

GENETIC DIVERSITY AND ADAPTATION TO ENVIRONMENTAL CHALLENGES OF ETHIOPIAN INDIGENOUS CHICKEN

Adriana Rocío Vallejo Trujillo, B.Sc., M.Sc.

A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

June 2021

Genetics, Ecology and Evolution Group School of Life Sciences

Declaration

I hereby declare that this thesis has not been previously presented or submitted for examination to this or any other university. The work described in this thesis is entirely of myself except where explicitly stated. References to other people's work have been duly acknowledged.

This thesis may be made available for consultation within the University of Nottingham library and can be photocopied or loaned to other libraries for consultation.

Adriana Rocío Vallejo Trujillo

June 2021

Abstract

Abstract

Indigenous livestock species are characterized as being locally adapted, displaying low productivity but high levels of genetic diversity. They are usually resistant to diseases and suit smallholder farmers' needs in harsh environments; hence, they represent an important resource for achieving food security in developing countries. Understanding the genetic basis of their environmental adaptations has important implications for the design of breeding improvement programs. Likewise, it may guide conservation initiatives aiming to preserve their unique adaptive diversity. Both are equally important in the current climate change scenarios challenging agricultural production systems and threatening livestock diversity.

Under variable tropical ecologies and scavenging conditions, Ethiopian indigenous chickens exhibit unique adaptations to their environments. However, little is known about the genetic mechanisms of these environmental adaptations with, so far, no in-depth analysis of the agroclimatic adaptive stressors.

Here, an innovative approach - that integrates Ecological Niche Modelling (ENM) and genome analyses (signatures of positive selection and genomic-environmental association analyses) – is applied (i) to dissect Ethiopian chicken agro-ecologies leading to the identification of the key environmental stressors, (ii) to identify and to define Ethiopian chicken ecotypes, and (iii) to identify the genetic responses to key environmental stressors.

After a brief explanation of the research context in Chapter 1 (Setting the scene), the thesis includes four results chapters.

Chapter 2 reports the diversity and population structure of the studied populations. Using *Galgal_6.0 (GRCg6a)* as the reference genome, 243 whole-genome sequences were analysed

Abstract

from Ethiopian indigenous village chickens belonging to 25 populations from diverse agroclimatic zones representing wide ecological conditions. About 19.6 million SNPs were characterized in the populations of which 29% (n = 5.6 million) were novel. While significant genetic variations are observed within the studied populations, little genetic differentiation was observed among the populations based on *Fst*, PCA, and admixture analyses. Population structure analyses show two major groups and several subgroups in the PCA plot, whereas three ancestral gene pools are revealed by admixture. The two main groups in the structure of the populations may likely reflect two temporally distinct migration paths of chicken into the African continent (Egypt and the East African coast). In comparison, the three ancestral genetic backgrounds can reflect these two migration routes and an additional third genetic background that remains unknown.

Before dissecting the genomic patterns of adaptation, the environmental characterization of the studied populations was performed in Chapter 3. By following an Ecological Niche Modelling approach, we identified six agro-climatic variables from an initial set of 34 as important predictors of the chicken habitats. These key predictors include one temperature variable (correlated to elevation), three precipitation variables (related to water availability), and two soil/land variables (linked to food availability). Twelve chicken ecotypes were proposed by characterizing the population habitats based on these six key environmental stressors.

Genomic signatures of environmental adaptation were then investigated in Chapter 4 and Chapter 5.

In Chapter 4, populations were ranked accordingly to the six key agro-climatic variables identified in Chapter 3. Signatures of positive selection for each extreme population pair (highest and lowest values for each environmental parameter) were investigated using *Fst* and

Abstract

XP-EHH methods. Strong candidate selected regions identified overlapping genes that have highly relevant functions for adaptation to high-altitude stresses (e.g. hypoxia, thrombosis, and cold temperatures) (*UTP18, SLC43A3, P2RX3, CLP1, YPEL4, RTN4RL2, PGR2/3*), high temperature (*TOGARAM1*), water scarcity (*MANEA, HTR2C, EPHA7*), and food availability under scavenging conditions (*THSD4, HBE1*).

In Chapter 5, genome-environmental association analysis was dissected within the 12 Ethiopian chicken ecotypes identified in Chapter 3. Within-ecotypes selection signature analyses were first performed by applying the *Hp* and *iHS* methods. This was followed by a multivariate Redundancy Analysis (RDA) to identify genomic marker outliers overlapping the sweep regions. A total of 616 outlier SNPs were identified. Only variants with environmental correlation ~ 0.3 were retained for further investigation. Candidate genes included some with functions related to thermotolerance (*LDLRAD3, TNIP2, GPX7*), immune response (*PTPRZ1*), and feed metabolisms (*GPCPD1, NHLRC2, TSHD7B*).

Overall, this PhD research exemplifies the use of ENM for dissecting environmental adaptation in indigenous chicken populations. It demonstrates that ENM integrated with genomeenvironmental association analyses is a powerful tool for studying environmental adaptation in livestock species. The outlined methodology identified several key environmental stressors allowing subsequently to investigate the genomic responses to natural selection. Moreover, the ENM based environmental characterization of the chicken habitats represents an innovative approach for livestock ecotypes identification with potential major applications for conservation and sustainable breeding improvement.

Publications, Conferences and Awards

Publications

Gheyas, A., **Vallejo-Trujillo, A**, Kebede, A., Lozano-Jaramillo, M., Dessie, T., Hanotte, O., and Smith J. (2021). Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. *Mol Biol Evol*, preprint. doi:10.1093/molbev/msab156. (Parts of Chapters 3 and 4 contributed to this publication).

Banos, G., Lindsay, V., Desta, T.T., Bettridge, J., Sanchez-Molano, E., **Vallejo-Trujillo, A.**, Matika, O., Dessie, T., Wigley, P., Christley, R.M., Kaiser, P., Hanotte, O. and Psifidi, A. (2020) Integrating Genetic and Genomic Analyses of Combined Health Data Across Ecotypes to Improve Disease Resistance in Indigenous African Chickens. *Front Genet*. 11:543890. doi: 10.3389/fgene. 2020.543890.

Hume, D.A., Gutowska-Ding, MW., Garcia-Morales, C., Kebede, A., Bamidele, O., **Vallejo Trujillo, A**., Gheyas, A.A., and Smith, J. (2019). Functional evolution of the colony-stimulating factor 1 receptor (CSF1R) and its ligands in birds. *J Leukoc Biol*, 107: 237 – 250. doi: 10.1002/JBL.6MA0519-172R.

Selected Conferences

50th Population Genetics Group Meeting. January 5 – 7, 2016 – Churchill College, University of Cambridge, UK. (Attended).

 36^{th} International Society of Animal Genetics (ISAG) Conference. July 16 - 21, 2017 - University College Dublin, Ireland. (Attended).

II Joint Congress on Evolutionary Biology. August 19 – 22, 2018 – Corum, Montpellier – France – Poster presentation: Microgeographic and climatic adaptation of Ethiopian indigenous chicken: A genome-wide analysis.

School of Life Sciences Postgraduate Research Symposium, June 24 - 15, 2019 - University of Nottingham, UK. Oral presentation: Integrating Ecological Niche Modelling with genomics to dissect tropical adaptation in Ethiopian indigenous chicken.

 37^{th} International Society of Animal Genetics (ISAG) Conference. July 7 – 12, 2019. University of Lleida, Spain. Poster and oral presentation: Integrating Ecological Niche Modelling with genomics to dissect tropical adaptation in Ethiopian indigenous chicken.

53rd Population Genetics Group Meeting. January 5 - 7, 2020 - University of Leicester, UK. Oral presentation: Unravelling the local environmental adaptation of Ethiopian indigenous chicken by integrating Ecological Niche Modelling with genomic analyses.

Awards

Vice-Chancellor Scholarship for Research Excellence, UoN	2016
COLCIENCIAS Grant	2016
(Administrative Department of Science, Technology and Innovation)	
Colombian Government	

Dedication

In the loving memory of my darling Simon Mark Kerry.

Acknowledgments

Acknowledgments

First and foremost, I want to express my deepest appreciation to my supervisor Professor Olivier Hanotte for his guidance and support during this research journey. His scientific expertise, knowledge, human qualities, and unwavering enthusiasm for genetics have been a source of inspiration. My experience as his student has encouraged me to reach my goals, build more confidence, and develop critical thinking for my research. It is an honour for me to have shared the last four years of discovery by his mentoring.

My appreciation also extends to my external supervisor Dr Almas Gheyas. I am extremely grateful for her assistance and suggestions throughout my research. Her patience and excellent teaching skills allowed me to grow as a scientist. Almas, you make the most complicated things look so simple and clear. Thank you very much. Almas and Olivier, thanks for believing in me and being there for me, especially in the hardest times.

Special thanks to the Administrative Department of Science, Technology, and Innovation (COLCIENCIAS) from the Colombian Government for sponsoring my PhD studies in the UK. Also, I give thanks to the University of Nottingham, who funded my tuition fees in full through the Vice Chancellor's scholarship (International). Thanks to all of the team involved in the African Chicken Genetic Gains (ACGG) programme, the Roslin Institute, and ILRI in Ethiopia. In particular to all those who were involved in sampling, DNA extraction, and sequencing for this project. Special thanks to Dr Adebabay Kebede, Dr Jaqueline Smith, and Dr Maria Lozano-Jaramillo for your contributions to this work. Many thanks to all of the farmers in Ethiopia that contributed with chicken samples. Thank you for the incredible job you do in conserving these

Acknowledgments

genetic resources and contributing to food security. I would also like to acknowledge the support of the School of Life Sciences staff, UoN, during my PhD.

A special mention for Dr Raman Lawal for supporting me during the first years of my studies. Thanks for your friendship and for giving me the confidence and assistance I needed to develop my skills in bioinformatics. A big thanks to my past and current colleagues in the lab, Dr Abdulfatai Tijani, Dr Abulgasim Ahbara, Dr Akil Alshawi, Dr Ahmed Al-Jumali, Dr Ibrahim Akinci, and Mifta Rahman (soon to be Dr Mifta Rahman). You guys are incredible human beings and made this whole experience more enjoyable.

To my two main motivations, my sons Santiago and Diego. I cannot thank you both enough for believing in this. You have been very brave throughout this journey. This success is also yours. Also to my dearest Paul for his loving support and to Lily, and Lucas for joining us in this adventure. I appreciate all of your patience, understanding, and love, thanks. To my parents Gustavo and Florelia, this could not have happened without your constant support, guidance, and example. You have worked so hard to fill my life with opportunities. I hope this success can honour all of your sacrifices. To my brother, sister, and all of my family back in Colombia, you are part of this achievement too. A big thank you to all of my friends in the UK for your unconditional support. Finally, to Simon, I know you are still looking after us and always will.

Table of Contents

Declara	tion	ii
Abstrac	t	iii
Publicat	tions, Conferences and Awards	vi
Dedicat	ion	vii
Acknow	vledgments	ix
Table of	f Contents	xi
List of I	Figures	.xiv
List of]	Tables	xvii
Abbrevi	iationsx	viii
Chapter	· 1	1
General	introduction	1
1.1	Context of the study	2
1.2	Rationale and objectives for the study	4
Chapter	2	6
Genetic	diversity and population structure of indigenous Ethiopian village chicken	6
2.1	Introduction	8
2.2	Materials and Methods	11
2.2	.1 Sampling and sequencing	11
2.2	.2 Sequence alignment, variant calling and annotation	14
2.2	.3 Genetic diversity and population structure	15
2.3	Results	16
2.3	.1 Sequencing, variant discovery and annotation	16
2.3	.2 Genetic diversity	20
2.3	.3 Genetic differentiation and population structure among Ethiopian chickens	22
2.3	.4 Admixture analysis	25
2.3	.5 Linkage disequilibrium (LD)	26
2.4	Discussion	31
2.5	Conclusions	35
Chapter	-3	36
Ecologi	cal niche modelling for environmental characterisation of indigenous Ethiopian	
village o	chickens	36
3.1	Introduction	38

3.2 Ma	aterial and Methods	41
3.2.1	Populations sampled and environmental parameters	41
3.2.2	Exploration of the agro-climatic variables	44
3.2.3	MaxEnt modelling	44
3.2.4	Classifying populations into potential ecotypes	45
3.3 Re	sults	46
3.3.1	Selection of agro-climatic predictors	47
3.3.1.1	PCA of populations based on environmental data	48
3.3.1.2	Correlations among environmental variables	50
3.3.1.3	MaxEntVariableSelection	52
3.3.2	Selection of the best model configuration	53
3.3.3	Final ENM using selected environmental variables and parameter setting	55
3.3.4	Defining ecotypes	60
3.4 Dis	scussion	65
3.5 Co	nclusions	69
Chapter 4		70
Whole-gend	me sequences reveal the drivers of environmental adaptation in Ethiopian vi	illage
chicken	······	70
4.1 Int	roduction	71
4.2 Ma	aterial and Methods	74
4.2.1	Environmental data and definition of extreme groups of populations	74
4.2.2	Genomic data	75
4.2.3	Selection signature analyses	75
4.2.4	<i>Fst</i> analysis	76
4.2.5	ХР-ЕНН	76
4.2.6	Functional annotation	78
4.3 Re	sults	78
4.3.1	Definition of Low and High population groups	78
4.3.2 adaptat	Identification of candidate windows under selection for environmental	80
4321	Overview of <i>Est</i> analysis	81
<u>4322</u>	Overview of XP -FHH analyses	01 84
433	Candidate genes and variants in relation to different environmental adaptat	tion
т.5.5	86	

4.3.3.1	Adaptation to extreme temperatures and high altitude	89
4.3.3.2	Adaptation to extreme rainfall patterns	93
4.3.3.3 food av	Adaptation to scavenging production systems: using SoilOrgC a ailability	as a proxy for
4.3.3.4	Adaptation to scavenging conditions in relation to land cultivation	on pattern96
4.3.3.5	Shared candidate genes across environmental analyses	97
4.4 Di	scussion	98
4.5 Co	nclusion	101
Chapter 5		
Dissecting g	genome-environment associations in Ethiopian chicken ecotypes	
5.1 Introd	uction	104
5.2 Ma	aterials and Methods	106
5.2.1	Genomic data on Ethiopian chicken ecotypes	106
5.2.2	Selection signature analyses	107
5.2.3	Redundancy analysis (RDA)	109
5.2.4	Functional annotation	111
5.3 Resul	ts	111
5.3.1	Summary results from selection signature analyses	111
5.3.2	Important sweeps regions and genes detected in Hp analysis	121
5.3.3	Important sweep regions and genes detected with <i>iHS</i> analysis	127
5.3.4	Shared sweep regions detected by <i>Hp</i> and <i>iHS</i>	132
5.3.5	RDA test and detection of candidate outliers SNPs	
5.4 Discu	ssion	145
5.5 Concl	usion	148
Chapter 6		149
Conclusions	and Perspectives	149
References.		156
Supplement	ary Tables	186
Supplement	ary Figures	

List of Figures

Figure 2. 1 Geographic location across Ethiopia of the twenty-five investigated indigenous
chicken populations
Figure 2.2 Mean SNPs density (SNP count/kb) per chromosome in Ethiopian indigenous
chicken
Figure 2.3 Chromosome-wise SNP distribution heatmap across the Ethiopian indigenous
chicken genome based on 19.6 million SNPs19
Figure 2.4 Alternate allele frequency distribution by annotation category for the complete set
of detected SNPs (~ 19.6 million) in Ethiopian indigenous chicken populations20
Figure 2.5 Proportion of observed heterozygous variants across the studied Ethiopian
indigenous chicken populations
Figure 2.6 Heat map of pairwise weighted Fst values among chicken populations23
Figure 2.7 Principal component analyses: (a) PCA vs PC3 and (b) PC1 vs PC3 for Ethiopian
chicken populations
Figure 2.8 Admixture analyses of the 25 Ethiopian chicken populations (K = $2 \text{ to } 5$)25
Figure 2.9 Geographic distribution of Ethiopian chicken populations denoting population
groups defined for LD calculations
Figure 2.10 Proportion of SNP pairs showing high LD ($r^2 = 0.8 - 1$) in the six population
clusters across different kb distances
Figure 2.11 LD Decay trend in different Ethiopian chicken population groups
Figure 2.12 Number of LD blocks per range size identified in the six population groups. X-
axis delimits range size in kb

Figure 3.1 A framework for defining livestock ecotypes based on environmental
characterisation using the ENM approach47
Figure 3.2 A framework for defining livestock ecotypes based on environmental
characterisation using the ENM approach
Figure 3.3 Spearman correlation test for three different groups of climatic and environmental
parameters evaluated
Figure 3.4 Percent contribution of each of the six agro-climatic selected variables to the
overall environmental diversity calculated using the MaxEntVariableSelection R package52
Figure 3.5 AICc values for different combinations of Feature Classes (FCs) and
Regularization Multipliers
Figure 3.6 Suitability maps for the complete set of Ethiopian chicken populations
Figure 3.7 MaxEnt model based on six selected variables using the best combination of
feature classes (HQP) and the regularization of multiplier value (3.5)
Figure 3.8 Jackknife of regularised (A) training gain and (B) test gain for Ethiopian chicken.
Figure 3.9 Response curves for six selected agro-climatic variables when the ENM is applied
across all chicken populations

Figure 3.10 Refined estimates of percent contribution (before applying permutation) and
permutation importance (% contribution after applying permutation) of six selected
environmental predictors from the MaxEnt model60
Figure 3.11 Dendrogram and heatmap of pairwise Pearson correlation between suitability
maps of individual chicken populations
Figure 3.12 Dendrogram and heatmap of Niche Overlap statistic (I) between suitability maps
of individual chicken populations63
Figure 3.13 The set of 12 potential ecotypes represented by their suitability maps64

Figure 4.1 Populations organised based on environmental gradients for the six key
environmental parameters identified by the ENM approach (Chapter 3)80
Figure 4.2 ZFst candidate signatures of positive selection in Ethiopian village chicken based
on six environmental variables
Figure 4.3 (<i>XP-EHHstd</i>) candidate signatures of positive selection in Ethiopian village
chicken based on the six environmental variables
Figure 4.4 Stacked bar plot showing the candidate sweep regions based on Low/High groups
and positive selection methods
Figure 4.5 Barplots showing the number and their annotation categories of SNPs with a large
difference in allele frequency ($dAAF > 0.5$) between the Low and High groups for different
environmental analyses
Figure 4.6 Count of candidate genes from selection signature regions overlapping with QTLs
of size < 1 Mb
Figure 4.7 Heatmap of shared candidate genes detected across environmental population
groups analysed

Figure 5.1 Chromosome-wise percentage distribution of <i>Hp</i> sweeps within chromosomes by
ecotype
Figure 5.2 Chromosome-wise percentage of <i>iHS</i> sweeps within chromosomes by ecotype.
Figure 5.3 Size variation (kb) of detected <i>Hp</i> and <i>iHS</i> sweep regions
Figure 5.4 Candidate standardized pool heterozygosity (<i>ZHp</i>) signatures of positive selection
in Ethiopian chicken ecotypes
Figure 5.5 Candidate integrated haplotype score (<i>iHS</i>) signatures of positive selection in
Ethiopian chicken ecotypes using the integrated haplotype score iHS120
Figure 5.6 ZHp values for candidate genome regions in each ecotype121
Figure 5.7 /iHS values for candidate genome regions in each ecotype128
Figure 5.8 Detected sweep regions detected by <i>iHS</i> , <i>Hp</i> , and <i>iHS</i> - <i>Hp</i> simultaneously by
ecotype
Figure 5.9 (a) Projection of SNPs and environmental variables into the RDA space RDA1-
RDA2 and (b) RDA1-RDA3. (c) The six RDA axes explain variance (inertia). (d)
Distribution of SNP loadings for significantly constrained axes (RDA1 - RDA5)137

Figure 5.10 RDA correlation boxplot for identifying outliers	138
Figure 5.11 Allele frequency fluctuation and correlation with agro-climatic predicto	ors (mean
value) across ecotypes	140
Figure 5.12 Molecular functions for 28 RDA outlier investigated. (panther.org)	145

List of Tables

Table 2.1 Analysed samples across twenty-five Ethiopian populations	12
Table 2.2 SNPs summary statistics for the studied chicken population	17
Table 2. 3 Mean inbreeding co-efficient (<i>F</i>) and nucleotide diversity (π) for each of the	25
studied chicken populations	22

Table 3.1 Climatic and agro-ecological variables used for the ENM analysis of	the Ethiopian
chicken populations	42
Table 3.2 Major contributing environmental variables in each ecotype	65

Table 4.1 Genome-wide Fst statistics for extreme population groups (Low and High) for th	e
six key environmental variables	82
Table 4.2 Genome-wide (XP-EHH/) statistics for extreme population groups (Low and	
High) for the six key environmental variables	84
Table 4.3 Candidate genes detected by both <i>Fst</i> and <i>XP-EHH</i> in relation to environmental	
adaptations	91

7
3
2
9
4
2

Abbreviations

ACGG	African Chicken Genetic Gains					
AEZ	Agro-ecological Zones					
AIC	Akaike Information Criterion					
AUC	Area Under the Receiving Operator Curve					
bp	base pair					
BQSR	Base Quality Score Recalibration					
BWA	Burrows-Wheeler Aligner					
CRISPR	Clustered regularly interspaced short palindromic repeats					
DAGRIS	Domestic Animal Genetic Resources Information System					
dbSNP	Single Nucleotide Polymorphism Database					
EIAR	Ethiopian Institute of Agricultural Research					
ENM	Ecological Niche Modelling					
EVA	European Variation Archive					
FAO	Food and Agriculture Organisation					
FC	Feature classes					
Fst	Fixation index					
GATK	Genome Analysis Toolkits					
GEA	Genotype-environment association					
GFM	Genomic Feature Models					
Нр	Pooled Heterozygosity					
iHS	Integrated Haplotype Score					
ILRI	International Livestock Research Institute					
INDELS	Insertions / Deletions					
kb	Kilobase pair					
KEGG	Kyoto Encyclopaedia of Genes and Genomes					
LandUse	Percentage of cultivate land					
LD	Linkage Disequilibrium					

LRH	Long-range haplotype
MAF	Minor Allele Frequency
MAS	Marker Assisted Selection
MHC	Major Histocompatibility Complex
minTemp	Minimum temperature of the coldest month of a year
NOR	Nuclear Organising Region
РСА	Principal Component Analysis
precSeasonality	Precipitation Seasonality of a year
precDQ	Precipitation in the Driest Quarter of a year
precWQ	Precipitation in the Wettest Quarter of a year
QTL	Quantitative trait loci
RDA	Redundancy Analyses
RM	Regularization multiplier
SD	Standard deviation
SDM	Species Distribution Modelling
SMRT	Single-Molecule Real-Time
SNNPR	Southern Nations, Nationalities, and People's Region
SNP	Single Nucleotide Polymorphism
SoilOrgC	Soil Organic Carbon content
SV	Structural variants
UN	United Nations
VEP	Variant Effect Predictor
VQSR	Variant Quality Score Recalibration
WFP	World Food Programme
WGS	Whole Genome Sequencing
XP-EHH	Cross Population Extended Haplotype Homozygosity

Chapter 1

General introduction

This thesis presents the research results aiming to develop a novel approach for the identification, characterisation, and study of tropical adaptation in African poultry ecotypes. The outcomes of the research are expected to contribute to the African Chicken Genetic Gains (ACGG) programme (https://www.ilri.org/research/projects/african-chicken-genetic-gains-acgg) under the auspices of the International Livestock Research Institute (ILRI). In particular, we aim to address the current challenges of improving the village poultry productivity of local farming systems and improve the nutritional and financial security of the smallholder poultry keepers in Ethiopia by understanding the environmental constraints of scavenging systems and the genome responses against such challenges.

1.1 Context of the study

Human population growth has led to increased demand for food. Today, two billion people, or 25.9% of the global population, do not have regular access to sufficient food and are experiencing hunger (FAO, 2020a). The situation is particularly acute in Eastern Africa, where smallholder farmers are paying a heavy toll due to climatic fluctuation, including the effects of climatic changes and natural disasters (e.g. desert locust outbreaks) (WFP, 2020).

With around 112 million people, Ethiopia is the 12th most populated country in the world (UN, 2019). Roughly 80% of the Ethiopian population relies on agriculture and livestock for their livelihoods. It is a country where unforeseen climate disasters often leave many people exposed to food insecurity (FAO, 2020b). Livestock production is a crucial element of the agricultural production system in Ethiopia. The farm system is divided into smallholder mixed farming in the highlands and pastoralism in the lowlands (Kassahun & Poulton, 2014).

The poultry population plays a crucial role in the country's economy and is considered a valuable resource for improving the livelihoods of the growing Ethiopian human population (Dessie, 2011a). The Ethiopian poultry population comprises approximately 60 million chickens, 90.8% of which is represented by native breeds, 4.4% by hybrids, and 4.8% by exotic breeds (FAO, 2019). Indigenous village chickens serve as an important source of protein supply for human consumption, even though very little capital is invested in their farming. Egg sales enable poultry keepers to obtain money for their family needs, making poultry production a poverty alleviation tool (Wilson, 2010). Besides, from cultural and religious perspectives, poultry represents a particularly useful source of animal protein. It is exempt from any religious taboo, except during fasting time for the Ethiopian orthodox community, and poultry products are consumed by all ethnic groups in different social strata (Wilson, 2010). Also, poultry production is an important strategy to promote gender equality in rural areas where women often are the custodians of backyard-reared chickens and benefit from the sale of the birds and eggs (Gheye, 2000). Poultry farming in Ethiopia (and in Africa in general) is largely extensive. It is represented predominantly by a backyard scavenging or semi-scavenging production system, consisting of small chicken flocks of typically 7 to 10 mature birds per household (Pagani & Abebe, 2008; Alemu, 2008; Wilson, 2010). Indigenous chickens, reared in such smallholder farming practices, show high phenotypic diversity, including plumage colour and pattern, comb type, weight-body conformation, and eggshell size (Wilson, 2010) but often suffer from low productivity, low hatchability, and high chick mortality through predation (Manyelo et al., 2020). However, indigenous chickens have special adaptive features that make them more resistant and suitable for production purposes in harsh and variable agro-ecological environments than most exotic commercial breeds (Pagani & Abebe, 2008; Psfidi *et al.*, 2016; Muchadeyi & Dzomba, 2017).

The Ethiopian landscape includes about 50% of the African mountains, causing large variation in elevations, ranging from 126 m below sea level in the Danakil depression to 4533 m above sea level in the Semien Mountains (Asefa *et al.*, 2020). The combination of topography, soils, temperature, and rainfall in Ethiopia represents eleven Afro-tropical eco-regions. Therefore, the country has been designated a hotspot of global importance for biodiversity conservation (Olson & Dinerstein, 2002).

Indigenous chickens that show adaptation to their agro-climatic conditions are often referred to as ecotypes. However, wide variations in landscape patterns and large diversity in chicken phenotypes observed in Ethiopia represent a challenge in characterising chicken populations and defining ecotypes associated with specific agro-ecologies. Also, little is known about how the adaptive pressure of different environmental variables has shaped the genetic characteristics of these populations or potential ecotypes. Likewise, little effort has been made to characterise the ecosystems to identify the main environmental selection factors (Muchadeyi & Dzomba, 2017). Previous studies in poultry scrutinise a particular environmental stressor (e.g. elevation or heat stress) (Zhang *et al.*, 2016a; Cedraz *et al.*, 2017) or specific ecotypes (generally defined based on specific geographic regions or bearing a distinctive morphological feature) (Walugembe *et al.*, 2019).

1.2 Rationale and objectives for the study

Insights of how evolutionary forces shape the genetic diversity and adaptation of livestock species will provide useful information for conservation, management, and genetic improvement (Mignon-Grasteau *et al.*, 2005; Boettcher *et al.*, 2015). Many efforts have been made in the genetic characterisation of farm animals (Groeneveld *et al.*, 2010; Eynard, 2018; van Marle-Köster & Visser, 2018). However, indigenous chickens living in diverse agro-climatic conditions have been up to now poorly characterised. This study aims to identify and to characterise the environmental adaptation of Ethiopian indigenous chicken at genome level. A novel approach for defining ecotypes by integrating Ecological Niche Modelling (ENM) with genomic analyses is proposed. It includes a detailed characterisation of the agro-climatic conditions and the detection of signatures of positive selection.

The principal objectives of this study are as follows:

- To analyse the genetic diversity and population structure of different Ethiopian indigenous chicken populations (Chapter 2).
- To perform an environmental characterisation of the agro-ecologies where Ethiopian indigenous chickens survive and identify the major agro-climatic variables playing an important role as potential ecological stressors or adaptation drivers (part of Chapter 3).
- To define chicken "ecotypes" based on environmental characterisation of the agro-ecologies of population habitats (part of Chapter 3).
- To identify the genomic regions under strong positive selection in response to specific environmental stressors across and within the defined ecotypes (results split in Chapters 4 and 5).

Chapter 2

Genetic diversity and population structure of indigenous Ethiopian village chicken

Chapter Two

Abstract

Local chicken populations used for backyard smallholder farming in Ethiopia are adapted to the diverse agro-climatic conditions observed in the country. They show a higher tolerance for biotic and abiotic stressors than improved commercial breeds. Understanding the genomic diversity and population structure of such indigenous populations is the first step in exploring the adaptive features that have allowed them to survive in diverse agro-climatic ecologies. To this effect, the present study analyses whole-genome sequence data from 243 indigenous chicken samples from 25 different populations across diverse Ethiopian landscapes. Sequence reads were mapped against the latest chicken reference genome (GRC_g6a) to identify Single Nucleotide Polymorphism (SNP) variants. Different measures of genetic diversity were explored, including the proportion of novel variants, heterozygosity estimation, inbreeding levels, population structure based on Principal Component Analysis (PCA) and Admixture analysis, population differentiation based on Fst, and genome-wide LD structure. A total of 19.6 million SNPs were identified with 10 to 11.6 million SNPs per population and observed mean population heterozygosity ranging between 0.26 to 0.33. Except for two main groups (populations from the eastern part of the country), only a weak substructuring of the populations is observed. Even though admixture analysis suggested contributions from three major ancestral populations, low levels of pairwise population differentiations were observed with Fst values ranging between 0 to 0.12. Average LD r^2 values range between 0.2 – 0.3 across population groups, consistent with previous results on crossbreed chicken populations. These results indicate a large genetic variability but weak population structure among the Ethiopian indigenous chickens examined.

Chapter Two

2.1 Introduction

Ethiopia ranks first in Africa and tenth globally in terms of inventory of livestock populations (Getu, 2014). This includes a chicken population of around 60M, of which most are represented by indigenous breeds (FAO, 2019). Backyard farming predominantly depends on indigenous breeds due to their adaptability to local farming systems (e.g. scavenging conditions) and harsh environments. However, the Ethiopian agricultural landscape shows varied climatic conditions such as hot-arid, hot-humid, cold-arid, and cold-humid agro-ecologies, represented by 17 agro-climatic zones (Hurni, 1998). These wide diversity patterns in phenotypes and environments represent a challenge for classifying Ethiopian indigenous chickens as breeds or ecotypes. The Domestic Animal Genetic Resources Information System (DAGRIS) currently includes information on ten varieties/ecotypes of chickens from Ethiopia (Tepi, Kei, Tilili, Naked neck, Horro, Netch, Chefe, Tikur, Jarso, and Gesima) (DAGRIS, 2007).

Several studies have now examined the phenotypic and genetic diversity of Ethiopian indigenous village chickens. For example, Dessie *et al.* (2011b), and Desta *et al.* (2013), reported the phenotypic diversity of Ethiopian chickens from Horro (Western Ethiopia) and Jarso (Eastern Ethiopia) regions, which represent different agricultural farming systems and ecological landscapes. They showed that chickens display various phenotypes within populations with differences in plumage colour, pattern, size, comb shape, and skin colour (Dessie *et al.*, 2011b; Desta *et al.*, 2013). Mitochondrial DNA analyses have shown the predominant presence of two main haplogroups of sequences (Mwacharo *et al.*, 2011; Al-Jumaili *et al.*, 2020). One haplogroup, likely the more ancient one, originated primarily from the Indian subcontinent and probably reached Africa via Egypt following a terrestrial route. The second haplogroup is likely the

originally coming from as far Southeast and East Asia (Muchadeyi *et al.*, 2008; Mwacharo *et al.*, 2011; Lyimo *et al.*, 2013; Prendergast *et al.*, 2017; Al-Jumaili *et al.*, 2020). Studies examining the microsatellite and nucleotide genetic diversity of East African chicken have reported at least two (Goraga *et al.*, 2011) and possibly three (Mwacharo *et al.*, 2013a) genetic backgrounds across village chicken. Only a single study (Lawal *et al.* 2018) has examined the genetic diversity of Ethiopian chickens using full genome sequencing. This study, however, included only two Ethiopian chicken populations - Horro and Jarso. Approximately 17 million SNPs, corresponding to a density of ~16 SNPs/kb and ~13% novel variants, were identified. Average observed heterozygosity (0.31 - 0.05), the nucleotide diversity ($\pi = 0.003 - 0.004$), and *Fst* (0.11 - 0.14) suggested high genetic diversity but weak differentiation among these chicken populations (Lawal *et al.*, 2018).

Constant improvements in high throughput sequencing technologies reduce the cost of whole-genome sequencing (WGS), thereby allowing the scrutiny of the genetic diversity at a genome-wide level by sequencing many samples. This information can then be used to design breeding programs aiming to enhance productivity and performance (e.g. disease resistance, climatic resilience) while conserving important genetic diversity sustainably (e.g. preserving local ecotypes with unique environmental adaptations) (Bettridge *et al.*, 2018).

WGS analyses of chickens have also been supported by continuous development of the chicken genome reference assembly, the first avian and livestock species whose genome sequence was assembled and has had several improvements (Schmid *et al.*, 2015). The latest reference build, *GRCg6a* (*galGal6*), released in March 2018, represents a significant improvement compared to the previous build, *galGal5*. It was generated based on the single-molecule real-time (SMRT) sequencing technology of Pacific

Biosciences with a sequencing depth of approximately 80x (GRCg6a, 2018). The current reference has a total sequence length of around 1.07 Gigabase, containing 39,288 transcripts and 7,166 non-coding 16,878 coding genes, genes (https://www.ensembl.org/Gallus_gallus/Info/Annotation). In comparison, galGal5 had a full size of 1.23 Gigabases with 18,346 coding genes, 38,118 transcripts, and 6,492 non-coding genes. The use of long-read sequences not only refined the galGal6 genome assembly but also led to the improvements to *de novo* assembly algorithms, manual annotation of the assembled contigs, and integration of finished BAC clone sequences (https://www.ncbi.nlm.nih.gov/grc/chicken). These upgrades are reflected in the differences in size and number of annotation categories between galGal5 and galGal6. The galGal5 assembly includes a total of 23,869 scaffolds with 397 genome gaps and 24,692 contigs. Contrarily, galGal6 contains only 524 scaffolds with 68 genome gaps and 1,402 contigs, including 34 of the 39 chromosome pairs of the chicken (https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6). genome Also, chromosome 16, which contains the Nuclear Organising Region (NOR) and the Major Histocompatibility Complex (MHC), has major improvements in galGal6 assembly. Its total length in *galGal6* is 2.8 megabases, and the scaffold-N50 length is 1.5 megabases. The corresponding lengths in galGal5 were only 0.6 megabases and 145 kilobases, respectively (https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6#/st). Although there are still some issues regarding the latest *galGal6* chicken genome (e.g. assembly of several microchromosomes still missing) (https://www.ncbi.nlm.nih.gov/ grc/chicken/issues), this version is much more informative. It offers a new valuable resource for chicken genomic research.

This chapter reports the genetic diversity of Ethiopian indigenous chickens based on single nucleotide polymorphisms (SNPs) detected from genome sequence data on 243

10

samples from 25 different populations and using the *galGal6* reference build for mapping and variant calling. It also examines the population structure and differentiation among these populations. Together, these pieces of information provide updated baseline knowledge for the subsequent signature of selection analyses conducted in Chapters 4 and 5, aiming to understand the genomic adaptation of Ethiopian chickens to their environments.

2.2 Materials and Methods

2.2.1 Sampling and sequencing

Sampling was carried out as part of the African Chicken Genetic Gains project (https://africacgg.net/) in collaboration with the Centre for Tropical Livestock Genetics and Health (www.ctlgh.org) and the Ethiopian Institute of Agricultural Research (EIAR) (Kebede, 2018). Two hundred twenty-three adult (over six months old) chickens from 23 villages across 12 districts and six different national regions (Afar, Amhara, Gumuz, Oromia, SNNPR – Southern Nations, Nationalities, and People's Region, and Tigray) were sampled. From any household, a maximum of two birds (one male and one female) were sampled. Blood was collected from the jugular for DNA extraction (see Kebede (2018) for full details).

Twenty additional samples from Horro and Jarso populations from a previous study (Lawal *et al.*, 2018; Bettridge *et al.*, 2018) were also included, bringing the total number of samples to 243 and the number of villages sampled to 25. The sampled populations represent different Ethiopian climatic and agro-ecological zones (Table 2.1 and Figure 2.1). Whole-genome sequencing of individual samples was performed on the HiSeq 200 Illumina platform with an average coverage of ~45X.

Kebele ^a	$\mathbf{N}^{\mathbf{b}}$	Longitude	Latitude	Elevation	Mean rainfall (mm)	Mean Temperature (°C)	AEZ-16°	Traditional classification ^d	Geographic region
Adane	10	36.894902	11.074785	2280 - 2734	900 - 1000	14 - 18	cool / sub-humid	Moist dega	Amhara
AlfaMidir	10	36.865141	11.084692	3304 - 3451	> 1000	10 - 14	cold / sub-humid	Moist wurch	Amhara
Amesha Shinkuri	10	37.083	10.986	2417 - 2564	900 - 1000	14 - 18	cool / sub-humid	Moist dega	Amhara
Arabo	10	36.906	10.661	1471 - 1624	900 - 1000	18 - 20	cool / semiarid	Moist - weynadega	Amhara
Ashuda	10	36.845155	11.395002	2009 - 2103	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Amhara
Batambie	8	36.892	11.489	2003 - 2127	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Amhara
Bekele Girissa	10	36.223	10.868	1642 - 1668	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Oromya
Dikuli	10	36.165094	10.714984	2022 - 2109	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Amhara
Gafera	10	37.555	12.372	2441 - 2592	900 - 1000	14 - 18	cool / sub-humid	Moist - dega	Amhara
Gesses	9	38.834809	14.364728	1196 - 1546	< 900	18 - 24	warm / semiarid	Dry - kolla	Amhara
Gijet	9	38.774904	14.464562	1990 - 2303	900 - 1000	18 - 20	cool / semiarid	Moist - weynadega	Amhara
Hadush Adi	9	39.164709	13.334987	1417 - 1669	< 900	18 - 24	cool / semiarid	Dry - kolla	Tigray
Hugub	10	39.174911	13.244464	737 - 979	< 900	18 - 24	warm / semiarid	Dry - kolla	Afar
Jarso	14	39.565015	13.365625	1817 - 2136	900 - 1000	18 - 20	cool / semiarid	Moist - weynadega	Oromya
Kido	9	39.834715	11.254644	1281 - 1418	< 900	18 - 24	cool / arid	Dry - kolla	Amhara
Kumato	10	39.894959	11.164452	1838 - 1969	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Oromya
LocalHorro	6	39.653	10.321	1921 - 2375	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Oromya
Loya	10	39.778	10.332	1601 - 1847	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Oromya
Meseret	10	40.08476	9.404273	2248 - 2312	900 - 1000	18 - 20	cool / semiarid	Moist weynadega	Tigray
Metkilimat	10	42.164926	9.444748	1709 - 2051	900 - 1000	18 - 20	cool / semiarid	Moist - weynadega	Tigray
Mihquan	10	38.85439	8.154678	1295 - 1495	< 900	18 - 24	cool / semiarid	Dry - kolla	Tigray
Negasi Amba	10	38.795003	8.145067	2978 - 3071	900 - 1000	14 - 18	cool / sub-humid	Moist - dega	Amhara
ShubiGemo	10	38.394908	6.514992	1643 - 1651	900 - 1000	18 - 20	cool / sub-humid	Moist - weynadega	Oromya
Surta	9	38.314788	6.485064	2480 - 2575	900 - 1000	14 - 18	cool / sub-humid	Moist - dega	Amhara
TzionTeguaz	10	37.01513	9.934119	1870 - 1968	900 - 1000	18 - 20	cool / semiarid	Moist - weynadega	Amhara

Table 2.1 Analysed samples across twenty-five Ethiopian populations

(a) Village or population. Kebele is the smallest administrative unit in Ethiopia.

(b) Number of samples per population.

(c) Agro-ecological regions are defined based on the Global 16 Class classification system (Harvest Choice, 2015).

(d) Source: MoA, 2000.

Figure 2.1 Geographic location across Ethiopia of the twenty-five investigated indigenous chicken populations.

(A) Population locations against a physical map based on elevation (meter above sea level, m.a.s.l.) and (B) population locations against Ethiopian main agro-ecological zones (Harvest Choice, 2015).

2.2.2 Sequence alignment, variant calling and annotation

The sequencing reads (FASTQ format) were mapped to the reference genome GRCg6a (galGal6) using the Burrows-Wheeler Aligner (BWA-MEM) version 0.7.15 (Li & Durbin, 2009). The mapped reads (in SAM format) were further processed to remove PCR duplicates using Picard tool v2.9.0 (http://picard.sourceforge.net). Using GATK v3.8.0 (McKenna et al., 2010), a base quality score recalibration (BQSR) was performed. Variant calling was completed using the 'haplotype caller" function in GATK, followed by joint genotyping of all samples. The "joint genotyping" option was applied in order to "rescue" genotype calls at sites where a carrier has a low coverage but other samples withing the call set have a confident variant at that location (https://software.broadinstitute.org/gatk/documentation/article.php?id=4150).

A variant quality score recalibration (VQSR) was applied to minimize calling artifacts and increase the discovery of real variants. This technique uses machine learning to model the variant profile based on training sets to discover false positives according to GATK best practices recommendations (DePristo *et al.*, 2011; Van der Auwera *et al.*, 2013). Two lists of known variants were used for the VQSR step: (i) a 1 million validated SNPs (Kranis *et al.*, 2013) used as the "Training" or "Truth" set, and (ii) a set of 14 million SNPs from dbSNP (https://www.ncbi.nlm.nih.gov/snp/) as "known" set. A tranch level of 99% was used for the filtration purpose, corresponding to 99% sensitivity relative to the truth set. Only autosomal SNPs that passed the recalibration threshold were selected for downstream analyses. Further filtrations were then applied on the VQSR passed autosomal variants for the downstream genomic analyses. These included selecting only biallelic SNPs from autosomes with a missing genotype rate \leq 20%, genotype quality \geq 15, and depth of coverage \geq 3. Using Ensembl Variant Effect Predictor (VEP) platform (McLaren *et al.*, 2016), the variant's consequences were identified from Ensembl (release 98).

2.2.3 Genetic diversity and population structure

Several approaches were applied to explore the genetic diversity and population structure of the studied population. To assess the within and between population genetic diversity, VCFtools version 0.1.15 (Danecek *et al.*, 2011) was used to calculate the nucleotide diversity (π) (with the --window-pi 20000 option), inbreeding coefficient (*F*), the pairwise population differentiation (*Fst*), and heterozygosity (--het option). Heterozygosity calculation was based on the proportion of heterozygous markers in each individual and then obtaining mean values for each population. To assess the underlying population structure, Principal Component Analysis (PCA) was performed using the Eigenstrat method in Eigensoft v6.1.4 software (Patterson *et al.*, 2006; Price *et al.*, 2006). Admixture programme v1.3.0 (Alexander *et al.*, 2009) was executed to identify ancestry structure on the dataset. Cross-validation for different *K* values (i.e. number of potential ancestral gene pools) from 1 to 5 was carried out following Evanno *et al.* (2005) method.

Linkage Disequilibrium (LD) analyses were performed with a reduced set of genomewide variants rather than the full SNP collection to reduce computational burden. The reduction of the variant set was performed using the "thinning" approach in PLINK v1.9 (Purcell, 2007), keeping 30% (~ 4 M variants) of randomly selected SNPs from the original full set.

LD and haplotype block structures were measured in windows of 20 kb size using Plink software *v*. *1.07* (Purcell, 2007). For these analyses, genetically close populations (based on geographic proximity) were combined to increase the sample size. In total, six

population groups were defined with sample sizes between 10 to 90 individuals. Genome-wide pairwise r^2 metrics for SNPs within 20 kb of distance were plotted with R. The LD decay was calculated and plotted using the PopLDdecay software (Zhang *et al.*, 2019). Using the –block parameter, haplotype blocks were estimated *via* Haploview's interpretation of the block definition suggested by Gabriel *et al.* (2002). This definition denotes blocks as genome regions with a limited haplotype diversity without much internal recombination and separated by segments that show little or no LD.

2.3 Results

2.3.1 Sequencing, variant discovery and annotation

The average number of paired sequence reads per population ranged between 202 to 475 million with a mean sequence genome coverage between 22 to 44 X (Supplementary Table S2.1). Compared with the study of Kebede *et al.* (2018), where *galGal5* was used as a reference genome, we obtained a similar mapping rate (98 – 99%) (Supplementary Table S2.1). About 19.6 million high-quality SNPs were detected (after VQSR filtration) from whole-genome sequence analyses of the 25 Ethiopian populations. The variants were distributed in the genome with an average density of 19 SNPs per kb or 1 SNP per every 52 bases. After applying the extra filtration parameters (see Materials and Methods), over 14 million SNPs (n=14,091,055) were retained.

The number of SNPs across populations was similar, varying between 10 to 11.6 million, with the lowest number detected in Hugub and the highest number in Kumato (Table 2.2). Between 10% to 11% of the SNP are novel in each population. When all Ethiopian chicken populations are lumped together, 29% of the entire SNPs set (5.6 million out of 19.6) are novel.

As a measure of quality control, Ts/Tv was calculated. We observe a Ts/Tv ratio of around 2.4 - 2.5 across populations and 2.4 when all populations are analyzed as a whole (Table 2.2). DePristo *et al.* (2011) state that Ts/Tv ratio should be about 2.1 for whole-genome sequencing and can be used to validate SNP discovery. If it is lower, the data might include false positives caused by random sequencing errors. Previous studies in chicken have found similar Ts/Tv ratios to ours, e.g. 2.53 (Derks *et al.*, 2018) and 2.31 (Boschiero *et al.*, 2018).

Population	Ν	nSNPs	Novel (%)	Ts/Tv	Singletons (%)
Adane	10	11,231,204	11.11	2.48	21.44
Alfa Midir	10	10,539,558	11.38	2.49	22.41
Amesha Shinkuri	10	11,211,292	11.39	2.48	18.59
Arabo	10	10,958,190	11.23	2.48	21.92
Ashuda	10	10,804,200	11.5	2.48	18.04
Batambie	8	10,682,327	10.68	2.48	20.61
Bekele Girissa	10	11,310,581	11.01	2.48	19.34
Dikuli	10	11,265,455	11.15	2.48	19.44
Gafera	10	11,135,900	11.44	2.48	18.77
Gesses	9	10,337,743	11.42	2.48	20.82
Gijet	9	11,046,899	10.79	2.48	19.06
Hadush Adi	9	10,213,712	10.08	2.49	20.37
Hugub	10	10,034,153	10.69	2.48	14.43
Jarso	14	11,155,696	10.63	2.49	17.92
Kido	9	10,543,102	11.09	2.48	18.96
Kumato	10	11,606,289	11.46	2.48	18.19
Local Horro	6	10,170,097	10.18	2.48	26.36
Loya	10	11,078,600	11.12	2.48	19.71
Meseret	10	11,419,999	10.92	2.48	18.29
Metkilimat	10	11,295,871	10.96	2.48	18.63
Mihquan	10	11,428,789	10.83	2.48	17.84
Negasi Amba	10	10,535,898	11.21	2.48	20.63
Shubi Gemo	10	11,217,239	10.82	2.48	17.04
Surta	9	10,984,861	10.42	2.48	20.73
Tsion Teguaz	10	10,954,331	11.16	2.48	19.17
Overall value (All populations)	243	19,571,070	29.02	2.48	0.09

Table 2.2 SNPs summary statistics for the studied chicken population.

N = number of samples analyzed; nSNPs = total number of SNPs retained after filtration (see Material and Methods); Novel SNPs (%) = non-reported SNPs in dbSNP; Ts/Tv = transition/transversion ratio; Singletons (%) = singleton variant identified
The proportion of singleton SNPs from different populations varied from 14.43% in Hugub to 26.36% in local Horro (Table 2.2). Differences might be a function of the number of studied samples in each population and how genetically diverse they are. These large proportions of singletons reflect the small sample size (6-10 individuals) analysed per population. Therefore, when the entire set of Ethiopian samples are considered, the proportion of singletons reduces drastically to only around 0.09%.

The overall SNP density observed in different chromosomes is presented in Figure 2.2. The lowest SNP density is observed in chromosomes 31 and 16, and the highest in chromosome 26, followed by chromosome 6. A chromosome-wise heatmap of SNP density in 10 kb windows across the genome is presented in Figure 2.3. A range between 100 to 200 SNPs is more commonly found every 10 kb, although there are also many SNP void regions (red areas). Chromosomes 16, 22, 30, 31, 32, and 33 (with many void regions), display a smaller SNP density (< 50 SNPs for 10 kb window) compared to other chromosomes. This may be caused by low coverage due to sequencing difficulties or mapping issues due to high repeat content (Li *et al.*, 2011a).

Figure 2.2 Mean SNPs density (SNP count/kb) per chromosome in Ethiopian indigenous chicken. (Based on 19.6 million SNPs detected from all 25 populations).

Figure 2.3 Chromosome-wise SNP distribution heatmap across the Ethiopian indigenous chicken genome based on 19.6 million SNPs.

(X-axis denotes the chromosome size in base pairs (bp), and Y-axis the chromosome number). The SNP count was calculated for a 10 kb window size.

Among the 19.6 M SNPs, intergenic (37.8%) and intronic (45.5%) variants are the most common (Figure 2.4). Exonic variants represent 1.5% of the total detected SNPs. Among the exonic SNPs, 73% are synonymous, 26% non-synonymous, 0.3% stop gain and 0.03% stop loss. The majority of the SNPs (between 34% to 0.2%) from all annotation categories belong to low-frequency category of 0 - 0.2. Only a small proportion of the SNPs (between 3.5% to 0.02%) have a high frequency of 0.8 - 1 (i.e.

near fixation). Of these high-frequency SNPs, a total number of 4,771 non-synonymous, 28 stop-gain, and 12 stop-loss SNPs are identified. These categories potentially have a functional impact, and high frequency may suggest they may have some beneficial adaptive roles.

Figure 2.4 Alternate allele frequency distribution by annotation category for the complete set of detected SNPs (~19.6 million) in Ethiopian indigenous chicken populations

2.3.2 Genetic diversity

Genetic diversity within and among populations was investigated in a number of ways. Figure 2.5 shows the population-wise mean observed heterozygosity, which varied from 0.26 to 0.33. The local Horro and Batambie populations have the highest average heterozygosity (0.33), followed by Hugub (0.32). The lowest observed heterozygosities are reported for the Jarso population (0.26), Dikuli (0.28), and Metkilmat (0.28).

Figure 2.5 Proportion of observed heterozygous variants across the studied Ethiopian indigenous chicken populations.

To further examine the genetic diversity within populations, two other genetic parameters were measured, *viz* the inbreeding coefficient (*F*) and the nucleotide diversity (π) (Table 2.3). Average inbreeding coefficients range from 0.6% (Batambie) to 10.4% (Metkilimat). Majority of the populations show inbreeding below or near 5%, whereas only five populations show values ~10%. The average nucleotide diversity across the investigated populations indicates that the Alfa Midir population displays the lowest average value ($\pi = 0.0032$). In contrast, Bekele Girissa, Kumato, Meseret, Mihquan, Shubi Gemo, and Surta have the highest value ($\pi = 0.0038$). These values are similar to those obtained in previous studies for indigenous chicken (Luo *et al.*, 2020a; Sun *et al.*, 2021).

Population	Inbreeding coefficient F	Nucleotide diversity π
Adane	0.0245	0.0036
Alfa Midir	0.0082	0.0032
Amesha Shinkuri	0.0784	0.0037
Arabo	0.0232	0.0034
Ashuda	0.0155	0.0035
Batambie	0.0064	0.0037
Bekele Girissa	0.0059	0.0038
Dikuli	0.1007	0.0037
Gafera	0.0553	0.0036
Gesses	0.0313	0.0033
Gijet	0.1039	0.0037
Hadush Adi	0.0971	0.0037
Hugub	0.0283	0.0034
Jarso	0.0507	0.0033
Kido	0.0744	0.0035
Kumato	0.0098	0.0038
Local Horro	0.0543	0.0036
Loya	-0.0002	0.0037
Meseret	0.0419	0.0038
Metkilimat	0.1044	0.0037
Mihquan	0.0334	0.0038
Negasi Amba	0.0133	0.0033
Shubi Gemo	0.0185	0.0038
Surta	0.1025	0.0038
Tzion Teguaz	0.0716	0.0035

Table 2. 3 Mean inbreeding co-efficient (F) and nucleotide diversity (π) for each of the 25 studied chicken populations.

2.3.3 Genetic differentiation and population structure among Ethiopian chickens These analyses were performed using 14 million autosomal SNPs after applying further filtration on VQSR-passed 19.6 million SNPs (see Materials and Methods).

To examine the population divergence among chicken populations, *Fst* values were estimated. A pairwise-population differentiation (*Fst*) among all 25 populations is presented in figure 2.6. As a general rule, *Fst* < 0.05 between populations would indicate little genetic differentiation, 0.05-0.15 as moderate genetic differentiation, and > 0.15 as large differentiation (Hartl & Clark, 1997; Balloux & Lugon-Moulin, 2002). The figure shows a heat map indicating that the population differentiation is generally quite low, varying between 0 to 0.12. Only Jarso and Hugub populations show a consistent

population differentiation of 0.1 against the rest of the populations, whereas values below 0.1 are present for almost all other pairwise comparisons.

Figure 2.6 Heat map of pairwise weighted Fst values among chicken populations. The right panel explains the *Fst* value (colour) in relation to population differentiation.

The population structure was investigated by principal component analyses (PCA). The first, second, and third principal components accounted for 21.89%, 15.75%, and 10.53% of the proportion of variation among the 25 chicken populations (Figure 2.7a and b).

Figure 2.7 Principal component analyses: (a) PCA *vs* PC3 and (b) PC1 *vs* PC3 for Ethiopian chicken populations.

PC1 explains 21.89% of the total variation and clearly differentiates Jarso and Hugub from the remaining populations. PC2, with 15.75% of the variation, separates Metkilimat, Hadush Adi, Mihquan, Gijet, and Meseret populations from Gesses, Kido, Gafera, Horro, TzionTeguaz, Dikuli, Amesha Shinkuri, Batambie, Ashuda, and Surta (Figure 2.7a). However, PC3 (10.53% of variation) gathers most of these populations together in a single group (Figure 2.7b).

2.3.4 Admixture analysis

The genetic ancestry and admixture of the populations were explored through admixture analysis. We investigated 2 to 5 possible *K* values or ancestral gene pools (Figure 2.8). According to the cross-validation test (Evano *et al.*, 2005), the K = 3 is the best number of genetic ancestry for the Ethiopian chicken populations investigated (Supplementary Figure S2.1). K = 3 clearly separates Jarso and Hugub from the other populations.

Figure 2.8 Admixture analyses of the 25 Ethiopian chicken populations (K = 2 to 5). Populations are demarcated with dashed lines.

Chapter Two

2.3.5 Linkage disequilibrium (LD)

LD can be understood as a non-random assortment of alleles at different loci (Qanbari *et al.*, 2020). It can be influenced by diverse evolutionary forces like migration, selection, genetic drift, mutation, and recombination (Ardlie *et al.*, 2002; Karimi *et al.*, 2014). Therefore, scrutinizing LD levels is relevant to genetic diversity analyses since it is the first step towards understanding how demographic and evolutionary forces have shaped the LD structure of the genome. LD-based haplotype analyses provide an important platform for analysing signatures of selection in the genome. LD analysis is also important to assess how many markers are necessary to perform whole-genome association studies (Ardlie *et al.*, 2002). Moreover, for livestock species, LD is the basis of genomic selection, marker genotype imputation, marker-assisted selection (MAS), and quantitative trait loci (QTL) mapping (Nosrati, 2017).

Previous studies have shown an LD calculation bias due to small sample size and variance, particularly for LD-block calculations (Osabe *et al.*, 2007; Hong & Park, 2012; Hui & Burt, 2020). Therefore, six population groups were defined based on geographic closeness to increase the sample size in calculating LD decay and LD block (Figure 2.9). As an LD measure, we used a squared correlation coefficient between SNP pairs (r^2) (Hill, 1974) instead of D' (Lewontin, 1964). The (r^2) score is known to be less sensitive to changes in effective population size and allele frequencies (Zwane *et al.*, 2016).

The number LD (r^2) between adjacent SNPs at distances up to 1 Mb was calculated for each population group. In the majority of the cases (73% - 87% of pairwise comparisons), large LD values ($r^2 = 0.8$ -1) were observed only for SNP pairs within 2 kb distance (Figure 2.10). Using $r^2 = 0.8$ as a threshold, no LD extended beyond 25 kb (see Supplementary Table S2.2). LD decay plots (Figure 2.11) also show that the r^2 values decrease rapidly after a 1-2 kb distance between variant pairs. With the increase of distances between variants, the r^2 values gradually reduced. Among the population groups, the average r^2 reached 0.2 between 1 kb to 2 kb for groups 3, 4, 5, and 6. In groups 1 and 2, r^2 is close to 0.25 - 0.3 within 1 kb to 2 kb distance.

Figure 2.9 Geographic distribution of Ethiopian chicken populations denoting population groups defined for LD calculations.

Overall, the proportion of highly linked SNP (i.e., with r2 = 0.8-1) at different distances is similar between population groups except for group 1 (consisting of only 14 samples from the Jarso population) and group 2 (10 samples of Hugub population only) (Figure 2.10). Differences are most likely due to the small number of samples in groups 1 and 2 compared to the other clusters.

Figure 2.10 Proportion of SNP pairs showing high LD ($r^2 = 0.8 - 1$) in the six population groups across different kb distances.

The table at the bottom summarises the number of samples and SNPs used for LD analyses.

Similar to Figures 2.10 and 2.11, the distribution of haplotypes (based on LD estimation) across the genome (Figure 2.12) shows that most of the haplotype blocks (~ 90%) have a size < 2 kb for all the studied groups, and only a very small proportion (0.02% - 0.03%) have a size > 100 kb. The longest identified haplotype block is ~ 200 kb in length. The number of SNPs in the blocks ranges from ~5 to 1018 (Supplementary Figure S2.2). In all groups, between 80% to 90% of the haplotype blocks contain less than 5 SNPs and between 0.05 % to 0.06% more than 100 SNPs, consistent with the blocks' size as presented in Figure 2.12.

Figure 2.11 LD Decay trend in different Ethiopian chicken population groups. Based on average r^2 from variants within 15 kb across all autosomes.

The largest haplotype block of ~200 kb was detected on chromosome 8 (position 9070505 – 9270269 bp). It also showed many SNPs in groups 4 (660 SNPs), 6 (614 SNPs) and 5 (370 SNPs). This is a pericentromeric region with a small physical distance to the centromeric region in chromosome 8 (position 9300300 – 9800800), influencing the recombination rates in this genomic area, increasing the LD. The centromere is a complex structure that plays a central role in chromosome integrity and cell division (Barra & Fachinetti, 2018). Normally, regions around the centromere have large LD due to suppressed recombination (Bhakta *et al.*, 2015).

The blocks with the highest number of SNPs were further investigated. This block corresponds to a 159.7 kb region in chromosome 14 (position 14015491 – 14175264 bp). This block was identified in group 1 (Jarso), with 1018 SNPs. Interestingly, a haplotype block overlapping the same region was identified for group 3 (543 SNPs, 66.18 kb), group 4 (745 SNPs, 81.18 kb), group 5 (746 SNPs, 68.28 kb), and group 6 (829 SNPs, 93.34 kb). This region overlaps with the gene *JPT2*, which is a protein-coding gene involved in microtubule function (Karpova *et al.*, 2006) and playing an important role as a component of the NAADP receptor complex that is essential for pore channel signalling and control of viral cell entry (Gunaratne *et al.*, 2021).

Figure 2.12 Number of LD blocks per range size identified in the six population groups. X-axis delimits range size in kb.

2.4 Discussion

By analysing whole-genome sequence data from 245 Ethiopian indigenous chickens, this chapter reports the discovery of millions of SNPs. It explores the genetic diversity and structure of 25 chicken populations from which these samples originated. Almost a third of the total number of SNPs identified in the present study (29% of 19.6M) are novel variants, which will be submitted to the European Variation Archive (EVA) and, therefore, will increase the global knowledge regarding the diversity of the chicken genome.

The sequence data in the present study were mapped against the latest version of the chicken reference genome (GRCg6a or galGal6). The SNP density found in this analysis (19 SNPs per kb) is smaller compared to that (21 SNPs per kb) reported for the same populations in a previous study by Kebede (2018) using galGal5 as a reference. It is possibly a consequence of the improved quality of the latest genome assembly galGal6. In contrast, the SNPs density obtained in this study is higher than the density observed in experimental and commercial chicken populations (15 SNPs per kb) (Gheyas et al., 2015). However, both these studies analysed a similar number of samples for SNP detection. This reflects greater genetic variability in the Ethiopian indigenous populations compared to commercial lines. While for most of the chromosomes, the mean SNP density is similar (ranging between 14 and 23 SNPs per kb), a few microchromosomes viz. chr16 and chr30 – 33 show a much lower density (6 - 12 SNPs)per kb). Possibly the legacy of repetitive and/or GC-rich sequence regions at these chromosomes as well as differences in recombination rates may have resulted in mapping and/or sequencing issues. (Burt, 2005; Benjamini & Speed, 2012). In Addition, chromosomes 30 - 33 are the smallest microchromosomes of the chicken genome. Some still unmapped contigs might belong to these chromosomes (Solinhac et al., 2010). Considering that the reference genome used in this study (GRCg6a) does not show the full repertoire of variations in the genome due to missing genomic regions, technical errors of assembly, etc., a pangenomic approach could be applied to cover all genomic variants on the chicken genome (Vernikos, 2020). This method, permits the studying a set of all genes that are present in all genomes of an analyzed dataset. This could permit avoid missing data and possible missinterpretation of the results obtained when SNP data is explore.

The genetic diversity architechture of the sex (W/Z) chromosomes are different relative to the autosomes due to differences in the mutation rate and present non-estatic pseudoautosomal regions (Wilson, 2018). Several reasons were taking into account for excluding W/Z chromosomes in this study. First, the assembly of sex crhomosomes may not be perfect. These have low level of heterozygosity (Xu & Zhou, 2020), so many false positive will likely appear. Second, our data set comprises both male and female samples with different sex chromosomes schemes, which would require separate treatment of the sex chromosomes form the rest of the genome. However, further analysis should be carried out on this regions with attention on the mutation rates to avoid understimation of accumulated variation.

Considerable genetic variation within the studied chicken populations was also evidenced through the observed heterozygosity (0.26 - 33). Heterozygosity is an important factor for estimating the genetic variability in domestic animals (Zhang *et al.*, 2018). Thus, the fact that Ethiopian indigenous chickens display reasonable levels of heterozygosity reflects their genetic potential to adapt to diverse and changing natural environments (Groeneveld, 2010) and their importance as genetic resources. Genetic diversity in these indigenous populations also suggests great potential for improvement through breeding programmes.

Two parameters, inbreeding coefficient (*F*) and nucleotide diversity (π) were also calculated to assess the genetic diversity across the studied populations. Previous studies have evidenced that livestock species have suffered from strong inbreeding due to artificial selection followed by a decline in their genetic diversity (García-Gómez *et al.*, 2012; Kim *et al.*, 2013). Ethiopian village populations are managed and traded at a local scale (Manyelo *et al.*, 2020). Despite this, the level of inbreeding coefficient in

33

most of the studied Ethiopian populations is low (below 5%), and only in few populations the values go ~10%. Inbreeding coefficients less than 5% do not represent substantial harm at the population level, while values higher than 10% may significantly affect individual fitness by accumulating deleterious mutation (Wright *et al.*, 1992; Slate *et al.*, 2004). The Ethiopian indigenous populations studied here also display similar nucleotide diversity values ($\pi \sim 0.003$) to values previously reported for other indigenous chicken populations (Luo *et al.*, 2020a; Sun *et al.*, 2021).

Although substantial genetic variations are observed within the studied populations, not much genetic differentiation was observed among the populations based on *Fst*, PCA, and admixture analyses. Only the Jarso and Hugub populations show some genetic differentiation with the rest of the populations. It is likely a legacy of the ancestral origin and dispersal of chicken across the African continent. Two routes of chicken dispersal have been reported (Mwacharo *et al.*, 2013b), one through the northeast of the mainland with an entrance in Egypt. The second involved maritime introduction along the East African coast that came directly from the Indian subcontinent. These two migrational paths are consistent with the main groups detected in Ethiopian village chickens. Jarso and Hugub populations are located in the East of Ethiopia, closer to the coast. In contrast, the other populations were sampled from the center, the western and the northern parts of the country. Admixture analyses show three genetic backgrounds, which may be reflecting the two chicken migration waves plus a third genetic background still unknown.

This study also explores the LD and haplotype structures of the studied chicken populations as part of the genetic diversity analysis. Previous studies reported average $r^2 = 0.3-0.4$ between adjacent SNP (separated by less than 5 Mb) across autosomes in pure chicken lines, and crossbred populations displayed $r^2 \approx 0.24$ (Fu *et al.*, 2015). In

34

general, previous studies have shown that the crossbred populations display smaller haplo-block sizes compared to the pure commercial lines (Fu *et al.*, 2015). Larger haploblocks in pure commercial lines usually occur under intense artificial selection (Ardlie, 2002). The LD structure observed in Ethiopian indigenous chicken populations is similar to that of crossbred populations ($r^2 = 0.2 - 0.3$). The low LD levels found in the analysed population may suggest high levels of gene flow and possibly high recombination rate in the genome, increasing genetic diversity.

2.5 Conclusions

This chapter documents the genetic diversity and population structure of a large number of Ethiopian indigenous chicken populations, representing diverse agro-climatic conditions. Results clearly illustrate the presence of significant genetic diversity but a low level of population structure or differentiation. The large genetic variability denotes the adaptive capacity of these populations to the diverse agro-ecologies observed in Ethiopia and the potential for breeding improvement. On the other hand, low betweenpopulation differentiation indicates that selection signature analyses (as presented in later chapters) will have a lesser burden of false positives from the population structure effect. The results presented in this chapter represent the first stage of exploring the genomic-environmental adaptations to the diverse Ethiopian landscape. Chapters 4 and 5 will consider the information presented here to achieve the signature of selection analyses and identify the possible genomic marks as a response to the environmental pressure.

Chapter 3

Ecological niche modelling for environmental characterisation of indigenous Ethiopian village chickens

Chapter Three

Abstract

Livestock populations in different geographic areas are often referred to as ecotypes. In evolutionary ecology, an ecotype is a population that is genotypically adapted to specific environmental conditions. However, livestock ecotypes are often arbitrarily defined based on their geographic origin or morphological features rather than a detailed environmental characterisation of their habitats. Using an Ecological Niche Modelling (ENM) approach (MaxEnt), this chapter presents a novel framework for defining livestock ecotypes through a detailed environmental characterisation of population habitats. The framework is developed and illustrated through the environmental characterisation of 25 indigenous chicken populations from across the diverse Ethiopian landscape and climatic conditions. Important features of the framework include: (i) a pipeline for selecting key environmental variables in population habitats, (ii) optimising model parameters of the ENM to maximise its predictive performance, (iii) predicting the distribution of suitable niche for each population across the Ethiopian landscape, and, finally, (iv) clustering of the studied populations into potential ecotypes based on niche similarity. The study identifies six environmental variables from an initial set of 34 agroclimatic variables as important predictors of the agro-ecology (habitat) of Ethiopian indigenous chicken populations. Characterisation of the habitats, followed by the clustering of populations living within similar habitats, allowed us to propose twelve different Ethiopian ecotypes. These ecotypes represent the population entities, which will be further characterised in Chapter 5 for the signatures of environmental adaptation at genome-wide level. The approach presented here provides a new tool for identifying, managing and conserving locally adapted populations.

Chapter Three

3.1 Introduction

Environmental changes such as climate, feed resources, water availability, and disease pressure affect a species' adaptive response (Godber & Wall, 2014). Such response shows extensive variation due to genetic variability, phenotypic plasticity, and evolutionary potential (Manel & Holderegger, 2013). Therefore, understanding how different breeds or populations of livestock species may respond to environmental variation has a major implication for their conservation, sustainable utilisation, and productivity improvement (Dunn & Milne, 2014).

Indigenous populations of livestock species surviving in diverse geographic areas show adaptation to the unique conditions of their local environment. Such locally adapted populations of a species are referred to as ecotypes (Williams, 1966; Köhler-Rollefson, 2001). These ecotypes represent important genetic resources for the sustainable development of the livestock sector in the face of rapid global climate changes. In particular, these ecotypes may hold solutions for achieving climate resilience for sustainable productivity of the livestock sector and, accordingly, may contribute to food security (McDermott *et al.*, 2010; Harvey *et al.*, 2014).

In livestock species, ecotypes have generally been defined based on broad agro-climatic conditions linked to the geographic origin of breeds/populations or on some morphological features, which may or may not be related to environmental selection pressures (Tadelle *et al.*, 2003; Muchadeyi, 2007; Goraga *et al.*, 2011; Lyimo *et al.*, 2013; Keambou *et al.*, 2014; Sanarana *et al.*, 2016). For instance, Tadelle *et al.* (2003) studied five inferred Ethiopian chicken ecotypes defined by their geographic origins. Sanarana *et al.* (2016) investigated five Nguni cattle populations from South Africa (Makhathini, Pedi, Shangaan, and Venda), differentiated by their broad phenotypic differences as

ecotypes. Until now, livestock ecotypes have been defined rather 'loosely' with no standardised approach in relation to their environment.

Adaptation to the local environment results from the interaction of many biotic and abiotic factors. Considering only a single or few environmental factors (e.g. adaptation to altitude or heat stress) in defining ecotypes fails to acknowledge other elements' contribution in the adaptation process. Since the core concept of an ecotype is an adaptation to a specific ecosystem, the more logical approach in defining an ecotype should be a detailed environmental characterisation of the agro-ecology (habitat). Populations may then be grouped as ecotypes based on habitat similarity. Then, the signature of adaptation may be investigated in the genomes of these ecotypes.

However, an agro-ecosystem or agro-ecology characterisation is inherently complex, considering the expected relationships and interactions between many environmental variables. A modelling-based approach may be used to untangle the relationships between the environmental variables to address this issue.

Ecological Niche Modelling (ENM) has been extensively applied for predicting the distribution of wild species and crop plants. Using environmental data from known species-presence locations (and species-absence sites), such modelling predicts a species' potential geographical range across a landscape. It also estimates the contribution of environmental variables in the niche of a species. As a result, ENM has been a powerful tool in the conservation efforts of wild species (Thorn *et al.*, 2009). It has also been used to evaluate the risk from invasive species (Jiménez -Valverde *et al.*, 2011), for epidemiological studies (Cardoso-Leite *et al.*, 2014), and to study the effect of climate change on the future distribution of a species (Jeschke & Strayer, 2008). However, its application to livestock species has been rare. Recently ENM has been

applied to study the habitat suitability of two exotic chicken breeds across the Ethiopian landscape (Lozano-Jaramillo *et al.*, 2018) to identify suitable habitats for their introduction.

MaxEnt (Phillips *et al.*, 2006) is the most widely used method for ENM, which uses presence-only data. The program applies a maximum entropy-based machine learning algorithm to predict species distribution by contrasting environmental parameters of species-presence locations against the rest of the study region - called the "background" - for which no presence/absence information is available. Although MaxEnt has been extensively applied in wild species, many of these studies have used it as a 'black box' by using mostly its default settings (Morales *et al.*, 2017). However, the default settings can be far from optimum, leading to overcomplex or over-simplistic models (Morales *et al.*, 2017; Yackulic *et al.*, 2013). Therefore, a careful selection of model parameters is required to achieve the best predictive power.

In this chapter, we develop a framework for identifying livestock ecotypes using ENMbased environmental characterisation with the MaxEnt program. Within the framework, we first describe the methods for selecting important environmental variables and optimum model parameters. Using these variables and model parameters, we then predict the niche distribution of the studied populations across a landscape, followed by clustering the populations based on their niche similarity to define distinct ecotypes. Finally, we discuss the potential applications of this modelling approach for livestock farming and management. These critical steps of the modelling and the framework are illustrated in indigenous Ethiopian chicken populations. The approach, however, should be equally applicable to any other livestock species.

3.2 Material and Methods

3.2.1 Populations sampled and environmental parameters

The Ethiopian landscape may be characterised by its altitudinal topography ranging from 126 m below sea level to 4620 m above sea level and climate variation with one or two rainy seasons separated by dry seasons. As a result, the country displays diverse agro-ecological zones and subzones (Mengistu, 2006). The 25 indigenous chicken populations analysed here (already described in Chapter 2) are spread across these several agro-ecological zones (Table 2.1 and Figure 2.1 of Chapter 2). The geographic coordinates (latitude and longitude) of the village sampled for each chicken population were recorded. In addition, for the purpose of the ecological modelling, nine other geographic coordinates in additional grids (separated by 1.2 km²) were selected for each sampling village using Google Earth Pro 7.3.1.4507 (Google, 2016); this resulted in 250 data points across the 25 populations.

The environmental data – climatic and agro-ecological – were obtained from public databases. These were initially chosen as deemed important in terms of chicken production and biology. The data were accessed from these databases at a spatial resolution of 30 seconds (~1 km²) (Table 3.1). Climatic data on temperature, precipitation, and water vapour pressure at different seasons were extracted from the WorldClim database (http://www.worldclim.org; v1 and v2) (Hijmans *et al.*, 2005; Fick & Hijmans, 2017). SoilGrids1km v0.5.8 database was used to access seven different major soil groups and soil properties (Hengl *et al.*, 2014). The total water capacity of the soil (mm water per 1-meter soil depth) was obtained from the Spatial Data Access Tool (SDAT; ORNL DAAC 2017) from NASA (Batjes, 2000) with a 0.5-degree grid. The 'Harmonized World Soil Dataset - Land Use and Land Cover' with 30 arc-second rasters

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009) was used to access data on total cultivated land, forest land, and grass/shrub/woodland variables (Fisher *et al.*, 2008). The crop dominance variable was accessed from the Global Food Security Analysis-Support Data (GFSAD30, 2017; Teluguntla *et al.*, 2014).

For each environmental variable raster layer, the grids' dimension and extension were corrected and homogenised for 1 km² based on the Earth-fixed terrestrial reference system and geodetic datum WGS84 using 'rgdal,' 'maptools,' 'rgeos,' and 'raster' R packages.

	Variable	Description	Units	Database
Climatic variables	bio1	Annual Mean Temperature	°C	WorldClim - Global climate data http://worldc lim.org
	bio2	Mean Diurnal Range	°C (bio2/bio7)	
	bio3	Isothermality	°C	
	bio4	Temperature Seasonality	°C	
	bio5	Max temperature of the warmest month	°C	
	bio6	Min temperature of the coldest month	°C	
	bio7	Temperature annual range	°C (bio5 - bio6)	
	bio8	Mean temperature of the wettest quarter	°C	
	bio9	Mean temperature of the driest quarter	°C	
	bio10	Mean temperature of the warmest quarter	°C	
	bio11	Mean temperature of the coldest quarter	°C	
	bio12	Annual precipitation	mm/m ²	
	bio13	Precipitation of the wettest month	mm/m ²	
	bio14	precipitation of the driest month	mm/m ²	
	bio15	Precipitation seasonality	mm/m ² (Coefficient of variation)	
	bio16	Precipitation of the wettest quarter	mm/m ²	

Table 3.1 Climatic and agro-ecological variables used for the ENM analysis of the Ethiopian chicken populations.

	bio17	Precipitation of the driest quarter	mm/m ²		
	bio18	Precipitation of the warmest quarter	mm/m ²		
	bio19	Precipitation of the coldest quarter	mm/m ²		
	WatVapPress01	Water vapor pressure of the wettest month	kPa		
	WatVapPress08	Water vapor pressure of the driest month	kPa		
	Elevation	Meters above sea level	m.a.s.l.		
	soil_pH	Soil pH	pH (x10 in H ₂ O)	Global gridded soil information <u>https://soilgr</u> <u>ids.org</u>	
	CatEx_Capacity	Cation Exchange capacity	cmolc/Kg at depth 0.00 m		
	BulkD	Bulk Density	Kg/m^3 at depth 0.00 m		
	Organic_Carbon	Soil organic carbon content	g/Kg at depth 0.00 m		
es	Clay	Clay content	mass fraction in %		
ariab	Silt	Silt content	mass fraction in %		
Soil v	Sand	Sand content	mass fraction in %		
•1	Water Capacity	Total available water capacity	mm ² /1 mt soil depth	Spatial Data Access Tool (SDAT) - NASA <u>https://webm</u> <u>ap.ornl.gov/</u> <u>ogc/wcsdow</u> n.jsp?dg_id=	
Vegetation variables	Forest	Forest cover	%	Harmonized World Soil Dataset <u>http://www.f</u>	
	Grass	Grass/shrub cover	%	ao.org/soils- portal/soil- survey/soil- maps-and- databases/ha rmonized- world-soil- database- y12/en/	
	Land_Use	Land use for agricultural purposes	%		
	Сгор	Crop dominance (major crops)	Category	Global Food Security Analysis- Support DATA https://www. croplands.or g/	

3.2.2 Exploration of the agro-climatic variables

First, the contribution of the environmental variables on the habitat/niche structure of the studied populations was investigated by Principal Component Analysis (PCA) using the R package 'stats.' Then two complementary approaches were employed to explore the environmental data with the aim to select a shortlisted set of variables for the MaxEnt modelling. The normality of the variables and their correlations were assessed by estimating the Shapiro-Wilk test and Spearman's rank correlation coefficients, respectively in RStudio v1.1.419 (R Core, 2013). Outputs of these tests were plotted (Kasambra, using the R package 'ggpubr' 2017). The R package 'MaxentVariableSelection' was used to identify the most important uncorrelated variables with a relatively large contribution in the habitat structure of Ethiopian indigenous chickens (Jueterbock al., 2016). Arguments for running et MaxentVariableSelection were: maximum correlation threshold of 0.6, minimum contribution threshold of 4% for each variable, and regularization multiplier (RM) values ranging from 0.5 to 15 with an increment step of 0.2. Model performance was assessed with the AUC (Area Under the Receiving Operator Curve) and AICc (Akaike Information Criterion corrected for small samples) values generated during the analysis.

3.2.3 MaxEnt modelling

To achieve the best predictive power, we initially applied MaxEnt v3.4.1 (Phillips *et al.*, 2006) using different combinations of "feature" classes (FCs: linear, quadratic, product, hinge, categorical, and threshold) and regularization multiplier (RM) values (from 0.1 to 6 with steps of 0.5). Then, based on AICc values, the best combination was chosen with the ENMeval package (Muscarella *et al.*, 2014) for the final model. All sampling points and selected environmental variables in the previous step were used for preliminary and final models.

MaxEnt split presence points (coordinates) into 'training' and 'test' data. The training data is used to create the model, whereas the test data is used to assess the model accuracy. The best method for partitioning the occurrence or presence data (block, checkerboard, checkerboard2, jackknife, and randomKfold) for training and testing purposes was evaluated with ENMeval.

Using the optimal model parameters and filtered set of variables, ENM was run for individual populations by using a sub-sample of 25% as test data while retaining the remaining 75% as training data. Two outputs - logistic (presence probability) and cumulative (omission rate) - were produced, but the cumulative logarithmic scale was used to plot the habitat suitability maps. Among the different model performance measures generated by MaxEnt, the AUC value was used to test how well a model predicted the habitats' potential suitability. The AUC values were interpreted as follows: AUC > 0.5 has higher than random predictive power, AUC = 0.5 as a random predictor, and AUC < 0.5 as worse than a random predictor (Jiménez-Valverde, 2012). A jackknife assay was performed for the test and training data to assess the variables' importance and contribution.

3.2.4 Classifying populations into potential ecotypes

Populations with similar habitat suitability maps from the MaxEnt modelling were grouped to define chicken ecotypes. Different approaches were applied to measure the similarity between suitability maps using the ENMtools Perl software (Warren *et al.*, 2010; Warren & Seifter, 2010). The first assessment was a pairwise Pearson correlation between suitability map files (ASCII raster files). Correlation coefficient values range between +1 and -1, where 1 is a total positive linear correlation, 0 is no correlation, and -1 is a complete negative correlation. The second evaluation was the niche similarity

statistic "I," which ranges from 0 (no overlap) to 1 (identical niche models) (Warren *et al.*, 2010). Suitability maps from MaxEnt logistic output were used for the pairwise comparisons as ENMtools only used this output. Finally, the grouping of the populations based on niche similarity was performed based on hierarchical clustering (R package 'cluster'). For this, the correlation coefficients and the niche overlap values were converted into "Euclidean" distance using the R package 'stats.' Different hierarchical clustering approaches (minimum and maximum linkage, UPGMA, and Ward method) were evaluated to measure the cluster strength based on their agglomerative coefficients. The Ward method produced the highest agglomerative score, and then it was used for the final clustering of the investigated populations. Dendrograms and heatmaps for each similarity based on the above approaches and their visual confirmation constituted the approach for grouping the populations into potential ecotypes.

3.3 Results

The principal aim of this study is to present a framework for identifying livestock ecotypes by performing a detailed characterisation of population habitats using ENM. The method presented here provides a pipeline for (i) selecting environmental predictors, (ii) choosing model parameters for executing ENM, (iii) evaluating model performance, (iv) creating suitability maps for individual populations across a landscape, (v) assessing the similarity of the suitability maps from different populations, and (vi) clustering populations based on suitability maps into similar groups to define ecotypes. The overview of the framework and its application are illustrated in Figure 3.1.

Figure 3.1 A framework for defining livestock ecotypes based on environmental characterisation using the ENM approach.

3.3.1 Selection of agro-climatic predictors

The selection of agro-climatic variables is a critical part of ENM to maximise predictive performance. The choice of environmental variables can limit the prediction of distribution for a species or taxa (Warren *et al.*, 2014; Zeng *et al.*, 2016). Using few variables will decrease the model's predictive power, and too many variables will overburden the model. Besides, using correlated variables can produce biased models

that do not accurately represent a species niche (Bradie & Leung, 2017). Therefore, selecting environmental predictors in this study entailed starting with a large set of variables and then shortlisting them by removing the highly correlated ones and those with a little contribution in explaining the model. Initially, 34 environmental variables were chosen from public databases based on their potential relevance to chicken biology and production. These variables were grouped into three clusters: (1) climatic variables (n = 22), with potential impact on the physiological tolerance of chickens; (2) soil variables (n = 8), which may influence food availability; and (3) vegetation and land cover (n = 4) variables, potentially affecting both food availability and exposure to predation (Table 3.1). Variables were then shortlisted based on three different analyses as described below.

3.3.1.1 PCA of populations based on environmental data

PCA was performed for each variable cluster separately to investigate the population habitat structure. PCA plots in Figure 3.2 display the population variance distribution due to the diversity of the variables tested. Arrows indicate the direction of the variables in relation to the PCs plotted. Arrow lengths indicate the extent of contribution of a variable in explaining the habitat structure. Remarkably, PC1 and PC2 explain over 60% of the variants in all three groups, although populations vary widely among the PCAs. Despite differences between PCA plots, several populations persistently appear close to each other in all PCAs, such as Loya and Kumato, Gafera and Amesha Shinkuri, Gesses and Kido, Shubi Gemo and Bekele Girissa. It suggests a similar landscape configuration for these population groups, irrespective of the environmental variables investigated.

Figure 3.2 A framework for defining livestock ecotypes based on environmental characterisation using the ENM approach. (A) Soil variables, (B) Vegetation and land cover variables, and (C) Climatic variables.

3.3.1.2 Correlations among environmental variables

None of the climatic and agro-ecological variables had a normal distribution in Shapiro-Wilk normality testing (P > 0.001) (Supplementary Figure S3.1). Therefore, Spearman's rank-order correlation was used to identify any positive correlation between a pair of variables. Figure 3.3 (A-C) shows the correlations of variable pairs within the three clusters. The strength of correlation was defined as: $r_s \ge 0.8$ as very strong, $r_s \ge 0.6$ to < 0.8 as strong, $r_s \ge 0.4$ to < 0.6 as moderate, $r_s \ge 0.2$ to < 0.4 as weak, and $r_s \ge 0$ to < 0.2 as very weak. For the selection of variables for ENM, we used the threshold of $r_s < 0.6$.

Within the climatic variable group, strong to very strong correlations are observed ($r_s = 0.60-0.98$) among bio1 (annual mean temperature), bio4 (temperature seasonality), bio5 (maximum temperature of the warmest month), bio6 (minimum temperature of the coldest month), bio8 (mean temperature of the wettest quarter), bio9 (mean temperature of the driest quarter), bio10 (mean temperature of the warmest quarter), bio11 (mean temperature of the coldest quarter), and water vapour pressures (representing humidity).

Among the precipitation variables, strong to very strong correlations ($r_s \ge 0.72$ to 0.97) are observed among bio19 (precipitation in the coldest quarter), bio12 (annual rainfall), bio13 (precipitation of the wettest month), and bio16 (precipitation of the wettest quarter), and among bio14 (precipitation of the driest month), bio17 (precipitation of the driest quarter) and bio18 (precipitation of warmest quarter). Elevation (bio20) shows a very strong negative correlation with many temperature variables (viz. bio1, bio5, bio6, bio8, bio9, bio10, and bio11) and water vapor pressure.

Figure 3.3 Spearman correlation test for three different groups of climatic and environmental parameters evaluated.

(A) Soil variables, (B) Vegetation and land cover variables, (C) Climatic variables, (D) Correlation test between non-correlated variables from different groups. (Order of the variables is based on the strength of correlation).

Among soil variables, soil bulk density and pH show very strong correlations ($r_s > 0.8$),

while sand content shows strong correlations with both soil pH and soil bulk density (rs

= 0.76 and 0.68, respectively).

After taking one variable from each correlated pair (with $r_s > 0.6$ with P < 0.001) along with other non-correlated variables, 14 variables were retained. A final correlation test among these did not find any pair with $r_s > 0.6$ (Figure 3.3D).

Chapter Three

3.3.1.3 MaxEntVariableSelection

MaxEntVariableSelection package was used to simultaneously assess the correlation status and contribution level of the variables in chicken agro-ecologies and then to shortlist a set of predictors with low or no correlation among them ($r \le 0.6$). The shortlisting process identified eight variables with a contribution level ranging between 4 to 15%. However, we further excluded two variables, crop dominance and grass-land, as they had shown high multi-collinearity with LandUse (Gheyas *et al.*, 2021). This left us with a final set of 6 variables for the ENM: minimum temperature of the coldest month (bio6 - minTemp), precipitation seasonality (bio15 - precSeasonality), precipitation of wettest quarter (bio16 - precWQ), precipitation of driest quarter (bio17 - precDQ), soil organic carbon, and, land use (cult_T). Figure 3.4 shows the relative contribution of the six variables.

Figure 3.4 Percent contribution of each of the six agro-climatic selected variables to the overall environmental diversity calculated using the MaxEntVariableSelection R package.

3.3.2 Selection of the best model configuration

An optimal combination of FCs (feature classes) and RM (regularization multipliers) is crucial for achieving a balance between the goodness of model fit and model complexity (Muscarella et al., 2017). FCs are an expanded set of transformations of the original environmental variables that allow complex relationships to be modelled (Morales et al., 2017). Several FC options are available in MaxEnt, such as linear (L: the variable itself), quadratic (Q: square of the variable; fits variance), product (P: product of two variables; fits interaction effect), threshold (T: a step function with the different response below and above the threshold), hinge (H: similar to T, but the response above or below the threshold is linear with a positive or negative co-efficient) and categorical (C: fits categorical variables) (Elith et al., 2011). On the other hand, the RM value is used to prevent over-complexity or over-fitting a model by controlling the intensity of the chosen FCs (Morales et al., 2017). A highly complex model may have a good fit, but it may not generalise well (Ellith et al., 2011). The RM value causes a trade-off between model fit and model complexity. Therefore, a series of MaxEnt models combining different FCs and RMs were performed and evaluated in ENMeval using the six selected environmental variables and collectively taking all 250 sampling locations.

In total, 208 RM-FCs combinations were evaluated (Supplementary Table S3.1). AICc value instead of AUC test value was chosen as the evaluation parameter to identify the best RM-FCs combination. AICc has been described as the better option because it is an index that reports the trade-off between fitting (likelihood) and parsimony (number of parameters) of the model (Lobo *et al.*, 2008; Galante *et al.*, 2017). T (threshold) and C (categorical) features did not make any difference in the AICc values at any RM combination; hence these features were dropped in subsequent analyses. Moreover, L (linear) and H (hinge) features were not used together as both represent linear responses,
so their combined use is redundant (Elith *et al.*, 2011). Therefore, the feature combinations evaluated were: L, Q, P, H, LQ, LQP, HQC, and HQP. HQP (hinge, quadratic, and product) feature combined with an RM value of 3.5 showed the lowest AICc value (6039.084), indicating that this parameter configuration is expected to provide the best predictive performance for our study (Figure 3.5).

Figure 3.5 AICc values for different combinations of Feature Classes (FCs) and Regularization Multipliers. The FCs shown are: Linear (L), Quadratic (Q), Product (P), Hinge (H), and Categorical (C).

To assess if these optimized parameters made any difference in prediction over the default settings in Maxent, we compared the suitability maps based on these two parameter sets, taking all sampling locations together (Figure 3.6). Although the two maps showed a high similarity (niche overlap = 0.95), the optimised parameters predicted more suitable regions. These selected parameters were therefore used for all

subsequent MaxEnt modelling.

Figure 3.6 Suitability maps for the complete set of Ethiopian chicken populations. Default settings provided by the MaxEnt approach and identified parameters (HQP features and beta-multiplier = 3.5) using ENMeval were used.

3.3.3 Final ENM using selected environmental variables and parameter setting

Using the chosen parameter configuration and environmental variables, a final MaxEnt model with all 25 populations (250 presence points) was executed to assess the model performance further and obtain a refined estimate of the variable contributions on Ethiopian chicken populations as a whole (Figure 3.7).

This model predicted suitable habitats for Ethiopian village chickens with high success rates and low omission rates for training and test data that closely matched the expected omission (Figure 3.7A). The omission is the false-negative rate (i.e. where the model wrongly predicted unsuitable conditions for an occurrence location). Likewise, the model produced high AUC values: 0.911 and 0.891 for training and test data, respectively (Figure 3.7B). A high AUC value indicates that the model classifies presence more accurately than a random position, and AUC > 0.9 should be considered an excellent predictive ability (Pearson, 2010). The jackknife results for individual environmental variables also showed higher than random predictive power with AUC > 0.64 for all variables (Figure 3.7C).

Figure 3.7 MaxEnt model based on six selected variables using the best combination of feature classes (HQP) and the regularization of multiplier value (3.5). (A) Omission rates and predicted areas at different cumulative thresholds on test and training data, (B) Receiver Operating Curve for training and test data, (C) Jackknife result for AUC (Area Under Receiver Operating Curve) for each selected environmental predictor.

MaxEnt generates several other useful statistics to assess individual environmental predictors, namely - Jackknife of gain function from test and training data (Figure 3.8), response curves per variable (Figure 3.9), and percent contribution based on permutation importance (Figure 3.10).

The jackknife result of test and training gains by individual variables and all variables together is an important metric for assessing variable contribution and model performance. The gain is a penalised likelihood function that MaxEnt maximizes to find a model that best differentiates presence from background locations (Elith *et al.*, 2011). Also, the gain indicates how closely the model is concentrated around the presence samples. It is used to measure the goodness of fit in generalized additive and linear models (Phillips *et al.*, 2006). Jackknife results of training and test gain indicated that

bio6 (minimum temperature in the coldest month), bio16 (precipitation in the wettest quarter), cult_T (LandUse), and soil organic carbon content were the variables that had the most useful information when used in isolation of other predictors (Figure 3.8).

On the contrary, the results also showed that cult_T, bio6, and bio15 variants decreased the gains most when excluded from the analysis, indicating that these variables contained most of the information not present in any other predictors. Although precipitation seasonality (bio15) provided only a little gain (Figure 3.8A), omitting it decreased the training gain considerably (see the light blue bar compared with the red bar), indicating that it is important for the accuracy of the model. A similar result is illustrated for the jackknife of test gain (Figure 3.8B).

Figure 3.8 Jackknife of regularised (A) training gain and (B) test gain for Ethiopian chicken.

Response curves (Figure 3.9) show how the predicted probability of presence (model predictive power) varies as each environmental variable changes, keeping all the other variables at their average sample value. For example, the response curve for bio6

(minTemp) and LandUse shows that the probability of chickens' presence decreases when the temperature and cultivated land proportion rise. Also, when precipitation seasonality (bio15) and soil organic carbon increase, the likelihood of chicken presence increases. The probability of the model for chicken presence distribution drops gradually when the precWQ (bio16) falls until 600 mm/m² and then rises again. In contrast, the likelihood of chicken presence increases when precipitation in precDQ (bio17) rises until 90 mm/m² and drops steadily until 200 mm/m².

In contrast with the response curves, the marginal response curves represent a different model, a MaxEnt model that only uses the corresponding variables. Thus, the plots reflect the dependence of predicted suitability on the selected variable (Figure 3.9). SoilOrgC and bio6 (minTemp) display a similar response for chicken presence between response curves and marginal response curves. Contrastingly, bio15 - precSeasonality $(80 - 100 \text{ and } 140 - 180 \text{ mm/m}^2)$, bio16 - precWQ (precipitation in the wettest quarter = 1200 mm/m²), bio17 – precDQ (precipitation in the driest quarter = 90 – 100 mm/m²) and LandUse (38%) show peaks in the marginal response curve where the chicken presence arises for specific values in each variable. This marginal response needs to be cautiously interpreted. It represents the prediction accuracy of presence response to an individual variable without considering its ecological interactions with other biotic and abiotic factors occurring in a real environment.

Figure 3.9 Response curves for six selected agro-climatic variables when the ENM is applied across all chicken populations.

The X-axis in each plot shows the environmental values, and Y-axis shows the cumulative output or probability of presence.

Permutation importance can be understood as each variable's contribution, determined by randomly permuting that variable's values among the training points for the presence and background data (Philips, 2017). All selected environmental variables produced high contribution values in terms of permutation importance (> 10%) (Figure 3.10). The three highest contribution values are Soil Organic Carbon (31.2%), Cult_T (18.1%), bio6 (minimum temperature in the coldest month), and bio16 (precipitation in the wettest quarter) (17.4%).

The model was executed with selected model parameters (feature classes: HQP and regularization parameter: 3.5) and using all (250) presence data points from all populations.

3.3.4 Defining ecotypes

For defining ecotypes, MaxEnt models were first executed for individual populations using the same variables and parameter setting as above. These models predicted a habitat/environmental suitability map of individual populations across the Ethiopian landscape and estimated the relative contribution of environmental variables to each population niche. AUC values of all models were high (> 0.99) for both training and test data (Supplementary Table S3.2). Similarly, the AUC values for the individual environmental variables for each population were generally higher than 0.6, with several exceptions, like bio6 and bio15, which in some populations had values less than 0.6 but over 0.5, which still represent moderate potential.

Pearsons correlation and Niche Overlap statistics were generated by pairwise comparison of the suitability maps for clustering the populations into a similar niche for defining potential ecotypes. The two metrics used for comparing the suitability maps provide somewhat different information. Niche Overlap metric is a measure of similarity of distributions between two populations. In contrast, correlation correlates the underlying models (Warren & Seifert, 2010). The correlation metric is generated by comparing logistic suitability scores (0 or 1) of the two maps' corresponding grid cells.

On the other hand, the Niche Overlap statistic only checks for the proportion of overlap of grid cells that were predicted as suitable (i.e. with logistic suitability score = 1) between two maps. Therefore, it does not include grids with a suitability score of 0 in its calculation. In our study, the results of these two metrics were significantly correlated (Spearman correlation coefficient = 0.61; P < 0.0001).

Hierarchical clustering of the populations based on the above two similarity metrics showed different overall topography depending on which statistic was used (Figure 3.11 and 3.12). However, 18 out of 25 populations showed consistent grouping in both analyses. Consistent clusters are (1) Amesha Shinkuri, Gafera, Surta, and Batambie; (2) Ashuda and Dikuli; (3) Bekele Girissa and Shubi Gemo; (4) Gesses and Kido; (5) Kumato and Loya (6) Hugub and Jarso, (7) Hadush Adi and Mihquan. Therefore, we took the most plausible grouping based on at least one test for the rest of the seven populations. A visual inspection of the maps was performed when the tests generated ambiguous results (Meseret, Alfa Midir, Horro, Adane, and Negasi Amba). As a result, three populations – Arabo, Metkilmat, and TzionTeguaz-could not be grouped with other populations and considered separate ecotypes.

Figure 3.11 Dendrogram and heatmap of pairwise Pearson correlation between suitability maps of individual chicken populations.

Finally, 12 potential ecotypes were identified for the 25 populations examined here (Figure 3.13), reflecting the large heterogeneity of the Ethiopian agro-ecological landscape. (Suitability statistics were generated by pairwise comparison of the ENM suitability maps followed by hierarchical clustering and visual inspection to define the ecotypes).

Figure 3.12 Dendrogram and heatmap of Niche Overlap statistic (I) between suitability maps of individual chicken populations.

The most important agro-climatic variables for each ecotype were identified (Table 3.2). These variables are expected to place strong selective pressure on driving adaptation within the ecotype. Interestingly, bio16 (precipitation in the wettest quarter), bio17 (precipitation in the driest quarter), and cult_T (land use) appear to have major contributions in many ecotypes. In contrast, bio15 (precipitation seasonality) and soil organic carbon generate heterogeneity within several ecotypes.

Figure 3.13 The set of 12 potential ecotypes represented by their suitability maps.

Potential	Populations	Major contribute	A possible source of
ecotype		variables	differentiation
		among ecotypes ¹	within ecotypes ²
E1	AmeshaShinkuri, Gafera, Surta, Batambie	bio6, bio16	bio15
E2	Ashuda, Dikuli	bio16, bio17, cult_T	bio15
E3	BekeleGirissa, ShubiGemo	bio16, bio17, cult_T	Soil organic carbon
E4	Adane, Local Horro	Cult_T, Soil organic carbon	bio6, bio16, bio17
E5	Loya, Kumato	Cult_T, bio15, bio17	bio6, bio16
E6	Mihquan, Hadush Adi, Hugug, Jarso	bio17, cult_T	bio6
E7	Negasi Amba, AlfaMidir	bio6, bio17	bio15, Soil organic carbon
E8	Gesses, Kido	bio16, bio17	bio15, Soil organic carbon
E9	Meseret, Gijet	bio15, bio16, Cult_T	Soil organic carbon
E10	Metkilimat	bio16	
E11	Arabo	bio6, bo16, cult_T	
E12	TzionTeguaz	bio17	

Table 3.2 Major contributing environmental variables in each ecotype. (bio6 (minTemp), bio15 (PrecSeasonality), bio15 (precWQ), bio16 (precDQ), cult_T (LandUse))

¹Major contributing variables are those that showed individual AUC > 0.9 for all populations in the same ecotype.

² The variables showing the source of differentiation were the ones that showed very diverse individual AUC values for populations within ecotypes.

3.4 Discussion

This study presents an innovative framework of modelling landscape heterogeneity to identify ecotypes of indigenous livestock populations and identify key environmental selection pressures that may have driven local adaptation. Exemplified by Ethiopian village chicken, this novel approach offers a powerful new tool for identifying, characterising, utilising, and conserving livestock diversity. Choosing Ethiopian indigenous chicken as the study material for ENM had several rationales and benefits. First of all, Ethiopia exhibits great variation in agro-climatic landscapes, predominantly due to extreme altitudinal variation, making it an excellent study landscape for ENM. Moreover, Ethiopian village chickens show diverse morphological and phenotypic characteristics within population (Tadelle et al., 2003), making their classification as ecotypes difficult with their associated phenotypic standards. Therefore, such environmental-modelling-based approach provides a great opportunity for classifying these populations. Besides, these village chicken populations survive in local scavenging or semi-scavenging systems of smallholder backyard farming. Compared to highly productive commercial breeds, they show a higher degree of tolerance to biotic and abiotic stressors in their environment. Therefore, defining ecotypes based on environmental modelling can provide a novel platform for genomic analyses to elucidate local adaptations. The high levels of biological diversity in the Ethiopian chicken populations, along with the diverse environmental conditions of their habitats, make these birds an ideal model to demonstrate the applicability of ENM in livestock species.

An ecotype denotes a genetically adapted population to specific environmental conditions. Following the introduction of domesticated species into new habitats, animals adapt to new environments, leading to new ecotypes (Köhler-Rollefson, 2001). With the distribution of most livestock species across diverse agro-climatic and ecological regions due to human-mediated introduction (Lawler, 2016), livestock ecotypes may also be described as a non-static adaptive variation over many natural landscapes with no discernable boundaries (Lowry, 2012). In practice, researchers and farmers, therefore, face difficulties in identifying and establishing frontiers for ecotypes within the geographic range of a livestock species.

66

Although previous studies have used different criteria for defining livestock ecotypes (Keambou *et al.*, 2014; Getu & Tadesse, 2014), none addressed the geographic boundaries of ecotypes. Indeed, a detailed characterisation of environment, phenotypes, and genotypes are required to understand these three components' interaction. A comprehensive environmental characterisation of a species habitats may help unravel the clinal variations in genetic and phenotypic traits. With this base, our study developed a framework that livestock researchers and practitioners can apply for defining potential ecotypes by directly modelling important environmental predictors that may drive adaptive evolution.

Our starting point was identifying the landscape variable structures relevant to the formation of Ethiopian village chicken ecotypes. The choice of agro-climatic variables for modelling a landscape configuration faces many potential challenges due to nonuniformity and the variety of ecosystems used by a species (François & Waits, 2016), such as chicken, with its wide distribution range among very diverse landscapes (Lawler, 2016). To avoid arbitrary choices as much as possible, we evaluated 34 environmental parameters to characterise the Ethiopian agro-ecological landscape. No strong correlations were observed during the variable selection between temperature and precipitation variables, which are usually positively correlated (Cong & Brady, 2012). This is because Ethiopia's rainfall patterns do not vary drastically with elevation; instead, it changes with geographic location. In contrast, temperature varies directly with elevation (Jury & Funck, 2013). We then followed a rigorous procedure to select environmental predictors by removing highly correlated variables while retaining only high contributing ones. The six shortlisted variables included soil features, land-use, and climatic parameters, which resulted in a good prediction of suitable habitats of Ethiopian chicken populations. The same or similar variables were also used in a previous study by (Pitt *et al.*, 2016) for predicting the suitable environmental conditions of early domestic fowl at a global geographic scale based on niche occupied by extant wild Red Junglefowl (*Gallus gallus*). Their study, however, also included bio4 (temperature seasonality) and bio5 (maximum temperature of the warmest month) in their model. These variables were not included in our study either because they showed a strong correlation with one or more variables or had little contribution in explaining the overall model.

We also decided to optimise the best model parameters (RM and FCs) to achieve the best predictive power for our Ethiopian data. We demonstrated that ENM based on selected parameters had a discernible impact on predicting habitat distribution compared to the default setting (Figure 3.6). Model parameters were optimised based on combined analysis of all populations and subsequently applied to individual population analyses. No attempt was made to select the best parameters for a particular population as the data points per population were too small for a meaningful optimisation. Besides, using the same parameters for all populations provided a common ground for comparing suitability maps for ecotype definition.

For ecological niche modelling or species distribution modelling (SDM), it is generally a requirement that the presence data are not spatially autocorrelated and are from a random or representative sampling of environmental space occupied by the focal species and (Elith *et al.*, 2006; Yackulic *et al.*, 2013). The presence of spatially autocorrelated data points would generate a biased inference in the SDM, as these would lay more weight on certain types of habitats as suitable. In our study, however, the

68

sampling points within populations were not uncorrelated. This is because the geographic range of each population was very small, as samples from individual villages were considered a population, and for each population, we included 10 data points. However, we believe that such a sampling bias is not an issue for the context of the present study, but rather it was necessary. This is because the goal of our study was not to predict the distribution of a species but to classify the investigated populations into similar niche categories for defining ecotypes. Therefore, to capture each population's environmental condition via modelling, we had to take several sampling points from each population (even though they were autocorrelated).

3.5 Conclusions

The novel approach presented here demonstrates how environmental modelling leads to livestock ecotype characterisation and definition, providing a baseline for environment-genotype association studies (Chapter 5) and better management practices. Genomic analysis of these ecotypes will allow dissecting the genetic basis of local adaptation. Such knowledge will be invaluable for breeding improvement initiatives through marker-assisted selection or introgression, genomic selection, and genome editing. Incorporating "adaptive capacity" in highly productive breeds will be of great value to ensure sustainable livestock production. Moreover, habitat suitability mapping can be an effective tool for deciding which areas have the best environmental condition to introduce a new livestock breed for farming or determine the most suitable population for agriculture in a given agro-climatic scenario. The framework presented here should be applicable to any livestock species and would be able to incorporate any relevant environmental data (e.g. epidemiological data), promising a much wider implication.

Chapter 4

Whole-genome sequences reveal the drivers of environmental adaptation in Ethiopian village chicken

Chapter Four

Abstract

Worldwide, climate change affects agriculture systems, producers' welfare, and food availability for the growing human population. Consequently, different mitigation strategies need to be put in place. Pinpointing environmental stressors at the local level and identifying genomic regions that may strengthen the resilience of individuals against these ecological stress factors provide important entry points for devising mitigating measures. Using the six major agro-climatic variables identified by ENM (in Chapter 3), this chapter investigates the genomic signatures of adaptation to these environmental stressors in Ethiopian village chicken populations. One temperature variable (strongly correlated with elevation), three precipitation variables (related to water availability), and two soil/land variables (linked to food availability for scavenger chickens) were analysed. Between-group genomic analyses (XP-EHH and Fst) were performed on populations from extreme environments (High vs Low) for each environmental variable separately. The analyses identified candidate genomic regions and genes under positive selection for environmental challenges related to high altitude and extreme temperature, water scarcity, and food availability. The results presented here illustrate the importance of identifying key agro-climatic drivers prior to genomic analysis for environmental adaptation, while the detected candidate genes offer valuable targets for the improvement of adaptive performance through breeding programmes.

4.1 Introduction

Nowadays, livestock increasingly undergoes environmental stresses under changing climate conditions (Niyas *et al.*, 2015). Climate change has turned out to be a global phenomenon that threatens the survival of many ecosystems, increasing the temperature

71

and leading to extreme precipitation and fluctuation of weather conditions (Stocker *et al.*, 2013). The agriculture sector is one of the most affected sectors of extreme climates; firstly, by challenging the physiological coping mechanism of livestock species (e.g. temperature stress) (Afsal *et al.*, 2018) and, secondly, by impacting the welfare and food security of smallholder farmers and rural populations (Makuvaru *et al.*, 2018; Dil Bahadur & Akhter, 2018).

Demand for livestock products is rising due to the growing human population (Rashamol & Sejian, 2018). Thus, a sustainable livestock production system is imperative to respond to market demands. One of the possible avenues is developing and utilising more climate-resilient breeds (Karimi *et al.*, 2018).

Compared to exotic breeds, indigenous livestock populations display a better adaptation to their local environmental conditions (Rashamol & Sejian, 2018). These populations represent a valuable source of adaptive genetic diversity (Velado-Alonso, 2020). More than any other livestock species, domestic chicken show a wide range of environmental resilience. They are found in the most extreme environments, from the hottest (e.g. an oasis in the desert) to the coldest (e.g. Tibetan plateau) (Lawler, 2016).

Local breeds of chicken in Africa are adapted to a broad tropical environmental diversity. Since the early human-mediated chicken migration occurred worldwide, different environmental challenges have modulated their adaptation response (Lawler, 2016). For instance, chickens can naturally control their core body temperature homeostatically, but regulation works within a narrow range (Abioja & Abioma, 2021). Today, however, chickens are found ubiquitously worldwide and across very diverse temperature zones, ranging from hot and arid tropical climates (24 - 36 °C) to very cold temperate regions (below 0 °C). Long exposures to such environmental stressors are the

driving force for natural selection to occur to achieve a lasting adaptation. Therefore, investigating local adaptations can provide valuable insight into their genetic basis. Such knowledge would be invaluable in combating rapid climate change impacts on livestock populations and creating resilient breeds through genetic interventions. This example, plus other environmental stressors *vs* adaptive responses in chickens, points out that the indigenous village populations – exposed to various environmental stressors *-* are an interesting focal resource to scrutinise local adaptation.

The Ethiopian agricultural landscape displays a combination of rainfall patterns and temperature at the root of a large diversity of agro-climatic conditions (Fazzini *et al.,* 2015), which vary from hot-humid and hot-arid to cold-humid and cold-arid (Mangistu, 2006). It provides us with a unique opportunity for untangling the genetic drivers of environmental adaptation.

Even though African indigenous chickens are adapted to their harsh environmental conditions, the genetic mechanisms behind these adaptations are still unclear (Muchadeyi & Dzomba, 2017). Until now, studies related to environment-genome adaptation in chicken have focused on specific environmental stressors, such as elevation or temperature stress (e.g. Zhang *et al.*, 2016a; Cedraz *et al.*, 2017). In this chapter, we used the six agro-climatic variables defined in Chapter 3 to identify genomic regions under positive natural selection as an adaptive response to these environmental stressors in the Ethiopian indigenous village chicken populations. We used a comparative genomic approach by 1) ranking the populations for each of the six environmental parameters, 2) identifying extreme groups of populations, and 3) comparing and contrasting the genome differentiation of these two extreme groups. Genomic regions affected by positive selection show long-range linkage disequilibrium (LD) and high population frequency. Hence, we applied two cross-population methods

to detect signatures of selection: the fixation index (Fst) and the cross-population extended haplotype homozygosity index (XP-EHH). Fst statistic (Weir & Cockerham, 1984) measures population differentiation, resulting in differences in population genetic structure following distinct demographic or selection histories. Large Fst values between the populations at specific genome regions will represent candidate regions under selection (Biswas & Akey, 2006). The XP-EHH is based on the calculation of the long-range haplotype (LRH) length around each marker (Voight et al., 2006). It identifies selection signals in cross-population comparison. The XP-EHH index was explicitly designed for the signature of positive selection analysis. Based on a linkage disequilibrium calculation approach, it is assumed to give lower false positives than Fst (Ma et al., 2015). It also indicates which population experienced selection (Diao et al., 2019). These two methods were chosen based on two main reasons. First, we wanted to have one allele frequency-based approach and on LD-based approach, and second, both methods capture different selection signals and can serve as validation for each other. Therefore, in this study, genomic regions detected by both methods simultaneously were treated as the strongest candidates of selection signatures.

4.2 Material and Methods

4.2.1 Environmental data and definition of extreme groups of populations

The details about the selection of agro-climatic variables can be found in section 3.1 (Chapter 3). Supplementary Table S4.1 shows the data from the six selected variables in each population. The environmental variables are denoted as: the minimum temperature of the coldest month of a year (minTemp), precipitation seasonality (PrecSeasonality) representing the variation in precipitation across a year, precipitation

in the wettest quarter of the year (precWQ), precipitation in the driest quarter of a year (precDQ), soil organic carbon content (SoilOrgC) and proportion of cultivated land (LandUse).

After ranking the 25 populations for each environmental parameter from low to high, two populations from each end of the gradations were selected. These low and high groups of populations for the six agro-climatic variables were used to perform the selection signature analyses.

4.2.2 Genomic data

Sequencing data information for 223 out of the 243 samples are available in Supplementary Table S2.1 (Chapter 2). Twenty additional samples from Horro and Jarso populations were accessed from a previous study (Lawal *et al.*, 2018). These 243 samples belong to 25 different Ethiopian chicken populations (Table 2.1 and Figure 2.1 in Chapter 2; Table 3.1 in Chapter 3).

4.2.3 Selection signature analyses

Two methods of detecting signatures of positive selection – *XP-EHH* and *Fst* - were applied over the extreme low and high groups for each environmental variable. The filtered autosomal SNP set described in Chapter 2 was used for these analyses. In both cases, analyses were performed in overlapping 20-kb windows with a 10-kb sliding step. Windows with only SNPs \geq 10 were retained for further analyses. For both detection methods, empirical *P*-values were calculated by first sorting the scores in descending order (i.e. by ranking the windows) and then dividing their ranks by the total number of windows.

4.2.4 *Fst* analysis

Fst analyses (Weir & Cockerham, 1984) were performed using VCFtools version 0.1.11 (Danacek *et al.*, 2011). Following formula 4.1, *Fst* values were calculated for each SNP as described in Akey et al., (2002), which compare differences in allele frequencies between populations.

$$(4.1) Fst = P_{i total} - P_{i within}$$

Where $P_{i \text{ within}}$ and P_i are defined following formulas 4.2 and 4.3.

(4.2)
$$P_{i \text{ within}} = \frac{P_{(i) \text{ population } 1} + P_{(i) \text{ population } 2}}{2}$$

(4.3) $P_{i} = 1 - fA2 - fT2 - fC2 - fG2$

With fN being the frequency of nucleotide N (A, T, C, or G), and $P_{i \ total}$ is the total P_i for which allele frequencies in both populations are averaged. The weighted *Fst* values were standardised (*ZFst*) to allow using the same threshold score for each environmental parameter as follows (formula 4.4).

$$(4.4) \quad ZFst = \frac{Fst - \mu Fst}{\sigma Fst}$$

Windows with only SNPs \geq 10, empirical *P*-value \leq 0.01, and *Fst* (*ZFst*) > 5 were considered potential sweeps.

4.2.5 XP-EHH

The *XP-EHH* analyses were performed using the Hapbin package (Mclean *et al.*, 2015). As the Hapbin software requires the genetic positions (along with physical position) of variants as input, these were calculated using chromosome-specific recombination rates (Groenen *et al.*, 2009). For chr16, we used the recombination rates of Elferink *et al.* (2010). The recombination rates are based on older reference genome and not GRCg6a assembly. To avoid any issues produced by that, we used "mean" recombination rates for specific chromosomes (calculated by dividing cM length of chromosome by physical length in Mb) for estimating the genetic distance of the SNPs. However, Groenen *et al.*, (2009) do not have information on Chr 30 – 33. Then, for these chromosomes, we took the average recombination rate of all microchromosomes (5.4 Cm/Mb).

Missing genotypes were removed, and phasing was performed using Beagle v5.1 (Browning & Browning, 2007). *XP-EHH* values were first calculated for individual SNPs with two parameters: cut-off value for Extended Haplotype Homozygosity (*EHH*) is 0.1, and minor allele frequency > 5%. The calculation was performed according to Sabeti *et al.* (2007) using the formula (4.5), where (s) represent the given marker to be calculated, and *iES* represent the integrated *EHH* (average length of shared haplotypes) in populations 1 and 2, which are being contrasted.

(4.5)
$$unXP-EHH(s) = \ln\left(\frac{iES_{pop1}(s)}{iES_{pop2}(s)}\right)$$

For a given marker (s), *XP-EHH_std* is defined as the standardized *unXP-EHH* in formula (4.6), where mean (*unXP-EHH*) and sd(*unXP-EHH*) represent the mean and standard deviation of *unXP-EHH* computed over SNPs with similar allele frequency.

(4.6)
$$XP-EHH_std(s) = \frac{unXP-EHH(s) - mean(unXP-EHH)}{sd(unXP-EHH)}$$

Mean values were calculated within windows for (i) standardised *XP-EHH* (*XP-EHH_std*) and (ii) the absolute value of standardised *XP-EHH* (*/XP-EHH_std/*). Threshold values were defined as follows: windows with only SNPs \geq 10, empirical *P*-value \leq 0.01, and absolute standardised *XP-EHH* (*/XP-EHH/)* > 3. From these, windows with SNPs showing the same directionality of selection were considered as candidate

signatures of selection windows. Positive *XP-EHH* values indicated selection in the low group and negative values selection in the high group.

Moreover, pooled heterozygosity (Hp) (Rubin *et al.*, 2010) value for candidate selected windows was calculated (see details in Material and Methods section of Chapter 5) for the low and high groups separately to confirm the directionality of selection. In particular, Hp results were referred to when XP-EHH results were ambiguous regarding the directionality of selection. Windows were removed from the subsequent analysis when the directionality could still not be resolved.

4.2.6 Functional annotation

Identified selection signature regions (SSRs) were intersected with known genes from Ensembl (release 98) using Bedtools v2.26 (Quinlan & Kindlon, 2017). Candidate genes were checked for their overlap with known chicken QTLs to find a possible and suggestive phenotypic association (Hu *et al.*, 2014). Only significant QTLs with size < 1 Mb were considered.

4.3 Results

4.3.1 Definition of Low and High population groups

The first step towards selection signature analyses in relation to the six ENM-identified environmental variables was to decide which populations to compare. Figure 4.1 shows the ranking of the 25 populations from low to high for each of the six environmental variables.

For each environmental variable, two populations from extreme ends of the variable distribution were chosen. The minimum temperature of the coldest month of the year (minTemp) is highly correlated with the maximum temperature of the warmest month

78

(bio5 - maxTemp) and the elevation (Figure 3.3C in Chapter 3). Accordingly, AlfaMidir and NegasiAmba are the two extreme populations in the Low group, but for the High group, we selected Mihquan and Hugub. Mihquan, instead of Kido, was selected as the maximum temperature of the warmest month (bio5 - maxTemp) for Mihquan is higher than that of Kido, while other correlated variables (i.e. minTemp and elevation) show similar values.

For the precipitation seasonality (precSeasonality), the Low group includes Loya and Kumato, and the High group Meseret and Gijet (Figure 4.1B). Hugub and Jarso are the two extreme Low group populations for the precipitation of the wettest quarter (precWQ) parameter, with Gafera and Gesses defining the High group (Figure 4.1C). Precipitation of the driest quarter (precDQ) has Gijet and Kido in the Low group and Kumato and Loya in the High group (Figure 4.1D). Soil Organic Carbon (SoilOrgC) has Loya and Kumato in the Low group and AlfaMidir and Adane in the High group (Figure 4.1E). Finally, LandUse has Gesses and Kido in the Low and Meseret and AlfaMidir in the High group (Figure 4.1F).

Figure 4.1 Populations organised based on environmental gradients for the six key environmental parameters identified by the ENM approach (Chapter 3).

4.3.2 Identification of candidate windows under selection for environmental adaptation

Candidate windows of selection signatures were identified based on the thresholds defined in the Material and Methods section. The full results are presented in Supplementary Tables S.4.2a to S4.2f. Supplementary Figures S4.1 and S4.2 show the observed distributions of *ZFst* and *XP-EHH*/ variables for each environmental analysis. Supplementary Figure S4.3 shows only a weak positive correlation between *XP-EHH* and *Fst* values (r_s = 0.22 - 0.34, P < 2.2e-16). Therefore, the following sub-sections

summarise first the *ZFst* and |XPEHH| results and then describe the strongest candidate regions (including genes and variants) related to each environmental parameter. Included in the strongest candidates are genes that were detected by both the *Fst* and *XP-EHH* approaches.

4.3.2.1 Overview of *Fst* analysis

Fst values were calculated for 93,772 - 93,844 windows in different environmental analyses (Table 4.1). The genome-wide mean values of *Fst* between the Low and High groups in each environmental analysis were very low (min: 0.021 ± 0.03 for LandUse, and max: 0.072 ± 0.06 for precWQ), indicating low overall genetic differentiation between the groups. Between 0.1% and 0.3% of the analysed windows passed the set threshold to be considered as candidate signatures of selection. The lowest number of candidate windows were detected in precWQ analysis, while the highest number was detected in precDQ analysis (Table 4.1). After merging overlapping or adjacent candidate windows, 334 sweep regions were identified across the environmental variable groups. The number of regions ranged from 2 (for minTemp High group) and 52 (for SoilOrgC High group).

Although we have limited number of samples (e.g. 20 samples per extreme population groups), the selection signature analysis uses dense genomic data based on SNPs. Also, we have not used individual SNPs for comparison but combined SNP information from within windows. Small sample size is a problem when you are comparing individual SNPs, but previous studies have shown that when dense data from WGS is available, as small as 10-15 samples are good for performing selection signature analysis (Ma *et* al., 2015). In our case we used 20 kb windows and ensured at least 10 SNPs are present per window, but most windows had larger number of SNPs. On the other hand, by using

20 kb window size and dense SNP data, we have got reasonably good resolution compared to any QTL analysis (which are very big, often mega base long).

The mean *Fst* values in the candidate windows varied from 0.22 in LandUse to 0.44 in precWQ. These values are between 6 to 10 times higher than the genome-wide *Fst* average (Table 4.1). The highest *ZFst* scores from different analyses are: minTemp (*ZFst* = 8.16, chr14:3930000-3950000) (Figure 4.2a), precSeasonality (*ZFst* = 12.16, chr2:95770000-95790000) (Figure 4.2b, precWQ (*ZFst* = 7.91, chr4:39340000-39360000) (Figure 4.2c), precDQ (*ZFst* = 10.42, chr3:73130000-73150000) (Figure 4.2d), SoilOrgC (*ZFst* = 11.70, chr33:6470000-6490000) (Figure 4.2e), and LandUse (*ZFst* = 11.75, chr2: 27950000-27970000) (Figure 4.2f).

Environmental variable	Total number of windows <i>Fst</i>	Mean ± SD (Total <i>Fst</i> windows)	Candidate windows (ZFst) ^a	Mean ± SD (Candidate windows)	Group ^b	Number of (ZFst) sweep regions ^c
minTemn	93811	<i>Fst</i> : 0.04 ± 0.04	90	<i>Fst</i> : 0.32 ± 0.03	Low	32
mmremp					High	2
precSeasonality	93844	<i>Fst</i> : 0.02 ± 0.03	218	<i>Fst</i> : 0.25 ± 0.05	Low	26
					High	33
precWQ	93829	<i>Fst</i> : 0.07 ± 0.06	88	<i>Fst</i> : 0.44 ± 0.03	Low	17
					High	12
DO	93772	<i>Fst</i> : 0.03 ± 0.06	280	<i>Fst</i> : 0.26 ± 0.03	Low	49
precDQ					High	22
	93825	<i>Fst</i> : 0.03 ± 0.04	165	<i>Fst</i> : 0.27 ± 0.04	Low	13
SollOrgC					High	52
LondLing	93830	<i>Fst</i> : 0.02 ± 0.03	254	<i>Fst</i> : 0.22 ± 0.04	Low	51
LandUse					High	25

Table 4.1 Genome-wide Fst statistics for extreme population groups (Low and High) for the six key environmental variables.

(a) Number of candidate (ZFst) windows retained with threshold: $SNP \ge 10$, *P*-value ≤ 0.01 , and (ZFst) ≥ 5.0 .

(b) Low and High population groups are defined by the environmental variable trend across the studied Ethiopian chicken populations.

(c) Sweep regions were determined after merging overlapping or adjacent windows.

Of the 334 *Fst* sweep regions, 153 (46%) have size of 20 kb (i.e. length of a window) while 25 regions (7%) have size larger than 100 kb. The largest candidate regions for each variable are: 100 kb for minTemp (chr4:43410000–43510000), 110 kb for precSeasonality (chr3:85990000–86100000; chr4:74400000-74510000; chr5:40460000-40570000), 240 kb for precWQ (chr8:10430000–10670000), 130 kb for precDQ (chr2:95670000–95800000), 110 kb for SoilOrgC (chr4:50860000–50970000), and 140 kb for LandUse (chr2:82630000-82770000) (Supplementary Tables S4.2.a – f).

The red line represents the threshold (ZFst = 5). All windows above the threshold were considered as candidates. The X-axis represents the genomic positions within 20 kb windows along autosomes.

4.3.2.2 Overview of *XP*-*EHH* analyses

Between 92,405 to 92,693 windows were analysed for *XP-EHH* across the six environmental analyses (Table 4.2). The genome-wise mean values of *XP-EHH*, between the Low and High groups in each environmental analysis, were close to 0 (min: -0.06 ± 0.31 for precSeasonality, and max: 0.29 ± 0.37 for minTemp), indicating low overall haplotype-genetic differentiation between groups. Between 0.2% and 0.4% of the windows passed the set threshold to be considered as candidate signatures of selection. The lowest number of candidate windows were detected in precWQ analysis, whereas the highest number was detected in LandUse analysis (Table 4.2). After merging candidate windows, 472 sweep regions were identified across the environmental variable groups. The number of regions ranged from 21 (for SoilOrgC Low group) and 57 (for minTemp Low group).

Environmental variable	Total number of windows <i>XP-EHH</i>	Mean ± SD (Total <i>XP-EHH</i> windows)	Candidate windows (<i>XP-EHH</i>) ^a	Mean ± SD (candidate windows)	Group ^b	Number of (<i>XP-</i> <i>EHH</i>) sweep regions ^c
minTemp	92592	$XP-EHH: 0.29 \pm 0.37$	292	(<i>XP-EHHstd</i>): 1.10 ± 1.11	Low	57
Temp	,20,2	111 Billi 012) = 0131	272		High	18
precSeasonality	92683	<i>XP-EHH:</i> -0.06 ± 0.31	301	(<i>XP-EHHstd</i>): -0.37 ± 1.11	Low	41
					High	46
precWQ	92405	<i>XP-EHH:</i> 0.08 ± 0.42	210	(<i>XP-EHHstd</i>): 0.47 ± 1.40	Low	52
					High	25
precDQ	92693	<i>XP-EHH:</i> 0.05 ± 0.42	285	(<i>XP-EHHstd</i>): 0.26 ± 1.60	Low	52
					High	33
SoilOrgC	92656	<i>XP-EHH:</i> 0.25 ± 0.34	225	(<i>XP-EHHstd</i>): 1.01 ± 1.04	Low	21
					High	55
LandUse	92635	<i>XP-EHH</i> : 0.06 ± 0.47	404	$(XP-EHHstd): -0.08 \pm 1.70$	Low	47
					High	25

Table 4.2 Genome-wide (|*XP-EHH*|) statistics for extreme population groups (Low and High) for the six key environmental variables.

- (a) Numbers of candidate (|XP-EHH|) windows retained with threshold: SNP ≥ 10 , *P*-value ≤ 0.01 and (|XP-EHH|) ≥ 3.0 .
- (b) Low and High population groups are defined by the environmental variable trend across the studied Ethiopian chicken populations.
- (c) Sweep regions were determined after merging overlapping or adjacent windows.

The mean |*XP-EHHstd*/ values in the candidate windows varied from 1.11 (minTemp and precSeasonality) to 1.7 (LandUse). These values are between 4 to 6 times higher than the genome-wide average (Table 4.2). The highest /*XP-EHHstd*/ scores for the different analyses are: minTemp (/*XP-EHHstd*/ = 4.50, chr1:197340000-197360000) (Figure 4.3a), precSeasonality (/*XP-EHHstd*/ = 4.41, chr7:11550000-11570000) (Figure 4.3b), precWQ (/*XP-EHHstd*/ = 4.14, chr4:25510000-25530000) (Figure 4.3c), precDQ (/*XP-EHHstd*/ = 5.03, chr1:136580000-136600000) (Figure 4.3d), SoilOrgC (/*XP-EHHstd*/ = 5.52, chr1:197490000-197510000) (Figure 4.3e), and LandUse (/*XP-EHHstd*/ = 4.84, chr16:620000-640000) (Figure 4.3f).

The red line represents the threshold (|XP-EHHstd| = 3). All windows above the threshold were considered as candidates. The X-axis represents the genomic positions within 20 kb windows along autosomes.

One hundred sixty-four regions (35%) are 20 kb in size whereas 38 (8%) are of sizes larger than 100 kb. For each variable, the size of the largest sweeps regions is: 230 kb for minTemp (chr4:63860000-64090000), 290 kb for precSeasonality (ch5:48710000-49000000), 160 kb for precWQ (chr5:39190000-39350000), 130 kb for precDQ (chr3:70960000-71090000), 100 kb for SoilOrgC (ch1:197480000-197580000) and 550 kb for LandUse (chr4:25890000-26440000) (Supplementary Tables S4.2.a – f).

4.3.3 Candidate genes and variants in relation to different environmental adaptation

The number of candidates selected genome regions was determined for each low and high environmental parameter. Regions discovered by both methods were considered as our strongest candidates. These include entire regions or regions partially detected by both approaches (Figure 4.4).

Figure 4.4 Stacked bar plot showing the candidate sweep regions based on Low/High groups and positive selection methods.

Around 76% to 90% of the detected regions overlap with genes. The number of overlapping genes from different analyses is 155 from minTemp, 167 from precSeasonality, 131 from precWQ, 183 from precDQ, 174 from SoilOrgC, and 164 from LandUse (Supplementary Tables 4S.2.a – f). The candidate regions harbour between ~62,000 to ~101,000 SNPs, but only 1.5% to 8% show a large difference in allele frequency (dAAF > 0.5) between the High and Low population groups (Supplementary Tables S4.3.a – f). These SNPs with high allele frequency differences were annotated. Most of these SNPs are intronic (51% out of 597 annotated SNPs). Only a few of these SNPs (between 1 to 35) were annotated into a potentially functional category (non-synonymous, splicing, and ncRNA exonic) (Figure 4.5).

Figure 4.5 Barplots showing the number and their annotation categories of SNPs with a large difference in allele frequency (dAAF > 0.5) between the Low and High groups for different environmental analyses.

Numbers within bars represent the genes count for each category.

Candidate genes were investigated for their overlap with known QTLs (ChickenQTLdb). In total, 174 genes out of 603 overlap with QTLs of size < 1 Mb (Supplementary Table S4.4). Genes overlapping with growth-related QTLs were detected predominantly in all environmental groups except SoilOrgC-Low (Figure 4.6). Overall, QTLs related to growth, egg property, and immune response were more commonly detected.

Figure 4.6 Count of candidate genes from selection signature regions overlapping with QTLs of size < 1 Mb.

Candidate genes detected by both (*Fst* and *XP-EHH*) methods were considered our strongest candidates for each environmental variable and were further investigated.

Table 4.3 report these selected genes grouped as (i) adaptation to extreme temperatures and high altitude (minTemp analysis), (ii) adaptation to extreme rainfall patterns (from the analyses of three precipitation variables), (iii) adaptation to food availability, and (iv) adaptation to food abundance related to areas of cultivated land (LandUse) and SoilOrgC content.

4.3.3.1 Adaptation to extreme temperatures and high altitude

As minTemp (minimum temperature of the coldest month of the year) is positively correlated with the maximum temperature of the warmest month ($r_s = 0.9$) and negatively correlated with elevation ($r_s < -0.91$), the selection signature for these environmental variables mainly reflects adaptation to extreme temperatures and high elevation. Therefore, the Low group populations for minTemp (Alfa Midir and Negasi Amba) live in the coldest environment and the highest altitude. In contrast, the High group population of minTemp live at the maximum temperature and lower altitude (Figure 4.1 and Supplementary Table S4.1). The strongest signals for candidate sweep regions from minTemp analysis were identified in the Low group, suggesting predominant adaptation to low temperature and high altitude (Figure 4.2a, 4.3a, and Supplementary Table S4.2a). Ten candidate genes were commonly detected for *Fst* and *XP-EHH* analyses in the minTemp - Low group. Nine are located in the same candidate region chr5:17250000-17280000 (*CLP1*, *YPEL4*, *ENSGALG0000007381*, *UBEL6*, *TIMM10*, *RTN4RL2*, *SLC43A3*, *PGR2/3*, *P2RX3*), and one additional gene is in a candidate region on chr18:5100000-5120000 (*UTP18*) (Table 4.3).

The genes cluster on chr5 (minTemp - Low group) have functions related to various stress associated with a high-altitude living environment, e.g., hypoxia (Sarkar *et al.*, 2003), thrombosis (Gambhir *et al.*, 2014), and cold temperature (Table 4.3). For
instance, *CLP1* is linked to cardiac muscle hypertrophy (Espinoza-Derout *et al.*, 2007), *YPEL4* plays a role in pulmonary diseases (Truong *et al.*, 2018), *P2RX3* and *ENSGALG0000007381* are involved in blood coagulation (Fabregat *et al.*, 2018), and *SLC43A3* plays a possible role in the repair of the lung tissue under oxidative stress (Furukawa *et al.*, 2015). Also, *RTN4RL2, UBE2L6*, and *TIMM10* genes have been found differentially expressed in cells under hypoxic conditions (Lai *et al.*, 2016; Fabregat *et al.*, 2018; Marchesi *et al.*, 2019). The *UTP18* gene, located in chr18, is differentially expressed in the human hypoxic cardiomyocytes cell line (Lee *et al.*, 2018), and it is involved in processing the pre-18S ribosomal RNA (rRNA).

Genes with very high signals, but identified only with one method, were also investigated. *SDK1* (*ZFst* = 8.16) regulates dendritic spine development and synaptic connectivity (de Wit & Ghosh, 2016). A region with a high /*XP-EHHstd*/ signal (4.24) overlaps with three genes: *ARFIP2* with a role in autophagy (Judith *et al.*, 2019), *ILK* with a signalling mediator role (Yen *et al.*, 2014), *TRIM3* related to tumour growth and metastasis (Huang *et al.*, 2017) and also identified as a regulator factor of p53 levels (a protein activated by a wide variety of stress signals, including DNA damage, hypoxia, and nutritional deprivation) (Liu *et al.*, 2020).

In the minTemp High group, a total of 25 candidate genes were identified. However, none were simultaneously detected by *Fst* and *XP-EHH* analysis. The highest signal was found for the *TOGARAM1* gene (/XP-EHHstd) = 4.02 (Supplementary Table S4.2a), which plays a role in the assembly of non-motile cilia (Nachury & Mick, 2019). Interestingly, heat shock induces the loss of these organelles (Promodou *et al.*, 2012); thus, this gene might have an adaptive role in easing this effect in high-temperature conditions.

Environmental	Genomic regions and Genes		Relevant biological functions for candidate genes			
adaptation	position	Gene	Functions	Reference		
		CLP1	Linked to cardiovascular function and cardiac muscle hypertrophy	(Espinoza-Derout et al., 2007)		
		YPEL4	Role in pulmonary diseases	(Truong <i>et al.,</i> 2018)		
		ENSGALG 00000007381	Blood coagulation	(Fabregat <i>et al.</i> , 2018)		
		UBEL6	Involved in protein ubiquitination pathway, and downregulated in cells exposed to hypoxia	(Gambhir <i>et al.,</i> 2014) (Fabregat <i>et al.,</i> 2018)		
Adaptation to high altitude stresses (hypoxia,	Chr5 17230000- 17290000	TIMM10	It imports transmembrane proteins into the mitochondrial inner membrane. Downregulated in hypoxic cells	(Lai <i>et al.,</i> 2016)		
and cold tolerance) Selection in minTemp Low group		RTN4RL2	Involved in axon regeneration and protection of motoneurons against apoptosis. Upregulated in the myopathy- affected condition in broiler possibly in response to hypoxia	(Marchesi <i>et al.,</i> 2019)		
		SLC43A3	Roles in lung tissue repair and growth under oxidative stress	(Furukawa <i>et al.,</i> 2015)		
		PGR2/3	Immune response	(Parra et al., 2013)		
		P2RX3	Blood coagulation	(Fabregat <i>et al.,</i> 2018)		
	Chr8 5100000- 5120000		RNA binding and involved in pre-18S rRNA processing. It belongs to a gene network targeted by microRNAs differentially expressed in human hypoxic cardiomyocytes cell line	(Gambhir <i>et al.,</i> 2014) (Lee <i>et al.,</i> 2018)		
Water scarcity adaptation	Chr3	ENSGALG 00000036204	LncRNA with a possible regulatory role on nearby genes, e.g., the nearest gene is <i>MMS22L</i> , with a role in the DNA damage repair process	(O'Donnell <i>et al.</i> , 2010)		
Selection in precDQ Low group	71840000- 73980000	ENSGALG 00000025686	U6 spliceosomal RNA with a possible role in post- transcriptional modification	(Didychuck <i>et al.,</i> 2018)		
		MANEA	Associated with panic disorder	(Jensen <i>et al.</i> , 2014)		

Table 4.3 Candidate genes detected by both Fst and XP-EHH in relation to environmental adaptations.

		EPHA7	It is involved in many functions, e.g., apoptotic process, axon guidance, brain development, ephrin receptor signalling pathway, and nephric duct morphogenesis	(Clifford <i>et al.,</i> 2014)	
	Chr3 106430000- 106510000	MSRA	Involved in cellular protein modification, protein repair, response to oxidative stress	(Singh <i>et al.,</i> 2018)	
	Chr4 74170000- 74300000	ENSGALG 00000048521 ENSGALG 00000050078 ENSGALG 00000046053	LncRNA genes possible have Cis-regulatory functions on nearby genes. A nearby target is <i>PPARGC1A</i> , which is involved in many biological functions	(Puigserver & Spiegelman, 2003)	
	Chr6 25040000- 25070000	SLK	Mediates apoptosis	(Al-Zahrani <i>et al.</i> , 2013)	
	Chr1 18110000- 18130000	BANP	Multicellular organism development, transcriptional regulation, and regulation of signal transduction	(Dai <i>et al.</i> , 2015)	
Possible adaptation to water scarcity Selection in	Chr4 2730000- 2750000	HTR2C	It is involved in many functions, e.g., behavioural fear response, regulation of appetite, regulation of corticotropin- releasing hormone secretion, and nervous system processes	(Stamm <i>et al.,</i> 2018)	
precSeasonality High group	Chr4 74280000- 74310000	ENSGALG 00000051573	LncRNA with possible cis- regulatory functions. The nearest protein-coding gene is <i>ENSGALG00000040208</i>	(The Uniprot consortium, 2021)	
Possible adaptation to excess rainfall and humidity	Chr2 114040000- 114080000	ENSGALG 00000053888	LncRNA with possible regulatory functions. The nearest gene, <i>YTHDF3</i> , has a role in the positive regulation of translation	(Shi <i>et al.</i> , 2017)	
Selection in precSeasonality Low group	Chr7 35360000- 35390000	CACNB4	Calcium transport, ion transport	(Rima et al., 2017)	
Scavenging adaptation to a	Chr1 197230000- 197310000	HBBA HBE HBE1 HBBR	Genes involved in heme binding, oxygen carrier activity, cellular oxidant detoxification, protein hetero-oligomerisation, response to an organic cyclic compound	(Hardison, 2012)	
insect, worm, and plant-		ENSGALG 00000052767	novel protein-coding		
based food Selection in	Chr10	THSD4	Peptidase activity. Possible association with feed efficiency traits	(Yao <i>et al.</i> , 2013)	
High group	6820000- 6870000	ENSGALG 00000053176	miRNA with a possible role in RNA silencing and post- transcriptional regulation of gene expression	(The Uniprot consortium, 2021)	
	Chr1	STS	Lipid and steroid metabolism	(Guo et al., 2020)	

	127750000- 127980000	PUDP	Nucleotide metabolic process	(von Papen <i>et al.,</i> 2013)
Scavenging adaptation to a low surplus of crop and grain- based food Selection in LandUse	Chr1 129040000- 129080000	ENSGALG 00000052489	Novel protein coding gene	
	Chr3 34260000- 34320000	SMYD3	It has a role in transcriptional regulation as a member of an RNA polymerase complex and the cellular response to dexamethasone stimulus	(Bernard <i>et al.,</i> 2021)
Low group		KIF26B	Role in cell signalling	(Teng et al., 2018)
	Chr4 56140000- 56170000	NDST4	It has a strong association with low abdominal fat content in chicken	(Williams <i>et al.,</i> 2005)
Scavenging adaptation to crop and grain- rich food Selection in LandUse High group	Chr4 75690000- 75810000	NCAPG	Cell division, mitotic chromosome condensation	(Liu <i>et al.</i> , 2017)

4.3.3.2 Adaptation to extreme rainfall patterns

Three out of the six environmental variables are precipitation-related (precSeasonality, precWQ, and precDQ). A decrease in rainfall may have a major impact on the chicken physiology due to water availability, which can alter the animal's general metabolism. On the other hand, rainfall affects the humidity in the atmosphere, which, combined with heat, may exacerbate heat stress. Also, extreme rainfall is often associated with the prevalence of infectious diseases in poultry (Nyoni *et al.*, 2018).

Candidate genes identified by both methods (*Fst* and *XP-EHH*) are found in the precSeasonality Low and High groups and the precDQ Low group. The largest number of commonly detected candidate genes (n = 10) are from the precDQ Low group, which supports water scarcity as the main driver of selection in poultry (Nyomi *et al.*, 2018). Many of these genes are potentially related to regulatory functions (Table 4.3). For instance, *ENSGALG0000036204*, *ENSGALG0000048521*, *ENSGALG0000050078*, and *ENSGALG0000046053*. They are long non-coding RNA genes with possible *cis*-

regulatory functions on nearby genes. Also, *BANP* has known transcriptional regulatory roles (Puigserver & Spiegelman, 2003; Dai *et al.*, 2015). Other genes are involved in various stress responses, e.g., *SLK* mediates apoptosis (Al-Zahrani *et al.*, 2013). *MSRA* is involved in protein modification, repair, and response to oxidative stress (Singh *et al.*, 2018). Another gene, *EPHA7*, is involved in development and morphogenesis (Clifford *et al.*, 2014), while *MANEA is* associated with panic disorder (Jensen *et al.*, 2014). These gene functions illustrate the impact that stress associated with restricted access to water has on the overall metabolism and physiological responses of the chicken.

Genes overlapping with strong signals from a single method (*Fst* or *XP-EHH*) were also explored. *AGTR1* (|XP-EHHstd| = 7.9) plays an important role in regulating blood pressure and sodium retention by the kidney (Kim *et al.*, 2015). Two other genes, *TMEEM206* and *AFT3* were detected from a single candidate region with |XP-EHHstd|= 10.9. *TMEM206* controls the pH balance in the body (Ullrich *et al.*, 2019), while *AFT3* is a stress-response transcription factor (Zhang *et al.*, 2016b).

Both *Fst* and *XP-EHH* detected four genes for the precSeasonality environmental variable - two in the Low group and two in the High group. The precSeasonality High groups most likely represent an adaptation to water scarcity due to large seasonal variations in rainfall. In this group, *HTR2C* has been linked to many functions, including behavioural fear response and appetite regulation (Stamm *et al.*, 2018), and *ENSGALG0000051573* has possible regulatory roles on gene expression (The UniProt Consortium, 2021).

At the other extreme, the precSeasonality Low group includes populations living in agro-ecologies with low variation in rainfall patterns. It is not evident with what type of

stress response these genes are implicated. However, these genes may be associated with the adaptation to an environment with great ambient humidity. Environmental data from analysed populations shows that the relative humidity in the precSeasonality Low group (59 - 109%) is usually higher in the wettest and driest quarters of the year than in the High group (57 - 71%) (Supplementary Figure S4.4). From the precSeasonality Low group, two common genes were detected: *CACNB4*, which has an important role in ion transport (Rima *et al.*, 2017), and *ENSGALG00000053888*, which is a lncRNA-gene with possible *cis*-regulatory function on the nearby genes (Shi *et al.*, 2017).

4.3.3.3 Adaptation to scavenging production systems: using SoilOrgC as a proxy for food availability

The Soil organic carbon content, linked to the organic matter in the soil, is an important biochemical parameter for agriculture (Griffin *et al.*, 2013). A high SoilOrgC reflects the presence of organic compounds and microorganisms like insects and worms that represent an important protein source for the scavenging chicken. So it may be expected that candidate sweep regions identified in the SoilOrgC High group are related to adaptation to a diet rich in organic compounds. Two candidate sweep regions on chr1 and chr10 were detected by both *Fst* and *XP-EHH* analyses (Table 4.3). Interestingly, the chr1 region overlaps three heme-binding genes (*HBBA*, *HBE*, and *HBBR*) related to O₂ carrier activity, and *HBE1* with a role in response to organic cyclic compounds (Hardison, 2012). Studies in broiler chicken with severe myopathic breast muscle have shown overexpression of these genes in the muscle as a possible response to a lack of oxygen in oxidative stress conditions (Pampouille *et al.*, 2019). A novel protein-coding gene (*ENSGALG00000052767*) was also identified for the same region on chr1.

In the second detected region, on chr10, two genes are present: *THSD4* has a peptidase activity and therefore is directly relevant to feeding metabolism (Yao *et al.*, 2013), while

the other gene, *ENSGALG00000053176* is a miRNA with a regulatory role in gene expression (The Uniprot consortium, 2021).

A high *ZFst* signal (but not *XP-EHH*) was detected from the SoilOrgC - High group in the region overlapping the *DCLK1* (*ZFst* = 10.36) gene. This gene has a possible role in the calcium-signalling pathway (Lin *et al.*, 2000). It is also associated with ovarian follicle weight (Sun *et al.*, 2015). A high /*XP-EHHstd*/ signal (4.03) overlaps *GALNT7*, which is involved in the carbohydrate metabolic process (Bennett *et al.*, 2012).

The SoilOrgC-Low group did not reveal candidate genes identified by both methods. However, a region located on chr33 (position 6470000-6500000) (Figure 4.2e) shows a high *Fst* peak (ZFst = 9 - 12). This sweep overlaps with four genes: *DRPA1* with a role in transcriptional regulation (Lüling *et al.*, 2018), *RELA* involved in different functions (including cell growth, immunity, and apoptosis) (Msaki *et al.*, 2011), *UQCC3* implicated in ATP production (Yang *et al.*, 2020), and *KAT5* that acts together with GSK3 as a regulator of autophagy under starvation conditions (Son *et al.*, 2021) (Supplementary Table S4.2e).

4.3.3.4 Adaptation to scavenging conditions in relation to land cultivation pattern

LandUse is another variable strongly linked to food abundance for scavenging chicken, which receives supplementary feeding from the household. A larger percentage of cultivated land may represent a higher amount of supplemental feeding. Between LandUse extreme population groups, a larger proportion of candidate genes was detected in the LandUse Low group (chickens belonging to these groups live in areas with a lower proportion of cultivated land). Four different sweep regions and six genes were identified by *Fst* and *XP-EHH* methods in the LandUse Low group: three genes on chr1, two on chr3, and one on chr4 (Table 4.3). Overlapping the same region on chr1

(127750000-127980000), we find *STS* related to lipid metabolism (Guo *et al.*, 2020) and *PUDP* involved in the nucleotide metabolic process (von Papen *et al.*, 2013). Another gene, - *ENSGALG00000052489* (a novel protein-coding gene with unknown function), comes from a different region (chr1:129040000-129080000). Within the chr3 region, we find *SMYD3* with a role in transcriptional regulation (Bernard *et al.*, 2021) and *KIF26B* with a role in cell signalling (Teng *et al.*, 2018). The *NDST4* gene overlapping the candidate region on chr4 has been reported to have a strong association with low levels of abdominal fat content in chicken (Williams *et al.*, 2005) (Table 4.3). For the LandUse High populations, only a single common candidate gene is detected. This is *NCAPG* involved in cell division and chromosome condensation (Liu *et al.*, 2017).

Large signals for each method (*Fst* and *XP-EHH*) of analysis were also investigated. For the LandUse High group, the *PRDM5* has a *ZFst* of 8.96, and it is involved in the regulation and expression of collagen and other connective tissue components (Galli *et al.*, 2012). A high /*XP-EHHstd*/ signal (4.65) was found overlapping *ADIPOR2*, a regulator of glucose and lipid metabolism (Capeau, 2007). For the LandUse-Low groups, a high signal *ZFst* = 10.75 overlaps the gene *ADCY1*, which plays a role in memory, learning, and circadian rhythm (Hwang *et al.*, 2013) (Supplementary Table S4.2f).

4.3.3.5 Shared candidate genes across environmental analyses

Across the six environmental parameters, between 150 and 209 candidate genes were detected (Figure 4.7), giving the total number of 1008 genes from all analyses. Of these, 152 genes (15%) were common to two or more environmental analyses. The range of shared candidate genes between two environmental variables varied between 0.3% and

14% (Figure 4.7). The generally low proportion of overlapping genes shows that the selection of population groups living in the extremes of each environmental variable (Low and High groups) is a useful tool for capturing specific environmental pressures in the genome.

Figure 4.7 Heatmap of shared candidate genes detected across environmental population groups analysed.

4.4 Discussion

Insights of local adaptation are crucial to identify genetic mechanisms that can facilitate livestock environmental resilience. Local adaptation can shape the within-species diversity and create an adaptive divergence in response to extreme agro-climatic variables (Tiffin & Ross-Ibarra, 2014). However, exploring the genetic basis of environmental adaptation is difficult due to the complex interaction between environmental stressors affecting the genome. Thus environmental adaptation is not easy to measure; this is especially true for tropical and subtropical climates with intricate weather patterns (Scholtz *et al.*, 2010).

Different factors have been identified as stressors for livestock animals' survival and productivity, including geographical location and origin, nutrient availability, water availability, photoperiod, management practices, and environmental conditions (Khalifa, 2003; Sejian, 2012). Measuring the adaptation effects to these factors represents a challenge, especially in indigenous populations without specific management systems and living in a broad range of agro-ecologies. Consequently, this study contributes to overcoming this challenge by using an interdisciplinary approach to address this issue. First, this study disentangles and pinpoints the key environmental factors (from a large array of parameters) acting as stressors in particular agro-ecologies and then identifies the candidate genes using complementary genomic approaches.

The results presented here reveal strong signals of adaptation for (i) high altitude with physiological effects as hypoxia and thrombosis, (ii) lack of water during the driest seasons, and (iii) food availability, abundance, and quality.

Perhaps not surprisingly, we did not identify many strong candidate signatures of selection linked to heat tolerance. It is possibly due to the origin and history of African indigenous chickens, whose ancestors were native inhabitants of tropical South and South-East Asia and were already adapted to these regions' hot and humid climates (Pitt *et al.*, 2016).

On the other hand, strong candidates were detected in relation to high altitude and lowtemperature adaptation, possibly because when chickens were first introduced from Asia to Africa, the high Ethiopian altitude posed major stress for this newly introduced species, and therefore rapid adaptive evolution was needed to survive in these new environments.

Interestingly, in relation to adaptation to high altitude, no common genes were found between our study and Zhang *et al.* (2016a) and Zhang *et al.* (2016b) studies, which investigated the mechanism of adaptation of Tibetan chickens to their environment.

However, none of their candidates were identified in the present study, although they show similar biological functions. This result may be attributed to different aspects. First, rapid adaptation often works on the "standing variations" in a population (Rees *et al.*, 2020). The different demographic histories of the African and Tibetan chickens may have offered distinct standing variations for natural selection. Thus, even though the adaptive responses were similar in both instances, the associated genes were distinct. Besides, epistatic interactions and pleiotropic effects of genes may favour the selection of one gene over another in different geographic areas (Ostman *et al.*, 2012). These results exemplify the plasticity of the genome in its response to environmental selection pressures.

Among the identified candidate genes, we found several instances of shared genes for two or more environmental analyses, although these were detected in different populations. It may be expected that adaptation to these distinct environmental challenges would involve, to some extent, the same biological pathways. Pleiotropic effects might also explain this phenomenon in which one particular gene can impact the expression of other multiple ones even though they are not directly trait related. Furthermore, geographic origins and biotic interaction with abiotic factors affect responses to the same environmental conditions for different populations or species.

In the long term, environmental adaptation studies on livestock species should aim to identify genomic regions that permit sustainable agro-systems development, producing well-adapted individuals with high production performance. For the Ethiopian indigenous chicken, achieving this goal should involve the sustainable breeding of birds that are already environmentally adapted. Accordingly, the genome regions and genes reported here might be used for animal improvement, not only for backyard scavenging

100

chicken but also for exotic breeds to be introduced in African tropical conditions through markers-assisted selection and breeding improvement strategies.

Our study identified many candidate sweep regions, some with strong signals of selection and overlapping genes were considered as candidates. Obviously because of small sample size, we had to use a window-based approach to identify the sweep regions which did not allow to get very high resolution. This suggest that further validations of these regions would be requires. Such validations can include comparisons with other populations or similar species living in similar environments and also gene expression analyses.

4.5 Conclusion

Our study illustrates the importance of understanding the environmental drivers of selection before investigating genome responses to these environmental stressors. It also exemplifies the use of ENM as a predictive tool to characterise the environment for integration in genomic studies. The genomic data, along with key agro-climatic variables, represent a powerful approach for genome-environmental association analysis aiming to identify candidate signatures of positive selection (selective sweep) and their association with particular agro-climatic variables. Therefore, a powerful tool integrating ecological and genomic approaches can generate more accurate data to improve and sustainable use of Ethiopian indigenous chicken. This approach can be easily applied to any other livestock species.

Chapter 5

Dissecting genome-environment associations in Ethiopian chicken ecotypes

Chapter Five

Abstract

Indigenous chickens across Ethiopia are a good example of small populations adapted to diverse and local environmental conditions. Our previous results (Chapter 3) have shown the usefulness of the Ecological Niche Modelling (ENM) approach for the environmental characterisation of poultry population agro-ecologies and for defining ecotypes based on niche similarity. In this chapter, we will now aim to dissect ecotypes' genome-environmental association. Candidate selection signature regions withinecotype were first identified using Hp and iHS analysis. A multivariate Redundancy Analysis (RDA) was then used to identify genome-environment associations between genetic variants, overlapping the Hp and iHS candidate sweep regions and agro-climatic stressors. Sweep regions detected by Hp analysis include genomic regions selected following domestication and candidates for immune response-related stress, thermotolerance, and food intake stress. iHS sweep analysis uncovered genes related to pigmentation, dwarfism, heat stress, water scarcity, and disease resistance. Several of these candidate-selective sweeps were detected in several ecotypes. While the selection signature analyses identify broad candidate regions under selection, the RDA analysis identifies SNPs associated with a specific environmental stressor. A total of 616 outlier SNPs were identified from RDA analysis. These SNPs overlap with genes relevant to different environmental adaptations, such as heat stress and/or water availability (LDLRAD3, TNIP2, GPX7, PTPRZ1), as well as muscle growth, body weight and feed metabolism (GPCPD1, NHLRC2 TSHD7B), and immune response (MAPK4).

Chapter Five

5.1 Introduction

As described in Chapter 3, Ethiopian indigenous village chicken populations are exposed to diverse ecological conditions. Following an Ecological Niche Modelling (ENM) analysis, key environmental stressors across the Ethiopian landscape were identified, and 12 distinct ecotypes were defined. These proposed ecotypes provide an exciting new platform for exploring environmental adaptation and their genetic basis. This chapter now focuses on dissecting the genetic basis of environmental adaptation in these newly proposed ecotypes.

Various approaches that detect genomic regions under selection have investigated local environmental adaptation (de Simoni *et al.*, 2014). Different factors can influence selection signatures, such as the type of selection, the strength of selection, and the recombination rate (Charlesworth, 2007). Moreover, the selection may have fixed a region or might be an ongoing process so that the regions are yet to reach fixation. Hence, the study in this chapter applies two complementary methods (viz. Hp and iHS) to capture both types of sweeps – those that have reached fixation (Hp) and those yet to reach fixation (iHS). The Hp method (Rubin *et al.*, 2010) is a site frequency spectrumbased approach used to find sweep regions showing reduced heterozygosity, which have reached either fixation or are close to fixation. In contrast, the *iHS* (Voight *et al.*, 2006) applies an LD-based approach. It measures the amount of extended haplotype homozygosity (*EHH*) at a given SNP location around the ancestral allele relative to the derived allele. This method only detects ongoing selection, i.e., regions yet to reach fixation.

Regarding the time scale, there is not straight forward distinction that Hp will detect older sweeps whereas *iHS* will detect newer ones (although that is possible). For instance, Hp can also detect strong recent sweep which have gone to fixation very

104

quickly. Similarly *iHS* can also detect slowly applying selection (i.e. weak selection) which is occurring since long time. Thus, considering that chickens in Ethiopia may have been introduced around 820 - 595 BC (Woldekiros & D'andrea, 2016), and they environment is ever changing, these two methods are complementary to understand the selection pressure effect.

The interest in investigating gene-environment association using large datasets of both environment and genetic parameters has led to a new field called landscape genetics, which combines landscape ecology and population genetics/population genomics (Manel *et al.*, 2003). Landscape genetics offers several methods for dissecting genotype-environment association (GEA) (Rellstab *et al.*, 2015), identifying correlations between genetic loci and environmental data as a proxy to local adaptation (Forester *et al.*, 2016).

Most of the early GEA methods are based on univariate statistical analysis testing one locus and one environmental predictor at a time. It includes linear models (Joost *et al.*, 2007; Stucki *et al.*, 2016) and linear mixed models (Coop *et al.*, 2010; Frichot *et al.*, 2013). A disadvantage of these methods is the elevated false-positive rates due to the lack of correction for multiple comparisons (Forester *et al.*, 2016). As large genomic data sets have increased recently, more robust methods that permit analysing simultaneously numerous loci have been developed. Multivariate methods have now been identified as more effective in detecting environmental association with multiple loci (Rellstab *et al.*, 2015).

A broad range of multivariate landscape genetic methods have been developed (Frichot *et al.*, 2013; Bouret *et al.*, 2014; Forester *et al.*, 2016; Stucki *et al.*, 2016). In this study, distance-based redundancy analysis (RDA) was applied (Forester *et al.*, 2016). The method is considered a PCA constrained approach that models covarying groups of

SNPs as a response to environmental variables. Based on a locus score, outliers for each constrained axis are identified (Forester *et al.*, 2016). RDA method offers many advantages, such as: (i) it can detect moderate and weakly selected loci, (ii) it offers fast and easy computational application over a large genetic dataset, and (iii) the method is generally robust to weak population structure (Forester *et al.*, 2017). Nevertheless, a strong population structure can result in power decrement in detecting and increasing false positives (Forester *et al.*, 2017). Hence, correction for population structure is needed in such scenarios.

The analysis presented in this chapter has two main objectives. (1) To detect signatures of positive selection within the proposed Ethiopian chicken ecotypes (applying Hp and *iHS* methods), and (2) to identify genotype – environmental associations (using RDA) between loci under selection and key agro-climatic predictors of Ethiopian chicken habitats (previously identified by the ENM approach). This study uses knowledge of ecotypes and landscape configuration of Ethiopian village chickens and provides important evidence regarding the genetic mechanisms of local adaptation. The results presented here will be valuable for sustainable farming and conservation programs oriented to smallholder farmers who depend on locally adapted ecosystem-based production.

5.2 Materials and Methods

5.2.1 Genomic data on Ethiopian chicken ecotypes

Sequence data from 243 samples from 25 different chicken populations have been described in detail in Chapter 2. Based on the 12 ecotypes defined in Chapter 3, the genetic variant data were combined for all populations constituting each ecotype.

Though, PCA in chapter 2 showed a weak population structure in the studied samples, this ecotype configuration may contribute to reducing the effect of population structure while downgrading any false positive in selection signature analysis. This is because combining populations to create ecotypes should create heterogeneity in the overall genome except in regions that are under selection, thereby improving the signal strength form adaptive regions. The ecotype details are given in Table 5.1. The number of samples per ecotype varied (10 - 43). In order to keep a similar number of samples per ecotype, we could have subsample larger ecotypes. However, this was not applied, since we could not create major gain for bigger ecotypes in the analysis and also, no improvement for smaller ecotypes.

Ecotype	Populations	No. of samples	No. of SNPs
E1	AmeshaShinkuri, Gafera, Surta, Batambie	37	13,079,450
E2	Ashuda, Dikuli	20	12,242,188
E3	BekeleGirissa, ShubiGemo	20	12,508,181
E4	Adane, LocalHorro	16	12,221,917
E5	Loya, Kumato	20	12,555,563
E6	Mihquan, HadushAdi, Hugub, Jarso	43	13,273,352
E7	NegasiAmba, AlfaMidir	20	11,789,998
E8	Gesses, Kido	18	11,743,436
E9	Meseret, Gijet	19	12,426,154
E10	Metkilimat	10	11,295,871
E11	Arabo	10	10,958,190
E12	TzionTeguaz	10	10,954,331

Table 5.1 Details about proposed ecotypes as defined in Chapter 3.

5.2.2 Selection signature analyses

Putative selective sweeps were detected within individual ecotypes using two complementary methods. First, the pooled heterozygosity (Hp) approach was conducted following the procedure described in Rubin *et al.* (2010). The values for the Hp were calculated for overlapping 20-kb windows with a 10-kb sliding step using equation (5.1):

(5.1)
$$Hp = \frac{2\Sigma n_{MAJ}\Sigma n_{MIN}}{(\Sigma n_{MAJ} n_{MIN})^2}$$

Where Σn_{MAJ} and Σn_{MIN} are the sums of major and minor allele frequencies for all the SNPs in the 20 kb windows. Afterwards, values calculated for each window were standardised to obtain "Z" scores (*ZHp*). Values were Z-transformed using equation (5.2):

(5.2)
$$Z(Hp) = \frac{Hp - X(Hp)}{\sigma (Hp)}$$

Where *X* is the mean and σ the standard deviation of the *Hp*. Windows with only SNPs ≥ 10 , empirical *P*-value ≤ 0.01 , and *ZHp* ≤ -4.0 were considered outliers and potential sweeps.

The second applied method was the integrated haplotype score (*iHS*). It is computed based on estimating extended haplotype homozygosity (*EHH*) in each bi-allelic SNP, which are ancestral or derived. The sum of *EHH* calculated in both directions from the core SNP is referred to as integrated *EHH*. It is referred to as *iHH*^A for the ancestral allele, *iHH*^D for the derived allele, and *iES* for the SNP site (Gouveia *et al.*, 2014). The *iHS* calculation is based on the extent of decay of linkage disequilibrium surrounding a marker exposed to natural selection, described as a within-population score as the ratio between *iHHA* and *iHHD* (Voight *et al.*, 2006). It was calculated using equation (5.3):

(5.3)
$$uniHS_{(s)} = ln\left(\frac{iHH_{(s)}^{A}}{iHH_{(s)}^{D}}\right)$$

Where uniHS represents the un-standardized log-ratio of ancestral iHH^A to derived iHH^D of a certain focal marker (*s*), afterward, a standardization was performed applying equation (5.4):

(5.4)
$$iHS_{(s)} = \frac{uniHS_{(s)} - mean(uniHS|_{p_s})}{sd(uniHS|_{p_s})}$$

Where $mean(uniHS|_{p_s})$ and $sd(uniHS|_{p_s})$ represent the mean and standard deviation of *uniHS* restricted to those variants with a similar derived allele frequency as observed at the focal marker (p_s).

In practice, *iHS* scores were calculated for individual SNPs using the Hapbin package (Maclean *et al.*, 2015), and then means were taken from multiple SNPs within sliding windows (20 Kb size and 10 kb step). All SNPs with missing genotypes were removed from the analysis. This approach requires phasing of the SNP data, which was performed using Beagle v5.1 (Browning & Browning, 2007). The *iHS* values for individual SNPs were calculated using a minor allele frequency of 10% and an Extended Haplotype Homozygosity (*EHH*) value equal to 0.1. Consecutively, mean values were calculated within windows for (i) standardized *iHS* (*iHS_std*) and (ii) absolute value of standardized *iHS* ($|iHS_std|$). Based on $|iHS_std|$, the proportion of SNPs within a window showing $|iHS_std| \ge 2.0$ was calculated. Empirical *P*-values were calculated based on the mean of $|iHS_std|$ within windows by sorting the scores in descending order (i.e. by ranking the windows) and dividing their ranks by the total number of analysed windows. Criteria to select outlier windows were SNPs ≥ 10 , empirical *P*-value ≤ 0.01 , window mean of $|iHS_std| \ge 2.0$, and a minimum of 90% of SNPs with $|iHS_std| \ge 2.0$ in the window.

Finally, sweep regions showing more extreme signals (either $ZHp \le -5$ or $iHS \ge 3.5$) were investigated more closely for overlapping genes as they potentially represent the most important candidates.

5.2.3 Redundancy analysis (RDA)

RDA analysis was performed based on SNPs overlapping sweep regions detected in the above analyses. As RDA can not deal with large genotype data (scale of millions) (Csala

et al., 2017), a reduction of our variant dataset was performed by LD pruning using PLINK v1.9 (Purcell *et al.*, 2007), with the following parameters: --indep-pairwise, window-size = 10 kb, step-size = 10 SNPs, and $r^2 = 0.5$.

RDA was performed using the R package Vegan v2.5-4 (Oksanen, 2015) following (Forester, 2019). LD-pruned SNP genotype data were fitted as response variables (Y). The six environmental variables (Chapter 3) - key predictors of Ethiopian chicken agroecologies - were the explanatory variables (x) in the RDA analysis. These environmental variables are the minimum temperature of the coldest month (minTemp), precipitation seasonality (precSeasonality), precipitation of wettest quarter (precWQ), precipitation of driest quarter (precDQ), soil organic carbon (SoilOrgC), and land use (LandUse).

SNP genotypes were converted as a dosage of alternative alleles (i.e. 0, 1, and 2) to be fitted as the response (y) variable. In addition, the RDA model was conditioned on latitude and longitude to correct for spatial autocorrelation and neutral genetic structure due to the geographic proximity of the populations. Moreover, ancestry coefficients (for K = 3) from previous admixture analysis (Chapter 2) were also included in the model as covariates to be partially out to correct for possible population structure from different ancestral backgrounds.

The significance of the partial model was estimated with 999 permutations and for each axis with 99 permutations. A two-tail SNP loading distribution was used to determine outliers or candidates for local adaptation with a cut-off value of SD \geq 3 (*P*-value = 0.0005) for each significant axis.

Chapter Five

5.2.4 Functional annotation

Candidate regions/variants from selection signature and RDA analyses were investigated with the Ensembl genome browser (release 98) using the Ensembl Variant Effect Predictor (VEP) platform (McLaren *et al.*, 2016) for genes annotation. In addition, molecular functions, biological process, and metabolic pathways were also analysed for the candidate genes using the PANTHER Classification System v.14.0 (Huaiyu *et al.*, 2019) and the Kyoto Encyclopaedia of Genes and Genomes (KEEG) (KOBAS version 3.0, Release 97.0) (Kenehisa & Goto, 2000).

5.3 Results

One of the main goals of defining ENM-informed ecotypes in our study is to use these for dissecting the genetic basis of environmental adaptations. Accordingly, selection signature analyses (*Hp* and *iHS*) were first run within each of the defined ecotypes to identify putative sweep regions under positive selection. Then, the SNPs from the putative sweep regions were used to investigate linear association between genotype and environmental parameters using the RDA approach.

The results are structured in the following subsections. First, the summary results from Hp and iHS analyses are presented to provide a comparative overview. Then, genes overlapping the strongest candidate regions from different ecotypes are discussed separately for the Hp and iHS analyses, followed by a section on shared sweeps regions detected by both methods. In the final subsection, results from the RDA analysis are presented.

5.3.1 Summary results from selection signature analyses

For each of the 12 ecotypes, signatures of positive selection were calculated for *Hp* and for *iHS*, analysing between 92,364 and 93,313 windows across the genome (Table 5.2).

Supplementary Figures S5.1a and S5.1b show the observed distributions of *Hp* and *iHS* values for each ecotype analysis.

The genome-wide mean values of Hp were similar across all the ecotypes, ranging from 0.29 ± 0.06 for E7 and 0.33 ± 0.05 for E10. However, the number of candidate windows (with *P*-value < 0.01, ZHp < -4) varied widely, from only seven candidate windows for E7 to 279 candidate windows for E10. Adjacent or overlapping candidate windows were merged to define the sweep regions. This resulted in 2 to 67 unique sweep regions in individual ecotypes and a total of 320 regions for all combined ecotypes (Table 5.2).

		Pool heterozygosity (<i>Hp</i>) statistics			Integrated haplotype score (<i>iHS</i>) statistics				No of	
Ecotype	No. of samples	No. of windows	Mean ± SD	No. of candidate window (unique ecotype specific windows)	No. of sweep regions	No. of windows	Mean ± SD	No. of candidate window (unique ecotype specific windows)	No. of sweep regions	Common Z(Hp) and <i>iHS</i> window
E1	37	93031	0.30 ± 0.04	108 (14)	29	92654	0.813 ± 0.36	176 (67)	41	0
E2	20	93224	0.31 ± 0.05	115 (22)	35	92928	0.797 ± 0.40	234 (161)	53	4
E3	20	93191	0.32 ± 0.04	250 (59)	56	92911	0.804 ± 0.38	112 (56)	32	8
E4	16	93042	0.31 ± 0.05	127 (9)	33	92627	0.809 ± 0.39	87 (54)	29	0
E5	20	93258	0.31 ± 0.04	146 (30)	29	92918	0.816 ± 0.40	389 (178)	74	7
E6	43	92687	0.30 ± 0.04	167 (38)	45	92364	0.811 ± 0.33	48 (35)	23	9
E7	20	93200	0.29 ± 0.06	7 (0)	2	92740	0.788 ± 0.39	181 (130)	44	0
E8	18	93175	0.30 ± 0.05	64 (8)	10	92713	0.808 ± 0.41	243 (144)	56	1
E9	19	93277	0.32 ± 0.04	267 (70)	58	92935	0.818 ± 0.41	312 (263)	80	12
E10	10	93313	0.33 ± 0.05	279 (65)	67	93090	0.815 ± 0.40	81 (44)	22	0
E11	10	93261	0.31 ± 0.06	59 (20)	18	92971	0.752 ± 0.50	559 (435)	180	0
E12	10	93266	0.32 ± 0.05	141 (38)	34	93009	0.791 ± 0.43	154 (102)	46	0

Table 5.2 Genome-wide pool heterozygosity (*Hp*) and integrated haplotype score (*iHS*) for the 12 proposed chicken ecotypes in Ethiopia.

* Candidate (sweep) regions were determined after merging overlapping or adjacent windows.

Similar to *ZHp* analysis, the genome-wide mean values of *iHS* were close across all twelve ecotypes (ranging between 0.75 ± 0.5 for E11 and 0.81 ± 0.4 for E9). Still, the number of candidate sweep windows ($|iHS| \ge 2.0$, P-value ≤ 0.01) showed great variation between ecotypes (Table 5.2). The lowest number of candidate windows were recorded for E10 (n = 36) and E6 (n = 48), and the highest in E11 (n = 559). Merging the overlapping candidate *iHS* windows within ecotypes resulted in 22 to 180 sweep regions (Table 5.2). E6, with the highest number of samples analysed, has the lowest numbers of candidate regions across the chicken genome (n = 48). On the other hand, E11 showed the highest number of candidate regions (n = 180), with the remaining ecotypes with 22 – 80 sweep regions.

The representation of candidate sweep regions across the chromosomes was further explored (Figure 5.1 and 5.2). *Hp* sweeps are distributed across most of the autosomes on the chicken genome except chromosomes 13, 16, 17, 21, 25, and 28, from which no candidate sweeps were detected (Figure 5.1). In contrast, *iHS* sweeps were found across all autosomes (Figure 5.2). In addition, the concentration of sweeps from individual ecotypes varied greatly among chromosomes (Supplementary Table S5.1 and 5S.2).

One chromosome show candidate *ZHp* sweeps from a single ecotype, viz. chr32 for E1, and only chr5 present sweeps from all the 12 ecotypes. Six chromosomes (chr13, 16, 17, 21, 25, and 28) do not have any *ZHp* candidate sweep (Figure 5.1 and Supplementary Table S5.1). Also, five chromosomes show candidate *iHS* sweeps from a single ecotype, viz. chr15 and chr32 have sweeps only from E9, chr22 from E12, chr24 from E5, and chr31 in E2. However, other chromosomes have sweeps from all 12 ecotypes, and chr5 reveals sweeps from 11 different ecotypes (Figure 5.2 and Supplementary Table S5.2).

Among all the candidate Hp sweep regions, 47 regions (15%) were detected in at least two ecotypes (Supplementary Table S5.3). E6 has the highest number of shared sweeps with other ecotypes (n = 19), representing 42% of the total sweeps for this ecotype. In contrast, E7 shows only two shared sweep regions.

Figure 5.1 Chromosome-wise percentage distribution of *Hp* sweeps within chromosomes by ecotype

(*number in bars represents sweeps count per ecotype).

Figure 5.2 Chromosome-wise percentage of *iHS* sweeps within chromosomes by ecotype.

(*number in bars represents sweeps count per ecotype).

A few Hp sweep regions were detected across the majority of the ecotypes. For example, one candidate sweep located at chr5: 22,750,000 – 22,800,000 in chromosome 5 (position 22750000 – 2280000) was detected in all ecotypes except E12 (*ZHp* ranges -4.035 to -4.886). (Supplementary Table S5.3). This 50 kb sweep region overlaps with a LncRNA gene (*ENSGALG0000052351*), with a possible regulatory effect on nearby genes. The closest protein-coding gene to this is *FUT8* (24.14 kb forward), a well-conserved region gene across different vertebrate species involved in the protein glycosylation pathway (Coullin *et al.*, 2002).

Candidate sweeps overlapping *TSHR* loci were identified in all the ecotypes. Regions (Chr5: 4100000_41030000 - (30 Kb), overlapping with - *TSHR* locus gene) were detected in E1, E2, E3, E7, E9, and E11, while the region (chr5: 40990000_41040000 - (50 kb), overlapping with - *TSHR* and *GTF2A1* loci) was detected in E4, E5, E6, E10, and E12. These two regions also represented the lowest *ZHp* values for six different ecotypes (E1, E2, E3, E5, E6, and E7), with scores ranging from -4.268 to -6.04 (Supplementary Table S5.3). A number of previous studies have also reported sweep regions harbouring *TSHR* and *GTFA21* genes from different chicken breeds, which are suspected of having played an important role in the early improvement of chickens (Rubin *et al.*, 2010; Gheyas *et al.*, 2015; Lawal *et al.*, 2018).

Twenty *iHS* sweep regions (2.9%) were detected in at least two ecotypes (Supplementary Table S5.4), but unlike the *Hp* results (Supplementary Table S5.3), none of the *iHS* sweeps was identified across all or most of the ecotypes. E8 and E9 had the highest shared sweeps with other ecotypes (3 out of 6). Ecotype 6 did not share any *iHS* sweep with other ecotypes.

The sweep regions show large size variations, ranging from 20 kb -150 kb for *Hp* and 20 kb - 360 kb for *iHS* (Figure 5.3). The largest *Hp* sweeps (150 kb, spanning across 12

windows) were identified in E5 (chr2:147010000-147160000; ZHp: -4.39 ± 0.31) and E9 (chr2: 147050000- 147200000; ZHp: -4.41 ± 0.27) (Suppl. Tables S5.5.5 & S5.5.9, Figures 5.4e & 5.4i). These 150 kb sweep regions (in E5 and E9) are partly overlapping. The region harbours the *TSNARE1* gene. Sweep regions (of variable size) intersecting with *TSNARE1* have been detected from most ecotypes, except E7, E8, and E11.

Figure 5.3 Size variation (kb) of detected *Hp* and *iHS* sweep regions.

Nine other *Hp* candidate regions have fragment sizes ≥ 100 kb. Some of these regions detected from different ecotypes were partly overlapping. Beside the region on chr2 presented before, these include a region on chr9 with a 100 kb region in E6 (chr9: 10,360,000-10,460,000) and a 130 kb region in E12 (chr9:10,330,000-10,460,000). Several genes are found within the overlapping region: *ZBTB38* with a role in DNA replication (Miotto *et al.*, 2014), *RASA2* a GTPase activator gene (Li *et al.*, 1996), *RNF7* involved in lipid metabolism (Huang *et al.*, 2011), *GRK7* related with photoresponse (Lamb *et al.*, 2018), and *ATP1B3* (See the sub-tables under the Supplementary Table S5.5 for respective ecotypes).

Forty-two *iHS* regions (6% of the 657 sweep regions detected) were larger than 100Kb. The largest-sized candidate sweep region is 360 kb (chr1:74330000-74690000) in length. It is found in E9 (*iHS* = 2.58 ± 0.12). Two genes, *ANO2* and *VWF*, involved in calcium transport and homeostasis (Stephan et al., 2009; Xu et al., 2012), are found within this region (Supplementary Table S5.6.9 and Figure 5.5i). Two regions have lengths > 200 kb. A sweep of 270 kb identified in E2 ($iHS = 2.38 \pm 0.12$, chr2:9240000 – 9510000), which overlaps with the STRBP gene involved in spermatogenesis (Meng et al., 2018), and DENND1A with a mediated endocytosis role (Gammoh et al., 2015) (Supplementary Table S5.6.2 and Figure 5.5b). Another sweep of 230 kb detected in E7 $(iHS = 2.55 \pm 0.22, chr26:90000 - 320000 bp)$ includes eleven different genes with multiple functions. The CLPS related to lipid metabolism (Pernes et al., 2019), LHFPL5 involved in hair morphogenesis in mice (Mahendrasingam et al., 2017), SRPK1, which regulates alternative splicing (Zhong et al., 2009), SLC26A8 ion transporter (Dirami et al., 2013), MAPK14 and MAPK13 involved in cellular proliferation (Lee et al., 2015), RPF3 with hydrolase activity, TBC1D22B with GTPase activity (Fukuda, 2011), PIM1 related with blood cell proliferation (Magnuson et al., 2010), CACNA1S with a roll in ion channel activity and hyperthermia (Carpenter et al., 2009), and KIF21B involved with microtubule dynamics (Muhia et al., 2016) (Supplementary Table S5.6.7 and Figure 5.5g).

The X-axis represents the genomic positions within 20 kb windows along the genome.

Figure 5.5 Candidate integrated haplotype score (*iHS*) signatures of positive selection in Ethiopian chicken ecotypes using the integrated haplotype score *iHS*. The X-axis represents the genomic positions within 20 kb windows along the genome.

Even though, the methods used in this chapter 5 and chapter 4 are based on different statistical assumptions, it is interesting to identify which of the detected sweep regions

120

overlap. Such information can be useful as a way of validation of the signals, especially if they are coming from population or ecotypes with similar environmental variables. When the selective regions (SRs) identified by *iHS* and *Hp* analyses are compared with SRs identified in chapter 4 (*Fst* and *XP-EHH* analyses) a total of 162 regions representing all 12 ecotypes overlapped (Supplementary Table S5.7).

5.3.2 Important sweep regions and genes detected in *Hp* analysis

From each ecotype, genes overlapping the extreme signals (sweeps with $ZHp \leq -5$) were further investigated for their function and potential relation to agro-climatic variables (Table 5.3). These include 16 genes distributed across 13 candidate sweeps in nine different ecotypes. For three ecotypes (E7, E8, and E11), no windows passed the threshold of ZHp < -5 (Figure 5.6). For these, the candidate region with the lowest significant ZHp threshold (-4) was checked for overlapping genes (Table 5.3).

Figure 5.6 *ZHp* values for candidate genome regions in each ecotype. Genome regions showing sweeps with signals over a threshold $ZHp \le -5$ (blue line) were further investigated. (See Supplementary Table S5.5 – sub-tables 1 to 12).

GENE	Gene function / association	Reference	chr_start_stop	kb	$uZHp \pm s.d.^a$	Ecob
DRD3	It is a dopamine receptor gene with an important role in aggressive chicken behaviour.	Li <i>et al.</i> , 2016	1_83730000 _83750000	20	-5.01	E3
EFHC2	Involved in neuron development	Gaudet <i>et</i> <i>al.</i> , 2011	1_1124000000 _112430000	30	-4.65	E8
ILIRL2	Interleukin protein. Informative SNPs have been found for immune response and disease resistance.	Kaiser <i>et</i> al., 2008	1_135140000 _135160000	20	-5.05	E12
HHLA1	Protein coding gene. A candidate gene for feralisation in the chicken Calcium ion-binding and	Johnson <i>et</i> <i>al.</i> , 2015	2_141370000	20	-5.19 ±	E5
<i>OC</i> 90	Gene associated with convergent adaptation to the tropical desert climate in birds.	Shilin <i>et</i> <i>al.</i> , 2020	_141400000	30	0.1	EJ
TSNARE1	Neurobehavioural gene. Shows parallel fixation in different commercial traits, suggestive of selection during pre-improvement ages.	Qanbari <i>et</i> al., 2015	2_147130000 _147180000	50	-5.03 ± 0.6	E12
ENSGALG 00000053847	LncRNA		3_82190000 _82220000	30	-4.87	E11
ESRRG	Novel susceptibility gene. It is associated with BMI and fasting glucose level. It is located within a QTL region for abdominal fat weight.	Shan-Shan et al., 2016	3_20100000 _20120000	20	-5.07	E9
TACR3	Protein works as a mediator of signals across the cellular membrane. Selective sweep detected for Ethiopian and Sri Lankan chicken. It was identified as a regulator of gonadotropin-releasing hormone secretion, which regulates sexual maturity.	Lagerström et al., 2006 Lawal et al., 2018 Topaloglu et al., 2009	4_39150000 _39220000	70	-5.28 ± 0.2	E3
BEGAIN	Gene is involved in protein- protein interaction across chemical synapses. It regulates the development and differentiation of adipose and muscle.	Shin <i>et al.</i> , 2010	5_48990000 _49080000	90	-6.16 ± 0.1	E9
TSHR	Gene is identified as the most striking selective	Rubin <i>et</i> <i>al.</i> , 2010	5 <u>41000000</u> _41020000	20	-5.57	E9

Table 5.3 Genes overlapping sweep regions with *ZHp* value < -5 or the strongest signalling *ZHp* sweep in each ecotype.

	sweep found in all domestic chicken. It regulates	Karlsson <i>et al.</i> , 2016	5_41000000 _41030000	30	-6.04± 0.7	E3
	photoperiod response and seasonal reproduction.		5_41000000 _41030000	30	-5.45 ± 0.3	E2
	Therefore has been important for chicken domestication.		5_41000000 _41030000	30	-5.38 ± 0.7	E1
	Gene within the same	Karlsson <i>et</i>	5_41000000 41040000	40	-5.33 ±	E5
GTF2A1	linkage disequilibrium (LD)-block as TSHR. It was reported as a candidate	<i>al.</i> , 2016 Liu <i>et al.</i> ,	_41040000 _41040000	40	-5.19 ± 0.9	E10
	gene for egg production.	2011	5_40990000 _41040000	50	-5.10 ± 0.7	E6
NRXN3	The gene has a significant polymorphism after heat stress when resistant versus susceptible to heat stress chicken are compared.	Zi-Xuan <i>et</i> al., 2019	5_40540000 _40560000	20	-5.107	E9
ARHGAP22	It is a protein-coding gene involved in endothelial cell angiogenesis and increased capillarity permeability. It is associated with diabetic retinopathy risk.	Huang <i>et</i> <i>al.</i> , 2011	6_19150000 _19170000	20	-5.207	E3
ZZZ3	It is a gene with an important role in chromatin organisation. The gene modulates histone acetylation and gene activation.	Mi <i>et al.</i> , 2018	8_19380000 _19410000	30	-5.226 ± 0.5	E9
RNF7	(lncRNA) involved in lipid metabolism. Association found with risk of developing liver fibrosis or cirrhosis	Huang et al., 2017 Kupcinskas et al., 2017				
GRK7	The gene expresses a retina-specific kinase involved in the photoresponse's shutoff and adaptation to changing light conditions. Gene is related to	Lamb <i>et</i> <i>al.</i> , 2018	9_10420000 _10460000	40	-5.22 ± 0.1	E4
ATP1B3	homeostasis, muscle contraction, and the transport of small molecules. Associated with heat stress in chicken and shows low expression under low-temperature stress.	Zi-Xuan et al., 2019 Changgeng et al., 2015				
RASA2	Control of cellular proliferation and differentiation. SNPs surrounded the gene are associated with lymphocyte 9H/L ratio, which is a disease resistance trait.	Zhu <i>et al.</i> , 2019	9_10360000 _10420000	70	-5.05 ± 0.4	E12
HYDIN	Cilia motility protein. The located region is important for growth traits (testis weight).	Zhang <i>et</i> <i>al.</i> , 2020	11_1550000 _1570000	20	-5.35	E9

CACNA2D3	The upregulated gene participates in activating and signalling the resistant pathway. It is associated with protection against <i>Salmonella</i> .	Li <i>et al.</i> , 2018	12_8120000 _8150000	30	-5.07 ± 0.4	E12
BCDO2	The gene has an important role in oxidising carotenoids during the biosynthesis of vitamin A. Yellow skin locus associated with chicken domestication.	Eriksson et al., 2008				
TEX12	Encodes the testis- expressed sequence 12 protein. Gene within the same linkage (LD)-block as BCO2.	Gazda, 2019	24 (150000		5 02	
IL18	It is an interleukin protein with pro-inflammatory activity in spleen cells. The gene can modulate innate and adaptive immunity, and its dysregulation can cause autoimmune or inflammatory diseases.	Fabbi <i>et</i> <i>al.</i> , 2015	_6180000	30	-5.02 ± 0.1	E10
SDHD	Mitochondrial inner membrane protein. It plays an important role in the respiratory chain transporting electrons.	Hirawake et al., 1999				

(a) S.D. values are given when a region has multiple overlapping windows.

(b) Eco: ecotype.

Interesting associations and functions related to immune response, temperature stress, food intake, improvement, and gene regulation were found for the genes overlapping sweeps with extreme Hp signals (Table 5.3). A well-known human selected gene is *BCDO2*, responsible for the yellow skin trait in chickens (Eriksson *et al.*, 2008). It was detected in ecotypes E10 (ZHp = -5.02). Three more genes overlap the *BCDO2* sweep region. These are the *TEX12* gene expressed in testis (Gazda, 2019), *IL18*, which modulates the innate and adaptive immunity (Fabbi *et al.*, 2015), and *SDHD* with an important role in the mitochondrial respiratory chain (Hirawake, 1999). Studies of carotenoid ornamentation in canaries (Gazda, 2019) found a strong linkage and a consistent parallel expression of these four genes (*BCDO2*, *TEX12*, *IL18*, and *SDHD*).

GRK7 gene is involved in the adaptation to changing light conditions (Lamb *et al.*, 2018). Although this gene overlapped a strong signalling sweep only in E4 (*ZHp* = -5.22), it is also detected in E1, E4, E6, and E12 ecotypes. Another interesting gene is *TACR3*. It produces a gonadotropin hormone regulating sexual maturity (Lagerström *et al.*, 2006; Topaloglu *et al.*, 2009). Although *TACR3* shows its highest signals for E3 (*ZHp* = -5.28), it is also detected in candidate regions for E1, E5, E6, E8, and E12 (*ZHp* \leq -4).

Likewise, a neurobehaviourally relevant gene *TSNARE1* shows a high signal in E12 (*ZHp* = -5.02), and candidate regions harbouring the gene were also identified in E1, 2, 3, 4, 5, 6, 9, and 10. *TSNARE1* gene shows parallel fixation in different commercial lines (Qanbari *et al.*, 2015). A very interesting gene overlapping a high signal sweep in E5 (*ZHp* = -5.19) is *HHLA1*, identified as a candidate for the feralisation of Kauai Island's chicken population (Johnson *et al.*, 2015). This trait may be of great interest due to the scavenging nature and upbringing of the indigenous village chicken.

Three different genes related to immune response were identified. First, the *IL1RL2* gene (detected in E5 with ZHp = 5.05) was previously reported as a candidate gene for immune response and disease resistance in brown leghorn, Rhode Island red, and Wellcome inbreed lines of chicken (Kaiser *et al.*, 2008). Second, the *RASA2* gene (detected in E12 with a ZHp = -5.05) controls cellular proliferation and differentiation associated with lymphocyte 90/L ration, a disease resistance trait (Zhu *et al.*, 2019). Finally, the *CACNA2D3* gene (detected in E12 with a ZHp = -5.07; also detected in E10) participates in the signalling resistant pathway and has been associated with protection against *Salmonella* in chickens (Li *et al.*, 2018).

Two genes related to temperature stress (*ATP1B3*, *NRXN3*) and one to the tropical desert climate (*OC90*) were also identified. The *ATP1B3* gene function is related to
homeostasis, muscle contraction, and transport of small molecules. It was reported as being involved in controlling low-temperature stress in Tilapia (Changgeng *et al.*, 2015) and as a candidate gene for controlling heat stress in broiler chicken (Zi-Xuan *et al.*, 2019). *ATP1B3* showed a high signal in E4 (ZHp = -5.22) and was also detected in E1, E6, and E12 ($ZHp \le -4$). These ecotypes are found in cool-humid and sub-humid parts of Ethiopia, with mean minimum temperatures in the coldest month ranging between 5.5 and 11.6°C, and mean maximum temperatures in the warmest month between 25.3 and 33.1°C. Therefore, the gene may be involved in adaptation to the large temperature difference experienced by these ecotypes. The other ecotypes (2, 3, 5, 7, 8, 9, 10, and 11 with *ZHp* of -1.69 ± 2.05) do not have such large variations in temperature and did not show signatures of selection in these regions.

The gene *NRXN3* has revealed nucleotide polymorphism associated with body temperature changes and heat stress in broiler chickens (Zi-Xuan *et al.*, 2019). This gene in a genomic region with a high *ZHp* signal of -5.1 for E9 was also detected in E6. For E9, the mean value for maximum temperature in the hottest month is 28.9°C, and for E6 33.1°C. The minimum temperature in the coldest month for E9 is 7.3°C and for E6 11.6°C, respectively. These ecotypes also experience medium to high values for precipitation seasonality (82 to 141 mm/m²). This interaction between temperature and humidity impacts thermal comfort and performance in broiler chicken (Purswell, 2012). The other ecotypes' mean temperature ranges from 25.3°C to 33°C with a precipitation seasonality medium to low (100 to 50 mm/m²).

The gene *OC90* involved in the arachidonic acid metabolism plays an important role in pain and inflammatory responses (Stelzer *et al.*, 2016). Only E5 showed a high signal at this gene (ZHp = -5.19), whereas all other ecotypes did not show any candidate

windows for this genomic region. E5 displays minimum temperatures of 8.7 °C, a maximum temperature of 28.1°C, and precipitations between 116 to 505 mm/m².

Two genes related to adipose deposition and differentiation, *BEGAIN* (Shin *et al.*, 2010) and *ESRRG* (Shan-Shan *et al.*, 2016), showed high *ZHp* signals in E9 (-6.16 and -5.07, respectively). No other ecotypes presented significant sweeps at the *BEGAIN* gene. In addition, the *DRD3* gene was detected with a high signal in E3 (ZHp = -5.01). It is a dopamine receptor that plays an important role in systemic arterial blood pressure and is strongly related to chicken aggressive behaviour (Li *et al.*, 2016). The gene, however, was not detected in any other ecotypes. Other genes with multiple functions that show high signals in different ecotypes are *ARHGAP22* (E3), *ZZZ3* (E9), *RNF7* (E4), and *HYDIN* (E9) (Table 5.3).

5.3.3 Important sweep regions and genes detected with *iHS* analysis

Genes overlapping sweeps with the *iHS* highest scores from each of the twelve ecotypes were investigated (Table 5.4). These include 17 genes from several sweep regions (n = 12) in ecotypes E1 and E11 with $|iHS| \ge 3.5$ (Figure 5.7). Fourteen of these genes are located on chr10. For ecotypes E2 to E10, none of the regions showed such signal threshold; therefore, for these, only the *iHS* = 3.5 sweeps were investigated here. (Table 5.4).

Figure 5.7 |iHS| values for candidate genome regions in each ecotype. Genome regions showing sweeps with signals over a threshold $|iHS| \ge 3.5$ (blue line) were further investigated (See Supplementary Table S5.6 – sub-tables 1 to 12).

The genes presented in Table 5.4 have several molecular functions being involved in transport, transcription, and signalling. Three genes related directly to phenotypic traits were identified. Two of these are associated with pigmentations of the plumage (*AGBL1* for the orange and red plumage colours (Xiaotong *et al.*, 2020), and *MYO5A* associated with black plumage in chicken (Mao *et al.*, 2019)) and one to dwarfism (*ACAN*) (Eberth *et al.*, 2018; Stavber *et al.*, 2020). These three genes were detected in chromosome 10 in ecotype E11. *MYO5A* and *AGBL1* did not show any $|iHS| \ge 2$ or close to this value in any other ecotype. This finding might be reflecting an ongoing artificial selection in E11 (Arabo population) with Amhara farmers selecting birds for plumage colour (Addisu *et al.*, 2013). Also, E11, compared with other ecotypes, display high temperatures during the warmest months (32.5°C). Previous studies have shown an important impact of high temperatures on body volume reduction (Smith *et al.*, 2009; Yeates, 2009; Steinbacher *et al.*, 2017). In our case, this may translate that this gene is

involved in the control of chicken size. By extension, it may explain the ongoing

selection at the ACAN gene region for this ecotype.

	GENE	Gene function / association	Reference	chr_start_stop	kb	<i>uiHS</i> ± s.d.ª	Eco ^b
	ENSGALG 00000050632	LncRNA		2_30320000 _30350000	30	2.71	E3
	YES1	Known as Yamaguchi sarcoma virus oncogene with tyrosine kinase activity. Associated with lung cancer and as a predicted biomarker for therapy in humans.	Garmendia et al., 2019	2 101930000		3.65 +	
	CLUL1	It is a novel gene expressed predominantly in the retina. It is implicated in the pineal gland function between laying and broodiness periods in geese.	Zhang <i>et</i> <i>al.</i> , 2000 Yuan <i>et al.</i> , 2020	_101960000	30	0.18	E11
	ENSGALG 00000032651	Uncharacterized LOC112531902		2_139090000 _139140000	50	2.69	E8
	TARBP1	Protein coding gene with methyltransferase function	Wu <i>et al.</i> , 2008				
	COA6	Involved in the mitochondrial respiratory chain as a member of the cytochrome c oxidase subunit family	Stroud <i>et</i> <i>al.</i> , 2015	3_38540000 _38570000	30	3.05	E6
_	SLC35F3	It has a role as a thiamine transporter with implications in human hypertension	Zhang <i>et</i> <i>al.</i> , 2014				
	MANEA	It is associated with panic disorder in humans. Show environmental-genomic association with low precipitation.	Jensen <i>et</i> <i>al.</i> , 2014 Gheyas <i>et</i> <i>al.</i> , 2021	3_73170000 _73220000	50	3.48 ± 0.33	E1
	DPP10	It plays an important role in the neuronal excitability	Jensen <i>et</i> <i>al.</i> , 2014	7_29240000 _29310000	70	2.59	E4
	GTDC1	Protein coding gene with transferase activity involved in neurodevelopmental disorders	Aksoy <i>et</i> <i>al.</i> , 2017	7_33250000 _33280000	30	3.21	E12
-	KPNA4	Mainly involved in intracellular protein traffic	Li <i>et al.,</i> 2011b	9_22290000 _22340000	50	2.57	E10

Table 5.4 Genes overlapping extreme signal ($|iHS| \ge 3.5$) or the strongest signalling *iHS* sweep in each ecotype.

gga-mir- 1692	miRNA					
SCARNA7	Also known as U90. It plays an important role in the methylation of RNAs as part of Box C/D RNA.	Morais <i>et</i> <i>al.</i> , 2021				
TRIM59	Protein coding gene with a role as regulator for innate signalling pathways	Boudinot et al., 2011				
SMC4	It plays an important role in changes in chromosome structure during mitotic segregation	Kimura <i>et</i> <i>al.</i> , 2001				
CHRNB4	Protein-gene coding for subunits of nicotinic acetylcholine receptors.	Arvaniti <i>et</i> <i>al.</i> , 2016	10_4050000 _4070000	20	3.89	E11
CHRNA5	Nicotine receptor family protein. Polymorphism is related with early schizophrenia and executive function.	Han, <i>et al.,</i> 2019				
PSMA4	Proteosome involve in protein homeostasis. Down-regulated gene when embryo cells are infected with Marek's disease virus.	Zhou <i>et al.,</i> 2018	10_4090000 _4110000	20	3.77	11
НҮКК	transferase activity. Significant association with lung cancer susceptibility and pneumonia risk.	Wang <i>et</i> <i>al.</i> , 2017 Campos <i>et</i> <i>al.</i> , 2020				
ARPP19	Protein-gene coding phosphatase protein with an important role in the timing of meiosis.	Lemonnier et al., 2020	10_9180000 9290000	110	3.30 ± 0.29	11
MYO5A	Myosin protein. It is a candidate gene for black plumage.	Mao <i>et al.,</i> 2019	_			
TM6SF1	Transmembrane protein- gene. Associated with hepatocellular carcinoma.	Tang <i>et al.,</i> 2019	10_11660000	50	3.45 ±	11
HDGFL3	Protein coding gene enhancing DNA synthesis and with an important role in cell proliferation	Haouzi <i>et</i> al., 2018	_11710000		0.54	
ACAN	The encoded protein is an integral part of cartilaginous tissue. Alleles of this gene are associated with dwarfism in miniature horses and humans with short stature.	Eberth <i>et</i> <i>al.</i> , 2018 Stavber <i>et</i> <i>al.</i> , 2020	10_13530000 _13610000	80	3.43 ± 0.54	11

ISG20	Interferon protein-coding gene. Regulates influenza A virus replication	Chai <i>et al.,</i> 2018				
gga-mir- 1720	miRNA					
gga-mir-7-2	miRNA					
	Neurotrophic receptors		10_13650000 _13670000	20	3.40	11
NTRK3	with roles in cell	Ogura <i>et</i> al., 2021	10_13780000 _13820000	40	3.39 ± 0.43	11
	unrerentiation.		10_13710000 _13770000	60	3.35 ± 0.25	11
AGBL1	Candidate gene to pheomelanin pigmentation in chicken.	Xiaotong et al., 2020	10_14250000 _14290000	40	3.59 ± 0.16	11
AGO4	Protein coding gene paying and integral role in RNA interference and RNA- mediated gene-silencing	Hauptmann et al., 2014	23_4350000	50	2.12	50
CLSPN Candidate gene that influences the function of the ovary and uterus		Yuan <i>et al.,</i> 2015	_440000	50	3.12	E9
Clorf216	Chromosome 1 Open Reading Frame					
TEAD3	Protein coding gene involved in organ size control and tumour suppression	Zhao <i>et al.</i> , 2008				
TULP1	Protein coding required for normal photoreceptor function and for the long- term survival of	North <i>et</i>	26_60000 _11000	50	2.82	E7
FKBP5	FKBP5 Stress response-related gene					
DDIT3	Multifunctional transcription factor in endoplasmic reticulum stress response	Yamaguchi & Wang, 2004	33_4120000 _4140000	20	2.8	E2
SLC2A1	Glucose transporter	Wagstaff et al., 1995	33_6110000 _6130000	20	2.84	E5

(a) S.D. values are given when a region has multiple overlapping windows.

(b) Eco: ecotype.

The gene *MANEA*, associated with panic disorder in humans (Jensen *et al.*, 2014), was identified in E1. This gene has shown an environmental genomic association with low precipitation in Ethiopian indigenous chicken (as found in chapter 4). The average value for the minimum precipitation in the driest month for E1 is 79.9 mm/m². However, no

other ecotypes reveal signatures of selection in the same region, even though some have lower precipitation than E1 (Supplementary Table S5.8).

Other identified genes have been related to various functions (Table 5.4), e.g., *YES1* and *HYKK* associated with respiratory issues; *ISG20* and *PSMA4* involved in regulating virus replication; or *CLUL1* implicated in laying and broodiness in birds.

5.3.4 Shared sweep regions detected by *Hp* and *iHS*

In this work, two approaches were used to detect different kinds of selection events. While the Hp method identifies regions that have either reached fixation or near fixation (Rubin *et al.*, 2010), the *iHS* approach aims to detect ongoing selection (Voight *et al.*, 2006). Though the detection power of these methods is different, exploring selective sweeps detected simultaneously by both approaches could be interesting for two reasons. If a region is detected commonly within the same ecotype, that would indicate that it is close to reaching fixation but is not yet fixed. Also, if detected by both methods, it may act as a validation for the sweep. Moreover, if *ZHp* detects a region in one ecotype while by *iHS* in another, it may pinpoint different levels of selection in different ecotypes.

Taking all sweeps (detected by either method) from all twelve ecotypes, a correlation was calculated between *Hp* and unstandardised *iHS* (-0.043 \pm 0.06, *P*-value = 0.00), and *ZHp* and standardised *iHS* (-0.18 \pm 0.06, *P*-value 0.00) (Supplementary Figures S5.2, S5.3). It shows either no correlation or a low level of negative correlation between the two approaches. However, a low number of sweep regions (n = 27) were detected by both *Hp* and *iHS*, either within the same ecotype or among different ecotypes (Figure 5.8). No shared sweeps were observed in E4 and E7, whereas E3 and E5 displayed

multiple shared sweeps between the two approaches (4 and 5, respectively). E6, E11, and E12 displayed only one sweep detected by both methods.

Figure 5.8 Detected sweep regions detected by *iHS*, *Hp*, and *iHS-Hp* simultaneously by ecotype.

Out of 27 commonly detected candidate sweep regions, eight were detected in the same ecotype (Figures 5.8). These regions overlap with five genes (*EFCH2*, *TSNARE1*, *TACR3*, *CHUCK*, and *AGTR1*) with multiple functions related to neuronal functions, inflammatory signals, and angiotensin function. In addition, six additional genes overlap the same region in chromosome 23 (*TCEB3*, *PITHD1*, *LYPLA2*, *GALE*, *HMGCL*, *FUCA1*). They are involved in diverse metabolic processes (Table 5.5).

Only E5 showed a sweep in the region chr2_147370000_147410000 simultaneously detected by *Hp*, and *iHS* (Table 5.5), which overlaps the gene *TSNARE1* associated with domestication (Qanbari *et al.*, 2015). Genes detected by each method found in unique specific windows per ecotype are highlighted in Supplementary Tables 5S.5 and 5S.6.

Further investigations on those genes will be needed to explore possible unique genetic prints at the ecotype level.

		E	cotype	es				
Position	kb	Нр	iHS	Hp- iHS	Genes	Function	Ref	
1_32940000_ 32960000	20	E10		E3	ENSGALG0000 0049735			
1_76440000_ 76470000	30	E3	E9	ENSGALG0000 0011930 ENSGALG0000 0026901OVSTL - uncharacterized protein microRNA 6606		NCBI		
1_112390000 _112440000	50			E2	EFHC2	Involved in neuron development	Gaudet <i>et</i> <i>al.</i> , 2011	
1_120930000 _120960000	30	E2, E9	E5		ENSGALG0000 0049135			
1_162440000 _162460000	20	E5, E10			ENSGALG0000 0047522			
2_78320000_ 78340000	20			E10	ENSGALG0000 0035925	LOC428499	NCBI	
2_147370000 _147410000	40			E5	TSNARE1	Neurobehavioral gene	Quanbari et al., 2015	
439159999_3 9180000	30			E12	TACR3	Regulates gonadotropin- releasing hormone secretion	Topaloglu et al., 2009	
5_11710000_ 11730000	20	E11	E8		ENSGALG0000 0053062			
6_9980000_1 0000000	20		E5, E8	E3	CHUK	It plays an important role in signalling pathway activated by inflammatory cytokines, bacterial or viral products	Razani <i>et</i> <i>al.</i> , 2010	
7_29280000_ 20310000	30	E2	E1		DPP10	Involved in neuronal excitability	Jerng <i>et</i> <i>al.</i> , 2007	
912520000_1 2560000	40	E1, E8		E9	AGTR1	Angiotensin receptor. Contributes to pulmonary hypertension in chicken	Burks, 2011	
10 6310000					MPHOSPH10	It plays an important role during mitosis. It is associated with growth curve parameters in chickens.	Moroudi <i>et</i> <i>al.</i> , 2021	
6340000	30	E3	E5		APBA2	It is involved in neurexin and neuroligin pathways in humans. It is associated with growth curve parameters in chickens.	Moroudi <i>et</i> <i>al.</i> , 2021	
1118320000_ 18340000	20	E5	E3		ZNF469	Involve in transcriptional regulation. Associated with corneal thickness	Lu <i>et al.</i> , 2013	
14_4960000_ 4980000	20	E12	E1		USP22	Involved with Telomere maintenance	Atanassov et al., 2009	

Table 5.5 Candidate sweep regions detected by *Hp* and *iHS* across ecotypes.

					TCEB3	General transcription elongation factor acting on RNA polymerase II transcription	Aso <i>et al.,</i> 1996										
					PITHD1	Involved in megakaryocyte differentiation	1996 Lu <i>et al.</i> , 2015 Wepy <i>et</i> <i>al.</i> , 2019 Timson, D. 2006 Pié <i>et al.</i> , 2007										
23_5730000_	20			E6	LYPLA2	Acts on biological membranes to regulate lysophospholipids											
3730000					GALE	Involved in glucose and galactose metabolism	Timson, D. 2006										
															HMGCL	Plays an important role in ketone body formation	Aso et al., 1996 Lu et al., 2015 Wepy et al., 2019 Timson, D. 2006 Pié et al., 2007 Ip et al., 2002
					FUCAI	Lysosomal enzyme involved in the degradation of glycoproteins and glycolipids	Ip <i>et al.</i> , 2002										

5.3.5 RDA test and detection of candidate outliers SNPs

Hp and *iHS* approaches indicated candidate selective sweep regions within each ecotype as potentially associated with environmental adaptation. Since ecotypes defined in our study are a construct of a complex interaction of multiple environmental variables, we need to dissect the genotype-environment association further. Here, we employ Redundancy Analysis (RDA) for this purpose. RDA is a powerful method to detect genetic variants associated with agro-climatic variables. It is a multivariate linear regression approach, allowing simultaneous interrogation of many response variables (e.g. SNP genotype data) with many predictors (e.g. environmental variables) (Capblancq *et al.*, 2018). An original number of 277,619 SNPs overlapped the candidate sweep regions from Hp and *iHS* analyses. After LD-pruning, 44,202 SNPs were used. Correlation analyses were performed using the six main agro-climatic predictors to define the ecotypes (Chapter 3).

The RDA model was highly significant (F-statistics = 0.001) for the null hypothesis (no linear relationship exists between the SNP data and the environmental predictor). The

model explains 1.9% of the genomic variance for the considered environmental parameters. The small proportion of genetic variance explained by the RDA model reflects that only a small proportion of the SNPs coming from the sweep regions have a linear relationship with environmental parameters. Each of the six RDA axes explained 10% to 30% of the variance captured by the RDA model (Figure 5.9c). Only the first five RDA axes were significant (*P*-value $\leq 0.1 - 0.01$), and these together accounted for 90% of the total captured variance by the model.

The SNP loadings (Figure 5.9d) for the significantly constrained axes were used to determine outliers or local adaptation candidates. The distribution of the chicken samples across the investigated ecotypes is presented (for RDA1 *vs* RDA2 and RDA1 *vs* RDA3) in ordination plots (Figures 5.9a-b).

RDA projection plots (Figure 5.9a-b) use scale values, where the SNPs scores were scaled by the eigenvalue's square root (Forester, 2019). As the explanatory variables are not dimensionally homogenous, this standardisation allows direct comparison of regression coefficients (ter Braak, 1994). Individuals' dispersion across the ordination space represents their relationship with the RDA axes, resulting from linear combination to the predictor variables employed. Some interesting relationships can be identified. For example, RDA1 *vs* RDA2 plot (Figure 5.9a) shows that individual genotypes from E1 are positively related to precDQ and LandUse, whereas E3 and E8 are negatively correlated with these two variables. Similarly, E12 genotypes are positively correlated with minTemp and negatively correlated with precWQ, whereas an opposite scenario for E7 is observed (Figure 5.9a). By contrast, E9 individuals are positively associated with LandUse in RDA axis 3 (Figure 5.9b).

Figure 5.9 (a) Projection of SNPs and environmental variables into the RDA space RDA1-RDA2 and (b) RDA1-RDA3. (c) The six RDA axes explain variance (inertia). (d) Distribution of SNP loadings for significantly constrained axes (RDA1 – RDA5). The % of variation explained are: RDA1 (32.7%), RDA2 (19%), and RDA3 (18.1%).

Interestingly, individuals from E6 are dispersed in subgroups for RDA1 vs. RDA2 and axes RDA1 vs. RDA3. Ecotype 6 comprises four different kebeles of populations (Mihquan, HadushAdi, Hugub, and Jarso), though MaxEnt model prediction clustered them together. For other ecotypes, no sub-clusters are evident when RDA ordination plots are explored.

Given a normal distribution of the SNP loadings in all axes (Figure 5.9d), SNPs that exceed SD > 3 (p-value = 0.0027) in both tails were extracted as outliers. With this

threshold, 616 SNPs were found as outliers (Supplementary Table S5.9). The number of outliers varied in relation to the strongest correlated environmental variable. For minTemp, 113 outliers were identified, 72 for precSeasonality, 82 for precDQ, 104 for precWQ, 130 for SoilOrgC, and 115 for Land Use. The strength of the environmental correlation of the outlier SNPs was generally low to moderate ($r^2 \approx 0.1 - 0.4$) (Figure 5.10). The maximum correlation value was ~ 0.42, identified for precWQ.

Figure 5.10 RDA correlation boxplot for identifying outliers.

The RDA analysis was performed to correlate SNP genotypes from individual samples with environmental parameters without directly considering the ecotype effect. Therefore, further investigations were made to check if the allele frequencies of ecotypes outlier SNPs vary consistently with environmental parameters. Table S5.8 presents outlier SNPs results with RDA *r* values ≥ 0.3 (but $r \geq 0.28$ for precDQ and Landuse). Remarkably, for most outliers, a moderate correlation ($r \approx 0.4 - 0.7$) was found between allele frequency and the ecotype average of the predictor value, showing a possible environmental cline for the SNPs associated with the investigated agroclimatic variables. Allele frequencies and correlation plots for one representative outlier per predictor are presented as an example in Figure 5.11. In most cases, the difference between the minimum and maximum values of the allele frequencies across the ecotypes is not wide. However, a clinal increment or decrement is evident when the environmental values sequentially change among ecotypes. Correlation coefficients between allele frequencies and mean values of agro-climatic predictors support this relation (Figure 5.11). Even though the correlation is not completely linear in all cases, it still shows an interesting relationship.

Finally, further investigation was made on 32 outlier SNPs which showed relatively large environmental correlation values ($r \ge 0.3$) (Table 5.6). This resulted in two outliers for minTemp, four for precSeasonality, five for precWQ, and 14 for SoilOrgC. No outliers above the threshold ($r \ge 0.3$) were found for precipitation in the driest quarter (precDQ) and LandUse. Thus, $r \ge 0.29$ and 0.28 were respectively applied for selecting outliers for these environmental variables. With this, four outliers were chosen for precDQ and three for LandUse. Notably, all these SNPs came from *iHS*-detected sweep regions. Genes represented by these SNPs were explored to understand their possible functions in relation to the agro-climatic variables (Table 5.6).

Figure 5.11 Allele frequency fluctuation and correlation with agro-climatic predictors (mean value) across ecotypes.

One outlier per predictor is shown as an example. Complete information can be found in Supplementary Table 5S.10.

Among the investigated SNPs/genes (Table 5.6), three genes (viz. *LDLRAD3*, *TNIP2*, and *GPX7*), associated with precipitation variables (precSeasonality, precWQ, and precDQ), have previously been reported to have an association with heat stress in chicken in agreement with the ability to cope with heat stress being dependent on water availability (i.e. the level of rainfall for scavenging chickens).

Small changes in rainfall combined with weather can alter the habitat moisture, particularly on the tropical rain belt, which is a dominant feature of the African climate (Jackson *et al.*, 2020). Therefore, the animal's thermal and suffocation sensation increases, although the maximum temperature ranges are not the highest in the ecotypes where the outliers were detected (E12, 11, and 7 with 30°, 32°, and 20°C respectively), but high enough to interact with precipitation and humidity to create physiological stress. Given these associations, the identified outliers are good candidates for future studies on adaptation to humid environments.

The gene *MAPK4*, a candidate for *Salmonella* resistance (Table 5.6), is associated with precSeasonality. Seasonal climate changes have proved to be related to the prevalence of infectious diseases in tropical areas. Accordingly, this predictor becomes interesting for GEA studies in search of associations with disease resistance or susceptibility.

Only one gene, candidate for immune response and heat stress (*PTPRZ1*), was not associated with a climatic predictor but with the SoilOrgC. However, since our work was performed with indigenous village chickens (predominantly scavengers and exposed to a broad range of pathogens through their food source), this finding is relevant, particularly for the immune response association.

Associated predictor	ID_SNP outliers	Gene	Ecotype*	RDA cor	Function / association	Reference	QTLdb
minTemp	4_88536330	PANK2	E11	0.305	Involved in homeostasis for normal neuronal and vascular development.	(Zizioli <i>et al.,</i> 2016)	
minTemp	2_78280162	MARCHF6	E10	0.308	Metabolic integrator in cholesterol synthesis.	(Scott et al., 2020)	
precSeasonality	1_71668364	LRP6	E2	0.308	Regulates muscle fibre development impacting shear force in chickens.	(Chao <i>et al.</i> , 2019a)	
precSeasonality	10_9402417	MAPK4	E11	0.302	It is associated with early body temperature and <i>Salmonella pullorum</i> resistance in chickens. Differential expression after hypoxia stress.	(Li <i>et al.</i> , 2020) (Yuan <i>et al.</i> , 2020)	
precSeasonality	4_84643310	CTBP1	E11	0.310	It modulates hypoxia-induced apoptosis in pituitary cells.	(Dorman <i>et al.,</i> 2012)	
precSeasonality OrgSoilC	5_19554343	LDLRAD3	E12	0.307 0.334	Associates with heat stress in broiler chicken.	(Jastrebski <i>et al.,</i> 2017)	
precWQ	2_117749087	RDH10	E2	0.417	An upregulated gene for abdominal adipose tissue of chickens.	(Huanxian <i>et al.,</i> 2012)	
precWQ	10_13599109	DET1	E11	0.348	Upregulated gene in domestic chicken breeds in comparison to wild species RJF.	(Quinghe <i>et al.,</i> 2012)	
precWQ	21_4353990	FBXO42	E8	0.310	Binding protein	(Sun et al., 2009)	Gizzard_weight
precWQ	4_3627776	HS6ST2	E10	0.330	It is associated with growth and carcass traits in chicken.	(Wang et al., 2018)	Body_weight_28 _days
precWQ	4_82439583	TNIP2	E11	0.306	It is associated with growth response to environmental stress, inflammation/oxidative/metabolic stress.	(Fleming <i>et al.</i> , 2016)	Feather_colour _extended_black
precDQ	1_197483358	DCHS1	E7	0.371	Calcium-dependent cell-cell adhesion molecules.	(Durst et al., 2015)	
precDQ	20_1187011	ERGIC3	E4 E7	0.294	Cytoplasmic transport protein.	(Breuza <i>et al.,</i> 2004)	
precDQ	8_24798255	GPX7	E7	0.296	It is associated with antioxidant activity caused by heat stress in chickens.	(Del Vesco <i>et al.,</i> 2015)	Feathered_feet
precDQ SoilOrgC	19_1816989	AUTS2	E8	0.344 0.372	It is implicated in neurological development.	(Gao <i>et al.</i> , 2014)	Feed_intake

 Table 5.6 Selected RDA SNPs outliers overlapping protein-coding genes.

SoilOrgC	1_23065714 1_23140159 1_23141490	PTPRZ1	E7 E7 E7	0.302 0.307 0.405	Associates with heat stress response and immune stimulation in chickens.	(Monson <i>et al.,</i> 2018)	Feather_colour_ extended_black
	1_23164664		E7	0.335	× 1 1		
SoilOrgC	10_7190022	MYO1E	E11	0.332	involved in intracellular movement and membrane trafficking.	(Senna-Cherchi <i>et al.</i> , 2011)	
SoilOrgC	19_1819556	LMF1	E8	0.363	Involved in lipoprotein liver metabolism in chickens.	(He et al., 2018)	
SoilOrgC	3_16891572	GPCPD1	E12	0.410	Important gene in determining muscle growth and feed efficiency in broilers.	(Kong et al., 2017)	
SoilOrgC	3_38560061	TARBP1	E6	0.306	RNA binding protein.	(Christensen <i>et al.</i> , 2007)	Comb_weight
SoilOrgC	5_35557653	NPAS3	E7	0.361	This gene appeared to be responsible for domestication-related behavioural aspects.	(Hou et al., 2020)	
SoilOrgC	5_39594296	ADCK1	E8	0.327	Involved in mitochondrial functions.	(Yoon et al., 2019)	
SoilOrgC	6_28550216	NHLRC2	E12	0.307	Associated with body weight in chickens	(Li & Li, 2019)	Ovary_weight
SoilOrgC	7_30965068	THSD7B	E12	0.377	Candidate gene associated with albumin quality in chicken	(Qu et al., 2019)	Ovary_weight Comb_weight
	7_30967748		E12	0.320			
SoilOrgC	8_6198062	STX10	E12	0.382	Involved in fusion events at the Golgi apparatus.	(Ganley <i>et al.,</i> 2008)	
LandUse	17_7056075	GFI1B	E11	0.312	Transcriptional regulator protein.	(Fuchs et al., 1997)	Feather_colour_ extended_black
LandUse	17_7239853	SLC2A6	E11	0.296	A candidate gene for blood metabolites in chickens.	(Javanrough- Aliabad <i>et al.,</i> 2018)	
LandUse	2_31712297	OSBPL3	E4	0.282	Differentially expression of the gene on laying hen liver, closely related to fat metabolism.	(Li <i>et al.</i> , 2015)	

* The ecotypes from which the SNPs originally overlapped with sweep regions

We also find that some chicken production-related genes, e.g., *LRP6* and *HS6ST2*, are associated with precipitation variables, indicating the effects of precipitation variables on the growth and welfare of scavenging chickens. The largest number of high correlation outliers were detected for the OrgSoilC variable (Table 5.6). Interestingly, most of the genes associated with these candidates are involved in various lipoprotein mechanisms (viz. *PTPRZ1, MYO1E, LMF1, GPCPD1, TARBP1, NPAS3, ADCK1, NHLRC2, THSD7B*, and *STX10*). In particular, three genes - *GPCPD1*, a metabolite interconversion enzyme, *NHLRC2*, a protein modifying enzyme, and *TSHD7B*, a cell adhesion protein - play an important role in food conversion protein metabolism, and they are candidates for muscle growth, body weight, and albumin quality. These outlier genes were detected from E12 and E8, which showed medium to high soil organic carbon (Supplementary Table S5.8).

These findings have important implications for breeding improvement efforts on African poultry used for backyard farming. For example, these genes can be targeted in a selection programme to improve the scavenging performance of chicken (e.g. improving feed conversion efficiency from scarcely available natural food). These findings also show that our innovative framework helps identify potentially more efficient ecotypes in utilising natural food. Furthermore, the biological functions associated with these genes confirm that our assumption about the significance of soil carbon content for the scavenging adaptation in indigenous chickens is justified, and ENM has successfully captured this important predictor.

Investigation of the molecular functions, biological processes, and cell components of these 28 protein-coding genes (using PANTHER Classification System) show their involvement in wide-ranging molecular functions (Figure 5.12). Eight genes (*GFI1B*, *MYO1E*, *DET1*, *DCHS1*, *STX6*, *NPAS3*, *TNIP2*, and *OSBPL3*) are related to binding

144

functions. Eight genes (*MYO1E, GPX7. TARBP1, PANK2, RDH10, HS6ST2, PTPRZ1, and MAPK6*) are related to catalytic activity. Two genes (*DET1, STX6*) are involved in molecular adaptor activity. Two genes (*GF11B* and *NPAS3*) have molecular regulatory functions, and one gene (*OSBPL3*) is involved in transporter activity. Few significant results with multiple genes involved were obtained from enrichment analysis (Supplementary Table S5.11). After correcting for multiple testing, only two pathways showed *P*-value \leq 0.05. These two are the insulin signalling pathway (*P*-value: 0.044 for *SREBF1*|*MTOR* genes) and herpes simplex virus-1 infection (*P*-value: 0.044 for *MAVS*|*MTOR* genes). These results may have not included other real causal SNPs as a previous LD pruning approach was applied removing potential targets for the analysis. However, the SNPs tested can act as tag SNPs (of the causal loci) for any future work.

Figure 5.12 Molecular functions for 28 RDA outlier investigated. (panther.org)

5.4 Discussion

This chapter presents a novel approach to study environmental adaptation. Previously, different studies have investigated genomic adaptation to particular climatic or environmental factors but have not included detailed characterisation of the

environment to define ecotypes. In this research, based on the habitat characterisation and applying ENM, ecotype definition was produced to cluster chicken populations based on the environment (Chapter 3). These ecotypes capture the complex interactions of major environmental variables within the local agro-ecology and offer the opportunity to explore their effects on the genome level. Exemplified by Ethiopian village chicken, this novel approach provides a new tool for identifying, characterising, utilising, and conserving livestock diversity. Furthermore, this is the first study on a livestock species that simultaneously considers a large spectrum of environmental variables.

The ecotypes were then used for dissecting the genetic basis of environmental adaptation using multiple complementary approaches: *Hp* for capturing selective sweep regions possibly near fixation (Rubin *et al.*, 2010), *iHS* to detect sweeps that are yet to reach fixation (Voight *et al.*, 2006), and finally, RDA to identify the linear relationship of genotypes with specific environmental variable gradients.

Among the various environmental selection pressures which have shaped the animal genome, climatic variables have been particularly under the research scope (Frichot *et al., 2013;* Lv *et al., 2014*). For instance, studies on thermotolerance responses have followed the increasing concerns of the impact of climatic change on livestock production (Shilin *et al., 2020*). Thus, an important advantage of the approach applied here is the prior identification of the environmental variables with a major impact on an ecotype as a preliminary step to genomic analysis. Moreover, combining sweep analysis with RDA permits identifying regions under positive selection and determines which variables or closely associated linked variables have been selected.

Several studies have discussed the different strategies to identify selection signatures in livestock species (de Simoni Gouveia *et al.*, 2014; Eusebi *et al.*, 2020; Saravanan *et al.*, 2020). Also, demographic events, recombination rate, and selection strength may have a differential influence on specific populations (e.g. Weigand & Leese, 2018). The genomic approach used by the present study based on the constructed ecotypes, instead of investigating individual populations, offers many benefits. First of all, clustering multiple populations based on environmental similarity permitted focusing on the genomic variation associated with specific ecological drivers, reducing false-positive candidates from demographic events (e.g. genetic flow, founder effect, bottlenecks, etc.). Second, combining multiple populations in most ecotypes is expected to reduce population structure in the signature analysis. Finally, it has allowed us to explore the genotype-environment association across a complex environmental landscape instead of using a simplified association between a single predictor and a genotype.

We have used a ranking-based outlier approach for finding candidate sweep regions. Since our analysis is not based on individual SNPs but based on window approach where information from multiple SNPs is combined, this should reduce false positives. Besides we have applied quite stringent criteria in sweep calling (P<0.01 and then further filtration based on tests statistics). This study detected a smaller number of selective sweeps that have reached or near fixation (based on the Hp approach). Interestingly, no SNPs from Hp-based sweeps were outliers with a strong correlation to environmental variables in RDA. This is probably because these SNPs are fixed in most or many ecotypes and the results of old selection events (e.g. improvement throughout domestication (viz. *BCDO2, TSHR, GTF2A1, TSNARE1*)). These will not vary in frequencies with environmental gradient and thus could not be captured by RDA.

The *iHS* method spotted most outliers in the RDA. What makes these findings more interesting is that RDA candidate SNPs are under selection over many ecotypes that are not necessarily close at geographic level but are affected by similar ranges of the response variables associated with them. Therefore, the *iHS* detection method followed by RDA is a more effective approach for detecting environmental association. This finding is relevant since the results obtained here permitted identifying the best methods to be applied in the proposed framework to study environmental adaptation.

5.5 Conclusion

Considering the complex interaction of agro-climatic variables in specific ecotypes, this study shows a new direction of analysing environmental adaptation by first classifying populations into ecotypes and then using the defined ecotypes to investigate signatures of selection and genotype-environment association. Moreover, we presented here an efficient signature of selection approach for identifying genomic regions and candidate-associated genomic markers associated with environmental adaptation. These results have important implications for conserving important genetic diversity, for management decisions about breed suitability for specific regions, and breeding improvements, especially regarding climate resilience traits.

Chapter 6

Conclusions and Perspectives

This final chapter highlights the major achievements from this PhD research along with their implications. The chapter also discusses the limitations of the work and provides some future research directions.

The main goal of this thesis was to dissect the genetic basis of tropical environmental adaption in African indigenous chickens. Although genetic adaptation has been an important research interest to understand how species respond to environmental conditions (Fox *et al.*, 2018; Julian & Moore, 2019), large-scale genomic studies on indigenous livestock, particularly on chicken, are still very limited. Previous studies on livestock were often limited in their scope due to small sample size, lack of genome sequence data, or not having extensive coverage of the genome (e.g. used only genotype data from SNP chips) (Gheyas *et al.*, 2015; Fleming *et al.*, 2016; Fleming *et al.*, 2017; Strillacci *et al.*, 2018; Elbeltagy *et al.*, 2019; Luo *et al.*, 2020a).

Besides, dissecting environmental adaptation itself is a very challenging task. Many intervening factors can contribute to this, such as a wide phenotypic diversity across environmental ranges, making it difficult to identify ecotypes (Ehsaninia *et al.*, 2020). Also present are complex interactions between environmental factors (LaFleche & Waterman), gene-environment interactions (Gilad *et al.*, 2006), and interactions among genes (Sandoval-Castillo *et al.*, 2020). However, the need for research aiming to elucidate genotype-environment interactions in livestock species is increasingly becoming more relevant to our world's rising climate crisis. Therefore, methodological innovations are required, along with large environmental and genomic data to comprehend the current and future species' responses to modified environmental conditions. This PhD study attempted to integrate interdisciplinary analytical approaches (ecological and genomic) to improve the power of the analysis.

150

Employing ENM, this study proposes a new framework for defining livestock ecotypes (Chapter 3), including characterization of their habitats as well as genomes in relation to environmental pressures. No previous studies have done this before to such a level of detail in livestock. Although the method has been developed using Ethiopian indigenous chickens, it will be similarly applicable to any other species. Moreover, to dissect the genetic basis of adaptation, a rather comprehensive strategy was employed involving comparative genomics of populations from extreme environments (Fst, XP-*EHH* in Chapter 4), within ecotype analysis (*iHS*, and *Hp* in Chapter 5), and combined analysis of all populations across the environmental gradients (RDA in Chapter 5). These analyses permitted identifying candidate genes related to important environmental stressors in the African chicken's agro-ecologies. While RDA identifies only candidates showing linear association across environmental gradients (Capblancq et al., 2018), the other analyses can capture linear and non-linear associations (Luo et al., 2020b). Particularly, extreme population comparison can identify regions under positive selection due to extreme environmental pressures, representing rapid response to stress factors. Therefore, the genomic analysis approaches presented here are complementary as well as confirmatory in certain cases. Their combined use in the present study has increased the power of detecting candidate regions/genes/variants, showing different types of environmental association (linear and non-linear), different stages of selection (already fixed and ongoing), and different selection strengths (strong to weak). Specifically, our study has shown that using RDA and candidate selective sweeps permitted us to identify signals with weak to moderate effects. This is particularly important for studying local adaptation in environments where climate change has the biggest impact, in other words, where environmental stressors can rapidly change and create complex genotype-environmental interactions over time.

Using this comprehensive analysis, a set of candidate genes have been identified in relation to different environmental stress factors, including adaptation to extreme temperatures, rainfall patterns, and high altitude. Remarkably, adaptation to scavenging conditions has also been identified using environmental proxies that affect the abundance and availability of food for foraging chickens. This is the first study to report candidate genomic regions for scavenging adaptation, which will have important implications for smallholder poultry farmers raising chickens in scavenging/semi-scavenging conditions. To the best of our knowledge, this is by far the largest tropical adaptation study on chicken involving whole-genome sequence data as well as the most comprehensive one in terms of methodological applications.

Tackling false discovery rate (FDR) constitutes an important component in any genomic analysis, like the selection signature analyses applied in our study. Different approaches are available to tackle the issues with some widely used approaches including taking either the top 1% (or 5%) regions as candidates or applying some stringent thresholds to determine outliers. In our study, we have combined both, first by applying an empirical *P-value* < 0.01, corresponding to the selection of the top 1% ranked windows, - followed by applying further stringent filtration on specific selection signature metric. Using the empirical *P* < 0.01, we detected about 910 - 930 windows as candidate sweeps in different analyses as about 91,000 - 93,000 windows were analysed genome-wide. It translates into approximately nine windows as false positives (FDR) in each analysis. However, we expect the number of false positive to be much lower as further filtration thresholds were applied based on standardized values or Z-scores of different matrices (*Hp*, *Fst*, *XPEHH* and *iHS*). For normally distributed variables, the Z score itself can provide a prediction of false positive rate (based on Z-score probability table) but in our case most distributions were not normal. Therefore no attempt is made here to estimate FDR based on the Z-score. The calculation of Z scores, however, was necessary for applying the same metric-specific threshold across different populations or ecotypes.

The study, however, is not without limitations and further analysis will be required to fill the gaps arising from such limitations. For instance, the study could not include any phenotypic data, and therefore, it was not possible to assess the phenotypic response of tropical adaptation in the studied samples. Hence, future studies need to incorporate relevant phenotypic data (whole animals and cellular/tissue studies) to assess their association with the candidate genes/regions and environmental stressors. The current study performed analysis based on SNP variants only, mainly because they provide a dense coverage of the genome which is important for selection signature analysis when sample size is limited. However, there are other types of variants in the genome which can be functionally important such as short Insertions and Deletions (INDELS), long Structural Variants (SVs), and retroviral elements, which are also widespread in the chicken genome and can have important adaptive roles (Ratan et al., 2015; Platt II et al., 2018; Heller & Vingron, 2019). For instance, previous studies have shown the importance of SVs in different traits, including adaptive traits with ecological and evolutionary implications (Wellenreuther et al., 2019). They may contribute to important processes and profoundly affect gene functionality (Ha et al., 2009). SVs can together cover larger regions than SNPs. They are present at significant frequencies in many populations, and it may be expected that the advances in genomics and bioinformatics will catalyse a growing number of studies reporting the involvement of complex structural variants with particular traits (Xia et al., 2017; Sanchis-Juan et al., 2018). While all these variants are valuable, particularly calling and genotyping SVs and INDELS is more challenging and time consuming, which is one of the reasons why those variants were no included in this study. In case of SNPs, we applied a sophisticated VQSR approach which is not possible for SVs and INDELS as there are no validated set of this type of variants yet. Besides, calling SVs would require long read data for validation. Besides their limitations, is important that future studies can include this type of variants.

This study provides a number of candidate genes detected by different methods. However, these need to be validated in future studies. For example, we have reported common detected genes in environmental extreme groups (chapter 4) and ecotypes (chapter 5), but also, it is necessary to confirm their selection in other independent populations or species living under similar environmental stressors. Their expression can be then validated *via* gene expression studies (transcriptomics, metabolomics, qPCRs, etc.) or following gene editing approaches (e.g. CRISPR/Cas9) (Chao *et al.*, 2019b) and *via* genomic feature models (GFM) (Rohde *et al.*, 2018; Sehgal *et al.*, 2019).

The findings and tools generated in the course of this PhD work have many implications for livestock breeding, conservation and management. The proposed framework exemplifies an attractive opportunity for performing a detailed exploration of the environment and a comprehensive analysis of genetic variants involved in agro-climatic adaptation. These might represent a crucial tool for smallholder farming productivity, particularly those relying on indigenous or/and native populations at the local level. For example, the ACGG programme (https://www.ilri.org/research/projects/african-chicken-genetic-gains-acgg) and chicken breeding companies working with ACGG could use this genomic information to develop improved breeds with better adaptation providing smallholder farmers with improved genetic resources.

Furthermore, by integrating ecological concepts with genomic approaches, the methods presented in the thesis open a further opportunity for interdisciplinary research, with

important implications at the conservation and management levels. The approach can be employed to study the impact of climate change on ecotypes and explore ecotype habitats and disease pre-disposition based on environmental characteristics. It contributes to potentially overcoming some of the challenges in landscape genetics applications (Balkenhol *et al.*, 2016) by integrating into a single conceptual framework all aspects of the research to investigate the landscape characteristic's effect on evolutionary processes. Moreover, with the vast generation of genetic sequencing data and the free accessible climatic data for the last decades, our study illustrates the opportunity of developing conservation and sustainable production programs for livestock species incorporating this information for management purposes.

References

A

Abioja, M.O., & Abiona, J.A. 2021. Impacts of climate change to poultry production in Africa: Adaptation options for broiler chickens. *In: African Handbook of Climate Change Adaptation*. (eds.), W. Leal Filho et al. Springer. Switzerland.

Addisu, J., Hailu, M, & Zewdu, W. 2013. Indigenous chicken production system and breeding practice in North Wollo, Amhara Region, Ethiopia. *Poultr Fish Wild Sci*, 1 (2): 1000108. doi:10.4172/pfw.1000108.

Afsal, A., Sejian, V., Bagath, M., *et al.* 2018. Heat stress and livestock adaptation: neuroendocrine regulation. *Int J Vet Anim Med*, 1 (2): 108.

Akey, J.M. 2002. Interrogating a High-Density SNP map for signatures of natural selection. *Genome Res*, 12, 1805-1814. doi: 10.1101/gr631202.

Aksoy, I., Utami, K.H., Winata, C.L., *et al.* 2017. Personalized genome sequencing coupled with iPSC technology identifies *GTDC1* as a gene involved in neurodevelopmental disorders. *Hum Mol Genet*, 26 (2): 367-382. doi:10.1093/hmg/ddw393.

Alemu, D., Degefe, T., Ferede, S., *et al.* 2008. Overview and background paper on Ethiopia's Poultry sector: Relevance for HPAI Research in Ethiopia. Africa/Indonesia Team Working Paper.

Alexander, D.H., Novembre, J., & Lange, K. 2009. Fast model-based estimation of ancestry in unrelated individuals. *Genome Res*, 19: 1655-1664.

Al-Jumaili, A.S., Boudali, S.F., Kebede, A., *et al.* 2020. The maternal origin of indigenous domestic chicken from the Middle East, the north and the horn of Africa. *BMC Genet*, 21 (30). doi:10.1186/s12863-020-0830-0.

Al-Zahrani, K., Baron, K., & Sabourin, L. 2013. Ste20-like kinase SLK, at the crossroads. *Cell Adh Migr*, 7 (1): 1-10. doi:10.4161/cam.22495.

Ardlie, G.D., Kruglyak, L., & Seielstad, M. 2002. Patterns of linkage disequilibrium in the human genome. *Nat Rev Genet*, 3: 299-309.

Asefa, M., Cao, M., He, Y., *et al.* 2020. Ethiopian vegetation types, climate and topography. *Plant Div*, 42 (4): 302-311. doi:10.1016/j.pld.2020.04.004.

Aso, T., Haque, D., Fukudome, K., *et al.* 1996. A human cDNA encoding the 110-kDa A subunit of RNA polymerase II transcription factor elonging. *Gene*, 168 (2): 277-8. doi:10.1016/0378-1119(95)00750-4.

Arvaniti, M., Jensen, M., Soni, N., *et al.* 2016. Functional interactions between Lypd6 and nicotinic acetylcholine receptors. *J Neurochem.* 138 (6): 806-20. doi:10.1111/jnc.13718.

Atanassov, B., Evrard, Y., Multani, A., *et al.* 2009. *Gcn5* and *SAGA* regulate shelterin protein turnover and telomere maintenance. *Cell*, 35: 352-364.

Balkenhol, N., Waits, L.P., & Dezzani, R.J. 2009. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. *Ecography*, 32: 818-830.

Balkenhol, N., Cushman, S.A., Storfer, A., *et al.* 2016. Introduction to landscape genetics - concepts, methods, applications. In *Landscape Genetics: concepts, methods, applications*, by N., Cushman, S.A., Storfer, A.T., and Waits, L.P. Balkenhol, 1-7. U.K.: John Wiley & Sons Ltd.

Balloux, F. & Lugon-Moulin, N. 2002. The estimation of population differentiation with microsatellite markers. *Mol Ecol*, 11: 155-165.

Barra, V., & Fachinetti, D. 2018. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. *Nature Comm*, 9: 4340.

Batjes, N.H. 2000. Global Data Set of Derived Soil Properties, 0.5 - degree grid (ISRI-WISE). ORNL DAAC. Oak Ridge, Tennessee, USA. Accessed January 2019. <u>HTTP://dx.doi.org/10.3334/ORNLDAAC/546</u>.

Benjamini, Y., & Speed, T.P. 2012. Summarizing and correcting the GC content bias in high-throughput sequencing. *Nucleic Acids Res*, 40(10): e72. doi: 10.1093/nar/gks001.

Bennett, E., Mandel, U., Clausen, H., *et al.* 2012. Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. *Glycobiology*, 22 (6): 736-756. doi:10.1093/glycob/cwr182.

Bernard, B., Nigam, N., Burkitt, K., *et al.* 2021. *SMYD3*: a regulator of epigenetic and signalling pathways in cancer. *Clin Epigen*, 13: 45. doi:10.1186/s13148-021-01021-9.

Bettridge, J., Psifidi, A., Terfa, Z., *et al.* 2018. The role of local adaptation in sustainable village chicken production. *Nat Sustain*, 1 (10): 574-582. doi:10.1038/ s41893-018-0150-9.

Bhakta, M.S., Jones, V.A., & Vallejos, C.E. 2015. Punctuated distribution of recombination hotspots and demarcation of pericentromeric regions in *Phaseolus vulgaris* L. *PLoS One*, 10(1): 1-20.

Biswas, S., & Akey, J. 2006. Genomic insights into positive selection. *Trends Genet*, 22 (8): 437-446. doi:10.1016/j.tig.2006.06.005.

Boettcher, P.J., Hoffman, I., Baumung, R., *et al.* 2015. Genetic resources and genomic for adaptation of livestock to climate change. *Front Genet*, 5: 1-3. doi:10.3389/fgene.2014.004161.

Boschiero, C., Monteiro-Moreira, G.C., Gheyas, A.A., *et al.* 2018. Genomewide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. *BMC Genom*, 19, 83. doi:10.1186/s12864-018-4444-0.

B

Boudinot, P., van der Aa, L.M., Du Pasquier, L., *et al.* 2011. Origin and Evolution of *TRIM* proteins: New insights from the complete *TRIM* repertoire of Zebrafish and Pufferfish. *PLOS One* 6 (7): e22022. doi:10.1371/journal.pone.0022022.

Bouret, V., Dionne, M., & Bernatchez, L. 2014. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: polygenic multilocus analysis surpasses genome scan. *Mol Ecol*, 23: 4444-4457.

Bradie, J., & Leung, B. 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. *J Biogeogr*, 44: 1344-1361.

Breuza, L., Halbeisen, R., Jeno, P., *et al.* 2004. Proteomics of endoplasmic reticulum - Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies *EGIC-32*, a new cycling protein that interacts with human Erv46. *J Biol Chem*, 279 (45): 47242-53. doi:10.1074/jbc.M406644200.

Browning, S.R., & Browning, B.L. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am J Hum Genet*, 81: 1084-1097.

Burks, J.R. 2011. Sequence analysis of the angiotensin II type 1 receptor (AGTR1) gene for mutations contributing to pulmonary hypertension in the chicken (Gallus gallus). *The University of Arkansas Undergraduate Res J*, 12: Art.9.

Burt, D.W. 2005. Chicken genome: current status and future opportunities. *Genome Res*, 15:1692-1698. doi: 10.1101/gr.4141805.

С

Campos, A., Fang Kho, P., Vázquez-Prada, K., *et al.* 2020. Genetic susceptibility to pneumonia: A GWAS meta-analysis between UK Biobank and FinnGen. *midrib*, doi:10.1101/2020.06.22.20103556.

Capblancq, T., Luu, K., Blum, M., *et al.* 2018. Evaluation of redundancy analysis to identify signatures of local adaptation. *bioRxiv*. doi:10.1101/258988.

Capeau, J. 2007. The story of adiponectin and its receptors AdipoR1 and R2: to follow. *Journal of Hepatology*, 47: 736-738. doi:10.1016/j.jhep.2007.06.002.

Cardoso-Leite, R., Vilarinho, A.C., Novaes, M.C., *et al.* 2014. Recent and future environmental suitability to dengue fever in Brazil using species distribution model. *Trans R Soc Trop Med Hyg*, 108: 99-104.

Carpenter, D., Ringrose, C., Leo, V., *et al.* 2009. The role of CACNA1S in predisposition to malignant hyperthermia. *BMC Med Genet*, 13 (10): 104. doi:10.1186/1471-2350-10-104.

Cedraz, H., Gromboni, J.G.G., Garcia, A.A., *et al.* 2017. Heat stress induces expression of HSP genes in genetically divergent chickens. *PLoS One*, 12.

Chai, W., Li, J., Shangguan, W., *et al.* 2018. Lnc-ISG20 inhibits influenza A virus replication by enhancing *ISG20* expression. *J Virol*, 92 (16).

Changgeng Y, Ming J, Hua W., *et al.* 2015. Analysis of differential gene expression under low-temperature stress in Nile tilapia (*Oreochomis niloticus*) using digital gene expression. *Gene*, 546: 134-140.

Chao, L., Niu, S., Yan, S., *et al.* 2019a. Low-density lipoprotein receptor-related protein 1 regulates muscle fibre development in cooperation with related genes to affect meat quality. *Poultr Sci*, 98 (9): 3418-3425.

Chao, T., Liu, Z., Zhang, Y., *et al.* 2019b. Precise and rapid validation of candidate gene by allele specific knockout with CRIPSR/Cas9 in wild mice. *Front Genet*, 10: 124. doi: 10.3389/fgene.2019.00124.

Charlesworth, B. 2007. A hitch-hiking guide to the genome: A commentary on 'The hitch-hiking effect of a favourable gene' by John Maynard Smith and John Haigh. *Genet Res*, 89: 389-390.

Christensen, H., Daher, A., Soye, D., *et al.* 2007. Small interfering RNAs against the TAR RNA binding protein, *TRBP*, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. *J Virol*, 81 (10): 5121-31. doi:10.1128/JVI.01511-06.

Clifford, M., Athar, W., Leonard, C., *et al.* 2014. EphA7 signalling guides cortical dendritic development and spine maturation. *PNAS*, 111 (13): 4994-4999. doi:10.1073/pnas.1323793111.

Cong R.G., & Brady, M. 2012. The interdependence between rainfall and temperature: coupla analyses. *Sci World J*, doi:10.1100/2012/405675.

Coop, G. Witonsky, D., Di Rienzo, A., *et al.* 2010. Using environmental correlations to identify loci underlying local adaptation. *Genetics*, 185: 1422-1423.

Coullin P, Crooijmans RP, Groenen MA, *et al.* 2002. Assignment of FUT8 to chicken chromosome band 5q1.4 and to human chromosome $14q23.2 \rightarrow q24.1$ by in situ hybridization. Conserved and compared synteny between human and chicken. *Cytogenet Genome Res*, (97): 234-238.

Csala, A., Voorbraak, F., Zwinderman, A., *et al.* 2017. Sparse redundancy analysis of high-dimensional genetic and genomic data. *Bioinformatics*, 33 (20): 3228-3234. doi:10.1093/bioinformatics/btx374.

D

DAGRIS. 2007. Domestic Animal Genetic Resources Information System (DAGRIS). Edited by Y. Mamo, B. Asrat & T. Dessie Eds. S. Kemp. Addis Ababa. Accessed September 13th, 2020. http://dagris.ilri.cgiar.org.

Dai, Q., Ren, A., Westholm, J., *et al.* 2015. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family. *Genes Dev*, 29 (1): 48-62. doi:10.1101/gad.252122.114.

Danecek, P., Auton, A., Abecasis, G., *et al.* 2011. The variant call format and VCFtools. *Bioinformatics*, 27 (15): 2156-2158.

Derks, M., Megens, H-J., Bosse, M., *et al.* 2018. "A survey of functional genomic variation in domesticated chickens. *Genet Sel Evol* 50: 17. doi:10.1186/s12711-018-0390-1.

Dessie, T. 2011a. Why chicken research for development? *ILRI*, International Livestock Research Institute, Issue Brief 6.

Dessie, T., Taye, T., Dana, N., *et al.* 2011b. Current state of knowledge on phenotypic characteristics of indigenous chickens in the tropics. *Poult Sci J*, 67 (3): 507-516. doi:10.1017/S0043933911000559.

Desta, T., Dessie, T., Bettridge, J., *et al.* 2013. Signature of artificial selection and ecological landscape on morphological structures of Ethiopian village chickens. *Anim Genet Resour*, 52: 17-29.

DePristo, M., Banks, E., Poplin, R., *et al.* 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat Genet*, 43: 491-498.

de Simoni Gouveia, J., Barbosa da Silva, M., Rezende Paiva, S., *et al.* 2014. Identification of selection signatures in livestock species. *Genet Mol Biol*, 37 (2): 330-342.

de Wit, J. & Ghosh, A. 2016. Specification of synaptic connectivity by cellsurface interactions. *Nat Rev Neurosci*, 17 (4). doi:10.1038/nrn.2015.3.

Del Vesco, A., Gasparino, E., de Oliveira-Grieser, D., *et al.* 2015. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. *Brit J Nutr*, 113: 549-559. doi:10.1017/S000711451 4003535.

Diao, S., Huang, S., Chen, Z., *et al.* 2019. Genome-wide signatures of selection detection in three South China Indigenous Pigs. *Genes*, 10 (5): 346. doi:10.3390/genes10050346.

Didychuck, A., Butcher, S., & Brow, D. 2018. The life of U6 small nuclear RNA, from cradle to grave. *RNA*, 24 (4): 437-460. doi:10.1261/rna.065136.117.

Dil Bahadur, R., & Akhter, A. 2018. Impact of climate-change risk-coping strategies on livestock productivity and household welfare: empirical evidence from Pakistan. *Haliyon*, e00797. doi:10.1016/j.heliyon.2018.e00797.

Dirami, T., Rode, B., Jollivet, M., *et al.* 2013. Missense mutations in *SLC26A8*, encoding a sperm-specific activator of *CFTR*, are associated with human asthenozoospermia. *Am J Hum Genet*, 92 (5): 760-6. doi:10.1016/j.ajhg.2013.03.016.

Dorman, K., Shen, Z., Yang, C., *et al.* 2012. *CTBP1* interacts with ikaros and modulates pituitary tumour cell survival and response to hypoxia. *Mol endocrinol*, 26 (3): 447-457.

Dunn W., & Milne, B. 2014. Implication of climatic heterogeneity for conservation of the Lesser Praire-Chichen (*Tympanuchs pallidinctus*). *Ecosphere*, 5 (5): 1-17.

Durst, R., Sauls, K., Peal, D., *et al.* 2015. Mutation in *DCHS1* causes mitral valve prolapse. *Nature*, 525 (7567): 109-13. doi:10.1038/nature14670.

E

Eberth, J.E., Graves, K.T., MacLeod, J.N., *et al.* 2018. Multiple alleles of *ACAN* associated with chondrodysplastic dwarfism in Miniature horses. *Anim Genet*, doi:10.1111/age.12682.

Elbeltagy, A.R., Bertolini, F., Fleming, D.S., *et al.* 2019. Natural selection footprints among African chicken breeds and village ecotypes. *Front Genet*, 10: 376. doi:10.3389/fgene.2019.00376.

Ehsaninia, J., Faye, B., & Hossein-Zadeh, G. 2020. Phenotypic diversity of camel ecotypes (*Camelus dromedarius*) in the south region of Kerman province of Iran. *Iran J Appl Anim Sci*, 10 (4): 735-745.

Elferink, MG., van As, P., Veenendaal, T., *et al.* 2010. Regional differences in recombination hotspots between two chicken populations. *BMC Genet*, 11.

Elith, J., Graham, C.K., Anderson, R.P., *et al.* 2006. Novel methods improve prediction of species distributions from occurrence data. *Ecography*, 29: 129-251.

Elith, J., Philips, S.J., Hastie, T., *et al.* 2011. A statistical explanation of MaxEnt for ecologists. *Divers Distrib*, 17: 43-57.

Eriksson J, Larson G, Gunnarsson U, *et al.* 2008. Identification of the yellow skin gene reveals a hybrid origin of domestic chicken. *PLoS Genet*, 4: e1000010. doi:10.1371/journal.pgen.1000010.

Espinoza-Derout, J., Wagner, M., Shahmiri, K., *et al.* 2007. Pivotal role of cardiac lineage protein-1 (*CLP-1*) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. *Cardiovasc Res*, 75: 129-138.

Eusebi, P.G., Martinez, A., & Cortes, O. 2020. Genomic tools for effective conservation of Livestock breed diversity. *Diversity*, 12 (1): 8. doi:doi.org/10.3390/d12010008.

Evanno, G., Regnaut, R., & Goudet, J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. *Mol Ecol*, 14 (8): 2611-2626.

Eynard, S.E. 2018. Thesis: Using genomic information to conserve genetic diversity in livestock. Wageningen University.

F

Fabbi, M., Carbotti, G., & Ferrini, S. 2015. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. *J Leukoc Biol*, 97 (4): 666-675. doi:10.1189/jlb.5RU0714-360RR.

Fabregat, A., Jupe, S., Matthews, L., *et al.* 2018. The reactome pathway knowledgebase. *Nucleic Acids Res*, 46 (D1): D649-D655.
FAO. 2019. Poultry sector Ethiopia. FAO Animal Production and Health Livestock Country Reviews. No. 11. Rome.

FAO. 2020a. The State of Food Security and Nutrition in the World 2020. Rome: FAO.

FAO. 2020b. http://www.fao.org/emergencies/countries/detail/en/c/151593.

Fazzini, M., Bisci, C. & Billi, P. 2015. The climate of Ethiopia. *In Landscapes and Landforms of Ethiopia*, by P. Billi. Springer Science+Business Media Dordrecht. doi:10.1007/978-94-017-8026-1_3.

Fick, S.E., & Hijmans, R.J. 2017. Worldclim2: New 1-km spatial resolution climate surfaces for global land areas. *Int J Clim*, 37: 4302-4315.

Fisher, G., Nachtergaele, F., Prieler, S., *et al.* 2008. Global Agro-ecological Zones Assessment of Agriculture (GAEZ 2008). Luxemburg, Austria and Rome, Italy: IIASA and FAO.

Fleming, D., Koltes, J., Markey, A., *et al.* 2016. Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600k genotyping array. *BMC Genomics*, 407: 17. doi:10.1186/s12864-016-2711-5.

Fleming, D.S., Weigend, S., Simianer H., *et al.* 2017. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure. *G3* (*Bethesda*), 7(5):1525-1537. doi: 10.1534/g3.117.041228.

Forester, B., Jones, M., Joost, S., *et al.* 2016. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. *Mol Ecol*, 25: 104-120. doi:10.1111/ mec.13476.

Forester, B.R., Lasky, J.R., Wagner, H.H., *et al.* 2017. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. *Mol Ecol*, 27: 2215-2233. doi: 10.1111/mec.14584.

Forester, B. 2019. Detecting multilocus adaptation using Redundancy Analysis (RDA). Accessed November 24th, 2019. <u>https://popgen.nescent.org/2018-03-27 RDA_GEA.html</u>.

François, O., & Waits, L.P. 2016. Clustering and assignment methods in Landscape. *In Landscape Genetics*: concepts, methods, applications, by N., Cushman, S.A., Storfer, A.T., and Waits, L.P. Balkenhol, 114-128. Willey Blackwell. John Wiley & Sons Ltd.

Frichot, E., Schoville, S.D, Bouchard, G., *et al.* 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. *Mol Biol Evol*, 30: 1687-1699.

Fox, RJ., Donelson, JM., Schunter, C., *et al.* 2018. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. *Philos Trans*, B 374: 20180174. doi:10.1098/rstb.2018/0174.

Fu, W., Dekkers, J., Lee, W.R., *et al.* 2015. Linkage disequilibrium in crossbred and pure line chickens. *Genet Select Evol*, 47 (11).

Fuchs, B., Wagner, T., Rossel, N., *et al.* 1997. Structure and erythroid cellrestricted expression of chicken cDNA encoding a novel zinc finger protein of the Cys + His class. *Gene*, 195 (2): 277-84. doi:10.1016/s0378-1119(97)00175-3.

Fukuda, M. 2011. TBC proteins: GAPs for mammalian small GTPase Rab? *Biosci Rep*, (31): 159-168. doi:10.1042/BSR20100112.

Furukawa, J., Inoue, K., Maeda, J., *et al.* 2015. Functional identification of *SLC43A3* as an equilibrate nucleobase transporter involved in purine salvage in mammals. *Sci Rep*, 5: 15057.

G

Gabriel, S.B., Shaffner, S.F., Nguyen, H., *et al.* 2002. The structure of haplotype blocks in the human genome. *Science*, 296: 2225-2229.

Galante, P.J., Alada, B., Muscarella, T., *et al.* 2017. The challenge of modelling niches and distribution for data-poor species: a comprehensive approach to model complexity. *Ecography*, 41: 726-736.

Galli, G., Honnens de Lichtenberg, K., Carrara, M., *et al.* 2012. Prdm5 regulates collagen gene transcription by association with RNA polymerase II in developing bone. *PLoS Genetics*, 8 (5): e1002711. doi:10.1371/journal.pgen.1002711.

Gambhir, V.A., Khatana, S., & Bedi, V.S. 2014. A brief review of high-altitude thrombosis. *Indian Journal of Vascular and Endovascular Surgery*, 1 (1): 20-23.

Gammoh, E., Arekat, M., Saldhana, L., *et al.* 2015. DENND1A gene variants in Bahraini Arab women with polycystic ovary syndrome. *Gene*, 560 (1): 30-3. doi:10.1016/j.gene.2015.01.034.

Ganley, I., Espinosa, E., & Pfeffer, S. 2008. A sintasin *10-SNARE* complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. *J. Cell Biol*, 180 (1): 159-72. doi:10.1083/jcb.200707136.

Gao, Z., Lee, P., Stafford, J., *et al.* 2014. An *AUTS2* - polycomb complex activates gene expression in the CNS. *Nature*. 516 (7531): 349-54. doi:10.1038/ nature13921.

García-Gómez, E., Sahana, G., Gutierrez-Gil, B., *et al.* 2012. Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. *BMC Genet*, 12: 43.

Garmendia, I., Pajares, M., Hermida-Prado, H., *et al.* 2019. YES1 drives lung cancer growth and progression and predicts sensitivity do Dasatinib. *Am J Respir Crit Care Med*, 200 (7): 888 - 899. doi:10.1164/rccm.201807-1292OC.

Gaudet, P., Livstone, M.S., Lewis, S.E., *et al.* 2011. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. *Brief Bioinform*, 449-462. doi:10.1093/bib/bbr042.

Gazda, M.A. 2019. Thesis: Genetics basis of simple and complex traits with relevance to avian evolution. Porto: Facultad de Ciencias da Universidade do Porto.

Getu, A., & Tadesse, A. 2014. A phenotypic and genetic characterized indigenous chicken ecotypes in Ethiopia. *Int J Genet*, 4: 4 - 10.

GFSAD30. 2017. Global Food Security Analysis-Support Data at 30 Meters Project. Accessed April 10th, 2018. https://www.usgs.gov/centers/wgsc/science/globalfood-security-support-analysis-data-30-m-gfsad.

Gheyas, A., Boschiero, C., Eory, L., *et al*, D. 2015. Functional classification of 15 million SNPs detected from diverse chicken populations. *DNA Res*, 22 (3): 205-217. doi:10.1093/dnares/dsv005.

Gheyas, A., Vallejo-Trujillo, A, Kebede, A., *et al.* 2021. Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. *Mol Biol Evol*, preprint. doi:10.1093/molbev/msab156.

Gheye, E.F. 2000. The role of family poultry in poverty alleviation, food security and the promotion of gender equality in rural Africa. *Agriculture*, 29: 129-36.

Gilad, Y., Oschlack, A., & Rifkin, S.A. 2006. Natural selection on gene expression. *Trends Genet*, 22: 456-461.

Godber, O., & Wall, R. 2014. Livestock and food security: vulnerability to population growth and climate change. *Glob Change Biol*, 20: 3092-3102.

Goraga, Z., Wigend, S., & Brockman, G. 2011. Genetic diversity and population structure of five Ethiopian chicken ecotypes. *Anim Genet*, doi:10.1111/j/1365-2052/2011/02270.

Google. 2016. Google Earth Pro. "Ethiopia" Lat 9.017654 lon 39.988642 elev 987m. Borders and labels, places and terrain. Accessed January 9th, 2018.

GRCg6a (Genome Reference Consortium Chicken Build). 2018. Genome Reference Consortium. Washington University Genome Sequencing Center. https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.6.

Groenen, M., Wahlberg, P., Foglio, M., *et al.* 2009. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. *Genom Res*, 19: 510-519.

Groeneveld, L.F., Lenstra, J.A., Eding, H., *et al.* 2010. Genetic diversity in farm animals - a review. *Anim Genet*, 41 (1): 6 - 31. doi:10.1111/j.1365-2052.2010.02038.x.

Griffin, E., Hoyle, F. & Murphy, D. 2013. 'Soil organic carbon.' *In: Report card* on sustainable natural resource use in agriculture. Department of Agriculture and Food, Western Australia.

Gunaratne, G.S., Brailoiu, E., He, S., *et al.* 2021. Essential requirement for *JPT2* in NAADP-evoked Ca 2+ signalling. *Sci Signal*, 14 (675): eabd5605. doi:10.1126/scisignal.abd5605.

Guo, R., Chen, Y., Borgard, H., *et al.* 2020. The function and mechanism of Lipid molecules and their roles in the diagnosis and prognosis of breast cancer. *Molecules*, 25: 4864. doi:10.3390/molecules25204864.

Η

Ha, M., Kim, E.D., & Chen, Z.J. 2009. Duplicate genes increase expression diversity in closely related species and allopolyploids. *PNAS*, 106: 2295-2300. doi:10.1073/pnas.0807350106.

Han, W., Zhang, T., Ni, T., *et al.* 2019. Relationship of common variants in *CHRNA5* with early-onset schizophrenia and executive function. *Schizophr Res*, 206: 407 - 412. doi:10.1016/j.schres.2018.10.011.

Haouzi, D., Boumela, I., Chebli, K., *et al.* 2018. Global, survival and apoptotic transcriptome during mouse and human early embryonic development. *Biomed Res Int*, 5895628. doi:10.1155/2018/5895628.

Hardison, R.C. 2012. Evolution of Haemoglobin and its genes. *Cold Spring Harb Perspect Med*, 2 (12): a011627. doi:10.1101/cshperspect.a011627.

Hartl, D.L. & Clark, A.G. 1997. Principles of Population Genetics. 3rd. Sunderland, MA.: Sinauer Associates, Inc.

Harvest Choice. 2015. AEZ (16-class, 2009). International Food Policy Research Institute, Washington, DC., and University of Minnesota, St. Paul, MN. Accessed March 13th, 2018. <u>http://harvestchoice.org/data/AEZ16_CLAS</u>.

Harvey, C.A., Chacón, M., Donatti, C.I., *et al.* 2014. Climate-Smart Landscapes: Opportunities and Challenges for Integrating Adaptation and Mitigation in Tropical Agriculture. *Conserv Let*, 7 (2): 77–90.

Hauptmann, J., Kater, L, Loffler, P., *et al.* 2014. Generation of catalytic human *AGO4* identifies structural elements important for RNA cleavage. *RNA*, 20 (10): 1532-8. doi:10.1261/rna.045203.114.

He, Q., Wang, S.Z., Leng, L., *et al.* 2018. Differentially expressed genes in the liver of lean and fat chickens. *Genet Mol Res*, 13 (4): 10823-10828.

Heller, D., & Vingron, M. 2019. SVIM: structural variant identification using mapped long reads. *Bioinformatics*, 35 (17): 2907-2915. doi:10.1093/bioinformatics/ btz041.

Hengl, T., De-Jesus, J.M., MacMillan, R.A., *et al.* 2014. SoilGrids1km - Global Soil Information based on automated mapping. *PLoS ONE*, 9 (8): e105992.

Hijmans, R.J., Cameron, S.E., Parra, J.L., *et al.* 2005. Very high-resolution interpolated climate surfaces for global land areas. *Int J Clim*, 25: 1965-1978.

Hill, W.G. 1974. Estimation of Linkage Disequilibrium in randomly mating populations. *Heredity*, 33: 229-239.

Hirawake, H., Taniwaku, M., Tamura, H., *et al.* 1999. Characterization of the human SDHD gene encoding the small subunit of cytochrome b (cybS) in mitochondrial

succinate - ubiquinone oxidoreductase. *Biochem. Biophys*, Acta 1412 (3): 295-300. doi:10.1016/s0005-2728(99)00071-7.

Hong, E.P. & Park, J.W. 2012. Sample size and statistical power calculation in genetic association studies. *Genomics Inf*, 2: 117-122. doi:10.5808/GI.2012.10.2.117.

Hou, Y., Qi, F., Bai, X., *et al.* 2020. Genome-wide analysis reveals molecular convergence underlying domestication in 7 birds and mammals. *BMC Genomics*, 21. doi:10.1186.s12864-020-6613-1.

Hu, Z.L., Park, C.A., Wu, X.L., *et al.* 2014. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. *Nucleic Acids Res*, (41). doi:10.1093/nar/gks1150.

Huaiyu, M., Anushya, M., Dustin, E., *et al.* 2019. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic Acids Res*, doi:10.1093/nar/gky1038.

Huang, Y.C., Lin, J-M, Lin, H.J., *et al.* 2011. Genome-wide association study of diabetic retinopathy in a Taiwanese population. *Ophthalmology*, 118 (4): 642-648. doi:10.1016/j.ophtha.2010.07.020.

Hwang, C., Chaurasia, S., Jackson, C., *et al.* 2013. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal *PAS*-domain protein 2-adenylyl cyclase 1 signalling pathway in Retinal Ganglion cells. *The Journal of Neuroscience*, 33 (38): 14989-14997. doi:10.1523/JNEUROSCI.2039-13.2013.

Huang, XQ., Zhang, XF., Xia, JH., *et al.* 2017. Tripartite motif-containing 3 (*TRIM3*) inhibits tumour growth and metastasis of liver cancer. *Chin J Cancer*, 36: 77. doi:10.1186/s40880-017-0240-5.

Huanxian, C., Zhao, C., Liu, R., *et al.* 2012. FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor *FSHR*. *J Lipid Res*, 53: 909-917.

Hui, T.Y., & Burt, A. 2020. Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. *BMC Genetics*, 21. doi:10.1186/s12863-020-0818-9.

Hurni, H. 1998. Agroecological belts of Ethiopia. Explanatory notes on three maps at a scale of 1:1,000,000. Adis Ababa - Ethiopia: Soil Conservation Research Programme.

Hwang, C., Chaurasia, S., Jackson, C., *et al.* 2013. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal *PAS*-domain protein 2-adenylyl cyclase 1 signalling pathway in Retinal Ganglion cells. *J Neurosci*, 33 (38): 14989-14997. doi:10.1523/JNEUROSCI.2039-13.2013.

I

Ip, P., Goh, W., Chan, K.W., et al. 2002. A novel FUCA1 mutation causing fucosidosis in a Chinese boy. J. Inherit Metab Dis, 25 (5): 415-6. doi:10.1023/a:1020116220624.

Jackson, L.S., Finney, D.L., Kendon, E.J., *et al.* 2020. The effect of explicit convection on coupling between rainfall, humidity, and ascent over Africa under Climate change. *J Clim*, 8315-8337. doi:10.1175/JCLI-D-19-0322.1.

Jastrebski, S., Lamont, S., & Schmidt, C. 2017. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. *PLoS One*, doi:10.1371/journal.pone.0181900.

Javanrough-Aliabad, A., Vaez-Towshizi, R., Masoudi, A.A., *et al.* 2018. Identification of candidate genes for blood metabolites in Iranian chickens using a genome-wide association study. *Brit Poultr Sci*, 1466-1799. doi:10.1080/00071668. 2018.1472743.

Jensen, K.P., Stein, M.B., Kranzler, B.Z., *et al.* 2014. The alphaendomannosidase gene (*MANEA*) is associated with panic disorder and social anxiety disorder. *Transl Psychiatry*, 4: e353.

Jerng, H.H., Lauver, A.D., & Pfaffinger, P.J. 2013. DPP10 splice variants are localized in distinct neuronal populations and act to differentially regulate the inactivation properties of Kv4-based ion channels. *Mol Cell Neurosci*, 35 (4): 604-624. doi:10.1016/j.mcn.2007.03.008.

Jeschke, J., & Strayer, D. 2008. Usefulness of bioclimatic models for studying climate change and invasive species. *Ann N. Y. Acad Sci*, 1134: 1-24.

Jiménez-Valverde, A., Peterson, A.T., Soberon, J., *et al.* 2011. Use of niche models in invasive species risk assessments. *Biol Invasions*, 13: 2785-2797.

Jiménez-Valverde, A. 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. *Glob Ecol Biogeogr*, 21: 498-507.

Johnson, M., Gering, E., Willis, P., *et al.* 2015. Feralisation targets different genomic loci to domestication in the chicken. *Nat Comm*, doi:10.1038/NCOMMS12950.

Joost, S., Bonin, A., Bruford, M.W., *et al.* 2007. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. *Mol Ecol*, 16: 3955-3969.

Judith, D., Jefferies, H., Moeing, S., *et al.* 2019. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIB. *J Cell Biol*, 218 (5): 1634-1652. doi:10.1083/jcb.201901115.

Jueterbock, A., Smolina, I., Coyer, J.A., *et al.* 2016. The fate of the Arctic seaweed <u>*Fucus distichus*</u> under climate change: an ecological niche modelling approach. *Ecol Evol*, (6) 6: 1712-1724.

Julian, C.G., & Moore, L.G. 2019. Human Genetic adaptation to high altitude: evidence from the Andes. *Genes*, 10 (105). doi:10.3390/genes10020150.

Jury, M.R., & Funk, C.R. 2013. Climatic trends over Ethiopia: regional signals and drivers. *Int J Clim*, 33: 1924-1935.

Κ

Kaiser, P, Howell, J, Fife, M, *et al.* 2008. Integrated immunogenics in the chicken: deciphering the immune response to identify disease resistance genes. *In Animal Genomics for Animal Health*, by C Gay, P-P Pastoret & B Dodet (eds) M-H Pinard, 57-66. doi:10.1159/000317144.

Karimi, K., Esmarilizadeh-Koshkoiyeh A., & Gondro, C. 2014. Comparison of linkage disequilibrium levels in Iranian indigenous cattle using whole-genome SNPs data. *J Anim Sci.*, 57: 47-53.

Karimi, V., Karimi E., & Kshavarz, M. 2018. Vulnerability and adaptation of livestock producers to climate variability and change. *Rangel Ecol Manag*, 71 (2): 175-184. doi:10.1016/j.rama.2017.09.006.

Karlsson A., Fallahsharoudi, A., Johnsen, H., *et al.* 2016. A domestication related mutation in the thyroid stimulating hormone receptor gene (*TSHR*) modulates photoperiodic response and reproduction in chickens. *Gen Comp Endocrinol*, 228: 69-78.

Karpova, N., Bovinnec, Y., Fouix, S., *et al.* 2006. Jupiter, a new Drosophila protein associated with microtubules. *Cell Motil Cytoskeleton*, 65 (5): 301-12. doi:301-12. doi: 10.1002/cm.20124.

Kasambra, A. 2017. Package' ggpubr.' <u>http://www.sthda.com/english/rpks/</u>ggpubr.

Kassahun, B. & Poulton, C. 2014. The political economy of Agricultural extension policy in Ethiopia: Economic growth and political control. *Dev Policy Rev* 32: s197-s213.

Keambou, T.C., Hako, B.A., Ommeh, S., *et al.* 2014. Genetic diversity of the Cameron Indigenous chicken ecotypes. *Int J Poultr Sci*, 13 (5): 279-291.

Kebede, A. 2018. Thesis: Whole genome-based characterization of Indigenous chicken population in Ethiopia. Addis Ababa: Addis Ababa University.

Kenehisa, M., & Goto, S. 2000. KEEG - Kyoto Encyclopedia of genes and genomes.

Khalifa, H.H. 2003. Bioclimatology and adaptation of farm animals in a changing climate. *In Interactions between climate and animal production*, by N., Bernabucci, U., Khalifa, HH., Ronchi, B., and Nordone, A. Lacetera. The Netherlands: Wageningen Academic Publishers.

Kim, E.S., Cole, J.B., Hudson, H., *et al.* 2013. Effect of artificial selection on runs of homozygosity in U.S. Holstein cattle. *PLoS One*, 8: 380813.

Kim, H-K., Lee, H., Kuon, J-T., *et al.* 2015. A polymorphism in AGT and *AGTR1* gene is associated with lead-related high blood pressure. *J Renin Angiotensin Aldosterone Syst*, 16 (4): 712-9. doi:10.1177/1470320313516174.

Kimura, K., Cuvier, O., & Hirano, T. 2001. Chromosome condensation by a human condensin complex in Xenopus egg extracts. *J Biol Chem*, 276 (8): 5417-20. doi:10.1074/jbc.C000873200.

Kong, B.W., Hudson, N., Seo, D., *et al.* 2017. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line. *BMC Genomics*, (18). doi:10.1186/s12864-016-3471-y.

Köhler-Rollefson, I. 2001. Community-based management of animal genetic resources - with special reference to pastoralists. Community-based management of animal genetic resources. Mbbane, Swaziland. 07-11.

Kranis, A., Gheyas, A., Boschiero, C., *et al.* 2013. Development of a high density 600K SNP genotyping array for chicken. *BMC Genomics*, 14, 59. doi:10.1186/1471-2164-14-59

Kupcinskas, J., Valantiene, I., Varkalaite, G., *et al.* 2017. *PNPLA3* and *RNF7* gene variants are associated with the risk of developing liver fibrosis and cirrhosis in an Eastern European population. *J Gastrointestin Liver Dis*, 26(1): 37-43. doi:10.15403/jgld.2014.1121.261.pnp.

L

LaFleche, L.J., & Waterman, J.M. 2020. Not playing by the rules: mixed support of ecogeographic rules in an arid-adapted African ground squirrel. *J Zool*, 312: 94-101.

Lagerström M.C., Hellström A.R., Gloriam D.E., *et al.* 2006. The G Protein-Coupled Receptor Subset of the Chicken Genome. *PLoS Comput Biol*, 2 (6): e54. doi:10.1371/journal.pcbi.0020054.

Lai, M.C., Chang, C.M., & Sun, H.S. 2016. Hypoxia induces autophagy through translational up-regulation of Lysosomal proteins in human colon cancer cells. *PLoS One*, 11.

Lamb, T.D., Patel, H.T., Chuah, A., *et al.* 2018. Evolution of the shut-off steps of vertebrate phototransduction. *Open Biol*, 8. doi:10/1098/rsob.170232.

Lawal, R.A., Al-Atiyat, R.M., Aljumaah, R.S., *et al.* 2018. Whole-Genome resequencing of Red Junglefowl and Indigenous Village Chicken Reveal New Insights on the Genome Dynamics of the Species. *Front Genet*, 1-17. doi:10.3389/fgene.2018.00264.

Lawler, A. 2016. Why did the chicken cross the world? The epic saga of the bird that powers civilization. NY: Atria Books.

Lewontin, R.C. 1964. The interaction of Selection and Linkage. *Genetics*, 49: 49-67.

Lee, J., Eschen-Lippold, L., Lassowskat, I., *et al.* 2015. Cellular reprogramming through mitogen-activated protein kinases. *Front Plan Sci*, doi:10.3389/fpls.2015. 00940.

Lee, W.H., Tsai, M.J., Chang, W.A., *et al.* 2018. Deduction of novel genes potentially involved in hypoxic AC16 human cardiomyocytes using next-generation sequencing in bioinformatics approaches. *Int J Mol Med*, 42: 2489-2502.

Lemonnier, T., Dupre, A., & Jessus, C. 2020. The G2-to-M transition from a phosphatase perspective: a new vision of the meiotic division. *Cell Div*, 15 (9). doi:10.1186/s13008-020-00065-2.

Li, S., Watanabe, T., Nakamura, S., *et al.* 1996. cDNA cloning and chromosomal mapping of a novel human *GAP (GAP1M)*, a GTPase-activating protein or Ras. *Genomics*, 35: 625-627.

Li, H., & Durbin, R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*, 25: 1754-1760.

Li, Y., Sidore, C., Kang, H.M., *et al.* 2011a. Low-coverage sequencing: implications for design of complex trait association studies. *Genome Res.*, 21(6): 940-951. doi: 10.1101/gr.117259.110.

Li, C., Wang, X., Wang, G., *et al.* 2011b. Genome-wide expression analysis of roxarsone-stimulated growth of broiler chickens (*Gallus gallus*). *Comp Biochem Physiol*, 264-270. doi:10.1016/j.cbd.2011.05.003.

Li, H., Wang, T., Xu, C., *et al.* 2015. Transcriptome profile of liver at different physiological stages reveals potential model for lipid metabolism in laying hens. *BMC Genom*, 16 (763). doi:10.1186/s12864-015-1943-0.

Li, Z., Zheng, M., Abdalla, B. *et al.* 2016. Genome-wide association study of aggressive behaviour in chicken. *Sci Rep*, (6): 30981. doi:10.1038/srep30981.

Li, P., Fan, W., Everaert, N., *et al.* 2018. Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights into the Susceptibility to <u>Salmonella</u> <u>enteriditis</u> infection in chickens. *Front Genet*, 9 (256). doi:10.3389/fgene.2018.00256.

Li, F.G. & Li, H. 2019. A time-dependent genome-wide SNP=SNP interaction analysis of chicken body weight. *BMC Genom*, 20. doi:10.1186/s12864-019-6132-0.

Li, X., Nie, C., Liu, Y., *et al.* 2020. The genetic architecture of early body temperature and its correlation with <u>Salmonella pullorum</u> resistance in three chicken breeds. *Front Genet*, doi:10.3389/fgene.2019.012870.

Lin, P.T., Gleeson, J.G., Corbo, J.C., *et al.* 2000. DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. *J Neurosci*, 20 (24): 9152-61. doi:10.1523/JNEUROSCI.20-24-09152.2000.

Liu W, Li D, Liu J, *et al.* 2011. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. *PLoS One*, 6 (12): 328600.

Liu, W., Liang, B., Liu, H., *et al.* 2017. Overexpression of non-SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. *Int J Mol Med*, 40 (3): 731-738. doi:10.3892/ijmm.2017. 3079.

Liu, J., Zhang, C., Wang, X., *et al.* 2020. Tumor suppressor p53 cross-talks with TRIM family proteins. *Gen Diseases*. Doi: 20.1016/j.gendis.2020.07.003.

Lobo, J.M., Jiménez-Valverde, A., & Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. *Glob Ecol Biogeogr*, (2): 145-151.

Lotvedt, P., Fallahshahroudi, A., Bektic, L., *et al.* 2017. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. *Neurobiol Stress*, 7: 113-121. doi:10.1016/j.ynstr.2017.08.002.

Lozano-Jaramillo, M., Bastiaansen, J.W.M., Dessie, T., *et al.* 2018. Use of geographic information system tools to predict animal breed suitability for different agro-ecological zones. *Animal* 13: 1-8.

Lowry, D. 2012. Ecotype and the controversy over stages in the formation of new species. *Biological J*, 106 (2): 241-257.

Lu, Y., Vitart, V., Burdon, K., *et al.* 2013. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. *Nat Genet*, 45 (2): 155-163. doi:10.1038/ng.2506.

Lu, B., Sun, X., Chen, Y., *et al.* 2015. Novel function of *PITH* domain - containing 1 as an activator of internal ribosomal entry site to enhance *RUNX1* expression and promote megakaryocyte differentiation. *Cell Mol Life Sci*, 72 (4): 821-32. doi:10.1007/s00018-014-1704-2.

Lüling, R., John, H., Gudermann, T., *et al.* 2018. Transient receptor potential channel A1 (*TRPA1*) regulates sulphur mustard-induced expression of heat shock 70 kDA protein 6 (*HSPA6*) in vitro. *Cells*, 7 (9): 126. doi:10.3390/cells7090126.

Luo, W., Luo, C., Wang, M., *et al.* 2020a. Genome diversity of Chinese indigenous chicken and the selective signatures in Chinese gamecock chicken. *Sci Rep*, 10: 14532. doi:10.1038/s41598-020-71421-z.

Luo, L., Tang, Z-Z., Schoville, S.D., *et al.* 2020b. A comprehensive analysis comparing linear and generalized linear models in detecting adaptive SNPs. *Mol Ecol Res*, 21 (3): 733-744.

Lv, F.H., Agha, S., Kantanen, J., *et al.* 2014. Adaptations to climate-mediates selective pressures in sheep. *Mol. Biol. Evol*, 31: 3324-3343.

Lyimo, C.M., Weigend, A., JanBen-Tapken, U., *et al.* 2013. Assessing the genetic diversity of five Tanzanian chicken ecotypes using molecular tools. *S Afr J Anim Sci*, 43: 400-510.

Ma, Y., Ding, X., Qanbari, S., *et al.* 2015. Properties of different selection signature statistics and a new strategy for combining them. *Heredity*, 115 (5): 426-36. doi:10.1038/hdy.2015.42.

Marchesi, J.A., Ibelli, A.M., Peixoto, J.O., *et al.* 2019. Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens. *Poultry Science*, 98: 590-601.

Maclean, C.A., Hong, N.P.C., & Prendergast, J.G.D. 2015. Hapbin: An efficient program for performing haplotype-based scans for positive selection in large genomic datasets. *Mol Biol Evol* 32: 3027-3029.

Magnuson, N., Wang, Z., Ding, G., *et al.* 2010. Why target PIN1 for cancer diagnosis and treatment? *Future Oncol*, 6 (9): 1461-1478. doi:10.2217/fon.10.106.

Mahendrasingam, S., Fettiplace, R., Alagramam, K., *et al.* 2017. Spatiotemporal changes in the distribution of *LHFPL5* in mice cochlear hair bundles during development and in the absence of *PCDH15*. *PLOS One*, 12 (10): e0185285. doi:10.1371/journal.pone.0185285.

Makuvaru, V., Walker, S, Maswre, T., *et al.* 2018. Smallholder farmer perceived effects of climate change on agricultural productivity and adaptation strategies. *Journal of Arid Environments*, 75-82. doi:10.1016/j.jaridenv.2018.01.016.

Manel, S., Schwartz, M.K., Luikart, G., *et al.* 2003. Landscape genetics: combining landscape ecology and population genetics. *Trends Ecol Evol*, 18 (4): 189-197. doi:10.1016/S0169-5347(03)00008-9.

Manel S., & Holderegger, R. 2013. Ten years of landscape genetics. *Trends Ecol Evol*, 28: 614-621.

Mangistu, A. 2006. Ethiopia. Rome: Food and Agriculture Organization of the United Nations (FAO).

Manyelo, T.G, Salaledi, L., Hassan, Z.M., *et al.* 2020. Local chicken breed of Africa: Their description, uses and conservation methods. *Animals*, 10 (12): 2257. doi:10.3390/ani10122257.

Mao, H., Wang, X., Cheng, D., *et al.* 2019. Whole-genome SNP data unravel population structure and signatures of selection for black plumage of indigenous chicken breeds from Hiangxi province, China. *Anim Genet*, 50 (5): 475-483. doi:10.1111/age.12827.

McDermott, J.J., Staal, S.J., Freeman, H.A., *et al.* 2010. Sustaining intensification of smallholder livestock systems in the tropics. *Livestock Sci*, 130: 95-109.

McLaren, W., Gil, L., Hunt, S.E., et al. 2016. The Ensembl Variant Effect Predictor. Genom Biol, 17 (1): 122.

McKenna, A., Hanna, M., Banks, E., *et al.* 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genom Res*, 20 (9): 1297-1303.

Meng, L., Wenteng, S., Zhu, Y., *et al.* 2018. Molecular characterization and expression analysis of strbp in Chinese tongue sole (*Cynoglossus semilaevis*). *Theriogenology*, 118: 225-232. doi:10.1016/j.theriogenology.2018.06.001.

Mengistu, A. 2006. ETHIOPIA: Country Pasture/Forage Resource Profiles. Rome: Food and Agriculture Organization of the United Nations (FAO).

Mi, W., Zhang, Y., Lyu, J., *et al.* 2018. The ZZ-type zinc of *ZZZE* modulates the ATAC complex-mediated histone acetylation and gene activation. *Nat Commun*, 9, 3759. doi: 10.1038/s42467-018-06247-5.

Mignon-Grasteau, S., Boissy, A., Bouix, J., *et al.* 2005. Genetics of adaptation and domestication in livestock. *Livestock Prod Sci*, 93: 3-14.

Miotto, B., Chibi, M., Xie, P., *et al.* 2014. The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability. *Cell Rep*, 7 (2): 575-587. doi:10.1016/j.celrep.2014.03.030.

MoA – Ministry of Agriculture. 2000. Agroecological zonation of Ethiopia. Addis Ababa, Ethiopia.

Monson, M., Van Goor, A., Aschwell, C., *et al.* 2018. Immunomodulatory effects of heat stress and lipopolysaccharide on the bursal transcriptome in two distinct chicken lines. *BMC Genom*, 19. doi:10.1186/s12864-018-5033-y.

Morales, N.S., Fernández, I.C. & Baca-Gonzalez, V. 2017. MaxEnt's parameter configuration and small samples: are we paying attention to recommendation? A systematic review. *PeerJ* 5: e3093. doi:10.7717/peerj.3093.

Morais, P., Adachi, H., & Yu, Y-T. 2021. Spliceosomal snRNA Epitranscriptomics. *Front Genet*, 12: 652129. doi:10.3389/fgene/2021.652129.

Moroudi, R.S., Mahyari, S.A., Torshizi, R.V., *et al.* 2021. Identification of new genes and quantitative trait loci associated with growth curve parameters in F2 chicken population using genome-wide association study. *Anim Genet*, 52: 171-184.

Msaki, A., Sanchez, A., Koh, L, *et al.* 2011. The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration. *Mol. Biol. Cell*, 22 (17): 3032-40. doi:10.1091/mbc.E11-04-0280.

Muchadeyi, F.C. 2007. Assessment of genetic diversity of Zimbabwe village chicken eco-types. Gottingen, Germany: Ph.D. Thesis.

Muchadeyi, F., Eding, H., Simianer, H., *et al.* 2008. Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. *Anim Genet*, 39: 615-622.

Muchadeyi, F., & Dzomba, E. 2017. Genomics tools for the characterization of genetic adaptation of low input extensively raised chickens. *Poultr Sci*, IntechOpen. doi:10.5772/65679.

Muhia, M., Thies, E., Labonte, D., *et al.* 2016. The kinesin *KIF21B* regulates microtubule dynamics and Is essential for neuronal morphology, synapse function, and learning and memory. *Cell Reports*, 5 (3): 968-977. doi:10.1016/j.celrep.2016.03.086.

Muscarella, R., Galante, P.J., Soley-Guardia, M., *et al.* 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. *Methods Ecol Evol*, 5 (11): 1198-1205.

Mwacharo, J.M., Bjornstad, G., Mobegi, V., *et al.* 2011. Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. *Mol Phyl Evol*, 58: 374-82.

Mwacharo, J.M., Nomura, K., Hanada, H., *et al.* 2013a. Reconstructing the origin and dispersal patterns of village chickens across East Africa: insights from autosomal markers. *Mol Ecol*, 22: 2683-2697. doi:10.1111/mec.12294.

Mwacharo, J.M., Bjornstad, G., Han, J.L., *et al.* 2013b. The history of African Village Chickens: an archaeological and molecular perspective. *Afr Archaeol Rev*, 30: 97-114. doi:10.1007/s10437-013-9128-1.

Ν

Nachury, M.V., & Mick, D.U. 2019. Establishing and regulating the composition of cilia for signal transduction. *Nat Rev Mol Cell Biol*, 20: 389-405.

NCBI. 2016. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res*, 44: D7-D19. doi:10.1093/nar/gkv1290.

Niyas, P.A., Chadainya, K., Shaji, S., *et al.* 2015. Adaptation of livestock to environmental challenges. *J Vet Sci Med Diag*, 4 (3). doi:10.4172/2325-9590.1000162.

North, M.A., Naggert, J.K., Yan, Y., *et al.* 1997. Molecular characterization of *TUB*, *TULP1*, and *TULP2*, members of the novel tubby gene family and their possible relation to ocular diseases. *PNAS.*, USA 94: 3128-33. doi:10.1073/pnas.94.7.3128.

Nosrati, M. 2017. The patterns of Linkage Disequilibrium in Livestock Genome. *Iran J Appl Anim Sci*, 7 (1): 1-7.

Nyoni, N.M.B., Grab, S. & Archer, E.R. 2018. Heat stress and chickens: climate risk effects on rural poultry farming in low-income countries. *Clim Dev*, doi:10.1080/17565529.2018.1442792.

0

O'Donnell, L., Panier, S, Wildenhain, J., *et al.* 2010. The *MMS22L-TONSL* complex mediates recovery from replication stress and homologous recombination. *Mol Cell*, 40: 619-631. doi:10.1015/j.molcel.2010.10.024.

Ogura, K., Somwar, R., Hmeijak, J., *et al.* 2021. Therapeutic potential of *NTRK3* inhibition in Desmoplastic small round cell tumour. *Clinic Cancer Res*, 27 (4). doi:10.1158/1078-0432.

Oksanen, J. 2015. Multivariate analysis of ecological communities in R: vegan tutorial. Accessed November 24th, 2019. <u>https://cran.r-project.org/web/packages/vegan/vegan.pdf.</u>

Olson, D.M., & Dinerstein, E. 2002. The global 200: priority ecoregions for global conservation. *Ann Mol Bot Gard*, 89: 100. doi:10.2307/3298564.

Osabe, D., Tanahashi, T., Nomura, K., *et al.* 2007. Evaluation of sample size effect on the identification of haplotype blocks. *BMC Bioinformatics*, 8: 200. doi:10.1186/1471-2105-8-200.

Ostman, B., Hintze, A., and Adami, C. 2012. Impact of epistasis and pleiotropy on evolutionary adaptation. *Proc Biol Sci*, 279:247-256.

Р

Pagani, P., & Abebe, W. 2008. Review of the new features of the Ethiopian poultry sector: Biosecurity implications. By FAO.

Pampouille, E., Hennequet-Antier, C., Praud, C., *et al.* 2019. Differential expression and co-expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken. *Sci Rep*, 9.

Parra, M., Liu, X., Derrick, S., *et al.* 2013. Molecular analysis on non-specific protection against murine malaria induces by BCG vaccination. *PLoS ONE*, 8 (7): e66115. doi:10.1371/journal.pone.0066115.

Patterson, N., Price, A.L., & Reich, D. 2006. Population structure and Eigen analysis. *PLOS Genet*, 2 (12): e190.

Pearson, R.G. 2010. Species' Distribution Modelling for Conservation Educators and Practitioners. *Lessons Cons*, 3: 54-89.

Pernes, G., Flynn, C., Lancaster, G., *et al.* 2019. Fat for fuel: lipid metabolism in haematopoiesis. *Clinic Trans Immun*, 8: e1098. doi:10.1002/cti2.1098.

Phillips, S.J., Anderson, R.P., & Shapire, R.E. 2006. Maximum entropy modelling of species geographic distributions. *Ecol Modell*, 190 (3/4): 231-259.

Pié, J., López-Vinas, E., Puisac, B., *et al.* 2007. Molecular genetics of HMG-CoA lyase deficiency. *Mol Genet Metabol*, 92: 198-209.

Pitt, J., Gillingham, P., Maltby, M., *et al.* 2016. New perspectives on the ecology of early domestic fowl: An interdisciplinary approach. *J Archaeol Sci* 74: 1-10.

Platt II, R.N., Vandewege, M.W., & Ray, D.A. 2018. Mammalian transposable elements and their impacts on genome evolution. *Chrom Res*, 26: 25-43. doi:10.1007/s10577-017-9570-z.

Prendergast, M.E., Buckley, X.M.M., Crowther, A.X., *et al.* 2017. Reconstructing Asian faunal introduction to eastern Africa from multi-proxy biomolecular and archaeological datasets. *PLoS One*, 12.

Price, A.L., Patterson, N.J., Plangem, R.M., *et al.* 2006. Principal components analysis corrects for stratification in genome-wide association studies. *Nat Genet*, 38: 904-909.

Promodou, N.V., Thompson, C.L., Osborn, D.P, *et al.* 2012. Heat shock induces rapid resorption of primary cilia. *J Cell Sci*, 125: 4297-4305.

Psfidi, A., Banos, G., Matika, O., *et al.* 2016. Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. *Genet Sel Evol*, 48 (74).

Puigserver, P., & Spiegelman, B.M. 2003. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (*PGC-1* alpha): transcriptional coactivator and metabolic regulator. *Endocrinol Rev*, 24 (1): 78-90. doi:10.1210/er.2002-0012.

Purcell, S., Neale, B., Todd-Brown, K., *et al.* 2007. PLINK: a toolset for wholegenome association and population-based linkage analysis. *Am J Hum Genet*, 81.

Purswell, J., Dozier, W., Olanrewaju, H., *et al.* 2012. Effect of temperaturehumidity index on live performance in Broiler chickens grown from 49 to 63 days of age. *9th International Livestock Environment Symposium*. Valencia, Spain: American Society of Agricultural and Biological Engineers (ASABE). ILES12-0265.

Q

Qanbari S, Seidel M, Strom TM, *et al.* 2015. Parallel Selection revealed by population sequencing in chicken. *Genome Biol Evol*, 7 (12): 3299-3306. doi:10.1093/GBE/EVV222.

Qanbari, S. 2020. On the extent of linkage disequilibrium in the genome of farm animals. *Front Genet*, 10:1304. doi: 10.3389/fgene.2019.01304.

Qu, L., Shen, M., Guo, J., *et al.* 2019. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. *Arch Anim Breed*, 62 (1): 113-123. doi:10.5194/aab-62-113-2019.

Quinlan, A.R., & Kindlon, N. 2017. Bedtools. Accessed 11 24, 2019. https://bedtools.readthedocs.io/en/latest/index/html.

Quinghe Li, Wang, N., Zhou, D., *et al.* 2012. Gastrocnemius transcriptome analysis reveals domestication induced gene expression changes between wild and domestic chickens. *Genomics*, 100 (5): 314-319.

R

Rashamol, V. & Sejian, V. 2018. Climate resilient livestock production: way forward. *J Dairy Vet Sci*, 5 (5): 5556673. doi:10.19090/JDVS.2018.05.555673.

Ratan, A., Olson, T.L., Loughran, T.P., *et al.* 2015. Identification of indels in next-generation sequencing data. *BMC Bioinformatics*, 16 (42). doi:10.1186/s12859-015-0483-6.

Razani, B., Zarnegar, B., Ytterberg, A.J., *et al.* 2010. Negative feedback in noncanonical NF-kappaB signalling modulates NIK stability through IKKalphamediated phosphorylation. *Sci Signal*, 3 (23): ra41. doi:10.1126/scisignal.2000778.

R Core, Team. 2013. R: A language and environment for statistical computing. Prod. R Foundation for Statistical Computing. Vienna. <u>http://www.R-project.org/</u>.

Rees, J.S., Castellano, S., Andres, A.M. 2020. The genomics of human local adaptation. *Trends Genet* 36:415-428.

Rellstab, C., Gugerli, F., Eckert, A.J., *et al.* 2015. A practical guide to environmental association analysis in landscape genomics. *Mol Ecol*, 24: 4348-4370.

Rima, M., Daghsni, M., De Waard, S., *et al.* 2017. The B4 subunit of the voltage-gated calcium channel (*Cacnb4*) regulates the rate of cell proliferation in Chinese Hamster Ovary cells. *Int J Biochem Cell Biol*, 89: 57-70. doi:10.1016/j.biocel.2017.05.032.

Rohde, P.D., Østergaard, S., Kristense, T.N., *et al.* 2018. Functional validation of candidate genes detected by genomic feature models. *G3*, 8 (5): 1659-1668. doi:10.1534/g3.118.2000082.

Rubin, C.J., Zody, M.C., Eriksson, J., *et al.* 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. *Nature*, 464: 587-591.

S

Sabeti, P.C., Varily, P., Fry, B., *et al.* 2007. Genome-wide detection and characterization of positive selection in human populations. *Nature*, 449: 913-918.

Sanarana, Y., Visser, C., Bosman, L., *et al.* 2016. Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers. *Trop Anim Health Prod*, 379-385.

Sanchis-Juan, A., Stephens, J., French, C.S., *et al.* 2018. Complex structural variants in Mendelian disorders: Identification and breakpoint resolution using shortand long-read genome sequencing. *Genome Medicine*, 10 (95). doi:10.1186/s13073-018-0606-6.

Sandoval-Castillo, J., Gates, K., Brauer, C.J., *et al.* 2020. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. *PNAS*, 117 (29): 17112-17121. doi:10.1073/pnas.1921124117.

Saravanan, K.A., Panigrahi, M., Kumar, H., *et al.* 2020. Selection signatures in livestock genome: A review of concepts, approaches and applications. *Livestock Sci*, 241(104257). doi: 10.1016/j.livsci.2020.104257.

Sarkar, S., Benerjee, P.K., & Selvamurthy, W. 2003. High altitude hypoxia: An intricate interplay of oxygen responsive macroevents and micromolecules. *Mol Cell Biochem*, 253: 287-305.

Schmid, M., Smith, J., Burt, DW., et al. 2015. Third report on chicken genes and chromosomes. Cytogenet Genome Res, 145: 78-179.

Scholtz, M.M., Furstenburg, D., Maiwashe, A., *et al.* 2010. Environmentalgenotype responses in livestock to global warming: A southern African perspective. *S Afr J Anim Sci*, (5(1)): 408-413.

Scott, N., Sharpe, L., & Brown, A. 2020. The *E3* ubiquitin ligase *MARCHF6* as a metabolic integrator in cholesterol synthesis and beyond. *Mol Cell Biol Lip*, 1866 (1).

Sehgal, D., Baliyan, N., & Kaur, P. 2019. Progress towards identification and validation of candidate genes for abiotic stress tolerance in wheat. In *Genomics assisted breeding of crops for abiotic stress tolerance*. Vol. II. Sustainable Development and Biodiversity, vol21, by V., Sehgal, D., Kumar, A., Raina, S. (eds) Rajpal. Springer.

Sejian, V. 2012. Introduction. *In Environmental stress and amelioration in livestock production*, by V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., and Lal, R. Sejian, 1-15. New York: Springer Verlag.

Senna-Cherchi, S., Burgess, K., Nees, S., *et al.* 2011. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. *Kidney Int*, 80 (4): 389-96. doi:10.1038/ki.2011.148.

Shan-Shan D, Yan G, Dong-Li Z, *et al.* 2016. Epigenomic element analyses for promoters identify *ESRRG* as a new susceptibility gene for obesity-related traits. *Int J Obes*, 40 (7): 1170-1176. doi:10.1038/ijo.2016.4.

Shilin T, Xuming Z, Tashi P, *et al.* 2020. Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. *iScience*, 23: 101544. doi:10.1016/j.osco.2020.101644.

Shi, H., Wang, X., Lu, Z., *et al.* 2017. *YTHDF3* facilitates translation and decay of N6-methyladenosise-modified RNA. *Cell Res*, 27: 315-328. doi:10.1038/cr.2017.15.

Shin, S., Han, J.Y., & Lee, K. 2010. Cloning of avian Delta-like 1 homolog gene: The biallelic expression of Delta-like 1 homolog in avian species. *Poultr Sci*, 88 (5): 948-955. doi:10.3382/ps.2009-00572.

Singh, V., Singh, K., & Baum, K. 2018. The role of methionine sulfoxide reductases in oxidative stress tolerance and virulence of Staphylococcus aureus and other bacteria. *Antioxidants*, 7 (10): 128. doi:10.3390/antiox7100128.

Slate, J., David, P., Dodds, K.G., *et al.* 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. *Heredity*, 93: 255-265.

Smith, J.J., Hasiotis, S.T., Kraus, M.J., *et al.* 2009. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum. *PNAS*, 106: 17655-17660. doi:10.1073/pnas.0909674106.

Solinhac, R., Leroux, S., Galkina, S., *et al.* 2010. Integrative mapping analysis of chicken microchromosome 16 organization. *BMC Genom*, 11: 616.

Son, S., Park, S., Fernández-Estévez, M., *et al.* 2021. Autophagy regulation by acetylation - implications for neurodegenerative diseases. *Exp Mol Med*, 53: 30-41. doi:10.1038/s12276-021-00556-4.

Stamm, S., Gruber, S., Rabchevsky, A. *et al.* 2018. The activity of the serotonin receptor 2C is regulated by alternative splicing. *Hum Genet*, 136 (9): 1079-1091. doi:10.1007/s00439-017-1826-3.

Stavber, L., Hovnik, T., Ktonik, P., *et al.* 2020. High frequency of pathogenic ACAN variants including an intragenic deletion in selected individuals with short stature. *Eur J Endocr*, 182: 243-253. doi:10.1530/EJE-19-0771.

Steinbacher, P., Wanzenbock, J., Brandauer, M., *et al.* 2017. Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish <u>*Coregonus lavaretus. PLoS ONE*</u>, 12 (9): e0185384. doi:10.1371/journal.pone. 0185384.

Stelzer G, Rosen R, Plaschkes I, et al. 2016. GeneCards. www.genecards.org.

Stephan, A., Shum, E., Hirsh, S., *et al.* 2009. ANO2 is the cilial calciumactivated chloride channel that may mediate olfactory amplification. *PNAS*, USA 106: 11776-81. doi:10.1073/pnas.0903304106.

Stocker, T.F., Qin, D., Plattner, G.K., *et al.* 2013. IPCC: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1535.

Strillacci, M.G., Vargas-Murillo, V.E., Román-Ponce, S.I., *et al.* 2018. Looking at genetic structure and selection signatures of the Mexican chicken population using single nucleotide polymorphism markers. *Poultry Science*, 97 (3): 791-802. doi:10.3382/ps/pex374.

Stroud, D.A., Maher, M.J., Lindau, C., *et al.* 2015. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. *Hum Mol Genet*, 24 (19): 5404-15. doi:10.1093/hmg/ddv265.

Stucki, S., Orozco-terWengel, P., Forester B.R., *et al.* 2016. High performance computation of landscape genomic models including local indicators of spatial association. *Mol Ecol Res.*

Sun, L., Shi, L., Li, W., *et al.* 2009. *JFK*, a Kelch domain-containing F-box protein, links the *SCF* complex to p53 regulation. *Proc Natl Acad Sci*, USA 106 (25): 10195-200. doi:10.1073/pnas.0901864106.

Sun, C., Lu, J., Yi, G., *et al.* 2015. Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study. *PLoS ONE*, 10 (9). doi:e0137145. doi:10.1371/journal.pone.0137145.

Sun, J., Chen, T., Zhu, M., *et al.* 2021. Whole-genome sequencing revealed genetic diversity and selection of Guangxi indigenous chickens. *bioRxiv*. doi:10.1101/2021.04.07.438797.

Т

Tadelle D., Kijora, C., & Peter, K.J. 2003. Indigenous chicken ecotypes in Ethiopia: Growth and feed utilization potentials. *Int J Poultr Sci*, 2: 144-152.

Tang, S., Zhang, J., Mei, T.T. *et al.* 2019. Association of TM6SF2 rs 58542926 T/C gene polymorphism with hepatocellular carcinoma: a meta-analysis. *BMC Cancer*, 19: 1128. doi:10.1186/s12885-019-6173-4.

Teluguntla, P., Thenkabail, P.S., Xiong, J., *et al.* 2014. Chapter 7: Global Cropland Area Database (GCAD) derived from Remote sensing in support of Food Security in the Twenty-first Century: Current achievements and future possibilities. Vol. II, in Land Resources: Monitoring, Modelling, and Mapping Remote Sensing Handbook, by Prasad S. Thekabail edit.

Teng, Y., Guo, B., Mu, X., *et al.* 2018. KIF26B promotes cell proliferation and migration through the FG2/ERK signalling pathway in breast cancer. *Biomed. Pharmacother*, 108: 766-773. doi:10.1016/j.biopha.2018.09.036.

ter Braak, C.J.F. 1994. Canonical community ordination. Part I: basic theory and linear methods. *Ecoscience*, 1: 127-140.

The UniProt Consortium. 2020. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res.* D1.

Thorn, J.S., Nijman, V., Smith, D., *et al.* 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: *Nycticebus*). *Div Dist*, 15: 289-298.

Tiffin, P. & Ross-Ibarra, J. 2014. Advances and limits of using population genetics to understand local adaptation. *PeerJ* PrePrints, 2: e488v1. doi:10.7287/ peerj.preprints.488v1.

Timson, D.J. 2006. The structural and molecular biology of type III galactosemia. *IUMBM Life*, 58 (2): 83-9. doi:10.1080/15216540600644846.

Topaloglu, A., Reimann, F., Guclu, M. *et al.* 2009. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. *Nat Genet*, (41): 354-348. doi:doi.org/10.1038/ng.306.

Truong, L., Zheng, YM., Song, TY., *et al.* 2018. Potential important roles and signalling mechanisms of YPEL4 in pulmonary diseases. *Clin Trans Med*, 7.

U

Ullrich, F., Blin, S., Lazarow, K., *et al.* 2019. Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels. *eLife*, 8: e49187. doi:10.7554/eLife.49187.

UN. 2019. https://population.un.org/wpp/.

V

Van der Auwera, G.A., Carneiro, M., Hartl, C., *et al.* 2013. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. *Curr Protoc Bioinformatics*, 43: 11.10.1 - 11.10.33.

van Marle-Köster, E., & Visser, C. 2018. Genetic improvement in South African livestock: can genomics bridge the gap between the developed and developing sectors? *Front Genet*, 9:331. doi: 10.3389/fgene.2018.00331.

Velado-Alonso, E., Morales-Castilla, I. & Gómez-Sal, A. 2020. Recent land use and management changes decouple the adaptation of livestock diversity to the environment. *Sci Rep* 10: 21035. doi:10.1038/s41598-020-77878-2.

Vernikos, G.S. 2020. A review of pangenome tools and recent studies. In: The pangenome: diversity, dynamics and evolution of genomes. Tettelin, H. and Medini, D. editors. Springer.

Voight, B.F., Kudaravalli, S., Wen, X., *et al.* 2006. A map of recent positive selection in the human genome. *PLoS Biol*, 4: e72.

von Papen, M., Gambaryan, S., Schutz, C., *et al.* 2013. Determination of ATP and ADP secretion form human and mouse platelets by an HPLC assay. *Transfus Med Hemother*, 40 (2): 109-116. doi:10.1159/000350294.

W

Wagstaff, P., Kang, H.Y., Mylott, D., *et al.* 1995. Characterization of the avian GLUT1 glucose transporter: differential regulation of *GLUT1* and *GLUT3* in chicken embryo fibroblasts. *Mol Biol Cell*, 6: 1575-1589.

Walugembe, M., Bertolini, F. Dematawewa, C.M.B., *et al.* 2019. Detection of selection signatures among Brazilian, Sri Lankan, and Egyptian chicken populations under different environmental conditions. *Front Genet*, 9.

Wang, J., Liu, Q., Yuan, S., *et al.* 2017. Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. *Sci Rep*, 7: 8371. doi:10.1038/s41598-017-07737-0.

Wang, X., Li, Z., Guo, Y., *et al.* 2018. Identification of a novel 43 bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. *Anim Biotech*, doi:10.1080/10495398.2018.1479712.

Warren, D., & Seifert, S.N. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. *Ecography*, 33: 607-611.

Warren, D.L., Wright, A.N., Seifert, S.N., *et al.* 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. *Diversity and Distribution*, 20: 334-343.

Weigand, H., & Leese, F. 2018. Detecting signatures of positive selection in non-model species using genomic data. *Zool J Linn Soc*, 184: 528-583. doi:10.1093/zoolinnean/zly007.

Weir, B.S., & Cockerham, C. 1984. Estimating F-statistics for the analysis of population-structure. *Evolution*, 38: 1358-1370.

Wellenreuther, M., Merot, C., Berdan, E., *et al.* 2019. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. *Mol Ecol*, 1203-1209. doi:10.1111/mec.15066.

Wepy, J.S., Galligan, J.J., Kingsley, P., *et al.* 2019. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signalling. *J Lipid Res,* 60 (2): 360-374. doi:10.1194/jlr.M087890.

WFP. 2020. WFP East Africa: Update on the Desert Locust Outbreak. Ethiopia: World Food Programme.

Williams, G. 1966. Adaptation and Natural Selection. Princeton: Princeton University Press.

Williams, K., Liu, M-L., Zhu, Y., *et al.* 2005. Loss of Heparan N-Sulfotransferase in Diabetic Liver. *Diabetes* 54 (4): 1116-1122. doi:10.2337/diabetes. 54.4.1116.

Wilson, R.T. 2010. Poultry production and performance in the Federal Democratic Republic of Ethiopia. *Poultr Sci J*, 66: 441-54.

Wilson, M.A. 2018. Genetic diversity on the sex chromosomes. *Genome Biol Evol*, 10(4): 1064-1078. doi:10.1093/gbe/evy039.

Woldekiros, H., and D'andrea, A. 2016. Early evidence for domestic chickens (*Gallus gallus domesticus*) in the Horn of Africa. *Int J Osteorarch*, 27, 329-341.

Wright, S. 1992. Coefficients of inbreeding and relationship. *Am Nat*, 56: 330-339.

Wu, H., Min, J., Zeng, H., *et al.* 2008. Crystal structure of the methyltransferase domain of human TARBP1. *Proteins*, 72 (1): 19-25. doi:10.1002/prot.22065.

Х

Xia, L.C., Bell, J.M., Wood-Bouwens, C., *et al.* 2017. Identification of large rearrangements in cancer genomes with barcode linked reads. *Nucleic Acids Res*, 46: e19.

Xiaotong, Z., Zhang, B., Zhang, Y., *et al.* 2020. Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. *Sci Rep.*

Xu, A.G., Xu, R.M., Lu, C.Q., *et al.* 2012. Correlation of von Willebrand factor gene polymorphism and coronary heart disease. *Mol Med Rep*, 1107-1110. doi:10.3892/mmr.2012.1037.

Xu, L., and Zhou, Q. 2020. The female-specific W chromosomes of birds have conserved gene contents but are not feminized. *Genes*, 11, 1126. doi: 10.3390/genes11101126.

Y

Yackulic, C.B., Chandler, R., Zipkin, E.F., *et al.* 2013. Presence-only modelling using MAXENT: when can we trust the inferences? *Methods Ecol Evol*, 4: 236-243. doi:10.1111/2041-210x.12004.

Yamaguchi, H. & Wang, H-G. 2004. *CHOP* is involved in endoplasmic reticulum stress-induced apoptosis by enhancing *DR5* expression in human carcinoma cells. *J. Biol. Chem*, 279 (44): 45495-502. doi:10.1074/jbc.M406933200.

Yang, Y., Zhang, G., Guo, F., *et al.* 2020. Mitochondrial *UQCC3* modulates hypoxia adaptation by orchestrating OXPHOS and glycolysis in hepatocellular carcinoma. *Cell Rep*, 5 (3): 10834. doi:10.1016/j.celrep.2020.108340.

Yao, C., Spurlock, D.M., Armentano, L.E., *et al.* 2013. Random Forest approach for identifying additive and epistatic single nucleotide polymorphism associated with residual feed intake in dairy cattle. *J Dairy Sci*, 96: 6716-6729.

Yeates, N.T.M. 2009. Foetal dwarfism in sheep - an effect of high atmospheric temperature during gestation. *J Agri Sci*, 51 (1): 84-89. doi:10.1017/S00218596000 32846.

Yen, C.F., Wang, H.S., Lee, C.L., *et al.* 2014. Roles of integrin-linked kinase in cell signalling and its perspectives as a therapeutic target. *Gynecol Minim Invasive Ther*, 3 (3): 67-72. doi:10.1016/j.gmit.2014.06.002.

Yoon, W., Hwang, S-H., Lee, S-H., *et al.* 2019. Drosophila *ADCK1* is critical for maintaining mitochondrial structures and functions in the muscle. *PLoS Genet*, 15 (5): e1008184. doi:10.1371/journal.pgen.1008184.

Yuan, J., Sun, C., Dou, T., *et al.* 2015. Identification of promising mutants associated with egg production traits revealed by genome-wide association study. *PLoS One*, 10: e0140615. doi:10.1371/journal.pone.0140615.

Yuan, X., Lan, G., Li, L., *et al.* 2020. Differential gene expression profiling of the goose pineal gland. *Brit Poultr Sci*, 61 (2): 200 -208. doi:10.1080/00071668. 2019.1698014.

Zeng, Y., Low, B.W., & Yeo, D.C.J. 2016. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. *Ecol Modell* 341: 5-13.

Zhang, Q., Ray, K., Acland, G.M., *et al.* 2000. Molecular cloning, characterization and expression of a novel retinal clustering-like protein cDNA. *Gene*, 243 (1-2): 151-160. doi:10.1016/S0378-1119(99)00542-9.

Zhang, K., Huentelman, M.J., Rao, F., *et al.* 2014. Genetic implication of a novel thiamine transporter in human hypertension. *J Am Coll Cardiol*, 65 (12): 1542-55. doi:10.1016/j.jacc.2014.01.007.

Zhang, Q., Gou, W.Y., Wang, X.T., *et al.* 2016a. Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. *Genom Biol Evol*, 8: 765-778.

Zhang, R., Lin, Y., Zhi, L., *et al.* 2016b. Expression profiles and associations of adiponectin and adiponectin receptors with intramuscular fat in Tibetan chicken. *Mol Cell Dev Biol*, 151-157. doi:10.1080/00071668.2016.1268252.

Zhang, M., Peng, W.F., Hu, X.J., *et al.* 2018. Global genomic diversity and conservation priorities for domestic animals are associated with the economies of their region of origin. *Sci Rep*, 8: 1677. doi:10.1038/s41598-018-30061-0.

Zhang, C., Dong, S.S., Xu, J.Y., *et al.* 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. *Bioinformatics*, 35 (10): 1786-1788.

Zhang, H., Shen, L-Y., Xu, Z-C., *et al.* 2020. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. *Poultr Sci*, 99 (4): 2349 - 2361. doi:10.1016/j.psj.2020.01.009.

Zhao, B., Ye, X., Yu, J., *et al.* 2008. *TEAD* mediates YAP-dependent gene induction and growth control. *Genes Dev*, 22 (14): 1962-71. doi:10.1101/gad.1664408.

Zhong, X.Y., Ding, J.H., Adams, J., *et al.* 2009. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. *Genes Dev*, 23 (4): 482-05. doi:10.1101/gad.1752109.

Zhou, Z., Cui, N., Su, S., *et al.* 2018. The molecular basis for host responses to Marek's disease viruses integrated with different retro-viral long terminal repeat. *Poultr Sci*, 97 (9): 3015-3022. doi:10.3382/ps/pey135.

Zhu B, Li Q, Liu R, *et al.* 2019. Genome-wide association study. *Animals*, 9 (260). doi:10.3390/ani9050260.

Zi-Xuan Z, Shuen-Ei C, Chih-Feng C, *et al.* 2019. Genome-wide association study on the body temperature changes of a broiler-type strain Taiwan country chickens under acute heat stress. *J Ther Biol*, 82: 33-42. doi:109.1016/j.jtherbio.2019.03.007.

Zizioli, D., Tiso, N., Guglielmi, A., *et al.* 2016. Knock-down of pantothenate kinase 2 severely affects the development of the nervous and vascular system in zebrafish, providing new insights into PKAN disease. *Neurobiol Disease*, 85: 35-48.

Zwane, A.A., A. Maiwashe, M.L., Makgahlela, A., *et al.* 2016. Genome-wide identification of breed-informative single-nucleotide polymorphisms in three South African indigenous cattle breeds. *S Afr J Anim Sci*, 46: 302-312.

Supplementary Tables

Chapter 2

Genetic diversity and population structure of indigenous Ethiopian village

chicken

Population	# reads ^a	MR (%) ^b	MD (X) ^c
Adane	376903935	99.38	35.89
Alfa Midir	342600741	98.02	39.39
Amesha Shinkuri	427316335	99.43	39.02
Arabo	309414324	99.54	31.30
Ashuda	436640467	99.10	39.76
Batambie	436294418	99.37	40.33
Bekele Girissa	383898518	98.78	36.38
Dikuli	418411806	99.17	36.39
Gafera	403298450	99.12	43.45
Gesses	373183155	99.62	35.66
Gijet	439628764	99.53	43.08
Hadush Adi	201579979	98.67	39.68
Hugub	360343162	99.71	35.67
Jarso	368646704	99.79	25.96
Kido	357193268	84.27	37.30
Kumato	404282348	99.75	38.13
Local Horro	387105936	99.83	28.68
Loya	461026931	99.57	42.61
Meseret	433954119	99.46	39.24
Metkilmat	339764180	99.54	33.99
Mihquan	335214296	99.73	34.37
Negasi Amba	362919193	99.02	35.52
Shubi Gemo	421492594	99.36	39.09
Surta	475115042	98.87	41.51
Tzion Teguaz	244270731	99.40	22.04

Supplementary Table S2.1. Summary results on sequencing and mapping of reads

(a) Average number of reads.

(b) Total number of reads mapped to the GRCga6a reference genome.

(c) Mean sequence depth of the genome sequence coverage.

Supplementary table S2.2. LD pairwise comparison for 6 population groups defined by PCA for different distance (kb) across the chicken autosome genome. (# pw = number of pairwise comparisons. # ($r^2 = 0.8-1$) = number of pairwise comparison with r2 between 0.8 - 1. % = percentage of pairwise comparisons with r² between 0.8 - 1).

							Distan	ce				
		< 2 kb	2 - 4 kb	4 - 6 kb	6 - 8 kb	8 - 10 kb	10 - 12 kb	12 - 14 kb	14 - 16 kb	16 - 18 kb	18 - 20 kb	20 - 25 kb
1	# pw	9309328	2654154	569869	160903	60359	27760	15512	9068	5945	4172	1
dno.	$\# (r^2 = 0.8-1)$	3032112	570588	123425	38738	15767	7669	4188	2771	1817	1238	1
50	%	32.6	21.5	21.7	24.1	26.1	27.6	27.0	30.6	30.6	29.7	100.0
5	# pw	9293198	2058751	369269	99278	37425	17415	9487	5752	3648	2485	5
dno.	$\# (r^2 = 0.8-1)$	3484602	885871	222867	72506	29723	14556	8055	4891	3306	2299	2
50	%	37.5	43.0	60.4	73.0	79.4	83.6	84.9	85.0	90.6	92.5	40.0
3	# pw	8716725	1167111	158868	39947	14984	6904	4033	2464	1564	1032	0
dno.	# (r ² = 0.8-1)	2571761	287543	51495	15115	6105	2885	1730	1033	698	457	0
50	%	29.5	24.6	32.4	37.8	40.7	41.8	42.9	41.9	44.6	44.3	
4	# pw	9168242	1341246	185973	46477	17037	7722	4531	2804	1799	1159	2
dno.	# ($r^2 = 0.8-1$)	2859848	348560	62934	18378	7378	3543	1993	1292	842	491	0
50	%	31.2	26.0	33.8	39.5	43.3	45.9	44.0	46.1	46.8	42.4	
5	# pw	8634970	1148292	155732	39768	14929	6757	3758	2290	1514	978	0
dno.	# (r ² = 0.8-1)	2628924	293893	51965	15609	6278	2863	1609	989	618	402	0
50	%	30.4	25.6	33.4	39.3	42.1	42.4	42.8	43.2	40.8	41.1	0
9	# pw	8841621	1211699	167163	42406	15762	15762	4052	2326	1552	1000	0
dno.	$\#(\mathbf{r}^2 = 0.8-1)$	2681763	307398	56278	16694	6728	3179	1740	1083	703	436	0
හි	%	30.3	25.4	33.7	39.4	42.7	20.2	42.9	46.6	45.3	43.6	0

(group 1 = Jarso population; group 2 = Hugub population; group 3 = Kumato, Loya, Shubi Gemo and Bekele Girissa populations; group 4 = Alfa Midir, Negasi Amba, Adane, and Arabo populations; group 5 = Metkilimat, Hadush Adi, Mihquan, Gijet, and Meseret populations; group 6 = Gesses, Kido, Gafera, Horro, Tzion Teguaz, Dikuli, Amesha Shinkuri, Batambie, Ashuda and Surta populations).

Chapter 3

Ecological niche modelling for environmental characterisation of indigenous

Ethiopian village chickens

Table S3.1 AUC values of environmental variables for individual ENM's ran under different combinations of feature classes and beta-multipliers. (**Model configuration:** number of the evaluated model. **Settings: feature** classes and regularisation multipliers (**RM**) used for the model. -H: hinge, Q: quadratic, P: product, H: hinge, C: categorical, T: threshold-. **Train AUC:** Area Under the Receiving Operator Curve value for train test. **testAUC:** AUC value for test model. **diffAUC:** the difference between the AUC value based on training localities. **OR**_{MTP}: a threshold-dependent metric that indicates the proportion of test localities with suitable values lower than that associated with the lowest-ranking training localities with the lowest predicted suitability. **AICc:** Akaike Information Criterion corrected for small sample sizes. **delta.AICc:** the difference between the AICc of a given model and the AICc of the model with the lowest AICc. **w.AICc:** Akaike weight divided by the sum of the likelihood values of all models included in a run. **nparam:** number of parameters in a Maxent model).

Model configuration	settings	features	RM	train AUC	XtestAUC	XtestAUC	X diffAUC	S.D. diffAUC	\bar{X} test. OR _{MTP}	S.D. test OR _{MTP}	$\bar{\mathbf{X}}$ test OR ₁₀	S.D. test OR ₁₀	AICc	delta. AICc	w.AIC	nparam
126	HQP_3.5	HQP	3.5	0.9587	0.9523	0.0004	0.0056	0.0003	0.008	0.0006	0.128	0.0031	6039.08	0.0000	0.3010	42
127	HQPT_3.5	HQPT	3.5	0.9587	0.9523	0.0004	0.0056	0.0003	0.008	0.0006	0.128	0.0031	6039.08	0.0000	0.3010	42
128	HQPTC_3.5	HQPTC	3.5	0.9587	0.9523	0.0004	0.0056	0.0003	0.008	0.0006	0.128	0.0031	6039.08	0.0000	0.3010	42
110	HQP_3	HQP	3	0.9616	0.9559	0.0003	0.0055	0.0003	0.008	0.0006	0.12	0.0043	6043.59	4.5096	0.0316	53
111	HQPT_3	HQPT	3	0.9616	0.9559	0.0003	0.0055	0.0003	0.008	0.0006	0.12	0.0043	6043.59	4.5096	0.0316	53
112	HQPTC_3	HQPTC	3	0.9616	0.9559	0.0003	0.0055	0.0003	0.008	0.0006	0.12	0.0043	6043.59	4.5096	0.0316	53
43	LQP_1	LQP	1	0.9427	0.9392	0.0014	0.0086	0.0006	0.008	0.0003	0.112	0.0024	6051.11	12.0284	0.0007	33
44	LQPT_1	LQPT	1	0.9427	0.9392	0.0014	0.0086	0.0006	0.008	0.0003	0.112	0.0024	6051.11	12.0284	0.0007	33
45	LQPTC_1	LQPTC	1	0.9427	0.9392	0.0014	0.0086	0.0006	0.008	0.0003	0.112	0.0024	6051.11	12.0284	0.0007	33
11	LQP_0.1	LQP	0.1	0.9468	0.9405	0.0022	0.0098	0.0011	0.004	0.0002	0.108	0.0022	6066.06	26.9742	0.0000	40
12	LQPT_0.1	LQPT	0.1	0.9468	0.9405	0.0022	0.0098	0.0011	0.004	0.0002	0.108	0.0022	6066.06	26.9742	0.0000	40
13	LQPTC_0.1	LQPTC	0.1	0.9468	0.9405	0.0022	0.0098	0.0011	0.004	0.0002	0.108	0.0022	6066.06	26.9742	0.0000	40
27	LQP_0.5	LQP	0.5	0.9451	0.9402	0.0017	0.0090	0.0007	0.008	0.0003	0.108	0.0029	6073.50	34.4203	0.0000	40
28	LQPT_0.5	LQPT	0.5	0.9451	0.9402	0.0017	0.0090	0.0007	0.008	0.0003	0.108	0.0029	6073.50	34.4203	0.0000	40
29	LQPTC_0.5	LQPTC	0.5	0.9451	0.9402	0.0017	0.0090	0.0007	0.008	0.0003	0.108	0.0029	6073.50	34.4203	0.0000	40
142	HQP_4	HQP	4	0.9549	0.9479	0.0004	0.0065	0.0003	0.008	0.0006	0.14	0.0026	6079.52	40.4386	0.0000	43

	1															
143	HQPT_4	HQPT	4	0.9549	0.9479	0.0004	0.0065	0.0003	0.008	0.0006	0.14	0.0026	6079.52	40.4386	0.0000	43
144	HQPTC_4	HQPTC	4	0.9549	0.9479	0.0004	0.0065	0.0003	0.008	0.0006	0.14	0.0026	6079.52	40.4386	0.0000	43
94	HQP_2.5	HQP	2.5	0.9642	0.9592	0.0004	0.0055	0.0003	0.004	0.0002	0.128	0.0035	6087.08	48.0005	0.0000	66
95	HQPT_2.5	HQPT	2.5	0.9642	0.9592	0.0004	0.0055	0.0003	0.004	0.0002	0.128	0.0035	6087.08	48.0005	0.0000	66
96	HQPTC_2.5	HQPTC	2.5	0.9642	0.9592	0.0004	0.0055	0.0003	0.004	0.0002	0.128	0.0035	6087.08	48.0005	0.0000	66
59	LQP_1.5	LQP	1.5	0.9406	0.9353	0.0012	0.0089	0.0007	0.012	0.0004	0.108	0.0022	6102.57	63.4844	0.0000	32
60	LQPT_1.5	LQPT	1.5	0.9406	0.9353	0.0012	0.0089	0.0007	0.012	0.0004	0.108	0.0022	6102.57	63.4844	0.0000	32
61	LQPTC_1.5	LQPTC	1.5	0.9406	0.9353	0.0012	0.0089	0.0007	0.012	0.0004	0.108	0.0022	6102.57	63.4844	0.0000	32
158	HQP_4.5	HQP	4.5	0.9516	0.9423	0.0006	0.0077	0.0004	0.008	0.0003	0.136	0.0043	6106.81	67.7212	0.0000	42
159	HQPT_4.5	HQPT	4.5	0.9516	0.9423	0.0006	0.0077	0.0004	0.008	0.0003	0.136	0.0043	6106.81	67.7212	0.0000	42
160	HQPTC_4.5	HQPTC	4.5	0.9516	0.9423	0.0006	0.0077	0.0004	0.008	0.0003	0.136	0.0043	6106.81	67.7212	0.0000	42
174	HQP_5	HQP	5	0.9471	0.9379	0.0007	0.0073	0.0004	0.008	0.0003	0.108	0.0032	6125.50	86.4174	0.0000	39
175	HQPT_5	HQPT	5	0.9471	0.9379	0.0007	0.0073	0.0004	0.008	0.0003	0.108	0.0032	6125.50	86.4174	0.0000	39
176	HQPTC_5	HQPTC	5	0.9471	0.9379	0.0007	0.0073	0.0004	0.008	0.0003	0.108	0.0032	6125.50	86.4174	0.0000	39
75	LQP_2	LQP	2	0.9384	0.9332	0.0010	0.0084	0.0006	0.012	0.0007	0.108	0.0025	6135.97	96.8897	0.0000	30
76	LQPT_2	LQPT	2	0.9384	0.9332	0.0010	0.0084	0.0006	0.012	0.0007	0.108	0.0025	6135.97	96.8897	0.0000	30
77	LQPTC_2	LQPTC	2	0.9384	0.9332	0.0010	0.0084	0.0006	0.012	0.0007	0.108	0.0025	6135.97	96.8897	0.0000	30
91	LQP_2.5	LQP	2.5	0.9352	0.9300	0.0010	0.0084	0.0006	0.008	0.0006	0.112	0.0031	6147.90	108.8160	0.0000	29
92	LQPT_2.5	LQPT	2.5	0.9352	0.9300	0.0010	0.0084	0.0006	0.008	0.0006	0.112	0.0031	6147.90	108.8160	0.0000	29
93	LQPTC_2.5	LQPTC	2.5	0.9352	0.9300	0.0010	0.0084	0.0006	0.008	0.0006	0.112	0.0031	6147.90	108.8160	0.0000	29
190	HQP_5.5	HQP	5.5	0.9421	0.9338	0.0008	0.0073	0.0004	0.004	0.0002	0.108	0.0050	6149.08	109.9936	0.0000	37
191	HQPT_5.5	HQPT	5.5	0.9421	0.9338	0.0008	0.0073	0.0004	0.004	0.0002	0.108	0.0050	6149.08	109.9936	0.0000	37
192	HQPTC_5.5	HQPTC	5.5	0.9421	0.9338	0.0008	0.0073	0.0004	0.004	0.0002	0.108	0.0050	6149.08	109.9936	0.0000	37
107	LQP_3	LQP	3	0.9325	0.9275	0.0008	0.0077	0.0005	0.012	0.0007	0.1	0.0026	6156.08	116.9950	0.0000	25
108	LQPT_3	LQPT	3	0.9325	0.9275	0.0008	0.0077	0.0005	0.012	0.0007	0.1	0.0026	6156.08	116.9950	0.0000	25
109	LQPTC_3	LQPTC	3	0.9325	0.9275	0.0008	0.0077	0.0005	0.012	0.0007	0.1	0.0026	6156.08	116.9950	0.0000	25
206	HQP_6	HQP	6	0.938	0.9296	0.0009	0.0077	0.0004	0.004	0.0002	0.116	0.0055	6171.84	132.7574	0.0000	34

207	HQPT_6	HQPT	6	0.938	0.9296	0.0009	0.0077	0.0004	0.004	0.0002	0.116	0.0055	6171.84	132.7574	0.0000	34
208	HQPTC_6	HQPTC	6	0.938	0.9296	0.0009	0.0077	0.0004	0.004	0.0002	0.116	0.0055	6171.84	132.7574	0.0000	34
123	LQP_3.5	LQP	3.5	0.9299	0.9243	0.0007	0.0077	0.0004	0.012	0.0007	0.108	0.0025	6181.15	142.0691	0.0000	23
124	LQPT_3.5	LQPT	3.5	0.9299	0.9243	0.0007	0.0077	0.0004	0.012	0.0007	0.108	0.0025	6181.15	142.0691	0.0000	23
125	LQPTC_3.5	LQPTC	3.5	0.9299	0.9243	0.0007	0.0077	0.0004	0.012	0.0007	0.108	0.0025	6181.15	142.0691	0.0000	23
139	LQP_4	LQP	4	0.926	0.9204	0.0007	0.0081	0.0004	0.008	0.0006	0.112	0.0024	6205.72	166.6321	0.0000	22
140	LQPT_4	LQPT	4	0.926	0.9204	0.0007	0.0081	0.0004	0.008	0.0006	0.112	0.0024	6205.72	166.6321	0.0000	22
141	LQPTC_4	LQPTC	4	0.926	0.9204	0.0007	0.0081	0.0004	0.008	0.0006	0.112	0.0024	6205.72	166.6321	0.0000	22
105	HQC_3	HQC	3	0.9428	0.9330	0.0013	0.0087	0.0009	0.004	0.0002	0.136	0.0047	6217.80	178.7164	0.0000	64
89	HQC_2.5	HQC	2.5	0.9503	0.9405	0.0012	0.0088	0.0008	0.004	0.0002	0.14	0.0040	6219.10	180.0154	0.0000	79
155	LQP_4.5	LQP	4.5	0.9227	0.9170	0.0007	0.0079	0.0003	0.008	0.0006	0.132	0.0018	6227.21	188.1217	0.0000	22
156	LQPT_4.5	LQPT	4.5	0.9227	0.9170	0.0007	0.0079	0.0003	0.008	0.0006	0.132	0.0018	6227.21	188.1217	0.0000	22
157	LQPTC_4.5	LQPTC	4.5	0.9227	0.9170	0.0007	0.0079	0.0003	0.008	0.0006	0.132	0.0018	6227.21	188.1217	0.0000	22
84	H_2.5	Н	2.5	0.9507	0.9394	0.0014	0.0102	0.0011	0.008	0.0003	0.136	0.0043	6241.49	202.4093	0.0000	82
88	HC_2.5	HC	2.5	0.9507	0.9394	0.0014	0.0102	0.0011	0.008	0.0003	0.136	0.0043	6241.49	202.4093	0.0000	82
121	HQC_3.5	HQC	3.5	0.9353	0.9266	0.0011	0.0081	0.0009	0.004	0.0002	0.128	0.0056	6242.02	202.9402	0.0000	53
171	LQP_5	LQP	5	0.9194	0.9137	0.0007	0.0083	0.0003	0.008	0.0006	0.116	0.0019	6245.97	206.8892	0.0000	21
172	LQPT_5	LQPT	5	0.9194	0.9137	0.0007	0.0083	0.0003	0.008	0.0006	0.116	0.0019	6245.97	206.8892	0.0000	21
173	LQPTC_5	LQPTC	5	0.9194	0.9137	0.0007	0.0083	0.0003	0.008	0.0006	0.116	0.0019	6245.97	206.8892	0.0000	21
100	H_3	Н	3	0.9435	0.9332	0.0015	0.0099	0.0012	0.004	0.0002	0.128	0.0038	6256.18	217.0997	0.0000	71
104	HC_3	НС	3	0.9435	0.9332	0.0015	0.0099	0.0012	0.004	0.0002	0.128	0.0038	6256.18	217.0997	0.0000	71
116	H_3.5	Н	3.5	0.9372	0.9266	0.0017	0.0103	0.0013	0.004	0.0002	0.128	0.0074	6262.88	223.7926	0.0000	57
120	HC_3.5	HC	3.5	0.9372	0.9266	0.0017	0.0103	0.0013	0.004	0.0002	0.128	0.0074	6262.88	223.7926	0.0000	57
153	HQC_4.5	HQC	4.5	0.9262	0.9169	0.0011	0.0082	0.0008	0.004	0.0002	0.12	0.0028	6266.70	227.6164	0.0000	36
137	HQC_4	HQC	4	0.9299	0.9213	0.0011	0.0080	0.0009	0.004	0.0002	0.116	0.0030	6267.12	228.0405	0.0000	47
78	HQP_2	HQP	2	0.9688	0.9623	0.0002	0.0057	0.0002	0.004	0.0002	0.152	0.0024	6268.91	229.8241	0.0000	84
79	HQPT_2	HQPT	2	0.9688	0.9623	0.0002	0.0057	0.0002	0.004	0.0002	0.152	0.0024	6268.91	229.8241	0.0000	84

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
80	HQPTC_2	HQPTC	2	0.9688	0.9623	0.0002	0.0057	0.0002	0.004	0.0002	0.152	0.0024	6268.91	229.8241	0.0000	84
187	LQP_5.5	LQP	5.5	0.915	0.9093	0.0008	0.0086	0.0003	0.004	0.0002	0.124	0.0034	6272.22	233.1318	0.0000	21
188	LQPT_5.5	LQPT	5.5	0.915	0.9093	0.0008	0.0086	0.0003	0.004	0.0002	0.124	0.0034	6272.22	233.1318	0.0000	21
189	LQPTC_5.5	LQPTC	5.5	0.915	0.9093	0.0008	0.0086	0.0003	0.004	0.0002	0.124	0.0034	6272.22	233.1318	0.0000	21
203	LQP_6	LQP	6	0.9119	0.9063	0.0009	0.0086	0.0004	0.004	0.0002	0.124	0.0034	6284.14	245.0570	0.0000	18
204	LQPT_6	LQPT	6	0.9119	0.9063	0.0009	0.0086	0.0004	0.004	0.0002	0.124	0.0034	6284.14	245.0570	0.0000	18
205	LQPTC_6	LQPTC	6	0.9119	0.9063	0.0009	0.0086	0.0004	0.004	0.0002	0.124	0.0034	6284.14	245.0570	0.0000	18
169	HQC_5	HQC	5	0.9208	0.9117	0.0012	0.0082	0.0008	0.004	0.0002	0.116	0.0030	6287.32	248.2381	0.0000	35
132	H_4	Н	4	0.9309	0.9196	0.0017	0.0100	0.0012	0.004	0.0002	0.128	0.0074	6295.48	256.3955	0.0000	52
136	HC_4	НС	4	0.9309	0.9196	0.0017	0.0100	0.0012	0.004	0.0002	0.128	0.0074	6295.48	256.3955	0.0000	52
185	HQC_5.5	HQC	5.5	0.9162	0.9067	0.0013	0.0083	0.0008	0.004	0.0002	0.104	0.0026	6295.91	256.8265	0.0000	31
148	H_4.5	Н	4.5	0.9228	0.9141	0.0016	0.0091	0.0013	0.004	0.0002	0.12	0.0082	6308.35	269.2630	0.0000	43
152	HC_4.5	НС	4.5	0.9228	0.9141	0.0016	0.0091	0.0013	0.004	0.0002	0.12	0.0082	6308.35	269.2630	0.0000	43
35	P_1	Р	1	0.9145	0.9072	0.0008	0.0087	0.0006	0.012	0.0007	0.128	0.0021	6311.53	272.4458	0.0000	23
164	H_5	Н	5	0.918	0.9105	0.0019	0.0087	0.0017	0.004	0.0002	0.128	0.0074	6311.64	272.5577	0.0000	36
168	HC_5	НС	5	0.918	0.9105	0.0019	0.0087	0.0017	0.004	0.0002	0.128	0.0074	6311.64	272.5577	0.0000	36
3	P_0.1	Р	0.1	0.9148	0.9088	0.0008	0.0085	0.0007	0.012	0.0007	0.136	0.0022	6313.09	274.0104	0.0000	28
19	P_0.5	Р	0.5	0.9153	0.9086	0.0009	0.0086	0.0007	0.008	0.0003	0.128	0.0014	6316.88	277.7956	0.0000	25
201	HQC_6	HQC	6	0.9112	0.9022	0.0013	0.0083	0.0008	0.008	0.0003	0.108	0.0025	6323.12	284.0320	0.0000	33
180	H_5.5	Н	5.5	0.9158	0.9079	0.0019	0.0084	0.0017	0.004	0.0002	0.144	0.0097	6323.32	284.2331	0.0000	34
184	HC_5.5	НС	5.5	0.9158	0.9079	0.0019	0.0084	0.0017	0.004	0.0002	0.144	0.0097	6323.32	284.2331	0.0000	34
51	P_1.5	Р	1.5	0.912	0.9056	0.0009	0.0089	0.0005	0.008	0.0003	0.136	0.0011	6324.77	285.6856	0.0000	24
73	HQC_2	HQC	2	0.9564	0.9476	0.0009	0.0084	0.0006	0.008	0.0003	0.136	0.0029	6328.80	289.7137	0.0000	93
196	H_6	Н	6	0.9132	0.9047	0.0021	0.0084	0.0018	0.004	0.0002	0.108	0.0039	6337.91	298.8219	0.0000	33
200	HC_6	НС	6	0.9132	0.9047	0.0021	0.0084	0.0018	0.004	0.0002	0.108	0.0039	6337.91	298.8219	0.0000	33
67	P_2	Р	2	0.9105	0.9028	0.0010	0.0095	0.0005	0.004	0.0002	0.128	0.0014	6342.19	303.1067	0.0000	24
83	P_2.5	Р	2.5	0.9073	0.9008	0.0010	0.0092	0.0004	0.004	0.0002	0.128	0.0010	6351.45	312.3667	0.0000	21

		1														
99	P_3	Р	3	0.9058	0.8993	0.0010	0.0092	0.0004	0.004	0.0002	0.116	0.0009	6352.73	313.6451	0.0000	19
68	H_2	Н	2	0.9566	0.9463	0.0011	0.0097	0.0008	0.008	0.0003	0.132	0.0032	6355.60	316.5160	0.0000	97
72	HC_2	HC	2	0.9566	0.9463	0.0011	0.0097	0.0008	0.008	0.0003	0.132	0.0032	6355.60	316.5160	0.0000	97
115	P_3.5	Р	3.5	0.9045	0.8983	0.0010	0.0091	0.0004	0.004	0.0002	0.108	0.0018	6356.95	317.8649	0.0000	19
131	P_4	Р	4	0.9028	0.8966	0.0011	0.0093	0.0004	0.004	0.0002	0.108	0.0022	6363.32	324.2378	0.0000	19
147	P_4.5	Р	4.5	0.9015	0.8952	0.0011	0.0093	0.0004	0.004	0.0002	0.108	0.0029	6364.38	325.3006	0.0000	17
21	LQ_0.5	LQ	0.5	0.8979	0.8924	0.0012	0.0085	0.0007	0.004	0.0002	0.124	0.0055	6364.71	325.6250	0.0000	13
5	LQ_0.1	LQ	0.1	0.8986	0.8930	0.0012	0.0082	0.0007	0.004	0.0002	0.124	0.0055	6364.81	325.7247	0.0000	14
37	LQ_1	LQ	1	0.8969	0.8921	0.0012	0.0080	0.0006	0.004	0.0002	0.116	0.0051	6366.54	327.4572	0.0000	12
163	P_5	Р	5	0.9	0.8937	0.0011	0.0092	0.0004	0.004	0.0002	0.108	0.0029	6369.36	330.2741	0.0000	16
53	LQ_1.5	LQ	1.5	0.8953	0.8903	0.0012	0.0082	0.0006	0.004	0.0002	0.124	0.0041	6373.31	334.2268	0.0000	12
179	P_5.5	Р	5.5	0.898	0.8921	0.0011	0.0093	0.0004	0.004	0.0002	0.112	0.0031	6377.52	338.4340	0.0000	16
195	P_6	Р	6	0.8968	0.8904	0.0012	0.0095	0.0005	0.004	0.0002	0.108	0.0025	6381.58	342.4913	0.0000	15
69	LQ_2	LQ	2	0.8931	0.8877	0.0012	0.0083	0.0007	0.004	0.0002	0.124	0.0030	6385.78	346.6971	0.0000	13
85	LQ_2.5	LQ	2.5	0.8902	0.8852	0.0013	0.0084	0.0007	0.004	0.0002	0.12	0.0028	6394.92	355.8353	0.0000	12
101	LQ_3	LQ	3	0.8866	0.8822	0.0014	0.0083	0.0007	0.004	0.0002	0.116	0.0030	6410.25	371.1644	0.0000	12
117	LQ_3.5	LQ	3.5	0.8837	0.8788	0.0015	0.0084	0.0008	0.004	0.0002	0.132	0.0018	6420.63	381.5451	0.0000	11
133	LQ_4	LQ	4	0.8801	0.8756	0.0016	0.0084	0.0009	0.004	0.0002	0.132	0.0018	6436.44	397.3513	0.0000	11
149	LQ_4.5	LQ	4.5	0.8777	0.8728	0.0017	0.0085	0.0009	0.004	0.0002	0.132	0.0007	6445.72	406.6360	0.0000	10
165	LQ_5	LQ	5	0.8753	0.8704	0.0019	0.0087	0.0010	0.004	0.0002	0.128	0.0017	6455.22	416.1398	0.0000	10
181	LQ_5.5	LQ	5.5	0.8724	0.8678	0.0021	0.0091	0.0010	0.004	0.0002	0.124	0.0005	6466.38	427.2935	0.0000	10
197	LQ_6	LQ	6	0.8703	0.8658	0.0022	0.0093	0.0010	0.004	0.0002	0.108	0.0007	6471.59	432.5109	0.0000	9
98	Q_3	Q	3	0.8533	0.8498	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0018	6540.53	501.4437	0.0000	6
103	TQ_3	TQ	3	0.8533	0.8498	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0018	6540.53	501.4437	0.0000	6
106	TQ_3	TQ	3	0.8533	0.8498	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0018	6540.53	501.4437	0.0000	6
114	Q_3.5	Q	3.5	0.8532	0.8498	0.0039	0.0116	0.0016	0.004	0.0002	0.1	0.0019	6540.84	501.7523	0.0000	6
119	TQ_3.5	ΤQ	3.5	0.8532	0.8498	0.0039	0.0116	0.0016	0.004	0.0002	0.1	0.0019	6540.84	501.7523	0.0000	6

122	TQ_3.5	ΤQ	3.5	0.8532	0.8498	0.0039	0.0116	0.0016	0.004	0.0002	0.1	0.0019	6540.84	501.7523	0.0000	6
130	Q_4	Q	4	0.8531	0.8497	0.0039	0.0117	0.0016	0.004	0.0002	0.1	0.0019	6541.19	502.1078	0.0000	6
135	TQ_4	TQ	4	0.8531	0.8497	0.0039	0.0117	0.0016	0.004	0.0002	0.1	0.0019	6541.19	502.1078	0.0000	6
138	TQ_4	TQ	4	0.8531	0.8497	0.0039	0.0117	0.0016	0.004	0.0002	0.1	0.0019	6541.19	502.1078	0.0000	6
34	Q_1	Q	1	0.8538	0.8499	0.0036	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.36	502.2738	0.0000	7
39	TQ_1	TQ	1	0.8538	0.8499	0.0036	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.36	502.2738	0.0000	7
42	TQ_1	TQ	1	0.8538	0.8499	0.0036	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.36	502.2738	0.0000	7
146	Q_4.5	Q	4.5	0.853	0.8496	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6541.59	502.5105	0.0000	6
151	TQ_4.5	TQ	4.5	0.853	0.8496	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6541.59	502.5105	0.0000	6
154	TQ_4.5	TQ	4.5	0.853	0.8496	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6541.59	502.5105	0.0000	6
50	Q_1.5	Q	1.5	0.8537	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.60	502.5135	0.0000	7
55	TQ_1.5	TQ	1.5	0.8537	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.60	502.5135	0.0000	7
58	TQ_1.5	TQ	1.5	0.8537	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.60	502.5135	0.0000	7
66	Q_2	Q	2	0.8536	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.90	502.8132	0.0000	7
71	TQ_2	TQ	2	0.8536	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.90	502.8132	0.0000	7
74	TQ_2	TQ	2	0.8536	0.8499	0.0037	0.0116	0.0016	0.004	0.0002	0.088	0.0017	6541.90	502.8132	0.0000	7
162	Q_5	Q	5	0.8529	0.8495	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6542.04	502.9609	0.0000	6
167	TQ_5	TQ	5	0.8529	0.8495	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6542.04	502.9609	0.0000	6
170	TQ_5	TQ	5	0.8529	0.8495	0.0040	0.0117	0.0016	0.004	0.0002	0.096	0.0015	6542.04	502.9609	0.0000	6
82	Q_2.5	Q	2.5	0.8534	0.8499	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6542.26	503.1722	0.0000	7
87	TQ_2.5	TQ	2.5	0.8534	0.8499	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6542.26	503.1722	0.0000	7
90	TQ_2.5	TQ	2.5	0.8534	0.8499	0.0038	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6542.26	503.1722	0.0000	7
178	Q_5.5	Q	5.5	0.8527	0.8494	0.0041	0.0118	0.0016	0.004	0.0002	0.096	0.0015	6542.54	503.4589	0.0000	6
183	TQ_5.5	TQ	5.5	0.8527	0.8494	0.0041	0.0118	0.0016	0.004	0.0002	0.096	0.0015	6542.54	503.4589	0.0000	6
186	TQ_5.5	TQ	5.5	0.8527	0.8494	0.0041	0.0118	0.0016	0.004	0.0002	0.096	0.0015	6542.54	503.4589	0.0000	6
194	Q_6	Q	6	0.8526	0.8492	0.0042	0.0119	0.0017	0.004	0.0002	0.096	0.0015	6543.09	504.0051	0.0000	6
199	TQ_6	TQ	6	0.8526	0.8492	0.0042	0.0119	0.0017	0.004	0.0002	0.096	0.0015	6543.09	504.0051	0.0000	6

1	1				1						1	1		1		
202	TQ_6	TQ	6	0.8526	0.8492	0.0042	0.0119	0.0017	0.004	0.0002	0.096	0.0015	6543.09	504.0051	0.0000	6
2	Q_0.1	Q	0.1	0.854	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.14	504.0544	0.0000	8
7	TQ_0.1	ΤQ	0.1	0.854	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.14	504.0544	0.0000	8
10	TQ_0.1	TQ	0.1	0.854	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.14	504.0544	0.0000	8
18	Q_0.5	Q	0.5	0.8539	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.30	504.2182	0.0000	8
23	TQ_0.5	ΤQ	0.5	0.8539	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.30	504.2182	0.0000	8
26	TQ_0.5	TQ	0.5	0.8539	0.8500	0.0036	0.0116	0.0016	0.004	0.0002	0.096	0.0022	6543.30	504.2182	0.0000	8
113	L_3.5	L	3.5	0.8489	0.8445	0.0031	0.0112	0.0016	0.004	0.0002	0.12	0.0025	6550.15	511.0634	0.0000	7
118	LC_3.5	LC	3.5	0.8489	0.8445	0.0031	0.0112	0.0016	0.004	0.0002	0.12	0.0025	6550.15	511.0634	0.0000	7
129	L_4	L	4	0.8487	0.8444	0.0032	0.0113	0.0016	0.004	0.0002	0.128	0.0031	6550.64	511.5520	0.0000	7
134	LC_4	LC	4	0.8487	0.8444	0.0032	0.0113	0.0016	0.004	0.0002	0.128	0.0031	6550.64	511.5520	0.0000	7
193	L_6	L	6	0.8481	0.8441	0.0033	0.0115	0.0016	0.004	0.0002	0.096	0.0029	6551.08	511.9912	0.0000	6
198	LC_6	LC	6	0.8481	0.8441	0.0033	0.0115	0.0016	0.004	0.0002	0.096	0.0029	6551.08	511.9912	0.0000	6
145	L_4.5	L	4.5	0.8486	0.8443	0.0032	0.0113	0.0016	0.004	0.0002	0.116	0.0037	6551.20	512.1121	0.0000	7
150	LC_4.5	LC	4.5	0.8486	0.8443	0.0032	0.0113	0.0016	0.004	0.0002	0.116	0.0037	6551.20	512.1121	0.0000	7
33	L_1	L	1	0.8496	0.8453	0.0030	0.0107	0.0016	0.004	0.0002	0.112	0.0021	6551.26	512.1747	0.0000	8
38	LC_1	LC	1	0.8496	0.8453	0.0030	0.0107	0.0016	0.004	0.0002	0.112	0.0021	6551.26	512.1747	0.0000	8
49	L_1.5	L	1.5	0.8495	0.8451	0.0030	0.0108	0.0016	0.004	0.0002	0.108	0.0018	6551.27	512.1892	0.0000	8
54	LC_1.5	LC	1.5	0.8495	0.8451	0.0030	0.0108	0.0016	0.004	0.0002	0.108	0.0018	6551.27	512.1892	0.0000	8
17	L_0.5	L	0.5	0.8498	0.8455	0.0030	0.0105	0.0015	0.004	0.0002	0.108	0.0025	6551.31	512.2308	0.0000	8
22	LC_0.5	LC	0.5	0.8498	0.8455	0.0030	0.0105	0.0015	0.004	0.0002	0.108	0.0025	6551.31	512.2308	0.0000	8
65	L_2	L	2	0.8494	0.8450	0.0030	0.0109	0.0016	0.004	0.0002	0.104	0.0018	6551.39	512.3100	0.0000	8
70	LC_2	LC	2	0.8494	0.8450	0.0030	0.0109	0.0016	0.004	0.0002	0.104	0.0018	6551.39	512.3100	0.0000	8
1	L_0.1	L	0.1	0.8499	0.8456	0.0030	0.0104	0.0015	0.004	0.0002	0.112	0.0028	6551.45	512.3626	0.0000	8
6	LC_0.1	LC	0.1	0.8499	0.8456	0.0030	0.0104	0.0015	0.004	0.0002	0.112	0.0028	6551.45	512.3626	0.0000	8
81	L_2.5	L	2.5	0.8493	0.8449	0.0031	0.0110	0.0016	0.004	0.0002	0.1	0.0019	6551.60	512.5150	0.0000	8
86	LC_2.5	LC	2.5	0.8493	0.8449	0.0031	0.0110	0.0016	0.004	0.0002	0.1	0.0019	6551.60	512.5150	0.0000	8
	1				1					1		1	1	1		
-----	-----------	-------	-----	--------	--------	--------	--------	--------	-------	--------	-------	--------	----------	-----------	--------	-----
161	L_5	L	5	0.8484	0.8442	0.0032	0.0114	0.0016	0.004	0.0002	0.1	0.0033	6551.84	512.7571	0.0000	7
166	LC_5	LC	5	0.8484	0.8442	0.0032	0.0114	0.0016	0.004	0.0002	0.1	0.0033	6551.84	512.7571	0.0000	7
97	L_3	L	3	0.8491	0.8447	0.0031	0.0111	0.0016	0.004	0.0002	0.108	0.0014	6551.89	512.8081	0.0000	8
102	LC_3	LC	3	0.8491	0.8447	0.0031	0.0111	0.0016	0.004	0.0002	0.108	0.0014	6551.89	512.8081	0.0000	8
177	L_5.5	L	5.5	0.8482	0.8442	0.0032	0.0115	0.0016	0.004	0.0002	0.1	0.0033	6552.56	513.4719	0.0000	7
182	LC_5.5	LC	5.5	0.8482	0.8442	0.0032	0.0115	0.0016	0.004	0.0002	0.1	0.0033	6552.56	513.4719	0.0000	7
62	HQP_1.5	HQP	1.5	0.9744	0.9665	0.0002	0.0061	0.0003	0.008	0.0003	0.14	0.0033	6677.11	638.0266	0.0000	103
63	HQPT_1.5	HQPT	1.5	0.9744	0.9665	0.0002	0.0061	0.0003	0.008	0.0003	0.14	0.0033	6677.11	638.0266	0.0000	103
64	HQPTC_1.5	HQPTC	1.5	0.9744	0.9665	0.0002	0.0061	0.0003	0.008	0.0003	0.14	0.0033	6677.11	638.0266	0.0000	103
46	HQP_1	HQP	1	0.9765	0.9706	0.0004	0.0061	0.0003	0.004	0.0002	0.128	0.0074	6799.24	760.1562	0.0000	111
47	HQPT_1	HQPT	1	0.9765	0.9706	0.0004	0.0061	0.0003	0.004	0.0002	0.128	0.0074	6799.24	760.1562	0.0000	111
48	HQPTC_1	HQPTC	1	0.9765	0.9706	0.0004	0.0061	0.0003	0.004	0.0002	0.128	0.0074	6799.24	760.1562	0.0000	111
57	HQC_1.5	HQC	1.5	0.9626	0.9533	0.0008	0.0087	0.0006	0.004	0.0002	0.132	0.0046	6803.77	764.6811	0.0000	113
52	H_1.5	Н	1.5	0.9644	0.9544	0.0008	0.0088	0.0006	0.004	0.0002	0.14	0.0047	6841.65	802.5637	0.0000	117
56	HC_1.5	HC	1.5	0.9644	0.9544	0.0008	0.0088	0.0006	0.004	0.0002	0.14	0.0047	6841.65	802.5637	0.0000	117
36	H_1	Н	1	0.9693	0.9623	0.0010	0.0083	0.0007	0	0.0000	0.14	0.0051	7001.26	962.1772	0.0000	129
40	HC_1	HC	1	0.9693	0.9623	0.0010	0.0083	0.0007	0	0.0000	0.14	0.0051	7001.26	962.1772	0.0000	129
41	HQC_1	HQC	1	0.9684	0.9614	0.0011	0.0087	0.0008	0	0.0000	0.152	0.0060	7075.89	1036.8024	0.0000	138
30	HQP_0.5	HQP	0.5	0.9757	0.9677	0.0010	0.0090	0.0008	0.008	0.0003	0.124	0.0030	7216.96	1177.8755	0.0000	148
31	HQPT_0.5	HQPT	0.5	0.9757	0.9677	0.0010	0.0090	0.0008	0.008	0.0003	0.124	0.0030	7216.96	1177.8755	0.0000	148
32	HQPTC_0.5	HQPTC	0.5	0.9757	0.9677	0.0010	0.0090	0.0008	0.008	0.0003	0.124	0.0030	7216.96	1177.8755	0.0000	148
20	H_0.5	Н	0.5	0.9701	0.9601	0.0014	0.0104	0.0013	0.008	0.0003	0.14	0.0029	7244.74	1205.6511	0.0000	141
24	HC_0.5	HC	0.5	0.9701	0.9601	0.0014	0.0104	0.0013	0.008	0.0003	0.14	0.0029	7244.74	1205.6511	0.0000	141
25	HQC_0.5	HQC	0.5	0.9696	0.9606	0.0013	0.0101	0.0012	0.012	0.0004	0.14	0.0058	7497.19	1458.1048	0.0000	155
9	HQC_0.1	HQC	0.1	0.9605	0.6956	0.2614	0.0191	0.0054	0	0.0000	0.036	0.0044	9626.05	3586.9652	0.0000	206
14	HQP_0.1	HQP	0.1	0.9677	0.7521	0.3240	0.0203	0.0058	0.004	0.0002	0.044	0.0041	10057.97	4018.8861	0.0000	214
15	HQPT_0.1	HQPT	0.1	0.9677	0.7521	0.3240	0.0203	0.0058	0.004	0.0002	0.044	0.0041	10057.97	4018.8861	0.0000	214

16	HQPTC_0.1	HQPTC	0.1	0.9677	0.7521	0.3240	0.0203	0.0058	0.004	0.0002	0.044	0.0041	10057.97	4018.8861	0.0000	214
4	H_0.1	Н	0.1	0.9287	0.6754	0.2259	0.0185	0.0069	0	0.0000	0.016	0.0011	NA	NA	NA	179
8	HC_0.1	HC	0.1	0.9287	0.6754	0.2259	0.0185	0.0069	0	0.0000	0.016	0.0011	NA	NA	NA	179

			AUC		AUC with					
Population	Training	Test	AUC	AUC with	only	AUC with	AUC with	AUC with	AUC with	Fntrony
1 opulation	AUC	AUC	Deviation	only Cult_T	Soil_Organic	only bio15	only bio16	only bio17	only bio6	Енцору
			Deviation		Carbon					
Adane	0.9887	0.9931	0.0007	0.9268	0.9862	0.5	0.8162	0.9585	0.9577	7.4064
AlfaMidir	0.9994	0.999	0.0002	0.958	0.9592	0.6191	0.8831	0.9855	0.9952	4.5331
Am_shi	0.9986	0.998	0.0003	0.8124	0.8762	0.5588	0.9915	0.8939	0.9612	5.0265
Arabo	0.9838	0.9849	0.0021	0.9318	0.8278	0.9225	0.9894	0.9964	0.7011	7.3832
Ashuda	0.9982	0.9983	0.0003	0.9815	0.9366	0.6337	0.9646	0.9791	0.9149	5.1076
Batambie	0.9899	0.9891	0.001	0.8727	0.9062	0.4944	0.9755	0.9748	0.9004	6.3433
BekeleGirissa	0.9959	0.9949	0.0005	0.9854	0.6556	0.9296	0.9958	0.9866	0.7841	7.1866
Dikuli	0.9992	0.9989	0.0005	0.9889	0.9435	0.6142	0.9613	0.9601	0.9183	4.8128
Gafera	0.9988	0.9994	0.0002	0.8386	0.8756	0.7604	0.996	0.9187	0.9683	4.4546
Gesses	0.9995	0.9996	0.0001	0.995	0.8481	0.6142	0.9985	0.7954	0.6927	3.8396
Gijet	0.9995	0.9996	0.0001	0.9237	0.6979	0.9979	0.9906	0.9673	0.8711	4.2835
HadushAdi	0.9689	0.9722	0.0018	0.8618	0.8315	0.8145	0.9754	0.8	0.7369	7.925
Hugub	0.9945	0.9893	0.0035	0.9849	0.775	0.7424	0.7583	0.9664	0.5	7.6898
Jarso	0.9948	0.9948	0.0005	0.861	0.871	0.8084	0.9771	0.9786	0.7348	6.8453
Kido	0.9972	0.9984	0.0003	0.8706	0.6619	0.5992	0.9968	0.9673	0.685	5.2794
Kumato	0.9869	0.9865	0.0008	0.9814	0.9762	0.9383	0.6641	0.9453	0.7641	7.5567
LocalHorro	0.9919	0.9916	0.0036	0.9331	0.9053	0.5117	0.946	0.7897	0.8882	6.9746
Loya	0.9984	0.9936	0.0022	0.9837	0.8806	0.9208	0.9774	0.9008	0.9025	6.1841
Meseret	0.9995	0.9995	0.0002	0.936	0.7707	0.9935	0.9947	0.8231	0.92	4.049
Metkilimat	0.997	0.9964	0.001	0.8738	0.7316	0.9829	0.9868	0.8231	0.7141	6.5701
Mihquan	0.9754	0.9722	0.0034	0.8297	0.8338	0.7749	0.959	0.9559	0.6722	7.496
NegasiAmba	0.996	0.9967	0.0009	0.8416	0.6946	0.6385	0.862	0.9772	0.9893	5.6731
ShubiGemo	0.9981	0.9979	0.0003	0.9769	0.716	0.8211	0.9895	0.9949	0.7788	6.4751
Surta	0.9988	0.9989	0.0002	0.8082	0.9176	0.5862	0.9946	0.9237	0.962	4.7008
TsionTeguaz	0.9958	0.9955	0.0006	0.8317	0.6973	0.8117	0.8699	0.9908	0.6784	6.2425

Table S3.2 AUC values of environmental variables for individual population models

Chapter 4

Whole-genome sequences reveal the drivers of environmental adaptation in

Ethiopian village chicken

Population	minTemp (°C)	precSeasonality (mm/m ²)	precWQ (mm/m ²)	precDQ (mm/m ²)	SoilOrgC (g/Kg)	LandUse (%)
Adane	5.3 ±1.6	90.1 ± 3.9	653.7 ± 20.39	73.8 ± 10.89	148.5 ± 6.1	37.9 ± 0.33
AlfaMidir	0.8 ± 0.18	104.6 ± 0.52	788.9 ± 3.81	49 ± 0.67	143.1 ± 8.08	40.6 ± 0.99
AmeshaShinkuri	5.09 ± 0.22	86.6 ± 1.51	1060 ± 14.45	85 ± 7.79	128.3 ± 3.53	32.92 ± 0.71
Arabo	11.02 ± 0.11	84.20 ± 0.42	516 ± 7.42	73 ± 0.67	121.8 ± 6.68	38.16 ± 0.13
Ashuda	7.9 ± 1.29	106.7 ± 0.67	975 ± 1.63	23.90 ± 1.29	139.3 ± 7.53	13.07 ± 0.86
Batambie	7.33 ± 0.12	92.9 ± 0.88	1000.8 ± 1.99	46.5 ± 2.07	131.4 ± 3.34	29.26 ± 2.03
BekeleGirissa	9.8 ± 0.00	70 ± 0.67	430.1 ± 4.01	39.1 ± 0.32	108 ± 3.33	14.96 ± 0.79
Dikuli	6.87 ± 1.7	103.9 ± 0.74	965.6 ± 2.41	25.6 ± 1.58	139.6 ± 4.33	10.17 ± 0.58
Gafera	5.04 ± 0.15	85.5 ± 1.08	1067.2 ± 9.38	90.1 ± 5.09	128.8 ± 3.22	34.36 ± 0.38
Gesses	11.17 ± 0.6	104.1 ± 0.88	1111.2 ± 8.56	12.70 ± 3.53	125.6 ± 5.25	0.26 ± 0.02
Gijet	8.11 ± 0.68	143.6 ± 1.84	502.3 ± 4.42	9.0 ± 1.05	111.6 ± 3.6	37.81 ± 0.43
HadushAdi	10.74 ± 0.65	108.6 ± 4.27	443.6 ± 13.06	41.0 ± 7.07	108.0 ± 3.4	35.02 ± 0.71
Hugub	13.53 ± 0.24	72.9 ± 1.79	278.5 ± 19.57	38.4 ± 3.78	97.9 ± 6.38	25.04 ± 1.39
Jarso	10.38 ± 0.72	64.9 ± 1.2	349.6 ± 16.87	38.1 ± 1.45	129.4 ± 3.89	34.95 ± 0.32
Kido	11.71 ± 0.27	103.10 ± 0.57	1068.20 ± 8.51	10.6 ± 1.71	117.90 ± 10.99	2.31 ± 1.86
Kumato	9.86 ± 0.98	49.60 ± 1.51	466.70 ± 46.97	108.00 ± 6.93	78.10 ± 6.94	26.03 ± 0.73
Horro	7.64 ± 0.74	92.0 ± 1.83	924.0 ± 45.17	38.60 ± 10.32	131.40 ± 5.74	38.31 ± 0.82
Loya	7.49 ± 0.13	50.90 ± 0.57	547.30 ± 7.57	125.90 ± 1.37	65.30 ± 15.71	23.99 ± 0.58
Meseret	6.72 ± 0.14	138.7 ± 1.49	419.6 ± 1.43	9.90 ± 0.32	116.0 ± 2.0	38.51 ± 1.62
Metkilimat	10.55 ± 0.74	136.9 ± 2.96	480.7 ± 8.43	19.6 ± 4.33	111.0 ± 2.91	29.19 ± 2.05
Mihquan	11.8 ± 0.26	99.80 ± 2.86	412.0 ± 10.23	54.30 ± 4.88	110.10 ± 5.15	33.89 ± 0.33
NegasiAmba	2.85 ± 0.21	106.90	751.3 ± 4.47	43.2 ± 0.42	111.7 ± 2.06	34.45 ± 0.32
ShubiGemo	9.90 ± 0.00	72.8 ± 0.79	427.1 ± 3.93	36.8 ± 0.42	$1\overline{10.0 \pm 2.11}$	9.72 ± 0.76
Surta	$\overline{5.09\pm0.20}$	85.5 ± 0.85	$1\overline{064.9\pm7.68}$	94.1 ± 4.61	$1\overline{33.7 \pm 7.32}$	35.17 ± 2.88
TzionTeguaz	$1\overline{1.29\pm0.19}$	121.6 ± 0.70	767.5 ± 1.65	11.3 ± 0.82	$1\overline{05.7\pm 6.72}$	34.22 ± 2.17

Table S4.1. Environmental data for six selected agro-climatic variables (selected by ENM approach) for 25 Ethiopian village chicken populations. (Values presented are average and deviation standard calculated across 10 geographic points for each population)

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean XP-EHH_std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted <i>Fst</i> per window (range)	ZFst per window (range)	Overlapping genes
chr1:430000_450000	20	xp-ehh	low	98 - 98	3.34 - 3.34	384 - 384	0.08 - 0.08	0.8 - 0.8	
chr1:460000_510000	50	xp-ehh	low	98 - 137	3.25 - 3.42	437 - 509	0.15 - 0.2	2.16 - 3.21	ENSGALG00000033919
chr1:8920000_8990000	70	xp-ehh	high	57 - 119	3.08 - 3.18	106 - 201	0.07 - 0.18	0.41 - 2.74	SEMA3D
chr1:27520000_27540000	20	fst	low	139 - 139	1.19 - 1.19	205 - 205	0.3 - 0.3	5.38 - 5.38	IMMP2L
chr1:37160000_37190000	30	fst	low	138 - 147	1.86 - 2.03	184 - 195	0.37 - 0.38	6.78 - 6.99	ENSGALG00000052790 (LncRNA)
chr1:37610000_37640000	30	xp-ehh	high	157 - 167	3.12 - 3.18	317 - 358	0.07 - 0.07	0.46 - 0.5	
chr1:49840000_50020000	180	xp-ehh	low	100 - 259	3.22 - 3.89	197 - 395	0.12 - 0.23	1.48 - 3.93	ENSGALG00000046744 (LncRNA), gga-mir-1683 (MiRNA), MRTFA, RBX1, SLC25A17, ST13, XPNPEP3
chr1:50030000_50060000	30	xp-ehh	low	139 - 164	3.23 - 3.37	242 - 264	0.16 - 0.18	2.41 - 2.82	MRTFA
chr1:56010000_56060000	50	xp-ehh	low	113 - 178	3.01 - 3.49	241 - 319	0.19 - 0.25	2.99 - 4.32	HIPK2
chr1:56180000_56250000	70	xp-ehh	low	218 - 335	3.13 - 3.32	336 - 502	0.12 - 0.22	1.51 - 3.64	ENSGALG00000012796
chr1:77820000_77840000	20	xp-ehh	high	278 - 278	3.11 - 3.11	373 - 373	0.12 - 0.12	1.56 - 1.56	COPS7A, MLF2
chr1:97180000_97220000	40	xp-ehh	low	71 - 92	3.02 - 3.14	142 - 224	0.15 - 0.24	2.13 - 4.06	ENSGALG00000051825 (LncRNA)
chr1:109000000_109120000	120	xp-ehh	low	96 - 158	3.3 - 4.13	231 - 293	0.15 - 0.24	2.16 - 4.09	ENSGALG00000050080 (LncRNA), ERG
chr1:109130000_109150000	20	xp-ehh	low	116 - 116	3.06 - 3.06	290 - 290	0.18 - 0.18	2.9 - 2.9	ENSGALG00000050080 (LncRNA), ETS2
chr1:109430000_109540000	110	xp-ehh	low	106 - 260	3.08 - 3.46	237 - 386	0.14 - 0.23	1.96 - 3.91	ENSGALG00000049718 (LncRNA), ENSGALG00000049863 (LncRNA), IGSF5, PCP4
chr1:109620000_109640000	20	xp-ehh	low	155 - 155	3.01 - 3.01	271 - 271	0.18 - 0.18	2.82 - 2.82	DSCAM
chr1:109760000_109800000	40	xp-ehh	low	145 - 178	3 - 3.08	262 - 274	0.18 - 0.2	2.78 - 3.32	DSCAM, ENSGALG00000042372 (LncRNA), ENSGALG00000052898 (LncRNA)

Table S4.2a. Candidate selection signature regions and overlapping genes detected from analyses of the minimum temperature of the coldest month (minTemp). (**SSR_ID:** selection signature regions ID as chromosome:start_stop position. **DD:** directionality of selection)

chr1:109810000_109830000	20	xp-ehh	low	158 - 158	3.02 - 3.02	262 - 262	0.23 - 0.23	4 - 4	DSCAM, ENSGALG00000042372 (LncRNA), ENSGALG00000052898 (LncRNA)
chr1:111010000_111030000	20	fst	low	262 - 262	2.58 - 2.58	387 - 387	0.29 - 0.29	5.09 - 5.09	ENSGALG0000016196
chr1:126080000_126100000	20	xp-ehh	high	280 - 280	3.1 - 3.1	414 - 414	0.06 - 0.06	0.2 - 0.2	MID1
chr1:126370000_126390000	20	xp-ehh	high	235 - 235	3.05 - 3.05	332 - 332	0.08 - 0.08	0.63 - 0.63	SHROOM2
chr1:130370000_130430000	60	xp-ehh	high	163 - 239	3.01 - 3.26	289 - 407	0.05 - 0.08	0.16 - 0.76	ASMTL, ENSGALG00000049423 (LncRNA), P2RY8
chr1:145470000_145500000	30	xp-ehh	low	212 - 243	3.11 - 3.19	330 - 336	0.22 - 0.24	3.73 - 4.19	PCCA
chr1:166170000_166190000	20	fst	low	101 - 101	0.33 - 0.33	151 - 151	0.31 - 0.31	5.49 - 5.49	ENSGALG00000027756 (ncRNA)
chr1:186620000_186650000	30	xp-ehh	low	244 - 254	3.01 - 3.4	415 - 417	0.13 - 0.14	1.74 - 1.96	
chr1:190110000_190130000	20	fst	low	154 - 154	0.39 - 0.39	303 - 303	0.34 - 0.34	6.28 - 6.28	
chr1:195800000_195850000	50	fst	low	131 - 210	1.77 - 2.16	270 - 366	0.3 - 0.32	5.44 - 5.88	ENSGALG00000030652, PGM2L1
chr1:196790000_196860000	70	xp-ehh	low	178 - 240	3.1 - 3.21	309 - 357	0.11 - 0.2	1.36 - 3.16	GDPD5, KLHL35
chr1:196910000_196940000	30	xp-ehh	low	149 - 177	3.15 - 3.21	269 - 314	0.19 - 0.2	3.1 - 3.24	MAP6, MOGAT2
chr1:197220000_197290000	70	xp-ehh / fst	low	104 - 194	2.3 - 3.02	149 - 394	0.27 - 0.41	4.66 - 7.61	ENSGALG00000031533, ENSGALG00000052767, ENSGALG00000053527, ENSGALG00000053623, ENSGALG00000054014, HBBA, HBBR, HBE, HBE1, OR51E2, OR51M1, R52R1
chr1:197370000_197420000	50	xp-ehh	low	97 - 176	3.26 - 3.88	315 - 413	0.24 - 0.26	4.07 - 4.48	APBB1, CCKBR, ENSGALG00000022704, FAM160A2, ENSGALG00000021748 (SnoRNA), ENSGALG00000021766 (SnoRNA), RPS11, SMPD1, TRIM3
chr1:197430000_197470000	40	xp-ehh	low	114 - 137	3.01 - 4.24	309 - 351	0.17 - 0.25	2.57 - 4.33	ARFIP2, ENSGALG00000017336, ENSGALG00000042572, ENSGALG00000048769, ILK, TRIM3
chr2:1210000_1240000	30	xp-ehh	low	200 - 232	3.02 - 3.18	475 - 480	0.07 - 0.09	0.48 - 0.97	ENSGALG00000053636, GHRHR
chr2:4610000_4650000	40	xp-ehh	low	175 - 236	3.24 - 3.56	298 - 374	0.17 - 0.26	2.71 - 4.51	CTDSPL, gga-mir-26a
chr2:5050000_5070000	20	xp-ehh	low	247 - 247	3.11 - 3.11	367 - 367	0.14 - 0.14	2.09 - 2.09	XIRP1
chr2:42090000_42120000	30	xp-ehh	low	294 - 304	3 - 3.01	404 - 411	0.21 - 0.21	3.5 - 3.58	ENSGALG00000052910 (LncRNA)
chr2:42160000_42190000	30	xp-ehh	low	270 - 286	3.08 - 3.15	392 - 421	0.15 - 0.16	2.22 - 2.34	ACPP

chr2:43430000_43550000	120	xp-ehh	low	149 - 206	3.04 - 3.27	324 - 457	0.14 - 0.25	1.9 - 4.28	ENSGALG00000036110 (LncRNA), ENSGALG00000048965 (LncRNA), ENSGALG00000053882
chr2:43920000_43960000	40	xp-ehh	low	206 - 262	3.16 - 3.31	390 - 479	0.13 - 0.18	1.87 - 2.77	EIF1B, ENSGALG00000041372, ENSGALG00000043381, ENSGALG00000054003, gga-mir-7457
chr2:49530000_49560000	30	fst	low	97 - 123	0.96 - 0.99	166 - 196	0.31 - 0.31	5.53 - 5.63	
chr2:49570000_49590000	20	fst	low	55 - 55	1.02 - 1.02	109 - 109	0.31 - 0.31	5.61 - 5.61	
chr2:58650000_58690000	40	xp-ehh	high	143 - 172	3.27 - 3.55	277 - 294	0.14 - 0.18	2 - 2.76	ENSGALG00000048667 (LncRNA)
chr2:60780000_60820000	40	fst	low	6 - 55	0.17 - 0.75	143 - 148	0.3 - 0.39	5.43 - 7.27	
chr2:68080000_68110000	30	fst	low	195 - 242	1.22 - 1.42	330 - 393	0.33 - 0.34	6.07 - 6.32	PHLPP1
chr2:77820000_77850000	30	fst	low	23 - 49	0.98 - 1.03	120 - 153	0.35 - 0.37	6.49 - 6.85	ENSGALG00000050420, gga-mir-1613
chr2:127490000_127530000	40	<i>xp-ehh</i> and/or <i>fst</i>	low	158 - 166	3.01 - 3.32	252 - 260	0.21 - 0.32	3.43 - 5.74	
chr2:130550000_130570000	20	fst	low	60 - 60	0.68 - 0.68	86 - 86	0.3 - 0.3	5.29 - 5.29	
chr3:36710000_36740000	30	fst	low	47 - 90	0.7 - 1.66	120 - 162	0.3 - 0.32	5.37 - 5.75	CHRM1
chr3:36750000_36780000	30	fst	high	60 - 79	0.49 - 0.69	159 - 159	0.31 - 0.31	5.53 - 5.66	
chr3:43730000_43760000	30	fst	low	121 - 140	1.8 - 1.96	274 - 304	0.29 - 0.29	5.11 - 5.16	ENSGALG00000051296 (LncRNA), ENSGALG00000053691 (LncRNA)
chr3:60300000_60320000	20	xp-ehh	low	127 - 127	3.06 - 3.06	249 - 249	0.11 - 0.11	1.46 - 1.46	ENSGALG00000051906 (LncRNA), NKAIN2
chr3:68260000_68290000	30	xp-ehh	high	164 - 175	3.11 - 3.14	278 - 279	0.11 - 0.15	1.45 - 2.26	ATG5
chr3:94720000_94760000	40	xp-ehh	low	144 - 170	3.16 - 3.19	221 - 254	0.14 - 0.18	1.9 - 2.89	
chr3:96690000_96710000	20	xp-ehh	high	239 - 239	3.14 - 3.14	414 - 414	0.03 - 0.03	-0.230.23	ENSGALG00000048509 (LncRNA)
chr3:107830000_107860000	30	fst	high	93 - 140	0.26 - 0.27	208 - 236	0.29 - 0.3	5.12 - 5.4	ENSGALG00000050753, ENSGALG00000053865 (LncRNA), ENSGALG00000027879 (ncRNA)
chr3:108130000_108320000	190	xp-ehh	low	67 - 206	3.01 - 3.7	150 - 362	0.13 - 0.26	1.76 - 4.52	ENSGALG00000047589, ENSGALG00000047869 (LncRNA), TFAP2B, TFAP2D
chr4:8010000_8040000	30	xp-ehh	high	140 - 154	3.13 - 3.22	308 - 322	0.12 - 0.12	1.47 - 1.58	
chr4:14070000_14110000	40	xp-ehh	low	276 - 303	3.44 - 4.01	384 - 394	0.14 - 0.2	2 - 3.33	ATG4A, ENSGALG00000048179
chr4:25290000_25320000	30	xp-ehh	high	223 - 239	3.08 - 3.16	345 - 362	0.02 - 0.04	-0.520.05	

chr4:43410000_43510000	100	fst	low	91 - 157	0.32 - 1.08	111 - 204	0.28 - 0.43	5.06 - 8.07	ENSGALG00000046699 (LncRNA), ENSGALG00000048030 (LncRNA), ENSGALG00000050160 (LncRNA), ENSGALG00000052572 (LncRNA)
chr4:45270000_45300000	30	xp-ehh	high	208 - 212	3.34 - 3.53	296 - 317	0.05 - 0.07	0.12 - 0.53	ANTXR2, ENSGALG00000051314 (LncRNA)
chr4:52710000_52730000	20	fst	low	206 - 206	1.9 - 1.9	347 - 347	0.31 - 0.31	5.55 - 5.55	ENSGALG00000052662 (LncRNA)
chr4:63130000_63150000	20	xp-ehh	low	186 - 186	3.15 - 3.15	322 - 322	0.22 - 0.22	3.76 - 3.76	CNOT7, MTMR7, VPS37A
chr4:63860000_64090000	230	xp-ehh	low	100 - 222	3.07 - 3.99	138 - 315	0.06 - 0.22	0.4 - 3.71	gga-mir-383, SGCZ
chr4:65660000_65710000	50	xp-ehh	low	207 - 274	3.09 - 3.15	344 - 476	0.12 - 0.13	1.67 - 1.89	LNX1
chr4:89590000_89610000	20	fst	low	177 - 177	0.48 - 0.48	293 - 293	0.3 - 0.3	5.45 - 5.45	ADAM33, ENSGALG00000044620
chr5:16420000_16440000	20	fst	low	183 - 183	1.99 - 1.99	289 - 289	0.29 - 0.29	5.18 - 5.18	
chr5:16900000_16930000	30	xp-ehh	low	225 - 275	3.01 - 3.03	326 - 432	0.24 - 0.26	4.17 - 4.44	ENSGALG00000007127, ENSGALG00000020485
chr5:16940000_16980000	40	fst	low	206 - 231	1.83 - 2.77	339 - 409	0.29 - 0.32	5.12 - 5.77	FADS2, RAB3IL1
chr5:17180000_17210000	30	fst	low	218 - 239	2.08 - 2.32	397 - 419	0.29 - 0.32	5.24 - 5.86	CTNND1, ENSGALG00000007287, LPXN
chr5:17230000_17290000	60	<i>xp-ehh</i> and/or <i>fst</i>	low	119 - 193	3.04 - 3.45	212 - 345	0.26 - 0.32	4.58 - 5.74	CLP1, ENSGALG00000007381, RTN4RL2, P2RX3, UBE2L6, MED19, PGR2/3, SLC43A3, SSRP1, TIMM10, YPEL4, ZDHHC5
chr5:17530000_17580000	50	xp-ehh	low	121 - 152	3.17 - 3.88	237 - 304	0.23 - 0.26	3.82 - 4.52	ENSGALG00000051988 (LncRNA), ENSGALG00000027034 (ncRNA)
chr5:34720000_34740000	20	fst	low	189 - 189	1.75 - 1.75	266 - 266	0.29 - 0.29	5.25 - 5.25	NUBPL
chr5:58940000_59000000	60	xp-ehh	high	180 - 262	3.36 - 4.02	256 - 416	0.02 - 0.08	-0.58 - 0.73	FANCM, FKBP3, PRPF39, ENSGALG00000025674 (SnoRNA), TOGARAM1
chr6:25320000_25360000	40	xp-ehh	low	250 - 329	3.03 - 3.08	369 - 424	0.22 - 0.24	3.64 - 4.05	ENSGALG00000050593 (LncRNA)
chr6:27270000_27380000	110	<i>xp-ehh</i> and/or <i>fst</i>	low	163 - 258	3.05 - 3.98	231 - 369	0.15 - 0.3	2.3 - 5.39	ENSGALG00000049592 (LncRNA), ENSGALG00000051688 (LncRNA), ENSGALG00000052216 (LncRNA)
chr6:35940000_35990000	50	xp-ehh	high	228 - 323	3.2 - 3.99	382 - 467	0.02 - 0.08	-0.58 - 0.64	
chr6:36170000_36220000	50	xp-ehh	high	35 - 77	3.03 - 3.1	77 - 122	0.01 - 0.06	-0.68 - 0.34	INPP5A, NKX6-2
chr7:3300000_3330000	30	xp-ehh	high	344 - 371	3.03 - 3.12	537 - 548	0.03 - 0.04	-0.30.12	ERBB4
chr7:6750000_6780000	30	fst	low	16 - 24	0.37 - 0.37	25 - 37	0.38 - 0.42	7.08 - 7.9	COL6A1

chr7:9030000_9050000	20	fst	low	81 - 81	0.48 - 0.48	138 - 138	0.31 - 0.31	5.66 - 5.66	
chr8:22820000_22850000	30	fst	low	106 - 120	1.31 - 1.32	139 - 175	0.3 - 0.32	5.49 - 5.71	
chr8:23750000_23820000	70	xp-ehh	high	141 - 210	3.15 - 3.55	257 - 385	0.06 - 0.14	0.25 - 1.97	BEND5
chr8:23870000_23890000	20	xp-ehh	high	226 - 226	3.01 - 3.01	397 - 397	0.06 - 0.06	0.35 - 0.35	BEND5
chr8:24330000_24350000	20	fst	low	132 - 132	1.59 - 1.59	273 - 273	0.32 - 0.32	5.8 - 5.8	RNF11
chr10:17810000_17830000	20	fst	low	196 - 196	2.02 - 2.02	319 - 319	0.29 - 0.29	5.27 - 5.27	
chr10:18040000_18070000	30	xp-ehh	low	173 - 183	3.26 - 3.5	272 - 283	0.09 - 0.1	0.89 - 1.17	CHSY1, ENSGALG00000007248, PCSK6, SELENOS, SNRPA1
chr10:18140000_18180000	40	xp-ehh	low	192 - 245	3.01 - 3.24	292 - 392	0.16 - 0.19	2.36 - 3.15	ANKDD1A, CLPX, SPG21
chr12:3100000_3130000	30	xp-ehh	low	245 - 260	3.49 - 3.63	416 - 431	0.2 - 0.23	3.35 - 3.8	RAD54L2, RBM6
chr13:17070000_17100000	30	xp-ehh	low	215 - 224	3.06 - 3.16	337 - 371	0.12 - 0.14	1.53 - 1.91	FSTL4
chr13:17120000_17140000	20	xp-ehh	low	244 - 244	3 - 3	418 - 418	0.09 - 0.09	0.86 - 0.86	FSTL4
chr14:1620000_1640000	20	xp-ehh	low	120 - 120	3.01 - 3.01	257 - 257	0.24 - 0.24	4.12 - 4.12	NPTX2
chr14:3930000_3980000	50	fst	low	79 - 163	0.81 - 1.19	151 - 235	0.29 - 0.43	5.25 - 8.16	SDK1
chr14:4880000_4910000	30	xp-ehh	low	190 - 200	3 - 3.4	344 - 355	0.17 - 0.21	2.73 - 3.43	MAP2K3
chr14:5120000_5180000	60	xp-ehh	low	168 - 251	3.2 - 3.56	322 - 372	0.19 - 0.21	3.09 - 3.42	COPS3, FLCN, MED9, NT5M, PLD6
chr14:7440000_7460000	20	fst	low	143 - 143	2.48 - 2.48	290 - 290	0.31 - 0.31	5.5 - 5.5	
chr17:3850000_3870000	20	xp-ehh	low	145 - 145	3.03 - 3.03	332 - 332	0.13 - 0.13	1.85 - 1.85	ASTN2, ENSGALG00000025230 (MiRNA)
chr18:3690000_3770000	80	xp-ehh	low	168 - 237	3.01 - 3.21	271 - 451	0.12 - 0.17	1.52 - 2.68	CD7, ENSGALG00000054039 (LncRNA), SEPT9
chr18:5090000_5190000	100	<i>xp-ehh</i> and/or <i>fst</i>	low	95 - 227	2.29 - 4.4	157 - 415	0.27 - 0.36	4.69 - 6.64	CA10, MBTD1, UTP18
chr18:5680000_5710000	30	xp-ehh	low	169 - 176	3.25 - 3.34	319 - 352	0.22 - 0.28	3.75 - 4.98	
chr18:6570000_6590000	20	xp-ehh	low	155 - 155	3.11 - 3.11	292 - 292	0.26 - 0.26	4.64 - 4.64	UTP6
chr18:10410000_10510000	100	xp-ehh	low	52 - 179	3.05 - 3.67	127 - 345	0.09 - 0.18	1.02 - 2.95	CD300LG, ENSGALG00000019755, GRIN2C, NAT9, RAB37, SLC9A3R1, TMEM104, XYLT2
chr18:10540000_10570000	30	xp-ehh	low	65 - 75	3.08 - 3.15	143 - 167	0.16 - 0.18	2.43 - 2.79	HID1, OTOP2, OTOP3, USH1G
chr19:7450000_7470000	20	xp-ehh	low	203 - 203	3.01 - 3.01	322 - 322	0.15 - 0.15	2.26 - 2.26	CLTC, PTRH2, VMP1
chr20:4510000_4550000	40	xp-ehh	low	89 - 230	3.23 - 3.31	241 - 384	0.16 - 0.19	2.42 - 3	ENSGALG00000046818 (LncRNA)
chr20:4570000_4600000	30	fst	low	110 - 139	2.46 - 2.77	217 - 333	0.31 - 0.34	5.59 - 6.32	ENSGALG00000052811 (LncRNA)
chr21:1990000_2010000	20	fst	low	154 - 154	0.24 - 0.24	218 - 218	0.28 - 0.28	5.06 - 5.06	ENSGALG00000021676, NADK, SLC35E2B
chr21:3340000_3380000	40	xp-ehh	low	101 - 121	3.12 - 3.27	285 - 302	0.16 - 0.18	2.44 - 2.88	SPSB1

chr21:5230000_5250000	20	xp-ehh	low	203 - 203	3.22 - 3.22	339 - 339	0.19 - 0.19	3.04 - 3.04	LRRC38
chr23:440000_460000	20	fst	low	169 - 169	0.96 - 0.96	303 - 303	0.3 - 0.3	5.39 - 5.39	
chr23:2180000_2200000	20	fst	low	99 - 99	2.29 - 2.29	251 - 251	0.29 - 0.29	5.2 - 5.2	AHDC1
chr23:2980000_3010000	30	xp-ehh	low	116 - 140	3.25 - 3.44	251 - 272	0.17 - 0.24	2.58 - 4.13	ENSGALG00000049526 (LncRNA), PTPRU
chr26:4160000_4180000	20	xp-ehh	low	97 - 97	3.08 - 3.08	207 - 207	0.24 - 0.24	4.17 - 4.17	TCP11
chr27:5690000_5730000	40	xp-ehh	low	162 - 206	3.08 - 3.79	322 - 365	0.19 - 0.23	3 - 3.99	FAM117A, KAT7

Table S4.2b. Candidate selection signature regions and overlapping genes detected from analyses of the precipitation seasonality (precSeasonality).(SSR_ID: selection signature regions ID as chromosome:start_stop position. DD: directionality of selection)

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean <i>XP-EHH_</i> std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted Fst per window (range)	ZFst per window (range)	Overlapping genes
chr1:450000_490000	40	xp-ehh	low	108 -144	3.06 - 3.29	461 - 526	0.06 - 0.11	0.76 - 2.18	ENSGALG00000033919
chr1:12910000_12940000	30	fst	low	177 - 191	2.76 - 2.77	294 - 366	0.22 - 0.27	5.18 - 6.61	ENSGALG00000008309, FAM185A, FGL2
chr1:13950000_13970000	20	fst	high	152 - 152	0.56 - 0.56	225 - 225	0.21 - 0.21	5.03 - 5.03	KMT2E, SRPK2
chr1:16040000_16060000	20	xp-ehh	low	157 - 157	3.04 - 3.04	326 - 326	0.07 - 0.07	1.26 - 1.26	ENSGALG00000054287
chr1:19670000_19690000	20	fst	high	156 - 156	0.28 - 0.28	191 - 191	0.23 - 0.23	5.45 - 5.45	
chr1:24350000_24370000	20	fst	high	185 - 185	1.5 - 1.5	274 - 274	0.22 - 0.22	5.29 - 5.29	
chr1:27410000_27490000	80	xp-ehh	high	113 - 253	3 - 3.55	197 - 412	0.02 - 0.1	-0.19 - 1.84	IMMP2L
chr1:27560000_27660000	100	xp-ehh	high	115 - 185	3.31 - 4	177 - 327	0.06 - 0.14	0.83 - 3.15	IMMP2L, LRRN3
chr1:52400000_52450000	50	fst	low	237 - 290	2.04 - 2.35	383 - 450	0.23 - 0.3	5.46 - 7.39	ENSGALG00000036131 (LncRNA)
chr1:81890000_81930000	40	xp-ehh	low	152 - 196	3.12 - 3.66	306 - 352	0.12 - 0.16	2.62 - 3.63	
chr1:105230000_105250000	20	xp-ehh	high	144 - 144	3.01 - 3.01	401 - 401	0.06 - 0.06	0.9 - 0.9	ENSGALG00000027781 (ncRNA)
chr1:134820000_134840000	20	xp-ehh	low	202 - 202	3.16 - 3.16	385 - 385	0.13 - 0.13	2.8 - 2.8	RFX8
chr1:137260000_137280000	20	xp-ehh	high	211 - 211	3.07 - 3.07	368 - 368	0.02 - 0.02	-0.180.18	ENSGALG00000049876 (LncRNA), ENSGALG00000052777 (LncRNA)

chr1:147500000_147530000	30	xp-ehh	low	251 - 281	3.24 - 3.44	411 - 440	0.1 - 0.11	2.03 - 2.28	CLDN10
chr1:157150000_157170000	20	xp-ehh	high	179 - 179	3.06 - 3.06	342 - 342	0.1 - 0.1	1.96 - 1.96	KLF12
chr1:164020000_164060000	40	fst	high	80 - 103	1.03 - 1.32	153 - 178	0.26 - 0.28	6.46 - 6.84	ENSGALG00000050284 (LncRNA)
chr1:167460000_167510000	50	xp-ehh	high	225 - 275	3.14 - 3.89	392 - 470	0.03 - 0.05	-0.07 - 0.61	ENSGALG00000017789 (5S_rRNA), VWA8
chr1:178310000_178340000	30	xp-ehh	low	171 - 207	3.06 - 3.23	296 - 318	0.07 - 0.11	1.2 - 2.13	ATP8A2
chr1:185880000_185920000	40	xp-ehh	high	149 - 196	3.16 - 3.33	254 - 331	0.01 - 0.03	-0.640.07	ENSGALG00000047983 (LncRNA), ENSGALG00000054022 (LncRNA)
chr2:9330000_9360000	30	xp-ehh	high	164 - 195	3.16 - 3.3	255 - 271	0.05 - 0.05	0.46 - 0.6	PTPRN2
chr2:9730000_9750000	20	xp-ehh	high	223 - 223	3.02 - 3.02	345 - 345	0.1 - 0.1	1.92 - 1.92	VIPR2
chr2:28140000_28200000	60	fst	high	43 - 83	0.72 - 0.84	122 - 200	0.23 - 0.25	5.65 - 6.04	ENSGALG00000054958 (LncRNA)
chr2:54120000_54140000	20	xp-ehh	low	126 - 126	3.02 - 3.02	186 - 186	0.04 - 0.04	0.24 - 0.24	CNTNAP2
chr2:55230000_55300000	70	<i>xp-ehh</i> and/or <i>fst</i>	low	141 - 238	2.47 - 3.32	246 - 363	0.13 - 0.32	2.78 - 7.87	ENSGALG00000054801 (LncRNA), TNS3
chr2:56080000_56100000	20	xp-ehh	high	205 - 205	3.08 - 3.08	302 - 302	0.1 - 0.1	1.94 - 1.94	RBFA
chr2:63890000_63930000	40	fst	high	94 - 195	2.26 - 2.62	239 - 301	0.23 - 0.24	5.48 - 5.8	ENSGALG00000049311 (LncRNA)
chr2:6870000_68740000	40	xp-ehh	high	122 - 245	3 - 3.24	225 - 368	0.05 - 0.11	0.62 - 2.15	ENSGALG00000053182 (LncRNA)
chr2:69270000_69290000	20	xp-ehh	high	87 - 87	3.05 - 3.05	174 - 174	0.14 - 0.14	3.17 - 3.17	СДН6
chr2:92020000_92050000	30	xp-ehh	low	220 - 282	3.2 - 3.21	348 - 403	0.1 - 0.15	2.07 - 3.33	
chr2:94060000_94080000	20	fst	high	67 - 67	0.04 - 0.04	119 - 119	0.22 - 0.22	5.25 - 5.25	CCDC102B
chr2:94690000_94740000	50	fst	high	49 - 124	0.81 - 1.2	117 - 214	0.21 - 0.23	5.06 - 5.45	
chr2:9560000_95660000	60	fst	low	63 - 91	1.19 - 2.1	111 - 147	0.21 - 0.28	5.09 - 6.97	
chr2:95750000_95770000	20	fst	low	21 - 21	1.31 - 1.31	45 - 45	0.36 - 0.36	9.05 - 9.05	
chr2:95830000_95850000	20	fst	low	86 - 86	0.16 - 0.16	150 - 150	0.22 - 0.22	5.32 - 5.32	
chr2:95860000_95890000	30	fst	low	110 - 111	0.58 - 0.6	163 - 163	0.23 - 0.24	5.46 - 5.71	ENSGALG00000050654 (LncRNA)
chr2:95910000_95930000	20	fst	low	96 - 96	0.97 - 0.97	163 - 163	0.28 - 0.28	6.9 - 6.9	ENSGALG00000050654 (LncRNA)
chr2:96920000_96950000	30	xp-ehh	low	280 - 331	3.11 - 3.29	379 - 418	0.08 - 0.09	1.3 - 1.65	CEP192
chr2:102480000_102500000	20	xp-ehh	low	310 - 310	3 - 3	501 - 501	0.04 - 0.04	0.19 - 0.19	MIB1
chr2:103460000_103550000	90	xp-ehh	low	91 - 241	3.02 - 3.73	205 - 374	0.08 - 0.16	1.33 - 3.66	ENSGALG00000049694 (LncRNA)
chr2:104260000_104320000	60	xp-ehh	low	190 - 245	3.37 - 3.81	304 - 394	0.06 - 0.09	0.86 - 1.68	KCTD1
chr2:11400000_114100000	100	<i>xp-ehh</i> and/or <i>fst</i>	low	87 - 152	3.02 - 3.65	170 - 239	0.12 - 0.23	2.41 - 5.49	ENSGALG00000053888 (LncRNA)
chr2:146340000_146390000	50	xp-ehh	low	169 - 294	3.25 - 3.53	301 - 371	0.07 - 0.14	1.24 - 3.07	
chr2:146690000_146710000	20	fst	low	121 - 121	0.31 - 0.31	195 - 195	0.21 - 0.21	5.07 - 5.07	

chr2:146890000_146920000	30	fst	low	102 - 122	0.54 - 0.63	169 - 213	0.28 - 0.29	6.95 - 7.05	TSNARE1
chr2:148130000_148170000	40	fst	high	208 - 234	2.23 - 2.32	337 - 360	0.24 - 0.26	5.82 - 6.39	ENSGALG00000028660 (MiRNA), ENSGALG00000047330 (LncRNA)
chr2:148190000_148210000	20	xp-ehh	high	245 - 245	3.17 - 3.17	439 - 439	0.16 - 0.16	3.68 - 3.68	ENSGALG00000048947 (LncRNA)
chr2:148240000_148260000	20	fst	high	184 - 184	1.41 - 1.41	399 - 399	0.22 - 0.22	5.15 - 5.15	ENSGALG00000048947 (LncRNA)
chr3:1160000_1210000	50	fst	low	7 - 42	1.85 - 2.58	63 - 92	0.25 - 0.38	5.93 - 9.63	ENSGALG00000047366 (LncRNA)
chr3:2860000_2880000	20	fst	low	77 - 77	0.68 - 0.68	141 - 141	0.24 - 0.24	5.84 - 5.84	
chr3:5540000_5570000	30	xp-ehh	low	157 - 165	3.23 - 3.41	266 - 315	0.15 - 0.17	3.37 - 3.84	KIF16B
chr3:18250000_18310000	60	fst	low	120 - 197	0.16 - 0.43	223 - 284	0.21 - 0.24	5.01 - 5.79	ENSGALG00000052742 (LncRNA)
chr3:20080000_20110000	30	fst	high	80 - 156	1.46 - 1.97	152 - 226	0.23 - 0.29	5.55 - 7.06	ESRRG
chr3:20220000_20240000	20	fst	high	115 - 115	0.18 - 0.18	179 - 179	0.21 - 0.21	5.06 - 5.06	ESRRG
chr3:21940000_21970000	30	fst	high	101 - 102	1.1 - 1.51	186 - 298	0.33 - 0.43	8.19 - 10.95	ATF3, gga-mir-1649, TMEM206
chr3:3260000_32620000	20	fst	low	162 - 162	0.56 - 0.56	249 - 249	0.22 - 0.22	5.12 - 5.12	ENSGALG00000035137 (LncRNA)
chr3:50820000_50860000	40	fst	high	75 - 82	0.75 - 2.34	229 - 266	0.24 - 0.29	5.83 - 7.09	ENSGALG00000047502 (LncRNA)
chr3:50890000_50920000	30	fst	high	45 - 45	1.43 - 1.87	237 - 238	0.22 - 0.24	5.25 - 5.68	ENSGALG00000049389 (LncRNA)
chr3:70960000_70980000	20	xp-ehh	high	140 - 140	3.07 - 3.07	272 - 272	0.09 - 0.09	1.74 - 1.74	SIM1
chr3:71640000_71660000	20	fst	high	141 - 141	2.14 - 2.14	274 - 274	0.22 - 0.22	5.23 - 5.23	ENSGALG00000047943 (LncRNA), ENSGALG00000052916 (LncRNA)
chr3:76730000_76760000	30	fst	high	215 - 226	1.99 - 2.98	305 - 346	0.26 - 0.27	6.38 - 6.66	
chr3:78860000_78890000	30	xp-ehh	high	218 - 253	3.02 - 3.05	280 - 343	0.08 - 0.1	1.52 - 1.91	
chr3:80440000_80480000	40	xp-ehh	high	159 - 188	3.13 - 3.37	317 - 343	0.14 - 0.17	2.93 - 3.78	IMPG1, MYO6
chr3:85880000_85900000	20	fst	low	81 - 81	2.06 - 2.06	171 - 171	0.23 - 0.23	5.63 - 5.63	ENSGALG00000047770 (miRNA)
chr3:85990000_86100000	110	fst	low	42 - 127	0.85 - 2.15	128 - 272	0.22 - 0.3	5.38 - 7.41	KHDRBS2
chr3:86110000_86170000	60	fst	low	34 - 127	0.17 - 0.37	99 - 230	0.22 - 0.28	5.32 - 6.93	KHDRBS2
chr3:86680000_86770000	90	fst	low	214 - 278	0.83 - 1.86	376 - 479	0.22 - 0.32	5.34 - 7.94	BAG2, PRIM2, RAB23
chr3:96570000_96590000	20	xp-ehh	high	247 - 247	3.12 - 3.12	387 - 387	0.07 - 0.07	1.17 - 1.17	
chr3:99080000_99100000	20	xp-ehh	high	141 - 141	3.25 - 3.25	203 - 203	0.11 - 0.11	2.2 - 2.2	
chr3:100050000_100070000	20	xp-ehh	high	170 - 170	3.11 - 3.11	246 - 246	0.1 - 0.1	2.08 - 2.08	VSNL1
chr3:100240000_100270000	30	xp-ehh	high	175 - 195	3.15 - 3.18	300 - 309	0.07 - 0.08	1.02 - 1.47	KCNS3
chr3:100370000_100390000	20	xp-ehh	high	156 - 156	3.07 - 3.07	311 - 311	0.13 - 0.13	2.78 - 2.78	
chr3:108260000_108280000	20	xp-ehh	high	190 - 190	3.08 - 3.08	347 - 347	0.06 - 0.06	0.95 - 0.95	TFAP2D
chr4:650000_670000	20	fst	high	147 - 147	1.71 - 1.71	211 - 211	0.24 - 0.24	5.84 - 5.84	
chr4:2730000_2750000	20	xp-ehh fst	high	250 - 250	3.19 - 3.19	455 - 455	0.21 - 0.21	5.09 - 5.09	HTR2C

chr4:11090000_11110000	20	xp-ehh	high	217 - 217	3.08 - 3.08	422 - 422	0.05 - 0.05	0.66 - 0.66	
chr4:26940000_27010000	70	xp-ehh	low	64 - 101	3.05 - 3.12	160 - 207	0.06 - 0.07	0.74 - 1.07	
chr4:28270000_28360000	90	xp-ehh	low	21 - 77	3.02 - 3.39	59 - 141	0.06 - 0.15	0.78 - 3.23	ENSGALG00000047082 (LncRNA)
chr4:28380000_28450000	70	xp-ehh	low	22 - 58	3.08 - 3.23	122 - 176	0.06 - 0.08	0.8 - 1.48	
chr4:30270000_30290000	20	fst	high	226 - 226	2.48 - 2.48	290 - 290	0.24 - 0.24	5.79 - 5.79	INPP4B
chr4:41990000_42020000	30	fst	high	56 - 59	0.85 - 0.9	67 - 92	0.22 - 0.26	5.23 - 6.25	ENSGALG00000047221 (LncRNA), ENSGALG00000049124
chr4:60250000_60290000	40	<i>xp-ehh</i> and/or <i>fst</i>	low	157 - 201	3.47 - 3.75	229 - 294	0.14 - 0.22	3.03 - 5.14	ENSGALG00000049121 (LncRNA)
chr4:60950000_60980000	30	xp-ehh	low	256 - 285	3 - 3.16	384 - 420	0.12 - 0.12	2.47 - 2.5	BDH2, CISD2, SLC9B2
chr4:61240000_61270000	30	xp-ehh	low	235 - 284	3.12 - 3.28	379 - 423	0.08 - 0.08	1.33 - 1.37	
chr4:74180000_74240000	60	fst	high	106 - 145	1.25 - 2.66	164 - 234	0.29 - 0.3	7.05 - 7.53	ENSGALG00000046053 (LncRNA), ENSGALG00000048521 (LncRNA), ENSGALG00000050078 (LncRNA)
chr4:74250000_74360000	110	<i>xp-ehh</i> and/or <i>fst</i>	high	67 - 125	1.88 - 3.2	137 - 229	0.08 - 0.28	1.5 - 6.81	ENSGALG00000046053 (LncRNA), ENSGALG00000051573 (LncRNA)
chr4:74400000_74510000	110	fst	high	107 - 207	2.98 - 4.13	180 - 342	0.14 - 0.24	3.06 - 5.8	ADGRA3, ENSGALG00000047968, ENSGALG00000048082
chr4:74710000_74740000	30	fst	high	178 - 252	1.71 - 2.19	256 - 305	0.21 - 0.22	5.1 - 5.12	
chr4:75070000_75090000	20	xp-ehh	high	118 - 118	3.01 - 3.01	284 - 284	0.09 - 0.09	1.55 - 1.55	SLIT2
chr4:75150000_75170000	20	xp-ehh	high	126 - 126	3.01 - 3.01	248 - 248	0.08 - 0.08	1.43 - 1.43	SLIT2
chr4:75660000_75780000	120	xp-ehh	high	114 - 174	3.05 - 3.85	155 - 280	0.02 - 0.17	-0.14 - 3.77	ENSGALG00000047307 (LncRNA), ENSGALG00000052764 (LncRNA), NCAPG
chr4:77500000_77530000	30	xp-ehh	high	85 - 123	3.03 - 3.12	194 - 228	0.04 - 0.1	0.28 - 1.99	ENSGALG00000052609 (MiRNA), RAB28
chr4:81570000_81590000	20	xp-ehh	high	153 - 153	3.17 - 3.17	309 - 309	0.12 - 0.12	2.45 - 2.45	ADRA2C
chr4:89960000_89980000	20	xp-ehh	high	235 - 235	3.01 - 3.01	380 - 380	0.14 - 0.14	3.13 - 3.13	EXOC6B
chr4:90310000_90340000	30	xp-ehh	high	143 - 171	3.02 - 3.14	263 - 289	0.05 - 0.07	0.5 - 1.01	
chr5:2310000_2330000	20	fst	high	45 - 45	1.7 - 1.7	109 - 109	0.25 - 0.25	6.03 - 6.03	PRMT3
chr5:12750000_12790000	40	xp-ehh	low	289 - 306	3.15 - 3.28	422 - 452	0.05 - 0.1	0.68 - 1.93	LDHA, TSG101, UEVLD
chr5:12800000_12820000	20	xp-ehh	low	223 - 223	3.02 - 3.02	393 - 393	0.16 - 0.16	3.51 - 3.51	SPTY2D1
chr5:21780000_21800000	20	fst	high	142 - 142	2.24 - 2.24	282 - 282	0.21 - 0.21	5.09 - 5.09	
chr5:28910000_28970000	60	xp-ehh	low	167 - 340	3.04 - 3.34	329 - 490	0.1 - 0.15	2.06 - 3.37	ENSGALG00000051208 (LncRNA), RAD51B, TMEM229B

chr5:35390000_35410000	20	fst	high	103 - 103	1.2 - 1.2	158 - 158	0.21 - 0.21	5.03 - 5.03	NPAS3, ENSGALG00000025613 (ncRNA)
chr5:40460000 40570000	110	fst	high	5 - 103	0.34 - 2.01	133 - 203	0.22 - 0.36	5.16 - 9.04	NRXN3
chr5:43730000 43750000	20	xp-ehh	low	251 - 251	3.44 - 3.44	424 - 424	0.11 - 0.11	2.15 - 2.15	FOXN3
 chr5:48710000_49000000	290	xp-ehh	high	25 - 205	3.11 - 3.89	153 - 397	0.03 - 0.13	-0.03 - 2.87	BEGAIN, ENSGALG00000050163 (miRNA), ENSGALG00000052029 (LncRNA), SLC25A29, SLC25A47, WARS, DR25, YY1
chr5:49070000_49190000	120	xp-ehh	high	30 - 218	3.02 - 3.58	92 - 281	0.04 - 0.09	0.21 - 1.79	DLK1, ENSGALG00000047452 (LncRNA), ENSGALG00000047870 (LncRNA), ENSGALG00000053427 (LncRNA)
chr5:49240000_49300000	60	xp-ehh	high	53 - 133	3.03 - 3.25	176 - 347	0.08 - 0.08	1.3 - 1.52	ENSGALG00000050843 (LncRNA)
chr5:58640000_58710000	70	xp-ehh	high	94 - 168	3.06 - 3.51	187 - 296	0.06 - 0.09	0.85 - 1.58	ENSGALG00000050220 (LncRNA)
chr6:1620000_1650000	30	xp-ehh	low	239 - 244	3.24 - 3.4	370 - 402	0.05 - 0.07	0.57 - 1.1	CCSER2, ENSGALG00000031866
chr6:12470000_12500000	30	xp-ehh	low	184 - 219	3.04 - 3.05	313 - 386	0.14 - 0.16	3.08 - 3.48	ENSGALG00000053115 (LncRNA), UNC5B
chr6:12510000_12620000	110	xp-ehh	low	85 - 258	3.16 - 3.28	193 - 396	0.07 - 0.2	1.16 - 4.58	CDH23, SLC29A3
chr6:19430000_19450000	20	xp-ehh	low	165 - 165	3.28 - 3.28	273 - 273	0.01 - 0.01	-0.540.54	ENSGALG00000047645 (LncRNA), ENSGALG00000049384 (LncRNA), ENSGALG00000054411 (LncRNA), ENSGALG00000054709 (LncRNA)
chr6:25040000_25070000	30	xp-ehh	high	167 - 230	3.04 - 3.09	321 - 427	0.12 - 0.17	2.43 - 3.85	SLK
chr7:11540000_11570000	30	xp-ehh	high	294 - 307	3.31 - 3.41	403 - 408	0.09 - 0.09	1.64 - 1.8	ALS2
chr7:25930000_25950000	20	xp-ehh	low	170 - 170	3.13 - 3.13	308 - 308	0.13 - 0.13	2.78 - 2.78	GLI2
chr7:33100000_33180000	80	xp-ehh	low	113 - 204	3.11 - 4.65	230 - 286	0.03 - 0.14	-0.05 - 3.12	GTDC1
chr7:33200000_33240000	40	xp-ehh	low	154 - 187	3.39 - 4.05	239 - 329	0.07 - 0.14	1.25 - 2.93	GTDC1
chr7:33280000_33310000	30	xp-ehh	low	148 - 163	3.19 - 3.6	323 - 335	0.11 - 0.13	2.26 - 2.79	ENSGALG00000053032 (LncRNA), ZEB2
chr7:33820000_33840000	20	fst	high	193 - 193	0.74 - 0.74	274 - 274	0.22 - 0.22	5.19 - 5.19	ENSGALG00000041782 (LncRNA), ENSGALG00000047423 (LncRNA)
chr7:35150000_35170000	20	xp-ehh	low	198 - 198	3.12 - 3.12	430 - 430	0.13 - 0.13	2.64 - 2.64	RIF1
chr7:35360000_35400000	40	<i>xp-ehh</i> and/or <i>fst</i>	low	237 - 240	3.07 - 3.69	434 - 467	0.2 - 0.23	4.83 - 5.64	ENSGALG00000035466
chr7:36100000_36120000	20	fst	high	167 - 167	0.48 - 0.48	337 - 337	0.23 - 0.23	5.39 - 5.39	GPD2

chr8:12720000_12740000	20	fst	low	72 - 72	0.57 - 0.57	91 - 91	0.21 - 0.21	5.03 - 5.03	PLPPR5
chr8:20440000_20470000	30	xp-ehh	high	151 - 183	3.01 - 3.01	257 - 307	0.08 - 0.08	1.49 - 1.53	PTPRF
chr9:11400000_11430000	30	fst	low	261 - 310	1.97 - 2.16	338 - 395	0.21 - 0.22	5.05 - 5.31	ENSGALG00000052830 (LncRNA)
chr9:11440000_11470000	30	xp-ehh	low	168 - 168	3.01 - 3.04	256 - 256	0.09 - 0.1	1.72 - 2.08	ENSGALG00000052830 (LncRNA)
chr9:11600000_11620000	20	fst	low	118 - 118	1.24 - 1.24	145 - 145	0.22 - 0.22	5.11 - 5.11	
chr9:12140000_12160000	20	xp-ehh	low	177 - 177	3.08 - 3.08	254 - 254	0.04 - 0.04	0.41 - 0.41	ENSGALG00000049451 (LncRNA)
chr9:12510000_12570000	60	fst	high	81 - 161	0.33 - 0.92	163 - 261	0.22 - 0.32	5.16 - 7.9	AGTR1
chr11:1090000_1150000	60	xp-ehh	high	152 - 249	3.14 - 4.14	280 - 423	0.03 - 0.11	0.07 - 2.1	CARMIL2, CTCFL, RIPOR1
chr11:1200000_1220000	20	xp-ehh	high	237 - 237	3.13 - 3.13	418 - 418	0.1 - 0.1	1.82 - 1.82	ENSGALG0000002091, ENSGALG00000035945
chr11:1660000_1680000	20	fst	high	128 - 128	2.35 - 2.35	288 - 288	0.23 - 0.23	5.38 - 5.38	VAC14
chr11:11940000_11960000	20	xp-ehh	high	216 - 216	3.13 - 3.13	341 - 341	0.03 - 0.03	0.04 - 0.04	ENSGALG00000053476 (LncRNA)
chr11:14210000_14260000	50	xp-ehh	high	152 - 181	3.04 - 3.52	282 - 312	0.06 - 0.09	0.77 - 1.62	WWOX
chr12:12730000_12750000	20	xp-ehh	high	172 - 172	3.07 - 3.07	272 - 272	0.08 - 0.08	1.41 - 1.41	FHIT
chr12:18090000_18120000	30	xp-ehh	high	134 - 159	3.03 - 3.17	241 - 317	0.08 - 0.1	1.39 - 2	ENSGALG00000046751 (LncRNA), ENSGALG00000050333 (LncRNA)
chr13:5180000_5210000	30	xp-ehh	low	210 - 234	3.2 - 3.36	325 - 336	0.07 - 0.1	1.26 - 1.89	SLIT3
chr13:5740000_5790000	50	xp-ehh	low	145 - 228	3.03 - 3.11	285 - 407	0.09 - 0.13	1.74 - 2.88	TENM2
chr13:7310000_7340000	30	fst	high	71 - 83	1.63 - 1.8	286 - 323	0.21 - 0.23	5.08 - 5.55	ENSGALG00000054885 (LncRNA)
chr14:4850000_4870000	20	xp-ehh	low	214 - 214	3.39 - 3.39	349 - 349	0.07 - 0.07	1.16 - 1.16	ENSGALG00000031051 (LncRNA)
chr15:9090000_9120000	30	xp-ehh	low	165 - 201	3.11 - 3.12	228 - 255	0.08 - 0.1	1.42 - 1.88	ENSGALG00000030684 (LncRNA), YWHAH
chr17:9480000_9510000	30	fst	high	68 - 79	0.2 - 0.24	81 - 91	0.24 - 0.27	5.7 - 6.65	DENND1A, ENSGALG00000026417 (ncRNA)
chr18:9880000_9920000	40	xp-ehh	low	119 - 172	3.17 - 3.6	206 - 337	0.08 - 0.09	1.38 - 1.65	GCGR, HGS, MCRIP1, MRPL12, 4HB, PPP1R27, SLC25A10
chr19:1750000_1790000	40	xp-ehh	high	139 - 179	3.04 - 3.29	281 - 301	0.07 - 0.13	1.17 - 2.8	AUTS2
chr20:1090000_1110000	20	fst	low	224 - 224	1.14 - 1.14	297 - 297	0.22 - 0.22	5.27 - 5.27	CPNE1, RBM12
chr20:6560000_6580000	20	fst	low	152 - 152	1.5 - 1.5	230 - 230	0.21 - 0.21	5.05 - 5.05	KCNB1, TGM3
chr22:2610000_2630000	20	fst	low	8 - 8	1.98 - 1.98	36 - 36	0.22 - 0.22	5.27 - 5.27	NSD3
chr23:4350000_4400000	50	xp-ehh	high	113 - 169	3.27 - 3.75	219 - 340	0.11 - 0.19	2.16 - 4.48	AGO1, AGO4, C1orf216, CLSPN
chr24:1140000_1180000	40	fst	low	281 - 361	0.7 - 0.88	371 - 471	0.22 - 0.26	5.12 - 6.4	KCNJ5
chr24:1210000_1240000	30	fst	low	339 - 366	0.44 - 0.46	483 - 497	0.24 - 0.24	5.75 - 5.83	

chr25:240000_260000	20	xp-ehh	high	113 - 113	3.26 - 3.26	268 - 268	0.08 - 0.08	1.46 - 1.46	GABPB2, SCNM1, SEMA6C, TMOD4, VPS72
chr27:3760000_3780000	20	xp-ehh	low	275 - 275	3.09 - 3.09	419 - 419	0.06 - 0.06	0.77 - 0.77	ENSGALG0000000824, ENSGALG00000035554 (LncRNA), FMNL1
chr28:4540000_4580000	40	xp-ehh	low	131 - 189	3.05 - 3.17	150 - 224	0.12 - 0.17	2.43 - 3.89	ENSGALG00000050334 (LncRNA), TPM4
chr31:920000_950000	30	fst	low	7 - 8	1.21 - 1.27	12 - 15	0.24 - 0.26	5.77 - 6.38	ENSGALG00000044223, ENSGALG00000044521, ENSGALG00000045132, ENSGALG00000050726 (LncRNA)

Table S4.2c. Candidate selection signature regions and overlapping genes detected from analyses of the precipitation in the wettest quarter of a year (precWQ). (**SSR_ID:** selection signature regions ID as chromosome:start_stop position. **DD:** directionality of selection)

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean <i>XP-EHH_</i> std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted <i>Fst</i> per window (range)	ZFst per window (range)	Overlapping genes
chr1:20430000_20450000	20	fst	low	108 - 108	0.51 - 0.51	344 - 344	0.4 - 0.4	5.08 - 5.08	SELENOO
chr1:38010000_38050000	40	xp-ehh	low	225 - 263	3.01 - 3.77	421 - 540	0.17 - 0.22	1.46 - 2.34	NAP1L1, PHLDA1
chr1:45020000_45040000	20	xp-ehh	low	129 - 129	3 - 3	270 - 270	0.2 - 0.2	1.92 - 1.92	
chr1:49330000_49400000	70	xp-ehh	high	148 - 180	3.04 - 3.36	248 - 360	0.24 - 0.29	2.57 - 3.35	TCF20
chr1:55780000_55800000	20	xp-ehh	high	93 - 93	3.05 - 3.05	217 - 217	0.18 - 0.18	1.68 - 1.68	TBXAS1
chr1:83090000_83110000	20	fst	low	96 - 96	2 - 2	235 - 235	0.42 - 0.42	5.43 - 5.43	ENSGALG00000054748 (LncRNA)
chr1:99010000_99040000	30	xp-ehh	high	48 - 51	3.24 - 3.28	112 - 176	0.28 - 0.34	3.13 - 4.11	
chr1:99050000_99150000	100	xp-ehh	high	18 - 135	3.04 - 3.25	77 - 202	0.12 - 0.32	0.72 - 3.89	ENSGALG00000052669 (LncRNA)
chr1:99190000_99220000	30	xp-ehh	high	34 - 54	3.01 - 3.01	185 - 201	0.17 - 0.19	1.44 - 1.83	
chr1:110570000_110590000	20	fst	high	31 - 31	0.4 - 0.4	53 - 53	0.4 - 0.4	5.13 - 5.13	ENSGALG00000048672
chr1:133250000_133270000	20	xp-ehh	low	276 - 276	3.1 - 3.1	482 - 482	0.09 - 0.09	0.25 - 0.25	CNGA3
chr1:150050000_150100000	50	fst	low	26 - 42	1.12 - 1.33	88 - 104	0.4 - 0.44	5.02 - 5.61	ENSGALG00000052317

chr1:150130000_150150000	20	fst	low	13 - 13	0.69 - 0.69	123 - 123	0.41 - 0.41	5.21 - 5.21	
chr1:150460000_150490000	30	fst	low	96 - 112	1.17 - 1.19	139 - 158	0.47 - 0.5	6.22 - 6.56	
chr1:177010000_177050000	40	fst	low	160 - 187	0.95 - 1.15	294 - 324	0.42 - 0.47	5.44 - 6.15	
chr1:186050000_186070000	20	fst	high	86 - 86	0.84 - 0.84	232 - 232	0.4 - 0.4	5.01 - 5.01	
chr2:8150000_8170000	20	xp-ehh	high	151 - 151	3.09 - 3.09	342 - 342	0.22 - 0.22	2.31 - 2.31	SHH
chr2:21970000_21990000	20	fst	high	163 - 163	0.53 - 0.53	325 - 325	0.4 - 0.4	5.06 - 5.06	CDK14
chr2:37120000_37140000	20	xp-ehh	low	172 - 172	3.37 - 3.37	369 - 369	0.19 - 0.19	1.78 - 1.78	NKIRAS1, RPL15, UBE2E1
chr2:41870000_41900000	30	xp-ehh	high	206 - 241	3.04 - 3.05	474 - 513	0.15 - 0.16	1.18 - 1.35	CPNE4
chr2:42570000_42630000	60	xp-ehh	high	194 - 234	3.03 - 3.19	329 - 371	0.11 - 0.15	0.59 - 1.2	BFSP2, CCR5, CDV3, TOPBP1
chr2:57870000_57910000	40	xp-ehh	low	205 - 259	3.11 - 3.33	416 - 451	0.07 - 0.13	-0.08 - 0.88	DCDC2
chr2:58640000_58770000	130	xp-ehh	low	76 - 159	3.17 - 3.6	208 - 331	0.05 - 0.17	-0.39 - 1.56	ENSGALG00000048667 (LncRNA)
chr2:61180000_61210000	30	xp-ehh	low	185 - 211	3.07 - 3.1	300 - 339	0.18 - 0.2	1.67 - 1.93	JARID2
chr2:61380000_61400000	20	fst	low	152 - 152	1.1 - 1.1	437 - 437	0.4 - 0.4	5.02 - 5.02	
chr2:65510000_65540000	30	xp-ehh	low	207 - 229	3.09 - 3.2	363 - 401	0.1 - 0.14	0.45 - 1.03	ENSGALG00000047910 (LncRNA), LYRM4
chr2:65560000_65580000	20	xp-ehh	low	130 - 130	3.2 - 3.2	488 - 488	0.23 - 0.23	2.38 - 2.38	ENSGALG00000053424
chr2:65630000_65650000	20	xp-ehh	low	165 - 165	3.02 - 3.02	490 - 490	0.14 - 0.14	1.04 - 1.04	ENSGALG00000012808
chr2:66210000_66230000	20	xp-ehh	low	176 - 176	3.03 - 3.03	328 - 328	0.1 - 0.1	0.43 - 0.43	SLC22A23
chr2:68080000_68110000	30	fst	high	137 - 181	1.33 - 1.59	332 - 406	0.42 - 0.42	5.34 - 5.36	PHLPP1
chr2:83520000_83540000	20	xp-ehh	low	109 - 109	3.09 - 3.09	403 - 403	0.39 - 0.39	4.94 - 4.94	ENSGALG00000052392 (LncRNA), RPRD1A
chr2:127110000_127130000	20	fst	high	132 - 132	0.94 - 0.94	345 - 345	0.41 - 0.41	5.21 - 5.21	
chr2:135380000_135440000	60	xp-ehh	low	63 - 123	3.02 - 3.31	204 - 319	0.19 - 0.31	1.8 - 3.66	EIF3H
chr2:135760000_135790000	30	xp-ehh	low	189 - 203	3.03 - 3.07	393 - 411	0.14 - 0.19	0.97 - 1.81	MED30
chr2:135870000_135900000	30	xp-ehh	low	136 - 195	3.1 - 3.16	283 - 351	0.11 - 0.16	0.54 - 1.34	EXT1
chr2:136080000_136100000	20	xp-ehh	low	159 - 159	3.35 - 3.35	310 - 310	0.2 - 0.2	2.01 - 2.01	SAMD12
chr2:139590000_139620000	30	fst	high	98 - 109	1.41 - 1.76	157 - 194	0.42 - 0.52	5.38 - 6.99	
chr3:21650000_21700000	50	xp-ehh	high	145 - 166	3.01 - 3.23	264 - 291	0.16 - 0.2	1.37 - 2.01	ENSGALG00000047938 (LncRNA), ENSGALG00000052926 (LncRNA)
chr3:28650000_28690000	40	xp-ehh	high	128 - 180	3.07 - 3.2	282 - 360	0.11 - 0.21	0.61 - 2.16	
chr3:71850000_71870000	20	fst	high	110 - 110	1.9 - 1.9	186 - 186	0.43 - 0.43	5.46 - 5.46	
chr3:87810000_87870000	60	xp-ehh	low	109 - 162	3.08 - 3.38	256 - 443	0.24 - 0.29	2.62 - 3.3	ENSGALG00000049936 (LncRNA), TINAG
chr4:1090000_1130000	40	xp-ehh	low	152 - 191	3.23 - 3.49	282 - 351	0.2 - 0.24	1.93 - 2.55	FAM155B

chr4:4570000_4590000	20	xp-ehh	high	236 - 236	3.18 - 3.18	445 - 445	0.25 - 0.25	2.77 - 2.77	ENSGALG00000049919 (LncRNA)
chr4:15360000_15380000	20	xp-ehh	low	95 - 95	3.08 - 3.08	223 - 223	0.27 - 0.27	3.11 - 3.11	TENM1
chr4:24500000_24530000	30	xp-ehh	low	192 - 204	3.06 - 3.1	448 - 488	0.08 - 0.12	0.14 - 0.7	SPOCK3
chr4:24870000_24910000	40	xp-ehh	low	216 - 248	3.06 - 3.38	402 - 441	0.13 - 0.16	0.9 - 1.36	ENSGALG00000049163 (LncRNA)
chr4:25200000_25220000	20	xp-ehh	low	219 - 219	3.01 - 3.01	464 - 464	0.25 - 0.25	2.81 - 2.81	
chr4:25450000_25550000	100	xp-ehh	low	182 - 242	3.16 - 3.83	336 - 454	0.2 - 0.27	1.95 - 3.09	CBR4, SH3RF1
chr4:29770000_29790000	20	xp-ehh	low	252 - 252	3.16 - 3.16	409 - 409	0.15 - 0.15	1.14 - 1.14	RNF150
chr4:29820000_29870000	50	xp-ehh	low	224 - 237	3.03 - 3.21	391 - 463	0.12 - 0.18	0.79 - 1.64	RNF150
chr4:31960000_31980000	20	xp-ehh	low	227 - 227	3.03 - 3.03	481 - 481	0.21 - 0.21	2.19 - 2.19	PRMT9, TMEM184C
chr4:32220000_32240000	20	xp-ehh	low	258 - 258	3.03 - 3.03	354 - 354	0.1 - 0.1	0.44 - 0.44	NR3C2
chr4:32340000_32360000	20	xp-ehh	low	144 - 144	3 - 3	245 - 245	0.07 - 0.07	-0.110.11	ENSGALG00000030689 (LncRNA)
chr4:37920000_37940000	20	xp-ehh	low	244 - 244	3.01 - 3.01	416 - 416	0.05 - 0.05	-0.310.31	HADH, LEF1
abr1:20110000 20110000	20	fat	high	01 121	0.62 1.01	266 280	0.41 0.45	511 597	ACSL1, ENSGALG00000050111
clif4:39410000_39440000	50	jsi	mgn	91 - 121	0.05 - 1.01	200 - 289	0.41 - 0.43	3.14 - 3.87	(LncRNA)
chr4:59770000_59800000	30	xp-ehh	high	182 - 190	3.02 - 3.13	327 - 338	0.14 - 0.17	1.06 - 1.54	RAP1GDS1, TSPAN5
chr4:65470000_65500000	30	xp-ehh	low	194 - 203	3.1 - 3.11	427 - 451	0.12 - 0.12	0.76 - 0.76	CHIC2
chr4:89580000_89600000	20	fst	low	158 - 158	0.83 - 0.83	384 - 384	0.41 - 0.41	5.17 - 5.17	ADAM33, ENSGALG00000044620
chr4:89960000_89990000	30	xp-ehh	high	96 - 146	3.05 - 3.18	346 - 362	0.14 - 0.22	1.01 - 2.21	EXOC6B
chr5:29730000_29750000	20	fst	high	221 - 221	1.25 - 1.25	441 - 441	0.4 - 0.4	5.14 - 5.14	GPR176
									CIPC, ENSGALG0000048945
									(LncRNA), ENSGALG00000049515
									(LncRNA), ENSGALG00000050873
chr5:39190000_39350000	160	xp-ehh	low	66 - 199	3.03 - 3.51	136 - 352	0.02 - 0.33	-0.8 - 3.91	(LncRNA), gga-mir-6645 (miRNA),
		•							IRF2BPL, NGB,
									NSGALG00000024525 (5S rRNA).
									TMEM63C. ZDHHC22
chr5:43320000 43360000	40	xp-ehh	low	177 - 208	3.12 - 3.22	332 - 412	0.14 - 0.19	0.97 - 1.78	EML5. PTPN21. ZC3H14
				1.55	2.0.5. 2.10		0.00	0.62 0.1	ENSGALG00000047714 (LncRNA).
chr5:43580000_43610000	30	xp-ehh	low	157 - 205	3.05 - 3.18	285 - 359	0.03 - 0.08	-0.62 - 0.1	FOXN3
1.5.55470000 55500000	20	1.1	1.	100 100	2.1. 2.24	266 404	0.05 0.07	0.41 0.00	ACTR10, ENSGALG00000012085,
cnr5:55470000_55500000	30	xp-enn	low	182 - 183	3.1 - 3.24	366 - 404	0.05 - 0.07	-0.410.08	PSMA3
chr7:8590000_8610000	20	xp-ehh	low	35 - 35	3.04 - 3.04	74 - 74	0.32 - 0.32	3.81 - 3.81	
chr7:28430000_28460000	30	xp-ehh	low	141 - 194	3.02 - 3.14	354 - 385	0.1 - 0.12	0.36 - 0.78	C1QL2

chr7:30450000_30480000	30	xp-ehh	low	143 - 162	3.09 - 3.11	323 - 364	0.14 - 0.18	1.01 - 1.64	ACMSD, ENSGALG00000012207, ENSGALG00000046969, ENSGALG00000054339
chr7:34590000_34610000	20	fst	low	88 - 88	0.12 - 0.12	302 - 302	0.41 - 0.41	5.16 - 5.16	
chr7:34830000_34860000	30	xp-ehh	low	140 - 201	3.07 - 3.12	378 - 424	0.17 - 0.2	1.46 - 1.92	KIF5C
chr8:6440000_6460000	20	xp-ehh	low	178 - 178	3.01 - 3.01	416 - 416	0.1 - 0.1	0.43 - 0.43	TOR1AIP1, TOR1AIP2
chr8:10350000_10380000	30	fst	low	47 - 49	1.96 - 1.96	62 - 73	0.4 - 0.41	5.01 - 5.23	ENSGALG00000043258 (LncRNA)
chr8:10430000_10670000	240	fst	low	4 - 48	1.17 - 2.23	30 - 71	0.41 - 0.49	5.21 - 6.44	ENSGALG00000047029, PLA2G4A
chr8:10680000_10700000	20	fst	low	9 - 9	1.45 - 1.45	56 - 56	0.4 - 0.4	5.01 - 5.01	PLA2G4A
chr8:22190000_22210000	20	xp-ehh	low	234 - 234	3.09 - 3.09	526 - 526	0.09 - 0.09	0.31 - 0.31	ATPAF1, EFCAB14, MOB3C
chr8:23360000_23420000	60	xp-ehh	low	111 - 173	3.05 - 3.48	234 - 378	0.07 - 0.15	-0.11 - 1.27	BEND5
chr8:27970000_27990000	20	xp-ehh	low	161 - 161	3.2 - 3.2	352 - 352	0.15 - 0.15	1.25 - 1.25	ENSGALG00000047521 (LncRNA), ENSGALG00000053679 (LncRNA)
chr8:28310000_28340000	30	xp-ehh	low	209 - 210	3.08 - 3.29	357 - 367	0.16 - 0.16	1.32 - 1.34	ROR1
chr9:1240000_1260000	20	xp-ehh	low	144 - 144	3.02 - 3.02	266 - 266	0.09 - 0.09	0.33 - 0.33	NEU2, NGEF
chr9:8040000_8070000	30	fst	low	104 - 140	1.55 - 1.86	270 - 272	0.41 - 0.42	5.19 - 5.34	Pax3
chr9:20250000_20300000	50	xp-ehh	low	157 - 191	3.22 - 3.36	278 - 307	0.14 - 0.17	1.1 - 1.58	МЕСОМ
chr10:13630000_13730000	100	xp-ehh	high	134 - 256	3.08 - 3.41	282 - 515	0.13 - 0.28	0.82 - 3.18	NTRK3
chr10:17820000_17840000	20	xp-ehh	high	86 - 86	3.1 - 3.1	211 - 211	0.2 - 0.2	1.9 - 1.9	ENSGALG00000053260 (LncRNA)
chr10:20300000_20350000	50	xp-ehh	high	186 - 226	3.03 - 3.42	343 - 413	0.08 - 0.15	0.13 - 1.15	BLM, FRMD5, WDR76
chr11:4580000_4600000	20	fst	low	85 - 85	0.18 - 0.18	201 - 201	0.4 - 0.4	5.07 - 5.07	
chr11:16300000_16320000	20	fst	high	151 - 151	1.57 - 1.57	250 - 250	0.4 - 0.4	5.13 - 5.13	CDH13
chr13:1280000_1310000	30	xp-ehh	low	51 - 93	3.04 - 3.1	128 - 191	0.24 - 0.27	2.64 - 3.11	ENSGALG00000052992
chr13:2570000_2590000	20	fst	low	32 - 32	1.08 - 1.08	104 - 104	0.4 - 0.4	5.13 - 5.13	PCDHGA2
chr13:2940000_2980000	40	fst	low	69 - 92	1.31 - 1.46	229 - 267	0.45 - 0.54	5.9 - 7.25	ENSGALG00000042617 (LncRNA), ENSGALG00000051725 (LncRNA), ENSGALG00000054361 (LncRNA)
chr14:4400000_4440000	40	xp-ehh	high	194 - 266	3.16 - 3.66	371 - 429	0.13 - 0.19	0.84 - 1.89	AP5Z1, ENSGALG00000004504, gga-mir-12224, gga-mir-2129, MMD2
chr15:4930000_4950000	20	xp-ehh	high	162 - 162	3 - 3	288 - 288	0.22 - 0.22	2.31 - 2.31	NCOR2
chr15:7930000_8000000	70	xp-ehh	high	160 - 242	3.03 - 3.47	294 - 439	0.12 - 0.23	0.77 - 2.46	CCDC117, CHEK2, SLC2A11L5, gga-mir-6650, HSCB, TTC28
chr15:10640000_10670000	30	xp-ehh	high	176 - 200	3.08 - 3.3	314 - 355	0.17 - 0.18	1.43 - 1.66	RTN4R

chr15:10680000_10700000	20	xp-ehh	high	167 - 167	3.05 - 3.05	274 - 274	0.12 - 0.12	0.69 - 0.69	ENSGALG00000033639 (LncRNA), RTN4R
chr15:10710000_10750000	40	xp-ehh	high	183 - 203	3.08 - 3.41	269 - 317	0.14 - 0.2	1.01 - 1.9	ENSGALG00000047400 (LncRNA)
chr17:2810000_2840000	30	xp-ehh	low	95 - 124	3.14 - 3.31	329 - 396	0.16 - 0.19	1.35 - 1.87	AKNA, gga-mir-7442, STXBP1, WHRN
chr17:7790000_7820000	30	xp-ehh	low	192 - 193	3.32 - 3.32	348 - 372	0.21 - 0.29	2.19 - 3.36	COL5A1
chr19:8420000_8470000	50	xp-ehh	low	147 - 157	3.18 - 3.4	246 - 273	0.08 - 0.21	0.06 - 2.06	
chr19:8780000_8820000	40	xp-ehh/fst	low	60 - 71	2.65 - 3	218 - 221	0.19 - 0.41	1.88 - 5.17	DDX52, HEATR6, HNF1B
chr20:9120000_9160000	40	xp-ehh	low	163 - 228	3.07 - 3.51	349 - 452	0.11 - 0.16	0.62 - 1.36	ENSGALG00000049648 (LncRNA), MYT1
chr22:1060000_1090000	30	fst	high	7 - 8	1.14 - 1.33	34 - 35	0.42 - 0.47	5.34 - 6.12	NEFL
chr22:1150000_1180000	30	fst	high	8 - 15	0.33 - 0.37	35 - 53	0.46 - 0.49	6.01 - 6.42	
chr22:5290000_5320000	30	xp-ehh	high	69 - 90	3.04 - 3.09	215 - 247	0.03 - 0.1	-0.61 - 0.39	CASP14, ENSGALG00000047954, TGOLN2, TCF7L1
chr23:5550000_5610000	60	fst	low	65 - 86	0.97 - 1.82	200 - 224	0.4 - 0.5	5.08 - 6.61	BMP8A, MACF1
chr24:1310000_1330000	20	xp-ehh	high	271 - 271	3.12 - 3.12	439 - 439	0.16 - 0.16	1.35 - 1.35	
chr24:2930000_2960000	30	xp-ehh	low	191 - 199	3.02 - 3.11	339 - 359	0.15 - 0.19	1.17 - 1.86	GRAMD1B
chr26:2140000_2180000	40	xp-ehh	low	148 - 185	3.17 - 3.46	335 - 348	0.06 - 0.08	-0.19 - 0.17	CDK18, MFSD4A
chr27:4810000_4850000	40	xp-ehh	high	156 - 215	3.08 - 3.19	278 - 389	0.09 - 0.14	0.31 - 1.06	MRC2, TLK2

Table S4.2d. Candidate selection signature regions and overlapping genes detected from analyses of the precipitation in the driest quarter of a year (precDQ). (**SSR_ID:** selection signature regions ID as chromosome:start_stop position. **DD:** directionality of selection)

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean <i>XP-EHH_</i> std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted Fst per window (range)	ZFst per window (range)	Overlapping genes
chr1:900000_9020000	20	fst	low	66 - 66	1.85 - 1.85	135 - 135	0.23 - 0.23	5.18 - 5.18	
chr1:13780000_13800000	20	fst	low	127 - 127	0.59 - 0.59	209 - 209	0.22 - 0.22	5.03 - 5.03	
chr1:15060000_15080000	20	xp-ehh	low	274 - 274	3.29 - 3.29	389 - 389	0.14 - 0.14	2.83 - 2.83	LAMB1, LAMB4
chr1:33810000_33830000	20	xp-ehh	high	269 - 269	3.05 - 3.05	402 - 402	0.1 - 0.1	1.78 - 1.78	RASSF3

chr1:52790000_52820000	30	fst	high	94 - 117	0.71 - 1.01	246 - 271	0.22 - 0.24	5.05 - 5.43	LARGE1
chr1:60010000_60030000	20	xp-ehh	low	238 - 238	3.31 - 3.31	335 - 335	0.04 - 0.04	0.27 - 0.27	ENSGALG00000048398 (LncRNA), IQSEC3
chr1:65410000_65440000	30	xp-ehh	low	145 - 175	3.16 - 3.24	222 - 273	0.06 - 0.07	0.81 - 1.16	BCAT1, ENSGALG00000048674
chr1:78060000_78080000	20	fst	high	148 - 148	1.65 - 1.65	248 - 248	0.22 - 0.22	5.05 - 5.05	C1R, CLSTN3, RBP5
chr1:81240000_81260000	20	fst	low	215 - 215	1.18 - 1.18	369 - 369	0.24 - 0.24	5.42 - 5.42	CASQ2
chr1:88290000_88330000	40	xp-ehh	low	144 - 182	3.37 - 3.93	365 - 405	0.12 - 0.16	2.46 - 3.48	BBX
chr1:97320000_97340000	20	xp-ehh	low	114 - 114	3.3 - 3.3	292 - 292	0.15 - 0.15	3.21 - 3.21	ENSGALG00000054585 (LncRNA)
chr1:107790000_107810000	20	fst	low	61 - 61	1.41 - 1.41	205 - 205	0.22 - 0.22	5.04 - 5.04	ENSGALG00000050248 (LncRNA)
chr1:109700000_109730000	30	xp-ehh	low	181 - 191	3.15 - 3.18	314 - 366	0.09 - 0.14	1.74 - 2.98	DSCAM
chr1:109740000_109790000	50	xp-ehh	low	132 - 171	3.02 - 3.08	265 - 302	0.08 - 0.15	1.29 - 3.12	DSCAM, ENSGALG00000042372 (LncRNA), ENSGALG00000052898(ncRNA)
chr1:110360000_110390000	30	xp-ehh / fst	low	240 - 270	2.98 - 3.21	382 - 395	0.18 - 0.22	4.11 - 5.12	ENSGALG00000051940 (LncRNA), RIPK4
chr1:111190000_111210000	20	fst	low	161 - 161	1.99 - 1.99	288 - 288	0.25 - 0.25	5.74 - 5.74	
chr1:112350000_112370000	20	xp-ehh	low	188 - 188	3.02 - 3.02	435 - 435	0.06 - 0.06	0.8 - 0.8	FUNDC1
chr1:113640000_113670000	30	xp-ehh	low	117 - 179	3.2 - 3.76	217 - 310	0.06 - 0.11	0.78 - 2.16	ENSGALG00000046706 (LncRNA)
chr1:113700000_113720000	20	xp-ehh	low	134 - 134	3.22 - 3.22	287 - 287	0.13 - 0.13	2.7 - 2.7	BCOR
chr1:128020000_128040000	20	fst	low	82 - 82	2.31 - 2.31	113 - 113	0.22 - 0.22	5.01 - 5.01	
chr1:128240000_128260000	20	xp-ehh	low	53 - 53	3.04 - 3.04	88 - 88	0.09 - 0.09	1.67 - 1.67	NLGN4Y
chr1:130660000_130690000	30	xp-ehh	low	150 - 156	3.3 - 3.36	248 - 275	0.04 - 0.06	0.45 - 0.82	
chr1:134820000_134840000	20	xp-ehh	high	187 - 187	3.27 - 3.27	385 - 385	0.11 - 0.11	2.06 - 2.06	RFX8
chr1:153410000_153460000	50	fst	high	9 - 39	1.68 - 2.02	79 - 113	0.26 - 0.34	5.94 - 8.22	
chr1:155020000_155060000	40	fst	low	90 - 120	0.2 - 0.35	253 - 267	0.23 - 0.24	5.2 - 5.51	ENSGALG00000051545 (LncRNA)
chr1:159570000_159590000	20	fst	low	100 - 100	1.17 - 1.17	172 - 172	0.22 - 0.22	5.1 - 5.1	
chr1:15960000_159640000	40	fst	low	109 - 150	1.18 - 1.58	224 - 294	0.24 - 0.29	5.54 - 6.74	
chr1:178310000_178340000	30	xp-ehh	high	191 - 217	3.02 - 3.23	305 - 305	0.07 - 0.08	1.17 - 1.27	ATP8A2
chr2:2960000_2990000	30	fst	low	183 - 217	1.9 - 1.95	255 - 351	0.23 - 0.24	5.38 - 5.58	
chr2:5460000_5480000	20	fst	low	185 - 185	0.08 - 0.08	292 - 292	0.31 - 0.31	7.24 - 7.24	ENSGALG0000006072
chr2:10260000_10280000	20	xp-ehh	low	213 - 213	3.09 - 3.09	404 - 404	0.05 - 0.05	0.61 - 0.61	DIP2C
chr2:11620000_11650000	30	fst	high	77 - 113	0.85 - 1.07	141 - 181	0.24 - 0.24	5.42 - 5.45	
chr2:1220000_12220000	20	fst	low	33 - 33	0.28 - 0.28	106 - 106	0.23 - 0.23	5.27 - 5.27	
chr2:26940000_26970000	30	fst	low	150 - 160	0.48 - 0.53	203 - 210	0.23 - 0.23	5.15 - 5.38	ENSGALG00000050874 (LncRNA)

chr2:28010000_28040000	30	fst	low	101 - 133	1.4 - 1.51	263 - 319	0.23 - 0.24	5.19 - 5.42	AGMO, MEOX2
chr2:28060000_28080000	20	fst	low	68 - 68	1.13 - 1.13	175 - 175	0.23 - 0.23	5.34 - 5.34	MEOX2
chr2:28120000_28210000	90	fst	low	42 - 82	0.69 - 1.73	108 - 194	0.23 - 0.27	5.4 - 6.35	ENSGALG00000054958 (LncRNA), ENSGALG00000027900 (5S_rRNA)
chr2:46360000_46380000	20	xp-ehh	high	166 - 166	3.09 - 3.09	348 - 348	0.05 - 0.05	0.55 - 0.55	ELMO1
chr2:46670000_46690000	20	fst	high	189 - 189	2.39 - 2.39	422 - 422	0.24 - 0.24	5.48 - 5.48	ANLN, AOAH
chr2:55230000_55290000	60	xp-ehh	high	138 - 198	3.32 - 3.82	251 - 367	0.11 - 0.17	2.09 - 3.62	ENSGALG00000054801 (LncRNA), TNS3
chr2:95670000_95800000	130	fst	high	33 - 138	2.13 - 2.67	58 - 197	0.24 - 0.3	5.63 - 7.1	
chr2:103790000_103820000	30	fst	low	140 - 156	1.13 - 1.4	178 - 210	0.25 - 0.26	5.84 - 6.11	gga-mir-1597, ZNF521
chr2:113980000_114020000	40	xp-ehh	high	125 - 167	3.14 - 3.3	215 - 267	0.05 - 0.14	0.67 - 2.82	
chr2:114940000_114960000	20	xp-ehh	high	185 - 185	3.05 - 3.05	271 - 271	0.06 - 0.06	0.94 - 0.94	DNAJC5B
chr2:123760000_123780000	20	xp-ehh	low	59 - 59	3.1 - 3.1	123 - 123	0.01 - 0.01	-0.460.46	
chr2:124060000_124150000	90	xp-ehh	low	80 - 205	3.01 - 3.47	282 - 442	0.06 - 0.14	0.91 - 2.83	ENSGALG00000049271 (LncRNA)
chr2:124380000_124410000	30	xp-ehh	low	257 - 273	3.09 - 3.13	405 - 413	0.02 - 0.03	-0.1 - 0.17	
chr2:145640000_145670000	30	xp-ehh	high	160 - 222	3.43 - 3.46	322 - 353	0.12 - 0.13	2.41 - 2.71	AGO2, ENSGALG00000052658 (LncRNA), gga-mir-6572
chr3:1160000_1210000	50	fst	high	5 - 44	1.49 - 2.14	55 - 90	0.23 - 0.39	5.19 - 9.42	ENSGALG00000047366 (LncRNA)
chr3:5550000_5570000	20	xp-ehh	high	157 - 157	3.02 - 3.02	317 - 317	0.1 - 0.1	1.76 - 1.76	KIF16B
chr3:8430000_8450000	20	fst	low	233 - 233	0.7 - 0.7	399 - 399	0.22 - 0.22	5.05 - 5.05	GALNT14
chr3:19210000_19230000	20	xp-ehh	high	155 - 155	3.19 - 3.19	264 - 264	0.12 - 0.12	2.44 - 2.44	LYPLAL1
chr3:20090000_20110000	20	fst	low	83 - 83	1.58 - 1.58	152 - 152	0.23 - 0.23	5.31 - 5.31	ESRRG
chr3:39090000_39110000	20	xp-ehh	low	180 - 180	3.01 - 3.01	285 - 285	0.07 - 0.07	1.03 - 1.03	ENSGALG00000048291, ENSGALG00000050186, NTPCR
chr3:49700000_49720000	20	fst	high	168 - 168	0.63 - 0.63	293 - 293	0.27 - 0.27	6.24 - 6.24	FBXO5, MTRF1L
chr3:50830000_50860000	30	fst	low	79 - 84	0.65 - 1.05	255 - 271	0.23 - 0.24	5.27 - 5.58	ENSGALG00000047502 (LncRNA)
chr3:70090000_70160000	70	fst	low	42 - 57	0.98 - 1.61	74 - 124	0.23 - 0.29	5.22 - 6.9	ENSGALG00000051525, GRIK2
chr3:70280000_70300000	20	fst	low	143 - 143	1.34 - 1.34	186 - 186	0.23 - 0.23	5.19 - 5.19	GRIK2
chr3:70960000_71090000	130	xp-ehh	low	83 - 190	3.28 - 4.05	129 - 273	0.11 - 0.21	2.12 - 4.81	ENSGALG00000053011 (LncRNA), SIM1
chr3:71640000_71670000	30	fst	low	169 - 199	1.21 - 2.1	246 - 255	0.24 - 0.24	5.43 - 5.58	ENSGALG00000047943 (LncRNA), ENSGALG00000052916 (LncRNA)
chr3:71840000_72120000	280	<i>xp-ehh</i> and/or <i>fst</i>	low	21 - 179	3.01 - 3.75	96 - 315	0.05 - 0.24	0.62 - 5.67	ENSGALG00000034564 (LncRNA), ENSGALG00000049307 (LncRNA), gga-mir-12262

chr3:72130000_72150000	20	xp-ehh	low	81 - 81	3 - 3	147 - 147	0.06 - 0.06	0.95 - 0.95	
chr3:72220000_72340000	120	xp-ehh	low	69 - 148	3.01 - 3.63	108 - 248	0.04 - 0.22	0.37 - 4.92	ENSGALG00000036204 (LncRNA)
chr3:72360000_72540000	180	<i>xp-ehh</i> and/or <i>fst</i>	low	76 - 254	3.01 - 4.08	178 - 411	0.04 - 0.22	0.37 - 5.03	ENSGALG00000036204 (LncRNA), KLHL32, MMS22L
chr3:72840000_72880000	40	fst	low	119 - 165	2.79 - 2.86	210 - 276	0.24 - 0.32	5.61 - 7.71	
chr3:7300000_73050000	50	fst	low	66 - 138	1.92 - 2.24	143 - 241	0.25 - 0.33	5.85 - 7.82	FUT9
chr3:73120000_73250000	130	<i>xp-ehh</i> and/or <i>fst</i>	low	76 - 291	1.85 - 3.19	159 - 497	0.22 - 0.43	4.95 - 10.42	MANEA, ENSGALG00000025686 (SnRNA)
chr3:73300000_73390000	90	fst	low	36 - 100	2.84 - 2.95	132 - 174	0.22 - 0.31	5.03 - 7.42	ENSGALG00000046901 (LncRNA), ENSGALG00000050194
chr3:73530000_73840000	310	<i>xp-ehh</i> and/or <i>fst</i>	low	39 - 91	1.72 - 3.21	91 - 217	0.15 - 0.34	3.13 - 8.16	ENSGALG00000026577 (MiRNA)
chr3:73860000_73950000	90	<i>xp-ehh</i> and/or <i>fst</i>	low	42 - 138	2.92 - 3.4	87 - 238	0.12 - 0.32	2.37 - 7.56	EPHA7
chr3:73960000_73980000	20	fst	low	71 - 71	2 - 2	124 - 124	0.22 - 0.22	5 - 5	EPHA7, gga-mir-1677
chr3:74410000_74430000	20	fst	low	88 - 88	1.03 - 1.03	170 - 170	0.23 - 0.23	5.21 - 5.21	
chr3:74450000_74470000	20	fst	low	72 - 72	1.33 - 1.33	137 - 137	0.24 - 0.24	5.42 - 5.42	ENSGALG00000047305 (MiRNA)
chr3:74490000_74510000	20	fst	low	62 - 62	1.72 - 1.72	123 - 123	0.23 - 0.23	5.21 - 5.21	
chr3:78890000_78930000	40	xp-ehh	low	108 - 123	3.03 - 3.14	184 - 202	0.1 - 0.14	1.88 - 2.95	
chr3:86030000_86060000	30	fst	high	55 - 59	0.73 - 0.81	112 - 116	0.22 - 0.23	5.08 - 5.39	
chr3:86680000_86780000	100	fst	high	231 - 263	0.64 - 1.87	319 - 464	0.25 - 0.34	5.7 - 8.09	BAG2, PRIM2, RAB23, ZNF451
chr3:86780000_86800000	20	fst	low	263 - 263	0.74 - 0.74	395 - 395	0.28 - 0.28	6.58 - 6.58	ZNF451
chr3:87510000_87540000	30	fst	low	91 - 172	0.96 - 1.44	196 - 327	0.25 - 0.3	5.79 - 7.03	HMGCLL1
chr3:99060000_99080000	20	fst	low	216 - 216	2.35 - 2.35	336 - 336	0.23 - 0.23	5.16 - 5.16	
chr3:104340000_104370000	30	xp-ehh	low	169 - 252	3.35 - 3.37	392 - 462	0.09 - 0.11	1.62 - 2.27	NUMBL, IFT172, IFT172
chr3:106430000_106510000	80	<i>xp-ehh</i> and/or <i>fst</i>	low	157 - 238	2.12 - 3.25	300 - 399	0.14 - 0.29	2.99 - 6.81	MSRA
chr4:1350000_1420000	70	xp-ehh	low	162 - 308	3.26 - 3.95	359 - 491	0.06 - 0.1	0.86 - 1.98	CYSLTR1, ENSGALG00000004127, ENSGALG00000053473 (LncRNA), LPAR4
chr4:9970000_9990000	20	fst	high	121 - 121	0.58 - 0.58	249 - 249	0.24 - 0.24	5.59 - 5.59	ENSGALG00000052590 (LncRNA)
chr4:11090000_11110000	20	xp-ehh	low	181 - 181	3.07 - 3.07	420 - 420	0.07 - 0.07	1.15 - 1.15	
chr4:11220000_11250000	30	xp-ehh	low	184 - 221	3.06 - 3.14	283 - 353	0.07 - 0.1	1.05 - 1.82	ENSGALG00000052786
chr4:14070000_14090000	20	xp-ehh	low	238 - 238	3.28 - 3.28	404 - 404	0.07 - 0.07	1.01 - 1.01	
chr4:22570000_22600000	30	fst	low	147 - 204	0.14 - 0.14	217 - 245	0.24 - 0.28	5.43 - 6.48	

chr4:23350000_23430000	80	xp-ehh / fst	high	111 - 205	2.13 - 3.14	266 - 384	0.13 - 0.32	2.76 - 7.71	ENSGALG00000046688 (LncRNA), NPY1R, NPY5R, TMA16
chr4:27820000_27880000	60	fst	high	74 - 97	1.88 - 2.04	108 - 156	0.22 - 0.31	5.11 - 7.46	ENSGALG00000051876 (LncRNA)
chr4:27890000_27910000	20	fst	high	84 - 84	2.05 - 2.05	123 - 123	0.24 - 0.24	5.43 - 5.43	
chr4:28120000_28140000	20	fst	high	86 - 86	2.14 - 2.14	120 - 120	0.23 - 0.23	5.21 - 5.21	
chr4:28210000_28230000	20	fst	high	40 - 40	2.2 - 2.2	89 - 89	0.23 - 0.23	5.26 - 5.26	ENSGALG00000050821 (LncRNA), ENSGALG00000053850 (LncRNA)
chr4:28270000_28300000	30	fst	high	31 - 51	2.09 - 2.11	58 - 80	0.22 - 0.23	5.11 - 5.38	ENSGALG00000047082 (LncRNA)
chr4:28350000_28380000	30	fst	high	68 - 70	2.13 - 2.14	102 - 122	0.23 - 0.24	5.17 - 5.64	
chr4:28490000_28520000	30	xp-ehh	high	43 - 55	3.02 - 3.11	148 - 150	0.15 - 0.16	3.3 - 3.43	ENSGALG00000048582 (LncRNA), ENSGALG00000054220 (LncRNA)
chr4:28770000_28870000	100	xp-ehh	high	138 - 208	3.15 - 3.49	269 - 369	0.07 - 0.14	1.02 - 2.95	
chr4:29620000_29640000	20	xp-ehh	high	222 - 222	3.38 - 3.38	366 - 366	0.11 - 0.11	2.13 - 2.13	CLGN, ENSGALG00000048914 (LncRNA), SCOC
chr4:35180000_35200000	20	fst	low	241 - 241	2.46 - 2.46	371 - 371	0.23 - 0.23	5.24 - 5.24	FAM13A
chr4:43270000_43290000	20	xp-ehh	low	195 - 195	3.02 - 3.02	301 - 301	0.09 - 0.09	1.71 - 1.71	GALNT7
chr4:48300000_48320000	20	xp-ehh	high	191 - 191	3.16 - 3.16	302 - 302	0.14 - 0.14	2.93 - 2.93	ADGRL3
chr4:62850000_62870000	20	xp-ehh	high	213 - 213	3.22 - 3.22	442 - 442	0.02 - 0.02	-0.20.2	FGL1
chr4:70510000_70530000	20	fst	low	137 - 137	0.86 - 0.86	235 - 235	0.26 - 0.26	5.96 - 5.96	
chr4:74170000_74300000	130	<i>xp-ehh</i> and/or <i>fst</i>	low	76 - 165	1.32 - 3.06	148 - 234	0.22 - 0.31	5.08 - 7.46	ENSGALG00000046053 (LncRNA), ENSGALG00000048521 (LncRNA), ENSGALG00000050078 (LncRNA), ENSGALG00000051573 (LncRNA)
chr4:74430000_74540000	110	xp-ehh	low	118 - 216	3.02 - 3.42	213 - 351	0.1 - 0.22	1.79 - 4.92	ADGRA3, ENSGALG00000048082, ENSGALG00000054975 (LncRNA)
chr4:74550000_74620000	70	xp-ehh	low	105 - 175	3.06 - 4.05	232 - 263	0.1 - 0.14	1.93 - 2.83	ENSGALG00000051973 (LncRNA), ENSGALG00000054975 (LncRNA)
chr4:74650000_74670000	20	fst	low	158 - 158	1.96 - 1.96	250 - 250	0.26 - 0.26	6.04 - 6.04	
chr4:89950000_89980000	30	xp-ehh	low	227 - 229	3.06 - 3.24	375 - 380	0.15 - 0.17	3.17 - 3.59	EXOC6B
chr5:45810000_45830000	20	fst	high	182 - 182	0.08 - 0.08	219 - 219	0.23 - 0.23	5.41 - 5.41	
chr6:2890000_2910000	20	xp-ehh	high	183 - 183	3 - 3	275 - 275	0.02 - 0.02	-0.190.19	
chr6:12510000_12530000	20	xp-ehh	high	253 - 253	3.04 - 3.04	375 - 375	0.08 - 0.08	1.27 - 1.27	CDH23, SLC29A3
chr6:21700000_21720000	20	fst	low	304 - 304	2.17 - 2.17	538 - 538	0.22 - 0.22	5.01 - 5.01	IDE, KIF11
chr6:21780000_21810000	30	fst	low	221 - 243	1.56 - 1.63	367 - 448	0.31 - 0.32	7.32 - 7.73	MARCH5
chr6:21870000_21890000	20	fst	low	106 - 106	1.05 - 1.05	288 - 288	0.27 - 0.27	6.35 - 6.35	СРЕВЗ

chr6:25040000_25070000	30	xp-ehh / fst	low	140 - 169	3.06 - 3.25	311 - 420	0.24 - 0.26	5.45 - 6.13	SLK
chr7:5670000_5690000	20	xp-ehh	low	203 - 203	3.07 - 3.07	346 - 346	0.09 - 0.09	1.6 - 1.6	
chr7:10350000_10370000	20	xp-ehh	low	160 - 160	3.02 - 3.02	270 - 270	0.05 - 0.05	0.65 - 0.65	PLCL1
chr7:12960000_12990000	30	xp-ehh	high	246 - 268	3.02 - 3.24	359 - 364	0.02 - 0.03	-0.29 - 0.15	ENSGALG00000046972 (LncRNA), PARD3B
chr7:14390000_14410000	20	fst	low	87 - 87	2.06 - 2.06	281 - 281	0.22 - 0.22	5.09 - 5.09	ENSGALG00000051682 (LncRNA)
chr7:29150000_29180000	30	xp-ehh	high	212 - 227	3.01 - 3.17	419 - 437	0.05 - 0.06	0.67 - 0.93	ENSGALG00000050982 (LncRNA), ENSGALG00000054456 (LncRNA)
chr7:31030000_31090000	60	xp-ehh	low	113 - 186	3.09 - 3.34	310 - 358	0.13 - 0.18	2.59 - 3.86	THSD7B
chr7:33130000_33150000	20	xp-ehh	high	127 - 127	3.05 - 3.05	247 - 247	0.06 - 0.06	0.95 - 0.95	GTDC1
chr7:33280000_33310000	30	xp-ehh	high	144 - 158	3.44 - 3.51	309 - 317	0.14 - 0.18	2.81 - 3.88	ENSGALG00000053032 (LncRNA), ZEB2
chr7:34370000_34410000	40	xp-ehh	low	168 - 188	3.04 - 3.24	268 - 321	0.13 - 0.19	2.72 - 4.17	ENSGALG00000053295 (LncRNA)
chr7:35150000_35170000	20	xp-ehh	high	188 - 188	3.28 - 3.28	428 - 428	0.12 - 0.12	2.35 - 2.35	RIF1
chr7:35350000_35400000	50	xp-ehh / fst	high	228 - 263	1.48 - 3.49	412 - 452	0.2 - 0.25	4.49 - 5.69	CACNB4
chr7:36100000_36120000	20	fst	low	158 - 158	0.64 - 0.64	325 - 325	0.23 - 0.23	5.33 - 5.33	GPD2
chr8:15370000_15440000	70	xp-ehh	low	147 - 251	3.21 - 3.67	257 - 376	0.08 - 0.2	1.37 - 4.4	LRRC8D, ZNF326
chr8:15640000_15660000	20	fst	high	223 - 223	0.26 - 0.26	342 - 342	0.25 - 0.25	5.93 - 5.93	ENSGALG00000052940 (LncRNA)
chr8:20280000_20300000	20	xp-ehh	low	184 - 184	3.06 - 3.06	260 - 260	0.17 - 0.17	3.62 - 3.62	PTPRF
chr8:20440000_20480000	40	xp-ehh	low	129 - 200	3.41 - 3.78	233 - 305	0.11 - 0.17	2.26 - 3.82	PTPRF
chr8:26030000_26060000	30	xp-ehh	low	249 - 259	3.01 - 3.07	381 - 403	0.15 - 0.18	3.1 - 3.97	ENSGALG00000049636 (LncRNA), PLPP3
chr9:6290000_6310000	20	fst	high	162 - 162	0.14 - 0.14	290 - 290	0.24 - 0.24	5.49 - 5.49	
chr9:12140000_12170000	30	xp-ehh	high	132 - 175	3.08 - 3.1	237 - 246	0.02 - 0.02	-0.220.13	ENSGALG00000049451 (LncRNA)
chr9:12490000_12570000	80	fst	low	34 - 103	0.2 - 0.79	163 - 265	0.23 - 0.36	5.28 - 8.61	AGTR1
chr10:20210000_20240000	30	xp-ehh	low	85 - 113	3.07 - 3.17	181 - 222	0.12 - 0.12	2.28 - 2.31	CTDSPL2
chr11:1090000_1140000	50	xp-ehh	low	159 - 268	3.07 - 3.38	293 - 415	0.07 - 0.11	1.15 - 2.21	CARMIL2, CTCFL, RIPOR1
chr11:1660000_1680000	20	fst	low	133 - 133	1.76 - 1.76	292 - 292	0.23 - 0.23	5.24 - 5.24	VAC14
chr11:12500000_12520000	20	fst	low	157 - 157	1.64 - 1.64	253 - 253	0.23 - 0.23	5.34 - 5.34	
chr11:15360000_15380000	20	xp-ehh	low	291 - 291	3.49 - 3.49	447 - 447	0.09 - 0.09	1.62 - 1.62	ATMIN, CENPN, CMC2
chr11:18110000_18130000	20	xp-ehh / fst	low	163 - 163	3.32 - 3.32	268 - 268	0.24 - 0.24	5.58 - 5.58	BANP
chr12:17700000_17730000	30	xp-ehh	low	171 - 212	3.36 - 3.41	317 - 407	0.09 - 0.1	1.68 - 1.98	CHL1

chr12:17880000_17910000	30	xp-ehh	low	133 - 222	3.77 - 3.79	302 - 362	0.07 - 0.09	1.16 - 1.5	ENSGALG00000052938
chr12:18080000_18110000	30	xp-ehh	low	129 - 131	3.08 - 3.18	296 - 313	0.1 - 0.13	1.91 - 2.55	ENSGALG00000046751 (LncRNA), ENSGALG00000050333 (LncRNA)
chr13:1310000_1330000	20	fst	low	115 - 115	0.48 - 0.48	176 - 176	0.23 - 0.23	5.16 - 5.16	
chr13:5190000_5210000	20	xp-ehh	high	204 - 204	3 - 3	334 - 334	0.11 - 0.11	2.21 - 2.21	SLIT3
chr13:6520000_6570000	50	xp-ehh	high	112 - 153	3.01 - 3.39	213 - 253	0.08 - 0.11	1.33 - 2.19	
chr13:7320000_7340000	20	fst	low	103 - 103	1.87 - 1.87	342 - 342	0.23 - 0.23	5.35 - 5.35	ENSGALG00000054885 (LncRNA)
chr13:17870000_17890000	20	xp-ehh	low	158 - 158	3.09 - 3.09	300 - 300	0.19 - 0.19	4.14 - 4.14	GNPDA1, NDFIP1, RNF14
chr14:9130000_9170000	40	xp-ehh	low	193 - 214	3.14 - 3.18	304 - 338	0.03 - 0.06	-0.01 - 0.82	ENSGALG00000007070, ENSGALG00000054272, IGSF6, METTL9
chr14:9930000_9960000	30	xp-ehh	low	237 - 271	3.07 - 3.27	389 - 418	0.14 - 0.17	2.94 - 3.66	ENSGALG00000047816 (LncRNA), ENSGALG00000050138 (LncRNA)
chr15:6790000_6810000	20	xp-ehh	high	198 - 198	3.31 - 3.31	332 - 332	0.05 - 0.05	0.58 - 0.58	FICD, SART3
chr15:10780000_10800000	20	xp-ehh	low	142 - 142	3.03 - 3.03	236 - 236	0.09 - 0.09	1.74 - 1.74	
chr17:8280000_8300000	20	xp-ehh	low	181 - 181	3.1 - 3.1	374 - 374	0.03 - 0.03	0.11 - 0.11	ENSGALG00000050011 (LncRNA), ENSGALG00000053422
chr17:8460000_8480000	20	xp-ehh	low	172 - 172	3.24 - 3.24	292 - 292	0.08 - 0.08	1.36 - 1.36	CAMSAP1, gga-mir-1465, UBAC1
chr17:9440000_9520000	80	fst	low	42 - 72	0.38 - 0.88	62 - 91	0.24 - 0.36	5.51 - 8.6	DENNDIA, ENSGALG00000049802 (LncRNA), ENSGALG00000026417 (ncRNA), ENSGALG00000028552 (ncRNA)
chr18:9860000_9900000	40	xp-ehh	high	120 - 128	3.2 - 3.61	203 - 214	0.07 - 0.14	1.2 - 3.04	AFMID, ARL16, ENSGALG00000019795 (LncRNA), ENSGALG00000038671, GCGR, HGS, MRPL12, SLC25A10, SYNGR2, TK1, TMC6
chr19:940000_960000	20	fst	high	202 - 202	0.72 - 0.72	314 - 314	0.23 - 0.23	5.38 - 5.38	ELN
chr19:1810000_1850000	40	xp-ehh	low	81 - 135	3.09 - 3.53	227 - 271	0.18 - 0.21	3.85 - 4.82	AUTS2
chr19:7450000_7480000	30	xp-ehh	high	249 - 267	3.13 - 3.48	325 - 365	0.06 - 0.07	0.96 - 1.2	CLTC, PTRH2, VMP1
chr20:1090000_1110000	20	fst	high	228 - 228	1.05 - 1.05	297 - 297	0.23 - 0.23	5.31 - 5.31	CPNE1, RBM12
chr21:530000_570000	40	xp-ehh	high	131 - 201	3.25 - 3.4	253 - 318	0.19 - 0.21	4.13 - 4.7	DNAJC11, ENSGALG00000033569, KLHL21, PHF13
chr22:262000_2650000	30	xp-ehh	high	26 - 40	3.48 - 3.57	73 - 113	0.05 - 0.11	0.6 - 2.02	FGFR1, LETM2, NSD3
chr23:4350000_4400000	50	xp-ehh	low	104 - 213	3.3 - 3.63	220 - 343	0.12 - 0.15	2.32 - 3.3	AGO1, AGO4, C1orf216, CLSPN

chr26:3940000_3960000	20	fst	low	226 - 226	1.56 - 1.56	339 - 339	0.22 - 0.22	5.03 - 5.03	ENSGALG00000002170, ENSGALG00000054224
chr27:4280000_4330000	50	xp-ehh	high	222 - 240	3.04 - 3.29	337 - 380	0.05 - 0.09	0.64 - 1.66	
chr28:1890000_1910000	20	xp-ehh	high	157 - 157	3.11 - 3.11	305 - 305	0.13 - 0.13	2.64 - 2.64	ADAMTS10
chr33:5260000_5280000	20	xp-ehh	high	180 - 180	3.16 - 3.16	298 - 298	0.03 - 0.03	0.02 - 0.02	ENSGALG00000043689, KRT5

Table S4.2e. Candidate selection signature regions and overlapping genes detected from analyses of the Soil organic carbon content at 0.00 depth (SoilOrgC). (SSR_ID: selection signature regions ID as chromosome:start_stop position. DD: directionality of selection)

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean <i>XP-EHH_</i> std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted <i>Fst</i> per window (range)	ZFst per window (range)	Overlapping genes
chr1:5410000_5440000	30	fst	high	102 - 126	1.03 - 1.38	163 - 192	0.24 - 0.26	5.11 - 5.72	
chr1:26090000_26120000	30	xp-ehh	high	170 - 200	3.29 - 3.39	234 - 303	0.18 - 0.19	3.69 - 3.97	ENSGALG00000053114, FOXP2
chr1:26680000_26730000	50	xp-ehh	high	125 - 185	3.06 - 3.15	255 - 344	0.11 - 0.15	1.84 - 2.98	
chr1:44930000_44960000	30	fst	high	109 - 143	1.65 - 1.95	223 - 246	0.25 - 0.28	5.32 - 6.07	CRADD
chr1:55980000_56050000	70	xp-ehh	high	159 - 231	3.17 - 3.78	239 - 339	0.09 - 0.12	1.51 - 2.08	HIPK2, TBXAS1
chr1:56150000_56170000	20	xp-ehh	high	240 - 240	3 - 3	505 - 505	0.11 - 0.11	1.79 - 1.79	
chr1:60370000_60400000	30	xp-ehh	high	156 - 203	3.22 - 3.27	327 - 345	0.12 - 0.13	2.11 - 2.42	NINJ2
chr1:60810000_60870000	60	xp-ehh	high	151 - 208	3.01 - 3.33	271 - 419	0.16 - 0.19	3.13 - 3.88	ENSGALG00000049382 (LncRNA), ERC1, WNT5B
chr1:64890000_64910000	20	fst	low	156 - 156	1.38 - 1.38	281 - 281	0.24 - 0.24	5.17 - 5.17	PDE3A
chr1:78040000_78060000	20	fst	high	102 - 102	0.33 - 0.33	233 - 233	0.24 - 0.24	5.06 - 5.06	C1R, C1S
chr1:78050000_78080000	30	fst	low	102 - 106	0.62 - 0.73	218 - 227	0.26 - 0.26	5.54 - 5.56	C1R, C1S, CLSTN3, RBP5
chr1:93700000_93740000	40	xp-ehh	high	210 - 278	3.25 - 3.32	397 - 496	0.09 - 0.16	1.33 - 3.15	ENSGALG00000052608 (LncRNA), POGLUT1, TIMMDC1
chr1:96710000_96740000	30	fst	high	40 - 51	0.82 - 0.82	105 - 125	0.26 - 0.27	5.7 - 5.94	ENSGALG00000053960 (LncRNA)
chr1:105380000_105420000	40	xp-ehh	high	177 - 191	3.1 - 3.51	303 - 332	0.13 - 0.17	2.37 - 3.37	ENSGALG00000015822, ENSGALG00000036613 (LncRNA)
chr1:108010000_108030000	20	fst	high	183 - 183	0.5 - 0.5	353 - 353	0.24 - 0.24	5.11 - 5.11	CHAF1B

chr1:110490000_110530000	40	fst	high	191 - 232	1.54 - 2.26	274 - 322	0.25 - 0.28	5.46 - 6.19	ENSGALG00000052523
chr1:111070000_111110000	40	xp-ehh	high	143 - 219	3.16 - 3.93	397 - 546	0.1 - 0.2	1.72 - 4.27	CRYAA
chr1:115950000_115970000	20	fst	low	265 - 265	1.12 - 1.12	397 - 397	0.26 - 0.26	5.72 - 5.72	
chr1:117620000_117640000	20	fst	high	92 - 92	1.26 - 1.26	153 - 153	0.25 - 0.25	5.28 - 5.28	IL1RAPL1
chr1:117650000_117700000	50	fst	high	80 - 165	0.48 - 0.69	164 - 235	0.25 - 0.28	5.44 - 6.12	IL1RAPL1
chr1:117750000_117780000	30	fst	high	126 - 137	0.53 - 0.66	182 - 197	0.25 - 0.26	5.5 - 5.64	IL1RAPL1
chr1:118420000_118440000	20	fst	high	84 - 84	2.5 - 2.5	147 - 147	0.24 - 0.24	5.11 - 5.11	
chr1:146480000_146500000	20	fst	high	139 - 139	1.84 - 1.84	349 - 349	0.27 - 0.27	5.86 - 5.86	FARP1
chr1:167320000_167350000	30	xp-ehh	high	227 - 265	3.16 - 3.22	371 - 377	0.14 - 0.15	2.67 - 2.82	VWA8
chr1:167480000_167540000	60	xp-ehh	high	163 - 281	3.1 - 3.18	373 - 437	0.05 - 0.12	0.42 - 2.19	ENSGALG00000017789 (5S_rRNA), VWA8
chr1:168920000_168990000	70	xp-ehh / fst	high	216 - 264	2.42 - 3.77	357 - 425	0.11 - 0.26	1.79 - 5.72	GPALPP1, GTF2F2, NUFIP1, ENSGALG00000025645 (SnRNA)
chr1:171050000_171090000	40	fst	high	119 - 125	0.81 - 1.18	185 - 218	0.28 - 0.28	6.03 - 6.21	ENSGALG00000048894 (LncRNA)
chr1:171730000_171760000	30	xp-ehh	high	222 - 239	3.14 - 3.19	408 - 423	0.15 - 0.19	2.89 - 3.82	CKAP2, VPS36
chr1:173800000_173820000	20	fst	high	196 - 196	1.13 - 1.13	343 - 343	0.24 - 0.24	5.03 - 5.03	ENSGALG00000051912 (LncRNA)
chr1:174170000_174240000	70	fst	high	135 - 232	0.31 - 1.4	245 - 422	0.26 - 0.45	5.69 - 10.36	DCLK1
chr1:191500000_191540000	40	xp-ehh	low	236 - 267	3.02 - 3.35	520 - 578	0.06 - 0.13	0.56 - 2.51	ENSGALG00000014066, ENSGALG00000049171
chr1:193630000_193650000	20	xp-ehh	low	131 - 131	3.43 - 3.43	329 - 329	0.12 - 0.12	2.21 - 2.21	TENM4
chr1:197230000_197310000	80	<i>xp-ehh</i> and/or <i>fst</i>	high	105 - 332	1.87 - 3.25	153 - 521	0.18 - 0.3	3.64 - 6.61	ENSGALG00000052767, ENSGALG00000053527, ENSGALG00000053623, ENSGALG00000054014, HBBA, HBBR, HBE, HBE1, OR51M1,OR52R1
chr1:197480000_197580000	100	xp-ehh	high	73 - 198	3.04 - 3.76	145 - 338	0.09 - 0.16	1.36 - 3.11	ENSGALG00000017334, ENSGALG00000033819, gga-mir- 1600, LCMT2, TPP1
chr2:5480000_5500000	20	fst	high	185 - 185	0.51 - 0.51	323 - 323	0.26 - 0.26	5.57 - 5.57	ENSGALG0000006072
chr2:5870000_5900000	30	fst	high	200 - 202	1.8 - 2.23	356 - 360	0.24 - 0.25	5.13 - 5.45	ACVR2B, gga-mir-6600
chr2:6110000_6130000	20	fst	high	197 - 197	1.03 - 1.03	368 - 368	0.24 - 0.24	5.21 - 5.21	ENSGALG00000053252 (LncRNA)
chr2:9780000_9800000	20	fst	high	293 - 293	2 - 2	460 - 460	0.24 - 0.24	5.06 - 5.06	ENSGALG00000048545 (LncRNA), ENSGALG00000053524 (LncRNA)
chr2:17220000_17240000	20	fst	high	241 - 241	1.68 - 1.68	474 - 474	0.23 - 0.23	5.02 - 5.02	KIAA1217
chr2:56220000_56250000	30	xp-ehh	high	190 - 270	3.15 - 3.44	333 - 416	0.11 - 0.16	2.03 - 3.14	PQLC1

chr2:68510000_68530000	20	fst	high	269 - 269	0.53 - 0.53	429 - 429	0.24 - 0.24	5.05 - 5.05	
chr2:89020000_89040000	20	xp-ehh	low	165 - 165	3.22 - 3.22	233 - 233	0.04 - 0.04	0.27 - 0.27	AHRR
chr2:91690000_91710000	20	xp-ehh	low	115 - 115	3.01 - 3.01	199 - 199	0.11 - 0.11	1.84 - 1.84	ENSGALG00000033168, ZNF407
chr2:104780000_104820000	40	xp-ehh	low	146 - 196	3.06 - 3.23	204 - 253	0.06 - 0.1	0.65 - 1.67	CDH2
chr2:114100000_114150000	50	xp-ehh	low	91 - 128	3.1 - 3.38	169 - 193	0.05 - 0.11	0.52 - 1.93	ENSGALG00000048169 (LncRNA)
chr2:124370000_124420000	50	xp-ehh	high	194 - 214	3.21 - 3.58	337 - 406	0.1 - 0.14	1.62 - 2.66	
chr2:124450000_124500000	50	xp-ehh	high	123 - 199	3.01 - 3.23	381 - 465	0.12 - 0.14	2.08 - 2.76	ENSGALG00000053987 (LncRNA)
chr2:126300000_126330000	30	xp-ehh	high	179 - 187	3 - 3.17	345 - 353	0.1 - 0.11	1.66 - 1.84	ENSGALG00000054155 (LncRNA), NDUFAF6, TP53INP1
chr2:126380000_126450000	70	xp-ehh	high	205 - 273	3.19 - 3.58	305 - 381	0.07 - 0.15	0.96 - 3.03	C8orf37
chr2:128500000_128530000	30	xp-ehh	high	165 - 169	3.03 - 3.2	330 - 334	0.17 - 0.17	3.3 - 3.49	PABPC1
chr2:128540000_128560000	20	xp-ehh	high	276 - 276	3.04 - 3.04	390 - 390	0.08 - 0.08	1.15 - 1.15	YWHAZ
chr2:128600000_128680000	80	xp-ehh	high	160 - 246	3.08 - 3.25	292 - 413	0.11 - 0.15	1.89 - 3.03	ENSGALG00000049820 (LncRNA), ZNF706
chr2:137920000_137940000	20	xp-ehh	low	89 - 89	3.18 - 3.18	299 - 299	0.15 - 0.15	2.92 - 2.92	TBC1D31
chr2:147030000_147090000	60	xp-ehh	low	35 - 86	3.35 - 3.63	63 - 218	0.05 - 0.09	0.51 - 1.34	TSNARE1
chr2:147220000_147260000	40	fst	low	82 - 166	0.77 - 1.03	95 - 219	0.24 - 0.31	5.05 - 6.77	TSNARE1
chr3:28290000_28330000	40	fst	high	119 - 215	1.36 - 1.93	247 - 326	0.25 - 0.28	5.28 - 6.27	
chr3:28340000_28360000	20	fst	high	118 - 118	2.14 - 2.14	185 - 185	0.24 - 0.24	5.23 - 5.23	LRFN2
chr3:32790000_32870000	80	xp-ehh	low	127 - 166	3.05 - 3.38	232 - 329	0.1 - 0.16	1.61 - 3.16	ENSGALG00000049188 (LncRNA), ENSGALG00000050560 (LncRNA)
chr3:35160000_35180000	20	fst	high	164 - 164	0.34 - 0.34	270 - 270	0.31 - 0.31	6.89 - 6.89	AKT3
chr3:48750000_48770000	20	xp-ehh	low	265 - 265	3.01 - 3.01	378 - 378	0.01 - 0.01	-0.470.47	MTHFD1L
chr3:59420000_59440000	20	fst	high	91 - 91	1.37 - 1.37	201 - 201	0.26 - 0.26	5.58 - 5.58	
chr3:66570000_66630000	60	xp-ehh	high	223 - 289	3.02 - 3.9	338 - 502	0.1 - 0.16	1.66 - 3.12	CDC40, METTL24
chr3:67200000_67300000	100	<i>xp-ehh</i> and/or <i>fst</i>	high	224 - 286	3.02 - 3.54	335 - 388	0.16 - 0.24	3.23 - 5.09	ARMC2, FOXO3
chr3:86680000_86720000	40	xp-ehh	low	251 - 284	3.33 - 3.58	409 - 492	0.09 - 0.18	1.41 - 3.6	PRIM2
chr3:87480000_87500000	20	fst	high	225 - 225	0.56 - 0.56	329 - 329	0.24 - 0.24	5.07 - 5.07	HMGCLL1
chr3:87490000_87510000	20	fst	low	182 - 182	0.58 - 0.58	275 - 275	0.25 - 0.25	5.5 - 5.5	HMGCLL1
chr3:91850000_91870000	20	xp-ehh	high	220 - 220	3.29 - 3.29	311 - 311	0.15 - 0.15	2.79 - 2.79	ENSGALG00000050914 (LncRNA), ENSGALG00000025589 (SnRNA)
chr3:106440000_106520000	80	fst	high	198 - 266	2.11 - 2.71	319 - 394	0.25 - 0.33	5.43 - 7.4	MSRA
chr3:106820000_106850000	30	xp-ehh	high	150 - 157	3.01 - 3.13	279 - 283	0.14 - 0.14	2.57 - 2.58	PINX1

chr3:107760000_107820000	60	fst	high	103 - 185	1.5 - 2.18	259 - 354	0.24 - 0.3	5.07 - 6.57	ENSGALG00000050553, ENSGALG00000050753
chr3:108140000_108180000	40	xp-ehh	high	140 - 217	3.04 - 3.23	228 - 303	0.12 - 0.15	2.28 - 2.95	ENSGALG00000047869 (LncRNA)
chr3:10820000_108250000	50	xp-ehh	high	86 - 196	3.03 - 3.58	212 - 344	0.13 - 0.19	2.47 - 3.8	ENSGALG00000047589, TFAP2B
chr4:6480000_6500000	20	fst	high	111 - 111	0.71 - 0.71	192 - 192	0.28 - 0.28	6.23 - 6.23	ENSGALG00000047994 (LncRNA)
chr4:13110000_13130000	20	xp-ehh	high	253 - 253	3.26 - 3.26	395 - 395	0.12 - 0.12	2.17 - 2.17	TRPC5
chr4:14070000_14100000	30	xp-ehh	high	220 - 224	3.09 - 3.11	396 - 397	0.12 - 0.13	2.27 - 2.37	ENSGALG00000048179
chr4:2030000_20340000	40	fst	low	54 - 77	0.16 - 0.21	67 - 113	0.26 - 0.32	5.57 - 7.02	FGA, FGB, FGG, PLRG1
chr4:21060000_21080000	20	fst	high	93 - 93	1.33 - 1.33	193 - 193	0.26 - 0.26	5.55 - 5.55	ENSGALG00000049888 (LncRNA)
chr4:21910000_21930000	20	xp-ehh	low	82 - 82	3.11 - 3.11	166 - 166	0.04 - 0.04	0.26 - 0.26	C4H4ORF46, ETFDH, RXFP1
chr4:40090000_40110000	20	xp-ehh	high	132 - 132	3.04 - 3.04	200 - 200	0.14 - 0.14	2.65 - 2.65	TENM3
chr4:40120000_40140000	20	xp-ehh	high	146 - 146	3.01 - 3.01	225 - 225	0.19 - 0.19	3.81 - 3.81	TENM3
chr4:40250000_40280000	30	fst	high	167 - 171	2.29 - 2.35	279 - 309	0.25 - 0.26	5.38 - 5.76	TENM3
chr4:40470000_40510000	40	fst	high	69 - 114	2.63 - 2.65	202 - 241	0.24 - 0.27	5.13 - 6.01	TENM3
chr4:40760000_40860000	100	fst	high	96 - 204	2.34 - 2.8	146 - 355	0.24 - 0.33	5.09 - 7.42	ENSGALG00000050037 (LncRNA)
chr4:40880000_40910000	30	fst	high	67 - 76	2.52 - 2.56	125 - 143	0.24 - 0.3	5.05 - 6.53	ENSGALG00000050037 (LncRNA)
chr4:40930000_40980000	50	fst	high	109 - 180	1.21 - 1.5	234 - 278	0.3 - 0.36	6.58 - 8.21	ENSGALG00000050037 (LncRNA)
chr4:42050000_42070000	20	fst	high	20 - 20	1.86 - 1.86	38 - 38	0.26 - 0.26	5.68 - 5.68	ENSGALG00000047221 (LncRNA)
chr4:42130000_42150000	20	fst	high	108 - 108	1.87 - 1.87	170 - 170	0.25 - 0.25	5.38 - 5.38	ENSGALG00000054340 (LncRNA)
chr4:4290000_42950000	50	fst	high	67 - 103	1.98 - 2.21	166 - 216	0.24 - 0.3	5.09 - 6.54	GALNTL6
chr4:43220000_43300000	80	xp-ehh	high	164 - 265	3.02 - 4.03	281 - 384	0.14 - 0.2	2.61 - 4.21	ENSGALG00000046857 (LncRNA), GALNT7, HMGB2
chr4:43390000_43420000	30	fst	high	103 - 128	2.38 - 2.39	137 - 198	0.24 - 0.27	5.15 - 5.99	ENSGALG00000033311 (LncRNA), ENSGALG00000052572 (LncRNA)
chr4:46290000_46310000	20	fst	high	207 - 207	1 - 1	386 - 386	0.24 - 0.24	5.22 - 5.22	LIN54
chr4:46450000_46470000	20	fst	high	200 - 200	2.24 - 2.24	395 - 395	0.26 - 0.26	5.68 - 5.68	ABRAXAS1, HELQ, MRPS18C
chr4:48290000_48310000	20	fst	high	173 - 173	0.53 - 0.53	248 - 248	0.32 - 0.32	7.26 - 7.26	ADGRL3
chr4:48300000_48330000	30	fst	low	183 - 185	0.5 - 0.53	285 - 296	0.28 - 0.35	6.19 - 8	ADGRL3
chr4:50860000_50970000	110	fst	high	117 - 201	0.6 - 0.77	238 - 347	0.24 - 0.34	5.05 - 7.73	IL8, IL8L1, PPBP, RASSF6
chr4:66820000_66840000	20	xp-ehh	low	281 - 281	3.19 - 3.19	479 - 479	0.08 - 0.08	1.29 - 1.29	ENSGALG00000014200
chr4:75670000_75710000	40	xp-ehh	high	143 - 176	3.06 - 3.17	227 - 282	0.13 - 0.19	2.45 - 3.79	ENSGALG00000047307 (LncRNA), ENSGALG00000052764 (LncRNA)
chr4:76500000_76560000	60	xp-ehh	high	238 - 305	3.05 - 3.57	366 - 491	0.12 - 0.14	2.05 - 2.54	Prom1

						1			ENSGALG00000052751 (LncRNA)
chr4:85560000_85580000	20	xp-ehh	high	364 - 364	3.01 - 3.01	565 - 565	0.06 - 0.06	0.59 - 0.59	KDM3A
chr5:1190000_1210000	20	xp-ehh	high	279 - 279	3.17 - 3.17	433 - 433	0.14 - 0.14	2.62 - 2.62	gga-mir-1808, RMDN3
chr5:1860000_1880000	20	fst	low	233 - 233	2.35 - 2.35	409 - 409	0.24 - 0.24	5.08 - 5.08	BET1L, NADSYN1, RIC8A, VPS51
chr5:13530000_13570000	40	xp-ehh	high	201 - 205	3.01 - 3.26	327 - 342	0.06 - 0.06	0.75 - 0.77	KCNQ1
chr5:17550000_17580000	30	xp-ehh	high	114 - 135	3.08 - 3.11	259 - 272	0.14 - 0.15	2.66 - 2.91	ENSGALG00000051988 (LncRNA), ENSGALG00000027034 (ncRNA)
chr5:48350000_48370000	20	xp-ehh	low	235 - 235	3.12 - 3.12	348 - 348	0.13 - 0.13	2.31 - 2.31	CYP46A1, ENSGALG00000036286
chr6:17050000_17090000	40	xp-ehh	low	322 - 334	3.01 - 3.47	478 - 526	0.04 - 0.09	0.07 - 1.38	EIF3F, ENSGALG00000051819
chr6:25320000_25350000	30	fst	high	254 - 283	1.8 - 1.96	409 - 435	0.24 - 0.26	5.08 - 5.59	ENSGALG00000050593 (LncRNA)
chr6:26870000_26890000	20	fst	high	181 - 181	0.63 - 0.63	308 - 308	0.24 - 0.24	5.22 - 5.22	ENSGALG00000054720 (LncRNA), ENSGALG00000054969 (LncRNA)
chr7:29270000_29290000	20	fst	high	97 - 97	1.23 - 1.23	245 - 245	0.27 - 0.27	5.8 - 5.8	DPP10
chr7:31520000_31560000	40	xp-ehh	high	137 - 212	3.03 - 3.39	298 - 322	0.19 - 0.22	3.98 - 4.67	ENSGALG00000048656
chr7:33280000_33310000	30	xp-ehh	low	156 - 174	3.39 - 3.47	312 - 324	0.08 - 0.11	1.06 - 1.91	ENSGALG00000053032 (LncRNA), ZEB2
chr7:33900000_33920000	20	fst	high	155 - 155	2.37 - 2.37	289 - 289	0.24 - 0.24	5.24 - 5.24	ENSGALG00000041782 (LncRNA)
chr7:35150000_35170000	20	xp-ehh	low	216 - 216	3.51 - 3.51	404 - 404	0.11 - 0.11	1.82 - 1.82	RIF1
chr7:35350000_35410000	60	fst	low	188 - 282	1.24 - 2.47	362 - 467	0.24 - 0.34	5.25 - 7.55	CACNB4, STAM2
chr7:36110000_36130000	20	fst	high	200 - 200	0.29 - 0.29	382 - 382	0.26 - 0.26	5.7 - 5.7	
chr8:8120000_8140000	20	xp-ehh	high	321 - 321	3.13 - 3.13	423 - 423	0.05 - 0.05	0.52 - 0.52	COLGALT2
chr8:8160000_8180000	20	xp-ehh	high	176 - 176	3.09 - 3.09	345 - 345	0.15 - 0.15	2.95 - 2.95	
chr8:25180000_25200000	20	xp-ehh	low	223 - 223	3.16 - 3.16	342 - 342	0.08 - 0.08	1.16 - 1.16	
chr9:10680000_10710000	30	fst	low	163 - 206	0.67 - 0.67	255 - 326	0.26 - 0.27	5.73 - 5.8	PLS1, TRPC1
 chr9:14300000_14330000	30	xp-ehh	high	195 - 205	3.01 - 3.13	381 - 436	0.04 - 0.05	0.24 - 0.44	ENSGALG00000047059 (LncRNA), ENSGALG00000052948 (LncRNA)
chr9:18740000_18780000	40	xp-ehh	high	153 - 161	3.03 - 3.21	277 - 303	0.08 - 0.14	1.04 - 2.78	NAALADL2
chr9:18810000_18870000	60	xp-ehh	high	141 - 213	3.15 - 3.59	280 - 337	0.11 - 0.18	1.97 - 3.54	ENSGALG00000048975 (LncRNA), NAALADL2
chr9:18990000_19010000	20	xp-ehh	high	155 - 155	3.19 - 3.19	301 - 301	0.1 - 0.1	1.78 - 1.78	NLGN1
chr10:1520000_1580000	60	xp-ehh	high	125 - 179	3.06 - 3.28	299 - 337	0.11 - 0.16	1.94 - 3.13	DUOX2, RBPMS2, ENSGALG00000036706 (ncRNA), SORD
chr10:6490000_6520000	30	fst	high	57 - 105	2.2 - 2.28	170 - 250	0.25 - 0.29	5.41 - 6.5	TJP1

Supplementary Tables

chr10:6820000_6870000	50	xp-ehh fst	high	153 - 183	3.29 - 3.37	254 - 299	0.24 - 0.31	5.25 - 6.82	ENSGALG00000053176 (MiRNA), THSD4
chr10:13660000_13690000	30	xp-ehh	high	213 - 261	3.21 - 3.32	414 - 503	0.19 - 0.22	3.97 - 4.69	NTRK3
chr10:20310000_20340000	30	xp-ehh	high	198 - 231	3.21 - 3.33	369 - 423	0.11 - 0.12	1.83 - 2.07	FRMD5, WDR76
chr11:13300000_13330000	30	fst	low	211 - 259	0.76 - 0.92	264 - 307	0.24 - 0.24	5.1 - 5.11	
chr11:15360000_15390000	30	xp-ehh	high	220 - 288	3.16 - 3.26	372 - 446	0.1 - 0.14	1.69 - 2.64	ATMIN, CENPN, CMC2
chr13:18270000_18290000	20	xp-ehh	high	116 - 116	3.05 - 3.05	191 - 191	0.04 - 0.04	0.07 - 0.07	KCTD16
chr14:4740000_4760000	20	fst	high	164 - 164	0.98 - 0.98	354 - 354	0.24 - 0.24	5.1 - 5.1	ARPC1A
chr14:7480000_7510000	30	xp-ehh	high	161 - 197	3.07 - 3.16	268 - 343	0.14 - 0.14	2.57 - 2.72	HS3ST4
chr14:13190000_13210000	20	fst	low	433 - 433	2.19 - 2.19	553 - 553	0.24 - 0.24	5.21 - 5.21	CLUAP1
chr14:15390000_15410000	20	fst	high	29 - 29	1.57 - 1.57	78 - 78	0.24 - 0.24	5.26 - 5.26	ENSGALG00000041298, gga-mir-12225, UQCRC2
chr15:7220000_7250000	30	xp-ehh	high	201 - 204	3.07 - 3.21	362 - 366	0.09 - 0.09	1.41 - 1.42	KIAA1671, SGSM1
chr15:9890000_9920000	30	xp-ehh	low	189 - 207	3.05 - 3.07	312 - 329	0.07 - 0.09	1 - 1.5	CIT
chr17:3160000_3180000	20	xp-ehh	low	219 - 219	3.12 - 3.12	360 - 360	0.01 - 0.01	-0.460.46	ENSGALG00000050469 (LncRNA)
chr17:5520000_5540000	20	fst	high	196 - 196	2.26 - 2.26	389 - 389	0.23 - 0.23	5.02 - 5.02	SPTAN1
chr18:850000_890000	40	xp-ehh	high	166 - 172	3.1 - 3.17	331 - 333	0.08 - 0.1	1.15 - 1.56	MYOCD
chr18:1360000_1390000	30	xp-ehh	high	151 - 197	3.11 - 3.11	310 - 392	0.14 - 0.15	2.7 - 2.91	
chr18:6530000_6610000	80	xp-ehh	high	172 - 291	3.05 - 3.16	235 - 422	0.1 - 0.13	1.57 - 2.36	CRLF3, ENSGALG00000047593 (LncRNA), ENSGALG00000051036 (LncRNA), UTP6
chr18:7220000_7240000	20	xp-ehh	high	164 - 164	3.02 - 3.02	284 - 284	0.1 - 0.1	1.55 - 1.55	CACNG1, CACNG4
chr18:9840000_9910000	70	xp-ehh	low	97 - 146	3.04 - 3.7	202 - 309	0.11 - 0.16	1.89 - 3.23	AFMID, ARL16, ENSGALG00000019795 (LncRNA), ENSGALG00000027822, ENSGALG00000038671, GCGR, HGS, MRPL12, SLC25A10, SYNGR2, TK1, TMC6
chr20:1570000_1590000	20	fst	high	147 - 147	1.06 - 1.06	198 - 198	0.25 - 0.25	5.4 - 5.4	ASIP
chr33:6470000_6500000	30	fst	low	4 - 5	0.76 - 1.38	12 - 22	0.4 - 0.5	9.14 - 11.7	DRAP1, KAT5, UQCC3, RELA

SSR_ID	size (kb)	detection method	DD	no. of SNPs per <i>XP-EHH</i> window (range)	absolute value of mean XP-EHH_std (range)	no. of SNPs per <i>Fst</i> window (range)	weighted Fst per window (range)	ZFst per window (range)	Overlapping genes
chr1:50910000_50930000	20	xp-ehh	low	143 - 143	3.22 - 3.22	266 - 266	0.06 - 0.06	1.23 - 1.23	CSNK1E, ENSGALG00000053778, KCNJ4
chr1:55450000_55470000	20	fst	high	107 - 107	1.5 - 1.5	339 - 339	0.23 - 0.23	6.26 - 6.26	WASHC3
chr1:60930000_60980000	50	xp-ehh	high	177 - 235	3.3 - 4.65	319 - 373	0.06 - 0.07	1.15 - 1.5	ADIPOR2, CHUNK-1 ENSGALG00000036964
chr1:64470000_64500000	30	fst	high	197 - 226	1.62 - 1.66	278 - 355	0.19 - 0.25	5.05 - 6.91	PLEKHA5
chr1:65410000_65430000	20	fst	low	171 - 171	2.93 - 2.93	285 - 285	0.19 - 0.19	5.18 - 5.18	BCAT1, ENSGALG00000048674 (LncRNA)
chr1:90440000_90540000	100	xp-ehh	low	163 - 280	3.24 - 3.94	253 - 418	0.08 - 0.15	1.71 - 3.81	ЕРНАЗ
chr1:92310000_92360000	50	xp-ehh	low	142 - 166	3.22 - 3.47	416 - 477	0.11 - 0.12	2.78 - 2.94	ENSGALG00000049116 (LncRNA)
chr1:97580000_97610000	30	fst	low	96 - 126	1.43 - 1.46	187 - 224	0.19 - 0.21	5.09 - 5.6	ROBO1
chr1:97640000_97660000	20	fst	low	71 - 71	1.98 - 1.98	156 - 156	0.21 - 0.21	5.79 - 5.79	ROBO1
chr1:104680000_104700000	20	fst	low	60 - 60	1.46 - 1.46	119 - 119	0.19 - 0.19	5.03 - 5.03	
chr1:110150000_110180000	30	xp-ehh	low	171 - 200	3.11 - 3.21	295 - 330	0.1 - 0.11	2.33 - 2.68	BACE2, ENSGALG0000005055 (LncRNA)
chr1:110220000_110270000	50	xp-ehh	low	133 - 166	3.18 - 3.53	259 - 308	0.1 - 0.13	2.25 - 3.23	FAM3B, MX1, TMPRSS2
chr1:110360000_110400000	40	xp-ehh	low	184 - 207	3.02 - 3.47	356 - 397	0.07 - 0.15	1.43 - 3.84	ENSGALG00000051940 (LncRNA), PRDM15, RIPK4
chr1:112400000_112430000	30	fst	low	10 - 10	2.84 - 2.84	361 - 403	0.2 - 0.21	5.31 - 5.61	EFHC2
chr1:112490000_112520000	30	xp-ehh	low	112 - 154	3.03 - 3.21	257 - 310	0.05 - 0.1	0.93 - 2.46	NDP
chr1:112830000_112850000	20	fst	low	63 - 63	2.31 - 2.31	191 - 191	0.21 - 0.21	5.73 - 5.73	
chr1:112870000_112890000	20	fst	low	119 - 119	2.51 - 2.51	202 - 202	0.19 - 0.19	5.01 - 5.01	
chr1:113570000_113610000	40	xp-ehh	low	192 - 295	3.06 - 3.24	352 - 424	0.07 - 0.1	1.49 - 2.28	ATP6AP2, ENSGALG00000032773 (LncRNA), ENSGALG00000053145 (LncRNA)
chr1:113630000_113700000	70	xp-ehh	low	47 - 190	3.01 - 3.36	139 - 354	0.06 - 0.13	1.1 - 3.15	BCOR, ENSGALG00000046706 (LncRNA)

Table S4.2f. Candidate selection signature regions and overlapping genes detected from analyses of the LandUse. (**SSR_ID:** selection signature regions ID as chromosome:start_stop position. **DD:** directionality of selection).

chr1:115280000_115300000	20	fst	low	117 - 117	2.46 - 2.46	196 - 196	0.19 - 0.19	5.16 - 5.16	TMEM47
chr1:126420000_126450000	30	xp-ehh	low	218 - 274	3.08 - 3.11	356 - 441	0.02 - 0.03	-0.02 - 0.32	SHROOM2
chr1:126750000_126770000	20	xp-ehh	low	224 - 224	3.06 - 3.06	332 - 332	0.12 - 0.12	2.86 - 2.86	
chr1:127170000_127470000	300	<i>xp-ehh</i> and/or <i>fst</i>	low	65 - 219	3 - 4.05	105 - 349	0.03 - 0.22	0.17 - 5.91	ENSGALG00000048400 (LncRNA), gga-mir-7448
chr1:127530000_127560000	30	xp-ehh	low	47 - 58	3.12 - 3.15	149 - 190	0.13 - 0.15	3.19 - 3.97	
chr1:127750000_127980000	230	<i>xp-ehh</i> and/or <i>fst</i>	low	21 - 108	2.22 - 3.48	81 - 203	0.09 - 0.24	2.1 - 7.34	ENSGALG00000052885 (LncRNA), PUDP, STS
chr1:128010000_128300000	290	<i>xp-ehh</i> and/or <i>fst</i>	low	21 - 85	2.21 - 3.37	74 - 158	0.04 - 0.32	0.46 - 9.05	NLGN4Y, gga-mir-1397
chr1:128350000_128470000	120	<i>xp-ehh</i> and/or <i>fst</i>	low	14 - 59	3.13 - 3.53	52 - 101	0.03 - 0.2	0.28 - 5.27	ENSGALG00000016628
chr1:128510000_128560000	50	fst	low	10 - 23	2.46 - 2.55	44 - 55	0.2 - 0.22	5.33 - 5.97	
chr1:128960000_129350000	390	<i>xp-ehh</i> and/or <i>fst</i>	low	7 - 159	3.03 - 4.59	88 - 224	0.02 - 0.29	0.09 - 8.14	ENSGALG00000049563, ENSGALG00000052489
chr1:130650000_130670000	20	xp-ehh	low	141 - 141	3.06 - 3.06	237 - 237	0.1 - 0.1	2.23 - 2.23	
chr1:132470000_132490000	20	fst	low	189 - 189	2.05 - 2.05	375 - 375	0.2 - 0.2	5.21 - 5.21	GABRG3
chr1:137220000_137250000	30	fst	low	233 - 251	1.96 - 2.05	327 - 341	0.19 - 0.2	5.14 - 5.38	ENSGALG00000049876 (LncRNA), ENSGALG00000052777 (LncRNA)
chr1:137260000_137310000	50	xp-ehh	low	166 - 211	3.03 - 3.87	251 - 348	0.11 - 0.13	2.51 - 3.3	ENSGALG00000049876 (LncRNA), ENSGALG00000052777 (LncRNA)
chr1:144290000_144320000	30	fst	low	113 - 138	2.73 - 2.86	303 - 336	0.19 - 0.2	5.19 - 5.25	TPP2
chr1:156070000_156100000	30	fst	high	129 - 162	1.74 - 2.01	273 - 309	0.2 - 0.22	5.48 - 5.84	
chr1:163380000_163430000	50	fst	low	124 - 160	0.12 - 0.18	208 - 268	0.22 - 0.31	6 - 8.65	ENSGALG00000048185
chr1:163440000_163520000	80	fst	low	76 - 183	0.78 - 1.76	147 - 277	0.19 - 0.27	5.08 - 7.42	ENSGALG00000050889 (LncRNA)
chr1:167560000_167600000	40	xp-ehh	high	224 - 246	3.33 - 3.71	352 - 383	0.03 - 0.05	0.31 - 0.84	DGKH
chr1:173090000_173120000	30	fst	low	250 - 294	0.13 - 0.18	352 - 396	0.19 - 0.2	5.05 - 5.38	ENSGALG00000049925 (LncRNA)
chr1:187380000_187400000	20	fst	high	246 - 246	1.04 - 1.04	492 - 492	0.19 - 0.19	5.14 - 5.14	SLC36A4
chr1:194700000_194720000	20	fst	high	258 - 258	1.06 - 1.06	394 - 394	0.21 - 0.21	5.67 - 5.67	CAPN5
chr2:3530000_3550000	20	xp-ehh	low	182 - 182	3.35 - 3.35	442 - 442	0.13 - 0.13	3.2 - 3.2	MYL3
chr2:3970000_4000000	30	xp-ehh	high	236 - 247	3.11 - 3.23	376 - 386	0.08 - 0.08	1.72 - 1.89	SETD2
chr2:10240000_10270000	30	xp-ehh	low	205 - 224	3.27 - 3.44	408 - 422	0.16 - 0.16	4.07 - 4.1	DIP2C
chr2:26130000_26150000	20	fst	low	145 - 145	0.76 - 0.76	222 - 222	0.22 - 0.22	5.86 - 5.86	PHF14
chr2:26190000_26220000	30	fst	low	89 - 98	1.5 - 1.69	115 - 160	0.19 - 0.2	5.07 - 5.25	PHF14
chr2:27820000_27840000	20	fst	low	48 - 48	1.36 - 1.36	111 - 111	0.19 - 0.19	5.19 - 5.19	AGMO, ENSGALG00000051512

									(LncRNA)
chr2:27870000_27900000	30	fst	low	104 - 110	1.19 - 1.41	207 - 213	0.19 - 0.2	5 - 5.26	AGMO
chr2:27930000_28030000	100	fst	low	27 - 154	1.2 - 1.76	145 - 323	0.21 - 0.41	5.73 - 11.75	AGMO
chr2:30120000_30140000	20	fst	low	203 - 203	1.65 - 1.65	327 - 327	0.19 - 0.19	5.14 - 5.14	ENSGALG00000052719 (LncRNA)
chr2:32130000_32250000	120	xp-ehh	high	137 - 362	3.58 - 4.55	243 - 550	0.09 - 0.15	2.13 - 3.74	CBX3, HNRNPA2B1, SNX10
chr2:38790000_38850000	60	xp-ehh	low	170 - 216	3.33 - 3.48	316 - 510	0.04 - 0.18	0.52 - 4.84	AZI2
chr2:38990000_39020000	30	fst	low	94 - 98	0.65 - 0.78	204 - 242	0.19 - 0.2	5.05 - 5.41	RBMS3
chr2:39780000_39810000	30	xp-ehh	low	153 - 207	3.02 - 3.1	288 - 338	0.07 - 0.09	1.32 - 2.14	TGFBR2
chr2:40530000_40600000	70	xp-ehh	low	21 - 261	3.05 - 3.74	42 - 406	0.06 - 0.16	1.17 - 4.17	TCAIM
chr2:44890000_44960000	70	xp-ehh	high	203 - 218	3 - 3.28	293 - 336	0.07 - 0.1	1.56 - 2.48	
chr2:45670000_45700000	30	xp-ehh	high	183 - 190	3.11 - 3.21	251 - 260	0.07 - 0.07	1.54 - 1.55	
chr2:47480000_47500000	20	xp-ehh	low	191 - 191	3.12 - 3.12	276 - 276	0.09 - 0.09	1.92 - 1.92	BMPER
chr2:54590000_54620000	30	fst	low	203 - 217	1.2 - 1.23	286 - 289	0.2 - 0.22	5.4 - 5.9	
chr2:54640000_54720000	80	fst	low	53 - 132	0.21 - 0.91	192 - 271	0.21 - 0.38	5.71 - 10.75	ADCY1
chr2:73300000_73320000	20	fst	low	25 - 25	0.62 - 0.62	105 - 105	0.2 - 0.2	5.46 - 5.46	ENSGALG00000012941
chr2:73430000_73490000	60	fst	low	57 - 88	0.52 - 1.08	71 - 120	0.19 - 0.27	5.07 - 7.56	
chr2:82270000_82290000	20	fst	high	15 - 15	0.6 - 0.6	26 - 26	0.2 - 0.2	5.22 - 5.22	VSTM2A
chr2:82330000_82360000	30	fst	high	4 - 7	1.06 - 1.09	18 - 20	0.21 - 0.26	5.58 - 7.07	
chr2:82370000_82390000	20	fst	high	11 - 11	0.71 - 0.71	64 - 64	0.19 - 0.19	5.04 - 5.04	
chr2:82580000_82600000	20	fst	high	15 - 15	1.79 - 1.79	130 - 130	0.19 - 0.19	5.06 - 5.06	
chr2:82630000_82770000	140	fst	high	27 - 168	1.03 - 1.63	70 - 231	0.2 - 0.3	5.25 - 8.37	ENSGALG00000049837, ENSGALG00000051256 (LncRNA)
chr2:82790000_82840000	50	fst	high	61 - 71	1.42 - 1.7	74 - 102	0.19 - 0.22	5.01 - 5.97	ENSGALG00000049962 (LncRNA)
chr2:82850000_82940000	90	fst	high	47 - 83	1.19 - 1.69	76 - 119	0.2 - 0.35	5.47 - 9.92	ENSGALG00000049962 (LncRNA), ENSGALG00000051615 (LncRNA)
chr2:99490000_99530000	40	fst	low	174 - 221	0.55 - 0.83	311 - 417	0.19 - 0.21	5.19 - 5.52	ENSGALG00000042652, LAMA1
chr2:103540000_103570000	30	xp-ehh	low	58 - 90	3 - 3.03	217 - 264	0.1 - 0.12	2.25 - 2.91	
chr2:117230000_117290000	60	xp-ehh	high	170 - 243	3.34 - 3.5	246 - 352	0.09 - 0.13	2.13 - 3.23	
chr2:117840000_117860000	20	fst	high	193 - 193	2.61 - 2.61	268 - 268	0.19 - 0.19	5.09 - 5.09	STAU2
chr2:117960000_118010000	50	fst	high	142 - 183	1.1 - 1.62	213 - 308	0.21 - 0.27	5.73 - 7.47	UBE2W
chr2:128080000_128150000	70	xp-ehh	low	131 - 214	3.12 - 3.37	208 - 294	0.07 - 0.13	1.44 - 3.37	
chr3:1070000_10720000	20	fst	low	149 - 149	1.12 - 1.12	321 - 321	0.19 - 0.19	5.15 - 5.15	SPRED2
chr3:34260000_34320000	60	<i>xp-ehh</i> and/or <i>fst</i>	low	131 - 181	2.87 - 3	210 - 274	0.19 - 0.28	5.04 - 7.71	KIF26B, SMYD3
--------------------------	-----	------------------------------------	------	-----------	-------------	-----------	-------------	-------------	---
chr3:36150000_36170000	20	fst	high	63 - 63	1.7 - 1.7	132 - 132	0.2 - 0.2	5.48 - 5.48	RGS7
chr3:71120000_71150000	30	fst	low	100 - 102	1.46 - 1.59	232 - 236	0.19 - 0.19	5 - 5.06	
chr3:76980000_77000000	20	fst	low	188 - 188	1.15 - 1.15	267 - 267	0.19 - 0.19	5.06 - 5.06	NT5E
chr3:77630000_77650000	20	xp-ehh	low	216 - 216	3.01 - 3.01	355 - 355	0.03 - 0.03	0.36 - 0.36	SNAP91
chr3:91040000_91060000	20	xp-ehh	high	203 - 203	3.18 - 3.18	273 - 273	0.11 - 0.11	2.65 - 2.65	DLGAP2
chr3:94950000_94970000	20	xp-ehh	high	141 - 141	3.16 - 3.16	232 - 232	0.02 - 0.02	0.01 - 0.01	ENSGALG00000026867 (ncRNA)
chr3:97030000_97100000	70	xp-ehh / fst	high	166 - 200	2.76 - 3.23	285 - 341	0.09 - 0.19	2.17 - 5.16	
chr3:103450000_103490000	40	xp-ehh	high	103 - 165	3.05 - 3.68	174 - 220	0.05 - 0.07	0.94 - 1.44	
chr3:103660000_103680000	20	xp-ehh	high	203 - 203	3.21 - 3.21	280 - 280	0.06 - 0.06	1.01 - 1.01	
chr3:106970000_107000000	30	xp-ehh	low	294 - 299	3.27 - 3.34	443 - 482	0.07 - 0.13	1.36 - 3.11	
chr4:3190000_3220000	30	xp-ehh	low	143 - 166	3.05 - 3.09	357 - 362	0.13 - 0.15	3.39 - 3.94	KLHL9
chr4:4590000_4620000	30	xp-ehh	low	165 - 195	3.09 - 3.12	274 - 293	0.07 - 0.09	1.38 - 2.01	ENSGALG00000047098 (LncRNA), ENSGALG00000049919 (LncRNA), ENSGALG00000052627 (LncRNA)
chr4:12480000_12510000	30	xp-ehh	low	166 - 199	3.01 - 3.02	310 - 365	0.06 - 0.08	1.16 - 1.77	NEXMIF
chr4:24070000_24090000	20	xp-ehh	high	152 - 152	3.06 - 3.06	237 - 237	0.07 - 0.07	1.44 - 1.44	TLL1
chr4:24350000_24400000	50	xp-ehh	high	48 - 145	3.18 - 3.61	135 - 284	0.09 - 0.18	2.14 - 4.69	
chr4:24440000_24480000	40	xp-ehh	high	75 - 179	3 - 3.52	134 - 312	0.1 - 0.18	2.39 - 4.83	ENSGALG00000051758 (LncRNA)
chr4:25570000_25600000	30	fst	high	171 - 211	2.26 - 2.41	284 - 317	0.2 - 0.23	5.33 - 6.16	
chr4:25890000_26440000	550	xp-ehh	high	55 - 197	3.02 - 4.02	85 - 301	0.05 - 0.18	0.98 - 4.62	ENSGALG00000046909 (LncRNA), ENSGALG00000047918 (LncRNA), ENSGALG00000049671 (LncRNA), ENSGALG00000050306 (LncRNA), ENSGALG00000050784 (LncRNA)
chr4:26520000_26600000	80	xp-ehh	high	54 - 110	3.06 - 3.32	120 - 177	0.05 - 0.09	0.71 - 2.19	ENSGALG00000053826 (LncRNA)
chr4:27670000_27690000	20	fst	high	67 - 67	0.75 - 0.75	115 - 115	0.21 - 0.21	5.56 - 5.56	
chr4:29220000_29300000	80	xp-ehh	high	233 - 317	3.11 - 3.27	449 - 530	0.09 - 0.12	1.94 - 2.86	ELF2, MGARP, NAA15
chr4:36410000_36480000	70	fst	high	91 - 155	0.21 - 0.59	153 - 367	0.19 - 0.26	5.04 - 7.05	ENSGALG00000047741
chr4:54270000_54310000	40	fst	high	97 - 182	0.68 - 1.41	175 - 290	0.25 - 0.32	6.93 - 8.96	PRDM5, ENSGALG00000026726 (ncRNA)
chr4:54330000_54390000	60	fst	low	155 - 233	0.5 - 1.32	244 - 316	0.2 - 0.23	5.3 - 6.22	ENSGALG00000053393 (LncRNA)

chr4:56140000_56170000	30	<i>xp-ehh</i> and/or <i>fst</i>	low	112 - 125	2.89 - 3.01	182 - 223	0.19 - 0.21	5.12 - 5.54	NDST4
chr4:72710000_72730000	20	fst	low	75 - 75	2.27 - 2.27	125 - 125	0.2 - 0.2	5.32 - 5.32	
chr4:75600000_75620000	20	fst	high	5 - 5	2.07 - 2.07	79 - 79	0.19 - 0.19	5.13 - 5.13	
chr4:75690000_75810000	120	<i>xp-ehh</i> and/or <i>fst</i>	high	98 - 171	3.12 - 3.66	164 - 253	0.12 - 0.2	3.09 - 5.4	ENSGALG00000052764 (LncRNA), NCAPG
chr5:6840000_6860000	20	xp-ehh	high	229 - 229	3.07 - 3.07	383 - 383	0.03 - 0.03	0.12 - 0.12	
chr5:6880000_6910000	30	xp-ehh	high	245 - 279	3.11 - 3.19	377 - 416	0.06 - 0.08	1.29 - 1.87	
chr5:35600000_35660000	60	xp-ehh	high	88 - 142	3.06 - 3.14	126 - 191	0.11 - 0.13	2.59 - 3.39	NPAS3
chr5:40630000_40710000	80	fst	low	119 - 241	1.51 - 2.19	168 - 289	0.22 - 0.28	5.84 - 7.88	ENSGALG00000026686 (MiRNA), NRXN3
chr5:44410000_44430000	20	xp-ehh	high	276 - 276	3.04 - 3.04	324 - 324	0.05 - 0.05	0.99 - 0.99	DGLUCY, GPR68
chr5:47570000_47600000	30	fst	low	152 - 156	2.33 - 2.35	197 - 207	0.21 - 0.21	5.53 - 5.62	ENSGALG00000050961 (LncRNA)
chr5:48990000_49080000	90	fst	high	6 - 13	2.21 - 2.21	83 - 183	0.19 - 0.25	5.11 - 7	BEGAIN, ENSGALG00000051728 (LncRNA), ENSGALG00000053427 (LncRNA)
chr5:51290000_51350000	60	fst	low	147 - 205	0.15 - 0.74	233 - 308	0.19 - 0.26	5.01 - 7.25	ENSGALG00000053209 (LncRNA), ENSGALG00000054591 (LncRNA)
chr5:58190000_58230000	40	xp-ehh	low	214 - 217	3.19 - 3.32	347 - 424	0.03 - 0.04	0.21 - 0.56	FRMD6, GNG2
chr6:16050000_16080000	30	fst	low	88 - 99	2.71 - 2.82	264 - 272	0.22 - 0.23	6.05 - 6.24	ADK
chr6:20130000_20160000	30	fst	high	127 - 136	1.68 - 1.89	190 - 233	0.21 - 0.21	5.54 - 5.68	ENSGALG00000048378 (LncRNA), ENSGALG00000053893 (LncRNA)
chr6:2020000_20220000	20	fst	high	237 - 237	1.89 - 1.89	443 - 443	0.2 - 0.2	5.29 - 5.29	SLC16A12
chr6:21520000_21550000	30	xp-ehh	low	180 - 187	3.05 - 3.08	304 - 312	0.07 - 0.07	1.5 - 1.57	CYP26A1, CYP26C1, EXOC6
chr6:21690000_21760000	70	fst	low	285 - 398	0.9 - 2.93	400 - 568	0.19 - 0.23	5 - 6.33	IDE, KIF11
chr6:21780000_21820000	40	fst	low	234 - 271	1.51 - 1.98	366 - 439	0.19 - 0.19	5.01 - 5.08	CPEB3, MARCH5
chr6:31450000_31470000	20	fst	low	128 - 128	1.51 - 1.51	243 - 243	0.19 - 0.19	5.01 - 5.01	
chr7:26010000_26050000	40	xp-ehh	low	135 - 212	3.02 - 3.24	298 - 340	0.08 - 0.17	1.82 - 4.37	TFCP2L1
chr7:3020000_30220000	20	xp-ehh	high	164 - 164	3.01 - 3.01	342 - 342	0.07 - 0.07	1.35 - 1.35	ENSGALG00000055018 (LncRNA)
chr7:31520000_31550000	30	fst	high	167 - 178	0.93 - 0.97	305 - 306	0.19 - 0.19	5.11 - 5.15	ENSGALG00000048656
chr8:1520000_1570000	50	fst	low	176 - 247	1.26 - 2.29	258 - 312	0.19 - 0.22	5.09 - 5.91	ENSGALG00000046646, VAV3
chr8:3060000_3080000	20	fst	low	131 - 131	2.53 - 2.53	343 - 343	0.19 - 0.19	5.03 - 5.03	ENSGALG0000002431
chr8:3330000_3350000	20	xp-ehh	low	243 - 243	3.03 - 3.03	356 - 356	0.12 - 0.12	2.96 - 2.96	ENSGALG00000049765 (LncRNA), ENSGALG00000050518 (LncRNA)
chr8:5750000_5770000	20	xp-ehh	low	196 - 196	3.53 - 3.53	367 - 367	0.13 - 0.13	3.26 - 3.26	

chr8:20050000_20080000	30	fst	low	200 - 242	2.65 - 2.92	344 - 377	0.26 - 0.29	7.04 - 8.16	MED8, SZT2
chr8:23790000_23810000	20	xp-ehh	low	166 - 166	3.03 - 3.03	284 - 284	0.07 - 0.07	1.37 - 1.37	BEND5
chr8:24150000_24180000	30	xp-ehh	high	169 - 208	3.01 - 3.06	255 - 293	0.06 - 0.07	1.3 - 1.6	FAF1
chr8:29170000_29220000	50	xp-ehh	low	117 - 175	3.05 - 3.17	191 - 264	0.1 - 0.14	2.36 - 3.58	
chr9:8290000_8310000	20	xp-ehh	low	275 - 275	3.03 - 3.03	468 - 468	0.07 - 0.07	1.39 - 1.39	
chr9:8410000_8440000	30	xp-ehh	low	205 - 214	3.08 - 3.15	396 - 414	0.04 - 0.05	0.66 - 0.79	AP1S3
									ENSGALG00000047096 (LncRNA),
									ENSGALG00000049140 (LncRNA),
									ENSGALG00000050658 (LncRNA),
chr9:18190000_18420000	230	xp-ehh	low	135 - 219	3.02 - 3.91	260 - 388	0.01 - 0.12	-0.42 - 3.01	ENSGALG00000050910 (LncRNA),
									ENSGALG00000051388 (LncRNA),
									ENSGALG00000054169 (LncRNA),
									ENSGALG00000054791 (LncRNA)
chr10:2310000_2330000	20	xp-ehh	low	146 - 146	3.05 - 3.05	336 - 336	0.08 - 0.08	1.69 - 1.69	NEO1
chr10.10470000_10500000	30	fst	low	178 - 189	0 87 - 1 08	263 - 291	02-021	5 29 - 5 51	ENSGALG00000051344 (LncRNA),
	50	<i>.</i>	10 11	1,0 10,	0.07 1.00	203 271	0.2 0.21	5.27 5.51	SLC24A5
chr11:5940000_5970000	30	xp-ehh	low	118 - 169	3.01 - 3.37	280 - 415	0.05 - 0.07	0.91 - 1.39	SALL1
chr11:13140000_13170000	30	fst	low	184 - 203	0.63 - 0.68	254 - 271	0.19 - 0.19	5.05 - 5.1	ENSGALG00000050348 (LncRNA)
chr11:13240000_13270000	30	fst	low	186 - 224	0.32 - 0.4	249 - 284	0.19 - 0.2	5.05 - 5.4	ENSGALG00000050348 (LncRNA)
chr12:2810000_2840000	30	xp-ehh	low	249 - 308	3.17 - 3.41	429 - 474	0.03 - 0.03	0.13 - 0.19	IP6K1
chr12:8330000_8370000	40	xp-ehh	low	129 - 148	3.05 - 3.11	195 - 224	0.12 - 0.13	2.92 - 3.36	
chr13:2150000_2170000	20	fst	low	9 - 9	0.26 - 0.26	36 - 36	0.19 - 0.19	5.03 - 5.03	PFDN1
chr13:7880000_7910000	30	fst	low	170 - 200	1.09 - 1.68	234 - 267	0.19 - 0.19	5.04 - 5.14	
chr13:11300000_11330000	30	fst	high	193 - 206	0.76 - 1.13	332 - 345	0.19 - 0.22	5.11 - 6.01	SPINK6, UBLCP1
chr13:17870000_17900000	30	fst	low	91 - 123	2 - 2.35	247 - 281	0.21 - 0.21	5.63 - 5.65	GNPDA1, NDFIP1, RNF14
chr14:13980000_14010000	30	xp-ehh	low	159 - 237	3.17 - 3.29	235 - 338	0.08 - 0.1	1.71 - 2.25	ABCA3
chr14:14660000_14690000	30	xp-ehh	low	294 - 338	3.08 - 3.14	419 - 459	0.03 - 0.04	0.33 - 0.62	MAPK8IP3
chr14:14740000_14760000	20	xp-ehh	low	172 - 172	3.06 - 3.06	296 - 296	0.05 - 0.05	0.96 - 0.96	GLYR1
chr15:4550000_4590000	40	xp-ehh	high	203 - 264	3.02 - 3.21	363 - 414	0.02 - 0.03	-0.02 - 0.21	TMEM132B
chr18:6570000_6590000	20	xp-ehh	high	193 - 193	3.15 - 3.15	296 - 296	0.1 - 0.1	2.35 - 2.35	UTP6, UTP6
chr22:850000_880000	30	fst	low	7 - 9	2.12 - 2.14	23 - 33	0.22 - 0.23	5.88 - 6.12	EBF2
									FNDC5, HPCA, KIAA1522,
chr23:5400000_5450000	50	xp-ehh	low	120 - 165	3.06 - 3.29	256 - 362	0.03 - 0.05	0.29 - 0.81	RNF19B,
									YARS
chr26:1810000 1840000	30	xp-ehh	low	157 - 176	3.4 - 3.56	357 - 380	0.09 - 0.11	1.92 - 2.64	MDM4, PIK3C2B

chr26:3940000_3970000	30	fst	low	244 - 260	1.65 - 2.22	378 - 384	0.21 - 0.21	5.59 - 5.73	ENSGALG00000002170, ENSGALG00000002511, ENSGALG00000054224
chr27:7660000_7710000	50	xp-ehh	low	48 - 103	3.18 - 3.61	112 - 184	0.05 - 0.09	0.97 - 2.17	ENSGALG00000003282, ENSGALG00000003345, gga-mir-12256, gga-mir-12257, GHDC, HCRT, KCNH4, RAB5C
chr28:4520000_4570000	50	fst	low	42 - 129	2.02 - 2.57	150 - 216	0.2 - 0.23	5.4 - 6.22	CIB3, ENSGALG00000050334 (LncRNA), RAB8A, TPM4

Table S4.3a. Candidate SNP list from signature analysis for minTemp population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

							Low	Low	High	High	₹ ⊼∧∧F	<i>X</i> ¯AAF	
snpID	rs_id	ref	alt	annotation	gene	gene ID	group	group	group	group	in Low	in Uiah	dAAF
-						-	AAF	AAF	AAF	AAF	group	group	
chr21_3340742	rs315879878	G	Т	intronic	ENSGALG0000002506	SPSB1	0.80	0.85	0.40	0.15	0.83	0.28	0.55
chr26_4160183	rs317851952	Α	Т	upstream	ENSGALG0000002675		0.95	0.85	0.40	0.25	0.90	0.33	0.58
chr26_4179927	rs736970763	С	G	intronic	ENSGALG0000002692		0.90	0.80	0.30	0.20	0.85	0.25	0.60
chr18_5095581	rs741306978	G	Α	intronic	ENSGALG0000002954	MBTD1	0.85	0.80	0.25	0.15	0.83	0.20	0.63
chr18_5105184	rs732629913	Т	С	downstream	ENSGALG0000002985	UTP18	0.85	0.80	0.00	0.20	0.83	0.10	0.73
chr18_5099822	rs738364253	Α	G	nonsynonymous	ENSGALG0000002985	UTP18	0.80	0.80	0.00	0.20	0.80	0.10	0.70
chr18_5097158	rs314168808	С	Т	nonsynonymous	ENSGALG0000002985	UTP18	0.85	0.80	0.25	0.15	0.83	0.20	0.63
chr18_5097978	rs313980559	С	Α	nonsynonymous	ENSGALG0000002985	UTP18	0.80	0.80	0.25	0.20	0.80	0.23	0.58
chr18_5156846	rs317312418	Т	С	intronic	ENSGALG0000002993	CA10	0.95	0.80	0.05	0.40	0.88	0.23	0.65
chr18_6579283	rs15826593	G	Α	upstream	ENSGALG0000003260	UTP6	0.15	0.25	0.90	0.80	0.20	0.85	0.65
chr1_197380178	na	Α	G	intronic	ENSGALG0000003416	FAM160A2	0.90	0.85	0.40	0.30	0.88	0.35	0.53
chr14_1629928	rs735581328	Α	G	intronic	ENSGALG0000003562	NPTX2	0.80	0.75	0.05	0.40	0.78	0.23	0.55
chr21_5235097	na	G	Т	downstream	ENSGALG0000004097	LRRC38	0.75	0.75	0.30	0.10	0.75	0.20	0.55
chr14_3947909	rs736665750	G	Т	intronic	ENSGALG0000004420	SDK1	0.75	0.90	0.05	0.30	0.83	0.18	0.65
chr14_5131529	na	Α	С	intronic	ENSGALG0000004816		0.70	0.75	0.15	0.15	0.73	0.15	0.58
chr14_5142884	rs738767944	С	Т	UTR3	ENSGALG0000004834	COPS3	0.75	0.75	0.15	0.15	0.75	0.15	0.60
chr14_5155289	na	G	С	intronic	ENSGALG0000004842	NT5M	0.70	0.80	0.10	0.20	0.75	0.15	0.60
chr5_17263013	na	G	Α	downstream	ENSGALG0000004845	TIMM10	0.85	0.75	0.10	0.15	0.80	0.13	0.68
chr19_7460814	rs14122580	Α	G	intronic	ENSGALG0000005160	VMP1	0.75	0.85	0.30	0.25	0.80	0.28	0.53
chr2_4618697	rs317672568	Α	G	intronic	ENSGALG0000005710	CTDSPL	0.25	0.25	0.95	0.70	0.25	0.83	0.58
chr7_6760479	rs10723271	G	Т	nonsynonymous	ENSGALG0000005974	COL6A1	0.80	0.85	0.15	0.30	0.83	0.23	0.60
chr2_5051731	rs734773228	Α	G	intronic	ENSGALG0000006025	XIRP1	0.65	0.80	0.30	0.10	0.73	0.20	0.53
chr5_16925158	rs316806623	G	Α	UTR3	ENSGALG0000007127		0.75	0.90	0.05	0.10	0.83	0.08	0.75
chr5_16957578	rs315213418	Α	Т	UTR3	ENSGALG0000007178	FADS2	0.10	0.15	0.90	0.80	0.13	0.85	0.73
chr5_16944732	rs15673184	Α	G	nonsynonymous	ENSGALG0000007178	FADS2	0.55	0.75	0.00	0.15	0.65	0.08	0.58
chr5 16967014	rs105951140 1	A	С	intronic	ENSGALG00000007203	RAB3IL1	0.85	0.90	0.10	0.25	0.88	0.18	0.70

chr5_16973935	rs734597481	C	Т	nonsynonymous	ENSGALG0000007203	RAB3IL1	0.90	0.85	0.30	0.35	0.88	0.33	0.55
chr10_18147314	na	С	Т	intronic	ENSGALG0000007252	ANKDD1A	0.85	0.75	0.25	0.15	0.80	0.20	0.60
chr10_18164060	rs315348044	Α	G	intronic	ENSGALG0000007262	SPG21	0.90	0.75	0.25	0.20	0.83	0.23	0.60
	rs105921769						0.95	0.05	0.20	0.15	0.00	0.22	0.69
chr5_17182206	5	G	Α	UTR5	ENSGALG0000007287		0.85	0.95	0.30	0.15	0.90	0.25	0.08
chr10_18171192	rs14952795	Т	С	intronic	ENSGALG0000007289	CLPX	0.10	0.35	0.75	0.75	0.23	0.75	0.53
chr5_17197342	rs15673614	С	Т	intronic	ENSGALG0000007330	CTNND1	0.20	0.10	0.85	0.85	0.15	0.85	0.70
chr5_17231117	rs317045995	Т	С	nonsynonymous	ENSGALG0000007341	MED19	0.55	0.75	0.15	0.10	0.65	0.13	0.53
chr5_17242235	rs740651106	Т	С	upstream	ENSGALG0000007362	ZDHHC5	0.85	0.70	0.10	0.05	0.78	0.08	0.70
chr5_17248017	rs739291012	G	С	downstream	ENSGALG0000007370	CLP1	0.95	0.80	0.15	0.10	0.88	0.13	0.75
	rs105783409						0.75	0.75	0.10	0.20	0.75	0.15	0.60
chr5_17252599	7	С	Т	intronic	ENSGALG0000007374	YPEL4	0.75	0.75	0.10	0.20	0.75	0.15	0.00
	rs105892011						0.05	0.05	0.20	0.25	0.05	0.28	0.68
chr5_17261040	7	Т	С	UTR5	ENSGALG0000007381		0.93	0.95	0.20	0.55	0.95	0.28	0.08
chr5_17256023	rs739581191	С	G	nonsynonymous	ENSGALG0000007381		0.05	0.15	0.70	0.60	0.10	0.65	0.55
chr5_17256193	rs739661866	С	Т	nonsynonymous	ENSGALG0000007381		0.20	0.25	0.75	0.75	0.23	0.75	0.53
chr1_196930434	na	Т	С	upstream	ENSGALG0000007441	MAP6	0.90	0.80	0.35	0.25	0.85	0.30	0.55
chr5_17283707	na	С	Т	intronic	ENSGALG0000007520	SSRP1	0.80	0.75	0.05	0.30	0.78	0.18	0.60
chr18_10410366	na	С	Т	UTR3	ENSGALG0000007713		0.70	0.70	0.30	0.00	0.70	0.15	0.55
chr4_14107250	rs737145126	Т	С	intronic	ENSGALG0000008282	ATG4A	0.85	0.75	0.10	0.25	0.80	0.18	0.63
chr1_27533032	rs741250331	G	Α	intronic	ENSGALG0000009485	IMMP2L	0.10	0.20	0.70	0.65	0.15	0.68	0.53
chr27_5719783	rs315239810	G	Т	intronic	ENSGALG0000009943	FAM117A	0.70	0.90	0.05	0.35	0.80	0.20	0.60
chr27_5715201	rs317359923	С	Т	intronic	ENSGALG0000009944	KAT7	0.25	0.05	0.90	0.80	0.15	0.85	0.70
chr5_34721145	rs314147964	Α	G	intronic	ENSGALG0000009983	NUBPL	0.85	0.85	0.00	0.45	0.85	0.23	0.63
chr8_24344580	rs313880413	С	Т	intronic	ENSGALG0000010539	RNF11	0.05	0.10	0.75	0.70	0.08	0.73	0.65
chr3_36713864	rs80704816	С	Т	intronic	ENSGALG0000010778	CHRM1	0.25	0.15	0.90	0.75	0.20	0.83	0.63
chr1_49902052	rs738966909	Α	G	nonsynonymous	ENSGALG00000012003	XPNPEP3	0.90	0.75	0.40	0.15	0.83	0.28	0.55
chr1_49891637	rs730966112	С	G	nonsynonymous	ENSGALG00000012003	XPNPEP3	0.90	0.70	0.30	0.25	0.80	0.28	0.53
chr1_49932449	na	G	Α	intronic	ENSGALG0000012013	SLC25A17	0.90	0.75	0.25	0.20	0.83	0.23	0.60
chr1_50054793	rs740590617	G	А	nonsynonymous	ENSGALG00000012024	MRTFA	0.95	0.80	0.30	0.20	0.88	0.25	0.63
chr1_50054827	rs734326086	С	Т	nonsynonymous	ENSGALG00000012024	MRTFA	0.95	0.80	0.30	0.20	0.88	0.25	0.63
chr1_56032224	rs13870546	G	Α	intronic	ENSGALG00000012792	HIPK2	0.15	0.10	0.70	0.85	0.13	0.78	0.65
chr1_56228517	rs312403160	G	Т	intronic	ENSGALG00000012796		0.65	0.95	0.20	0.25	0.80	0.23	0.58
chr1_56239018	rs315472386	Α	G	nonsynonymous	ENSGALG00000012796		0.55	0.10	0.85	0.85	0.33	0.85	0.53

chr1_56240399	rs15277089	Т	А	nonsynonymous	ENSGALG00000012796		0.55	0.10	0.85	0.85	0.33	0.85	0.53
chr2_68088249	rs316937055	G	Α	intronic	ENSGALG00000012888	PHLPP1	0.10	0.10	0.95	0.60	0.10	0.78	0.68
chr4_63136574	rs733978669	Α	G	UTR3	ENSGALG00000013646	VPS37A	0.70	0.90	0.10	0.25	0.80	0.18	0.63
chr4_63912289	na	Т	С	intronic	ENSGALG00000013684	SGCZ	0.80	0.75	0.25	0.10	0.78	0.18	0.60
chr4_65679957	rs318134095	G	Α	intronic	ENSGALG00000013940	LNX1	0.80	0.95	0.15	0.55	0.88	0.35	0.53
chr5_16420305	rs315888203	Т	С	upstream	ENSGALG00000014152		0.10	0.15	0.90	0.60	0.13	0.75	0.63
chr1_77832373	rs313794401	Т	С	intronic	ENSGALG00000014468	MLF2	0.20	0.40	0.85	0.80	0.30	0.83	0.53
chr1_109134117	rs732503598	Α	G	intronic	ENSGALG00000016059	ETS2	0.85	0.90	0.30	0.40	0.88	0.35	0.53
chr1_109639334	rs739509160	G	Α	intronic	ENSGALG00000016138	DSCAM	0.15	0.05	0.65	0.60	0.10	0.63	0.53
chr1_111026718	rs317526225	С	Т	intronic	ENSGALG00000016196		0.70	0.95	0.30	0.05	0.83	0.18	0.65
chr3_108234307	rs740753540	Т	С	intronic	ENSGALG00000016680	TFAP2B	0.90	0.90	0.20	0.40	0.90	0.30	0.60
chr1_145479945	rs316657473	Т	С	intronic	ENSGALG00000016872	PCCA	0.85	0.90	0.35	0.20	0.88	0.28	0.60
chr1_197374203	na	G	С	downstream	ENSGALG00000017299	RPS11	0.90	0.80	0.30	0.15	0.85	0.23	0.63
chr1_195837260	na	С	G	intronic	ENSGALG00000017304	PGM2L1	0.95	0.85	0.15	0.25	0.90	0.20	0.70
chr1_195827151	na	С	G	nonsynonymous	ENSGALG00000017304	PGM2L1	0.90	0.80	0.15	0.35	0.85	0.25	0.60
chr1_197289816	na	G	Α	upstream	ENSGALG00000017347	HBBR	0.95	0.80	0.40	0.20	0.88	0.30	0.58
chr18_10416434	na	Т	Α	nonsynonymous	ENSGALG00000019755		0.70	0.70	0.35	0.00	0.70	0.18	0.53
chr3_108310019	rs312701210	С	Α	intronic	ENSGALG00000019842	TFAP2D	0.95	0.85	0.30	0.20	0.90	0.25	0.65
chr5_17269803	rs740320098	Α	G	intronic	ENSGALG0000020479	SLC43A3	0.90	0.75	0.10	0.10	0.83	0.10	0.73
chr5_17278237	rs731898985	Α	G	nonsynonymous	ENSGALG0000020479	SLC43A3	0.80	0.70	0.15	0.15	0.75	0.15	0.60
chr5_16904462	rs737081707	G	С	intronic	ENSGALG0000020485		0.65	0.80	0.05	0.15	0.73	0.10	0.63
chr21_2007660	rs315268906	G	С	intronic	ENSGALG00000021676		0.85	0.80	0.00	0.30	0.83	0.15	0.68
chr1_197390872	na	G	Α	nonsynonymous	ENSGALG00000022704		0.90	0.80	0.15	0.40	0.85	0.28	0.58
chr18_10429868	rs738416634	G	Α	intronic	ENSGALG00000027789	RAB37	0.70	0.70	0.30	0.05	0.70	0.18	0.53
chr1_197283369	na	G	Α	UTR3	ENSGALG0000028273	HBE1	0.95	0.80	0.45	0.20	0.88	0.33	0.55
chr4_89590013	rs735474386	G	Α	intronic	ENSGALG0000030602	ADAM33	0.60	0.60	0.00	0.15	0.60	0.08	0.53
chr1_195808059	na	Α	G	downstream	ENSGALG00000030652		0.90	0.80	0.05	0.20	0.85	0.13	0.73
chr1_197267802	na	G	Α	nonsynonymous	ENSGALG0000030885	OR51M1	0.95	0.75	0.30	0.10	0.85	0.20	0.65
chr23_2992673	rs734052742	С	Т	intronic	ENSGALG00000031440	PTPRU	0.90	0.80	0.30	0.20	0.85	0.25	0.60
chr21_1998185	rs739470072	Α	Т	UTR3	ENSGALG0000032413	NADK	0.80	0.80	0.00	0.35	0.80	0.18	0.63
chr5_17264521	na	G	Α	nonsynonymous	ENSGALG00000032903	RTN4RL2	0.85	0.75	0.10	0.20	0.80	0.15	0.65
chr1_468193	rs735888526	А	G	ncRNA_intronic	ENSGALG00000033919		0.05	0.10	0.70	0.70	0.08	0.70	0.63
chr1_197417380	na	С	G	intronic	ENSGALG0000034004	TRIM3	0.95	0.85	0.15	0.55	0.90	0.35	0.55
chr1_197418047	na	А	G	nonsynonymous	ENSGALG0000034004	TRIM3	0.95	0.90	0.25	0.55	0.93	0.40	0.53

chr1_196804406	na	Т	G	intronic	ENSGALG0000034967	GDPD5	0.90	0.80	0.25	0.35	0.85	0.30	0.55
chr1_197277566	na	А	G	upstream	ENSGALG0000035309	HBE	0.95	0.80	0.45	0.20	0.88	0.33	0.55
chr12_3121160	na	С	Т	intronic	ENSGALG0000035578	RBM6	0.75	0.75	0.00	0.20	0.75	0.10	0.65
chr1_197401060	na	С	Т	nonsynonymous	ENSGALG0000036106	SMPD1	0.90	0.80	0.15	0.35	0.85	0.25	0.60
chr1_197401171	na	G	Α	nonsynonymous	ENSGALG0000036106	SMPD1	0.90	0.80	0.15	0.35	0.85	0.25	0.60
chr2_43430775	rs735453043	А	G	upstream	ENSGALG0000036110		0.75	0.80	0.25	0.20	0.78	0.23	0.55
chr8_23765614	rs741698490	С	Т	intronic	ENSGALG0000036909	BEND5	0.60	0.65	0.00	0.10	0.63	0.05	0.58
chr1_197438282	na	А	G	intronic	ENSGALG0000037839	ARFIP2	0.05	0.20	0.75	0.70	0.13	0.73	0.60
chr2_43920885	na	G	Α	upstream	ENSGALG0000038646	EIF1B	0.80	0.75	0.05	0.40	0.78	0.23	0.55
chr1_197395093	na	С	Т	downstream	ENSGALG0000039837	CCKBR	0.90	0.80	0.15	0.35	0.85	0.25	0.60
chr5_17280906	na	G	Α	ncRNA_intronic	ENSGALG0000040479	P2RX3	0.80	0.75	0.00	0.30	0.78	0.15	0.63
chr5_17280624	na	С	Т	ncRNA_exonic	ENSGALG0000040479	P2RX3	0.80	0.75	0.05	0.30	0.78	0.18	0.60
chr5_17280173	rs314385185	G	Α	ncRNA_exonic	ENSGALG0000040479	P2RX3	0.20	0.25	0.95	0.70	0.23	0.83	0.60
chr5_17280159	rs318189997	Т	С	ncRNA_exonic	ENSGALG0000040479	P2RX3	0.15	0.25	0.90	0.65	0.20	0.78	0.58
chr14_4909738	rs736382989	С	Α	intronic	ENSGALG00000041285	MAP2K3	0.65	0.80	0.10	0.20	0.73	0.15	0.58
chr2_43959021	rs317408968	Т	С	intronic	ENSGALG00000041372		0.05	0.15	0.85	0.45	0.10	0.65	0.55
chr1_197438993	na	G	С	intronic	ENSGALG00000042572		0.00	0.20	0.75	0.70	0.10	0.73	0.63
chr2_42164063	na	G	Т	intronic	ENSGALG0000043415	ACPP	0.60	0.80	0.10	0.25	0.70	0.18	0.53
chr5_17275619	rs794312629	G	Α	UTR3	ENSGALG00000043860	PGR2/3	0.75	0.65	0.20	0.15	0.70	0.18	0.53
chr1_197225428	na	G	Α	intronic	ENSGALG00000044591	OR51E2	1.00	0.80	0.25	0.25	0.90	0.25	0.65
chr4_89603283	rs16453444	G	Α	intronic	ENSGALG00000044620		0.80	0.90	0.00	0.45	0.85	0.23	0.63
	rs105978078						0.00	0.85	0.15	0.25	0.88	0.20	0.68
chr5_17258173	2	А	G	nonsynonymous	ENSGALG00000046098	UBE2L6	0.90	0.85	0.15	0.23	0.88	0.20	0.08
chr1_197404221	na	Т	С	intronic	ENSGALG00000046164	APBB1	0.95	0.80	0.15	0.35	0.88	0.25	0.63
chr4_43496808	rs738114890	G	С	ncRNA_intronic	ENSGALG00000046699		0.75	0.80	0.05	0.25	0.78	0.15	0.63
chr1_49880947	rs736613178	Т	Α	ncRNA_intronic	ENSGALG00000046744		0.90	0.70	0.30	0.25	0.80	0.28	0.53
chr20_4516141	rs314237836	G	С	ncRNA_intronic	ENSGALG00000046818		0.85	0.70	0.20	0.15	0.78	0.18	0.60
chr3_108130465	rs312702646	G	С	ncRNA_intronic	ENSGALG00000047869		0.90	0.95	0.45	0.25	0.93	0.35	0.58
chr1_109515507	rs732840204	G	Т	intronic	ENSGALG00000047890	PCP4	0.75	0.90	0.15	0.35	0.83	0.25	0.58
chr4_43505891	rs741120306	Т	С	ncRNA_intronic	ENSGALG00000048030		0.05	0.15	0.95	0.55	0.10	0.75	0.65
chr4_43502734	rs313378340	G	Α	ncRNA_exonic	ENSGALG00000048030		0.75	0.80	0.05	0.25	0.78	0.15	0.63
chr1_197263129	na	Т	Α	downstream	ENSGALG00000048553	OR52R1	0.95	0.90	0.40	0.35	0.93	0.38	0.55
chr2_43538627	na	Т	С	downstream	ENSGALG00000048965		0.75	0.80	0.25	0.25	0.78	0.25	0.53
chr6_27327782	na	Т	Α	ncRNA_exonic	ENSGALG00000049592		0.60	0.85	0.10	0.10	0.73	0.10	0.63

chr? 13926921	na	Δ	G	downstream	ENSGAL C00000049942	gga-mir- 7457	0.85	0.70	0.15	0.35	0.78	0.25	0.53
CIII2_43920924	na	Л	U	noPNA enlicin	ENSOAE00000049942	7437							
chr/1 /13//293/	rs31/3/888/	С	G	a	ENSGAL G0000050160		0.80	0.75	0.05	0.15	0.78	0.10	0.68
$chr4_{4343441}$	rs315/11/306	C	Т	ncRNA exonic	ENSGAL G0000050160		0.80	0.70	0.05	0.25	0.75	0.15	0.60
chr6 25333130	na	G	Δ	ncRNA_intronic	ENSCALG00000050100		0.80	0.70	0.05	0.25	0.75	0.15	0.00
chr6 25331885	na	G		ncRNA_muonic	ENSCAL C0000050595		0.70	0.70	0.00	0.20	0.70	0.10	0.00
$chr_{2}^{2} = 107835173$	na ro217218272		G		ENSCAL C0000050595		0.05	0.70	0.00	0.20	0.08	0.10	0.58
$chr_{3}^{-107833173}$	rs312660753	A G		noPNA intronic	ENSGAL G00000051206		0.75	0.80	0.15	0.33	0.78	0.23	0.55
clii5_43733903	18312009733	C	A	neRNA_inuonic	ENSCAL C00000051290		0.80	0.90	0.25	0.20	0.83	0.25	0.05
$clil0_2/2/0339$	18312008923	0	A	noDNA intronio	ENSCAL C00000051885		0.75	0.90	0.23	0.50	0.65	0.20	0.55
clii1_9/164336	18730739044	A	C	neDNA intronic	ENSGALG00000051825		0.75	0.55	0.10	0.15	0.05	0.13	0.55
chr5_1/504981	IS/4100040/	I T	G	ncRINA_intronic	ENSGALG00000031988		0.75	0.80	0.10	0.15	0.78	0.13	0.65
cnr6_2/321826	rs/39968199	1	A	ncRNA_exonic	ENSGALG00000052216		0.60	0.85	0.10	0.10	0.73	0.10	0.63
chr4 43422571	rs734941354	Т	С	g	ENSGALG00000052572		0.80	0.75	0.05	0.35	0.78	0.20	0.58
chr4_43422589	rs313243968	С	Α	ncRNA_exonic	ENSGALG00000052572		0.80	0.75	0.05	0.35	0.78	0.20	0.58
chr14 5124954	rs732505121	G	Α	downstream	ENSGALG00000052641	PLD6	0.70	0.80	0.10	0.15	0.75	0.13	0.63
chr4_52721011	rs312579587	С	Т	ncRNA_intronic	ENSGALG00000052662		0.15	0.25	0.80	0.90	0.20	0.85	0.65
chr1 197280636	na	G	Α	nonsynonymous	ENSGALG00000052767		0.95	0.80	0.45	0.20	0.88	0.33	0.55
chr1 197280967	na	Т	С	nonsynonymous	ENSGALG00000052767		0.95	0.80	0.45	0.20	0.88	0.33	0.55
chr1 197280970	na	G	Α	nonsynonymous	ENSGALG00000052767		0.95	0.80	0.45	0.20	0.88	0.33	0.55
chr1_37164801	rs315096302	Т	Α	ncRNA_exonic	ENSGALG00000052790		0.70	0.95	0.15	0.25	0.83	0.20	0.63
chr20_4587434	rs738582207	G	С	ncRNA_intronic	ENSGALG00000052811		0.95	0.90	0.30	0.30	0.93	0.30	0.63
chr2_42108399	rs14170918	С	Т	ncRNA_intronic	ENSGALG00000052910		0.65	0.90	0.00	0.30	0.78	0.15	0.63
chr1_197231010	na	С	Т	intronic	ENSGALG00000053527		0.95	0.80	0.25	0.15	0.88	0.20	0.68
chr5_17193485	rs315097836	Α	С	UTR3	ENSGALG00000053601	LPXN	0.80	0.90	0.15	0.25	0.85	0.20	0.65
chr5_17191121	na	G	Т	nonsynonymous	ENSGALG00000053601	LPXN	0.75	0.75	0.15	0.10	0.75	0.13	0.63
chr5 17190919	na	G	Т	nonsynonymous	ENSGALG00000053601	LPXN	0.70	0.75	0.15	0.10	0.73	0.13	0.60
chr5 17191232	rs731490047	А	G	nonsynonymous	ENSGALG00000053601	LPXN	0.20	0.20	0.85	0.65	0.20	0.75	0.55
chr1 197252179	na	G	Α	nonsynonymous	ENSGALG00000053623		0.85	0.75	0.20	0.10	0.80	0.15	0.65
chr3 43756481	rs315338151	Т	С	ncRNA exonic	ENSGALG00000053691		0.80	0.90	0.30	0.30	0.85	0.30	0.55
	rs312965298	G	С	ncRNA_exonic	ENSGALG00000053865		0.75	0.85	0.15	0.40	0.80	0.28	0.53
chr2_43463850	rs316715125	Т	G	intronic	ENSGALG00000053882		0.80	0.85	0.30	0.15	0.83	0.23	0.60
chr2_43924111	na	G	Т	nonsynonymous	ENSGALG00000054003		0.80	0.70	0.05	0.40	0.75	0.23	0.53

chr1_197243456	na	С	Т	downstream	ENSGALG00000054014		0.95	0.80	0.25	0.10	0.88	0.18	0.70
chr23_2186018	na	С	Т	intronic	ENSGALG00000055006	AHDC1	0.85	0.85	0.25	0.20	0.85	0.23	0.63

Table S4.3b. Candidate SNP list from signature analysis for preSeasonality population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

snpID	rs_id	ref	alt	annotation	gene	gene ID	Low group pop1 AAF	Low group pop2 AAF	High group pop1 AAF	High group pop2 AAF	<i>X</i> AAF in Low group	$ar{ar{X}}$ AAF in High group	dAAF
chr19_1762984	rs431878943	С	Т	intronic	ENSGALG0000001153	AUTS2	0.94	0.70	0.50	0.11	0.82	0.31	0.52
chr23_4374321	rs318042596	Α	G	intronic	ENSGALG0000002346	CLSPN	0.67	0.65	0.15	0.06	0.66	0.10	0.56
chr23_4372637	rs733769530	Α	G	nonsynonymous	ENSGALG0000002346	CLSPN	0.67	0.70	0.30	0.00	0.68	0.15	0.53
chr11_1672079	rs14958343	Α	G	intronic	ENSGALG0000002458	VAC14	0.22	0.30	0.80	1.00	0.26	0.90	0.64
chr22_2620465	na	C	Т	intronic	ENSGALG0000003299	NSD3	0.50	0.85	0.10	0.00	0.68	0.05	0.63
chr6_12475073	rs740736721	Α	G	intronic	ENSGALG0000004569	UNC5B	0.83	0.75	0.30	0.22	0.79	0.26	0.53
chr20_6577639	rs317369497	Т	С	intronic	ENSGALG0000004758	KCNB1	0.78	0.70	0.15	0.11	0.74	0.13	0.61
chr4_2746828	rs317632014	Α	Т	intronic	ENSGALG0000005853	HTR2C	0.83	0.50	0.00	0.06	0.67	0.03	0.64
chr1_13966666	rs316266545	C	Т	intronic	ENSGALG0000008154	SRPK2	0.06	0.35	0.75	0.78	0.20	0.76	0.56
chr1_13953265	rs317668098	Α	G	intronic	ENSGALG0000008167	KMT2E	0.00	0.15	0.60	0.67	0.08	0.63	0.56
chr1_13950303	rs316302097	G	Α	nonsynonymous	ENSGALG0000008167	KMT2E	0.00	0.15	0.60	0.56	0.08	0.58	0.50
chr1_12937368	rs313777231	Α	Т	intronic	ENSGALG0000008301	FAM185A	0.72	0.70	0.25	0.17	0.71	0.21	0.50
chr1_12920502	rs13831816	Т	С	UTR3	ENSGALG0000008306	FGL2	0.00	0.15	0.65	0.72	0.08	0.69	0.61
chr1_12914788	rs739994118	G	Α	intronic	ENSGALG0000008309		0.89	0.70	0.15	0.06	0.79	0.10	0.69
chr6_25058737	rs15800502	G	А	intronic	ENSGALG0000008318	SLK	0.44	0.35	0.90	0.94	0.40	0.92	0.53
chr3_5561217	rs315780117	G	А	intronic	ENSGALG0000008725	KIF16B	0.94	0.70	0.15	0.39	0.82	0.27	0.55
chr5_28923353	rs316888789	G	С	intronic	ENSGALG0000009491	RAD51B	0.78	0.75	0.40	0.11	0.76	0.26	0.51
chr3_20239718	rs741653393	C	Т	intronic	ENSGALG0000009645	ESRRG	0.83	0.80	0.40	0.22	0.82	0.31	0.51
chr3_21969178	rs740864445	Α	G	intronic	ENSGALG0000009822	TMEM206	0.56	0.60	0.00	0.00	0.58	0.00	0.58
chr4_30278252	rs316385750	C	Т	intronic	ENSGALG0000009880	INPP4B	0.72	0.75	0.10	0.11	0.74	0.11	0.63
chr5_48776717	rs315241281	С	G	UTR5	ENSGALG00000011228	WARS	0.61	0.50	0.00	0.06	0.56	0.03	0.53

chr4_60959651	rs316313507	Α	С	intronic	ENSGALG00000012319	SLC9B2	0.67	0.65	0.25	0.06	0.66	0.15	0.51
chr4_60979707	rs737134967	Α	Т	intronic	ENSGALG00000012338	BDH2	0.89	0.80	0.35	0.28	0.84	0.31	0.53
chr7_33207317	rs731995024	С	Т	intronic	ENSGALG0000012424	GTDC1	0.78	0.80	0.25	0.17	0.79	0.21	0.58
chr7_35151474	rs317912233	G	А	intronic	ENSGALG0000012484	RIF1	0.17	0.10	0.80	0.72	0.13	0.76	0.63
chr7_35164267	rs16614439	Т	G	nonsynonymous	ENSGALG00000012484	RIF1	0.06	0.05	0.60	0.67	0.05	0.63	0.58
chr7_36105598	rs313025143	Α	G	intronic	ENSGALG00000012543	GPD2	0.22	0.30	0.75	0.83	0.26	0.79	0.53
chr2_69272916	rs314642495	G	С	intronic	ENSGALG00000012917	CDH6	0.78	0.80	0.30	0.11	0.79	0.21	0.58
chr3_70967885	rs736804304	С	Т	intronic	ENSGALG00000015466	SIM1	0.17	0.20	0.65	0.72	0.18	0.69	0.50
chr3_80453177	rs314160172	С	Т	intronic	ENSGALG00000015898	MYO6	0.44	0.35	0.90	0.94	0.40	0.92	0.53
chr4_89968685	rs737780359	Α	Т	intronic	ENSGALG00000016098	EXOC6B	0.06	0.45	0.80	0.78	0.25	0.79	0.54
chr3_86092927	rs314877271	Т	С	intronic	ENSGALG00000016276	KHDRBS2	0.94	0.80	0.35	0.06	0.87	0.20	0.67
chr3_86692518	rs734012915	С	Т	intronic	ENSGALG00000016278	PRIM2	0.72	0.80	0.15	0.06	0.76	0.10	0.66
chr3_86745844	rs730944091	Α	Т	intronic	ENSGALG0000016279	RAB23	0.11	0.25	0.60	0.94	0.18	0.77	0.59
chr1_178331570	rs314191305	Α	Т	intronic	ENSGALG00000017106	ATP8A2	0.94	0.70	0.35	0.28	0.82	0.31	0.51
chr2_94079426	rs741513456	G	Т	intronic	ENSGALG00000019509		0.17	0.05	0.70	0.56	0.11	0.63	0.52
chr3_86764582	rs15417056	Α	G	intronic	ENSGALG0000026605	BAG2	1.00	0.75	0.45	0.22	0.88	0.34	0.54
chr5_48793409	rs733995268	G	Α	intronic	ENSGALG0000028897	WDR25	0.39	0.40	0.95	0.89	0.39	0.92	0.53
chr1_464307	rs733041205	G	Α	ncRNA_intronic	ENSGALG00000033919		0.78	0.90	0.30	0.33	0.84	0.32	0.52
chr3_32612124	rs14336777	Α	G	ncRNA_intronic	ENSGALG0000035137		0.83	0.70	0.15	0.06	0.77	0.10	0.66
chr7_35389628	rs317824661	Т	Α	intronic	ENSGALG0000035466	CACNB4	0.83	0.70	0.10	0.06	0.77	0.08	0.69
chr1_52409419	rs15267228	Α	G	ncRNA_intronic	ENSGALG0000036131		0.78	0.75	0.15	0.17	0.76	0.16	0.61
chr6_12545812	rs736886375	G	Α	intronic	ENSGALG0000036824	CDH23	0.67	0.65	0.15	0.00	0.66	0.08	0.58
chr9_12559730	rs13607342	Т	С	downstream	ENSGALG0000038512	AGTR1	0.33	0.35	0.85	0.89	0.34	0.87	0.53
chr23_4365109	rs314218782	С	Т	intronic	ENSGALG00000039713	AGO4	0.72	0.70	0.30	0.00	0.71	0.15	0.56
chr20_1104430	rs731765162	С	Т	intronic	ENSGALG00000040856	CPNE1	0.17	0.20	0.80	0.72	0.18	0.76	0.58
chr7_33832456	rs315244744	Α	G	ncRNA_intronic	ENSGALG00000041782		0.94	0.85	0.00	0.28	0.90	0.14	0.76
chr1_134822995	na	С	Α	intronic	ENSGALG00000045388	RFX8	1.00	0.70	0.20	0.28	0.85	0.24	0.61
chr4_74231552	rs80710144	G	Т	ncRNA_intronic	ENSGALG00000046053		0.22	0.35	0.90	0.89	0.29	0.89	0.61
chr2_148164284	rs314286815	Α	G	ncRNA_intronic	ENSGALG00000047330		0.72	0.70	0.10	0.06	0.71	0.08	0.63
chr7_33829465	rs15886171	С	Т	ncRNA_exonic	ENSGALG00000047423		0.11	0.10	0.70	0.56	0.11	0.63	0.52
chr3_50852764	rs16275293	Α	C	ncRNA_intronic	ENSGALG00000047502		0.94	0.80	0.45	0.28	0.87	0.36	0.51
chr3_71652581	rs16298732	Α	G	ncRNA_intronic	ENSGALG00000047943		0.78	0.80	0.25	0.17	0.79	0.21	0.58
chr3_71653988	rs739129986	C	Т	ncRNA_exonic	ENSGALG00000047943		0.78	0.70	0.20	0.17	0.74	0.18	0.56
chr4_74184142	rs733020532	G	Α	ncRNA_intronic	ENSGALG00000048521		0.11	0.10	0.65	0.78	0.11	0.71	0.61

chr4_74190773	rs14490489	G	Α	ncRNA_exonic	ENSGALG00000048521		0.89	0.85	0.35	0.22	0.87	0.29	0.58
chr2_148244192	rs312881030	А	С	ncRNA_intronic	ENSGALG00000048947		0.17	0.05	0.65	0.94	0.11	0.80	0.69
chr2_148199210	rs314647706	G	Т	ncRNA_exonic	ENSGALG00000048947		0.72	0.85	0.40	0.17	0.79	0.28	0.50
chr3_21964852	rs14325060	G	Т	intronic	ENSGALG00000049422	ATF3	0.39	0.30	1.00	0.94	0.34	0.97	0.63
chr2_103509237	rs317545067	G	Α	ncRNA_intronic	ENSGALG00000049694		0.89	0.85	0.35	0.28	0.87	0.31	0.56
chr4_74218577	na	Т	С	ncRNA_exonic	ENSGALG00000050078		0.17	0.35	0.90	0.89	0.26	0.89	0.64
chr1_164032291	rs741501392	Т	С	ncRNA_intronic	ENSGALG00000050284		0.39	0.30	0.90	0.94	0.34	0.92	0.58
chr2_95916659	rs318197480	Т	Α	ncRNA_intronic	ENSGALG00000050654		0.33	0.30	0.90	0.94	0.32	0.92	0.61
chr5_28955788	rs313814136	Α	G	ncRNA_intronic	ENSGALG00000051208		0.89	0.90	0.50	0.22	0.89	0.36	0.53
chr4_74290857	rs741369370	Α	G	ncRNA_exonic	ENSGALG00000051573		0.22	0.25	0.65	0.83	0.24	0.74	0.51
chr3_18289928	rs15283236	Т	G	downstream	ENSGALG0000052742		0.67	0.90	0.15	0.17	0.78	0.16	0.63
chr9_11423609	rs14661003	G	С	ncRNA_intronic	ENSGALG0000052830		0.94	0.90	0.60	0.22	0.92	0.41	0.51
chr3_71643736	rs16298716	Α	G	downstream	ENSGALG00000052916		0.44	0.40	0.95	0.94	0.42	0.95	0.53
chr2_114061204	rs80744771	С	Т	ncRNA_intronic	ENSGALG00000053888		0.22	0.20	0.75	0.72	0.21	0.74	0.53
chr2_114062296	rs316490734	G	A	ncRNA_exonic	ENSGALG00000053888		0.72	0.75	0.15	0.28	0.74	0.21	0.52
chr13_7328547	rs317710966	G	С	ncRNA_intronic	ENSGALG00000054885		0.44	0.60	0.00	0.00	0.52	0.00	0.52

Table S4.3c. Candidate SNP list from signature analysis for precWQ population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

snpID	rs_id	ref	alt	annotation	gene	gene ID	Low group pop1 AAF	Low group pop2 AAF	High group pop1 AAF	High group pop2 AAF	\overline{X} AAF in Low group	$ar{ar{X}}$ AAF in High group	dAAF
chr27_4836254	rs733495695	Т	С	intronic	ENSGALG0000000461	MRC2	0.15	0.32	0.55	1.00	0.24	0.78	0.54
chr17_7815584	rs732528570	G	Α	intronic	ENSGALG0000002546	COL5A1	0.75	0.86	0.00	0.06	0.80	0.03	0.78
chr15_4938506	rs316673516	G	Α	intronic	ENSGALG0000003120	NCOR2	0.30	0.25	0.95	0.94	0.28	0.95	0.67
chr23_5596146	rs314063519	G	Т	intronic	ENSGALG0000003693	MACF1	0.90	0.86	0.00	0.06	0.88	0.03	0.85
chr23_5558718	rs316933203	Α	G	nonsynonymous	ENSGALG0000003693	MACF1	0.90	0.82	0.25	0.17	0.86	0.21	0.65
chr23_5551243	rs314855848	G	Α	nonsynonymous	ENSGALG0000003693	MACF1	0.70	0.82	0.15	0.17	0.76	0.16	0.60
chr14_4418236	na	G	Α	ncRNA_exonic	ENSGALG0000004504		0.35	0.07	0.70	0.83	0.21	0.77	0.56

chr14_4435770	rs733978568	С	Т	downstream	ENSGALG0000004530	MMD2	0.25	0.39	0.80	0.89	0.32	0.84	0.52
chr8_10619626	na	G	А	intronic	ENSGALG0000005065	PLA2G4A	0.15	0.21	0.80	0.83	0.18	0.82	0.63
chr11_16304785	rs316253144	Т	С	intronic	ENSGALG0000005483	CDH13	0.15	0.21	0.85	0.89	0.18	0.87	0.69
chr19_8780087	rs737099702	Α	G	intronic	ENSGALG0000005489	DDX52	0.90	0.96	0.35	0.17	0.93	0.26	0.67
chr19_8785804	rs1058285452	Т	А	nonsynonymous	ENSGALG0000005489	DDX52	0.90	0.93	0.40	0.17	0.91	0.28	0.63
chr19_8784622	rs431897287	Т	С	nonsynonymous	ENSGALG0000005489	DDX52	0.90	1.00	0.50	0.33	0.95	0.42	0.53
chr19_8795246	rs733764249	С	Т	intronic	ENSGALG0000005504	HNF1B	0.95	0.93	0.35	0.17	0.94	0.26	0.68
chr15_7961739	rs732175619	G	А	intronic	ENSGALG0000005676	TTC28	0.10	0.29	0.90	0.78	0.19	0.84	0.65
chr15_7970153	rs736876872	Т	А	intronic	ENSGALG0000005695	CHEK2	0.10	0.21	0.80	0.78	0.16	0.79	0.63
chr2_8169684	rs15060462	G	А	intronic	ENSGALG0000006379	SHH	0.00	0.11	0.70	0.67	0.05	0.68	0.63
chr24_2954062	rs312753491	G	А	intronic	ENSGALG0000006494	GRAMD1B	0.80	0.64	0.20	0.00	0.72	0.10	0.62
chr15_10657436	rs317784425	G	А	intronic	ENSGALG0000007732	RTN4R	0.15	0.18	0.60	1.00	0.16	0.80	0.64
chr4_15366691	rs313896728	Α	Т	intronic	ENSGALG0000008442	TENM1	0.95	0.75	0.05	0.11	0.85	0.08	0.77
chr2_21986521	rs15072919	Α	G	intronic	ENSGALG0000009062	CDK14	0.95	0.93	0.15	0.11	0.94	0.13	0.81
chr5_29744386	rs740952797	С	Т	intronic	ENSGALG0000009619	GPR176	0.10	0.11	0.80	0.89	0.10	0.84	0.74
chr4_25200009	rs16377041	С	Т	downstream	ENSGALG0000009650		0.05	0.07	0.60	0.56	0.06	0.58	0.52
chr4_25219821	rs314617422	С	Т	upstream	ENSGALG0000009655		0.85	0.79	0.25	0.22	0.82	0.24	0.58
chr4_25500060	rs735396688	G	А	intronic	ENSGALG0000009692	SH3RF1	0.85	0.71	0.20	0.11	0.78	0.16	0.63
chr4_25520137	na	Α	G	nonsynonymous	ENSGALG0000009692	SH3RF1	0.85	0.64	0.20	0.11	0.75	0.16	0.59
chr4_25522813	rs736520830	G	А	nonsynonymous	ENSGALG0000009692	SH3RF1	0.85	0.68	0.25	0.17	0.76	0.21	0.56
chr4_25548208	rs733070316	С	Т	intronic	ENSGALG0000009714	CBR4	0.85	0.75	0.10	0.11	0.80	0.11	0.69
chr4_29853731	rs739130538	Т	С	intronic	ENSGALG0000009865	RNF150	0.55	0.86	0.05	0.28	0.70	0.16	0.54
chr4_31964457	rs740688037	Α	G	UTR3	ENSGALG00000010019	TMEM184C	0.80	0.75	0.20	0.22	0.78	0.21	0.56
chr4_31970860	rs741235690	Α	С	intronic	ENSGALG00000010022	PRMT9	1.00	0.82	0.25	0.28	0.91	0.26	0.65
chr4_31967765	rs741489346	G	А	nonsynonymous	ENSGALG00000010022	PRMT9	0.80	0.75	0.25	0.28	0.78	0.26	0.51
chr1_38032780	rs317828600	Т	С	intronic	ENSGALG00000010238	NAP1L1	0.15	0.32	0.90	0.78	0.24	0.84	0.60
chr5_39346834	rs15706986	С	Т	UTR3	ENSGALG00000010406	ТМЕМ63С	0.20	0.00	0.80	0.61	0.10	0.71	0.61
chr5_39348173	rs313519656	G	А	UTR3	ENSGALG00000010413	NGB	0.15	0.00	0.60	0.56	0.08	0.58	0.50
chr8_22207096	rs737316662	Α	Т	upstream	ENSGALG00000010444	ATPAF1	0.85	0.64	0.25	0.22	0.75	0.24	0.51
chr5_43322206	na	G	С	upstream	ENSGALG00000010616	PTPN21	0.05	0.04	0.55	0.83	0.04	0.69	0.65
chr5_43344947	rs740498423	Α	G	intronic	ENSGALG00000010622	ZC3H14	0.20	0.18	0.65	0.78	0.19	0.71	0.52
chr4_39436369	rs316883178	Α	G	intronic	ENSGALG00000010628	ACSL1	0.60	0.82	0.05	0.06	0.71	0.05	0.66
chr5_43358208	rs313510958	Т	Α	intronic	ENSGALG00000010639	EML5	0.80	0.64	0.20	0.22	0.72	0.21	0.51
chr8_27970038	rs313589909	Т	С	downstream	ENSGALG00000010985		0.90	0.75	0.30	0.17	0.83	0.23	0.59

chr8_28337013	rs732083903	G	Α	intronic	ENSGALG00000011019	ROR1	0.70	0.64	0.00	0.17	0.67	0.08	0.59
chr2_37133230	rs731492166	Α	G	intronic	ENSGALG00000011289	NKIRAS1	0.15	0.21	0.60	0.78	0.18	0.69	0.51
chr2_37138591	rs14165315	G	Α	UTR3	ENSGALG00000011290	RPL15	0.15	0.43	0.80	0.94	0.29	0.87	0.58
chr1_49385771	rs316254574	С	Т	intronic	ENSGALG00000011878	TCF20	0.10	0.11	0.85	0.78	0.10	0.81	0.71
chr7_30451014	rs316457934	С	Т	intronic	ENSGALG00000012197	ACMSD	0.25	0.00	0.60	0.72	0.13	0.66	0.54
chr4_59790747	rs316072128	G	Α	intronic	ENSGALG00000012227	TSPAN5	0.70	0.00	0.85	0.89	0.35	0.87	0.52
chr2_61180106	rs735904880	С	Т	intronic	ENSGALG00000012702	JARID2	0.65	0.96	0.20	0.11	0.81	0.16	0.65
chr1_55789175	rs737764409	Α	G	intronic	ENSGALG00000012791	TBXAS1	0.50	0.18	0.80	0.94	0.34	0.87	0.53
chr2_65646408	rs316485261	G	Α	intronic	ENSGALG00000012808		0.95	0.96	0.45	0.44	0.96	0.45	0.51
chr2_68093262	rs314522770	С	Т	intronic	ENSGALG00000012888	PHLPP1	0.95	0.75	0.10	0.00	0.85	0.05	0.80
chr2_83534670	rs731782657	С	Т	intronic	ENSGALG00000013129	RPRD1A	0.95	0.82	0.15	0.17	0.89	0.16	0.73
chr4_65495024	rs733193951	С	Т	intronic	ENSGALG00000013931	CHIC2	0.65	0.61	0.20	0.06	0.63	0.13	0.50
chr4_89983847	rs315686852	Α	G	intronic	ENSGALG00000016098	EXOC6B	0.80	0.54	0.00	0.00	0.67	0.00	0.67
chr3_87865731	rs315425423	G	С	downstream	ENSGALG00000016300	TINAG	0.95	0.64	0.35	0.17	0.80	0.26	0.54
chr14_4402914	na	Т	G	downstream	ENSGALG00000025659	gga-mir- 2129	0.25	0.00	0.70	0.89	0.13	0.79	0.67
chr13_2584104	rs317675790	G	Α	intronic	ENSGALG0000028565	PCDHGA2	1.00	0.96	0.20	0.28	0.98	0.24	0.74
chr2_41885078	rs739064554	G	Α	intronic	ENSGALG0000029235	CPNE4	0.20	0.11	0.55	0.89	0.15	0.72	0.57
chr2_136099676	rs317956773	С	Α	intronic	ENSGALG0000029664	SAMD12	0.15	0.25	0.80	0.89	0.20	0.84	0.64
chr4_89589419	rs14505596	Т	Α	intronic	ENSGALG0000030602	ADAM33	1.00	0.89	0.15	0.06	0.95	0.10	0.84
chr10_20309795	rs740025971	G	С	intronic	ENSGALG0000030858	FRMD5	0.55	0.43	1.00	1.00	0.49	1.00	0.51
chr2_135788002	rs316552794	С	Α	intronic	ENSGALG0000030862	MED30	0.05	0.11	0.60	0.72	0.08	0.66	0.58
chr9_8048225	rs736036381	G	Α	intronic	ENSGALG00000030944	Pax3	0.85	0.75	0.00	0.06	0.80	0.03	0.77
chr2_42583923	rs15966693	Т	С	downstream	ENSGALG0000032316	CDV3	0.55	0.11	0.80	0.89	0.33	0.84	0.52
chr9_20261447	rs317252309	Α	G	intronic	ENSGALG0000032577	МЕСОМ	0.50	0.89	0.15	0.11	0.70	0.13	0.57
chr22_5298163	na	С	G	intronic	ENSGALG0000032656	TCF7L1	0.30	0.18	0.75	0.83	0.24	0.79	0.55
chr2_42592533	rs312420170	С	Т	intronic	ENSGALG0000034461	TOPBP1	0.40	0.21	0.75	0.89	0.31	0.82	0.51
chr1_38022988	rs312921343	С	Т	intronic	ENSGALG0000034788	PHLDA1	0.10	0.14	0.85	0.72	0.12	0.79	0.66
chr8_23371814	rs313293937	G	С	intronic	ENSGALG0000036909	BEND5	0.75	0.75	0.05	0.33	0.75	0.19	0.56
chr17_2822458	rs1060013588	G	С	nonsynonymous	ENSGALG0000037031		0.30	0.00	0.60	0.78	0.15	0.69	0.54
chr1_20448549	rs732568414	Т	С	upstream	ENSGALG0000038467	SELENOO	0.00	0.00	0.45	0.61	0.00	0.53	0.53
chr23_5607357	rs737930251	Т	Α	intronic	ENSGALG00000038984		0.75	0.68	0.05	0.11	0.71	0.08	0.63
chr23_5608924	rs732739090	С	Т	nonsynonymous	ENSGALG00000038984		0.75	0.64	0.05	0.11	0.70	0.08	0.62
chr2_135873518	rs733107179	Α	С	downstream	ENSGALG00000039013	EXT1	0.30	0.39	0.80	0.94	0.35	0.87	0.53

chr1_133250883	rs316643536	А	G	intronic	ENSGALG0000039826	CNGA3	0.90	0.54	0.15	0.17	0.72	0.16	0.56
chr17_2820193	rs1058702762	Α	G	downstream	ENSGALG00000040003	STXBP1	1.00	0.96	0.50	0.39	0.98	0.44	0.54
chr10_13683086	rs733336439	G	Α	intronic	ENSGALG00000040241	NTRK3	0.15	0.14	0.80	0.83	0.15	0.82	0.67
chr2_135422594	rs15157999	Α	Т	intronic	ENSGALG00000040522	EIF3H	0.05	0.07	0.70	0.61	0.06	0.66	0.59
chr14_4404742	rs15006315	Т	С	upstream	ENSGALG00000040528	AP5Z1	0.75	1.00	0.30	0.11	0.88	0.21	0.67
chr14_4410232	rs313746392	Α	Т	nonsynonymous	ENSGALG00000040528	AP5Z1	0.35	0.04	0.70	0.89	0.19	0.79	0.60
chr4_1113291	rs740662094	С	Т	intronic	ENSGALG00000041437	FAM155B	0.90	0.64	0.30	0.11	0.77	0.21	0.57
chr13_2950064	rs315966597	G	Α	ncRNA_exonic	ENSGALG00000042617		0.65	0.82	0.00	0.00	0.74	0.00	0.74
chr8_10354829	rs15909685	G	Α	ncRNA_exonic	ENSGALG00000043258		0.15	0.29	0.75	0.78	0.22	0.76	0.55
chr8_10356392	rs312992425	G	Α	ncRNA_exonic	ENSGALG00000043258		0.15	0.29	0.75	0.78	0.22	0.76	0.55
chr4_89598953	rs314488388	Т	С	intronic	ENSGALG00000044620		0.00	0.14	0.50	0.83	0.07	0.67	0.60
chr8_10598175	rs737176813	С	Т	nonsynonymous	ENSGALG00000047029		0.15	0.29	0.80	0.83	0.22	0.82	0.60
chr8_10598177	na	С	Т	nonsynonymous	ENSGALG00000047029		0.15	0.29	0.80	0.83	0.22	0.82	0.60
chr8_27984732	rs316843375	Α	С	ncRNA_exonic	ENSGALG00000047521		0.95	0.86	0.30	0.50	0.90	0.40	0.50
chr14_4400041	rs15006307	G	Т	upstream	ENSGALG00000047899	gga-mir- 12224	0.75	0.79	0.25	0.06	0.77	0.15	0.62
chr3_21652067	rs14324669	Т	С	ncRNA_intronic	ENSGALG00000047938		0.10	0.21	0.75	0.94	0.16	0.85	0.69
chr2_58713136	rs734679973	G	Α	ncRNA_intronic	ENSGALG00000048667		0.75	0.82	0.20	0.28	0.79	0.24	0.55
chr5_39324615	rs738864593	А	Т	ncRNA_intronic	ENSGALG00000048945		0.75	0.86	0.30	0.22	0.80	0.26	0.54
chr5_39265317	rs317766185	Т	G	ncRNA_exonic	ENSGALG00000049515		0.15	0.04	0.75	0.61	0.09	0.68	0.59
chr4_4572234	rs739047199	А	G	ncRNA_intronic	ENSGALG00000049919		0.25	0.00	0.80	0.83	0.13	0.82	0.69
chr4_4589945	na	G	Т	ncRNA_exonic	ENSGALG00000049919		0.15	0.04	0.60	0.83	0.09	0.72	0.62
chr3_87830267	rs15419986	Т	G	upstream	ENSGALG00000049936		0.90	0.96	0.30	0.00	0.93	0.15	0.78
chr3_87824322	rs740528692	G	Α	ncRNA_intronic	ENSGALG00000049936		0.90	0.86	0.30	0.06	0.88	0.18	0.70
chr4_39419074	rs733655018	С	Т	ncRNA_exonic	ENSGALG00000050111		0.30	0.04	0.95	0.89	0.17	0.92	0.75
chr4_39419075	rs738419841	G	Α	ncRNA_exonic	ENSGALG00000050111		0.30	0.04	0.95	0.89	0.17	0.92	0.75
chr2_65520806	rs16024288	Α	G	intronic	ENSGALG00000051665	LYRM4	0.20	0.18	0.90	0.72	0.19	0.81	0.62
chr13_2951147	rs317492478	Α	G	ncRNA_intronic	ENSGALG00000051725		0.35	0.14	1.00	1.00	0.25	1.00	0.75
chr1_150082655	rs315667921	Т	С	upstream	ENSGALG00000052317		0.30	0.07	0.70	0.78	0.19	0.74	0.55
chr2_83535517	rs738834479	Α	G	ncRNA_exonic	ENSGALG00000052392		0.95	0.82	0.10	0.17	0.89	0.13	0.75
chr2_83535712	rs315559938	G	С	ncRNA_exonic	ENSGALG00000052392		0.95	0.82	0.10	0.17	0.89	0.13	0.75
chr1_99146493	rs318136054	G	Т	ncRNA_intronic	ENSGALG00000052669		0.85	1.00	0.30	0.17	0.93	0.23	0.69
chr1_99139549	rs730904570	А	G	ncRNA_exonic	ENSGALG00000052669		0.85	1.00	0.40	0.17	0.93	0.28	0.64
chr3_21692302	rs736698483	Т	Α	ncRNA_intronic	ENSGALG00000052926		0.05	0.29	0.85	0.78	0.17	0.81	0.65

chr13_1290501	na	C	G	upstream	ENSGALG00000052992	1.00	0.93	0.50	0.22	0.96	0.36	0.60
chr10_17834159	rs735955190	Т	G	ncRNA_intronic	ENSGALG00000053260	0.05	0.29	0.65	0.89	0.17	0.77	0.60
chr8_27976851	rs732426878	G	Т	ncRNA_intronic	ENSGALG00000053679	0.95	0.89	0.35	0.28	0.92	0.31	0.61
chr13_2979931	rs14057329	G	Α	ncRNA_exonic	ENSGALG00000054361	0.65	0.79	0.20	0.11	0.72	0.16	0.56
chr1_83105496	rs738446375	С	Т	ncRNA_intronic	ENSGALG00000054748	0.15	0.07	0.90	0.89	0.11	0.89	0.78

Table S4.3d. Candidate SNP list from signature analysis for precDQ population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

snpID	rs_id	ref	alt	annotation	gene	gene ID	Low group pop1 AAF	Low group pop2 AAF	High group pop1 AAF	High group pop2 AAF	$ar{ar{X}}$ AAF in Low group	$ar{ar{X}}$ AAF in High group	dAAF
chr21_544526	rs740716939	G	Α	intronic	ENSGALG0000000627	DNAJC11	0.78	0.72	0.15	0.28	0.75	0.21	0.54
chr19_1847689	rs316908858	Α	G	intronic	ENSGALG0000001153	AUTS2	0.83	0.83	0.30	0.17	0.83	0.23	0.60
chr17_9453975	rs738022500	Α	G	intronic	ENSGALG0000001157	DENND1A	0.78	0.83	0.30	0.17	0.81	0.23	0.57
chr26_3951479	na	Α	С	UTR3	ENSGALG0000002170		0.83	0.78	0.15	0.44	0.81	0.30	0.51
chr11_1675064	rs735405883	G	Α	intronic	ENSGALG0000002458	VAC14	0.94	0.83	0.35	0.22	0.89	0.29	0.60
chr22_2620465	na	С	Т	intronic	ENSGALG0000003299	NSD3	0.00	0.33	0.85	0.50	0.17	0.68	0.51
chr11_18122306	rs317389472	G	С	intronic	ENSGALG0000005872	BANP	0.72	0.89	0.15	0.22	0.81	0.19	0.62
chr2_5471305	rs318104934	Т	С	intronic	ENSGALG0000006072		0.72	0.94	0.15	0.17	0.83	0.16	0.67
chr6_21873025	na	С	Т	intronic	ENSGALG0000006912	CPEB3	0.56	0.89	0.05	0.06	0.72	0.05	0.67
chr18_9863048	rs314018412	С	Т	UTR3	ENSGALG0000007191	TK1	0.67	0.67	0.20	0.11	0.67	0.16	0.51
chr6_25055476	rs16555443	G	С	intronic	ENSGALG0000008318	SLK	0.06	0.06	0.65	0.61	0.06	0.63	0.58
chr3_8446794	rs314939603	Α	G	intronic	ENSGALG0000009078	GALNT14	0.67	0.83	0.15	0.06	0.75	0.10	0.65
chr4_23364554	rs314992123	С	Т	intronic	ENSGALG0000009499	NPY5R	0.50	0.78	0.10	0.06	0.64	0.08	0.56
chr4_23415547	rs314607081	G	Α	intronic	ENSGALG0000009501	TMA16	0.72	0.83	0.25	0.17	0.78	0.21	0.57
chr8_20453398	rs732469649	G	Α	intronic	ENSGALG00000010053	PTPRF	0.78	0.72	0.20	0.17	0.75	0.18	0.57
chr4_35188945	rs14451188	G	Α	intronic	ENSGALG0000010371	FAM13A	0.89	0.94	0.35	0.39	0.92	0.37	0.55
chr4_43282141	rs312368233	G	Т	intronic	ENSGALG00000010744	GALNT7	0.39	0.00	0.70	0.72	0.19	0.71	0.52
chr2_28015850	rs317484297	G	Α	intronic	ENSGALG00000010792	AGMO	0.22	0.17	0.65	0.83	0.19	0.74	0.55

chr2_28021322	rs315829959	Т	C	nonsynonymous	ENSGALG00000010792	AGMO	0.11	0.11	0.60	0.67	0.11	0.63	0.52
chr2_28014205	rs15077551	С	Т	nonsynonymous	ENSGALG00000010792	AGMO	0.00	0.00	0.35	0.67	0.00	0.51	0.51
chr2_28067993	rs738289988	Т	Α	intronic	ENSGALG00000010794	MEOX2	0.11	0.00	0.50	0.78	0.06	0.64	0.58
chr8_26059205	rs732929160	С	Т	intronic	ENSGALG00000010818	PLPP3	0.72	0.83	0.15	0.39	0.78	0.27	0.51
chr7_31045601	rs314250782	С	G	intronic	ENSGALG00000012362	THSD7B	0.22	0.22	0.70	0.78	0.22	0.74	0.52
chr7_35151474	rs317912233	G	Α	intronic	ENSGALG00000012484	RIF1	0.72	0.83	0.10	0.17	0.78	0.13	0.64
chr7_35164267	rs16614439	Т	G	nonsynonymous	ENSGALG00000012484	RIF1	0.67	0.67	0.05	0.06	0.67	0.05	0.61
chr7_36101421	rs736081272	G	Α	intronic	ENSGALG00000012543	GPD2	0.56	0.56	0.00	0.00	0.56	0.00	0.56
chr1_52807448	rs15268225	Α	Т	intronic	ENSGALG00000012559	LARGE1	0.44	0.17	0.80	0.89	0.31	0.84	0.54
chr3_49703837	rs314052498	С	Т	upstream	ENSGALG00000013607	FBXO5	0.72	0.78	0.30	0.17	0.75	0.23	0.52
chr3_49707564	rs315686448	Α	G	intronic	ENSGALG00000013609	MTRF1L	0.72	0.78	0.25	0.17	0.75	0.21	0.54
chr1_78066038	rs313409191	Т	С	upstream	ENSGALG00000014659	CIR	0.22	0.11	0.65	0.78	0.17	0.71	0.55
chr1_78077393	rs317830961	С	Т	intronic	ENSGALG00000014674	CLSTN3	0.17	0.28	0.85	0.89	0.22	0.87	0.65
chr1_81243475	rs736091251	Т	G	intronic	ENSGALG00000015018	CASQ2	0.00	0.00	0.45	0.67	0.00	0.56	0.56
chr2_103792728	rs16089132	G	Α	intronic	ENSGALG00000015112	ZNF521	0.33	0.17	0.80	0.83	0.25	0.82	0.57
chr1_88329905	rs316074735	Α	G	intronic	ENSGALG00000015353	BBX	0.11	0.06	0.65	0.56	0.08	0.60	0.52
chr3_70961225	rs739469705	C	Т	intronic	ENSGALG00000015466	SIM1	0.61	0.83	0.25	0.11	0.72	0.18	0.54
chr3_72505566	rs315786802	Т	С	intronic	ENSGALG00000015513	MMS22L	0.11	0.06	0.70	0.56	0.08	0.63	0.54
chr3_72517241	rs314869658	C	А	nonsynonymous	ENSGALG00000015513	MMS22L	0.72	0.83	0.30	0.22	0.78	0.26	0.52
chr3_73187113	rs15389516	Α	Т	upstream	ENSGALG00000015590	MANEA	0.83	0.78	0.10	0.17	0.81	0.13	0.67
chr3_73938509	rs740881829	Α	С	intronic	ENSGALG00000015593	EPHA7	0.89	0.89	0.25	0.33	0.89	0.29	0.60
chr4_89961208	rs314008162	G	Α	intronic	ENSGALG00000016098	EXOC6B	0.72	0.78	0.30	0.00	0.75	0.15	0.60
chr1_109721134	rs14871885	C	Т	intronic	ENSGALG00000016138	DSCAM	0.06	0.06	0.65	0.50	0.06	0.58	0.52
chr1_113714276	rs733028159	G	Α	intronic	ENSGALG00000016245	BCOR	0.94	1.00	0.35	0.50	0.97	0.43	0.55
chr3_86703122	rs315677415	G	Т	intronic	ENSGALG00000016278	PRIM2	0.72	0.61	0.00	0.06	0.67	0.03	0.64
chr3_86710637	rs313188681	Т	С	nonsynonymous	ENSGALG00000016278	PRIM2	0.28	0.22	0.80	0.72	0.25	0.76	0.51
chr3_86754389	rs315833014	С	Α	intronic	ENSGALG00000016279	RAB23	0.17	0.39	0.75	0.94	0.28	0.85	0.57
chr3_86751585	rs317473946	Т	С	nonsynonymous	ENSGALG00000016279	RAB23	0.11	0.22	0.60	0.78	0.17	0.69	0.52
chr3_86786031	rs733735638	G	С	intronic	ENSGALG00000016282	ZNF451	0.72	0.72	0.15	0.06	0.72	0.10	0.62
chr3_87511307	rs315455718	C	Т	intronic	ENSGALG00000016294	HMGCLL1	0.17	0.06	0.80	0.78	0.11	0.79	0.68
chr8_15400113	rs735472125	C	Т	intronic	ENSGALG0000020805	LRRC8D	0.61	0.94	0.20	0.22	0.78	0.21	0.57
chr8_15392581	rs10724918	Т	Α	nonsynonymous	ENSGALG00000020805	LRRC8D	0.56	0.83	0.15	0.22	0.69	0.19	0.51
chr3_73206656	rs312336006	Α	G	upstream	ENSGALG00000025686	RF00026	0.83	0.78	0.25	0.17	0.81	0.21	0.60
chr17_9508178	rs315550755	Т	С	downstream	ENSGALG00000026417	RF02271	0.78	0.83	0.30	0.22	0.81	0.26	0.54

chr3_86764582	rs15417056	А	G	intronic	ENSGALG00000026605	BAG2	0.22	0.33	0.75	1.00	0.28	0.88	0.60
chr3_106484531	rs739397828	G	Т	intronic	ENSGALG0000028032	MSRA	0.78	0.83	0.10	0.11	0.81	0.11	0.70
chr21_560325	rs10725890	А	G	UTR3	ENSGALG0000028148	PHF13	0.22	0.28	0.85	0.67	0.25	0.76	0.51
chr6_21704316	na	С	Т	upstream	ENSGALG0000030597	KIF11	0.39	0.83	0.10	0.11	0.61	0.11	0.51
chr19_949859	rs741125990	С	Т	intronic	ENSGALG0000032220		0.61	0.78	0.10	0.11	0.69	0.11	0.59
chr6_21804826	na	С	Т	intronic	ENSGALG0000032234	MARCH5	0.50	0.94	0.05	0.11	0.72	0.08	0.64
chr21_538509	rs13602412	А	Т	intronic	ENSGALG00000033569		0.78	0.72	0.15	0.22	0.75	0.19	0.56
chr3_72056954	na	С	Т	downstream	ENSGALG0000034564		0.56	0.83	0.20	0.17	0.69	0.18	0.51
chr21_566581	rs315528106	С	Т	intronic	ENSGALG0000035211	KLHL21	0.22	0.28	0.85	0.67	0.25	0.76	0.51
chr7_35393566	rs317060282	G	Α	intronic	ENSGALG0000035466	CACNB4	0.89	0.72	0.15	0.11	0.81	0.13	0.68
chr2_46670986	rs731926865	А	G	downstream	ENSGALG0000035505	AOAH	0.28	0.22	0.80	0.78	0.25	0.79	0.54
chr3_72397353	rs316455543	G	Α	ncRNA_intronic	ENSGALG0000036204		0.89	0.83	0.25	0.17	0.86	0.21	0.65
chr9_12548812	rs738244929	G	Α	intronic	ENSGALG0000038512	AGTR1	0.00	0.06	0.50	0.56	0.03	0.53	0.50
chr23_4367774	rs731167823	С	Т	intronic	ENSGALG0000039713	AGO4	0.00	0.39	0.70	0.72	0.19	0.71	0.52
chr1_110363154	rs794211905	G	Α	upstream	ENSGALG00000040189	RIPK4	0.67	0.83	0.10	0.17	0.75	0.13	0.62
chr13_17881220	na	С	Т	intronic	ENSGALG00000040594	GNPDA1	0.50	0.94	0.15	0.22	0.72	0.19	0.54
chr20_1104292	rs731212396	G	Α	intronic	ENSGALG00000040856	CPNE1	0.78	0.83	0.20	0.28	0.81	0.24	0.57
chr3_73013447	rs313632779	С	Т	intronic	ENSGALG00000042116	FUT9	0.78	0.89	0.10	0.22	0.83	0.16	0.67
chr13_17872778	na	С	Т	intronic	ENSGALG00000043085	RNF14	0.50	0.94	0.20	0.22	0.72	0.21	0.51
chr2_46680571	rs741033568	С	Т	intronic	ENSGALG00000043642	ANLN	0.50	0.78	0.05	0.11	0.64	0.08	0.56
chr13_17889787	na	G	Α	intronic	ENSGALG00000043744	NDFIP1	0.50	0.94	0.20	0.22	0.72	0.21	0.51
chr1_134823969	rs314518705	Т	G	intronic	ENSGALG00000045388	RFX8	0.67	0.50	0.15	0.00	0.58	0.08	0.51
chr4_74251752	rs737719175	А	G	ncRNA_intronic	ENSGALG00000046053		0.72	0.72	0.10	0.11	0.72	0.11	0.62
chr4_23352860	rs16374605	А	G	ncRNA_intronic	ENSGALG00000046688		0.50	0.22	0.85	0.94	0.36	0.90	0.54
chr12_18106384	rs316127096	G	Α	ncRNA_intronic	ENSGALG00000046751		0.94	0.94	0.60	0.22	0.94	0.41	0.53
chr3_73342074	rs315272289	А	Т	ncRNA_intronic	ENSGALG00000046901		0.72	0.83	0.20	0.17	0.78	0.18	0.59
chr3_74469948	rs15390883	С	Т	ncRNA_exonic	ENSGALG00000047305		0.56	0.83	0.20	0.11	0.69	0.16	0.54
chr3_71654227	rs734579716	Т	С	ncRNA_exonic	ENSGALG00000047943		0.83	0.78	0.20	0.22	0.81	0.21	0.59
chr4_74184142	rs733020532	G	Α	ncRNA_intronic	ENSGALG00000048521		0.78	0.78	0.10	0.11	0.78	0.11	0.67
chr9_6290012	rs14667193	G	Т	downstream	ENSGALG00000049259		0.61	0.61	0.10	0.06	0.61	0.08	0.53
chr6_12512820	rs15780500	G	Α	UTR3	ENSGALG00000049446	SLC29A3	0.61	0.67	0.10	0.17	0.64	0.13	0.51
chr4_74213430	rs315917373	G	Α	upstream	ENSGALG00000050078		0.11	0.22	0.65	0.83	0.17	0.74	0.58
chr4_74218577	na	Т	С	ncRNA_exonic	ENSGALG00000050078		0.89	0.78	0.35	0.17	0.83	0.26	0.58
chr3_73386736	na	G	C	upstream	ENSGALG00000050194		0.78	0.83	0.35	0.22	0.81	0.29	0.52

chr2_26960211	rs317304288	G	А	ncRNA_intronic	ENSGALG00000050874	0.33	0.17	0.70	0.89	0.25	0.79	0.54
chr1_155052318	rs312499696	С	Т	ncRNA_intronic	ENSGALG00000051545	0.11	0.00	0.65	0.78	0.06	0.71	0.66
chr4_74290857	rs741369370	А	G	ncRNA_exonic	ENSGALG00000051573	0.83	0.67	0.25	0.22	0.75	0.24	0.51
chr1_110369650	rs15380390	Т	С	ncRNA_exonic	ENSGALG00000051940	0.39	0.00	0.80	0.94	0.19	0.87	0.68
chr4_9970045	rs313910852	Т	Α	ncRNA_intronic	ENSGALG00000052590	0.78	0.78	0.05	0.22	0.78	0.14	0.64
chr3_71643736	rs16298716	А	G	downstream	ENSGALG00000052916	0.94	0.94	0.40	0.44	0.94	0.42	0.52
chr8_15658008	rs734760197	G	С	ncRNA_intronic	ENSGALG00000052940	0.56	0.94	0.25	0.17	0.75	0.21	0.54
chr3_71085059	rs735672719	А	Т	upstream	ENSGALG00000053011	0.67	0.72	0.15	0.11	0.69	0.13	0.56
chr7_34388391	rs313766753	А	С	ncRNA_intronic	ENSGALG00000053295	0.72	0.83	0.25	0.06	0.78	0.15	0.63
chr26_3952469	rs736838272	А	G	intronic	ENSGALG00000054224	0.61	0.78	0.10	0.28	0.69	0.19	0.51
chr1_97326982	rs741111731	С	Т	ncRNA_intronic	ENSGALG00000054585	0.78	0.72	0.20	0.22	0.75	0.21	0.54
chr13_7328547	rs317710966	G	С	ncRNA_intronic	ENSGALG00000054885	0.00	0.00	0.60	0.44	0.00	0.52	0.52
chr2_28134759	rs13543650	С	Α	ncRNA_intronic	ENSGALG00000054958	1.00	1.00	0.60	0.33	1.00	0.47	0.53

Table S4.3e. Candidate SNP list from signature analysis for SoilOrgC population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

snpID	rs_id	ref	alt	annotation	gene	gene ID	Low group pop1 AAF	Low group pop2 AAF	High group pop1 AAF	High group pop2 AAF	₹AAF in Low group	$ar{ar{X}}$ AAF in High group	dAAF
chr1_197282265	na	G	Α	upstream	ENSGALG00000047152	HBBA	0.44	0.30	0.95	0.85	0.37	0.90	0.53
chr33_6484810	na	G	Α	downstream	ENSGALG00000047273	DRAP1	0.00	0.05	0.75	0.50	0.03	0.63	0.60
chr1_197282265	na	G	Α	downstream	ENSGALG00000052767		0.44	0.30	0.95	0.85	0.37	0.90	0.53
chr18_852214	rs317419481	G	Α	intronic	ENSGALG0000001021	MYOCD	0.56	0.70	0.10	0.15	0.63	0.13	0.50
chr9_10691546	rs312400259	С	G	intronic	ENSGALG0000002639	TRPC1	1.00	0.85	0.40	0.35	0.93	0.38	0.55
chr9_10683587	rs740485975	G	Α	intronic	ENSGALG0000002647	PLS1	0.00	0.15	0.60	0.60	0.08	0.60	0.53
chr10_6837508	rs15570701	Α	G	intronic	ENSGALG0000004087	THSD4	0.78	0.85	0.15	0.20	0.81	0.18	0.64
chr5_1878183	rs15650675	Т	С	intronic	ENSGALG0000004153	NADSYN1	0.72	0.70	0.10	0.25	0.71	0.18	0.54
chr5_1873527	rs738367843	С	Т	intronic	ENSGALG0000004166	VPS51	0.78	0.75	0.10	0.20	0.76	0.15	0.61
chr5_1866493	rs15650715	Т	С	UTR3	ENSGALG00000004172	BET1L	0.83	0.65	0.15	0.10	0.74	0.13	0.62

chr5_1862115	rs316635524	С	Т	intronic	ENSGALG0000004191	RIC8A	0.78	0.60	0.10	0.05	0.69	0.08	0.61
chr14_4757031	rs315337156	Т	G	intronic	ENSGALG0000004693	ARPC1A	0.22	0.40	0.85	0.90	0.31	0.88	0.56
chr17_5539734	rs317472633	G	Α	intronic	ENSGALG0000004719	SPTAN1	0.50	0.75	0.05	0.10	0.63	0.08	0.55
chr2_5882084	rs316359926	Т	Α	intronic	ENSGALG0000006158	ACVR2B	0.17	0.00	0.75	0.75	0.08	0.75	0.67
chr15_9915198	rs738971750	Α	G	intronic	ENSGALG0000007354	CIT	0.67	0.65	0.15	0.15	0.66	0.15	0.51
chr2_17229852	rs317151158	Α	G	intronic	ENSGALG0000007766	KIAA1217	0.83	0.85	0.15	0.20	0.84	0.18	0.67
chr4_13126545	rs735864582	G	Α	intronic	ENSGALG0000007972	TRPC5	0.22	0.10	0.65	0.75	0.16	0.70	0.54
chr3_28356219	rs317888833	С	А	intronic	ENSGALG00000010050	LRFN2	0.83	0.75	0.15	0.30	0.79	0.23	0.57
chr4_43282033	rs317960491	Т	G	intronic	ENSGALG00000010744	GALNT7	0.72	0.95	0.25	0.20	0.84	0.23	0.61
chr4_43291522	na	Α	Т	intronic	ENSGALG00000010745	HMGB2	0.72	0.75	0.15	0.05	0.74	0.10	0.64
chr4_46301618	rs738519856	С	Т	intronic	ENSGALG00000011133	LIN54	0.22	0.10	0.75	0.75	0.16	0.75	0.59
chr4_46462249	rs317703256	Т	С	intronic	ENSGALG00000011208	HELQ	0.28	0.05	0.80	0.70	0.16	0.75	0.59
chr4_46469240	rs14462895	G	А	intronic	ENSGALG00000011210	ABRAXAS1	0.33	0.10	0.90	0.90	0.22	0.90	0.68
chr4_46467397	rs315716648	Т	C	nonsynonymous	ENSGALG00000011210	ABRAXAS1	0.17	0.05	0.60	0.80	0.11	0.70	0.59
chr4_46467877	rs317124316	Т	C	nonsynonymous	ENSGALG00000011210	ABRAXAS1	0.17	0.10	0.60	0.80	0.13	0.70	0.57
chr4_46467281	rs314846798	Т	C	nonsynonymous	ENSGALG00000011210	ABRAXAS1	0.22	0.10	0.60	0.80	0.16	0.70	0.54
chr1_44957795	rs315703916	С	Т	intronic	ENSGALG00000011297	CRADD	0.33	0.20	0.90	0.80	0.27	0.85	0.58
chr4_48305392	rs314276252	Т	C	intronic	ENSGALG00000011319	ADGRL3	0.06	0.20	0.90	0.70	0.13	0.80	0.67
chr4_50884060	rs314082155	Т	С	intronic	ENSGALG00000011664	RASSF6	0.06	0.10	0.70	0.80	0.08	0.75	0.67
chr4_50924373	rs316517697	С	Α	upstream	ENSGALG00000011668	IL8L1	0.11	0.10	0.75	0.75	0.11	0.75	0.64
chr7_35151474	rs317912233	G	А	intronic	ENSGALG00000012484	RIF1	0.17	0.10	0.60	0.75	0.13	0.68	0.54
chr7_35402192	rs14630853	G	Α	intronic	ENSGALG00000012513	STAM2	0.72	0.80	0.15	0.15	0.76	0.15	0.61
chr1_55982800	rs317669778	Α	C	intronic	ENSGALG00000012791	TBXAS1	0.17	0.35	0.80	0.75	0.26	0.78	0.52
chr1_60820017	rs316758233	Α	G	intronic	ENSGALG00000012994	ERC1	0.17	0.30	0.85	0.80	0.23	0.83	0.59
chr1_60860135	rs14833762	С	Т	intronic	ENSGALG00000012998	WNT5B	0.83	0.60	0.10	0.30	0.72	0.20	0.52
chr1_64902090	rs740935649	G	Т	intronic	ENSGALG00000013143	PDE3A	0.78	0.65	0.20	0.10	0.71	0.15	0.56
chr4_76540574	rs315713688	Α	G	intronic	ENSGALG00000014496	Prom1	0.83	0.70	0.05	0.45	0.77	0.25	0.52
chr1_78048067	rs740296375	Т	Α	nonsynonymous	ENSGALG00000014603	CIS	0.00	0.10	0.65	0.55	0.05	0.60	0.55
chr1_78049446	rs14845732	Α	С	nonsynonymous	ENSGALG00000014603	CIS	1.00	0.90	0.30	0.50	0.95	0.40	0.55
chr1_78048418	rs13887326	G	А	nonsynonymous	ENSGALG00000014603	CIS	0.06	0.15	0.65	0.60	0.10	0.63	0.52
chr1_78065070	rs313713208	Т	G	intronic	ENSGALG00000014659	CIR	0.00	0.15	0.70	0.60	0.08	0.65	0.58
chr1_78070795	rs314288648	С	Т	intronic	ENSGALG00000014662	RBP5	0.00	0.10	0.60	0.60	0.05	0.60	0.55
chr1_78077393	rs317830961	С	Т	intronic	ENSGALG00000014674	CLSTN3	0.89	0.85	0.30	0.25	0.87	0.28	0.59
chr3_66629773	rs15377681	Α	С	intronic	ENSGALG00000015061	CDC40	0.11	0.15	0.75	0.60	0.13	0.68	0.54

chr3_67213317	rs737877959	Т	G	upstream	ENSGALG00000015289	ARMC2	0.00	0.15	0.90	0.45	0.08	0.68	0.60
chr3_67294992	rs739018988	G	Т	intronic	ENSGALG00000015297	FOXO3	0.06	0.00	0.75	0.55	0.03	0.65	0.62
chr1_105401546	rs740014385	G	Α	intronic	ENSGALG00000015822		0.33	0.15	0.85	0.75	0.24	0.80	0.56
chr1_108010859	rs316401785	G	Α	intronic	ENSGALG00000016042	CHAF1B	0.67	0.45	0.00	0.00	0.56	0.00	0.56
chr1_117673165	rs738448021	Т	C	intronic	ENSGALG00000016288	IL1RAPL1	0.17	0.20	0.80	0.75	0.18	0.78	0.59
chr3_87499222	rs317097894	G	C	intronic	ENSGALG00000016294	HMGCLL1	0.00	0.20	0.75	0.80	0.10	0.78	0.68
chr3_108224362	rs740527901	А	G	intronic	ENSGALG00000016680	TFAP2B	0.22	0.10	0.80	0.65	0.16	0.73	0.56
chr1_146498503	rs737557685	Т	C	intronic	ENSGALG00000016886	FARP1	0.72	0.45	0.00	0.15	0.59	0.08	0.51
chr1_167340986	rs318131789	G	Α	intronic	ENSGALG00000016955	VWA8	0.28	0.20	0.90	0.65	0.24	0.78	0.54
chr1_168941361	rs317293763	С	Т	intronic	ENSGALG00000016972	NUFIP1	0.94	0.75	0.25	0.10	0.85	0.18	0.67
chr1_171744646	rs737161831	А	С	intronic	ENSGALG00000017026	VPS36	0.33	0.25	0.85	0.80	0.29	0.83	0.53
chr1_197287932	na	G	Α	downstream	ENSGALG00000017347	HBBR	0.39	0.25	0.95	0.75	0.32	0.85	0.53
chr4_46465110	rs15564231	А	G	intronic	ENSGALG0000023191	MRPS18C	0.28	0.05	0.90	0.70	0.16	0.80	0.64
chr9_18772140	rs740431523	G	Α	intronic	ENSGALG00000023670	NAALADL2	0.06	0.15	0.70	0.60	0.10	0.65	0.55
chr4_50940750	rs16409260	С	Т	UTR3	ENSGALG00000026098	IL8	0.83	0.85	0.20	0.15	0.84	0.18	0.67
chr3_106483692	rs735464908	G	Α	intronic	ENSGALG00000028032	MSRA	0.06	0.10	0.90	0.65	0.08	0.78	0.70
chr1_197283909	na	С	Т	intronic	ENSGALG00000028273	HBE1	0.28	0.30	0.95	0.75	0.29	0.85	0.56
chr4_40261626	rs15551203	G	Α	intronic	ENSGALG00000030065	TENM3	0.17	0.40	0.95	0.80	0.28	0.88	0.59
chr4_40127982	na	G	Α	nonsynonymous	ENSGALG00000030065	TENM3	0.17	0.30	0.80	0.70	0.23	0.75	0.52
chr2_137929184	rs317580060	Α	G	intronic	ENSGALG00000030460	TBC1D31	0.06	0.05	0.55	0.65	0.05	0.60	0.55
chr4_42916104	rs14458637	А	G	intronic	ENSGALG00000030588	GALNTL6	0.11	0.40	0.90	0.80	0.26	0.85	0.59
chr14_13193066	rs731928779	С	G	intronic	ENSGALG00000030877	CLUAP1	0.22	0.15	0.85	0.75	0.19	0.80	0.61
chr10_1538694	rs733384767	С	Т	intronic	ENSGALG00000031408	SORD	0.33	0.25	0.85	0.75	0.29	0.80	0.51
chr1_168960849	rs738879763	С	Α	intronic	ENSGALG00000031567	GPALPP1	0.94	0.70	0.20	0.20	0.82	0.20	0.62
chr18_9897787	na	С	Т	UTR3	ENSGALG0000032336	SLC25A10	0.83	0.80	0.35	0.15	0.82	0.25	0.57
chr3_35172014	rs734091960	А	Т	intronic	ENSGALG00000034081	AKT3	0.06	0.20	0.90	0.60	0.13	0.75	0.62
chr5_1196708	rs315998563	G	Т	intronic	ENSGALG00000035242	RMDN3	0.17	0.40	0.85	0.80	0.28	0.83	0.54
chr7_35393566	rs317060282	G	Α	intronic	ENSGALG00000035466	CACNB4	0.11	0.15	0.90	0.95	0.13	0.93	0.79
chr18_9872059	rs16347414	Т	С	downstream	ENSGALG00000038875	ТМС6	0.78	0.75	0.40	0.10	0.76	0.25	0.51
chr20_1587973	rs317149019	G	Α	intronic	ENSGALG00000039101	ASIP	0.11	0.20	0.70	0.75	0.16	0.73	0.57
chr33_6498218	na	G	Т	UTR5	ENSGALG00000039409	RELA	0.00	0.05	0.70	0.45	0.03	0.58	0.55
chr10_13674790	rs314848346	G	Α	intronic	ENSGALG00000040241	NTRK3	0.89	0.65	0.10	0.15	0.77	0.13	0.64
chr9_19001952	rs735432390	C	Α	intronic	ENSGALG00000040938	NLGN1	0.11	0.40	0.85	0.75	0.26	0.80	0.54
chr3_66606219	rs316456097	Α	G	intronic	ENSGALG00000041120	METTL24	0.11	0.15	0.80	0.65	0.13	0.73	0.59

chr3_106838116	rs431829052	G	А	intronic	ENSGALG00000041139	PINX1	0.22	0.30	0.85	0.75	0.26	0.80	0.54
chr1_174193558	rs736954116	С	Т	intronic	ENSGALG00000041263	DCLK1	0.11	0.15	0.85	0.85	0.13	0.85	0.72
chr14_15399971	rs741294578	Т	С	intronic	ENSGALG00000041298		0.28	0.25	0.85	0.85	0.26	0.85	0.59
chr7_33913011	rs794420089	С	Т	ncRNA_intronic	ENSGALG00000041782		0.11	0.15	1.00	0.60	0.13	0.80	0.67
chr7_33917087	rs733609911	Т	С	ncRNA_exonic	ENSGALG00000041782		0.17	0.15	1.00	0.60	0.16	0.80	0.64
chr4_50964457	rs14468633	Т	С	downstream	ENSGALG00000046160	PPBP	0.11	0.10	0.75	0.75	0.11	0.75	0.64
chr4_50963368	rs312785207	G	А	UTR3	ENSGALG00000046160	PPBP	0.11	0.05	0.70	0.70	0.08	0.70	0.62
chr4_50962848	rs16409303	G	А	nonsynonymous	ENSGALG00000046160	PPBP	0.22	0.20	0.70	0.80	0.21	0.75	0.54
chr4_43294449	rs317275943	G	А	ncRNA_intronic	ENSGALG00000046857		0.22	0.20	0.75	0.85	0.21	0.80	0.59
chr4_42054421	rs315189131	А	G	ncRNA_intronic	ENSGALG00000047221		0.17	0.35	0.90	0.70	0.26	0.80	0.54
chr3_108218185	rs16342493	Т	С	intronic	ENSGALG00000047589		0.72	0.80	0.20	0.25	0.76	0.23	0.54
chr4_6492223	rs740869514	А	G	ncRNA_intronic	ENSGALG00000047994		0.72	0.60	0.15	0.05	0.66	0.10	0.56
chr2_9798934	rs734424330	С	Т	ncRNA_exonic	ENSGALG00000048545		0.11	0.35	0.80	0.70	0.23	0.75	0.52
chr7_31522897	rs313169111	С	Т	intronic	ENSGALG00000048656		0.22	0.25	0.95	0.75	0.24	0.85	0.61
chr9_18864400	rs737848314	G	Α	downstream	ENSGALG00000048975		0.22	0.35	0.85	0.80	0.29	0.83	0.54
chr2_56240597	rs741421980	С	Α	intronic	ENSGALG00000049812	PQLC1	0.17	0.05	0.60	0.70	0.11	0.65	0.54
chr4_40973754	rs15552615	Т	С	ncRNA_intronic	ENSGALG00000050037		0.83	0.85	0.20	0.20	0.84	0.20	0.64
chr3_107774437	rs316811446	G	Α	downstream	ENSGALG00000050553		0.78	0.85	0.05	0.30	0.81	0.18	0.64
chr6_25343087	rs741144048	G	С	ncRNA_intronic	ENSGALG00000050593		0.00	0.10	0.75	0.70	0.05	0.73	0.68
chr6_25331885	na	G	Т	ncRNA_exonic	ENSGALG00000050593		0.00	0.05	0.65	0.60	0.03	0.63	0.60
chr3_107808168	rs317702451	С	Т	upstream	ENSGALG00000050753		0.72	0.90	0.05	0.05	0.81	0.05	0.76
chr3_91851269	rs318216900	А	G	upstream	ENSGALG00000050914		0.67	0.55	0.10	0.10	0.61	0.10	0.51
chr33_6484465	na	G	С	ncRNA_exonic	ENSGALG00000051169	UQCC3	0.00	0.10	0.75	0.60	0.05	0.68	0.63
chr1_173810330	rs731851082	А	G	downstream	ENSGALG00000051912		0.33	0.35	0.85	0.90	0.34	0.88	0.53
chr1_173813052	rs312496906	Т	С	ncRNA_exonic	ENSGALG00000051912		0.22	0.30	0.75	0.80	0.26	0.78	0.51
chr5_17570223	rs15674380	G	А	ncRNA_intronic	ENSGALG00000051988		0.67	0.60	0.05	0.05	0.63	0.05	0.58
chr1_110526373	rs316127210	С	Т	intronic	ENSGALG00000052523		0.00	0.35	0.80	0.65	0.18	0.73	0.55
chr1_110525301	rs740893938	Т	С	nonsynonymous	ENSGALG00000052523		0.00	0.40	0.80	0.65	0.20	0.73	0.53
chr1_110525253	rs317142169	А	G	nonsynonymous	ENSGALG0000052523		0.33	0.45	0.90	0.90	0.39	0.90	0.51
chr1_93736639	rs317435027	С	G	ncRNA_intronic	ENSGALG00000052608		0.06	0.40	0.70	0.90	0.23	0.80	0.57
chr2_6128884	rs315845943	G	С	downstream	ENSGALG00000053252		0.33	0.50	0.90	0.95	0.42	0.93	0.51
chr1_197241952	na	А	G	intronic	ENSGALG00000054014		0.39	0.30	0.95	0.75	0.34	0.85	0.51
chr4_42135670	rs317255318	А	G	ncRNA_intronic	ENSGALG00000054340		0.83	0.65	0.10	0.30	0.74	0.20	0.54
chr6_26881924	rs317363623	Α	G	ncRNA_intronic	ENSGALG00000054720		0.28	0.20	0.75	0.80	0.24	0.78	0.54

Table S4.3f. Candidate SNP list from signature analysis for LandUse population group. (Only SNPs with large differences in allele frequency (dAAF>0.5) between Low and High groups are included. At least one SNP with dAAF>0.5 for each candidate gene is included. |dAAF|: difference in allele frequency between Low and High group).

snpID	rs_id	ref	alt	annotation	gene	gene ID	Low group pop1 AAF	Low group pop2 AAF	High group pop1 AAF	High group pop2 AAF	₹ ĀAAF in Low group	$ar{ar{X}}$ AAF in High group	dAAF
chr3_34295140	rs317838524	Т	С	intronic	ENSGALG00000010664	KIF26B	0.89	1.00	0.25	0.55	0.94	0.40	0.54
chr22_851111	rs314845387	Α	G	intronic	ENSGALG0000000242	EBF2	0.72	0.89	0.25	0.30	0.81	0.28	0.53
chr13_11317880	rs313834857	G	Α	downstream	ENSGALG0000003672	UBLCP1	0.11	0.06	0.65	0.75	0.08	0.70	0.62
chr6_16069210	rs736844754	С	Т	intronic	ENSGALG0000005057	ADK	1.00	0.89	0.40	0.45	0.94	0.43	0.52
chr2_3539810	rs14129599	Α	G	intronic	ENSGALG0000005448	MYL3	0.94	0.83	0.20	0.45	0.89	0.33	0.56
chr6_20203680	rs315457244	Α	G	upstream	ENSGALG0000006421	SLC16A12	0.28	0.28	0.65	0.95	0.28	0.80	0.52
chr2_10257999	rs735572037	Α	С	intronic	ENSGALG0000006652	DIP2C	0.94	0.94	0.30	0.45	0.94	0.38	0.57
chr3_10701300	rs317403184	Α	Т	intronic	ENSGALG0000008778	SPRED2	0.72	0.89	0.20	0.30	0.81	0.25	0.56
chr8_20061558	rs312780602	G	С	intronic	ENSGALG0000009993	MED8	0.72	0.89	0.25	0.05	0.81	0.15	0.66
chr3_34275191	rs312954554	С	Т	intronic	ENSGALG00000010653	SMYD3	0.11	0.06	0.70	0.50	0.08	0.60	0.52
chr2_27960216	rs317883849	Α	G	intronic	ENSGALG00000010792	AGMO	0.72	0.94	0.10	0.25	0.83	0.18	0.66
chr2_32216921	rs735947960	G	Α	upstream	ENSGALG00000011046	SNX10	0.17	0.22	0.60	0.90	0.19	0.75	0.56
chr2_38801757	rs317204693	G	Т	upstream	ENSGALG00000011428	AZI2	0.94	0.94	0.40	0.45	0.94	0.43	0.52
chr2_40559061	rs732153441	Т	Α	UTR3	ENSGALG00000011498	TCAIM	0.72	0.94	0.25	0.25	0.83	0.25	0.58
chr4_54303073	rs737880929	Т	С	intronic	ENSGALG00000011963	PRDM5	0.78	0.78	0.15	0.20	0.78	0.18	0.60
chr4_56156061	rs313952468	Т	С	intronic	ENSGALG00000012015	NDST4	0.56	0.89	0.05	0.35	0.72	0.20	0.52
chr1_64476422	rs13879021	С	Т	intronic	ENSGALG00000013134	PLEKHA5	0.89	0.72	0.30	0.15	0.81	0.23	0.58
chr4_75792680	rs739647947	Α	G	intronic	ENSGALG00000014425	NCAPG	0.67	0.67	0.30	0.00	0.67	0.15	0.52
chr2_99526132	rs735982242	С	Т	intronic	ENSGALG00000014615	LAMA1	0.89	0.72	0.20	0.30	0.81	0.25	0.56
chr1_187388925	rs316030124	Т	Α	intronic	ENSGALG00000017227	SLC36A4	0.39	0.50	0.90	1.00	0.44	0.95	0.51
chr5_40641043	rs733812232	G	Α	intronic	ENSGALG0000027255	NRXN3	0.00	0.22	0.80	0.55	0.11	0.68	0.56
chr8_20069462	rs15923605	Α	G	intronic	ENSGALG0000028561	SZT2	0.39	0.11	0.80	0.95	0.25	0.88	0.63
chr8_20069280	rs313088300	Т	С	nonsynonymous	ENSGALG0000028561	SZT2	0.39	0.17	0.80	0.95	0.28	0.88	0.60
chr6_21698226	na	Т	С	intronic	ENSGALG00000030597	KIF11	0.67	0.78	0.15	0.15	0.72	0.15	0.57
chr2_54711769	rs314836526	Α	Т	intronic	ENSGALG00000031170	ADCY1	0.28	0.33	0.85	0.85	0.31	0.85	0.54
chr2_117843872	rs315792028	А	Т	intronic	ENSGALG0000031390	STAU2	0.33	0.44	0.90	0.95	0.39	0.93	0.54
chr6_21795782	rs736082992	Т	Α	intronic	ENSGALG00000032234	MARCH5	0.22	0.00	0.45	0.80	0.11	0.63	0.51

chr8_1520789	rs313288599	Т	С	intronic	ENSGALG0000039327	VAV3	0.94	0.61	0.30	0.25	0.78	0.28	0.50
chr3_36167656	rs317303812	Т	Α	intronic	ENSGALG0000039772	RGS7	0.67	0.56	0.10	0.05	0.61	0.08	0.54
chr2_117976975	rs312653243	С	Т	intronic	ENSGALG00000040097	UBE2W	0.72	0.56	0.05	0.05	0.64	0.05	0.59
chr1_194710902	rs15051046	С	Т	intronic	ENSGALG00000040478	CAPN5	0.89	0.94	0.40	0.20	0.92	0.30	0.62
chr1_132474638	rs741583645	G	Α	intronic	ENSGALG00000041042	GABRG3	0.72	0.67	0.10	0.20	0.69	0.15	0.54
chr13_17886924	na	G	С	intronic	ENSGALG00000043744	NDFIP1	0.89	0.94	0.25	0.55	0.92	0.40	0.52
chr4_25957558	na	Α	G	ncRNA_intronic	ENSGALG00000046909		0.22	0.17	0.55	0.85	0.19	0.70	0.51
chr1_65421972	rs315335738	Т	С	upstream	ENSGALG00000048674		0.17	0.17	0.75	0.65	0.17	0.70	0.53
chr1_92331553	rs316354370	Т	С	ncRNA_intronic	ENSGALG00000049116		0.00	0.06	0.60	0.50	0.03	0.55	0.52
chr4_25916124	na	Т	С	ncRNA_intronic	ENSGALG00000049671		0.22	0.17	0.55	0.85	0.19	0.70	0.51
chr1_173116056	rs317447038	С	Α	ncRNA_exonic	ENSGALG00000049925		0.33	0.00	0.85	0.65	0.17	0.75	0.58
chr11_13260695	rs317241311	Α	G	ncRNA_intronic	ENSGALG00000050348		0.06	0.11	0.65	0.55	0.08	0.60	0.52
chr1_163441754	rs731900954	С	Т	ncRNA_intronic	ENSGALG00000050889		0.89	0.83	0.25	0.35	0.86	0.30	0.56
chr2_82658367	rs314148401	Т	Α	ncRNA_intronic	ENSGALG00000051256		0.56	0.72	0.15	0.10	0.64	0.13	0.51
chr10_10479871	rs316438713	G	Α	ncRNA_exonic	ENSGALG00000051344		0.78	0.61	0.05	0.30	0.69	0.18	0.52
chr2_82925607	rs741742877	Α	G	ncRNA_intronic	ENSGALG00000051615		0.56	0.72	0.15	0.05	0.64	0.10	0.54
chr1_110369132	rs13920393	G	Α	downstream	ENSGALG00000051940		0.22	0.06	0.80	0.55	0.14	0.68	0.54
chr2_30130035	rs741615728	Т	С	ncRNA_intronic	ENSGALG00000052719		1.00	0.83	0.35	0.40	0.92	0.38	0.54
chr5_51336712	rs314805918	Α	G	downstream	ENSGALG00000053209		1.00	0.50	0.20	0.25	0.75	0.23	0.53

Table S4.4. Candidate genes from selection signature regions overlapping with QTLs (ChickenQTLdb). (Only QTLs with size > 1 Mb were considered.

Environmental	gonos	gono ID	selection	Method of	Overlap with significant QTLs from Chicken QTLdb		
parameter	genes	gene iD	direction	detection	Overlap with significant QTEs from Chicken QTEdb		
minTemp	ENSGALG0000002692		low	XP-EHH	Breast parameters, Digestive system property		
minTemp	ENSGALG0000003243	RAD54L2	low	XP-EHH	Egg production related, Eggshell property		
minTemp	ENSGALG0000003562	NPTX2	low	XP-EHH	Growth		
minTemp	ENSGALG0000004420	SDK1	low	Fst	Body temperature, Breast parameters, Growth		
minTemp	ENSGALG0000005139	CLTC	low	XP-EHH	FCR		
minTemp	ENSGALG0000007038	ASTN2	low	XP-EHH	Immune response related		
minTemp	ENSGALG0000008282	ATG4A	low	XP-EHH	Blood parameters		
minTemp	ENSGALG0000009943	FAM117A	low	XP-EHH	Skin related		
minTemp	ENSGALG0000009944	KAT7	low	XP-EHH	Feed intake, Skin related		
minTemp	ENSGALG0000009983	NUBPL	low	XP-EHH	Immune response related		
minTemp	ENSGALG00000012007	<i>ST13</i>	low	XP-EHH	FCR		
minTemp	ENSGALG00000012888	PHLPP1	low	XP-EHH	Abdominal fat properties		
minTemp	ENSGALG00000013646	VPS37A	low	XP-EHH	Immune response related		
minTemp	ENSGALG00000013649	CNOT7	low	XP-EHH	Immune response related		
minTemp	ENSGALG00000014467	COPS7A	high	Fst	FCR		
minTemp	ENSGALG00000016689	ASMTL	high	XP-EHH	Immune response related		
minTemp	ENSGALG0000025230		low	XP-EHH	Immune response-related		
minTemp	ENSGALG00000031182	FANCM	high	XP-EHH	Disease susceptibility		
minTemp	ENSGALG0000031440	PTPRU	low	XP-EHH	Growth		
minTemp	ENSGALG00000031487	FSTL4	low	XP-EHH	Disease susceptibility		
minTemp	ENSGALG0000034967	GDPD5	low	Fst	FCR		
minTemp	ENSGALG0000035578	RBM6	low	XP-EHH	Egg production related, Eggshell property, FCR		
minTemp	ENSGALG0000036021	MTMR7	low	Fst	Immune response related		
minTemp	ENSGALG0000036909	BEND5	high	XP-EHH	Feather properties		
precSeasonality	ENSGALG0000000824		low	XP-EHH	Body temperature		
precSeasonality	ENSGALG0000001153	AUTS2	high	XP-EHH	Feed intake, Growth, Albumen property, Egg property		
precSeasonality	ENSGALG0000001768	TENM2	low	XP-EHH	Age at sexual maturity		
precSeasonality	ENSGALG0000003958	PRMT3	high	XP-EHH	Growth		
precSeasonality	ENSGALG0000005853	HTR2C	high	XP-EHH, Fst	Immune response-related, Feather pecking, Feather properties		

precSeasonality	ENSGALG0000006743	YWHAH	low	XP-EHH	Body temperature, Age at sexual maturity
precSeasonality	ENSGALG0000007172	FHIT	high	XP-EHH	Digestive system property, Growth, Eggshell property
precSeasonality	ENSGALG0000008309		low	XP-EHH	Thymus weight
precSeasonality	ENSGALG0000009491	RAD51B	low	XP-EHH	Breast parameters, Feather pecking
precSeasonality	ENSGALG0000009493	TMEM229B	low	XP-EHH	Breast parameters
precSeasonality	ENSGALG0000009880	INPP4B	high	XP-EHH	Growth, Immune response related
precSeasonality	ENSGALG00000010053	PTPRF	high	XP-EHH	Breast parameters
precSeasonality	ENSGALG00000011630	GLI2	low	XP-EHH	FCR, Growth, Immune response related
precSeasonality	ENSGALG00000012338	BDH2	low	XP-EHH	Spleen property
precSeasonality	ENSGALG00000012424	GTDC1	low	XP-EHH	FCR
precSeasonality	ENSGALG00000014425	NCAPG	high	ХР-ЕНН	Egg property, Gizzard property, Heart condition, Liver related, Ovary property, Proventriculus weight, Growth
precSeasonality	ENSGALG00000015897	IMPG1	high	XP-EHH	Eggshell property
precSeasonality	ENSGALG00000015898	MYO6	high	XP-EHH	Eggshell property
precSeasonality	ENSGALG00000016955	VWA8	high	XP-EHH	Thymus weight
precSeasonality	ENSGALG0000029022	NPAS3	high	Fst	Feather properties
precSeasonality	ENSGALG0000030054	PTPRN2	high	Fst	Feather properties, Age at sexual maturity
precSeasonality	ENSGALG0000030684		low	Fst	Body temperature, Age at sexual maturity
precSeasonality	ENSGALG0000032658	FMNL1	low	XP-EHH	Body temperature
precSeasonality	ENSGALG0000033470	ADGRA3	high	XP-EHH	Eggshell property
precSeasonality	ENSGALG0000035137		low	XP-EHH	Growth
precSeasonality	ENSGALG0000035554		low	XP-EHH	Body temperature
precSeasonality	ENSGALG00000041121	SLIT2	high	Fst	Eggshell property, Growth, Abdominal fat properties, Egg property
precSeasonality	ENSGALG00000041782		high	XP-EHH	Immune response-related
precSeasonality	ENSGALG00000042814	MCRIP1	low	XP-EHH	Blood parameters
precSeasonality	ENSGALG00000045753	MRPL12	low	Fst	Bursa of Fabricius weight
precWQ	ENSGALG0000000461	MRC2	high	XP-EHH	Bursa of Fabricius weight
precWQ	ENSGALG0000002546	COL5A1	low	XP-EHH	FCR
precWQ	ENSGALG0000004504		high	XP-EHH	Growth
precWQ	ENSGALG0000004530	MMD2	high	XP-EHH	Growth
precWQ	ENSGALG0000005483	CDH13	high	Fst	Yolk property
precWQ	ENSGALG0000006379	SHH	high	XP-EHH	Heart condition
precWQ	ENSGALG0000008256	BLM	high	XP-EHH	FCR
precWQ	ENSGALG0000009865	RNF150	low	Fst	Growth

precWQ	ENSGALG00000010616	PTPN21	low	XP-EHH	Egg production related
precWQ	ENSGALG00000010622	ZC3H14	low	XP-EHH	Egg production related
precWQ	ENSGALG0000012888	PHLPP1	high	Fst	Abdominal fat properties
precWQ	ENSGALG0000025659	gga-mir-2129	high	XP-EHH	Body temperature, Growth
precWQ	ENSGALG0000031960	LEF1	low	XP-EHH	Body condition, Breast parameters, Leg muscle properties
precWQ	ENSGALG0000032577	МЕСОМ	low	XP-EHH	Bursa of Fabricius weight, Growth
precWQ	ENSGALG0000036909	BEND5	low	Fst	Feather properties
precWQ	ENSGALG0000037031		low	XP-EHH	Comb property
precWQ	ENSGALG0000038223	WHRN	low	XP-EHH	Comb property
precWQ	ENSGALG0000039826	CNGA3	low	XP-EHH	FCR
precWQ	ENSGALG00000040003	STXBP1	low	XP-EHH	Comb property
precWQ	ENSGALG0000040528	AP5Z1	high	XP-EHH	Growth
precWQ	ENSGALG00000041437	FAM155B	low	XP-EHH	Comb property
precWQ	ENSGALG00000042453	gga-mir-7442	low	XP-EHH	Comb property
precDQ	ENSGALG0000000627	DNAJC11	high	XP-EHH	Growth, Eggshell property, Dry matter digestibility
precDQ	ENSGALG00000001153	AUTS2	low	XP-EHH	Feed intake, Growth, Albumen property, Egg property
precDQ	ENSGALG0000002170		low	XP-EHH	Growth, Breast parameters, Digestive system property
precDQ	ENSGALG0000004128	CYSLTR1	low	XP-EHH	Bursa of Fabricius weight, Comb property, Skin related, Albumen property
precDQ	ENSGALG0000005139	CLTC	high	XP-EHH	FCR
precDQ	ENSGALG0000005872	BANP	low	XP-EHH, Fst	Immune response related
precDQ	ENSGALG0000006912	CPEB3	low	XP-EHH	Breast parameters
precDQ	ENSGALG0000009078	GALNT14	low	XP-EHH	Breast parameters
precDQ	ENSGALG0000009813	SCOC	high	Fst	Growth
precDQ	ENSGALG0000009826	CLGN	high	Fst	Growth
precDQ	ENSGALG00000010053	PTPRF	low	XP-EHH	Breast parameters
precDQ	ENSGALG00000010744	GALNT7	low	XP-EHH	Feather properties
precDQ	ENSGALG00000012424	GTDC1	high	Fst	FCR
precDQ	ENSGALG00000012559	LARGE1	high	XP-EHH	beta 2-globulin level
precDQ	ENSGALG00000012975	IQSEC3	low	XP-EHH	Eggshell property
precDQ	ENSGALG00000013177	BCAT1	low	XP-EHH	Eggshell property
precDQ	ENSGALG00000013606	FGL1	high	Fst	Immune response related
precDQ	ENSGALG00000015018	CASQ2	low	Fst	FCR
precDQ	ENSGALG00000015112	ZNF521	low	Fst	Eggshell property

precDQ	ENSGALG00000016282	ZNF451	high	XP-EHH	Thymus weight
precDQ	ENSGALG00000016282	ZNF451	low	XP-EHH	Thymus weight
precDQ	ENSGALG00000028032	MSRA	low	XP-EHH, Fst	Disease susceptibility
precDQ	ENSGALG0000028148	PHF13	high	XP-EHH	Growth, Eggshell property, Dry matter digestibility
precDQ	ENSGALG0000030597	KIF11	low	XP-EHH	Eggshell property
precDQ	ENSGALG0000032234	MARCH5	low	XP-EHH	Eggshell property
precDQ	ENSGALG0000032672	KRT5	high	Fst	Feather properties
precDQ	ENSGALG00000033157	ADAMTS10	high	XP-EHH	Eggshell property, Small yellow follicle number, Ovary property, Small yellow follicle number
precDQ	ENSGALG0000033470	ADGRA3	low	Fst	Eggshell property
precDQ	ENSGALG0000033569		high	Fst	Growth, Eggshell property, Dry matter digestibility
precDQ	ENSGALG0000035211	KLHL21	high	XP-EHH	Growth, Eggshell property, Dry matter digestibility
precDQ	ENSGALG0000035492	ELMO1	high	XP-EHH	Growth, Eggshell property
precDQ	ENSGALG00000035505	AOAH	high	XP-EHH	Eggshell property
precDQ	ENSGALG0000037856	CHL1	low	XP-EHH	Feed intake
precDQ	ENSGALG0000038924	IDE	low	XP-EHH	Eggshell property
precDQ	ENSGALG0000039472	SART3	high	Fst	Skin related, Albumen property
precDQ	ENSGALG00000043642	ANLN	high	Fst	Eggshell property
precDQ	ENSGALG00000043689		high	XP-EHH	Feather properties
precDQ	ENSGALG00000045753	MRPL12	high	XP-EHH	Bursa of Fabricius weight
Landuse	ENSGALG0000000636	MDM4	low	Fst	Abdominal fat properties
Landuse	ENSGALG0000002170		low	XP-EHH	Growth, Breast parameters, Digestive system property
Landuse	ENSGALG0000002510	IP6K1	low	Fst	Egg production related, Eggshell property, Abdominal fat properties
Landuse	ENSGALG0000002511		low	Fst	Growth, Breast parameters, Digestive system property
Landuse	ENSGALG0000003563	YARS	low	XP-EHH	FCR
Landuse	ENSGALG0000006763	EXOC6	low	XP-EHH	Eggshell property
Landuse	ENSGALG0000006912	CPEB3	low	XP-EHH	Breast parameters
Landuse	ENSGALG00000010536	FAF1	high	Fst	Feather properties, Egg property
Landuse	ENSGALG00000011428	AZI2	low	XP-EHH	Comb property
Landuse	ENSGALG00000011439	RBMS3	low	Fst	Feather properties
Landuse	ENSGALG00000011635	TFCP2L1	low	XP-EHH	FCR, Growth
Landuse	ENSGALG00000012015	NDST4	low	XP-EHH, Fst	Abdominal fat properties
Landuse	ENSGALG00000013008	CHUNK-1	high	XP-EHH	Eggshell property
Landuse	ENSGALG0000013134	PLEKHA5	high	XP-EHH	Eggshell property

Landuse	ENSGALG00000013177	BCAT1	low	XP-EHH	Eggshell property
Landusa	ENSCAL C00000014425	NCAPC	high	VD FHH Est	Albumen property, Egg production related, Eggshell property, Growth,
Lanuuse	ENSGALG00000014425	NCAFG	mgn	лг <i>-</i> LПП, Г Si	Yolk property, Gizzard property, Liver property
Landuse	ENSGALG00000014615	LAMA1	low	XP-EHH	Cholesterol level, FCR
Landuse	ENSGALG00000015846	SNAP91	low	Fst	Eggshell property
Landuse	ENSGALG00000016959	DGKH	high	Fst	Growth
Landuse	ENSGALG0000028851	RAB8A	low	Fst	FCR
Landuse	ENSGALG00000029022	NPAS3	high	XP-EHH	Feather properties
Landuse	ENSGALG0000030597	KIF11	low	Fst	Eggshell property
Landuse	ENSGALG0000031390	STAU2	high	XP-EHH	FCR
Landuse	ENSGALG0000032234	MARCH5	low	XP-EHH	Eggshell property
Landuse	ENSGALG0000033695	CYP26A1	low	Fst	Eggshell property
Landuse	ENSGALG0000035533	ADIPOR2	high	XP-EHH	Eggshell property, Growth
Landuse	ENSGALG0000036909	BEND5	low	Fst	Feather properties
Landuse	ENSGALG0000036964		high	Fst	Eggshell property
Landuse	ENSGALG0000037043	PIK3C2B	low	XP-EHH	Abdominal fat properties
Landuse	ENSGALG0000038924	IDE	low	XP-EHH	Eggshell property
Landuse	ENSGALG0000039327	VAV3	low	XP-EHH	Spleen property
Landuse	ENSGALG0000039772	RGS7	high	Fst	Growth
Landuse	ENSGALG00000041042	GABRG3	low	Fst	Growth
Landuse	ENSGALG0000043213	CYP26C1	low	Fst	Eggshell property
soilOrgC	ENSGALG0000004087	THSD4	high	XP-EHH, Fst	Bursa of Fabricius weight
soilOrgC	ENSGALG0000004719	SPTAN1	high	XP-EHH	Growth
soilOrgC	ENSGALG0000005379	SGSM1	high	Fst	Skin related
soilOrgC	ENSGALG0000007354	CIT	low	XP-EHH	Age at sexual maturity
soilOrgC	ENSGALG0000009424	FOXP2	high	Fst	Earlobe property
soilOrgC	ENSGALG00000010744	GALNT7	high	Fst	Feather properties
soilOrgC	ENSGALG00000012989	NINJ2	high	XP-EHH	Eggshell property
soilOrgC	ENSGALG00000012994	ERC1	high	XP-EHH	Eggshell property
soilOrgC	ENSGALG00000012998	WNT5B	high	Fst	Wing porperty
soilOrgC	ENSGALG00000013143	PDE3A	low	Fst	Eggshell property
soilOrgC	ENSGALG00000014496	Prom1	high	XP-EHH	Proventriculus weight, Carcass property
soilOrgC	ENSGALG00000015061	CDC40	high	Fst	Breast parameters, FCR
soilOrgC	ENSGALG00000016886	FARP1	high	XP-EHH	FCR

soilOrgC	ENSGALG00000016955	VWA8	high	Fst	Thymus weight
soilOrgC	ENSGALG00000016974	GTF2F2	high	XP-EHH	Gizzard property, Heart condition, Liver related, Proventriculus weight
soilOrgC	ENSGALG00000017025	CKAP2	high	XP-EHH	Comb property, Feed intake, Ovary property
soilOrgC	ENSGALG00000017026	VPS36	high	Fst	FCR, Comb property, Feed intake, Ovary property
soilOrgC	ENSGALG0000023670	NAALADL2	high	XP-EHH	Breast parameters
soilOrgC	ENSGALG0000028032	MSRA	high	Fst	Disease susceptibility
soilOrgC	ENSGALG0000033311		high	XP-EHH	Immune response-related
soilOrgC	ENSGALG00000040938	NLGN1	high	Fst	Breast parameters
soilOrgC	ENSGALG00000041120	METTL24	high	Fst	Breast parameters
soilOrgC	ENSGALG00000041263	DCLK1	high	XP-EHH	Feed intake, Pre-ovulatory follicle number
soilOrgC	ENSGALG00000041510	DUOX2	high	XP-EHH	Breast parameters
soilOrgC	ENSGALG00000041782		high	XP-EHH	Immune response-related
soilOrgC	ENSGALG00000045753	MRPL12	low	XP-EHH	Bursa of Fabricius weight

Chapter 5

Dissecting genome-environment associations in Ethiopian chicken ecotypes

	ecotypes												
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	
chr1	1	5	6	3	6	3		1	10	14	1	3	
chr2	6	6	7	2	4	3		2	5	6	3	7	
chr3	4		4	4	5	4		1	1	2	2	4	
chr4	1	5	8	1	2	4		2	6	13	4	4	
chr5	3	3	9	2	3	6	2	2	17	11	3	2	
chr6	1	3	3	1		1			1	2	1	2	
chr7	1	5	2	2	1	2			2		4	4	
chr8		1	7	3		3			2	5		1	
chr9	3	1		1	1	2		1	1	3		1	
chr10		2	1			1			1	2		1	
chr11			2	1	1				3	1			
chr12	2	3	1			2		1	2	1		3	
chr13													
chr14	1		1									1	
chr15						1			2				
chr16													
chr17													
chr18	1		2	1	1				1	2			
chr19	1									1			
chr20						1			1	1			
chr21													
chr22	1		1			1				2			
chr23					1	3			1				
chr24		1								1		1	
chr25													
chr26			1			4							
chr27	2		1	1	3	2							
chr28													
chr29													
chr30					1				1				
chr32									1				
chr33	1					2							
Total	29	35	56	22	29	45	2	10	58	67	18	34	

Table S5.1. The number of candidates ZHp selective sweep regions per ecotype and chromosome.

							ecotypes					
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
chr1	3	17	7	4	12	2	10	10	25	7	2	2
chr2	6	12	6	2	16	2	6	5	10	3	27	9
chr3	7	3		2	1	3			1	4		9
chr4	5			4	9	7	5		5	3	28	5
chr5	3	2	4	2	3	3	4	8	15		18	2
chr6		2	3		7	2		4	2			1
chr7	3	1		2	2	1	2					6
chr8	1	1	1		2		2	6		1	1	3
chr9			1	4	1		2		6	2		1
chr10	1	1	1		2		2				64	
chr11			1		1			1		1		3
chr12	1		1		1		1	6	3			
chr13		1		1				3				
chr14	1		2							1	11	
chr15	4			2	3							1
chr16									1			
chr17		7					2	1			20	
chr18					1	1	2					
chr19	2	1			1			3	1			1
chr20				1	2		1	1			3	
chr21					1	1	1	5				2
chr22												1
chr23							1		1			
chr24					1							
chr25	1	1							2			
chr26				4	2	1	3		1			
chr27	1		1						3		3	
chr28	1										3	
chr30	1	1	2	1								
chr31		1										
chr32									2			
chr33		2	2		6			3	2			
Total	41	53	32	29	74	23	44	56	80	22	180	46

Table S5.2. The number of candidates *iHS* selective sweep regions per ecotype and chromosome.

Table S5.3 Common *Hp* sweep regions between ecotypes (* indicates lowest *ZHp* value for that particular ecotype).

Sweep regions	Overlapping gene	Ecotypes shared (<i>ZHp</i> value)	# ecotypes sharing candidate sweep
1_120930000_120960000	ENSGALG0000049135	E2 (-4.55), E9 (-4.536)	2
1_162440000_162460000	ENSGALG0000047522	E5 (-4.09), E10 (-4.038)	2
1_193490000_193510000	TENM4	E5 (-4.344), E9 (-4.165)	2
1_32700000_32750000	ENSGALG00000050070, ENSGALG00000052108	E9 (-4.877), E10 (-5.143)	2
1_32730000_32750000	ENSGALG00000052108	E1 (-4.081), E3 (-4.587)	2
1_32940000_32960000	ENSGALG0000049735	E3 (-4.29), E10 (-4.29)	2
2_141290000_141310000	EFR3A	E5 (-4.276), E8 (-4.045)	2
2_147370000_147390000	TSNARE1	E1 (-4.2), E2 (-4.42)	2
2_48280000_48300000	PDE1C	E1 (-4.319), E2 (-4.132)	2
3_50280000_50300000	ENSGALG0000027159	E3 (-4.158), E12 (-4.097)	2
3_51550000_51570000	ARID1B	E1 (-4.634), E3 (-4.408)	2
3_51610000_51630000	TMEM242	E4 (-4.006), E5 (-4.172)	2
3_85440000_85460000	ENSGALG0000047999	E4 (-4.546), E6 (-4.013)	2
3_69170000_69210000	ENSGALG00000041688	E1 (-4.43), E6 (-4.226)	2
5_41180000_41200000	ENSGALG0000053642	E5 (-4.08), E12 (-4.099)	2
5_59680000_59700000	LRFN5	E1 (-4.122), E6 (-4.031)	2
7_19820000_19850000	SCN2A	E3 (-4.31), E12 (-4.118)	2
9_23530000_23570000	MBNL1	E1 (-4.086), E2 (-4.358)	2
8_1000000_10030000	ENSGALG00000049647	E6 (-4.046), E10 (-4.983)	2
8_19380000_19410000	ENSGALG0000008988	E6 (-4.289), E9 (-5.226)	2
8_24640000_24670000	ZFYVE9	E2 (-4.272), E9 (-4.19)	2
8_9110000_9130000	ENSGALG00000054728	E3 (-4.349), E6 (-4.252)	2
11_1550000_1570000	HYDIN	E4 (-4.822), E9 (-4.359)	2
18_40000_60000	ZNF302	E5 (-4.114), E10 (-4.543)	2
22_3670000_3690000	TMEM127	E1 (-4.52), E6 (-4.669)	2
27_7800000_7830000	TUBG1, CCR10, CNTNAP1	E1 (-4.176), E3 (-4.637)	2
1_112400000_112430000	EFHC2	E4 (-4.301), E8 (-4.659)*, E10 (-4.242)	3
2_147140000_147160000	TSNARE1	E4 (-4.809), E6 (-4.178), E10 (-5.134)*	3
3_20100000_20120000	ESRRG	E1 (-4.023), E6 (-4.03), E12 (-4.35)	3
4_39200000_39220000	TACR3	E1 (-4.614), E5 (-4.421), E8 (-4.513)	3
4_77860000_77880000	ENSGALG00000050913	E6 (-4.21), E9 (-4.226), E10 (-4.41)	3
4_81460000_81480000	ENSGALG00000053356	E4 (-4.085), E9 (-4.181), E10 (-4.41)	3
9_12520000_12560000	AGTR1	E1 (-4.865), E8 (-4.177), E9 (-4.041)	3
10_6320000_6340000	APBA2	E2 (-4.366), E6 (-4.477), E10 (-4.154)	3
12_4170000_4190000	ENSGALG00000030908	E1 (-4.251), E2 (-4.523), E6 (-4.16)	3

18_10850000_10870000	CASKIN2	E4 (-4.245), E9 (-4.244), E10 (-4.214)	3
23_5660000_5680000	TRITI	E5 (-4.871), E6 (-4.807), E9 (-4.081)	3
24_6150000_6180000	BCO2, TEX12, IL18, SDHD	E2 (-4.157), E10 (-5.027), E12 (-4.343)	3
4_75820000_75840000	NCAPG, LCORL	E3 (-4.451), E9 (-4.897), E10 (-4.544), E11 (-4.339)	4
7_19830000_19850000	SCN2A	E4 (-4.348), E6 (-4.772), E9 (-4.281), E11 (-4.196)	4
7_6950000_6970000	DIP2A	E2 (-4.183), E5 (-4.139), E6 (-4.793), E9 (-4.115)	4
18_10880000_10900000	TSEN54, LLGL2	E3 (-4.022), E5 (-4.3859), E11 (-4.232), E12 (-4.395)	4
5_40990000_41040000	TSHR, GTF2A1	E4 (-4.996), E5 (-5.339)*, E6 (-5.101)*, E10 (-5.192), E12 (-4.676)	5
6_19150000_19170000	ENSGALG00000006137	E1 (-4.0408), E2 (-4.925), E3 (-5.207), E6 (-4.906), E10 (-4.18)	5
5_41000000_41030000	TSHR	E1 (-5.388)*, E2 (-5.452)*, E3 (-6.04)*, E7 (-4.268)*, E9 (-5.574), E11 (-4.826)	6
12_8120000_8150000	CACNA2D3	E1 (-4.6), E3 (-4.051), E6 (-5.517), E9 (-4.626), E10 (-4.202), E12 (-5.078)*	6
5_22750000_22800000	ENSGALG00000052351	E1 (-4.714), E2 (-4.749), E3 (-4.641), E4 (-4.123), E5 (-4.694), E6 (-4.183), E7 (-4.035), E8 (-4.285), E9 (-4.314), E10 (-4.886), E11 (-4.534)	11

Sweep regions	Overlapping gene	Ecotypes shared (<i>iHS</i> value)	# ecotypes sharing candidate sweep
2_102650000_102670000	GATA6	E11 (3.099), E12 (2.852)	2
2_109290000_109310000	ENSGALG00000053102	E1 (2.396), E3 (2.153)	2
2_109360000_109400000	ENSGALG00000049655	E1 (2.903), E3 (2.489)	2
2_147150000_147170000	TSNARE1	E2 (2.164), E5 (2.206)	2
2_147290000_147320000	TSNARE1	E1 (2.562), E2 (2.181)	2
2_41470000_41490000	ENSGALG00000054423	E7 (2.405), E9 (2.854)	2
2_44530000_44550000	FBXL2	E2 (2.318), E9 (2.566)	2
2_82850000_82940000	ENSGALG00000051615	E1 (2.393), E9 (2.429)	2
4_81600000_81620000	ENSGALG00000015609	E9 (2.344), E12 (2.268)	2
4_90360000_90380000	ENSGALG00000053684	E5 (2.388), E10 (2.026)	2
5_27510000_27550000	MAP3K9	E2 (2.345), E8 (2.349)	2
5_38240000_38270000	FCF1, YLPM1	E4 (2.243), E8 (2.407)	2
12_2390000_2410000	DOCK3	E5 (2.248), E9 (2.269)	2
12_8520000_8540000	ERC2	E1 (2.673), E8 (2.163)	2
21_3340000_3370000	SPSB1	E7 (2.381), E8 (2.304)	2
26_60000_110000	TEAD3, TULP1, FKBP5	E4 (2.14), E7 (2.823)	2
33_4120000_4140000	MARS	E2 (2.804), E8 (2.626)	2
6_9980000_10000000	СНИК	E3 (2.666), E5 (2.216), E8 (2.449)	3
33_6110000_6130000	ENSGALG00000052298	E3 (2.268), E5 (2.841), E9 (2.281)	3

Table S5.4 Common *iHS* sweep regions between ecotypes.
Table S5.5.1. Candidate selective sweep regions detected in Ecotype 1 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). *Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (Kb)	$uZHp \pm s.d.$	GENE*
1	32730000	32750000	1	20	-4.08	
2	119410000	119460000	4	50	-4.39 ± 0.25	ZFHX4
2	119460000	119490000	2	30	-4.19 ± 0.00	PEX2
2	147130000	147160000	2	30	4.24 ± 0.31	TSNARE1
2	147370000	147390000	1	20	-4.20	TSNARE1
2	48280000	48300000	1	20	-4.31	PDE1C
2	50230000	50250000	1	20	-4.73	SUGCT
3	20100000	20120000	1	20	-4.02	ESRRG
3	21010000	21030000	1	20	-4.17	KCNK2
3	51550000	51570000	1	20	-4.63	ARID1B
3	69170000	69210000	3	40	-4.43 ± 0.27	
4	39200000	39220000	1	20	-4.61	TACR3
5	22750000	22800000	4	50	-4.71 ± 0.43	
5	41000000	41030000	2	30	-5.38 ± 0.74	TSHR
5	59680000	59700000	1	20	-4.12	LRFN5
6	19150000	19170000	1	20	-4.04	
7	19850000	19870000	1	20	-4.19	SCN2A
9	10440000	10460000	1	20	-4.16	GRK7, ATP1B3
9	12520000	12560000	3	40	-4.86 ± 0.13	AGTR1
9	23530000	23570000	2	40	-4.08 ± 0.05	MBNL1
12	4170000	4190000	1	20	-4.25	
12	8120000	8150000	2	30	-4.60 ± 0.30	CACNA2D3
14	5670000	5690000	1	20	-4.03	CACNA1H
18	620000	650000	2	30	-4.38 ± 0.43	MYH1C
19	9290000	9310000	1	20	-4.00	
22	3670000	3690000	1	20	-4.52	TMEM127
27	4660000	4680000	1	20	-4.15	CRHR1
27	7800000	7830000	3	30	4.17 ± 0.18	TUBG1, CCR10,
21	7800000	7830000	5	50	-4.17 ± 0.18	CNTNAP1
						DRAP1, RELA,
						TMEM223, STX5,
33	6470000	6570000	7	100000	-4.21 ± 0.16	WDR74, <mark>SNORD30</mark> ,
						SNORD22, TAF6L,
						MTA2, EML3

Table S5.5.2. Candidate selective sweep regions detected in Ecotype 2 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}ZHp \pm \mathbf{s.d.}$	GENE*
1	112390000	112440000	4	50	-4.47 ± 0.36	EFHC2
1	120930000	120960000	2	30	-4.55 ± 0.03	
1	185880000	185900000	1	20	-4.11	
1	32710000	32730000	1	20	-4.00	
1	89860000	89880000	1	20	-4.03	TMPRSS7
2	147370000	147390000	1	20	-4.42	TSNARE1
2	48280000	48300000	1	20	-4.13	PDE1C
4	20350000	20370000	1	20	-4.03	
4	20390000	20430000	4	40	-4.25 ± 0.06	
4	48210000	48240000	2	30	-4.16 ± 0.06	ADGRL3
4	48210000	48230000	1	20	-4.12	gga-mir-1730
4	75650000	75670000	1	20	-4.85	
5	21730000	21760000	2	30	-4.33 ± 0.07	MIR129-2
5	22750000	22800000	4	50	-4.74 ± 0.35	
5	41000000	41030000	2	30	-5.45 ± 0.36	TSHR
6	14580000	14600000	1	20	-4.07	KCNMA1
6	16240000	16290000	4	50	-4.46 ± 0.25	VCL
6	19150000	19170000	1	20	-4.92	
7	11670000	11700000	2	30	-4.16 ± 0.02	FZD7
7	19830000	19860000	2	30	-4.29 ± 0.08	SCN2A
7	20390000	20410000	1	20	-4.49	
7	29280000	29310000	2	30	-4.67 ± 0.14	DPP10
7	6950000	6970000	1	20	-4.18	DIP2A
8	24640000	24670000	2	30	-4.27 ± 0.14	ZFYVE9
9	23530000	23570000	3	40	-4.35 ± 0.26	MBNL1
10	18710000	18730000	1	20	-4.22	MEGF11
10	6320000	6340000	1	20	-4.36	APBA2
12	4170000	4190000	1	20	-4.52	
12	4790000	4830000	3	40	-4.55 ± 0.30	ATG7
12	7920000	7950000	2	30	-4.26 ± 0.06	CACNA2D3
24	6150000	6180000	2	30	-4.15 ± 0.20	BCDO2

Table S5.5.3. Candidate selective sweep regions detected in Ecotype 3 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	117550000	117570000	1	20	-4.06	IL1RAPL1
1	32730000	32750000	1	20	-4 58	
1	32830000	32850000	1	20	-4.09	TAFA2
1	32940000	32960000	1	20	-4 29	1111112
1	76440000	76470000	2	30	-4.30 ± 0.17	
1	83730000	83750000	1	20	-5.00	DRD3
2	118690000	118750000	3	60	-4.32 ± 0.23	HNF4G
2	118950000	118990000	3	40	-4.51 ± 0.12	
2	119410000	119440000	2	30	-4.09 ± 0.01	ZFHX4
2	130960000	130980000	1	20	-4.38	HSF1
2	141330000	141350000	1	20	-4.10	EFR3A
2	147100000	147160000	3	60	-4.37 ± 0.23	TSNARE1
2	48290000	48310000	1	20	-4.03	PDE1C
3	12500000	12530000	2	30	-4.31 ± 0.24	CDC42BPA
3	50260000	50290000	2	30	-4.34 ± 0.02	
3	50280000	50300000	1	20	-4.16	
3	51550000	51570000	1	20	-4.40	ARID1B
4	16400000	16420000	1	20	-4.15	CUL4B
4	20350000	20410000	5	60	-4.41 ± 0.25	LRAT
4	39150000	39220000	6	70	-5.28 ± 0.23	TACR3
4	47400000	47420000	1	20	-4.40	
4	48500000	48560000	5	60	-4.71 ± 0.24	
4	64540000	64560000	1	20	-4.07	DLC1
4	6650000	6680000	2	30	-4.23 ± 0.11	
4	75820000	75840000	1	20	-4.45	NCAPG, LCORL
5	12910000	12930000	1	20	-4.00	PTPN5
5	17910000	17930000	1	20	-4.10	
5	18180000	18200000	1	20	-4.37	SHANK2
5	21740000	21780000	3	40	-4.34 ± 0.22	MIR129-2
5	22750000	22790000	3	40	-4.64 ± 0.34	
5	23000000	23020000	1	20	-4.12	C1QTNF4, FAM180B
5	41000000	41030000	2	30	-6.04 ± 0.79	TSHR
5	41870000	41890000	1	20	-4.09	
5	49020000	49070000	4	50	-4.55 ± 0.39	
6	14580000	14610000	2	30	-4.06 ± 0.08	KCNMA1
6	19150000	19170000	1	20	-5.20	ARHGAP22
6	9980000	1000000	1	20	-4.13	СНИК
7	19820000	19850000	2	30	-4.31 ± 0.27	SCN2A
7	8270000	8310000	3	40	-4.27 ± 0.10	TMEFF2
8	1000000	10020000	2	20	-4.41 ± 0.12	
8	10310000	10330000	3	20	-4.51 ± 0.23	
8	420000	480000	4	60	-4.142 ± 0.09	AMY2A
8	510000	640000	11	130	-4.47 ± 0.14	
8	650000	700000	4	50	-4.31 ± 0.14	

8	9110000	9130000	1	20	-4.34	
8	9270000	9290000	1	20	-4.04	
10	6310000	6340000	2	30	-4.63 ± 0.22	MPHOSPH10, APBA2
11	13360000	13390000	2	30	-4.32 ± 0.16	
11	13790000	13810000	1	20	-4.21	ADAMTS18, AP1G1, PHLPP2
12	8130000	8150000	1	20	-4.05	CACNA2D3
14	8740000	8760000	1	20	-4.71	SMG1
18	10840000	10870000	2	30	-4.05 ± 0.06	CASKIN2
18	10880000	10900000	1	20	-4.02	TSEN54, LLGL2
22	990000	1020000	2	30	-4.73 ± 0.14	DOCK5
26	5260000	5280000	1	20	-4.08	gga-mir-7454
27	7800000	7830000	2	30	-4.63 ± 0.14	TUBG1, CCR10, CNTNAP1

Table S5.5.4. Candidate selective sweep regions detected in Ecotype 4 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. $\mathbf{uZHp} \pm \mathbf{s.d.}$: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	112400000	112430000	2	30	-4.30 ± 0.03	EFHC2
1	162460000	162480000	1	20	-4.05	
1	71630000	71650000	1	20	-4.15	
2	147140000	147160000	1	20	-4.80	TSNARE1
2	147300000	147320000	1	20	-4.50	TSNARE1
3	51610000	51630000	1	20	-4.00	TMEM242
3	61430000	61450000	1	20	-4.24	
3	77700000	77730000	2	30	-4.35 ± 0.24	SNAP91, PRSS35
3	85440000	85460000	1	20	-4.54	
4	81460000	81480000	1	20	-4.08	
5	22750000	22780000	2	30	-4.12 ± 0.08	
5	40990000	41040000	4	50	-4.99 ± 0.69	TSHR, GTF2A1
6	12300000	12320000	1	20	-4.54	SGPL1
7	17000000	17020000	1	20	-4.17	OLA1
7	19830000	19850000	1	20	-4.34	SCN2A
8	460000	480000	2	20	-4.19 ± 0.27	
8	560000	580000	1	20	-4.00	
8	600000	700000	9	100	-4.40 ± 0.26	
9	10420000	10460000	3	40	-5.22 ± 0.14	RNF7, GRK7, ATP1B3
11	1550000	1570000	1	20	-4.82	HYDIN
18	10850000	10870000	1	20	-4.24	CASKIN2
27	7860000	7960000	6	100	-4.22 ± 0.22	CNTD1, BECN1, PSME3, G6PC, AARSD1, PTGES3L, RUNDC1, RPL27, VAT1, RND2

Table S5.5.5. Candidate selective sweep regions detected in Ecotype 5 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{uZHp} \pm \mathbf{s.d.}$: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	162440000	162460000	1	20	-4.09	
1	163850000	163880000	2	30	-4.10 ± 0.07	DIAPH3
1	193490000	193510000	1	20	-4.34	TENM4
1	71880000	71900000	1	20	-4.18	DUSP16
1	72650000	72670000	1	20	-4.39	MANSC4
1	75580000	75600000	1	20	-4.11	NANOG
2	141290000	141310000	1	20	-4.27	EFR3A
2	141370000	141400000	2	30	-5.19 ± 0.10	HHLA1, OC90
2	147010000	147160000	12	150	-4.38 ± 0.31	TSNARE1
2	147370000	147410000	3	40	-4.11 ± 0.14	TSNARE1
3	51470000	51490000	1	20	-4.18	ARID1B
3	51610000	51630000	1	20	-4.17	TMEM242
3	51820000	51850000	2	30	-4.04 ± 0.05	SNX9
3	61550000	61590000	3	40	-4.31 ± 0.21	
3	85480000	85520000	3	40	-4.14 ± 0.07	
4	39200000	39220000	1	20	-4.42	TACR3
4	48230000	48260000	2	30	-4.29 ± 0.30	ADGRL3
5	22750000	22790000	3	40	-4.69 ± 0.36	
5	41000000	41040000	3	40	-5.33 ± 0.74	TSHR, GTF2A1
5	41180000	41200000	1	20	-4.08	
7	6950000	6970000	1	20	-4.13	DIP2A
9	11640000	11680000	3	40	-4.44 ± 0.35	PLOD2
11	18320000	18340000	1	20	-4.11	ZNF469
18	10770000	10790000	1	20	-4.66	GRB2
18	10880000	10900000	1	20	-4.38	TSEN54, LLGL2
18	40000	60000	1	20	-4.11	ZNF302
23	5660000	5680000	1	20	-4.87	TRIT1
27	7840000	7860000	1	20	-4.28	EZH1, RAMP2, VPS25
27	7880000	7930000	4	50	-4.38 ± 0.22	PSME3, G6PC, AARSD1, PTGES3L, RUNDC1, RPL27, IFI35
27	7940000	7970000	2	30	-4.05 ± 0.00	VAT1, RND2
30	940000	960000	1	20	-4.34	ACTL6B, MEPCE

Table S5.5.6. Candidate selective sweep regions detected in Ecotype 6 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	117790000	117810000	1	20	-4.074	IL1RAPL1
1	132070000	132090000	1	20	-4.23	OCA2
1	176720000	176750000	2	30	-4.33 ± 0.01	UBL3
2	118700000	118720000	1	20	-4.04	HNF4G
2	119400000	119450000	4	50	-4.10 ± 0.06	ZFHX4
2	147140000	147160000	1	20	-4.17	TSNARE1
3	20100000	20120000	1	20	-4.03	ESRRG
3	50580000	50610000	2	30	-4.13 ± 0.13	TIAM2
3	69170000	69210000	3	40	-4.22 ± 0.28	
3	85440000	85460000	1	20	-4.01	
4	39160000	39190000	2	30	-4.13 ± 0.12	TACR3
4	42460000	42480000	1	20	-4.06	
4	77860000	77880000	1	20	-4.21	
4	81460000	81490000	2	30	-4.10 ± 0.06	
5	22750000	22780000	2	30	-4.18 ± 0.15	
5	3190000	3240000	4	50	-4.29 ± 0.20	GAS2
5	4010000	4030000	1	20	-4.05	BDNF
5	40990000	41040000	4	50	-5.10 ± 0.73	TSHR, GTF2A1
5	41200000	41240000	3	40	-4.09 ± 0.09	
5	59680000	59700000	1	20	-4.03	LRFN5
6	19150000	19170000	1	20	-4.90	
7	19840000	19870000	2	30	-4.77 ± 0.12	SCN2A
7	6950000	6970000	1	20	-4.79	DIP2A
8	1000000	10030000	2	30	-4.04 ± 0.01	
8	19380000	19410000	2	30	-4.28 ± 0.05	
8	9110000	9130000	1	20	-4.25	
9	10360000	10460000	8	100	-4.43 ± 0.26	ZBTB38, RASA2, RNF7, GRK7, ATP1B3
9	10550000	10570000	1	20	-4.23	GK5
10	6320000	6340000	1	20	-4.47	APBA2
12	4170000	4190000	1	20	-4.16	
12	8120000	8150000	2	30	-4.51 ± 0.21	CACNA2D3
15	520000	540000	1	20	-4.08	HIC2
20	13880000	1390000	1	20	-4.86	SLC9A8, B4GALT5
22	3670000	3690000	1	20	-4.66	TMEM127
23	5660000	5680000	1	20	-4.80	TRIT1
23	5730000	5750000	1	20	-4.03	TCEB3, PITHD1, LYPLA2, GALE, HMGCL, FUCA1
23	5850000	5890000	3	40	-4.02 ± 0.01	GRHL3
26	90000	140000	4	50	-4.20 ± 0.17	CLPS, LHFPL5, SRPK1, SLC26A8
26	190000	220000	2	30	-4.05 ± 0.02	BRPF3, TBC1D22B
26	250000	290000	3	40	-4.20 ± 0.12	CACNA1S, KIF21B
26	10000	110000	9	100	-4.21 ± 0.09	MICALI, SMPD2, TEAD3, TULP1, FKBP5

27	7860000	7970000	10	110	-4.37 ± 0.13	CNTD1, BECN1, PSME3, G6PC, AARSD1, PTGES3L, RUNDC1, RPL27, IF135, VAT1, RND2
27	8010000	8030000	1	20	-4.57	MPP2
33	6500000	6530000	2	30	-4.15 ± 0.03	TMEM223, STX5, WDR74
33	6550000	6570000	1	20	-4.5	MTA2, EML3

Table S5.5.7. Candidate selective sweep regions detected in Ecotype 7 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region).

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
5	22750000	22780000	2	30	-4.03 ± 0.04	
5	41000000	41030000	2	30	-4.26 ± 0.19	TSHR

Table S5.5.8. Candidate selective sweep regions detected in Ecotype 8 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. $\mathbf{uZHp} \pm \mathbf{s.d.}$: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	112400000	112440000	3	40	-4.65 ± 0.36	EFHC2
2	141290000	141310000	1	20	-4.04	EFR3A
2	28130000	28150000	1	20	-4.08	
3	109890000	109910000	1	20	-4.03	ADGRF5
4	39200000	39220000	1	20	-4.51	TACR3
4	62730000	62770000	3	40	-4.44 ± 0.27	
5	22760000	22790000	2	30	-4.28 ± 0.01	
5	40990000	41030000	3	40	-4.53 ± 0.35	TSHR
9	12520000	12560000	4	40	-4.17 ± 0.02	AGTR1
12	4760000	4820000	5	60	-4.16 ± 0.07	HRH1, ATG7

Table S5.5.9. Candidate selective sweep regions detected in Ecotype 9 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	120930000	120960000	2	30	-4.53 ± 0.02	
1	162440000	162480000	3	40	-4.40 ± 0.34	
1	193490000	193510000	1	20	-4.16	TENM4
1	25670000	25700000	2	30	-4.11 ± 0.07	
1	27290000	27330000	3	40	-4.29 ± 0.06	DOCK4
1	32700000	32750000	4	50	-4.87 ± 0.09	
1	75480000	75500000	1	20	-4.055	FOXJ2
1	75720000	75760000	2	40	-4.25 ± 0.23	RIMKLB
1	81050000	81070000	1	20	-4.22	ATP1A1
1	82470000	82490000	1	20	-4.14	LSAMP
2	147050000	147200000	12	150	-4.41 ± 0.26	TSNARE1
2	25650000	25670000	1	20	-4.08	
2	82030000	82060000	2	30	-4.19 ± 0.18	
2	82260000	82310000	4	50	-4.37 ± 0.18	VSTM2A
2	82620000	82640000	1	20	-4.69	
3	20090000	20120000	2	30	-4.60 ± 0.66	ESRRG
4	20350000	20400000	4	50	-4.402 ± 0.23	LRAT
4	56590000	56640000	4	50	-4.47 ± 0.05	CAMK2D
4	74600000	74620000	1	20	-4.14	
4	75820000	75840000	1	20	-4.89	NCAPG, LCORL
4	77860000	77880000	1	20	-4.22	
4	81460000	81480000	1	20	-4.18	
5	17910000	17940000	2	30	-4.22 ± 0.14	
5	18050000	18070000	1	20	-4.003	ANO1, FADD
5	19010000	19030000	1	20	-4.06	EHF
5	22760000	22790000	2	30	-4.31 ± 0.10	
5	2740000	2760000	1	20	-4.20	NELL1
5	2770000	2810000	2	40	-4.28 ± 0.26	
5	3030000	3080000	3	50	-4.19 ± 0.11	SLC17A6
5	3180000	3280000	7	100	-4.39 ± 0.24	GAS2
5	3360000	3400000	3	40	-4.28 ± 0.19	
5	3430000	3450000	1	20	-4.250	ANO3
5	3520000	3570000	3	50	-4.18 ± 0.14	ANO3
5	3710000	3730000	1	20	-4.42	FIBIN
5	3830000	3890000	3	60	-4.28 ± 0.18	LGR4
5	40520000	40570000	4	50	-4.70 ± 0.34	NRXN3
5	3990000	4030000	2	40	-4.09 ± 0.03	BDNF
5	41000000	41020000	1	20	-5.57	TSHR
5	48990000	49080000	7	90	-6.16 ± 0.14	BEGAIN
6	12290000	12320000	2	30	-4.65 ± 0.09	MTTPL, SGPL1
7	19840000	19870000	2	30	-4.28 ± 0.15	SCN2A
7	6950000	6970000	1	20	-4.11	DIP2A
8	19380000	19410000	2	30	-5.22 ± 0.51	ZZZ3
8	24640000	24670000	2	30	-4.19 ± 0.09	ZFYVE9

9	12520000	12560000	3	40	-4.04 ± 0.03	AGTR1
10	6300000	6340000	3	40	-4.25 ± 0.12	MPHOSPH10, APBA2
11	1420000	1440000	1	20	-4.007	CNOT1
11	1460000	1480000	1	20	-4.20	CNOT1, SLC38A7, GOT2
11	1550000	1570000	1	20	-5.35	HYDIN
12	4790000	4810000	1	20	-4.07	ATG7
12	8120000	8150000	2	30	-4.62 ± 0.39	CACNA2D3
15	3250000	3350000	9	100	-4.74 ± 0.13	STX2
15	4240000	4260000	1	20	-4.01	TMEM132C
18	10850000	10870000	1	20	-4.24	CASKIN2
20	13870000	13900000	2	30	-4.14 ± 0.58	SLC9A8, B4GALT5
23	5660000	5680000	1	20	-4.08	TRIT1
30	1430000	1450000	1	20	-4.28	
32	440000	470000	2	30	-4.78 ± 0.13	SAE1

Table S5.5.10. Candidate selective sweep regions detected in Ecotype 10 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{uZHp} \pm \mathbf{s.d.}$: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	100330000	100350000	1	20	-4.28	
1	102640000	102660000	1	20	-4.51	
1	112400000	112430000	2	30	-4.24 ± 0.02	EFHC2
1	117520000	117550000	2	30	-4.19 ± 0.09	IL1RAPL1
1	162440000	162460000	1	20	-4.03	
1	172810000	172830000	1	20	-4.08	
1	32700000	32750000	4	50	-5.14 ± 0.45	
1	32940000	32960000	1	20	-4.29	
1	42400000	42430000	2	30	-4.53 ± 0.10	
1	97900000	97930000	2	30	-4.50 ± 0.58	ROBO1
1	97940000	97970000	2	30	-4.35 ± 0.19	ROBO1
1	97980000	98010000	2	30	-4.85 ± 0.39	ROBO1
1	98060000	98080000	1	20	-4.26	
1	98890000	98910000	1	20	-4.02	
2	123050000	123080000	3	30	-4.11 ± 0.05	CPNE3, CNGB3
2	141320000	141340000	1	20	-4.31	EFR3A
2	147080000	147120000	3	40	-4.82 ± 0.14	TSNARE1
2	147130000	147210000	7	80	-4.93 ± 0.79	TSNARE1
2	78320000	78340000	1	20	-4.18	
2	89440000	89460000	1	20	-4.31	
3	51450000	51480	2	30	-4.14 ± 0.02	ARID1B
3	69180	69210000	2	30	-5.28 ± 0.01	
4	24310000	24340000	2	30	-5.13 ± 0.13	
4	56580	56640000	5	60	-4.78 ± 0.10	CAMK2D
4	6700000	67030000	2	30	-4.25 ± 0.18	
4	67170000	67190000	1	20	-4.14	GABRG1
4	75170000	75190000	1	20	-4.04	SLIT2

4	75820000	75840000	1	20	-4.54	NCAPG, LCORL
4	77460000	77480	1	20	-4.67	RAB28
4	77610000	77630000	1	20	-4.86	
4	77860000	77880	1	20	-4.41	
4	7920000	7960000	3	40	-4.11 ± 0.07	
4	81460000	81480	1	20	-4.41	
4	81510000	81560000	4	50	-4.22 ± 0.12	
4	81460000	81480	1	20	-4.41	
5	14120000	14140000	1	20	-4.43	
5	17890000	17910000	1	20	-4.37	
5	19020000	19050000	2	30	-4.56 ± 0.14	EHF
5	21390000	21410000	1	20	-4.23	
5	22750000	22800	4	50	-4.88 ± 0.65	
5	31370000	31390000	1	20	-4.00	
5	41000000	41040000	3	40	-5.19 ± 0.96	TSHR, GTF2A1
5	4450000	4470000	1	20	-4.36	
5	47640000	47660000	1	20	-4.38	
5	47790000	47810000	1	20	-4.39	
5	47840000	47880	3	40	-4.71 ± 0.19	
6	15830000	15870000	3	40	-4.30 ± 0.25	KAT6B
6	19150000	19170000	1	20	-4.18	
8	1000000	10030000	2	30	-4.98 ± 0.14	
8	10320000	10350000	2	30	-4.44 ± 0.18	
8	9100000	9130000	2	30	-4.95 ± 0.35	
8	9270000	9300000	2	30	-4.52 ± 0.38	
8	9860000	9880	1	20	-4.23	
9	10340000	10360000	1	20	-4.02	ZBTB38
9	12530000	12550000	1	20	-4.12	AGTR1
9	23530000	23550000	1	20	-4.55	MBNL1
10	17640000	17680	3	40	-4.65 ± 0.49	ADAMTS17
10	6320000	6340000	1	20	-4.15	APBA2
11	18330000	18350000	1	20	-4.42	ZNF469, <mark>ZFPM1</mark>
12	8130000	8150000	1	20	-4.20	CACNA2D3
18	10850000	10870000	1	20	-4.21	CASKIN2
18	40000	60000	1	20	-4.54	ZNF302
19	1810000	1830000	1	20	-4.02	AUTS2
20	2180	2200000	1	20	-4.57	E2F1, NECAB3
22	1020000	1050000	2	30	-4.17 ± 0.10	DOCK5
22	990000	1010000	1	20	-4.25	DOCK5
24	6150000	6180	2	30	-5.02 ± 0.13	BCO2, TEX12, IL18, SDHD

Table S5.5.11. Candidate selective sweep regions detected in Ecotype 11 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	163730000	163790000	4	60	-4.22 ± 0.22	DIAPH3
2	48280	48310000	2	30	-4.17 ± 0.01	PDE1C
2	61030000	61060000	2	30	-4.38 ± 0.45	
2	78320000	78350000	2	30	-4.13 ± 0.08	
3	23810000	23840000	2	30	-4.47 ± 0.00	EML4
3	82190000	82220000	2	30	-4.87 ± 0.00	
4	27580	27610000	2	30	-4.11 ± 0.05	
4	30920000	30940000	1	20	-4.32	ANAPC10, HHIP
4	64550000	64570000	1	20	-4.20	DLC1
4	75820000	75840000	1	20	-4.33	NCAPG, LCORL
5	11710000	11730000	1	20	-4.08	
5	22750000	22790000	3	40	-4.53 ± 0.16	
5	41000000	41020000	1	20	-4.82	TSHR
6	11800	11820000	1	20	-4.23	
7	11820000	11840000	1	20	-4.57	BMPR2
7	19830000	19850000	1	20	-4.19	SCN2A
7	20930000	20960000	2	30	-4.51 ± 0.52	KCNH7
7	20980	21000000	1	20	-4.15	KCNH7

Table S5.5.12. Candidate selective sweep regions detected in Ecotype 12 using the *Hp* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. **uZHp** \pm **s.d**.: mean and standard deviation for *ZHp* for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$uZHp \pm s.d.$	GENE*
1	135140000	135170000	2	30	-4.78 ± 0.38	
1	180940000	180970000	2	30	-4.74 ± 0.91	RDX
1	58630000	58650000	1	20	-4.11	SYT10
2	119340000	119360000	1	20	-4.65	ZFHX4
2	147130000	147180	4	50	-5.03 ± 0.63	TSNARE1
2	31670000	31700000	2	30	-4.35 ± 0.04	OSBPL3
2	36820000	36850000	2	30	-4.26 ± 0.34	UBE2E2
2	41460000	41490000	2	30	-4.79 ± 0.88	CAPN7
2	69300000	69330000	2	30	-4.32 ± 0.06	CDH6
2	88150000	88170000	1	20	-4.04	GABBR2
3	106170000	106190000	1	20	-4.07	HMBOX1
3	20100000	20120000	1	20	-4.35	ESRRG
3	50280	50300000	1	20	-4.09	
3	51650000	51670000	1	20	-4.30	ZDHHC14
4	28660000	28690000	2	30	-4.24 ± 0.19	
4	39150000	39180	2	30	-4.21 ± 0.01	TACR3
4	48240000	48260000	1	20	-4.16	ADGRL3
4	6980	7000000	1	20	-4.42	
5	40990000	41040000	4	50	-4.67 ± 0.68	TSHR, GTF2A1
5	41180	41200000	1	20	-4.09	
6	11800	11820000	1	20	-4.39	
6	9720000	9740000	1	20	-4.12	ANK3
7	13540000	13560000	1	20	-4.30	RAPH1
7	19820000	19850000	2	30	-4.11 ± 0.14	SCN2A
7	24360000	24380	1	20	-4.03	
7	32510000	32610000	9	100	-4.23 ± 0.08	
8	1680	1700000	1	20	-4.30	STXBP3
9	10330000	10460000	12	130	-4.71 ± 0.5	ZBTB38, RASA2, RNF7, GRK7, ATP1B3
10	17670000	17690000	1	20	-4.01	ADAMTS17
12	4800	4830000	2	30	-4.19 ± 0.00	ATG7
12	8120000	8150000	2	30	-5.07 ± 0.46	CACNA2D3
12	8180	8200000	1	20	-4.55	
14	4960000	4980	1	20	-4.15	USP22
24	6150000	6180	2	30	-4.34 ± 0.44	BCO2, TEX12, IL18, SDHD

Table S5.6.1. Candidate selective sweep regions detected in Ecotype 1 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$u(iHS/) \pm s.d.$	GENE*
1	112410000	112430000	1	20	2.63	EFHC2
1	118590000	118620000	2	30	2.11 ± 0.01	
1	162440000	162460000	1	20	2.94	
2	109290000	109310000	1	20	2.39	
2	109360000	109400000	3	40	2.90 ± 0.13	
2	147290000	147320000	2	30	2.56 ± 0.06	TSNARE1
2	55450000	55490000	3	40	2.76 ± 0.20	SLC12A7
2	82790000	82810000	1	20	2.16	
2	82850000	82940000	8	90	2.39 ± 0.08	
3	106170000	106210000	3	40	2.85 ± 0.21	HMBOX1
3	106250000	106270000	1	20	2.77	KIF13B
3	72070000	72140000	6	700	2.56 ± 0.19	gga-mir-12262
3	72300000	72370000	6	700	2.47 ± 0.05	
3	72380000	72540000	13	60	2.65 ± 0.20	MMS22L, KLHL32
3	73170000	73220000	4	50	3.48 ± 0.33	MANEA
3	73290000	73400000	8	110	2.82 ± 0.31	
4	15460000	15500000	3	40	2.33 ± 0.03	TENM1
4	34140000	34160000	1	20	2.30	INTS10, HGSNAT, POMK
4	39410000	39430000	1	20	2.48	
4	45640000	45660000	1	20	2.46	PKD2, SPP1
4	89960000	8999000	2	30	2.68 ± 0.20	EXOC6B
5	31330000	31350000	1	20	2.46	
5	31770000	31790000	1	20	2.69	
5	34280000	34300000	1	20	2.56	
7	29280000	29310000	2	30	2.11 ± 0.02	DPP10
7	32470000	3249000	1	20	2.41	
7	32730000	32750000	1	20	3.27	ARHGAP15
8	24640000	24660000	1	20	2.36	ZFYVE9
10	6260000	6290000	2	30	2.48 ± 0.06	MPHOSPH10, APBA2
12	8520000	8540000	1	20	2.67	ERC2
14	4960000	4980000	1	20	2.77	USP22
15	3220000	3250000	2	30	2.59 ± 0.07	STX2
15	3280000	3320000	3	40	2.51 ± 0.04	STX2
15	4180000	4210000	2	30	2.41 ± 0.004	TMEM132C
15	4230000	4270000	3	40	2.62 ± 0.05	TMEM132C
19	9230000	9290000	3	60	2.66 ± 0.07	NF1, WSB1
19	9320000	9370000	4	50	2.50 ± 0.08	NOS2
25	250000	270000	1	20	2.73	SCNM1, TMOD4, VPS72, PIP5K1A
27	7930000	7960000	2	30	2.59 ± 0.05	VAT1, RND2
28	4530000	4580000	3	50	3.05 ± 0.15	RAB8A, TPM4

30	270000	320000	4	50	3.11 ± 0.44	BCAP31, TAZ, WDR13,
50	270000	520000	-	50	5.11 ± 0.44	WAS, TBC1D25

Table S5.6.2. Candidate selective sweep regions detected in Ecotype 2 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}(iHS) \pm \mathbf{s.d.}$	GENE*
1	102550000	102570000	1	20	2.08	
1	104470000	104550000	7	80	2.30 ± 0.03	
1	104960000	10499000	2	30	2.64 ± 0.06	
1	111430000	111450000	1	20	2.37	
1	11239000	112440000	3	50	2.49 ± 0.11	EFHC2
1	173180000	173220000	3	40	2.23 ± 0.07	TRPC4
1	173230000	173280000	4	50	2.29 ± 0.06	TRPC4
1	17599000	176030000	3	40	2.24 ± 0.03	FRY
1	18919000	189220000	2	30	2.17 ± 0.03	TYR
1	189240000	189300000	5	60	2.33 ± 0.03	GRM5
1	193460000	193500000	3	40	2.31 ± 0.006	TENM4
1	51030000	5109000	5	60	2.71 ± 0.17	PICK1, SOX10, POLR2F, C22orf23, MICALL1, ANKRD54
1	61270000	61330000	5	60	2.26 ± 0.01	CACNA1C
1	62130000	62150000	1	20	2.16	AKR1E2
1	69960000	7000000	3	40	2.61 ± 0.01	PHF21B
1	71630000	71670000	3	40	2.20 ± 0.05	LRP6
1	89850000	89910000	5	60	2.67 ± 0.12	TMPRSS7
2	100610000	100660000	4	50	2.52 ± 0.07	DLGAP1
2	108100000	108150000	4	50	2.43 ± 0.06	
2	109050000	109110000	5	60	2.35 ± 0.10	SNTG1
2	117740000	117770000	2	30	2.42 ± 0.16	<i>RDH10</i>
2	147150000	147170000	1	20	2.16	TSNARE1
2	14729000	147320000	2	30	2.18 ± 0.007	TSNARE1
2	44530000	44550000	1	20	2.31	FBXL2
2	47250000	4729000	3	40	2.28 ± 0.08	
2	59740000	59850000	8	110	2.46 ± 0.14	
2	61000000	61060000	5	60	2.42 ± 0.109	
2	88520000	88540000	1	20	2.20	CTNNAL1
2	91470000	91530000	5	60	2.56 ± 0.03	ZNF407
3	22380000	22400000	1	20	2.18	TRAF5, RCOR3
3	61410000	61450000	3	40	2.26 ± 0.03	
3	77660000	77730000	6	70	2.31 ± 0.07	SNAP91, PRSS35
5	12880000	12930000	4	50	2.27 ± 0.07	PTPN5
5	27510000	27550000	3	40	2.34 ± 0.01	
6	17670000	17700000	2	30	2.57 ± 0.04	GBF1
6	17710000	17760000	4	50	2.67 ± 0.05	GBF1
7	25020000	25040000	1	20	2.27	

8	5930000	5960000	2	30	2.40 ± 0.05	KLHL20, CENPL, DARS2
10	10660000	10680000	1	20	2.20	FBN1
13	7240000	7260000	1	20	2.23	
17	10380000	10570000	6	70	2.14 ± 0.06	LMX1B, ZBTB43
17	469000	4740000	4	50	2.29 ± 0.02	
17	9130000	9210000	7	80	2.28 ± 0.07	RABGAP1, GPR21, STRBP
17	9240000	9510000	2	20	2.38 ± 0.12	STRBP, DENND1A
17	9330000	9360000	2	30	2.56 ± 0.00	<i>U4</i>
17	9450000	9470000	1	20	2.26	
17	949000	9550000	5	60	2.33 ± 0.04	LHX2
19	329000	3310000	1	20	2.21	UBE2G1
25	220000	340000	11	120	2.51 ± 0.07	PRUNE1, CDC42SE1, MLLT11, GABPB2, SEMA6C, SCNM1, TMOD4, VPS72, PIP5K1A, PSMD4, ZNF687, P14KB, RFX5
30	350000	380000	2	30	2.29 ± 0.04	MECP2
31	930000	950000	1	20	2.18	
33	3810000	3830000	1	20	2.42	DCTN2
33	4120000	4140000	1	20	2.80	

Table S5.63. Candidate selective sweep regions detected in Ecotype 3 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}(iHS) \pm \mathbf{s.d.}$	GENE*
1	1310000	1340000	2	30	2.18 ± 0.01	IRF5, TNPO3, SMO
1	178260000	178280	1	20	2.22	ATP8A2
1	187530000	187550000	1	20	2.33	MTNR1B
1	32700000	32730000	2	30	2.17 ± 0.00	
1	32810000	32830000	1	20	2.23	TAFA2
1	32850000	32870000	1	20	2.16	TAFA2
1	32940000	32960000	1	20	2.02	
2	10929000	109310000	1	20	2.15	
2	109360000	109400000	3	40	2.48 ± 0.08	
2	126220000	126240000	1	20	2.09	
2	147030000	14709000	5	60	2.24 ± 0.03	TSNARE1
2	147120000	147150000	2	30	2.09 ± 0.00	TSNARE1
2	30320000	30350000	2	30	2.71 ± 0.08	
5	12910000	13020000	10	110	2.33 ± 0.10	PTPN5, <mark>PTPRJ</mark>
5	1340000	1360000	1	20	2.11	LUZP2
5	13820000	13840000	1	20	2.36	CD81
5	21740000	22800000	3	60	2.31 ± 0.22	MIR129-2
6	12910000	12960000	4	50	2.39 ± 0.06	
6	13030000	13050000	1	20	2.24	ZCCHC24
6	9980000	1000000	1	20	2.66	СНИК
8	69000	710000	1	20	2.50	
9	17830000	1799000	15	160	2.41 ± 0.09	
10	17660000	17710000	4	50	2.31 ± 0.03	ADAMTS17
11	18320000	18340000	1	20	2.62	ZNF469
12	1319000	13220000	2	30	2.31 ± 0.05	PTPRG
14	4920000	4980	5	60	2.21 ± 0.03	NATD1, TMEM11, DHRS7B, USP22
14	5030000	5060000	2	30	2.50 ± 0.05	USP22, TNFRSF13B
27	7850000	7960000	9	110	2.28 ± 0.13	RAMP2, VPS25, CNTD1, BECN1, PSME3, G6PC, AARSD1, PTGES3L, RUNDC1, RPL27, IF135, VAT1, RND2
30	1680000	1710000	2	30	2.19 ± 0.00	
30	260000	300000	3	40	2.21 ± 0.02	BCAP31, TAZ, WDR13, WAS, TBC1D25
33	4110000	4140000	2	30	2.29 ± 0.007	MARS
33	6110000	6130000	1	20	2.26	

Table S5.6.4. Candidate selective sweep regions detected in Ecotype 4 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. (|iHS|) ± s.d.: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}(iHS) \pm \mathbf{s.d.}$	GENE*
1	163750000	163780	2	30	2.07 ± 0.01	DIAPH3
1	163820000	163840000	1	20	2.08	DIAPH3
1	189240000	189320000	7	80	2.27 ± 0.08	GRM5
1	58820000	58840000	1	20	2.10	РКР2
2	31710000	31730000	1	20	2.08	OSBPL3
2	60460000	6049000	2	30	2.10 ± 0.00	KIF13A
3	12470000	12530000	5	60	2.16 ± 0.03	CDC42BPA
3	41410000	41560000	12	150	2.30 ± 0.08	THBS2
4	39180000	39220000	3	40	2.13 ± 0.01	TACR3
4	39830000	39850000	1	20	2.25	CDKN2AIP
4	39860000	39910000	3	50	2.43 ± 0.02	WWC2
4	73720000	73740000	1	20	2.13	DHX15
5	38240000	38270000	2	30	2.24 ± 0.00	FCF1, YLPM1
5	55480000	55510000	2	30	2.18 ± 0.01	ACTR10
7	21460000	21480000	1	20	2.14	TANK
7	29240000	29310000	6	70	2.59 ± 0.10	DPP10
9	11660000	11680000	1	20	2.28	PLOD2
9	14330000	14370000	3	40	2.33 ± 0.07	
9	1439000	14410000	1	20	2.25	
9	14450000	14480000	2	30	2.074 ± 0.03	
13	17320000	17340000	2	20	2.10 ± 0.00	FNIP1
15	12530000	12560000	2	30	2.29 ± 0.08	
15	700000	7030000	2	30	2.18 ± 0.02	МҮО1Н
20	1140000	1220000	7	80	2.15 ± 0.01	ERGIC3, CEP250
26	9000	130000	3	40	2.12 ± 0.04	CLPS, LHFPL5, SRPK1
26	150000	170000	2	20	2.17 ± 0.03	MAPK14, MAPK13
26	30000	50000	1	20	2.14	MICAL1, SMPD2, TEAD3
26	60000	110000	4	50	2.14 ± 0.02	TEAD3, TULP1, FKBP5
30	270000	300000	2	30	2.32 ± 0.01	BCAP31, TAZ, WDR13, WAS, TBC1D25

Table S5.6.5. Candidate selective sweep regions detected in Ecotype 5 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $u(|iHS|) \pm s.d$.: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	u(<i>iHS</i> /) ± s.d.	GENE*
1	120930000	120960000	2	30	2.22 ± 0.00	
1	1449000	14510000	1	20	2.16	
1	14640000	14700000	4	60	2.48 ± 0.10	PRKAR2B, <mark>HBP1</mark> , COG5
1	196050000	196080000	2	30	2.34 ± 0.01	PPME1
1	3090000	30930000	2	30	2.54 ± 0.03	ARID2
1	32040000	32160000	10	120	2.42 ± 0.08	
1	32810000	3289000	6	80	2.19 ± 0.01	TAFA2
1	32940000	32970000	2	30	2.23 ± 0.01	
1	33660000	3369000	2	30	2.51 ± 0.06	SRGAP1
1	440000	500000	5	60	2.74 ± 0.14	
1	58810000	58840000	2	30	2.18 ± 0.01	РКР2
1	61310000	61330000	1	20	2.39	CACNA1C
2	123110000	123130000	1	20	2.19	CNGB3
2	124730000	124760000	2	30	2.32 ± 0.03	SLC26A7
2	128260000	12829000	2	30	$2.37{\pm}0.09$	FBXO43
2	129230000	129250000	1	20	2.18	BAALC
2	137440000	137460000	1	20	2.20	
2	13790000	137940000	3	40	2.68 ± 0.07	DERL1, TBC1D31
2	143700000	143730000	2	30	2.40 ± 0.11	
2	14549000	145670000	17	180	2.58 ± 0.207	TRAPPC9, CHRAC1, gga-mir-6572, AGO2
2	14690000	146950000	4	50	2.42 ± 0.04	TSNARE1
2	147010000	147060000	3	50	2.72 ± 0.02	TSNARE1
2	147110000	147140000	2	30	2.74 ± 0.01	TSNARE1
2	147150000	147170000	1	20	2.20	TSNARE1
2	147370000	147410000	3	40	2.27 ± 0.02	TSNARE1
2	149240000	149260000	1	20	2.34	
2	55450000	55530000	7	80	2.64 ± 0.11	SLC12A7
2	5569000	55820000	10	130	2.50 ± 0.22	SLC9A3, <mark>LRRC14B</mark>
3	1249000	12510000	2	20	2.27 ± 0.05	CDC42BPA
4	23180000	23230000	4	50	2.34 ± 0.101	
4	27500000	27620000	6	120	2.21 ± 0.02	
4	27770000	27810000	3	40	2.42 ± 0.02	
4	27840000	27880000	3	40	2.46 ± 0.06	
4	27910000	27940000	2	30	2.38 ± 0.05	
4	28070000	28100000	2	30	2.25 ± 0.03	
4	28200000	2829000	8	90	2.41 ± 0.04	
4	28460000	28550000	8	90	2.30 ± 0.05	
4	90360000	90380000	2	20	2.38 ± 0.009	
5	28310000	28360000	4	50	2.42 ± 0.08	EXD2, DCAF5
5	2839000	28420000	2	30	2.30 ± 0.103	DCAF5

5	28470000	35540000	6	70	2.21 ± 0.06	ACTN1, NPAS3
6	10250000	10270000	1	20	2.34	PTEN
6	11660000	11700000	3	40	2.29 ± 0.03	
6	11810000	11830000	1	20	2.34	
6	1229000	12330000	3	40	2.27 ± 0.03	MTTPL, SGPL1, PCBD1
6	12360000	12430000	6	70	2.50 ± 0.07	
6	12520000	12540000	1	20	2.20	CDH23
6	9980000	1000000	1	20	2.21	СНИК
7	11820000	11860000	3	40	2.35 ± 0.04	BMPR2
7	36600000	36620000	1	20	2.45	BAZ2B
8	15600000	15620000	1	20	2.22	PKN2
8	670000	730000	5	60	2.29 ± 0.09	
9	23980000	24010000	2	30	2.19 ± 0.01	WWTR1, TM4SF4
10	6040000	6060000	1	20	2.27	KLF13
10	6310000	6340000	2	30	2.36 ± 0.06	MPHOSPH10, APBA2
11	16300000	16320000	2	20	2.26 ± 0.06	CDH13
12	239000	2410000	1	20	2.24	DOCK3
15	329000	3310000	1	20	2.26	STX2
15	4120000	4260000	9	140	2.45 ± 0.12	ТМЕМ132С
15	4380000	4430000	3	50	2.32 ± 0.31	
18	3120000	3160000	3	40	2.69 ± 0.11	B3GNTL1
19	5830000	5850000	1	20	2.38	FOXN1
20	1100000	1120000	1	20	2.21	CPNE1
20	2260000	2280000	1	20	2.62	SNTA1
21	5160000	5180000	1	20	2.45	PRDM2
24	120000	140000	1	20	2.41	VPS11, SIK2
26	130000	180000	4	50	2.64 ± 0.03	SLC26A8, MAPK14
26	70000	100000	2	30	2.45 ± 0.03	TULP1, FKBP5
33	3170000	319000	1	20	2.16	SCN8A
33	3270000	329000	2	20	2.26 ± 0.02	ACVRL1, ACVR1B, GRASP
33	3310000	3350000	3	40	2.35 ± 0.08	NR4A1, ATG101, FMNL3, TMBIM6
33	6110000	6130000	1	20	2.84	
33	6310000	6340000	2	30	2.53 ± 0.09	SIPA1
33	6640000	6670000	2	30	2.73 ± 0.16	BANF1

Table S5.6.6. Candidate selective sweep regions detected in Ecotype 6 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	u(<i>iHS</i> /) ± s.d.	GENE*
1	11779000	117830000	3	40	2.38 ± 0.14	IL1RAPL1
1	149930000	149950000	1	20	2.16	
2	11949000	119510000	1	20	2.64	PEX2
2	65550000	65570000	1	20	2.68	RPP40
3	38540000	38570000	2	30	3.05 ± 0.12	TARBP1, COA6, SLC35F3
3	38980000	3900000	1	20	2.45	PCNX2, U1
3	85880000	8590000	1	20	2.21	
4	2849000	28520000	2	30	2.19 ± 0.08	
4	28530000	28550000	1	20	2.22	
4	30870000	3089000	1	20	2.48	ANAPC10, HHIP
4	40940000	40960000	1	20	2.33	
4	41000000	41020000	1	20	2.38	
4	41050000	4109000	3	40	2.22 ± 0.09	
4	41470000	4149000	1	20	2.51	
5	390000	3920000	1	20	2.45	LGR4
5	3970000	399000	1	20	2.42	BDNF
5	4120000	4180000	5	60	2.34 ± 0.23	KIF18A, METTL15P1
6	36170000	3619000	1	20	2.30	INPP5A
6	36240000	36300000	4	60	2.27 ± 0.06	OPNVA, TCTN3, ALDH18A1
7	32730000	3279000	5	60	2.96 ± 0.24	ARHGAP15
20	8240000	8260000	1	20	2.67	NTSR1
23	5730000	5750000	1	20	2.12	TCEB3, PITHD1, LYPLA2, GALE, HMGCL
26	60000	80000	1	20	2.16	TEAD3, TULP1, FKBP5

Table S5.6.7. Candidate selective sweep regions detected in Ecotype 7 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}(iHS) \pm \mathbf{s.d.}$	GENE*
1	10890000	109030000	10	130	2.12 ± 0.05	ERG
1	109100000	109120000	1	20	2.13	
1	109680000	109820000	11	140	2.10 ± 0.04	DSCAM
1	139070000	13909000	1	20	2.04	MCF2L
1	146760000	146780000	3	20	2.19 ± 0.05	MBNL2
1	189200000	189340000	10	140	2.15 ± 0.04	TYR, GRM5
1	197480000	197600000	11	120	2.37 ± 0.09	TPP1, gga-mir-1600, LCMT2
1	23040000	2309000	4	50	2.23 ± 0.03	PTPRZ1
1	23140000	23170000	2	30	2.24 ± 0.000	PTPRZ1
1	450000	510000	5	60	2.65 ± 0.09	
2	108110000	108140000	2	30	2.06 ± 0.00	
2	124510000	124540000	2	30	2.42 ± 0.15	TMEM64
2	20270000	20330000	5	60	2.30 ± 0.05	MINDY3
2	20740000	20760000	1	20	2.17	ABCB1
2	41470000	4149000	1	20	2.40	
2	43530000	43550000	1	20	2.13	
4	15440000	15500000	5	60	2.17 ± 0.02	TENM1
4	75560000	7559000	2	30	2.18 ± 0.03	
4	75670000	75710000	3	40	2.11 ± 0.06	
4	75830000	75850000	1	20	2.05	NCAPG, LCORL
4	75870000	7589000	1	20	2.05	NCAPG
5	11710000	11760000	4	50	2.42 ± 0.09	
5	11770000	11860000	8	90	2.48 ± 0.09	C5H11orf58, PLEKHA7
5	35230000	35250000	1	20	2.18	АКАРб
5	35470000	35670000	19	200	2.45 ± 0.07	NPAS3
7	31500000	31550000	4	50	2.31 ± 0.08	
7	34320000	34340000	1	20	2.26	
8	22850000	22930000	7	80	2.20 ± 0.02	
8	24770000	24800000	2	30	2.14 ± 0.03	TUT4, GPX7
9	14350000	14370000	1	20	2.11	
9	14430000	14470000	3	40	2.15 ± 0.01	
10	17620000	17710000	7	90	2.36 ± 0.08	ADAMTS17
10	18140000	18170000	2	30	2.22 ± 0.01	ANKDD1A, <mark>SPG21</mark> , CLPX
12	20230000	20270000	2	40	2.10 ± 0.045	FGD5
17	7460000	7480000	1	20	2.17	BRD3
17	819000	8210000	1	20	2.20	SNAPC4, CARD9
18	369000	3730000	3	40	2.34 ± 0.06	CD7
18	3750000	3780000	2	30	2.34 ± 0.02	SEPTIN9
20	1180000	1210000	2	30	2.32 ± 0.03	ERGIC3
21	3340000	3370000	2	30	2.38 ± 0.02	SPSB1

23	5070000	5100000	2	30	2.34 ± 0.13	NFYC, gga-mir-30e, gga-mir-30c-1, KCNQ4
26	9000	320000	20	230	2.55 ± 0.22	CLPS, LHFPL5, SRPK1, SLC26A8, MAPK14, MAPK13, BRPF3, TBC1D22B, PIM1, CACNA1S, KIF21B
26	20000	40000	1	20	2.61	MICAL1
26	60000	110000	4	50	2.82 ± 0.01	TEAD3, TULP1, FKBP5

Table S5.6.8. Candidate selective sweep regions detected in Ecotype 8 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb):** fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	u(<i>iHS</i> /) ± s.d.	GENE*
1	110120000	110150000	3	30	2.28 ± 0.108	
1	11019000	110220000	2	30	2.24 ± 0.002	BACE2
1	110240000	110260000	1	20	2.16	MX1
1	112350000	112400000	4	50	2.20 ± 0.03	FUNDC1, EFHC2
1	112420000	112520000	6	100	2.23 ± 0.08	EFHC2, U6, <mark>NDP</mark>
1	120910000	121970000	5	60	2.21 ± 0.101	CDKL5
1	128340000	128360000	2	20	2.34 ± 0.01	NLGN4Y
1	57260000	57280000	1	20	2.21	AGK
1	58810000	58860000	4	50	2.21 ± 0.05	РКР2
1	65400000	65420000	1	20	2.21	BCAT1
2	138240000	13829000	4	50	2.15 ± 0.04	FER1L6
2	13909000	139140000	4	50	2.69 ± 0.05	
2	145400000	14549000	8	90	2.42 ± 0.05	TRAPPC9
2	43530000	43560000	2	30	2.33 ± 0.104	
2	8360000	8380000	1	20	2.17	
5	11710000	11730000	1	20	2.36	
5	1290000	12960000	5	60	2.28 ± 0.04	PTPN5
5	16940000	16960000	1	20	2.31	FADS2
5	27510000	27550000	3	40	2.34 ± 0.03	MAP3K9
5	28460000	28530000	6	70	2.46 ± 0.101	ACTN1, <mark>SRSF5A</mark>
5	31220000	31280000	5	60	2.26 ± 0.08	
5	38240000	38270000	2	30	2.40 ± 0.01	FCF1, YLPM1
5	39580000	39610000	2	30	2.13 ± 0.04	SNW1, ADCK1
6	16180000	16200000	2	20	2.22 ± 0.001	ADK
6	21550000	21610000	5	60	2.15 ± 0.02	EXOC6
6	7340000	7380000	3	40	2.13 ± 0.02	DNAJC12, CTNNA3
6	9980000	1000000	1	20	2.44	CHUK
8	2110000	2180000	6	70	2.22 ± 0.09	
8	23580000	23630000	4	50	2.40 ± 0.06	BEND5
8	23660000	23680000	1	20	2.13	BEND5

8	2369000	23720000	2	30	2.34 ± 0.005	BEND5
8	309000	3150000	5	60	2.38 ± 0.06	KCNT2
8	3260000	3340000	7	80	2.40 ± 0.06	
11	16980	17000000	1	20	2.41	HNF4beta
12	11780000	11800000	1	20	2.13	SETD5
12	7710000	7750000	3	40	2.43 ± 0.09	CACNA2D3
12	7760000	7840000	7	80	2.34 ± 0.12	CACNA2D3
12	7850000	7870000	1	20	2.23	CACNA2D3
12	7880000	7910000	2	30	2.31 ± 0.02	CACNA2D3
12	8520000	8540000	1	20	2.16	ERC2
15	10380000	10400000	1	20	2.67	SCARF2
15	10730000	10760000	2	30	2.17 ± 0.02	
15	8550000	8570000	1	20	2.43	CRKL
17	8260000	829000	2	30	2.22 ± 0.01	GPSM1
19	1770000	1840000	6	70	2.32 ± 0.04	AUTS2
19	2510000	259000	7	80	2.41 ± 0.07	
19	9220000	9350000	8	130	2.19 ± 0.13	NF1, WSB1, NOS2
20	350000	470000	10	120	2.24 ± 0.07	DLGAP4
21	3340000	3370000	2	30	2.30 ± 0.04	SPSB1
21	4110000	4200000	0	00	2.24 ± 0.06	SRM, EXOSC10,
21	4110000	4200000	0	90	2.34 ± 0.00	MTOR, ANGPTL7
21	4350000	4370000	1	20	2.36	FBXO42
21	4720000	4740000	1	20	2.46	CAPZB
21	4800000	4820000	1	20	2.24	TMCO4
33	4120000	4140000	1	20	2.62	MARS
33	5660000	569000	2	30	2.16 ± 0.03	DIP2B
33	5740000	5760000	1	20	2.14	LIMA1, CERS5

Table S5.6.9. Candidate selective sweep regions detected in Ecotype 9 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$\mathbf{u}(iHS) \pm \mathbf{s.d.}$	GENE*
1	139040000	139100000	5	60	2.52 ± 0.1003	MCF2L
1	25650000	25700000	4	50	2.20 ± 0.01	
1	6590000	65950000	4	50	2.49 ± 0.03	SOX5
1	66450000	66480000	2	30	2.323 ± 0.03	ETNK1
1	69740000	69760000	1	20	2.23	PRR5
1	71880000	71920000	3	40	2.50 ± 0.05	DUSP16
1	72010000	72030000	1	20	2.41	
1	7369000	73720000	2	30	2.21 ± 0.02	NDUFA9
1	73730000	73750000	1	20	2.34	
1	73830000	73930000	9	100	2.35 ± 0.11	
1	73960000	7399000	2	30	2.45 ± 0.01	KCNA5
1	74010000	74030000	1	20	2.65	
1	74110000	74140000	2	30	2.72 ± 0.002	

1	7410000	74210000	1	20	2.57	
1	7419000	74210000	1	20	2.57	N/TE2
	74220000	74300000	/	80	2.60 ± 0.03	NIF3
1	74330000	7469000	34	360	2.58 ± 0.12	ANO2, VWF
1	74700000	74800000	8	100	2.69 ± 0.03	<i>CD9</i>
1	74860000	74930000	6	70	2.77 ± 0.05	PRMT8
1	75030000	75050000	21	20	2.70 ± 0.16	TSPAN9
1	75200000	75360000	14	160	2.67 ± 0.07	TEAD4, TULP3, RHNO1, FOXM1
1	75400000	75430000	2	30	2.39 ± 0.06	FKBP4
1	76440000	76470000	2	30	2.79 ± 0.06	
1	77140000	77180000	3	40	2.89 ± 0.04	
1	78330000	78350000	1	20	2.22	CLCN1, CASP2
1	89870000	8989000	1	20	2.40	TMPRSS7
2	147080000	147150000	5	70	2.24 ± 0.03	TSNARE1
2	41470000	4149000	1	20	2.85	
2	4369000	43710000	1	20	2.22	TRAK1
2	44530000	44550000	1	20	2.56	FBXL2
2	5650000	5670000	1	20	2.30	SCN5A
2	76160000	76180000	1	20	2.10	ANKH
2	82030000	82070000	3	40	2.55 2 35 + 0.03	
2	82620000	82700000	5	80	2.33 ± 0.03	
2	82020000	82700000	3	50	2.38 ± 0.08	
2	8279000	82840000	4	30	2.47 ± 0.02	
2	82850000	82940000	8	90	2.42 ± 0.03	
3	5020000	5040000	1	20	2.51	LDDQ
4	76280000	76310000	2	30	2.44 ± 0.01	LDB2
4	81460000	81560000	8	100	2.59 ± 0.11	
4	81600000	81620000	1	20	2.34	
4	9029000	90320000	2	30	2.28 ± 0.01	
4	90360000	9039000	1	30	2.31	
5	16710000	16810000	8	100	2.47 ± 0.05	PPP6R3, GAL, TESMIN
5	2529000	25310000	1	20	2.32	MAPKBP1
5	35400000	35450000	4	50	2.29 ± 0.03	NPAS3
5	35460000	35550000	8	90	2.42 ± 0.07	NPAS3
5	4119000	41220000	2	30	2.25 ± 0.04	
5	48700000	48820000	11	120	2.80 ± 0.14	YY2, SLC25A29, WARS, WDR25
5	48850000	48870000	1	20	2.69	WDR25
5	4879000	48820000	2	30	2.86 ± 0.009	
5	48850000	48880000	2	30	2.65 ± 0.05	BEGAIN
5	4889000	48920000	2	30	2.69 ± 0.01	BEGAIN
5	4909000	49110000	1	20	2.67	
5	49140000	49170000	2	30	2.69 ± 0.01	DLK1
5	4919000	49210000	1	20	2.65	
5	49310000	49350000	3	40	2.54 ± 0.06	
5	49360000	49550000	18	190	2.60 ± 0.12	PPP2R5C
6	2730000	2760000	2	30	2.57 ± 0.07	
6	279000	2860000	6	70	2.45 ± 0.02	
9	11640000	1169000	4	50	2.44 ± 0.02	PLOD2
9	12520000	12560000	3	40	2.29 ± 0.00	AGTR1
9	14360000	14380000	1	20	2.75	1101111
9	14400000	14470000	7	70	2.73 + 0.07	
0	14500000	14520000	1	20	2.33 ± 0.07	ΙΡΡ
0	1620000	16/60000	6	70	2.33 2.42 ± 0.01	MCEDID B2CNT5
7	1039000	10400000	0	/0	2.42 ± 0.01	MUCF2L2, DJGNIJ

12	20110000	20130000	1	20	2.19	TRH, RBSN
12	2019000	20260000	6	70	2.27 ± 0.01	FGD5
12	239000	2410000	1	20	2.26	DOCK3
16	169000	1710000	1	20	2.77	
19	9240000	9260000	1	20	2.27	WSB1
23	4350000	4400000	4	50	3.12 ± 0.22	AGO1, AGO4, CLSPN, C1orf216
25	210000	250000	3	40	2.29 ± 0.014	SETDBI, CERS2, MINDY1, PRUNE1, CDC42SE1, MLLT11, GABPB2, SEMA6C
25	39000	460000	6	70	2.64 ± 0.09	CGN, gga-mir-6620, TUFT1, SNX27, CELF3, MRPL9, TDRKH, RORC
26	280000	310000	2	30	2.26 ± 0.045	CACNA1S, KIF21B
27	2510000	2550000	3	40	2.29 ± 0.002	gga-mir-6644-2
27	2700000	2730000	2	30	2.48 ± 0.11	
27	7850000	7930000	7	80	2.26 ± 0.03	RAMP2, VPS25, CNTD1, BECN1, PSME3, G6PC, AARSD1, PTGES3L, RUNDC1, RUNDC1, IFI35
32	420000	450000	3	30	2.28 ± 0.01	SAE1
32	520000	540000	1	20	2.55	OPA3
33	4110000	4130000	1	20	2.68	MARS
33	6110000	6130000	1	20	2.28	

Table S5.6.10. Candidate selective sweep regions detected in Ecotype10 using the *iHS* method. (Chr: chromosome. # win: number of analyzed windows within the region. Fragment (kb): fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	u(<i>iHS/</i>) ± s.d.	GENE*
1	12570000	1259000	1	20	2.57	PHTF2
1	132340000	132360000	1	20	2.41	GABRG3
1	132930000	132960000	1	30	2.49	
1	133680000	133700000	1	20	2.30	MGAT4A
1	133820000	133860000	3	40	2.51 ± 0.11	LYG2, TXNDC9
1	176710000	176730000	1	20	2.22	UBL3
1	98880000	9890000	2	20	2.02 ± 0.00	
11	1420000	1480000	5	60	2.14 ± 0.04	CNOT1, <mark>SNORA50A</mark> , SLC38A7, GOT2
14	10330000	10350000	1	20	2.11	USP7
2	78280000	78310000	2	30	2.16 ± 0.006	38777
2	78320000	78340000	1	20	2.03	
2	79230000	79250000	1	20	2.07	ADCY2
3	51460000	51500000	3	40	2.35 ± 0.008	ARID1B

Supplementary Tables

3	54930000	54970000	3	40	2.14 ± 0.009	IL22RA2, IL20RA
3	61450000	61480000	2	30	2.06 ± 0.01	
3	61550000	61620000	6	70	2.18 ± 0.05	
4	359000	3610000	1	20	2.36	HS6ST2
4	3620000	3640000	1	20	2.36	HS6ST2
4	90360000	90380000	1	20	2.02	
8	3260000	3330000	6	70	2.21 ± 0.01	
9	16430000	1649000	5	60	2.10 ± 0.01	MCF2L2, B3GNT5
9	2229000	22340000	4	40	2.57 ± 0.13	KPNA4, gga-mir-1692, SCARNA7, TRIM59, SMC4

Table S5.6.11. Candidate selective sweep regions detected in Ecotype11 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	u(<i>iHS</i> /) ± s.d.	GENE*
1	156650000	156680	2	30	3.19 ± 0.01	
1	15699000	157010000	1	20	3.08	KLF12
2	100970000	10099000	1	20	2.67	MYOM1
2	101030000	101060000	2	30	2.67 ± 0.004	EMILIN2
2	101100000	101160000	4	60	2.99 ± 0.24	SMCHD1
2	101510000	101540000	2	30	2.93 ± 0.06	
2	101930000	101960000	2	30	3.65 ± 0.18	YES1, CLUL1
2	102020000	102050000	2	30	2.73 ± 0.08	COLEC12
2	102650000	102670000	1	20	3.09	GATA6
2	102820000	102840000	1	20	2.79	RBBP8
2	102870000	10290000	2	30	3.24 ± 0.08	
2	104180000	104200000	1	20	2.97	TAF4B
2	104220000	104270000	2	50	3.22 ± 0.46	TAF4B, KCTD1
2	104750000	104770000	1	20	2.67	
2	109920000	109940000	1	20	3.03	RB1CC1
2	109960000	109980000	1	20	2.67	RB1CC1
2	110230000	110280000	3	50	2.86 ± 0.16	ATP6V1H
2	110310000	110330000	1	20	3.08	RGS20
2	110400000	110420000	1	20	2.78	
2	111120000	111140000	1	20	2.69	LYN
2	112860000	112910000	2	50	2.79 ± 0.16	RAB2A, gga-mir- 1557
2	114700000	114720000	1	20	3.00	
2	89080000	89100000	1	20	2.74	MSANTD3
2	89150000	89170000	1	20	2.65	TEX10, INVS
2	89220000	89250000	2	30	2.79 ± 0.14	INVS
2	89360000	89380000	1	20	2.67	NR4A3
2	91320000	91360000	3	40	2.94 ± 0.13	TSHZ1
2	91720000	91750000	2	30	3.09 ± 0.26	ZNF407

2	0020000	00/10000	1	20	2.14	DTDDM
	9939000	51050000	1	20	3.14	PIPRM
4	51830000	51850000	1	20	2.75	
4	5189000	51940000	4	50	2.91 ± 0.104	
4	8229000	82330000	3	40	2.68 ± 0.01	ADDI
4	82430000	82460000	2	30	2.67 ± 0.03	TNIP2
4	82800000	82830000	2	30	3.22 ± 0.005	gga-mir-7467
4	82860000	8289000	2	30	2.76 ± 0.06	MXD4, HAUS3
4	8319000	83210000	1	20	2.82	NELFA
4	83330000	83350000	1	20	2.65	LETM1
4	83600000	83630000	2	30	2.90 ± 0.04	
4	8379000	83810000	1	20	2.69	
4	83870000	8389000	1	20	2.90	ТАСС3
4	83930000	83950000	1	20	2.94	SLBP
4	83960000	8399000	2	30	2.83 ± 0.09	FAM53A
4	84250000	84270000	1	20	2.76	
4	84410000	84430000	1	20	2.71	NKX1-1
4	84630000	84650000	1	20	2.67	CTRP1
	85100000	85150000	1	50	3.16 ± 0.12	EGERI 1
4	86040000	87050000	4 Q	110	3.10 ± 0.12	TOTKLI
4	80040000	87030000	0	110	5.12 ± 0.23	DNE24 and min
4	88500000	88540000	3	40	2.67 ± 0.02	KINF 24, gga-mir-
						103-2, MAVS
4	88720000	88770000	4	50	2.72 ± 0.08	DDRGK1, gga-mir- 146c
4	88950000	88980000	2	30	2.96 ± 0.09	SLC4A11
4	89030000	89060000	2	30	2.67 ± 0.01	
4	89250000	89270000	1	20	2.67	ATRN
4	89310000	89330000	1	20	2.67	ATRN GFRA4
4	89760000	89780000	1	20	2.87	SFXN5
4	89810000	89880000	6	70	3.26 ± 0.33	SFXN5 FMX1 SPR
	07010000	07000000	0	70	5.20 ± 0.55	EXOC68 agg-mir-
4	9030000	9060000	2	30	3.07 ± 0.17	12276
4	9080000	90110000	2	30	2.75 ± 0.01	EXOC6B
5	30180000	30200000	1	20	2.70	
5	30220000	30240000	1	20	2.64	KATNBL1
5	30830000	30870000	3	40	2.86 ± 0.09	ARHGAP11B
5	30880000	30940000	4	60	2.91 ± 0.24	RASGRP1, FAM98B
5	30960000	31010000	4	50	3.15 ± 0.2	SPRED1
5	3199000	32020000	2	30	2.81 ± 0.12	
5	32060000	32080000	1	20	2.68	
5	32380000	32400000	1	20	2.64	ZNF770
5	36120000	36150000	2	30	2.01 2.79 + 0.17	FAPP SNX32
5	36330000	36420000	8	90	2.79 ± 0.17 3 18 + 0 2	PSMA6 NEKRIA
5	37360000	37380000	1	20	2.64	15000000000000000000000000000000000000
5	37300000	3730000	1	20	2.07	SEC23A CEMINO
5	3779000	37850000	5	60	3.05 ± 0.24	TRAPPC6A, PNN
5	3809000	38110000	1	20	2.70	VRTN, SYNDIG1L
5	38300000	38330000	2	30	3.01 ± 0.09	DLSI, KPSOKLI, PGF
5	38430000	38480000	4	50	$\overline{3.03 \pm 0.09}$	FOS, JDP2
5	7180000	7200000	1	20	2.76	НІРКЗ
5	749000	7510000	1	20	2.68	SYT9
5	8260000	8280000	1	20	2.69	MICAL2
8	5670000	5700000	2	30	2.84 ± 0.02	PBX1
L						

10	3380000	3420000	2	40	2.71 ± 0.07	HMG20A
10	3570000	3610000	2	40	2.99 ± 0.2	TSPAN3, PSTPIP1
10	3640000	369000	4	50	2.90 ± 0.11	PSTPIP1, RCN2, SCAPER
10	3770000	3860000	7	90	3.22 ± 0.19	SCAPER, ISL2, ETFA, TMEM266
10	3870000	3950000	6	80	3.07 ± 0.24	TMEM266, NRG4, FBXO22
10	4020000	4040000	1	20	2.86	
10	4050000	4070000	1	20	3.89	CHRNB4
10	409000	4110000	1	20	3.77	CHRNA5, PSMA4, HYKK
10	4120000	4150000	2	30	2.81 ± 0.22	IREB2, CRABP-I
10	4170000	4200000	2	30	3.00 ± 0.23	WDR61, DNAJA4, ACSBG1
10	4260000	429000	2	30	2.78 ± 0.03	
10	439000	4420000	2	30	2.89 ± 0.09	HERC1
10	449000	4570000	6	80	3.02 ± 0.1	USP3, CA12, RAB8B
10	5300000	5330000	2	30	2.85 ± 0.1	RORA
10	5380000	5400000	1	20	2.69	RORA
10	5410000	5430000	1	20	2.91	RORA
10	5470000	549000	1	20	2.71	RORA
10	5810000	5840000	2	30	2.71 ± 0.07	BNIP2
10	7170000	7210000	3	40	2.88 ± 0.17	FAM81A, MYO1E
10	8080000	8120000	3	40	2.80 ± 0.07	MNS1. TEX9
10	8210000	829000	6	80	2.88 ± 0.16	NEDD4. PRTG
10	8400000	8450000	2	50	3.15 ± 0.19	DYX1C1, CCPG1, PIGB, PIGBOS1, RAB27A
10	8460000	849000	2	30	2.80 ± 0.17	RAB27A, RSL24D1
10	859000	869000	9	100000	3.12 ± 0.24	
10	8730000	8880000	11	150	2.93 ± 0.2	
10	9120000	9170000	4	50	3.19 ± 0.02	FAM214A
10	9180000	929000	9	110	3.30 ± 0.29	ARPP19, MYO5A
10	9320000	9360000	3	40	3.07 ± 0.17	GNB5, BCL2L10
10	9370000	939000	1	20	3.21	MAPK4
10	9480000	9500000	1	20	2.93	TMOD3, TMOD2
10	9560000	9650000	6	90	3.17 ± 0.25	SCG3, AP4E1, TNFAIP8L3
10	9680000	9700000	1	20	3.08	CYP19A1
10	9720000	9740000	1	20	2.75	
10	9800000	9830000	2	30	2.75 ± 0.11	
10	9880000	9940000	4	60	3.05 ± 0.31	
10	9950000	9970000	1	20	3.01	
10	10210000	1029000	7	80	2.89 ± 0.09	SEMA6D
10	10320000	10350000	2	30	2.87 ± 0.32	SEMA6D
10	10540000	10560000	1	20	2.65	SLC12A1
10	10820000	10840000	1	20	2.94	
10	11110000	11130000	1	20	2.68	C15orf48, gga-mir- 147_SLC30A4
10	11500000	11530000	2	30	2.85 ± 0.15	PDE8A, gga-mir- 3540
10	11660000	11710000	3	50	3.45 ± 0.54	TM6SF1, HDGFL3

10	11700000	11020000	0	120	2.01 ± 0.26	UDCEL2 DNC1
10	11/00000	11850000	9	150	5.01 ± 0.50	HDGFLS, BNCI
10	11840000	11920000	3	80	2.73 ± 0.05	SH3GL3
10	12460000	1249000	2	30	2.76 ± 0.07	
10	12510000	12550000	3	40	3.05 ± 0.19	TMC3, STARD5, IL16
10	12750000	1279000	3	40	2.93 ± 0.11	
10	12940000	13050000	7	110	3.49 ± 0.47	
						ZFAND6 BCL2A1
10	13070000	13100000	2	30	3.11 ± 0.01	MTHFS
10	13230000	13250000	1	20	2.89	
10	13270000	1339000	9	120	2.95 ± 0.16	KIF7, TICRR, RHCG, gga-mir-9-3, POLG
10	1349000	13510000	1	20	2.64	ACAN
10	13530000	13610000	5	80	3.43 ± 0.54	ACAN, ISG20, gga- mir-1720, gga-mir-7- 2
10	13650000	13670000	1	20	3.40	NTRK3
10	13710000	13770000	5	60	3.35 ± 0.25	NTRK3
10	13780000	13820000	3	40	3.39 ± 0.43	NTRK3
10	13880000	1390000	1	20	2.90	
10	13920000	13970000	3	50	2.70 2.71 + 0.08	
10	14060000	14080000	1	20	2.00	ACRL1
10	14000000	1400000	2	40	2.99	AODLI ACPL1
10	14230000	1429000	2	40	3.39 ± 0.10	AGDLI
10	14340000	1439000	3	50	3.31 ± 0.5	
10	14400000	14480000	6	80	3.23 ± 0.17	KLHL25
10	14540000	14560000	1	20	2.83	
14	2110000	2150000	3	40	2.87 ± 0.1	FAM20C
14	2630000	2650000	1	20	2.69	COX19, CYP2AC7
14	279000	2810000	1	20	2.79	
14	2820000	2840000	1	20	3.50	
14	3180000	3210000	3	30	2.76 ± 0.11	MAD1L1
14	4530000	4560000	2	30	3.12 ± 0.01	FBXL18
14	5300000	5320000	1	20	2.75	SREBF1, gga-mir- 33-2, TOM1L2
14	6200000	6230000	1	30	2.67	
14	6250000	6270000	1	20	2.80	
14	689000	6920000	2	30	2.96 ± 0.16	BRICD5, PGP, E4F1, ZDHHC4, GRID2IP
14	7140000	7210000	6	70	2.82 ± 0.15	CACNG3, RBBP6
17	5920000	5950000	2	30	2.88 ± 0.08	NTMT1, ASB6
17	5980000	6010000	2	30	2.96 ± 0.09	PTGES, TOR1B, TOR1A, C9orf78, USP20
17	6020000	6040000	1	20	2.64	USP20, FNBP1
17	6150000	6200000	4	50	3.07 ± 0.25	GPR107, NCS1, ASS1
17	6340000	6360000	1	20	2.76	FIBCD1
17	6400000	6420000	1	20	2.76	NUP214
17	6620000	6660000	3	40	2.96 ± 0.07	MED27
17	6720000	6750000	2	30	2.91 ± 0.06	NTNG2
17	7030000	7060000	2	30	2.69 ± 0.03	GFI1B
I					-	

17	7070000	7120000	4	50	3.07 ± 0.12	CEL, GTF3C5
						CACFD1, SLC2A6,
17	7220000	7260000	4	40	2.86 ± 0.12	TMEM8C,
						ADAMTSL2
17	7340000	7360000	1	20	2.81	SARDH, VAV2
17	7540000	7600000	3	60	2.78 ± 0.06	RXRA
17	7630000	7660000	2	30	2.89 ± 0.03	RXRA
17	7750000	7780000	2	30	2.95 ± 0.03	COL5A1
17	7820000	7850000	2	30	2.79 ± 0.11	COL5A1
17	7880000	7920000	3	40	2.77 ± 0.05	OLFM1
17	8020000	8070000	2	40	2.78 + 0.04	DIPK1B, AGPAT2,
17	8030000	8070000	3	40	2.78 ± 0.04	EGFL7, gga-mir-126
17	809000	8110000	1	20	2.95	NOTCH1
17	8560000	8580000	1	20	2.70	PSMD5, B3GNTL
20	4040000	4060000	1	20	2.96	
20	4160000	4180000	1	20	2.67	
20	4220000	4240000	1	20	2.73	
27	6870000	689000	1	20	2.64	LASP1, FBXO47
						THRA, ORMDL3,
27	7100000	7130000	2	30	2.65 ± 0.01	GSDMA, PSMD3,
						CSF3
27	7450000	7470000	1	20	2.65	EIF1
28	2700000	2720000	1	20	2.68	SIRT6, CREB3L3,
20	2700000	2720000		20	2.00	MAP2K2
28	820000	840000	1	20	2.74	RANBP3
28	910000	930000	1	20	2.93	37316, RAB11B

Table S5.6.12. Candidate selective sweep regions detected in Ecotype12 using the *iHS* method. (**Chr:** chromosome. **# win:** number of analyzed windows within the region. **Fragment (kb)**: fragment size for the sweep regions in kilobase pair. $\mathbf{u}(|iHS|) \pm \mathbf{s.d.}$: mean and standard deviation for |iHS| for selected windows within a region. GENE: annotated gene(s) overlapping selected region). * Red highlighted genes were found uniquely in this ecotype.

Chr	Start	Stop	# win	Fragment (kb)	$u(iHS/) \pm s.d.$	GENE*
1	45640000	45660000	1	20	2.90	NTN4
1	87060000	87080000	1	20	2.58	
2	102650000	102670000	1	20	2.85	GATA6
2	107670000	10769000	1	20	2.52	
2	137860000	13789000	2	30	2.76 ± 0.15	ZHX2
2	55320000	55340000	1	20	3.06	
2	78220000	78240000	1	20	2.79	ANKRD33B
2	78980000	7900000	1	20	2.59	
2	79300000	79320000	1	20	2.52	ADCY2
2	97200000	97220000	1	20	2.67	PRELID3A, AFG3L2
2	98860000	9889000	2	30	2.83 ± 0.007	RAB12

3	11920000	11970000	4	50	2.86 ± 0.18	CNRIP1, PLEK, FBXO48, APLF
3	12040000	12060000	1	20	2.59	
3	12180000	12240000	5	60	2.68 ± 0.1	PCSK2
3	16640000	16670000	2	30	2.55 ± 0.05	SRSF7, MORN2
3	16870000	1690000	2	30	2.69 ± 0.06	GPCPD1
3	31560000	31620000	5	60	2.72 ± 0.36	TTC27, BIRC6
3	3219000	32260000	4	70	2.60 ± 0.13	STRN, VIT
3	3379000	33950000	6	160	2.61 ± 0.11	MEMO1, AHCTF1
3	72080000	72140000	4	60	2.17 ± 0.03	
4	15440000	15530000	8	90	2.40 ± 0.05	TENM1
4	15440000	15460000	1	20	2.45	
4	39150000	39180000	2	30	2.04 ± 0.02	TACR3
4	81460000	81510000	2	50	2.17 ± 0.02	
4	81600000	81620000	1	20	2.26	
5	19460000	19620000	15	160	2.99 ± 0.46	LDLRAD3
5	59000	610000	1	20	2.78	
6	28530000	28600000	6	70	2.20 ± 0.02	NHLRC2
7	30940000	30970000	2	30	2.38 ± 0.03	THSD7B
7	31130000	31150000	1	20	2.91	THSD7B
7	33250000	33280000	2	30	3.21 ± 0.02	GTDC1
7	33380000	33400000	1	20	2.87	ZEB2
7	34920000	34950000	2	30	3.04 ± 0.28	MMADHC
7	34960000	34980000	1	20	2.87	
8	619000	6220000	2	30	2.45 ± 0.15	STX10, XPR1
8	6340000	6370000	2	30	3.10 ± 0.008	ACBD6, LHX4, QSOX1
8	6450000	6500000	4	50	2.57 ± 0.05	TOR1AIP2, FAM163A
9	21700000	21720000	1	20	2.41	
11	10130000	10150000	1	20	2.55	GPATCH1
11	10310000	10350000	3	40	2.70 ± 0.121	CEBPG, PEPD
11	9260000	9280000	1	20	2.87	TSHZ3
15	269000	2710000	1	20	2.14	GALNT9
19	140000	170000	2	30	2.25 ± 0.03	DDX25
21	6570000	6680000	3	110	2.37 ± 0.08	USP48, RAP1GAP, EIF4G3
21	6760000	6780000	1	20	2.54	DDOST
22	169000	1770000	6	80	2.68 ± 0.07	XPO7. DOK2. GFRA2

SR_ID_ecotype	Size (kb)	detection method	detected ecotypes	SR chapter 4	environmental parameter	Overlapping genes
chr1:6540000_65420000	20	iHS	E8	chr1:65410000_65430000	Landuse	BCAT1
chr1:110240000_110260000	20	iHS	E8	chr1:110220000_110270000	Landuse	MX1
chr1:112390000_112440000	50	ZHp and iHS	E2	chr1:112400000_112430000	Landuse	EFHC2
chr1:112400000_112430000	30	ZHp	E4, E10	chr1:112400000_112430000	Landuse	EFHC2
chr1:112400000_112440000	40	ZHp	E8	chr1:112400000_112430000	Landuse	EFHC2
chr1:112410000_112430000	20	iHS	E1	chr1:112400000_112430000	Landuse	EFHC2
chr1:112420000_112520000	100	iHS	E8	chr1:112400000_112430000	Landuse	EFHC2, U6, NDP
chr1:112420000_112520000	100	iHS	E8	chr1:112490000_112520000	Landuse	EFHC2, U6, NDP
chr1:128340000_128360000	20	iHS	E8	chr1:128350000_128470000	Landuse	
chr1:128460000_128510000	40	ZHp	E5, E12	chr1:128350000_128470000	Landuse	
chr1:128460000_128520000	60	ZHp	E4	chr1:128350000_128470000	Landuse	
chr1:128460000_128540000	80	ZHp	E10	chr1:128350000_128470000	Landuse	
chr1:128460000_128520000	60	ZHp	E4	chr1:128510000_128560000	Landuse	
chr1:128460000_128540000	80	ZHp	E10	chr1:128510000_128560000	Landuse	
chr1:128530000_128810000	280	iHS	E5	chr1:128510000_128560000	Landuse	
chr2:82260000_82310000	50	ZHp	E9	chr2:82270000_82290000	Landuse	
chr2:82340000_82630000	290	ZHp	E3	chr2:82330000_82360000	Landuse	
chr2:82330000_82640000	290	ZHp	E9	chr2:82330000_82360000	Landuse	
chr2:82340000_82630000	290	ZHp	E3	chr2:82370000_82390000	Landuse	
chr2:82330000_82640000	290	ZHp	E9	chr2:82370000_82390000	Landuse	
chr2:82340000_82630000	290	ZHp	E3	chr2:82580000_82600000	Landuse	

Table S5.7. Candidate selection signature regions (SRs) from ecotype analyses overlapping with extreme population groups analyses (chapter 4).

chr2:82330000_82640000	290	ZHp	E9	chr2:82580000_82600000	Landuse	
chr2:82620000_82640000	20	ZHp	E9	chr2:82630000_82770000	Landuse	
chr2:82620000_82700000	80	iHS	E9	chr2:82630000_82770000	Landuse	
chr2:82330000_82640000	290	ZHp	E9	chr2:82630000_82770000	Landuse	
chr2:82790000_82810000	20	iHS	E1	chr2:82790000_82840000	Landuse	
chr2:82790000_82840000	50	iHS	E9	chr2:82790000_82840000	Landuse	ENSGALG00000049962 (LncRNA)
chr2:82850000_82940000	90	iHS	E1, E9	chr2:82850000_82940000	Landuse	ENSGALG00000049962 (LncRNA), ENSGALG00000051615 (LncRNA)
chr4:75670000_75710000	40	iHS	E7	chr4:75690000_75810000	Landuse	
chr5:35470000_35670000	200	iHS	E7	chr5:3560000_35660000	Landuse	NPAS3
chr5:48990000_49080000	90	ZHp	E9	chr5:48990000_49080000	Landuse	BEGAIN, ENSGALG00000051728 (LncRNA), ENSGALG00000053427 (LncRNA)
chr5:49020000_49070000	50	ZHp	E3	chr5:48990000_49080000	Landuse	
chr7:31500000_31550000	50	iHS	E7	chr7:31520000_31550000	Landuse	
chr8:3260000_3340000	80	iHS	E8	chr8:3330000_3350000	Landuse	
chr28:4530000_4580000	50	iHS	E1	chr28:4520000_4570000	Landuse	RAB8A, TPM4
chr1:440000_500000	60	iHS	E5	chr1:430000_450000	minTemp	
chr1:440000_500000	60	iHS	E5	chr1:460000_510000	minTemp	
chr1:450000_510000	60	iHS	E7	chr1:460000_510000	minTemp	
chr1:109100000_109120000	20	iHS	E7	chr1:10900000_109120000	minTemp	
chr1:108900000_109030000	130	iHS	E7	chr1:10900000_109120000	minTemp	ERG
chr1:109680000_109820000	140	iHS	E7	chr1:109760000_109800000	minTemp	DSCAM
chr1:109680000_109820000	140	iHS	E7	chr1:109810000_109830000	minTemp	DSCAM

chr2:43530000_43550000	20	iHS	E7	chr2:43430000_43550000	minTemp	
chr2:43530000_43560000	30	iHS	E8	chr2:43430000_43550000	minTemp	
chr5:16940000_16960000	20	iHS	E8	chr5:16940000_16980000	minTemp	FADS2
chr5:28470000_35540000	70	iHS	E5	chr5:34720000_34740000	minTemp	ACTN1, NPAS3
chr6:36170000_36190000	20	iHS	E6	chr6:36170000_36220000	minTemp	INPP5A
chr10:18140000_18170000	30	iHS	E7	chr10:18140000_18180000	minTemp	ANKDD1A, SPG21, CLPX
chr18:3690000_3730000	40	iHS	E7	chr18:3690000_3770000	minTemp	CD7
chr18:3750000_3780000	30	iHS	E7	chr18:3690000_3770000	minTemp	SEPTIN9
chr21:3340000_3370000	30	iHS	E7, E8	chr21:3340000_3380000	minTemp	SPSB1
chr1:65400000_65420000	20	iHS	E8	chr1:65410000_65440000	precDQ	BCAT1
chr1:109680000_109820000	140	iHS	E7	chr1:109700000_109730000	precDQ	DSCAM
chr1:109680000_109820000	140	iHS	E7	chr1:109740000_109790000	precDQ	DSCAM
chr1:112350000_112400000	50	iHS	E8	chr1:112350000_112370000	precDQ	FUNDC1, EFHC2
chr2:28130000_28150000	20	ZHp	E8	chr2:28120000_28210000	precDQ	
chr2:145490000_145670000	180	iHS	E5	chr2:145640000_145670000	precDQ	TRAPPC9, CHRAC1, gga-mir- 6572, AGO2
chr3:20090000_20120000	30	ZHp	E9	chr3:20090000_20110000	precDQ	ESRRG
chr3:20100000_20120000	20	ZHp	E1, E6, E12	chr3:20090000_20110000	precDQ	ESRRG
chr3:72070000_72140000	70	iHS	E1	chr3:71840000_72120000	precDQ	gga-mir-12262
chr3:72080000_72140000	60	iHS	E12	chr3:71840000_72120000	precDQ	
chr3:72070000_72140000	70	iHS	E1	chr3:72130000_72150000	precDQ	
chr3:72080000_72140000	60	iHS	E12	chr3:72130000_72150000	precDQ	
chr3:72250000_72280000	20	iHS	E1	chr3:72220000_72340000	precDQ	
chr3:72300000_72370000	70	iHS	E1	chr3:72220000_72340000	precDQ	
chr3:72380000_72540000	160	iHS	E1	chr3:72360000_72540000	precDQ	
chr3:72300000_72370000	70	iHS	E1	chr3:72360000_72540000	precDQ	
chr3:73170000_73220000	50	iHS	E1	chr3:73120000_73250000	precDQ	MANEA

chr3:73290000_73400000	110	iHS	E1	chr3:73300000_73390000	precDQ	
chr4:27840000_27880000	40	iHS	E5	chr4:27820000_27880000	precDQ	
chr4:28200000_28290000	90	iHS	E5	chr4:28210000_28230000	precDQ	
chr4:28200000_28290000	90	iHS	E5	chr4:28270000_28300000	precDQ	
chr4:28460000_28550000	90	iHS	E5	chr4:28490000_28520000	precDQ	
chr4:28490000_28520000	30	iHS	E6	chr4:28490000_28520000	precDQ	ENSGALG00000048582 (LncRNA), ENSGALG00000054220 (LncRNA)
chr4:7460000_74620000	20	ZHp	E9	chr4:74550000_74620000	precDQ	
chr4:89960000_89990000	30	iHS	E1	chr4:89950000_89980000	precDQ	EXOC6B
chr6:12520000_12540000	20	iHS	E5	chr6:12510000_12530000	precDQ	CDH23
chr9:12520000_12560000	40	ZHp and/or iHS	E1, E8, E9	chr9:12490000_12570000	precDQ	AGTR1
chr9:12530000_12550000	20	ZHp	E10	chr9:12490000_12570000	precDQ	AGTR1
chr17:8260000_8290000	30	iHS	E8	chr17:8280000_8300000	precDQ	GPSM1
chr17:9450000_9470000	20	iHS	E2	chr17:9440000_9520000	precDQ	
chr17:9490000_9550000	60	iHS	E2	chr17:9440000_9520000	precDQ	LHX2
chr17:9240000_9510000	270	iHS	E2	chr17:9440000_9520000	precDQ	STRBP, DENND1A
chr19:1810000_1830000	20	ZHp	E10	chr19:1810000_1850000	precDQ	AUTS2
chr19:1770000_1840000	70	iHS	E8	chr19:1810000_1850000	precDQ	AUTS2
chr20:1100000_1120000	20	iHS	E5	chr20:1090000_1110000	precDQ	CPNE1
chr23:4350000_4400000	50	iHS	E9	chr23:4350000_4400000	precDQ	AGO1, AGO4, CLSPN, C1orf216
chr1:440000_500000	60	iHS	E5	chr1:450000_490000	precSeasonality	
chr1:450000_510000	60	iHS	E7	chr1:450000_490000	precSeasonality	
chr1:185880000_185900000	20	ZHp	E2	chr1:185880000_185920000	precSeasonality	
chr2:28130000_28150000	20	ZHp	E8	chr2:28140000_28200000	precSeasonality	
chr2:104220000_104270000	50	iHS	E11	chr2:104260000_104320000	precSeasonality	TAF4B, KCTD1

						-
chr2:146900000_146950000	50	iHS	E5	chr2:146890000_146920000	precSeasonality	TSNARE1
chr3:20090000_20120000	30	ZHp	E9	chr3:20080000_20110000	precSeasonality	ESRRG
chr3:20100000_20120000	20	ZHp	E1, E6, E12	chr3:20080000_20110000	precSeasonality	ESRRG
chr3:85880000_85900000	20	iHS	E6	chr3:85880000_85900000	precSeasonality	ENSGALG00000047770 (miRNA)
chr4:28200000_28290000	90	iHS	E5	chr4:28270000_28360000	precSeasonality	
chr4:75650000_75670000	20	ZHp	E2	chr4:75660000_75780000	precSeasonality	
chr4:75670000_75710000	40	iHS	E7	chr4:75660000_75780000	precSeasonality	
chr4:77520000_77550000	30	ZHp and iHS	E9, E10	chr4:77500000_77530000	precSeasonality	
chr4:89960000_89990000	30	iHS	E1	chr4:89960000_89980000	precSeasonality	EXOC6B
chr4:90280000_90420000	140	iHS	E9	chr4:90310000_90340000	precSeasonality	
chr4:90290000_90320000	30	iHS	E9	chr4:90310000_90340000	precSeasonality	
chr5:21740000_22800000	60	iHS	E3	chr5:21780000_21800000	precSeasonality	MIR129-2
chr5:28470000_35540000	70	iHS	E5	chr5:28910000_28970000	precSeasonality	ACTN1, NPAS3
chr5:35400000_35450000	50	iHS	E9	chr5:35390000_35410000	precSeasonality	NPAS3
chr5:28470000_35540000	70	iHS	E5	chr5:35390000_35410000	precSeasonality	ACTN1, NPAS3
chr5:40520000_40570000	50	ZHp	E9	chr5:40460000_40570000	precSeasonality	NRXN3
chr5:48790000_48820000	30	iHS	E9	chr5:48710000_49000000	precSeasonality	
chr5:48850000_48870000	20	iHS	E9	chr5:48710000_49000000	precSeasonality	WDR25
chr5:48850000_48880000	30	iHS	E9	chr5:48710000_49000000	precSeasonality	BEGAIN
chr5:48890000_48920000	30	iHS	E9	chr5:48710000_49000000	precSeasonality	BEGAIN
chr5:48700000_48820000	120	iHS	E9	chr5:48710000_49000000	precSeasonality	YY2, SLC25A29, WARS, WDR25
chr5:48990000_49080000	90	ZHp	Е9	chr5:48710000_49000000	precSeasonality	BEGAIN, ENSGALG00000051728 (LncRNA), ENSGALG00000053427 (LncRNA)
chr5:49090000_49110000	20	iHS	E9	chr5:49070000_49190000	precSeasonality	
------------------------	-----	-------------------	---------------	------------------------	-----------------	--
chr5:48990000_49080000	90	ZHp	E9	chr5:49070000_49190000	precSeasonality	BEGAIN, ENSGALG00000051728 (LncRNA), ENSGALG00000053427 (LncRNA)
chr5:49140000_49170000	30	iHS	E9	chr5:49070000_49190000	precSeasonality	DLK1
chr6:12520000_12540000	20	iHS	E5	chr6:12510000_12620000	precSeasonality	CDH23
chr9:12520000_12560000	40	ZHp and/or iHS	E1, E8, E9	chr9:12510000_12570000	precSeasonality	AGTR1
chr9:12530000_12550000	20	ZHp	E10	chr9:12510000_12570000	precSeasonality	AGTR1
chr17:9490000_9550000	60	iHS	E2	chr17:9480000_9510000	precSeasonality	
chr17:9240000_9510000	270	iHS	E2	chr17:9480000_9510000	precSeasonality	STRBP, DENND1A
chr19:1770000_1840000	70	iHS	E8	chr19:1750000_1790000	precSeasonality	AUTS2
chr20:1100000_1120000	20	iHS	E5	chr20:1090000_1110000	precSeasonality	CPNE1
chr23:4350000_4400000	50	iHS	E9	chr23:4350000_4400000	precSeasonality	AGO1, AGO4, CLSPN, C1orf216
chr25:210000_250000	40	iHS	E9	chr25:240000_260000	precSeasonality	SETDB1, CERS2, MINDY1, PRUNE1, CDC42SE1, MLLT11, GABPB2, SEMA6C
chr25:220000_340000	120	iHS	E2	chr25:240000_260000	precSeasonality	PRUNE1, CDC42SE1, MLLT11, GABPB2, SEMA6C, SCNM1, TMOD4, VPS72, PIP5K1A, PSMD4, ZNF687, PI4KB, RFX5
chr25:250000_270000	20	iHS	E1	chr25:240000_260000	precSeasonality	SCNM1, TMOD4, VPS72, PIP5K1A
chr28:4530000_4580000	50	iHS	E1	chr28:4540000_4580000	precSeasonality	RAB8A, TPM4
chr31:930000_950000	20	iHS	E2	chr31:920000_950000	precSeasonality	
chr1:98990000_99020000	20	ZHp	E10	chr1:99010000_99040000	precWQ	
chr2:65550000_65570000	20	iHS	E6	chr2:65560000_65580000	precWQ	RPP40

chr4:39410000_39430000	20	iHS	E1	chr4:39410000_39440000	precWQ	
chr4:89960000_89990000	30	iHS	E1	chr4:89960000_89990000	precWQ	EXOC6B
chr5:28470000_35540000	70	iHS	E5	chr5:29730000_29750000	precWQ	ACTN1, NPAS3
chr5:55480000_55510000	30	iHS	E4	chr5:55470000_55500000	precWQ	ACTR10
chr8:6450000_6500000	50	iHS	E12	chr8:6440000_6460000	precWQ	TOR1AIP2, FAM163A
chr10:13650000_13670000	20	iHS	E11	chr10:13630000_13730000	precWQ	
chr10:13710000_13770000	60	iHS	E11	chr10:13630000_13730000	precWQ	NTRK3
chr11:16300000_16320000	20	iHS	E5	chr11:16300000_16320000	precWQ	CDH13
chr15:10730000_10760000	30	iHS	E8	chr15:10710000_10750000	precWQ	
chr1:197480000_197600000	120	iHS	E7	chr1:197480000_197580000	soilOrgC	TPP1, gga-mir-1600, LCMT2
chr2:126400000_126480000	80	iHS	E10	chr2:126380000_126450000	soilOrgC	
chr2:137900000_137940000	40	iHS	E5	chr2:137920000_137940000	soilOrgC	DERL1, TBC1D31
chr2:147010000_147060000	50	iHS	E5	chr2:147030000_147090000	soilOrgC	TSNARE1
chr2:147080000_147120000	40	ZHp	E10	chr2:147030000_147090000	soilOrgC	TSNARE1
chr2:147080000_147150000	70	iHS	E9	chr2:147030000_147090000	soilOrgC	TSNARE1
chr2:147010000_147160000	150	ZHp	E5	chr2:147030000_147090000	soilOrgC	TSNARE1
chr2:147030000_147090000	60	iHS	E3	chr2:147030000_147090000	soilOrgC	TSNARE1
chr2:147050000_147200000	150	ZHp	E9	chr2:147030000_147090000	soilOrgC	TSNARE1
chr4:40940000_40960000	20	iHS	E6	chr4:40930000_40980000	soilOrgC	
chr4:75670000_75710000	40	iHS	E7	chr4:75670000_75710000	soilOrgC	
chr7:29240000_29310000	70	iHS	E4	chr7:29270000_29290000	soilOrgC	DPP10
chr7:29280000_29310000	30	ZHp or iHS	E1, E2	chr7:29270000_29290000	soilOrgC	DPP10
chr7:31500000_31550000	50	iHS	E7	chr7:31520000_31560000	soilOrgC	
chr10:13650000_13670000	20	iHS	E11	chr10:13660000_13690000	soilOrgC	NTRK3
chr33:6470000_6570000	100	ZHp	E1	chr33:6470000_6500000	soilOrgC	DRAP1, RELA, TMEM223, STX5, WDR74, SNORD30, SNORD22, TAF6L, MTA2, EML3

Table S5.8. Mean value for the six selected agro-climatic variables per ecotype. (Variables were used for ecotype definition and genomic-environmental association analysis).

Ecotype	minTemp Minimum temperature (C°) in the coldest month	precSeasonality Precipitation Seasonality (mm/m ²)	precWQbio16 Precipitation in the wettest quarter (mm/m ²)	precDQ Precipitation in the driest quarter (mm/m ²)	SoilOrgC Soil organic carbon content (g/Kg at depth 0.00 m)	LandUse (%)
E1	5.5	87.42	1050.17	79.97	130.11	32.85
E2	6.9	105.30	970.30	24.75	139.45	11.62
E3	9.8	71.42	428.32	37.89	109.05	12.18
E4	6.2	90.93	758.27	59.20	140.33	38.28
E5	8.7	50.26	505.37	116.42	71.89	25.02
E6	11.6	82.61	362.20	42.78	113.07	32.24
E7	1.8	105.75	770.10	46.10	127.40	37.53
E8	11.4	103.67	1089.28	11.56	123.50	1.33
E9	7.3	141.00	458.79	9.42	113.89	38.20
E10	10.5	136.90	480.70	19.60	111.00	29.19
E11	10.4	84.82	529.27	72.73	124.64	38.14
E12	11.2	121.60	767.50	11.30	105.70	34.22

Table S5.9. Identified outlier SNPs by applying RDA on Hp and iHS SNPs of candidate regions. (SD > 3 and p-value = 0.0027 two-tailed cutoff) (axis: significant axes (p-value $\leq 0.1 - 0.01$). **loading:** SNP value in the ordination of PCA space. **minTemp:** minimum temperature in the coldest month (bio6). **precSeason:** precipitation seasonality (bio15). **precWQ:** precipitation in the wettest quarter (bio16). **precDQ:** precipitation in the driest quarter (bio17). **SoilOrgC:** soil organic carbon content. **Predictor:** most strongly correlated predictor with each candidate SNP. **Correlation:** an absolute value of the strongest correlation between SNP and predictor). Highlighted SNPs with $r \geq 0.28 - 0.3$ were further investigated.

	Correlations of each candidate SNP with environmental predictors											
axis	SNP position (bp)	loading	minTemp	precSeason	precWQ	precDQ	SoilOrgC	LandUse	predictor	correlation		
1	chr1_109700810	0.07	0.04	-0.18	-0.01	0.22	-0.23	-0.10	SoilOrgC	0.23		
1	chr1_112390303	0.07	-0.01	0.20	0.18	0.02	-0.06	0.02	precSeason	0.20		
1	chr1_118502383	0.07	0.08	-0.15	-0.20	0.20	-0.33	0.08	<mark>SoilOrgC</mark>	<mark>0.33</mark>		
1	chr1_118539067	0.07	0.09	-0.13	-0.21	0.19	-0.33	0.08	<mark>SoilOrgC</mark>	<mark>0.33</mark>		
1	chr1_132947694	0.07	0.07	-0.15	-0.29	0.17	-0.35	0.03	<mark>SoilOrgC</mark>	<mark>0.35</mark>		
1	chr1_132948242	-0.07	0.03	0.15	0.08	-0.26	0.27	-0.06	SoilOrgC	0.27		
1	chr1_132950294	-0.08	-0.07	0.24	0.32	-0.21	0.33	-0.02	<mark>SoilOrgC</mark>	<mark>0.33</mark>		
1	chr1_132951411	0.08	0.08	-0.25	-0.24	0.23	-0.34	0.02	<mark>SoilOrgC</mark>	<mark>0.34</mark>		
1	chr1_150103310	0.07	-0.02	-0.11	-0.11	0.15	-0.19	0.08	SoilOrgC	0.19		
1	chr1_150128380	0.07	-0.02	-0.11	-0.11	0.15	-0.19	0.08	SoilOrgC	0.19		
1	chr1_156616848	0.08	0.05	-0.11	-0.20	0.11	-0.25	0.07	SoilOrgC	0.25		
1	chr1_176714724	-0.08	0.10	-0.14	-0.01	-0.05	0.03	-0.15	LandUse	0.15		
1	chr1_176731485	0.08	-0.07	0.11	0.04	-0.01	0.05	0.09	precSeason	0.11		
1	chr1_189278605	-0.07	0.03	-0.03	0.04	-0.06	0.10	-0.06	SoilOrgC	0.10		
1	chr1_23065714	0.07	0.08	-0.18	-0.10	0.22	-0.30	-0.02	<mark>SoilOrgC</mark>	<mark>0.30</mark>		
1	chr1_23140159	0.08	0.00	-0.16	-0.11	0.26	-0.31	0.01	<mark>SoilOrgC</mark>	<mark>0.31</mark>		
1	chr1_23141490	0.07	0.12	-0.25	-0.26	0.25	-0.40	-0.05	<mark>SoilOrgC</mark>	<mark>0.40</mark>		
1	chr1_23147646	0.07	0.09	-0.10	-0.11	0.14	-0.29	-0.08	SoilOrgC	0.29		
1	chr1_23164664	0.08	0.07	-0.11	-0.19	0.19	-0.33	0.04	<mark>SoilOrgC</mark>	<mark>0.33</mark>		
1	chr1_33675583	0.07	0.21	-0.14	-0.27	0.06	-0.29	-0.02	SoilOrgC	0.29		
1	chr10_12770763	0.07	0.11	-0.06	-0.12	0.14	-0.19	0.08	SoilOrgC	0.19		
1	chr10_12779492	0.08	0.17	-0.11	-0.21	0.14	-0.29	0.04	SoilOrgC	0.29		
1	chr10_13015093	0.07	-0.07	-0.06	-0.08	0.14	-0.18	0.04	SoilOrgC	0.18		
1	chr10_13073553	-0.08	-0.06	0.12	0.09	-0.15	0.25	0.03	SoilOrgC	0.25		
1	chr10_13667613	0.08	0.07	-0.18	-0.12	0.16	-0.22	-0.02	SoilOrgC	0.22		
1	chr10_14416135	-0.07	-0.15	-0.20	0.00	0.13	0.08	0.11	precSeason	0.20		
1	chr10_17664883	-0.08	-0.10	-0.03	0.22	-0.04	0.21	-0.12	precWQ	0.22		
1	chr10_5385384	-0.07	-0.05	0.13	0.07	-0.15	0.22	0.03	SoilOrgC	0.22		

1	chr10_5396155	-0.09	-0.08	0.05	0.02	-0.11	0.22	0.02	SoilOrgC	0.22
1	chr10_7170539	0.08	0.07	-0.19	-0.10	0.22	-0.26	0.00	SoilOrgC	0.26
1	chr10_7190022	0.07	0.08	-0.17	-0.19	0.24	-0.33	0.09	<mark>SoilOrgC</mark>	<mark>0.33</mark>
1	chr11_1444895	-0.08	0.08	-0.22	-0.25	-0.07	0.04	-0.02	precWQ	0.25
1	chr14_2833882	0.07	0.22	-0.14	-0.18	0.11	-0.25	0.05	SoilOrgC	0.25
1	chr14_2844786	0.07	0.23	-0.26	-0.20	0.09	-0.23	-0.09	precSeason	0.26
1	chr14_4925611	-0.08	0.16	-0.16	-0.17	-0.10	0.15	0.03	precWQ	0.17
1	chr14_5684953	0.08	0.08	-0.16	-0.16	0.18	-0.26	0.00	SoilOrgC	0.26
1	<mark>chr14_6200065</mark>	0.09	0.10	-0.12	-0.13	0.16	-0.32	0.01	<mark>SoilOrgC</mark>	<mark>0.32</mark>
1	chr14_6200159	0.09	0.08	-0.14	-0.11	0.18	-0.32	-0.01	<mark>SoilOrgC</mark>	<mark>0.32</mark>
1	chr14_6200496	0.08	0.09	-0.16	-0.11	0.15	-0.30	-0.07	<mark>SoilOrgC</mark>	<mark>0.30</mark>
1	chr14_6201610	-0.09	-0.21	0.06	0.23	-0.08	0.36	0.01	<mark>SoilOrgC</mark>	<mark>0.36</mark>
1	chr14_6202614	0.08	0.18	-0.01	-0.13	0.07	-0.19	0.01	SoilOrgC	0.19
1	chr14_6204028	-0.08	-0.17	-0.09	0.13	-0.04	0.17	-0.14	SoilOrgC	0.17
1	chr14_6205574	-0.08	-0.13	-0.02	0.10	-0.06	0.30	0.01	SoilOrgC	0.30
1	chr14_6209248	0.08	0.12	-0.05	-0.09	0.11	-0.30	-0.04	SoilOrgC	0.30
1	chr14_6212235	0.07	0.00	0.06	-0.10	0.11	-0.12	0.14	LandUse	0.14
1	chr14_6905850	0.07	0.12	-0.08	-0.20	0.13	-0.20	0.03	SoilOrgC	0.20
1	chr14_7165714	-0.07	-0.08	-0.04	0.17	-0.06	0.26	-0.02	SoilOrgC	0.26
1	chr14_7170636	-0.08	-0.13	-0.09	0.18	-0.03	0.27	-0.03	SoilOrgC	0.27
1	chr17_5927565	0.07	0.07	-0.12	-0.11	0.18	-0.23	0.01	SoilOrgC	0.23
1	chr17_5931285	0.09	0.11	-0.21	-0.05	0.25	-0.24	-0.06	precDQ	0.25
1	chr17_6740515	0.07	0.07	-0.38	-0.13	0.36	-0.37	-0.07	precSeason	<mark>0.38</mark>
1	chr17_7847916	0.07	0.13	0.08	-0.21	0.03	-0.21	0.16	precWQ	0.21
1	chr17_8064416	-0.08	-0.10	0.05	0.21	0.00	0.22	-0.05	SoilOrgC	0.22
1	chr19_1794269	0.07	0.03	-0.18	-0.03	0.21	-0.27	0.02	SoilOrgC	0.27
1	chr19_1816989	0.08	-0.05	-0.26	-0.02	0.34	-0.29	0.03	precDQ	<mark>0.34</mark>
1	<mark>chr19_1819556</mark>	0.07	0.11	-0.26	-0.25	0.23	-0.37	0.05	SoilOrgC	<mark>0.37</mark>
1	chr19_1830033	0.07	0.06	-0.29	-0.16	0.27	-0.34	0.01	SoilOrgC	<mark>0.34</mark>
1	chr2_102660808	-0.07	0.00	-0.12	0.14	-0.05	0.15	-0.10	SoilOrgC	0.15
1	chr2_102820856	0.07	-0.02	0.00	0.06	0.11	-0.14	-0.10	SoilOrgC	0.14
1	chr2_107682455	-0.08	0.05	-0.14	0.11	-0.07	0.17	-0.19	LandUse	0.19
1	chr2_107689781	0.08	0.01	0.08	0.02	0.10	-0.19	0.04	SoilOrgC	0.19
1	chr2_108120063	-0.07	0.03	-0.15	-0.09	0.05	-0.01	0.04	precSeason	0.15
1	chr2_108120625	-0.08	-0.03	-0.04	0.02	0.03	0.13	0.08	SoilOrgC	0.13
1	chr2_126412659	0.07	0.06	-0.22	-0.17	0.21	-0.27	0.03	SoilOrgC	0.27

1	chr2_126471892	0.07	0.09	-0.16	-0.15	0.22	-0.30	0.06	SoilOrgC	<mark>0.30</mark>
1	chr2_134301101	0.07	0.07	0.01	-0.23	0.10	-0.29	0.08	SoilOrgC	0.29
1	chr2_134301318	0.07	0.07	0.01	-0.23	0.10	-0.29	0.08	SoilOrgC	0.29
1	chr2_134301357	0.07	0.07	0.01	-0.23	0.10	-0.29	0.08	SoilOrgC	0.29
1	chr2_134327192	0.07	0.07	0.01	-0.23	0.10	-0.29	0.08	SoilOrgC	0.29
1	chr2_137552718	0.07	0.03	0.01	-0.17	0.09	-0.18	0.04	SoilOrgC	0.18
1	chr2_140301053	-0.07	-0.11	0.13	0.37	-0.18	0.30	-0.13	precWQ	<mark>0.37</mark>
1	chr2_140313253	-0.07	-0.11	0.11	0.36	-0.17	0.30	-0.12	precWQ	<mark>0.36</mark>
1	chr2_140367628	-0.07	-0.06	0.27	0.30	-0.19	0.26	-0.04	precWQ	<mark>0.30</mark>
1	chr2_140379965	0.07	0.12	-0.04	-0.31	0.06	-0.25	0.03	precWQ	<mark>0.31</mark>
1	chr2_140386472	-0.07	-0.07	0.09	0.27	-0.06	0.23	0.06	precWQ	0.27
1	chr2_88521218	0.07	-0.05	-0.05	0.02	0.07	0.04	0.12	LandUse	0.12
1	chr2_88533917	-0.07	-0.02	0.06	0.03	-0.12	0.06	-0.09	precDQ	0.12
1	chr2_88539680	0.08	-0.04	-0.08	-0.01	0.09	0.03	0.11	LandUse	0.11
1	chr2_91150684	-0.09	-0.02	0.03	-0.05	-0.09	0.05	0.01	precDQ	0.09
1	chr2_91151231	-0.08	-0.08	0.01	-0.04	-0.11	0.05	-0.02	precDQ	0.11
1	chr2_91177588	-0.07	0.00	-0.01	-0.09	-0.07	0.04	0.02	precWQ	0.09
1	chr2_91303700	-0.07	-0.01	-0.03	0.04	-0.06	0.07	-0.02	SoilOrgC	0.07
1	chr2_91326459	-0.07	0.08	0.14	-0.06	-0.18	0.02	0.02	precDQ	0.18
1	chr2_91337155	0.08	0.04	-0.05	-0.20	0.07	-0.20	0.12	SoilOrgC	0.20
1	chr2_91347863	-0.07	-0.01	0.07	0.05	-0.11	0.10	-0.09	precDQ	0.11
1	chr2_91354794	-0.07	0.01	0.18	0.17	-0.18	0.18	-0.12	precSeason	0.18
1	chr2_91738133	0.07	0.11	-0.12	-0.27	0.06	-0.19	0.13	precWQ	0.27
1	chr2_99486336	0.07	0.14	-0.10	-0.11	0.11	-0.20	0.03	SoilOrgC	0.20
1	chr20_4173643	0.07	0.13	-0.18	-0.31	0.14	-0.29	0.03	precWQ	<mark>0.31</mark>
1	chr20_4176065	0.08	0.19	-0.15	-0.28	0.07	-0.28	-0.03	precWQ	0.28
1	chr20_4183810	0.07	0.12	-0.39	-0.25	0.28	-0.39	-0.05	precSeason	<mark>0.39</mark>
1	chr21_6574007	0.07	0.10	-0.23	-0.15	0.15	-0.15	-0.03	precSeason	0.23
1	chr3_12494125	-0.08	-0.10	-0.01	0.13	-0.13	0.26	-0.02	SoilOrgC	0.26
1	chr3_16645865	0.07	0.17	0.21	-0.14	-0.08	-0.12	0.11	precSeason	0.21
1	chr3_16891572	0.07	0.09	-0.34	-0.10	0.32	-0.41	-0.12	SoilOrgC	<mark>0.41</mark>
1	chr3_38560061	0.08	0.12	-0.21	-0.24	0.18	-0.31	-0.06	SoilOrgC	0.31
1	chr3_50580677	-0.07	-0.04	0.00	0.15	-0.09	0.09	-0.21	LandUse	0.21
1	chr3_61410429	0.07	0.06	-0.03	-0.07	0.10	-0.18	0.00	SoilOrgC	0.18
1	chr3_61414185	0.08	0.09	-0.04	-0.15	0.08	-0.19	0.02	SoilOrgC	0.19
1	chr3_61443805	0.07	0.12	-0.07	-0.09	0.03	-0.17	-0.08	SoilOrgC	0.17

1	chr3_61459215	0.07	0.17	0.04	-0.25	-0.09	-0.17	0.07	precWQ	0.25
1	chr3_77671096	-0.07	-0.17	-0.09	0.23	0.02	0.24	-0.10	SoilOrgC	0.24
1	chr3_77680432	-0.07	-0.17	-0.12	0.26	0.13	0.12	-0.15	precWQ	0.26
1	chr4_23241575	0.07	0.12	-0.01	-0.17	0.09	-0.25	0.02	SoilOrgC	0.25
1	chr4_28679923	0.07	0.03	-0.07	-0.16	0.07	-0.07	0.14	precWQ	0.16
1	chr4_3600618	-0.07	-0.12	-0.08	-0.02	-0.02	0.10	0.01	minTemp	0.12
1	chr4_3627776	0.07	0.15	0.06	-0.33	-0.02	-0.21	0.13	precWQ	<mark>0.33</mark>
1	chr4_51836212	-0.07	-0.19	-0.02	0.13	0.02	0.17	0.10	minTemp	0.19
1	chr4_51936281	0.07	0.11	0.04	-0.25	0.02	-0.21	0.09	precWQ	0.25
1	chr4_88511966	-0.07	-0.07	-0.04	-0.05	-0.11	0.14	-0.02	SoilOrgC	0.14
1	chr4_88536311	-0.07	-0.28	0.10	0.28	0.01	0.23	-0.03	precWQ	0.28
1	chr4_89983070	0.08	0.16	-0.13	-0.25	0.07	-0.23	0.01	precWQ	0.25
1	chr4_90097954	0.08	0.14	-0.15	-0.17	0.09	-0.28	-0.06	SoilOrgC	0.28
1	chr5_12949778	0.07	0.03	-0.12	-0.05	0.20	-0.21	-0.02	SoilOrgC	0.21
1	chr5_19564424	0.08	0.01	-0.11	-0.14	0.19	-0.33	-0.03	<mark>SoilOrgC</mark>	<mark>0.33</mark>
1	chr5_28320494	-0.07	-0.17	0.21	0.15	-0.15	0.28	0.10	SoilOrgC	0.28
1	chr5_35557653	0.07	0.13	-0.29	-0.13	0.23	-0.36	-0.07	<mark>SoilOrgC</mark>	<mark>0.36</mark>
1	chr5_39594296	0.07	0.08	-0.09	-0.27	0.14	-0.33	0.03	SoilOrgC	<mark>0.33</mark>
1	chr5_48729625	0.10	0.22	-0.28	-0.22	0.20	-0.30	-0.06	SoilOrgC	0.30
1	chr5_49525047	0.07	0.34	-0.27	-0.34	0.05	-0.32	-0.08	minTemp	<mark>0.34</mark>
1	chr5_49530367	0.09	0.24	-0.16	-0.25	0.12	-0.30	0.04	SoilOrgC	0.30
1	chr5_49544730	-0.07	-0.26	0.25	0.27	-0.05	0.27	0.03	precWQ	0.27
1	chr5_8266920	-0.07	-0.08	0.01	0.07	0.02	0.01	0.00	minTemp	0.08
1	<u>chr6_28550216</u>	0.07	0.18	-0.19	-0.22	0.10	-0.31	-0.06	<mark>SoilOrgC</mark>	<mark>0.31</mark>
1	chr7_30965068	0.08	0.12	-0.27	-0.11	0.25	-0.38	-0.13	<mark>SoilOrgC</mark>	<mark>0.38</mark>
1	<mark>chr7_30967748</mark>	0.07	0.14	-0.21	-0.27	0.15	-0.32	0.00	<mark>SoilOrgC</mark>	<mark>0.32</mark>
1	chr7_32597927	0.07	0.00	-0.13	-0.08	0.24	-0.26	0.01	SoilOrgC	0.26
1	chr7_32604693	0.07	0.10	-0.16	-0.13	0.19	-0.26	0.03	SoilOrgC	0.26
1	<u>chr7_34948717</u>	0.08	0.03	-0.19	-0.10	0.26	-0.37	-0.08	SoilOrgC	<mark>0.37</mark>
1	<mark>chr8_6198062</mark>	-0.08	-0.11	0.30	0.20	-0.25	0.38	0.07	SoilOrgC	<mark>0.38</mark>
1	chr9_17890042	0.07	0.08	-0.03	-0.04	0.11	-0.26	0.01	SoilOrgC	0.26
1	chr9_17953063	-0.08	-0.06	0.17	0.19	-0.19	0.29	-0.02	SoilOrgC	0.29
1	chr9_17960192	-0.08	-0.06	0.14	0.24	-0.18	0.30	-0.12	SoilOrgC	0.30
1	chr9_17960492	-0.07	-0.03	0.03	0.02	-0.21	0.31	-0.06	SoilOrgC	0.31
2	chr1_110212779	0.07	0.15	0.12	-0.09	-0.22	0.01	0.01	precDQ	0.22
2	chr1_112416137	0.07	0.11	0.17	0.07	-0.20	-0.06	-0.19	precDQ	0.20

2	chr1_118390274	-0.08	-0.07	-0.28	-0.01	0.30	-0.14	0.08	precDQ	<mark>0.30</mark>
2	chr1_118390636	-0.07	-0.05	-0.21	-0.05	0.25	-0.17	0.11	precDQ	0.25
2	chr1_118392895	-0.07	-0.05	-0.21	-0.05	0.25	-0.17	0.11	precDQ	0.25
2	chr1_118396566	-0.07	-0.05	-0.22	-0.05	0.26	-0.17	0.10	precDQ	0.26
2	chr1_118408182	-0.08	-0.06	-0.28	-0.03	0.29	-0.12	0.09	precDQ	<mark>0.29</mark>
2	chr1_128340105	-0.07	-0.24	0.02	0.05	0.10	0.07	0.12	minTemp	0.24
2	chr1_128341996	0.07	0.20	0.05	0.03	-0.16	0.02	-0.16	minTemp	0.20
2	chr1_128342571	-0.07	-0.24	0.02	0.05	0.10	0.07	0.12	minTemp	0.24
2	chr1_128461033	-0.07	-0.20	0.03	0.06	0.13	0.10	0.16	minTemp	0.20
2	chr1_128518467	-0.07	-0.20	0.03	0.06	0.13	0.10	0.16	minTemp	0.20
2	chr1_128548372	-0.07	-0.24	0.03	0.06	0.13	0.12	0.18	minTemp	0.24
2	chr1_128693862	-0.07	-0.23	-0.07	0.09	0.13	0.05	0.06	minTemp	0.23
2	chr1_132953316	0.07	0.20	0.12	-0.05	-0.25	0.07	-0.06	precDQ	0.25
2	chr1_132953669	0.07	0.31	0.01	-0.24	-0.17	-0.15	-0.14	minTemp	<mark>0.31</mark>
2	chr1_132954120	0.07	0.13	0.04	-0.08	-0.17	0.00	-0.13	precDQ	0.17
2	chr1_132954906	0.08	0.22	0.15	-0.17	-0.26	-0.04	-0.12	precDQ	0.26
2	chr1_143186941	-0.07	-0.06	0.02	0.05	0.19	-0.01	0.15	precDQ	0.19
2	chr1_192211061	0.07	0.09	0.17	0.02	-0.20	0.03	-0.10	precDQ	0.20
2	chr1_197483358	-0.07	-0.11	-0.20	0.10	0.37	-0.13	0.05	precDQ	<mark>0.37</mark>
2	chr1_98060042	-0.07	-0.20	0.03	0.13	0.13	0.06	0.13	minTemp	0.20
2	chr1_98060182	-0.07	-0.20	0.03	0.13	0.13	0.06	0.13	minTemp	0.20
2	chr1_98810822	-0.07	-0.20	0.01	0.12	0.13	0.07	0.04	minTemp	0.20
2	chr1_98810963	-0.07	-0.20	0.01	0.12	0.13	0.07	0.04	minTemp	0.20
2	chr1_98834610	-0.08	-0.21	0.03	0.14	0.14	0.07	0.07	minTemp	0.21
2	chr1_98880031	-0.08	-0.22	0.05	0.16	0.13	0.09	0.06	minTemp	0.22
2	chr1_98883766	-0.08	-0.22	0.05	0.16	0.13	0.09	0.06	minTemp	0.22
2	chr1_98909806	-0.09	-0.23	0.04	0.20	0.15	0.11	0.07	minTemp	0.23
2	chr1_98920429	-0.07	-0.16	0.04	0.19	0.11	0.09	0.03	precWQ	0.19
2	chr1_98920797	-0.09	-0.23	0.04	0.20	0.15	0.11	0.07	minTemp	0.23
2	chr1_98921867	-0.09	-0.23	0.04	0.20	0.15	0.11	0.07	minTemp	0.23
2	chr1_98924646	-0.08	-0.23	0.02	0.19	0.16	0.11	0.07	minTemp	0.23
2	chr1_98955453	-0.09	-0.23	0.01	0.20	0.17	0.11	0.07	minTemp	0.23
2	chr1_98990920	-0.07	-0.19	0.07	0.15	0.08	0.07	0.06	minTemp	0.19
2	chr1_98991028	-0.08	-0.21	0.03	0.20	0.12	0.11	0.06	minTemp	0.21
2	chr1_98991409	-0.08	-0.21	0.01	0.18	0.15	0.11	0.07	minTemp	0.21
2	chr1_98998007	-0.08	-0.19	0.00	0.15	0.13	0.12	0.08	minTemp	0.19

2	chr1_99003736	-0.08	-0.21	0.03	0.19	0.13	0.11	0.05	minTemp	0.21
2	chr1_99015095	-0.07	-0.14	-0.03	0.14	0.12	0.10	0.03	precWQ	0.14
2	chr10_13599109	-0.07	-0.30	0.19	0.35	0.02	0.21	0.07	precWQ	<mark>0.35</mark>
2	chr10_4126468	-0.08	-0.10	-0.16	0.10	0.20	0.05	0.09	precDQ	0.20
2	chr10_4188149	0.07	0.05	0.09	-0.12	-0.17	-0.06	-0.14	precDQ	0.17
2	chr10_5317612	-0.07	-0.19	-0.15	0.14	0.19	0.11	0.05	minTemp	0.19
2	chr10_6328263	-0.07	-0.08	-0.21	-0.02	0.25	-0.11	0.09	precDQ	0.25
2	chr10_9680312	0.08	0.21	0.09	-0.10	-0.15	-0.16	0.00	minTemp	0.21
2	chr10_9680456	0.08	0.21	0.06	-0.10	-0.14	-0.15	-0.04	minTemp	0.21
2	chr11_10332226	0.07	0.19	0.07	-0.06	-0.22	-0.07	-0.17	precDQ	0.22
2	chr12_11794158	-0.07	-0.14	-0.12	0.15	0.21	0.09	0.01	precDQ	0.21
2	chr14_2823172	-0.07	-0.04	-0.02	0.07	0.20	-0.13	0.05	precDQ	0.20
2	chr14_2834643	0.07	0.36	0.04	-0.23	-0.15	-0.12	-0.08	minTemp	<mark>0.36</mark>
2	chr14_2839546	0.08	0.33	-0.13	-0.17	-0.11	-0.20	-0.24	minTemp	<mark>0.33</mark>
2	chr14_2841689	0.07	0.24	0.16	0.03	-0.24	0.00	-0.20	minTemp	0.24
2	chr17_4716964	-0.07	-0.17	0.04	0.04	0.12	0.01	0.12	minTemp	0.17
2	chr17_5927857	-0.08	-0.15	-0.14	0.17	0.23	0.07	0.03	precDQ	0.23
2	chr17_5931456	-0.07	-0.12	-0.23	0.05	0.29	-0.06	0.04	precDQ	0.29
2	chr17_6198259	-0.07	-0.07	-0.09	0.03	0.16	0.01	0.08	precDQ	0.16
2	chr17_6647388	0.07	0.22	0.01	-0.03	-0.14	-0.17	-0.12	minTemp	0.22
2	chr17_8086055	0.06	0.15	0.05	-0.08	-0.16	-0.01	-0.02	precDQ	0.16
2	chr17_9532678	0.07	0.24	-0.04	-0.28	-0.13	-0.22	-0.08	precWQ	0.28
2	chr19_2420166	0.07	0.07	0.13	-0.08	-0.25	-0.03	-0.05	precDQ	0.25
2	chr19_2435462	-0.07	-0.04	-0.14	-0.04	0.25	0.00	0.16	precDQ	0.25
2	chr19_2449547	-0.07	-0.13	-0.04	0.04	0.18	0.04	0.13	precDQ	0.18
2	chr19_2451005	-0.07	-0.12	-0.14	0.08	0.26	-0.03	0.04	precDQ	0.26
2	chr19_2539524	-0.07	-0.09	-0.11	0.05	0.29	-0.11	0.04	precDQ	0.29
2	chr19_2549553	-0.08	-0.13	-0.04	0.05	0.22	0.03	0.12	precDQ	0.22
2	chr19_2550056	0.07	0.05	-0.01	0.05	-0.12	-0.04	-0.17	LandUse	0.17
2	chr19_901472	-0.07	-0.06	-0.04	0.08	0.15	0.07	0.11	precDQ	0.15
2	chr2_104258829	-0.07	-0.16	-0.18	0.06	0.26	0.07	0.16	precDQ	0.26
2	chr2_104264716	0.08	0.18	0.15	-0.02	-0.28	-0.05	-0.13	precDQ	0.28
2	chr2_104264975	0.07	0.24	0.12	-0.28	-0.28	-0.10	0.01	precWQ	0.28
2	chr2_104268593	0.07	0.11	0.20	0.09	-0.22	0.01	-0.10	precDQ	0.22
2	chr2_109398511	0.07	0.18	0.10	-0.22	-0.18	-0.08	0.00	precWQ	0.22
2	chr2_110320431	-0.07	-0.14	-0.02	0.21	0.18	0.10	-0.06	precWQ	0.21

2	chr2_117742214	-0.08	-0.18	-0.03	0.23	0.19	0.07	0.06	precWQ	0.23
2	chr2_117749087	-0.07	-0.15	-0.05	0.42	0.15	0.13	-0.14	precWQ	<mark>0.42</mark>
2	chr2_117752300	-0.07	-0.14	-0.08	0.25	0.22	0.00	-0.01	precWQ	0.25
2	chr2_118863529	-0.07	-0.11	0.03	0.15	0.13	0.10	0.10	precWQ	0.15
2	chr2_123115169	0.07	0.15	0.06	-0.08	-0.19	-0.01	-0.11	precDQ	0.19
2	chr2_123116707	0.08	0.16	0.10	-0.08	-0.27	0.08	-0.11	precDQ	0.27
2	chr2_137593028	0.07	0.16	0.02	-0.08	-0.13	-0.06	-0.08	minTemp	0.16
2	chr2_137611144	0.07	0.22	0.07	-0.22	-0.10	-0.10	-0.01	precWQ	0.22
2	chr2_137622713	0.07	0.26	-0.07	-0.23	-0.02	-0.22	-0.05	minTemp	0.26
2	chr2_137624985	0.07	0.27	0.07	-0.21	-0.15	-0.07	-0.06	minTemp	0.27
2	chr2_138341731	-0.07	-0.14	-0.12	0.04	0.15	0.00	0.05	precDQ	0.15
2	chr2_55326637	-0.07	-0.09	-0.12	0.19	0.21	0.03	-0.03	precDQ	0.21
2	chr2_55460931	-0.07	-0.17	-0.22	0.23	0.27	0.09	0.07	precDQ	0.27
2	chr2_55475568	-0.07	-0.18	-0.17	0.22	0.24	0.09	0.10	precDQ	0.24
2	chr2_78280118	0.07	0.28	-0.10	-0.17	-0.11	-0.04	-0.10	minTemp	0.28
2	chr2_78280162	0.09	0.31	-0.01	-0.24	-0.17	-0.06	-0.07	<mark>minTemp</mark>	<mark>0.31</mark>
2	chr2_78280175	0.09	0.31	-0.01	-0.24	-0.17	-0.06	-0.07	<mark>minTemp</mark>	<mark>0.31</mark>
2	chr2_78280397	-0.08	-0.27	0.00	0.17	0.16	0.04	0.07	minTemp	0.27
2	chr2_78280431	-0.08	-0.27	0.00	0.17	0.16	0.04	0.07	minTemp	0.27
2	chr2_78307383	0.08	0.29	-0.04	-0.16	-0.12	-0.08	-0.13	minTemp	0.29
2	chr2_82801924	0.07	0.26	-0.03	-0.01	-0.11	-0.01	-0.17	minTemp	0.26
2	chr2_82808194	0.07	0.26	-0.03	-0.01	-0.11	-0.01	-0.17	minTemp	0.26
2	chr2_82851573	0.07	0.25	-0.03	0.02	-0.09	0.01	-0.16	minTemp	0.25
2	chr2_82874119	0.07	0.26	-0.02	0.02	-0.09	0.01	-0.16	minTemp	0.26
2	chr2_82913226	0.07	0.28	0.03	0.05	-0.16	0.03	-0.18	minTemp	0.28
2	chr2_99407858	-0.06	-0.26	-0.04	0.16	0.20	0.05	0.09	minTemp	0.26
2	chr20_1187011	-0.07	-0.12	-0.08	0.01	0.29	-0.20	0.05	precDQ	<mark>0.29</mark>
2	chr20_2199652	-0.07	-0.20	-0.15	0.06	0.27	0.05	0.09	precDQ	0.27
2	chr20_4177646	0.07	0.16	0.01	-0.11	-0.16	-0.08	-0.10	precDQ	0.16
2	chr21_4144568	-0.07	-0.05	-0.18	-0.05	0.18	-0.03	0.10	precDQ	0.18
2	chr21_4353990	0.06	0.17	0.00	-0.31	-0.10	-0.19	0.05	precWQ	<mark>0.31</mark>
2	chr23_4357346	-0.07	-0.14	-0.19	-0.01	0.21	-0.03	0.07	precDQ	0.21
2	chr25_289654	0.07	0.18	-0.22	-0.16	0.02	-0.15	-0.24	LandUse	0.24
2	chr3_11966134	0.07	0.18	0.17	0.08	-0.19	0.01	-0.16	precDQ	0.19
2	chr3_12020211	0.07	0.14	0.13	0.12	-0.21	0.06	-0.23	LandUse	0.23
2	chr3_12020253	0.07	0.14	0.13	0.12	-0.21	0.06	-0.23	LandUse	0.23

2	chr3_5039795	-0.09	-0.24	-0.07	0.15	0.24	0.10	0.15	precDQ	0.24
2	chr4_77541544	0.07	0.17	-0.19	-0.08	-0.10	-0.02	-0.24	LandUse	0.24
2	chr4_82439583	-0.07	-0.19	0.02	0.31	0.12	0.15	0.00	precWQ	<mark>0.31</mark>
2	chr4_82870734	-0.07	-0.21	-0.06	0.28	0.19	0.17	0.05	precWQ	0.28
2	chr4_83335619	-0.06	-0.17	-0.16	0.13	0.27	0.01	0.03	precDQ	0.27
2	chr4_88536330	0.07	0.31	0.02	-0.28	-0.23	-0.08	-0.01	minTemp	<mark>0.31</mark>
2	chr5_19062036	-0.07	-0.29	-0.02	0.16	0.17	0.09	0.15	minTemp	0.29
2	chr5_19568630	0.06	0.14	-0.04	-0.21	-0.12	-0.05	-0.11	precWQ	0.21
2	chr5_27549756	-0.08	-0.15	0.04	0.07	0.14	0.07	0.20	LandUse	0.20
2	chr5_32397932	-0.07	-0.23	0.15	0.13	0.08	0.04	0.19	minTemp	0.23
2	chr5_36239584	0.07	0.25	0.05	-0.11	-0.24	0.11	-0.07	minTemp	0.25
2	chr5_36359777	-0.07	-0.19	-0.05	0.09	0.19	0.03	0.10	minTemp	0.19
2	chr5_38101243	0.07	0.14	0.08	-0.17	-0.19	-0.06	-0.09	precDQ	0.19
2	chr6_10251021	0.07	0.11	0.24	-0.02	-0.25	-0.03	-0.05	precDQ	0.25
2	chr7_19860503	0.06	0.15	-0.09	-0.13	-0.09	-0.17	-0.15	SoilOrgC	0.17
2	chr7_20954316	-0.07	-0.12	0.10	0.20	0.08	0.15	0.13	precWQ	0.20
2	chr8_23623147	0.07	0.17	-0.07	-0.10	-0.05	-0.15	-0.11	minTemp	0.17
2	chr8_24798255	-0.07	-0.19	-0.17	0.21	0.30	0.07	0.03	precDQ	<mark>0.30</mark>
2	chr9_21716194	-0.07	-0.20	-0.12	0.11	0.24	0.09	0.10	precDQ	0.24
2	chr9_21717354	-0.07	-0.12	-0.05	0.11	0.15	0.19	0.16	SoilOrgC	0.19
3	chr1_121966647	0.06	0.04	0.11	-0.05	0.03	-0.14	0.03	SoilOrgC	0.14
3	chr1_128799314	0.06	-0.06	0.04	-0.06	0.09	-0.14	0.11	SoilOrgC	0.14
3	chr1_132955026	0.07	0.05	0.20	-0.04	-0.11	-0.02	0.03	precSeason	0.20
3	chr1_173272540	0.07	-0.10	0.03	0.02	-0.01	0.03	0.05	minTemp	0.10
3	chr1_45641988	-0.06	0.16	0.03	0.09	-0.17	0.27	-0.13	SoilOrgC	0.27
3	chr1_45642449	-0.07	0.08	-0.12	-0.13	0.04	-0.01	0.06	precWQ	0.13
3	chr1_57263184	-0.07	0.07	-0.06	-0.06	0.03	-0.01	-0.01	minTemp	0.07
3	chr1_57264767	-0.06	0.14	0.01	-0.23	-0.04	-0.10	-0.05	precWQ	0.23
3	chr10_11885633	0.07	-0.18	0.05	0.23	-0.02	0.13	-0.05	precWQ	0.23
3	chr10_11908930	-0.07	-0.06	-0.10	0.07	0.04	0.06	-0.11	LandUse	0.11
3	chr10_13361869	0.06	-0.14	0.26	0.07	-0.07	0.08	0.13	precSeason	0.26
3	chr10_4270778	-0.07	0.11	-0.07	-0.19	0.02	-0.13	-0.05	precWQ	0.19
3	chr10_4288252	-0.07	0.06	-0.02	-0.15	0.03	-0.10	0.08	precWQ	0.15
3	chr10_4508583	0.06	-0.06	0.12	0.08	-0.05	0.03	0.02	precSeason	0.12
3	chr10_4523065	0.06	-0.16	0.06	0.17	-0.05	0.14	0.01	precWQ	0.17
3	chr10_4523408	0.07	-0.02	0.06	-0.10	-0.12	-0.02	0.09	precDQ	0.12

3	chr10_4568036	-0.07	0.08	-0.11	-0.06	-0.06	0.10	-0.06	precSeason	0.11
3	chr10_8276922	-0.06	0.04	-0.26	-0.05	0.11	0.04	-0.04	precSeason	0.26
3	chr10_8281861	-0.07	0.00	-0.11	-0.06	0.05	0.03	-0.02	precSeason	0.11
3	chr10_9402417	0.07	-0.12	0.30	0.19	-0.12	0.10	0.02	precSeason	<mark>0.30</mark>
3	chr10_9409961	0.07	0.08	0.10	-0.13	-0.07	-0.13	0.07	precWQ	0.13
3	chr11_16972959	0.07	-0.05	0.24	0.33	-0.09	0.07	-0.13	precWQ	<mark>0.33</mark>
3	chr13_17335168	-0.07	-0.03	-0.10	0.05	0.06	0.08	-0.10	LandUse	0.10
3	chr14_4548200	0.06	-0.06	0.05	-0.04	0.06	-0.16	0.08	SoilOrgC	0.16
3	chr15_4120266	-0.07	0.09	-0.22	-0.18	0.09	0.00	0.00	precSeason	0.22
3	chr17_7239162	-0.07	0.07	-0.24	-0.01	0.05	-0.14	-0.25	LandUse	0.25
3	chr17_7364636	-0.07	0.04	-0.10	-0.02	0.12	0.01	0.07	precDQ	0.12
3	chr17_7367928	-0.07	0.10	-0.09	-0.15	0.06	-0.05	0.03	precWQ	0.15
3	chr17_7631736	0.07	0.05	0.13	0.08	-0.02	-0.02	0.06	precSeason	0.13
3	chr17_7633071	0.07	-0.08	0.04	0.10	0.12	-0.04	0.06	precDQ	0.12
3	chr17_7635727	0.08	0.00	0.06	0.03	0.09	-0.10	0.01	SoilOrgC	0.10
3	chr17_7637261	-0.07	-0.08	-0.04	0.07	-0.01	0.08	-0.06	SoilOrgC	0.08
3	chr17_8288451	-0.07	0.11	-0.08	-0.11	0.03	-0.06	-0.03	minTemp	0.11
3	chr19_2433049	-0.06	0.11	0.11	-0.04	-0.07	0.04	0.05	minTemp	0.11
3	chr19_3307010	0.06	-0.07	0.18	0.08	-0.06	0.08	0.08	precSeason	0.18
3	chr19_922652	0.06	-0.03	0.00	0.05	-0.01	-0.05	0.03	precWQ	0.05
3	chr19_924613	-0.07	0.04	-0.08	-0.04	0.00	0.05	-0.09	LandUse	0.09
3	chr2_102695913	-0.07	0.12	0.01	-0.12	-0.11	0.05	-0.08	minTemp	0.12
3	chr2_110243241	-0.06	-0.09	0.09	0.11	0.01	0.12	0.06	SoilOrgC	0.12
3	chr2_112808674	0.08	-0.01	0.19	0.04	-0.04	-0.01	0.14	precSeason	0.19
3	chr2_112903173	0.07	0.06	0.14	-0.06	-0.03	-0.09	0.12	precSeason	0.14
3	chr2_114706004	-0.06	-0.03	-0.22	-0.09	0.10	0.00	-0.07	precSeason	0.22
3	chr2_134309595	0.07	0.08	0.13	-0.16	-0.03	-0.20	0.00	SoilOrgC	0.20
3	chr2_134317069	0.07	0.06	0.14	-0.19	-0.01	-0.25	0.06	SoilOrgC	0.25
3	chr2_140323648	-0.07	0.03	-0.07	-0.21	0.09	-0.19	0.02	precWQ	0.21
3	chr2_140335533	-0.07	0.05	-0.06	-0.25	0.07	-0.19	0.00	precWQ	0.25
3	chr20_4184104	-0.07	0.10	0.00	-0.22	-0.05	-0.01	0.01	precWQ	0.22
3	chr25_285695	-0.07	0.12	-0.26	-0.22	0.05	-0.17	-0.24	precSeason	0.26
3	chr25_322674	0.06	-0.22	0.04	0.15	0.05	0.10	0.08	minTemp	0.22
3	chr3_100431237	0.07	-0.05	0.10	0.11	-0.09	0.02	0.07	precWQ	0.11
3	chr3_100435235	0.06	0.05	0.11	0.09	-0.07	-0.05	0.11	precSeason	0.11
3	chr3_16289174	0.07	0.17	0.12	-0.17	-0.12	-0.23	0.05	SoilOrgC	0.23

3	chr3_16289248	0.06	0.10	-0.05	-0.15	0.04	-0.22	0.05	SoilOrgC	0.22
3	chr3_31596452	-0.07	-0.01	-0.05	0.05	0.00	0.05	-0.14	LandUse	0.14
3	chr3_31608169	0.07	-0.14	0.09	0.07	0.06	0.05	0.18	LandUse	0.18
3	chr3_31617477	-0.07	0.25	-0.20	-0.19	-0.09	-0.03	-0.14	minTemp	0.25
3	chr3_32208733	0.06	-0.14	0.22	0.14	-0.11	0.09	0.04	precSeason	0.22
3	chr3_41555894	-0.07	0.06	-0.03	-0.05	0.05	0.04	0.02	minTemp	0.06
3	chr3_5024316	-0.07	0.10	-0.03	-0.21	0.01	-0.05	0.11	precWQ	0.21
3	chr3_69197178	-0.07	0.04	-0.25	-0.14	0.06	-0.09	-0.21	precSeason	0.25
3	chr3_72111929	-0.07	0.14	-0.09	-0.12	0.04	-0.11	-0.04	minTemp	0.14
3	chr3_72131787	-0.07	0.15	0.08	-0.17	0.04	-0.09	0.10	precWQ	0.17
3	chr3_72275989	-0.06	0.05	0.01	-0.06	-0.01	0.02	0.00	precWQ	0.06
3	chr3_85440453	0.07	0.07	0.04	-0.11	-0.07	-0.08	0.06	precWQ	0.11
3	chr3_85441224	0.07	0.07	0.04	-0.11	-0.07	-0.08	0.06	precWQ	0.11
3	chr3_85441441	0.07	0.07	0.04	-0.11	-0.07	-0.08	0.06	precWQ	0.11
3	chr3_85442013	0.07	0.05	0.06	-0.08	-0.06	-0.09	0.05	SoilOrgC	0.09
3	chr3_85444381	0.07	0.07	0.04	-0.11	-0.07	-0.08	0.06	precWQ	0.11
3	chr4_77531109	0.06	-0.01	0.16	-0.08	-0.17	0.08	0.09	precDQ	0.17
3	chr4_77531435	0.08	0.02	0.22	-0.04	-0.15	0.04	0.13	precSeason	0.22
3	chr4_88530878	0.06	-0.23	0.03	0.13	0.13	-0.03	0.04	minTemp	0.23
3	chr4_88531308	0.08	-0.24	0.13	0.09	0.08	-0.08	0.11	minTemp	0.24
3	chr4_88725345	-0.07	0.24	-0.23	-0.27	0.09	-0.08	0.06	precWQ	0.27
3	chr4_88729307	-0.06	0.23	-0.21	-0.14	0.00	-0.03	-0.12	minTemp	0.23
3	chr4_89034764	0.08	-0.03	-0.06	0.00	0.11	-0.16	0.03	SoilOrgC	0.16
3	chr4_89035031	0.08	-0.10	-0.01	0.09	0.04	0.00	0.00	minTemp	0.10
3	chr4_90333060	0.06	-0.15	0.16	0.08	-0.04	0.08	0.12	precSeason	0.16
3	chr4_90455438	-0.07	0.08	-0.08	-0.06	-0.06	-0.01	-0.20	LandUse	0.20
3	chr5_11690121	0.07	0.04	0.13	-0.06	-0.02	-0.07	-0.02	precSeason	0.13
3	chr5_16730855	0.08	-0.13	-0.02	0.03	0.05	0.01	0.07	minTemp	0.13
3	chr5_16743859	0.07	-0.14	0.10	0.05	-0.09	0.07	0.09	minTemp	0.14
3	chr5_19517440	0.07	-0.15	0.06	0.10	0.04	-0.08	-0.01	minTemp	0.15
3	chr5_36417319	-0.08	0.05	-0.24	-0.10	0.11	0.05	-0.03	precSeason	0.24
3	chr5_38454962	0.07	0.12	0.21	-0.19	-0.18	-0.10	0.05	precSeason	0.21
3	chr5_38465056	0.07	-0.06	0.15	-0.14	-0.04	-0.07	0.11	precSeason	0.15
3	chr5_4421038	0.07	0.00	0.14	0.14	-0.01	-0.04	-0.04	precWQ	0.14
3	chr5_48748802	-0.06	0.03	-0.15	-0.05	0.06	0.04	-0.12	precSeason	0.15
3	chr5_7508595	0.07	-0.18	0.16	0.31	-0.14	0.30	-0.03	precWQ	<mark>0.31</mark>

3	chr6_11688993	-0.07	-0.06	0.03	0.18	0.06	0.18	-0.02	precWQ	0.18
3	chr6_12414334	-0.08	0.12	-0.04	-0.12	0.06	-0.08	0.01	minTemp	0.12
3	chr6_18182501	-0.07	0.03	0.12	-0.14	-0.07	-0.02	0.11	precWQ	0.14
3	chr6_6811973	-0.07	0.08	-0.08	0.01	-0.02	0.07	-0.11	LandUse	0.11
3	chr6_6824738	-0.06	0.09	-0.04	0.01	-0.01	0.07	-0.07	minTemp	0.09
3	chr6_6831321	-0.07	0.11	-0.08	-0.06	-0.02	0.02	-0.04	minTemp	0.11
3	chr7_20959463	0.08	0.03	0.17	-0.05	-0.11	-0.03	-0.01	precSeason	0.17
3	chr7_20980495	0.08	0.05	0.21	-0.04	-0.12	-0.05	0.01	precSeason	0.21
3	chr7_20995969	0.08	0.03	0.19	-0.06	-0.10	-0.05	0.00	precSeason	0.19
3	chr7_34140184	0.06	-0.12	0.04	0.17	0.15	-0.17	-0.06	precWQ	0.17
3	chr7_34338728	-0.07	0.09	-0.08	-0.07	0.03	0.01	-0.08	minTemp	0.09
3	chr8_3133225	-0.07	-0.07	0.00	0.12	-0.02	0.14	-0.06	SoilOrgC	0.14
3	chr8_5681926	0.08	0.01	-0.02	-0.11	0.11	-0.22	0.13	SoilOrgC	0.22
3	chr8_5682410	0.06	-0.19	0.15	0.10	0.07	-0.02	0.18	minTemp	0.19
3	chr8_6217694	-0.07	-0.06	-0.06	0.14	-0.02	0.09	-0.12	precWQ	0.14
3	chr8_6368423	0.08	0.05	0.30	-0.09	-0.17	0.00	0.18	precSeason	0.30
3	chr8_6499160	0.07	-0.15	0.23	0.14	-0.06	0.04	0.10	precSeason	0.23
4	chr1_100341963	0.06	0.12	-0.06	-0.16	0.05	-0.25	0.01	SoilOrgC	0.25
4	chr1_172818620	0.06	0.11	-0.17	-0.10	0.13	-0.24	-0.12	SoilOrgC	0.24
4	chr1_32707669	0.06	0.05	0.13	0.13	-0.14	0.02	-0.18	LandUse	0.18
4	chr1_32777323	-0.06	-0.05	-0.12	-0.05	0.12	0.00	0.11	precDQ	0.12
4	chr1_32824711	0.06	0.02	0.13	0.13	-0.13	0.01	-0.16	LandUse	0.16
4	chr1_33669632	0.06	0.05	0.03	-0.07	-0.01	-0.11	-0.08	SoilOrgC	0.11
4	chr1_45644005	0.06	0.02	0.13	0.03	0.04	-0.07	-0.01	precSeason	0.13
4	chr10_10390359	0.06	0.23	0.02	-0.08	-0.14	0.08	-0.10	minTemp	0.23
4	chr10_13030303	-0.06	-0.13	-0.02	0.14	-0.03	0.11	0.00	precWQ	0.14
4	chr10_13577303	-0.06	-0.02	-0.09	0.00	-0.01	0.07	0.07	precSeason	0.09
4	chr10_13580811	0.06	0.21	0.05	-0.08	-0.09	-0.04	-0.11	minTemp	0.21
4	chr10_13742394	0.06	-0.06	0.00	-0.08	0.06	-0.06	-0.01	precWQ	0.08
4	chr10_13791576	-0.06	0.00	0.08	-0.05	-0.10	0.01	0.07	precDQ	0.10
4	chr10_14253503	0.06	-0.09	0.08	0.17	-0.03	0.12	-0.12	precWQ	0.17
4	chr10_14355919	0.06	-0.01	-0.03	0.10	0.07	0.03	-0.11	LandUse	0.11
4	chr10_14414067	-0.06	0.03	0.01	-0.05	-0.04	0.01	0.13	LandUse	0.13
4	chr10_14415294	0.06	-0.09	0.22	0.18	-0.10	0.11	-0.17	precSeason	0.22
4	chr10_14430487	-0.07	-0.03	0.01	0.01	-0.04	0.02	0.10	LandUse	0.10
4	chr10_14439806	0.06	-0.06	0.10	0.09	-0.02	-0.01	-0.11	LandUse	0.11

4	chr10_14462197	-0.06	0.04	-0.08	-0.14	0.01	0.00	0.19	LandUse	0.19
4	chr10_14475584	-0.06	-0.05	-0.05	-0.01	0.04	-0.04	0.08	LandUse	0.08
4	chr10_14628900	0.06	0.12	-0.18	-0.07	0.05	-0.06	-0.13	precSeason	0.18
4	chr10_8418666	-0.07	-0.06	-0.08	0.18	0.01	0.14	-0.03	precWQ	0.18
4	chr10_8446512	-0.08	-0.02	-0.18	0.05	0.09	0.02	0.06	precSeason	0.18
4	chr10_9041002	-0.06	0.06	-0.10	-0.09	0.05	0.00	0.17	LandUse	0.17
4	chr10_9044433	-0.06	0.02	-0.02	-0.07	0.00	-0.04	0.06	precWQ	0.07
4	chr10_9070584	0.06	0.06	-0.13	0.00	0.03	-0.05	-0.23	LandUse	0.23
4	chr10_9070642	0.06	0.06	-0.13	0.00	0.03	-0.05	-0.23	LandUse	0.23
4	chr10_9078157	0.06	0.07	-0.19	0.04	0.12	-0.03	-0.20	LandUse	0.20
4	chr10_9085449	0.07	0.07	-0.11	0.03	0.08	-0.07	-0.16	LandUse	0.16
4	chr11_16990425	-0.06	0.00	-0.05	-0.09	-0.04	0.11	0.16	LandUse	0.16
4	chr12_7901143	-0.07	-0.14	0.10	0.21	0.00	0.15	0.08	precWQ	0.21
4	chr14_2632555	0.06	0.08	-0.16	-0.20	0.21	-0.32	0.03	SoilOrgC	<mark>0.32</mark>
4	chr14_2637001	0.06	-0.02	-0.04	0.06	0.07	-0.04	-0.07	LandUse	0.07
4	chr14_2833375	-0.07	-0.15	0.13	0.03	-0.07	0.11	0.14	minTemp	0.15
4	chr14_2836838	-0.08	-0.13	0.02	0.02	0.10	0.10	0.25	LandUse	0.25
4	chr14_2837904	-0.07	-0.15	0.00	0.11	0.10	0.13	0.20	LandUse	0.20
4	chr14_2844020	0.06	0.26	-0.01	-0.01	-0.09	-0.06	-0.23	minTemp	0.26
4	chr14_3191934	0.06	0.03	0.03	0.07	0.01	-0.04	-0.11	LandUse	0.11
4	chr14_3200622	-0.06	0.08	0.04	-0.11	-0.07	-0.06	0.12	LandUse	0.12
4	chr15_8550227	-0.06	-0.10	-0.06	0.09	0.10	-0.02	0.06	precDQ	0.10
4	chr15_8551715	-0.06	-0.04	0.01	-0.05	0.03	0.01	0.18	LandUse	0.18
4	chr17_6033798	-0.06	0.03	0.00	-0.03	-0.02	0.05	0.14	LandUse	0.14
4	chr17_7030364	-0.06	-0.06	0.02	-0.15	0.00	0.04	0.24	LandUse	0.24
4	chr17_7056075	0.06	0.02	-0.10	0.20	0.09	-0.08	-0.31	LandUse	<mark>0.31</mark>
4	chr17_7071574	0.06	0.08	-0.03	0.02	0.01	-0.03	-0.18	LandUse	0.18
4	chr17_7239853	-0.06	-0.06	0.23	-0.01	-0.05	0.05	0.30	LandUse	<mark>0.30</mark>
4	chr17_7909817	-0.06	-0.04	0.04	0.12	-0.08	0.22	0.03	SoilOrgC	0.22
4	chr17_7916208	0.06	0.10	0.08	0.05	-0.02	-0.13	-0.13	SoilOrgC	0.13
4	chr17_8062409	-0.06	0.01	0.14	0.02	-0.13	-0.02	0.09	precSeason	0.14
4	chr2_101936788	0.06	0.13	-0.10	-0.14	0.07	-0.17	0.10	SoilOrgC	0.17
4	chr2_107677712	0.06	-0.12	0.07	0.16	0.05	0.09	-0.06	precWQ	0.16
4	chr2_117744943	0.06	-0.01	-0.07	0.22	0.09	-0.01	-0.19	precWQ	0.22
4	chr2_117755910	0.06	0.03	-0.03	0.28	-0.01	0.05	-0.25	precWQ	0.28
4	chr2_124534594	-0.06	-0.01	0.11	-0.08	-0.15	0.13	0.14	precDQ	0.15

4	chr2_138249521	-0.07	-0.03	0.04	-0.14	-0.02	0.04	0.22	LandUse	0.22
4	chr2_138261275	-0.06	-0.03	0.07	-0.14	-0.04	0.03	0.19	LandUse	0.19
4	chr2_138273548	-0.06	-0.06	-0.01	-0.05	0.00	0.04	0.14	LandUse	0.14
4	chr2_138279828	-0.07	0.02	0.02	-0.24	-0.09	0.02	0.20	precWQ	0.24
4	chr2_138285456	-0.08	-0.05	0.06	-0.14	-0.07	0.04	0.20	LandUse	0.20
4	chr2_138289606	-0.06	-0.12	-0.01	-0.04	0.03	0.05	0.14	LandUse	0.14
4	chr2_138289999	-0.08	-0.01	-0.05	-0.21	0.00	0.02	0.21	precWQ	0.21
4	chr2_139065120	-0.06	0.03	0.04	0.01	-0.06	0.03	0.07	LandUse	0.07
4	chr2_141370744	-0.07	-0.19	0.04	0.18	-0.04	0.23	0.02	SoilOrgC	0.23
4	chr2_141386781	-0.06	-0.16	0.02	0.10	0.01	0.12	0.12	minTemp	0.16
4	chr2_79010957	0.07	0.23	-0.13	-0.07	0.05	-0.10	-0.16	minTemp	0.23
4	chr2_79024416	0.08	0.20	-0.18	-0.05	0.15	-0.18	-0.16	minTemp	0.20
4	chr2_79029493	0.07	0.14	0.19	0.27	-0.19	0.16	-0.28	LandUse	<mark>0.28</mark>
4	chr2_82079608	0.06	0.01	-0.10	0.08	0.10	-0.16	-0.18	LandUse	0.18
4	chr2_82421131	0.06	0.04	-0.08	0.09	0.07	-0.18	-0.22	LandUse	0.22
4	chr2_82801925	0.06	0.30	-0.18	-0.11	-0.09	-0.07	-0.19	minTemp	0.30
4	chr2_82806510	0.06	0.29	-0.18	-0.10	-0.09	-0.07	-0.20	minTemp	0.29
4	chr2_82818189	0.06	0.30	-0.17	-0.11	-0.10	-0.07	-0.20	minTemp	0.30
4	chr2_82839244	0.06	0.30	-0.19	-0.10	-0.08	-0.06	-0.20	minTemp	0.30
4	chr2_82898529	0.06	0.03	-0.10	0.00	0.02	-0.11	-0.14	LandUse	0.14
4	chr2_82899418	0.06	0.28	-0.16	-0.08	-0.10	-0.04	-0.17	minTemp	0.28
4	chr2_88150231	-0.06	-0.13	-0.02	0.06	0.08	0.05	0.15	LandUse	0.15
4	chr2_99403133	-0.06	-0.08	0.05	-0.12	-0.07	0.08	0.15	LandUse	0.15
4	chr21_4350665	0.07	-0.01	-0.03	-0.07	0.01	-0.01	-0.08	LandUse	0.08
4	chr21_6586889	0.06	0.09	-0.06	-0.04	0.12	-0.21	-0.07	SoilOrgC	0.21
4	chr21_6765149	-0.06	-0.05	0.01	0.03	-0.02	0.06	0.08	LandUse	0.08
4	chr21_6768465	-0.08	-0.13	-0.01	0.12	-0.03	0.13	0.05	SoilOrgC	0.13
4	chr27_7122554	-0.06	-0.13	-0.06	-0.01	0.08	-0.06	0.12	minTemp	0.13
4	chr28_829783	0.06	-0.04	-0.07	0.17	0.10	-0.01	-0.14	precWQ	0.17
4	chr3_100431475	0.07	0.16	0.02	-0.05	0.02	-0.15	-0.04	minTemp	0.16
4	chr3_102789546	0.06	0.08	0.03	0.06	0.04	-0.04	-0.09	LandUse	0.09
4	chr3_102800999	0.06	0.08	0.05	0.06	0.03	-0.05	-0.11	LandUse	0.11
4	chr3_103130166	-0.06	-0.04	0.01	-0.08	-0.12	0.05	0.06	precDQ	0.12
4	chr3_103133548	-0.06	-0.04	0.00	-0.07	-0.11	0.05	0.06	precDQ	0.11
4	chr3_16666369	0.07	0.09	0.11	0.03	-0.10	0.01	-0.07	precSeason	0.11
4	chr3_16666427	0.06	0.12	0.21	-0.03	-0.10	-0.09	-0.02	precSeason	0.21

4	chr3_99996874	0.07	0.16	-0.03	0.02	0.02	-0.10	-0.17	LandUse	0.17
4	chr4_27805454	-0.06	-0.02	-0.09	-0.11	-0.01	0.05	0.13	LandUse	0.13
4	chr4_40940247	0.06	0.06	-0.09	-0.13	0.06	-0.02	-0.03	precWQ	0.13
4	chr4_41000225	-0.06	0.05	-0.04	0.06	-0.01	-0.02	-0.08	LandUse	0.08
4	chr4_41000230	-0.06	0.05	-0.04	0.06	-0.01	-0.02	-0.08	LandUse	0.08
4	chr4_41000236	-0.06	0.05	-0.04	0.06	-0.01	-0.02	-0.08	LandUse	0.08
4	chr4_41000242	-0.06	0.05	-0.04	0.06	-0.01	-0.02	-0.08	LandUse	0.08
4	chr4_41068796	-0.06	0.00	0.02	0.05	-0.05	-0.02	-0.02	precDQ	0.05
4	chr4_82451385	-0.06	-0.08	-0.03	-0.04	0.03	0.03	0.12	LandUse	0.12
4	chr4_83790761	-0.06	-0.07	-0.11	0.16	0.19	-0.03	0.01	precDQ	0.19
4	chr4_88189134	0.06	0.07	-0.13	0.00	0.10	-0.10	-0.16	LandUse	0.16
4	chr4_89868144	-0.07	-0.23	0.11	0.10	-0.01	0.21	0.17	minTemp	0.23
4	chr4_89870632	-0.06	-0.17	0.08	0.08	0.05	0.19	0.19	LandUse	0.19
4	chr5_19472668	-0.06	0.02	0.01	-0.07	-0.08	0.03	-0.01	precDQ	0.08
4	chr5_19496481	0.07	0.01	-0.09	-0.11	0.13	-0.19	-0.01	SoilOrgC	0.19
4	chr5_19541510	-0.06	-0.15	0.26	0.15	-0.16	0.23	0.12	precSeason	0.26
4	chr5_19548802	0.06	0.04	-0.03	-0.02	0.03	0.01	-0.03	minTemp	0.04
4	chr5_19550705	0.06	0.08	-0.15	-0.11	0.13	-0.10	0.03	precSeason	0.15
4	chr5_19552051	-0.08	-0.09	0.06	0.12	-0.02	0.09	0.06	precWQ	0.12
4	chr5_19554343	0.06	0.14	-0.31	-0.27	0.13	-0.24	-0.16	precSeason	<mark>0.31</mark>
4	chr5_19573070	-0.06	-0.11	0.20	0.19	-0.09	0.13	0.10	precSeason	0.20
4	chr5_19601002	-0.07	-0.13	0.06	0.12	0.01	0.10	0.16	LandUse	0.16
4	chr5_30830034	-0.07	-0.11	0.18	0.10	-0.09	0.15	0.11	precSeason	0.18
4	chr5_30830987	0.06	0.01	-0.04	0.15	0.00	0.00	-0.18	LandUse	0.18
4	chr5_30836679	-0.08	-0.25	-0.05	0.02	0.03	0.24	0.19	minTemp	0.25
4	chr5_30853881	-0.06	-0.11	0.07	0.08	-0.02	0.07	0.06	minTemp	0.11
4	chr5_30865734	0.06	0.06	-0.05	-0.02	0.01	-0.06	-0.10	LandUse	0.10
4	chr5_30866179	0.06	0.14	-0.03	-0.13	-0.01	-0.07	-0.02	minTemp	0.14
4	chr5_38318256	-0.06	-0.03	-0.09	-0.04	0.07	-0.04	0.05	precSeason	0.09
4	chr5_38441756	-0.06	0.02	0.03	-0.13	-0.07	-0.07	0.09	precWQ	0.13
4	chr5_48708049	-0.06	0.07	0.00	-0.01	-0.14	0.05	-0.02	precDQ	0.14
4	chr8_3107239	-0.07	-0.14	0.02	0.09	0.00	0.07	0.06	minTemp	0.14
4	chr8_3283167	-0.06	-0.16	0.04	0.18	0.00	0.19	0.05	SoilOrgC	0.19
4	chr8_3300364	-0.06	-0.14	0.04	0.14	0.00	0.15	0.06	SoilOrgC	0.15
4	chr8_3318996	-0.06	-0.16	0.10	0.19	-0.05	0.19	0.01	precWQ	0.19
4	chr8_3338714	-0.06	-0.18	0.03	0.11	-0.03	0.08	0.01	minTemp	0.18

4	chr8_6342169	-0.07	-0.01	0.15	-0.05	-0.05	0.11	0.20	LandUse	0.20
4	chr8_6481351	0.06	0.12	0.21	0.09	-0.15	0.03	-0.17	precSeason	0.21
5	chr1_1329783	-0.06	0.07	-0.09	-0.03	0.03	-0.04	0.07	precSeason	0.09
5	chr1_1332114	0.06	-0.04	-0.05	0.02	0.08	-0.01	-0.11	LandUse	0.11
5	chr1_133839237	-0.06	0.06	-0.11	0.18	0.03	0.01	-0.08	precWQ	0.18
5	chr1_133845303	0.07	0.09	0.08	-0.05	-0.15	-0.06	-0.20	LandUse	0.20
5	chr1_146781584	-0.06	0.18	0.01	-0.20	0.06	-0.23	0.14	SoilOrgC	0.23
5	chr1_177460567	0.06	-0.24	0.10	0.09	0.02	0.08	-0.03	minTemp	0.24
5	chr1_485373	-0.06	0.16	0.10	-0.13	-0.07	-0.14	0.09	minTemp	0.16
5	chr1_69960245	0.06	-0.05	-0.07	0.00	-0.03	0.09	-0.12	LandUse	0.12
5	chr1_69999819	-0.08	0.08	-0.05	0.01	0.11	-0.10	0.15	LandUse	0.15
5	chr1_71668364	-0.06	0.22	-0.31	-0.21	0.16	-0.23	0.08	precSeason	<mark>0.31</mark>
5	chr10_11737471	-0.06	0.04	-0.05	0.06	0.08	0.00	0.10	LandUse	0.10
5	chr10_11748993	0.06	-0.01	0.00	0.03	-0.09	0.15	-0.15	LandUse	0.15
5	chr10_11756804	-0.06	0.04	-0.09	0.04	0.11	-0.04	0.09	precDQ	0.11
5	chr10_12773142	0.06	-0.11	0.04	0.09	-0.01	0.13	-0.03	SoilOrgC	0.13
5	chr10_13017263	-0.06	0.09	0.00	-0.14	0.02	-0.19	0.15	SoilOrgC	0.19
5	chr10_13032537	-0.06	0.17	-0.01	-0.17	-0.03	-0.10	0.16	minTemp	0.17
5	chr10_13085516	0.08	0.02	-0.09	-0.14	-0.06	0.05	-0.09	precWQ	0.14
5	chr10_13085896	0.07	0.04	-0.14	-0.14	-0.01	0.02	-0.09	precSeason	0.14
5	chr10_13968283	-0.06	-0.07	-0.05	0.01	0.15	-0.01	0.18	LandUse	0.18
5	chr10_14066105	-0.06	-0.02	0.02	-0.08	-0.02	-0.04	0.16	LandUse	0.16
5	chr10_14068597	-0.06	-0.11	0.00	0.00	0.05	-0.05	0.12	LandUse	0.12
5	chr10_14344058	0.06	-0.18	0.17	0.15	-0.10	0.22	-0.05	SoilOrgC	0.22
5	chr10_14347193	-0.07	0.17	-0.25	-0.10	0.23	-0.25	0.05	SoilOrgC	0.25
5	chr10_14577341	-0.06	-0.17	-0.05	0.05	0.09	-0.02	0.16	minTemp	0.17
5	chr10_4096505	0.07	-0.03	0.10	0.12	-0.18	0.17	-0.24	LandUse	0.24
5	chr10_8107262	0.06	-0.08	-0.12	0.11	0.13	0.07	-0.12	precDQ	0.13
5	chr10_9073389	0.06	0.06	-0.05	-0.01	-0.01	-0.10	-0.23	LandUse	0.23
5	chr10_9074234	-0.06	0.13	-0.12	-0.03	0.06	0.02	0.06	minTemp	0.13
5	chr10_9591892	-0.06	-0.01	-0.06	-0.12	0.08	-0.15	0.20	LandUse	0.20
5	chr10_9596232	-0.06	0.14	0.03	-0.15	0.00	-0.12	0.18	LandUse	0.18
5	chr10_9602198	0.06	-0.10	-0.09	0.16	0.00	0.14	-0.23	LandUse	0.23
5	chr10_9610040	0.06	-0.17	-0.14	0.06	0.09	0.06	-0.14	minTemp	0.17
5	chr10_9929014	-0.08	0.07	-0.19	-0.17	0.16	-0.18	0.18	precSeason	0.19
5	chr10_9989994	0.06	-0.04	0.10	0.20	-0.09	0.13	-0.25	LandUse	0.25

5	chr11_19801888	-0.06	0.02	0.03	0.06	0.03	-0.06	0.09	LandUse	0.09
5	chr13_15622363	0.06	0.04	0.19	-0.12	-0.16	-0.07	-0.04	precSeason	0.19
5	chr14_5309155	0.06	-0.22	0.08	0.08	0.03	0.02	-0.08	minTemp	0.22
5	chr14_5310564	0.06	-0.10	0.10	-0.05	-0.02	-0.07	-0.07	minTemp	0.10
5	chr14_5314625	0.06	-0.10	0.09	-0.09	-0.02	-0.12	-0.07	SoilOrgC	0.12
5	chr14_5315870	-0.06	-0.01	-0.03	0.16	0.01	0.15	0.12	precWQ	0.16
5	chr14_5319263	0.06	-0.19	0.18	0.19	-0.06	0.12	-0.13	precWQ	0.19
5	chr15_10462608	0.06	-0.08	-0.01	0.23	0.01	0.14	-0.20	precWQ	0.23
5	chr17_5923013	0.06	0.11	-0.11	-0.22	-0.06	-0.01	-0.09	precWQ	0.22
5	chr17_7223488	0.07	0.03	0.05	0.12	-0.03	0.14	-0.15	LandUse	0.15
5	chr17_7230401	0.07	-0.05	0.13	0.18	-0.10	0.19	-0.18	SoilOrgC	0.19
5	chr17_7260060	-0.06	-0.03	0.08	0.09	0.07	0.07	0.21	LandUse	0.21
5	chr17_7763240	-0.06	0.11	-0.05	0.02	-0.01	-0.12	0.01	SoilOrgC	0.12
5	chr17_7770840	-0.06	0.12	-0.17	-0.09	0.17	-0.25	0.02	SoilOrgC	0.25
5	chr17_7771595	0.06	-0.12	0.18	-0.06	-0.10	0.06	0.03	precSeason	0.18
5	chr19_1828639	-0.06	-0.04	-0.02	0.06	0.12	0.00	0.14	LandUse	0.14
5	chr2_102036673	-0.06	0.10	-0.01	-0.04	0.00	-0.09	0.08	minTemp	0.10
5	chr2_107670586	0.06	-0.02	-0.03	-0.09	-0.04	0.00	-0.13	LandUse	0.13
5	chr2_140384276	-0.07	-0.08	0.18	0.23	-0.05	0.15	0.14	precWQ	0.23
5	chr2_31675935	-0.06	-0.16	0.15	0.16	0.06	0.03	0.22	LandUse	0.22
5	chr2_31687703	-0.06	-0.16	0.18	0.15	0.04	0.03	0.23	LandUse	0.23
5	chr2_31710186	0.06	0.16	-0.16	-0.14	-0.05	-0.05	-0.26	LandUse	0.26
5	chr2_31711772	0.06	0.13	-0.16	-0.11	-0.04	-0.03	-0.24	LandUse	0.24
5	chr2_31712297	0.07	0.13	-0.15	-0.03	-0.05	0.02	-0.28	LandUse	<mark>0.28</mark>
5	chr2_31716689	0.06	0.15	-0.11	-0.23	-0.10	-0.07	-0.17	precWQ	0.23
5	chr2_31721970	0.06	0.15	-0.21	-0.16	0.00	-0.05	-0.19	precSeason	0.21
5	chr2_31723496	0.07	0.01	0.05	-0.07	-0.04	0.00	-0.14	LandUse	0.14
5	chr2_31725655	0.06	0.15	0.07	0.03	-0.15	0.03	-0.30	LandUse	<mark>0.30</mark>
5	chr21_3367906	-0.06	0.11	0.08	-0.07	-0.08	-0.18	0.06	SoilOrgC	0.18
5	chr21_4166986	0.06	-0.15	0.02	-0.02	0.01	0.00	0.00	minTemp	0.15
5	chr23_5741035	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12
5	chr23_5742024	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12
5	chr23_5854584	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12
5	chr23_5858495	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12
5	chr23_5870583	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12
5	chr23_5875592	0.06	0.01	0.04	0.02	-0.06	0.11	-0.12	LandUse	0.12

5	chr3_106170444	0.06	-0.15	0.04	0.14	0.02	0.11	-0.11	minTemp	0.15
5	chr3_106183584	0.06	-0.13	-0.03	0.16	0.08	0.09	-0.11	precWQ	0.16
5	chr3_51626845	0.06	-0.08	0.14	0.09	-0.09	0.06	-0.14	precSeason	0.14
5	chr3_72070901	-0.06	0.02	0.01	0.16	-0.05	0.10	0.06	precWQ	0.16
5	chr3_72074558	-0.06	0.00	0.05	0.21	-0.08	0.18	0.08	precWQ	0.21
5	chr3_72465046	-0.06	0.01	-0.04	-0.04	0.07	-0.06	0.17	LandUse	0.17
5	chr3_72534190	0.06	0.01	-0.07	-0.01	-0.03	-0.06	-0.21	LandUse	0.21
5	chr4_20363461	-0.06	-0.02	-0.06	0.04	-0.01	0.08	0.13	LandUse	0.13
5	chr4_20364134	-0.06	0.00	-0.08	0.06	0.05	-0.06	0.05	precSeason	0.08
5	chr4_20401325	-0.06	0.15	-0.17	-0.24	0.00	-0.09	0.20	precWQ	0.24
5	chr4_20405768	-0.06	0.15	-0.17	-0.24	0.00	-0.09	0.20	precWQ	0.24
5	chr4_20414170	-0.06	0.15	-0.17	-0.24	0.00	-0.09	0.20	precWQ	0.24
5	chr4_20426307	-0.06	0.02	-0.04	-0.09	0.04	-0.09	0.18	LandUse	0.18
5	chr4_51833641	-0.06	-0.05	0.05	-0.06	0.08	-0.03	0.22	LandUse	0.22
5	chr4_76289426	-0.07	0.15	0.09	-0.02	0.05	-0.06	0.12	minTemp	0.15
5	chr4_77478540	-0.06	0.13	0.02	-0.01	0.02	-0.02	0.08	minTemp	0.13
5	chr4_82876710	-0.07	0.09	0.15	-0.03	-0.07	-0.04	0.15	LandUse	0.15
5	chr4_83947352	-0.06	0.06	-0.25	-0.13	0.28	-0.17	0.12	precDQ	0.28
5	chr4_84638948	-0.06	-0.09	-0.18	0.08	0.20	-0.12	0.05	precDQ	0.20
5	chr4_84643310	0.06	0.04	0.31	0.00	-0.26	0.08	-0.06	precSeason	<mark>0.31</mark>
5	chr4_84645518	-0.06	0.04	-0.25	-0.07	0.28	-0.21	0.07	precDQ	0.28
5	chr4_86620030	-0.06	0.08	-0.03	-0.29	-0.04	-0.18	0.21	precWQ	0.29
5	chr4_86636826	0.06	0.04	-0.13	0.08	0.05	0.16	-0.13	SoilOrgC	0.16
5	chr4_86637617	0.06	0.16	-0.23	-0.06	0.05	0.06	-0.14	precSeason	0.23
5	chr4_88172497	-0.06	0.21	-0.28	-0.32	0.14	-0.21	0.14	precWQ	<mark>0.32</mark>
5	chr4_88173584	-0.06	0.13	-0.24	-0.24	0.08	-0.09	0.15	precWQ	0.24
5	chr4_88176070	-0.06	0.25	-0.15	-0.26	0.04	-0.18	0.09	precWQ	0.26
5	chr4_88508395	-0.07	-0.10	-0.03	0.13	0.24	-0.08	0.16	precDQ	0.24
5	chr4_88515508	-0.06	-0.12	-0.03	0.28	0.18	-0.04	0.01	precWQ	0.28
5	chr4_88515727	-0.06	-0.02	-0.12	0.11	0.20	-0.17	0.00	precDQ	0.20
5	chr4_88516552	0.06	0.03	0.06	-0.04	-0.11	0.06	-0.07	precDQ	0.11
5	chr4_88520091	0.06	-0.03	-0.15	-0.04	0.12	0.03	-0.10	precSeason	0.15
5	chr4_88964291	0.06	-0.01	0.02	-0.06	-0.10	0.06	-0.06	precDQ	0.10
5	chr4_88974495	-0.06	0.13	-0.25	-0.20	0.14	-0.17	0.09	precSeason	0.25
5	chr5_11770052	0.06	-0.02	0.14	-0.09	-0.05	-0.02	-0.03	precSeason	0.14
5	chr5_19491957	0.06	-0.10	0.09	0.06	-0.07	0.18	-0.08	SoilOrgC	0.18

5	chr5_27541569	-0.07	-0.04	-0.12	-0.02	0.15	-0.10	0.14	precDQ	0.15
5	chr5_38442644	0.06	0.00	0.13	-0.03	-0.10	0.02	-0.11	precSeason	0.13
5	chr5_599713	-0.06	0.08	-0.15	-0.11	0.17	-0.20	0.06	SoilOrgC	0.20
5	chr5_600083	-0.06	0.13	-0.29	-0.23	0.14	-0.18	0.10	precSeason	0.29
5	chr6_19152621	-0.06	0.03	0.03	-0.08	0.06	-0.14	0.13	SoilOrgC	0.14
5	chr6_19198674	-0.06	0.03	0.06	-0.07	0.02	-0.07	0.14	LandUse	0.14
5	chr7_32487480	0.06	-0.01	0.07	-0.05	-0.01	0.04	-0.02	precSeason	0.07
5	chr7_32511488	0.06	-0.05	-0.03	-0.10	0.06	-0.08	-0.10	precWQ	0.10
5	chr7_32512010	-0.07	0.08	-0.01	-0.05	-0.02	-0.08	0.11	LandUse	0.11
5	chr7_32566048	-0.06	-0.07	-0.06	0.15	0.03	0.02	0.07	precWQ	0.15
5	chr7_32579990	-0.06	-0.02	0.05	0.22	-0.06	0.15	0.07	precWQ	0.22
5	chr7_34191572	0.06	0.00	0.22	0.00	-0.15	0.10	-0.03	precSeason	0.22

Table S5.10. Allele frequencies by ecotype for selected outlier SNPs (RDA correlation ≥ 0.3 -0.28) and correlation scores with mean environmental values. (**Mean value:** corresponds to the average value of the environmental predictor for each ecotype. **r:** Pearson correlation value between outlier SNP and mean value of environmental predictor for each ecotype. **Correlation trend:** best-adjusted trendline to describe correlation (pol (2nd): quadratic polynomial function, pol (3rd): cubic polynomial function . **RDA cor:** RDA correlation between outlier SNP and predictor. *Allele frequencies above 0.7 are indicated in bold style).

						Allele	e frequen	cies by ec	otype*							
		E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	r	Correlation trend	RDA cor
ure	Mean value (bio6)	55.64	69.80	98.53	61.67	87.32	116.1	18.25	114.5	73.53	105.5	104.1	112.9			
eratu	chr14_2834643_C_T	0.63	0.70	0.79	0.72	0.74	0.88	0.40	0.81	0.89	0.80	0.65	0.90	0.85	pol (3rd)	0.36
Ps emp mon	chr5_49525047_T_C	0.01	0.00	0.11	0.00	0.16	0.26	0.00	0.03	0.00	0.00	0.00	0.00	0.39	pol (3rd)	0.34
r SN m T lest	chr14_2839546_G_A	0.32	0.38	0.63	0.25	0.55	0.51	0.18	0.67	0.50	0.40	0.40	0.55	0.81	pol (3rd)	0.33
itlier imu colc	chr1_132953669_A_G	0.33	0.58	0.66	0.63	0.66	0.67	0.28	0.67	0.71	0.70	0.45	0.55	0.75	pol (3rd)	0.31
Ot. Min the	chr2_78280162_C_T	0.50	0.63	0.87	0.75	0.66	0.82	0.55	0.83	0.79	0.70	0.95	0.80	0.76	pol (3rd)	0.31
06) j	chr2_78280175_T_C	0.50	0.63	0.87	0.75	0.66	0.82	0.55	0.83	0.79	0.70	0.95	0.80	0.76	pol (3rd)	0.31
(bi	chr4_88536330_G_A	0.35	0.40	0.63	0.34	0.29	0.66	0.23	0.33	0.55	0.40	0.30	0.60	0.96	pol (3rd)	0.31
ty	Mean value (bio15)	87.41	105	71.42	90.9	50.3	82.61	105.8	103.7	141	136.9	84.81	121.6			
nali	chr20_4183810_G_A	0.04	0.00	0.11	0.03	0.34	0.12	0.03	0.00	0.03	0.00	0.00	0.00	0.91	pol (2nd)	0.39
NPs 5) easc	chr17_6740515_C_T	0.03	0.00	0.11	0.09	0.45	0.02	0.00	0.03	0.00	0.05	0.00	0.00	0.22	pol (2nd)	0.38
ier S viol (chr4_84643310_T_C	0.06	0.20	0.13	0.31	0.03	0.16	0.20	0.33	0.32	0.50	0.05	0.15	0.71	lineal	0.31
Jutl ⁻ (b itati	chr1_71668364_C_T	0.19	0.03	0.05	0.06	0.42	0.38	0.03	0.11	0.11	0.10	0.05	0.20	0.32	pol (2nd)	0.31
ecip	chr5_19554343_A_T	0.32	0.35	0.87	0.31	0.82	0.55	0.55	0.58	0.39	0.40	0.75	0.40	0.63	pol (2nd)	0.31
Pr	chr10_9402417_C_T	0.56	0.48	0.39	0.53	0.42	0.26	0.45	0.61	0.76	0.75	0.40	0.70	0.87	pol (2nd)	0.30

						Alle	le freque	ncies by	ecotype	*						
_		E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	r	Correlation trend	RDA cor
	Mean value (bio16)	1050	970	428.3	758	505	362.2	770.1	1089	458.8	480.7	529.3	767.5			
	chr2_117749087_T_C	0.29	0.20	0.00	0.03	0.08	0.01	0.03	0.19	0.00	0.00	0.00	0.10	0.65	pol (2nd)	0.42
er	chr2_140301053_C_T	0.74	0.95	0.47	0.72	0.39	0.56	0.83	0.94	0.53	0.65	0.85	0.80	0.60	pol (2nd)	0.37
uart	chr2_140313253_T_C	0.74	0.95	0.47	0.72	0.39	0.56	0.83	0.94	0.53	0.60	0.85	0.80	0.60	pol (2nd)	0.36
st q	chr10_13599109_C_G	0.60	0.48	0.08	0.44	0.26	0.17	0.53	0.47	0.42	0.40	0.30	0.50	0.59	pol (2nd)	0.35
IPs vette	chr11_16972959_C_G	0.85	0.90	0.50	0.63	0.76	0.43	0.53	0.92	0.89	0.85	0.75	0.90	0.49	lineal	0.33
r SN 016) ne w	chr4_3627776_T_C	0.03	0.08	0.08	0.03	0.21	0.30	0.10	0.00	0.26	0.20	0.15	0.00	0.57	pol (2nd)	0.33
(bic	chr4_88172497_C_T	0.40	0.20	0.61	0.63	0.61	0.68	0.40	0.33	0.45	0.15	0.75	0.65	0.57	pol (2nd)	0.32
Ou Ou	chr2_140379965_A_G	0.19	0.05	0.47	0.06	0.42	0.32	0.15	0.11	0.42	0.40	0.15	0.10	0.56	pol (2nd)	0.31
pitat	chr21_4353990_C_G	0.71	0.78	0.92	0.97	0.97	0.96	0.98	0.94	0.95	1.00	1.00	0.95	0.56	pol (2nd)	0.31
recij	chr20_4173643_A_T	0.00	0.00	0.08	0.06	0.21	0.13	0.03	0.00	0.11	0.00	0.00	0.00	0.60	lineal	0.31
ά.	chr4_82439583_T_C	0.36	0.38	0.05	0.09	0.13	0.07	0.13	0.08	0.08	0.15	0.15	0.20	0.60	lineal	0.31
	chr5_7508595_C_T	0.97	1.00	0.84	1.00	0.79	0.77	0.93	0.97	0.92	1.00	0.95	1.00	0.55	pol (2nd)	0.31
	chr2_140367628_A_G	0.99	0.98	0.84	1.00	0.68	0.79	0.88	1.00	0.92	1.00	1.00	1.00	0.55	pol (2nd)	0.30
lest	Mean value (bio17)	79.97	24.8	37.89	59.2	116	42.78	46.1	11.55	9.42	19.6	72.72	11.3			
s e dri	chr1_197483358_A_G	0.17	0.05	0.00	0.00	0.26	0.02	0.03	0.00	0.03	0.00	0.05	0.05	0.61	pol (2nd)	0.37
SNP 7) n the	chr19_1816989_G_A	0.15	0.10	0.00	0.03	0.39	0.10	0.08	0.00	0.08	0.00	0.05	0.05	0.59	pol (2nd)	0.34
ier S vio1 on i uart	chr1_118390274_T_C	0.46	0.23	0.16	0.13	0.58	0.37	0.18	0.17	0.29	0.10	0.10	0.15	0.54	pol (2nd)	0.30
Dutl (t) itati	chr8_24798255_C_T	0.29	0.23	0.11	0.22	0.26	0.02	0.05	0.00	0.05	0.05	0.10	0.05	0.70	lineal	0.30
))) (chr20_1187011_A_C	0.11	0.08	0.03	0.13	0.29	0.00	0.05	0.03	0.11	0.20	0.10	0.00	0.54	pol (2nd)	0.29
Pre	chr20_1187011_A_C	0.47	0.23	0.18	0.13	0.58	0.38	0.18	0.17	0.32	0.10	0.15	0.10	0.54	pol (2nd)	0.29

		Allele frequencies by ecotype*														
		E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	r	Correlation trend	RDA cor
	Mean value (Soil)	130.1	139	109.1	140	71.9	113.1	127.4	123.5	113.9	111	124.6	105.7		•	-
	chr3_16891572_C_T	0.06	0.10	0.11	0.06	0.58	0.10	0.00	0.08	0.00	0.10	0.00	0.05	0.64	pol (2nd)	0.41
	chr1_23141490_G_A	0.18	0.18	0.37	0.25	0.76	0.32	0.10	0.11	0.24	0.30	0.05	0.20	0.64	pol (2nd)	0.40
	chr8_6198062_A_G	0.96	1.00	0.87	1.00	0.71	0.93	0.98	1.00	1.00	0.90	1.00	0.95	0.62	pol (2nd)	0.38
	chr7_30965068_C_T	0.01	0.08	0.03	0.03	0.37	0.07	0.00	0.06	0.00	0.05	0.00	0.05	0.61	pol (2nd)	0.38
	chr19_1819556_A_G	0.04	0.05	0.11	0.22	0.50	0.24	0.08	0.06	0.16	0.00	0.05	0.15	0.61	pol (2nd)	0.37
	chr7_34948717_G_A	0.04	0.15	0.08	0.03	0.53	0.09	0.03	0.06	0.11	0.10	0.00	0.15	0.61	pol (2nd)	0.37
	chr14_6201610_C_T	0.76	0.65	0.66	0.72	0.29	0.59	0.88	0.81	0.50	0.65	0.75	0.60	0.60	pol (2nd)	0.36
	chr5_35557653_G_A	0.01	0.03	0.03	0.06	0.32	0.07	0.00	0.06	0.03	0.00	0.00	0.05	0.60	pol (2nd)	0.36
	chr1_132947694_G_A	0.06	0.08	0.26	0.22	0.47	0.24	0.20	0.03	0.13	0.25	0.00	0.25	0.59	pol (2nd)	0.35
t	chr19_1830033_T_A	0.10	0.05	0.13	0.09	0.37	0.20	0.08	0.03	0.05	0.00	0.05	0.10	0.58	pol (2nd)	0.34
uter	chr1_132951411_G_A	0.10	0.08	0.13	0.09	0.45	0.22	0.10	0.03	0.13	0.10	0.00	0.10	0.58	pol (2nd)	0.34
CO	chr1_23164664_C_T	0.01	0.05	0.03	0.06	0.32	0.10	0.03	0.00	0.08	0.10	0.00	0.15	0.58	pol (2nd)	0.33
NP.	chr5_19564424_C_T	0.01	0.05	0.05	0.00	0.26	0.02	0.00	0.00	0.08	0.15	0.00	0.05	0.58	pol (2nd)	0.33
arb	chr1_118539067_A_G	0.11	0.00	0.11	0.03	0.37	0.12	0.00	0.00	0.21	0.15	0.00	0.10	0.58	pol (2nd)	0.33
lier c c	chr10_7190022_G_A	0.04	0.00	0.03	0.00	0.26	0.07	0.00	0.00	0.11	0.05	0.05	0.05	0.58	pol (2nd)	0.33
Dut	chr1_118502383_T_C	0.11	0.00	0.11	0.03	0.37	0.12	0.00	0.00	0.21	0.10	0.00	0.10	0.57	pol (2nd)	0.33
) org	chr1_132950294_A_C	0.81	0.83	0.53	0.75	0.29	0.54	0.73	0.89	0.71	0.70	1.00	0.75	0.57	exponential	0.33
lic	chr5_39594296_T_C	0.01	0.03	0.13	0.09	0.37	0.13	0.13	0.03	0.13	0.35	0.05	0.00	0.57	pol (2nd)	0.33
Ň	chr14_2632555_C_T	0.00	0.00	0.03	0.03	0.24	0.11	0.00	0.03	0.08	0.00	0.00	0.00	0.57	pol (2nd)	0.32
	chr14_6200065_A_T	0.06	0.13	0.11	0.13	0.47	0.18	0.13	0.08	0.11	0.15	0.10	0.20	0.57	pol (2nd)	0.32
	chr14_6200159_T_C	0.06	0.13	0.11	0.13	0.47	0.13	0.13	0.08	0.11	0.15	0.10	0.20	0.57	pol (2nd)	0.32
	chr7_30967748_A_G	0.00	0.08	0.03	0.00	0.29	0.20	0.05	0.00	0.08	0.05	0.00	0.00	0.57	pol (2nd)	0.32
	chr1_23140159_T_C	0.06	0.03	0.08	0.03	0.29	0.04	0.00	0.00	0.11	0.00	0.00	0.05	0.55	pol (2nd)	0.31
	chr6_28550216_G_A	0.04	0.10	0.16	0.13	0.34	0.18	0.03	0.08	0.16	0.00	0.00	0.05	0.55	pol (2nd)	0.31
	chr9_17960492_C_T	0.44	0.63	0.68	0.66	0.18	0.51	0.70	0.64	0.42	0.60	0.75	0.55	0.55	pol (2nd)	0.31
	chr3_38560061_T_C	0.03	0.05	0.13	0.06	0.32	0.12	0.08	0.03	0.05	0.20	0.00	0.00	0.55	pol (2nd)	0.31
	chr14_6200496_G_A	0.06	0.13	0.18	0.16	0.50	0.15	0.15	0.17	0.11	0.20	0.10	0.20	0.55	pol (2nd)	0.30
	chr1_23065714_A_G	0.06	0.03	0.13	0.09	0.34	0.04	0.00	0.06	0.08	0.05	0.05	0.15	0.55	pol (2nd)	0.30
	chr2_126471892_A_G	0.00	0.00	0.03	0.06	0.29	0.07	0.05	0.06	0.05	0.00	0.20	0.10	0.55	pol (2nd)	0.30
<i>(</i>)	Mean value (LandUse)	32.85	11.6	12.18	38.3	25	32.24	37.52	1.33	38.19	29.19	38.13	34.22			
s ND	chr17_7056075_A_C	0.10	0.28	0.05	0.03	0.26	0.07	0.08	0.31	0.03	0.00	0.05	0.00	0.73	lineal	0.31
r SI IUs	chr17_7239853_G_A	0.51	0.33	0.21	0.44	0.39	0.38	0.38	0.25	0.68	0.65	0.50	0.60	0.70	lineal	0.30
anc	chr2_31725655_T_C	0.17	0.43	0.39	0.06	0.16	0.21	0.05	0.39	0.16	0.55	0.05	0.15	0.54	pol (2nd)	0.30
I I I	chr2_31712297_A_G	0.19	0.45	0.39	0.06	0.24	0.28	0.03	0.31	0.13	0.30	0.05	0.05	0.53	pol (2nd)	0.28
	chr2_79029493_G_T	0.18	0.30	0.08	0.13	0.05	0.16	0.10	0.64	0.11	0.30	0.25	0.25	0.53	logarithmic	0.28

Table 5S.11. Enrichment analys	sis for genes overlapping selected RDA	outliers (RDA correlation $> 0.3 - 0.28$).
	sis for genes of enupping sereeted filler	

	#Term	ID	Input number	Background number	P-Value	Corrected P-Value	Input
minTemp bio6	Insulin signalling pathway	gga04910	2	121	0.007905505	0.044152659	SREBF1/MTOR
	Herpes simplex virus 1 infection	gga05168	2	150	0.011860285	0.044152659	MAVS/MTOR
	Pantothenate and CoA biosynthesis	gga00770	1	15	0.017303699	0.04905688	PANK2
	Glycosaminoglycan biosynthesis - heparan sulphate / heparin	gga00534	1	24	0.02691013	0.058719679	HS6ST2
	Folate biosynthesis	gga00790	1	28	0.03115061	0.060754737	SPR
	Autophagy - other	gga04136	1	28	0.03115061	0.060754737	MTOR
	Proteasome	gga03050	1	35	0.038528733	0.065809948	PSMD3
	Steroid hormone biosynthesis	gga00140	1	37	0.040626825	0.066900461	CYP19A1
	Cytosolic DNA-sensing pathway	gga04623	1	44	0.047935536	0.07405771	MAVS
	Metabolic pathways	gga01100	4	1290	0.049727782	0.074749014	SPR/PANK2/AGK/CYP19A1
	Wnt signalling pathway	gga04310	2	141	0.020706731	0.081166572	CTBP1/LRP6
precSeasonality	Pantothenate and CoA biosynthesis	gga00770	1	15	0.02452847	0.082076033	PANK2
bio15	One carbon pool by folate	gga00670	1	17	0.027553059	0.085611291	MTHFS
	Citrate cycle (TCA cycle)	gga00020	1	28	0.044025899	0.098909842	DLST
	Retinol metabolism	gga00830	2	39	0.002601209	0.081382196	LRAT/RDH10
precWQ bio16	Adrenergic signalling in cardiomyocytes	gga04261	2	128	0.023985025	0.083437269	CACNA2D3/PPP2R5C
	Pantothenate and CoA biosynthesis	gga00770	1	15	0.029096651	0.084168328	PANK2
	One carbon pool by folate	gga00670	1	17	0.03267504	0.084723484	MTHFS
	Glycosaminoglycan biosynthesis - heparan sulphate / heparin	gga00534	1	24	0.045098193	0.09514264	HS6ST2
precDQ	Focal adhesion	gga04510	3	189	0.003785831	0.05314209	PTEN/VAV2/CRKL
	Adipocytokine signalling pathway	gga04920	2	64	0.005224917	0.05314209	MTOR/RXRA
	ErbB signalling pathway	gga04012	2	78	0.007587442	0.05314209	MTOR/CRKL
	Autophagy - animal	gga04140	2	117	0.016197992	0.05314209	PTEN/MTOR
	Insulin signalling pathway	gga04910	2	121	0.017239395	0.05314209	MTOR/CRKL
bio17	mTOR signalling pathway	gga04150	2	140	0.022560194	0.055918007	PTEN/MTOR
	Cellular senescence	gga04218	2	143	0.02345512	0.057330648	PTEN/MTOR
	Arginine biosynthesis	gga00220	1	17	0.029019397	0.061769859	ASSI
	Regulation of actin cytoskeleton	gga04810	2	190	0.039272502	0.07283138	VAV2/CRKL
	Autophagy - other	gga04136	1	28	0.046347778	0.077885176	MTOR
LandUse	Synthesis and degradation of ketone bodies	gga00072	1	10	0.019190239	0.097854102	HMGCL
	Steroid biosynthesis	gga00100	1	17	0.031214529	0.099734228	CEL
	Butanoate metabolism	gga00650	1	24	0.043094875	0.11069468	HMGCL
	Folate biosynthesis	gga00790	1	28	0.049819664	0.113502191	SPR

Supplementary Figures

Genetic diversity and population structure of indigenous Ethiopian village

chicken

Supplementary Figure S2.1. Cross-validation showing K=3 as the best value explaining ancestry for the 25 Ethiopian chicken population investigated.

Supplementary Figure S2.2. Distribution of haplotype blocks (LD blocks) based on the number of SNPs per block in 6 population groups.

Ecological niche modelling for environmental characterisation of

indigenous Ethiopian village chickens

W = 0.98065 p-value = 0.001743	W = 0.95104 p-value = 1.881 e-07	W = 0.94492 p-value = 4.187 e-08	W = 0.9209 p-value = 2.883 e-10	W = 0.97577 p-value = 0.0002863
			The second secon	
w = 0.9543 p-value = 3.447 e-07	W = 0.94821 p-value = 9.37 e-08	W = 0.98255 p-value = 0.00368	W = 0.96234 p-value = 3.908 e-06	W = 0.98643 p-value = 0.01808
W = 0.9613 p-value = 2.897 e-06	W = 0.90757 p-value = 2.704 e-11	W = 0.89687 p-value = 4.746 e-12	W = 0.8958 p-value = 4.012 e-12	W = 0.96126 p-value = 2.864 e-06
W = 0.88232 p-value = 5.354 e-13	W = 0.91122 p-value = 5.047 e-11	W = 0.84951 p-value = 7.17 e-15	W = 0.62562	**** W = 0.9705 p-value = 4.77 e-05
1995 · · · · ·	2 Contraction of the second	20 20 20 20 20 20 20 20 20 20 20 20 20 2	800- 90 - 90 - 90 - 90 - 90 - 90 - 90 - 9	1000- 1002-
²⁰ W = 0.97885 p-value = 0.0006526	W = 0.9771 p-value = 0.0003377	W = 0.87686 p-value = 1.23 e-13	W = 0.94007 p-value = 8.391 e-09	W = 0.94207 p-value = 1.324 e-08
W = 0.92478 p-value = 3.369 e-10	W = 0.9805 p-value = 0.001241	4) W = 0.96463 p-value = 5.089 e-06	W = 0.06463 p-value = 5.102 e-06	W = 0.67703 p-value = 2.2 e-16
			The second secon	
0 0 0 0 0 0 0 0 0 0 0 0 0 0	67 e-14 w = 0.69153 p-value = 2.2 w = 0.69153 p-value = 2.2 w = 0.69153 p-value = 2.2 w = 0.69153 p-value = 2.2	e-16	69 e-16	1 e-16

Figure S3.1. Shapiro-Wilk normality test of the agro-ecological studied variables

Whole-genome sequences reveal the drivers of environmental

adaptation in Ethiopian village chicken

Figure S4.1. Histograms of |XP-EHH| values in windows in different analyses

Figure S4.2. Histograms of ZFst values in windows in different analyses

Figure S4.3. Correlation between (*ZFst*) and (|*XP-EHH*|) signature of selection results across analyzed environmental population groups. A: minTemp, $r_s = 0.33$, *P* < 2.2e-16; B: precSeasonality, $r_s = 0.34$, *P* < 2.2e-16; C: precWQ, $r_s = 0.31$, *P* < 2.2e-16; D: precDQ, $r_s = 0.38$, *P* < 2.2e-16; E: SoilOrgC, $r_s = 0.33$, *P* < 2.2e-16, and F: LandUse, $r_s = 0.38$, *P* < 2.2e-16).

Figure S4.4. Mean percentage relative humidity in different populations in the wettest and driest quarter.

Dissecting genome-environment associations in Ethiopian chicken

ecotypes

Figure S5.1a Histograms of *ZHp* values in windows in different ecotypes

Figure S5.1b Histograms of *iHS* values in windows in different ecotypes

Figure S5.2 Correlation between *Hp* and mean unstandardized *iHS* values by ecotype

Figure S5.3 Correlation between Z(Hp) and mean standardized *iHS* values by ecotype

mean_absIHS_std