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ABSTRACT 
 

Metapopulation dynamics play a critical role in driving endemic persistence and transmission 

of childhood infections. The endemic threshold is defined as the minimum population size 

required to sustain a continuous chain of infection transmission. The concept is fundamental 

to the implementation of effective vaccine-based disease control programmes. Vaccination 

serves to increase endemic threshold population size, promoting disease fadeout and 

eventual elimination of infection. To date, empirical geographical investigations of endemic 

threshold populations have tended to focus on isolated populations in island communities. 

Few studies have examined endemic threshold dynamics in ómainlandô regional populations 

with divergent spatial structures and varying levels of connectivity between subpopulations.  

 

This thesis presents a geographical analysis of spatiotemporal changes in endemic threshold 

populations for three childhood infections (measles, pertussis and scarlet fever) in two regional 

metapopulations of England and Wales: Lancashire and South Wales. Drawing upon weekly 

disease records of the Registrar-General of England and Wales over a 30-year period 

(January 1940ïDecember 1969), empirical regression techniques were used to estimate the 

endemic threshold populations for childhood infections in the two study regions. Hotspot and 

survival analyses were performed to compare disease fadeout duration and probability for 

both regions in the pre-vaccine and vaccine eras, respectively. Endemic-epidemic modelling 

was undertaken to identify and analyse potential drivers of disease persistence. 

 

The findings reveal strong regional differences in estimates of endemic threshold populations 

over time and space for all three childhood infections. Regional differences in endemic 

threshold populations reflect significant regional variations in spatial connectivity, population 

dispersion and level of geographical isolation. Significant growth in fadeout duration was 

observed in the vaccine era for pertussis non-hotspots in both regions, consistent with 

geographical synchronisation of epidemic activity.
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Chapter 1: Introduction & Review 

 

1 Background 
 

The endemicity of childhood infectious diseases, such as those which blighted the public 

health of industrialised societies in the early-twentieth century, remains an area of 

considerable interest for geographers engaged in the study of epidemiological theory from 

a spatial perspective. According to Dietz (1995), determining the endemicity of infections 

can make a valuable contribution to global disease eradication programmes. For instance, 

identifying the urban centres and regions which facilitate the persistence of an infection by 

acting as ópermanent disease reservoirsô (Cliff et al., 2000: 85) is key to enabling effective 

strategies to be developed which successfully eliminate infection. One concept which holds 

profound implications for the persistence and control of an infection is that of the endemicity 

threshold, which has previously received mention in the work of geographers who have 

attempted to elucidate the spatial structure and geographical spread of childhood infections 

(Cliff et al., 1992, 1993, 2000; Murray and Cliff, 1977; Trevelyan et al., 2005). 

 

Most commonly referred to as ócritical community sizeô in epidemiological literature, an 

endemic threshold is the minimum population required for an infection to persist endemically 

within a geographical area (Schenzle and Dietz, 1987), without the reintroduction from 

external sources. According to the seminal work of Bartlett, stochastic processes play a 

fundamental role in determining the endemic threshold size (Anderson, 2016; Metcalf et al., 

2013a). The persistence of infection, based on the stochastic models formulated by Bartlett 

(1957, 1960), strongly implies a spatial transmission of infection between geographical units 

as the population size of cities and towns fall below the endemic threshold, with hierarchical 

travelling waves spreading across the landscape from large urban centres. These 

settlements act as óendemic reservoirsô which maintain the persistence of infection, re-

infecting regions where disease has either been locally eliminated or faded out (Cliff and 
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Haggett, 1989). However, the value of the threshold population also depends on the spatial 

structure of communities and other heterogeneities, as well as on various epidemiological 

parameters such as infectious and latent periods (Keeling and Grenfell, 2007). The endemic 

threshold size concept has played a central role in a vast number of studies which seek to 

understand the spatiotemporal dynamics and endemic persistence of infection, most 

notably in the sub-field of measles studies. Numerous epidemiological models have been 

developed over recent decades attempting to accurately calculate the endemic threshold 

value for measles and other infections, accounting for mechanisms such as seasonality, 

age structure and spatial heterogeneity (Aron and Schwartz, 1984; Keeling and Grenfell, 

2002; Bolker and Grenfell, 1996). 

 

Over recent decades, the study of disease persistence and critical community size from a 

spatial perspective has largely involved the use of metapopulation models formulated by 

ecologists and population biologists. These studies have tended to focus on analysing the 

temporal patterns of fadeouts in greater detail, explaining the spatiotemporal persistence of 

measles in England and Wales as a function of urban population size (Earn et al., 1998; 

Grenfell and Harwood, 1997; Harrison, 1991). The work of Grenfell and Bolker (1998) 

supports the conclusions of Bartlett (1957, 1960), finding measles to persist during inter-

epidemic periods in large urban centres with an endemic threshold population above 

300,000 during the pre-vaccination era, with prolonged periods of endemic fadeouts mostly 

occurring in small communities. They interpreted their findings as evidence that a spatial 

hierarchy in the host population structure served as a vital prerequisite for the measles 

epidemic waves which travelled the length and breadth of England and Wales during the 

pre-vaccine era. Exploring the implications led by the endemic threshold concept for the 

metapopulation dynamics of measles, Grenfell and Harwood (1997) discuss the endemic 

persistence of measles in large settlements (ócore patchesô), and regular fade-out at a local-

level in smaller communities (ósatellite patchesô) as representing a mainland-island 

metapopulation, with source-sink dynamics explaining the persistence and recurrent 
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outbreaks of infection. Bolker and Grenfell (1996) highlighted the importance of spatial 

decorrelation between the measles epidemics of 10 major urban centres in England after 

the onset of mass vaccination in sustaining the persistence of infection and the pre-vaccine 

era endemic threshold size for the infection. The spatiotemporal decorrelation of city 

epidemics after the introduction of vaccination coupled with the stability of the endemic 

threshold value suggested the occurrence of a órescue effectô between cities, maintaining 

the circulation of infection. This finding indicates that rescue effects alongside 

epidemiological coupling between geographical units may prevent positive changes in 

endemic threshold population size. Undoubtedly, metapopulation models that incorporate 

the spatial structure of regional populations provide a template for studies which aim to 

develop an explicitly geographical understanding of disease persistence.  

 

Yet, according to Bolker and Grenfell (1996), endemic threshold size is inherently 

geographical, ultimately dependent on local spatial structure and the connectedness of 

regional populations. Geographical research on endemic infections has attempted to 

understand the processes that enable this spatial transfer of infection, as such knowledge 

may aid the development of control strategies that could be implemented to interrupt the 

disease diffusion process (Cliff et al., 1992), helping to facilitate the elimination of infectious 

disease for which the tools exist to do so. Developing an analytically sound platform for 

understanding the geographical nature of epidemiological data within a modelling 

framework is ultimately crucial to realising these ambitions.  

 
 
This introductory chapter will present a detailed review of the empirical and theoretical 

literature concerning the concept of endemic thresholds. This will be followed by a 

statement of research; a statement of the problems the thesis seeks to address, a 

justification for the research, aims and objectives of the thesis as well as stating the research 

questions that seek to be answered, before finally presenting a chapter outline for the thesis.  
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1.1 Literature Review 
 

The literature review is split into three parts. Part one introduces and unpacks the study of 

endemic thresholds, discussing seminal work on critical community size and disease 

persistence, and detailing previous empirical studies of endemic thresholds for childhood 

diseases. This is followed by a discussion of the relationship between endemic thresholds 

and vaccination. The second part details the quantification and modelling of endemic 

thresholds, with reference to empirical work, and discusses the utility of metapopulation 

theory to inform analysis of endemic thresholds. The final part of the chapter provides an 

account of the epidemiology of the three childhood infections under analysis. 

 

Part One: The Study of Endemic Thresholds 

 

1.2 Understanding Endemic Threshold Populations 

 

According to Bolker and Grenfell (1996), the size of endemic threshold populations is 

inherently geographical, ultimately dependent on the spatial structure and connectedness 

of a regional population. It has been recognised that the persistence of infection, based on 

the stochastic models formulated by Bartlett (1957, 1960), implies the spatial transmission 

of infection between geographical units as the population size of cities and towns fall below 

the endemic threshold, with hierarchical travelling waves spreading across the landscape 

from large urban centres, the engines of infection. Geographers have in the past aimed to 

identify óendemic reservoirsô which maintain the persistence of infection, re-infecting regions 

where disease has either been locally eliminated or faded out (Cliff and Haggett, 1989). 

Geographical research on endemic infections has attempted to understand the processes 

which enable this spatial transfer of infection, as such knowledge may aid the development 

of control strategies that could be implemented to interrupt the disease diffusion process 

(Cliff et al., 1992), facilitating the elimination of infectious disease. Key to achieving these 
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endeavours is the establishment of an analytically sound platform for understanding the 

geographical nature of epidemiological data within a modelling framework.  

 

Several factors may affect the estimates for endemic threshold size. Firstly, subpopulations 

within the study area may artificially inflate the threshold value if most contact between 

susceptibles and infected individuals occurs in these subpopulations, rather than in a large 

homogenously mixed population. This effect generally increases in line with the number of 

subpopulations in existence. The likelihood of subpopulation mixing increases as the study 

area is extended geographically to include several towns and cities (Cliff et al., 1993). 

Related to this is the issue of geographical isolation, which reduces the level of mixing 

between susceptibles and infected persons compared to that expected in a single 

homogenously mixed population. Population density and turnover may also play influential 

roles in determining the value of endemic threshold size (Cliff et al., 2000). High birth rates 

produce a large pool of susceptibles, enhancing the likelihood that a disease will be able to 

persist endemically (Bartlett, 1957). High population density increases the transmission 

probability between susceptible and infected individuals, as well as the speed at which 

disease spreads and fades out, complicating the estimation of endemic threshold size 

(Black, 1966). Underreporting however is a key issue with regards to the calculation of 

endemic threshold size, since it may bias such estimates by suggesting apparent fade-outs 

where there were cases of infection which went unobserved (Metcalf et al., 2013a).  

 

Endemic thresholds have been characterised empirically for relatively few childhood 

diseases (Hanski and Gaggiotti, 2004). By far the most well-documented of these is the 

endemicity threshold for measles, for which persistence of the infection is considered a 

function of urban population size (Grenfell and Harwood, 1997).  
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1.3 Study of Endemic Thresholds: Measles 

 
In the early 20th century, it was recognised that in order to explain the recurrence of 

outbreaks of childhood infectious diseases, both demographic and epidemic forces had to 

be accounted for (Hamer, 1906). A deterministic theoretical model for recurrent measles 

epidemics, the HamerïSoper model, was forwarded by Herbert Soper in 1929. This 

epidemic model predicted measles would approach an endemic stable equilibrium level 

above a threshold through the damping of epidemic oscillations, as a result of shorter 

periods of disease infectivity. The infectivity of measles, according to Soper (1929), begins 

instantly when an individual is infected and is spread over time. This leads to a decline in 

the incidence of the disease, thus indicating the damping of epidemic waves. 

Fundamentally, the HamerïSoper model suggests disease extinctions do not occur at all 

(Nåsell, 2005). It is therefore insufficient for explaining recurrent epidemics of infection. 

Wilson and Worcesterôs (1945) state the incidence of recurrent outbreaks of measles 

provide no tangible evidence to support the theory of damping of epidemic oscillations. 

Bartlett (1956) believed that the HamerïSoper model was problematic since it failed to 

account for demographic stochasticity, the inherent unpredictability in the timing and nature 

of births, mortality and migration (Conlan and Grenfell, 2007). This resulted in major 

inconsistencies between theoretical models of measles cases and recorded observational 

measles data.  

 

Bartlett (1957) proposed a stochastic reformulation of the HamerïSoper model (Nåsell, 

2005), emphasising two key features: the theoretical tendency for successive epidemics in 

large communities to damp down could be offset by random variability, and the tendency 

for diseases to fade-out in small or isolated communities when the number of susceptibles 

had dropped below an infectionôs threshold value. It is the latter that led to Bartlettôs (1957) 

introduction of the notion of ócritical community sizeô, a threshold concept defined as the 

smallest host population size above which an infection can persist endemically. 



Chapter 1: Introduction & Review 

7 

 

1.3.1 Maurice Bartlett 

 

Bartlett (1956) was first to observe that time to extinction for measles was an increasing 

function of the community size. In a seminal work, Bartlett (1957) explored the periodicity 

of measles in relation to community size using a sample of 19 English towns of varying 

population size (see Fig. 1.1). Measles notifications for each town were extracted from the 

Registrar Generalôs Weekly Returns for England and Wales in the period 1940-1956.  

 

 

Figure 1.1 Impact of population size on the periodicity of measles epidemics for 19 English 

and Welsh towns and cities. Red-sashed line marks the endemic threshold value (Adapted 

from Cliff et al., 2000: 89). 

 

Bartlett observed that large towns, such as Birmingham, Bristol and Hull, experienced 

recurring measles outbreaks with no fade-outs (a period of three or more consecutive weeks 

without a measles notification) after epidemics. In these towns, measles circulates 

endemically, and they were therefore considered to be of ócritical sizeô; established to be in 

the order of 250-300,000. Towns below the threshold population total, such as Carlisle and 



Chapter 1: Introduction & Review 

8 

 

Barrow-in-Furness, experienced a complete endemic fade-out of measles in troughs 

between epidemics. The smallest and most isolated towns with a population below 10,000, 

such as Cardigan and Llanrwst, were found to have extremely irregular, epidemic patterns. 

They would often go several years without experiencing a measles outbreak, indicating that 

the infection suffers stochastic extinction in troughs between epidemics in small 

communities (Earn et al., 1998), until its reintroduction from outside sources. Bartlett 

estimated 2,500 cases per annum was the minimum needed for measles to persist within 

urban areas during troughs in epidemic cycles.  

 

Bartlettôs (1957) identification of a threshold population size below which infection would 

fade-out is critical in understanding the recurrent epidemic patterns of measles observed in 

England and Wales during the pre-vaccine era (see Fig. 1.2). For settlements with a 

population size below the endemic threshold value where infection has faded out, outbreaks 

can only occur if the infection is reintroduced by index cases (infected individuals) via Type 

I epidemic waves emanating from the largest population centres above the threshold level 

(e.g., Birmingham, Hull), which act as reservoirs of disease (Lloyd and Sattenspiel, 2009). 

Type I epidemic waves result in fade-out free epidemics in populations above the endemic 

threshold. In intermediate-sized towns below the endemic threshold (e.g., Carlisle, Barrow-

in-Furness), discrete but regular type II epidemic waves are observed, with recurrent 

outbreaks in sync with those experienced in the large urban centres. Irregularly spaced type 

III epidemic waves affect communities with the smallest populations (e.g., Cardigan, 

Llanrwst), resulting in sporadic outbreaks and extended periods of endemic fade-out (Cliff 

and Haggett, 1989). This pattern of recurrent epidemics, and the generalised persistence 

of measles is a clear illustration of how endemics infections are geographically transmitted 

between populations of varying size within regions. 
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Figure 1.2 Bartlett model of epidemic patterns of measles spread according to varying 

population size. (a) Type I waves affect large settlements above the endemic threshold, 

follow a regular cycle, and infection does not become extinct in the inter-epidemic period, 

(b) type II waves affect intermediate sized towns below the endemic threshold value and 

mirror type I waves in regularity, but infection fades out between epidemic outbreaks, (c) 

type III waves affect small settlements which tend to experience highly irregular epidemics 

with extensive periods of disease fade-out (Source: Cliff et al., 2000: 89). 

 
In a subsequent paper aiming to determine the critical community size for measles within 

the context of the urban United states, Bartlett (1960) calculated the endemic threshold size 

to be around the figure of 300,000 inhabitants using data on measles for 24 North American 

cities between 1921 and 1940. This was in broad agreement with the results of his previous 

paper on the endemicity threshold for measles in English and Welsh settlements. Bartlett 

(1960) also found that measles fade-outs would occur in cities where there were fewer than 

4,000 to 5,000 cases per annum. 
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1.3.2 Francis Black 

 

Building on the foundational work of Bartlett, Francis Black (1966) made a seminal 

contribution to the study of endemic disease, seeking to establish the threshold endemicity 

of measles in insular communities. Black believed Bartlett had failed to correct for the 

masking of fade-out in cities by the reintroduction of measles from external sources, and 

the damping effect of geographic dispersion, and therefore sought to confirm and refine 

Bartlettôs estimates concerning the population thresholds below which measles would fade-

out in towns and cities. Monthly measles reports from 19 island communities between 1949 

and 1964 were analysed, and frequent extinctions of measles were found among all insular 

communities under study, apart from Hawaii (see Fig. 1.3).  

 

 

Figure 1.3 Blackôs model of the relationship between the duration of fade-outs after 

epidemics and population size for 19 island communities between 1949ï1964 (Adapted 

from Cliff and Haggett, 1989: 320). 
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Frequent air travel between Hawaii and the rest of the United States, as well as the islandôs 

transient military population, is cited as a key factor in the reintroduction of measles, 

masking fade-outs that have occurred on the island. Due to the dubious quality of case 

reporting on other islands with populations comparable in size to Hawaiiôs, such as Fiji and 

Mauritius, Black was unable to test this hypothesis with confidence. Black states that 

measles may fade-out in island populations as large as 350,000, possibly over 500,000, if 

closely settled and without the re-introduction of the disease from outside. These endemic 

thresholds are similar to the critical population size for measles in UK and US cities 

forwarded by Bartlett (1957, 1960). However, depending on the spatial structure and 

connectedness of the island population, Black notes that measles may be able to persist in 

smaller populations, but not endemically in communities with less than 5,000 cases per 

annum. 

 

Since the seminal works of Bartlett (1957, 1960) and Black (1966), the concept of critical 

community size has been much-cited in the epidemiological study of the measles, providing 

a theoretical basis for research exploring the geographical spread, patterns and persistence 

of the infection. 

 

1.4 Study of Endemic Thresholds: Other Childhood Infections 

 

As illustrated in the previous section, much of the extant literature on endemicity thresholds 

is mostly discussed and examined in relation to the spatial and population dynamics of 

measles. The commonly cited threshold size of 250,000-500,000 for measles however does 

not necessarily extend to other directly transmitted childhood infections, such as pertussis 

and poliomyelitis. Cliff and Haggett (1989) provide theoretical estimates for the endemic 

threshold size of five viral and bacterial diseases in relation to their serial interval, which is 

defined as the average time between the observation of symptoms in one case of infection 
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and symptoms in a second case directly infected by the first. These are summarised in 

Table 1.1. 

 

Table 1.1 Relationship between infectious periods of five directly transmitted viral and 

bacterial infections and estimated endemic threshold size (Source: Cliff and Haggett, 1989: 

321). 

Disease Estimated infectious 

period (Number of days) 

Theoretical threshold 

population 

Hepatitis A 35 22,000ï152,000 

Rubella 18 132,000 

Pertussis 14 150,000ï200,000 

Measles 12 250,000ï500,000 

Influenza 4 1,000,000,000 

 

1.4.1 Pertussis 

 

Wearing and Rohani (2009) plotted the proportion of weeks with zero cases of pertussis 

against population size, the most common measure of disease fadeout, exploring whether 

endemic threshold size can act as a signature for waning immunity (whether that be 

naturally acquired or through vaccination). In the pre-vaccine era, analysis of fadeouts of 

pertussis in 50 towns and cities in England and Wales, varying in population size from 

75,000 to 1,500,000, suggested an endemic threshold size between 150,000 and 250,000. 

After the onset of mass vaccination in 1957, Wearing and Rohaniôs (2009) data suggests 

an endemic threshold size in the region of 800,000 to 1,000,000 is required to maintain the 
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endemic persistence of pertussis, consistent with a substantially increased period of 

immunity rather than permanent immunity. This is in line with the findings of Rohani et al., 

(2000) who, in their paper on the impact of immunisation on pertussis transmission, 

demonstrated a significant increase in the observed endemic threshold size for pertussis in 

England and Wales after the introduction of mass vaccination for the infection (see Fig. 1.4).  

 

 

 

Figure 1.4 Mean number and duration of annual fade-outs of pertussis against population 

of 60 towns and cities in England and Wales, 1944ï1994 (Source: Rohani et al., 2000: 285). 
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1.4.2 Poliomyelitis 

 

Estimating the endemic threshold size for poliomyelitis is not a straightforward endeavour 

compared to other childhood infections (Cliff and Haggett, 1995), complicated by two major 

factors. Firstly, there are three distinct types of polioviruses and, secondly, a large number 

of cases do not present symptoms (Cliff et al., 2000). They therefore go unreported or 

misidentified. Despite these issues, Eichner et al. (1995) conducted stochastic simulations 

to estimate the minimum population size required to maintain the endemic persistence of 

poliomyelitis. They found that the endemic threshold size for the virus in regions with a 

relatively high standard of hygiene, where the opportunities for the faecal-oral transmission 

of poliomyelitis is limited, is of the order of 200,000ï500,000. This contrasts with populations 

with poor standards of hygiene, where the endemic threshold size was found to be as low 

as 50,000, with the upper bound at 150,000. However, the simulations carried out by 

Eichner et al. (1995) also suggest that the low values estimated for the endemic threshold 

size of poliomyelitis are determined more by high population turnover (due to a rapid influx 

of susceptibles via a high birth rate) rather than poor standards of hygiene. 

 

1.5 Temporal Changes in Endemic Thresholds: Island Populations 

 

Cliff and Haggett (1995) and Cliff et al. (2000) discuss the utility of islands as laboratories 

to analyse the endemic threshold concept and to explore the relationship between 

endemicity and population size at the macro-geographical (through inter-island 

comparisons), meso-geographical (through time-series analysis of single islands), and 

micro-geographical levels (through within-island comparisons).  

 

Building on the work of Black (1966) (Section 1.3.2), Cliff et al. (2000) explored changes in 

endemic threshold size over time at the meso-geographical level for just one of these 
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islands: Iceland. Monthly measles data were collected for 47 medical districts, for which an 

unbroken sequence of reporting exists from January 1888 to December 1987. These 

medical districts range significantly in population size from 100,000 in the district located 

immediately around the capital, Reykjavik, in 1990 to as low as 40 in an island medical 

district. The average endemic thresholds size over the course of 100 year-long study period 

was calculated to be around the figure of 259,000, a value consistent with the findings of 

both Bartlett (1957, 1960) and Black (1966). To monitor temporal changes over the period, 

the study period was broken down into a series of 8-year timeïwindows with a 2 year 

overlap between windows to produce a smoothing effect with the preceding and succeeding 

windows. This approach yielded 24 96-month timeïwindows, providing 24 thresholds 

estimates between the beginning of 1888 and end of 1987. The percentage of months in 

which cases were reported (percentage endemicity) along with their mean populations in 

the 47 districts in each timeïwindows form the basis of the temporal analysis of endemic 

threshold size. Cliff et al. (2000) found the highest estimates of endemic threshold size at 

the beginning and end of the study period. In the case of the former, they suggest the high 

threshold value is the result of Iceland's relative geographical isolation during this period, 

whilst high values calculated in the 1970s and 1980s indicate impact of mass vaccination. 

 

Adopting the same methodological approach, Cliff et al. (2000) examine temporal changes 

in the endemic threshold size at the global level, by analysing the percentage endemicity of 

four childhood infections (measles, pertussis, diphtheria and scarlet fever) for 84 island 

populations using data extracted from archival records of the League of Nations and World 

Health Organisation. Between 1923 and 1990, the endemic threshold size was calculated 

for 12 timeïwindows of varying length, as well as three larger windows. Except for pertuusis 

after 1980, the three other infections display a similar pattern of sharply rising threshold 

values during the control periods. The pattern for pertussis is more complex, rising rapidly 

to 1980 before falling thereafter. Prior to vaccination and the widespread use of antibiotics, 

endemic threshold values for measles and scarlet fever had shown signs of increase. 
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The work of Cliff et al. (2000) on temporal changes in endemic threshold size in an island 

population provides a methodological template for examining long term temporal changes 

in endemic threshold populations. However, in the context of England and Wales, where 

the temporal changes in endemic threshold size for notifiable infections are yet to be studied 

in any great detail, unlike many island populations, settlements are strongly bound together 

by the movement of people and spatial coupling. This movement is hierarchically structured, 

and regular spatial flows from one geographical unit to another are known to reintroduce 

infection after endemic fade-outs in regions where infection is yet to be eliminated. It is 

therefore important to explore temporal changes in endemic threshold population size in 

relation to the spatial dynamics of infection, to understand the effect of spatial coupling, 

distance and movement between populations on the persistence of infection, since the rate 

and scaling of import of infected individuals has the ability to change the nature of the 

relationship between zero-incidence and population size (Conlan et al., 2009).  
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1.6 Vaccination & Endemic Thresholds 

 

1.6.1 Theory 

 
in the past, simple theoretical studies have suggested that vaccination should increase the 

endemic threshold population (Cliff et al., 2000), above which an infection can persist 

indefinitely. If vaccination acts to block the chain of transmission of an infection, the 

introduction of mass immunisation programs is predicted to increase endemic threshold 

size; a larger population will therefore be required to prevent the local elimination of the 

disease (Lavine and Rohani, 2012). For instance, in the case of measles, vaccination 

should multiply the endemic threshold size by a factor of 1/x2 (Griffiths, 1973). Therefore if 

50% of the population is immunised against measles, the endemic threshold will rise from 

approximately 250,000 to 1,000,000; with 90% immunisation, the endemic threshold would 

be significantly increased to a population size of 25,000,000. Crucially, if vaccine uptake 

within a community is great enough to prevent R0 from exceeding unity in value an infection 

will not be able to become endemic (Jansen et al., 2003). 

 

1.6.2 Onset of Mass Vaccination 

 

Mass vaccination programmes play a vital role in disease control strategies designed to 

eliminate contagious bacterial and viral childhood diseases. In simple terms, mass 

vaccination is aimed at reducing the incidence level of childhood diseases by slowing down 

the build-up of susceptibles in the general population, effectively reducing the recruitment 

rate of the infections (Earn et al., 1998). Vaccination in the community is the most effective 

mean for blocking the local chain of transmission. 

 

The introduction of mass vaccination programmes for once-prominent childhood infections 

such as measles, diphtheria, pertussis and poliomyelitis from the mid-twentieth century in 
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developed nations, and the sustained immunisation efforts since, is widely considered to 

have had the most profound impact of all factors on reducing the transmission and 

endemicity of such diseases in industrialised societies (see Table 1.2) (Anderson, 2016; 

Roush et al., 2007). To ensure major epidemic outbreaks of childhood disease are 

prevented, the immunisation of large numbers of young children before they are exposed 

to natural infection in the community is vital, alongside sustaining a sufficiently high level of 

vaccination coverage year after year (Fine and Clarkson, 1982; Beyer et al., 2012).  

 

Table 1.2 Historical comparison of morbidity and mortality for selected vaccine-preventable 

childhood diseases in the United States, with dates of onset of mass vaccination for each 

infection (Source: Roush et al., 2007: 2156). 

 

 
Numerous empirical studies have demonstrated that the introduction of mass vaccination 

programmes in developed nations has successfully diminished the amplitude of epidemics 

 

Vaccine-

preventable 

Diseases 

Pre-vaccine era Annual 

Average 

Dates of 

Vaccine 

Licensure & 

Introduction 

Most recent 

morbidity & 

mortality reports 

Reduction in 

No. of Cases 

Since Vaccine 

Introduction 

(%) 

Reduction in 

No. of Deaths 

Since Vaccine 

Introduction 

(%) 
Cases Deaths Cases 

(2015) 

Deaths 

(2015) 

Diphtheria 21,053 

(1936-45) 

1,822 

(1936-45) 

1928-1943 0 0 100 100 

Measles 530,217 

(1953-62) 

440 

(1953-62) 

1963, 

1967,1968 

188 1 99.9 99.9 

Pertussis 200,752 

(1934-43) 

4,034 

(1934-43) 

1914-1941 18,166 6 90.9 99.8 

Acute 

Poliomyelitis 

19,794 

(1941-50) 

1,393 

(1941-50) 

1955, 1961-

1963, 1987 

0 0 100 100 

Paralytic 

Poliomyelitis 

16,316 

(1951-54) 

1,879 

(1951-54) 

1955, 1961-

1963, 1987 

0 0 100 100 

Smallpox 29,005 

(1900-49) 

337 

(1900-49) 

1798 0 0 100 100 
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for several once-prominent childhood diseases, with massive reductions recorded in 

morbidity and mortality attributed to infections such as measles, poliomyelitis and pertussis, 

as well as changing their phase and periodicity (Anderson and May, 1982, 1992; Bolker and 

Grenfell, 1996; Griffiths, 1973; Magpantay and Rohani, 2015). Roush et al. (2007) 

conducted a simple and concise study comparing the historical morbidity preventable 

childhood infections in the US, which illustrates immense success of vaccination in the fight 

against infectious disease. For instance, they reveal in the pre-vaccine era, an average of 

530,000 measles cases and 440 measles-related deaths were reported annually in the US; 

in 2006, the incidence rate had declined by 99.9% nationwide, and no deaths from measles 

were recorded (Table 1.2). 

 

1.6.3 Towards a Geographical Understanding of Vaccination  
 

Many studies in the epidemiological literature have revealed that the introduction of mass 

vaccination has resulted in dramatic shifts in the spatiotemporal dynamics of childhood 

infections from the pre-vaccine to the vaccine era. The decorrelation of epidemics between 

major urban centres may hold significant consequences for public health systems hoping 

to eliminate childhood infections via mass immunisation efforts. The likelihood of 

simultaneously eliminating an infection across all communities in a regional population is 

significantly reduced by the elimination of large epidemics, which served to synchronise 

population dynamics at the inter-city level in the pre-vaccine era (Allen et al., 1993). 

Continuous vaccination at an intermediate level may lead to occasional fadeouts of infection 

within large urban centres, but it also reduces the correlation of infective densities and peaks 

of infection at the inter-city level, as the total number of susceptibles within the population 

decreases, and the level of epidemiological coupling falls (Earn et al., 1998). 

 

To understand the potential implications of spatiotemporal decorrelation on epidemic 

dynamics and the persistence of childhood diseases, the degree of epidemiological 



Chapter 1: Introduction & Review 

20 

 

coupling at various geographical scales, from within cities to between regions, is a key 

parameter to consider (Keeling and Rohani, 2002; Xia et al., 2004). Variation in the level of 

epidemiological contact between individuals in different subpopulations, with varying levels 

of spatial interaction and distance from regional urban centres, could amplify reduction in 

the level of correlation between epidemic outbreaks at the inter-city level. The cross-

coupling of large urban centres suffering from major epidemic outbreaks of infection with 

spatially uncorrelated settlements that have experienced a fadeout of the disease may 

result in a órescue effectô (Bolker and Grenfell, 1996). 

 

In an epidemiological system, a rescue effect is defined as the transmission of an infection 

between-patches which facilitates the recolonisation of communities where the infection has 

faded out or been locally eliminated (Bolker and Grenfell, 1995). Rescue effects are the 

product of asynchronous epidemic outbreaks among spatially separate communities within 

a host population, which decorrelates dynamical fluctuations of disease in different patches. 

Spatial heterogeneity in vaccine coverage can also result in rescue effects due to 

spatiotemporal decorrelation between populations (Hagenaars et al., 2004). Vaccination 

reduces spatial coupling (Bolker and Grenfell, 1996), which at intermediate levels will 

enable the maximum persistence of an infection. If rescue effects are to effectively maintain 

the regional persistence of an infection, there must be a sufficient level of epidemiological 

coupling between patches to ensure subpopulations are connected and frequent contact 

between patches is established (Dalziel et al., 2016). However, rescue effects are absent if 

the level of coupling is too high, since they act to remove spatial heterogeneity between 

patches, and subpopulations act as a homogenous population (Grenfell and Harwood, 

1997). In metapopulation terms, rescue effects are caused by migration from source 

patches (where infection persists due to a positive growth rate in the number of 

susceptibles) to sink patches (where the susceptible growth rate is negative), where 

infection would be expected to decrease to extinction (Harrison, 1991). 
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As the value of an endemic threshold grows, rescue effects become increasingly important 

for maintaining the circulation and regional persistence of an infection, especially as 

elimination thresholds are reached. It has in the past been suggested that rescue effects 

may explain the relative stability of the endemic threshold level in England and Wales in the 

decades after the introduction of mass vaccination for measles in the late 1960s, which 

remained at the pre-vaccine era level of approximately 250,000-300,000 (Fine and 

Clarkson, 1982; Bolker and Grenfell, 1996).  

 

1.7 Study of Endemic Thresholds: Vaccination 

 

1.7.1 Measles 

 

The change in measles incidence and transmission dynamics following the onset of mass 

vaccination is among the best-documented in epidemiological literature. Before the 

introduction of the measles vaccine in England and Wales in 1968, epidemics of the disease 

at the city level exhibited a regular, and spatially coherent, biennial pattern (Anderson et al., 

1984). Measles exhibited persistence fluctuations in different cities almost synchronously 

across regions, with fade-outs of infection observed only in smaller towns and rural 

settlements (Bjørnstad et al., 2002; Grenfell and Harwood, 1997). In the vaccine era of the 

1970s and 1980s, this pattern altered radically, with a marked reduction in size and 

frequency of epidemic events and extended inter-epidemic intervals occurring less regularly 

being observed (Bolker and Grenfell, 1995). This has been attributed to a non-linear 

dynamic effect; the onset of mass vaccination resulted in the elimination of large epidemic 

outbreaks, which had previously acted to synchronise measles dynamics in different cities 

in the pre-vaccine era. 

 

Bolker and Grenfell (1996) found that the level of epidemic decorrelation after the onset of 

mass vaccination varies according to spatial scale (see Fig. 1.5). For instance, in marked 
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contrast to the between-city decorrelation in epidemic outbreaks, the correlation between 

London boroughs remained high after the introduction of vaccination, on a par with the pre-

vaccine era correlations. However, this is not a surprising observation when one considers 

the effect of spatial distance on disease transmission. The spatial transfer of an infection in 

contiguous boroughs where population mixing is high, will be at a far greater rate than what 

would be expected from the epidemiological coupling of cities, separated by many miles of 

countryside (Cliff and Haggett, 1980). Consequently, Bolker and Grenfellôs (1996) findings 

suggest that the decorrelation experienced at the inter-city level in the post-vaccine era is 

lessened by intense coupling at the intra-city level.  

 

 

Figure 1.5 Distributions of pairwise cross-correlations among the seven English cities, in 

the pre-vaccine era (black line, 1948-1968) and vaccine era (grey dash line,1968-1988). 

(Source: Bolker and Grenfell, 1996: 12650). 

 
An equivalent decline in the geographical coherence of measles epidemics after the end of 

the pre-vaccine era has also been observed using measles morbidity data available in the 

US (Cliff et al., 1992a, b). Cliff et al. (1992b) found a similarly substantial decorrelation 
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between 22 states of the north-eastern United States, including New York City and 

Washington D.C, using surveillance data available from 1962 to 1988.  

 

Table 1.3 Hypothetical numbers of people susceptible to measles before and after 

vaccination program based on predicted fade-outs (Source: Nathanson, 1982). 

Population Before 

Immunisation 

After 

Immunisation 

9,000,000 900,000 400,000 

900,000 90,000 40,000 

500,000 50,000 22,000 

300,000 30,000 13,000 

 

Nathanson (1982) uses the hypothetical examples of New York City and Baltimore in the 

early vaccine era to explain the impact of immunisation on endemic persistence of measles. 

According to Nathanson (1982), before the introduction of the measles vaccine in the US in 

1963, an estimated 10% of the US population was susceptible to measles. Nathanson 

calculated that a susceptible population within the community of around 50,000 individuals 

was required to propagate the infection. Towards the end of the pre-vaccine era, New York 

possessed a population estimated at 9 million; approximately 900,000 in the city were 

therefore susceptible to measles. Baltimore, a far smaller city yet with a considerable 

population of around 900,000, had an estimated 90,000 susceptibles before vaccination. 

However, after the introduction of measles immunisation, the number of susceptibles in 

Baltimore has fallen to only 40,000, below the value required to spread the virus. By 

contrast, in New York, even after immunisation, there would still be enough susceptibles, 

around 400,000, to maintain the circulation of measles during seasonal troughs. 
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Consequently, New York continued to report measles monthly, whilst Baltimore 

experienced a transition from endemic measles to regular fade-out of the disease. 

 

1.7.2 Pertussis 

 
Interestingly, the spatiotemporal dynamics of pertussis are in stark contrast to those of 

measles, which exhibits the opposite pattern of spatial synchrony in both the pre-vaccine 

era and after the onset of mass vaccination (Bolker and Grenfell, 1995; Cliff et al., 1992a). 

Rohani et al. (1999, 2000) found that the onset of mass vaccination for pertussis in 1957 in 

England and Wales coincided with a major change in the spatiotemporal patterns of 

pertussis incidence. The epidemic outbreaks of the pre-vaccine era showed little spatial 

correlation between urban centres and were replaced in the post vaccine era of the 1960s 

and 1970s by highly spatially synchronised outbreaks (Rohani et al., 1999). Moreover, 

fluctuations every to 2ï2.5 years in pertussis outbreaks in towns and cities between 1944 

and 1957 were superseded by highly synchronised, triennial epidemics across England and 

Wales after the introduction of mass vaccination. Unsurprisingly the inter-epidemic interval 

between outbreaks increased during the 1960s and 1970s due to the dramatic decline in 

pertussis incidence (Rohani et al., 1999). Reflecting the spatial synchronisation of epidemic 

troughs between pertussis outbreaks in the vaccine era, a substantial increase in both the 

frequency and duration of fade-outs in major cities was also observed, signalling a 

successful reduction in the transmission of pertussis since the onset of mass immunisation. 

 

In their study of the epidemiological impact of vaccination on pertussis and measles 

dynamics in the Niakhar area of Western Senegal, Broutin et al. (2004) revealed a 

substantial increase in the mean number of fade-outs as a direct consequence of 

immunisation. The mean duration of fadeouts also increased significantly, with a 

considerable fall in the R0 for both diseases signalling a clear decrease in the regional 

persistence of the infections. 
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Part Two: Modelling Endemic Thresholds 

 

1.8 Quantifying Endemic Thresholds 

 

Quantifying endemic threshold size, in principle, is a relatively straightforward process, and 

there is more than one method which may be utilised to achieve this task. Several studies 

have examined the relationship between population size and the mean number of fade-outs 

per year (see Fig. 1.6) (Bartlett, 1957; Black, 1966, Broutin et al., 2004a,b; Grenfell and 

Harwood, 1997).   

 

Figure 1.6 Mean number of annual fade-outs of measles against population size in England 

and Wales, 1940ï1964. The mean annual fade-out value for the 954 urban districts of 

England and Wales are plotted in grey, with a smooth trend line overlaid in white. The red-

dashed line marks the endemic threshold value. Population size of each district represents 

the average population size over the period (Source: Conlan et al., 2009: 626). 
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A fade-out is generally defined based on the infectious period of a disease; the average 

time required for an individual to recover from an infection after the initial moment of 

transmission of disease. If no new cases of either infection are reported after a period of 

three weeks or more, it is generally assumed that the chains of transmission have broken 

down, and the infection has become locally extinct (Broutin et al., 2007).  

 

 

Figure 1.7 Proportion of weeks with no reported measles cases against population size in 

England and Wales, 1940ï1964. Proportion of zero reports for the 954 urban districts of 

England and Wales are plotted in grey, with a smooth trend line overlaid in white. The red-

dashed line marks the endemic threshold value, the population size above which measles 

is persistent. Population size of each district represents the average population size over 

the period (Source: Conlan et al., 2009: 626). 

 
When the proportion of weeks with no reported cases is plotted against population size (a 

complementary measure of persistence), the length of fade-out experienced increases with 

decreasing population size (see Fig. 1.7). The mean number of fade-outs is consequently 
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limited by the rate of re-introduction of infection from external sources in populations 

experiencing fade-out (Conlan et al., 2009), which is much greater in larger populations. It 

is therefore typical for empirical studies to feature a measure of fade-out length (duration of 

fade-outs/proportion of weeks with no reports) alongside a plot of mean annual fade-outs 

against population size (Bjørnstad et al., 2002; Broutin et al., 2005). Although these 

measures provided account for the frequency and proportion of zero reports, they do not 

clearly discriminate between the relative roles of persistence and invasion dynamics, and 

this limitation has received attention in the extant literature (Conlan et al., 2009). 

 

In the extant literature on childhood infections, a fade-out has traditionally been defined as 

a period of at least three weeks without reported cases of infection (Bartlett, 1957), due to 

the wealth of studies on measles and, to a much lesser extent, pertussis. However, it is not 

an arbitrary definition. For instance, influenza has an infectious period of approximately four 

to seven days (Cliff and Haggett, 1989), therefore fade-out for the disease would be defined 

as a period of two weeks or more without a reported case.  The length of a fade-out period 

is measured by the number of consecutive weeks without cases corresponds to the length 

of a fade-out period (Broutin et al., 2004a). Wearing and Rohani (2009) provide an 

alternative definition; the number of times at least three consecutive weeks have zero cases 

per epidemic. However, they found that estimates for the endemic thresholds size for 

pertussis using both definitions were often very similar in range. 

 

1.9 Modelling Approaches 

 

A variety of mechanistic transmission models, either deterministic or stochastic in nature, 

have been developed over several decades to capture the spatiotemporal dynamics of 

childhood infections. Formulation of these models has been made possible by the extensive 

records of measles notifications which exist in developed nations. To a varying degree, 

these models incorporate mechanisms such as seasonality (Aron and Schwartz, 1984; Earn 
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et al., 2000), age structure (Schenzle, 1984; Bolker and Grenfell, 1993), spatial structure 

(Bolker and Grenfell, 1995; Hagenaars et al., 2004) and variable infectious and latent period 

distributions (Keeling and Grenfell, 1997). Regarding measles data in England and Wales, 

these models have been relatively successful in capturing the temporal pattern of recurrent 

epidemic outbreaks of the infection (Conlan et al., 2009). The use of these models for 

accurately estimating the value of endemic threshold size has, however, increasingly been 

questioned over recent decades (Bolker and Grenfell, 1995; Conlan et al., 2009). 

 

1.9.1 The Stochastic SIR Model  

 

 

Figure 1.8 Flow diagram of classic deterministic SIR model (Adapted from Bonds and 

Rohani, 2009: 542). 

 
The standard model used by Maurice Bartlett in the late 1950s to estimate endemic 

threshold size is a continuous time stochastic susceptible-infected-recovered (SIR) model 

(see Fig. 1.8). The SIR model was originally devised by Kermack and McKendrick (1927), 

as a simple compartmental deterministic model to analyse the mass-action transmission of 

a directly transmitted infection with an exponentially distributed infectious period in a closed 

population.  

 

A stochastic SIR model enables estimates to be made for potential outcomes whilst allowing 

for the effect of demographic stochasticity and the random nature of population events on 
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inputs over time (Keeling and Ross, 2008). They are essentially individual based. In relation 

to the study of infectious disease, stochastic models consider the potentiality for chance 

events to cause the number of susceptibles to fall to zero, resulting in the local extinction of 

infection (Bartlett, 1956; Keeling, 2000). Stochastic models tend to assume that the 

statistical distribution of residence times in disease categories, such as the susceptible and 

infectious periods, follow an exponential distribution (Grenfell and Harwood, 1997). Random 

fluctuations in the timing of birth, recovery and transmission events have been 

demonstrated to play an essential role in the recurrence and extinction of infection (Bartlett, 

1957), and fundamental in the persistence of infection in small populations (Trottier and 

Philippe, 2001). Since Bartlettôs formulation of a continuous time stochastic SIR model, such 

models have provided the means to estimate endemic threshold size (Bartlett, 1957, 1960; 

Black, 1966). Yet, as Conlan et al. (2009) note, the resultant value for this threshold 

ultimately depends on both the assumptions of the stochastic model devised and the 

parameters of the infection itself. 

 

1.9.2 Metapopulation models 

 

When one looks at the extant literature in relation to the concept of endemic threshold size, 

much research conducted from a spatially explicit perspective has involved the use of 

metapopulation models formulated by ecologists, as evidenced most notably by the work of 

Benjamin Bolker, Bryan Grenfell and Matt Keeling on measles throughout the 1990s and 

early 2000s. For childhood infections, of which many are acutely immunising, it has been 

recognised that metapopulation dynamics may play an important role in enabling such 

infections to persist locally within a host population (Grenfell and Harwood, 1997; Keeling 

et al., 2004). Diseases such as mumps and measles are extremely efficient in using a pool 

of susceptibles after they have invaded a community, hence their tendency to rapidly fade-

out after the supply of susceptibles has been exhausted, and local chains of transmission 

collapse (Keeling, 2000; Metcalf et al., 2013b).  
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1.10 Endemic Thresholds & Metapopulation Theory 

 

Over recent decades, metapopulation theory in infectious disease modelling has been 

pivotal for developing a greater understanding of the processes which operate over time 

and space that play a fundamental role in the persistence of childhood infections. The 

regional persistence of measles has become seen as a classic metapopulation problem 

(Levins, 1969), the outcome of which depends on the balance between the frequency of 

local extinctions of infection and the rate at which infection is reintroduced from a community 

where infection remains persistent, to a community where the infection has long faded out.  

 

Metapopulation models have been shown to be effective for exploring the effect of spatial 

heterogeneity on disease persistence. Spatial heterogeneity, in metapopulation terms, is 

defined as the ópatchinessô of a host population (Hagenaars et al., 2004). A host population 

is often divided into spatially separate subpopulations, commonly referred to in ecological 

and epidemiological literature on metapopulations as ópatchesô. Spatial heterogeneity is 

determined by the level of contact and mixing between patches. Investigating the interplay 

between local extinctions of infection between-patch transmissions in spatially separate 

subpopulations is critical to an understanding of how heterogeneous mixing patterns in a 

large population maintains the endemic persistence of infectious diseases.  

 

1.10.1 Concept 

 
Basic deterministic and stochastic epidemiological models tend to assume all individuals 

are from a single, homogeneously mixed population, based on the principle of mass-action, 

yet real systems very rarely experience this assumed mixing (Anderson and May, 1984; 

Bolker and Grenfell, 1995). Consequently, these models only offer limited approximations 

of real-world epidemics since they overlook the spatial structure of host populations, which 

can strongly affect transmission and resulting disease dynamics (Bolker and Grenfell, 1995; 
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Lloyd and May, 1996). Metapopulation theory suggests that the persistence of infection 

increases or decreases according to the level of spatial heterogeneity in transmission and 

rate of contact between individuals.  

 

 

Figure 1.9 Metapopulation structures. (a) Classical metapopulation comprising of relatively 

small patches that are sufficiently large and in near proximity so that recolonisation balances 

extinction, (b) óPatchyô metapopulation consist of several patches of varying size with high 

levels of dispersal between each patch, functioning together as one unit (c) Mainland-island 

metapopulation consists of small óislandô patches within dispersal distance of a much larger 

ómainlandô patch. The probability of local extinction is much greater in island patches, and 

lower in the mainland patch. This structure can explain source-sink dynamics observed in 

some metapopulations (Source: Harrison, 1991; Harrison and Taylor, 1997). 

 
A metapopulation is an ecological concept defined as a population composed of 

subpopulations (Hanski and Gaggiotti, 2004), in which discrete subpopulations occupy 
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spatially separate ópatchesô (Glass et al., 2004). Various metapopulation structures exist, 

the three most common of which are presented in Fig 1.9. The dynamics of a 

metapopulation depends on the rate of extinction and recolonisation of its constituent 

patches (Broutin et al., 2007), and interaction between subpopulations in the form of 

population flux (migration). By inserting a disease transmission model or epidemiological 

time series into a metapopulation framework, a large population can be divided into a 

collection of loosely coupled patches, representing local communities.  

 

Often homogenous mixing is assumed within subpopulations, rather than the regional 

population itself (Beyer et al., 2012); infected individuals have much greater contact with 

other individuals from within the same spatially defined subpopulation, rather than with 

those from other patches (Hagenaars et al., 2004). Transmission between patches is 

determined by a variety of relevant factors, such as the level of epidemiological coupling, 

distance and sub-population size (Keeling, 1999, 2000).  

 

1.10.2 Application 

 

The most common application of the metapopulation model in epidemiological literature has 

been to study the spatial transmission and persistence of childhood diseases nationally at 

the city-level (Bolker and Grenfell, 1996; Dalziel et al., 2016; Grenfell et al., 2001). At this 

geographical scale, mixing within cities plays an extremely important role in determining the 

persistence of an infection (Glass et al., 2004). In metapopulation terms, urban centres act 

as ócoreô patches, where the large, dense population maintains the circulation of infection, 

which spreads outwards to surrounding ósatelliteô patches (Grenfell and Harwood, 1997). 

Spatial patchiness has been cited as a key area of study if the circumstances in which 

childhood infections persist endemically are to be effectively elucidated (Mollison et al., 

1994).  
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Grenfell and Bolker (1998) use metapopulation models to study regional spatial 

heterogeneity in measles transmission in England and Wales, in relation to urban-rural 

hierarchies in infection rates. Their findings support the conclusions of Bartlett (1957, 1960), 

finding measles to persist during inter-epidemic periods in large urban centres with an 

endemic threshold population above 300,000 during the pre-vaccination era, with prolonged 

periods of endemic fadeouts mostly occurring in small communities. Epidemic correlations 

revealed a complex urbanïrural pattern in the pre-vaccination era; higher rates of infection 

were observed in large cities, with the proportion of urban-based cases rising significantly 

before major epidemic outbreaks in contrast to rural areas, yet small towns were found to 

have epidemic characteristics in-between those of large town and rural settlements. These 

results suggest a spatial hierarchy of infection from large, high density populations to 

smaller, low density communities. However, they also found that if urban and rural 

settlements are of equal population size, they will have the same propensity for local fade-

outs of infection. This is considered a surprising finding since fade-out patterns during inter-

epidemic periods are taken to be particularly sensitive to the degree of coupling to large 

centres (Finkenstädt and Grenfell, 1998), which would suggest fade-outs are less likely in 

urban areas due to the increased level of coupling with urban centres. 

 

Grenfell and Bolkerôs (1998) work expand upon the ócities and villagesô model of Anderson 

and May, originally devised to explore the potential implications of spatial heterogeneity on 

vaccination efforts against childhood diseases in rural areas, where the rates of 

transmission are lower than in urban centres (May and Anderson, 1984; Anderson and May, 

1992). However, Grenfell and Bolkerôs (1998) study can also be seen as building upon 

geographical work of Cliff et al. (1992, 1993), whose study of the spatial dynamics of 

measles in the United States indicated that the infection diffuses from major cities, óendemic 

reservoirsô to settlements in the surrounding countryside, and the work of Bartlett (1957, 

1960) on critical community size. Populations above the endemic threshold value, such as 

those of major urban centres, act as ócore patchesô within a regional population.  
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Part Three: Childhood Infections Under Study 

 
1.11 Pertussis 

 

Pertussis, more commonly known as whooping cough, is an acute, microparasitic, 

childhood infection that mainly affects the respiratory system. Today, pertussis continues to 

be a major public health issue. Developing nations suffer high burdens of infant mortality 

relating to pertussis infection (Muloiwa et al., 2018), while several developed nations with 

long-established vaccination programmes have witnessed a resurgence of the disease 

amongst infants, adolescents and adults alike in recent decades (Cherry, 2012; Rohani and 

Drake, 2011; Martinón-Torres et al., 2018). Pertussis has remained a leading vaccine-

preventable cause of hospitalisation and mortality in infants in England and Wales 

(Campbell et al., 2012). 

 

1.11.1 Pathogenesis 

 

Pertussis is caused by the Gram-negative bacterium Bordetella (B.) pertussis, first 

described by the French and Belgian immunologists Jules Bordet and Octave Gengou in 

1906 (Bordet, 1906). Humans are the only recognised host for B. pertussis (Amirthalingam 

et al., 2013). It is a highly contagious, airborne disease, transmitted via small respiratory 

droplets which become aerosolised when infected persons sneeze or cough (Gopal et al., 

2019). Pertussis cases are commonly characterised by a prolonged coughing illness that 

can last for several weeks (Edwards, 2005). The average incubation period for pertussis 

typically lasts around one week, whilst the infection period lasts around 14 days 

(Amirthalingam et al., 2013). A classic case of pertussis can be divided into three stages 

(Long, 2004). The first stage is the catarrhal stage when a pertussis case is most infectious. 

During this stage, infected individuals exhibit respiratory symptom such as a non-productive 

cough, a runny nose, and a mild fever (Amirthalingam et al., 2013). After seven to ten days, 
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these symptoms are succeeded by the paroxysmal stage, characterised by intermittent 

periods of intense coughing that end with a distinctive, high pitch ówhoopingô sound as the 

individual inhales, which usually persist for two weeks (Wendelboe and Van Rie, 2006). It 

is during this stage that individuals are often clinically suspected of showing signs of 

pertussis infection. The final stage is recovery; this is gradual and can last between two 

weeks and several months.  

 

In the vaccine era, the majority of pertussis infections remain undiagnosed as they tend to 

present with mild symptoms, while approximately two-thirds of cases are subclinical, 

presenting no symptoms (Long et al., 1990). Even when children present with a cough of 

two weeks or more, pertussis often goes undiagnosed; previous research has shown 

physicians only consider pertussis in 25% of clinical cases (Deeks et al., 1999). Older 

children, adolescents and adults may become infected with pertussis, due to a weakened 

immune system and close proximity to children (Gopal et al., 2019), or due to waning 

vaccine-induced immunity (Wendelboe et al., 2005; Plotkin, 2014). These age-groups often 

present subclinical symptoms because of past vaccination or different host response by age 

(Eidlitz-Markus, et al., 2007), resulting in frequent misdiagnosis. Some infants, despite 

generally exhibiting more severe illness, may also have atypical presentations of the 

disease, in particular lacking the protracted, spasmodic cough with the characteristic whoop 

during the paroxysmal stage (Tanaka et al., 2003).  

 

1.11.2 Pertussis Elimination 

 

Since humans are the only known disease reservoir for B. pertussis, pertussis is 

theoretically a prime candidate for disease eradication through the implementation of 

sustained mass vaccination campaigns. However, unlike other childhood infections, such 

as measles and poliomyelitis, natural infection does not confer life-long immunity against 

the disease (Amirthalingam et al., 2013), whilst immunisation does not guarantee protection 
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from infection, since the efficacy of the pertussis vaccine is known to decline over time 

(Wendelboe et al., 2005; Plotkin, 2014). It is therefore possible to contract pertussis later 

on in life and more than once, with the elderly in particular vulnerable to this particular 

outcome.  

 

Throughout the interwar period, researchers in the United Kingdom and United States 

conducted numerous studies and field-trials in the quest to develop an effective inactivated 

vaccine, yielding positive results by the 1940s (Bell, 1948; Felton and Willard, 1944). 

Pertussis immunisation began in England and Wales on a localised basis in 1942 (Grenfell 

and Anderson, 1989). In 1957, the whole-cell pertussis (wP) vaccine was introduced across 

England and Wales for infants three months old and above (Amirthalingam et al., 2013), 

finally marking the introduction of a routine, nationwide pertussis immunisation programme 

(Griffith, 1978). It was combined with the diphtheria and tetanus vaccines to form the DTwP 

vaccine. Initially, there was a substantial fall in the magnitude of notifications following the 

introduction of routine pertussis immunisation (Rohani et al., 2000). However, by the mid-

1960s, the number of pertussis notifications reported nationwide stabilised. The lack of a 

continued downward trend in pertussis notifications was attributed to either biological 

changes pertussis bacterium or the use of vaccines with low effectiveness during the period 

1957 to 1968 (JCVI, 1977). A 1969 Public Health Laboratory Service survey indicated wP 

vaccines used before 1968 were far from effective; reporting efficacy rates were as low as 

20% (PMC and API, 1969). Clarkson and Fine (1985) noted that the reported efficacy of 

pertussis vaccines varied greatly between the 1950s and 1980s, ranging from 20% to 95%. 

Their modelling suggested that a vaccine coverage rate of  88% for  each birth cohort before 

one year of age would be necessary to will eliminate bacterial transmission, with repeated 

cohort immunisation necessary to eliminate transmission. Nevertheless, there was a 

general consensus within the UK Joint Committee on Vaccination and Immunisation in a 

report published in 1977 that onset of routine pertussis immunisation had been the vital 

factor behind the substantial decline in pertussis notifications (JCVI, 1977). 
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1.11.3 Dynamics in England & Wales 

 

Epidemiologists have focused on the interplay between vaccination, nonlinearity in 

transmission and demographic stochasticity, to explain the noisy, irregular pertussis 

epidemics observed in the pre-vaccine era, and the dominant cyclic signature which arises 

after the introduction of routine pertussis immunisation (Rohani et al., 2002). In the context 

of England and Wales, much of this work has been undertaken analysing weekly or monthly 

pertussis incidence data at the national level and between major cities, overlooking the 

spatial structure and distribution of subpopulations at finer geographical scales, at the 

regional and local level. For instance, Rohani et al. (2000) examine the impact of the 

introduction of mass vaccination campaigns in the late 1950s on the spatio-temporal 

patterns of pertussis incidence, utilising notification data for major cities at the national level.  

Much of the exiting literature on pertussis in England and Wales has centred on the 

effectiveness of mass vaccination on the incidence of pertussis. In the pre-vaccination era, 

pertussis outbreaks accounted for an estimated 150,000 cases and contributing to 

approximately 300 deaths annually (Amirthalingam et al., 2013).  Rohani et al. (2002) note 

that the wP vaccine may not some prevent subclinical cases of the disease, which go on to 

be unreported while potentially maintaining chains of transmission and thwarting elimination 

efforts. This echoes the sentiment of Cherry (1998), who remarked that the persistence of 

pertussis could not be controlled by contemporary immunisation programs. Nevertheless, 

based on the notifications reported, Rohani et al. (2000) conclude that mass vaccination 

has led to a large decrease in reported cases of whooping cough in England and Wales.  

 

The effectiveness of pertussis vaccination can also be assessed by analysing the relative 

changes in the length of the inter-epidemic period after mass immunisation. Analysis of 

simple models indicates that a significant drop in transmission should be paralleled by an 

increase in the interval length between epidemic peaks (Anderson and May, 1991). The 

onset of pertussis vaccination corresponded with a considerable increase in the 
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interepidemic period, from around two years to nearly four years in the ten most populous 

cities of England and Wales. This repudiated previous findings in the studies undertaken by 

Fine and Clarkson (1982), who suggested that vaccination had a negligible effect on the 

inter-epidemic interval of pertussis in England and Wales, implying mass vaccination had 

failed to significantly curb pertussis transmission (Rohani, 2000). This was based on model 

projections which mirrored the apparent failure of mass vaccination to increase the inter-

epidemic period of the infection, suggesting the adverse impact of partial vaccine efficacy 

(Fine and Clarkson, 1982). However, with access to a considerably more extensive, spatio-

temporal dataset of pertussis notifications in England and Wale than Fine and Clarkson, 

Rohani et al. (2000) found that the onset of vaccination coincides with a significant transition 

in the spatial dynamics of pertussis, initiated by the decline in disease transmission, with 

spatially decorrelated epidemics in the 1950s succeeded by geographically synchronised 

outbreaks in the decades following the introduction of the wP vaccine. This finding is 

consistent with a considerable increase in both the number and duration of fade-outs in the 

vaccine era, consistent with spatial synchronisation of epidemic troughs (Rohani et al., 

1999), and increase in critical community size required to maintain chains of infection 

transmission. 

 

1.12 Measles 

 

The measles virus has long posed a significant public health risk to human populations. 

Prior to the introduction of vaccination, measles blighted the populations of industrialised 

nations with regularity and impunity, and was a leading cause of infant mortality, with the 

annual number of measles-related deaths estimated in the range of five to eight million 

(Moss and Griffin, 2006). Since the 1960s, measles vaccines have facilitated the dramatic 

decrease in the incidence of the disease and its associated complications in many regions 

across the world (Strebel et al., 2012). The decline in mortality from measles in industrialised 

nations was associated with economic development, improved nutritional status and 
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supportive care, and emergence of antibiotic treatments for secondary infections such as 

bacterial pneumonia. Nevertheless, measles continues to be a major public health issue for 

the developed world, where low vaccination coverage leads to frequent local outbreaks at 

the community level, and for developing nations in regions such as sub-Saharan Africa, 

where elimination campaigns face significant geographical, socio-political and economic 

obstacles and the disease remains a leading vaccine-preventable cause of infant mortality 

(Moss and Griffin, 2006). 

 

1.12.1 Pathogenesis 

 

The measles virus is transmitted by aerosols or the respiratory droplets from infected 

individuals, primarily via sneezing or coughing. The incubation period for measles lasts 

between ten to 14 days, during which the virus replicates and spreads in the infected host 

(Moss and Griffin, 2006). The first clinical symptom of the disease is a prodromal illness 

characterised by a mild fever, cough, and conjunctivitis (Strebel et al., 2012). This is the 

most contagious stage of the disease. The prodromal symptoms intensify before the 

appearance of a distinctive rash, resembling red bumps on red patchy skin (Strebel et al., 

2012). This rash tends to be generalised across the body. In uncomplicated measles, 

clinical recovery begins shortly after the appearance of the rash, normally lasting three to 

four days before fading.  

 

Complications arising from measles infection are not uncommon, since the virus is known 

to cause profound immunosuppression (Moss and Griffin, 2006), which can last for several 

weeks and even months after recovering from the acute illness. Recent studies have found 

that measles infection can effectively erase 20 to 50 percent of antibodies against an array 

of viruses and bacteria, such as influenza, depleting a child's previous immunity (Mina et 

al., 2019; Petrova et al., 2019). In such instances, a measles-ravaged immune system has 

to relearn how to protect the body against infections. Unsurprisingly, measles patients are 
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susceptible to secondary bacterial and viral infections that cause pneumonia and diarrhoea 

and is responsible for much of the measles-related morbidity and mortality (Beckford et al., 

1985; Greenberg et al., 1991).  

 

1.12.2 Elimination  

 

Measles is thought by many experts to meet the criteria forwarded as necessary for an 

infectious disease to be considered a candidate for eradication: first, it must be biologically 

feasible, with humans playing the crucial role in disease transmission; second, sensitive 

and specific diagnostic tools must exist; and finally, an effective intervention must be 

available (Orenstein et al., 2000; Quadros, 2004). The success of effective measles 

immunisation programmes in communities with high vaccination coverage has 

demonstrated that the interruption of chains of transmission in a large geographic area for 

significant periods of time supports the feasibility of measles elimination. 

 

In terms of biological feasibility, measles is a good candidate for elimination. Humans are 

the only natural reservoir that can sustain the persistence of the virus. Although primates 

can be infected with measles and develop human-like illness, wild primate populations do 

not reach the critical size required to maintain chains of transmission for the infection to 

persist and pose no risk to measles elimination efforts. Based on the findings of Bartlett 

(1957, 1960) and Black (1966), a population size of 300,000 and above, with an input of 

5,000 to 10,000 births annually is required to provide a sufficient number of new susceptible 

individuals to maintain chains of transmission. 

 

The characteristic clinical features of measles, in particular the rash, makes the disease 

much more straightforward to diagnose compared to other childhood infections (Moss and 

Griffin, 2006). However, other infectious diseases which affect young children, such as  
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rubella and human herpes virus type 6 can all cause symptoms that can mimic, or to some 

extent replicate, those of measles which can lead to misdiagnoses (Davidkin et al., 1998). 

 

A key difficulty with measles elimination relates to the high infectivity of the disease. The 

measles virus is an extremely contagious infection, able to infect individuals several days 

prior to exhibiting clinical symptoms, most notably the characteristic rash which  

distinguishes the disease from others. A key epidemiological metric of the infectivity of an 

infectious disease is the basic reproduction number (Ro). Ro is the mean number of 

secondary cases that would arise if an infectious agent were introduced into a completely 

susceptible population (Anderson and May, 1991). Ro is a function not only of the infectious 

agent but also of the host population. The Ro for measles is often cited as 12ï18 (Guerra et 

al., 2017). This is in contrast to five to seven or smallpox virus and two to three for 

coronaviruses (Moss and Griffin, 2006). In the 1951 measles epidemic of Southern 

Greenland, an infected individual, identified as the case of origin, attended a dance at a 

community gathering during the infectious period of the disease. This ignited a virgin soil 

epidemic which resulted in a Ro of 200 (Christensen et al., 1953). Given its high infectivity, 

measles thus requires a consistently high level of herd immunity of approximately 90-95% 

to effectively interrupt chains of transmission and significantly increase the critical size 

required to sustain the persistence of disease to enables elimination (Cutts and Markowitz, 

1994). Local outbreaks can occur in populations in which only less than 10% of individuals 

are susceptible. 

 

Although the use of the single-antigen live measles vaccine was introduced nationally in 

1968, the vaccine had been available since 1966, and later studies generally accepted the 

vaccine have an efficacy rate of over 90% (Shelton et al., 1978; Marks et al., 1978). The 

recommended age for vaccination with the primary dose in England and Wales between 

1968 and 1988 was 12 to 23 months of age (Strebel et al., 2012). Initial vaccine coverage 
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was poor, but it gradually increased to a level of approximately 80% by 1988 (Vyse et al., 

2002). 

 

1.12.3 Dynamics in England & Wales 

 

Measles became a statutory notifiable infectious disease in England and Wales in January 

1940, with clinicians legally required to report any cases diagnosed to the district Chief 

Medical Officer. There is considerable serological and historical evidence that prior to 

measles vaccination, at least 95% of individuals had experienced measles infection by the 

time they reached adolescence (Langmuir, 1962; Earn et al., 1998). An important exception 

is island populations, which can remain infection-free for variable periods of time and 

experience epidemic disease that involves all age groups not previously affected by the last 

wave of infection, once the virus has been reintroduced (Black, 1966; Cliff et al., 2000). 

Thus, whereas peak transmission usually occurs among young children, outbreaks in 

isolated communities can involve older generations. This was exemplified by 1846 measles 

epidemic on the Faroe Islands, where Panum noted the disease affected persons of all 

ages who were not alive during the last epidemic that had occurred 65 years earlier (Panum 

and Petersen, 1940). Before the onset of national vaccination campaigns for measles in 

1968, England and Wales experienced regular measles epidemics, with the total number of 

notifications varying between 160,000 and 800,000 cases per year. Epidemics tended to 

exhibit seasonal cycles and longer-term, generally biennial major epidemics (Anderson and 

May, 1991; Grenfell et al., 2001). Young children of school age had the highest risk of 

infection and accounted for the largest proportion of cases. However, in densely populated 

urban areas, transmission among infants took on greater importance (Strebel et al., 2012).  

 

The introduction of mass vaccination had an almost immediate and significant effect on the 

magnitude of measles cases, with annual notifications falling to between just 50,000 and 

100,000 by the late 1980s. In total, 11,337,267 measles notifications were reported over a 
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28-year period in the pre-vaccine era between 1940 and 1968, with 7,863 cases resulting 

in death (PHE, 2017). After the introduction of vaccination, over the equivalent period of 

time to the year ending 1996, 2,424,836 cases and 413 measles-related deaths were 

reported. This represents a decline of 79% in measles morbidity and 95% in measles-

related mortality, respectively. In their study of the efficiency of measles notification in 

England and Wales, Clarkson and Fine (1985) found a strong correlation between births 

and four-year interval to notification, coinciding with the age at school entry and maximum 

incidence for the disease. 

 

1.13 Scarlet Fever 

 

Scarlet fever is an acute bacterial childhood disease and once a leading cause of childhood 

mortality, in the nineteenth and early twentieth centuries (Duncan, 2019). It has been 

estimated that the mortality rate for scarlet fever in multiple locations around the world 

reached 25% of cases by 1900 (Guerrant et al., 2011). By the mid-twentieth century, scarlet 

fever experienced a significant decline in morbidity accelerated by loss of virulence, the 

introduction of antibiotics and improvements in hygiene. Sporadic outbreaks of scarlet fever 

were reported in England and Wales and other western nations throughout the mid and 

late-twentieth century (Walker and Brouwer, 2018), but were no longer associated with the 

high mortality rates of times past. In recent years, scarlet fever has made a dramatic return 

as a public health issue, albeit remains an issue that evades wider public recognition. In 

2016, scarlet fever incidence in England and Wales was at its highest for over 50 years 

(Lamagni et., 2018). 
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1.13.1 Pathogenesis 

 

Scarlet fever is caused by group A streptococcus (GAS) bacterium, which is responsible for 

a range of invasive and non-invasive infections (Duncan, 2019), and humans are the only 

known natural hosts of the GAS bacterium which causes scarlet fever (Ferretti et al., 2016). 

The association between streptococci and scarlet fever was confirmed by George and 

Gladys Dick in Chicago in 1923, who located the causative agent of scarlet fever in the 

toxins produced by GAS bacterium (Dick and Dick, 1924a). The following year, they went 

on to invent óThe Dick Testô in 1924, which was used to identify those susceptible to the 

disease (Dick and Dick, 1924b).  

 

Scarlet fever is usually spread through aerosol transmissions, by people either coughing or 

sneezing, but it some instances can spread when a person comes into a contact with 

surfaces with GAS bacterium (CDC, 2016). The latent period for scarlet fever can vary from 

anywhere between two to seven days after initial exposure, although it has been known to 

be as short as 12 hours, with the infectious period lasting approximately seven days (Wong 

and Yuen, 2012). Scarlet fever cases are commonly characterised by several notable 

symptoms, such as strep throat and a óscarlatiniformô rash which covers the body, leaving 

a sunburned appearance (Duncan, 2019). The rash begins within 48 hours of symptom 

onset. Other symptoms include fever and fatigue, which tend to pass within ten days after 

their initial presentation (Wong and Yuen, 2012). The disease most commonly affects 

children of school age, between five to fifteen years old (Bisno, 1995). Known complications 

arising from scarlet fever cases include acute rheumatic fever and inflammation of the 

kidneys (Duncan, 2007). Since their introduction in the early post-war period, antibiotics 

such as penicillin V and amoxicillin form the core treatment for scarlet fever and are often 

used to prevent children from developing potential complications arising from infection 

(Langlois, 2016).  
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1.13.2 Elimination 

 

Unlike pertussis and measles, scarlet fever is not a vaccine-preventable disease. 

Historically, attempts to develop and effective vaccine for the disease have proved to be 

fruitless. George and Gladys Dick developed the first scarlet fever non-toxic vaccine in 1924 

(Dick and Dick, 1924b). However, by the end of WWII, its use was discontinued due to poor 

efficacy and the arrival of antibiotics as an effective treatment for the disease (Ellis and 

Brodeur, 2012). Difficulties in developing an effective scarlet fever vaccine include 

accounting for the substantial number of GAS strains circulating in the environment and 

securing the necessary resources to ensure adequate safety and efficacy trials of potential 

future vaccines (Ellis and Brodeur, 2012).  

 

1.13.3 Dynamics in England & Wales 

 

Previous research on the dynamics of scarlet fever in England and Wales has mainly utilised 

mortality data contained in the Registrar General's Annual Reports from the latter half of the 

19th century, which provide a consistent time series at the national level post-1847. Using 

this data adopted from the work of physician Charles Creighton in the 1890s, Duncan et al. 

(1996) revealed a significant increase in scarlet fever mortality in the nineteenth century 

which typified the second epidemiological phase of the disease (Katz and Morens, 1992). 

Prior to the early mid-nineteenth century, scarlet fever outbreaks had been lethal but 

sporadic in nature (Katz and Morens, 1992). A spectral analysis highlighted a regular inter-

epidemic period nationally, lasting approximately five years, with large fatal epidemics 

ceasing by the beginning of the third epidemiological phase in the 1880s (Katz and Morens, 

1992), when the endemic level also decreased markedly. These findings confirm those from 

work undertaken by physicians during the period by Johannessen (1884) on scarlet fever 

incidence and mortality rates in Oslo between 1863-1878, and by Whitelegge (1893) 
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documenting incidence and mortality rates in Boston between 1840-1904. Both found 

epidemics in urban centres corresponded to regular three-to-five year cycles. A longitudinal 

analysis by Lamagni et al. (2018), using morbidity data held by Public Health England from 

1911 to 2016, which incorporates notification data reported by the Registrar Generalôs 

Weekly Returns, also detected a periodicity of four to six years between epidemics across 

much of the twentieth century until the 1960s, when the widespread use of antibiotics and 

significant improvements in disease prevention pushed scarlet fever back into an endemic 

phase, characterised by low incidence and long periods between minor outbreaks. 

 

Part Four: Statement of Research 

 

1.14 Statement of The Problem 

 

In an applied context, the endemic threshold has been proposed as a guide for control 

strategies, and an argument has been made for ignoring populations below the threshold 

value if vaccines are constrained or resources limited (Beyer et al., 2011; Haydon et al., 

2006). However, this only hold value if the persistence of infections in a regional population 

is dependent on local persistence in large core urban communities which serve as endemic 

reservoirs, and rescue effects are rare. The implementation of mass vaccination should 

theoretically drive disease persistence away from the local scale towards the 

metapopulation scale. All local districts are embedded in a metapopulation in which rescue 

effects will take place, at least, to some extent, and the rate and scaling of import of infected 

individuals between districts influences the nature of the relationship between zero-

incidence and population size. Despite the simple theoretical prediction that endemic 

threshold size should increase significantly with vaccination, there have been suggestions 

in the past that the threshold size for measles in England and Wales remained steady due 

to rescue effects (Bolker and Grenfell, 1996), born from spatial coupling between districts 
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and settlements, and highlighted by phase differences among disease activity in 

geographically separate districts caused by intermediate levels of vaccine uptake. 

Identifying rescue effects require hierarchical spatial data from districts above and below 

the endemic threshold, to establish on what spatial scale it occurs 

 

The work of Cliff et al. (2000) on temporal changes in endemic threshold population size in 

an island population provides a methodological template for examining long term temporal 

changes in endemic threshold populations. However, in the context of England and Wales, 

where the temporal changes in endemic threshold size for notifiable infections are yet to be 

studied in any great detail, unlike island populations, settlements are strongly bound 

together by the movement of people and spatial coupling. This movement is hierarchically 

structured, and regular spatial flows from one geographical unit to another are known to 

reintroduce infection after endemic fade-outs in regions where infection is yet to be 

eliminated. It is therefore key to explore temporal changes in endemic threshold population 

size in relation to the spatial dynamics of infection, to understand the effect of spatial 

coupling, distance and movement between populations on the persistence of infection, 

particularly since the rate and scaling of import of infected individuals has been described 

as having the ability to change the nature of the relationship between zero-incidence and 

population size (Metcalf, 2013; Conlan et al., 2009). 

 

As reflected in the work of Bolker and Grenfell (1996), there is limited empirical evidence 

that suggest rescue effects may prevent increases in endemic threshold size, and this may 

be fruitful area of research for geographers aiming to understand the role of geography in 

shaping the endemicity of disease. The only attempt to quantity rescue effects for childhood 

infections has been led by ecologists who use WHO incidence data to explore the rescue 

effects globally, comparing persistence of infection between island and mainland countries 

in a global metapopulation framework (Metcalf et al., 2013a). 
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Despite the vast literature that exists on the spatiotemporal dynamics and persistence of 

measles, very few these studies, with the possible exception of Bolker and Grenfell (1996) 

explicitly focus on or account for spatiotemporal changes in endemic threshold population 

size over time, beyond analyses of fade-out structure and behaviour of measles and 

pertussis metapopulations (Broutin et al., 2004a, Xia et al., 2004). Lesser still, endemic 

threshold populations have been poorly characterised for uniquely structured regional 

populations which exist within wider mainland metapopulations. These regional 

metapopulations represent fertile testbeds to explore disease persistence from a 

geographical perspective. Attempts to quantify endemic threshold populations for childhood 

infections have been mostly limited to studies conducted in island populations (Black, 1966; 

Cliff et al, 2000) or those conducted in England and Wales on a national scale (Keeling and 

Grenfell, 1997; Grenfell et al., 2001; Conlan and Grenfell, 2007). Beyond studies of endemic 

thresholds in island populations, little geographical work has been undertaken which 

analyses both temporal and spatial changes in the size of endemic threshold populations in 

regions with complex patterns of spatial mobility and hierarchical spatial structures which 

operate as independent epidemiological systems.  

 

Research on endemic thresholds in specific regions in England and Wales has been absent 

in the context of childhood infections. It has generally been assumed that the population 

size at which disease fade-out may occur in regional populations in mainland 

metapopulations such as England and Wales are masked.  Regions are assumed to have 

a complex spatial hierarchy of communities of varying sizes, ranging from large cities and 

towns to rural hamlets, often with a high degree of spatial interaction driven by a dense 

network of localised travel movements. In this geographical context, the spatial transfer of 

infection via population flows from cities to neighbouring towns and villages may occur, but 

disease may also be reintroduced from surrounding, smaller settlements to large towns and 

cities due to the consistent movement of individuals between closely connected 

communities, regardless of population size. However, this assumes regions in mainland 
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populations such as England and Wales do not possess distinctive, unique characteristics 

in terms of settlement hierarchy, their demography, level of internal geographical isolation, 

the geographical dispersion of susceptibles and population densities, and the nature of 

spatial interaction between communities.  

 

1.15 Research Justification  

 

Identifying and studying endemic threshold populations at finer spatial scales enables one 

to explore how spatial interactions between local districts contribute to regional disease 

persistence, identify hotspots of infection and assess the impact of intervention on spatial 

dynamics of disease in light of potential rescue effects that may potentially inhibit control 

efforts. Identifying persistence hotspots with high endemic activity and export of infection 

after the onset of vaccination emphases the importance of geographically targeted 

immunisation programs, particularly in those regions of the world where vaccine-

preventable diseases continue to re-emerge. To this authorôs knowledge, there has been 

very little work which quantifies temporal changes in endemic threshold populations in 

complex, hierarchically structured regional populations. 

 

Historical data, in the form of the Registrar-Generalôs Weekly Return, provides highly 

accessible long-term, spatially resolved, and disaggregated incidence data for pertussis in 

England and Wales. These qualities permit the identification and investigation of unique 

endemic threshold populations at finer spatial scales. The Weekly Return also represents 

an extremely useful resource for investigating the impact of vaccination on the spatial 

dynamics of disease, since it provides a consistent record of notifications at the same spatial 

and temporal scales before and after the onset of mass vaccination. This has the potential 

to inform strategies of spatially-targeted immunisation programmes. The study of historical 

data has played an essential role in developing current understandings of the effects of 

seasonality and stochasticity on disease patterns, as well as shedding light on the spatial 
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synchrony of epidemics and traveling waves in disease systems for childhood infections, 

most notably concerning measles (Grenfell et al., 2001). With the quality of historical 

infectious disease data accessible from the Weekly Returns, there is significant scope to 

explore from a geographical perspective long term spatiotemporal changes in endemic 

threshold populations in England and Wales, where the spread of infection is hierarchically 

structured, and data exists on a fine spatial scale.  

 

It is clear from the research discussed that the epidemic dynamics of scarlet fever have 

been comprehensively established by a relatively concise body of literature. This is certainly 

the case when one looks at the research undertaken on the disease at the metropolitan and 

national levels, particularly for the nineteenth century, and in terms of mortality. However, it 

is also clear that the endemic and regional, spatial dynamics of scarlet fever, especially in 

the 20th century, have received scant attention. Katz and Morens (1992) note the urban-

rural epidemic dynamics observed in the 19th century, with regular cyclical scarlet fever 

outbreaks found in metropolitan areas in contrast to sporadic, less severe epidemics in rural 

areas, which were sometimes several years apart. However, the regional spatial dynamics 

of scarlet fever have not been examined beyond this observation, and this could prove a 

fruitful area of investigation. The work of Cliff et al. (1992, 1993) on the geographical 

structure of measles epidemics in the North-Eastern United States, as well as research on 

measles persistence by population biologists in England and Wales (Grenfell and Bolker, 

1998; Grenfell et al., 2001) has already demonstrated that infection may diffuses 

progressively from urban centres down to the surrounding rural areas, following the ócities 

and villagesô model forwarded by (Anderson and May, 1991). Within this model, the 

endemic threshold size is a key concept with regards to disease persistence. After an 

exhaustive search and review of past literature, there is a notable absence of work which 

estimates endemic threshold size for scarlet fever over time within the context of highly 

connected regions with hierarchical population structures. The endemic threshold size for 
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scarlet fever has only been estimated temporally for a historically closed, isolated island 

population, namely Iceland (Cliff et al., 2000). 

 

1.16 Aims & Objectives 

 

Beyond studies of endemic thresholds in island populations, little geographical work has 

been undertaken which analyses both temporal and spatial changes in the size of endemic 

threshold populations in regions that operate as independent epidemiological systems, 

featuring complex patterns of spatial mobility and hierarchical spatial structures. This study 

aims to address this research gap. It has generally been assumed that the population size 

at which disease becomes endemic in regional populations in mainland metapopulations 

such as England and Wales are masked (Black, 1966; Cliff et al., 2000; Broutin et al., 2005). 

The reintroduction of infection from small settlements to large towns and cities due to 

constant commuter-related travel, alongside the spatial transfer of infection via population 

flows in the other direction, blurs the point at which disease would be expected to fadeout, 

making the calculation of threshold estimates problematic. However, regions in England 

and Wales possess distinctive and unique characteristics in terms of a settlement hierarchy, 

demography, connectivity, dispersion of susceptibles and population densities, as well as 

the nature of spatial interaction between communities. 

 

The two regions selected for the present analysis are the historic county of Lancashire, 

located in Northwest England and South Wales, comprising of four historic counties of 

Wales. Lancashire and South Wales represent suitable candidates for studying the endemic 

persistence of childhood infections for several reasons. Both regions are geographically 

and topographically diverse, with significant overall populations and importantly they are 

regions of great contrast in terms of spatial structure, connectivity and isolation. Moreover, 

both experienced significant demographic transformations during the postwar period, as a 

result of the óBaby Boomô, population decentralisation driven by urban slum clearance and 
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significant economic upheaval as a consequence of deindustrialisation. These events 

transformed the ways in which local subpopulations interacted with each other on an 

everyday basis and the distribution and replenishment of susceptible individuals. 

 

The approach presented in this thesis aims to provide a straightforward method for 

detecting and tracking changes in disease persistence over time in the form of the endemic 

threshold estimates, which can be applied to a range of diseases for which an adequately 

detailed data record exists. Regional persistence of infection is rooted in local transmission 

patterns. Identifying geographical corridors of infection that contribute to recurring 

epidemics helps define and predict outbreak patterns. Detecting epidemiologically 

important districts which play a significant role in facilitating the persistence of disease within 

a regional metapopulation via rescue effects is vital to the success of national vaccination 

campaigns. The approach followed in this thesis could be applied to other regional 

populations to detect spatial heterogeneities in disease persistence to help achieve 

successful outcomes for disease intervention.  

 

1.17 Research Questions 

 

1) Are there significant regional differences in the size of the endemic threshold 

populations for the same childhood infections? 

2) What is the spatial impact of vaccination on endemic threshold populations for pertussis 

in geographically divergent regional metapopulations? 

3) How does the historical spatial structure and spatial distribution of a regional 

metapopulation influence endemic threshold population size? 

4) What are the differences in drivers of diverging levels of disease endemic among 

regional metapopulations? 

5) To what extent does geographical mobility and connectivity affect the estimation of 

endemic threshold populations? 
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1.18 Chapter Outline 

 

Chapter 2 is concerned with the research design of the study. The chapter consists of two 

parts. The first describes the data sources utilised, process of data collection and provides 

an assessment of data quality. The second part of the chapter details the multiple 

components and quantitative techniques used to perform the geographically-centred 

analysis in the study, describing the methodological procedures and providing rationales for  

selection of methods used in the analysis. 

 

Chapter 3 is composed of three parts. Part one provides a description of the study period 

selected to facilitate the analysis. Part two provides a breakdown of the geographies of the 

regional metapopulation of Lancashire and South Wales. Part three provides a description 

of the demographic profile of the two regions and a summary of the evolving regional 

demography throughout the study period. 

 

Chapter 4 presents an exploratory and descriptive spatial analysis of time-series of monthly 

notification data for measles, pertussis and scarlet fever in the Lancashire and South Wales 

regions, alongside a select subset of districts in each region (January 1940ïDecember 

1969).  

 

Chapters 5, 6 and 7 present and discuss the main findings. Chapter 5 details and analyses 

spatiotemporal changes in endemic threshold populations for measles, pertussis and 

scarlet fever in the regional metapopulations of Lancashire and South Wales, using the 

ómoving windowô empirical regression approach to estimate endemic thresholds. Chapter 6 

details the findings of the hotspot and survival analyses, examining geographical patterns 

of pertussis persistence in the pre-vaccine and vaccine-eras, to explore the spatial impact 

of mass vaccination on pertussis endemicity in the Lancashire and South Wales regions. 

Chapter 7 presents the results of endemic-epidemic modelling of pertussis, measles and 
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scarlet fever incidence across nine timeïwindows in Lancashire and South Wales, using 

various sub-model formulations of the HHH model, a multivariate regression time series 

model for infectious disease count data. This empirical-based regression is used to analyse 

geographically aggregated count data, decomposing disease risk additively into endemic 

and epidemic components to account for spatial and other heterogeneities in disease 

spread within a regional metapopulation. 

 

Chapter 8 is the final chapter of the thesis, presenting a summary of the research findings, 

a discussion of potential limitations and areas for future research, followed by concluding 

marks.
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Chapter 2: Research Methodology 
 

2 Introduction 

 

This chapter consists of two parts that together outline the research design. The first part 

focuses on data sources, collection and data quality. This section documents the secondary 

data sources utilised to enable the construction of spatially-aggregated datasets of weekly 

measles, pertussis and scarlet fever notification data for Lancashire and South Wales. 

Demographic and geospatial data sources used are also detailed. A description of the data 

collection, digitisation and entry process is provided. The quality of the notification data for 

the three childhood infections are assessed and data limitations are discussed. The second 

part of the chapter details the various strands of the quantitative analyses performed 

throughout undertaking the research focused on detailing the methodological procedures 

and outputs produced during analysis. Rationales are provided for the selection of each 

method utilised with reference to supporting literature.  

 

Part One: Data Sources, Collection & Quality 

 

2.1 Data Sources 

 

2.1.1 Disease Data 

 

The data fundamental to conducting the research presented in this thesis has been 

abstracted from the Registrar-Generalôs Weekly Return. The origins of the Weekly Return 

can be traced back to the mid-nineteenth century, with the publication of the Weekly Return 

of Births and Deaths for London by the General Register Office (GRO), By the 1890s, 

returns for other prominent cities and large towns in England and Wales had been 

incorporated. It was around this time that a regular series of weekly returns of certain 
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infectious diseases in London began to be published. The desire for more statistical 

information on the nation's health in the late nineteenth and early twentieth centuries 

encouraged the collection of surveillance data on the most severe and common 

communicable diseases in major cities and towns across the country (Mooney, 2015). From 

the beginning of 1922, notification data for selected directly transmissible diseases, 

primarily childhood infections, for all districts in England and Wales were combined with the 

returns of births, deaths in the Registrar-General's Weekly Return (Earn et al., 1998). Local 

medical officers of health across the country would collect notification data for selected 

infectious diseases within their district from general practitioners, who would make 

individual records of cases as the first point of contact with infected individuals (Cliff et al., 

1981). These records were collected weekly, with the reporting week running from Friday-

to-Friday and collated by the GRO in London before publication. Copies of the Weekly 

Return provide detailed tables which offer a rudimentary quantification of disease morbidity 

from notifiable infectious diseases for all reporting LGDs in each administrative county, as 

well as cases recorded by port authorities.  

 

Local government districts (LGDs) are the basic geographical reporting unit for disease 

notifications and can be broken down into four sub-categories for local government: County 

Borough (CB), Municipal Borough (MB), Urban District (UD) and Rural District (RD). Local 

government districts were used as the reporting unit for communicable diseases until the 

1972 Local Government Act came into effect on 1st April 1974, which saw the abolition of 

numerous county and municipal boroughs, urban districts and rural districts. The statutory 

notification of pertussis and measles cases in administrative districts in England and Wales 

first appeared in the Weekly Return beginning in early November 1939. For scarlet fever, 

statutory notifications go back further, to the week ended 7th January 1922, the first Weekly 

Return to include data on communicable disease in LGDs nationally to be published (Earn 

et al, 1998). During the study period (January 1940ïDecember 1969), the Lancashire region 

consists of 125 local government districts (17 CBs, 26 MBs, 68 UDs, 14 RDs). The four 
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counties that compose the South Wales region (Carmarthenshire, Glamorgan, 

Monmouthshire, and Pembrokeshire) consist of 75 districts (four CBs, 14 MBs, 37 UDs, 20 

RDs) over the same period. Together, these 200 districts form the bedrock of the 

geographical framework for the analyses laid out in this chapter. 

 

During the study period, the names and boundaries of the districts were intermittently 

reviewed by Local Government Commissions, the role of which would be to examine the 

areas, status and functions of local authorities. Although there were subtle changes in the 

boundaries and land areas districts in South Wales during the study period, reflecting 

changes in population size and density over time, no new districts were introduced. 

Regarding Lancashire, a new district was created mid-way through the study period, whilst 

another district was abolished. In response to the exponential growth of Kirkby, an overspill 

estate for Liverpool where the population had swelled from around 3,000 inhabitants in 1951 

to over 40,000 by the late 1950s, Kirkby UD was created in 1958. Limehurst RD was 

abolished in 1954 due to the increasingly urbanised nature of the area. The land area 

formerly covered by the district was divided between Ashton-under-Lyne MB, Oldham CB, 

Failsworth UD, Droylsden UD and Mossley MB. Ulverston RD was renamed North Lonsdale 

RD in 1960. Kirkby UD and Limehurst RD were excluded from the data collection process 

to ensure all districts  included in the analysis had a complete time series of case notification 

data for all three diseases across the study period, along with accompanying demographic 

data. 

 

2.1.2 Demographic Data 

 

Until the implementation of the 1972 Local Government Act, annual estimates for the 

absolute number of births, population size and population density per acre, among other 

measures, at the local government district level were collated and published in the 
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RegistrarïGeneralôs Statistical Review of England and Wales. These reports collected a 

wide range of data; vital statistics (such as causes of mortality), demography, labour 

migration and related economic measures, and civil statistics, concerning marriages and 

divorce. The Statistical Review is a valuable source for regular annual data on key 

demographic measures required to effectively analyse the endemic and epidemic dynamics 

of childhood infections at the district level when using historical infectious disease data.  

 

2.1.3 Geospatial Data 

 

To facilitate the construction of geospatial datasets to facilitate spatial modelling of 

infectious disease dynamics, digital shapefiles of administrative county and local 

government district boundaries for Lancashire, Monmouthshire, Glamorgan, 

Pembrokeshire and Carmarthenshire were downloaded from the Vision of Britain website 

(https://www.visionofbritain.org.uk/data/). The Vision of Britain website serves as the home 

for the óA Vision of Britain through Timeô, which brings together historical surveys of Britain 

to create a historical, geographical and quantitative record of how the nation and its 

localities have changed since the mid-nineteenth century to the early 1970s. It was created 

by Humphrey Southall and the Great Britain Historical GIS Project, based at the University 

of Portsmouth (Gregory et al., 2002). 

 

The shapefiles contain GIS polygons for each administrative unit at the district and county 

levels. For practical purposes and to maintain consistency among the map-based 

visualisations across the study period, all maps created utilise the boundary shapefiles for 

Counties of England and Wales and Districts of England and Wales for 1961. Each 

boundary dataset uses the OSGB National Grid. Relationships to container units have been 

omitted as there are frequently relationships to more than one higher-level unit.  More 

information on the digital boundary data accessed is provided by online documentation 

located in the publicly accessible Great Britain Historical Database.  

https://www.visionofbritain.org.uk/data/#tab04
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2.2 Data Collection 

 

From the end of June 2017 to the beginning of October 2018, the process of data collection 

and entry was undertaken. Notification data for measles, pertussis and scarlet fever were 

extracted from the Registrar-Generalôs Weekly Return, for a thirty-year period. This is 

equivalent to 1,560 weeks and therefore a disease record spanning 1,560 copies of the 

Weekly Return, from the week ended 6th January 1940 to the week ended 2nd January 1970. 

Notification data was collected for 125 LGDs in the administrative (historic) county of 

Lancashire, and a total of 74 LGDs for four Welsh administrative counties (Glamorgan, 

Monmouthshire, Pembrokeshire and Carmarthenshire), which together compose the region 

of South Wales. Measles, pertussis and scarlet fever notifications were recorded for each 

week and each LGD separately. The vast majority of the Weekly Returns were accessed 

from the Documents Division at the Hallward Library on the University Park Campus, 

Nottingham. Annually recorded demographic data on population size, population density 

(persons per acre) and the absolute number of births for Lancashire and South Wales LGDs 

was abstracted from thirty annual copies of the RegistrarïGeneralôs Statistical Review in 

the autumn of 2017. These reports were also accessed from the Document Division at 

Hallward Library.  

 

For each copy of the Weekly Return, all pages containing case reports for measles, 

pertussis and scarlet fever in all LGDs for both regions were photographed to construct an 

image library of disease notification data, from which case numbers could be entered into 

.csv file format on Microsoft Excel ready for manipulation. Due to the significant number of 

photos captured to accurately catalogue the relevant notification data from the Weekly 

Returns, it took several weeks to organise the photos to ensure they were in the correct 

chronological and geographical order as organised in the reports. This was important to 

minimise the risk of data entry errors that could adversely affect the results of analyses 

undertaken later in the research process. In total, 12,774 photographs were captured to 
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assemble the notification data for LGDs in Lancashire and the four counties of South Wales 

from the Weekly Return across the study period. The same approach was adopted when 

collecting annual district-level demographic data (population size, birth rates, population 

density per acre) from copies from the Statistical Review. Considerable time was spent 

editing the images to improve their clarity to prevent data entry errors, since many of the 

reports, particularly those published during the wartime years, were not in prime condition, 

due to the presence of ink smudges, creases and discolouration over time.  

 

The original decision to photograph pages with infectious disease data and subsequently 

organise the images for data entry was adopted after experimenting with the use of optical 

character recognition (OCR), utilising software such as Abbyy FineReader 14 and Nuance 

OmniPage Ultimate. OCR is both a process and software technology that converts a hard 

copy of a printed, typed, or handwritten document into an electronic form that can be read 

and edited in separate word-editing and data handing software programs (Chaudhuri et al., 

2017). In theory, the use of OCR should remove the need to manually perform data entry.   

 

Unfortunately, OCR software proved to be extremely ineffective in accurately processing 

and rendering the data contained within scanned copies of Weekly Return, principally due 

to the age of the documents which posed a range of issues that ultimately reduce the 

likelihood of accurate letter and number recognition. For instance, the oldest copies of the 

Weekly Return from which data was abstracted are 80-years old. Over time, pages have 

suffered from discolouration, been afflicted by stains and creased due to repeated folding. 

Printing noise from the time of publication is also evident, characteristic of historic 

documents (Milligan, 2013). Together, these issues have contributed to the degradation of 

the printed text contained within the reports and prevent clean images of the Weekly 

Returns from being produced when scanned. Another issue regarded the non-standard 

typeface used in the Weekly Returns. This resulted in numerous recognition errors. OCR 

routines are often unable to detect the typeface used in historical documents unless the 
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specific typeface has been programmed into the software (Pal and Dash, 2014). Generally, 

OCR routines only recognise commonly used typefaces preloaded in a library stored within 

the OCR program.  

 

2.3 Data Quality 

 

The Weekly Return represents a remarkably complete and lengthy time-series of 

geographically aggregated infectious disease data at a fine temporal scale since the 

incidence of notifiable infections were recorded separately for each local government district 

every week. The availability of parallel information at the same geographical level, in the 

form of annual statistical reports produced by the Registrar-General and local district 

medical officers, provides a wealth of data on host demography and immunisation practices 

(Grenfell et al., 2001). This information is invaluable for placing observed epidemiological 

patterns within their wider ecological context. It is worth noting that the Weekly Return also 

provided space for the amendment of notifications in previous returns, acknowledging the 

issue of erroneous returns, as well as highlighting their provisional nature. 

  

However, the morbidity data provided by the Weekly Returns suffers from the same 

limitations which affect many other historical, observational time-series data for infectious 

diseases.  Notified cases are based on clinical diagnoses made and recorded by GPs. In 

some cases, diagnoses of childhood diseases may be made erroneously due to confusion 

with other diseases with similar symptomology. This is a greater issue among rural 

practitioners less accustomed to cases of diseases that are predominantly associated with 

densely populated urban areas (Smallman-Raynor et al., 2003). Additionally, sub-clinical 

cases of infection may go undiagnosed and escape notification (Noah, 2006), another 

source of error within the infectious data reported by the Weekly Returns. Consequently, 

the Weekly Returns do not present the full magnitude of disease incidence within a local 
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authority area. As Clarkson and Fine (1985) explain, there are a series of actions that must 

take place for an infectious disease case to be correctly notified. Firstly, the infected 

individual must suffer from a clinical version of the disease, exhibiting diagnosable 

symptoms. Second, the infected individual must be seen by a medical practitioner such as 

a GP who is responsible for notifying diseases. Third, the physician/medical practitioner 

needs to make an accurate diagnosis. Differences between these actions are largely 

responsible for explaining the inefficiencies in disease notification and thereby differences 

in data quality for individual childhood infections. The greatest difference between infections 

arguably lies with the exhibition of clinical disease in infected individuals. For instance, the 

symptomology of measles is almost universal and typically characterised by a clinical 

expression of the illness centred around the distinctive rash it produces. This contrasts 

considerably with pertussis, which has a much greater frequency of asymptomatic cases, 

and a range of mild forms of the disease are known to circulate among populations (Cherry, 

1998).   

 

Data quality is an important factor to consider when analysing spatiotemporal changes in 

endemic threshold populations since incomplete observations have the potential to obscure 

dynamical processes such as local extinction of infection, complicating estimates of 

endemic threshold size (Gunning et al., 2014). Under-reporting of cases can cause the 

duration of periods of zero case reports to increase, which leads to the endemic threshold 

size being overestimated. On the other hand, over-reporting may cause infections to appear 

more persistent in time and space than would be expected, but the effect of over-reporting 

is generally more difficult to quantify with existing data. 

 

Correcting for incomplete observation poses a range of challenges. For instance, identifying 

the difference between under-reporting and stochastic extinction can be a complicated task 

for settlements where the disease is often on the verge of stochastic extinction (Gunning 

and Wearing, 2013). This issue arises from utilising a disease record that captures not only 
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information on disease persistence post-epidemics but also the invasion dynamics 

associated with the reintroduction of infection from neighbouring districts (Conlan et al. 

2009).  Bartlett (1957) recognised that the delays in disease reporting and under-reporting 

of infections needed to be considered when examining the persistence of infection since it 

cannot be assumed that a single week with no reported cases of infection within a district 

is a reliable indication that the chain of disease transmission has been broken locally. To 

remove ambiguity concerning whether stochastic extinction within a district has truly taken 

place or whether a disease has simply gone unreported, Bartlett introduced fadeouts as a 

measure of persistence.  

 

An important factor that may influence the quality of disease reporting for all three infections 

under analysis during the early years of the study period is the disruptive effect of wartime. 

The first five years of the study period are during World War II, and the caveat of 

complications arising from conflict must be taken into the account with regards to the quality 

of the surveillance data collected during this period. For instance, medical statisticians from 

the period suggested that widespread disruption to existing public health systems in 

industrial centres vulnerable to aerial bombardment may have increased the likelihood of 

under-reporting, reporting delays and misclassification issues in provisional case reports 

(Smallman-Raynor and Cliff, 2015). This could be the result of school closures, and the 

evacuation of children, whether that be official or unofficial (Stocks, 1941). However, it has 

also been postulated that the 1102 ósafeô local governments districts to which evacuees 

were sent, referred to as reception areas, may have experienced inflation in clinical 

diagnosis and notification rates compared to what would have been expected in peacetime 

(Smallman-Raynor et al., 2003). This resulted from the provision of free home visits by GPs 

for evacuees, organised by the Ministry of Health, the vigilance of anxious foster parents 

and the attentiveness of teachers who closely watched evacuees of school-age (Stocks, 

1941: 337). It is difficult to gauge the effect of evacuation on wartime disturbances on the 

quality of measles and pertussis surveillance data since statuary notification for the 
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diseases across all of England and Wales did not begin until two months after the outbreak 

of war (Stocks, 1942). 

 

An assessment of the quality of pertussis, measles and scarlet fever notification data 

recorded in the Weekly Returns across the study period, based on the findings of previous 

empirical studies, will now be provided.  

 

2.3.1 Pertussis 

 

According to Clarkson and Fine (1985), only an estimated 5 to 25% of the actual number of 

pertussis cases are believed to have been notified in the surveillance data contained within 

the Weekly Returns. This is despite detailed surveillance procedures put in place for 

pertussis since the end of 1939 by the General Registrar Office, across all LGDs in England 

and Wales. There is some empirical evidence to support the veracity of Clarkson and Fine 

(1985)ôs estimate. A past study revealed only 18.7% of pertussis cases clinically diagnosed 

by doctors in Nottingham Area Health Authority in 1982 were notified to the OPCS 

(Jenkinson, 1983). Clarkson and Fine (1985) also highlight that, before 1976, the reporting 

efficiency for pertussis may have been up to five times greater among spotter practices, 

who notify pertussis cases to the Royal College of General Practitioners, than by the 

average GP. The differential between those who were part of a sentinel reporting system 

and clinicians in standards practices may emphasise the difficulties involved with 

diagnosing pertussis, since it is not uncommon for the characteristic symptoms, such as the 

distinctive cough, to be absent. Although notification inefficiency affects the magnitude of 

case reports, it does not affect the fundamental large-scale spatiotemporal trends that can 

be observed within the surveillance data. For instance, Rohani et al. (1999) state that 

previous empirical work on pertussis surveillance has exhibited a significant correlation 

between notified cases reports, such as the Registrar Generalôs Weekly Returns, 



Chapter 2: Research Methodology 

65 

 

serological isolation of Bordetella pertussis by the Public Health Laboratory Service, and 

independent notification data for pertussis held by the Royal College of General 

Practitioners (Fine and Clarkson, 1982; Miller et al., 1992). It is worth noting that the issue 

of waning immunity among those infected by pertussis later in life has been overlooked 

regarding the under-reporting of pertussis cases in England and Wales during the mid-

twentieth century. During the pre-vaccine era, pertussis reinfection in adults commonly went 

undiagnosed and was not well-characterised (Gunning et al., 2014), with pertussis 

notifications in the Weekly Return consisting almost exclusively of cases of infection 

amongst children (Cherry, 1998). 

 

2.3.2 Measles 

 

Measles records in England and Wales, compared to surveillance records on other 

childhood infections, are generally considered to be of excellent quality, partly explaining 

the prevalence of measles studies within the fields of medical geography and spatial 

epidemiology. This is due to a combination of factors. Firstly, measles is generally 

considered to be far more straightforward to diagnose than other childhood infections 

(Bjørnstad and Grenfell, 2008), resulting in more accurate diagnoses of cases and reliable 

surveillance data. This is due to the characteristic rash routinely associated with the 

disease, and the presence of Koplik's small spots; bluish-white spots located on the inside 

lining of the cheek (Black, 2013). Although diagnoses of measles cases may have been 

more accurate historically compared to other diseases, Conlan et al. (2009) note that in 

practice contemporary clinical diagnoses rates can be relatively low, with the then-Health 

Protection Agency (now Public Health England) reporting a case confirmation rate of around 

20%. Anecdotally, an association between the accuracy of measles diagnoses and 

abundance of the infection has been discussed, with case confirmation rates as low as 1% 

observed during periods of low measles incidence in England and Wales throughout the 
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2000s (Conlan et al., 2009). Higher case reporting rates for measles in LGDs during the 

study period would therefore be expected, given the scale and frequency of measles 

epidemics before the introduction of mass vaccination in 1968. Secondly, the disease has 

long constituted a major public health threat and therefore was subjected to mandatory 

notification nationwide in England and Wales by 1940.  

 

However, under-reporting of measles cases in England and Wales has received attention 

in past studies that have attempted to quantify the scale of this issue. According to previous 

empirical studies (Clarkson and Fine, 1985; Finkenstädt and Grenfell, 2000; Finkenstädt et 

al., 2002), the under-reporting bias for measles ranges from 40 to 60% between 1940 and 

1969, and it has been previously stated that measles notifications would need to be multiped 

by a factor of 1.5 to 2 to provide a truer reflection of the magnitude of cases during this 

period (Cliff et al., 1981). Gunning et al. (2014) provide an extensive analysis of measles 

reporting rates in England and Wales, utilising a dataset formed of weekly measles 

notifications for sixty towns and cities between 1944 and 1968. This is a subset of a much 

larger dataset of measles case reports for all LGDs in England and Wales as recorded by 

the Weekly Returns over the same period (Grenfell et al., 2001). Their study found 

significant variability across geographical areas for measles reporting rates in England and 

Wales, partly explained by the idiosyncratic nature of notification and data collection by 

public health officers and practitioners at the local level. Moreover, demographic factors 

such as school attendance explain a non-trivial proportion of variation in reporting rates.  

 

2.3.3 Scarlet fever 

 

Despite many thorough literature searches, to date, there are no studies that indicate the 

scale of under-reporting associated with scarlet fever notifications during the mid-twentieth 

century in England and Wales. This parallels the paucity of empirical studies on scarlet fever 

morbidity for this period in medical geography and epidemiological literature. This is 
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unsurprising as scarlet fever has largely faded from public consciousness and the minds of 

medical experts, due to the power of antibiotics to treat infection and the collapse in disease 

morbidity. The significantly greater availability of spatiotemporal datasets already primed 

for analysis for measles and pertussis, which have continued to pose challenges to public 

health even after the introduction of mass vaccination, has provided much more fertile 

ground for the geographical and epidemiological study of childhood infections. 

 

Based upon what is understood regarding the quality of pertussis and measles notifications 

throughout the study period in England and Wales, and the similarities in symptoms 

exhibited in scarlet fever cases compared with measles, it would be fair to assume there 

would be a substantial underreporting bias across Lancashire and South Wales. There is 

some indication of the quality of scarlet fever case reports in the Weekly Returns during the 

early years of the study period, during the 1940s, albeit limited. A study undertaken on 

sickness in the population of England and Wales during the mid-1940s by Dr Percy Stocks, 

Chief Medical Statistician of the GRO, determined that the notification data for scarlet fever 

collated in the Weekly Returns were ófairly completeô in nature (Smallman-Raynor et al., 

2003; Stocks, 1949). An earlier paper noted that a significant observation error had been 

identified in the notification of scarlet fever cases around the late-1930 (Stocks, 1941).  

 

2.4 Database Formation 

 

For the study period, weekly disease counts, annual mid-point population estimates, 

number of births, population density (persons per acre) for local government districts were 

abstracted from the Weekly Returns to form a 125 (geographical unit) × 1560 (week) space-

time matrix of case notifications for pertussis, measles and scarlet fever in Lancashire, and 

a 74 (geographical unit) × 1560 (week) space-time matrix for South Wales. These datasets 

facilitate the various quantitative analyses laid out and presented in this chapter and thesis. 
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Since population density is measured in person per acre in the Statistical Review, a decision 

was made to transform the measurement of population density to persons per square 

kilometre (per km2). This transformation of the arithmetic density from persons per acre to 

square kilometre allows for much greater variation in density levels between geographical 

units, providing a more nuanced perspective of settlement patterns and relative densities in 

terms of urban vs rural, thus painting a more accurate picture of the nature of population 

density within a region composed of numerous subpopulations.  

 

2.5 Data Issues: Measuring Uncertainty  

 

Uncertainty estimates are used to examine how the frequency at which data is sampled 

affects the estimation process (Capaldi et al., 2012). To date, within the field of disease 

ecology and epidemiology, uncertainty has often been considered primarily in terms of 

inadequate surveillance (of either hosts or pathogens) or the often accidental 

misclassification of cases of infection (see Section 2.3). Although absent here, an 

uncertainty analysis that attempts to formally quantify the limitations of the available data 

utilised to produce the datasets subject to analysis in this thesis could have been conducted. 

Estimates of disease persistence and of risk factors, which extrapolate from specific data 

sources to population-level measures, are subject to a broader range of uncertainty 

because of the combination of multiple data sources and value choices. One should 

consider all sources of uncertainty, including those occurring from measurement error, 

systematic biases, and extrapolation to compensate for incomplete data. Fine and Clarkson 

(1983) detail a relatively straightforward method for estimating the efficiency of historic 

disease notification with specific reference to England and Wales. Crude estimates are 

obtained from a comparison of annual numbers of births and notifications, modified to 

include detailed age-specific data. These analyses provide evidence for a strong positive 

correlation between notification efficiency and incidence for pertussis and measles, 

detecting a dramatic fall in the notification efficiency for pertussis between 1957 and 1976. 
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Part Two: Data Analysis 

 

2.6 Exploratory Data Analysis 

 

Empirical time-series plots of incidence rates (cases per 100,000 population) for the 

Lancashire and South Wales regions were produced to analyse the temporal trends of 

measles, pertussis and scarlet fever incidence throughout the study period. Time-series 

plots of a tiny subset of three districts of varying population size for Lancashire (Manchester 

CB, St Helens CB and Little Lever UD) and South Wales (Cardiff CB, Merthyr Tydfil CB, 

and Fishguard & Goodwick UD), were produced to illustrate the epidemic behaviour of Type 

I, Type II and Type III communities within the regional populations. 

 

Choropleths maps are utilised to visualise geographical and temporal changes in patterns 

of measles, pertussis and scarlet fever persistence across the study period, as measured 

by percentage endemicity, using the ómoving windowô approach. (see Section 4.6.1). 

Choropleth maps are also utilised to explore overall geographical patterns and compare 

rates of measles, pertussis and scarlet fever incidence for each of the nine timeïwindows 

across the study period. Due to the fall in the magnitude of cases for scarlet fever and 

pertussis in each region as visualised by the time series plots, it was necessary to define 

classes using the manual classification method to ensure consistent data intervals are 

available to allow comparison across all timeïwindows. This also applied to measles since 

the magnitude of cases can vary considerably depending on the presence of an epidemic 

outbreak within a timeïwindow.  

 

Analyses of sample correlation coefficients are performed to assess the level of spatial 

synchronicity between individual districts and the overall regional pattern of epidemic 

activity for all three diseases in the two regions. This was achieved by calculating the 

correlation between the reported annual counts for each district and the mean average over 
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the remaining number of districts in the region. The frequency distributions of sample 

correlation coefficients for individuals LGDs by disease and region are visualised using 

histograms and geographically displayed using thematic choropleth maps. All choropleth 

and proportional symbol maps were produced using QGIS 3.12 software óBucreἨtiô, an 

open-source desktop geographic information system application. Time-series plots and 

heatmaps were produced using R package ggplot2 . 

 

2.7 Endemic Threshold Estimation 

 

Following the approach of Cliff et al. (2000), a dynamic ómoving widowô empirical regression 

approach is pursued to evaluate how the endemic threshold size of three diseases in two 

unique geographical regions responds to demographic changes over time, as well the 

introductions of disease interventions and evolution of spatial relationships between local 

populations over the same period. A full description of the ómoving windowô regression 

approach for endemic threshold estimation is presented below. 

 

2.7.1 TimeïWindows  

 

Building on the empirical regression approach outlined by Cliff et al. (2000), the thirty-year 

time series of weekly pertussis, measles and scarlet fever notifications was broken down 

into nine 72-month timeïwindows to track temporal changes in the endemic threshold value 

in Lancashire and South Wales across the study period, yielding nine threshold size 

estimates. The purpose of employing this method was to explicitly monitor any systematic 

time changes across the study period that may affect the endemic threshold population size. 

This dynamism is important since the study period spans a length of time that saw 

transformative demographic events, advancements in public health and disease control and 

socio-economic changes that would fundamentally affect both regional populations, the 
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nature of and conditions for disease persistence. These changes over time are discussed 

in greater detail in various sections of Chapter 3.  

 

A timeïwindow of 72 months duration was selected to ensure a satisfactory number of 

windows to sufficiently detect temporal changes in threshold population size in a relatively 

short study period, whilst allowing a sufficient number of months in each time window to 

produce estimates from model parameters without unreasonably large standard errors. 

Time-series analyses of pertussis, measles and scarlet fever in Lancashire and South 

Wales reveal epidemic outbreaks occurred approximately every two to five years during the 

study period. Consequently, a 72-month window ensures more than one epidemic for each 

disease is captured in all nine timeïwindows. There is a 36-month overlap to ensure a 

smoothing effect between preceding and successive windows. Potential issues with this 

approach are discussed in section 4.6.3. The timeïwindows studied are as follows: 1940-

45, 1943-48, 1946-51, 1949-54, 1952-57, 1955-60, 1958-63, 1961-66 and 1964-69. The 

first six timeïwindows constitute the pre-vaccine era of the study period, with the latter three 

timeïwindows forming the vaccine era. The population size of each local government 

district (LGD) for each time window was defined as the mean population size for the 72 

months. Similarly, the number of susceptibles input (birth rate) for each LGD is defined as 

the mean number of susceptibles input across the length of the time window, and population 

density (number of persons per km2) for each LGD in each time window was defined as the 

mean population density across each timeïwindow.  

 

2.7.2 Modelling Procedure 

 

Weekly case notification data for all three diseases in each timeïwindow was transformed 

into an absence/presence dataset, using a binary code (where 1 = infection present, and 0 

= infection absent). This enabled the calculation of the proportion of weeks in each period 

that disease was present, measuring the level of disease persistence in each district. By 
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multiplying the proportion of weeks by 100, one obtains the percentage endemicity for each 

infection for all districts. The percentage endemicity variable was combined with annual 

mid-point population estimates to produce detailed datasets for each timeïwindow; the 

annual number of births and population density (persons per acre) for local government 

districts were abstracted from the Registrar Generalôs Statistical Review. 

 

Following this, a linear regression was fitted for each timeïwindow, with percent endemicity 

for each LGD against mean population size over the same period. To estimate the endemic 

threshold size for each window, the approach of Cliff et al. (2000), building upon the 

approach employed by Black (1966) in his study of measles endemicity in insular 

populations, is adopted, with the threshold population estimate being determined initially by 

using a simple linear regression of the form: 

 

percentage endemicity ὦ  ὦ mean population sizeȟ eq. 2.1 

 
Since variables range over many orders of magnitude, and it is unknown what form the 

regression relationship may take given the nature of the data under analysis, with a large 

number of districts in both regions under study with significant variation in population sizes. 

Endemic threshold size estimates are calculated additionally using a simple linear 

regression of the form log-linear: 

 

percentage endemicityὦ  ὦÌÏÇmean population sizeȟ eq. 2.2 

 

And of the form log: 

 

ÌÏÇpercentage endemicityὦ  ὦÌÏÇmean population sizeȟ eq. 2.3 
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2.7.3 Analysing Connectivity 

 
To analyse the effect of geographical connectivity and isolation on the estimation of 

endemic threshold size, a dummy variable was introduced to the regression equation 

utilised to calculate the estimate. In the absence of weekly or annual data on 

migration/population flows between LGDs in Lancashire and South Wales, a binary 

distinction between the most connected and isolated LGDS was made according to distance 

from the nearest endemic centre, which acts as a crude connectivity index. To define the 

distance from the nearest endemic centre, a Euclidean distance matrix was calculated from 

the centroids of each LGD polygon in a shapefile of the administrative district level 

boundaries for Lancashire and South Wales. Liverpool CB and Manchester CB in 

Lancashire and Cardiff CB in South Wales were defined as endemic centres, since all three 

LGDs consistently report, or very close to, 100% endemicity across all nine timeïwindows. 

To produce the dummy variable, distance from the endemic centre was encoded, with LGDs 

below the median distance from the nearest endemic centre coded as 0, and LGDs greater 

than the median distance from the nearest endemic centre as 1. Utilising the models above 

and the estimated values of parameters, the endemic threshold is again calculated, but for 

two circumstances; when the dummy variable is 1 and when the dummy variable is 0. 

 

2.7.4 Analysing Density 

 

Black (1966) observed an inverse relationship between population density and duration of 

individual epidemics, resulting in variation in the prevalence of measles cases. Black argues 

implicitly that the epidemic infection persists longer in dispersed populations rather than 

crowded populations, affecting the number of months in which the disease is reported and 

thus complicate a simple population-based estimate of critical community size. In other 

words, greater geographical dispersion results in a damping effect that depresses the 

calculated endemic threshold value. Following the same approach as described to analyse 
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the relationship between distance formed endemic centre and endemic threshold size, 

LGDs were dichotomised according to their population density per square kilometre, with 

LGDs below the median population density coded as zero, and LGDs higher than the 

median population density as one. Population density per square kilometre acts as a simple 

proxy for susceptible density in the endemic threshold calculation assuming a linear 

relationship between the density of susceptibles and most densely populated districts.  

 

The ómoving window regression analyses yielded a total of nine threshold estimates across 

the study period for the full population-based sample of Lancashire and South Wales 

districts for each disease, as well nine threshold estimates for low and high connectivity 

districts and low and high-density districts for each region. The threshold estimates were 

plotted, using a simple scatterplot approach with circles denoting the estimated threshold 

size in each window and a LOWESS smoother fitted to show time trends. In the case of 

pertussis, scatterplots feature a shaded area indicating the period when successful 

preventive measures for disease elimination were available and applied nationwide. 

 

2.7.5 Modelling Issues 

 

In the case of Lancashire, a key issue was the swamping effect of two outliers which 

persisted in each of the nine-timeïwindows. These outliers were Liverpool CB and 

Manchester CB, both possessing populations roughly three to four times greater than the 

next largest district, Salford CB. Consequently, these urban centres yielded excessive 

influence over the fitting of the model to the case notification data. As the only districts at 

the 100% endemicity threshold in each of the nine timeïwindows for pertussis, their 

presence in the analysis could act to constrain the form of the regression line, functioning 

as óa cap in a closed number systemô (Cliff et al., 2000; 93). Consequently, Liverpool CB 

and Manchester CB were omitted from the models before estimation. To evaluate the extent 

to which Liverpool CB and Manchester CB affect the calculation of endemic threshold 
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estimates during the study period, preliminary analyses were performed with empirical 

regression models for each disease across all timeïwindows fitted with Liverpool CB and 

Manchester CB included in the modelling procedure and comparing the estimates with 

those calculated with the two districts omitted. It was found that the omission of Liverpool 

and Manchester CBs resulted in only marginal increases in the regional threshold estimates 

across the timeïwindows. Consequently, Liverpool CB and Manchester CB were omitted 

from the models before estimation. A fuller discussion of the problem of using percentage 

data in regression is provided in Appendix II. 

 

Another issue is that the  36-month overlap to ensure a smoothing effect between preceding 

and successive windows poses a challenge to the assumption of stationarity. Stationarity is 

an important property and issue in time series. However, real-world time series are often 

non-stationary, with significant properties such as mean, frequency, variance and kurtosis 

changing over time. Often such time-series possess high volatility, trend and are frequently 

characterised by heteroskedasticity. Although not employed here, one remedy would have 

been to employ a moving average technique to produce a smoothing effect, remove noise 

fine-grained variation between each period represented by the nine timeïwindows. The 

timeïwindow size could have been specified by defining the window width and the number 

of raw observations used to calculate the moving average value. The moving window, 

defined by the window width, would then slide along the time series to calculate the average 

values in the new series. 
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2.8 Hotspot Analysis 

 

The purpose of the hotspot analysis is to investigate the effects of spatial coupling, 

connectivity and impact on mass vaccination on endemic persistence of pertussis in 

Lancashire and South Wales, by analysing differences in the number and geographical 

distribution of hotspots between pre-vaccine (1946ï1957) and vaccine eras (1958ï1969) 

for the disease. To this end, two time series of 144-months duration, representing the two 

eras, are studied. The onset of vaccination midway through the study period serves as a 

natural experiment to analyse the two mechanisms which can produce a lower than 

expected number of fadeouts: 

 
I. increased chains of transmission between and within subpopulations due to high 

population density, and 

II. higher rate of disease re-introduction due to high geographical connectivity between 

subpopulations and endemic centres.  

 

Here, a fadeout is defined as a period of four weeks or more without reported cases of 

infection. The detection of potential hotspots in the vaccine era can reveal important 

information concerning potential endemic reservoirs and the location of corridors of 

infection, where regional movement patterns between subpopulations are concentrated and 

the spatial import or infection is a frequent occurrence (Cliff et al., 1993; Xia et al., 2004).  

 

2.8.1 Total Fadeouts & Population Size (Pre-vaccine era) 

 

Following the method of Bharti et al. (2010), the hotspot analysis is centred on an evaluation 

of the residuals detected by the OLS linear regression models. These residuals can 

potentially reveal areas of key epidemiological importance for the regional persistence of 

pertussis in Lancashire and South Wales. LGDs with negative residuals would indicate 
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areas with fewer fadeouts relative to their population size and may begin to elucidate the 

role of spatial connectivity on influencing rates of disease reintroduction. 

 

OLS linear regression models were fitted to analyse the association between the total 

annual number of fadeouts and mean population size for both regions to estimate 

reintroduction events. The total number of fadeouts should scale inversely with population 

size, due to the increased likelihood of transmission events (Conlan et al., 2007). An overall 

negative correlation between the number of fade-outs and population size is well-

established in previous research empirical research on measles and, to a lesser extent, 

pertussis. This is due to stochastic fluctuations in birth, death and migration rates (Bartlett, 

1957; Black, 1966; Bjørnstad et al., 2002) alongside the natural dynamical activity of 

childhood disease. Consequently, a negative relationship between local population size and 

the total number of annual fadeouts in each 144 month-long time series is expected.  

 

To provide an initial assessment of the impact of spatial proximity and human mobility on 

pertussis persistence in Lancashire and South Wales, the OLS regression residuals were 

tested for spatial autocorrelation by performing a Moranôs I test using the R package spdep . 

Since detailed data on the movement of individuals between LGDs in Lancashire and South 

Wales during the study period is not available, a geographical proxy for mobility and 

interaction between districts was utilised. A conventional contiguity-based spatial weighting 

that could capture characteristics of contagious diffusion was incorporated in Moranôs I tests 

for both regions, with districts defined as neighbours where they share administration 

boundaries with common borders (Moran, 1950). Based on the rooks-contiguity 

relationship, an individual Lancashire LGD has an average of 4.91 neighbouring districts, 

whilst an individual LGD in South Wales has an average of 3.95 neighbouring districts.  
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2.8.2 Reported Cases (Vaccine era) 

 

Pertussis hotspots in the vaccine era are defined as LGDs with a greater number of cases 

notifications for their population size than the mean regional total of cases reported (Bharti 

et al., 2010). These LGDs were identified after calculating the total number of weekly cases 

notified in each reporting district in the 144-month period following the introduction of routine 

pertussis vaccination. To test for spatial autocorrelation amongst óhotspotsô, a Moranôs I test 

is performed as described previously, only with hotspots treated as a binary variable (i.e., 1 

= district identified as a hotspot; 0 = district not identified as a hotspot). To facilitate the 

identification of geographical patterns and clustering of regional pertussis hotspots in 

Lancashire and South Wales, hotspots were visualised by producing simple thematic maps. 

Thematic maps were created using QGIS 3.12 ñBucreἨtiò. 

 

2.9 Survival Analysis 

 

Rates of re-introductions 

Comparing the length of inter-epidemic periods in the pre-vaccination and vaccine-era time 

series provides additional insight on spatiotemporal changes in disease persistence at the 

local level (Ferrari et al., 2008; Grenfell and Anderson, 1989), allowing an assessment of 

the impact of vaccination on the strength of spatial coupling to be assessed as well as the 

identification of districts of particular epidemiological importance to maintaining the regional 

circulation of childhood diseases. In the absence of vaccination, long inter-epidemic periods 

indicate low geographical connectivity, usually coupled with small population size and low 

susceptible input via births, resulting in infrequent to rare re-introduction of disease (Bartlett, 

1957). Short inter-epidemic periods suggest frequent disease introduction due to the 

presence of órescue effectsô and external transmission, as a consequence of high 

geographical connectivity, or larger populations (Grenfell et al., 2001; Wearing and Rohani, 
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2009). Building on the work of Bjornstad and Grenfell (2008) and Bharti et al. (2010), a 

survival analysis was conducted by fitting a Cox proportional hazard regression model, with 

inter-epidemic period length serving as the waiting time, to determine the survival probability 

of disease fadeouts. The waiting time represents the number of weeks without reported 

cases until a reintroduction event. 

 

In the survival analysis presented here, the outcome is a disease reintroduction event. The 

time to pertussis reintroduction represents the length of fadeout duration. It is expected, 

based on previous research and epidemiological theory concerning the persistence of 

infection and critical community size, that districts with larger populations, greater 

population densities, the input of susceptible individuals via birth and a high degree of 

spatial coupling will experience much higher rates of disease reintroduction, resulting in 

much shorter times to disease reintroduction than less populated and dense districts which 

are more geographically isolated and possess lower rates of susceptible recruitment.  

 

The survival analyses of pertussis endemicity in the pre-vaccine and vaccine eras for the 

Lancashire and South Wales region were performed using two R packages: survival  for 

computing survival analyses and survminer  for visualizing survival analysis results.  

 

2.9.1 Cox Proportional Hazards Model  

 

To successfully perform the survival analysis, a cox proportional hazards model must be 

fitted. The Cox proportional-hazards model is one of the most important methods used for 

modelling survival analysis data and can be applied to both quantitative predictor variables 

and for categorical variables. The model is essentially a regression model commonly used 

for investigating the association between the survival time of a group, such as infected 

individuals or patients, and one or more predictor variables (Cox, 1972). The objective of 
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using a cox model is to simultaneously evaluate the effect of known or hypothesised several 

factors on survival. In other words, a Cox model enables the examination of how specified 

factors influence the rate of a particular event happening such as infection or death at a 

particular point in time. This rate is commonly referred to as the hazard rate (Sedgwick, 

2012). Predictor variables are usually termed covariates in the survival-analysis literature. 

Fitting a cox regression model enables the visualisation of the predicted survival proportion 

at any given time point for a particular group under investigation.  

 

The Cox proportional hazards model is conveyed by the hazard function denoted by Ὤ. 

Briefly, the hazard function can be interpreted as the risk of expiring at time ὸ. In the present 

analysis, the hazard function is the risk of disease reintroduction at time ὸ. It can be 

estimated as follows: 

Ὤ  Ὤπ ÅØÐὦὼ ὦὼ Ễ ὦὼ ȟ eq. 2.4 

where ὸ represents the survival time È is the hazard function determined by a set of 

ὴ covariates (ὼ, ὼ,..., ὼ) and the coefficients (ὦ, ὦ,..., ὦ) measure the effect size of the 

covariates. The term Èπ represents the baseline hazard. It corresponds to the value of the 

hazard if all the covariates are equal to zero i.e., the quantity ÅØÐπ equals 1. A cox 

proportional hazards model can also be expressed as a multiple linear regression of the 

logarithm of the hazard on the variables ὼ, with the baseline hazard being an intercept term 

that varies with time. The quantities Ὡὼὴὦ represent hazard ratios. A value of ὦ greater 

than zero, or equivalently a hazard ratio greater than one, indicates that as the value of the 

nth covariate increases, the probability of a hazard event increases, thus reducing the 

length of the survival time.  

 

A hazard ratio is a measure of an effect of an intervention or covariate on an outcome I.e., 

dependent variable over time. Hazard ratios are most frequently reported in time-to-event 
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analysis or survival analysis when the aim is to establish the length of time required for a 

particular event or outcome to occur (Sedgwick, 2012). The outcome could be a negative 

outcome such as the time until death or a positive outcome, such as time to disease-free 

survival. When hazard ratios are used in survival analysis this reflects the analysis of time 

survived to an event (Altman and Bland, 1998). Alongside hazard ratios, confidence 

intervals are reported, providing the range of values that is likely to include the true 

population value, measuring the precision of the hazard ratio. The narrower the confidence 

interval, the more precise the estimate. The precision of any estimate will be influenced by 

the sample size to some extent. If the confidence interval includes 1, a hazard ratio is not 

significant. A hazard ratio above 1 indicates a covariate that is positively associated with 

the event probability (Spruance et al., 2004). 

 

2.9.2 Kaplan-Meier Survival Curves 

 

Kaplan-Meier survival curves were constructed for hotspots, and other districts in the pre-

vaccine and vaccine eras, to assess the impact of disease intervention in the form of mass 

vaccination on the rate of disease reintroductions and duration of fadeout events.  The 

Kaplan-Meier (KM) method is a non-parametric method used to estimate the survival 

probability from observed survival times (Kaplan and Meier, 1958). The method is graphical, 

displaying survival data or time-to-event analysis and is commonly drawn as a step function. 

The survival probability at time ὸ, Ὓ  , is calculated as follow: 

Ὓ Ὓ ρ
Ὠ

ὲ
ȟ eq. 2.5 

where 3  equals the probability of being alive at Ô ρ, Î represents the number of 

patients alive just before Ô, and Ä is the number of events at Ô. The estimated probability 

3  is a step function that changes value only at the time of each event (Bland and Altman, 

1998).  
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The Kaplan-Meier survival curve, a plot of the Kaplan-Meier survival probability against 

time, provides a useful summary of the data that can be used to estimate measures such 

as median survival time (Sedgwick, 2014). The Kaplan-Meier curve is a form of univariate 

analysis, describing the length of survival according to one factor under investigation. 

Additionally, Kaplan-Meier curves are useful when the predictor variable is categorical, 

effectively making comparisons between groups. Log-rank tests are utilised to test whether 

differences between hotspots and other districts in terms of fadeout survival probability are 

statistically significant, and to compare across the pre-vaccine and vaccine eras. 

 

2.9.3 Log-rank Test 

 

The log-rank test is a non-parametric test and the most widely used method of comparing 

two or more survival curves (Bland and Altman, 2004). The null hypothesis is that there is 

no difference in the overall survival distributions between the groups in the population 

(Mantel, 1966). The log-rank test makes no prior assumptions about survival distributions 

and compares the observed number of events in each group to what would be expected if 

the null hypothesis were true (Clark et al., 2003). The log-rank statistic is approximately 

distributed as a chi-square test statistic and thus, to test the null hypothesis, the log-rank 

test calculates a chi-square (…) statistic, which is compared to a …-distribution. If the p-

value <0.05, then the result of the test is statistically significant; survival distributions of the 

different groups are not equal within the population. The R package survival was used to 

perform the log-rank test comparing the two survival curves of hotspots and other districts 

within the regional populations of Lancashire and South Wales in the pre-vaccine and 

vaccine eras. The test produces a weighted observed number of events in each group, a 

weighted expected number of events in each group, and a chi-square statistic for a test of 

equality. 
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2.10 EndemicïEpidemic Modelling 

 

Weekly pertussis, scarlet fever and measles notification data for LGDs in Lancashire and 

South Wales obtained from the Weekly Returns are classic examples of infectious disease 

counts data collected by public health surveillance systems. Datasets of this nature are 

invaluable resources for extrapolating temporal and spatial parameters to improve our 

understanding and prediction of how infectious disease spreads geographically. Infectious 

disease data tends to be the product of inherently spatiotemporal processes which are only 

partially observable, and observations are not independent (Becker and Britton, 1999). 

Infectious disease data also tends to feature autoregressive, self-exciting behaviour, as a 

result of demographic stochasticity. To effectively model the endemic-epidemic dynamics 

of childhood infection, one must use a statistical approach that can effectively capture the 

autoregressive, spatial and temporal components of infectious disease data.  

 

2.10.1 Modelling Rationale  

 

The statistical analysis of infectious disease data has been predominantly dictated by 

individual-based mechanistic modelling of the epidemic process (Becker, 1989; Daley and 

Gani, 1999). In particular, continuous-time models, such as the susceptible-infected-

removed (SIR) model, have been applied to estimate relevant parameters from detailed 

data on the infection process (Anderson and Britton, 2000). Mechanistic models diverge 

from simple empirical models such as regression models because their structure demands 

the formulation of explicit hypotheses about the potential biological mechanisms that 

influence infection dynamics (Lessler and Cummings, 2016). Such hypotheses range from 

straightforward representations of the time until parts of the disease process are complete, 

such as the incubation period, to complex agent-based models that attempt to explicitly 

characterise social interactions and networks (Eubank et al., 2004; Sartwell, 1966). 
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However, modelling of this nature is too ambitious for routinely collected surveillance data 

for areal units, which do not possess data on individual cases. The absence of detailed 

information on susceptibles essentially makes detailed mechanistic modelling of the 

infection process impossible.  

 

Another issue that blights historical infectious disease data is underreporting, due to 

subclinical cases or misdiagnosis, and delays in case reporting (Diggle et al., 2002). 

Mechanistic models often assume that the time unit in which data are collected equals the 

generation time of the disease under analysis (Daley and Gani, 1999), yet this is rarely the 

case in practice; the generation time of measles and pertussis is almost twice as long as 

the time unit in which cases are reported in the Weekly Returns. This issue can result in 

significant overdispersion. Mechanistic modelling techniques possess other imitations 

which inhibit efforts to construct realistic stochastic models for the statistical analysis of 

historical time-series data of infectious diseases. The parameters in a traditional SIR model 

do not allow for the quantification of uncertainty. Calculating SIR models over a limited 

number of potential values for each parameter results in a range of future trajectories but 

does not quantify uncertainty in the predictions. Another significant limitation of the SIR 

model is the simple assumptions made about the population which underpin the model. It 

assumes homogeneous mixing of the population, assuming in individuals within a 

population have an equal probability of coming into contact with each other. This does not 

reflect the social structures which dictate human activity, which concentrate most contact 

between individuals within restricted networks (Tolles and Luong, 2020). The SIR model 

also assumes a large, closed population with no migration, births, or deaths from causes 

other than the epidemic. This fails to consider epidemiological coupling at the local level 

and the role of stochastic effects which are key to understanding disease incidence in small 

populations (Huppert and Katriel, 2013). Development of a greater understanding of 

stochastic effects on disease occurrences over time across local populations of varying 
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sizes is critical to understanding changes in endemic threshold populations and the 

spatiotemporal persistence of childhood diseases. 

 

Alongside mechanistic approaches, empirical modelling has long been a feature of 

statistical analysis of infectious disease data. Unlike mechanistic modelling, the main 

requirement of an empirical model is to explain the variability in the observed data, rather 

than the underlying mechanism. Generalised linear models (GLMs) are a common method 

of empirical modelling, representing an extension of standard linear regression which is 

utilised for explaining and predicting count data, and are a class of fixed effects regression 

models that can accommodate non-normal responses and non-linear relationships between 

the response variable and covariates (Nelder and Wedderburn, 1972; McCullagh and 

Nelder, 1989; Diggle et al., 2002). GLMs allows the relationship between covariates and the 

response variable to be expressed additively in a linear formulation, and generally assume 

either Poisson or Binomial probability distributions for the response. Similar to conventional 

linear models, which is a particular type of GLM, standard GLMs assume independence 

between observations and that they are equally distributed. In the study of infectious 

diseases, it is often the case that disease counts are aggregated over geographical units 

and are compared to aggregated covariate summaries, using models such as log-linear 

Poisson models. This class of models is known as parameter-driven. Similar parameter-

driven formulations with suitable prior distributions on latent parameters are utilised in the 

study of non-infectious diseases, such as counts of cancer incidence (Held et al., 2005). 

 

Poisson regression is the standard method used to analyse count data. However, many 

real-life data situations violate the assumptions upon which the Poisson model is based. 

For instance, the Poisson model assumes that the mean and variance of the response are 

equal. If the variance is greater than its mean, there is likely heterogeneity in the data 

indicating the Poisson model is overdispersed. The potential causes of overdispersion when 

analysing large spatiotemporal disease count datasets are numerous; zero inflation (Deng 
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and Paul, 2005); misspecification of the probability model (i.e., selecting a Poisson model 

when a negative binomial distribution would capture a great amount of variation); the 

presence of spatial autocorrelation in datasets with geographical neighbours often tending 

to display residual spatial dependence (Haining et al., 2009). The violation of assumptions 

of independence among observations is a particular issue for the maximum likelihood 

estimation of both Poisson and negative binomial regressions, which requires independent 

observations (Barron, 1992) since disease counts tend to be clustered or aggregated.  

Model overdispersion can be checked by observing the Deviance-based dispersion statistic 

of a Poisson or negative binomial model; a dispersion value greater than unity (i.e., >1) 

indicates overdispersion.   

 

It has been recognised that purely parameter-driven models such as the Poisson and 

Binomial GLMs described are often unable to describe epidemic activity at the local scale 

(Held et al., 2006). More realistic models with extensions are often required to consider and 

assess the influence of unobserved covariates that may affect disease incidence, reducing 

the presence of significant levels of overdispersion (Held et al., 2005). Additionally, 

empirical models often fail to adequately capture periodic epidemic outbreaks one tends to 

see in infectious disease data and no allowance is made for these outbreaks (Held et al., 

2005: Paul and Held, 2011).  

 

To avoid the limitations of parameter-driven empirical and mechanistic modelling 

approaches, Held et al. (2005, 2006) draw upon the branching process model with 

immigration (Bartlett, 1956; Guttorp, 1995). Branching processes are stochastic individual-

based processes that play a fundamental role in epidemiological theory, particularly with 

regards to the threshold behaviour of epidemics and the calculation of mechanistic critical 

vaccination thresholds (Farrington et al., 2003). In a branching process model in the 

absence of immigration, a closed population of individuals developing under the usual laws 

for branching processes either increase indefinitely with time or become extinct (Heathcote, 
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1965). However, with the introduction of immigration to a closed population, a stationary 

distribution for population size will exist for processes in continuous time when the 

immigration distribution is Poisson (Bartlett, 1956).  

 

Held et al. (2005, 2006) proposed a model framework that acts as a compromise between 

mechanistic and empirical modelling approaches, aiming to provide a realistic model 

capable of handling infectious disease count data from historical disease surveillance 

records which feature seasonal variation, periodic epidemic outbreaks and areas with low 

counts. The key feature of the model outlined by Held et al. (2005, 2006) is the additive 

decomposition of mean incidence, i.e., disease risk, into two components: endemic and 

epidemic. In dynamical models of infectious disease counts, the distinction between 

endemic and epidemic incidence is often made (Finkenstädt et al., 2002). The endemic 

component is parameter-driven, relating disease incidence to latent parameters such as the 

seasonal endemic rate, whilst also describing the risk of new cases to covariates 

independent of the history of the infection process. These covariates can include population 

density, socio-demographic variables, and vaccination coverage, which can all vary 

geographically and temporally. The epidemic component is observation-driven, allowing for 

explicit temporal dependence on the number of cases beyond parametric seasonal 

patterns, with the autoregressive parameter also allowing for periodic epidemic outbreaks 

in the data. Since the model is not mechanistic and does not assume the time unit for which 

data is collected as ógeneration timeô, cannot be interpreted as the basic reproduction 

number. The two-component model for disease counts (see Appendix II) forms the 

methodological basis for the HHH model. 
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2.10.2 The HHH Model 

 

Endemic-epidemic multivariate negative binomial time-series models, referred to as HHH 

models (Meyer et al., 2017), are applied to model pertussis, scarlet fever and measles areal 

data in each time window for the Lancashire and South Wales regions. This regression 

framework is appropriate for analysing disease counts aggregated by time and period (Held 

and Paul, 2012), and has been developed by building upon the Poisson branching process 

with the immigration approach outlined by Held et al. (2005).  

 

The HHH model is a multivariate time-series model for infectious disease counts that divides 

disease incidence into its endemic and epidemic components, modelling the expected 

baseline rate of notifications, while also capturing the influence of previous cases in the 

same and neighbouring districts (Held et al., 2005; Held and Paul, 2012). It is a stochastic 

model able to capture space-time dependence caused by the geographical spread of 

disease across time, by bringing the number of cases in different geographical units into 

consideration. Additionally, the model allows for overdispersion to adjust for unobserved 

covariates that affect disease incidence and the heterogeneity presented due to spatial 

correlation and temporal dependence of cases. The model permits non-stationarity, 

considering interventions on disease counts over time such as vaccination coverage and 

improvements in hygiene, as well as seasonality and the effect of extrinsic events on key 

demographic parameters which affect disease persistence, such as explosive birth rates in 

short periods of time. Extensions can be incorporated into the basic model formulation to 

assess the effect of seasonality, socio-demographic characteristics, temporal trends and 

localised disease dynamics on the endemicity and epidemicity of infection.  

 

The moving window approach allows estimates of regional endemic threshold populations 

to be calculated over time but sheds little light on the endemic-epidemic dynamics of 

pertussis in each time window and the concurrent factors influencing these dynamics, such 
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as spatial interaction, population size, and random effects. To address this, the HHH 

modelling framework is utilised to construct a greater understanding of the nature of disease 

spread in each time window, identifying the drivers of persistence in each regional 

metapopulation and how these contribute to the emergence of hotpots, potentially 

influencing the temporal changes in endemic threshold populations. The HHH modelling 

procedure was performed using the methodological tools provided by the R package 

surveillance (Meyer et al., 2017). A glossary of notation for key HHH model parameters 

can be found in Appendix II. 

 

2.10.3 Model Formulation 

 

The HHH model applied in the analysis for pertussis, measles and scarlet fever counts 

ὣ from geographical units Ὥ = 1, . . . , I during periods ὸ = 1, . . . , Ὕ, first outlined in its most 

simple form by Held et al. (2005, 2006) (see Appendix II), and extended in a series of later 

papers (Paul and Held 2011; Held and Paul, 2012; Meyer and Held, 2014), assumes a 

mean structure for disease incidence across the time-series under analysis and assumes, 

conditional on past observations, that count data has a negative binomial distribution 

 

ὣȿ╨ ◄ Ḑ.ÅÇ"ÉÎ‘ȟ‪ȟ eq. 2.6 

 

where ὣ is the time series of weekly count data, Ὥ is the geographical district, ὸ is time-period 

(weeks), ‪ is the overdispersion parameter and ‘  is the additively composed mean. The 

mean structure decomposes disease risk additively into three components  

‘ Ὡὺ ‗ὤȟ ‰ ‫ ὣȟ  ȟ eq. 2.7 

 
where Ὡ  is the offset of known counts reflecting population at risk and is the weight for ‫ 

the neighbourhood component reflecting the strength of transmission from district Ὦ to 
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district Ὥ. The first (endemic) component represents variation in disease incidence which 

cannot be attributed to the previous number of cases 

 

ÌÏÇὺ ‌ ‍ ᾀ ȟ eq. 2.8  

 

where ‡ is the unknown endemic parameter. The second (autoregressive) component 

accounts for autoregressive effects; the reproduction of disease within district Ὥ 

 

ÌÏÇ‗ ‌ ‍ ὣ ȟ eq. 2.9 

 

where ‗ is the unknown autoregressive parameter. The final (spatiotemporal) component 

accounts for neighbourhood effects; the transmission of infection from surrounding districts 

 

ÌÏÇ‰ ‌ ‍ ὣ ȟ eq. 2.10 

 

where ‰ is the unknown neighbourhood parameter. Without the epidemic components, the 

model would represent a standard negative binomial regression model for independent 

observations (Meyer and Held, 2014). Here, ‌ , ‌  and ‌  are component-specific 

intercepts and ‍ , ‍  and ‍  are the vectors of the fixed effects for each component.  

 

The parameters ὺ, ‗, and ‰ are allowed to vary across districts to enable the inclusion of 

district-specific covariates and heterogeneity. Each parameter is also allowed to vary over 

time to reflect situations where the infectiousness of disease changes over time. For 

instance, this may be due to the implementation of immunisation programmes or other 

public health interventions, seasonality or through external factors which influence the 

spread of infection. Other scenarios include a declining number of susceptibles over time, 



Chapter 2: Research Methodology 

91 

 

which would effectively decrease ‗, and sudden outbreaks where ‗  ρ for a limited time 

period, which is allowed to be estimated from infectious disease data. 

 

A common intercept is assumed across districts in the endemic component, to prevent 

districts with zero case reports from being forcibly excluded. We use mean district 

population size as the endemic offset in the HHH models fitted for each time window. The 

significance of the two epidemic components is assessed using dominant eigenvalues 

(άὥὼὉὠ), a combined measure for epidemic potential. If the dominant eigenvalue is below 

unity (i.e., below 1), this value represents the epidemic proportion of total disease incidence. 

Likelihood inference is performed using generic numerical optimisation routines (Paul and 

Held, 2011). For data with overdispersion, maximum likelihood estimation is used to 

estimate parameters and standard errors, by maximising the negative binomial log-

likelihood of the model. The HHH model framework allows for covariate effects on either the 

endemic or epidemic components of disease incidence to be included using model 

extensions.  

 

Weekly case notifications for measles, pertussis and scarlet fever obtained from the Weekly 

Returns, for all administrative districts in Lancashire and South Wales, take the form of 

aggregated counts by region and period, which can be loaded into R from external data 

sources (Höhle and Mazick, 2010). For count data to be analysed via the application of 

HHH models in the surveillance package, a data object of the class sts (surveillance time 

series) must be created. Essentially an object of the class sts involves three data matrices: 

observed counts ᾀ  are stored in the T x I matrix (observed), a corresponding matrix with 

time-varying population numbers (or fractions), and an I  I neighbourhood matrix 

quantifying the spatial coupling between the I units. The observed and population matrices 

are 312  125 for each Lancashire time window and 312  74 for each South Wales time 

window. 312 is equivalent to the total number of weeks/observations for each time window. 

To incorporate spatial interaction in the model, the neighbourhood matrix consists of 
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adjacency orders έ between the districts. (Bivand et al., 2013). Data of the sts class can 

be visualised in four distinct ways: an individual unit time-series of weekly counts, an overall 

time series plot, a choropleth map of disease incidence by district, or animated maps. The 

default plot type is observed ~ time, producing an overall time series of count data. When 

this is modified to observed ~ time | unit. it is possible to visualise the district-specific time 

series of disease counts.  

 

2.10.4 Model Extensions 

 

Spatial Interaction 

With multiple geographical units under analysis (125 LGDs in Lancashire, 74 LGDs in South 

Wales), spatiotemporal dependence is adopted by the third component in eq. 4.10. Weights 

ύ  in the neighbourhood component reflects the strength of transmission from region Ὦ to 

region Ὥ, collected into an Ὥ  Ὥ weight matrix (ύ ): 

ύ  

ρ

ὲȟ
πȟ

ȟ eq. 2.11 

for Ὥ ͯ Ὦ, where the symbol Ḑ denotes is adjacent to and ὲ is the number of first-order 

neighbours of district j. This equation represents a normalised version of the binary and 

symmetric adjacency indicator matrix   ρὭ Ḑ ὮὮȟ ȟȣȟȟὭ ρȟȢȢȢȟὍ. The purpose of 

normalising the adjacency matrix is to ensure district Ὦ distributes its cases uniformly to ὲ 

neighbours (Paul et al., 2008). Due to normalisation, the weights ύ  for transmission from 

district Ὦ to district Ὥ is determined not only by the districtsô neighbourhood έ  but also by the 

total amount of neighbourhoods of district Ὦ in the form of ВὯ Ὦ έ . This results in 

variation amongst transmission weights for a specific order of adjacency (Meyer and Held, 

2014).  
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In its basic formulation, a HHH model assumes the spread of infection is restricted to first-

order neighbours; all districts have the same epidemic potential for importing cases from 

adjacent units (Meyer et al., 2017). Disease transmission only takes place between 

neighbouring districts during the period ὸ O  ὸ  ρ, with the single exception to this is the 

independent importation of disease cases via the endemic component (Meyer and Held, 

2014).   However, the assumption that infection spreads only via adjacent regions is too 

simplistic; individuals can travel longer distances, with movement often concentrated 

around large urban centres in regions with hierarchical population structures (Bartlett, 

1957).  

 

A more appropriate model of spatial interaction is the gravity model, which enables the 

analysis of hierarchical transmissions between cities, towns, and villages according to 

spatial coupling patterns (Xia et al., 2004). In its most common form, the gravity model 

postulates that population flow between two geographical units is log-linearly dependent on 

population size and distance (Jandarov et al., 2014), suggesting a scaling process in spatial 

interaction. Crucially, a gravity model can be calculated without detailed network data on 

population movement (Geilhufe et al., 2014). Ideally, transmission weights would be 

calculated using existing movement network data (Paul et al., 2008; Geilhufe et al., 2014), 

yet detailed data for the movement of individuals between the numerous LGDs in 

Lancashire or South Wales between January 1940 and December 1969 is unavailable. The 

HHH modelling framework can be extended to account for short-range, commuter-driven 

spread and long-range transmission of cases between districts by incorporating a gravity 

model of spatial interaction and power-law extension. 

 

Gravity Model 

The gravity model is the most commonly used formulation of spatial interaction analysis 

(Gatrell and Bailey, 1996), and has been widely applied in a wide variety of fields, such as 

migration, trade and commodity flows, transportation theory and, increasingly, spatial 


















































































































































































































































































































































































































































































































































































































































































