
Computational modelling of
electrostatic interactions
between colloidal patchy

particles

Ma lgorzata Stankiewicz

Student Number: 20300496

Thesis submitted to the University of Nottingham
for the degree of Master of Research

Supervised by Prof. Elena Besley (95%) &
Prof. Anthony J. Stace (5%)

School of Chemistry
University of Nottingham

30th September 2021

i



Acknowledgements

I wish to express my gratitude to everyone for their kind words and under-

standing throughout this work.

Foremost, I would like to thank my principal supervisor Professor Elena Besley

for invaluable support and help throughout the whole year of this research,

dedicated time, patience and understanding, sharing her expertise and passion

and giving numerous priceless life advice, and also bringing nature into our

group meetings.

I would like to sincerely thank my secondary supervisor Professor Anthony

Stace for irreplaceable help with structuring my thesis, valuable comments

that saved me from many mistakes and shortcomings, kindness and support

throughout the research.

I would like to thank the Fraunhofer Institute for Applied Polymer Research

IAP for the opportunity to collaborate with Prof. Dr. rer. nat. Alexander
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Abstract

Controlled self-organisation of patchy colloidal particles depends mainly on

weak forces - reversible electrostatic interactions. Developments in the mod-

elling of patchy particles can help understanding more in-depth the influence

of self-assembly systems and predict desired structure formation.

The report presents the implementation of non-uniform charge distribution

with the ability to modelling desired size patches. A range of trends is displayed

to demonstrate the reliability and robustness of the model. Following this, a

recreation of results, analysis and prediction for experimental work published

in 2020 by Mehr et al.[1] is presented.

As an additional extension of this project, atomic-scale small systems were ex-

plored by applying charged dielectric polarisable particles model. The accuracy

of the classical model was investigated, and the ability to approximate neutral

atoms and ions was examined.
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Nomenclature

Abbreviations/Acronyms

CCSD(T) Coupled-Cluster with single-double and perturbative triple

DFT Density-functional theory

FITC fluorescein isothiocyanate

FMM Fast Multipole Method

MF melamine formaldehyde

MP2 second-order Møller-Plesset perturbation theory

PDMS polydimethylsiloxane

PEI polyethyleneimine

PMVEMA poly(methyl vinyl ether-alt-maleic acid)

Symbols

a radius

d distance from the two expected values

dc chord length

h centre-to-centre separation

k dielectric constant (relative permittivity)

s surface-to-surface separation

t central angle

q free-charge distribution

qg total charge

α atomic polarisability

ε absolute permittivity

εr relative permittivity

ε0 vacuum permittivity

Φ electric potential
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Symbols

σ total surface charge density

σg Gaussian surface charge density

σs uniform charge density

Γ denomination of a particles surface in the many-body formalism

D electrical displacement

E electric field

E total energy

F electrostatic force

L centre-to-centre separation between two atoms/ions

N umber of molecules per unit of volume

P polarization density

R3 three-dimensional space

U total energy

Ue potential energy

U(L) polarisation portion of the total interaction energy

n̂ unit vector perpendicular to a point on a sphere’s surface

υ standard deviation

µ expected value

µ vector of the expected values

ΩM many-body system of non-overlapping dielectric spheres

P factor that determines the ”flatness” of the top of Gaussian
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Chapter 1

Introduction to self-assembly of

patchy particles

The presence of electrostatic interactions influences underlying physical pro-

cesses that occur in the natural world and those directed in the laboratory. Elec-

trostatic forces impact in the self-assembly of particles in nano- and microscale

regimes. The self-assembly phenomenon is the result of spatially directed

interparticle local electrostatic interactions and particles, so-called building

blocks with diverse functionalities, shape and/or chemical composition[1, 2]

that undergo the formation of structures with higher complexity[4–6]. Those

interparticle interactions lead such a system to assemble in a structure with

the energy in the lowest possible state. The interactions of the electrostatic

nature play a substantial role in understanding the agglomeration of cosmic

dust and charged ice particles in the mesosphere[7], aerosol growth in Titan’s

atmosphere (Saturn’s moon)[8], and biological systems such as protein to pro-

tein interactions[9] or DNA-protein binding[10]. Controlled self-organization of

particles has progressed the production of materials with desired properties,

such as optical, electrical or magnetic[11–15]. This method, which occurs by

control of interparticle interactions, has leveraged the research intensity in a

range of niche areas but is still an experimentally tricky process to achieve.
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The properties of the material containing anisotropic particles are orientationally

dependent. The nano- and microscale particles have attracted significant

research interest due to their diverse morphology, for instance, asymmetry in

composition or shape as well as the difference in polarity or polarisability within

an individual particle[16]. These particles can possess a high number of surface

regions ordered in a symmetrical manner, called patches[17]. Figure 1.1 shows

classification of anisotropic particles: a) surface anisotropy and b) particle shape

anisotropy[2]. The class of surface anisotropic particles feature re-configurable

and directional interactions between the particles due to the presence of patches.

Figure 1.1: The classification of anisotropic particles divided into two groups:
a) surface anisotropy and b) particle shape anisotropy. Anisotropic molecules can
be further subdivided by combining surface and shape anisotropy - reproduced from
reference[2].

Among all the broad diversity of self-assembly, the focus of this research studies

explicitly the self-assembly of bipatchy particles. This thesis focuses on partic-

ular patchy particles possessing patches with opposite charge signs localised at

the poles. These particles can be produced by chemical functionalisation or

printing in terms of patches.

Bipatchy and monopatchy particles with attractive regions (force generated on
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one bipatchy particle that attracts another bipatchy particle) lead to patch-to-

patch interactions with other patchy particles and demonstrate self-organisation

into higher-order systems, including chains, rings and more complex twisted

structures or even diamond lattice arrangements[1, 4, 18, 19]. Such a fea-

ture of self-assembly can be employed in building higher-order specific target

structures[20–22]. The ability to tune the patch’s size, shape and distribution,

and thus controlling the directionality of interactions between the particles,

can allow studying the aggregation behaviour in biological systems and prac-

tical applications such as photonic materials and drug delivery[23–26]. The

fabrication of a patch on a bipatchy particle surface remains a challenge due to

the precision and accuracy of patch location during a large production. Recent

developments in experimental routes include a stamping technique using the

Glancing Angle Vapor Deposition method and sandwich microcontact printing

(also called microcontact printing). The former method required two steps

to produce patches at the particle poles when using a polydimethylsiloxane

(PDMS) stamp[27]. The technique inverts the particle with the patch facing

down produced by the first vapour deposition. The patch parameters can

be adjusted by positioning the template and the beam angle. The sandwich

microcontact printing method, on the other hand, requires one step to generate

patches on the particle’s surface by also using PDMS stamps. The stamp is

”inked” (coated) with molecules, and then it transfers the ink onto a colloidal

particle[28].

In 2020 Mehr et al.[1] successfully synthesised inverse bipatchy microcol-

loids via sandwich microcontact printing method. Two oppositely charged

polymeric patches poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and

polyethyleneimine (PEI), were generated on polymer melamine formaldehyde

(MF) particle’s surface. The self-aggregation behaviour of monopatchy and

bipatchy microparticles in solutions has been studied to explore the reversible

electrostatic interactions. The patches have been electrostatically attached to
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Figure 1.2: a) Reaction schemes of the production of the oppositely charged patches
on the surface of an MF particle made of prelabeled PMVEMA and PEI with Rho-
damine 6G and FITC, respectively. b) SFM height image of a PMVEMA patch. c)
SEM image of a PEI patch. d) SEM image of a bipatchy MF particle. e,f) fluores-
cence and the overlaid microscope images of bipatchy MF particles with patches made
of PMVEMA (red) and PEI (green). Scale bars:1 µm - reproduced from reference[1]
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the primary particle’s surface. Several microscopic images present the attach-

ment of patches onto the MF particle; Figure 1.2 shows images of PEI and

PMVEMA patches (labelled with Rhodamine 6G and fluorescein isothiocyanate

(FITC) tags) and the creation of oppositely charged inverse bipatchy particles

generated by fluorescence microscopy. The self-aggregation of bipatchy particles

into linear, bent and branched chains of different lengths was reported. The

self-assembly of patchy colloidal particles is driven by the attractive electro-

static force generated between patches and the polarisation of charge density.

Figure 1.3 summarises the experimental observations of what patches have

been found facing one another and the percentages of relative orientations.

The self-assembly also occurs between like-charged patches with percentages

of 11 and 9 for PEI-PEI and PMVEMA-PMVEMA connection, respectively.

The higher yield of PEI-PEI connections can be explained due to the smaller

magnitude and density of charge on the patches in comparison to the negatively

charged PMVEMA patches. Oriented patch-central MF particle and MF-MF

connections were also reported. The presence of patches carrying the positive

and negative charge, polarised MF neutral particles as well as the medium

influenced the charge distribution of the MF particle.

A variety of models have been proposed throughout the years to study problems

concerning electrostatic interactions and are widely applied to investigate yet

not fully understood fundamental reactions in natural sciences and industrial

sectors[29–33]. The formation of PEI-PMVEMA pair interactions and patch-

MF particle connections were also analysed computationally by E.Besley and

her group[1]. In this work, a bipatchy particle is represented by three spheres:

smaller particles are attached to the mother MF particle poles. The smaller

spheres that model the patches have their charge and dielectric constant, k.

The effect of monopatchy and bipatchy particles relative orientations were

studied as a function of their surface-to-surface separation. The simulations

were carried out by using the numerical solution proposed by Lindgren et al.[3]
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Figure 1.3: Particles connections formed via random interactions between patchy
and non-patchy surfaces of MF particles, together with % of experimentally observed
connections in the aggregates formed by MF particles. The fraction of PEI patch
interactions is larger than the fraction of PMVEMA interactions due to the higher
yield of PEI patches - reproduced from reference[1]

described in section 2.3.

However, the three-body approach as a representation of a bipatchy particle

has its limitations. The smaller particles that represent patches, in fact, limit

the distance between the central MF particles, which experimental outcome

summary shows that the MF particles appear to be at a closer distance than

the PEI or PMVEMA particle’s size in the three-body model. Moreover, the

three-body approach does not reflect realistic distances at all orientations of the

bipatchy particles when comparing to the experimental data. Furthermore, the

patches modelled by the smaller particles do not accurately represent the charge

distribution of patches; Thus, the model limits the polarisation of charge on

bipatchy particles. Finally, a patch modelled by a sphere is unable to reproduce

the exact parameters of a patch given in the experimental results.

This research aims to approximate the patches more realistically and improve

the computational modelling of the systems - modelling patches (their shape
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and size) with a more approximate match to the experimental data. Thereby,

the project attempts to elucidate the mechanisms of the self-assembly of

patchy particles. The work in this thesis presents a computational analysis of

electrostatic interactions between bipatchy particles reported by Mehr et al.[1]

using higher-order Gaussian distribution of charge as a representation of patches

on MF particle. Chapter 2 introduces the theory applied in modelling in Mehr

et al. and this research. The section begins with introduction of dielectric

materials and initial development of the electrostatic solution for two-body

system by Bichoutskaia et al.[34] in 2010. Afterwards, subsequent development

of the theory by Lindgren et al.[3] in 2018 is introduced; the model enables to

calculate many-body systems. Following this, chapter 3 presents the theory

behind the modelling of a patch on a particle’s surface and numerical validations

supporting the implementation of the model. Chapter 4 shows the predictions

for the computational analysis of the experimental work published by Mehr

et al.. As an additional extension of this project, atomic-scale interactions

were modelled of charged diatomic molecules using dielectric spheres, and the

accuracy of the many-body classical model used in this research was evaluated

- an introduction and results are presented in appendix B.



Chapter 2

Theoretical background to

modelling electrostatic

interactions

In this chapter, the theoretical models of electrostatic interactions are pre-

sented, which treat the particles as dielectrics that are known to have classical

polarisation properties.

2.1 Polarisation in dielectrics

Each material has its unique physical properties. In materials with mobile

charge carriers, electric current conduction occurs under the influence of an

electric field, and those are referred to as conductors. Materials that are absent

of free carrier are insulators. Dielectrics, a class of insulators, poorly conduct

the electric charge due to either low mobility of the charge carriers or their low

concentration, or both. When a dielectric material is exposed to an electric

field, dipoles are generated, or the existing dipoles align themselves within an

electric field. In addition to this type of polarisation, called orientation polarisa-

tion, three other divisions of polarisation mechanisms exist: electronic (charge

distribution in relation to the nucleus under the influence of the electric field),

8
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ionic (displacement of positive and negative ions relative to each other under

the influence of an electric field) and interfacial (inhomogeneous distribution of

space charge due to the restriction of the charge movement).

One more crucial physical quantity that determines the ability of a dielectric

material to polarise is the electric susceptibility of the medium. The electric

susceptibility χe is a dimensionless coefficient of proportionality between the

polarization density P and the electric field E. The electric susceptibility and

vacuum permittivity ε0 are related in a form:

P = ε0χeE. (2.1)

The electrical displacement D can be expressed by the electrical susceptibility

and strength of the electric field in the form:

D = ε0E + P = ε0(1 + χe)E = εrε0E = εE. (2.2)

where ε = εrε0, and εr = (1 + χe).

The Laplace equation is critical when solving electrical potential problems, and

being expressed as:

∇2Φ = 0, (2.3)

where Φ is the electric potential. The relationship between electric potential

and electric field can be defined as E = −∇Φ, following Gauss’s law, ∇·D = ρf .

The Laplace equation can be only solved with the set of well defined boundary

conditions on the electric field and dielectric displacement field.

Numerous solutions for calculating the electrostatic forces between dielectric

particles have been presented over the last decades. Although the proposed
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models are diverse in the approach of calculating electrostatic forces, these

solutions often converge poorly at the short-range separation between particles

and are only suitable in certain circumstances. Many models are based on

the image charge theory or multipole expansion method[35–38]. An adequate

mathematical model is essential to determine the physical quantities character-

izing interactions between charged dielectric particles and dielectric interfaces.

The following sections, introduce the theory behind the model that has been

used in this work and in work presented by Mehr et al.[1].

2.2 Two-body polarisable electrostatic solution

In 2010 Bichoutskaia et al.[34] proposed a general solution for calculating elec-

trostatic interactions between two interacting dielectric spheres. The method

uses multipole expansion of the potential in Legendre polynomials for a system

with two dielectric particles with spherical coordinates (i = 1, 2). The inter-

acting particles are of arbitrary radius ai and charge qi placed in a dielectric

medium k0 with their own dielectric constant ki at particle surface-to-surface

separation s. The centre-to-centre separation h between two spheres is defined

as h = s + a1 + a2. The free charge is uniformly distributed on a particle’s

surface σf = q/(4πa2) with no presence of volume charge distribution. The

model is also formulated on the electric potential to vanish at infinity and

includes a number of boundary conditions. The first condition states that

the potential generated on the sphere’s surface is continuous, and thus the

tangential component of the electric field is also continuous,

n̂ ×
(
Eri=a+i

− Eri=a−i

)
= 0. (2.4)

The second boundary condition says that due to each sphere carrying a per-

manent charge on its surface σ, the normal component of the electric field is
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discontinuous,

n̂ ·
(
Eri=a+i

− Eri=a−i

)
=

σ

ε0
. (2.5)

The third boundary condition postulates that due to the presence of free charge

on a sphere’s surface σf , the normal component of the electric displacement

field is discontinuous,

n̂ ·
(
Dri=a+i

− Dri=a−i

)
= σf . (2.6)

where n̂ is defined as unit vector and located at 90° to a point on a sphere. The

electric displacement field D is characterised by equation (2.2). The a+i and

a−i are the radial positions for particles (can be positioned inside and outside).

Following this, the electrostatic force is calculated based upon Coulomb’s law,

and its extension relevant for this two-body problem. For a system with two

point charges (i = 1, 2) individually positioned ri and possessing separate

charge qi. Considered system is in a vector form, and placed in vacuum. Thus,

an electrostatic force F1 acting on q1 is equal to:

F1 =
q1q2
4πε0

r1 − r2

|r1 − r2|3
=

q1q2
4πε0

r̂12

|r12|2
, (2.7)

where r12 = r1−r2 and r̂12 =
r12
|r12| - a unit vector from q2 to q1. The electrostatic

force that acts on q2 is equivalent to F2 = −F1 (as stated by Newton’s third law).

A particle with a charge qi in a presence of the electric field E will experience

the electrostatic force F given as:

F = qE. (2.8)

Coulomb’s law states that the generation of the electric field Ei at position r0
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caused by the presence of a point charge qi located at ri can be described as:

Ei(r0) = K
qi

|r0 − ri|2
r̂0i, (2.9)

where K is Coulomb’s constant 1/(4πε0) (ε0 is the vacuum permittivity). In a

case of two spherical particles with uniformly distributed charge on the particles’

surface and amount of the electrostatic force F12 between the two objects is

given by:

F12 = K

ˆ
dq1(r1)

ˆ
dq2(r2)

r̂12

|r1 − r2|2
, (2.10)

where K is Coulomb’s constant, dq1(r1) and dq2(r2) are the charges placed on

each particle, and r1 and r2 are position vectors at each particle. The charge on

particle 1 is described by
´
dq1(r1) and the electric field produced by the charge

on the second particle defines the remaining components of the equation 2.10.

Using equation 2.10 and a Legendre polynomial expansion of the electric

potential Φ (generated by the charges) the electrostatic force between two

particles (i = 1, 2) can be calculated. The surface charge density on a particle’s

surface is expressed by vector h. The following equation enables one to calculate

the amount of electrostatic force generated between two spheres subsequently

after the integration of charge over the surface area of the particles, as shown:

F12 = − 1

K

∞∑
l=0

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

. (2.11)

Obeying Coulomb’s law, a positive value of F12 indicates repulsion between two

particles; thus the negative value indicates attraction between the bodies. The

electrostatic force generated between two particles at a separation h depends

on the multipole moment coefficients A1,l and A1,l+1. Taking into account the

remaining variables of the interacting spheres that accounts for the mutual

influence of polarisation of the particles, the expression that describes the
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multipole moment coefficients A1,l and A1,l+1 is expanded to:

F12 = K
q1q2
h2

− q1

∞∑
m=1

∞∑
l=0

A1,l
(k2 − 1)m(m+ 1)

(k2 + 1)m+ 1

× (l +m)!

l!m!

a2m+1
2

h2m+l+3
− 1

K

∞∑
l=1

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

.

(2.12)

Equation (2.12) can be broken down into three terms. The first considers

the interaction between a pair of monopoles. The remaining terms describe

the mutual polarisation of charge on the particles’ surface. An attraction

will arise when the system is in a vacuum, and its strength depends on the

dielectric constant ki of the particles. Furthermore, like-charged particles can

also experience Coulombic attraction when set in a specific environment (qi,

ai, and ki variables influence the polarisation of charge density). Combining

those variables can cause the total net of the interaction to be attractive at a

touching point for like-charged objects due to a mutual polarisation of their

charge density.

Since 2010, the model has been expanded and accounts for many-body systems,

and thus increased its applications, including the aggregation of charged dust

and ice particles in the atmosphere, aggregation of pharmaceutical aerosols

(static as well as dynamic simulations), self-organisation of macroanions (poly-

oxometalates).

2.3 Many-body polarisable electrostatic solu-

tion

In 2018 Lindgren et al.[3] introduced a model to calculate electrostatic in-

teractions for many-body polarisable systems. The theory is based upon an

integral equation approach that enables one to calculate systems consisting of

M non-overlapping particles placed in the three-dimensional space R3. Those
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spherical particles can have arbitrary size (radii defined as {ai}Mi=1 and centered

at {xi}Mi=1), a free charge qi as well as dielectric constant {ki}Mi=1 (where ki ≥ 1)

surrounded by homogeneous medium of dielectric constant k0 ≥ 1 (where

k0 ≥ 1), as shown in figure 2.1. This method includes a modified fast multipole

method.

Figure 2.1: Geometric representation of the many-body system ΩM with radius
ai and centred at xi, dielectric constant ki, in a homogeneous medium of dielectric
constant k0 [3].

A system of spherical particles {Ωi}Mi=1, where the particle’s surface is repre-

sented by {Γi}Mi=1 and Γ represents the boundary - the surface of the sphere

(the charge is only applied within the particle’s surface), and for that:

Γ0 = Γ1 ∪ . . . ∪ ΓM .

A free charge density is uniformly distributed over the particle’s surface Γ with
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no volume charge present. The surface charge density is represented as:

σf,i =
qi

4πri2
, (2.13)

where the free charge σf obeys a boundary condition:

σf (x) =


σf,i, if x ∈ Γi.

0, otherwise.

(2.14)

In addition, a surface charge density σf satisfies three interface boundary

conditions defined in equations (2.4)-(2.6).

Following, the free charge σf that generates the electrostatic potential Φ ∈

L2
loc(R

3) with Φ|Ωi
∈ H1 (Ωi) which satisfies given boundary conditions:

∆Φ = 0 in each Ωi, (2.15)

JΦK = 0 on Γ0, (2.16)

Jk∇ΦK = 4πKσf on Γ0, (2.17)

where K is Coulomb’s constant. The Jk∇ΦtotK are jump discontinuities, and

they are defined as:

JΦK|Γi
(x) = Φ|Ω0

(x)n0(x) + Φ|Ωi
(x)ni(x), (2.18)

Jk∇ΦK|Γi
(x) = (k∇Φ)|Ω0

(x) · n0(x) + (k∇Φ)|Ωi
(x) · ni(x), (2.19)

where x ∈ Γi, and n0(x) defines the outward pointing normal to Ωi for x ∈ Γi.

The total energy U of a considered many-body system is given by:

U (Φ, σf ) =
1

2

ˆ
Γ0

σf (s)Φ(s)ds, (2.20)

where s is a point of integration on the particle’s surface. Both, Φ and σf

account for the total energy U , where the former is generated due to the
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neighbouring particles.

The solution has the capability of using the modified Fast Multipole Method

(FMM). The method accelerates the calculations by applying a linear scaling

algorithm in relation to the system complexity. This process allows to efficiently

converge at a touching point of the spheres without significant computational

cost increase. Furthermore, FMM supplies quantitative information about the

physical nature of the system. The algorithmic description can be found in

Lindgren et al.[3].

Its fast convergence even at a touching point of charged particles distinguishes

this method and the low cost of calculations compared to other proposed

solutions. Those often use the previously explained method of image charges or

are based on a multipole expansion method. The multipole expansion method

has the advantage of showing how the charge density is redistributed due to

the presence of other charged particles. Nevertheless, those techniques require

a large number of steps to complete the calculations due to the requirement to

use numerous images or terms.



Chapter 3

Analytical representation of the

localised surface charge;

modelling a patch

This research’s principal purpose is to improve the modelling of patchy parti-

cles to enable computational predictions of the patchy particle systems with

increased accuracy. In 2020 Mehr et al.[1] explored computationally the in-

teractions between patchy particles. In Mehr et al., a patch was modelled by

a separate particle possessing its charge and dielectric constant, as described

earlier in section 1. In this chapter, the theory behind the modelling of a patch

is explained. Additionally, other models of presenting a patch on a particle’s

surface are discussed. Subsequently, numerical validations are presented to

support the implementation of this model. As described in the introduction in

current way of modelling patches is limited and there are three fundamentally

different ways of reducing the limitation. It is a point charge, it is the normal

Gaussian distribution of charge and it is the higher-order Gaussian distribution.

A patch’s size can vary from covering a substantial amount of particle surface

up to a point to being concentrated at a localised point. Point charge repre-

sents one of the extremes of distributing a charge on a surface. The charge

in this configuration is condensed and can even represent a single charge[7].

17
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On the other hand, Gaussian distribution of charge and higher-order Gaussian

distribution both have the ability to manipulate the size of a patch - its width.

Moreover, when applying higher-order Gaussian distribution, the shape of the

patch can be adjusted - its ”flatness”. Nonetheless, each representation has

limits and unique properties, and appropriate times to be applied.

3.1 Higher-order Gaussian distribution

A sphere of radius a has the lowest energy form of a free-charge distribution

q when the charge is uniformly spread over its whole surface. This uniform

charge density σs for a spherical object is given by:

σs =
q

4πa2
. (3.1)

A non-uniform surface distribution of charge is often a more suitable approach

when modelling systems for experimental work. Localisation of charge can

be expanded to point charge solution as well as a multivariate form of a dis-

tribution. The former has particular use in studying the Coulomb fission of

charged clusters and patchy colloids[28, 39]. On the other hand, the latter can

be applied in modelling point charges when the standard deviation value is

sufficiently small and patches on colloidal spheres (equation 3.7).

The probability density function of a Gaussian distribution with an expected

value of µ and a standard deviation υ is specified as:

f(x) =
1

υx
√
2π

exp

(
−(x− µx)

2

2υx2

)
. (3.2)

If the Gaussian distribution is defined in two-dimensional domain, then the

probability density function will include the vector µ of the expected values
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µ = (µx, µy), and for x and y coordinates (υx, υy). The two-dimensional

distribution with the density function f(x, y) has the form of:

f(x, y) =
1

υx
√
2π

exp

(
−(x− µx)

2

2υx2

)
1

υy
√
2π

exp

(
−(y − µy)

2

2υy2

)
. (3.3)

In addition, in the event where the standard deviation for x and y positions

are equal, the function can be shown in the form:

f(d) =
1

2πυ2
exp

(
−d2

υ2

)
, (3.4)

where the variable υ represents the standard deviation for the Gaussian func-

tion, and the d variable is the distance from the two expected values (µx;µy).

If Gaussian function is implemented to represent Gaussian surface charge

density σg on a spherical object, the function requires to account the total

charge qg that will be distributed on its surface given by:

σg(d) =
qg

2πυ2
exp

(
−d2

υ2

)
(3.5)

within the area of the object’s surface. Numerous Gaussian distributions are

required to be used to model the density charge on a sphere accurately. Thus,

for a defined location σg(d) on a sphere with Gaussian functions ng placed on

its surface representing the charge distribution, the equation will take the form:

σg(d) =

ng∑
k=1

qg,k
2πυk2

exp

(
−dk

2

υk2

)
(3.6)

where µk = (µx,k, µy,k) within the area of the object’s surface.
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In equation (3.5), the variable υ that represents the standard deviation also

controls the width - the magnitude and the density of the charge on a particle.

The larger the υ, the wider the charge density distribution will become within

the particle’s diameter.

Furthermore, the shape of the density charge distribution curve can be altered

by increasing the P value in equation (3.7). The curve will become more flat-

topped when P > 1. The two-dimensional higher-order Gaussian distribution

is represented by:

σg(d) =
q

2πυ2
exp

(
−
(
d2

υ2

)P
)
. (3.7)

Despite the ability to modify the density charge distribution curve, a loss of

charge will occur due to the curvature of the sphere - its three-dimensional shape.

One necessary condition has to be met when distributing charge on a bipatchy

particle. The arrangement of patches shall not lead the density charges to

interact one with another. A test was conducted to examine at what point of a

sphere two patches will start interacting with each other. Figure 3.1 shows the

surface charge density at a singular point placed between two patches localised

on a single particle pole a. The patch width of both patches υ increases in size

from 0.1 to 2. The surface charge density σ is distributed over the patch and is

defined by dimensions by the size υ/a. As the surface charge distribution σ on

each patch enlarges and once the patches touch the singular point, the charge

density starts to overlap. Thus, the largest two standard Gaussian patches of

charge with circular symmetry that can be modelled (in the most energetically

stable position), will have the ratio of 0.3 υ/a - figure 3.1 yellow plot. The
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rapid increase of the charge density arises from two patches increasing in size

to a point when they start to overlap. Hence, any value of υ/a higher than 0.3

for normal Gaussian will cause the surface density charges σ to overlap - as

shown in figure 3.1 - or cancel out when considering unlike charges. Similarly,

for higher-order Gaussian distribution P = 2 and P = 5 in equation (3.7)

the limitations remain 0.55 and 0.8 υ/a, respectively. The sudden increase in

limitation between normal Gaussian and higher-order Gaussian distribution

is due to the charge being more evenly residing on the surface when applying

higher-order Gaussian distribution as clearly shown in figure 3.2. In contrast,

when implementing normal Gaussian, the charge is more concentrated in the

centre of the patch and more diffuse at the edges leading to loss of charge

(figure 3.2a).

Figure 3.1: σ as function of the ratio υ/a, where q1 = q2 = +1e. For km = kp = 1
and a = 1 nm. Patches with normal Gaussian distribution (P = 1, yellow), and
higher-order Gaussian distribution (P = 2, blue) and (P = 5, purple).

Oppositely, the limitation for a patch of charge to not interfere with the other
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(a) P = 1, υ = 0.3 (b) P = 5, υ = 0.3

(c) P = 5, υ = 0.8 top view
(d) P = 1, υ = 0.8 side view

Figure 3.2: Visual representations of the surface charge density on a non-polarisable
sphere a = 1 nm where q = −1e.

patch does not need to be followed when modelling mono-patchy particles.

Nonetheless, the charge distribution cannot be greater than the particle’s diam-

eter to ensure that the density charge entirely remains on the particle’s surface.

Figure 3.3 shows interaction between two particles set at a sufficiently large

separation distance s = 1000 nm to ensure that the interaction energy at short

separation does not dominate. Particle a1 has a Gaussian patch placed on

facing the second particle. The charge on a2 is uniformly distributed. The size

of the patch on a1 increases from 0.1 to 2. Accordingly, for a normal Gaussian

distribution, the amount of charge will remain accurate for υ/a1 smaller than

0.5, as shown in Figure 3.3. Consequently, when υ/a1 > 0.5, then loss of charge

will occur. Subsequently, when using equation (3.7) for Higher-order Gaussian

distribution and the P variable is set to be equal to 2 and 5, the limitation
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for υ/a1 will equal 0.9 and 1.2, respectively. Following the analogy of charge

distribution between normal Gaussian and higher-order Gaussian distribution

in case of bipatchy particle, the loss of charge decreases for the ”flatter” patch

(P > 1) as the charge is less diffuse.

Figure 3.3: Interaction energy as a function of the ratio υ/a1. P = 1 (yellow
solid line), P = 2 (blue solid line), P = 5 (purple solid line), where q1 = +1e and
q2 = −1e. For a1 = a2 = 1 nm at s = 1000 nm. The dashed line represents the
interaction between two point-charges q1 = +1e and q2 = −1e at s = 1000 nm.

As observed in figure 3.1 and 3.3, with the increase of P-value (P > 1), the

change in the shape of the Gaussian function allows one to obtain the charge

density to be less non-uniformly distributed within the patch’s area. Thus, a

patch can be enlarged without loss of charge. Figure 3.4 visualises how the

shape of a Gaussian function changes when increasing the P value as well as

varying the υ value. Nonetheless, Gaussian distributions are intended for flat

surfaces rather than spherical.
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(a) P = 1, υ = 0.3 (b) P = 2, υ = 0.3

(c) P = 5, υ = 0.3 (d) P = 5, υ = 0.8

Figure 3.4: Higher-order Gaussian distribution when using equation (3.7), where
(µx;µy) is the centre.

3.1.1 Testing higher-order Gaussian distribution of charge

Coulomb’s law - equation (3.8) - was applied to calculate the electrostatic

potential energy of point charges at a range of separation distances and compare

the results obtained using the existing model. Coulomb’s law considers charge

density to be a point charge on a particle’s surface. When the charge density is

uniform on a particle’s surface, it can be approximated to be a point charge at

the centre of a particle’s surface, as shown in figure 3.5a. Whereas, applying the

Gaussian distribution - if υ is sufficiently small - it can be approximated to be

a point charge at the sphere’s surface (figure 3.5b). However, the point charges

were set on each particle’s right side for non-uniform charge distribution to

keep a reasonable distance between the set point charges. The potential energy
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Ue of a pair of charges located at a definite distance takes the form:

Ue =
1

4πϵ0

q1q2
r

, (3.8)

where ϵ0 is the permittivity of free space, q1,2 is the charge of each object and

r is the distance between the charges.

(a) (b)

Figure 3.5: Visual representations of two point charges: (a) when the charge density
is uniform, it can be approximated to be a point charge at the centre of the sphere
(on the particle’s surface), (b) Gaussian distribution - a patch of charge placed on
the particle’s surface. Red point represents a point charge with q1 = +1e and the blue
dot is a point charge with q2 = −1e.

Figure 3.6 represents the validation of higher-order Gaussian distribution

against Coulomb’s law and existing point charge and uniform distribution of

charge as additional testing. The interaction energy of charged objects are

calculated by using Coulomb’s law and our model. The scenario to test uniform

method considers two dielectric non-polarisable particles a1 = 1 nm, a2 = 2 nm

with uniformly distributed charge over the surface of the particles, where

q1 = +1e, q2 = −1e. The scenario for charged objects to test the uniform

method is visualised in figure 3.5a. The agreement between the uniform

distribution of charge using our code (figure 3.6 - orange dotted plot) and the

electrostatic potential energy calculated for a pair of point charges (figure 3.6 -

solid orange plot) indicates that the application of our model agrees with the

expected values. Similarly, the results generated for point charges localised

on a particle’s surface (figure 3.6 - purple circle plot) - visualisation 3.5b also

precisely meet the calculated Coulombic interactions (figure 3.6 - solid purple

plot) - visualisation 3.5b. To test the higher-order Gaussian distribution of
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charge the Gaussian patches were set to face the same direction to match

the case for the charged objects are calculated by using Coulomb’s law 3.5b.

Thus, two monopatchy particles of radius a1 = 1 nm, a2 = 2 nm interact, where

q1 = +1e, q2 = −1e. When implementing a higher-order Gaussian distribution

of charge (figure 3.6 - purple dotted plot), the results also show a very close

match to the coulombic interaction (figure 3.6 - solid purple plot). Notably -

the results can be easily altered when changing the width of the patch.

Figure 3.6: Interaction energy as a function of surface-to-surface separation s for
uniform method (the potential energy equation (3.8) - orange solid, model’s results –
orange dots); Gaussian method (the potential energy equation (3.8) – purple solid,
model’s results – purple dots), the Gaussian patches on a1 and a2 are facing the
same direction, P = 5 and υ/a1 = 0.8; results for point charge model’s results
- purple circles. Position of the point charges - figure 3.5. Remaining variables:
a1 = 1 nm, a2 = 2 nm, where q1 = +1e, q2 = −1e for km = kp = 1.

As demonstrated above, the patch charge becomes more uniformly spread over

the surface as increasing the P variable in higher-order Gaussian distribution.

Following the presented tests, one more evaluation was carried out. Figure 3.8

shows the interaction between two bipatchy particles, each carrying two patches

with an opposite sign q1 = +1e and q2 = −1e (visualisation - figure 3.7). A sig-
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Figure 3.7: A geometric representation of two-body system. Each sphere has two
oppositely charged patches with q1 = +1e (red patch) and q2 = −1e (blue patch)
placed on a particle’s surface. The second sphere moves away from the first sphere
with surface-to-surface separation distance s.

nificant increase in interaction energy can be seen in figure 3.8 when the patches

become slightly flatter on each of the bipatchy particles (P-value increases to

2). And as result the charge density becomes less dispersed. Comparing normal

Gaussian distribution (P = 1) and higher-order Gaussian distribution (P = 5),

the difference in the interaction energy increases by more than half its value.

In addition, the energy starts to converge quicker as P > 1, to a point that the

results almost overlap when looking at P = 4 (black plot) and P = 5 (cyan

plot) - figure 3.8.
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Figure 3.8: Interaction energy plots between two bipatchy particles (figure 3.7) as a
function of surface-to-surface separation s for P = 1 (purple), P = 2 (blue), P = 3
(red), P = 4 (black), P = 5 (cyan) using equation (3.7); km = kp = 1, a1 = a2 =
1 nm.

3.2 Numerical validations

A set of calculations was run to examine the higher-order Gaussian method of

distributing charge on bipatchy particles surface. The following figures display

trends and patterns with varying standard variables: the size of particles as well

as the size of the patches, charge ratio, surface-to-surface separation distance

and angle between two spheres. The bipatchy particles are suspended in a

vacuum km = 1. The dielectric constant of the bipatchy particles kp equals 20.

The specific parameters were set to enable the charge density to sufficiently

polarise on the particle’s surface. The presented results of electrostatic forces

and interactions in the chosen systems display a likelihood of stability for

bipatchy particles at zero separation distance. Also, a series of systems are

examined to test what modifications favour reducing the magnitude of repulsive
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interactions between like charges.

Figure 3.9: Electrostatic force as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). Patch geometry is defined by υ = 0.8 and
P = 5 using equation (3.7). For a1 = 1 nm, kp = 20, km = 1 and a2 = 1 nm (light
blue), a2 = 2 nm (dark blue), a2 = 3 nm (purple).

The electrostatic force and interaction energy were calculated between two

bipatchy particles each possessing oppositely charged patches q1 = +1e and

q2 = −1e (visualisation - figure 3.7) as a function of surface-to-surface sepa-

ration s between two bipatchy particles. One of the bipatchy particles has a

fixed size a1 = 1 nm, whereas the second bipatchy particle increases in size

from a2 = 1 nm to a2 = 2 nm and next to a2 = 3 nm. The size of bipatchy

particles with the fixed size of the patches while the radius of a sphere varies

in size has a consequential effect on the electrostatic force - figure 3.9, for

the like charges positioned adjacent to each other - figure 3.7 (visualisation).

The increase in size of a2 decreases the electrostatic repulsion, resulting in a

local minimum at zero separation distance (figure 3.9 - dark blue and purple

plot). Nevertheless, each system remains purely unstable - the electrostatic
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Figure 3.10: Interaction energy as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). Patch geometry is defined by υ = 0.8
and P = 5 using equation (3.7). For a1 = 1 nm, kp = 20, km = 1 and a2 = 1 nm
(yellow), a2 = 2 nm (blue), a2 = 3 nm (purple).

interaction energy plots display a global maximum at the shortest separation

distance (figure 3.10). As the system becomes asymmetric - a2 increases in

radius, the repulsive interaction increases in magnitude.

Unlike when the patch size is set to increase along with the particle’s size, the

system gains an attractive part of the electrostatic force at a shorter separation

distance - appendix A.1. The interaction remains repulsive for a system with

identical parameters of bipatchy particles due to the symmetrical charge distri-

bution producing equal induced bound charges (appendix A.1 - light blue plot).

For the systems with a2 = 2 nm (dark blue plot) and a2 = 3 nm (purple plot)

the attractive regime appears at a short separation distance between bipatchy

particles and significantly increases when the particles are positioned at a touch-

ing point. The system with symmetrical bipatchy particles remains unstable

at a touching point and possesses a global maximum, that indicates that the
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particles would push each other away (appendix A.2 yellow plot). When a2

becomes twice as large than a1, including patch geometry, appendix A.2 (blue

plot) shows a low barrier at a touching point due to the decrease of the surface

density charge on a2. For a system with parameters of a1 = 1 nm and υ = 0.8

and the second particle a2 increases triple in size of the radius along with the

patch size, the systems gains an energetically favourable state at zero separation

(purple plot). The system becomes stable at a touching configuration due to

the even greater magnitude of polarisation of surface charge density on a2. The

trend is due to the decrease of the surface density charge on the larger particle.

Similarly, the increases in the magnitude of charge and density of charge on a2

result in a stable configuration when two bipatchy particles are at the point of

contact - figure 3.11. As the patch charge increases, both - the patch charge

becomes more polarisable, and the repulsive electrostatic force increases in

magnitude. The latter nevertheless raises the potential energy barrier at a

larger separation distance due to the increase of charge density. Thus, the

purple plot has a higher barrier to separation in comparison to the green plot.

Following the studying of two-body systems at a range of separations, the

analysis increases to small clusters still at varying surface-to-surface separa-

tion distances. An increase in the number of bipatchy particles in the chain

immediately forms a stable system at all ranges of separation distances - fig-

ure 3.12. When the two like-charged patches are moved close to each other, the

interaction energy starts repulsive, but the energy gradually becomes more and

more attractive as the number of particles increases in the chain. The repulsive

Coulomb term increases in magnitude at approximate 1 nm, but the systems

remain at an energetically favourable position apart from the two-body sys-

tem, where the Coulombic attraction entirely diminishes at a 1 nm separation

distance. In addition, every next addition of a bipatchy particle lowers the

interaction energy of the system with yet greater magnitude.
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Figure 3.11: Interaction energy as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). Patch geometry is defined by υ = 0.8 and
P = 5 using equation (3.7). For a1 = a2 = 1 nm, kp = 20, km = 1. The charge vary
on a2: q = +1e (yellow), q = +2e (green),q = +3e (purple).

The results of cluster geometry shown in figure 3.13 also present favourable

interaction at all separation range. When the same sign patches of the moving

particle and the particles at a fixed position are positioned in the opposite

direction (figure 3.13 yellow plot), the system possesses a small energy barrier,

resulting in a local minimum at the contact point. Unlike when the particle

in motion has an opposite charge patch facing the cluster, the attractive part

of Coulombic interaction increases significantly in magnitude resulting in the

interaction energy being much lower than when the particles are at a more

considerable distance apart.

A further study of electrostatic interaction between bipatchy particles at a

short-range separation was carried out. A set of results was obtained for the

two-body systems as a function of the angle separated by surface-to-surface
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Figure 3.12: Interaction energy as a function of surface-to-surface separation s
between bipatchy particles. Patch geometry is defined by υ = 0.8 and P = 5 using
equation (3.7); red patch q = +1e and blue patch q = −1e. For kp = 20, km = 1,
particles radii a = 1 nm.

0.001 nm distance. The interacting spheres have dielectric constant kp = 20,

and are placed in a vacuum km = 1. The effect of changing the patch and

particle size as well as the charge ratio was examined.

An interaction energy was measured for two bipatchy particles where one of the

bipatchy particles has a fixed radius a1 = 1 nm and the second bipatchy particle

increases in size from a2 = 1 nm to a2 = 2 nm and subsequently to a2 = 3 nm.

The attraction at zero degrees angle (a stable configuration) between bipatchy

particles increases as the particle increases in size (figure 3.14). Also, the

attractive regime occurs at a larger surface of the rotating particle as the sys-

tem becomes more asymmetric. Likewise, when the patch size grows together

with the particle’s radius, this gives rise to the attraction contribution of the

electrostatic energy (appendix A.3). As the size ratio increases to 1 : 3 nm

with a patch at its maximum allowable size, the attraction energy dominates at
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Figure 3.13: Interaction energy as a function of surface-to-surface separation s
between bipatchy particles. Patch geometry is defined by υ = 0.8 and P = 5 using
equation (3.7); red patch q = +1e and blue patch q = −1e. For kp = 20, km = 1;
particles radii a = 1 nm.
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all the rotational angles due to the influence of polarisation of surface charge

as shown in appendix A.3 (purple plot).

Figure 3.14: Interaction energy as a function of α for the interaction between
two bipatchy particles at a fixed surface-to-surface separation s = 0.001 nm. Patch
geometry is defined by υ = 0.8 and P = 5 using equation (3.7); red patch q = +1e
and blue patch q = −1e. For kp = 20, km = 1, a = 1 nm and and a2 = 1 nm (yellow),
a2 = 2 nm (blue), a2 = 3 nm (purple).

Following the investigation of the attraction at a touching point for systems

with bipatchy particles’ size ratio, further analysis was carried when the charge

was altered on a patch. The charge distribution was decreased by the magni-

tude and density of charge on negatively charged patches of the two bipatchy

particles to q = −0.9e, while positively charged patches remained with charge

q = +1e for all scenarios in figure 3.15. The attractive term of the interaction

energy decreases as the charge on a negative patch decreases to q = −0.9e

in a configuration of the oppositely charged patches facing each other on the

bipatchy particles (blue plots, angle = 0° ), when comparing to the system

with bipatchy particles possessing symmetrical in terms of charge patches
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Figure 3.15: Interaction energy as a function of α for the interaction between
two bipatchy particles at a fixed surface-to-surface separation s = 0.001 nm. For
kp = 20, km = 1; a1 = a2 = 1 nm. Patch geometry are defined by υ = 0.8 and P = 5
using equation (3.7); q1 = +1e (red patch) and q2 = −1e (blue patch) - yellow plot;
q1 = +1e (red patch) and q2 = −0.9e (blue patch) - blue plots.

(yellow plot, angle = 0°). The repulsive term also decreases for the system with

patches possessing charge q = −0.9e and facing each other at the repulsive

configuration (blue solid plot, angle = 180°) in comparison to a system with all

patches having the same magnitude and density of charge and negative patches

are also facing each other (yellow plot, angle = 180°). Oppositely, when two

bipatchy particles are set at a configuration that the positively charged patches

face each other (angle = 180°) the repulsion rises because the patches that face

each other possess a greater magnitude and density of charge (blue dashed plot).

Knowing the predictions for the stability of systems with unequal size patches

of oppositely charged bipatchy particles can support future experimental work

more relevant. For this analysis, a patch size was altered for both negatively

and positively charged patches on two bipatchy particles a1 = a2 = 1 nm. The
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Figure 3.16: Interaction energy as a function of α for the interaction between two
bipatchy particles at a fixed surface-to-surface separation s = 0.001 nm. For kp = 20,
km = 1; a1 = a2 = 1 nm; q1 = +1e (red patch) and q2 = −1e (blue patch); Patches
geometry: P = 5; all patches υ = 0.8 (magenta); positive red patch υ = 0.8 and
negative blue patch υ = 0.7 (cyan solid line), positive red patch υ = 0.7 and negative
blue patch υ = 0.8 (cyan dashed line) using equation (3.7).

cyan plots in figure 3.16 show an increase in the attractive term at a stable

configuration (angle = 0°) due to the asymmetry of the oppositely charged

patches (compared to the scenario of bipatchy particle with equal sized patches

- magenta plot, angle = 0°). The slight increase in stability is due to increased

surface charge density at the smaller patches, thereby inducing the bond charges

on the remaining patches. The repulsive Coulomb term is increased for the

bipatchy particles at unstable configuration with smaller patches facing each

other (solid cyan plot, angle = 180°) due to a decrease of polarisation of the

bound charge. A case of positioning larger in size like-charged patches at

repulsive connection leads to a decrease in Coulombic repulsion (cyan dashed

plot, angle = 180°) compared to smaller patches facing each other (solid cyan

plot, angle = 180°). The observed trend is due to the increase in polarisation

of the charge density on the larger patches.
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After demonstrating the ability of higher-order Gaussian distribution to model

a patch while holding the charge within a patch dimension to a greater limit

of the standard deviation of the distribution than normal Gaussian, further

modelling is presented. In addition to altering the patch ”flatness”, the patch

size can also be modelled up to a precise value. The following section describes

the solution to obtain the desired diameter of a patch.

3.3 Modelling a patch

A higher-order Gaussian distribution compared to a normal Gaussian distribu-

tion allows modelling a patch with a fatter top shape. In addition the patch

size can be modelled without loss of charge. Having an equation (3.9) for chord

length dc, a specific patch size can be obtained. The equation for a chord is

given by the formula:

dc = 2 · r · sin · t
2
. (3.9)

In the equation, the variable t represents the central angle in radians (that

subtends the arc), and the variable r corresponds to the particle’s radius, as

illustrated in Figure 3.17.

Figure 3.17: Visualisation of variables required for the equation (3.9) for chord
length dc.
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The presented work shows the validation of higher-order Gaussian distribution

of charge density used as modeling a patch on a particle’s surface. A full

range of capabilities of the model was demonstrated. The work progresses

to explore the electrostatic interaction between oppositely charged inverse

bipatchy particles introduced by Mehr et al.[1].



Chapter 4

Computational modelling of

oppositely charged inverse

bipatchy particles

The work in this chapter specifically focuses on the prediction of results for

the system discussed in Mehr et al.[1]. The following report presents more

satisfying results with a two-body approach where a patch is modelled by a

distribution of charge on a particle’s surface with an exact size given in the

experimental results[1].

4.1 Comparison of charge distribution meth-

ods

After validating the accuracy of the implemented higher-order Gaussian distri-

bution of charge, this work attempted to compare the higher-order and uniform

distribution of charge.

In 2020 Mehr et al.[1] presented a study of self-assembly behaviour of oppositely

charged inverse bipatchy microcolloids and modelling the patches by a uniform

distribution of charge on the smaller spheres in the analysed systems. In the

40
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experimental section, the patches were reported to have a size of 2.33 ± 0.16

and 2.4 ± 0.2 µm for polyethylenimine (PEI) and poly(methyl vinyl ether-alt-

maleic acid) (PMVEMA) patches, respectively. In order to recreate the patches’

geometry, a higher-order Gaussian distribution implementation was used to

model patchy particles. The remaining required variables were taken from Table

3 in Mehr et al.[1]. After presenting numerical tests of higher-order distribution

of charge in the form of a patch on a particle’s surface and presenting a variety

of trends afterwards, this report attempts to compare the results published by

Mehr et al.[1] with the results obtained by implementing higher-order Gaus-

sian distribution. Mono-patchy and bi-patchy particles were computationally

modelled to investigate the interaction energy between colloidal particles using

many-body solution.

Looking at figure 4.1 and figure 4.2 - both figures show interaction energy

between bipatchy-bipatchy and bipatchy-monopatchy particles as a function

of surface-to-surface separation s. The solid lines in both figures show the

results from ”Self-Assembly Behavior of Oppositely Charged Inverse Bi-patchy

Microcolloids” article where a bipatchy particle is represented by a mother

particle and two smaller particles located on the opposite pole imitating the

patches. The dashed lines in figure 4.1 and 4.2 are results generated by higher-

order Gaussian distribution, which allowed to place patches on the spheres,

thus, creating a two-body system.

Both methods show the same trends for the interaction between bipatchy par-

ticles in figure 4.1. However, the electrostatic interactions predicted with the

uniform distribution of charge (the solid lines) were a lot weaker in comparison

to the results obtained with higher-order Gaussian distribution (the dashed

lines). The results for the two-body system show that the attraction energy is

much more substantial for inner patches with opposite charge signs. Also, the

repulsive interactions are much stronger for inner patches with the same charge

signs. Although, the results will differ as those two methods have different forms
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Figure 4.1: Interaction energy as a function of surface-to-surface separation s.
Recreation of results from Mehr et al. (figure 5a) [1] - solid lines. Interaction between
bi-patchy particles with variables set to P = 5 and υ/a1,2 = 0.27 for PEI patch and
υ/a1,2 = 0.28 for PMVEMA patch (using equation (3.7)) to recreate the patch’s size
from the experimental results in Mehr et al.[1]. Negatively charged patch PMVEMA
q = -0.923 fC (red colour) and positively charged patch PEI q = +0.734 fC (green
colour).

of distributing the charge. Nonetheless, the higher-order Gaussian distribution

allows modelling a patch with an exact patch size reported in experimental

results.

Figure 4.2 displays also the same trends for both methods. The repulsive inter-

action increases in magnitude at short separation for the two-body systems with

a higher-order charge distribution. In addition, the higher-order distribution

gives a lower energy minimum. For the higher-order Gaussian distribution,

when the outer patches have the same sign (red and blue dashed plots), the

interaction energy becomes more repulsive when there is less charge density

placed on the outer patches, which is the opposite to the results generated by

the uniform distribution of charge (red and blue solid plots). Also, the experi-
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Figure 4.2: Interaction energy as a function of surface-to-surface separation distance
between particles. Recreation of results from Mehr et al. (figure 5b) - solid lines.
Interaction between bi-patchy and mono-patchy particle with variables set to P =
5 and υ/a1,2 = 0.27 for PEI patch and υ/a1,2 = 0.28 for PMVEMA patch (using
equation (3.7)) to recreate the patch’s size from the experimental results in Mehr et
al. Negatively charged patch PMVEMA q = -0.923 fC (red colour) and positively
charged patch PEI q = +0.734 fC (green colour).

mental data figure 1.3 (figure 2c from Mehr et al.[1]) exhibits larger fractions

of interaction between MF neutral particle and PEI patch (green colour), as

predicted with a higher-order distribution of charge. However, figure 1.3 (figure

2c from Mehr et al.[1]) does not show exactly if the interacting particles were

monopatchy or consisted of two patches or neutral MF particle. The difference

in magnitude of the interaction energy between both methods might be due to

the difference in surface-to-surface separation between the central MF particles.

The conclusion leads to a comparison of interaction energies between two

methods of distributing a charge when the MF mother particles are at the

same surface-to-surface separation distance. In order to match the separation

between MF particles in higher-order distribution (two-body system) to the
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uniform distribution of charge (five-body system), an additional distance needs

to be added equal to the diameter of the smaller sphere that represents a

patch for the uniform distribution of charge. Figure 4.3 displays the results

between uniform and higher-order distribution when MF particles for higher-

order distribution only approach each other as close as the model allows for

uniform distribution. Nevertheless, if one treats the shortest separations in

the two-body system as equal to the separation in the five-body system, one

should present the results in a parallel manner where the shortest separations

for the two methods are equivalent. The magnitude of interaction energy at the

shortest separation for both methods turns out to be similar, but the trends

are now contrasting (solid lines separation s ranges from 0.001 to 100 µm

and dashed lines the closest separation starts from 5.181 µm and rises to 100

µm). However, in nature, the particles would approach each other at a closer

distance than 2.591 µm. Also, for a case of the shortest surface-to-surface sepa-

ration s = 5.181 µm (red and blue dashed plots, figure 4.3a), if one compares

the interaction energies for systems with identical outer patches generated by

higher-order distribution, the results show disagreement for the experimental

data of PEI-MF and PMVEMA-MF in figure 1.3 - PEI-MF orientation was

formed more often than PMVEMA-MF pair (as the dashed red and blue plots

in figure 4.2 show an agreement with the experimental data - figure 1.3).

Mehr et al.[1] also studied the rotational barrier for oppositely bipatchy mi-

croparticles with oppositely charged patches. Comparisons were carried out to

examine the behaviour of bipatchy particles at a fixed separation and rotation

of one of the bipatchy particles in a considered system - figure 4.4. From

figure 4.5, the results obtained by modelling a two-body system with patches

printed on the MF spheres show the same trends as the work produced by

Mehr et al.[1]. Following the previous assumption, a comparison was made

to match the shortest surface-to-surface separation between the six-body sys-

tem and the two-body system (where the patches placed on the sphere) - for
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(a)

(b)

Figure 4.3: Interaction energy as a function of surface-to-surface separation distance
between particles. Interaction between five-body system with uniformly distributed
charge on each particle – recreation of results from Small by Mehr et al. (solid
lines). Interaction between bi-patchy and mono-patchy particles with variables set to
be P = 5 and υ/a1,2 = 0.27 for PEI patch and υ/a1,2 = 0.28 for PMVEMA patch
to recreate the patch’s size from the experimental results. Negatively charged patch
PMVEMA q = -0.923 fC (red colour) and positively charged patch PEI q = +0.734
fC (green colour); figure b shows interaction energy as a function of surface-to-surface
separation distance between particles only from the distance s = 5.181 µm.
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Figure 4.4: The re-orientation of a bi-patchy pair from a stable PMVEMA-PEI
configuration (α = 0◦) to a repulsive PEI-PEI connection (α = 180◦).

both systems the shortest surface-to-surface separation distances s are 4 µm

(red) and 2 µm (black) - figure 4.5a. In addition, a set of calculations were

made for systems matching the separation distance of the MF central particles

(additional separation was added of two smaller spheres that represent the

patches in the uniform distribution of charge) - figure 4.5b. In both cases

the plots have a remarkably similar shape to the data generated with uniform

distribution. Similar trends might indicate that the redistribution of surface

charge and polarisation of charge density during the rotation of a bipatchy

particle is comparable. The attraction energy diminishes as the like-charged

patches approach each other, and the Coulomb energy barrier decreases with

increasing the separation - identical with the results published by Mehr et al.[1].

However, for the former, the interaction energy magnifies 100 times for the

two-body system (figure 4.5a). Nevertheless, the separation is not constant

for the rotation of the bipatchy particle in the six-body model (perpendicular

reorientation between the bipatchy particles increases the separation by the

size of the smaller sphere), unlike for the two-body system. Therefore, the

results corresponding to higher-order Gaussian distribution most likely resemble

the trends of the interaction energy that happen between polymer bi-patchy

particles.

The above computational analysis of oppositely charged inverse bipatchy parti-
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(a)

(b)

Figure 4.5: The calculated rotational barrier (in fJ) for re-orientation of a bi-patchy
pair from a repulsive PEI-PEI connection (α = 180◦) to a stable PMVEMA-PEI
configuration (α = 0◦) at two surface-to-surface separation distances: 2 µm (black),
and 4 µm (red). The particle rotates around stationary particle facing the stationary
particle with PEI patch. The calculated rotational barrier (in fJ) for re-orientation
of a bi-patchy pair from a repulsive PEI-PEI connection (α = 180◦) to a stable
PMVEMA-PEI configuration (α = 0◦) at two surface-to-surface separation distances:
7.18 µm (black), and 9.18 µm (red). The rotating particle remains at fixed position.
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cles indicated that the magnitude of interaction energy differs from the initial

computation presented by Mehr et al.[1]. Although the initial results do not

vary significantly, the results given in this report present more accurate values

for the interaction energies.



Chapter 5

Conclusions and Future Work

This report manifests the implementation of normal Gaussian and higher-order

Gaussian method of modelling patchy particles. An extension of work on mod-

elling bipatchy particles may be conducted focusing on more complex systems

and dynamic simulations.

Throughout this research, another method to model patchy particles was tested

- overlapping spheres. A patchy particle is represented by two overlapping

spheres. The overlapping method is an extension of the uniform approach. A

three-body system was used to investigate the amount of charge placed on

an overlapping sphere that possesses a charge. The first sphere is set to be

neutrally charged (grey sphere on the the bottom visualisation in figure 5.1),

the overlapping sphere is positively charged q = +1fC (red sphere) and the

charge of the third particle is equal to q = −1fC (blue sphere). The first

and second sphere intersected producing positively charged patch; the third

particle remained with uniformly distributed charge on the particle’s surface

q = −1fC. The patch’s size was set to 0.1 µm, whereas the larger particles

have radius equal to a1,2 = 2.59µm. An anomaly can be seen in the results

for the particles at a shorter distance. The interaction energy increases by an

order of magnitude compared to the methods outlined in section 3.1.

49
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Figure 5.1: Interaction energy as a function of surface-to-surface separation s for
overlapping particles method (solid), and point charges using the potential energy
equation 3.8 (dashed).

The testing against Coulomb’s law showed that the model does not give an

adequate magnitude of charge distributed on a small patch. This development

of the method would give an alternative way to represent patchy particles.

The ability to model a patch of the desired size has improved the results

published in 2020 by Mehr et al.[1]. However, higher-order Gaussian distri-

bution is designed for two-dimensional surfaces. Thus, developing a method

that distributes the charge density on curved surfaces would be even more

appropriate. Kent distribution may be more adequate for spherical objects,

albeit it is a much more complex function[40].
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Measuring bipolar charge and mass distributions of powder aerosols by a
novel tool (bolar). Mol. Pharm., 12(9):3433–3440, 2015.

[30] A. Jaworek, A. Krupa, and T. Czech. Modern electrostatic devices and
methods for exhaust gas cleaning: A brief review. J Electrostat., 65(3):
133–155, 2007.

[31] J. Baptiste, C. Pang, D. Prime, E. Besley, M. Hamilton, and A. J. Stace.
Charged particle dynamics in dry powder inhalers: Evidence of particle
scavenging. in preparation.

[32] L. Holbrook, M. Hindle, and P. W. Longest. Generating charged pharma-
ceutical aerosols intended to improve targeted drug delivery in ventilated
infants. J. Aerosol Sci., 88:35–47, 2015.
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Appendix A

Supporting results

Figure A.1: Electrostatic force as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). For a1 = 1 nm, where υ = 0.8, P = 5;
kp = 20; km = 1. The patches increase in size along with the particle’s size a2 = 1 nm
(light blue), υ = 0.8 and P = 5; a2 = 2 nm (dark blue), υ = 1.6 and P = 5; a2 = 3 nm
(purple), υ = 2.4 and P = 5 using equation (3.7).
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Figure A.2: Interaction energy as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). For a1 = 1 nm, where υ = 0.8, P = 5;
kp = 20; km = 1. The patches increase in size along with the particle’s size a2 = 1 nm
(yellow), υ = 0.8 and P = 5; a2 = 2 nm (blue), υ = 1.6 and P = 5; a2 = 3 nm
(purple), υ = 2.4 and P = 5 using equation (3.7).
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Figure A.3: Interaction energy as a function of surface-to-surface separation s
between two bipatchy particles (figure 3.7). For a1 = 1 nm, where υ = 0.8, P = 5;
kp = 20; km = 1. The patches increase in size along with the particle’s size a2 = 1 nm
(yellow), υ = 0.8 and P = 5; a2 = 2 nm (blue), υ = 1.6 and P = 5; a2 = 3 nm
(purple), υ = 2.4 and P = 5 using equation (3.7).



Appendix B

Atomic scale modelling using

dielectric spheres

The work showed in this section attempted to investigate the ability of the

classical model (introduced in section 2.3) to calculate the polarisation effect

with the accuracy of quantum calculations. The high-level calculations were

performed using several quantum mechanical methods such as second-order

Møller-Plesset perturbation theory (MP2), Density-functional theory (DFT)

and Coupled-Cluster with single-double and perturbative triples (CCSD(T))

approximation.

The environment of an electric field can influence dielectric material to change

in two different ways. The first effect is deformation of electron shell. The

latter is bond distortion. An additional dipole moment is proportional to the

applied electric field, and this relationship is described as atomic polarisability

α. The Clausius-Mossotti formula describes the relationship between the

dielectric constant k (relative permittivity, εr) and the combination of atomic

polarisability α and number of molecules per unit of volume N being expressed

as:

(
k − 1

k + 2

)
=

Nα

3ε0
, (B.1)
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where k is the dielectric constant (ε/ε0) and ε0 is the permittivity of free space.

Physical processes taking place on the microscale are mainly computed by

using the quantum mechanical level of calculations. Calculations with quantum

mechanical methods demonstrate the accuracy of the results of a system and

can be computationally costly with the increase of the system complexity.

The classical models often do not provide the accuracy of expected results

but lower the computational cost. Classical models often are a more suitable

approach when solving macroscopic systems. Hence, computing quantum scale

problems using the classical approach remains a unique challenge. In this

section, the work attempted to model atomic-sized systems with quantum-

level accuracy. The method treats spheres at atomic detail to calculate the

ion-ion and ion-neutral particle systems of aluminium atom. The numerical

solution to calculate polarisation portion of the energy in this section is based

on a formalism of an arbitrary number of dielectric spherical particles with

surface charge distribution of arbitrary size, dielectric constant and charge.

The dielectric particles in this problem are embedded in vacuum. In order

to calculate the polarisation effect via using the classical model, a number of

parameters of the dielectric particles are required. Each particle that represents

an atom in the system needs to have its dielectric constant kp and radius a.

The quantum theory does not explicitly specify a dielectric constant value for

individual atoms. Hence, both parameters are related with the concept of

atomic polarisability α [41]. The atomic polarisability defines the ratio between

the applied electric field and induced dipole moment of an atom. An extensive

experimental and theoretical data have been critically evaluated, compared

and analysed for individual atoms and ions[42–46].

In 2016 Obolensky et al.[41] proposed a mathematical expression that correlates

the radius of an atom of interest and its dielectric constant for a considered
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polarisability α of dielectric sphere, given by:

α =
kp − 1

kp + 2
a3, (B.2)

where the radius must be (α)1/3 to agree to the following condition kp > 1.

To extract the polarisation portion from the quantum level results Obolensky

et al. proposed an expression for total energy E of two atoms or ions A and B

separated at a sufficiently large distance L, given by:

E = EA + EB +
qAqB
L

+ U(L), (B.3)

where A and B portions of the total energy are the self energies of the considered

atoms/ions, possessing the charges qA and qB. The term U(L) corresponds to

the polarisation portion of the total interaction energy.

Figure B.1 compares the values of the polarisation part of interaction energy

U(L) between Al+ − Al+ pair of ions generated by using quantum mechanical

methods and the classical approach (described in section 2.3). The results

obtained by using classical model with parameters of dielectric particles equal

to a1 = a2 = 2Å and kp = 3.52 with chosen scalar a30 equal to 24.65[41] (green)

accurately agrees with the CCSD(T)/aug-cc-pVTZ level of theory (black).

Also, dielectric particle pair of radius a1 = a2 = 2.49Å and dielectric constant

kp = 1.915 for 24.4 a30 [41] (red) matches the values from CCSD(T)/aug-cc-

pVTZ calculations. Similarly, results of a system of dielectric particles having

radius a1 = a2 = 1.54Å and kp = 154.96 for 24.2 a30 [42] from the Sum-rule

(magenta) agrees with B3LYP/6-31G(d) level (yellow) and MP2/6-31G* (light

blue) at distance from 4Å.

Likewise, figure B.2 presents U(L) energies of Al − Al+ atoms computed

using quantum-chemical and the classical approach. The calculations for this



61

Figure B.1: The polarisation portion of the interaction energy U(L), in atomic
units, for Al+−Al+. The calculations are done with the CCSD(T)/aug-cc-pVTZ with
no frozen core orbitals method (black), the density functional theory at the B3LYP/6-
31G(d) level (yellow), MP2/6-31G* (light blue) For the rigorous classical formalism
for two dielectric spheres three choices of parameters: kp = 3.52, a1 = a2 = 2Å
(green); kp = 154.96, a1 = a2 = 1.54Å (magenta); kp = 1.915, a1 = a2 = 2.49Å
(red).

comparison were carried out using also CCSD(T)/aug-cc-pVTZ, B3LYP/6-

31G(d) and MP2/6-31G* level of theory and classical approach (described

in section 2.3). The results of ion-neutral atom pair obtained using classical

method for dielectric particles’ radii of aAl+ = 2.48Å for 24.4 a30 [41] and

aAl = 5.05Å for ground state a0 from CCSDT equal to 57.74 [42] and kp = 1.93

(red) overlaps with the results generated by CCSD(T)/aug-cc-pVTZ method.

A system with smaller dielectric spheres of radii aAl+ = 2Å for 24.65 a30 [41]

and aAl = 4.07Å for a0 = 57.74 from CCSDT [42] and kp = 3.49 (dark blue)

very closely agrees to values calculated by using MP2/6-31G* (light blue).

Understanding the properties of systems at the molecular level is crucial such

as metal pairs incorporated in catalysts’ structures [47] and ion-pair residing

in proteins [9, 48]. Regrettably, using expressions presented by Obolensky et
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Figure B.2: The polarisation portion of the interaction energy U(L), in atomic
units, for Al − Al+. The calculations are done with the CCSD(T)/aug-cc-pVTZ
with no frozen core orbitals method (black), the density functional theory at the
B3LYP/6-31G(d,p) level (yellow), MP2/6-31G* (light blue) For the rigorous classical
formalism for two dielectric spheres two choices of parameters: kp = 3.49, aAl+ = 2Å,
aAl = 4.07Å (dark blue); kp = 1.93, aAl+ = 2.48Å, aAl = 5.05 (red).

al.[41] did not give satisfying values at short separation distances for systems

containing other metals when using the model of dielectric spheres applied

in this research. Presented work manifests that classical methods could solve

systems at a more efficient pace with quantum calculations’ accuracy.

The work in Appendix B demonstrated the ability to calculate atomic-scale

small systems by applying polarisable dielectric particles. The existing method

only allows for the particles to come together at a touching point. The men-

tioned above overlapping method would also allow the particles to interact at

even shorter distances, similarly to the quantum-mechanical methods. Also,

developing more suitable formalism would enable the calculation of other

atom and ions pairs and even more complex systems. This approach would

significantly reduce the computational time.
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