaded with custom flight control
firmware, was used for guidance, navigation, and control of the aircraft. The
unit combines 256KB flash memory, 8KB SRAM and 4KB EEPROM (Microchip
Technology, 2020b). The unit achieves a throughput of 16MIPS at 16MHz.
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e A Datalogger - The Openlog datalogger based on an ATmega328 running at
16MHz was used for logging data from the IMU, BMP388, GNSS receivers and
control inputs at 20Hz (Microchip Technology, 2020a).

6.3. Flight Control System and Ground Control Station

A printed circuit board (shield) was designed in Eagle Autodesk for the purpose
of housing the IMU, barometer, and other sensors in the aircraft. The shield was
installed on the Arduino Mega 2560. Figure 6.1 shows the sensor shield.

Figure 6.1. Sensor shield for the IMU, barometer and other sensors.

The completed flight control system board with the IMU, barometer and data
logging module is shown in Figure 6.2. A custom, open-source flight control
firmware! was loaded onto the board and used for guidance, navigation and
control.

Figure 6.2. Flight control system board.

A custom, open-source ground control software? was used to communicate with

the aircraft via a radio link. The ground control software was used to program the
mission profile, change the aircraft’s autopilot settings whenever necessary and
log incoming telemetry from the aircraft. Figure 6.3 shows the custom ground
control software running on a laptop with a 2.5 GHz Core i5-7200 CPU and 8 GB of
RAM.

! https://github.com/HeryMwenegoha/PolarisAir
2 https://github.com /HeryMwenegoha/PolarisGround
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Figure 6.3. Ground control software.

6.4. Aerodynamic Model

The TCDVM requires an accurate set of model parameters for it to work effectively
well. Aircraft characterisation usually involves laborious calibration routines
requiring significant time, effort and cost. In this research, a geometry-based
routine has been used to estimate the aerodynamic properties of the experimental
aircraft due to its simplicity and the availability of open-source tools. Geometry-
based techniques, and more generally empirical techniques, are fast and cost-
effective, ideal for small teams and low-cost applications. However, the obtained
aerodynamic coefficients from these techniques can be different from the actual
coefficients of the aircraft due to the limitations and simplifications in the
empirical models. To increase our confidence in the obtained aerodynamic
coefficients, the aircraft is further characterised using wind tunnel testing and full-
scale oscillation tests.

6.4.1. Wind Tunnel Testing

The aerodynamic characteristics of the aircraft are obtained using the AF100
open-circuit subsonic wind tunnel with a 305 mm x 305 mm x 600 mm closed test
section, as shown in Figure 6.4 (left). This is a low-speed wind tunnel with a
maximum operating speed of 36 m/s. The tunnel includes the AFA3 three-
component force balance, which contains load cells used to measure the
aerodynamic forces, lift (up to 100 N), drag (up to 50 N), as well as pitching
moment (up to 2.5 Nm), exerted on a model. The aerodynamically designed
effuser (cone) linearly accelerates the air entering the tunnel. The air passes
through a grill before entering the diffuser and variable axial fan. The control and
instrumentation unit includes manometers connected to a pitot-static tube in the
test section to show pressure.

The aircraft used in the investigation had a wingspan of 1.4 m. Due to the
limited size of the test section, the aircraft was scaled by a factor of three. To
minimise the effects of tunnel walls on the airflow, a rule of thumb is to have the
maximum span of the aircraft or its model be less than 80% of the tunnel width
(Barlow, Rae and Pope, 1999). Since only the aerodynamic coefficients are of
interest, only one half of the scaled model of the aircraft was used. This allowed
fitting the half-scaled model in the test section, as shown in Figure 6.4 (right). To
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account for any scaling between the model used in wind tunnel testing and the
aircraft used during flight tests, the wind tunnel was operated at a speed of 36
m/s. This was equivalent to 12 m/s on the full-scale aircraft used during flight
tests. By matching the Reynolds number of the full-scale aircraft with that of the
half-scaled model, the aerodynamic forces on both platforms will be the same
provided that the fluid, its temperature and free-stream pressure remains the
same.

Figure 6.4. AF100 subsonic wind tunnel (left) and the scaled model in the test section
(right).

The scaled model was 3D printed, sanded and painted to reduce the surface
roughness. Only the static aerodynamic coefficients were obtained from wind
tunnel testing. For a detailed description of the errors encountered in wind tunnel
testing, such as solid and wake blockages, the reader is directed to Mwenegoha
and Jabbal (2013).

6.4.2. Full-Scale Oscillation Testing

The moment of inertia of the full-scale UAV is determined using the compound and
bifilar pendulum setup shown in Figure 6.5. A compound pendulum setup is used
to characterise the moment of inertia about the longitudinal axis and lateral axis
(Ixx» 1yy) while the bifilar setup is used to characterise the moment of inertia about

the normal axis (1,,).

Figure 6.5. Compound pendulum (left) and bifilar torsion pendulum setup (right).

133



By oscillating the aircraft about the longitudinal or lateral axis, one can obtain its
moment of inertia measured at the point of rotation around the same axis. A
simplified differential equation for moments can be used using small-angle
approximations, which is the equation for a harmonic oscillator. By applying the
same principle to an assemblage consisting of a support frame and an aircraft,
successive measurements of the period of oscillations are recorded, and the
compound moment of inertia is estimated by (Junos, Mohd Suhadis and Zihad,
2014):
T? (6.1)
Ixx,yy assemblage — mmgl

The moment of inertia of the aircraft about a specific axis is obtained by
subtracting the moments of inertia of the support frame and the extra moment
due to displacement of its centre of gravity.

T? TS (6.2)

I = —mrgly ——= l 12
xx,yy aircraft — ) mrgir — ) MeyGlsy — Mlig

where: Tr, Ty, represent the period of oscillation for the assemblage and

support frame, respectively (in seconds),

mr, Mg, m represent the mass of the assemblage, support
frame, and aircraft, respectively (in kilograms),

lr, sy, L, is the distance from the pivot point to the centre of
gravity of the assemblage, support frame and aircraft,
respectively (in metres).

The yaw moment of inertia, I,,, is determined using the bifilar torsion pendulum
setup by subtracting the moment of inertia of the support frame from the
moment of inertia of the assembly given by (Junos, Mohd Suhadis and Zihad,
2014):

T2 @ T a? (6.3)

Iy, aircraft = 1672 mrg T - Wmsug T

In this research, fifty oscillations are used to characterise the moments of inertia.
In theory, the greater the number of oscillations, the lower the error due to the
operator, but a damping factor makes the oscillations more difficult to perceive in
practice.

6.4.3. Geometry Based Approach

Methods that fall within this category use empirical and theoretical models and
the aircraft geometry to characterise the aircraft. This method is simple, fast, and
ideal for low-cost applications. The aerodynamic parameters are estimated using
an open-source potential flow solver, Athena Vortex Lattice3 (AVL), which
provides values within 20% of the actual parameters (Kléckner, 2013). AVL uses
the vortex lattice method to estimate the aerodynamic coefficients of the aircraft.
The wing and other surfaces are modelled as a set of thin lifting panels. Each panel
contains a single horse-shoe vortex with a bound vortex located at the panel

3 http://web.mit.edu/drela/Public/web/avl/
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quarter-chord position and two trailing vortex lines shed from each end. A zero
flow condition is defined normal to the surface, and the velocity is assumed to
contain a component of the free stream velocity and an induced component. The
induced component is a function of the strengths of all the vortex panels on the
surface.

To obtain the aerodynamic coefficients, first, the geometry is defined using a
freely available aerodynamic analysis tool, XLFR5% and then, exported to AVL.
Monte Carlo simulations are used to investigate the effects of different input
variables (a, B, Wy, Wy, ®,, 84, 8, 6;) on the aerodynamic coefficients. Figure 6.6
shows the workflow used to estimate the coefficients.

(a) XFLR5 geometry

o AVL
4 wind tunnel
polyfit
, 5
o] -
3 5
© S
—
O
0.15 - 1e-2
15 -10 -5 0 5 10
« [deg] de [deg]
(c) Polynomial fitting (d) Reduced polynomial fitting

Figure 6.6. Aircraft characterisation workflow.

The XFLR5 geometry (a) is exported to AVL (b) without the fuselage for
aerodynamic analysis. Eight input variables are used in the potential flow solver
to generate solutions (c). In Figure 6.6 (c), the total lift coefficient is plotted against
the angle of attack. The residuals of the polynomial fitting (d) are used to
determine appropriate monomials. In Figure 6.6 (d), the residual lift coefficient is
plotted against the aileron deflection and the normalised pitch rate (which shows
a weaker dependency).

Details of the aircraft geometry and mass properties are given in Table 6.1. It
should be noted that the moment of inertia terms are also obtained from XFLR5
following the geometry definition and mass input. The average error of these

4 http: //www.xflr5.tech /xflr5.htm
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terms is found to be within 7% of reference values available from full-scale
oscillation tests. The aircraft characterisation process using a combination of AVL
and XFLR5 provides reasonable initial estimates that can be supplemented with
wind tunnel data and full-scale oscillation tests if available.

Table 6.1. Aircraft properties.

Property Description Value
m Aircraft mass 2.17 kg
S Wing area 0.36 m?
b Wingspan 1.40 m
c Mean aerodynamic chord 0.26 m
D Propeller Diameter 0.30 m
XFLR5 Oscillation Tests
Lex Roll moment of inertia 0.12kgm?  0.139 + 0.012 kgm?
L,y Pitch moment of inertia 0.13 kgm?  0.124 + 0.010 kgm?
I, Yaw moment of inertia 0.24kgm?  0.274 + 0.019 kgm?

6.4.4. DragForce Coefficient

The workflow presented in Figure 6.6 was used to characterise the aerodynamic
properties of the aircraft. Figure 6.7 shows the drag coefficient plotted against the
angle of attack and sideslip angle. In the figure, the blue points indicate the AVL
solution, and the mesh shows the drag coefficient model fitted with the range of
the data from the AVL solution with a coefficient of determination R? of 0.9706.
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Figure 6.7. Drag force coefficient plotted against both angle of attack and sideslip angle.

These results reveal how well the AVL solution fits the drag coefficient model
given in Equation (3.35). However, compared to available wind tunnel results, the
AVL solution seems to have a significant offset from wind tunnel data, as shown in
Figure 6.8. This is attributed to the missing drag contributions in the potential flow
solution in AVL. The available wind tunnel results are not used in the quantitative
assessment of the flight test results due to some limitations in wind tunnel testing.
For instance, the wind tunnel results were obtained on a scaled model in a clean
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configuration (e.g. no landing gear). However, the wind tunnel data is used as a
simple guide to the AVL solution through a qualitative assessment.
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Figure 6.8. Drag force coefficient with angle of attack.

The drag coefficient term seems to show little variation with the sideslip angle, as
shown in Figure 6.9. The AVL solution seems to underestimate the variation of
drag coefficient with sideslip angle even though the pattern is similar to the wind
tunnel results. Several factors could contribute to this, most notably are the
missing contributions from the potential flow solution and the lack of a fuselage
in the geometry. The model used to fit the AVL solution only considers two input
variables («, ) out of the eight variables used in simulation. It is possible that the
missing contributions from other input variables have a significant impact on the
drag coefficient even though this argument alone does not account for the
difference between the wind tunnel data and the AVL solution.
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Figure 6.9. Drag force coefficient with sideslip angle.
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6.4.5. Lift Force Coefficient

Figure 6.10 shows the lift coefficient plotted against the angle of attack and
sideslip angle. In the figure, the blue points indicate the AVL solution, and the mesh
shows the lift coefficient model fitted with the range of the data (R? = 0.9724).
Results reveal how well the AVL solution fits the lift coefficient model given in
Equation (3.33). The AVL solution shows good agreement with the limited wind
tunnel data, as shown in Figure 6.11.
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Figure 6.10. Lift force coefficient plotted against both angle of attack and sideslip angle.
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Figure 6.11. Lift force coefficient with angle of attack for the AVL solution, wind tunnel
data and the fitted model.
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6.4.6. Lateral Force Coefficient

Figure 6.12 shows the lateral coefficient plotted against the angle of attack and
sideslip angle. Results show that the lateral force coefficient model given by
Equation (3.34) fits the AVL solution well, even though the coefficient of
determination (R?) was only 0.625 for this model. The limited static wind tunnel
data shows that the AVL solution underestimates the lateral force coefficient, as
shown in Figure 6.13. This could be due to the lack of the fuselage in the AVL
solution, leading to underestimating this term.
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Figure 6.12. Lateral force coefficient plotted against both angle of attack and sideslip
angle.
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Figure 6.13. Lateral force coefficient with sideslip angle for the AVL solution, wind tunnel
data and the fitted model.

6.4.7. Roll Moment Coefficient
Figure 6.14 shows the rolling moment coefficient for the AVL solution and fitted
model given by Equation (3.36) with a coefficient of determination (R?) of 0.9863.
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Wind tunnel data for the rolling moment coefficient was not available. Therefore,
a qualitative comparison cannot be made. However, the roll stability shown in the
plot can be attributed to the slight dihedral on the aircraft.
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Figure 6.14. Rolling moment coefficient with sideslip angle for the AVL solution and the
fitted model (R? = 0.9863).

6.4.8. Pitch Moment Coefficient

The static pitching moment coefficient results show that the AVL solution and the
fitted model given by Equation (3.37) slightly overestimated the pitching moment
slope compared to available wind tunnel results. However, the trend is very
similar, both indicating that the aircraft has inherent longitudinal stability. Wind
tunnel results seem to indicate a lower trim angle (a with C,, = 0) than the AVL
solution, as shown in Figure 6.15.
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Figure 6.15. Pitching moment coefficient with angle of attack for the AVL solution, wind
tunnel data and the fitted model (R? = 0.9939).
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The lift coefficient will be less than zero for the wind tunnel results at the indicated
trim angle. However, for the AVL solution, the estimated lift coefficient at its trim
angle is positive. The centre of gravity for the AVL solution closely matched that of
the actual aircraft. It is possible that the scaled model used in wind tunnel testing
was slightly nose-heavy, causing the trim angle to be lower.

6.4.9. Yawing Moment Coefficient
Figure 6.16 shows the yawing moment coefficient results for the AVL solution, the
fitted model given by Equation (3.38) and static wind tunnel testing results.
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Figure 6.16. Yawing moment coefficient with sideslip angle for the AVL solution, wind
tunnel data and the fitted model (R? = 0.9930).

Both the AVL solution and wind tunnel data show that the aircraft has directional
stability. However, the AVL solution seems to slightly overestimate the yawing
moment coefficient compared to wind tunnel results.

The estimated aerodynamic coefficients are presented in Section C.2 of
Appendix C of this thesis.

6.5. Propulsion Model

This section characterises the propulsion model used on the aircraft and provides
information on the variation in performance of each component in different
conditions. The section determines the values for the thrust coefficient terms (for
the VDM) and derives the commanded RPM using a combination of the pulse width
modulated (PWM) signal from the flight control system, current through the
motor and voltage measurements.

6.5.1. Electronic Speed Controller

The propulsion system on most fixed-wing UAVs consists of a brushless DC
(BLDC) motor with a propeller. The BLDC motor is driven by an electronic speed
controller (ESC), which transforms the input DC voltage from the battery into
three-phase electricity, as shown in Figure 6.17. A PWM signal is used to adjust
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the speed of the motor and propeller. Sendobry (2014) showed that the efficiency
of the ESC was a function of the PWM signal and current.

Figure 6.17. Propulsion model used in UAV.

Gong, Macneill and Verstraete (2018) conducted a series of tests on Rimfire .55
480 Kv motor driven by a Castle Phoenix 120 HV ESC over a range of RPMs and
demonstrated how the efficiency of the ESC varied at different voltages. Their
results can be seen in Figure 6.18. They later modelled the ESC using a bi-linear
equation fitted to the efficiency data as a function of the PWM signal and current
given by:

Nesc = Aesc " PWM + Bosc I + Vesc (6.4)

where: PWM is the input pulse-width-modulated signal (us),
I is the input current to the ESC (A),
Aose (US™Y), Pesc (A1), Vesc are model parameters.
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Figure 6.18. A Castle Phoenix Edge HV 120 ESC Efficiency with a Rimfire .55 Motor 480
Kv motor. The black lines with numbers indicate the efficiency of the ESC (Gong, Macneill
and Verstraete, 2018).

The results were similar to the ones obtained by Sendobry (2014). The values of
model parameters (@gg¢, Leser Yesc) Need to be determined at different voltages
because they vary with the input voltage. Furthermore, low-cost BLDC and ESC
derived from hobby equipment can have considerable variation in efficiency and
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performance between manufacturers. So the determined parameters will only be
useful for the specific setup.

In this research, a Dynamic 60 A electronic speed controller is used and
connected to a 3S Overlander battery (11.1 V) with a capacity of 2200 mAh and a
35C constant discharge rate.

6.5.2. Brushless DC Motor
The efficiency of a BLDC motor is given by the ratio of the output mechanical
power to the input electrical power.

_Tw (6.5)
77’!71.01'07‘ E . I

where: E is the input voltage,
w is the rotation speed (rad/s),
7 is the motor torque (Nm).

In practice, the efficiency of a BLDC motor and, by extension, an ESC can be
measured with a 3-phase power analyser and a dynamometer. However, the
equipment can be expensive, and the process time-consuming. For a quick and
simple estimate of motor efficiency, different models can be used with varying
degrees of complexity. A popular model is the three-constant model (Gong,
Macneill and Verstraete, 2018). The three model parameters, Iy, ky, and R,
represent the no-load current (4), the voltage constant (RPM/V) and the internal
motor resistance (), respectively. These are wusually obtained from
manufacturers. However, these parameters also tend to vary with the input
voltage (Gong, Macneill and Verstraete, 2018). Another simple approach is to
assume the BLDC motor has 100 % efficiency even though this will not be true in
practice.

In this research, a Tornado Thumper 4240/10 890 kV BLDC motor is used and
is shown in Figure 6.19. This motor weighs 140g, has a length of 60 mm and a
width of 42.5 mm. It has a continuous power rating of 540 W and a peak power
rating of 650 W. The recommended propeller size range is 10 inches x 6 inches -
14 inches x 8 inches (diameter x pitch). Further, it is assumed that the BLDC motor
efficiency is constant within a small voltage range. This simplifies the overall
system efficiency of the ESC and BLDC motor and allows the motor efficiency to be
estimated with the parameters given in Equation (6.4).

Figure 6.19. Tornado Thumper 4240/10 890 Kv V2 motor (gliders, 2014).
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6.5.3. Propeller

Most small, mass-market UAVs use fixed pitch propellers. Generalised estimations
are usually used by model pilots based on the ratio of the mean pitch of the
propeller to its diameter (H/D) to estimate the thrust coefficient. This ratio can
also be derived from static thrust measurements. The pitch to diameter ratio can
be determined from static thrust measurements by matching the static thrust
coefficient to defined H/D curves.

The efficiency of the propeller is given by the ratio of the power supplied to the
useful power output.

_ Pout (66)
nprop - Pm
The useful output power is given by:
Pout = Fr Vg (6.7)

where: Vj is the forward velocity (m/s).

The power supplied to the propeller is given by:

P, = pn®D°Cp 68)

where: Cp is the power coefficient.

Using Equation (3.31) for the thrust force (Fr), the propeller efficiency then
simplifies to:

Nprop =J - C_P (6.9)

Both the thrust and power coefficients are functions of the forward speed,
propeller rotation rate, air density, Reynolds number and the tip Mach number
(Balmer, 2015).

In this research, an Advanced Precision Composites (APC) thin electric 12-inch
x 6-inch propeller is used on the aircraft. Data for this propeller can easily be
obtained from the manufacturer and used to estimate the thrust coefficient. Data
from the manufacturer is compared to experimental data to provide a qualitative
and quantitative estimate of the accuracy. The experimental results from Brandt
and Selig (2011) for an APC thin electric 11-inch x 8-inch propeller have been
extracted and compared to the data from the manufacturer even though this
propeller is not an exact match to the propeller used on the aircraft. Essentially
this is not a problem because the results of this comparison are only used to assess
the accuracy of the simulated data qualitatively. Figure 6.20 shows the variation
of thrust coefficient with the advance ratio at 3000 RPM and 6000 RPM.
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Experimental results show that the thrust coefficient has a quadratic relationship
with the advance ratio, which fits the model. The agreement of the experimental
results with data from the manufacturer for the static thrust coefficient is within
3%. Experimental results also show that the first-order and second-order thrust
coefficient terms vary close to the maximum efficiency region (around J = 0.5).
This variation is not reflected in the simulated data from the manufacturer for
both the APC thin electric 11-inch x 8-inch and 12-inch x 6-inch propellers, as
shown in Figure 6.21. Based on the APC thin electric 11-inch x 8-inch propeller,
the error in the first-order and second-order terms in the simulated data is more
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Figure 6.20. Thrust coefficient variation with simulated and experimental data.

than 25% compared to the experimental results.
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6.5.4. Commanded RPM

The variation of the ESC efficiency with the PWM signal and current enables the
commanded RPM to be determined. This is essential because a low-cost
propulsion unit will usually not include a motor/propeller speed sensor.
Therefore, the speed of the propeller needs to be inferred from other sensors
onboard the aircraft and the commanded PWM signal. Most UAVs will include a
power module that usually outputs current and voltage measurements. The
commanded propeller speed can be inferred from a combination of these
measurements, the PWM signal, and the forward velocity as given in the
component efficiencies. This estimation will be suboptimal, especially if it does not
consider the variation of different coefficients with voltage, torque load and
propeller speed. Using ground-based measurements from a tachometer
(measuring the propeller speed) and a wattmeter, the measured propeller speed
can be compared to the estimated speed. Figure 6.22 shows the comparison of the
measured and estimated speed.
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Figure 6.22. A comparison of measured and estimated propeller speed (R? = 0.946).

The model follows the trend very well, and the difference between the measured
and estimated speed at RPMs lower than 4000 is less than 50 RPM.

6.6. Test Flight

The test flight was conducted on the 12th of September 2019 around 1500hrs at
Hucknall Model Flying Club, Nottinghamshire, UK (53.048459° N, 1.291661° W).
A LeicaGS10 unit, shown in Figure 6.23, was used as the ground reference (base)
GNSS receiver to derive a post-processed kinematic (PPK) position solution. The
data on the base receiver was logged at 4 Hz.
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Figure 6.23. A LeicaGS10 unit used as the base receiver.

Three u-blox NEO-M8T GNSS receivers (GM, G1 and G2) were used on the aircraft
to provide three independent position solutions and two baseline solutions (b1
and b2) for precise attitude determination, as can be seen in Figure 6.24.

Figure 6.24. The Riot V2 with three NEO-M8T GNSS modules.

The flight consisted of six segments, take-off, climb, loiter, autonomous navigation,
descent, and land. A human pilot flew the UAV for the first three segments and the
last two segments. The first three segments made up the first 200 seconds of the
flight. Figure 6.25 shows the height profile during the flight test and the individual
segments that have been grouped and colour-coded. The profile has been
partitioned into three groups. The first group includes take-off, climb and loiter
(T/O-CLB-LOT). The second group includes autonomous navigation (AUTO), and
finally, the third group includes descent and landing (DESC-LAND).
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Figure 6.25. The height profile for the flight test.

In loiter mode, the pilot performed a series of manoeuvres such as S-turns, deep-
dives, steep climbs to excite different modes. In a VDM-based scheme, manoeuvres
that excite different modes are important because they allow the IMU errors and
VDM parameters to be observable, as explained in Chapters 4 and 5. After this
segment, the autopilot was engaged, and the aircraft flew a pre-programmed
mission for 120 seconds. The entire flight lasted 400 seconds. Figure 6.26 shows
a partial 2D position plot of the UAV during the flight test. The plot shows the
autonomous navigation segment in green and the descent and landing segment in
blue.
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Figure 6.26. A partial 2D position.
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During the flight, IMU measurements and control inputs were logged at 20Hz on
the FCS logger, whilst GNSS data was logged at 4Hz on independent data loggers
for each module. With an elevation masking angle of 15 degrees, the GPS satellites
visible during the flight are shown in Figure 6.27 alongside the receiver’s estimate
of the position dilution of precision (PDOP).

330 15 30

300 iﬁ &0 .
1.1

19 3 g22 _
270 } 21 .% ‘: 90 &:1 Oj
17 8 In I i
%

240 -;_ y 1 120
g 0.85

.:b 0.8

210 150 0 50 100 150 200 250 300 350 400
180 time [s]

Figure 6.27. A skyplot showing the GPS satellites visible during the flight (left); the PDOP
when tracking GPS and GLONASS satellites (right).

6.7. Post-Processing

This section describes the post-processing of IMU and GNSS data. The first section
describes the characterisation of the IMU noise, and the second section describes
the derivation of the reference position, velocity and attitude solution using the
logged data.

6.7.1. IMU Noise
Different noise sources affecting the IMU need to be characterised before the
measurements can be used in an integration architecture. The modelling of
inertial sensors is a challenging task, and in most practical cases, it is performed
by tuning the integration architecture using available specifications. Usually, the
manufacturer provides laboratory calibrated values, which could significantly
differ from values seen during operations. Therefore, it is important to determine
the IMU stochastic properties based on the operating conditions. In this research,
the Allan variance has been used to identify and extract noise parameters for
stochastic modelling. Optimal performance requires identifying the noise
parameters at different temperature points and operating conditions (El-Diasty
and Pagiatakis, 2009). However, this requires significant time, effort and cost.
Some explanation of the technique is given in Section C.3 of Appendix C, and the
reader is also directed to referenced text for a detailed review of the technique (EIl-
Sheimy, Hou and Niu, 2008).

To determine the Allan standard deviation of the three gyroscopes and
accelerometers within the NXP-9DOF IMU, static data was gathered from the IMU
at a sampling frequency of 100 Hz for one hour. The Allan standard deviations of
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the three gyroscopes and accelerometers within the NXP-9DOF IMU are shown in
Figure 6.28 and Figure 6.29, respectively. The errors in estimating the Allan
standard deviations as a result of operating on clusters of different lengths are also
shown in Figure 6.28 and Figure 6.29. White noise (in the region where the slope
is -1/2) seems to dominate most of the short clusters, while bias instability (in the
region where the slope is 0) and rate random walk (in the region where the slope
is +1/2) seem to dominate long cluster times. The x-axis gyroscope and z-axis
accelerometer seem to exhibit more white noise.
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Figure 6.28. Allan standard deviation plot for the gyroscopes sampled at 100Hz for one
hour.
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Figure 6.29. Allan standard deviation plot for the accelerometers sampled at 100 Hz for
one hour.
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The identified stochastic properties are summarised in Table 6.2 and Table 6.3. It
should be noted that some coefficients for the accelerometers in the x-axis and y-
axis could not be easily identified, and their values have not been filled. It is
possible that the values could be identified with a longer duration, but this was
not investigated. Instead, the values for the accelerometer in the z-axis were used
as the limiting case.

Table 6.2. Allan variance coefficients for the three gyroscopes.

Description Coefficient Gyro-x Gyro-y Gyro-z
Angle random walk N(°/hr/vHz)  81.684 57.42 61.74
Bias Instability B (°/hr) 9.49 8.2896 19.1928
Rate random walk K (°/hr/+/s) 0.4662 0.3625 1.1088

Table 6.3. Allan variance coefficients for the three accelerometers.

Description Coefficient Accel-x Accel-y Accel-z
Velocity random walk N (mg/vHz) 0.0981 0.0946 0.4172
Bias Instability B (mg) - - 0.0269
Acceleration random walk K (mg/+/s) - - 0.0012

6.7.2. Reference Solution

A post-processed kinematic position solution using data collected from three u-
blox NEO-M8T receivers was used with a loosely coupled integration architecture
to provide a reference navigation solution to assess the performance of the
proposed scheme. This solution is derived from double differenced carrier-phase
observables. For relatively short baselines between a roving receiver (r) and a
base receiver (b), as is the case with the UAV used in this research, the double
differenced carrier-phase observations are formulated as:

ik _ jk ik _ ik jk Jk
Aq)rb = Dyp + Trb - Irb + /UVrb - €(¢rb (6.10)

where: /’lNrjl'f is the integer ambiguity term (in metres),
pi'; is the double differenced geometric range (in metres),

Trjzi( and Ifg represent the double differenced tropospheric and

ionospheric delay, which for short baselines (less than 1 km) are highly

correlated, and therefore, their differences are negligible (Giorgi and
Teunissen, 2012).

The equation can be represented in a linearised functional model given by:
jk ~ijk j T Kk 6.11
y =AdL, — A9, = —(el —eF) - Ar + AN/} (6.11)

where: Ar is the baseline vector (in metres),

A.rl; is the estimated double differenced carrier-phase (in cycles).
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The equation is then solved in a least-squares sense to obtain a float baseline
solution. It is possible to formulate the integer ambiguity term using the single
difference (between receivers) carrier-phase bias terms to avoid bothersome
hand-over handling of reference satellites. This reads:

ANJS = (B}, — B, (6.12)
and the single differenced carrier-phase bias to a satellite k is given by:

Bfy = (¢ro — 6 + N¥) = (dpo — &5 + Ni) (6.13)

where: ¢, o and ¢, o represent the initial phase of the receiver (r, b) generated
carrier signal (replica) at an initial time ¢,
@¥ is the initial phase of the satellite transmitted carrier signal at an
initial time ¢,.

To resolve the integer ambiguity terms (N) from the float carrier-phase biases, an
integer least square (ILS) problem is formulated as:

= . 5 T -1(77 _ . (614‘)
N = mlén((N N) Q7' (N N)) with NeZ
where Qg represents the covariance matrix of the float ambiguity terms. Once the

solution N has been obtained, the residual (N — N) is used to adjust the float
baseline solution At to get the fixed baseline solution A7

A¥ = AF — Qa5 Q5 (N = N) (6.15)
and the variance-covariance matrix for the baseline vector is adjusted accordingly.

Qar = Qa7 — Qarn Q7' Qar (6.16)

The Least-squares Ambiguity Decorrelation Adjustment (LAMBDA), is a well-
known efficient search strategy that shrinks the integer search space and
performs a skilful search procedure in the transformed space (Teunissen, 1994).
A validation test is performed on the integer vector solution. Usually, a simple
ratio test is used. This is defined as the ratio of the weighted sum of the squared
residuals of the second-best solution to one by the best solution. The availability
of a baseline constraint can also be used to validate the returned integer vector
solution.

In this research, the freely available tool, RTKLIB, has been used to post-
process raw GNSS observables from three independent NEO-MS8T receivers on the
aircraft (Takasu and Yasuda, 2013). The three receivers are used to generate
independent baseline solutions with respect to a LeicaGS10 GNSS module.
Further, two baseline solutions are generated using the master receiver (GM) as
the base receiver. The configuration settings for the three NEO-M8T receivers are
given in Section C.4 of Appendix C. RTKLIB uses an extended Kalman filter in
kinematic mode to estimate the baseline position, velocity and single difference
carrier-phase biases. The single difference carrier-phase biases are then combined
to form the double differenced bias terms. RTKLIB uses the LAMBDA search
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strategy to fix the integer vector solution and update other states. The fixed
integer vectors can be tightly coupled in the filter through the fix-and-hold setting.
This adds a pseudo-measurement vector in the filter with the fixed integer
ambiguity terms.

Figure 6.30 shows the tail baseline setup using two of the three GNSS receivers
on the aircraft. Knowledge of the baseline length can improve the search strategy
for the integer vector solution (Pinchin, 2011). However, in this research, the
baseline length was used to validate the fixed solution without modifying the
search strategy. This is because RTKLIB was able to return a fixed solution 95% of
the time for all three GNSS receivers for the entire duration of the flight. However,
the results may contain false positives, and the baseline constraint is used to
reduce the rate of false positives in the data.

Figure 6.30. Tail baseline (b;) using the master GNSS receiver (GM) and the receiver on
the aircraft tail (GM).

Figure 6.31 shows the estimated tail baseline length plotted with the measured
baseline length for the duration of the flight.
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Figure 6.31. Aircraft tail baseline length estimation using RTKLIB. In the figure, the Fix
Quality is 1 for a fixed solution and 2 for a float solution.
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Evidently, the GNSS baseline length seems to be a good estimate of the measured
baseline length for the entire duration of the flight except for the steep descent
segment around 50 seconds into the flight and after landing, where the aircraft
was at this point close to different objects on the ground. Figure 6.32 shows the
corresponding baseline estimation performance for b, using the GNSS receiver at
the wingtip (G2) and the master GNSS receiver (GM). This solution seems to have
slightly more noise than the tail baseline length estimation. Assuming the a priori
measurement of the baseline lengths is a perfect measurement, the RMS of the
difference between the measured and estimated fixed solution for the tail baseline
length solution is around 8.3 mm while it is around 9.4 mm for the wing tip
baseline length.
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Figure 6.32. Aircraft wingtip baseline length estimation using RTKLIB. In the figure, the
Fix Quality is 1 for a fixed solution and 2 for a float solution.

The increased dynamics around the roll axis might be the reason for the increased
noise for the wing tip baseline. Pinchin (2011) showed that, for a static case with
a relatively short baseline, around 1 m, the precision of the baseline components
is around 5.4 mm for a fixed solution. This resulted in the precision for pitch and
yaw angle to be around 0.23 degrees and 0.11 degrees, respectively. It was
suggested that the difference between the fixed baseline length and the a priori
measurement of the baseline length is normally distributed, provided that the two
are also normally distributed. This reads:

Alb|~N (Wb}, Gjas|) (6.17)

It is possible to assign a threshold probability above which the fixed baseline
length is taken to be the same as the a priori measurement of the baseline length
and below which the fixed solution is rejected. It was shown that with a threshold
of 98%), the false positive (candidate ambiguity vector passes the ratio test but is
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in fact false) rate could be reduced to 0.5% using the standard LAMBDA and the
baseline constraint.

In this research, baseline components are used to estimate the attitude of the
aircraft. Some discussion on the accuracy of the estimates alongside a comparison
of different baseline solutions is given in Section C.5 of Appendix C of this thesis.
The difference between the tail baseline component b, and the local component
projected in the NED frame (R}}F? where F? is the local component) is shown in
Figure 6.33. The figure also shows the estimated yaw angle for the two baselines,
and the standard deviation of their difference is around one degree (10 = 1°).
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carrier-phase observations (TDCP) are used to estimate the

Doppler frequency shift between the aircraft and the satellites. This is, in turn,
used to derive the aircraft’s velocity components. Figure 6.34 shows the Doppler
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frequency derived from time differenced carrier-phase observations for PRN 01
alongside the doppler frequency output by the receiver for this satellite. The figure
also shows the down component of the derived velocity estimates alongside the
velocity output by the receiver. The TDCP velocity estimates contain less noise as
opposed to the velocity estimates output by the receiver. The standard deviation
of the difference between the two velocity estimates is around 0.25 m/s.

Following the characterisation of the IMU and the derivation of a post-
processed kinematic position solution as well as a GNSS attitude solution, a
reference navigation solution was then derived using a standard INS/GNSS
integration architecture (see Section E.3 of Appendix E).

-3450

——PRN 01 -D1C
——PRN 01 -TDCP

-3500
-3550 N

-3600

-3650 F

Doppler frequency [Hz]

-3700

-3750

0 50 100 150 200 250 300 350 400
time [s]

Receiver
——TDCP

vp [m/s]

0 50 100 150 200 250 300 350 400
time [s]
Figure 6.34. Doppler frequency (top) and down component of velocity (bottom).
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6.8. Implementation

Following the characterisation of the aerodynamic model and propulsion model
and the availability of a reference navigation solution, the TCVDM scheme
presented in Chapter 5 can finally be tested using the recorded flight data. The
scheme is presented again in Figure 6.35 to aid the reader in understanding how
the different parts are used in the implementation.
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Figure 6.35. The implementation of the TCVDM scheme using real flight data.
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The top section of the figure shows the two GNSS outage scenarios investigated.
The middle section shows the UAV and the FCS used during the test flight, and the
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bottom section of the figure shows the TCVDM scheme using the derived
aerodynamic and propulsion models. Figure 6.36 shows the number of satellites
visible during the two GNSS outage scenarios investigated. A GNSS outage was
induced 246 seconds into the flight and lasted for 100 seconds. During this time,
the number of satellites visible was reduced by masking low elevation satellites.
Similar to Chapter 5, it is important to note that only the GPS constellation was
used to test the VDM integration architecture.

0

330 15 30
30

45
300 60 60

75

3’ ¥
270 90 90

240 -ﬁ%?' 120

210 150
180

(a) First scenario [Mask angle 47°] - Three satellites

0

330 15 30
30

45
300 6o 60

75
% 3
270 90 90

240 ‘:3%'3 120

210 150
180

(b) Second scenario [Mask angle 53°] - Two satellites

Figure 6.36. Skyplots showing the remaining satellites after inducing a GNSS outage.
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6.9. UAV Flight Results

6.9.1. Position

Figure 6.37 (a) shows the 3D position error and (b) the 2D position plots with
three satellites visible during the GNSS outage. The 2D position plot only shows
part of the trajectory starting from the point the autopilot was engaged (indicated
by the green marker). The 2D position plot also shows the point the GNSS outage
was induced and the number of satellites visible for the remainder of the flight.
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Figure 6.37. Position estimation results with three satellites in view during the GNSS
outage.
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The final position error for the TCVDM scheme was very close to the TCINS scheme
reaching only 13 m for the TCVDM and 19 m for the TCINS. However, it is
important to point out that the developed TCVDM scheme showed improved
estimation during turns depicted by the sharp decrease in overall position error
around 280 seconds, 310 seconds and 330 seconds. In contrast, the TCINS scheme
experienced gradual growth of position error during the outage. The 2D position
plot shows that both the TCVDM and TCINS schemes followed the reference
trajectory well. Figure 6.38 shows the 3D position error with two satellites visible

during the GNSS outage.
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Figure 6.38. Position estimation results with two satellites in view during the GNSS
outage.
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Position error estimation results for the first 200 seconds of the flight are similar
to the results shown in Figure 6.37. The final position error for the developed
TCVDM scheme reached 47 metres, an improvement by a factor of 43 as opposed
to the TCINS scheme. The 2D position plot also shows how well the VDM-based
scheme was able to track the reference position solution as opposed to the INS-
based scheme even with just two satellites visible, owing to the mitigation
provided by the dynamic model.

6.9.2. Velocity

Figure 6.39 shows the velocity estimation performance for the TCVDM scheme
alongside the TCINS architecture with three satellites visible during the GNSS
outage. Generally, the performance of the TCINS scheme was better than the
TCVDM scheme by a factor of 2 in the north and east channel based on the RMS of
the velocity errors. However, with two satellites visible during the GNSS outage,
the TCVDM scheme showed an improvement in velocity estimation by a factor of
7 as opposed to the TCINS scheme across all channels, as can be seen in Figure
6.40. Between 275 and 325 seconds, the aircraft flew mostly straight and level and
in a south-westerly direction. During this time, the TCINS scheme’s estimated
velocity degraded rapidly, while the TCVDM scheme’s estimated velocity
degraded gradually, as can be seen in Figure 6.40. The RMS of the east velocity
error was 8.26 m/s for the TCINS and only 1.11 m/s for the TCVDM.
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Figure 6.39. Velocity estimation performance with three satellites visible during the GNSS
outage.
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In Chapter 5, simulation results revealed that the degradation in velocity
estimation is largely correlated with the cross-track wind velocity component. The
RMS of the north component of the velocity error for the TCINS scheme was 2.80
m/s and only 0.41 m/s for the TCVDM scheme. It is important to point out that
there was no direct measurement of wind speed and wind direction on the day of
the flight, and therefore the cross-track and along-track wind velocity components
are unknown. Since the TCVDM includes the mechanism to directly estimate wind
velocity even without an air data system, it inherently has improved aircraft
velocity estimation performance as opposed to the TCINS scheme.
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Figure 6.40. Velocity estimation performance with two satellites visible during the GNSS
outage.

6.9.3. Attitude

Figure 6.41 and Figure 6.42 show the attitude estimation performance for the
TCVDM scheme alongside the TCINS architecture with three and two satellites
visible during the GNSS outage. With three satellites visible during the outage, the
roll and pitch angle estimation performance (in terms of the RMS of the errors) of
the TCINS scheme was better than the TCVDM scheme by at least a factor of 2. The
TCINS scheme also showed improved yaw estimation by a factor of 4 as opposed
to the TCVDM scheme.

162



0 [deq]

v [deg]

’-Auto [ ]38Vs -~ -Ref

TCVDM ——TCINS

250

300

50 100 150 200 350

time [s]

250

300

50 100 150 200 350

time [s]

50 100 150 200 250 300 350

time [s]

Figure 6.41. Attitude estimation performance with three satellites visible during the GNSS

outage.

TCVDM ——TCINS

[EAuto [ ]2 SVs - - —Ref

80
— 40
53
o 0
40
-80
0 50 100 150 200 250 300 350
time [s]
50
— 25
()]
S 0
= 25
-50
0 50 100 150 200 250 300 350
time [s]
180
— 90
53
o, 0
= .90 -
-180 -
0 50 100 150 200 250 300 350
time [s]

Figure 6.42. Attitude estimation performance with two satellites visible during the GNSS

outage.

163



With two satellites visible during the GNSS outage, the RMS of roll angle errors for
the TCVDM scheme increased by 8% from the case with three satellites visible
during the outage. The RMS of pitch angle errors for the TCVDM scheme was
similar to the case with three satellites visible during the outage but increased by
6% for the yaw angle. Further, the estimated yaw angle in the TCVDM scheme
showed increased drift between 275 seconds and 325 seconds when the aircraft
was flying mostly straight and level in a south-westerly direction. The significantly
poor performance in attitude estimation by the TCVDM scheme compared with
the TCINS scheme is attributed to the large uncertainties in the torque coefficients
due to the limitations of the simple estimation routine used.

6.10. Summary

In this chapter, the performance of the developed tightly coupled vehicle dynamic
model-based integration architecture (TCVDM) was evaluated using flight data
gathered from a small, commercial-off-the-shelf UAV. A sensor shield was
designed for the ATmega2560 board and loaded with custom firmware used for
guidance and control of the aircraft. The board contained a low-cost IMU (NXP
9DOF), a barometer (BMP388) and a data logging module. The board was then
mounted onto the aircraft alongside three u-blox NEO-M8T GNSS receivers. The
three receivers were used to derive a reference position and attitude solution used
to assess the performance of the TCVDM scheme. The small UAV’s aerodynamic
and propulsion model had to be characterised to test the TCVDM architecture. A
geometry-based technique, using freely available packages including Athena
Vortex Lattice (AVL) and XFLR5, was used to obtain the aerodynamic coefficients
of the UAV and its mass moments of inertia. The technique was supplemented by
wind tunnel testing and full-scale oscillation tests. The propulsion model was
derived using ground measurements as well as data available from the propeller
manufacturer. The reference solution was derived from an INS/GNSS integration
architecture using an EKF. Post-processed kinematic position, time differenced
carrier-phase derived velocity and GNSS attitude solution were used as
measurements in the architecture.

A GNSS outage was induced by artificially removing satellites below a specific
elevation angle to investigate the navigation performance of the TCVDM scheme.
The entire flight lasted 400 seconds, and the GNSS outage lasted 100 seconds. Two
scenarios were investigated, with three and two satellites visible during the GNSS
outage. The performance of the TCVDM scheme was compared to the performance
of a TCINS scheme. With two satellites visible during the outage, the TCVDM
scheme showed a significant improvement in position estimation. The final
position error for the TCVDM scheme reached 47 metres, an improvement by
more than one order of magnitude as opposed to a TCINS scheme. Similarly,
velocity estimation performance improved by a factor of 7 for the TCVDM scheme
across all channels compared to the TCINS scheme. The attitude estimation
performance for the TCVDM scheme was worse as opposed to the TCINS scheme,
especially in the estimation of yaw angle attributed to the large uncertainty in the
torque coefficients due to the limitations of the estimation routine.
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7 Conclusions & Future Work

7.1. Conclusion

The main research question addressed in this thesis reads:

“To what extent can knowledge of the vehicle dynamic model and associated control
inputs be used with low-cost MEMS-grade inertial sensors and mass-market GNSS
receivers to reduce drift in the navigation solution during a GNSS outage?”.

Most UAVs use an inertial navigation system integrated with a global
navigation satellite system (INS/GNSS). During a GNSS outage (or when tracking
less than four satellites), the errors in the inertial navigation solution will grow
unboundedly. In low-cost applications where the quality of the inertial sensors is
relatively low, the navigation solution errors grow rapidly, rendering the
navigation solution useless in a few seconds. The position error can even reach
two kilometres in one minute. A GNSS outage can be caused by operating in an
urban canyon setting where the reception of satellite signals is difficult, rapid
dynamics and intentional or unintentional signal interference. In some
applications, additional aiding sensors such as cameras and range finders have
been used to mitigate rapid drift in the navigation solution. However, this
approach adds weight and extra cost to the overall system. In other cases,
advanced error models have been used for the inertial sensors found in an inertial
measurement unit (IMU); however, this requires expensive equipment to
characterise the errors and introduces additional software complexities.

In recent years, the use of a vehicle dynamic model (VDM) has emerged as a
possible alternative to inertial coasting. The approach preserves the autonomy of
the navigation system and avoids adding extra weight and cost, ideal for low-cost
applications.

The aim of this research was to investigate and test a VDM navigation
architecture suitable for a fixed-wing UAV fitted with low-cost MEMS-grade
inertial sensors (< £5,000) and a GNSS receiver during periods of extended GNSS
outage. In fulfilling this aim, a series of objectives were formulated. The main
constraint applied to this research was in the use of a battery-powered fixed-wing
UAV. This platform has more range and endurance than the rotary-wing vertical
take-off and landing (VTOL) type, such as quadcopters and helicopters.

To meet the research objectives, different VDM integration schemes were
reviewed, and approaches that give the most robust navigation solution during
GNSS outages were identified. A six-degree-of-freedom (6 DOF) fixed-wing aircraft
model was developed in Matlab/Simulink. The model was used to generate the
GNSS and IMU data used to investigate the performance of different VDM
integration schemes. Limitations of the current state-of-the-art VDM navigation
techniques were identified alongside approaches to mitigate rapid error growth
during GNSS outages without adding extra weight and cost to a fixed-wing UAV.
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Following this, a novel integration architecture that implements the approaches
and overcomes these limitations was developed. The architecture utilised the
VDM as the main process model, and raw GNSS observables and IMU
measurements were used to aid the solution. The performance of the developed
architecture was investigated using Monte Carlo simulation using the available
dataset. A small, commercial-off-the-shelf, fixed-wing UAV was modified and
characterised and used for practical testing of the developed architecture. Real
flight data gathered from a test flight using the small UAV fitted with a MEMS-
grade IMU and GNSS receivers was used to validate the results obtained in the
simulation study.

Simulation results showed that the position error estimated by the developed
architecture improved by one to two orders of magnitude compared to the error
estimated using an INS/GNSS integration scheme during GNSS outages lasting
over two minutes. Further, the use of the VDM allowed the estimation of wind
velocity components, which contributed to improved velocity error estimation
and, in turn, position error estimation. This was achieved without an air data
system. Further, errors in the VDM parameters were estimated in the filter, which
improved its robustness against variations in these parameters.

Practical testing of the developed architecture using data gathered from the
test flight validated the conclusions drawn from the simulation studies. Position
error estimation performance for the developed architecture improved by more
than one order of magnitude compared to an INS/GNSS scheme during extended
GNSS outages. Despite the significant improvement in position accuracy, poor
attitude estimation results revealed the importance of a good VDM parameter
estimation routine that provides accurate initial VDM parameters.

Unlike the current state-of-the-art VDM navigation schemes, the novel
integration architecture operates in a tightly coupled configuration, using raw
GNSS observables (pseudoranges and Doppler frequencies) and IMU
measurements to estimate corrections to the navigation solution. The use of raw
GNSS observables in the architecture has allowed the navigation solution to
degrade gracefully during GNSS outages. The developed architecture extends the
current state-of-the-art by implementing the recent model-based approach, which
uses the VDM as the main process model. Even though the approach was
developed and tested on a fixed-wing UAV, it is generally applicable to other
platforms such as quadrotors, helicopters, hybrid VTOL aircraft, ground vehicles
and underwater vehicles following appropriate modelling of their dynamics.

The developed architecture can work alongside the conventional INS/GNSS
integration architecture in applications/areas prone to GNSS outages such as in
urban canyon settings, search and rescue operations in mountainous areas,
inspection of tunnels, and even in areas with GNSS signal interference.

Further details related to the specific conclusions drawn from the objectives of
this research are provided as follows:
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% Objective 1: To investigate the navigation performance and quantify
limitations of the current state-of-the-art VDM navigation schemes during
GNSS outages.

In Chapter 4, an improved VDM-based integration architecture operating in a
loosely coupled configuration (using position and velocity from a GNSS receiver)
was presented and analysed. The approach used the VDM as the main process
model to propagate the navigation solution whilst IMU and GNSS measurements
were fused in a navigation filter to estimate corrections for the states. The
architecture used the unscented Kalman filter (UKF) and included the mechanism
to estimate the mass moment of inertia terms. The approach is referred to as the
UKF/VDM architecture in this thesis. The performance of the proposed concept
was compared to the state-of-the-art VDM-based architecture that uses an
extended Kalman filter (EKF) and does not include the mechanism to estimate the
moments of inertia. The state-of-the-art VDM-based scheme is referred to as the
EKF/VDM integration architecture in this thesis. A Monte Carlo simulation study
was used to investigate the performance of the UKF/VDM scheme compared to
the EKF/VDM scheme.

Results indicated that the choice of the navigation filter, either the UKF or EKF,
did not significantly influence the estimation performance of the navigation states.
Errors in the mass moment of inertia terms only caused marginal errors in the
navigation states. However, they were found to influence the estimation
performance of the torque coefficients. The difference between the final root-
mean-square (RMS) mean estimation error for all VDM parameters and the
predicted confidence value (10) was only 19% for the UKF/VDM scheme and
48.5% for the EKF/VDM scheme after a GNSS outage that lasted over two minutes.
Further, it was found that sharp turns with rapid speed changes at constant
altitude improved the estimation performance of the lateral force coefficient as
well as the rolling and yawing moment coefficients. Generally, compound
manoeuvres, even during a GNSS outage, were found to improve the estimation
performance for most VDM parameters. However, the inclusion of the mass
moment of inertia terms or the choice of the filter did not reduce the accumulation
of navigation errors during a GNSS outage.

Further, the navigation solution errors for a VDM-based integration
architecture were investigated for different GNSS outage intervals with varying
roll rates during turns. It was found that the position error increased
proportionally with the roll rate for an extended GNSS outage lasting over a
minute (60 seconds). However, for a GNSS outage lasting less than one minute, the
roll rate during a turn did not influence the position error estimation performance.
Similarly, attitude errors were not significantly influenced by GNSS outages lasting
up to 60 seconds, with more extended outages (90 seconds) mainly influencing
the yaw angle error. The impact was more pronounced when the aircraft turned
during the outage.
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< Objective 2: To propose a novel integration algorithm that reduces drift in
the navigation solution during an extended GNSS outage lasting over one
minute without adding extra weight and cost to small UAVs.

In Chapter 5, a novel, tightly coupled VDM-based (TCVDM) integration
architecture was presented and analysed.

Following the review of different VDM navigation schemes in Chapter 2, this
thesis identified that most VDM navigation schemes use a loosely coupled
configuration. This resulted in significant drift in the navigation solution drift
during extended GNSS outages, confirmed by the investigation in Chapter 4.
Therefore, unlike other model-based schemes, the proposed concept used raw
GNSS observables (pseudoranges and Doppler frequencies) and IMU
measurements fused using an EKF to estimate corrections to the navigation
solution even when tracking less than four satellites. The use of raw GNSS
observables was identified as a possible alternative to VDM coasting during a
partial GNSS outage and could reduce error growth during this period.

The thesis identified further limitations in most model-based schemes, such as
the need for an accurate structure and set of model parameters for the host
platform and the need to account for external disturbances, such as wind.
Therefore, other than the navigation states, the proposed approach estimated
wind velocity components, IMU errors, VDM parameters and the receiver clock
errors. The review in Chapter 2 revealed that the inclusion of VDM parameters
and estimation of wind velocity components improves the performance of the
filter.

®,

¢ Objective 3: To undertake simulated data testing and practical testing of the
proposed integration algorithm.

A software-based GNSS measurement simulator was developed to generate raw
GNSS observables to test the proposed integration architecture. A Monte Carlo
simulation study was used to evaluate the performance of the proposed scheme.
The error in observations, initialisation, and VDM parameters changed randomly
in each realisation while the trajectory and the wind profile were the same. The
navigation performance of the architecture was compared to a tightly coupled
inertial navigation system (TCINS) and a loosely coupled model-based
architecture (LCVDM).

Results from the Monte Carlo simulation study revealed that the developed
architecture improves position accuracy by one order of magnitude with two
satellites visible during an extended GNSS outage whilst offering similar roll and
pitch angle accuracy compared to the TCINS scheme. It was also found that:

e Yaw angle estimation performance for the TCVDM scheme was
significantly worse than the TCINS scheme, with a difference of about 60%
at the end of the outage.

e For a modest trajectory, the proposed architecture only captured about
40% of the initial uncertainty in the VDM parameters due to significant
correlation within groups of the parameters.
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e Other auxiliary states such as wind velocity errors, IMU errors and clock
errors were well estimated even with only two satellites in view during the
outage.

e The error in the estimation of wind speed increased with decreasing
number of satellites visible during the outage. However, the difference
between the case with three and two satellites is less than 10%.

e Turning during a GNSS outage improved wind speed estimation for the
TCVDM scheme while the wind speed error estimated by the LCVDM
scheme increased gradually, even during turns.

o With two satellites in view during the outage, the clock bias error estimated
by the TCVDM architecture increased gradually to 17 metres. This was only
5% higher than the error estimated with three satellites in view and an
improvement by a factor of 5 compared to the error estimated by the TCINS
scheme.

The simulation results were validated with real flight data gathered using a
small fixed-wing UAV fitted with low-cost inertial sensors and a GNSS receiver.
The small UAV was characterised using a geometry-based technique with Athena
Vortex Lattice (AVL), supplemented by wind tunnel testing and full-scale
oscillation tests. A custom flight control system (FCS) was used on the UAV for
guidance, navigation and control. The FCS was also used for logging IMU
measurements and control inputs. A custom ground control software (GCS) was
used to pre-program the mission profile and change the settings of the FCS. The
GCS was also used for logging incoming telemetry (for redundancy) via a radio
link. A GNSS outage was induced by precluding low elevation satellite
observations.

Flight results showed significant performance enhancement in position and
velocity error estimation. It was found that:

e With two satellites visible during the GNSS outage, the RMS estimation
errors for the velocity components in the TCVDM scheme improved by a
factor of 7 across all channels compared to the TCINS scheme.

e The final position error estimated by the TCVDM architecture improved by
a factor of 43 compared to the TCINS scheme.

e The attitude estimation performance for the TCVDM scheme was
significantly worse than the TCINS scheme due to large uncertainties in
some of the model parameters.

7.2. Limitations

The position and velocity error estimation performance for the proposed
architecture in an experimental setting is auspicious and has shown that the
scheme can be used during extended GNSS outages to provide an improved
navigation solution. However, it is important to highlight some challenges and
potential issues that, if addressed, can improve attitude performance altogether.
e The initial parameters used were determined from a Monte Carlo
simulation study in AVL using the geometry of the aircraft. The resolution

of some of the parameters, especially the moment derivatives, was poor,

and this might have significantly contributed to the poor attitude
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estimation performance during the outage. Because the architecture only
resolves a small amount of the initial VDM parameter uncertainty, it is
important to have a reasonably good estimate of these parameters.

o Secondary effects such as actuator dynamics and delays in the actuator
signals were not considered in this investigation. Actuator dynamics would
have improved the model's fidelity with an additional penalty of extra
states for each control surface. A tightly coupled architecture is usually
sensitive to synchronisation errors, and therefore delays in the actuator
signal might have contributed to the degraded performance.

e Such a scheme can only be used after the aircraft has taken off and before
it lands; otherwise, some states could be biased.

o The quality of the IMU plays an important role in attitude estimation,
especially when the uncertainty in the model parameters is large.
Therefore, effects such as large vibrations and thermal loading could
indirectly influence the performance of the architecture during an outage.

7.3. Future Work

The use of VDM navigation schemes is still an active area of research that still
needs practical testing. To continue this research and make further advancements,
recommendations for future work are made in this section.

The architecture developed in this thesis needs further practical testing on
small UAVs fitted with low-cost sensors. Some areas that further practical testing
could be useful include:

e Toinvestigate the impact of actuator dynamics on navigation performance,

especially during a GNSS outage.

e To investigate wind estimation performance without an air data system,
especially during a GNSS outage.

e To investigate the impact on the navigation solution of using different
higher grade MEMS inertial sensors (temperature compensated, improved
bias stability).

e To investigate the impact of additional measurements typically available
from sensors in a UAV such as Lidar, magnetometers, barometers, and
airspeed sensors.

Experimental results indicate the importance of an accurate set of model
parameters. Wind tunnel testing and complex computational routines such as
computational fluid dynamics (CFD) can be time-consuming and not ideal for
small teams and low-cost applications. Therefore, it is important to investigate
suitable VDM parameter estimation routines that are generally low-cost, less time-
consuming, and, ideally, take advantage of typical sensors found in most UAVs. For
instance, recent advancements in machine learning techniques to characterise the
aerodynamic model of small UAVs seems to offer an attractive solution.

Even though the architecture is developed for a fixed-wing UAV, it is generally
understood that the principles could be extended to other platforms such as
rotary-wing VTOL type following appropriate modelling of the dynamics.
Therefore, the architecture's performance could be investigated in a different
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platform, such as a quadrotor and even hybrid VTOL aircraft, with different
dynamics to a fixed-wing UAV.

Even though the proposed architecture has only been tested in a single
frequency setting, the algorithm could be tested in a multifrequency setting.
Multifrequency testing would allow eliminating the ionospheric error by
combining measurements from different frequencies leading to an improved
navigation solution. Further, the algorithm could also be used in a multi-
constellation setting, taking advantage of improved signals with lower noise and
improved multipath performance.

Lastly, the reception of non-line-of-sight (NLOS) signals is a big problem when
operating in dense urban environments. This is especially useful for VTOL aircraft
such as quadrotors operated in different environments, including dense urban
environments. NLOS reception is not easily mitigated by improved signals or
receiver design. It is usually dealt with by carrier power to noise density ratio
thresholding, outlier detection and 3D mapping, none of which are completely
reliable. The proposed TCVDM scheme could potentially be used to aid the
detection of outliers due to NLOS reception.
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A. Autopilot

A.1. L1 Guidance Logic

This section gives a brief overview of the guidance logic used in the simulations.
The guidance logic combines a nonlinear lateral guidance control law with a
simple adaptive path planning algorithm (Park, Deyst and How, 2004). Figure A.1
shows the nonlinear guidance logic. In the figure, 1 is the track capture angle, R is
the radius of curvature, L, is the reference point distance, O is the current aircraft
location, P is the reference point and V, is the ground speed.

Desired path

Reference point

Figure A.1. A nonlinear guidance logic.

The nonlinear guidance logic generates a lateral acceleration command based on
the cross-track error, as shown in Figure A.1. This commanded lateral acceleration
is given by:-

s (A1)
a, = R
L L
~ 2sin@ ~ 2cosy
since
_T_ (A.2)
therefore
Ly (A.3)
~ 2sing
2
a; = L sinn
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The bank angle of an aircraft during a turn is given by:
_w LA (A4)
tan¢_Rg J(Pc"'g
The aircraft tends to align its velocity vector with the direction of L,. The track
capture angle determines the direction of the commanded acceleration, as shown
in Figure A.2.

Va

- )”2 n
A JRRE

yit
acmd .-.'-
..h
T~y

d S~ Reference point

Desired path

Figure A.2. Linear approximation of the guidance logic; d is the cross-track error for a
straight path.

For a small track capture angle some approximations can be made. These are given
by:

sinnp=n=mn1+n; (A5)
d d
Therefore the commanded lateral acceleration is approximated as:
22 (d d V(. V, (A.6)
x—|—+—=|=2—|d —d)
W <L1 * Vn> Ll( L

A small angle approximation on 7, and further Linearisation (for the case of
following a straight line) results to:-

. VgV
al=—d=2—"(d+—nd

v v ) (A7)

N AV A
d+2L—1(d+L—1d>—0
d+2{wpd + w?d =0
{ ! V2V /L

\/7 n 1
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With a predefinition of the damping ratio and the time constant, the guidance logic
is effectively used for lateral control to guide the aircraft from one waypoint to the
other.

A.2. TECS Controller

This section gives a brief overview of the altitude and airspeed controller used in
the simulations. The total energy control system (TECS) controller controls
altitude and airspeed through the total energy rate and energy distribution rate in
a manner that decouples their dynamic responses (Balmer, 2015; Argyle and
Beard, 2016). The total energy for an aircraft assumed as a point mass system is
given as the sum of potential energy and kinetic energy.
Er =mg(h—hy) + %mV2 (A-8)

where: m is the aircraft mass (kg),

h is the height of the aircraft (m),

V is the airspeed (m/s).

The total energy rate is given by:
Er = mgh + mVV (A.9)
where: £ is the rate of change of height (m/s),
V is the rate of change of airspeed (m/s?).

The energy distribution is given as the difference between the potential and
kinetic energy.

1 A.10
E, = mgh — EmV2 (4.10)

whereas the energy distribution rate is given by:

Ep = mgh —mVvV (A.11)
The underlying assumptions are that the aircraft is treated as a point mass, and
the only way to add energy is through thrust, whilst drag is the only way energy is
removed. The elevator is assumed to control the distribution between kinetic and
potential energy (speed and altitude). The angle of attack ‘a’ is assumed small and
flight path angle ‘Y’ is assumed not to influence drag. The commanded thrust is
given by:

T¢ =Tp + AT (A12)

The trim thrust T, counteracts drag (which is assumed not to vary significantly
from the value at trim), and the extra thrust AT is needed to meet both energy and
energy rate demands. The energy rate is equivalent to the excess power (the
difference between the power available and the power required). Dividing the
energy rate equation with mgV leads to:

h V. T-D (A.13)
e
V.g mg
With A/V = siny, where y is the flight path angle which is assumed to be small for
this case and leads to the following equation:
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1% T—D (A.14)
g mg

As stated earlier, the drag value at trim is assumed not to vary significantly and
therefore counteracted with the trim thrust setting. Therefore, short-term thrust
requirements can be expressed as:

ST V (A.15)
mg g
The commanded throttle and pitch can then be given in terms of the energy rate
and energy distribution given by (Balmer, 2015):

Taes Kri I}'des 14 14 (A.16)
= —_— — —— =K —
myg S Ydes Y + g g TP |V + g
Kg; Vies V 114 (A.17)
7] = — -y — +—)—-K - —
des S (ydes Y g g EP\V g

And the desired height rate and airspeed rate are computed as (Argyle and Beard,
2016):
hd = kp(hges — h) (A.18)

I./d =ky(Vges — V) (A.19)

And the entire TECS logic is shown in Figure A.3 and Figure A.4.
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B. Simulations

B.1. Number of Simulations

The purpose of this section is to give a brief overview of the justification of the
number of simulations used to evaluate the navigation performance of a VDM-
based integration architecture. The minimum number of simulations was
determined by evaluating the level of precision (the difference between the
sample mean and population mean) with an associated confidence level. Here, a
loosely coupled VDM-based integration architecture was used to evaluate the
number of simulations required. The GNSS receiver and IMU error characteristics
used are given in Table B.1.

Table B.1. IMU error characteristics.

Sensor Type Value
Random bias (o) 10 mg
White noise (PSD) 100 pg/VHz
Accelerometer GM-Process 0.05 mg
Correlation time (1) 200 s
Sampling Frequency 100 Hz
Random bias (o) 1000 °/hr
White noise (PSD) 21.6 °/hr/v/Hz
Gyroscope GM-Process 20 °/hr
Correlation time (7) 200 s
Sampling Frequency 100 Hz
GNSS receiver White noise (o) 1m
Sampling Frequency 1Hz

The standard deviation of the initial uncertainty (P,) considered for the
different states is given in Table B.2.
Table B.2. Initial uncertainty [P,].

State Standard deviation (o)
Position 1m
Velocity [1,0.5,0.5] m/s
Attitude [3.5° 3.5°,5°]
Rotation rates 1.5°/s
Propeller speed 15rad/s
Model parameters 10%
Moment of Inertia 10%
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The standard deviations used in the process noise covariance matrix (Qy) for
different states are given in Table B.3.

Table B.3. Process Noise.

State Standard deviation (o)
Position 10°m
Velocity 0.008 m/s
Attitude 10 rad

Rotation rates 10"* rad/s
Propeller speed 10* rad/s
Accelerometer Bias 2 X 10 m/s?
Gyroscope Bias 2x10°rad/s
Wind 103 m/s

Model parameters  0.015% of True Values
Moment of Inertia  0.015% of True Values

Using sampled-based statistics, the combined mean is given by (Ramprasadh

and Arya, 2011):
Fom e (D N .
c Zm Nm ~ mam

And the combined standard deviation is given by:

(B.2)

13

N, —1 o YNy — Ny R
O'C—m ZO'm-FWXUaT(Xm)
m

The central limit theorem states that the distribution of the sample means
approximates a normal distribution as the sample size gets larger, regardless of
the type of distribution of the population data (Brown and Hwang, 2012). This
exhibits a phenomenon where the average of the sample means and standard
deviations equal the population mean and standard deviation. The statistic
associated with a specific confidence interval can be written in the probabilistic
form in terms of the level of precision (the difference between the sample mean
and population mean).
¢ <ITE. ¢ ) = confidence level (8:3)

s/Nk'm s/Am s/in

Given the associated confidence level, the minimum number of simulations
required for achieving a certain level of precision can be determined. Evaluating
the sample statistics for different runs revealed that 60 Monte Carlo runs resulted
in a precision of less than 1 metre in all the estimated position states with a 95%
confidence level, as can be seen in Figure B.1. With 60 runs, the precision for
velocity states was less than 0.1 m/s, while for the attitude states, it was well

P(-
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below 0.25 degrees and below 0.1 deg/sec for the rotation rate states. The
combined standard deviation from different sample runs for each state is used to
evaluate the state's precision. Therefore, 100 Monte Carlo runs seemed
reasonable in attaining a precision of less than 1 metre in the estimation of
position states whilst guaranteeing similarly lower precision for all the other

states.
Table B.4. The precision with 60 runs.
State Precision: X — u
Position: [xy, xg, xp]T <1lm
Velocity: [u, v, w]" <0.1m/s
Attitude: [¢, 6, yY]T < 0.25°
Rates :[wy, Wy, w,] <0.1°s
EJ 10 North Position E 1.5 Roll - ¢
_ o East Position = <@ —Pitch -
£ 3 757 Down Position I3 11 Yaw - ¢
- € = c
c 9 c o
23 5¢ ST
.8 % g % 05+
& O25 \«\\\ o™
S N k
P B | o
(o] 0 | T T T (o] 0 | i T T
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Number of Simulations Number of Simulations
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z % 061" ;\\;elloc.ity 'g % — Pitchrate - w,
. elocl
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Figure B.1. The precision with a 95% confidence level for different number of
simulations.
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B.2. Sensitivity Analysis

The purpose of this section is to assess the sensitivity of a VDM-based navigation
scheme to random variations (10%) of the VDM parameters. The 10% variation
was applied with a random sign (+/—) for the parameter under investigation.
Here, aloosely coupled VDM-based scheme using an EKF is used for the sensitivity
analysis. The simulation used nominal values, while the navigation filter used
perturbed parameters. The state vector includes VDM navigation states, IMU
errors and wind velocity states. VDM parameter errors were not estimated within
the navigation filter. A GNSS outage was induced 200 seconds into the flight and
lasted for over two minutes.

Table B.5 shows the main translational coefficients with a significant impact
on the navigation performance. The table shows the maximum and final value
state errors. The static thrust coefficient seems to have the largest impact on all
navigation states and the wind velocity states. The impact of the lateral force
coefficient CFy was similar to the drag coefficient CFy.

Table B.5. VDM-based navigation errors due to translational coefficients.

Property CFr, CFy, CFy

Max  Final Max Final @~ Max  Final
Position error [m] 847.0 8470 1720 1720 80.0 80.0
Velocity [m/s] 10.0 10.0 2.53 2.53 1.4 1.4
Roll error [deg] 7.4 0.6 6.0 0.6 0.7 0.4
Pitch error [deg] 7.5 4.0 4.7 3.0 0.4 0.1
Yaw error [deg] 24.0 24.0 11.0 10.0 6.5 6.5
Wind error [m/s] 9.5 9.5 2.5 2.5 0.4 0.4

Table B.6 shows the main torque coefficients with a significant impact on the
navigation performance of a VDM-based scheme. The pitching moment coefficient
at the aerodynamic centre seems to have the most impact on the navigation states.

Table B.6. VDM-based navigation errors due to moment coefficients.

Property CMxy, CMy4 CMZB
Max  Final ~ Max  Final  Max  Final
Position error [m] 1914 1914 481.1 481.1 86.94 86.94
Velocity [m/s] 3.6 3.4 5.8 5.8 1.5 1.5
Roll error [deg] 6.8 0.4 9.8 0.5 1.3 0.5
Pitch error [deg] 4.1 0.2 8.5 4.7 0.7 0.1
Yaw error [deg] 15.9 14.4 13.0 13.0 6.5 6.5
Wind error [m/s] 1.0 1.0 5.3 5.3 0.4 0.4

Figure B.2 and Figure B.3 show the position and velocity estimation errors for the
VDM parameters under investigation. Figure B.4, Figure B.5, and Figure B.6 show
the estimation errors for the roll, pitch, and yaw angles, respectively. Figure B.7
shows the wind speed estimation errors.
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Figure B.2. The impact of VDM parameters on position estimation errors.
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Figure B.3. The impact of VDM parameters on velocity estimation errors.
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Figure B.4. The impact of VDM parameters on roll angle estimation errors.
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Figure B.5. The impact of VDM parameters on pitch angle estimation errors.
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Figure B.6. The impact of VDM parameters on yaw angle estimation errors.
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Figure B.7. The impact of VDM parameters on wind magnitude estimation errors.
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B.3. GNSS Measurement Simulator Error Models

This section presents a summary of the error models used in the GNSS
measurement simulator. These error models are presented in Table B.7.

Table B.7. GNSS simulator error models.

Ionospheric residual

First-order Gauss-Markov (a;y) 2m
Correlation Time (1) 1800 s
Tropospheric residual
First-order GM (o¢y) 0.2m
Correlation Time (1) 1800 s
Multipath

GM-driving noise Co 0.47 m

Own = Co + C1e_EClzv “ 0.78 m
Cy 20.92°

Correlation Time (1) 5-65s
Thermal noise

e(p) ~N(0,02(CN0O3) b, 0.05m

5 CNOj—cp b; 1.05m

Oc =Cotcre © b, 28.0 dB-Hz

bs 8.0 dB-Hz
GNSS receiver clock

Clock offset (o) 10 km

Clock drift (o) 20m/s

Clock drift PSD 0.1884 m/s%

Sampling Frequency 1 Hz
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B.4. LCVDM Extended Results

This section presents extended results for the loosely coupled VDM approach
using an extended Kalman filter presented in Chapter 4 and the tightly coupled
VDM architecture presented in Chapter 5.

The RMS of position errors alongside 100 realisations for the loosely coupled
approach is shown in Figure B.8.
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Figure B.8. Position error.

Figure B.9 shows the GNSS position innovations alongside the innovation
variances for one of the simulations. In the figure, v, represents the innovation
and S, represents the innovation covariance matrix.

sart(diag(s,)

AR AL i

m O AR AR T A
o M L bl ll...h ' ‘FlL)LU I"\J bl ds [

UL

XN [m]

0 50 100 150 200
time [s]

E LA AR m LAk LALUALTE N AR A
w Poouli HUI‘I (. “l | nln‘ll IT -l':lm|i| hi | 1LH4’W Lrl lT
<
5 w \ ‘
0 50 100 150 200

time [s]

Ll ”! ‘r'n m\w'l!,r| nmr

" l (LT
P P T T [P L T TS

HF
Lu e |H i

Ty

IlJll \

xD [m]

Jlr ﬂ'

0 50 100 150 200
time [s]

Figure B.9. Position measurement innovations for one realisation out of 100 simulations.
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Figure B.10 shows the IMU specific force innovations alongside the innovation

variances.
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Figure B.10. IMU specific force innovations for one realisation out of 100 simulations.

Figure B.11 shows the IMU rotation rate innovations alongside the innovation

variances.
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Figure B.11. IMU rotation rate innovations for one realisation out of 100 simulations.
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B.5. TCVDM Extended Results

Figure B.12 shows the pseudorange innovations for one realisation out of the
100 simulations for the tightly coupled VDM approach. The plot shows the
innovations (v, ) and associated variances (S, ) with three satellites visible during

the GNSS outage.
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Figure B.12. Pseudorange innovations for one realisation out of 100 simulations.
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Figure B.13 shows the Doppler innovations and associated variances for three
satellites visible during the GNSS outage. The legend for this figure is similar to the
legend in Figure B.12.
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Figure B.13. Doppler innovations for one realisation out of 100 simulations.
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Figure B.14 shows the specific force innovations and associated variances with
three satellites visible during the GNSS outage.
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Figure B.14. IMU specific force innovations for one realisation out of 100 simulations.

Figure B.15 shows the rotation rate innovations and associated variances with
three satellites visible during the GNSS outage.
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Figure B.15. IMU rotation rate innovations for one realisation out of 100 simulations.
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Figure B.16, Figure B.17, and Figure B.18 show the RMS of position estimation
errors, velocity estimation errors and attitude estimation errors with one satellite
(PRN 15) in view during the GNSS outage. Generally, the navigation performance
of the TCVDM scheme with one satellite in view is very similar to the LCVDM
scheme. There is marginal improvement in position estimation and even marginal
improvement for all other navigation states.
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Figure B.16. Position error with one satellite in view (PRN 15) during the GNSS outage.

[C_J1SV——TCVDM-B -1 ——TCINS -© -1 ——LCVDM - & ~14]
8

@

£,

z

>

i €
0 haotyag & & &
0 34 6 102 136 170

time [s]

8

@

£,

w

>

fae

B

40
!

0 g’.‘:x--m-----m-- P TN, e
0 34 68 102 136 170 204 238 272 306 340
time [s]

ovD [m/s]

Figure B.17. Velocity errors with one satellite in view (PRN 15) during the GNSS outage.
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Figure B.18. Attitude errors with one satellite in view (PRN 15) during the GNSS outage.

The final errors for the navigation states are presented in Table B.8.

Table B.8. The final RMS of estimation errors for the navigation states with one satellite

in view during the outage.

Property Final error for Final error for Final error for
the TCVDM the LCVDM the TCINS
Position [m] 74.01 86.33 616.1
North velocity [m/s] 1.40 1.40 7.538
East velocity [m/s] 0.26 0.26 7.971
Down velocity [m/s] 0.25 0.27 0.460
Roll [deg] 0.31 0.31 0.490
Pitch [deg] 0.27 0.26 0.710
Yaw [deg] 3.52 3.73 1.740
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C. Experiment

C.1. BLDC and Propellers

This section presents a brief overview of the three constant BLDC model. The
power required to drive a propeller is given by:

Py = Cpoypn®D® (C.1)

Or in terms of the propeller torque Q:
Pi‘n = Zn'nQ (C.Z)

Figure C.1 shows this cubic relationship between the propeller speed and power.
Accurate measurement of the propeller speed is a challenging task for small UAVs.
In most cases, the propeller speed can be inferred from power measurements, and
this information can be used to derive the thrust force. However, this does not
consider the losses inside the ESC and the efficiency of the brushless motor.

300
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Figure C.1. Power required to drive a propeller.

The electric current in the three-constant BLDC model is given by:

I=1y+
0 a0 ¢

where: [ is the no-load current (A),
ky is the voltage constant (RPM/V).

The input voltage is given by:
E=E+I1-Ry (C4)
=w/ky+1-Ry, (C.5)
where: E; is back emf (V),
R,, is internal motor resistance (£1).
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C.2. Estimated Coefficients

The aerodynamic and propulsion model values estimated using AVL and ground

measurements are presented in Table C.1.

Table C.1. Reference values for the aerodynamic and propulsion models.

Property  Value Units Property Value Units
CFr, 0.098 [—] CMx, -0.050 [rad™!]
CFr, -0.120 [—] CMy,,_ -0.400 [—]
CFr, -0.480 [—] CMy,,, 0.116 [—]
CFy, -0.024 [—] C My, -0.007 [—]
CFy, -0.121 [rad™1] CMy, -1.371 [rad™1]
CFy,, -1.225 [rad—2] CMy,, 0.300 [—]
CFxg,, -0.696 [rad—2] CMyay -15.570 [—]
CFy, -0.235 [—] CMgz, 0.018 [—]
CFz, -4.481 [rad™1] CMgz, -0.193 [—]
CFy4 -0.096 [rad™!] CMz, 0.149 [rad™1]
CMy, 0.055 [—] Tn 0.200 S

Control Inputs

6, = 0.0017 - PWM — 2.65
6, = 0.0017 - PWM — 2.52

6, = 0.0018 - PWM — 2.53

Note: PWM [us]

ESC efficiency

N_esc = Qesc - PWM + Besc " I + Vesc

@pse = 0.0012
Bose = -0.0287
Vese = -0.7797

Note: ESC efficiency at roughly 12 V
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C.3. Allan Variance

This section gives a brief overview of the Allan variance technique used to
characterise different sources of noise exhibited by inertial sensors. Given a set of
N consecutive data points with a sample time t,, a group of n consecutive data
points can be formed such that n < N/2. The cluster average from the
instantaneous output rate is given by:
. 1 tp+T (C.6)

O, (T) = Tf Q(t)dt
t

k

where: Q,(T) is the cluster average for the specific cluster time T
starting from the kth data point,
Q(t) is the instantaneous output.

And the difference between two adjacent clusters is given by:
Skt = ﬁnext(T) - ﬁk (T) (C.7)

The ensemble of this difference for the cluster time is a set of random variables,
and the quantity of interest is the variance over all clusters of the same size.
Therefore, the Allan variance is given by:

, 1 N-2n B B , (C.8)
(1) = 3= kzl [pexe (1) — D (T)]

The different random processes affecting inertial sensors can be easily derived
from the Allan variance using the unique relationship between it and the power
spectral density (PSD) of the intrinsic random process. This assumes that the
specific random process (T) is stationary in time. This relationship is given by
(El-Sheimy, Hou and Niu, 2008):

sin*(mfT) (C.9)

o2(T) =4f0 af -Sa0f) T

By defining the PSD of the random processes affecting inertial sensors and
evaluating the integral, it is possible to determine the value of the PSD using the
log-log plot of the measurable ¢(T) and the cluster time. This is summarised in
Table C.2. The definitions of the PSD’s of the random processes alongside some
derivations can be found in El-sheimy, Hou and Niu (2015).

The percentage error in estimating the Allan variance is dependent on the
number of independent clusters used to evaluate it. This is given by:

a(8) = 1 (C.10)

()
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Table C.2. The relationship between the Allan-variance and associated noise PSD.

Noise PSD Allan variance Slope
Quantization noise  So(f) = (2nf)?T,QZ 3Q2 -1
o*(T) = —-
TZ
Angle (Velocity) So(f) = N¢ X NZ -1/2
random walk o™ (T) =~
Bias Instability B3\ 1 X 2B* 0
Rate random walk K\2 1 " KT +1/2
= |— J— T —_—
Sa(f) <2n 2 (D ==
Drift rate ramp s R 2(7) = R2T? +1
Q(f)_(zn_f)3 a )_ 2

CA4. RTKLIB Settings

The purpose of this section is to present the RTKLIB configuration settings for the

u-blox NEO-MS8T receivers.

# rtkpost options (2020/04 /14 22:38:33, v.demo5 b33c)

posl-posmode  =kinematic #
(0:single,1:dgps,2:kinematic,3:static,4:static-
start,5:movingbase,6:fixed,7:ppp-kine,8:ppp-
static,9:ppp-fixed)

posl-frequency =11 #
(1:11,2:11+12,3:11+12+15,4:11+12+15+16)
posl-soltype  =combined #
(0:forward,1:backward,2:combined)

=25 # (deg)
posl-snrmask r =off  # (0:off,1:0n)
posl-snrmask b =off  # (0:off,1:0n)
posl-snrmask_L1=38,38,38,38,38,38,38,38,38
posl-snrmask_L2=0,0,0,0,0,0,0,0,0
posl-snrmask_L5=0,0,0,0,0,0,0,0,0

posl-elmask

posl-dynamics =on # (0:0ff,1:0n)
posl-tidecorr  =off # (0:0ff,1:0n,2:0tl)
posl-ionoopt  =brdc #

(0:0ff,1:brdc,2:sbas,3:dual-freq,4:est-
stec,5:ionex-tec,6:qzs-brdc,7:qzs-lex,8:stec)
posl1-tropopt =saas #
(0:0ff,1:saas,2:sbas,3:est-ztd,4:est-
ztdgrad,5:ztd)

posl-sateph =brdc #

(0:brdc,1:precise,2:brdc+sbas,3:brdc+ssrapc,4:

brdc+ssrcom)

posl-posoptl =off  # (0:0ff,1:0n)

out-fieldsep =
=off
out-maxsolstd =0
out-height
(0:ellipsoidal,1:geodetic)
out-geoid =internal

out-outsingle

# (0:0ff,1:0n)
# (m)

=ellipsoidal #

#

(0:internal,1:egm96,2:egm08_2.5,3:egm08_

1,4:gsi2000)
out-solstatic =all
out-nmeaintvl =0
out-nmeaintv2z =0
out-outstat =residual

(0:0ff,1:state,2:residual)

# (0:all,1:single)
# (s)

# (s)

#

stats-weightmode =elevation #

(0:elevation,1:snr)

stats-eratiol =300
stats-eratio2 =300
stats-eratio5 =300
stats-errphase =0.003

stats-errphaseel =0.003
stats-errphasebl =0
stats-errdoppler =1

stats-snrmax =52
stats-stdbias =30
stats-stdiono =0.03

# (m)

# (m)

# (m/10km)
# (Hz)

# (dB.Hz)

# (m)

# (m)

199



posl-posopt2  =off  # (0:0ff,1:0n)
posl-posopt3  =off #
(0:0ff,1:0n,2:precise)
posl-posopt4  =off
posl-posopt5  =off
posl-posopt6  =off  # (0:0ff,1:0n)
posl-exclsats = # (prn ...)
posl1-navsys =15 #

# (0:0ff,1:0n)
# (0:0ff,1:0n)

(1:gps+2:sbas+4:glo+8:gal+16:qzs+32:comp)

pos2-armode =fix-and-hold #

(0:0ff,1:continuous,2:instantaneous,3:fix-and-

hold)

pos2-gloarmode =fix-and-hold #
(0:0ff,1:0n,2:autocal,3:fix-and-hold)
pos2-bdsarmode =off  # (0:0ff,1:0n)
pos2-arfilter =on # (0:0ff,1:0n)
pos2-arthres =3
pos2-arthresl =0.1
pos2-arthres2 =0
pos2-arthres3 =1e-09
pos2-arthres4 =1e-05
pos2-varholdamb =0.1
pos2-gainholdamb =0.01
pos2-arlockent =120
pos2-minfixsats =4
pos2-minholdsats =5

# (cyc”2)

pos2-mindropsats =10
pos2-rcvstds  =off  # (0:0ff,1:0n)
pos2-arelmask =15 # (deg)
pos2-arminfix =100
posZ-armaxiter =1
pos2-elmaskhold =15 # (deg)
posZ-aroutcnt =30

pos2-maxage =0.3 # (s)
pos2-syncsol  =off  # (0:0ff,1:0n)
pos2-slipthres =0.05  # (m)
pos2-rejionno  =1000  # (m)
pos2-rejgdop =30

pos2-niter =3

pos2-baselen =0 # (m)
pos2-basesig =0 # (m)
out-solformat =xyz #
(0:11h,1:xyz,2:enu,3:nmea)

out-outhead  =on # (0:0ff,1:0n)
out-outopt =on # (0:0ff,1:0n)
out-outvel =off  # (0:0ff,1:0n)

out-timesys =gpst  # (0:gpst,1:utc,2:jst)

out-timeform  =hms # (0:tow,1:hms)
out-timendec =3

out-degform =deg  # (0:deg1:dms)

stats-stdtrop =0.3 # (m)
stats-prnaccelh =3 # (m/s"2)
stats-prnaccelv =2 # (m/s"2)
stats-prnbias  =0.0001 # (m)
stats-prniono  =0.001 # (m)
stats-prntrop  =0.0001 # (m)
stats-prnpos =0 # (m)
stats-clkstab =5e-12  # (s/s)
antl-postype  =rinexhead #
(0:11h,1:xyz,2:single,3:posfile,4:rinexhead,5:
rtcm,6:raw)

ant1l-posl =0 # (deg|m)
ant1-pos2 =0 # (deg|m)
antl-pos3 =0 # (m|m)

antl-anttype =

antl-antdele =0 # (m)
antl-antdeln =0 # (m)
antl-antdelu =0 # (m)
ant2-postype  =llh #
(0:11h,1:xyz,2:single,3:posfile,4:rinexhead,5:
rtcm,6:raw)

ant2-pos1 =53.048905065 # (deg|m)
ant2-pos2 =-1.291562956 # (deg|m)
ant2-pos3 =189.154600000009 #
(m|m)

ant2-anttype =

ant2-antdele =0 # (m)
ant2-antdeln =0 # (m)
ant2-antdelu =0 # (m)
ant2-maxaveep =1
ant2-initrst  =on # (0:0ff,1:0n)
misc-timeinterp =off  # (0:0ff,1:0n)
misc-sbasatsel =0 # (0:all)
misc-rnxoptl
misc-rnxopt2

misc-pppopt =
file-satantfile =
file-rcvantfile =
file-staposfile =
file-geoidfile =
file-ionofile
file-dcbfile
file-eopfile
file-blgfile =
file-tempdir

file-geexefile
file-solstatfile =
file-tracefile =
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C.5. Comparisons Between Two Tail Baseline Solutions

Two tail baseline solutions are computed using two independent reference
receivers. The first solution (||b;|| and ||b,||) uses the master GNSS receiver on
the aircraft (GM) alongside the tail and wingtip receivers to compute this solution.
The second solution (]|G1 — GM|| and ||G2 — GM||) uses the Leica GS10 receiver
on the ground as the reference and computes independent solutions to the master
receiver (GM), tail receiver (G1), and wingtip receiver (G2) on the aircraft. Both
the G1 and GM receivers had a fixed solution 99% of the time, while the G2 receiver
had a fixed solution 96% of the time. The baseline solution is then computed as
the difference between the tail/wingtip and master solutions. The two baseline
solutions are then compared, and the results are shown in Figure C.2.
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Figure C.2. GNSS tail and wingtip baseline lengths comparison.

The two solutions are very similar but with increased noise when using the Leica
GS10 receiver. This might be attributed to the increased decorrelation of the
errors between the ground-based receiver and the ones on the aircraft, high rate
multipath and also different antenna on the aircraft and ground-based receiver.
The wingtip baseline solution showed increased noise as opposed to the tail
baseline solution attributed to the increased level of dynamics about the roll axis
and other secondary effects such as flexure.

The tail and wingtip baseline components in the body frame (in metres) are given
by:

—0.563 —0.009 (C.11)
FP =1 0.0 —0.591
0.072 0.0

The estimation of attitude components is assessed using the difference between
the baseline components in the NED frame with the local body components
projected in the NED frame (R}'F?* where i is the column). Figure C.3 shows this
difference for the tail and wingtip baseline components.
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Figure C.3. Baseline components difference during the test flight.

The standard deviation for the tail baseline is around 2.2 mm for the north
component, 2.7mm for the east component, and 0.9 mm for the down component.
And the standard deviation for the wingtip baseline is around 2.7 mm for the north
component, 2.1 mm for the east component, and 1.1 mm for the down component.
Further, the two baselines on the aircraft, b; and b,, can be compared using
independently estimated aircraft yaw angles. Ideally, once resolved to the aircraft
body frame, the two baselines should produce identical yaw results. In practice,
the estimates will be different. Figure C.4 shows the heading angle estimation
using the two baseline components. Not all epochs have been estimated as a result
of not having a fixed solution.
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Figure C.4. Heading estimation using the two baseline vectors independently.

The difference between the estimated yaw angles using the two baselines is shown
in Figure C.5. The standard deviation is around 1 degree for the results.
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D. Derivations

D.1. Linear Dynamics

In linear dynamics, we usually consider a force acting to accelerate a body.
Newton’s second law states that the rate of change of momentum of a body is
directly proportional to the force applied and occurs in the same direction as the
applied force. Considering an inertial frame i, this can be written as:

> 5= [ )] .

j
In Equation (D.1), all the components are considered to be in the inertial frame.

The time derivative of an arbitrary vector resolved in a different frame other than
its reference frame also depends on the relative rotation between the frames.

vh = RPv), (D.2)
To simplify our notation since we are only working with two frames: vl-ib = v'and
vi’}, = vP. The time derivative of the inertial velocity in the body frame is given by:
vP = RP[v'] — Qb v? (D.3)
This can also be represented as:
vP = R [v] — ], x v? (D4)

Assuming that mass does not change over a short period, we can recall our
previous equation as:

1 ZF _[d()] (D.5)
m | & I dt v i
J
Noting that:
] =—|> 5| =[] o
B m | & 2 dt i
7]
Therefore Equation (D.4) can be written as:
1 ] (D.7)
vP =— ZF]-I’ — wh x vP
J |
where:
(D.8)

1 1
Elzl;}b‘ =E[mgb +F71") +Fabero]
]

Substituting Equation (D.8) into Equation (D.7) and noting that v? = [u,v,w]”
and w}, = [p, q,7]7 we get:

[1’7] = E[mgb S A o [ r 0 —p] . lvl
w

—-qp 0 w
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D.2. Rotational Dynamics

In rotational dynamics, we usually consider a torque or a moment acting to rotate
a body. Torque is analogue of the concept of force used in linear dynamics. Torque
is defined as the product of force and its perpendicular distance from the point of
application to the axis of rotation.

Y- fhoe]

The product /w is the angular momentum (H) analogue of linear momentum (p).
The torque/moment acting on an aircraft is generated by the deflection of the
primary control surfaces (6,, 8., 6,). The term I is the mass moment of inertia
matrix of the aircraft. This gives the body mass distribution around the origin.
Therefore it is convenient to express the moments and the angular momentum in
the aircraft’s body-fixed frame similar to the force. Therefore the rate of change of
angular momentum in the body frame can be expressed as:

Ob = sz _ wlbb x HP (D.11)
j
This can also be written as:

(1) = ) MP - b X 1ab, (012
J
Assuming the mass moment of inertia matrix is constant i.e. I = 0. The equation
then becomes:

Iop, = Z MP — w}), X lwh, (D-13)
J

where
D.14
Z MP = M‘ll)ero + MZI;TOP + Mg?yroscopic ( )

Jj

where:
Mero = [My, My, Mz]" (D.15)
Mp,op = pn*D>CM, (D.16)
0 (D.17)

ngroscopic = [_]‘m ‘T (ncw : 2”)]
Jm *q - (Ngy - 21)

where j,, is the inertia of the rotating component, n.,, is the clockwise propeller
speed given in rev/s, r and g hold their usual meaning. It is also assumed that the
motor-propeller assembly is mounted along the longitudinal axis of a fixed-wing
aircraft and that the propeller is spinning clockwise when viewed from the rear.
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E. INS/GNSS Architectures

This section describes the loosely coupled and tightly coupled INS/GNSS
integration architectures used in performance comparison with the architectures
used in Chapters 4, 5 and 6.

E.1. Loosely Coupled INS/GNSS

Figure E.1 shows the implemented loosely coupled INS/GNSS integration
architecture. The architecture is implemented using an error state extended
Kalman filter comprising 15 states. Other than the navigation states, the state
vector also includes IMU error terms.

X;{l

b
~b
MU I ins @3 +® INS
Mechanisation

A —
Y
P,V
GNSS d
Note
P = X;(l . 3) IMU Errors
V =X _(4:6) X A

Figure E.1. The implemented loosely coupled INS/GNSS architecture.

The total state vector (X) is given by:
T E.1
X = [xn, x5, xp, 2, V2, V2, $,6,9, bay, bay, baz, bgxs bgy, bgz] (E1)

The process models for the navigation states (in the total state form) are
given in the following equations:

x™ = RjvP (E2)
o = i+ (R — o
(ﬁnb =R, w?b (E.4)

In the filter, the IMU errors are modelled using a random-walk process, while in
the simulation environment, the IMU errors are modelled using a first-order
Gauss-Markov process. The random-walk process used in the filter is given by:
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ba,i|g,i = Wrnd
withi = [x,y, z]

(E.5)

where b ;4 represents the accelerometer and gyroscope biases and wypq

represents the driving white noise.

The measurement vector consists of GNSS receiver measurements given by:

XN
XE
Xp

ZeNss = +wy

(E.6)

where w, represents the residual error for the GNSS measurements modelled as

Gaussian white noise.

The process and observation models are linearised to obtain the dynamic
matrix (F;; = aXl/an) and observation matrix (H = dZ/dX) used in the EKF

covariance propagation and measurement update steps.

Table E.1 shows the modelled stochastic properties of the IMU and GNSS

receiver used in the simulation environment.

Table E.1. Stochastic properties for IMU and GNSS receiver.

Sensor Type Value
Random bias (o) 10 mg
White noise (PSD) 100 pg/VHz
Accelerometer GM-Process 0.05 mg
Correlation time (T) 200s
Sampling Frequency 100 Hz
Random bias (o) 1000 °/hr
White noise (PSD) 21.6 °/hr/vHz
Gyroscope GM-Process 20 °/hr
Correlation time (T) 200s
Sampling Frequency 100 Hz
GNSS Receiver White noise (o) 5m
Sampling Frequency 1 Hz

Table E.2 shows the standard deviation of the initial errors used in the filter.

Table E.2. The standard deviation of the initial errors for the states

State Standard deviation (10)
Position [1.0,1.0,1.0] m
Velocity [1.0,0.5,0.5] m/s

Attitude
Accelerometer bias
Gyroscope bias

[3.5° 3.5°, 5.0°]
[10, 10, 10] mg
[1000,1000,1000] deg/hr
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And Table E.3 shows the standard deviation of the tuned process noise used in the
filter.

Table E.3. Process noise.

State Standard deviation (10)
Position 10°m

Velocity 107 m/s
Attitude 10" rad
Accelerometer Bias 2x10* m/s?
Gyroscope Bias 2x107°° rad/s

E.2. Tightly Coupled INS/GNSS

Figure E.2 shows the implemented tightly coupled INS/GNSS integration
architecture. The architecture is implemented using an error state extended
Kalman filter comprising of 17 states. Other than the navigation states and the IMU
error terms, the state vector also includes the GNSS receiver clock errors terms
(the receiver clock offset and drift).

Xﬁ{l
~b .

~b
Tt Foibs @3, +® INS X,
Mechanisation

y Yl Prs ymodel 3 Di:model

GNSS L 4

IMU Errors —1

x4

- $ oot
X Y X

Clock Errors

Xr'lk

Figure E.2. The implemented tightly coupled INS/GNSS architecture.

The total state vector (X) is given by:

T
n n n E
A 0 Vep Ny Ve gy Veb,ps Qo 91, G2, - (E7)

X =
(3, bax: bay' baZ’ ng: bgy' bg2f bclk' dclk
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The total state vector has 18 elements, but the error state vector has 17 elements
because the aircraft’s orientation error is represented using the rotation vector
instead of the quaternion. The relationship between the quaternion error and the
rotation vector is given by: 264 = §¢?.

The process models for the navigation states (in the total state form) are given
by:

T
s v;lb,N v;lb,E o (E.8)
Po = Ry + h ' (Rp + R)cos(p) " ebP
vl = RIfE + g™ — (2QL + Q2 )vD, (E.9)
. 1
0 =ap ® [why] (2.10)

= o] b

In the filter, the IMU errors are modelled using a random-walk process. In the
simulation environment, the IMU errors are modelled using a first-order Gauss-
Markov process. The random-walk process used in the filter is given by:

ba,i|g,i = Wrnda
with i = [x,y, 2]

(E.11)

where by, represents the accelerometer and gyroscope biases and wy,q

represents the driving white noise. A two-state random process is used to model
the receiver clock errors in both the filter and the simulation environment, albeit
with different values used for each setup. The two-state random process is given

by:

beye = deire + wyy (E.12)

dey = Wug

where b, is the receiver clock bias from system time (m), d. is the receiver
clock drift (m/s) and w, s and w,,4 represent the driving white noise terms.

The observation vector consists of raw GNSS observables (pseudoranges and
Doppler frequencies) from the GNSS receiver. These are given by:

Bs

B = fi + w,

p7 + by (E.13)
|- |-

anss l — (s — v ]"ed + dew)
It is assumed that the ionospheric and tropospheric effects have been partially
corrected using the Klobuchar and Saastamoinen models, respectively. It is also
assumed that the satellite clock corrections have been applied. vS; and vg,
represent the satellite and receiver velocity vectors in the ECEF frame. All the
other terms have been defined in Chapter 5.

The process and observation models are linearised to obtain the dynamic
matrix (F;; = aXl/an) and observation matrix (H = 0Z/0X) used in the EKF
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covariance propagation and measurement update steps. It is important to note
that the quaternion is expressed in terms of the rotation vector for the
linearisation step, as explained in Chapter 5.
Table E.4 shows the IMU error characteristics used in the simulation
environment.
Table E.4. IMU error characteristics.

Property Accelerometer Gyroscope
Random bias (o) 40 mg 1000 °/hr
White noise (PSD) 0.5 mg/VHz 126°/hr/vHz
First-order Gauss-Markov 0.05 mg 20 °/hr
Correlation Time (1) 200s 200s
Sampling Frequency 100 Hz 100 Hz

The models used for the raw GNSS observables in the simulation environment
of the tightly coupled INS/GNSS scheme are the same as those presented in
Chapter 5. Similarly, the measurement uncertainty used in the filter is the same as
that defined in Chapter 5 for both the pseudoranges and Doppler frequencies.

Table E.5 shows the standard deviation of the initial errors used in the filter.

Table E.5. Initial uncertainties for the states.

State Standard deviation (o)
Position [2,2,3] m

Velocity [1.0,0.5,0.5] m/s
Attitude [3.5°3.5°,5°]
Accelerometer bias [40, 40, 40] mg
Gyroscope bias [1000,1000,1000] deg/h
Clock offset 104 m

Clock drift 10 m/s

Table E.6 shows the standard deviation of the diagonal terms of the tuned
process noise covariance matrix.

Table E.6. The process noise used in the filter.

State Standard deviation (o)
Position 10™*m
Velocity 104 m/s
Attitude 10™* rad
Accelerometer bias 2 x 1075 m/s?
Gyroscope bias 2% 10 °rad/s
Receiver clock [0.01 m, 0.02 m/s]
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E.3. Reference INS/GNSS Architecture

Figure E.3 shows the setup used to derive the reference navigation solution used
to assess the performance of the TCVDM scheme using real flight data.

’

- +
[ IMU ]—) INS X ; X-)

A+ reference

‘ TDCP:
Agi(k+1,k—1) eb 0X

—>

DDCP:
L VAqS;{ Hb2|b1 }»ks,w]—» EKF
—>
Y

Figure E.3. Reference solution setup.

The architecture is essentially a loosely coupled INS/GNSS integration scheme,
similar to the one presented in Section E.1.However, the setup uses quaternions
to represent the aircraft's orientation, similar to the setup described in Section E.2.
The process models for the navigation states and IMU errors estimated in the filter
are the same as the ones described in Section E.2.

The observation vector used in the filter consisted of:

a.

b.

Post-processed kinematic (PPK) position: derived using the LeicaGS10
receiver and the NEO-MS8T receiver on the aircraft (GM), as described in
Section 6.7.2. The standard deviations of the measurement noise are in
agreement with values presented in Section 6.7.2.

Velocity: derived from time-differenced carrier phase observations (TDCP)
(Freda et al,, 2015) from the NEO-M8T receiver on the aircraft (GM). The
standard deviations of the velocity measurements were computed during
static periods (when the aircraft was not moving). The values used (1) were
0.065 m/s for the north and east velocity and 0.09 m/s for the down velocity.
GNSS attitude: derived from the two baseline solutions b, and b, as described
in Section 6.7.2. The standard deviations of the values used for the
measurement covariance matrix in the filter agreed with the standard
deviation of the derived yaw angle presented in Section 6.7.2.

211



The initial states used in the filter were initialised directly from the
measurements. Therefore, the standard deviations of the initial state covariance
matrix are similar to the measurement uncertainties, as can be seen in Table E.7.

Table E.7. Initial uncertainties for the states.

State Standard deviation (o)
Position [0.1,0.1,0.12] m
Velocity [0.1,0.1,0.1] m/s
Attitude [0.8°,0.8°1.0°]
Accelerometer bias [40, 40, 40] mg
Gyroscope bias [1000, 1000, 1000] deg/h

The standard deviation of the tuned process noise is also shown in Table E.8.

Table E.8. The process noise used in the filter.

State Standard deviation (o)
Position 10™*m
Velocity 1072 m/s
Attitude 1073 rad
Accelerometer bias 2Xx 1075 m/s?
Gyroscope bias 2x 107 %rad/s
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