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ABSTRACT 
 

Metapopulation dynamics play a critical role in driving endemic persistence and transmission 

of childhood infections. The endemic threshold is defined as the minimum population size 

required to sustain a continuous chain of infection transmission. The concept is fundamental 

to the implementation of effective vaccine-based disease control programmes. Vaccination 

serves to increase endemic threshold population size, promoting disease fadeout and 

eventual elimination of infection. To date, empirical geographical investigations of endemic 

threshold populations have tended to focus on isolated populations in island communities. 

Few studies have examined endemic threshold dynamics in ‘mainland’ regional populations 

with divergent spatial structures and varying levels of connectivity between subpopulations.  

 

This thesis presents a geographical analysis of spatiotemporal changes in endemic threshold 

populations for three childhood infections (measles, pertussis and scarlet fever) in two regional 

metapopulations of England and Wales: Lancashire and South Wales. Drawing upon weekly 

disease records of the Registrar-General of England and Wales over a 30-year period 

(January 1940–December 1969), empirical regression techniques were used to estimate the 

endemic threshold populations for childhood infections in the two study regions. Hotspot and 

survival analyses were performed to compare disease fadeout duration and probability for 

both regions in the pre-vaccine and vaccine eras, respectively. Endemic-epidemic modelling 

was undertaken to identify and analyse potential drivers of disease persistence. 

 

The findings reveal strong regional differences in estimates of endemic threshold populations 

over time and space for all three childhood infections. Regional differences in endemic 

threshold populations reflect significant regional variations in spatial connectivity, population 

dispersion and level of geographical isolation. Significant growth in fadeout duration was 

observed in the vaccine era for pertussis non-hotspots in both regions, consistent with 

geographical synchronisation of epidemic activity.
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Chapter 1: Introduction & Review 

 

1 Background 
 

The endemicity of childhood infectious diseases, such as those which blighted the public 

health of industrialised societies in the early-twentieth century, remains an area of 

considerable interest for geographers engaged in the study of epidemiological theory from 

a spatial perspective. According to Dietz (1995), determining the endemicity of infections 

can make a valuable contribution to global disease eradication programmes. For instance, 

identifying the urban centres and regions which facilitate the persistence of an infection by 

acting as ‘permanent disease reservoirs’ (Cliff et al., 2000: 85) is key to enabling effective 

strategies to be developed which successfully eliminate infection. One concept which holds 

profound implications for the persistence and control of an infection is that of the endemicity 

threshold, which has previously received mention in the work of geographers who have 

attempted to elucidate the spatial structure and geographical spread of childhood infections 

(Cliff et al., 1992, 1993, 2000; Murray and Cliff, 1977; Trevelyan et al., 2005). 

 

Most commonly referred to as ‘critical community size’ in epidemiological literature, an 

endemic threshold is the minimum population required for an infection to persist endemically 

within a geographical area (Schenzle and Dietz, 1987), without the reintroduction from 

external sources. According to the seminal work of Bartlett, stochastic processes play a 

fundamental role in determining the endemic threshold size (Anderson, 2016; Metcalf et al., 

2013a). The persistence of infection, based on the stochastic models formulated by Bartlett 

(1957, 1960), strongly implies a spatial transmission of infection between geographical units 

as the population size of cities and towns fall below the endemic threshold, with hierarchical 

travelling waves spreading across the landscape from large urban centres. These 

settlements act as ‘endemic reservoirs’ which maintain the persistence of infection, re-

infecting regions where disease has either been locally eliminated or faded out (Cliff and 
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Haggett, 1989). However, the value of the threshold population also depends on the spatial 

structure of communities and other heterogeneities, as well as on various epidemiological 

parameters such as infectious and latent periods (Keeling and Grenfell, 2007). The endemic 

threshold size concept has played a central role in a vast number of studies which seek to 

understand the spatiotemporal dynamics and endemic persistence of infection, most 

notably in the sub-field of measles studies. Numerous epidemiological models have been 

developed over recent decades attempting to accurately calculate the endemic threshold 

value for measles and other infections, accounting for mechanisms such as seasonality, 

age structure and spatial heterogeneity (Aron and Schwartz, 1984; Keeling and Grenfell, 

2002; Bolker and Grenfell, 1996). 

 

Over recent decades, the study of disease persistence and critical community size from a 

spatial perspective has largely involved the use of metapopulation models formulated by 

ecologists and population biologists. These studies have tended to focus on analysing the 

temporal patterns of fadeouts in greater detail, explaining the spatiotemporal persistence of 

measles in England and Wales as a function of urban population size (Earn et al., 1998; 

Grenfell and Harwood, 1997; Harrison, 1991). The work of Grenfell and Bolker (1998) 

supports the conclusions of Bartlett (1957, 1960), finding measles to persist during inter-

epidemic periods in large urban centres with an endemic threshold population above 

300,000 during the pre-vaccination era, with prolonged periods of endemic fadeouts mostly 

occurring in small communities. They interpreted their findings as evidence that a spatial 

hierarchy in the host population structure served as a vital prerequisite for the measles 

epidemic waves which travelled the length and breadth of England and Wales during the 

pre-vaccine era. Exploring the implications led by the endemic threshold concept for the 

metapopulation dynamics of measles, Grenfell and Harwood (1997) discuss the endemic 

persistence of measles in large settlements (‘core patches’), and regular fade-out at a local-

level in smaller communities (‘satellite patches’) as representing a mainland-island 

metapopulation, with source-sink dynamics explaining the persistence and recurrent 
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outbreaks of infection. Bolker and Grenfell (1996) highlighted the importance of spatial 

decorrelation between the measles epidemics of 10 major urban centres in England after 

the onset of mass vaccination in sustaining the persistence of infection and the pre-vaccine 

era endemic threshold size for the infection. The spatiotemporal decorrelation of city 

epidemics after the introduction of vaccination coupled with the stability of the endemic 

threshold value suggested the occurrence of a ‘rescue effect’ between cities, maintaining 

the circulation of infection. This finding indicates that rescue effects alongside 

epidemiological coupling between geographical units may prevent positive changes in 

endemic threshold population size. Undoubtedly, metapopulation models that incorporate 

the spatial structure of regional populations provide a template for studies which aim to 

develop an explicitly geographical understanding of disease persistence.  

 

Yet, according to Bolker and Grenfell (1996), endemic threshold size is inherently 

geographical, ultimately dependent on local spatial structure and the connectedness of 

regional populations. Geographical research on endemic infections has attempted to 

understand the processes that enable this spatial transfer of infection, as such knowledge 

may aid the development of control strategies that could be implemented to interrupt the 

disease diffusion process (Cliff et al., 1992), helping to facilitate the elimination of infectious 

disease for which the tools exist to do so. Developing an analytically sound platform for 

understanding the geographical nature of epidemiological data within a modelling 

framework is ultimately crucial to realising these ambitions.  

 
 
This introductory chapter will present a detailed review of the empirical and theoretical 

literature concerning the concept of endemic thresholds. This will be followed by a 

statement of research; a statement of the problems the thesis seeks to address, a 

justification for the research, aims and objectives of the thesis as well as stating the research 

questions that seek to be answered, before finally presenting a chapter outline for the thesis.  
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1.1 Literature Review 
 

The literature review is split into three parts. Part one introduces and unpacks the study of 

endemic thresholds, discussing seminal work on critical community size and disease 

persistence, and detailing previous empirical studies of endemic thresholds for childhood 

diseases. This is followed by a discussion of the relationship between endemic thresholds 

and vaccination. The second part details the quantification and modelling of endemic 

thresholds, with reference to empirical work, and discusses the utility of metapopulation 

theory to inform analysis of endemic thresholds. The final part of the chapter provides an 

account of the epidemiology of the three childhood infections under analysis. 

 

Part One: The Study of Endemic Thresholds 

 

1.2 Understanding Endemic Threshold Populations 

 

According to Bolker and Grenfell (1996), the size of endemic threshold populations is 

inherently geographical, ultimately dependent on the spatial structure and connectedness 

of a regional population. It has been recognised that the persistence of infection, based on 

the stochastic models formulated by Bartlett (1957, 1960), implies the spatial transmission 

of infection between geographical units as the population size of cities and towns fall below 

the endemic threshold, with hierarchical travelling waves spreading across the landscape 

from large urban centres, the engines of infection. Geographers have in the past aimed to 

identify ‘endemic reservoirs’ which maintain the persistence of infection, re-infecting regions 

where disease has either been locally eliminated or faded out (Cliff and Haggett, 1989). 

Geographical research on endemic infections has attempted to understand the processes 

which enable this spatial transfer of infection, as such knowledge may aid the development 

of control strategies that could be implemented to interrupt the disease diffusion process 

(Cliff et al., 1992), facilitating the elimination of infectious disease. Key to achieving these 
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endeavours is the establishment of an analytically sound platform for understanding the 

geographical nature of epidemiological data within a modelling framework.  

 

Several factors may affect the estimates for endemic threshold size. Firstly, subpopulations 

within the study area may artificially inflate the threshold value if most contact between 

susceptibles and infected individuals occurs in these subpopulations, rather than in a large 

homogenously mixed population. This effect generally increases in line with the number of 

subpopulations in existence. The likelihood of subpopulation mixing increases as the study 

area is extended geographically to include several towns and cities (Cliff et al., 1993). 

Related to this is the issue of geographical isolation, which reduces the level of mixing 

between susceptibles and infected persons compared to that expected in a single 

homogenously mixed population. Population density and turnover may also play influential 

roles in determining the value of endemic threshold size (Cliff et al., 2000). High birth rates 

produce a large pool of susceptibles, enhancing the likelihood that a disease will be able to 

persist endemically (Bartlett, 1957). High population density increases the transmission 

probability between susceptible and infected individuals, as well as the speed at which 

disease spreads and fades out, complicating the estimation of endemic threshold size 

(Black, 1966). Underreporting however is a key issue with regards to the calculation of 

endemic threshold size, since it may bias such estimates by suggesting apparent fade-outs 

where there were cases of infection which went unobserved (Metcalf et al., 2013a).  

 

Endemic thresholds have been characterised empirically for relatively few childhood 

diseases (Hanski and Gaggiotti, 2004). By far the most well-documented of these is the 

endemicity threshold for measles, for which persistence of the infection is considered a 

function of urban population size (Grenfell and Harwood, 1997).  
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1.3 Study of Endemic Thresholds: Measles 

 
In the early 20th century, it was recognised that in order to explain the recurrence of 

outbreaks of childhood infectious diseases, both demographic and epidemic forces had to 

be accounted for (Hamer, 1906). A deterministic theoretical model for recurrent measles 

epidemics, the Hamer–Soper model, was forwarded by Herbert Soper in 1929. This 

epidemic model predicted measles would approach an endemic stable equilibrium level 

above a threshold through the damping of epidemic oscillations, as a result of shorter 

periods of disease infectivity. The infectivity of measles, according to Soper (1929), begins 

instantly when an individual is infected and is spread over time. This leads to a decline in 

the incidence of the disease, thus indicating the damping of epidemic waves. 

Fundamentally, the Hamer–Soper model suggests disease extinctions do not occur at all 

(Nåsell, 2005). It is therefore insufficient for explaining recurrent epidemics of infection. 

Wilson and Worcester’s (1945) state the incidence of recurrent outbreaks of measles 

provide no tangible evidence to support the theory of damping of epidemic oscillations. 

Bartlett (1956) believed that the Hamer–Soper model was problematic since it failed to 

account for demographic stochasticity, the inherent unpredictability in the timing and nature 

of births, mortality and migration (Conlan and Grenfell, 2007). This resulted in major 

inconsistencies between theoretical models of measles cases and recorded observational 

measles data.  

 

Bartlett (1957) proposed a stochastic reformulation of the Hamer–Soper model (Nåsell, 

2005), emphasising two key features: the theoretical tendency for successive epidemics in 

large communities to damp down could be offset by random variability, and the tendency 

for diseases to fade-out in small or isolated communities when the number of susceptibles 

had dropped below an infection’s threshold value. It is the latter that led to Bartlett’s (1957) 

introduction of the notion of ‘critical community size’, a threshold concept defined as the 

smallest host population size above which an infection can persist endemically. 
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1.3.1 Maurice Bartlett 

 

Bartlett (1956) was first to observe that time to extinction for measles was an increasing 

function of the community size. In a seminal work, Bartlett (1957) explored the periodicity 

of measles in relation to community size using a sample of 19 English towns of varying 

population size (see Fig. 1.1). Measles notifications for each town were extracted from the 

Registrar General’s Weekly Returns for England and Wales in the period 1940-1956.  

 

 

Figure 1.1 Impact of population size on the periodicity of measles epidemics for 19 English 

and Welsh towns and cities. Red-sashed line marks the endemic threshold value (Adapted 

from Cliff et al., 2000: 89). 

 

Bartlett observed that large towns, such as Birmingham, Bristol and Hull, experienced 

recurring measles outbreaks with no fade-outs (a period of three or more consecutive weeks 

without a measles notification) after epidemics. In these towns, measles circulates 

endemically, and they were therefore considered to be of ‘critical size’; established to be in 

the order of 250-300,000. Towns below the threshold population total, such as Carlisle and 
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Barrow-in-Furness, experienced a complete endemic fade-out of measles in troughs 

between epidemics. The smallest and most isolated towns with a population below 10,000, 

such as Cardigan and Llanrwst, were found to have extremely irregular, epidemic patterns. 

They would often go several years without experiencing a measles outbreak, indicating that 

the infection suffers stochastic extinction in troughs between epidemics in small 

communities (Earn et al., 1998), until its reintroduction from outside sources. Bartlett 

estimated 2,500 cases per annum was the minimum needed for measles to persist within 

urban areas during troughs in epidemic cycles.  

 

Bartlett’s (1957) identification of a threshold population size below which infection would 

fade-out is critical in understanding the recurrent epidemic patterns of measles observed in 

England and Wales during the pre-vaccine era (see Fig. 1.2). For settlements with a 

population size below the endemic threshold value where infection has faded out, outbreaks 

can only occur if the infection is reintroduced by index cases (infected individuals) via Type 

I epidemic waves emanating from the largest population centres above the threshold level 

(e.g., Birmingham, Hull), which act as reservoirs of disease (Lloyd and Sattenspiel, 2009). 

Type I epidemic waves result in fade-out free epidemics in populations above the endemic 

threshold. In intermediate-sized towns below the endemic threshold (e.g., Carlisle, Barrow-

in-Furness), discrete but regular type II epidemic waves are observed, with recurrent 

outbreaks in sync with those experienced in the large urban centres. Irregularly spaced type 

III epidemic waves affect communities with the smallest populations (e.g., Cardigan, 

Llanrwst), resulting in sporadic outbreaks and extended periods of endemic fade-out (Cliff 

and Haggett, 1989). This pattern of recurrent epidemics, and the generalised persistence 

of measles is a clear illustration of how endemics infections are geographically transmitted 

between populations of varying size within regions. 
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Figure 1.2 Bartlett model of epidemic patterns of measles spread according to varying 

population size. (a) Type I waves affect large settlements above the endemic threshold, 

follow a regular cycle, and infection does not become extinct in the inter-epidemic period, 

(b) type II waves affect intermediate sized towns below the endemic threshold value and 

mirror type I waves in regularity, but infection fades out between epidemic outbreaks, (c) 

type III waves affect small settlements which tend to experience highly irregular epidemics 

with extensive periods of disease fade-out (Source: Cliff et al., 2000: 89). 

 
In a subsequent paper aiming to determine the critical community size for measles within 

the context of the urban United states, Bartlett (1960) calculated the endemic threshold size 

to be around the figure of 300,000 inhabitants using data on measles for 24 North American 

cities between 1921 and 1940. This was in broad agreement with the results of his previous 

paper on the endemicity threshold for measles in English and Welsh settlements. Bartlett 

(1960) also found that measles fade-outs would occur in cities where there were fewer than 

4,000 to 5,000 cases per annum. 
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1.3.2 Francis Black 

 

Building on the foundational work of Bartlett, Francis Black (1966) made a seminal 

contribution to the study of endemic disease, seeking to establish the threshold endemicity 

of measles in insular communities. Black believed Bartlett had failed to correct for the 

masking of fade-out in cities by the reintroduction of measles from external sources, and 

the damping effect of geographic dispersion, and therefore sought to confirm and refine 

Bartlett’s estimates concerning the population thresholds below which measles would fade-

out in towns and cities. Monthly measles reports from 19 island communities between 1949 

and 1964 were analysed, and frequent extinctions of measles were found among all insular 

communities under study, apart from Hawaii (see Fig. 1.3).  

 

 

Figure 1.3 Black’s model of the relationship between the duration of fade-outs after 

epidemics and population size for 19 island communities between 1949–1964 (Adapted 

from Cliff and Haggett, 1989: 320). 
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Frequent air travel between Hawaii and the rest of the United States, as well as the island’s 

transient military population, is cited as a key factor in the reintroduction of measles, 

masking fade-outs that have occurred on the island. Due to the dubious quality of case 

reporting on other islands with populations comparable in size to Hawaii’s, such as Fiji and 

Mauritius, Black was unable to test this hypothesis with confidence. Black states that 

measles may fade-out in island populations as large as 350,000, possibly over 500,000, if 

closely settled and without the re-introduction of the disease from outside. These endemic 

thresholds are similar to the critical population size for measles in UK and US cities 

forwarded by Bartlett (1957, 1960). However, depending on the spatial structure and 

connectedness of the island population, Black notes that measles may be able to persist in 

smaller populations, but not endemically in communities with less than 5,000 cases per 

annum. 

 

Since the seminal works of Bartlett (1957, 1960) and Black (1966), the concept of critical 

community size has been much-cited in the epidemiological study of the measles, providing 

a theoretical basis for research exploring the geographical spread, patterns and persistence 

of the infection. 

 

1.4 Study of Endemic Thresholds: Other Childhood Infections 

 

As illustrated in the previous section, much of the extant literature on endemicity thresholds 

is mostly discussed and examined in relation to the spatial and population dynamics of 

measles. The commonly cited threshold size of 250,000-500,000 for measles however does 

not necessarily extend to other directly transmitted childhood infections, such as pertussis 

and poliomyelitis. Cliff and Haggett (1989) provide theoretical estimates for the endemic 

threshold size of five viral and bacterial diseases in relation to their serial interval, which is 

defined as the average time between the observation of symptoms in one case of infection 
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and symptoms in a second case directly infected by the first. These are summarised in 

Table 1.1. 

 

Table 1.1 Relationship between infectious periods of five directly transmitted viral and 

bacterial infections and estimated endemic threshold size (Source: Cliff and Haggett, 1989: 

321). 

Disease Estimated infectious 

period (Number of days) 

Theoretical threshold 

population 

Hepatitis A 35 22,000–152,000 

Rubella 18 132,000 

Pertussis 14 150,000–200,000 

Measles 12 250,000–500,000 

Influenza 4 1,000,000,000 

 

1.4.1 Pertussis 

 

Wearing and Rohani (2009) plotted the proportion of weeks with zero cases of pertussis 

against population size, the most common measure of disease fadeout, exploring whether 

endemic threshold size can act as a signature for waning immunity (whether that be 

naturally acquired or through vaccination). In the pre-vaccine era, analysis of fadeouts of 

pertussis in 50 towns and cities in England and Wales, varying in population size from 

75,000 to 1,500,000, suggested an endemic threshold size between 150,000 and 250,000. 

After the onset of mass vaccination in 1957, Wearing and Rohani’s (2009) data suggests 

an endemic threshold size in the region of 800,000 to 1,000,000 is required to maintain the 
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endemic persistence of pertussis, consistent with a substantially increased period of 

immunity rather than permanent immunity. This is in line with the findings of Rohani et al., 

(2000) who, in their paper on the impact of immunisation on pertussis transmission, 

demonstrated a significant increase in the observed endemic threshold size for pertussis in 

England and Wales after the introduction of mass vaccination for the infection (see Fig. 1.4).  

 

 

 

Figure 1.4 Mean number and duration of annual fade-outs of pertussis against population 

of 60 towns and cities in England and Wales, 1944–1994 (Source: Rohani et al., 2000: 285). 
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1.4.2 Poliomyelitis 

 

Estimating the endemic threshold size for poliomyelitis is not a straightforward endeavour 

compared to other childhood infections (Cliff and Haggett, 1995), complicated by two major 

factors. Firstly, there are three distinct types of polioviruses and, secondly, a large number 

of cases do not present symptoms (Cliff et al., 2000). They therefore go unreported or 

misidentified. Despite these issues, Eichner et al. (1995) conducted stochastic simulations 

to estimate the minimum population size required to maintain the endemic persistence of 

poliomyelitis. They found that the endemic threshold size for the virus in regions with a 

relatively high standard of hygiene, where the opportunities for the faecal-oral transmission 

of poliomyelitis is limited, is of the order of 200,000–500,000. This contrasts with populations 

with poor standards of hygiene, where the endemic threshold size was found to be as low 

as 50,000, with the upper bound at 150,000. However, the simulations carried out by 

Eichner et al. (1995) also suggest that the low values estimated for the endemic threshold 

size of poliomyelitis are determined more by high population turnover (due to a rapid influx 

of susceptibles via a high birth rate) rather than poor standards of hygiene. 

 

1.5 Temporal Changes in Endemic Thresholds: Island Populations 

 

Cliff and Haggett (1995) and Cliff et al. (2000) discuss the utility of islands as laboratories 

to analyse the endemic threshold concept and to explore the relationship between 

endemicity and population size at the macro-geographical (through inter-island 

comparisons), meso-geographical (through time-series analysis of single islands), and 

micro-geographical levels (through within-island comparisons).  

 

Building on the work of Black (1966) (Section 1.3.2), Cliff et al. (2000) explored changes in 

endemic threshold size over time at the meso-geographical level for just one of these 
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islands: Iceland. Monthly measles data were collected for 47 medical districts, for which an 

unbroken sequence of reporting exists from January 1888 to December 1987. These 

medical districts range significantly in population size from 100,000 in the district located 

immediately around the capital, Reykjavik, in 1990 to as low as 40 in an island medical 

district. The average endemic thresholds size over the course of 100 year-long study period 

was calculated to be around the figure of 259,000, a value consistent with the findings of 

both Bartlett (1957, 1960) and Black (1966). To monitor temporal changes over the period, 

the study period was broken down into a series of 8-year time–windows with a 2 year 

overlap between windows to produce a smoothing effect with the preceding and succeeding 

windows. This approach yielded 24 96-month time–windows, providing 24 thresholds 

estimates between the beginning of 1888 and end of 1987. The percentage of months in 

which cases were reported (percentage endemicity) along with their mean populations in 

the 47 districts in each time–windows form the basis of the temporal analysis of endemic 

threshold size. Cliff et al. (2000) found the highest estimates of endemic threshold size at 

the beginning and end of the study period. In the case of the former, they suggest the high 

threshold value is the result of Iceland's relative geographical isolation during this period, 

whilst high values calculated in the 1970s and 1980s indicate impact of mass vaccination. 

 

Adopting the same methodological approach, Cliff et al. (2000) examine temporal changes 

in the endemic threshold size at the global level, by analysing the percentage endemicity of 

four childhood infections (measles, pertussis, diphtheria and scarlet fever) for 84 island 

populations using data extracted from archival records of the League of Nations and World 

Health Organisation. Between 1923 and 1990, the endemic threshold size was calculated 

for 12 time–windows of varying length, as well as three larger windows. Except for pertuusis 

after 1980, the three other infections display a similar pattern of sharply rising threshold 

values during the control periods. The pattern for pertussis is more complex, rising rapidly 

to 1980 before falling thereafter. Prior to vaccination and the widespread use of antibiotics, 

endemic threshold values for measles and scarlet fever had shown signs of increase. 
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The work of Cliff et al. (2000) on temporal changes in endemic threshold size in an island 

population provides a methodological template for examining long term temporal changes 

in endemic threshold populations. However, in the context of England and Wales, where 

the temporal changes in endemic threshold size for notifiable infections are yet to be studied 

in any great detail, unlike many island populations, settlements are strongly bound together 

by the movement of people and spatial coupling. This movement is hierarchically structured, 

and regular spatial flows from one geographical unit to another are known to reintroduce 

infection after endemic fade-outs in regions where infection is yet to be eliminated. It is 

therefore important to explore temporal changes in endemic threshold population size in 

relation to the spatial dynamics of infection, to understand the effect of spatial coupling, 

distance and movement between populations on the persistence of infection, since the rate 

and scaling of import of infected individuals has the ability to change the nature of the 

relationship between zero-incidence and population size (Conlan et al., 2009).  
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1.6 Vaccination & Endemic Thresholds 

 

1.6.1 Theory 

 
in the past, simple theoretical studies have suggested that vaccination should increase the 

endemic threshold population (Cliff et al., 2000), above which an infection can persist 

indefinitely. If vaccination acts to block the chain of transmission of an infection, the 

introduction of mass immunisation programs is predicted to increase endemic threshold 

size; a larger population will therefore be required to prevent the local elimination of the 

disease (Lavine and Rohani, 2012). For instance, in the case of measles, vaccination 

should multiply the endemic threshold size by a factor of 1/x2 (Griffiths, 1973). Therefore if 

50% of the population is immunised against measles, the endemic threshold will rise from 

approximately 250,000 to 1,000,000; with 90% immunisation, the endemic threshold would 

be significantly increased to a population size of 25,000,000. Crucially, if vaccine uptake 

within a community is great enough to prevent R0 from exceeding unity in value an infection 

will not be able to become endemic (Jansen et al., 2003). 

 

1.6.2 Onset of Mass Vaccination 

 

Mass vaccination programmes play a vital role in disease control strategies designed to 

eliminate contagious bacterial and viral childhood diseases. In simple terms, mass 

vaccination is aimed at reducing the incidence level of childhood diseases by slowing down 

the build-up of susceptibles in the general population, effectively reducing the recruitment 

rate of the infections (Earn et al., 1998). Vaccination in the community is the most effective 

mean for blocking the local chain of transmission. 

 

The introduction of mass vaccination programmes for once-prominent childhood infections 

such as measles, diphtheria, pertussis and poliomyelitis from the mid-twentieth century in 
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developed nations, and the sustained immunisation efforts since, is widely considered to 

have had the most profound impact of all factors on reducing the transmission and 

endemicity of such diseases in industrialised societies (see Table 1.2) (Anderson, 2016; 

Roush et al., 2007). To ensure major epidemic outbreaks of childhood disease are 

prevented, the immunisation of large numbers of young children before they are exposed 

to natural infection in the community is vital, alongside sustaining a sufficiently high level of 

vaccination coverage year after year (Fine and Clarkson, 1982; Beyer et al., 2012).  

 

Table 1.2 Historical comparison of morbidity and mortality for selected vaccine-preventable 

childhood diseases in the United States, with dates of onset of mass vaccination for each 

infection (Source: Roush et al., 2007: 2156). 

 

 
Numerous empirical studies have demonstrated that the introduction of mass vaccination 

programmes in developed nations has successfully diminished the amplitude of epidemics 

 

Vaccine-

preventable 

Diseases 

Pre-vaccine era Annual 

Average 

Dates of 

Vaccine 

Licensure & 

Introduction 

Most recent 

morbidity & 

mortality reports 

Reduction in 

No. of Cases 

Since Vaccine 

Introduction 

(%) 

Reduction in 

No. of Deaths 

Since Vaccine 

Introduction 

(%) 
Cases Deaths Cases 

(2015) 

Deaths 

(2015) 

Diphtheria 21,053 

(1936-45) 

1,822 

(1936-45) 

1928-1943 0 0 100 100 

Measles 530,217 

(1953-62) 

440 

(1953-62) 

1963, 

1967,1968 

188 1 99.9 99.9 

Pertussis 200,752 

(1934-43) 

4,034 

(1934-43) 

1914-1941 18,166 6 90.9 99.8 

Acute 

Poliomyelitis 

19,794 

(1941-50) 

1,393 

(1941-50) 

1955, 1961-

1963, 1987 

0 0 100 100 

Paralytic 

Poliomyelitis 

16,316 

(1951-54) 

1,879 

(1951-54) 

1955, 1961-

1963, 1987 

0 0 100 100 

Smallpox 29,005 

(1900-49) 

337 

(1900-49) 

1798 0 0 100 100 
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for several once-prominent childhood diseases, with massive reductions recorded in 

morbidity and mortality attributed to infections such as measles, poliomyelitis and pertussis, 

as well as changing their phase and periodicity (Anderson and May, 1982, 1992; Bolker and 

Grenfell, 1996; Griffiths, 1973; Magpantay and Rohani, 2015). Roush et al. (2007) 

conducted a simple and concise study comparing the historical morbidity preventable 

childhood infections in the US, which illustrates immense success of vaccination in the fight 

against infectious disease. For instance, they reveal in the pre-vaccine era, an average of 

530,000 measles cases and 440 measles-related deaths were reported annually in the US; 

in 2006, the incidence rate had declined by 99.9% nationwide, and no deaths from measles 

were recorded (Table 1.2). 

 

1.6.3 Towards a Geographical Understanding of Vaccination  
 

Many studies in the epidemiological literature have revealed that the introduction of mass 

vaccination has resulted in dramatic shifts in the spatiotemporal dynamics of childhood 

infections from the pre-vaccine to the vaccine era. The decorrelation of epidemics between 

major urban centres may hold significant consequences for public health systems hoping 

to eliminate childhood infections via mass immunisation efforts. The likelihood of 

simultaneously eliminating an infection across all communities in a regional population is 

significantly reduced by the elimination of large epidemics, which served to synchronise 

population dynamics at the inter-city level in the pre-vaccine era (Allen et al., 1993). 

Continuous vaccination at an intermediate level may lead to occasional fadeouts of infection 

within large urban centres, but it also reduces the correlation of infective densities and peaks 

of infection at the inter-city level, as the total number of susceptibles within the population 

decreases, and the level of epidemiological coupling falls (Earn et al., 1998). 

 

To understand the potential implications of spatiotemporal decorrelation on epidemic 

dynamics and the persistence of childhood diseases, the degree of epidemiological 
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coupling at various geographical scales, from within cities to between regions, is a key 

parameter to consider (Keeling and Rohani, 2002; Xia et al., 2004). Variation in the level of 

epidemiological contact between individuals in different subpopulations, with varying levels 

of spatial interaction and distance from regional urban centres, could amplify reduction in 

the level of correlation between epidemic outbreaks at the inter-city level. The cross-

coupling of large urban centres suffering from major epidemic outbreaks of infection with 

spatially uncorrelated settlements that have experienced a fadeout of the disease may 

result in a ‘rescue effect’ (Bolker and Grenfell, 1996). 

 

In an epidemiological system, a rescue effect is defined as the transmission of an infection 

between-patches which facilitates the recolonisation of communities where the infection has 

faded out or been locally eliminated (Bolker and Grenfell, 1995). Rescue effects are the 

product of asynchronous epidemic outbreaks among spatially separate communities within 

a host population, which decorrelates dynamical fluctuations of disease in different patches. 

Spatial heterogeneity in vaccine coverage can also result in rescue effects due to 

spatiotemporal decorrelation between populations (Hagenaars et al., 2004). Vaccination 

reduces spatial coupling (Bolker and Grenfell, 1996), which at intermediate levels will 

enable the maximum persistence of an infection. If rescue effects are to effectively maintain 

the regional persistence of an infection, there must be a sufficient level of epidemiological 

coupling between patches to ensure subpopulations are connected and frequent contact 

between patches is established (Dalziel et al., 2016). However, rescue effects are absent if 

the level of coupling is too high, since they act to remove spatial heterogeneity between 

patches, and subpopulations act as a homogenous population (Grenfell and Harwood, 

1997). In metapopulation terms, rescue effects are caused by migration from source 

patches (where infection persists due to a positive growth rate in the number of 

susceptibles) to sink patches (where the susceptible growth rate is negative), where 

infection would be expected to decrease to extinction (Harrison, 1991). 
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As the value of an endemic threshold grows, rescue effects become increasingly important 

for maintaining the circulation and regional persistence of an infection, especially as 

elimination thresholds are reached. It has in the past been suggested that rescue effects 

may explain the relative stability of the endemic threshold level in England and Wales in the 

decades after the introduction of mass vaccination for measles in the late 1960s, which 

remained at the pre-vaccine era level of approximately 250,000-300,000 (Fine and 

Clarkson, 1982; Bolker and Grenfell, 1996).  

 

1.7 Study of Endemic Thresholds: Vaccination 

 

1.7.1 Measles 

 

The change in measles incidence and transmission dynamics following the onset of mass 

vaccination is among the best-documented in epidemiological literature. Before the 

introduction of the measles vaccine in England and Wales in 1968, epidemics of the disease 

at the city level exhibited a regular, and spatially coherent, biennial pattern (Anderson et al., 

1984). Measles exhibited persistence fluctuations in different cities almost synchronously 

across regions, with fade-outs of infection observed only in smaller towns and rural 

settlements (Bjørnstad et al., 2002; Grenfell and Harwood, 1997). In the vaccine era of the 

1970s and 1980s, this pattern altered radically, with a marked reduction in size and 

frequency of epidemic events and extended inter-epidemic intervals occurring less regularly 

being observed (Bolker and Grenfell, 1995). This has been attributed to a non-linear 

dynamic effect; the onset of mass vaccination resulted in the elimination of large epidemic 

outbreaks, which had previously acted to synchronise measles dynamics in different cities 

in the pre-vaccine era. 

 

Bolker and Grenfell (1996) found that the level of epidemic decorrelation after the onset of 

mass vaccination varies according to spatial scale (see Fig. 1.5). For instance, in marked 
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contrast to the between-city decorrelation in epidemic outbreaks, the correlation between 

London boroughs remained high after the introduction of vaccination, on a par with the pre-

vaccine era correlations. However, this is not a surprising observation when one considers 

the effect of spatial distance on disease transmission. The spatial transfer of an infection in 

contiguous boroughs where population mixing is high, will be at a far greater rate than what 

would be expected from the epidemiological coupling of cities, separated by many miles of 

countryside (Cliff and Haggett, 1980). Consequently, Bolker and Grenfell’s (1996) findings 

suggest that the decorrelation experienced at the inter-city level in the post-vaccine era is 

lessened by intense coupling at the intra-city level.  

 

 

Figure 1.5 Distributions of pairwise cross-correlations among the seven English cities, in 

the pre-vaccine era (black line, 1948-1968) and vaccine era (grey dash line,1968-1988). 

(Source: Bolker and Grenfell, 1996: 12650). 

 
An equivalent decline in the geographical coherence of measles epidemics after the end of 

the pre-vaccine era has also been observed using measles morbidity data available in the 

US (Cliff et al., 1992a, b). Cliff et al. (1992b) found a similarly substantial decorrelation 
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between 22 states of the north-eastern United States, including New York City and 

Washington D.C, using surveillance data available from 1962 to 1988.  

 

Table 1.3 Hypothetical numbers of people susceptible to measles before and after 

vaccination program based on predicted fade-outs (Source: Nathanson, 1982). 

Population Before 

Immunisation 

After 

Immunisation 

9,000,000 900,000 400,000 

900,000 90,000 40,000 

500,000 50,000 22,000 

300,000 30,000 13,000 

 

Nathanson (1982) uses the hypothetical examples of New York City and Baltimore in the 

early vaccine era to explain the impact of immunisation on endemic persistence of measles. 

According to Nathanson (1982), before the introduction of the measles vaccine in the US in 

1963, an estimated 10% of the US population was susceptible to measles. Nathanson 

calculated that a susceptible population within the community of around 50,000 individuals 

was required to propagate the infection. Towards the end of the pre-vaccine era, New York 

possessed a population estimated at 9 million; approximately 900,000 in the city were 

therefore susceptible to measles. Baltimore, a far smaller city yet with a considerable 

population of around 900,000, had an estimated 90,000 susceptibles before vaccination. 

However, after the introduction of measles immunisation, the number of susceptibles in 

Baltimore has fallen to only 40,000, below the value required to spread the virus. By 

contrast, in New York, even after immunisation, there would still be enough susceptibles, 

around 400,000, to maintain the circulation of measles during seasonal troughs. 
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Consequently, New York continued to report measles monthly, whilst Baltimore 

experienced a transition from endemic measles to regular fade-out of the disease. 

 

1.7.2 Pertussis 

 
Interestingly, the spatiotemporal dynamics of pertussis are in stark contrast to those of 

measles, which exhibits the opposite pattern of spatial synchrony in both the pre-vaccine 

era and after the onset of mass vaccination (Bolker and Grenfell, 1995; Cliff et al., 1992a). 

Rohani et al. (1999, 2000) found that the onset of mass vaccination for pertussis in 1957 in 

England and Wales coincided with a major change in the spatiotemporal patterns of 

pertussis incidence. The epidemic outbreaks of the pre-vaccine era showed little spatial 

correlation between urban centres and were replaced in the post vaccine era of the 1960s 

and 1970s by highly spatially synchronised outbreaks (Rohani et al., 1999). Moreover, 

fluctuations every to 2–2.5 years in pertussis outbreaks in towns and cities between 1944 

and 1957 were superseded by highly synchronised, triennial epidemics across England and 

Wales after the introduction of mass vaccination. Unsurprisingly the inter-epidemic interval 

between outbreaks increased during the 1960s and 1970s due to the dramatic decline in 

pertussis incidence (Rohani et al., 1999). Reflecting the spatial synchronisation of epidemic 

troughs between pertussis outbreaks in the vaccine era, a substantial increase in both the 

frequency and duration of fade-outs in major cities was also observed, signalling a 

successful reduction in the transmission of pertussis since the onset of mass immunisation. 

 

In their study of the epidemiological impact of vaccination on pertussis and measles 

dynamics in the Niakhar area of Western Senegal, Broutin et al. (2004) revealed a 

substantial increase in the mean number of fade-outs as a direct consequence of 

immunisation. The mean duration of fadeouts also increased significantly, with a 

considerable fall in the R0 for both diseases signalling a clear decrease in the regional 

persistence of the infections. 



Chapter 1: Introduction & Review 

25 

 

Part Two: Modelling Endemic Thresholds 

 

1.8 Quantifying Endemic Thresholds 

 

Quantifying endemic threshold size, in principle, is a relatively straightforward process, and 

there is more than one method which may be utilised to achieve this task. Several studies 

have examined the relationship between population size and the mean number of fade-outs 

per year (see Fig. 1.6) (Bartlett, 1957; Black, 1966, Broutin et al., 2004a,b; Grenfell and 

Harwood, 1997).   

 

Figure 1.6 Mean number of annual fade-outs of measles against population size in England 

and Wales, 1940–1964. The mean annual fade-out value for the 954 urban districts of 

England and Wales are plotted in grey, with a smooth trend line overlaid in white. The red-

dashed line marks the endemic threshold value. Population size of each district represents 

the average population size over the period (Source: Conlan et al., 2009: 626). 
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A fade-out is generally defined based on the infectious period of a disease; the average 

time required for an individual to recover from an infection after the initial moment of 

transmission of disease. If no new cases of either infection are reported after a period of 

three weeks or more, it is generally assumed that the chains of transmission have broken 

down, and the infection has become locally extinct (Broutin et al., 2007).  

 

 

Figure 1.7 Proportion of weeks with no reported measles cases against population size in 

England and Wales, 1940–1964. Proportion of zero reports for the 954 urban districts of 

England and Wales are plotted in grey, with a smooth trend line overlaid in white. The red-

dashed line marks the endemic threshold value, the population size above which measles 

is persistent. Population size of each district represents the average population size over 

the period (Source: Conlan et al., 2009: 626). 

 
When the proportion of weeks with no reported cases is plotted against population size (a 

complementary measure of persistence), the length of fade-out experienced increases with 

decreasing population size (see Fig. 1.7). The mean number of fade-outs is consequently 
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limited by the rate of re-introduction of infection from external sources in populations 

experiencing fade-out (Conlan et al., 2009), which is much greater in larger populations. It 

is therefore typical for empirical studies to feature a measure of fade-out length (duration of 

fade-outs/proportion of weeks with no reports) alongside a plot of mean annual fade-outs 

against population size (Bjørnstad et al., 2002; Broutin et al., 2005). Although these 

measures provided account for the frequency and proportion of zero reports, they do not 

clearly discriminate between the relative roles of persistence and invasion dynamics, and 

this limitation has received attention in the extant literature (Conlan et al., 2009). 

 

In the extant literature on childhood infections, a fade-out has traditionally been defined as 

a period of at least three weeks without reported cases of infection (Bartlett, 1957), due to 

the wealth of studies on measles and, to a much lesser extent, pertussis. However, it is not 

an arbitrary definition. For instance, influenza has an infectious period of approximately four 

to seven days (Cliff and Haggett, 1989), therefore fade-out for the disease would be defined 

as a period of two weeks or more without a reported case.  The length of a fade-out period 

is measured by the number of consecutive weeks without cases corresponds to the length 

of a fade-out period (Broutin et al., 2004a). Wearing and Rohani (2009) provide an 

alternative definition; the number of times at least three consecutive weeks have zero cases 

per epidemic. However, they found that estimates for the endemic thresholds size for 

pertussis using both definitions were often very similar in range. 

 

1.9 Modelling Approaches 

 

A variety of mechanistic transmission models, either deterministic or stochastic in nature, 

have been developed over several decades to capture the spatiotemporal dynamics of 

childhood infections. Formulation of these models has been made possible by the extensive 

records of measles notifications which exist in developed nations. To a varying degree, 

these models incorporate mechanisms such as seasonality (Aron and Schwartz, 1984; Earn 
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et al., 2000), age structure (Schenzle, 1984; Bolker and Grenfell, 1993), spatial structure 

(Bolker and Grenfell, 1995; Hagenaars et al., 2004) and variable infectious and latent period 

distributions (Keeling and Grenfell, 1997). Regarding measles data in England and Wales, 

these models have been relatively successful in capturing the temporal pattern of recurrent 

epidemic outbreaks of the infection (Conlan et al., 2009). The use of these models for 

accurately estimating the value of endemic threshold size has, however, increasingly been 

questioned over recent decades (Bolker and Grenfell, 1995; Conlan et al., 2009). 

 

1.9.1 The Stochastic SIR Model  

 

 

Figure 1.8 Flow diagram of classic deterministic SIR model (Adapted from Bonds and 

Rohani, 2009: 542). 

 
The standard model used by Maurice Bartlett in the late 1950s to estimate endemic 

threshold size is a continuous time stochastic susceptible-infected-recovered (SIR) model 

(see Fig. 1.8). The SIR model was originally devised by Kermack and McKendrick (1927), 

as a simple compartmental deterministic model to analyse the mass-action transmission of 

a directly transmitted infection with an exponentially distributed infectious period in a closed 

population.  

 

A stochastic SIR model enables estimates to be made for potential outcomes whilst allowing 

for the effect of demographic stochasticity and the random nature of population events on 
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inputs over time (Keeling and Ross, 2008). They are essentially individual based. In relation 

to the study of infectious disease, stochastic models consider the potentiality for chance 

events to cause the number of susceptibles to fall to zero, resulting in the local extinction of 

infection (Bartlett, 1956; Keeling, 2000). Stochastic models tend to assume that the 

statistical distribution of residence times in disease categories, such as the susceptible and 

infectious periods, follow an exponential distribution (Grenfell and Harwood, 1997). Random 

fluctuations in the timing of birth, recovery and transmission events have been 

demonstrated to play an essential role in the recurrence and extinction of infection (Bartlett, 

1957), and fundamental in the persistence of infection in small populations (Trottier and 

Philippe, 2001). Since Bartlett’s formulation of a continuous time stochastic SIR model, such 

models have provided the means to estimate endemic threshold size (Bartlett, 1957, 1960; 

Black, 1966). Yet, as Conlan et al. (2009) note, the resultant value for this threshold 

ultimately depends on both the assumptions of the stochastic model devised and the 

parameters of the infection itself. 

 

1.9.2 Metapopulation models 

 

When one looks at the extant literature in relation to the concept of endemic threshold size, 

much research conducted from a spatially explicit perspective has involved the use of 

metapopulation models formulated by ecologists, as evidenced most notably by the work of 

Benjamin Bolker, Bryan Grenfell and Matt Keeling on measles throughout the 1990s and 

early 2000s. For childhood infections, of which many are acutely immunising, it has been 

recognised that metapopulation dynamics may play an important role in enabling such 

infections to persist locally within a host population (Grenfell and Harwood, 1997; Keeling 

et al., 2004). Diseases such as mumps and measles are extremely efficient in using a pool 

of susceptibles after they have invaded a community, hence their tendency to rapidly fade-

out after the supply of susceptibles has been exhausted, and local chains of transmission 

collapse (Keeling, 2000; Metcalf et al., 2013b).  
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1.10 Endemic Thresholds & Metapopulation Theory 

 

Over recent decades, metapopulation theory in infectious disease modelling has been 

pivotal for developing a greater understanding of the processes which operate over time 

and space that play a fundamental role in the persistence of childhood infections. The 

regional persistence of measles has become seen as a classic metapopulation problem 

(Levins, 1969), the outcome of which depends on the balance between the frequency of 

local extinctions of infection and the rate at which infection is reintroduced from a community 

where infection remains persistent, to a community where the infection has long faded out.  

 

Metapopulation models have been shown to be effective for exploring the effect of spatial 

heterogeneity on disease persistence. Spatial heterogeneity, in metapopulation terms, is 

defined as the ‘patchiness’ of a host population (Hagenaars et al., 2004). A host population 

is often divided into spatially separate subpopulations, commonly referred to in ecological 

and epidemiological literature on metapopulations as ‘patches’. Spatial heterogeneity is 

determined by the level of contact and mixing between patches. Investigating the interplay 

between local extinctions of infection between-patch transmissions in spatially separate 

subpopulations is critical to an understanding of how heterogeneous mixing patterns in a 

large population maintains the endemic persistence of infectious diseases.  

 

1.10.1 Concept 

 
Basic deterministic and stochastic epidemiological models tend to assume all individuals 

are from a single, homogeneously mixed population, based on the principle of mass-action, 

yet real systems very rarely experience this assumed mixing (Anderson and May, 1984; 

Bolker and Grenfell, 1995). Consequently, these models only offer limited approximations 

of real-world epidemics since they overlook the spatial structure of host populations, which 

can strongly affect transmission and resulting disease dynamics (Bolker and Grenfell, 1995; 
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Lloyd and May, 1996). Metapopulation theory suggests that the persistence of infection 

increases or decreases according to the level of spatial heterogeneity in transmission and 

rate of contact between individuals.  

 

 

Figure 1.9 Metapopulation structures. (a) Classical metapopulation comprising of relatively 

small patches that are sufficiently large and in near proximity so that recolonisation balances 

extinction, (b) ‘Patchy’ metapopulation consist of several patches of varying size with high 

levels of dispersal between each patch, functioning together as one unit (c) Mainland-island 

metapopulation consists of small ‘island’ patches within dispersal distance of a much larger 

‘mainland’ patch. The probability of local extinction is much greater in island patches, and 

lower in the mainland patch. This structure can explain source-sink dynamics observed in 

some metapopulations (Source: Harrison, 1991; Harrison and Taylor, 1997). 

 
A metapopulation is an ecological concept defined as a population composed of 

subpopulations (Hanski and Gaggiotti, 2004), in which discrete subpopulations occupy 
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spatially separate ‘patches’ (Glass et al., 2004). Various metapopulation structures exist, 

the three most common of which are presented in Fig 1.9. The dynamics of a 

metapopulation depends on the rate of extinction and recolonisation of its constituent 

patches (Broutin et al., 2007), and interaction between subpopulations in the form of 

population flux (migration). By inserting a disease transmission model or epidemiological 

time series into a metapopulation framework, a large population can be divided into a 

collection of loosely coupled patches, representing local communities.  

 

Often homogenous mixing is assumed within subpopulations, rather than the regional 

population itself (Beyer et al., 2012); infected individuals have much greater contact with 

other individuals from within the same spatially defined subpopulation, rather than with 

those from other patches (Hagenaars et al., 2004). Transmission between patches is 

determined by a variety of relevant factors, such as the level of epidemiological coupling, 

distance and sub-population size (Keeling, 1999, 2000).  

 

1.10.2 Application 

 

The most common application of the metapopulation model in epidemiological literature has 

been to study the spatial transmission and persistence of childhood diseases nationally at 

the city-level (Bolker and Grenfell, 1996; Dalziel et al., 2016; Grenfell et al., 2001). At this 

geographical scale, mixing within cities plays an extremely important role in determining the 

persistence of an infection (Glass et al., 2004). In metapopulation terms, urban centres act 

as ‘core’ patches, where the large, dense population maintains the circulation of infection, 

which spreads outwards to surrounding ‘satellite’ patches (Grenfell and Harwood, 1997). 

Spatial patchiness has been cited as a key area of study if the circumstances in which 

childhood infections persist endemically are to be effectively elucidated (Mollison et al., 

1994).  
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Grenfell and Bolker (1998) use metapopulation models to study regional spatial 

heterogeneity in measles transmission in England and Wales, in relation to urban-rural 

hierarchies in infection rates. Their findings support the conclusions of Bartlett (1957, 1960), 

finding measles to persist during inter-epidemic periods in large urban centres with an 

endemic threshold population above 300,000 during the pre-vaccination era, with prolonged 

periods of endemic fadeouts mostly occurring in small communities. Epidemic correlations 

revealed a complex urban–rural pattern in the pre-vaccination era; higher rates of infection 

were observed in large cities, with the proportion of urban-based cases rising significantly 

before major epidemic outbreaks in contrast to rural areas, yet small towns were found to 

have epidemic characteristics in-between those of large town and rural settlements. These 

results suggest a spatial hierarchy of infection from large, high density populations to 

smaller, low density communities. However, they also found that if urban and rural 

settlements are of equal population size, they will have the same propensity for local fade-

outs of infection. This is considered a surprising finding since fade-out patterns during inter-

epidemic periods are taken to be particularly sensitive to the degree of coupling to large 

centres (Finkenstädt and Grenfell, 1998), which would suggest fade-outs are less likely in 

urban areas due to the increased level of coupling with urban centres. 

 

Grenfell and Bolker’s (1998) work expand upon the ‘cities and villages’ model of Anderson 

and May, originally devised to explore the potential implications of spatial heterogeneity on 

vaccination efforts against childhood diseases in rural areas, where the rates of 

transmission are lower than in urban centres (May and Anderson, 1984; Anderson and May, 

1992). However, Grenfell and Bolker’s (1998) study can also be seen as building upon 

geographical work of Cliff et al. (1992, 1993), whose study of the spatial dynamics of 

measles in the United States indicated that the infection diffuses from major cities, ‘endemic 

reservoirs’ to settlements in the surrounding countryside, and the work of Bartlett (1957, 

1960) on critical community size. Populations above the endemic threshold value, such as 

those of major urban centres, act as ‘core patches’ within a regional population.  
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Part Three: Childhood Infections Under Study 

 
1.11 Pertussis 

 

Pertussis, more commonly known as whooping cough, is an acute, microparasitic, 

childhood infection that mainly affects the respiratory system. Today, pertussis continues to 

be a major public health issue. Developing nations suffer high burdens of infant mortality 

relating to pertussis infection (Muloiwa et al., 2018), while several developed nations with 

long-established vaccination programmes have witnessed a resurgence of the disease 

amongst infants, adolescents and adults alike in recent decades (Cherry, 2012; Rohani and 

Drake, 2011; Martinón-Torres et al., 2018). Pertussis has remained a leading vaccine-

preventable cause of hospitalisation and mortality in infants in England and Wales 

(Campbell et al., 2012). 

 

1.11.1 Pathogenesis 

 

Pertussis is caused by the Gram-negative bacterium Bordetella (B.) pertussis, first 

described by the French and Belgian immunologists Jules Bordet and Octave Gengou in 

1906 (Bordet, 1906). Humans are the only recognised host for B. pertussis (Amirthalingam 

et al., 2013). It is a highly contagious, airborne disease, transmitted via small respiratory 

droplets which become aerosolised when infected persons sneeze or cough (Gopal et al., 

2019). Pertussis cases are commonly characterised by a prolonged coughing illness that 

can last for several weeks (Edwards, 2005). The average incubation period for pertussis 

typically lasts around one week, whilst the infection period lasts around 14 days 

(Amirthalingam et al., 2013). A classic case of pertussis can be divided into three stages 

(Long, 2004). The first stage is the catarrhal stage when a pertussis case is most infectious. 

During this stage, infected individuals exhibit respiratory symptom such as a non-productive 

cough, a runny nose, and a mild fever (Amirthalingam et al., 2013). After seven to ten days, 
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these symptoms are succeeded by the paroxysmal stage, characterised by intermittent 

periods of intense coughing that end with a distinctive, high pitch ‘whooping’ sound as the 

individual inhales, which usually persist for two weeks (Wendelboe and Van Rie, 2006). It 

is during this stage that individuals are often clinically suspected of showing signs of 

pertussis infection. The final stage is recovery; this is gradual and can last between two 

weeks and several months.  

 

In the vaccine era, the majority of pertussis infections remain undiagnosed as they tend to 

present with mild symptoms, while approximately two-thirds of cases are subclinical, 

presenting no symptoms (Long et al., 1990). Even when children present with a cough of 

two weeks or more, pertussis often goes undiagnosed; previous research has shown 

physicians only consider pertussis in 25% of clinical cases (Deeks et al., 1999). Older 

children, adolescents and adults may become infected with pertussis, due to a weakened 

immune system and close proximity to children (Gopal et al., 2019), or due to waning 

vaccine-induced immunity (Wendelboe et al., 2005; Plotkin, 2014). These age-groups often 

present subclinical symptoms because of past vaccination or different host response by age 

(Eidlitz-Markus, et al., 2007), resulting in frequent misdiagnosis. Some infants, despite 

generally exhibiting more severe illness, may also have atypical presentations of the 

disease, in particular lacking the protracted, spasmodic cough with the characteristic whoop 

during the paroxysmal stage (Tanaka et al., 2003).  

 

1.11.2 Pertussis Elimination 

 

Since humans are the only known disease reservoir for B. pertussis, pertussis is 

theoretically a prime candidate for disease eradication through the implementation of 

sustained mass vaccination campaigns. However, unlike other childhood infections, such 

as measles and poliomyelitis, natural infection does not confer life-long immunity against 

the disease (Amirthalingam et al., 2013), whilst immunisation does not guarantee protection 
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from infection, since the efficacy of the pertussis vaccine is known to decline over time 

(Wendelboe et al., 2005; Plotkin, 2014). It is therefore possible to contract pertussis later 

on in life and more than once, with the elderly in particular vulnerable to this particular 

outcome.  

 

Throughout the interwar period, researchers in the United Kingdom and United States 

conducted numerous studies and field-trials in the quest to develop an effective inactivated 

vaccine, yielding positive results by the 1940s (Bell, 1948; Felton and Willard, 1944). 

Pertussis immunisation began in England and Wales on a localised basis in 1942 (Grenfell 

and Anderson, 1989). In 1957, the whole-cell pertussis (wP) vaccine was introduced across 

England and Wales for infants three months old and above (Amirthalingam et al., 2013), 

finally marking the introduction of a routine, nationwide pertussis immunisation programme 

(Griffith, 1978). It was combined with the diphtheria and tetanus vaccines to form the DTwP 

vaccine. Initially, there was a substantial fall in the magnitude of notifications following the 

introduction of routine pertussis immunisation (Rohani et al., 2000). However, by the mid-

1960s, the number of pertussis notifications reported nationwide stabilised. The lack of a 

continued downward trend in pertussis notifications was attributed to either biological 

changes pertussis bacterium or the use of vaccines with low effectiveness during the period 

1957 to 1968 (JCVI, 1977). A 1969 Public Health Laboratory Service survey indicated wP 

vaccines used before 1968 were far from effective; reporting efficacy rates were as low as 

20% (PMC and API, 1969). Clarkson and Fine (1985) noted that the reported efficacy of 

pertussis vaccines varied greatly between the 1950s and 1980s, ranging from 20% to 95%. 

Their modelling suggested that a vaccine coverage rate of  88% for  each birth cohort before 

one year of age would be necessary to will eliminate bacterial transmission, with repeated 

cohort immunisation necessary to eliminate transmission. Nevertheless, there was a 

general consensus within the UK Joint Committee on Vaccination and Immunisation in a 

report published in 1977 that onset of routine pertussis immunisation had been the vital 

factor behind the substantial decline in pertussis notifications (JCVI, 1977). 
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1.11.3 Dynamics in England & Wales 

 

Epidemiologists have focused on the interplay between vaccination, nonlinearity in 

transmission and demographic stochasticity, to explain the noisy, irregular pertussis 

epidemics observed in the pre-vaccine era, and the dominant cyclic signature which arises 

after the introduction of routine pertussis immunisation (Rohani et al., 2002). In the context 

of England and Wales, much of this work has been undertaken analysing weekly or monthly 

pertussis incidence data at the national level and between major cities, overlooking the 

spatial structure and distribution of subpopulations at finer geographical scales, at the 

regional and local level. For instance, Rohani et al. (2000) examine the impact of the 

introduction of mass vaccination campaigns in the late 1950s on the spatio-temporal 

patterns of pertussis incidence, utilising notification data for major cities at the national level.  

Much of the exiting literature on pertussis in England and Wales has centred on the 

effectiveness of mass vaccination on the incidence of pertussis. In the pre-vaccination era, 

pertussis outbreaks accounted for an estimated 150,000 cases and contributing to 

approximately 300 deaths annually (Amirthalingam et al., 2013).  Rohani et al. (2002) note 

that the wP vaccine may not some prevent subclinical cases of the disease, which go on to 

be unreported while potentially maintaining chains of transmission and thwarting elimination 

efforts. This echoes the sentiment of Cherry (1998), who remarked that the persistence of 

pertussis could not be controlled by contemporary immunisation programs. Nevertheless, 

based on the notifications reported, Rohani et al. (2000) conclude that mass vaccination 

has led to a large decrease in reported cases of whooping cough in England and Wales.  

 

The effectiveness of pertussis vaccination can also be assessed by analysing the relative 

changes in the length of the inter-epidemic period after mass immunisation. Analysis of 

simple models indicates that a significant drop in transmission should be paralleled by an 

increase in the interval length between epidemic peaks (Anderson and May, 1991). The 

onset of pertussis vaccination corresponded with a considerable increase in the 



Chapter 1: Introduction & Review 

38 

 

interepidemic period, from around two years to nearly four years in the ten most populous 

cities of England and Wales. This repudiated previous findings in the studies undertaken by 

Fine and Clarkson (1982), who suggested that vaccination had a negligible effect on the 

inter-epidemic interval of pertussis in England and Wales, implying mass vaccination had 

failed to significantly curb pertussis transmission (Rohani, 2000). This was based on model 

projections which mirrored the apparent failure of mass vaccination to increase the inter-

epidemic period of the infection, suggesting the adverse impact of partial vaccine efficacy 

(Fine and Clarkson, 1982). However, with access to a considerably more extensive, spatio-

temporal dataset of pertussis notifications in England and Wale than Fine and Clarkson, 

Rohani et al. (2000) found that the onset of vaccination coincides with a significant transition 

in the spatial dynamics of pertussis, initiated by the decline in disease transmission, with 

spatially decorrelated epidemics in the 1950s succeeded by geographically synchronised 

outbreaks in the decades following the introduction of the wP vaccine. This finding is 

consistent with a considerable increase in both the number and duration of fade-outs in the 

vaccine era, consistent with spatial synchronisation of epidemic troughs (Rohani et al., 

1999), and increase in critical community size required to maintain chains of infection 

transmission. 

 

1.12 Measles 

 

The measles virus has long posed a significant public health risk to human populations. 

Prior to the introduction of vaccination, measles blighted the populations of industrialised 

nations with regularity and impunity, and was a leading cause of infant mortality, with the 

annual number of measles-related deaths estimated in the range of five to eight million 

(Moss and Griffin, 2006). Since the 1960s, measles vaccines have facilitated the dramatic 

decrease in the incidence of the disease and its associated complications in many regions 

across the world (Strebel et al., 2012). The decline in mortality from measles in industrialised 

nations was associated with economic development, improved nutritional status and 
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supportive care, and emergence of antibiotic treatments for secondary infections such as 

bacterial pneumonia. Nevertheless, measles continues to be a major public health issue for 

the developed world, where low vaccination coverage leads to frequent local outbreaks at 

the community level, and for developing nations in regions such as sub-Saharan Africa, 

where elimination campaigns face significant geographical, socio-political and economic 

obstacles and the disease remains a leading vaccine-preventable cause of infant mortality 

(Moss and Griffin, 2006). 

 

1.12.1 Pathogenesis 

 

The measles virus is transmitted by aerosols or the respiratory droplets from infected 

individuals, primarily via sneezing or coughing. The incubation period for measles lasts 

between ten to 14 days, during which the virus replicates and spreads in the infected host 

(Moss and Griffin, 2006). The first clinical symptom of the disease is a prodromal illness 

characterised by a mild fever, cough, and conjunctivitis (Strebel et al., 2012). This is the 

most contagious stage of the disease. The prodromal symptoms intensify before the 

appearance of a distinctive rash, resembling red bumps on red patchy skin (Strebel et al., 

2012). This rash tends to be generalised across the body. In uncomplicated measles, 

clinical recovery begins shortly after the appearance of the rash, normally lasting three to 

four days before fading.  

 

Complications arising from measles infection are not uncommon, since the virus is known 

to cause profound immunosuppression (Moss and Griffin, 2006), which can last for several 

weeks and even months after recovering from the acute illness. Recent studies have found 

that measles infection can effectively erase 20 to 50 percent of antibodies against an array 

of viruses and bacteria, such as influenza, depleting a child's previous immunity (Mina et 

al., 2019; Petrova et al., 2019). In such instances, a measles-ravaged immune system has 

to relearn how to protect the body against infections. Unsurprisingly, measles patients are 
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susceptible to secondary bacterial and viral infections that cause pneumonia and diarrhoea 

and is responsible for much of the measles-related morbidity and mortality (Beckford et al., 

1985; Greenberg et al., 1991).  

 

1.12.2 Elimination  

 

Measles is thought by many experts to meet the criteria forwarded as necessary for an 

infectious disease to be considered a candidate for eradication: first, it must be biologically 

feasible, with humans playing the crucial role in disease transmission; second, sensitive 

and specific diagnostic tools must exist; and finally, an effective intervention must be 

available (Orenstein et al., 2000; Quadros, 2004). The success of effective measles 

immunisation programmes in communities with high vaccination coverage has 

demonstrated that the interruption of chains of transmission in a large geographic area for 

significant periods of time supports the feasibility of measles elimination. 

 

In terms of biological feasibility, measles is a good candidate for elimination. Humans are 

the only natural reservoir that can sustain the persistence of the virus. Although primates 

can be infected with measles and develop human-like illness, wild primate populations do 

not reach the critical size required to maintain chains of transmission for the infection to 

persist and pose no risk to measles elimination efforts. Based on the findings of Bartlett 

(1957, 1960) and Black (1966), a population size of 300,000 and above, with an input of 

5,000 to 10,000 births annually is required to provide a sufficient number of new susceptible 

individuals to maintain chains of transmission. 

 

The characteristic clinical features of measles, in particular the rash, makes the disease 

much more straightforward to diagnose compared to other childhood infections (Moss and 

Griffin, 2006). However, other infectious diseases which affect young children, such as  
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rubella and human herpes virus type 6 can all cause symptoms that can mimic, or to some 

extent replicate, those of measles which can lead to misdiagnoses (Davidkin et al., 1998). 

 

A key difficulty with measles elimination relates to the high infectivity of the disease. The 

measles virus is an extremely contagious infection, able to infect individuals several days 

prior to exhibiting clinical symptoms, most notably the characteristic rash which  

distinguishes the disease from others. A key epidemiological metric of the infectivity of an 

infectious disease is the basic reproduction number (Ro). Ro is the mean number of 

secondary cases that would arise if an infectious agent were introduced into a completely 

susceptible population (Anderson and May, 1991). Ro is a function not only of the infectious 

agent but also of the host population. The Ro for measles is often cited as 12–18 (Guerra et 

al., 2017). This is in contrast to five to seven or smallpox virus and two to three for 

coronaviruses (Moss and Griffin, 2006). In the 1951 measles epidemic of Southern 

Greenland, an infected individual, identified as the case of origin, attended a dance at a 

community gathering during the infectious period of the disease. This ignited a virgin soil 

epidemic which resulted in a Ro of 200 (Christensen et al., 1953). Given its high infectivity, 

measles thus requires a consistently high level of herd immunity of approximately 90-95% 

to effectively interrupt chains of transmission and significantly increase the critical size 

required to sustain the persistence of disease to enables elimination (Cutts and Markowitz, 

1994). Local outbreaks can occur in populations in which only less than 10% of individuals 

are susceptible. 

 

Although the use of the single-antigen live measles vaccine was introduced nationally in 

1968, the vaccine had been available since 1966, and later studies generally accepted the 

vaccine have an efficacy rate of over 90% (Shelton et al., 1978; Marks et al., 1978). The 

recommended age for vaccination with the primary dose in England and Wales between 

1968 and 1988 was 12 to 23 months of age (Strebel et al., 2012). Initial vaccine coverage 
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was poor, but it gradually increased to a level of approximately 80% by 1988 (Vyse et al., 

2002). 

 

1.12.3 Dynamics in England & Wales 

 

Measles became a statutory notifiable infectious disease in England and Wales in January 

1940, with clinicians legally required to report any cases diagnosed to the district Chief 

Medical Officer. There is considerable serological and historical evidence that prior to 

measles vaccination, at least 95% of individuals had experienced measles infection by the 

time they reached adolescence (Langmuir, 1962; Earn et al., 1998). An important exception 

is island populations, which can remain infection-free for variable periods of time and 

experience epidemic disease that involves all age groups not previously affected by the last 

wave of infection, once the virus has been reintroduced (Black, 1966; Cliff et al., 2000). 

Thus, whereas peak transmission usually occurs among young children, outbreaks in 

isolated communities can involve older generations. This was exemplified by 1846 measles 

epidemic on the Faroe Islands, where Panum noted the disease affected persons of all 

ages who were not alive during the last epidemic that had occurred 65 years earlier (Panum 

and Petersen, 1940). Before the onset of national vaccination campaigns for measles in 

1968, England and Wales experienced regular measles epidemics, with the total number of 

notifications varying between 160,000 and 800,000 cases per year. Epidemics tended to 

exhibit seasonal cycles and longer-term, generally biennial major epidemics (Anderson and 

May, 1991; Grenfell et al., 2001). Young children of school age had the highest risk of 

infection and accounted for the largest proportion of cases. However, in densely populated 

urban areas, transmission among infants took on greater importance (Strebel et al., 2012).  

 

The introduction of mass vaccination had an almost immediate and significant effect on the 

magnitude of measles cases, with annual notifications falling to between just 50,000 and 

100,000 by the late 1980s. In total, 11,337,267 measles notifications were reported over a 
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28-year period in the pre-vaccine era between 1940 and 1968, with 7,863 cases resulting 

in death (PHE, 2017). After the introduction of vaccination, over the equivalent period of 

time to the year ending 1996, 2,424,836 cases and 413 measles-related deaths were 

reported. This represents a decline of 79% in measles morbidity and 95% in measles-

related mortality, respectively. In their study of the efficiency of measles notification in 

England and Wales, Clarkson and Fine (1985) found a strong correlation between births 

and four-year interval to notification, coinciding with the age at school entry and maximum 

incidence for the disease. 

 

1.13 Scarlet Fever 

 

Scarlet fever is an acute bacterial childhood disease and once a leading cause of childhood 

mortality, in the nineteenth and early twentieth centuries (Duncan, 2019). It has been 

estimated that the mortality rate for scarlet fever in multiple locations around the world 

reached 25% of cases by 1900 (Guerrant et al., 2011). By the mid-twentieth century, scarlet 

fever experienced a significant decline in morbidity accelerated by loss of virulence, the 

introduction of antibiotics and improvements in hygiene. Sporadic outbreaks of scarlet fever 

were reported in England and Wales and other western nations throughout the mid and 

late-twentieth century (Walker and Brouwer, 2018), but were no longer associated with the 

high mortality rates of times past. In recent years, scarlet fever has made a dramatic return 

as a public health issue, albeit remains an issue that evades wider public recognition. In 

2016, scarlet fever incidence in England and Wales was at its highest for over 50 years 

(Lamagni et., 2018). 

 

 

 



Chapter 1: Introduction & Review 

44 

 

1.13.1 Pathogenesis 

 

Scarlet fever is caused by group A streptococcus (GAS) bacterium, which is responsible for 

a range of invasive and non-invasive infections (Duncan, 2019), and humans are the only 

known natural hosts of the GAS bacterium which causes scarlet fever (Ferretti et al., 2016). 

The association between streptococci and scarlet fever was confirmed by George and 

Gladys Dick in Chicago in 1923, who located the causative agent of scarlet fever in the 

toxins produced by GAS bacterium (Dick and Dick, 1924a). The following year, they went 

on to invent ‘The Dick Test’ in 1924, which was used to identify those susceptible to the 

disease (Dick and Dick, 1924b).  

 

Scarlet fever is usually spread through aerosol transmissions, by people either coughing or 

sneezing, but it some instances can spread when a person comes into a contact with 

surfaces with GAS bacterium (CDC, 2016). The latent period for scarlet fever can vary from 

anywhere between two to seven days after initial exposure, although it has been known to 

be as short as 12 hours, with the infectious period lasting approximately seven days (Wong 

and Yuen, 2012). Scarlet fever cases are commonly characterised by several notable 

symptoms, such as strep throat and a ‘scarlatiniform’ rash which covers the body, leaving 

a sunburned appearance (Duncan, 2019). The rash begins within 48 hours of symptom 

onset. Other symptoms include fever and fatigue, which tend to pass within ten days after 

their initial presentation (Wong and Yuen, 2012). The disease most commonly affects 

children of school age, between five to fifteen years old (Bisno, 1995). Known complications 

arising from scarlet fever cases include acute rheumatic fever and inflammation of the 

kidneys (Duncan, 2007). Since their introduction in the early post-war period, antibiotics 

such as penicillin V and amoxicillin form the core treatment for scarlet fever and are often 

used to prevent children from developing potential complications arising from infection 

(Langlois, 2016).  
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1.13.2 Elimination 

 

Unlike pertussis and measles, scarlet fever is not a vaccine-preventable disease. 

Historically, attempts to develop and effective vaccine for the disease have proved to be 

fruitless. George and Gladys Dick developed the first scarlet fever non-toxic vaccine in 1924 

(Dick and Dick, 1924b). However, by the end of WWII, its use was discontinued due to poor 

efficacy and the arrival of antibiotics as an effective treatment for the disease (Ellis and 

Brodeur, 2012). Difficulties in developing an effective scarlet fever vaccine include 

accounting for the substantial number of GAS strains circulating in the environment and 

securing the necessary resources to ensure adequate safety and efficacy trials of potential 

future vaccines (Ellis and Brodeur, 2012).  

 

1.13.3 Dynamics in England & Wales 

 

Previous research on the dynamics of scarlet fever in England and Wales has mainly utilised 

mortality data contained in the Registrar General's Annual Reports from the latter half of the 

19th century, which provide a consistent time series at the national level post-1847. Using 

this data adopted from the work of physician Charles Creighton in the 1890s, Duncan et al. 

(1996) revealed a significant increase in scarlet fever mortality in the nineteenth century 

which typified the second epidemiological phase of the disease (Katz and Morens, 1992). 

Prior to the early mid-nineteenth century, scarlet fever outbreaks had been lethal but 

sporadic in nature (Katz and Morens, 1992). A spectral analysis highlighted a regular inter-

epidemic period nationally, lasting approximately five years, with large fatal epidemics 

ceasing by the beginning of the third epidemiological phase in the 1880s (Katz and Morens, 

1992), when the endemic level also decreased markedly. These findings confirm those from 

work undertaken by physicians during the period by Johannessen (1884) on scarlet fever 

incidence and mortality rates in Oslo between 1863-1878, and by Whitelegge (1893) 
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documenting incidence and mortality rates in Boston between 1840-1904. Both found 

epidemics in urban centres corresponded to regular three-to-five year cycles. A longitudinal 

analysis by Lamagni et al. (2018), using morbidity data held by Public Health England from 

1911 to 2016, which incorporates notification data reported by the Registrar General’s 

Weekly Returns, also detected a periodicity of four to six years between epidemics across 

much of the twentieth century until the 1960s, when the widespread use of antibiotics and 

significant improvements in disease prevention pushed scarlet fever back into an endemic 

phase, characterised by low incidence and long periods between minor outbreaks. 

 

Part Four: Statement of Research 

 

1.14 Statement of The Problem 

 

In an applied context, the endemic threshold has been proposed as a guide for control 

strategies, and an argument has been made for ignoring populations below the threshold 

value if vaccines are constrained or resources limited (Beyer et al., 2011; Haydon et al., 

2006). However, this only hold value if the persistence of infections in a regional population 

is dependent on local persistence in large core urban communities which serve as endemic 

reservoirs, and rescue effects are rare. The implementation of mass vaccination should 

theoretically drive disease persistence away from the local scale towards the 

metapopulation scale. All local districts are embedded in a metapopulation in which rescue 

effects will take place, at least, to some extent, and the rate and scaling of import of infected 

individuals between districts influences the nature of the relationship between zero-

incidence and population size. Despite the simple theoretical prediction that endemic 

threshold size should increase significantly with vaccination, there have been suggestions 

in the past that the threshold size for measles in England and Wales remained steady due 

to rescue effects (Bolker and Grenfell, 1996), born from spatial coupling between districts 
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and settlements, and highlighted by phase differences among disease activity in 

geographically separate districts caused by intermediate levels of vaccine uptake. 

Identifying rescue effects require hierarchical spatial data from districts above and below 

the endemic threshold, to establish on what spatial scale it occurs 

 

The work of Cliff et al. (2000) on temporal changes in endemic threshold population size in 

an island population provides a methodological template for examining long term temporal 

changes in endemic threshold populations. However, in the context of England and Wales, 

where the temporal changes in endemic threshold size for notifiable infections are yet to be 

studied in any great detail, unlike island populations, settlements are strongly bound 

together by the movement of people and spatial coupling. This movement is hierarchically 

structured, and regular spatial flows from one geographical unit to another are known to 

reintroduce infection after endemic fade-outs in regions where infection is yet to be 

eliminated. It is therefore key to explore temporal changes in endemic threshold population 

size in relation to the spatial dynamics of infection, to understand the effect of spatial 

coupling, distance and movement between populations on the persistence of infection, 

particularly since the rate and scaling of import of infected individuals has been described 

as having the ability to change the nature of the relationship between zero-incidence and 

population size (Metcalf, 2013; Conlan et al., 2009). 

 

As reflected in the work of Bolker and Grenfell (1996), there is limited empirical evidence 

that suggest rescue effects may prevent increases in endemic threshold size, and this may 

be fruitful area of research for geographers aiming to understand the role of geography in 

shaping the endemicity of disease. The only attempt to quantity rescue effects for childhood 

infections has been led by ecologists who use WHO incidence data to explore the rescue 

effects globally, comparing persistence of infection between island and mainland countries 

in a global metapopulation framework (Metcalf et al., 2013a). 
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Despite the vast literature that exists on the spatiotemporal dynamics and persistence of 

measles, very few these studies, with the possible exception of Bolker and Grenfell (1996) 

explicitly focus on or account for spatiotemporal changes in endemic threshold population 

size over time, beyond analyses of fade-out structure and behaviour of measles and 

pertussis metapopulations (Broutin et al., 2004a, Xia et al., 2004). Lesser still, endemic 

threshold populations have been poorly characterised for uniquely structured regional 

populations which exist within wider mainland metapopulations. These regional 

metapopulations represent fertile testbeds to explore disease persistence from a 

geographical perspective. Attempts to quantify endemic threshold populations for childhood 

infections have been mostly limited to studies conducted in island populations (Black, 1966; 

Cliff et al, 2000) or those conducted in England and Wales on a national scale (Keeling and 

Grenfell, 1997; Grenfell et al., 2001; Conlan and Grenfell, 2007). Beyond studies of endemic 

thresholds in island populations, little geographical work has been undertaken which 

analyses both temporal and spatial changes in the size of endemic threshold populations in 

regions with complex patterns of spatial mobility and hierarchical spatial structures which 

operate as independent epidemiological systems.  

 

Research on endemic thresholds in specific regions in England and Wales has been absent 

in the context of childhood infections. It has generally been assumed that the population 

size at which disease fade-out may occur in regional populations in mainland 

metapopulations such as England and Wales are masked.  Regions are assumed to have 

a complex spatial hierarchy of communities of varying sizes, ranging from large cities and 

towns to rural hamlets, often with a high degree of spatial interaction driven by a dense 

network of localised travel movements. In this geographical context, the spatial transfer of 

infection via population flows from cities to neighbouring towns and villages may occur, but 

disease may also be reintroduced from surrounding, smaller settlements to large towns and 

cities due to the consistent movement of individuals between closely connected 

communities, regardless of population size. However, this assumes regions in mainland 
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populations such as England and Wales do not possess distinctive, unique characteristics 

in terms of settlement hierarchy, their demography, level of internal geographical isolation, 

the geographical dispersion of susceptibles and population densities, and the nature of 

spatial interaction between communities.  

 

1.15 Research Justification  

 

Identifying and studying endemic threshold populations at finer spatial scales enables one 

to explore how spatial interactions between local districts contribute to regional disease 

persistence, identify hotspots of infection and assess the impact of intervention on spatial 

dynamics of disease in light of potential rescue effects that may potentially inhibit control 

efforts. Identifying persistence hotspots with high endemic activity and export of infection 

after the onset of vaccination emphases the importance of geographically targeted 

immunisation programs, particularly in those regions of the world where vaccine-

preventable diseases continue to re-emerge. To this author’s knowledge, there has been 

very little work which quantifies temporal changes in endemic threshold populations in 

complex, hierarchically structured regional populations. 

 

Historical data, in the form of the Registrar-General’s Weekly Return, provides highly 

accessible long-term, spatially resolved, and disaggregated incidence data for pertussis in 

England and Wales. These qualities permit the identification and investigation of unique 

endemic threshold populations at finer spatial scales. The Weekly Return also represents 

an extremely useful resource for investigating the impact of vaccination on the spatial 

dynamics of disease, since it provides a consistent record of notifications at the same spatial 

and temporal scales before and after the onset of mass vaccination. This has the potential 

to inform strategies of spatially-targeted immunisation programmes. The study of historical 

data has played an essential role in developing current understandings of the effects of 

seasonality and stochasticity on disease patterns, as well as shedding light on the spatial 
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synchrony of epidemics and traveling waves in disease systems for childhood infections, 

most notably concerning measles (Grenfell et al., 2001). With the quality of historical 

infectious disease data accessible from the Weekly Returns, there is significant scope to 

explore from a geographical perspective long term spatiotemporal changes in endemic 

threshold populations in England and Wales, where the spread of infection is hierarchically 

structured, and data exists on a fine spatial scale.  

 

It is clear from the research discussed that the epidemic dynamics of scarlet fever have 

been comprehensively established by a relatively concise body of literature. This is certainly 

the case when one looks at the research undertaken on the disease at the metropolitan and 

national levels, particularly for the nineteenth century, and in terms of mortality. However, it 

is also clear that the endemic and regional, spatial dynamics of scarlet fever, especially in 

the 20th century, have received scant attention. Katz and Morens (1992) note the urban-

rural epidemic dynamics observed in the 19th century, with regular cyclical scarlet fever 

outbreaks found in metropolitan areas in contrast to sporadic, less severe epidemics in rural 

areas, which were sometimes several years apart. However, the regional spatial dynamics 

of scarlet fever have not been examined beyond this observation, and this could prove a 

fruitful area of investigation. The work of Cliff et al. (1992, 1993) on the geographical 

structure of measles epidemics in the North-Eastern United States, as well as research on 

measles persistence by population biologists in England and Wales (Grenfell and Bolker, 

1998; Grenfell et al., 2001) has already demonstrated that infection may diffuses 

progressively from urban centres down to the surrounding rural areas, following the ‘cities 

and villages’ model forwarded by (Anderson and May, 1991). Within this model, the 

endemic threshold size is a key concept with regards to disease persistence. After an 

exhaustive search and review of past literature, there is a notable absence of work which 

estimates endemic threshold size for scarlet fever over time within the context of highly 

connected regions with hierarchical population structures. The endemic threshold size for 
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scarlet fever has only been estimated temporally for a historically closed, isolated island 

population, namely Iceland (Cliff et al., 2000). 

 

1.16 Aims & Objectives 

 

Beyond studies of endemic thresholds in island populations, little geographical work has 

been undertaken which analyses both temporal and spatial changes in the size of endemic 

threshold populations in regions that operate as independent epidemiological systems, 

featuring complex patterns of spatial mobility and hierarchical spatial structures. This study 

aims to address this research gap. It has generally been assumed that the population size 

at which disease becomes endemic in regional populations in mainland metapopulations 

such as England and Wales are masked (Black, 1966; Cliff et al., 2000; Broutin et al., 2005). 

The reintroduction of infection from small settlements to large towns and cities due to 

constant commuter-related travel, alongside the spatial transfer of infection via population 

flows in the other direction, blurs the point at which disease would be expected to fadeout, 

making the calculation of threshold estimates problematic. However, regions in England 

and Wales possess distinctive and unique characteristics in terms of a settlement hierarchy, 

demography, connectivity, dispersion of susceptibles and population densities, as well as 

the nature of spatial interaction between communities. 

 

The two regions selected for the present analysis are the historic county of Lancashire, 

located in Northwest England and South Wales, comprising of four historic counties of 

Wales. Lancashire and South Wales represent suitable candidates for studying the endemic 

persistence of childhood infections for several reasons. Both regions are geographically 

and topographically diverse, with significant overall populations and importantly they are 

regions of great contrast in terms of spatial structure, connectivity and isolation. Moreover, 

both experienced significant demographic transformations during the postwar period, as a 

result of the ‘Baby Boom’, population decentralisation driven by urban slum clearance and 
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significant economic upheaval as a consequence of deindustrialisation. These events 

transformed the ways in which local subpopulations interacted with each other on an 

everyday basis and the distribution and replenishment of susceptible individuals. 

 

The approach presented in this thesis aims to provide a straightforward method for 

detecting and tracking changes in disease persistence over time in the form of the endemic 

threshold estimates, which can be applied to a range of diseases for which an adequately 

detailed data record exists. Regional persistence of infection is rooted in local transmission 

patterns. Identifying geographical corridors of infection that contribute to recurring 

epidemics helps define and predict outbreak patterns. Detecting epidemiologically 

important districts which play a significant role in facilitating the persistence of disease within 

a regional metapopulation via rescue effects is vital to the success of national vaccination 

campaigns. The approach followed in this thesis could be applied to other regional 

populations to detect spatial heterogeneities in disease persistence to help achieve 

successful outcomes for disease intervention.  

 

1.17 Research Questions 

 

1) Are there significant regional differences in the size of the endemic threshold 

populations for the same childhood infections? 

2) What is the spatial impact of vaccination on endemic threshold populations for pertussis 

in geographically divergent regional metapopulations? 

3) How does the historical spatial structure and spatial distribution of a regional 

metapopulation influence endemic threshold population size? 

4) What are the differences in drivers of diverging levels of disease endemic among 

regional metapopulations? 

5) To what extent does geographical mobility and connectivity affect the estimation of 

endemic threshold populations? 
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1.18 Chapter Outline 

 

Chapter 2 is concerned with the research design of the study. The chapter consists of two 

parts. The first describes the data sources utilised, process of data collection and provides 

an assessment of data quality. The second part of the chapter details the multiple 

components and quantitative techniques used to perform the geographically-centred 

analysis in the study, describing the methodological procedures and providing rationales for  

selection of methods used in the analysis. 

 

Chapter 3 is composed of three parts. Part one provides a description of the study period 

selected to facilitate the analysis. Part two provides a breakdown of the geographies of the 

regional metapopulation of Lancashire and South Wales. Part three provides a description 

of the demographic profile of the two regions and a summary of the evolving regional 

demography throughout the study period. 

 

Chapter 4 presents an exploratory and descriptive spatial analysis of time-series of monthly 

notification data for measles, pertussis and scarlet fever in the Lancashire and South Wales 

regions, alongside a select subset of districts in each region (January 1940–December 

1969).  

 

Chapters 5, 6 and 7 present and discuss the main findings. Chapter 5 details and analyses 

spatiotemporal changes in endemic threshold populations for measles, pertussis and 

scarlet fever in the regional metapopulations of Lancashire and South Wales, using the 

‘moving window’ empirical regression approach to estimate endemic thresholds. Chapter 6 

details the findings of the hotspot and survival analyses, examining geographical patterns 

of pertussis persistence in the pre-vaccine and vaccine-eras, to explore the spatial impact 

of mass vaccination on pertussis endemicity in the Lancashire and South Wales regions. 

Chapter 7 presents the results of endemic-epidemic modelling of pertussis, measles and 
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scarlet fever incidence across nine time–windows in Lancashire and South Wales, using 

various sub-model formulations of the HHH model, a multivariate regression time series 

model for infectious disease count data. This empirical-based regression is used to analyse 

geographically aggregated count data, decomposing disease risk additively into endemic 

and epidemic components to account for spatial and other heterogeneities in disease 

spread within a regional metapopulation. 

 

Chapter 8 is the final chapter of the thesis, presenting a summary of the research findings, 

a discussion of potential limitations and areas for future research, followed by concluding 

marks.
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Chapter 2: Research Methodology 
 

2 Introduction 

 

This chapter consists of two parts that together outline the research design. The first part 

focuses on data sources, collection and data quality. This section documents the secondary 

data sources utilised to enable the construction of spatially-aggregated datasets of weekly 

measles, pertussis and scarlet fever notification data for Lancashire and South Wales. 

Demographic and geospatial data sources used are also detailed. A description of the data 

collection, digitisation and entry process is provided. The quality of the notification data for 

the three childhood infections are assessed and data limitations are discussed. The second 

part of the chapter details the various strands of the quantitative analyses performed 

throughout undertaking the research focused on detailing the methodological procedures 

and outputs produced during analysis. Rationales are provided for the selection of each 

method utilised with reference to supporting literature.  

 

Part One: Data Sources, Collection & Quality 

 

2.1 Data Sources 

 

2.1.1 Disease Data 

 

The data fundamental to conducting the research presented in this thesis has been 

abstracted from the Registrar-General’s Weekly Return. The origins of the Weekly Return 

can be traced back to the mid-nineteenth century, with the publication of the Weekly Return 

of Births and Deaths for London by the General Register Office (GRO), By the 1890s, 

returns for other prominent cities and large towns in England and Wales had been 

incorporated. It was around this time that a regular series of weekly returns of certain 
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infectious diseases in London began to be published. The desire for more statistical 

information on the nation's health in the late nineteenth and early twentieth centuries 

encouraged the collection of surveillance data on the most severe and common 

communicable diseases in major cities and towns across the country (Mooney, 2015). From 

the beginning of 1922, notification data for selected directly transmissible diseases, 

primarily childhood infections, for all districts in England and Wales were combined with the 

returns of births, deaths in the Registrar-General's Weekly Return (Earn et al., 1998). Local 

medical officers of health across the country would collect notification data for selected 

infectious diseases within their district from general practitioners, who would make 

individual records of cases as the first point of contact with infected individuals (Cliff et al., 

1981). These records were collected weekly, with the reporting week running from Friday-

to-Friday and collated by the GRO in London before publication. Copies of the Weekly 

Return provide detailed tables which offer a rudimentary quantification of disease morbidity 

from notifiable infectious diseases for all reporting LGDs in each administrative county, as 

well as cases recorded by port authorities.  

 

Local government districts (LGDs) are the basic geographical reporting unit for disease 

notifications and can be broken down into four sub-categories for local government: County 

Borough (CB), Municipal Borough (MB), Urban District (UD) and Rural District (RD). Local 

government districts were used as the reporting unit for communicable diseases until the 

1972 Local Government Act came into effect on 1st April 1974, which saw the abolition of 

numerous county and municipal boroughs, urban districts and rural districts. The statutory 

notification of pertussis and measles cases in administrative districts in England and Wales 

first appeared in the Weekly Return beginning in early November 1939. For scarlet fever, 

statutory notifications go back further, to the week ended 7th January 1922, the first Weekly 

Return to include data on communicable disease in LGDs nationally to be published (Earn 

et al, 1998). During the study period (January 1940–December 1969), the Lancashire region 

consists of 125 local government districts (17 CBs, 26 MBs, 68 UDs, 14 RDs). The four 
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counties that compose the South Wales region (Carmarthenshire, Glamorgan, 

Monmouthshire, and Pembrokeshire) consist of 75 districts (four CBs, 14 MBs, 37 UDs, 20 

RDs) over the same period. Together, these 200 districts form the bedrock of the 

geographical framework for the analyses laid out in this chapter. 

 

During the study period, the names and boundaries of the districts were intermittently 

reviewed by Local Government Commissions, the role of which would be to examine the 

areas, status and functions of local authorities. Although there were subtle changes in the 

boundaries and land areas districts in South Wales during the study period, reflecting 

changes in population size and density over time, no new districts were introduced. 

Regarding Lancashire, a new district was created mid-way through the study period, whilst 

another district was abolished. In response to the exponential growth of Kirkby, an overspill 

estate for Liverpool where the population had swelled from around 3,000 inhabitants in 1951 

to over 40,000 by the late 1950s, Kirkby UD was created in 1958. Limehurst RD was 

abolished in 1954 due to the increasingly urbanised nature of the area. The land area 

formerly covered by the district was divided between Ashton-under-Lyne MB, Oldham CB, 

Failsworth UD, Droylsden UD and Mossley MB. Ulverston RD was renamed North Lonsdale 

RD in 1960. Kirkby UD and Limehurst RD were excluded from the data collection process 

to ensure all districts  included in the analysis had a complete time series of case notification 

data for all three diseases across the study period, along with accompanying demographic 

data. 

 

2.1.2 Demographic Data 

 

Until the implementation of the 1972 Local Government Act, annual estimates for the 

absolute number of births, population size and population density per acre, among other 

measures, at the local government district level were collated and published in the 
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Registrar–General’s Statistical Review of England and Wales. These reports collected a 

wide range of data; vital statistics (such as causes of mortality), demography, labour 

migration and related economic measures, and civil statistics, concerning marriages and 

divorce. The Statistical Review is a valuable source for regular annual data on key 

demographic measures required to effectively analyse the endemic and epidemic dynamics 

of childhood infections at the district level when using historical infectious disease data.  

 

2.1.3 Geospatial Data 

 

To facilitate the construction of geospatial datasets to facilitate spatial modelling of 

infectious disease dynamics, digital shapefiles of administrative county and local 

government district boundaries for Lancashire, Monmouthshire, Glamorgan, 

Pembrokeshire and Carmarthenshire were downloaded from the Vision of Britain website 

(https://www.visionofbritain.org.uk/data/). The Vision of Britain website serves as the home 

for the ‘A Vision of Britain through Time’, which brings together historical surveys of Britain 

to create a historical, geographical and quantitative record of how the nation and its 

localities have changed since the mid-nineteenth century to the early 1970s. It was created 

by Humphrey Southall and the Great Britain Historical GIS Project, based at the University 

of Portsmouth (Gregory et al., 2002). 

 

The shapefiles contain GIS polygons for each administrative unit at the district and county 

levels. For practical purposes and to maintain consistency among the map-based 

visualisations across the study period, all maps created utilise the boundary shapefiles for 

Counties of England and Wales and Districts of England and Wales for 1961. Each 

boundary dataset uses the OSGB National Grid. Relationships to container units have been 

omitted as there are frequently relationships to more than one higher-level unit.  More 

information on the digital boundary data accessed is provided by online documentation 

located in the publicly accessible Great Britain Historical Database.  

https://www.visionofbritain.org.uk/data/#tab04
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2.2 Data Collection 

 

From the end of June 2017 to the beginning of October 2018, the process of data collection 

and entry was undertaken. Notification data for measles, pertussis and scarlet fever were 

extracted from the Registrar-General’s Weekly Return, for a thirty-year period. This is 

equivalent to 1,560 weeks and therefore a disease record spanning 1,560 copies of the 

Weekly Return, from the week ended 6th January 1940 to the week ended 2nd January 1970. 

Notification data was collected for 125 LGDs in the administrative (historic) county of 

Lancashire, and a total of 74 LGDs for four Welsh administrative counties (Glamorgan, 

Monmouthshire, Pembrokeshire and Carmarthenshire), which together compose the region 

of South Wales. Measles, pertussis and scarlet fever notifications were recorded for each 

week and each LGD separately. The vast majority of the Weekly Returns were accessed 

from the Documents Division at the Hallward Library on the University Park Campus, 

Nottingham. Annually recorded demographic data on population size, population density 

(persons per acre) and the absolute number of births for Lancashire and South Wales LGDs 

was abstracted from thirty annual copies of the Registrar–General’s Statistical Review in 

the autumn of 2017. These reports were also accessed from the Document Division at 

Hallward Library.  

 

For each copy of the Weekly Return, all pages containing case reports for measles, 

pertussis and scarlet fever in all LGDs for both regions were photographed to construct an 

image library of disease notification data, from which case numbers could be entered into 

.csv file format on Microsoft Excel ready for manipulation. Due to the significant number of 

photos captured to accurately catalogue the relevant notification data from the Weekly 

Returns, it took several weeks to organise the photos to ensure they were in the correct 

chronological and geographical order as organised in the reports. This was important to 

minimise the risk of data entry errors that could adversely affect the results of analyses 

undertaken later in the research process. In total, 12,774 photographs were captured to 
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assemble the notification data for LGDs in Lancashire and the four counties of South Wales 

from the Weekly Return across the study period. The same approach was adopted when 

collecting annual district-level demographic data (population size, birth rates, population 

density per acre) from copies from the Statistical Review. Considerable time was spent 

editing the images to improve their clarity to prevent data entry errors, since many of the 

reports, particularly those published during the wartime years, were not in prime condition, 

due to the presence of ink smudges, creases and discolouration over time.  

 

The original decision to photograph pages with infectious disease data and subsequently 

organise the images for data entry was adopted after experimenting with the use of optical 

character recognition (OCR), utilising software such as Abbyy FineReader 14 and Nuance 

OmniPage Ultimate. OCR is both a process and software technology that converts a hard 

copy of a printed, typed, or handwritten document into an electronic form that can be read 

and edited in separate word-editing and data handing software programs (Chaudhuri et al., 

2017). In theory, the use of OCR should remove the need to manually perform data entry.   

 

Unfortunately, OCR software proved to be extremely ineffective in accurately processing 

and rendering the data contained within scanned copies of Weekly Return, principally due 

to the age of the documents which posed a range of issues that ultimately reduce the 

likelihood of accurate letter and number recognition. For instance, the oldest copies of the 

Weekly Return from which data was abstracted are 80-years old. Over time, pages have 

suffered from discolouration, been afflicted by stains and creased due to repeated folding. 

Printing noise from the time of publication is also evident, characteristic of historic 

documents (Milligan, 2013). Together, these issues have contributed to the degradation of 

the printed text contained within the reports and prevent clean images of the Weekly 

Returns from being produced when scanned. Another issue regarded the non-standard 

typeface used in the Weekly Returns. This resulted in numerous recognition errors. OCR 

routines are often unable to detect the typeface used in historical documents unless the 
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specific typeface has been programmed into the software (Pal and Dash, 2014). Generally, 

OCR routines only recognise commonly used typefaces preloaded in a library stored within 

the OCR program.  

 

2.3 Data Quality 

 

The Weekly Return represents a remarkably complete and lengthy time-series of 

geographically aggregated infectious disease data at a fine temporal scale since the 

incidence of notifiable infections were recorded separately for each local government district 

every week. The availability of parallel information at the same geographical level, in the 

form of annual statistical reports produced by the Registrar-General and local district 

medical officers, provides a wealth of data on host demography and immunisation practices 

(Grenfell et al., 2001). This information is invaluable for placing observed epidemiological 

patterns within their wider ecological context. It is worth noting that the Weekly Return also 

provided space for the amendment of notifications in previous returns, acknowledging the 

issue of erroneous returns, as well as highlighting their provisional nature. 

  

However, the morbidity data provided by the Weekly Returns suffers from the same 

limitations which affect many other historical, observational time-series data for infectious 

diseases.  Notified cases are based on clinical diagnoses made and recorded by GPs. In 

some cases, diagnoses of childhood diseases may be made erroneously due to confusion 

with other diseases with similar symptomology. This is a greater issue among rural 

practitioners less accustomed to cases of diseases that are predominantly associated with 

densely populated urban areas (Smallman-Raynor et al., 2003). Additionally, sub-clinical 

cases of infection may go undiagnosed and escape notification (Noah, 2006), another 

source of error within the infectious data reported by the Weekly Returns. Consequently, 

the Weekly Returns do not present the full magnitude of disease incidence within a local 
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authority area. As Clarkson and Fine (1985) explain, there are a series of actions that must 

take place for an infectious disease case to be correctly notified. Firstly, the infected 

individual must suffer from a clinical version of the disease, exhibiting diagnosable 

symptoms. Second, the infected individual must be seen by a medical practitioner such as 

a GP who is responsible for notifying diseases. Third, the physician/medical practitioner 

needs to make an accurate diagnosis. Differences between these actions are largely 

responsible for explaining the inefficiencies in disease notification and thereby differences 

in data quality for individual childhood infections. The greatest difference between infections 

arguably lies with the exhibition of clinical disease in infected individuals. For instance, the 

symptomology of measles is almost universal and typically characterised by a clinical 

expression of the illness centred around the distinctive rash it produces. This contrasts 

considerably with pertussis, which has a much greater frequency of asymptomatic cases, 

and a range of mild forms of the disease are known to circulate among populations (Cherry, 

1998).   

 

Data quality is an important factor to consider when analysing spatiotemporal changes in 

endemic threshold populations since incomplete observations have the potential to obscure 

dynamical processes such as local extinction of infection, complicating estimates of 

endemic threshold size (Gunning et al., 2014). Under-reporting of cases can cause the 

duration of periods of zero case reports to increase, which leads to the endemic threshold 

size being overestimated. On the other hand, over-reporting may cause infections to appear 

more persistent in time and space than would be expected, but the effect of over-reporting 

is generally more difficult to quantify with existing data. 

 

Correcting for incomplete observation poses a range of challenges. For instance, identifying 

the difference between under-reporting and stochastic extinction can be a complicated task 

for settlements where the disease is often on the verge of stochastic extinction (Gunning 

and Wearing, 2013). This issue arises from utilising a disease record that captures not only 
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information on disease persistence post-epidemics but also the invasion dynamics 

associated with the reintroduction of infection from neighbouring districts (Conlan et al. 

2009).  Bartlett (1957) recognised that the delays in disease reporting and under-reporting 

of infections needed to be considered when examining the persistence of infection since it 

cannot be assumed that a single week with no reported cases of infection within a district 

is a reliable indication that the chain of disease transmission has been broken locally. To 

remove ambiguity concerning whether stochastic extinction within a district has truly taken 

place or whether a disease has simply gone unreported, Bartlett introduced fadeouts as a 

measure of persistence.  

 

An important factor that may influence the quality of disease reporting for all three infections 

under analysis during the early years of the study period is the disruptive effect of wartime. 

The first five years of the study period are during World War II, and the caveat of 

complications arising from conflict must be taken into the account with regards to the quality 

of the surveillance data collected during this period. For instance, medical statisticians from 

the period suggested that widespread disruption to existing public health systems in 

industrial centres vulnerable to aerial bombardment may have increased the likelihood of 

under-reporting, reporting delays and misclassification issues in provisional case reports 

(Smallman-Raynor and Cliff, 2015). This could be the result of school closures, and the 

evacuation of children, whether that be official or unofficial (Stocks, 1941). However, it has 

also been postulated that the 1102 ‘safe’ local governments districts to which evacuees 

were sent, referred to as reception areas, may have experienced inflation in clinical 

diagnosis and notification rates compared to what would have been expected in peacetime 

(Smallman-Raynor et al., 2003). This resulted from the provision of free home visits by GPs 

for evacuees, organised by the Ministry of Health, the vigilance of anxious foster parents 

and the attentiveness of teachers who closely watched evacuees of school-age (Stocks, 

1941: 337). It is difficult to gauge the effect of evacuation on wartime disturbances on the 

quality of measles and pertussis surveillance data since statuary notification for the 
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diseases across all of England and Wales did not begin until two months after the outbreak 

of war (Stocks, 1942). 

 

An assessment of the quality of pertussis, measles and scarlet fever notification data 

recorded in the Weekly Returns across the study period, based on the findings of previous 

empirical studies, will now be provided.  

 

2.3.1 Pertussis 

 

According to Clarkson and Fine (1985), only an estimated 5 to 25% of the actual number of 

pertussis cases are believed to have been notified in the surveillance data contained within 

the Weekly Returns. This is despite detailed surveillance procedures put in place for 

pertussis since the end of 1939 by the General Registrar Office, across all LGDs in England 

and Wales. There is some empirical evidence to support the veracity of Clarkson and Fine 

(1985)’s estimate. A past study revealed only 18.7% of pertussis cases clinically diagnosed 

by doctors in Nottingham Area Health Authority in 1982 were notified to the OPCS 

(Jenkinson, 1983). Clarkson and Fine (1985) also highlight that, before 1976, the reporting 

efficiency for pertussis may have been up to five times greater among spotter practices, 

who notify pertussis cases to the Royal College of General Practitioners, than by the 

average GP. The differential between those who were part of a sentinel reporting system 

and clinicians in standards practices may emphasise the difficulties involved with 

diagnosing pertussis, since it is not uncommon for the characteristic symptoms, such as the 

distinctive cough, to be absent. Although notification inefficiency affects the magnitude of 

case reports, it does not affect the fundamental large-scale spatiotemporal trends that can 

be observed within the surveillance data. For instance, Rohani et al. (1999) state that 

previous empirical work on pertussis surveillance has exhibited a significant correlation 

between notified cases reports, such as the Registrar General’s Weekly Returns, 
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serological isolation of Bordetella pertussis by the Public Health Laboratory Service, and 

independent notification data for pertussis held by the Royal College of General 

Practitioners (Fine and Clarkson, 1982; Miller et al., 1992). It is worth noting that the issue 

of waning immunity among those infected by pertussis later in life has been overlooked 

regarding the under-reporting of pertussis cases in England and Wales during the mid-

twentieth century. During the pre-vaccine era, pertussis reinfection in adults commonly went 

undiagnosed and was not well-characterised (Gunning et al., 2014), with pertussis 

notifications in the Weekly Return consisting almost exclusively of cases of infection 

amongst children (Cherry, 1998). 

 

2.3.2 Measles 

 

Measles records in England and Wales, compared to surveillance records on other 

childhood infections, are generally considered to be of excellent quality, partly explaining 

the prevalence of measles studies within the fields of medical geography and spatial 

epidemiology. This is due to a combination of factors. Firstly, measles is generally 

considered to be far more straightforward to diagnose than other childhood infections 

(Bjørnstad and Grenfell, 2008), resulting in more accurate diagnoses of cases and reliable 

surveillance data. This is due to the characteristic rash routinely associated with the 

disease, and the presence of Koplik's small spots; bluish-white spots located on the inside 

lining of the cheek (Black, 2013). Although diagnoses of measles cases may have been 

more accurate historically compared to other diseases, Conlan et al. (2009) note that in 

practice contemporary clinical diagnoses rates can be relatively low, with the then-Health 

Protection Agency (now Public Health England) reporting a case confirmation rate of around 

20%. Anecdotally, an association between the accuracy of measles diagnoses and 

abundance of the infection has been discussed, with case confirmation rates as low as 1% 

observed during periods of low measles incidence in England and Wales throughout the 
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2000s (Conlan et al., 2009). Higher case reporting rates for measles in LGDs during the 

study period would therefore be expected, given the scale and frequency of measles 

epidemics before the introduction of mass vaccination in 1968. Secondly, the disease has 

long constituted a major public health threat and therefore was subjected to mandatory 

notification nationwide in England and Wales by 1940.  

 

However, under-reporting of measles cases in England and Wales has received attention 

in past studies that have attempted to quantify the scale of this issue. According to previous 

empirical studies (Clarkson and Fine, 1985; Finkenstädt and Grenfell, 2000; Finkenstädt et 

al., 2002), the under-reporting bias for measles ranges from 40 to 60% between 1940 and 

1969, and it has been previously stated that measles notifications would need to be multiped 

by a factor of 1.5 to 2 to provide a truer reflection of the magnitude of cases during this 

period (Cliff et al., 1981). Gunning et al. (2014) provide an extensive analysis of measles 

reporting rates in England and Wales, utilising a dataset formed of weekly measles 

notifications for sixty towns and cities between 1944 and 1968. This is a subset of a much 

larger dataset of measles case reports for all LGDs in England and Wales as recorded by 

the Weekly Returns over the same period (Grenfell et al., 2001). Their study found 

significant variability across geographical areas for measles reporting rates in England and 

Wales, partly explained by the idiosyncratic nature of notification and data collection by 

public health officers and practitioners at the local level. Moreover, demographic factors 

such as school attendance explain a non-trivial proportion of variation in reporting rates.  

 

2.3.3 Scarlet fever 

 

Despite many thorough literature searches, to date, there are no studies that indicate the 

scale of under-reporting associated with scarlet fever notifications during the mid-twentieth 

century in England and Wales. This parallels the paucity of empirical studies on scarlet fever 

morbidity for this period in medical geography and epidemiological literature. This is 
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unsurprising as scarlet fever has largely faded from public consciousness and the minds of 

medical experts, due to the power of antibiotics to treat infection and the collapse in disease 

morbidity. The significantly greater availability of spatiotemporal datasets already primed 

for analysis for measles and pertussis, which have continued to pose challenges to public 

health even after the introduction of mass vaccination, has provided much more fertile 

ground for the geographical and epidemiological study of childhood infections. 

 

Based upon what is understood regarding the quality of pertussis and measles notifications 

throughout the study period in England and Wales, and the similarities in symptoms 

exhibited in scarlet fever cases compared with measles, it would be fair to assume there 

would be a substantial underreporting bias across Lancashire and South Wales. There is 

some indication of the quality of scarlet fever case reports in the Weekly Returns during the 

early years of the study period, during the 1940s, albeit limited. A study undertaken on 

sickness in the population of England and Wales during the mid-1940s by Dr Percy Stocks, 

Chief Medical Statistician of the GRO, determined that the notification data for scarlet fever 

collated in the Weekly Returns were ‘fairly complete’ in nature (Smallman-Raynor et al., 

2003; Stocks, 1949). An earlier paper noted that a significant observation error had been 

identified in the notification of scarlet fever cases around the late-1930 (Stocks, 1941).  

 

2.4 Database Formation 

 

For the study period, weekly disease counts, annual mid-point population estimates, 

number of births, population density (persons per acre) for local government districts were 

abstracted from the Weekly Returns to form a 125 (geographical unit) × 1560 (week) space-

time matrix of case notifications for pertussis, measles and scarlet fever in Lancashire, and 

a 74 (geographical unit) × 1560 (week) space-time matrix for South Wales. These datasets 

facilitate the various quantitative analyses laid out and presented in this chapter and thesis. 
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Since population density is measured in person per acre in the Statistical Review, a decision 

was made to transform the measurement of population density to persons per square 

kilometre (per km2). This transformation of the arithmetic density from persons per acre to 

square kilometre allows for much greater variation in density levels between geographical 

units, providing a more nuanced perspective of settlement patterns and relative densities in 

terms of urban vs rural, thus painting a more accurate picture of the nature of population 

density within a region composed of numerous subpopulations.  

 

2.5 Data Issues: Measuring Uncertainty  

 

Uncertainty estimates are used to examine how the frequency at which data is sampled 

affects the estimation process (Capaldi et al., 2012). To date, within the field of disease 

ecology and epidemiology, uncertainty has often been considered primarily in terms of 

inadequate surveillance (of either hosts or pathogens) or the often accidental 

misclassification of cases of infection (see Section 2.3). Although absent here, an 

uncertainty analysis that attempts to formally quantify the limitations of the available data 

utilised to produce the datasets subject to analysis in this thesis could have been conducted. 

Estimates of disease persistence and of risk factors, which extrapolate from specific data 

sources to population-level measures, are subject to a broader range of uncertainty 

because of the combination of multiple data sources and value choices. One should 

consider all sources of uncertainty, including those occurring from measurement error, 

systematic biases, and extrapolation to compensate for incomplete data. Fine and Clarkson 

(1983) detail a relatively straightforward method for estimating the efficiency of historic 

disease notification with specific reference to England and Wales. Crude estimates are 

obtained from a comparison of annual numbers of births and notifications, modified to 

include detailed age-specific data. These analyses provide evidence for a strong positive 

correlation between notification efficiency and incidence for pertussis and measles, 

detecting a dramatic fall in the notification efficiency for pertussis between 1957 and 1976. 
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Part Two: Data Analysis 

 

2.6 Exploratory Data Analysis 

 

Empirical time-series plots of incidence rates (cases per 100,000 population) for the 

Lancashire and South Wales regions were produced to analyse the temporal trends of 

measles, pertussis and scarlet fever incidence throughout the study period. Time-series 

plots of a tiny subset of three districts of varying population size for Lancashire (Manchester 

CB, St Helens CB and Little Lever UD) and South Wales (Cardiff CB, Merthyr Tydfil CB, 

and Fishguard & Goodwick UD), were produced to illustrate the epidemic behaviour of Type 

I, Type II and Type III communities within the regional populations. 

 

Choropleths maps are utilised to visualise geographical and temporal changes in patterns 

of measles, pertussis and scarlet fever persistence across the study period, as measured 

by percentage endemicity, using the ‘moving window’ approach. (see Section 4.6.1). 

Choropleth maps are also utilised to explore overall geographical patterns and compare 

rates of measles, pertussis and scarlet fever incidence for each of the nine time–windows 

across the study period. Due to the fall in the magnitude of cases for scarlet fever and 

pertussis in each region as visualised by the time series plots, it was necessary to define 

classes using the manual classification method to ensure consistent data intervals are 

available to allow comparison across all time–windows. This also applied to measles since 

the magnitude of cases can vary considerably depending on the presence of an epidemic 

outbreak within a time–window.  

 

Analyses of sample correlation coefficients are performed to assess the level of spatial 

synchronicity between individual districts and the overall regional pattern of epidemic 

activity for all three diseases in the two regions. This was achieved by calculating the 

correlation between the reported annual counts for each district and the mean average over 
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the remaining number of districts in the region. The frequency distributions of sample 

correlation coefficients for individuals LGDs by disease and region are visualised using 

histograms and geographically displayed using thematic choropleth maps. All choropleth 

and proportional symbol maps were produced using QGIS 3.12 software ‘Bucrești’, an 

open-source desktop geographic information system application. Time-series plots and 

heatmaps were produced using R package ggplot2. 

 

2.7 Endemic Threshold Estimation 

 

Following the approach of Cliff et al. (2000), a dynamic ‘moving widow’ empirical regression 

approach is pursued to evaluate how the endemic threshold size of three diseases in two 

unique geographical regions responds to demographic changes over time, as well the 

introductions of disease interventions and evolution of spatial relationships between local 

populations over the same period. A full description of the ‘moving window’ regression 

approach for endemic threshold estimation is presented below. 

 

2.7.1 Time–Windows  

 

Building on the empirical regression approach outlined by Cliff et al. (2000), the thirty-year 

time series of weekly pertussis, measles and scarlet fever notifications was broken down 

into nine 72-month time–windows to track temporal changes in the endemic threshold value 

in Lancashire and South Wales across the study period, yielding nine threshold size 

estimates. The purpose of employing this method was to explicitly monitor any systematic 

time changes across the study period that may affect the endemic threshold population size. 

This dynamism is important since the study period spans a length of time that saw 

transformative demographic events, advancements in public health and disease control and 

socio-economic changes that would fundamentally affect both regional populations, the 
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nature of and conditions for disease persistence. These changes over time are discussed 

in greater detail in various sections of Chapter 3.  

 

A time–window of 72 months duration was selected to ensure a satisfactory number of 

windows to sufficiently detect temporal changes in threshold population size in a relatively 

short study period, whilst allowing a sufficient number of months in each time window to 

produce estimates from model parameters without unreasonably large standard errors. 

Time-series analyses of pertussis, measles and scarlet fever in Lancashire and South 

Wales reveal epidemic outbreaks occurred approximately every two to five years during the 

study period. Consequently, a 72-month window ensures more than one epidemic for each 

disease is captured in all nine time–windows. There is a 36-month overlap to ensure a 

smoothing effect between preceding and successive windows. Potential issues with this 

approach are discussed in section 4.6.3. The time–windows studied are as follows: 1940-

45, 1943-48, 1946-51, 1949-54, 1952-57, 1955-60, 1958-63, 1961-66 and 1964-69. The 

first six time–windows constitute the pre-vaccine era of the study period, with the latter three 

time–windows forming the vaccine era. The population size of each local government 

district (LGD) for each time window was defined as the mean population size for the 72 

months. Similarly, the number of susceptibles input (birth rate) for each LGD is defined as 

the mean number of susceptibles input across the length of the time window, and population 

density (number of persons per km2) for each LGD in each time window was defined as the 

mean population density across each time–window.  

 

2.7.2 Modelling Procedure 

 

Weekly case notification data for all three diseases in each time–window was transformed 

into an absence/presence dataset, using a binary code (where 1 = infection present, and 0 

= infection absent). This enabled the calculation of the proportion of weeks in each period 

that disease was present, measuring the level of disease persistence in each district. By 
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multiplying the proportion of weeks by 100, one obtains the percentage endemicity for each 

infection for all districts. The percentage endemicity variable was combined with annual 

mid-point population estimates to produce detailed datasets for each time–window; the 

annual number of births and population density (persons per acre) for local government 

districts were abstracted from the Registrar General’s Statistical Review. 

 

Following this, a linear regression was fitted for each time–window, with percent endemicity 

for each LGD against mean population size over the same period. To estimate the endemic 

threshold size for each window, the approach of Cliff et al. (2000), building upon the 

approach employed by Black (1966) in his study of measles endemicity in insular 

populations, is adopted, with the threshold population estimate being determined initially by 

using a simple linear regression of the form: 

 

(percentage endemicity)  = �̂�0  +  �̂�1 (mean population size), (eq. 2.1) 

 
Since variables range over many orders of magnitude, and it is unknown what form the 

regression relationship may take given the nature of the data under analysis, with a large 

number of districts in both regions under study with significant variation in population sizes. 

Endemic threshold size estimates are calculated additionally using a simple linear 

regression of the form log-linear: 

 

(percentage endemicity) = �̂�0  +  �̂�1 log(mean population size) , (eq. 2.2) 

 

And of the form log: 

 

log(percentage endemicity) = �̂�0  + �̂�1 log(mean population size) , (eq. 2.3) 
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2.7.3 Analysing Connectivity 

 
To analyse the effect of geographical connectivity and isolation on the estimation of 

endemic threshold size, a dummy variable was introduced to the regression equation 

utilised to calculate the estimate. In the absence of weekly or annual data on 

migration/population flows between LGDs in Lancashire and South Wales, a binary 

distinction between the most connected and isolated LGDS was made according to distance 

from the nearest endemic centre, which acts as a crude connectivity index. To define the 

distance from the nearest endemic centre, a Euclidean distance matrix was calculated from 

the centroids of each LGD polygon in a shapefile of the administrative district level 

boundaries for Lancashire and South Wales. Liverpool CB and Manchester CB in 

Lancashire and Cardiff CB in South Wales were defined as endemic centres, since all three 

LGDs consistently report, or very close to, 100% endemicity across all nine time–windows. 

To produce the dummy variable, distance from the endemic centre was encoded, with LGDs 

below the median distance from the nearest endemic centre coded as 0, and LGDs greater 

than the median distance from the nearest endemic centre as 1. Utilising the models above 

and the estimated values of parameters, the endemic threshold is again calculated, but for 

two circumstances; when the dummy variable is 1 and when the dummy variable is 0. 

 

2.7.4 Analysing Density 

 

Black (1966) observed an inverse relationship between population density and duration of 

individual epidemics, resulting in variation in the prevalence of measles cases. Black argues 

implicitly that the epidemic infection persists longer in dispersed populations rather than 

crowded populations, affecting the number of months in which the disease is reported and 

thus complicate a simple population-based estimate of critical community size. In other 

words, greater geographical dispersion results in a damping effect that depresses the 

calculated endemic threshold value. Following the same approach as described to analyse 
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the relationship between distance formed endemic centre and endemic threshold size, 

LGDs were dichotomised according to their population density per square kilometre, with 

LGDs below the median population density coded as zero, and LGDs higher than the 

median population density as one. Population density per square kilometre acts as a simple 

proxy for susceptible density in the endemic threshold calculation assuming a linear 

relationship between the density of susceptibles and most densely populated districts.  

 

The ‘moving window regression analyses yielded a total of nine threshold estimates across 

the study period for the full population-based sample of Lancashire and South Wales 

districts for each disease, as well nine threshold estimates for low and high connectivity 

districts and low and high-density districts for each region. The threshold estimates were 

plotted, using a simple scatterplot approach with circles denoting the estimated threshold 

size in each window and a LOWESS smoother fitted to show time trends. In the case of 

pertussis, scatterplots feature a shaded area indicating the period when successful 

preventive measures for disease elimination were available and applied nationwide. 

 

2.7.5 Modelling Issues 

 

In the case of Lancashire, a key issue was the swamping effect of two outliers which 

persisted in each of the nine-time–windows. These outliers were Liverpool CB and 

Manchester CB, both possessing populations roughly three to four times greater than the 

next largest district, Salford CB. Consequently, these urban centres yielded excessive 

influence over the fitting of the model to the case notification data. As the only districts at 

the 100% endemicity threshold in each of the nine time–windows for pertussis, their 

presence in the analysis could act to constrain the form of the regression line, functioning 

as ‘a cap in a closed number system’ (Cliff et al., 2000; 93). Consequently, Liverpool CB 

and Manchester CB were omitted from the models before estimation. To evaluate the extent 

to which Liverpool CB and Manchester CB affect the calculation of endemic threshold 
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estimates during the study period, preliminary analyses were performed with empirical 

regression models for each disease across all time–windows fitted with Liverpool CB and 

Manchester CB included in the modelling procedure and comparing the estimates with 

those calculated with the two districts omitted. It was found that the omission of Liverpool 

and Manchester CBs resulted in only marginal increases in the regional threshold estimates 

across the time–windows. Consequently, Liverpool CB and Manchester CB were omitted 

from the models before estimation. A fuller discussion of the problem of using percentage 

data in regression is provided in Appendix II. 

 

Another issue is that the  36-month overlap to ensure a smoothing effect between preceding 

and successive windows poses a challenge to the assumption of stationarity. Stationarity is 

an important property and issue in time series. However, real-world time series are often 

non-stationary, with significant properties such as mean, frequency, variance and kurtosis 

changing over time. Often such time-series possess high volatility, trend and are frequently 

characterised by heteroskedasticity. Although not employed here, one remedy would have 

been to employ a moving average technique to produce a smoothing effect, remove noise 

fine-grained variation between each period represented by the nine time–windows. The 

time–window size could have been specified by defining the window width and the number 

of raw observations used to calculate the moving average value. The moving window, 

defined by the window width, would then slide along the time series to calculate the average 

values in the new series. 
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2.8 Hotspot Analysis 

 

The purpose of the hotspot analysis is to investigate the effects of spatial coupling, 

connectivity and impact on mass vaccination on endemic persistence of pertussis in 

Lancashire and South Wales, by analysing differences in the number and geographical 

distribution of hotspots between pre-vaccine (1946–1957) and vaccine eras (1958–1969) 

for the disease. To this end, two time series of 144-months duration, representing the two 

eras, are studied. The onset of vaccination midway through the study period serves as a 

natural experiment to analyse the two mechanisms which can produce a lower than 

expected number of fadeouts: 

 
I. increased chains of transmission between and within subpopulations due to high 

population density, and 

II. higher rate of disease re-introduction due to high geographical connectivity between 

subpopulations and endemic centres.  

 

Here, a fadeout is defined as a period of four weeks or more without reported cases of 

infection. The detection of potential hotspots in the vaccine era can reveal important 

information concerning potential endemic reservoirs and the location of corridors of 

infection, where regional movement patterns between subpopulations are concentrated and 

the spatial import or infection is a frequent occurrence (Cliff et al., 1993; Xia et al., 2004).  

 

2.8.1 Total Fadeouts & Population Size (Pre-vaccine era) 

 

Following the method of Bharti et al. (2010), the hotspot analysis is centred on an evaluation 

of the residuals detected by the OLS linear regression models. These residuals can 

potentially reveal areas of key epidemiological importance for the regional persistence of 

pertussis in Lancashire and South Wales. LGDs with negative residuals would indicate 
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areas with fewer fadeouts relative to their population size and may begin to elucidate the 

role of spatial connectivity on influencing rates of disease reintroduction. 

 

OLS linear regression models were fitted to analyse the association between the total 

annual number of fadeouts and mean population size for both regions to estimate 

reintroduction events. The total number of fadeouts should scale inversely with population 

size, due to the increased likelihood of transmission events (Conlan et al., 2007). An overall 

negative correlation between the number of fade-outs and population size is well-

established in previous research empirical research on measles and, to a lesser extent, 

pertussis. This is due to stochastic fluctuations in birth, death and migration rates (Bartlett, 

1957; Black, 1966; Bjørnstad et al., 2002) alongside the natural dynamical activity of 

childhood disease. Consequently, a negative relationship between local population size and 

the total number of annual fadeouts in each 144 month-long time series is expected.  

 

To provide an initial assessment of the impact of spatial proximity and human mobility on 

pertussis persistence in Lancashire and South Wales, the OLS regression residuals were 

tested for spatial autocorrelation by performing a Moran’s I test using the R package spdep. 

Since detailed data on the movement of individuals between LGDs in Lancashire and South 

Wales during the study period is not available, a geographical proxy for mobility and 

interaction between districts was utilised. A conventional contiguity-based spatial weighting 

that could capture characteristics of contagious diffusion was incorporated in Moran’s I tests 

for both regions, with districts defined as neighbours where they share administration 

boundaries with common borders (Moran, 1950). Based on the rooks-contiguity 

relationship, an individual Lancashire LGD has an average of 4.91 neighbouring districts, 

whilst an individual LGD in South Wales has an average of 3.95 neighbouring districts.  
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2.8.2 Reported Cases (Vaccine era) 

 

Pertussis hotspots in the vaccine era are defined as LGDs with a greater number of cases 

notifications for their population size than the mean regional total of cases reported (Bharti 

et al., 2010). These LGDs were identified after calculating the total number of weekly cases 

notified in each reporting district in the 144-month period following the introduction of routine 

pertussis vaccination. To test for spatial autocorrelation amongst ‘hotspots’, a Moran’s I test 

is performed as described previously, only with hotspots treated as a binary variable (i.e., 1 

= district identified as a hotspot; 0 = district not identified as a hotspot). To facilitate the 

identification of geographical patterns and clustering of regional pertussis hotspots in 

Lancashire and South Wales, hotspots were visualised by producing simple thematic maps. 

Thematic maps were created using QGIS 3.12 “Bucrești”. 

 

2.9 Survival Analysis 

 

Rates of re-introductions 

Comparing the length of inter-epidemic periods in the pre-vaccination and vaccine-era time 

series provides additional insight on spatiotemporal changes in disease persistence at the 

local level (Ferrari et al., 2008; Grenfell and Anderson, 1989), allowing an assessment of 

the impact of vaccination on the strength of spatial coupling to be assessed as well as the 

identification of districts of particular epidemiological importance to maintaining the regional 

circulation of childhood diseases. In the absence of vaccination, long inter-epidemic periods 

indicate low geographical connectivity, usually coupled with small population size and low 

susceptible input via births, resulting in infrequent to rare re-introduction of disease (Bartlett, 

1957). Short inter-epidemic periods suggest frequent disease introduction due to the 

presence of ‘rescue effects’ and external transmission, as a consequence of high 

geographical connectivity, or larger populations (Grenfell et al., 2001; Wearing and Rohani, 
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2009). Building on the work of Bjornstad and Grenfell (2008) and Bharti et al. (2010), a 

survival analysis was conducted by fitting a Cox proportional hazard regression model, with 

inter-epidemic period length serving as the waiting time, to determine the survival probability 

of disease fadeouts. The waiting time represents the number of weeks without reported 

cases until a reintroduction event. 

 

In the survival analysis presented here, the outcome is a disease reintroduction event. The 

time to pertussis reintroduction represents the length of fadeout duration. It is expected, 

based on previous research and epidemiological theory concerning the persistence of 

infection and critical community size, that districts with larger populations, greater 

population densities, the input of susceptible individuals via birth and a high degree of 

spatial coupling will experience much higher rates of disease reintroduction, resulting in 

much shorter times to disease reintroduction than less populated and dense districts which 

are more geographically isolated and possess lower rates of susceptible recruitment.  

 

The survival analyses of pertussis endemicity in the pre-vaccine and vaccine eras for the 

Lancashire and South Wales region were performed using two R packages: survival for 

computing survival analyses and survminer for visualizing survival analysis results.  

 

2.9.1 Cox Proportional Hazards Model  

 

To successfully perform the survival analysis, a cox proportional hazards model must be 

fitted. The Cox proportional-hazards model is one of the most important methods used for 

modelling survival analysis data and can be applied to both quantitative predictor variables 

and for categorical variables. The model is essentially a regression model commonly used 

for investigating the association between the survival time of a group, such as infected 

individuals or patients, and one or more predictor variables (Cox, 1972). The objective of 
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using a cox model is to simultaneously evaluate the effect of known or hypothesised several 

factors on survival. In other words, a Cox model enables the examination of how specified 

factors influence the rate of a particular event happening such as infection or death at a 

particular point in time. This rate is commonly referred to as the hazard rate (Sedgwick, 

2012). Predictor variables are usually termed covariates in the survival-analysis literature. 

Fitting a cox regression model enables the visualisation of the predicted survival proportion 

at any given time point for a particular group under investigation.  

 

The Cox proportional hazards model is conveyed by the hazard function denoted by ℎ𝑡. 

Briefly, the hazard function can be interpreted as the risk of expiring at time 𝑡. In the present 

analysis, the hazard function is the risk of disease reintroduction at time 𝑡. It can be 

estimated as follows: 

ℎ𝑡 =  ℎ0𝑡 × exp(𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝) , (eq. 2.4) 

where 𝑡 represents the survival time ht is the hazard function determined by a set of 

𝑝 covariates (𝑥1, 𝑥2,..., 𝑥𝑝) and the coefficients (𝑏1, 𝑏2,..., 𝑏𝑝) measure the effect size of the 

covariates. The term h0 represents the baseline hazard. It corresponds to the value of the 

hazard if all the covariates are equal to zero i.e., the quantity exp(0) equals 1. A cox 

proportional hazards model can also be expressed as a multiple linear regression of the 

logarithm of the hazard on the variables 𝑥, with the baseline hazard being an intercept term 

that varies with time. The quantities 𝑒𝑥𝑝(𝑏) represent hazard ratios. A value of 𝑏𝑝 greater 

than zero, or equivalently a hazard ratio greater than one, indicates that as the value of the 

nth covariate increases, the probability of a hazard event increases, thus reducing the 

length of the survival time.  

 

A hazard ratio is a measure of an effect of an intervention or covariate on an outcome I.e., 

dependent variable over time. Hazard ratios are most frequently reported in time-to-event 
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analysis or survival analysis when the aim is to establish the length of time required for a 

particular event or outcome to occur (Sedgwick, 2012). The outcome could be a negative 

outcome such as the time until death or a positive outcome, such as time to disease-free 

survival. When hazard ratios are used in survival analysis this reflects the analysis of time 

survived to an event (Altman and Bland, 1998). Alongside hazard ratios, confidence 

intervals are reported, providing the range of values that is likely to include the true 

population value, measuring the precision of the hazard ratio. The narrower the confidence 

interval, the more precise the estimate. The precision of any estimate will be influenced by 

the sample size to some extent. If the confidence interval includes 1, a hazard ratio is not 

significant. A hazard ratio above 1 indicates a covariate that is positively associated with 

the event probability (Spruance et al., 2004). 

 

2.9.2 Kaplan-Meier Survival Curves 

 

Kaplan-Meier survival curves were constructed for hotspots, and other districts in the pre-

vaccine and vaccine eras, to assess the impact of disease intervention in the form of mass 

vaccination on the rate of disease reintroductions and duration of fadeout events.  The 

Kaplan-Meier (KM) method is a non-parametric method used to estimate the survival 

probability from observed survival times (Kaplan and Meier, 1958). The method is graphical, 

displaying survival data or time-to-event analysis and is commonly drawn as a step function. 

The survival probability at time 𝑡, 𝑆(𝑡) , is calculated as follow: 

𝑆(𝑡) = 𝑆(𝑡−1) (1 −
𝑑𝑡

𝑛𝑡
) , (eq. 2.5) 

where S(t−1) equals the probability of being alive at (t − 1), nt represents the number of 

patients alive just before t, and dt is the number of events at t. The estimated probability 

S(t) is a step function that changes value only at the time of each event (Bland and Altman, 

1998).  
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The Kaplan-Meier survival curve, a plot of the Kaplan-Meier survival probability against 

time, provides a useful summary of the data that can be used to estimate measures such 

as median survival time (Sedgwick, 2014). The Kaplan-Meier curve is a form of univariate 

analysis, describing the length of survival according to one factor under investigation. 

Additionally, Kaplan-Meier curves are useful when the predictor variable is categorical, 

effectively making comparisons between groups. Log-rank tests are utilised to test whether 

differences between hotspots and other districts in terms of fadeout survival probability are 

statistically significant, and to compare across the pre-vaccine and vaccine eras. 

 

2.9.3 Log-rank Test 

 

The log-rank test is a non-parametric test and the most widely used method of comparing 

two or more survival curves (Bland and Altman, 2004). The null hypothesis is that there is 

no difference in the overall survival distributions between the groups in the population 

(Mantel, 1966). The log-rank test makes no prior assumptions about survival distributions 

and compares the observed number of events in each group to what would be expected if 

the null hypothesis were true (Clark et al., 2003). The log-rank statistic is approximately 

distributed as a chi-square test statistic and thus, to test the null hypothesis, the log-rank 

test calculates a chi-square (𝜒2) statistic, which is compared to a 𝜒2-distribution. If the p-

value <0.05, then the result of the test is statistically significant; survival distributions of the 

different groups are not equal within the population. The R package survival was used to 

perform the log-rank test comparing the two survival curves of hotspots and other districts 

within the regional populations of Lancashire and South Wales in the pre-vaccine and 

vaccine eras. The test produces a weighted observed number of events in each group, a 

weighted expected number of events in each group, and a chi-square statistic for a test of 

equality. 
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2.10 Endemic–Epidemic Modelling 

 

Weekly pertussis, scarlet fever and measles notification data for LGDs in Lancashire and 

South Wales obtained from the Weekly Returns are classic examples of infectious disease 

counts data collected by public health surveillance systems. Datasets of this nature are 

invaluable resources for extrapolating temporal and spatial parameters to improve our 

understanding and prediction of how infectious disease spreads geographically. Infectious 

disease data tends to be the product of inherently spatiotemporal processes which are only 

partially observable, and observations are not independent (Becker and Britton, 1999). 

Infectious disease data also tends to feature autoregressive, self-exciting behaviour, as a 

result of demographic stochasticity. To effectively model the endemic-epidemic dynamics 

of childhood infection, one must use a statistical approach that can effectively capture the 

autoregressive, spatial and temporal components of infectious disease data.  

 

2.10.1 Modelling Rationale  

 

The statistical analysis of infectious disease data has been predominantly dictated by 

individual-based mechanistic modelling of the epidemic process (Becker, 1989; Daley and 

Gani, 1999). In particular, continuous-time models, such as the susceptible-infected-

removed (SIR) model, have been applied to estimate relevant parameters from detailed 

data on the infection process (Anderson and Britton, 2000). Mechanistic models diverge 

from simple empirical models such as regression models because their structure demands 

the formulation of explicit hypotheses about the potential biological mechanisms that 

influence infection dynamics (Lessler and Cummings, 2016). Such hypotheses range from 

straightforward representations of the time until parts of the disease process are complete, 

such as the incubation period, to complex agent-based models that attempt to explicitly 

characterise social interactions and networks (Eubank et al., 2004; Sartwell, 1966). 
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However, modelling of this nature is too ambitious for routinely collected surveillance data 

for areal units, which do not possess data on individual cases. The absence of detailed 

information on susceptibles essentially makes detailed mechanistic modelling of the 

infection process impossible.  

 

Another issue that blights historical infectious disease data is underreporting, due to 

subclinical cases or misdiagnosis, and delays in case reporting (Diggle et al., 2002). 

Mechanistic models often assume that the time unit in which data are collected equals the 

generation time of the disease under analysis (Daley and Gani, 1999), yet this is rarely the 

case in practice; the generation time of measles and pertussis is almost twice as long as 

the time unit in which cases are reported in the Weekly Returns. This issue can result in 

significant overdispersion. Mechanistic modelling techniques possess other imitations 

which inhibit efforts to construct realistic stochastic models for the statistical analysis of 

historical time-series data of infectious diseases. The parameters in a traditional SIR model 

do not allow for the quantification of uncertainty. Calculating SIR models over a limited 

number of potential values for each parameter results in a range of future trajectories but 

does not quantify uncertainty in the predictions. Another significant limitation of the SIR 

model is the simple assumptions made about the population which underpin the model. It 

assumes homogeneous mixing of the population, assuming in individuals within a 

population have an equal probability of coming into contact with each other. This does not 

reflect the social structures which dictate human activity, which concentrate most contact 

between individuals within restricted networks (Tolles and Luong, 2020). The SIR model 

also assumes a large, closed population with no migration, births, or deaths from causes 

other than the epidemic. This fails to consider epidemiological coupling at the local level 

and the role of stochastic effects which are key to understanding disease incidence in small 

populations (Huppert and Katriel, 2013). Development of a greater understanding of 

stochastic effects on disease occurrences over time across local populations of varying 
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sizes is critical to understanding changes in endemic threshold populations and the 

spatiotemporal persistence of childhood diseases. 

 

Alongside mechanistic approaches, empirical modelling has long been a feature of 

statistical analysis of infectious disease data. Unlike mechanistic modelling, the main 

requirement of an empirical model is to explain the variability in the observed data, rather 

than the underlying mechanism. Generalised linear models (GLMs) are a common method 

of empirical modelling, representing an extension of standard linear regression which is 

utilised for explaining and predicting count data, and are a class of fixed effects regression 

models that can accommodate non-normal responses and non-linear relationships between 

the response variable and covariates (Nelder and Wedderburn, 1972; McCullagh and 

Nelder, 1989; Diggle et al., 2002). GLMs allows the relationship between covariates and the 

response variable to be expressed additively in a linear formulation, and generally assume 

either Poisson or Binomial probability distributions for the response. Similar to conventional 

linear models, which is a particular type of GLM, standard GLMs assume independence 

between observations and that they are equally distributed. In the study of infectious 

diseases, it is often the case that disease counts are aggregated over geographical units 

and are compared to aggregated covariate summaries, using models such as log-linear 

Poisson models. This class of models is known as parameter-driven. Similar parameter-

driven formulations with suitable prior distributions on latent parameters are utilised in the 

study of non-infectious diseases, such as counts of cancer incidence (Held et al., 2005). 

 

Poisson regression is the standard method used to analyse count data. However, many 

real-life data situations violate the assumptions upon which the Poisson model is based. 

For instance, the Poisson model assumes that the mean and variance of the response are 

equal. If the variance is greater than its mean, there is likely heterogeneity in the data 

indicating the Poisson model is overdispersed. The potential causes of overdispersion when 

analysing large spatiotemporal disease count datasets are numerous; zero inflation (Deng 
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and Paul, 2005); misspecification of the probability model (i.e., selecting a Poisson model 

when a negative binomial distribution would capture a great amount of variation); the 

presence of spatial autocorrelation in datasets with geographical neighbours often tending 

to display residual spatial dependence (Haining et al., 2009). The violation of assumptions 

of independence among observations is a particular issue for the maximum likelihood 

estimation of both Poisson and negative binomial regressions, which requires independent 

observations (Barron, 1992) since disease counts tend to be clustered or aggregated.  

Model overdispersion can be checked by observing the Deviance-based dispersion statistic 

of a Poisson or negative binomial model; a dispersion value greater than unity (i.e., >1) 

indicates overdispersion.   

 

It has been recognised that purely parameter-driven models such as the Poisson and 

Binomial GLMs described are often unable to describe epidemic activity at the local scale 

(Held et al., 2006). More realistic models with extensions are often required to consider and 

assess the influence of unobserved covariates that may affect disease incidence, reducing 

the presence of significant levels of overdispersion (Held et al., 2005). Additionally, 

empirical models often fail to adequately capture periodic epidemic outbreaks one tends to 

see in infectious disease data and no allowance is made for these outbreaks (Held et al., 

2005: Paul and Held, 2011).  

 

To avoid the limitations of parameter-driven empirical and mechanistic modelling 

approaches, Held et al. (2005, 2006) draw upon the branching process model with 

immigration (Bartlett, 1956; Guttorp, 1995). Branching processes are stochastic individual-

based processes that play a fundamental role in epidemiological theory, particularly with 

regards to the threshold behaviour of epidemics and the calculation of mechanistic critical 

vaccination thresholds (Farrington et al., 2003). In a branching process model in the 

absence of immigration, a closed population of individuals developing under the usual laws 

for branching processes either increase indefinitely with time or become extinct (Heathcote, 
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1965). However, with the introduction of immigration to a closed population, a stationary 

distribution for population size will exist for processes in continuous time when the 

immigration distribution is Poisson (Bartlett, 1956).  

 

Held et al. (2005, 2006) proposed a model framework that acts as a compromise between 

mechanistic and empirical modelling approaches, aiming to provide a realistic model 

capable of handling infectious disease count data from historical disease surveillance 

records which feature seasonal variation, periodic epidemic outbreaks and areas with low 

counts. The key feature of the model outlined by Held et al. (2005, 2006) is the additive 

decomposition of mean incidence, i.e., disease risk, into two components: endemic and 

epidemic. In dynamical models of infectious disease counts, the distinction between 

endemic and epidemic incidence is often made (Finkenstädt et al., 2002). The endemic 

component is parameter-driven, relating disease incidence to latent parameters such as the 

seasonal endemic rate, whilst also describing the risk of new cases to covariates 

independent of the history of the infection process. These covariates can include population 

density, socio-demographic variables, and vaccination coverage, which can all vary 

geographically and temporally. The epidemic component is observation-driven, allowing for 

explicit temporal dependence on the number of cases beyond parametric seasonal 

patterns, with the autoregressive parameter also allowing for periodic epidemic outbreaks 

in the data. Since the model is not mechanistic and does not assume the time unit for which 

data is collected as ‘generation time’, cannot be interpreted as the basic reproduction 

number. The two-component model for disease counts (see Appendix II) forms the 

methodological basis for the HHH model. 
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2.10.2 The HHH Model 

 

Endemic-epidemic multivariate negative binomial time-series models, referred to as HHH 

models (Meyer et al., 2017), are applied to model pertussis, scarlet fever and measles areal 

data in each time window for the Lancashire and South Wales regions. This regression 

framework is appropriate for analysing disease counts aggregated by time and period (Held 

and Paul, 2012), and has been developed by building upon the Poisson branching process 

with the immigration approach outlined by Held et al. (2005).  

 

The HHH model is a multivariate time-series model for infectious disease counts that divides 

disease incidence into its endemic and epidemic components, modelling the expected 

baseline rate of notifications, while also capturing the influence of previous cases in the 

same and neighbouring districts (Held et al., 2005; Held and Paul, 2012). It is a stochastic 

model able to capture space-time dependence caused by the geographical spread of 

disease across time, by bringing the number of cases in different geographical units into 

consideration. Additionally, the model allows for overdispersion to adjust for unobserved 

covariates that affect disease incidence and the heterogeneity presented due to spatial 

correlation and temporal dependence of cases. The model permits non-stationarity, 

considering interventions on disease counts over time such as vaccination coverage and 

improvements in hygiene, as well as seasonality and the effect of extrinsic events on key 

demographic parameters which affect disease persistence, such as explosive birth rates in 

short periods of time. Extensions can be incorporated into the basic model formulation to 

assess the effect of seasonality, socio-demographic characteristics, temporal trends and 

localised disease dynamics on the endemicity and epidemicity of infection.  

 

The moving window approach allows estimates of regional endemic threshold populations 

to be calculated over time but sheds little light on the endemic-epidemic dynamics of 

pertussis in each time window and the concurrent factors influencing these dynamics, such 



Chapter 2: Research Methodology 

89 

 

as spatial interaction, population size, and random effects. To address this, the HHH 

modelling framework is utilised to construct a greater understanding of the nature of disease 

spread in each time window, identifying the drivers of persistence in each regional 

metapopulation and how these contribute to the emergence of hotpots, potentially 

influencing the temporal changes in endemic threshold populations. The HHH modelling 

procedure was performed using the methodological tools provided by the R package 

surveillance (Meyer et al., 2017). A glossary of notation for key HHH model parameters 

can be found in Appendix II. 

 

2.10.3 Model Formulation 

 

The HHH model applied in the analysis for pertussis, measles and scarlet fever counts 

𝑌𝑖𝑡  from geographical units 𝑖 = 1, . . . , I during periods 𝑡 = 1, . . . , 𝑇, first outlined in its most 

simple form by Held et al. (2005, 2006) (see Appendix II), and extended in a series of later 

papers (Paul and Held 2011; Held and Paul, 2012; Meyer and Held, 2014), assumes a 

mean structure for disease incidence across the time-series under analysis and assumes, 

conditional on past observations, that count data has a negative binomial distribution 

 

𝑌𝑖𝑡|𝒀 𝒕−𝟏 ∼ NegBin(𝜇𝑖𝑡, 𝜓), (eq. 2.6) 

 

where 𝑌 is the time series of weekly count data, 𝑖 is the geographical district, 𝑡 is time-period 

(weeks), 𝜓 is the overdispersion parameter and 𝜇𝑖𝑡 is the additively composed mean. The 

mean structure decomposes disease risk additively into three components  

𝜇𝑖𝑡 = 𝑒𝑖𝑡𝑣𝑖𝑡 + 𝜆𝑖𝑡𝑍,𝑡−1 + 𝜙𝑖𝑡 ∑ 𝜔𝑗𝑖

𝑗≠𝑖

𝑌𝑗,𝑡−1 , (eq. 2.7) 

 
where 𝑒𝑖𝑡 is the offset of known counts reflecting population at risk and 𝜔𝑗𝑖 is the weight for 

the neighbourhood component reflecting the strength of transmission from district 𝑗 to 
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district 𝑖. The first (endemic) component represents variation in disease incidence which 

cannot be attributed to the previous number of cases 

 

log(𝑣𝑖𝑡) = 𝛼𝑖
(𝑣)

+ 𝛽(𝑣)𝑇
𝑧𝑖𝑡

(𝑣)
, (eq. 2.8)  

 

where 𝜐 is the unknown endemic parameter. The second (autoregressive) component 

accounts for autoregressive effects; the reproduction of disease within district 𝑖 

 

log(𝜆𝑖𝑡) = 𝛼𝑖
(𝜆)

+ 𝛽(𝜆)𝑇
𝑌𝑖𝑡

(𝜆)
, (eq. 2.9) 

 

where 𝜆 is the unknown autoregressive parameter. The final (spatiotemporal) component 

accounts for neighbourhood effects; the transmission of infection from surrounding districts 

 

log(𝜙𝑖𝑡) = 𝛼𝑖
(𝜙)

+ 𝛽(𝜙)𝑇
𝑌𝑖𝑡

(𝜙)
, (eq. 2.10) 

 

where 𝜙 is the unknown neighbourhood parameter. Without the epidemic components, the 

model would represent a standard negative binomial regression model for independent 

observations (Meyer and Held, 2014). Here, 𝛼𝑖
(𝑣)

, 𝛼𝑖
(𝜆)

 and 𝛼𝑖
(𝜙)

 are component-specific 

intercepts and 𝛽(𝜆)𝑇
, 𝛽(𝜆)𝑇

 and 𝛽(𝜆)𝑇
 are the vectors of the fixed effects for each component.  

 

The parameters 𝑣, 𝜆, and 𝜙 are allowed to vary across districts to enable the inclusion of 

district-specific covariates and heterogeneity. Each parameter is also allowed to vary over 

time to reflect situations where the infectiousness of disease changes over time. For 

instance, this may be due to the implementation of immunisation programmes or other 

public health interventions, seasonality or through external factors which influence the 

spread of infection. Other scenarios include a declining number of susceptibles over time, 
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which would effectively decrease 𝜆, and sudden outbreaks where 𝜆𝑡 >  1 for a limited time 

period, which is allowed to be estimated from infectious disease data. 

 

A common intercept is assumed across districts in the endemic component, to prevent 

districts with zero case reports from being forcibly excluded. We use mean district 

population size as the endemic offset in the HHH models fitted for each time window. The 

significance of the two epidemic components is assessed using dominant eigenvalues 

(𝑚𝑎𝑥𝐸𝑉), a combined measure for epidemic potential. If the dominant eigenvalue is below 

unity (i.e., below 1), this value represents the epidemic proportion of total disease incidence. 

Likelihood inference is performed using generic numerical optimisation routines (Paul and 

Held, 2011). For data with overdispersion, maximum likelihood estimation is used to 

estimate parameters and standard errors, by maximising the negative binomial log-

likelihood of the model. The HHH model framework allows for covariate effects on either the 

endemic or epidemic components of disease incidence to be included using model 

extensions.  

 

Weekly case notifications for measles, pertussis and scarlet fever obtained from the Weekly 

Returns, for all administrative districts in Lancashire and South Wales, take the form of 

aggregated counts by region and period, which can be loaded into R from external data 

sources (Höhle and Mazick, 2010). For count data to be analysed via the application of 

HHH models in the surveillance package, a data object of the class sts (surveillance time 

series) must be created. Essentially an object of the class sts involves three data matrices: 

observed counts 𝑧𝑖𝑡 are stored in the T x I matrix (observed), a corresponding matrix with 

time-varying population numbers (or fractions), and an I × I neighbourhood matrix 

quantifying the spatial coupling between the I units. The observed and population matrices 

are 312 × 125 for each Lancashire time window and 312 × 74 for each South Wales time 

window. 312 is equivalent to the total number of weeks/observations for each time window. 

To incorporate spatial interaction in the model, the neighbourhood matrix consists of 
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adjacency orders 𝑜𝑗𝑖 between the districts. (Bivand et al., 2013). Data of the sts class can 

be visualised in four distinct ways: an individual unit time-series of weekly counts, an overall 

time series plot, a choropleth map of disease incidence by district, or animated maps. The 

default plot type is observed ~ time, producing an overall time series of count data. When 

this is modified to observed ~ time | unit. it is possible to visualise the district-specific time 

series of disease counts.  

 

2.10.4 Model Extensions 

 

Spatial Interaction 

With multiple geographical units under analysis (125 LGDs in Lancashire, 74 LGDs in South 

Wales), spatiotemporal dependence is adopted by the third component in eq. 4.10. Weights 

𝑤𝑗𝑖 in the neighbourhood component reflects the strength of transmission from region 𝑗 to 

region 𝑖, collected into an 𝑖 ×  𝑖 weight matrix (𝑤𝑗𝑖): 

𝑤𝑗𝑖 = {

1

𝑛𝑗,

0,

, (eq. 2.11) 

for 𝑖 ~ 𝑗, where the symbol ∼ denotes is adjacent to and 𝑛𝑗 is the number of first-order 

neighbours of district j. This equation represents a normalised version of the binary and 

symmetric adjacency indicator matrix 𝚨 =  (1(𝑖 ∼  𝑗))𝑗𝑗,𝑖=1,…,𝐼 , 𝑖 = 1, . . . , 𝐼. The purpose of 

normalising the adjacency matrix is to ensure district 𝑗 distributes its cases uniformly to 𝑛𝑗 

neighbours (Paul et al., 2008). Due to normalisation, the weights 𝑤𝑗𝑖 for transmission from 

district 𝑗 to district 𝑖 is determined not only by the districts’ neighbourhood 𝑜𝑗𝑖  but also by the 

total amount of neighbourhoods of district 𝑗 in the form of ∑𝑘 ≠ 𝑗 𝑜𝑗𝑖
−𝑑. This results in 

variation amongst transmission weights for a specific order of adjacency (Meyer and Held, 

2014).  
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In its basic formulation, a HHH model assumes the spread of infection is restricted to first-

order neighbours; all districts have the same epidemic potential for importing cases from 

adjacent units (Meyer et al., 2017). Disease transmission only takes place between 

neighbouring districts during the period 𝑡 →  𝑡 +  1, with the single exception to this is the 

independent importation of disease cases via the endemic component (Meyer and Held, 

2014).   However, the assumption that infection spreads only via adjacent regions is too 

simplistic; individuals can travel longer distances, with movement often concentrated 

around large urban centres in regions with hierarchical population structures (Bartlett, 

1957).  

 

A more appropriate model of spatial interaction is the gravity model, which enables the 

analysis of hierarchical transmissions between cities, towns, and villages according to 

spatial coupling patterns (Xia et al., 2004). In its most common form, the gravity model 

postulates that population flow between two geographical units is log-linearly dependent on 

population size and distance (Jandarov et al., 2014), suggesting a scaling process in spatial 

interaction. Crucially, a gravity model can be calculated without detailed network data on 

population movement (Geilhufe et al., 2014). Ideally, transmission weights would be 

calculated using existing movement network data (Paul et al., 2008; Geilhufe et al., 2014), 

yet detailed data for the movement of individuals between the numerous LGDs in 

Lancashire or South Wales between January 1940 and December 1969 is unavailable. The 

HHH modelling framework can be extended to account for short-range, commuter-driven 

spread and long-range transmission of cases between districts by incorporating a gravity 

model of spatial interaction and power-law extension. 

 

Gravity Model 

The gravity model is the most commonly used formulation of spatial interaction analysis 

(Gatrell and Bailey, 1996), and has been widely applied in a wide variety of fields, such as 

migration, trade and commodity flows, transportation theory and, increasingly, spatial 
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epidemiology. Its name is derived from its resemblance to Newton’s law of gravity (Barrios 

et al., 2012). According to its most generic form, the gravity model states that the attraction 

𝑎𝑖𝑗 between two objects 𝑖 and 𝑗 is directly proportional to their mass, 𝑚𝑖 and 𝑚𝑗 and inversely 

proportional to the distance separating them, 𝑑𝑖𝑗, as follows:  

𝛼𝑖𝑗 =  𝑚𝑖𝑚𝑗𝑑𝑖𝑗
−2 (eq. 2.12) 

This formulation can be adapted to reflect this basic assumption about spatial interaction, 

as follows: The movement between two communities 𝑘 and 𝑗 is directly proportional to their 

community size, 𝑛𝑘  and 𝑛𝑗, and inversely proportional to the distance between the two 

areas, 𝑑𝑘𝑗 (Xia et al., 2004).   

 

In recent years, there has been an increasing number of applications of the gravity model 

in the analysis of spatiotemporal patterns of disease persistence, particularly in 

metapopulation models of infections such as measles (Xia et al., 2004; Jandarov et al., 

2014) and influenza (Viboud et al., 2006; Eggo et al., 2010). Gravity models allow realistic 

connectivity structure, which might be distance-dependent, to be incorporated into 

stochastic modelling frameworks (Barthélemy, 2011), enabling the study of spatial coupling 

patterns between subpopulations and hierarchical transmission between cities, towns and 

villages (Xia et al., 2004). The addition of a gravity model of spatial interaction to the HHH 

model allows the model to describe spatiotemporal patterns of endemic and epidemic 

incidence are affected by the network of spatial spread of the disease (Cliff et al.,1993).  

 

To reflect commuter-driven spread, the model is extended to account for the district-specific 

population in the spatiotemporal epidemic component. District susceptibility to infection is 

scaled according to population size, multiplying the neighbourhood parameter (𝛷) by district 

population size (𝑒𝑖
𝛽𝑝𝑜𝑝

). 
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Power-law decay of Spatial Interaction 

To reflect the long-range transmission of cases and epidemiological coupling between 

geographical units (Keeling and Rohani, 2008), is power-law is included, with weights for 

the neighbourhood component (𝑤𝑗𝑖) estimated as a function of adjacency order (𝑜𝑗𝑖) in the 

neighbourhood graph of geographical units between districts (Meyer and Held, 2014). 

 

To apply the power-law principle in the complex network of geographical districts in the 

Lancashire and South Wales regions, the measure of distance on which the power-law acts 

first needs to be defined. It could be defined according to one of the following methods: 

Euclidean distance between district centroids calculated according to their coordinates, and 

the order of neighbourhood. Euclidean distance follows a continuous power-law, whereas 

the second one is discrete. Yet calculating Euclidean distance via centroid coordinates is 

problematic when applied to contiguous data, due to the variation in shape and area of 

individual districts. Specifically, a very small neighbouring region would be attributed a 

stronger link than a large neighbour with a centroid further apart, even if the latter shares 

more boundaries than the former. However, using common boundary length as a measure 

of spatial coupling would also be limited since this would only cover adjacent geographical 

districts (Keeling and Rohani, 2002). For these reasons, the power-law extension will be 

defined according to the discrete measure of neighbourhood order. 

 

Formally, two districts, district 𝑗 and district 𝑖, are 𝑘th-order neighbours if the shortest 

distance between them has 𝑘 steps across distinct districts. The network of districts thus 

features a symmetric 𝐼 𝑥 𝐼 matrix of neighbourhood orders with zeroes on the diagonal by 

convention. According to this discrete distance measure, the previously used first-order 

weight matrix is generalised to higher-order neighbours with the power-law model assuming 

the form 𝑤𝑗𝑖  =  𝑜𝑗𝑖
−𝑑, for 𝑗 ≠  𝑖 and 𝑤𝑗𝑖 = 0, where the decay parameter 𝑑 is to be estimated.  
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The raw power-law weights 𝑤𝑗  can be normalised to 

𝑤𝑗𝑖   =  
𝑜𝑗𝑖

−𝑑

∑ 𝑜𝑗𝑘
−𝑑𝐼

𝑘=1

, (eq. 2.13) 

such that ∑ 𝑤𝑗𝑘 = 1𝐼
𝑘=1  for all rows 𝑗 of the weight matrix. As the decay parameter 𝑑 

increases, Higher-order neighbours diminish in importance. The limit 𝑑 →  ∞ corresponds 

to the previously used first-order dependency, whereas 𝑑 = 0 assigns equal weight to all 

districts. 

 

Random Effects 

In statistical modelling of infectious diseases, random effects are a common approach to 

accounting for unobserved heterogeneity. For instance, using a much-analysed dataset on 

measles outbreaks in Providence, Rhode Island, Li et al. (2003) proposes a random effects 

model which assumes the probability of avoiding infection varies randomly within 

households, allowing for household-dependent heterogeneity in measles transmission 

rates. This provided a better fit to the Providence measles data, compared to a standard 

modelling approach fitting a chain binomial model. The use of generalised linear mixed 

models for the analysis of longitudinal infectious data which explicitly accounts for 

heterogeneity across subjects has also been applied regularly to determine the influence of 

random effects on disease incidence (e.g., Kleinman et al., 2004; Lee et al., 2018; Zeger 

and Karim, 1991). The spatial analysis of disease risk has also been an area where random 

effects are routinely considered. For example, when observed data are scarce, a maximum 

likelihood approach can lead to very unstable estimates of area-specific risk and linear 

trends due to significant random variation in area effects, i.e., extra-Poisson variation 

(Breslow, 1984).  
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In the case of HHH modelling, random effects can be incorporated to account for the 

influence of unobserved covariates in regions with a large number of districts that exhibit 

heterogeneity in epidemic and endemic disease incidence (Paul and Held, 2011). This 

approach is preferable to allow for variation in the transmission probability of an infectious 

disease agent across regions by simply including region-specific autoregressive 

parameters into the model (Paul et al., 2008). If the time series is highly multivariate with a 

high number of districts included, the estimation procedure can get unstable and 

identifiability issues can occur, and therefore the aforementioned approach is limited to a 

small to moderate number of regions. 

 

For surveillance data on childhood infections, a common example of unobserved 

heterogeneity is under-reporting (Broutin et al., 2005; Gibbons et al., 2014). The second 

source of unobserved heterogeneity is edge effects, with districts on the borders of the two 

regions missing potential sources of infection from across the border, with districts in other 

counties and regions with which they share significant spatial interaction.  

 

To improve the fit of previous HHH model formulations, district-specific intercepts in the 

endemic or epidemic components are allowed, and the following independent random 

effects in all three components are included: 

𝛼𝑖
(𝑣)

∼𝑖𝑖𝑑 N(𝛼(𝑉), 𝜎𝑉
2), (eq. 2.14) 

𝛼𝑖
(𝜆)

∼𝑖𝑖𝑑 N(𝛼(𝜆), 𝜎𝜆
2), (eq. 2.15) 

𝛼𝑖
(𝜙)

∼𝑖𝑖𝑑 N(𝛼(𝜙), 𝜎𝜙
2) (eq. 2.16) 

 

It is possible to assume correlations between the three intercepts, by specifying ri(corr = 

"all") in the component formulae. Accounting for the district-specific population (random 

effect) in the spatiotemporal component can further improve the HHH model’s ability to 

describe the role of geographical connectivity on disease persistence alongside the 
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inclusion of a power-law extension, as an additional parameter to describe the strength of 

spatial dependence between districts (Leroux et al., 2000). Since travel would be expected 

to be concentrated towards districts with significant economic activity and greater 

populations, such as large regional conurbations, it would also be expected that a higher 

number of cases would be imported from surrounding areas (Bartlett, 1957).  

 

2.10.5 Likelihood Inference 

 

For HHH models, likelihood inference is performed using generic numerical optimisation 

routines (Paul and Held, 2011). ML estimates of parameters and standard errors are 

obtained by numerically maximising the respective Poisson log-likelihood or negative 

binomial log-likelihood of the model. For data with overdispersion, the Poisson log-likelihood 

is replaced by the negative binomial log-likelihood (Paul et al., 2008). Even with a large 

number of parameters, convergence is usually achieved quickly using optimisation routines. 

Numerical approximations of the score function and the generation of a fisher information 

matrix are used to fit the model (Held et al., 2005, 2006). 

 

2.10.6 Model Assessment 

 

Goodness-of-fit: AIC 

Classical model choice based on information criteria such as Akaike’s Information Criterion 

(AIC) which correspond well to fixed effects likelihoods cannot be used straightforwardly in 

the presence of random effects and is often problematic. The inclusion of random effects in 

the HHH model results in a more complex inference process, requiring a penalised 

likelihood approach for obtaining parameter estimates (Breslow and Clayton, 1993; Kneib 

and Fahrmeir, 2007). This approach treats variance components as fixed when estimating 

both fixed and random effects. Variance components are estimated by maximising the 
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marginal log-likelihood until convergence is reached, after integration of the fixed and 

random effects (Paul and Held, 2011). When a HHH model is performed with the inclusion 

of random effects, the following alternating algorithm for the estimation of all parameters is 

utilised: regression coefficients are updated according to the given current variance 

parameters, followed by the variance components being updated according to the given 

current regression coefficients via Newton steps. These steps are iterated until parameter 

estimates remain constant and no longer alter, reaching convergence.   

 

Likelihood inference for the regression parameters 𝛽, 𝑏, given known variance components, 

is based on penalized log-likelihood: 

𝑙pen(𝛽, 𝑏;  Σ) = 𝑙(𝛽, 𝑏) + log 𝑝(𝑏|Σ) , (eq. 2.17) 

The inclusion of random effects nullifies simple AIC based model comparisons; AIC values 

are no longer obtained in the model summary. To make a quantitative assessment of the 

predictive performance of the HHH models and inclusion of various covariate extensions, 

the models must be compared using successive one-step-ahead predictions assessed by 

strict proper scoring rules (Czado et al., 2009). 

 

Predictive Performance: Proper scoring rules 

Scoring rules have previously been recommended for evaluating the probabilistic 

predictions and predictive performance of models which utilise count data (Gneiting and 

Rafferty, 2007; Czado et al., 2009). For instance, Meyer and Held (2014), utilising the 

scoring rules approach, found that power-law transmission weights more appropriately 

reflect the spread of influenza than previously used first-order weights, which originally only 

enabled epidemic transmission of the disease to directly adjacent, neighbouring districts 

within a one-week period. 
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Scoring rules measure the predictive quality by assigning a numerical score, S(P, y), based 

on the probability distribution P from a fitted model and the later observed true value y (Paul 

and Held, 2011). Lower scores correspond to better predictions (Meyer et al., 2017). For a 

scoring rule to be considered proper, the expected value of the score is minimised under 

the predictive distribution P, with the observed value y is realised from P (Wei and Held, 

2014). A scoring rule is classed as strictly proper if the minimum realised is unique. Strict 

propriety is key to ensuring that a scoring rule simultaneously addresses sharpness, the 

concentration of the predictive distribution, and calibration, the statistical consistency 

between the predicted probabilistic and observed distributions (Paul and Held, 2011). 

Unless there is a clearly defined underlying decision problem that requires a specific scoring 

rule, there is no automatic choice of a proper scoring rule to be applied in any given context. 

Applying a variety of scoring rules to assess the predictive performance of the same models 

is often appropriate since they have different strengths and emphasis, and probabilistic 

predictions have multiple, simultaneous uses (Harville, 1997).  

 

Scoring rules are utilised to assess the predictive performance of the HHH models with 

extensions applied for the childhood infections under analysis in Lancashire and South 

Wales across the nine time–windows.  Strictly proper scoring rules such as the logarithmic 

score (logS) or the ranked probability score (RPS) consider the whole predictive distribution 

to assess calibration and sharpness simultaneously. The most common strictly proper 

scoring rule used to assess model performance is the logarithmic score (Good, 1952): 

 

logS(𝑃, 𝑦) = −log(P(𝑌 = 𝑦)), (eq. 2.18) 

 
where 𝑃(𝑌 = 𝑘) denotes the probability mass function, and y denotes the count that 

materializes. The logS is the negative log-likelihood evaluated at the actual observation, 

providing no credit for assigning high probabilities to values close, but not identical to, count 

𝑦. Note that the log-score for a HHH model’s prediction in district 𝑖 in week 𝑡 equals the 
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associated negative log-likelihood contribution.  The logS is also highly sensitive to extreme 

cases and outliers as it strongly penalises low probability events (Paul and Held, 2011).  

 

Less sensitive to extreme events (Czado et al., 2009), another strictly proper scoring rule 

utilised is the ranked probability score (Epstein, 1969), originally introduced for ranked 

categorical data. It can be simply adapted for count data with the following formulation: 

RPS(𝑃, 𝑦) = ∑(P(𝑌 ≤ 𝑘) − 1(𝑦 ≤ 𝑘))2

∞

𝑘=0

, (eq. 2.19) 

where 𝑃(𝑌 ≤ 𝑘) denotes the cumulative distribution function. The RPS is the only proper 

scoring rule that only depends on the predictive probability distribution 𝑃 through the 𝑃(𝑌 =

𝑘) at the observed count (Good, 1952). This scoring rule also blows up score differentials 

between competing models, adding extra weight to situations with unusually high observed 

or predicted counts (Czado et al., 2009).  

 

In the HHH framework, predictive model assessment is undertaken by computing 

predictions that correspond to the fitted values of a test period. Mean scores are used to 

rank and compare different models. This is mostly done informally by ordering the obtained 

mean scores, essentially conducting a goodness-of-fit assessment. The assessment 

evaluates true one-week-ahead predictions, refitting the HHH model up to week 𝑡 to get 

predictions for week 𝑡 +  1, across the time-series. Statistical significance of the differences 

in mean scores can be investigated by a paired t-test (Meyer et al., 2017). An evaluation of 

the strength of calibration of the predictions of the HHH models can be performed by using 

unconditional and regression tests based on proper scoring rules (RPS, LogS and DSS) 

(Wei and Held, 2014). The application of these methods to weekly data on meningococcal 

disease incidence in Germany, 2001-2006, demonstrated the tests to be powerful tools for 

detecting miscalibrated predictions, their implementation is straightforward, and they 

capably facilitate model comparison and selection (Gneiting et al., 2007). Specifically, for 
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count data, a regression approach based on proper scoring rules work most effectively for 

detecting miscalibration for over-dispersed predictions (Wei and Held, 2014).  

 

2.11 Chapter Summary 

 
This chapter has provided a detailed discussion of the historical, archival data sources used 

and data collected to facilitate the research project, considering issues of data quality as 

well as the logistical challenges faced when handling and working with a significant quantity 

of quantitative data. The Registrar–General’s Weekly Return provides an extraordinarily 

rich time-series of geographically aggregated infectious disease data at fine spatial and 

temporal scales, an ideal source of data for studying temporal changes in disease 

persistence in different regional metapopulations of England and Wales. The Weekly 

Returns are complemented by similarly high-quality, annual, Registrar–General’s Statistical 

Review reports, which provide vital information on demographic stochasticity and 

susceptible dynamics, enabling a detailed analysis of observed epidemiological patterns 

within their ecological context. These data sources enabled the construction of detailed 

datasets with which one could perform a wide-ranging analysis of disease persistence for 

multiple childhood infections over space and time. 

 

The chapter details the six major elements of the data analysis featured in this thesis: 

 

1) A time-series analysis of regional and district-level disease incidence;  

2) a district-level correlation analysis of spatial synchrony of regional disease activity;  

3) endemic threshold estimation using a “moving window” empirical regression approach;  

4) a hotspot analysis centred around an analysis of OLS regression residuals and 

performance of tests for spatial autocorrelation to compare and contrast the frequency 

and spatial distributions of regional pertussis hotspots before and after vaccination;  
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5) a survival analysis of rates of disease reintroduction before and after vaccination among 

pertussis hotspots and non-hotspots, involving the use of Cox proportional hazards 

models and application of Kaplan-Meier survival curves; 

6) endemic–epidemic “HHH” modelling: multivariate negative binomial time-series models 

were fitted to each time window to analyse disease counts aggregated by time and 

period and investigate the role of spatial spread on the persistence and re-introduction 

of disease.  

 

The chapter also provides rationales for the quantitative methods selected to perform 

analyses while also acknowledging limitations, modelling issues and potential remedies to 

address these issues if such a study was to be repeated in future. Together, the array of 

quantitative methods described and utilised in this body of work are designed to generate 

findings that will address the research questions stated in the introductory chapter in Section 

1.3. All quantitative analyses were performed using R, a programming language and free 

software environment for statistical computing. Many of the statistical outputs from the 

aforementioned analyses listed were visualised using QGIS. The results of the statistical 

analyses performed are presented in Chapters 4, 5, 6 and 7. The next chapter will now 

provide a detailed overview of the study period and geographical settings subject to analysis 

in this study.
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Chapter 3: Study Period & Settings 
 

3 Introduction 
 

This chapter composed of three parts. Part one describes the period in which the study is 

set, with particular focus on a key demographic event during the period that would 

significantly influence the disease dynamics of the three childhood infections under 

analysis: the ‘Baby Boom’ era (1945–1964). Part two describes key administrative 

geographies of relevance to this study, provides a detailed account of the regional and sub-

regional geographies of Lancashire and South Wales, as well as the networks of 

geographical connectivity in each region. Part three provides summaries of wider 

demographic changes during the study period in the Lancashire and South Wales regions. 

 

Part One: The Period 

 

3.1 The Study Period 

 

The study period extends over a thirty-year interval from 6th January 1940 to the week ended 

2nd  January 1970. The year 1940 represents the first complete year of statuary notification 

of pertussis cases. For this period, the routine disease surveillance reports of the Registrar–

General for England and Wales include an unbroken sequence of pertussis, measles and 

scarlet fever notifications suitable for analysing temporal changes in endemic threshold 

size. The geographical detail of the reports is also exemplary, presenting an excellent 

opportunity to analyse regional disease persistence, with the consistent quality of case 

reports and comparability across districts throughout the study period. This was lost with 

the boundary changes of the 1972 Local Government Act, which abolished hundreds of 

districts, significantly reducing the resolution of spatiotemporal data collected from 1974 

onwards. Lancashire and South Wales reported a high number of cases for all three 

childhood infections across the thirty-year period, allowing changes in endemic threshold 
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size to be detected across time. The length of the study period facilitates the analysis of 

spatiotemporal changes in endemic threshold populations for measles, scarlet fever and 

pertussis across nine-time–windows with an equal number of reporting weeks, before the 

significant boundary changes and abolishment of local administrative units on 1st April 1974. 

The period also represents a unique point in the epidemiological history of mid-twentieth 

century England and Wales, with the demographic upheaval of the post-war baby boom 

and the introduction of routine mass vaccination for childhood diseases. 

 

3.2 The 'Baby Boom' Period (1945−1964) 

 

The study period chosen incorporates a demographic event with profound consequences 

for the endemicity and epidemicity of childhood infectious diseases: the post-war 'baby 

boom'. Loosely defined, the 'baby boom' era in England and Wales broadly spanned the 

period 1945 to 1964 (Hobcraft, 1996), characterised by two major peaks in birth rate, 

between 1945−47 and 1962−1964 (Van Bavel and Reher, 2013). Baby boom events cause 

abrupt temporal changes in susceptible recruitment (Grenfell et al., 2001), thus representing 

extrinsic variations in the recruitment rate of susceptibles that would not normally be 

expected (Earn et al., 2000). During baby booms, the pool of susceptibles swells, supplying 

substantial fuel for epidemic outbreaks. The growth of susceptible populations also drives 

disease spread beyond the confines of local communities, compensating for the 

geographical unevenness in the distribution of individuals and households characteristic of 

regional populations (Grenfell et al., 2002). This unevenness can hinder the transmission 

of infection with increasing distance away from centres of epidemic activity with the absence 

of a sufficient number of susceptibles to maintain chains of infection. More subtly, spatial 

heterogeneities in population density or demography (Blasius et al., 1999; Grenfell et al., 

2001), and temporal changes in parameters due to the introduction of interventions such as 

vaccination, which discount changes in birth rates depending on the level of vaccine uptake, 

can significantly influence the spatial dynamics of waves of infection (Earn et al., 2000; 
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Bjørnstad et al., 2002). These local spatial heterogeneities are exacerbated by the degree 

of isolation of individual towns and cities and their connectivity within the broader regional 

metapopulation (Bolker and Grenfell, 1996; Broutin et al., 2005). Birth rate and population 

size represent readily available measures of dynamically relevant local characteristics that 

can capture the non-linear dynamics of childhood epidemics as a function of local 

population size (Bartlett, 1956). Another factor in the non-linear dynamics of childhood 

disease activity is the impact of environmental forcing, which mainly comprises seasonality 

in transmission as a consequence of term-time schooling (Finkenstädt and Grenfell, 2000; 

Metcalf et al., 2009). 

 

Compared to other western nations, England and Wales experienced a relatively mild baby 

boom with around 70 extra births per 1,000 (Van Bavel and Reher, 2013), and recorded 

twin peaks in the birth rate. In demography circles, baby booms can be captured by a single 

measure; the total fertility rate (TFR). The total fertility rate is the average number of children 

born to a woman if they survived to the end of their reproductive life if she was to experience 

contemporaneous age-specific fertility rates throughout that period (Alkema et al., 2011). 

Total fertility is calculated by the sum of age-specific fertility rates weighted by the number 

of years in each age group, divided by 1,000 (Hobcraft, 1996).  

 

Hobcraft (1996) provides a detailed account of the post-war baby boom in England and 

Wales, tracking the annual TFR from 1938 to 1972. This is presented graphically in Figure 

3.1 on the following page. The lowest TFR during World War II was 1.73 in 1941, slightly 

below the average pre-war levels. The fertility rate steadily grew, falling briefly to 2.04 in 

1945. In the immediate post-war years, the TFR dramatically increased, rising to 2.68 by 

1947 (see Fig 3.1) the highest fertility rate in England and Wales since the end of World 

War I (Hobcraft, 1996). This represents the first of two peaks during the baby boom era, 

reflecting demand from delayed childbearing of older couples. This initial boom largely 

subsided by 1950, after several years of post-war austerity. The TFR fell to just under 2.20 
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compared with the pre-war level of about 1.80 (see Fig 3.1). However, the immediate post-

war period saw the establishment of the welfare state, with the creation of the National 

Health Service, maternity care and family allowances substantially reducing the costs of 

bearing and raising children (Hobcraft, 1996). These improvements in the conditions for 

parenthood laid the foundations for a recovery in the fertility rate in the 1950s, culminating 

in a second peak in 1964 (Van Bavel and Reher, 2013), with the TFR reaching a post-war 

high of 2.93 (see Fig 3.1). However, 1964 marked the end of the baby boom, with fertility 

and birth rates declining precipitously in the following years. The 1960s was as much a 

decade of contraceptive revolution as it was of the sexual revolution, marking a significant 

shift in the proximate determinants of fertility.  

 

Figure 3.1 Total fertility rate in England and Wales, 1938–1972. The baby boom era 

between 1945 and 1964 is shaded in blue (Figure adapted from Table 1, Hobcraft 1996: 

494). Notable spurts in the total fertility rate are visible in 1947 and 1964; these peaks are 

considered to bookmark the start and end of the postwar baby boom experienced in the 

United Kingdom. The total fertility rate reached a nadir in 1957. 



Chapter 3: Study Period & Settings 

108 

 

Part Two: Regional Geography  

 

3.3 Administrative Geography of Reporting Units 

 

The Registrar-General's Weekly Return collates disease counts for statutorily notifiable 

infections for administrative districts in England and Wales. During the study period, weekly 

measles, pertussis, and scarlet fever notification data were reported for 945 cities and towns 

and 457 rural districts nationwide. Local government districts (LGDs) were divided into four 

sub-categories: county boroughs, municipal boroughs, urban districts, and rural districts.  

 

3.3.1 County Boroughs 

 

County boroughs of England and Wales were established in 1889 by the 1888 Local 

Government Act, with settlements with populations greater than 50,000 given powers to 

manage their administrative affairs. County boroughs were thus treated as administrative 

counties in their own right. The threshold was raised to 75,000 in 1926 and 100,000 in 1958. 

After WWII, the creation of new county boroughs in England and Wales ended; no county 

boroughs were created in the postwar period before their eventual abolition. 

 

3.3.2 Municipal Boroughs 
 

The earliest of the reporting units featured in the Weekly Returns, municipal boroughs in 

England and Wales were initially created following the passage of the 1835 Municipal 

Corporations Act. Unlike county boroughs, municipal boroughs had more limited powers of 

self-government, as well populations below 50,000. Municipal boroughs were abolished in 

April 1974 and succeeded by districts in Wales and by metropolitan or non-metropolitan 

districts in England. 
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3.3.3 Urban & Rural Districts 

 

Alongside municipal boroughs, administrative counties were subdivided by Urban and Rural 

Districts for most of the twentieth century until the reforms introduced by the 1972 Local 

Government Act. Following the passage of the 1875 Public Health Act, urban and rural 

sanitary districts were established in England and Wales and divided into two categories 

based on existing structures. In 1894, these local government bodies were superseded by 

urban and rural districts, introduced by the Local Government Act passed that year. 

 

Figure 3.2 The divergent administrative geographies of Rural Districts, using the 

examples of Chorley RD and Wigan RD, Lancashire. 

 
Urban districts generally comprise small towns, usually with less than 30,000 inhabitants, 

and often with rural surroundings (Hasluck, 1948). In contrast, rural districts usually 

contained villages and market-towns of differing sizes, which in the odd instance could be 
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larger than settlements forming urban districts. Some rural districts in England and Wales 

were redefined as urban districts or merged with existing urban districts or boroughs due to 

steady growth in urbanisation which accompanied industrial development over successive 

decades (Jackson, 1966). Rural districts typically had a rounded shape like a doughnut, 

surrounding either an urban district or a municipal borough. However, the shape would not 

always take a perfect form (see Fig. 3.2, panel A). For instance, in the context of Lancashire, 

Chorley Rural District in Central Lancashire surrounds the town and municipal borough of 

Chorley (see Fig. 3.2, panel B). However, it was not unusual for Rural Districts to be 

fragmented, consisting of several detached parts. A prime example of this is the Wigan 

Rural District (Fig. 3.2, panel C). 

 

3.4 Geography of Lancashire 

 

The Lancashire region consists of the administrative county of Lancashire, formed in 1889, 

occupying the area of the historic county and eighteen county boroughs. A breakdown of 

the names and locations of local government districts that compose the administrative 

county can be found in Appendix I (Table I.1). The historic county of Lancashire is located 

in North-west England, bounded by the historic counties of Cumberland and Westmoreland 

to the north, Yorkshire to the east, Derbyshire and Cheshire to the south (see Fig. 3.3). At 

its greatest expanse, historic Lancashire had a breadth of 45 miles (72.5 km), and length of 

76 miles (122.3 km), and an area of 1,208,154 acres, roughly 4,890 square kilometres.  

 

Lancashire is a region of geographical contrasts. South Lancashire is densely populated, 

dominated by the two urban, economic centres of Manchester CB and Liverpool CB, and 

their metropolitan areas (see Fig. 3.4). The region is polycentric with a complex settlement 

hierarchy, featuring smaller urban settlements that are partially autonomous and partially 

dependent on the larger metropolitan cores, at the heart of Greater Manchester and 

Merseyside conurbations (Fig. 3.4). The region can be loosely broken down into 12 distinct 
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sub-regional areas: Greater Manchester, Merseyside, Rossendale, Pennine Lancashire, 

West Lancashire, Central Lancashire, South Ribble, Ribble Valley, Wyre Valley, The Fylde, 

North Lancashire and Furness. The locations of these geographical areas are displayed in 

Figure 3.5. 

 

 

 
Figure 3.3 Administrative, county, and district boundaries for Lancashire and North-West 

England, before the implementation of local government reforms in England and Wales on 

1st April 1974. The districts which provide the geographical underpinning of the analysis 

presented in this thesis are shaded in grey. 

 
The West Lancashire coastal plain is home to an urbanised landscape, while East 

Lancashire represents the urban periphery, consisting of many small local population 

centres located in industrialised valleys, surrounded by agricultural land and bordered on 

its eastern edges by the Pennine hills, a continuous range of uplands separating Lancashire 

and the neighbouring region of Yorkshire. 
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Figure 3.4 Geographical make-up of local government districts in the Lancashire region. 

Red circles represent major towns and sub-regional centres with a mean population greater 

than 100,000 during the study period (1940–1969). The majority of the regional population 

is concentrated within urbanised areas located in the southern portion of the region.  
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To the north lies the rural periphery, occupied mainly by agricultural land (Fig. 3.4), 

populated by villages, hamlets and a few long-established market towns, such as Lancaster 

and Ulverston.  In the North-west, prominent metropolitan areas are situated on the coastal 

edge, such as the large resort towns of Blackpool and Morecambe (Fig. 3.4). 

 

South of the Lancashire Pennines lies the South Lancashire Coalfield, which spans what 

now comprises the modern-day metropolitan counties of Greater Manchester and 

Merseyside (see Fig 3.5). The Southern part of Lancashire has historically been the most 

urbanised area of the region  (Carter, 1962). South-East Lancashire is the heart of the 

industrial region, focused on the Manchester conurbation. Several large towns surround the 

city, including Salford, Bolton, and Stockport, and between them lie smaller towns, suburban 

to both the regional centre of Manchester and other major town centres. In 1951, the 

General Register Office for England and Wales began reporting on Southeast Lancashire 

as a homogeneous conurbation in the decennial census (Frangopulo, 1977). By the end of 

the decade, Manchester and its surrounding urban area represented the most complex 

polycentric functional urban region in the United Kingdom, outside of London (Freeman and 

Snodgrass, 1959). An amalgamation of seventy former LGDs, nearly 60% of all LGDs in 

the historic, administrative county of Lancashire, including eight county boroughs and 

sixteen municipal boroughs, would form the metropolitan county of Greater Manchester in 

1974. In South-West Lancashire, Liverpool and its surrounding urban area, now the 

Merseyside region, are also polycentric (Pollard et al., 2006). Liverpool is neighboured by 

large towns such as Bootle, Southport and St. Helens, each of which possesses outlying 

suburbs composed of smaller towns and villages (Pollard et al., 2006). The North-West 

Green Belt is interspersed throughout Southern Lancashire, encompassing many districts 

throughout the Ribble Valley, West Lancashire and The Fylde coastal plain, and extending 

as far south as Northern Cheshire. The green belt was first drawn up in the 1950s, to prevent 

the many cities, towns and villages which form the Greater Manchester and Merseyside 

conurbations from merging (Hebber and Deas, 2000).   
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Figure 3.5 Key geographical and metropolitan areas within the Lancashire region during 

the twentieth and twenty-first centuries. Greater Manchester and Merseyside became 

metropolitan counties in 1974. The areas of Rossendale, South Ribble, West Lancashire, 

Ribble Valley, The Fylde and Wyre Valley are now non-metropolitan district with borough 

status in contemporary Lancashire. 
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3.5 Connectivity in Lancashire 

 

In Lancashire, particularly in the eastern and southern portions of the region, commuting 

flows have historically been strongly shaped by local geography, which in the study area 

features many similarly sized, closely spaced towns and cities with strongly localised 

identities (Coombes, 2019). Analysis of census data on travel to work movement which 

became available at the end of the twentieth century provides some picture of the intra-

regional movements in terms of commuting patterns in Lancashire (Baker and Hebbert, 

1995). Perhaps unsurprisingly, travel to work patterns show high levels of connectivity 

between Liverpool and Manchester, with virtually all significant flows of commuters to the 

main urban centres originating from districts located in the periphery of the metropolitan 

hinterland, such as Rossendale and the Ribble Valley (Baker and Hebbert, 1995). Similarly, 

commuting patterns to and from the metropolitan areas of Merseyside and Greater 

Manchester extend across the region via a trans-Pennine corridor that travels westwards 

across the Pennines, linking with urban centres in Yorkshire such as Leeds and Bradford 

(Ravetz and Warhurst, 2013). This corridor passes through large towns in the east of the 

Lancashire region, settlements such as Blackburn, Burnley and Rochdale. However, these 

inter-regional commuter linkages are not as strong as those between the Liverpool and 

Manchester city regions. 

 

In terms of geographical connectivity, the study period was a time of monumental change 

for the Lancashire region, which experienced a revolution in regional transport 

infrastructure. Before the post-war period, a spider's web of rail lines covered the region 

radiating from urban centres (see Fig. 3.6), with suburban passenger traffic concentrated in 

the southern portion of the region (Patmore, 1964). Lancashire's railway network shrank 

significantly between 1940 and 1970, with the loss of 239 stations closing across the region, 

over half of which were located in Manchester, Liverpool and surrounding towns. 
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Figure 3.6 Major Road and rail connectivity networks within the Lancashire region, 1940–

1969. Rail and road links are concentrated in the southern portion of the Lancashire region, 

specifically around the Manchester and Liverpool conurbations. 
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Many rural areas and small urban settlements swallowed up by suburbanisation and urban 

overspill from larger towns and cities were left without ready access to the rail network, 

inhibiting long-distance population flows. Lancashire was left with a skeletal system, 

primarily serving the two conurbations of Merseyside and Greater Manchester, majors 

towns and commuters.  

 

Car ownership continued to grow at a great pace throughout the first half of the twentieth 

century, leading to the eventual post-war construction of motorways and a dense road 

network that would supplant the rail network. In 1946, a new national road construction 

programme included a North-South Lancashire route and an East-West, Yorkshire -

Manchester- Liverpool route (Mackie et al., 1995). These would eventually become the M6 

and M65 motorways respectively, which were opened in stages through Lancashire until 

completion in 1965 (Mackie et al., 1995). The M6 acts as the main road artery through 

Lancashire, connecting Manchester and Liverpool and its surrounding urban areas with the 

north of the region past Lancaster, via Preston, which is a key transport hub in the county 

for both road and rail, acting as an interface for Lancashire's numerous geographical areas.  

 

Despite the significant changes in the provision of rail and road infrastructure during the 

mid-twentieth century and period under study, previous empirical study has shown that 

changes in personal mobility in Lancashire have changed very little over the last fifty years. 

For instance, Pooley et al. (2010) analysed the everyday travel of children aged 10 and 11 

from the 1940s to 2010. They found that in 1940s Manchester, children aged 10 and 11 

travelled around 3,500 km annually, with the mean distance travelled only 1.3 km. By the 

2000s, children of the same age in Manchester travelled further in total, around 1000km 

more than in the 1940s, but the mean trip distance continued to be very low, at 1.5 km. 

According to Pooley et al. (2010), data for Lancaster reveals very similar trends, although 

there is evidence of a greater increase in everyday travel for those residing in more remote 

rural areas and settlements with the concentration of service and economic activity in towns. 
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3.6 Geography of South Wales 

 
South Wales is generally considered to be formed of four historic counties: Glamorgan, 

Monmouthshire, Carmarthenshire and Pembrokeshire (see Fig. 3.7; Jenkins, 2014). 

Fundamental to the economic development and demography of South Wales over the last 

three centuries has been the presence of the largest continuous coalfield in the United 

Kingdom within the region (Davies et al., 2008). The South Wales coalfield, now largely 

exhausted, covers an area of roughly 1,000 square miles, stretching across Glamorgan, 

Monmouthshire, Carmarthenshire, and a small portion of Pembrokeshire. Numerous, 

narrow, peri-urban valleys criss-cross the coalfield, mostly running North-South parallel to 

each other (Jenkins, 2014). This area is widely known as 'The Valleys' (Dicks, 1999).  

 

 

Figure 3.7 County and administrative boundaries of the South Wales region before the 

enactment of The Local Government Act 1972. The local government districts which provide 

the geographical underpinning of the analysis presented in this thesis are shaded in grey. 
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Glamorgan 

The historic administrative county of Glamorgan is bordered to the north by Brecknockshire, 

east by Monmouthshire, and to the west by Carmarthenshire (see Fig. 3.7). The county is 

home to the two largest settlements in South Wales: Cardiff, the county town and capital of 

Wales from 1955 onwards, and Swansea (Davies et al., 2008). Glamorgan can be 

separated into three distinct, contrasting geographical areas. Firstly, to the south lies the 

Vale of Glamorgan, a low-lying, primarily agricultural, landscape formed on a gently 

undulating limestone plateau (Conduit, 1997). The Vale is predominantly rural, 

characterised by numerous villages, hamlets and extensive farmland (Newman et al., 

1995). Major urban settlements found in the Vale of Glamorgan include Cardiff (See Fig. 

3.8), the largest city in Wales that is situated at the mouth of the River Taff, and the coastal 

towns of Barry, Penarth and Bridgend. The second sub-region covers the northern portion 

of the county, an area dissected by deep narrow valleys that run approximately parallel to 

each other in a north-south direction. This area has historically been home to multiple 

urbanised mining districts, possessing either urban district or municipal borough status (Fig. 

3.8). Finally, to the west of Glamorgan is the Gower Peninsula and Swansea Bay, a coastal 

sub-region. Swansea is the largest settlement, functioning as the dominant urban centre in 

Southwest Wales and serving as a gateway for the more distant rural areas of 

Carmarthenshire and Pembrokeshire to the west (Edwards, 1980).  

 

Carmarthenshire  

Carmarthenshire is bordered by historic counties of Cardiganshire to the north, Glamorgan 

to the east, and Pembrokeshire to the west (Fig. 3.7). The market town of Carmarthen, 12 

miles northwest of Llanelli, is the county town and regional administrative centre. The most 

urbanised area of the county is located in the southeast portion concentrated around 

Llanelli, the largest settlement in Carmarthenshire and a former manufacturing centre 

(Phillips, 1994). 
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Figure 3.8 Geographical make-up of local government districts in the South Wales region. Red circles represent major settlements and county 

towns of varying population sizes, 1940–1969. Urbanised districts are concentrated in the eastern portion of the region, in the county of 

Glamorgan and the western portion of Monmouthshire. Significantly less populated rural districts are found in Carmarthenshire, Pembrokeshire, 

East Monmouthshire and the Vale of Glamorgan, the coastal plain which spans the distance between Cardiff and Swansea Bay.
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This urban and industrial growth in the southeast of the county was nurtured by the area's 

proximity to Swansea and surrounding towns which form the Swansea Urban Area, located 

next to the Carmarthenshire-Glamorgan border. The county is primarily rural in nature and 

agricultural in function and flanked by mountainous areas to the North and East (Lloyd et 

al., 2006).  

 

Monmouthshire 

Monmouthshire is one of thirteen historic counties of Wales. The River Wye serves as the 

county's eastern boundary separating it from England. The eastern portion of the county 

largely consists of agricultural lowland, whilst the western area of the county, with its rich 

iron and coal deposits (Jones, 1969), forms part of the South Wales Valleys area. Newport, 

located to the south of the county on the Severn Estuary, was the largest population centre 

in Monmouthshire, joining Cardiff and Swansea with county borough status in 1891 

(Youngs, 1991). Other settlements of importance include the county town of Monmouth, 

Abergavenny, and the border town of Chepstow. Monmouthshire's status as a Welsh county 

was ambiguous between the sixteenth and mid-twentieth centuries, with many unofficially 

considering it to be part of England during this period (Williams, 2011). In the Weekly 

Returns, Monmouthshire was classed as an administrative county of Wales. The county's 

legal inclusion in Wales was clarified by the 1972 Local Government Act, which 

simultaneously abolished the historic county as an administrative area.  

 

Pembrokeshire 

Pembrokeshire is located in the far south-west of Wales. It is bordered by Carmarthenshire 

to the east and Cardiganshire to the northeast (Fig. 3.7). The Celtic Sea lies adjacent to 

Pembrokeshire, with numerous ferry connections between the county and Ireland (Davies 

et al., 2008), enabling a consistent external population flow into the South Wales region. 

Pembrokeshire is composed of small, primarily coastal, market towns with populations 

below 20,000, separated by extensive sparsely populated rural areas (Fig. 3.8), featuring a 
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significant number of widely dispersed villages and hamlets (Jenkins, 2014). A significant 

proportion of the county population is concentrated on an urban agglomeration surrounding 

the Milford Haven waterway. Here, a succession of distinct yet inter-dependent settlements, 

such as Pembroke, Milford Haven, and Neyland, form the third most populous urban area 

in South Wales. The administrative centre of Pembrokeshire and the most populous 

settlement in the county is the market town of Haverfordwest. 

 

The Valleys 

The topography of the South Wales Valleys has strongly influenced the form of urban 

development adopted following the growth of metallurgical industries in the latter half of the 

nineteenth and early twentieth centuries (Jenkins, 2014). With the rapid expansion of the 

iron and coal industries in towns at the northern heads of the South Wales Valleys, such as 

Rhymney, Merthyr Tydfil and Ebbw Vale, a huge influx of migrants surged into the region 

over successive decades during this period (Davies et al., 2008). Numerous rows of densely 

packed terraced housing were constructed on the lower sides of valleys to accommodate 

workers, sometimes extending precariously over large slopes and spurs (Bowen, 1960). 

Urban settlements are concentrated near the site of collieries and other centres of industry 

(Jones, 1969), and are linearly organised along routes of communication such as railway 

lines, canals and roads running parallel to the various tributaries and rivers on the valley 

floor (see Fig 3.9). This has been described as a 'hand and fingers' pattern of urban 

development (Welsh Assembly Government, 2008) but is more commonly referred to as 

ribbon development.  

 

The 'hand and fingers' pattern of urbanisation is best exemplified by the development of the 

Rhondda. The area is home to two valleys which are the major tributaries of the River 

Rhondda the larger Rhondda Fawr and smaller Rhondda Fach (Lewis, 1959). In 1851, the 

population of the Rhondda was around 1,000 inhabitants before soaring to 153,000 by 

1911, as the area grew to become the centre of the South Wales coal industry (Jenkins, 
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2014). However, despite the area becoming heavily populated, the Rhondda remained a 

collection of villages and hamlets dispersed among its many valleys (Lewis, 1959). The 

Rhondda is composed of 16 communities; in Wales, a community is the lowest tier of local 

government, equivalent to parishes in England (Davies et al., 2008). The geographical 

obstacles posed by the land, such as the deep entrenchment of the valleys, the narrow 

valley floors and numerous ridges, have significantly inhibited the physical formation of 

larger towns from existing communities in the Rhonda (Lewis, 1959), with settlements 

historically clinging on to the valley sides above the main communication route that runs 

along the valley floor (Jones, 2014).  

 

Beyond the rapid growth of 'Heads of the Valleys' towns, urban development followed the 

expansion of the coal and steel industries within the Valleys and on the coastal plain, where 

Cardiff and Swansea became significant ports for exports of coal and steel (Jones, 2014). 

In terms of rural settlement, nucleated villages only became significant in the eastern and 

southern peripheries of the South Wales region, in the Vale of Glamorgan and 

Monmouthshire (Davies et al., 2008). During the mid-twentieth century, Carmarthenshire 

and Pembrokeshire were, and continue to be, largely characterised by minor urban 

settlement on the coast around natural harbours, whilst isolated village communities are 

widely dispersed further inland (Lloyd et al., 2006; Davies et al., 2008). 
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Figure 3.9 Geography of the 'The Valleys', South Wales. Red circles denote major urban settlements (population > 100,000). Blue circles 

denote medium-sized towns (population ~50,000–100,000). Yellow circles denote small towns (population < 50,000). Orange and purple circles 

denote villages and hamlets, respectively. Hamlets and villages follow a linear settlement pattern along the valleys. Larger population centres 

are located either at the head or bottom of the valleys, where physical restrictions no longer constrain settlement development.

The Valleys 

Legend 
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3.7 Connectivity in South Wales

Connectivity between communities within the South Wales region is heavily influenced by 

the topography of the region, particularly in the counties of Glamorgan and Monmouthshire 

where the Valleys sub-region is located. The obstacles posed by the intervening topography 

of the Valleys has historically made direct movement between valleys very difficult (Welsh 

Office, 1967). In the Valleys, both roads and rail lines run parallel to rivers along the floor of 

the valleys, with settlements in a valley becoming more closely associated with each other 

than with settlements in neighbouring valleys, although they might be far closer 

geographically when measured by distance from point-to-point. For instance, in the 

Rhondda, the original road layout followed the valleys with limited connections between 

them, with separate roads running through the Rhondda Fawr and the Rhondda Fach 

(Lewis, 1959). There are a limited number of roads that climb steeply over the high passes 

between valleys (Burges and Moles, 2015), the best example being the A465 'Heads of the 

Valleys' trunk road, the east-west corridor which runs across the northern edge of the 

Valleys. Many existing roads were constructed on high passes during the 1920s, as part of 

a major unemployment relief programme for former miners (Coombs and Hinch, 1969), 

which aimed to connect the isolated hamlets and villages dotted across the valleys, 

transforming them from dead-end communities. The physical orientation of valleys in a 

north-south direction focuses movement on the better connected urban cores of Cardiff CB, 

Swansea CB and, to a lesser extent, Newport CB located on the valley mouths of the flatter 

coastal belt (Burges and Moles, 2015). 

 

In the eastern portion of the valleys, the towns of Pontypridd, Caerphilly and Pontypool 

together represent a connections corridor across the Valleys sub-region, with each 

settlement acting as an interface at the bottom of the valley in which they lie between towns 

on the coastal plain and the 'Heads of the Valleys' towns of Ebbw Vale UD, Merthyr Tydfil 

MB and Aberdare UD. Rail links to the valleys, such as the Rhymney, Rhondda and Taff 
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Vale Lines (Barrie, 1982; Kidner, 1995), were vitally important to intra-regional connectivity 

from the late-nineteenth to the mid-twentieth century, providing regular, direct 

communication with Cardiff.  Chepstow, which lies on the border between Monmouthshire 

and England, is a key settlement in terms of national connectivity, functioning as a gateway 

to the South Wales region Wales (Welsh Assembly Government, 2008). Both the South 

Wales mainline and the M4 run through Chepstow, linking South Wales to regional centres 

in Southwest England, such as Bristol and Bath, as well as the Greater London region.  

 

Despite the remoteness of much of Pembrokeshire and Carmarthenshire, both counties 

have been accessible via long-established rail links with major settlements in South Wales 

and beyond (see Fig 3.10). The market town of Bridgend, which lies equidistant between 

Cardiff and Swansea, has historically been an important centre of regional connectivity, 

acting as a gateway to Southwest Wales (Welsh Assembly Government, 2008). The group 

of railway lines that run through Bridgend to Carmarthenshire and Pembrokeshire from 

Swansea are collectively known as the West Wales Lines (Page, 1988). However, with 

increasing dependence on the car and declining profitability of British Rail in post-war 

England and Wales, the post-war years saw the significant loss of many rural railway 

services across South Wales (Hunt, 2011).
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Figure 3.10  Major road and rail connectivity networks within the South Wales region, 1940–1969. Despite a significant portion of the region 

being lightly populated and rural, extensive rail and road connections existed beyond the urbanised areas found in Glamorgan and West 

Monmouthshire. A significant quantity of South Wales’s railway was lost with the fall of the Beeching Axe in the mid-1960s.
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Part Three: Regional Demography  

 

3.8 Demography of Lancashire 

 

The population of Lancashire experienced modest growth throughout the study period. At 

the beginning of the study period in 1940, the county population was 4,628,013. By the end 

of the study period, the total population had grown by approximately 10%, reaching a total 

of 5,110,723. The administrative county of Lancashire, excluding county boroughs, was 

also the most populous of its kind outside of London during the mid-twentieth century, with 

a population of 2,280,359 inhabitants in 1961. By the 1971 census, the population of 

Lancashire and its county boroughs represented the most populous geographical county in 

the United Kingdom.  

 

3.8.1 Population Size 

 

Regional Summary  

The geographical distribution of the mean population size of the 125 local government 

districts in the Lancashire region for the study period is presented in Figure 3.11. The bulk 

of the regional population is concentrated within districts located in the Southeastern portion 

of Lancashire, in the areas surrounding the urban centre of Manchester CB. A detailed 

description of changes in district population size across the study period, broken down by 

sub-category of local government district, will now be provided. 

 

County Boroughs 

The absolute number of the regional population residing in county boroughs (CBs) fell 

between 1940−1969, from 2,901,260 to 2,725,100, a fall of approximately 6%. The number 

of people living in CBs grew in the first decade of the study period, peaking in 1951, with 

the number standing at 3,070,280. However, the population in CBs fell steadily across the 



Chapter 3: Study Period & Settings 

145 

 

1950s reverting to 1940 levels at the beginning of the 1960s. Between 1961 and 1969, the 

total population residing in CBs fell from 2,931,297 to 2,725,100, a fall of ~7.0%, and it was 

this period of decline that explains the overall fall across the study period. The share of the 

regional population residing in CBs was 60.6% in 1940, declining to 53.3% by 1969.   

 

Municipal Boroughs 

The total population residing in Lancashire's municipal boroughs (MBs) increased from 

840,910 in 1940 to 902,228 in 1969, a rise of +6.8%. The period with the largest proportional 

growth was between 1940 and 1951, coinciding with the first spurt of the baby boom period, 

with the population growing to 884,824 in 1951 a rise of 5.0% from 1940. The proportional 

share of the overall regional population residing in MBs remained constant across the study 

period, ranging from 17.55% in 1940 to 17.60% in 1969, peaking in 1961 at 17.76%. 

 

Urban Districts 

In absolute terms, the total population in Lancashire living in urban districts increased from 

788,930 in 1940 to 1,063,150 in 1969, a growth rate of +25.8%. The proportional share of 

the regional population residing in UDs grew from 16.5% at the beginning of the study period 

to 20.81% in 1969. The 1960s was the period which experience the most significant growth, 

with the overall population found in UDs rising by 2.6% between 1961 and 1969, compared 

to an increase of +1.6% between 1951 and 1961, and 0.7% between 1941 and 1951. 

 

Rural Districts 

Rural districts (RDs) in Lancashire experienced significant growth across the study period. 

The absolute population residing in RDs rose from 260,470 in 1940 to 422,300 in 1969. 

During this period alone, the population living in RDs increased by ~ 100,000, compared to 

a total increase of around 60,000 in the previous two decades. As a share of the Lancashire 

region's overall population, the proportion living in RDs increased from 5.4% in 1940 to 8.3% 

in 1969, with 2% of this growth taking place between the period 1961 and 1969. 
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Figure 3.11 Geographical distribution of the population of Lancashire, by local government 

district, 1940–1969. The mean population size for each district throughout the study period 

is used to produce the proportional symbols. Squares represent the mean population size 

of each local government district during the study period. 
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3.8.2 Birth Rate 

 
Regional Summary 

Regarding the birth rate, which can be viewed as the rate of annual susceptibles input into 

the population, the birth per 1,000 persons in Lancashire increased from 14.54 per 1,000 in 

1940 to 18.84 per 1,000 in 1969.  

 

 

Figure 3.12 Mean annual birth rate per 1,000 persons by sub-category of local government 

district in the Lancashire region, 1940–1969. The mean annual birth rates peaks 

dramatically for all four categories of LGD in 1947, the beginning of the baby boom era. 

After a fall in the early 1950s, a steady rise in the mean birth rate is visible in later years. 

 

County Boroughs  

Between 1940 and 1961, both Liverpool CB and Manchester CB experienced a steady birth 

rate; Liverpool CB's birth rate grew from ~20 births per 1,000 in 1940 to 22.39 in 1961, 

whilst the birth rate increased from 16.69 per 1,000 in 1940 to 19.88 per 1,000 in 

LGD, by sub-category 

• County Boroughs 

• Municipal Boroughs 

• Rural Districts 

• Urban Districts 
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Manchester CB during the same period. Both urban centres experienced a peak in their 

birth rates in 1947, coinciding with the baby boom. Between 1961 and 1969, both cities 

experienced a significant fall in birth rates. In Liverpool CB, the birth rate fell by 

approximately one-third from between 1961–1969, falling to 16.63 births per 1,000. 

Similarly, Manchester CB’s birth rate fell below wartime levels to 16.84 births per 1,000. The 

16 other county boroughs saw an overall increase in mean birth rate, from 15.19 per 1,000 

in 1940 to 17.69 per 1,000 persons in 1961. Between 1961−1969, the mean birth rate 

declined from 17.69 to 17.07 births per 1,000. 

 

Municipal Boroughs  

Among Lancashire's municipal boroughs, the birth rate per 1,000 grew from 13.41 in 1940 

to a high for the study period of 16.85 birth per 1,000 in 1961, before declining to 15.43 

births per 1,000 in 1969. The most fruitful period of growth in the mean birth rate came 

between 1951 and 1961, increasing by 2.4 births per 1,000 compared to an increase of 1.00 

births per 1,000 in the previous period (1940-1950).  

 

Urban Districts 

The mean birth rate among urban districts grew drastically from 14.9 births per 1,000 in 

1940 to 20.7 births per 1,000 by 1969. Between 1940 and 1951, the mean birth rate fell to 

a low of 14.84 but recovered significantly across the 1950s, reaching 17.0 births per 1,000 

in 1961 and the rise in birth rates remained constant reaching a high of 20.7 births in 1969.  

 

Rural Districts 

The most dramatic growth in birth rates was found among rural districts. Between 1940–

1951 the birth rate fell slightly from 14.08 births to 13.71 births per 1,000. The birth rate 

grew substantially increasing from 13.71 births to 18.27 births by the beginning of the 1960s. 

From 1961 to 1969, the birth rate stabilised with limited growth across the decade, rising 

marginally to 18.36 births by the end of the study period.  
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3.8.3 Population Density  

 

Table 3.1 Temporal changes in population density (per km2) by major urban centre and 

district sub-category, Lancashire, 1940–1969. 

 

Administrative 

unit 

Population density (per square kilometre) 

1940 1951 1961 1969 

All Districts 1,684.0 1,737.2 1,744.6 1,762.5 

Liverpool CB 7,453.2 7,113.6 6,619.6 5,659.3 

Manchester CB 6,685.1 6,372.6 6,002.1 5,142.5 

CBs 4,613.5 4,329.8 4,046.4 3,741.0 

MBs 2,069.6 2,110.9 2,092.9 2,004.2 

UDs 1,203.0 1,304.4 1,328.7 1,500.9 

RDs 120.3 148.6 164.1 227.7 

 

Regional Summary 

The mean population density in the Lancashire region rose from 1,684 persons per km2 in 

1940 to 1,763 persons km2 in 1969. A significant proportion of this growth in density came 

between 1940 and 1951, primarily driven by the substantial population growth in the 

immediate post-war years. A general but noteworthy trend is the decline in population 

density throughout the study period in major urban centres and large towns and growth in 

density in smaller satellite settlements and rural districts, reflecting wider social-economic 

changes during the period associated with suburbanisation, deindustrialisation, and slum 

clearance. Changes in population density are detailed in Table 3.1. 
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3.9 Demography of South Wales 

 

South Wales's population is unevenly distributed, with the bulk situated in the congested 

districts of the Valleys to the Southeast and densely populated urban centres on the 

Glamorgan coast. In contrast, the sparsely populated rural areas are located predominantly 

in the Southwest, in Carmarthenshire and Pembrokeshire. The industrial revolution was 

essential for creating the uneven demographic profile of South Wales during the twentieth 

century that continues to persist in the twenty-first century (Jenkins, 2014). The staggering 

scale of industrial activity born from the South Wales coalfield's exploitation attracted 

considerable, sustained migration from the rural counties of Wales to Glamorgan and 

Monmouthshire's valleys where iron and coal extraction were centred (Gareth Evans, 

1989). The rapid expansion of employment and in-migration from the rural periphery to the 

industrial south led to two-thirds of the Welsh population residing in Glamorgan and 

Monmouthshire by 1911 (Jenkins, 2014). Glamorgan saw the largest growth of any county 

in Wales during the industrial revolution, becoming the most populous and industrialised 

county in the region, with Cardiff at its centre (Davies, 2008). The county population rose 

fifteenfold, from 70,879 in 1801 to 1,120,910 in 1911.  

 

By the time of the Great Depression of the 1930s, immediately before the period under 

study, South Wales began to experience a marked decline in birth rates and a growing trend 

of depopulation. The industrial decline, which would go on to blight the region economically 

for much of the twentieth century, had begun and led to significant migration from South 

Wales, particularly of young adults (Davies, 2007; Jenkins, 2014). In Glamorgan, population 

growth in absolute terms was notably much slower than before the beginning of the 

twentieth century; the population rose to 1,229,728 in 1961, a limited increase of 9.7% 

compared to the 1911 census population of 1,120,910. Meanwhile, the predominantly 

agricultural Carmarthenshire experienced little growth in its population, growing from 

160,406 in 1911 to 168,008 in 1961, an increase of just 4.5%  (GRO, 1964a). 
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Pembrokeshire experienced an almost identical growth rate over the same period, from 

89,956 in 1911 to 94,124 in 1961, an increase of 4.6%; 50% of the county's population 

resided within Pembrokeshire's three MBs (GRO, 1964b).  However, during the study 

period, Glamorgan and Monmouth remained densely populated in comparison, with the 

Valleys home to around 30% of the Welsh population (David et al., 2004), and a significant 

concentration of the regional population in the urban cores and the metropolitan hinterland 

situated on the coastal plain.  

 

3.9.1 Population Size 

 

Regional Summary 

In absolute terms, the total population size of the South Wales region increased from 

1,832,790 in 1940 to 1,987,820 in 1969. This population growth was relatively gradual in 

contrast to Lancashire, rising by +8.5%. The geographical distribution of the mean 

population size of the 74  local government districts in the South Wales region for the study 

period is presented in Figure 3.13. The majority of the regional population is concentrated 

within urbanised districts located in the valleys areas of Glamorgan and the urban cores of 

Cardiff CB and Swansea CB. An in-depth description of changes in district population size 

across the study period, broken down by sub-category of local government district, will now 

be provided. 

 

County Boroughs 

Throughout the study period, South Wales's population increased by around 40,000−50,000 

every ten years. Cardiff CB, the largest local government district in South Wales, grew from 

a population of 226,100 at the beginning of the study period to 285,860 in 1969, a 

percentage increase of 26.6%. The most considerable growth period came between 1961 

and 1969, increasing by nearly 30,000, equal to the total increase in absolute terms over 
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the two previous decades. Cardiff CB's population had grown by 17,000 between 1940 and 

1951 and 13,000 between 1950 and 1961, respectively. Between 1940 and 1969, Swansea 

CB's population increased by a similar margin of +20.1%, whereas Merthyr Tydfil CB's 

population declined by -6.7% over the same period. The combined population residing in 

the four county boroughs of South Wales increased approximately +14%, from 541,120 in 

1940 to 625,540 in 1969. 

 

Municipal Boroughs 

The total population residing in municipal boroughs between 1940 and 1969 declined in 

absolute terms from 321,018 to 309,470, a fall of -8.5%. Rhondda MB experienced the most 

significant decline in population size proportionally among MBs during this period, which 

suffered a fall of -17.21%. At the beginning of the study period, Rhondda MB had previously 

been the most densely populated of the municipal boroughs situated in South Wales, 

second only in population size to Cardiff CB. Between 1940−1969, only four of the 14 

municipal boroughs in South Wales experienced a decline in population size. Significant 

population growth among MBs was sustained throughout the period in market towns, such 

as Haverfordwest MB (+37.7%), Pembroke MB (+32.7%), and Abergavenny MB (+15.6%).  

 

Urban Districts 

The total population increased from 598,152 to 613,1120 between 1940 and 1969, growing 

by +9.2%. The largest percentage increase in population size came in Cwmbran UD, rising 

by +142.6% during the study period. The settlements designation as a 'new town' in 1949  

primarily drove this explosive growth. Seventeen UDs experienced growth in population 

size during the study period. However, of these districts, 11 districts witnessed an increase 

of +10% or greater. Of the 20 urban districts which experienced depopulation throughout 

the study period, a significant number are located within the Valleys. These districts include 

Maesteg UD (-6.6%), Ebbw Vale UD (-6.7%), Pontypool UD (-8.4%), Pontypridd UD (-

8.8%), Blaenavon (-20.3%) and Abertillery UD (-17.1%).  
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Figure 3.13 Geographical distribution of the population of South Wales, by local government district, 1940–1969. The mean population size 

for each district for the study period is utilised to produce the proportional symbol. Squares represent the mean population size of each local 

government district during the study period.
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Rural Districts 

The total population inhabiting rural districts in South Wales increased by 26.3%, from 

372,500 in 1940 to 439,690 in 1969. Of the 20 rural districts in South Wales, 14 experienced 

population size growth, with nine RDs experiencing an increase of 20% or greater across 

the study period. Rural communities across the four counties of South Wales experienced 

significant population growth.  

 

3.9.2 Birth Rate 

 

Figure 3.14 Mean annual birth rate per 1,000 persons by sub-category of  local government 

district in the South Wales region, 1940–1969. The mean annual birth rates peaked 

dramatically for rural districts in contrast to other districts in 1947-1948. After this moment 

in time, birth rates remained relatively constant across all districts, with some growth in the 

early 1960s before another fall in the latter half of the decade. For all districts categories, 

the mean birth rate had stabilised around approximately 15 births per 1,000 persons by 

1969. 

LGD, by sub-category 

• County Boroughs 

• Municipal Boroughs 

• Rural Districts 

• Urban Districts 
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Regional Summary 

In absolute terms, the annual number of births in South Wales steadily increased between 

1940-1961, before declining between 1961 and 1969. Across all regional districts, the 

annual number of births peaked in 1947, coinciding with the first baby boom, after which 

the number of births fell sharply, reaching a nadir in 1955. From the mid-1950s onwards, 

the birth rate recovered dramatically, peaking in 1963 and 1964. This rise coincided with 

the second baby boom spurt during this period across England and Wales. 

 

County Boroughs  

Between 1940 and 1961, Cardiff CB's birth rate increased from 16.57 births to 19.53 births 

per 1,000, with the peak birth rate recorded in 1947 (22.9 births per 1,000). A second, lesser 

peak was reached during the 1960s; 20.26 births per 1,000 in 1963. In subsequent years 

until the end of the study period, the birth rate fell dramatically, below wartime levels, to 

15.87 births per 1,000 in 1969. The mean birth rate per 1,000 for the combined CBs 

population was almost identical in the first and final years of the study period; 15.99 births 

per 1,000 in 1940 compared to 15.98 births per 1,000 in 1969 (see Fig. 3.14).  

 

Municipal Boroughs  

The mean birth rate across municipal boroughs increased by approximately 25% in the 

lead-up to the beginning of the baby boom period. The birth rate rose from 15.1 births per 

1,000 in 1940 to 19.5 births per 1,000 by 1947. From 1947 onwards, the birth rate fell to 

15.07 per 1,000 in 1954. In subsequent years, the birth rate rose briefly, rising to 17.53 

births per 1,000 in 1963. From 1963 to 1969, the birth rate declined and more-or-less 

plateaued (see Fig. 3.14), falling to 15.8 per 1,000 by 1969.  

 

Urban Districts  

The mean birth rate fell marginally between 1940 and 1969, from 16.26 births per 1,000 to 

15.62 births per 1,000. Birth rates initially peaking during the first baby boom in 1947, 
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reaching 20.98 births per 1,000. The birth rate fell over 25% in subsequent years, reaching 

a low of 15.00 per 1,000 in 1955. The birth rate recovered in the late 1950s and early 1960s, 

spiking at 17.83 births per 1,000 in 1964. This growth was succeeded by a decline, similar 

to the one observed among municipal boroughs, falling to 15.60 births per 1,000 in 1969.  

 

Rural Districts 

Birth rates in rural districts experienced steady growth across the study period, rising from 

14.99 births per 1,000 in 1940 to 15.62 per 1,000 in 1969. The mean birth rate across South 

Wales RDs peaked in 1947 (see Fig. 3.14), registering 42.28 births per 1,000, before falling 

to 15.03 in 1955. The birth rate recovered slightly in the late 1950s, rising to 17.57 per 1,000 

in 1964 in the final year of the baby boom period, before slowly falling and plateauing. 

 

3.9.3 Population Density 

 

Table 3.2 Temporal changes in population density (per km2), by major urban centre and 

district sub-category, South Wales, 1940–1969. 

 Population density (per square kilometre) 

 1940 1951 1961 1969  Peak Year Trough Year 

All Districts 970.5 889.2 872.4 871.0  970.5 1940 871.0 1969 

Cardiff CB 4,341.0 4,001.4 4,199.0 3,629.0  4,341.0 1940 3,629.0 1969 

CBs 2,841.7 2,556.5 2,599.7 2,265.6  2,841.7 1940 2,265.6 1969 

MBs 1,427.2 1,321.5 1,316.2 1,314.6  1,427.2 1940 1,314.6 1969 

UDs 1,069.1 973.3 931.9 954.4  1,069.1 1940 954.4 1969 

RDs 94.03 97.6 106.2 127.2  127.2 1969 94.0 1940 
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Regional Summary 

The mean population density in the South Wales region fell consistently across the study 

period, declining from 970 persons per km2 in 1940 to 871.01 persons per km2 in 1969. The 

most significant fall in population density during the study period was registered between 

1940–1951 (see Table 3.2). This decline was felt chiefly in the immediate post-war years, 

falling by ~ 10% to 889.20 persons per km2 in 1951 compared to 1940 levels. 

 

3.10 Explaining Regional Demographic Change 

 

The post-war period witnessed a significant redistribution of the population of England and 

Wales. According to the model of growth and change for urban areas in England forwarded 

by Hall et al. (1974), before the twentieth century, people and employment were 

predominantly concentrated in urban cores. Urban cores are defined as the old city within 

a metropolitan area, with high populations and population densities. For example, the core 

of the Greater Manchester conurbation is Manchester CB. Between 1900 and 1950, this 

had slowly begun to shift, with populations starting to decentralise from urban centres into 

smaller settlements on the metropolitan margins (Robert and Randolph, 1983). However, 

employment remained firmly centralised in the core. Of the total metropolitan population of 

England and Wales, 71% resided in urban cores in 1931 (Hall, 1974). By the 1960s, it was 

clear that the process of decentralisation, of both population and employment, had begun 

(Hamnett and Randolph, 1982), with the frontier of population decentralisation advancing 

far into the inter-metropolitan hinterlands. By 1971, the proportion of the English and Welsh 

population residing in major urban centres had declined to 59% (Hall, 1974).  

 

This growing movement of the population from the old urban cores into largely autonomous 

centres of employment had become one of the significant social changes of the post-war 

years (Hamnett and Randolph, 1982). The final stage of Hall (1974) model was the overall 

loss of population and employment in the large metropolitan centres to an outer ring of 
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peripheral urban areas, which, in turn, would begin to experience some level of population 

loss to smaller satellite towns. This stage results in greater regional dynamism (Hall, 1974). 

During the study period, Manchester and Liverpool experienced this significant 

decentralisation of population and employment. Consequently, both cities would register 

some of the most significant population losses in absolute terms outside of London during 

the 1960s. This process was accompanied by the growth of remote, historically sparsely 

populated, rural areas lying beyond the immediate metropolitan hinterlands, representing a 

significant departure from previous movement patterns (Vining and Kontuly, 1978). 

 

The process of decentralisation evident in Manchester CB and Liverpool CB during the latter 

half of the study period, as well as in free-standing urban areas in South Wales, such as 

Cardiff CB, where decentralisation had already affected medium-sized centres in the less 

prosperous areas (Hall, 1974), was fuelled by post-war slum clearance and significant 

geographical shifts in industrial activity. Between 1955 and 1985, approximately 1.5 million 

houses were demolished due to slum clearance in England and Wales, displacing over 3.5 

million people (Yelling, 2000). The majority of clearances occurred in conurbations and 

older industrial towns, in areas such as Merseyside and Greater Manchester. The North 

West had played an essential part in the early stages of the industrial revolution and 

accounted for 32% of all unfit houses (Yelling, 2000). In 1954, council returns recorded 

88,000 houses in Liverpool CB and 68,000 in Manchester CB as unfit for habitation and in 

need of demolition (Yelling, 2000). During a speech in the House of Commons by Alf Morris 

MP in 1965, it was noted that 20% of the country's most inadequate dwellings were in the 

North West, with approximately three-quarters of the region's poorest residences located in 

a belt of land dominated by Manchester and Liverpool. In Manchester, around 27% of the 

total housing stock was considered unfit for habitation (Hansard, 22 November 1965, col 

202-14). Between 1955 and 1965, 12,200 houses had been cleared in Liverpool, resulting 

in significant population movement away from the core (Yelling, 2000).  
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Many urban districts located in South Lancashire experienced significant growth due to the 

redistribution of populations from overly crowded cities due to housing clearances, such as 

Salford, St. Helens and Wigan. For instance, Worsley UD's population grew by 91% during 

the study period after Salford CB was forced to rehouse many of its inhabitants in overspill 

estates due to a lack of available land (Pratt, 1977). Around Manchester CB and Liverpool 

CB, there was little appetite for new towns. Many free-standing towns situated within the 

urban hinterlands, such as Middleton MB, Crosby MB and Radcliffe MB, experienced 

considerable growth as the densely crowded urban centres decentralised. This was also 

true of urban districts representing satellite towns in the wider metropolitan areas of the 

region and reflected by the surge in population density among urban districts as population 

density among CBs and the two major conurbations fell significantly during the study period 

(see Table 3.1). One Lancashire urban district designated as a new town was Skelmersdale 

UD in 1961 (Field, 1968). This existing town was substantially expanded to accommodate 

the 'overspill' population from Liverpool. Whilst Liverpool CB registered a population decline 

of 9.2% between 1961 and 1969, according to population size statistics obtained from the 

Registrar–General's Statistical Review, Skelmersdale experienced a population boom, with 

its population rising from ~6,300 in 1961 to ~23,000 in 1969, an increase of almost 375%. 

In terms of the proportion of 1955 housing stock cleared by 1985, the proportionate impact 

was most significant among Lancashire cities. Liverpool, Manchester, and Salford all 

cleared more than a quarter of their 1955 housing stock over the next three decades 

(Yelling, 2000). 

 

In contrast to Lancashire, South Wales did not experience clearances on a similar scale, 

despite the many densely populated towns that inhabited the valleys born from the industrial 

revolution and economically dependent on the fortunes of heavy industry. Throughout the 

early and mid-twentieth century, South Wales experienced a steady rate of depopulation, 

even in the rural periphery where a considerable proportion of the region's population lived, 

due to a continual decline in economic opportunities throughout the early and mid-twentieth 
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century. This was reflected by a gradual decrease in mean population density across all 

urban sub-categories of local government districts, and a relatively low rate of growth in 

population density within rural areas compared to the Lancashire region (see Table 3.2). 

Cwmbrân UD on the Monmouthshire-Glamorgan border was designated a 'New Town' in 

1949, as part of the UK Government's New Town Act, to stem depopulation in the region. It 

was hoped the new town would provide new employment opportunities in the Southeastern 

portion of the South Wales coalfield (Wannop, 1999) rather than provide housing for those 

left homeless by wartime bombing or due to slum clearances. The scale of inter-regional 

industrial migration during the post-war years in England and Wales should also be 

considered a driver of population decentralisation. Between 1945 and 1965, 2,756 migrant 

factories were set up by manufacturing firms in areas of the country other than the towns in 

which they formerly operated. Keeble (1972) notes that these fundamental geographical 

shifts in industrial activity had a significant impact upon more peripheral counties and 

regions in England and Wales, where factory migration provided employment opportunities 

in the economically stagnant development areas.  

 
 

3.11 Chapter Summary 

 

During the study period, the overall population of the Lancashire and South Wales grew 

steadily, in spite of dramatic spurts in fertility and birth rates in the late 1940s and early 

1960s; in the case of the former by approximately 11%, from 4,630,000 in 1940 to 5,130,000 

in 1969, and in the latter by roughly 8.5%, from 1,833,000 in 1940 to 1,988,000 in 1969. But 

this is far from the full story, as the detailed account of the shifting demography of the 

regions provided in Sections 3.8 and 3.9 reveals. In Lancashire, ever greater numbers 

moved from the traditional urban cores of Southern Lancashire, either forced by the wind of 

change epitomised by postwar slum clearance and the construction of large social housing 

estates on the fringes of large cities or in neighbouring small towns, or more willingly, to 

smaller satellite settlements  and rural areas as part of a growing process of suburbanisation 
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which took root in the 1950s, nurtured by the explosive growth in private car ownership in 

post war England and Wales. This was evidenced by a considerable fall in the number of 

inhabitants residing in county and municipal boroughs in Lancashire over the course of the 

study period, whilst the populations of urban and rural districts grew markedly (see Section 

3.8.1). In South Wales, different trends were observed. Unlike Lancashire, major urban 

centres (Cardiff CB, Swansea CB and Newport CB) all experienced significant population 

growth during the study period. As the labour-intensive metallurgical industries of the 

Valleys fell into steep decline during the 1950s and 1960s, there was a process of 

population centralisation, contrary to the population decentralisation in England described 

by Hall (1974), with the population size and density of communities in the valleys falling as 

people migrated in search of greater economic opportunity in the metropolitan regional 

centres on the coastal plain of Glamorgan and West Monmouthshire.  

 

It is important to recognise the shifting demography of the two regional metapopulations 

during the study period, as the traditional spatial structure of the regions’ subpopulations, 

shaped by industrial forces in the eighteenth and nineteenth centuries, became obsolete in 

the postwar period as dramatic structural changes in employment and transport took hold. 

Sustained intra-regional migration inevitably results in a significant relocation, or indeed 

reallocation, of susceptible individuals and populations. In some districts, this may serve to 

significantly reduce the spacing between susceptibles, creating optimum conditions for 

epidemic outbreaks to emerge and for disease to persist. In other districts, the geographical 

redistribution of significant numbers of individuals during the study period only serves to 

further diminish the likelihood of disease persistence, removing the human tinder wood that 

would otherwise fuel intrinsic sparks of epidemic activity, potentially driving the spatial 

import of infection. In the following chapter, a descriptive analysis of disease incidence and 

spatial synchrony of measles, pertussis and scarlet fever activity in Lancashire and South 

Wales at the regional and district level will be undertaken, exploring the effects of the 

demographic events, trends and processes detailed in this chapter on disease persistence.  
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Chapter 4: Exploratory Data Analysis 

4 Introduction 

 

The following chapter presents an exploratory and descriptive analysis of time-series of 

monthly notification data for measles, pertussis and scarlet fever in Lancashire and South 

Wales (January 1940–December 1969). Time series plots are presented and discussed, 

visualising regional trends in incidence of the three infections, as well as time series trends 

for two regional subsets of three districts of varying population size over the course of the 

study period. Choropleth maps visualising temporal changes in disease incidence (cases 

per 100,000 population) for nine time–windows in Lancashire and South Wales are 

presented and discussed. Finally, a statistical examination of the spatial synchrony of 

epidemic behaviour at the local and regional level for Lancashire and South Wales, using 

sample correlation coefficients, is presented. For reference, further details on the districts 

analysed and discussed in this chapter, principally their geographical location within their 

wider region, and in relation to other districts, can be found in Appendix I (Figures I.1 and 

I.2). 

 

4.1 Time Series Plots: Measles 

 

4.1.1 Regional Trends 

 

Across the study period, both major and minor measles epidemics show a biennial pattern 

(see Fig. 4.1). Major epidemic outbreaks are often preceded by minor epidemics and 

followed by an inter-epidemic trough. Major epidemic years in Lancashire tend to exceed 

200 cases per 100,000 population. The largest epidemic peak is observed in 1957, with an 

incidence rate of ~300 cases per 100,000 population. Notably large epidemic outbreaks are 

observed in 1947 and 1963, coinciding with the beginning and end of the baby boom period. 
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After 1963, major epidemics in successive years do not rise above 200 cases per 100,000 

population at their peak, as the fertility rate declined throughout the mid- and late-1960s; 

minor epidemics also fall significantly in scale. 

 

Major epidemics in South Wales are greater in magnitude but more irregular in their cyclical 

pattern over the course of the study period. Measles epidemics mostly follow a biennial 

pattern, from 1940 to 1955, but the odd triennial epidemic is evident (see Fig. 4.1). Similar 

to Lancashire, major epidemic outbreaks are often followed by an inter-epidemic trough 

lasting one year and preceded by minor epidemics. Major measles epidemics in South 

Wales tend to be more substantial in magnitude than epidemic outbreaks in Lancashire, 

regularly exceeding 200 cases per 100,000 population. The most significant epidemic 

outbreak in South Wales was observed in 1955, with the epidemic exceeding a notification 

rate of 400 cases per 100,000 population. Intriguingly, the 1955 measles epidemic in South 

Wales was not prefaced but succeeded by a minor epidemic in the following year.  

 

The 1955 epidemic outbreak marks a major departure in terms of the cyclical activity of the 

measles epidemics, with a five-year gap until the next major measles epidemic observed 

with a notification rate in excess of 200,000 cases per 100,000 population. In 1961, there 

was a major measles epidemic exceeding 200,000 cases per 100,000 population for the 

first stime since 1955, followed by annual epidemics between 1963 and 1965. The 

magnitude of measles outbreaks falls substantially after 1961 to the end of the study period, 

with no epidemic exceeding 200,000 cases per 100,000 population. With reduced 

magnitude, the epidemic cycle slowly reverts back to a biennial cycle across the 1960s. The 

introduction of routine measles vaccination in 1968 signifies a dramatic decline in 

notifications of measles cases in the final two years of the study period. 
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Figure 4.1 Monthly time series of measles notification rates per 100,000 population in Lancashire and South Wales, January 1940–December 

1969. Black = Lancashire, grey = South Wales. Red dashed line marks the onset of mass vaccination; red shaded area represents vaccine era. 

Source: Registrar–General’s Weekly Returns (HMSO: London).  

 



Chapter 4: Exploratory Data Analysis 

151 

 

4.1.2 District Trends: Lancashire Subset 

 

Manchester CB exhibits a regular biennial pattern of major measles epidemics throughout 

the study period (see Fig. 4.2B), characteristic of Type I waves of infection. The largest 

epidemic was observed in 1957, with over 3,000 measles cases reported. Major epidemics 

in 1959, 1961 and 1963 reported between 1,400–1,600 cases, with the magnitude of cases 

continuing to fall across the 1960s. Prior to the introduction of measles vaccination in 1968, 

the incidence rate fell below 1,000 cases during major outbreaks in 1965 and 1967, 

reflecting the rapid decline in birth and fertility rates after the end of the baby boom period 

in 1964. Despite the fall in case magnitude, Manchester CB maintains a strongly biennial 

cycle of epidemic outbreaks until the end of the study period. 

 

St Helens CB (Fig. 4.2C), located 33km to the west of Manchester CB, exhibits a more 

irregular biennial epidemic cycle suggestive of differences in the amplitude of disease 

activity, with more frequent minor peaks in measles activity between 1951 and 1957. This 

irregular cyclical activity is indicative of Type II waves of infection. Additionally, the largest 

epidemic outbreak coincides with the end of the baby boom in 1963. Major epidemic 

outbreaks in St Helens CB tend to exceed 500 annual cases. After the major epidemic in 

1963, there was a significant fall in the number of cases in minor epidemic years. Despite 

the introduction of measles vaccination in 1968, a major outbreak was observed in 1969.  

 

In the least populated district of the subset, Little Lever UD displays an irregular pattern of 

annual and triennial epidemics is evident between 1940 and 1965 (Fig. 4.2D). Little Lever 

UD  is located 4km south-east of the major town of Bolton and 16km north-west of 

Manchester CB. After 1965, there is extremely limited measles activity and long periods of 

disease fadeout, indicative of Type III waves, due to the small population size and lack of 

sufficient re-introduction event, together preventing the persistence of epidemic outbreaks.  
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Figure 4.2 Monthly time-series of reported measles cases for Lancashire and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend, (B) Manchester CB (pop: ~650,000), (C) St Helens CB (pop: ~100,000), (D) Little Lever UD (pop: ~10,000). 
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4.1.3 District Trends: South Wales Subset 

 

Cardiff CB (Fig. 4.3B) mostly exhibits a mixture of biennial and triennial epidemic cycles 

across the period of study with no period of fadeout, characteristic of Type I waves of 

infection. This is with the exception of the late 1940s, where a series of annual minor 

epidemics are observed between major outbreaks in 1945 and 1949. The largest epidemics 

are observed in 1955 and 1961, with approximated 2,500 cases of infection reported. A 

biennial pattern of measles outbreaks is present throughout the 1950 but after the 1961 

measles epidemic, the depletion of the susceptible pool coupled with falling rate of 

susceptible recruitment forces a shift in the cyclical nature of measles activity, with minor 

epidemics separating major outbreaks following a triennial cycle. 

 

Merthyr Tydfil CB (Fig. 4.3C) exhibits a mixture of annual and biennial epidemic cycles from 

1940 to the mid-1950s, with an increase in the magnitude of cases and amplitude of 

epidemic outbreaks as time progresses over this period. A major measles epidemic in 1956 

is followed by a series of annual large annual epidemics between 1957 and 1959. Across 

the 1960s, irregular cycles of annual and biennial epidemics of reduced magnitude are 

evident bur characteristic of Type II waves of infection. 

 

In the least populated district of the subset, located on the coastal edge of West 

Pembrokeshire, Fishguard & Goodwick UD (Fig. 4.3D). exhibits a highly irregular pattern 

consistent with a Type III community: sporadic annual epidemic outbreaks often followed 

by long periods with no reported cases, with these inter-epidemic periods sometimes lasting 

several years. The largest outbreaks are observed in 1943, and during the 1950s, when 

there seems to be a sustained period of elevated activity. Due to its small population size 

and significant distances between Fishguard & Goodwick UD and more populous, major 

population centres, there is extremely limited measles activity and long periods of disease 

fadeout, indicative of Type III waves with minimal re-introduction events.  
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Figure 4.3 Monthly time-series of reported measles cases for South Wales and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend (B) Cardiff CB (pop: ~250,000), (C) Merthyr Tydfil CB (pop: ~100,000), (D) Fishguard & Goodwick UD (pop: 

~5,000). 
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4.2 Time Series Plots: Pertussis 

 

4.2.1 Regional Trends 

 
Across the study period, major pertussis epidemics in Lancashire tend to follow a cycle of 

three to five years (see Fig. 4.4). The largest epidemic outbreak is observed in 1941 at the 

height of World War II, with an incidence rate of 80 cases per 100,000 population. Large 

outbreaks in the pre-vaccine era prior to 1957 are characterised by an incidence rate above 

40 cases per 100,000, and some irregularity in the cyclical pattern of epidemic activity is 

visible in the pre-vaccine period. With the onset of routine mass vaccination in 1957, the 

magnitude of cases and amplitude of pertussis epidemics declined substantially, with minor 

outbreaks emerging following regular, smooth five-year epidemic cycles. The incidence rate 

during these minor outbreaks does not rise above 20 cases per 100,000 population. 

 

Pertussis epidemics in South Wales (Fig. 4.4) mirror the pattern observed in Lancashire, 

with major outbreaks observed approximately every two to three years during the pre-

vaccination period, although the magnitude of cases is lower in South Wales, as evidenced 

by the size of the epidemic outbreak in 1941, far below the rate observed in the Lancashire 

region that year. During the mid-to-late 1940s, a series of minor epidemics are observed 

before three biennial outbreaks between 1949 and 1954. 1957 marks the only year in which 

the notification rate for an epidemic outbreak in South Wales exceeds an epidemic outbreak 

in the Lancashire region in the same year (Fig. 4.4); 40.16 cases per 100,000 population in 

the former compared to 29.97 cases per 100,000 population in the latter. During the vaccine 

era (1957-1969), major pertussis epidemics in South Wales follow a four-to-five year cycle  

with a reduced frequency of reported cases. Large outbreaks rarely exceed an incidence 

rate of 20 cases per 100,000 population. A visual comparison of the monthly notification 

time-series for Lancashire and South Wales suggests there is a time lag, with peaks in 

epidemic activity in the latter slightly behind the former. 
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Figure 4.4 Monthly time series of pertussis notification rates per 100,000 population in Lancashire and South Wales, January 1940–December 

1969. Black = Lancashire, grey = South Wales. Red dashed line marks the onset of mass vaccination; red shaded area represents vaccine era. 

Source: Registrar–General’s Weekly Returns (HMSO: London). 
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4.2.2 District Trends: Lancashire Subset 

 
Manchester CB (See Fig. 4.5B) exhibits a regular biennial pattern of major epidemics 

throughout the pre-vaccine era with no fade-out of disease, with minor epidemics preceding 

major outbreaks. The largest pertussis epidemic in Manchester CB was in 1941. From 1952 

onwards, preceding the onset of mass vaccination, the magnitude of pertussis cases 

declines during a period of falling birth rates and thus reduced rate of susceptible 

recruitment. This is exacerbated by the advent of the vaccine era, with the introduction of 

vaccination in 1957 further curtailing the magnitude of reported case of pertussis but also 

reducing the amplitude of epidemic activity. During the vaccine-era, biennial epidemics have 

been replaced by a four-year cycle, but no fade-out of disease is reported. Manchester CB 

exemplifies a Type I settlement in which disease is endemic. 

 

St Helens CB (Fig. 4.5C) exhibits a more irregular biennial epidemic cycle than Manchester 

CB, with fewer minor outbreaks between major epidemics during the pre-vaccine era. The 

largest pertussis outbreak in the district during the study period was in 1941. In the vaccine 

era, minor outbreaks are extinguished, with the exception of 1961 and 1964. There is a 

significant decline in the magnitude of cases in St Helens CB with vaccination serving to 

accelerate the trend southwards which began in the early 1950s with falling fertility rates. 

The irregular cyclical activity is indicative of Type II waves of infection.  

 

Little Lever UD (Fig. 4.5D) exhibits a highly irregular pattern of epidemics in the pre-vaccine 

era, in contrast with the two more populous districts, with inter-epidemic periods between 

outbreaks varying in length from two to four years depending on the rate of disease 

reintroduction, characteristic of a Type III community. There is no major outbreak of 

pertussis in 1941, suggesting pertussis infection is limited in small local populations beyond 

densely populated, urban centres. The introduction of mass vaccination results in the almost 

complete eradication in Little Lever UD between 1957 and 1969, with extensive periods of 

fadeout and no further epidemic outbreak detected. 
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Figure 4.5 Monthly time-series of reported pertussis cases for Lancashire and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend (B) Manchester CB (pop: ~650,000), (C) St Helens CB (pop: ~100,000), (D) Little Lever UD (pop: ~10,000). 

Red dashed line marks the onset of mass vaccination; red shaded area represents vaccine era. 



Chapter 4: Exploratory Data Analysis 

159 

 

4.2.3 District Trends: South Wales Subset 

 

In the pre-vaccine era, Cardiff CB exhibits two distinct epidemiological patterns (See Fig. 

4.6B). From the beginning of the study period to 1950, there are series of annual minor 

outbreaks slowly increasing in magnitude before a more stable, regular pattern of major 

biennial epidemics emerges in the 1950s. The largest pertussis epidemic in Cardiff CB was 

observed in 1951, coinciding with the largest regional pertussis epidemic during the study 

period. Between 1951 and 1957 there is much more pronounced epidemic cycle, with 

outbreaks occurring roughly every two years. During the vaccine-era (1957-1969), biennial 

epidemics are replaced by a four-year cycle, but no fade-out of pertussis infection is 

reported. Cardiff CB exemplifies a Type I settlement. 

 

Merthyr Tydfil CB exhibits a much more pronounced epidemic cycle than Cardiff CB during 

the pre-vaccine era (Fig. 4.6C), with major pertussis epidemics detected every three-years. 

In the vaccine era, the pre-vaccine epidemic pattern is replaced initially by a series of minor 

outbreaks every 1.5 years initially, and Merthyr Tydfil CB experiences its largest pertussis 

epidemic during the study period in 1959, two years after the nationwide rollout of the 

pertussis vaccine, suggesting low vaccine uptake in the district in the early year of the 

immunisation campaign. After the 1959 outbreak, pertussis notifications fall significantly and 

outbreaks are highly irregular, with evidence of frequent fadeout before minor outbreaks. 

Merthyr Tydfil CB This irregular cyclical activity is indicative of a Type II community. 

 

Fishguard & Goodwick UD exhibits a highly irregular pattern of sporadic epidemics in the 

pre-vaccine era (Fig. 4.6D), with the duration of inter-epidemic periods between outbreaks 

varying considerably. During the vaccine era, there are long periods of disease fadeout with 

the occurrence of short-lived outbreaks highly dependent on import of infection from 

external sources. This is indicative of Type III waves of infection.  
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Figure 4.6 Monthly time-series of reported measles cases for South Wales and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend, (B) Cardiff CB (pop: ~250,000), (C) Merthyr Tydfil CB (pop: ~100,000), (D) Fishguard & Goodwick UD (pop: 

~5,000). Red dashed line marks the onset of mass vaccination; red shaded area represents vaccine era. 
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4.3 Time Series Plots: Scarlet fever 

 

4.3.1 Regional Trends 

 

The Lancashire and South Wales regions (see Fig. 4.7) exhibit a relatively strong degree of 

synchronicity with regards to both notification rates and patterns of epidemic activity. In the 

wartime period, there is a gradual climbing trend with the notification rate rising from 

approximately 20 cases per 100,000 population in 1940 to a high of 47 cases per 100,000 

population in 1945, with significant, annual epidemic outbreaks in the winters of 1943-44 

and 1944-45. From the summer of 1945 to the autumn of 1947 there is a significant fall in 

the notification rate in both regions, declining to approximately 10 cases per 100,000 

population. However, there is a significant recovery in scarlet fever incidence between 1948 

and 1950 coinciding with the beginning of the baby boom, with the notification rate reaching 

40 cases per 100,000 in South Wales in early 1948, and a similar total in Lancashire and 

South Wales in 1950. From the beginning of the 1950s, the incidence of scarlet fever cases 

declines gradually and consistently in both regional populations, despite a period of high 

birth rates culminating in significant growth in the density and size of susceptible populations 

across Lancashire and South Wales, particularly concentrated in urban and metropolitan 

areas. Scarlet fever remains endemic in both regions during the study period. The epidemic 

cycle for the disease follows a mixture of annual and biennial outbreaks in Lancashire and 

South Wales. In the 1960s, there is a divergence between the two regional time-series; in 

South Wales, a large epidemic reaching approximately 30 cases per 100,000 population is 

recorded in the autumn and winter of 1968. In Lancashire, during this period, the notification 

rate is around five cases per 100,000 population. A period of heightened epidemic scarlet 

fever activity is recorded in Lancashire over a three-year period, from the end of 1964 to 

mid-1967. 
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Figure 4.7 Monthly time series of scarlet fever notification rates per 100,000 population in Lancashire and South Wales, January 1940–

December 1969. Black = Lancashire, grey = South Wales. Source: Registrar–General’s Weekly Returns (HMSO: London). 
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4.3.2 District Trends: Lancashire Subset 

 

In Manchester CB, the largest annual outbreak of scarlet fever is observed during the 

wartime period in 1943 (see Fig. 4.8B). There is a period of gradual decline in the magnitude 

of cases in reported in Manchester CB following the epidemic of 1943 which lasts to the 

summer of 1947, possibly due to the slow exhaustion of the supply of susceptibles as a 

consequence of annual epidemic activity. From the end of 1947 to 1951, there is a 

significant recovery in the number of reported cases of scarlet fever infection and a large 

outbreak in 1950. This outbreak is approximately 1.5–2 years after the first major peak in 

birth rates marking the beginning of the baby boom period in 1948. 1950 marks the last 

major outbreak in Manchester CB, with the number of scarlet fever cases reported falling 

steadily over the course of the 1950s and 1960s. With the exception of slightly heightened 

activity in 1965, there is no pattern of major epidemic outbreaks in Manchester CB during 

the period 1964-68, despite being one of the two major regional endemic centres of 

infection. 

 

St Helens CB (see Fig. 4.8C). exhibits a clearly pronounced series of three annual epidemic 

outbreaks in the years 1944, 1945 and 1946, with no major outbreak in 1943, unlike that  

observed in Manchester CB. Unlike Manchester CB, St Helens CB exhibits a mixture of 

epidemic cycles; biennial major outbreaks between 1946–1952 succeeded by a seemingly 

quadrennial pattern of large outbreaks in the latter half of the study period, with minor 

outbreaks in intervening years. This irregular pattern of disease activity is characteristic of 

type II waves. Most notably, St Helens experiences its largest epidemic outbreak in 1956, 

exceeding the number of scarlet fever cases reported In Manchester CB that year despite 

possessing one-third of the population size. Visual comparison of the time series of scarlet 

fever incidence for Manchester CB and St Helens CB reveals very different epidemic cycles 

and outbreak patterns.   
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Figure 4.8 Monthly time-series of reported scarlet fever cases for Lancashire and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend (B) Manchester CB (pop: ~650,000), (C) St Helens CB (pop: ~100,000), (D) Little Lever UD (pop: ~10,000). 
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St Helens CB is located on the edge of the Merseyside metropolitan area, situated only 17 

km east of Liverpool CB. As has been shown in previous research (Grenfell et al., 2001), 

Liverpool CB has a more erratic, irregular cycle of disease activity that is out of sync with 

Manchester CB, due to extremely high birth rates, and these divergent dynamics may play 

an influential role in shaping the epidemic pattern observed in St Helens CB.  

 

Similar to the outbreak of 1956, there is another large epidemic outbreak in 1965 that is not 

reflected in the Manchester CB time-series, with the number of scarlet fever cases reported 

exceeding the number notified in Manchester CB that year.  

 

Little Lever UD (Fig. 4.8D). displays an irregular pattern of epidemic outbreaks, with inter-

epidemic periods varying in length from one year to four years over the course of the study 

period. The largest epidemic outbreak was in observed at the conclusion of World War II in 

1945. A second very noticeable epidemic surge in cases was observed in 1949, slightly 

preceding the  major epidemics observed in Manchester CB and on a regional scale in 

1950. After the outbreak of 1949, minor outbreaks are observed on an annual or biennial 

basis, and there are unusually short periods of disease fadeout, despite Little Lever’s UD 

small population size, which may be explained by its location within the highly-connected, 

metropolitan hinterland of Manchester CB. One would therefore expect to see regular 

spatial import of infection from external sources (i.e., neighbouring satellite settlements), 

precluding the disease patterns associated with small urban or rural communities in the 

form of type III waves.  

 

4.3.3 District Trends: South Wales Subset 

 

Cardiff CB (see Fig. 4.9B). exhibits a three-to-five year cycle of major epidemics, with minor 

outbreaks in intervening years during inter-epidemic troughs. Significant outbreaks of 
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similar magnitude were observed in 1943, 1945, 1948 and 1953. From 1953 onwards, there 

is a gradual decrease in scarlet fever incidence, with a drastic drop in the number of reported 

cases clearly observable from 1959 onwards, incidentally coinciding with the introduction of 

mass vaccination for pertussis in England and Wales in 1957. A relatively large outbreak of 

scarlet fever is observed in 1969, mirroring the major epidemic outbreak detected in the 

regional time-series (Fig. 4.9A). Prior to the final years of the 1950s, the time-series of 

scarlet fever incidence reveals no period of fadeout, characteristic of Type I waves of 

infection.  

 

Merthyr Tydfil CB (Fig. 4.9C) exhibits a pattern of major outbreaks approximately every 1.5 

years up until the end of the 1950s, coinciding with the significant fall in incidence of scarlet 

fever infection witnessed across other districts in South Wales as well as Lancashire. The 

largest outbreak observed is in 1951, out of sync with the outbreak pattern of Cardiff CB. 

From the early 1950s onwards, the major epidemic cycle adopts a biennial pattern. A key 

feature of the scarlet fever incidence time-series in Merthyr Tydfil is the regularity of fadeout 

and reintroduction events characteristic of Type II waves, with frequent minor outbreaks 

between major events.  

 

Fishguard & Goodwick UD (Fig. 4.9D) exhibits a time-series of disease incidence consistent 

with a Type III community: extremely sporadic epidemic outbreaks succeeded by long 

periods of fadeout, with no reported cases. Inter-epidemic periods last for several years; no 

scarlet fever cases were reported for over a period of approximately seven years (72 

months), between 1962–1969. Due to its small population size and remoteness, Fishguard 

& Goodwick UD experiences extremely limited disease activity and long periods of disease 

fadeout, indicative of Type III waves with minimal re-introduction events.  
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Figure 4.9 Monthly time-series of reported scarlet fever cases for South Wales and subset of districts of varying population size, January 1940–

December 1969. (A) Regional trend, (B) Cardiff CB (pop: ~250,000), (C) Merthyr Tydfil CB (pop: ~100,000), (D) Fishguard & Goodwick UD (pop: 

~5,000). 
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4.4 Incidence Mapping: Lancashire Region 

 

4.4.1 Measles 

 

Measles incidence in the Lancashire region is predominantly concentrated within the 

endemic centres of Liverpool CB and Manchester CB and their surrounding metropolitan 

hinterlands, as well as growing commuter districts lying on the urban/rural periphery, such 

as in the Rossendale Valley. Generally, measles incidence is found to be greater in 

Manchester’s surrounding metropolitan area compared to Merseyside in Southwest 

Lancashire (see Fig. 4.10). This may be due to Greater Manchester representing a larger 

polycentric area and thus possessing greater levels of accessibility and connectivity 

between subpopulations, fuelling disease spread. However, districts that exhibit high 

measles incidence rates are widely and evenly distributed across the region in successive 

time–windows. Persistent hotspots across all nine of the time–windows include Middleton 

MB in Greater Manchester, Crompton UD, situated between Manchester CB and Oldham 

CB, and Barrowford UD in East Lancashire (see Fig. 4.10). Littleborough UD exhibits high 

rates of measles incidence between time–windows one and six. 

 

Consistently higher rates in these districts, despite small or medium-sized populations, may 

be explained by their location on the regional border or in between major towns, and their 

function as key ‘commuter’ settlements, primarily residential with high connectivity with 

several local and large population centres. Lower rates of measles incidence tend to be 

found in sparsely populated districts located in the rural areas of east Pennine Lancashire 

and the north-west portion of the region, districts in the Furness peninsula, as well as small 

urban areas surrounding Lancaster MB and Morecambe Bay (see Fig. 4.10).  
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Figure 4.10 Mean measles incidence (cases per 100,00 population) in the Lancashire 

region across nine 72-month time–windows, by local government district, 1940–1969. 

< 300.0          300.0 - 600.0     600.1 - 900.0     900.1 - 1,200.0     > 1,200.0 
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The lowest rates of measles incidence are most consistently observed across the nine time–

windows in Pennine Lancashire in the east of the region (see Fig. 4.10), an area which 

suffered significantly from depopulation in the postwar period due to the collapse of local 

textile-based industries. In these geographical areas identified, the incidence rate for 

measles is typically lower than 300 cases per 100,000 population across successive time–

windows. However, in the final three time–windows, notably elevated incidence rates for 

measles are observable in the north-west of the region, in districts such as Ulverston UD 

and Barrow-in-Furness CB. This may reflect violent epidemic episodes, and the spatial 

import of infection from neighbouring counties and population centres, such as the large 

town of Carlisle to  the north, or by individuals moving into or visiting the Lake District, as 

population decentralisation and growing desire to move to the countryside gathered pace 

in the 1960s.  

 

It should be noted that the fall in measles incidence rates below 900 cases per 100,000 

population in many districts in the final time–window (see Fig. 4.10) partially reflects the 

effectiveness of the measles vaccine, introduced in 1968, in removing susceptibles from the 

population and increasing the spacing between remaining susceptible individuals. 

 

4.4.2 Pertussis 

 

In the pre-vaccine era (1940–1957; time–windows one to six), pertussis incidence is 

predominantly concentrated within the urban cores of Liverpool CB and Manchester CB and 

their surrounding metropolitan hinterlands which form the urban agglomerations of 

Merseyside and Greater Manchester. Low rates of pertussis cases are generally found in 

North Lancashire and the far north-west, Pennine Lancashire on the eastern edges of the 

region and Central Lancashire. These areas are more remote, generally populated by small 

and often isolated settlements. These areas of the Lancashire region also tend to have 

much greater spacing between susceptibles, with limited pools of susceptibles available.  
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Figure 4.11 Mean pertussis incidence (cases per 100,00 population) in the Lancashire 

region across nine 72-month time–windows, by local government district, 1940–1969.  

< 50.0             50.0 - 100.0      100.1 - 200.0      200.1 - 400.0        > 400.0 
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In urban districts which populate the hinterlands of South Lancashire, incidence rates range 

between 200 and 400 cases per 100,000 population (see Fig. 4.11). Relatively few districts 

possess an incidence rate consistently greater than 400 cases per 100,000 population, 

which may indicate potential hotspots of disease transmission. One such district is 

Littleborough UD, located on the urban-rural periphery of Greater Manchester and East 

Lancashire, approximately 20km northeast of Manchester CB, and 4km north of Rochdale 

CB, which consistently displays a rate greater than 400 cases per 100,000 population from 

time–windows one to six. Other urban districts which fit in this category include Upholland 

UD, which is situated on the fringes of West Lancashire bordering Merseyside, 6.5km west 

of Wigan CB and 20 km Northeast of Liverpool CB. Upholland UD exhibits high incidence 

rates consistently across the nine time–windows (Fig. 4.11). Middleton MB and Tottington 

UD, which form part of the hinterland and network of local population centres that surround 

Manchester CB, also exhibit heightened rates of pertussis incidence. High pertussis rates 

are also observed localised in small population centres located in North Lancashire, in 

districts which grew as a consequence of population decentralisation during the study 

period, as deindustrialisation gathered pace and fuelled internal migration in the region in 

search of better economic opportunities. Two such examples are Preesall UD, and 

neighbouring Fleetwood MB located in the Fylde Peninsula, which display high rates of 

pertussis incidence across the study period.  

 

With the onset of routine pertussis immunisation for infants and children in 1957, after the 

introduction of the whole-cell vaccine during time–window six (1955-60), pertussis is in 

retreat across the Lancashire region, with a significant reduction in the magnitude of cases 

over the course of three successive time–windows. The incidence rate for all but 11 of 

Lancashire’s 125 districts falls below 50 cases per 100,000 population by the ninth and final 

time–window (1964-69). Districts in which pertussis infection stubbornly persists are, for the 

most part, located within the metropolitan hinterlands of the Liverpool and Manchester 

conurbations, with isolated pockets of heightened pertussis activity found in Central 
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Lancashire, Pennine Lancashire, and even in the more remote northern portion of the 

region. High rates in these districts may be fuelled by localised outbreaks triggered by 

reintroduction of disease from external sources, by favourable demographic conditions 

resulting in a steady supply of susceptibles or due to high levels of accessibility and 

connectivity nurturing disease transmission.  

 

4.4.3 Scarlet fever 

 

In contrast to pertussis and measles, incidence of scarlet fever infection in Lancashire 

declines consistently and progressively across the study period. Time–windows one to three 

see higher rates of scarlet fever incidence primarily situated within the endemic centres of 

Liverpool CB and Manchester CB and their surrounding metropolitan hinterlands (see Fig. 

4.12). This is also found to be the case regarding Pennine Lancashire, in districts 

neighbouring large towns such as Burnley CB and Blackburn CB, and in South Ribble and 

Central Lancashire, on rural periphery of the north-western edge of Greater Manchester. 

Higher incidence rates are also visible on the coastline of North Lancashire (Fig. 4.12), in 

the resort town districts of Blackpool CB, Lytham St Anne's MB and Fleetwood MB. Areas 

of the Lancashire region with noticeably low rates of scarlet fever incidence include districts 

in the Furness Peninsula and West Lancashire. This pattern is most prominent in the first 

two time–windows (Fig. 4.12).  

 

By time–window three, scarlet fever incidence has already begun to fall considerably, with 

falling incidence rates in significant portions of the hinterland surrounding Manchester, in 

Central Lancashire and Pennine Lancashire. The fall in incidence was more gradual in 

Merseyside and in South Lancashire districts situated between the metropolitan areas of 

the two conurbations. Higher rates of scarlet fever incidence also persist in Central 

Lancashire, such as in the South Ribble area surrounding Preston CB (Fig. 4.12).  
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Figure 4.12 Mean scarlet fever incidence (cases per 100,00 population) in the Lancashire 

region across nine 72-month time–windows, by local government district, 1940–1969.  

 < 50.0            50.0 - 100.0      100.1 - 200.0      200.1 - 400.0        > 400.0 
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As the study period progresses across successive time–windows, the retreat of scarlet fever 

infection continues to gather pace; the incidence rate falls from approximately ~200 cases 

per 100,000 population for the majority of districts located in the densely populated, 

urbanised southern portion of the region in the first two time–windows to below 100 cases 

per 100,000 population by time–window seven (1958–63). Districts with an incidence rate 

below 50 cases per 100,000 population are located within the Fylde area of North 

Lancashire, the Furness Peninsula, Pennine Lancashire, and pockets around Central 

Lancashire and the Greater Manchester metropolitan area.  

 

By the final time–window, scarlet fever incidence is concentrated within the endemic centres 

of Liverpool CB  and Manchester CB, and there are isolated pockets of infection dotted 

across the region, specifically ‘gateway’ districts located on the borders of the region, such 

as Littleborough UD in East Lancashire and Ulverston/North Lonsdale RD in North-west 

Lancashire, on the edge of the Furness peninsula. More persistent areas of scarlet fever 

infection such as Burnley CB, Blackpool CB, Chorley UD in Central Lancashire, as well as 

St Helen CB and Whiston RD in Merseyside all experience a significant drop in scarlet fever 

incidence by the end of the study period 

 

4.5 Incidence Mapping: South Wales Region 

 

4.5.1 Measles  

 

Districts in South Wales with the highest incidence rates of measles infection (greater than 

2,000 cases per 100,000 population) represent local epidemic outbreaks or persistent 

measles hotspots, with consistently high notification rates across successive time–window 

(see Fig. 4.13). These tend to be market towns and isolated urban areas within largely rural, 

sparsely populated or peripheral areas of the county in which they are located. For instance, 
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Llandeilo UD and Llandovery MB in north-east Carmarthenshire are two such market town 

districts that are relatively remote yet harbour substantial incidence rates. Other market 

towns with rates above 2,000 cases per 100,000 include Ammanford UD on the 

Carmarthenshire-Glamorgan border, Kidwelly MB in South Carmarthenshire, and the 

market towns of Pembroke MB and Haverfordwest MB in Pembrokeshire. The coastal 

towns settlements of Penarth UD and Porthcawl UD in Glamorgan, urban districts 

neighbouring the Glamorgan−Monmouth border in the eastern portion of the valleys (Risca 

UD, Bedwas & Machen UD and Rhymney UD) and the market towns of Usk UD, Monmouth 

MB and Caerleon UD in Monmouthshire also register very high incidence rates across the 

study period (Fig. 4.13). This may be due to the high intrinsic birth rates in the districts, 

combined with relatively high population densities and migration from surrounding districts 

or further afield helping to fuel significant, if sporadic, outbreaks which result in elevated 

notification rates across successive time–window.  

 

Outside of the relatively densely populations located in market towns or mining communities 

in the Valleys, large portions of the South Wales region observe very low rates of measles 

notifications (Fig. 4.13), most of which are below 375 cases per 100,000 population. This 

reflects the primarily rural and often remote nature of much of the region, particularly the 

counties of Pembrokeshire and Carmarthenshire, which are largely pastoral and with large, 

sparsely populated rural districts. High levels of population dispersion coupled with small 

population sizes, which tend to be scattered among hamlets and small villages, results in 

the limited transmission of infection and very low rates of susceptible recruitment. This 

results in long periods of disease fadeout, and as a consequence, vastly reduce rates of 

infection, in contrast to the vastly more connected and densely populated market town 

settlements with urban district or municipal borough status.   
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Figure 4.13 Mean measles incidence (cases per 100,00 population) in the South Wales across nine 72-month time–windows, by local 

government district, 1940–1969. 
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Elevated levels of measles activity shaded in yellow are visible in the districts of in West 

Glamorgan, surrounding Llanelli MB, Swansea CB, and districts immediately neighbouring 

Cardiff CB. There is also periodically heightened activity in Pembrokeshire, around the 

districts of Pembroke and Haverfordwest MBs, particularly in time–window seven and eight. 

The final time–window (1964-69) witnesses the lowest magnitude of measles cases across 

the nine time–window, reflecting the introduction of measles vaccine in 1968.The highest 

incidence rates are found in small urban areas and market towns, reflecting the rapid boom 

and bust epidemic outbreak dynamics in such communities after the disease is introduced 

to these districts from outside  sources. 

 

4.5.2 Pertussis 

 

Pertussis incidence in South Wales is not spatially concentrated within the county of 

Glamorgan and the valleys sub-region, as noted for the two other childhood diseases, with 

‘market town’ districts reporting higher rates across the wider region (see Fig. 4.14). From 

time–window one to six, the general geographical pattern of pertussis incidence is as 

follows: higher rates across Glamorgan and districts immediately neighbouring the Valley 

and the Cardiff area (Fig. 4.14). High rates are notable around Pontypool UD and the West 

Monmouthshire, in the eastern portion of the Valleys. Lower rates in infection are visible 

consistently in the densely populated and populous district of Rhondda MB in Glamorgan. 

In the more rural, peripheral and less populous counties of Carmarthenshire and 

Pembrokeshire, pertussis infection tends to be localised, concentrated within urbanised 

areas which typically take the form of small market towns (Fig. 4.14),  such as the districts 

of Kidwelly MB, Llandeilo UD and Lllanelli MB, located in South and West Carmarthenshire 

(Fig. 4.14). However, districts which serve as entry points to the wider region may also 

feature relatively high rates of pertussis infection. One such example is Cemaes RD in North 

Pembrokeshire, lying on the county edge neighbouring Ceredigion, a county in mid-Wales 

situated close to the popular resort area of Cardigan Bay. Key road and railway networks 
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which connect South Wales with mid-Wales and the major town of Aberystwyth also pass 

through Cemaes RD.  

 

Notably, districts in Pembrokeshire sees more elevated rates of pertussis incidence 

compared to Carmarthenshire, despite being a further distance away from the large towns 

and cities situated in Glamorgan where pertussis in more endemic (Fig. 4.14). This maybe 

the result of Pembrokeshire serving as both a key gateway and exit point for the wide region 

by sea, resulting in significant ferry traffic with the Republic of Ireland and other areas, but 

also the popularity of the county as a tourist destination for family holidays, in picturesque 

resort towns such as Tenby MB and Pembroke MB.  

 

Across successive time–windows, the slow retreat of pertussis infection is evident across 

much of South Wales (Fig. 4.14), with the onset of mass vaccination serving to force the 

significant reduction in number of cases across all districts in the region, as chains of 

transmission are severely disrupted or broken. In response, maps for time–window six to 

nine exhibit a notable transformation in the colour shading of many districts, as the red 

patches of high incidence fade to yellow and blue as the years with routine vaccination 

against pertussis begin to mount, and cases fall dramatically in number. A steep decline in 

pertussis incidence is observed in Carmarthenshire during the vaccine era, with the 

combination of effective public health interventions and the sparely populated, rural nature 

of the county serving to eliminate chains of pertussis transmission across urban and rural 

districts alike. Stubborn, localised pockets of relatively high pertussis activity are notable in 

districts such as Pembroke MB and Haverfordwest MB in Pembrokeshire, Llanelli MB in 

South-East Carmarthenshire near the Swansea urban area, Glamorgan. These districts 

also feature as areas of relatively high scarlet fever incidence in later time–windows during 

the study period.  
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Figure 4.14 Mean pertussis incidence (cases per 100,00 population) in the South Wales across nine 72-month time–windows, by local 

government district, 1940–1969. 
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4.5.3 Scarlet fever  

 

The most notable trend in scarlet fever incidence is the gradual yet consistent retreat of the 

disease across the region over successive time–windows (see Fig. 4.15). From time–

windows one to three, scarlet fever activity is primarily concentrated within the more dense, 

populous peri-urbanised valleys of Glamorgan and Monmouthshire directly north of Cardiff, 

in districts such as Rhondda MB, Caerphilly UD, Pontypridd UD and Mountain Ash UD. 

Elevated levels of scarlet fever incidence are also found in some of the more rural, sparsely 

populated districts of Carmarthenshire and Monmouthshire on either side of the Glamorgan 

border (Fig. 4.15). As the study period progresses, the gradual fall in scarlet fever incidence 

across the region begins to accelerate by time–window six, with notable drops in scarlet 

fever cases in urban districts located in the Valleys sub-region, as well as districts situated 

on the coast of the Vale of Glamorgan. Relatively high levels of incidence are found in the 

North Pembrokeshire area between time–windows one to six (Fig. 4.15), specifically in 

Cemaes RD, despite its remoteness and high level of population dispersion. This might be 

due to the districts location on the route to mid-Wales, the town of Aberystwyth and the 

popular Cardigan Bay, resulting in significant edge effects and spatial import of infection 

from the neighbouring county of Ceredigion.  

 

Coinciding with the vaccine-era for pertussis after the introduction of mass vaccination for 

that disease in 1957, scarlet fever activity continues to fall substantially from time–windows 

seven to nine (Fig. 4.15), with isolated pockets found most notably in Pembroke MB, which 

served as a ferry port and thus a gateway to and from the region, Ogmore and Garw UD in 

central Glamorgan, neighbouring Rhonda MB and slightly higher rates in the nearby 

Caerphilly and Pontypridd UDs, all districts tightly connected through commuter links by rail 

and road via Cardiff CB. In Northwest Pembrokeshire, scarlet fever incidence fell 

dramatically in the final three time–windows, with the vast majority of districts observing an 

incidence rate of below 50 cases per 100,000 population by time–window nine. 
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Figure 4.15 Mean scarlet fever incidence (cases per 100,00 population) in the South Wales across nine 72-month time–windows, by local 

government district, 1940–1969. 



Chapter 4: Exploratory Data Analysis 

183 

 

4.6 Spatial Synchrony: Lancashire Region 

 

4.6.1 Measles 

 

Figure 4.16 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of measles notifications for each Lancashire district and the regional mean 

over the remaining 124 districts, 1940–1969. The mean average correlation is 0.48, 

indicating an intermediate level of synchronicity across the region. Most correlation 

coefficients for individual districts are evenly spread between the values of 0.20 and 0.60. 

 
Sixty-seven of Lancashire’s 125 districts were found to have a correlation coefficient greater 

than the regional mean of 0.48 (see Fig. 4.16), indicating relatively higher levels of 

synchronicity. Several districts diverge from the pattern of regional measles activity despite 

their close proximity to endemic centres tightly correlated with the regional disease pattern. 

For instance, Billinge and Winstanley UD possesses an extremely weak correlation with the 
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regional dynamics at 0.07 while St Helens CB, which neighbours Billinge & Winstanley UD, 

has a relatively high correlation of 0.74. The largest sample correlation coefficient was found 

in Farnworth MB (0.83), located approximately 3.7km southeast of Bolton CB, the latter of 

which also recording a very strong positive correlation (0.82). Other districts which indicate 

a strong correlation with the regional average include Salford CB (0.81), Manchester CB 

(0.77), and Royton UD (0.77) (see Fig. 4.17). The analysis of spatial synchrony in measles 

activity in Lancashire indicates a high degree of synchronicity in districts of varying 

population sizes centred around Bolton CB, which forms part of Greater Manchester, with 

similar activity located in surrounding satellite settlements and in Manchester and Salford 

CBs with which Bolton has strong economic ties. 

 

In great contrast to Manchester CB and districts situated within the metropolitan hinterland 

of Greater Manchester, Liverpool CB was found to have a much weaker correlation with the 

regional average (Fig. 4.17), standing at 0.41. Liverpool CB is unusual among the more 

populous districts in the Lancashire region since successive major and minor epidemics 

were of almost the same height during the 1940s and 1950s. This difference has previously 

been attributed to Liverpool's relatively high birth rate and resultant rapid replacement of 

susceptibles after major epidemics (Grenfell et al., 1995; Grenfell et al., 2001), and goes 

some way to explaining why measles dynamics in Liverpool CB are notably less correlated 

with the regional disease pattern. 

 

It is therefore not so much the shape of the main epidemic but the pattern of intervening 

minor epidemics which varies among the cities. Differences between Liverpool and 

Manchester CBs in their phase relationship and epidemic behaviours reveals even 

geographically close communities of similar population sizes can have a completely 

different pattern during the minor and major epidemic years, due to within community 

disease dynamics and variations in levels of susceptible recruitment.    
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Figure 4.17 Geographical distribution of the ordinary sample correlation coefficient between 

annual counts of measles notifications for individual Lancashire districts and the regional 

average over the remaining 124 districts, 1940–1969. 
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Skelmersdale UD, on the edge of the Merseyside area north-east of Liverpool CB, has a 

notable negative correlation (-0.25), indicating a strongly asynchronous, divergent pattern 

of measles epidemics during trough periods for surrounding districts. As discussed in 

Section 3.10, the huge population growth experienced in Skelmersdale UD during the 1950s 

and 1960s, with significant numbers arriving primarily from the overspill population of 

Liverpool CBs all-year round, substantial growth in susceptible recruitment year-on-year 

accompanied by significant levels of commuting to neighbouring population centres and 

centres of employment created a unique stochastic dynamic resulting in a heavily localised 

pattern of measles activity without parallel among districts in the rest of the region. Apart 

from Skelmersdale UD, five other districts have a negative correlation. Two of these districts 

neighbour Preston CB (Fig. 4.17); Kirkham UD (-0.16) and Longridge UD (-0.10). These 

districts represent small, more remote urban communities which, due to their rurality and 

subsequent lower levels of connectivity and low population size facilitates the isolation of 

the local disease activity found in these districts and average pattern of measles activity 

found across the regional metapopulation.  

 

The other three districts with negative correlations districts are found in Northwest 

Lancashire (Fig. 4.17), notably small settlements in sparsely populated rural areas 

representing some of the most remote communities in the region. These are Grange UD 

(0.07) and Ulverston UD (0.09). These local populations find themselves cut-off from the 

greater regional metapopulation dynamics, acting as 'islands’ adrift from the ‘mainland’ 

metapopulation where disease activity is primarily concentrated within and surrounding 

Manchester and Liverpool CBs. The high degree of isolation, sparse population and lack of 

connectivity leads to highly irregular disease introduction events and significant spacing 

between epidemic outbreaks, resulting in a pattern of disease incidence highly divergent 

from the pattern found in more densely populated and better connected local populations in 

the more heavily urbanised areas of Lancashire. 



Chapter 4: Exploratory Data Analysis 

187 

 

4.6.2 Pertussis 

 

The mean sample correlation coefficient is 0.61, indicating a relatively high degree of 

synchronicity across the region’s districts (see Fig. 4.18), and a higher level than that found 

in relation to measles activity. Over half of Lancashire’s districts have a correlation 

coefficient greater than the regional average with strong synchronicity in disease patterns 

at a local level found across the region. Examples include Bootle CB, South-west 

Lancashire (0.76), Burnley CB, North-east Lancashire (0.78), Ulverston/North Lonsdale RD, 

North-west Lancashire (0.74), and Salford, South-east Lancashire (0.88).  

 

Figure 4.18 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of pertussis notifications for each Lancashire district and the mean average 

over the remaining 124 districts, 1940–1969. The results indicate the majority of districts 

experienced a high degree of synchronicity with the regional disease pattern, with 71 

districts across the region having a correlation coefficient greater than the regional mean 

average (0.61). 
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Significant positive correlations exist between large towns, cites and the regional average, 

despite the extensive distance between some of these settlements and notable differences 

in population size. For instance, Manchester CB (~650,000) has a correlation of 0.89 while 

Preston CB (~100,000) has a correlation of 0.87, despite the two districts being separated 

by a distance of 56km. Overall, there is a high degree of correlation among major towns 

including Salford CB, Rochdale CB (0.86), St Helens CB (0.85) and Warrington CB (0.84) 

(see Fig. 4.19). The strongest correlation with the regional disease pattern is found in 

Manchester CB and the neighbouring district of Droylsden UD (Fig. 4.19), both sharing a 

correlation of 0.89. This indicates the centre of regional disease activity appears to be 

located in Manchester and its surrounding metropolitan area.  

 

Unlike with measles activity, the demographic stochasticity within Liverpool CB does not 

result in an asynchronous cycle of pertussis epidemic activity, with the district registering a 

strong correlation of 0.86. This suggests a regular pattern of disease waves and epidemic 

activity common to both Liverpool CB and districts within and surrounding Greater 

Manchester (Fig. 4.19). None of the 125 districts in Lancashire were found to have a 

negative correlation (Fig. 4.19). The weakest sample correlation coefficient in relation to the 

regional average is found in Kirkham UD (0.04), located midway between Blackpool and 

Preston, while Longridge and Skelmersdale UDs were found to have a slightly higher, yet 

nevertheless weak, correlation of 0.14. Both Kirkham and Longridge UDs are small urban 

settlements with populations below 10,000, located within the predominantly rural areas of 

North and Central Lancashire (Fig. 4.19). The lack of connectivity of these small towns with 

the wider metapopulation dynamics of the region and nearby large towns alongside low 

population sizes may explain the lack of synchronicity with the regional disease pattern, 

with a higher number of fadeouts, of longer duration, and asynchronous outbreaks. The 

weak correlation found in Skelmersdale UD is expected given the demographic upheaval 

experienced during the study period, with significant numbers of Liverpool’s overspill 

population migrating to the Skelmersdale new town in the late 1950s and 1960s following  



Chapter 4: Exploratory Data Analysis 

189 

 

 

Figure 4.19 Geographical distribution of the ordinary sample correlation coefficient between 

annual counts of pertussis notifications for individual Lancashire districts and the regional 

average over the remaining 124 districts, 1940–1969.  
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the extensive slum clearance in the city, coupled with the high extrinsic variation in birth 

rates during the baby boom period. Such trends nurture highly asynchronous, localised 

disease activity, and drag Skelmersdale UD away from the regional disease pattern. Other 

weak correlations are found somewhat unexpectedly in districts situated in the Greater 

Manchester metropolitan area, such as Aspull UD (0.19) and Worsley UD (0.20), satellite 

settlements with small population sizes insufficient to maintain the chains of transmission 

for the disease. It is unlikely that distance is a causal factor in asynchronous outbreaks, 

since Worsley UD is situated only 9.25km from Manchester CB, while Aspull UD is located 

5.5km from Wigan CB, which has a strong correlation (0.66) with the regional disease 

pattern. 

 

In the rural periphery of the region in north-west, weak correlations are detected in multiple 

districts including Dalton-in-Furness UD (0.27), Poulton-le-Fylde UD (0.25) and Carnforth 

UD (0.20). These districts are characterised by highly dispersed, small populations 

surrounded by extensive rural areas. They are also remote communities, far removed from 

major industrial towns of South Lancashire, and the centre of the disease activity. These 

factors combine to ensure the less populous districts of Northwest Lancashire are only 

weakly correlated with the regional disease pattern. 

 

4.6.3 Scarlet fever 

 

The mean sample correlation coefficient between the annual counts of reported cases of 

each district and the remaining 124 districts is 0.60, indicating a relatively high degree of 

synchronicity in regional disease activity (see Fig. 4.20). Strong correlations exist between 

the most populous districts featuring large towns and cities across the Lancashire region 

and the average regional pattern of disease activity. 
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Figure 4.20 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of scarlet fever notifications for each Lancashire district and the mean 

average over the remaining 124 districts, 1940–1969. The results indicate a large proportion 

of districts experience a high degree of synchronicity with the regional disease pattern, with 

73 districts registering a correlation coefficient higher than the mean average for the region. 

 

For instance, Blackpool and Oldham CBs both have a correlation of 0.87 despite being 

separated by a distance of ~92km (see Fig. 4.21). However, both districts have significant 

spatial interaction with the endemic centre of Manchester CB. The strongest correlations 

among districts in Lancashire suggests that the regional epidemic centre of activity lies 

within the Greater Manchester area (Fig. 4.21), with Salford CB reporting the strongest 

correlation (0.93) closely followed by Manchester CB (0.92) and the much less populous 

suburban district of Prestwich UD (0.87), the latter of which is situated only 5km north of 

Salford CB and 5.3km north of Manchester CB. Neighbouring the aforementioned Oldham 

district, Chadderton UD located one mile west of Oldham and situated between the town 
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and Manchester CB, has the third strongest correlation in the region standing at 0.90. This 

indicates a corridor of disease spread westwards from Salford and Manchester CBs to the 

metropolitan hinterland. Other strong correlations among major towns and population 

centres include Liverpool CB (0.86), Rochdale CB (0.85), as well as smaller coastal towns 

within the Fylde area in the north-west of the region (Fig. 4.21), including Lytham St Anne's 

MB (0.84) and Morecambe MB (0.86) further north. The strong correlations in the various 

popular coastal resort towns located in the Fylde area and Blackpool CB indicates a high 

degree of synchronicity with other large towns further inland in the industrial heartlands of 

the Lancashire region, with disease patterns influenced by the repeated introductions of 

disease from visitors, commonly families with young children, from those industrial towns.  

 

Only one district was found to have a negative correlation: Skelmersdale UD (-0.06). 

Notably, this district is the only one of the 125 districts in the Lancashire region that reports 

a consistently negative correlation with the mean regional disease pattern for all three 

childhood infections (see Sections 4.6.1 and 4.6.1). This is indicative of highly 

asynchronous, localised disease activity, nurtured by a number of factors: rapid urban 

expansion and explosive population growth in the 1950s and 1960s, with Skelmersdale’s 

designation as a second wave new town for Liverpool CB and the wider North Merseyside 

conurbation’s overspill population, the high birth rates associated with the baby boom during 

this period, and consistent populations flows to nearby towns and cities to which inhabitants 

of Skelmersdale regularly commute These include Wigan and Southport CBs, as well as 

Liverpool CB. Together, these factors ensured almost constant asynchronous localised 

disease activity in Skelmersdale UD, and the district’s regular departure from the regional 

mean. 
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Figure 4.21 Geographical distribution of the ordinary sample correlation coefficient between 

annual counts of scarlet fever notifications for individual Lancashire districts and the 

regional average over the remaining 124 districts, 1940–1969.  
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Despite their close proximity to Liverpool and Manchester CBs respectively, the districts of 

Rainford UD (0.07) and Blackrod UD (0.08) have virtually no correlation with the regional 

disease pattern observed in major towns and other less populous districts located within the 

Merseyside and Greater Manchester conurbations (Fig. 4.21). This may be partly explained 

by their small population sizes, as villages located on the very edge of the urban periphery, 

both districts lack a susceptible population of sufficient size to maintain the pattern of 

disease activity observed in more populous nearby settlements, highly prone to regular 

fadeout events. The proximity of Rainford UD and Blackrod UD to multiple large towns also 

increases the likelihood of regular disease introduction from neighbouring areas in different 

phases of disease activity, fuelling asynchronous disease activity. For instance, Blackrod 

UD is closely situated to the populous districts of Wigan CB (6.3km) and Bolton CB 

(10.6km), while Rainford UD lies 5.6km north of S Helens CB and 11.3km from Wigan CB. 

 

Other districts in Lancashire which have notably weak correlations include Ulverston/North 

Lonsdale RD (0.07) and Carnforth UD (0.14). These districts are located in the region’s 

periphery, in the remote and sparely populated north-west of the region. With the limited 

connectivity of these districts coupled with highly dispersed local populations, an irregular 

disease pattern out of sync with the wider regional metapopulation dynamics are expected. 

Intriguingly, Middleton MB (0.27) has a low positive correlation despite its proximity to 

Manchester CB (Fig. 4.21), with the two districts sharing boundaries and Middleton serving 

as a major suburb of Manchester. Since Middleton MB is equidistant between Manchester 

and Rochdale CBs, situated approximately 8km from the centre of each district, the high 

degree of connectivity with both may result in a significantly elevated rate of re-introduction 

events. This would fuel more irregular minor epidemic outbreaks and overall disease pattern 

when coupled with the disease activity driven by intrinsic stochasticity. Notably, there are 

smaller local urban populations within the Greater Manchester conurbation which possess 

much stronger correlations with the regional pattern of scarlet fever activity than Middleton 

MB, such as Huyton-with-Roby UD (0.73) and Chadderton UD (0.90). 
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4.7 Spatial Synchrony: South Wales Region 

 

4.7.1 Measles 

 
The average mean correlation is 0.56 indicating a relatively high degree of synchronicity in 

measles incidence between districts and the mean regional pattern (see Fig. 4.22). This 

indicates a notably higher level of synchronicity in measles activity in South Wales 

compared to the Lancashire region.  

 

Figure 4.22 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of measles notifications for each South Wales district and the average over 

the remaining 74 districts, 1940–1969. The histogram indicates the majority of districts with 

a positive correlation above the mean calculated across all districts. Mean sample 

correlation coefficient = 0.56. 

 

Districts most strongly correlated with the average pattern of measles activity in South 

Wales tend to be concentrated in the urban districts neighbouring and in close proximity to 
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Cardiff CB (see Fig. 4.23), particularly to the northeast of Cardiff in the mining communities 

lying In the Rhymney Valley, on the Glamorgan−Monmouthshire county border close to the 

towns of Caerphilly and Newport. Gelligaer UD, located in the Rhymney River valley, 

9.65km north of Caerphilly UD, has the strongest positive correlation of the 74 regional 

districts, at 0.85, indicating a potential epicentre of measles activity. The district is closely 

followed by Newport CB (0.79), Caerphilly UD (0.79), Cardiff RD (0.79) and Cwmbran UD 

(0.75). Many of the high positive correlations with the mean regional pattern of measles 

activity are among districts situated within the South Wales valleys. These include Mountain 

Ash UD (0.75), Ogmore and Garw UD (0.77), Rhondda MB (0.74) and Merthyr Tydfil CB 

(0.73). Cardiff CB also exhibits a strong correlation at 0.74, compared to a slightly lower 

correlation in Swansea CB (0.69). Intriguingly, Carmarthen RD also boasts a very strong 

positive correlation (0.84), second only to Gelligaer UD. This could indicate a second 

potential source of measles incidence or a potential outlier, with the district brought into 

greater synchrony with the average regionals pattern due to the sheer number of timely 

reintroduction events from the more heavily urbanised, neighbouring districts in south-east 

Carmarthenshire and south-west Glamorgan and the major towns of Llanelli and Swansea. 

 

Other districts with low positive correlations include Tredegar UD (0.24), Blaenavon UD 

(0.26) and Porthcawl UD (0.33). All three districts are located close to key population 

centres such as Rhonda MB, Merthyr Tydfil MB and Cardiff CB (see Fig. 4.23). Both 

Tredegar and Blaenavon are located at the head of their valleys, the Ebbw and Llywd 

valleys respectively. Travel in valley communities is often linear in fashion and constrained 

by topographical obstacles, thereby limiting connectivity between settlements across larger 

geographical spaces, with movement often constrained to travelling northwards or 

southwards. For settlements at the head of valleys, such as Tredegar and Blaenavon, there 

is a greater degree of isolation with population flows from other key local populations limited. 

This phenomenon may isolate communities in valleys from heightened disease  activity 

found in other valleys and the coastal plain where corridors of infection may be found.
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Figure 4.23 Geographical distribution of the ordinary sample correlation coefficient between annual counts of measles notifications for individual 

districts in South Wales and the regional average over the remaining 74 districts, 1940–1969.
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However, the smaller local population sizes coupled with limited population flows and 

intrinsic variation in susceptible recruitment are likely to significant factors in reduced 

correlations with the regional disease pattern compared to more populous and densely 

populated valley towns and districts, such as Merthyr Tydfil and Caerphilly UD. 

 

No district in South Wales has a negative correlation with the average regional disease 

pattern (Fig. 4.22). The weakest correlation was detected in Newcastle Emlyn RD (0.04), a 

very remote, rural district on the edge of north Carmarthenshire and the wider regional 

metapopulation as whole (Fig. 4.23). The population size is low and highly dispersed, 

resulting in limited susceptible recruitment with chains of transmission within the district 

highly vulnerable to collapse resulting in long periods of fadeout without consistent 

introduction of measles from external sources and neighbouring districts. Cowbridge MB, 

despite its close proximity to Cardiff CB only 19.3km away, was also found to have an 

extremely low correlation (0.09). One may expect the disease pattern in Cowbridge MB to 

be similar to that found in Cardiff CB, with a similar strength of correlation with the overall 

regional disease pattern. Yet the disease pattern in Cowbridge is highly affected by the 

district’s extremely small population (~4,000) coupled with its location within the more 

pastoral areas of the Vale of Glamorgan, where the population is more highly dispersed in 

rural areas and suffers from poor connectivity with Cardiff. For instance, Cowbridge does 

not have a railway link with the city. These factors result in highly frequent fadeouts of 

measles and limited reintroduction events, with disease activity highly localised due to the 

poor accessibility of the local population. Due to the very small population size and low 

density, chains of transmission are not supported, with low transmission probability 

amplified by very limited susceptible recruitment. 

 

Districts detected with low positive correlations include Fishguard & Goodwick UD (0.26), a 

small local population located on the western edge of the South Wales region in 

Pembrokeshire, surrounded by sparsely populated rural districts and lying a significant 
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distance away from the major population centres. Another remote district featuring a low 

correlation with the region disease pattern is Llandovery MB (0.34), an insignificant 

population of around 2,000, located in the high rural, thinly populated rural area of North-

east Carmarthenshire. In Monmouthshire, the market town of Abergavenny MB has a 

correlation of 0.23, despite being much more closely located to the more significantly 

populated settlements in Glamorgan, and the major population centre of Newport CB 

located in South Monmouthshire. The limited correlation between Abergavenny MB and the 

regional disease pattern may reflect the asynchronous outbreaks associated with minor 

populations unable to support chains of transmission without introduction of disease from 

larger population centres. Additionally, such reintroduction events are constrained by the 

limited connectivity and remoteness of the predominantly rural, sparsely populated area of 

North Monmouthshire in which Abergavenny MB is situated. 

 

4.7.2 Pertussis 

 

The average correlation is 0.54 indicating a relatively high degree of synchronicity in 

pertussis incidence/disease patterns between districts and the average pattern in South 

Wales. Of the 75 districts in South Wales, 34 districts have larger correlation coefficients 

than the regional average (see Fig. 4.24). 

 

The strongest correlations with the average among districts in South Wales are found in 

Cardiff CB (0.81) and Swansea CB (0.79). Strong positive correlations are also found in 

less populated districts surrounding the urban centres (see Fig. 4.25). For instance, Neath 

RD (0.72) and Neath MB (0.71) which lie 9.65km north-east of the centre of Swansea CB, 

and Pontardawe RD (0.71) neighbouring Swansea CB 16.1km to the north all display strong 

positive correlations. 
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Figure 4.24 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of pertussis notifications for each South Wales district and the average over 

the remaining 74 districts, 1940–1969. Mean sample correlation coefficient = 0.54. 

 

Significant positive correlations are also found in the more urbanised districts of 

Carmarthenshire (Fig. 4.25), located in the southeast of the county, within 24km of Swansea 

CB, such as Llanelli MB (0.69) and Llanelli RD (0.67). Carmarthen RD has a strong positive 

correlation of 0.76, despite being very sparely populated and the population within districts 

being high dispersed, spread across numerous small villages and hamlets. This may be 

due to the spread of disease from the multiple districts, with more substantial urbanised 

populations which neighbour the district, and its close proximity to Swansea CB and its 

wider metropolitan area.  
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Figure 4.25 Geographical distribution of the ordinary sample correlation coefficient between annual counts of pertussis notifications for individual 

districts in South Wales and the regional average over the remaining 74 districts, 1940–1969.   
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Pontypridd UD (0.76), Abercarn UD (0.74), Risca UD (0.73), all closely neighbouring 

districts located in the south-eastern edge of the Valleys area are found to have relatively 

strong correlations with the average disease pattern in the region (Fig. 4.25). However, in 

contrast to measles, pertussis incidence in many districts in the Valleys area ae weakly 

correlated with the average. These include Rhondda MB (0.29), Caerphilly UD (0.29), 

Aberdare UD (0.25) and Gelligaer UD (0.37). The weak correlations in Rhondda MB and 

Caerphilly UD are of a surprise given their proximity and strong transport links with Cardiff 

CB as well as their status as key local population centres in the valleys, especially the 

heavily and densely populated Rhonda MB, which is only behind Cardiff and Swansea CBs 

in terms of population size, susceptible input and density. This finding suggests the impact 

of regular reintroductions resulting in minor epidemics and asynchronous disease activity, 

with infection being transmitted from Cardiff CB as well as surrounding local population 

centres.    

 

None of the 75 districts had a negative correlation (Fig. 4.24). Llwchwr UD (0.04) had the 

weakest correlation of all districts, a somewhat surprising finding since it neighbours 

Swansea CB, with the community located only 8.9km from the centre of Swansea. One 

might expect the district to be closely coupled with Swansea CB like its neighbouring 

districts of Llanelli RD and Pontardawe (RD), and more populous urbanised districts close 

by such as Llanelli MB and Neath MB. This may be explained by its small population and 

divergent rate and size of susceptible recruitment, resulting in asynchronous outbreaks 

despite disease reintroduction from neighbouring districts. Another potential factor could be 

significant underreporting in the district during the study period.  Very weak correlations are 

noted in isolated and lightly populated market towns dotted across the region. These include 

Llandovery MB (0.11) in North-east Carmarthenshire, Narberth UD (0.19) in Pembrokeshire 

and Monmouth MB (0.24) in North Monmouthshire (Fig. 4.25). All four districts have a mean 

population size below 6,000 inhabitants throughout the study period. Very weak positive 

correlations were also found in Newcastle Emlyn RD (0.09) and Narberth RD (0.22), both 
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districts with highly dispersed rural populations; the mean population size is approximately 

10,000 for the districts, both of which are located many dozens of kilometres away from the 

nearest large town or prominent population centre. Newcastle Emlyn RD is approximately 

64km north-west of Swansea CB, while Narberth RD is around 72.5km west.  

 

4.7.3 Scarlet fever 

 

Figure 4.26 Frequency distribution of the ordinary sample correlation coefficient between 

annual counts of scarlet fever notifications for each South Wales district and the average 

over the remaining 74 districts, 1940–1969. Mean sample correlation coefficient = 0.45. 

 
 
The mean correlation is 0.45, indicating a medium degree of synchronicity in scarlet fever 

disease patterns between districts and the average pattern in South Wales. Of the 75 local 

government districts in South Wales, 41 districts have larger correlation coefficients than 

the regional average (see Fig. 4.26).  
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The strongest correlations with the regional average among districts in South Wales are 

found in Rhondda CB (0.82) and Llanelli MB (0.81). High positive correlations are found 

primarily in districts which populate the Valleys (see Fig. 4.27), focused on the Rhondda 

Fawr, Rhondda Fach and Ebbw Fach Valleys. The former includes the aforementioned 

Rhondda MB, Llantrisant & Llantwitfardre RD (0.74) and Mountain Ash UD (0.70), while the 

latter contains Abertillery UD (0.77), Tredegar UD (0.77) and Ebbw Vale UD (0.75). Strong 

correlations are also present in Caerphilly UD (0.78) and Cardiff RD (0.77) at the foot of the 

Valleys area (Fig. 4.27). The high degree of synchronicity of these districts with the regional 

average suggests scarlet fever activity may originate and propagate from the Valleys. This 

notion is reinforced by the weaker correlations in the three major urban centres on the coast 

assumed to be centres of disease activity, Cardiff CB (0.59), Swansea CB (0.26) and 

Newport CB (0.32). Cardiff CB expectedly has a stronger correlation than the other two 

urban centres, due to the greater strength of interaction between the city and the valley 

communities, which are more tightly bound together due to strong social and economic links 

through industrial activities and Cardiff’s role as a key gateway to the Valleys area. 

 

Two of the 75 districts have a negative correlation (Fig. 4.26): Pembroke MB (-0.28) and 

Pembroke RD (-0.22). This may be partially explained by Pembroke’s status as a ferry port, 

resulting in population flows from all over the South Wales region and further afield. When 

combined with small populations of approximately 12,000 and 6,000 respectively, high birth 

rates and the districts’ remoteness in relation to the Valleys area and major population 

centres in Glamorgan, this creates fertile ground for significant asynchronous diseases 

activity, resulting in highly irregular disease patterns compared to the regional average. Two 

other districts located in Pembrokeshire, Cemaes RD (0.00) and Fishguard & Goodwick UD 

(0.04) report no correlation or almost non-existent correlation with the average (Fig. 4.27). 

Both districts are remote, with the former home to sparsely populated communities in the 

form of highly dispersed small villages and hamlets while the latter is on the western coastal 

edge of the region, lying approximately 138 km away from Cardiff CB.  
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Figure 4.27 Geographical distribution of the ordinary sample correlation coefficient between annual counts of scarlet fever notifications for 

individual districts in South Wales and the regional average over the remaining 74 districts, 1940–1969.
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Very weak correlations are noted in isolated market towns with small populations across 

the region, such as Cowbridge MB (0.06) in the Vale of Glamorgan and Usk UD (0.17) in 

Monmouthshire. Both districts have extremely small populations, ranging between 1,000 to 

2,000 inhabitants. Several other rural and remote districts in Monmouthshire such as Magor 

& St. Mellons RD (0.18), Pontypool RD (0.19), and Mynyddislwyn UD (0.21) possess very 

weak correlations, highly suggestive of irregular disease patterns.

 

4.8 Chapter Summary 

 
This chapter has provided a detailed exploratory and descriptive analysis of measles, 

pertussis and scarlet fever incidence in the Lancashire and South Wales regions across the 

study period. Several key trends are revealed. In the case of pertussis and scarlet fever, 

the incidence rates for both diseases decline gradually in both regions over the course of 

the study period, with notable accelerations in the fall of notification rates from the late 1950s 

onwards. The introduction of routine mass vaccination for pertussis in England and Wales 

in 1957 is followed by a dramatic fall in the magnitude of pertussis notifications in both 

regional metapopulations. However, the notification rate for measles remains relatively 

stable across the majority of the study period, with regional epidemic patterns found to be 

roughly synchronous. A significant fall in the notification rate is only noticed in the final two 

years of the study period, after the introduction of mass vacation for measles in 1968. 

 

Disease activity is overwhelmingly, and consistently, concentrated in  the heavily urbanised, 

industrial areas of each region. In the case of Lancashire, Manchester CB takes precedence 

closely followed by Liverpool CB, whereas in South Wales, visualisations of incidence 

patterns and sample correlations between individuals districts and the mean regional 

pattern of disease activity indicate Cardiff CB and the peri-urban industrialised valleys of 

Glamorgan are primarily the centre of disease activity. The time-series analysis of subsets 

of Lancashire and South Wales districts highlights the significant differences in wave-like 
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epidemic activity of childhood diseases among districts of varying population size. This 

trend is reflected in the analysis of spatial synchrony of epidemic behaviour at the local and 

regional level.  

 

For instance, Manchester CB exhibits a regular biennial pattern of major measles epidemics 

throughout the study period (see Fig 4.2B), characteristic of Type I waves of infection found 

in settlements above the endemic threshold. Manchester CB consistently reports the 

strongest correlation with the mean regional pattern of disease activity for all three diseases 

among the 125 Lancashire districts (see Figs. 4.17, 4.19 & 4.21). As a major urban 

population centre and dominant economic settlement within the Lancashire metapopulation, 

waves of infection radiate from the Manchester conurbation and inevitably travel down the 

population hierarchy, first affecting intermediate sized towns below the endemic threshold 

value with regular outbreaks of epidemic disease. These Type II waves are reflected by 

large town districts which neighbour or surround Manchester CB, such as Rochdale CB, 

Bolton CB and Middleton MB which, despite being significantly less populated than 

Manchester CB,  nevertheless report strong correlations with the mean regional disease 

pattern, most visibly for measles and scarlet fever (Figs. 4.17 & 4.21). With regards to 

pertussis, a similar pattern of disease spread is noted moving outwards from Liverpool CB, 

the other large population centre in the region, to surrounding districts in the Merseyside 

metropolitan area (Fig. 4.19). As one moves further away from the urban cores and beyond 

the metropolitan hinterlands where small satellite towns are well-connected with major 

population centres, irregular epidemics with extensive periods of disease fade-out, type III 

waves of infection, are the norm. As visualised and discussed in Sections 4.6 and 4.7, in 

both regional metapopulations, rural districts with highly dispersed, remote populations and 

limited urban settlement tend to report the weakest correlations with the regional disease 

pattern, indicative of communities that experience type III waves of infection. These districts 

are primarily found in northern portion of the Lancashire region, and the rural counties of 

Pembrokeshire and Carmarthenshire in South Wales (e.g., Figs. 4.19 & 4.27). 
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Overall, the exploratory analysis presented in this chapter indicates that disease 

persistence is shaped by factors which are intimately geographical in nature and are not 

purely driven by intrinsic demographic events or stochastic behaviour. The findings suggest 

that the spatial structure and geographical  distribution of subpopulations within the wider 

regional metapopulation play a key role in dictating the spatial synchrony of disease activity. 

Even in a region in Lancashire, where the Manchester and Liverpool conurbations operate 

as major endemic reservoirs for childhood infections, there are nevertheless pockets of 

epidemic activity and disease persistence which are driven by more localised relationships 

and dynamics that do not fit the classic Bartlett model of disease spread according to 

varying population size. This is indicated by the correlations between individual districts and 

the regional pattern of pertussis activity in South Wales, with strong correlations observed 

in urban districts situates in lightly populated, pastoral areas such as central 

Carmarthenshire and West Pembrokeshire. These areas are home to market towns such 

as Haverfordwest MB and Pembroke MB, settlements with populations of approximately 

10,000 or less. One would expect these districts would be subject to Type III waves, 

sporadic epidemic outbreaks with long periods of disease fadeout, due to the small 

susceptible populations which exist in these communities and their remoteness, many 

dozens of miles away from the major urban centres in the wider region. Thus, one would 

also expect to detect weak correlations with the regional pattern of disease activity in these 

districts, but that is not what is observed (see Fig. 4.25). 

 

In the following chapter, endemic threshold population estimates will be calculated and 

analysed to further explore the persistence dynamics in the two regional metapopulations 

beyond explanations centred on demographic stochasticity, instead focusing on the 

geography of the two regions which both possess complex hierarchical spatial structures 

and varying levels of connectivity between subpopulations. 
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Chapter 5: Spatiotemporal Changes in Endemic Thresholds 
 

5 Introduction 

 

This chapter presents the results of the ‘moving window’ empirical regression approach for 

estimating and tracking spatiotemporal changes in endemic threshold populations for 

measles, pertussis and scarlet fever in the Lancashire and South Wales regions. This 

approach was chosen to monitor systematic time changes in endemic threshold size in 

response to wider social, economic and demographic changes affecting the regional 

metapopulations throughout the study period (these changes are discussed in detail in 

chapter three). After describing the temporal changes in endemic threshold populations in 

each regional metapopulation, among low/high density and low/high connectivity districts, 

spatiotemporal patterns of percentage endemicity for each infection over nine time–

windows are visualised using choropleth maps and analysed. Finally, a discussion of the 

findings is presented, exploring factors which potentially shape regional differences in 

spatiotemporal changes in endemic threshold populations over time. A full breakdown of 

the statistical outputs of empirical regressions fitted, along with accompanying endemic 

threshold estimates for each time–window, can be found in Appendix III (Tables III.1–15). 

For pertussis and scarlet fever, endemic threshold estimates calculated using the best fitting 

regression model, an empirical log-log regression, are presented. For measles,  endemic 

threshold estimates obtained from empirical log-linear regression models are presented.  

 

5.1 Endemic Threshold Estimates: Measles 

 

5.1.1 Regions 

 
Lancashire: A mean regional endemic threshold population of ~292,000 is estimated for 

the Lancashire region, using a sample of 123 local government district populations. 
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Endemic threshold estimates range between 209,000–378,000 over the course of the study 

period (see Fig. 5.1). The largest endemic threshold population estimates were calculated 

in time–window two (378,000, 95% CI: 295,000–484,000) and time–window six (368,000; 

95% CI: 311,000-436,000). From time–window six onwards, the endemic threshold fell 

significantly, almost halving by time–window nine (Fig. 5.1). This final estimate is somewhat 

surprising given the introduction of mass, routine measles vaccination in 1968, which 

hypothetically should shrink the pool of susceptibles and fuel an increase in the endemic 

threshold population, albeit it a small increase given its introduction late in the time–window.  

 

Figure 5.1 Regional endemic threshold size estimates for measles in Lancashire and South 

Wales for nine time–windows, 1940–1969. Dots represent the endemic threshold estimate 

for each window. To show the time trend across time–windows, solid LOESS lines have 

been fitted to the points for each region. The pink shaded area denotes the vaccine era. 

Black = Lancashire, blue = South Wales. Dotted lines represent the 95% confidence 

intervals. 
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South Wales: The mean endemic threshold value for South Wales across the nine time–

windows is ~1,390,000. By time–window two, the estimated threshold population had risen 

to ~1,795,000 (95% CI: 1,277,000-2,523,00), falling markedly to 826,000 (95% CI: 627,000-

1,088,000) in the next window. Over the course of successive time–windows, the endemic 

threshold population estimates grew substantially (Fig. 5.1), peaking at 2,370,000 (95% CI: 

1,706,000-3,288,000) in time–window six. In the penultimate time–window, the endemic 

threshold population fell significantly once more, to 855,000 (95% CI: 613,000-1,1,92,000). 

This was followed by a slight recovery in the final time–window (Fig. 5.1). 

 
 

5.1.2 Low Density Districts 

 

Figure 5.2 Endemic threshold size estimates for measles in low density districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. 
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Lancashire: Among low density districts in Lancashire, the mean endemic threshold 

population size across the nine time–windows is 614,000. The estimated endemic threshold 

value in time–window one is 523,000, increasing dramatically and peaking at 1.8 million in 

the following window (1943-48). Across successive time–windows, the endemic threshold 

fell substantially in value (see Fig. 5.2), to 416,000 by time–window five, before staging a 

modest recovery in time–window six. By the ninth and final time–window, the endemic 

threshold population had more than halved to 306,000 (Fig. 5.2). 

 

South Wales: The mean threshold population size among low density districts in South 

Wales across the nine time–windows is approximately 2,250,000. After the opening time–

window, precipitous drops in endemic threshold size are observed in time–window three 

(789,000; 1946-1951) and  time–window eight, falling to (847,000; 1961-66). In the ninth 

and final time–window, the endemic threshold population stages a substantial recovery (Fig. 

5.2), increasing to 2,560,000. 

 

5.1.3 High Density Districts 

 

Lancashire: Among high density districts in Lancashire, the mean endemic threshold 

population size across the study period is ~270,000. Across the nine time–windows, 

endemic threshold estimates remain relatively constant (see Fig. 5.3), with the lowest 

endemic threshold size observed in time–window eight (215,000; 95% CI: 165,000-

281,000), and the highest estimate  in time–window six (330,000, 95% CI: 251,000-

434,000). 

 

South Wales: Among high density districts, the mean threshold population size over the 

full duration of the study period is 1,150,000.  Similar to low density districts, significant falls 

in the size of the endemic threshold population are observed around time–window three 
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and time–window eight (Fig. 5.3). However, these falls in endemic threshold size are not 

met by sizable recoveries in the following time–window. For instance, after falling from 

2,010,000 (95% CI: 1,325,000-3,024,000) in time–window seven to 864,000 (95% CI: 

578,000-1,290,000) in time–window eight, the endemic threshold population of high density 

districts stages no recovery, only falling further to 690,900 (95% CI: 468,000-1,016,000). 

 

Figure 5.3 Endemic threshold size estimates for measles in high density districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. 

 

Reporting of finding continues on the next page. 
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5.1.4 Low Connectivity Districts 

 

Lancashire: Among low connectivity districts, the mean endemic threshold size is 466,000 

over the course of the study period. In the first time–window (1940-45), the endemic 

threshold size was approximately 377,000 (95 CI%: 281,000-506,000), jumping to 745,000 

(95 CI%: 513,000-1,084,000) in the following time–window before declining across 

successive time–windows (see Fig. 5.4), falling to 412,000 (95 CI%: 307,000-553,000) by 

time–window five (1952-57)., Endemic threshold estimates continue to gradually fall, with a 

final estimate of  374,000 (95 CI%: 271,000-518,000) in time–window nine.  

 

Figure 5.4 Endemic threshold size estimates for measles in low connectivity districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. 
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South Wales: Among low connectivity districts, the mean regional threshold population size 

across the nine time–window is 3,800,000. In the opening time–window (1940-45), the 

estimated endemic threshold value is 3,070,000, doubling in time–window two to 

~7,000,000 before falling substantially in time–window three (Fig. 5.4), mirroring the pattern 

among low density districts (see Fig. 5.2). In this vein, there was a recovery in the endemic 

threshold population across successive windows, before another dramatic decline in time–

window eight, reaching a low of 1,400,000 (95% CI: 792,000-2,470,000). A sizable recovery 

in the endemic threshold population is observed in the final time–window (Fig. 5.4). 

 

5.1.5 High Connectivity Districts 

 

Figure 5.5 Endemic threshold size estimates for measles in high connectivity districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. 
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Lancashire: Among high connectivity districts in the Lancashire region, the mean endemic 

threshold population size across the study period was 236,000, ~35,000 lower than high 

density districts. Between time–windows one and seven, endemic threshold estimates 

ranged ~200,000–300,000 (see Fig. 5.5), before falling slightly in the latter time–windows, 

to a low of 183,000 (95% CI: 148,000-226,000) in time–window nine. 

 

South Wales:  Among high connectivity districts, the regional mean threshold population 

size across the nine windows is 950,000. In time–window two, the endemic threshold 

population reaches 983,000 (95% CI: 629,000-1,537,000), before almost halving in size the 

following time–window, to 587,000 (95% CI: 403,000-854,000). This significant fall in time–

window three (1946-51) is followed by a substantial growth in threshold estimates across 

successive windows (Fig. 5.5), before declining markedly once more in time–window eight, 

falling by approximately two-thirds, from ~1,800,000 (95%CI: 1,1,60,000-2,792,000) in 

time–window seven, to 658,000 (95% CI: 413,000-1,049,000). 

 

5.2 Endemic Threshold Estimates: Pertussis  

 

5.2.1 Regions 

 

Lancashire: Among the full sample population of 123 districts in Lancashire, the mean 

endemic threshold population size in the pre-vaccine era (1940-1957) is approximately 

~156,000. After the onset of routine mass vaccination for pertussis, the mean endemic 

threshold value for the vaccine era (1958-1969) almost increased by a factor of three, to 

~431,000 (see Fig. 5.6). In time–window one, endemic threshold estimate is 125,000 (95% 

CI: 92,000-169,000); endemic threshold size remained relatively consistent in size until 

time–window six. From time–window six onwards, the introduction of vaccination saw the 

regional threshold population gradually rise across successive windows until peaking in the 

final time–window (Fig. 5.6), with an estimate of 461,000 (95% CI: 332,000-641,000). 
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Figure 5.6 Regional endemic threshold size estimates for pertussis in Lancashire and 

South Wales for nine time–windows, 1940–1969. The pink shaded area denotes the 

vaccine era. Black = Lancashire, blue = South Wales. Dotted lines represent the 95% 

confidence intervals. The pink shaded area denotes the vaccine era. 

 
South Wales: Among the full sample population of 74 districts in South Wales, the mean 

endemic threshold population size in the pre-vaccine era (1940-1957) is estimated at 

228,000. The mean endemic threshold value for the vaccine era (1958-1969) is an 

estimated population size of 1.46 million (see Fig. 5.6). In time–window one, the endemic 

threshold is 293,000. This value fell across successive time–windows to a low of 152,000 

by time–window four and recovered only marginally to 162,000 by time–window five (1952-

57). In the vaccine era, the endemic threshold population grew almost sixfold between time–

windows six and nine (Fig. 5.6), rising from 316,000 (95 CI%: 222,000-450,000) to a peak 

of 1,720,000 (95% CI: 1,114,000-2,483,000). 
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5.2.2 Low Density Districts 

 

Figure 5.7 Endemic threshold size estimates for pertussis in low density districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. The pink shaded area 

denotes the vaccine era. 

 

Lancashire: The mean endemic threshold population size in pre-vaccine era Lancashire, 

among low density districts, is estimated at ~171,000. After the onset of mass vaccination, 

this increased dramatically, almost tenfold, to a mean threshold size of approximately 

~1,070,0000 (see Fig. 5.7). The lowest estimate was observed in time–window two (98,000, 

95% CI: 53,000-181,000), concurrent with rising birth rates at the beginning of the baby 

boom (Fig. 5.7). Mass vaccination marks the beginning of an exponential increase in 

endemic threshold population size, rising from 579,000 (95% CI: 378,000-880,000) in time–

window five to 1,593,000 (95% CI: 672,000-3,774,000) in time–window nine. 
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South Wales: Among low density districts in South Wales, the mean endemic threshold 

population size in the pre-vaccine era is estimated at 241,000. In the vaccine era, the mean 

endemic threshold population had risen to ~1,700,000 (see Fig. 5.7). In time–window one, 

the endemic threshold value is 443,000 (95% CI: 166,000-1,188,000), before falling 

gradually to a low of 148,000 (95% CI: 91,000-240,000) by time–window five. Vaccination 

marks a period of significant growth, with the endemic threshold rising exponentially across 

successive time–windows (Fig. 5.7), peaking in time–window eight at approximately 

1,911,000 (95% CI: 993,000-3,828,000). 

 

5.2.3 High Density Districts 

 

Lancashire: Among the subset of high density districts in Lancashire, the mean endemic 

threshold population size in the pre-vaccine era is estimated approximately ~180,000. After 

the introduction of vaccination, the threshold population more than doubled, rising to a mean 

estimated threshold value of ~470,000. Size estimates for the endemic threshold population 

remain consistent across time–windows one to five (see Fig. 5.8). The onset of vaccination 

sees the endemic threshold population double in size between time–windows six and nine, 

rising to 376,000 (95 CI%: 256,000-552,000) in the final time–window. 

 

South Wales: Among the subset of high density districts in South Wales, the mean endemic 

threshold population size in the pre-vaccine era is estimated at ~224,000. In the vaccine 

era, this figure rises substantially, to approximately ~1.360,000 (Fig. 5.8). In time–window 

two observes a pre-vaccine era high estimate of 261,000 (95% CI; 147,000-471,000), 

before falling in successive time–windows to a low of 148,000 (95% CI: 96,000-230,000) in 

time–window four. Introduction of mass vaccination tremendous growth in the size of the 

endemic threshold population from time–windows six to nine, reaching a peak of 1,726,000 

(95 CI%: 888,000-3,356,000) in the final time–window. 
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Figure 5.8 Endemic threshold size estimates for pertussis in high density districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. The pink shaded area 

denotes the vaccine era. 

 

5.2.4 Low Connectivity Districts 

 

Lancashire: The mean endemic threshold population size in the pre-vaccine era is 

~157,000. In the vaccine era, this increases substantially to a mean threshold population 

size of approximately ~1,150,000 (see Fig. 5.9). In time–window one, the endemic 

population estimate  is 139,000 (95% CI: 97,000-199,000), with values ranging between 

120,000–160,000 in the pre-vaccine era. In the vaccine era, there is substantial threshold 

growth from time–windows six to nine (Fig. 5.9), increasing from 231,000 (95% CI: 168,000-

317,000) to a peak of 1,681,000 (95% CI: 950,000-2,976,000) by time–window nine. 



Chapter 5: Spatiotemporal Changes in Endemic Thresholds 

221 

 

 

Figure 5.9 Endemic threshold size estimates for pertussis in low connectivity districts in 

Lancashire and South Wales for nine time–windows, 1940–1969 Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. The pink shaded area 

denotes the vaccine era. 

 

South Wales: The mean endemic threshold population size in the pre-vaccine era is 

estimated at 369,000. After the introduction of vaccination, this increased substantially to 

an average threshold population size of ~2,180,000 (see Fig. 5.9). In time–window one, the 

endemic threshold value was estimated at 850,000 (95% CI: 321,000-2,020,000) falling 

significantly across successive time–windows to a low of just 126,000 (95% CI: 82,000-

195,000) in time–window five. However, the introduction of vaccination is followed by an 

exponential growth in endemic threshold population size (Fig. 5.9), peaking at 3,054,000 

(95% CI: 1,372,000-6,802,000) in the penultimate time–window.  
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5.2.5 High Connectivity Districts 

 

Figure 5.10 Endemic threshold size estimates for pertussis in high connectivity districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. The pink shaded area 

denotes the vaccine era. 

Lancashire: The mean endemic threshold estimate during the pre-vaccine era is ~180,000, 

almost doubling in size during the vaccine era, rising to approximately ~350,000. The 

endemic threshold population in time–window one is 130,000 (95% CI: 77,000-221,000). 

There is minimal variation in threshold size between time–windows one to six (see Fig. 

5.10). The introduction of vaccination only sees a relatively small increase in the endemic 

threshold estimates compared to groupings of high density, low connectivity and low density 

districts in Lancashire, rising to 247,000 (95% CI: 167,000-366,000) by time–window nine. 
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South Wales: The mean endemic threshold population in the pre-vaccine era is estimated 

at ~223,000. In the vaccine era, this figure rose substantially to ~1.620,000. From time–

windows one to five, endemic threshold population estimates ranged between 168,000–

213,000 (Fig. 5.10).  In the vaccine era, the size of the endemic threshold population 

increases almost by a factor of five, rising from 430,000 (95% CI: 224,000-828,000) in time–

window six to 2,425,000 (95% CI: 1,097,000-5,359,000) by the final time–window. 

 

5.3 Endemic Threshold Estimates: Scarlet fever 

 

5.3.1 Regions 

 

Lancashire: Among the full sample of 123 districts in Lancashire, the mean regional 

endemic threshold across the nine time–windows is ~161,000. In time–window one, the 

regional endemic threshold population size is estimated to be 71,000 (95% CI: 57,000-

89,000). Over the course of the study period, the size of the endemic threshold population 

monotonically increases (see Fig. 5.11), with no fall observed in the size of estimates across 

successive time–windows. The endemic threshold population peaks in the ninth time–

window, at 213,000 (95% CI: 154,000-294,000). 

 

South Wales: The mean regional endemic threshold population size for South Wales 

across the nine time–windows is ~283,000. A similar pattern of growth in endemic threshold 

population is observed in South Wales as the one previously described in Lancashire over 

the course of the study period. In contrast to Lancashire, the growth in regional endemic 

threshold size increases exponentially in South Wales in from time–window six onwards 

(Fig. 5.11), rising from 192,000 (95% CI: 144,000-256,000) to a peak of 708,000 (95% CI: 

440,000-1,137,000) in time–window eight, before falling slightly in the final time–window 
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Figure 5.11 Regional endemic threshold size estimates for scarlet fever in Lancashire and 

South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue = South Wales. 

Dotted lines represent the 95% confidence intervals 

 

5.3.2 Low Density Districts 

 

Lancashire: For low density districts, the mean endemic threshold population across the 

nine time–windows is ~163,000. In time–window one, endemic threshold size is estimated 

to be approximately 89,000 (95% CI: 66,000-122,000). The size of the endemic threshold 

population gradually increases across successive time–windows (see Fig. 5.12), peaking 

at 293,000 (95% CI: 166,000-517,000) in the final time–window. Overall, the endemic 

threshold population increases by approximately 200,000 over the course of the study 

period. 
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Figure 5.12 Endemic threshold size estimates for scarlet fever in low density districts in 

Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue 

= South Wales. Dotted lines represent the 95% confidence intervals. 

 
South Wales: The mean endemic threshold population size for low density districts across 

the study period is ~412,000. Reflecting the overall regional trend of growth in endemic 

threshold population size, estimates gradually rise across the time–windows, from 69,000 

(95% CI: 45,000-104,000) in time–window one to 205,000 (95% CI: 130,000-322,000) in 

time–window six (Fig. 5.12). In following time–windows, the endemic threshold population 

increases exponentially, peaking at 1,303,000 (95% CI: 558,000-3,050,000) in time–

window eight, before falling in the final time–window, to 1,070,000 (95% CI: 449,000-

2,517,000). 
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5.3.3 High Density Districts 

 
Lancashire: The mean endemic threshold population across the nine time–windows is 

~126,000. In time–window one, the estimated endemic threshold population size is 

approximately 48,000 (95% CI: 34,000-68,000). The size of the endemic threshold gradually 

increases across successive time–windows (see Fig. 5.13), peaking at 241,000 (95% CI: 

127,000-455,000) in time–window eight before falling slightly in the final time–window (see 

Fig. 5.13). Overall, the endemic threshold population increases by ~ 150,000 over the 

course of the study period, with the greatest increases observed in later time–windows. 

 

 

Figure 5.13 Endemic threshold size estimates for scarlet fever in high density in Lancashire 

and South Wales for nine time–windows, 1940–1969. Black = Lancashire, blue = South 

Wales. Dotted lines represent the 95% confidence intervals. 
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South Wales: Among high density districts, the mean endemic threshold size is ~147,000. 

Estimates of endemic threshold population size rise monotonically across the time–

windows, from 106,000 (95% CI: 74,000-152,000) in time–window one to 186,000 (95% CI: 

130,000-322,000) in time–window six. In time–windows seven to nine, the rate of growth in 

the endemic threshold size increases (Fig. 5.13), peaking at 541,000 (95% CI: 297,000-

985,000) in time–window eight, before decreasing marginally in the final time–window. 

 

5.3.4 Low Connectivity Districts 

 

Lancashire: Among low connectivity districts, the mean endemic threshold population 

across the nine time–windows is ~157,000. In time–window one, the estimated endemic 

threshold population size is approximately 74,000 (95% CI: 57,000-97,000). The endemic 

threshold population size steadily increases across successive time–windows (see Fig. 

5.14), peaking at 257,000 (95% CI: 163,000-403,000) in time–window nine. 

 

South Wales: The mean endemic threshold population size is ~426,000. Growth of 

estimates of endemic threshold population size in low connectivity districts follow a similar 

trajectory as low density districts (see Fig. 5.12) and the wider regional endemic threshold 

population (Fig. 5.14). In time–window one, the endemic threshold size is estimated to be 

149,000 (95% CI; 101,000-220,000). The endemic threshold population falls marginally in 

time–window two, before growing steadily to 260,000 (95% CI: 158,000-428,000) in time–

window six. In time–windows seven to nine, the rate of growth in the endemic threshold size 

is notably greater and peaks at 1,195,000 (95% CI: 485,000-2,965,000) in time–window 

eight, before falling in the final time–window. 



Chapter 5: Spatiotemporal Changes in Endemic Thresholds 

228 

 

 

Figure 5.14 Endemic threshold size estimates for scarlet fever in low connectivity districts 

in Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, 

blue = South Wales. Dotted lines represent the 95% confidence intervals. 

 

5.3.5 High Connectivity Districts 

 
Lancashire: The mean endemic threshold population across the nine time–windows is 

~130,000. In time–window one, the estimated endemic threshold population size is 

approximately 74,000 (95% CI: 50,000-109,000). The endemic threshold population size 

steadily increases across successive time–windows (see Fig. 5.15), with only a negligible 

fall in time–window four, peaking at 218,000 (95% CI: 127,000-374,000) in the final time–

window.  
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Figure 5.15 Endemic threshold size estimates for scarlet fever in high connectivity districts 

in Lancashire and South Wales for nine time–windows, 1940–1969. Black = Lancashire, 

blue = South Wales. Dotted lines represent the 95% confidence intervals. 

 

South Wales: Among high connectivity districts, the mean endemic threshold population 

size is ~274,000. Estimates of endemic threshold population size rise monotonically across 

the time–windows, from 77,000 (95% CI: 50,000-121,000) in time–window one to 185,000 

(95% CI: 125,000-275,000) in time–window six. In time–windows seven to nine, the rate of 

growth in the endemic threshold population size increases substantially (Fig. 5.15), peaking 

at 718,000 (95% CI: 382,000-1,350,000) in time–window nine. 

 
On the following page, Tables 5.1 and 5.2 provide a concise statistical summary of the 

temporal changes in the estimated size of endemic threshold populations for the three 

childhoods infections in Lancashire and South Wales over the course of the study period.  
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Table 5.1 Temporal changes in the endemic threshold population size for measles, 

pertussis and scarlet fever in the Lancashire region, 1940–1969.  

  Time window one (1940-45)  Time window nine (1964-69)  

 

[+/-] 

(in 000s) 

 

Disease 

  

Estimate 

(in 000s) 

95% CI   

Estimate 

(in 000s) 

95% CI 

 Lower Upper  Lower Upper 

Measles  263 215 322  229 191 275 -34 

Pertussis  125 92 169  461 332 641 +336 

Scarlet 

fever 

 71 57 89  213 154 294 +142 

 
 
 
Table 5.2 Temporal changes in the endemic threshold population size for measles, 

pertussis and scarlet fever in the South Wales region, 1940–1969. 

  Time window one (1940-45)  Time window nine (1964-69)  

 

[+/-] 

(in 000s) 

 

Disease 

  

Estimate 

(in 000s) 

95% CI   

Estimate 

(in 000s) 

95% CI 

 Lower Upper  Lower Upper 

Measles  1,180 834 1,650  1,025 726 1,444 +155 

Pertussis  293 173 498  1,720 1,114 2,843 +1,427 

Scarlet 

fever 

 94 71 125  637 406 1,000 +543 
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5.4 Geographical Patterns of Endemicity: Lancashire  

 

For reference, details on the districts discussed in this section, their geographical location 

within their wider region and in relation to other districts, can be found in Appendix I (Figures 

I.1 and I.2). 

 

5.4.1 Measles 

 

Across all nine time–windows, the plots of the regional endemic threshold values reveal 

indicate relatively stable estimates for measles in Lancashire, with slight downward trend in 

later windows, particularly in high density and high connectivity time–windows. Fig. 5.16 

provides a visual display of percent endemicity for each individual district in the region, with 

a single choropleth map for each time–window. The figure paints a picture of the regional 

dynamics metapopulation dynamics which aids interpretation of the relative stability of the 

endemic threshold population for measles across the nine time–windows. 

 

The largest urban centres, Manchester CB and Liverpool CB, are fully endemic across the 

study period, experiencing no fadeout events. Salford CB, which immediately neighbours 

Manchester CB, and the districts of Bootle CB, Huyton-with-Roby UD and Crosby MB, that 

lie adjacent to Liverpool CB, all exhibit persistence levels of 80% and above. Other districts 

which display constantly high levels of measles persistence are the regional centres of 

Burnley and Blackburn CBs in Pennine Lancashire, Preston CB lying in the centre of the 

region, Blackpool CB on the North Lancashire coast, and Oldham CB on the edge of South 

Lancashire.  

 

From the plots in Fig. 5.1, a slight increase in the endemic threshold population for measles 

is detected between time–windows one and two, with the increase greatest among low 

density, low connectivity and high density districts (see Figs. 5.2, 5.3 and 5.4). The highest 
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levels of measles endemicity re concentrated within the urban centres of the Greater 

Manchester and Merseyside conurbations across all nine time–windows according to the 

patterns displayed in Fig. 5.16, with Liverpool CB and Manchester CB functioning as 

endemic reservoirs of infection. 

 

 

Figure 5.16 Temporal changes in percentage endemicity of measles in the Lancashire 

region, by district population, across nine time–windows (1940–1969). 
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Only 11 of the 125 districts in the Lancashire region during time–window two had a 

percentage endemicity of greater than 80%. The densely populated municipal boroughs 

and urban districts surrounding these settlements, such as Ashton-in-Makerfield UD, Eccles 

MB and Droylsden UD all saw a slight fall in endemicity. Compared to the first-time–window, 

there was a reduced level of persistence in districts across much of the northern half of the 

region, with a decline in measles endemicity in Lancaster MB, Morecambe & Heysham MB, 

Fleetwood MB in the north-west, and in districts situated in Pennine Lancashire in the 

eastern portion of the region, such as Colne MB and Burnley RD.  

 

From time–window three onwards (Fig. 5.16C), there is increased measles persistence is 

visible in the Merseyside area, with percentage endemicity rising above 80% in numerous 

districts surrounding Liverpool including West Lancashire UD and RD, Crosby MB, Bootle 

CB, Southport CB and Whiston RD. Across successive time–windows, most notably time–

windows seven to nine, measles persistence is consistently high, above 80%, in Southport 

CB and West Lancashire RD, south to Liverpool CB and immediately adjacent districts of 

Bootle CB and Whiston RD and stretching out to St Helens CB at the Eastern edge of the 

Merseyside metropolitan area. Like the higher levels of measles persistence in the 

Merseyside area over the course of the study period, the percentage endemicity of measles 

in districts in the Greater Manchester area rose steadily across the nine time–windows.  

 

The rise in measles endemicity in districts located in around the Merseyside area is mirrored 

by increasing levels of endemicity in the more sparsely populated and pastoral districts of 

North and Central Lancashire, specifically in the Fylde peninsula surrounding Blackpool CB, 

and South Ribble, in the districts neighbouring Preston CB. The gradual increase in measles 

persistence in the more sparsely populated and distant districts of Central and North 

Lancashire may explain the fall in the endemic threshold population for measles from time–

window six onwards in low density and low connectivity districts, coinciding with the sharp 

rise in birth rates and population growth in the latter half of the study period.  



Chapter 5: Spatiotemporal Changes in Endemic Thresholds 

234 

 

In the north-west corner of Lancashire lies Barrow-in-Furness CB, the most isolated sub 

regional population centre and county borough in the region, a travel distance of 81 km 

north of Liverpool CB, and 97km north-west of Manchester CB. Despite being surrounded 

by the coastline and rural, sparely populated districts, Barrow-in-Furness CB manages to 

sustain relatively high levels of measles persistence, with cases notified between 60-80% 

of reporting weeks in six of the nine time–windows. Lower levels are visible in time–windows 

two, five and six, coinciding with regional epidemic troughs and lower fertility rates.  

 

5.4.2 Pertussis 

 

In the pre-vaccine era time–windows (see Figs. 5.17A–E), pertussis endemicity tends to be 

concentrated within the two dominant urban centres of the Lancashire region, Liverpool CB 

and Manchester CB, and major sub-regional population centres including Blackpool CB, 

Burnley CB, Blackburn CB, and Preston CB. In rural districts and sparsely populated urban 

districts in North, Central and Pennine Lancashire on the eastern edges of the region, 

pertussis persistence is generally low, with less than 40% of reporting weeks notifying cases 

of the disease. Within these areas there are pockets of heightened disease activity and thus 

higher levels of persistence, normally found in mid-sized towns with populations of ~50,000, 

such as Barrow-in-Furness CB and Lancaster MB in the more isolated north-western portion 

of the region surrounding Morecambe Bay, and Colne MB in the Pennine Lancashire. 

Another notable feature is the intermediate levels of pertussis persistence in rural districts 

in West and Central Lancashire most likely sustained by frequent reintroduction events from 

sub-regional population centres with elevated epidemic activity, such as Preston CB, and 

overspill from the Merseyside conurbation and commuting between settlements in the 

hinterland and the larger population centres. Unsurprisingly, elevated levels of pertussis 

persistence were consistently found in the districts adjacent to the two endemic centres of 

Liverpool and Manchester CB during the pre-vaccine era.  
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Figure 5.17 Temporal changes in percentage endemicity of pertussis in the Lancashire 

region, by district population, across nine time–windows (1940–1969). 

 
Time–window four (Fig. 5.17D) saw the highest levels of pertussis endemicity overall across 

the region’s 125 districts, coinciding with the high birth rates at the beginning of the baby 

boom period in the late-forties and early-fifties, with significant activity in Liverpool CB and 

surrounding districts, including West Lancashire RD, Bootle CB, and Whiston RD. This 

pattern was also mirrored in the Greater Manchester area, with high pertussis persistence 
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found in Manchester CB which acts as an endemic reservoir for the disease, and very high 

levels of endemicity in Salford CB and Stretford MB districts which share boundaries with 

Manchester CB to the east. There are also high levels of persistence in districts in the 

metropolitan internals of the greater Manchester and Merseyside conurbations.  

 

With the advent of mass vaccination for pertussis by time–window six (Fig. 5.17F), the 

spatial impact of immunisation on pertussis persistence is almost immediate. Only two 

districts, outside the endemic centres of Liverpool and Manchester CBs report cases of 

infection in more than 80% of reporting weeks: Salford CB, which is essentially locked into 

the disease activity of its adjacent neighbour Manchester CB, and St Helens CB in 

Merseyside. In the previous time–window (Fig. 5.17E), six districts outside of the two city 

regions had endemicity levels greater than 80%. Relatively high level of persistence 

remained in Blackpool, Blackburn, Bolton and Bootle CBs, as well as smaller populations 

such as Middleton MB, Eccles MB and Huyton-with Roby UD where disease spread is 

heavily influenced by close proximity and consequent commuting to Liverpool and 

Manchester CBs. However, in the very next time–window (Fig. 5.17F), the pattern of 

pertussis persistence which defines the vaccine-era has already taken shape. There is a 

drastic fall in incidence and persistence across the region as immunisation removes 

significant numbers of susceptibles from local subpopulations. Vaccine uptake has been 

sufficiently high to vastly reduce endemicity of pertussis infection in major towns beyond 

South Lancashire that tend to play crucial roles in transmitting infection to the most 

peripheral districts on the northern and eastern edges of the region, such as Blackpool CB, 

Preston CB and Burley CB.  

 

Despite a relatively large population of around ~60,000 during the vaccine-era, Barrow-in-

Furness CB reports rare reintroduction events with significant periods of disease fadeout, 

with less than 20% of reporting weeks notifying cases. In the case of pertussis, the isolation 

of the large town of Barrow from the metapopulation network of large towns within the 
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southern and central portion of the region has an analogous effect as the small populations 

in rural and urban districts in the rest of the region which are much closer in travel distance 

to but do not neighbour or are not located within the Merseyside or Greater Manchester 

metropolitan areas. This lies in significant contrast to measles, with Barrow-in-Furness CB 

sustaining relatively high levels of measles persistence, with cases notified between 60-

80% of reporting weeks in six of the nine time–windows (see Fig. 5.16). One possible 

explanation for these different behaviours is that pertussis is less transmissible than 

measles (Kretzschmar et al., 2010). Estimates of the basic reproduction number (R0) for 

measles are very high, at around 20 (Wallinga et al., 2003), compared to 5-6 for pertussis 

(Kretzschmar et al., 2010), but the disease has a shorter infectious period than pertussis. 

Thus, infected individuals with pertussis produce fewer secondary infections during the 

infectious period on average, hence much lower levels of pertussis persistence are 

observed. Another possible explanation may be the underreporting of pertussis cases due 

to routine misclassification of cases of infection . 

 

Although Manchester CB and Liverpool CB are of sufficient size and density to maintain 

susceptible populations large enough to sustain circulation of pertussis during the 1960s, 

vaccine uptake significantly reduce the scale of infection being exported to neighbouring 

areas with vaccination drastically reducing incidence of pertussis cases. Only four districts 

outside of Manchester and Liverpool CBs (Bolton CB, St Helens CB, Huyton-with-Roby UD, 

Whiston RD) consistently report intermediate levels of pertussis persistence, meaning more 

frequent reintroductions of disease and fadeout events with reduced duration, across the 

time–windows which fully cover the period of mass vaccination (Fig. 5.17G-I).  
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5.4.3 Scarlet fever 

 

The general temporal pattern of scarlet fever endemicity in Lancashire districts across the 

study period has strong similarities with pertussis endemicity. Scarlet fever persistence is 

highest in the time–windows at the beginning of the study period in the 1940s, before falling 

progressively across succeeding time–windows, with a notably steep decline in endemicity 

from the late 1950s onwards. Geographically, the highest levels of scarlet fever persistence 

are found among districts situated within the Merseyside and Greater Manchester areas, 

with the urban cores of Liverpool and Manchester CB at the centre. Despite lower population 

densities and local populations of varying size, high levels of scarlet fever endemicity are 

found in districts immediately bordering Liverpool and Manchester, such as Crosby MB, 

Bootle CB and Salford CB, and other districts situated within a 25km radius of the two 

conurbations. Beyond the urban agglomerations found in the Southern portion of the 

Lancashire, scarlet fever persistence is found to be concentrated within the sub-regional 

centres of Burnley CB, Blackburn CB, Preston CB and Blackpool CB, stretching east-to-

west across Pennine Lancashire, South Ribble and to the coast of the Fylde peninsula. 

 

In time–windows one to four (see Fig. 5.18A, B), relatively high levels of scarlet fever 

persistence are notable within the sparsely populated, rural districts of Central Lancashire 

and West Lancashire, centred around the Ribble area, as well as in Barrow-in-Furness CB, 

the most distant county borough and Large town from the two endemic centres in Southern 

Lancashire, and around the Morecambe Bay area, in Morecambe and Heysham MB and 

Lancaster MB. Time–window two experiences the highest levels of scarlet fever persistence 

more generally across the Lancashire region; scarlet fever endemicity exceeds 80% of 

reporting weeks for all county boroughs with the exception of Barrow-in-Furness CB. 
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Figure 5.18 Temporal changes in percentage endemicity of scarlet fever in the 

Lancashire region, by district population, across nine time–windows (1940–1969). 

 

In time–window three, there is a notable retreat in scarlet fever persistence in the immediate 

post-war period in rural districts with highly dispersed population located in the more 

pastoral areas of the Lancashire region, such as  Pennine Lancashire, Central Lancashire, 

North Lancashire, and the Fylde area. Coinciding with the progressive decline in scarlet 

fever incidence across successive time–windows during the study period, scarlet fever 
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endemicity becomes increasingly confined within larger population centres, specifically the 

major industrial towns situated in South Lancashire. 

 
By time–window six (1955-1960), scarlet fever endemicity begins to notably decline in 

dense, heavily-populated urbanised districts with over 100,000 inhabitants, with endemicity 

falling below 80% of reporting weeks for the first time in the study period, with the exception 

of Manchester and Liverpool CBs. These districts include Oldham, St Helens, Salford, 

Bolton, Burnley, Preston and Blackpool CBs. Scarlet fever persistence in Central 

Lancashire and the surrounding districts around Preston CB, which border Wigan and 

Bolton CBs, also begins to drop sharply over the course of the final four time–windows. In 

the final three time–windows (1958-63, 1961-66 and 1964-69), Liverpool and Manchester 

CBs remain endemic centres for scarlet fever, from which disease is reintroduced regularly 

to immediately neighbouring districts and more sporadically to districts which form the 

metropolitan hinterlands and extend to the urban periphery of West Lancashire, Central 

Lancashire and the Rossendale Valley.  

 

With the exclusion of Liverpool and Manchester CBs, Bolton and Burnley CBs are the only 

districts which maintain relatively high levels of scarlet fever endemicity across the study 

period, with 60–80% of reporting weeks containing a case notification for the disease. Within 

the regional context, both districts are quite large, with populations of approximately 

100,000 inhabitants. Nevertheless, the high level of scarlet fever persistence is unexpected 

when one considers the distance between these districts and the endemic centres. Despite 

Bolton CB lying 16km northwest of Manchester CB, its reports higher levels of scarlet fever 

persistence than more densely populated districts located closer to Manchester CB. One 

would expect that these districts would share a more significant degree of interaction with 

Manchester CB than Bolton CB. The heightened levels of scarlet fever endemicity in Bolton 

may be indicative of intrinsic variation in the recruitment rate of susceptibles at the local 

level. This sustains autoregressive epidemic behaviour, generating localised outbreaks. 
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In contrast to Bolton CB, Burnley CB is situated considerably further away from Manchester 

CB, located 34km north in Pennine Lancashire in the eastern portion of the region and one 

would assume that, following the logic of Tobler’s first law of geography (Tobler, 1970), the 

enhanced distance between the endemic centre of Manchester CB and Burnley CB, would 

result in a much low level of scarlet fever endemicity, particularly given the very low 

incidence of scarlet fever infection by the final time–window and Burnley CB’s population 

size, which at ~100,000 is well-below the estimated endemic threshold population for scarlet 

fever persistence in time–window nine (see Table 5.1). A possible explanation is Burnley’s 

role as a key sub-regional population and economic centre, significant interactions with 

surrounding local populations from which people commute may result in a form of positive 

feedback loop. Additionally, Burnley CB’s role as a gateway district in Pennine Lancashire 

may influence higher levels of scarlet fever persistence due to edge effects. This complex 

mosaic of spatial interaction between Burnley CB, surrounding local communities and large 

populations across the regional border could result in a greater volume of transmission 

events and fuel higher levels of endemicity within the district. 

 

5.5 Geographical Patterns of Endemicity: South Wales 

 

5.5.1 Measles 

 

Fig. 5.19 displays the percent endemicity of measles in individual South Wales districts 

across the nine time–windows reveal the highest levels of disease persistence in the urban 

cores Cardiff CB, Swansea CB and Newport CB, as well as Rhondda MB, which consists 

of numerous hamlets, villages and small towns in two densely populated valleys. High levels 

of measles persistence are also visible in the urban periphery of the Cardiff and Swansea 

metropolitan areas, in districts such as Port Talbot MB, Penybont RD and Bridgend UD, 

which are situated between the two county boroughs. Across the districts in Pembrokeshire, 
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Carmarthenshire, Northwest Glamorgan and the western half of Monmouthshire, 

significantly lower levels of measles endemicity are present, alluding to the much more 

sparsely populated, isolated, and rural nature of the districts lying in these areas. 

 

Cardiff CB, and to a lesser extent Swansea and Newport CBs, serve the South Wales region 

as endemic reservoirs of infection for all three childhood diseases across the nine time–

windows. These densely populated districts act as persistence hotspots. In the context of 

measles, disease diffuses from these districts to immediately surrounding areas, most 

notably towns at the edge of the Vale of Glamorgan and the coastal plain such as Port 

Talbot MB, and settlements at the foot of the peri-urbanised Valleys such as Caerphilly UD, 

Pontypridd UD and Pontypool UD. Outside of the urban centres on the coastline, measles 

endemicity is most concentrated within the county of Glamorgan. Levels of measles 

endemicity appear to decline in line with population size along the settlement hierarchy. 

 

 Beyond the county borders of Glamorgan, there is a significant drop in measles endemicity 

in Pembrokeshire, Carmarthenshire, and eastern Monmouthshire. Measles persistence is 

most frequently recorded below 20% of the reporting weeks in time–windows for in Cemaes 

RD, Pembroke RD and Narberth RD in Pembrokeshire, as well as isolated urban districts 

in Carmarthenshire and Pembrokeshire which historically have functioned as small market 

towns and key sub-regional centres of connectivity in the more sparsely populated Western 

half of the South Wales region. These districts tend to have populations in the region of 10-

15,000 inhabitants. These include Llandilo and Llandovery UDs in North Carmarthenshire, 

and the coastal settlements in Pembrokeshire, such as Tenby, Milford Haven and Neyland 

MBs. Periodic increases in measles endemicity are notable in time–windows one (Fig. 

5.19A), two (Fig. 5.19B), and eight (Fig. 5.19H) in Carmarthen RD, neighbouring Llanelli 

RD, and in Haverfordwest RD, which may be due to an increase in the susceptible pool and 

replenishment rate during these time–windows, with time–windows two and eight coinciding 

with the two peaks of the baby boom period 
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Figure 5.19 Temporal changes in percentage endemicity of measles in the South Wales region, by district population, across nine time–

windows (1940–1969). 

Percentage 

endemicity 
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5.5.2 Pertussis 

 

Levels of pertussis persistence are generally lower across all districts in the South Wales 

region during pre-vaccination era time–windows than observed for measles infection (see 

Fig. 5.20A–E), which may partially be explained by the greater level of underreporting 

associated with pertussis and lower infectivity of the disease compared to measles 

(Clarkson and Fine, 1985). Prior to the onset of mass vaccination, Cardiff and Swansea 

CBs are key endemic centres of infection in which pertussis is sustained by consistent rates 

of susceptible recruitment and density, ensuring chains of transmissions do not fade out 

and consistent mixing between infected and susceptible individuals. Newport CB also 

features as a prominent district in terms of pertussis endemicity, above 80% of reporting 

weeks with minimal disease fadeout during time–windows three, four and five (Fig. 5.20C–

E). Newport CB is only 19km northeast of Cardiff, sharing a strong functional relationship 

with Cardiff CB and surrounding areas, such as Barry MB and Cardiff RD.  

 

In the initial three time–windows (Fig. 5.20A–C), relatively high levels of endemicity are 

notable in the densely populated mining district of Rhondda MB and Ebbw Vale UD, at the 

head of the valleys in North Monmouthshire/Glamorgan, with pertussis cases notified 

between 60-80% of reporting weeks. Port Talbot and Neath MBs in Glamorgan and the 

districts of Llanelli MB and RD in Southeast Carmarthenshire, lying adjacent to and 

surrounding Swansea CB, show intermediate levels of pertussis endemicity with cases 

reported in 40-60% of reporting weeks in time–windows three, four and five (Fig. 5.20C–E). 

For Port Talbot and Llanelli MBs, these levels of persistence are an increase on the levels 

displayed in time–windows one and two (Fig. 5.20A & B). In all other districts which 

comprise the county of Carmarthenshire, very low levels of pertussis persistence are 

registered; below 20% of reporting weeks in each time–window in the pre-vaccination and 

vaccine eras. This is not unexpected since Carmarthenshire covers a large proportion of 

the rural and sparsely populated hinterland of the South Wales region.  
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Figure 5.20 Temporal changes in percentage endemicity of pertussis in the South Wales region, by district population, across nine time–

windows (1940–1969). 
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The largest settlements in the county, outside of Llanelli MB, tend to be small market towns 

with populations below 15,000, and many districts feature highly dispersed populations 

inhabiting small, isolated communities.  

 

In Pembrokeshire, elevated level of pertussis endemicity are observed in Haverfordwest 

RD in time–windows three to six (Fig. 5.20C–F), and in Pembroke MB, in time–windows 

one, four, five and six (Fig. 5.20A, D– F).  All districts in Monmouthshire, in the eastern 

portion of the South Wales region, record low levels of pertussis endemicity across the nine 

time–windows, with no district reporting pertussis endemicity in more than 20% of reporting 

weeks. The low levels of pertussis persistence in Monmouthshire districts, such as Usk UD, 

Abergavenny MB, and Monmouth UD may be associated with the significant rurality of the 

county, resulting in considerable population dispersion and isolation of households in 

hamlets and small villages. The small populations in Monmouthshire towns were not of a 

sufficient size to maintain chains of transmission or generate epidemic activity without 

introduction from an external source.  

 

By time–window six (Fig. 5.20F), the effect of mass vaccination begins to be felt, with 

pertussis endemicity falling in the districts surrounding Swansea CB and Cardiff CB, in 

communities located in the Vale of Glamorgan and across the Valleys. In the remaining 

three time–windows (Fig. 5.20G–I), Pembroke MB is the only district in South Wales, 

outside of the county of Glamorgan, where pertussis endemicity levels are not below 20% 

of reporting week, despite its seemingly peripheral location on the western coastal edge of 

the region. This maybe largely due to the district’s ferry port status, resulting in  significant 

interaction between population flows from various locations and subpopulations, thus 

promoting spatial import of infection, and greater frequency of reintroduction events.  

 

By time–windows eight and nine (Fig. 5.20H, I), both Cardiff and Swansea CBs begin to 

experience periodic fadeouts, indicating all districts in South Wales have populations below  
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the endemic threshold by the end of the study period. This is due to sufficient vaccine uptake 

to effectively break chains of transmission and deplete the susceptible pool from which 

epidemic activity is ignited and disease spread is sustained. Beyond the urban centres on 

the Glamorgan coast, Rhondda MB continues to exhibit intermediate levels of pertussis 

persistence with more frequent fadeout of infection. Other valley districts in Glamorgan such 

as Ogmore & Garw UD and Mountain Ash UD, neighbouring the more heavily populated 

Rhondda valleys and Merthyr Tydfil MB, also exhibit slightly higher levels of pertussis 

endemicity than the vast majority of districts in South Wales, although pertussis is still only 

notified in only 20-40% of reporting weeks, with vaccination effectively halving the 

proportion of weeks in which cases were reported in these areas during the pre-vaccine 

era. Of the 74 local government districts in South Wales, only seven districts register a 

percentage endemicity greater than 20% and are all located within the county of Glamorgan. 

 

5.5.3 Scarlet Fever  

 

Scarlet fever endemicity in South Wales follows a similar pattern of retreat across the nine 

time–windows of the study period (see Fig. 5.21), although the nature of decline is less 

dramatic than the trend thoroughly described for pertussis. Persistence of the scarlet fever 

infection is concentrated in the most densely and heavily populated country of the region: 

Glamorgan. In time–windows one to five (Fig. 5.21A–E), Cardiff CB, Swansea CB, Newport 

CB and Rhondda MB serve as key endemic centres for scarlet fever. From these population 

centres, waves of scarlet fever infection radiate out into the surrounding areas, such as the 

valley districts of Mountain Ash UD, Ogmore & Garw UD, and Merthyr Tydfil CB, alongside 

districts on the coastal belt of Glamorgan, including Barry MB and Port Talbot MB. 

Collectively these districts in time–windows one and two exhibit higher levels of scarlet fever 

persistence (Fig. 5.21A, B), with 60-80% of weeks reporting cases of scarlet fever. There 

are also elevated levels of endemicity in Central and North Carmarthenshire, in Llandilo RD 
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and Carmarthen RD, and the small towns of Carmarthen MB, Llandilo MB and Llandovery 

UD, indicating regular reintroduction of infection, most likely from the more populated, urban 

areas lying adjacent to the Southeast. 

 

As time progresses, a gradual decline in scarlet fever persistence is evident in the Valley 

communities and districts immediately neighbouring urban centres of Cardiff CB, Swansea 

CB and Newport CB, and Rhondda MB. This parallels the falling incidence rates of scarlet 

fever across the study period (see Section 4.3, Chapter 4). Scarlet fever endemicity falls 

considerably following the first peak of the baby boom period in the late 1940s, between 

time–windows three and six. By time–window six (Fig.5.21F), high levels of persistence 

remain in the urban centres of Glamorgan along the coast, with diminishing levels of 

endemicity in surrounding districts and communities immediately north of Cardiff, a decline 

in persistence in Rhondda MB, and in Llanelli MB and RD in Southeast Carmarthenshire.  

 

From time–window six onwards, there is a significant drop in scarlet fever persistence 

across Glamorgan and neighbouring districts in Carmarthenshire. There is an increased 

number of fadeout events in Cardiff CB and Swansea CB, suggesting a consistent increase 

in the endemic threshold population for scarlet fever across the study period. Nevertheless, 

persistence of the infection is still highest in the two urban centres, although percentage 

endemicity in time–windows seven to nine (Fig. 5.21G-I) for the two districts does not rise 

above 80%. Pembroke MB remains the one district outside of Glamorgan in South Wales 

where percent endemicity does not fall below 20% in the final three time–windows, which 

is also an increase in the persistence of scarlet fever in the district compared to the previous 

six time–windows, in which the percent endemicity did not rise above 20% (Fig. 5.21A-F). 

Across the districts that make up the rest of Pembrokeshire, Carmarthenshire and 

Monmouthshire, fadeout periods last many years, with only irregular and extremely short-

lived reintroductions of disease, with the sparsely populated and highly dispersed 

populations in largely pastoral, rural districts unable to support chains of transmission.  
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Figure 5.21 Temporal changes in percentage endemicity of scarlet fever in the South Wales region, by district population, across nine time–

windows (1940–1969). 

Percentage 

endemicity 



Chapter 5: Spatiotemporal Changes in Endemic Thresholds 

250 

 

5.6 Discussion of Findings 
 

In previous empirical work analysing endemic thresholds and the persistence of childhood 

infections, most prominently the study of measles endemicity nationally in England and 

Wales but also in island populations, a range of endogenous and exogenous factors have 

been cited as influencing levels of disease endemicity and thus playing an important role in 

shaping the size of endemic threshold populations.  

 

With regards to endogenous factors, these include population density (Black, 1966; Cliff et 

al., 2000) and the size of the susceptible population (Bartlett, 1957, 1960), both of which 

affect the spacing of susceptibles within local subpopulations. The spatial distribution of 

susceptibles could fuel disease fadeouts if susceptibles are isolated in sparsely populated 

districts, often rural and peripheral within the context of a regional metapopulation, or 

nurture prolonged periods of epidemic activity, if individuals are spaced in way that enables 

the spread of infection without susceptibles being concentrated within one location. 

However, with term-time forcing, which concentrates children in settings such as primary 

schools (Hens et al., 2009; Rohani and King, 2010), one may expect the rapid exhaustion 

of susceptibles since a disease such as measles has a high level of infectivity (Anderson 

and May, 1991; Grenfell et al., 2002). Another key endogenous factor is birth rate, which 

fundamentally shapes the recruitment and replenishment rates of susceptible populations. 

Relatedly, fertility rate should also be seen as an important factor given the intimate link 

between the two, yet fertility rate is seldom considered explicitly as a measure for inclusion 

in stochastic modelling of childhood infections.  

 

In terms of exogenous factors, of key importance with regards to limiting growth in endemic 

threshold populations is the potential  for infection to be generated due to reintroduction, or 

‘colonisation’ events from external sources. This is dependent on the scale of geographical 

connectivity within the wider regional metapopulation, as determined by networks of mobility 
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and the spatial distribution of local subpopulations in the wider region. Internal mobility and 

geographical connectivity within regions have been routing cited as an important factor 

behind disease persistence, serving as a driver of local disease spread but also of rescue 

effects. These have been previously cited as an important mechanism for maintaining 

sufficient levels of spatial coupling to maintain disease endemicity in metapopulations 

(Bolker and Grenfell, 1996; Metcalf et al., 2013b), thus restricting endemic threshold 

population growth. The effective implementation of disease intervention, either through 

vaccination, use of antibiotics or improvements in hygiene in local subpopulation is another 

important factor for curtailing disease spread, restricting infection of susceptibles and thus 

in-turn reducing disease persistence. 

 

Many of these factors shall now be discussed within the context of the spatiotemporal 

changes observed in endemic threshold population size across the study period for the 

regional metapopulation of Lancashire and South Wales, and the changing nature of 

pertussis, measles and scarlet fever endemicity.  

 

5.6.1 Stochasticity & Vaccination 
 

The impact of extrinsic variation in birth rates on disease endemicity is demonstrable in the 

moving–window approach for both regional populations, with heightened levels of measles 

persistence coinciding with peaks in the fertility and consequent birth rate, most notably in 

time windows two and three (1943-48, 1946-51) and time windows seven and eight (1958-

63, 1961-66) (see Figs. 5.1 & 5.2). Pertussis endemicity is notably greater at the beginning 

of the postwar baby boom period before falling sharply on local and regional scales towards 

the end of this period, coinciding with the second and final spurt in birth rate in the early 

1960s (see Figs. 5.17 & 5.20). This reflects the onset of widespread, routine, vaccination 

which breaks down chains of transmission by diminishing the rate of susceptible 

recruitment, analogous to lowering birth rates, and caseloads, thus increasing the endemic 



Chapter 5: Spatiotemporal Changes in Endemic Thresholds 

252 

 

threshold.  The introduction of vaccination and high levels of coverage sustained sees the 

geographical  retreat of pertussis infection in both regions, falling back to the endemic 

centres of Liverpool CB, Manchester CB and Cardiff CB which maintain sufficiently large 

pools of susceptible to maintain infection.  

 

In South Wales, the two largest urban centres, Cardiff CB and Swansea CB, are 

approximately one-third of the population size of the two main endemic centres in 

Lancashire during the study period, Manchester CB and Liverpool CB. Both Cardiff and 

Swansea lack sufficient size and reach to swamp and dictate the endemic dynamics of the 

whole region beyond the densely populated county of Glamorgan where the two urban 

centres are situated, on the coastal plain. It is worth noting that an important control on the 

spatial dynamics of childhood infection spread is the average size of the host populations 

and the degree of heterogeneity in size across settlements (Bartlett, 1957; Grenfell et al., 

2001). Phase differences between subpopulations increase as peripheral districts within a 

regional metapopulation decrease in population size, which can result in asynchronous 

outbreaks which continues to fuel low levels of persistence in more rural areas. As 

demonstrated by consistently larger endemic threshold populations calculated for pertussis 

and measles in low connectivity districts in Lancashire and South Wales (see Figs. 5.4 & 

5.9), demographic stochasticity coupled with a high degree of internal isolation in the deep 

troughs between epidemics ensures significant fadeout of infection in isolated populations, 

even when situated within a larger regional metapopulation in which childhood infections 

such as pertussis and measles are endemic (Conlan and Grenfell, 2007). 

 

It is worth noting that there are other epidemiological parameters which may be important 

for the determination of the size of endemic threshold populations. These include the 

transmission term, the host life expectancy and the latent period of the infection (Dietz 

1982), all parameters absent from the regression models fitted to estimate endemic 

threshold size in the nine time–windows in each region. 
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5.6.2 Population Decentralisation & Depopulation 
 

A complicating factor in understanding local patterns of disease endemicity is undoubtedly 

the effects of population decentralisation, and internal migration within the Lancashire and 

South Wales regions. In the postwar period, these phenomena coincided with a significant 

decline in industrial activity which historically had been integral to structuring the distribution 

of the regional population. Furthermore, attempts to tackle significant overcrowding and  

slum  housing in the urban cores of large towns and cities across region,  by  constructing 

municipal  housing  estates  on  newly acquired land at the outskirts of the town in cities in 

neighbouring districts, also had a profound impact on the demographic profile of multiple 

urban and rural districts across the region during the study period. These factors are 

important to consider within the context of disease endemicity, since they impact rates of 

susceptible recruitment, density and the spatial distribution of susceptible populations on a 

local and regional level,  thus holding significant influence over the geographical persistence 

of infection. 

 

Despite high birth rates across much of the study period ensuring a continuous rate of 

susceptible replenishment in the two large endemic centres, Liverpool CB and Manchester 

CB both experienced significant depopulation during the baby boom era. This did not affect 

the endemic persistence of measles, scarlet fever or pertussis (prior to vaccination) in 

Liverpool CB and Manchester CB (See Figs. 5.16 & 5.18), due to the large population size 

and susceptible replenishment rate in these settlements, as well as the constant feedback 

in disease transmission from their metropolitan hinterlands. However, the depopulation of 

these two urban cores did have a profound impact on neighbouring and surrounding 

districts. For instance, in the case of Liverpool CB, thousands of individuals and households 

were moved to growing suburbs in the metropolitan hinterland as slums were cleared, in 

the outer boroughs of Merseyside. Destination districts included Widnes MB, St Helens CB, 

Bootle CB, Southport CB as well as part of West Lancashire RD. Moreover, Liverpool City 
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Council built and owned large several ‘New Town’ council estates (Farmer and Smith, 

1975), to which tens of thousands of people were moved to from Liverpool’s inner districts 

which form its core. Growing satellite districts in the metropolitan hinterlands of South 

Lancashire were also popular destinations for those leaving the economically devastated 

former mill towns of Central and East Lancashire. Internal migration in the Lancashire region 

during the 1950s and 1960s undoubtedly helped to change the spacing of susceptible 

individuals, redistributing susceptible populations in the wider regional metapopulation, 

sustaining high levels of persistence in the metropolitan districts of the South and eroding 

the endemicity of childhood infections within increasingly depopulated areas of North, 

Central and East Lancashire.  

 

Mirroring the demographic fallout of industrial decline in Lancashire, South Wales witnessed 

significant depopulation in the historically more densely populated mining districts of the 

Valleys in Glamorgan and West Monmouthshire, such as Rhondda MB, Ebbw Vale UD, 

Merthyr Tydfil CB, Pontypool UD, and Aberdare UD, among others. Surplus labour migrated 

from the Valleys to the metropolitan hinterland consolidating around Cardiff, Swansea and 

Newport on the coastal plain or externally to England and places further afield.  

Concurrently, significant transformations in the nature of agricultural work in the postwar 

period (Bowen, 1960; Davies et al., 2008) and consequent decline in employment also 

fuelled rural depopulation in peripheral districts in South Wales. For instance, districts in the 

pastoral areas of East Pembrokeshire (such as Cemaes Rd and Narberth RD), and in North 

and West Carmarthenshire (Carmarthen RD, Newcastle Emlyn RD) all experienced 

significant declines in their population size, further diminishing susceptible pools, low rates 

of susceptible recruitment and increasing the levels of dispersion between susceptible 

individuals. Surplus labour migrated either to the metropolitan hinterland or urban cores 

located on the coastal plain of Glamorgan or to locations external to the region. These 

trends helped to fuel further reductions in the persistence of childhood infections in large 

areas of the region, with the gradual decline of already limited susceptible populations and 
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rates of susceptible replenishment, thus stimulating significant growth in the endemic 

threshold populations for measles and pertussis in low-density and low connectivity districts. 

 

5.6.3 Mobility & Connectivity  
 

It is notable that growth in endemic threshold populations for pertussis and measles is 

significantly more limited across the study period when contrasted with the overall regional 

pattern of growth in threshold estimates for the two diseases, in particular pertussis, due to 

the introduction of mass vaccination by 1958, as well as in comparison to low connectivity 

districts. Visual analysis of endemicity patterns for pertussis reveal higher levels in districts 

immediately neighbouring Manchester CB and Liverpool CB during the vaccine-era time 

windows, with pertussis  endemicity mostly concentrated in the two endemic centres and 

elevated levels in satellite district which form  part of the wider city regions, stretching into 

West Lancashire in the case of Liverpool CB, and in the Rosendale valley with regards to 

Manchester CB. In the Lancashire region, there is much greater connectivity between major 

population centres and satellite settlements found in the metropolitan hinterland and urban-

rural periphery, which is reinforced in later time windows as the textile and manufacturing 

industries collapsed in many urban settlements in South and East Lancashire, which 

producing a transient population in search of economic opportunities within the Manchester 

CB and Liverpool CB conurbations.  

 

Elevated levels of pertuusis endemicity in excess of 20% of reporting weeks during the 

vaccine era time –windows are observed in the sub-regional population centres of Preston 

CB, Burnley CB and Blackpool CB which act as gateway districts for sustained pertussis 

persistence in areas which are home to more rural and sparsely populated settlements and 

district. Large towns such as Burnley are of sufficient population size and density to maintain 

significant levels disease persistence once infection has been introduced from external 

sources, such as via long range transmission from the endemic centres of the South. In the 
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case of Blackpool CB, its popularity as a family coastal resort during the postwar period 

may act to inflate the persistence of measles and pertussis and encourage greater spatial 

import of infection from transient individuals. This would explain the high levels of measles 

endemicity, and to a lesser extent pertussis endemicity, across all nine time –windows. 

 

Mobility in South Wales is limited by both the physical geography of the land but also by the 

significant spatial inter-dependence between valley communities in the regional hinterland 

and the urban centres situated on the coastal zone of Glamorgan. Much of the economic 

activity which drives the South Wales economy is concentrated within the two prominent 

urban centres on the coastal plain (Cardiff CB and Swansea CB) and in historic valley 

mining districts, which historically have been home to heavy industries centred on coal, 

copper and iron ore as well as steel manufacture. Although Cardiff CB and the Valleys were 

mutually dependent from the outset, the nature of this relationship had changed radically 

by the postwar period, with economic flows from the Valleys to urban centres on the coast 

decreasingly associated with products in search of an export market and increasingly of 

people in search of a labour market. Cardiff CB also has a close functional relationship with 

immediately surrounding towns, specifically the likes of Barry MB, Pontypridd UD and 

Caerphilly MB. Links between the city and the hinterland focused on the movement of labour 

hint at the importance of commuting not just as a key factor in population mobility but in the 

propagation of disease activity as carriers of infection.  

 

Nevertheless, close  functional relationships between Cardiff CB, Swansea CB and satellite 

settlements located in the Valleys or on the coastal plain of Glamorgan seemingly produce 

a highly connected, networked sub-regional population. This can be viewed as a ‘mainland’ 

population with the much more sparsely populated, lesser connected, and predominantly 

pastoral districts of Carmarthenshire, Monmouthshire and Pembrokeshire. This mainland 

grouping in the centre of Glamorgan is able to sustain higher levels of pertussis endemicity 

compared to districts in other countries at least until the introduction of mass vaccination 
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(see Fig. 5.20). In many ways, this historical and present economic co-dependency between 

communities of the Valleys of Glamorgan, and the major, urban, economic and 

administrative centres of Cardiff and Swansea on the county’s coastal plain manifested itself 

epidemiologically, with the persistence of childhood infections fuelled by the high levels of 

spatial interaction between communities of varying size which surround, or are tightly 

connected to, the large populations that function as endemic centres for disease.  

 

5.6.4 Spatial Structure 

 

The more widespread distribution of medium-sized to large population centres, ranging in 

population size from 50,000 to 150,000, across the Lancashire metapopulation (in some 

cases over 100km away from the endemic centres), fuels a higher rate of disease 

introductions via capillary connections to surrounding local settlements with highly 

dispersed, minor populations and rural districts. A notable example across the study period 

is Barrow-in-Furness CB. Despite the district’s high degree of isolation, situated in the far 

north-west of the study region approximately 150 km away from Manchester CB and 170km 

away from Liverpool CB in terms of travel distance, Barrow-in-Furness CB is still able to 

sustain relatively high levels of persistence for all three childhood infections, despite 

biological differences in infectious periods. Barrow-in-Furness is of sufficient population size 

sustain a rate of susceptible recruitment which allows the infections to propagate for 

prolonged periods in between transmission of diseases from external sources.  

 

One would expect spatial coupling to be greatest around the most largely populated district 

as mobility and settlements spatially cluster within and around large cities; the size of the 

districts tends to decrease with distance from core cities (Grenfell et al., 2001). This is true 

of both the South Wales and regional metapopulations which explains the persistence of all 

three childhood infections in the urban centres of Liverpool CB, Manchester CB and Cardiff 

CB. Such coupling can also result in a commuter-driven agglomeration effect in which large 
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centres not only export disease to surrounding districts and settlements, but also import 

infections from surrounding local subpopulations (Bartlett, 1957; Viboud et al., 2006; Meyer 

and Held, 2014). 

 

This is contrast to South Wales, where significant expanses of the region are heavily rural, 

agricultural and peripheral in nature, inhabited by isolated hamlets and villages with 

tremendously small populations which in some cases only number a handful of individuals 

(Jenkins, 2014). Notably, there are no population centres outside of the county of 

Glamorgan with a population greater than 50,000 inhabitants, with the exception of Newport 

CB, which clasps on to the county line between Glamorgan and Monmouthshire. For 

instance, no urban community or district in Pembrokeshire has a population greater than 

15,000 inhabitants during the period of study. With much of the economic activity in 

Pembrokeshire, Carmarthenshire and significant portions of Monmouthshire unrelated to 

the industrial activities and heritage of district communities in Glamorgan, primarily centred 

on agriculture, settlements in this areas are more isolated and populations are generally 

less mobile, without the economic motivations that would encourage greater connectivity 

with the more highly populated districts which surround the urban centres of Cardiff and 

Swansea, and the densely populated communities located within the Valleys.  

 

However, as noted in Sections 5.5.2 and 5.5.3, Pembroke MB seemingly shares a great 

deal in common with Barrow-in-Furness CB in Lancashire; two remote coastal towns with 

heightened rates of disease persistence beyond what would be expected in proportion to 

their population size and distance from the main regional urban centres from which 

epidemic waves of infection radiate. In the previous chapter, Sections 4.5.2 and 4.7.3, 

Pembroke MB stands outs as a pocket of stubborn localised persistence of pertussis 

infection, with disease activity negatively correlated with the average regional pattern 

observed. As previously mentioned in Section 4.5.3, Pembroke MB is home to a ferry port, 

which would have served as key gateway into South Wales and the United Kingdom from 
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Ireland during the mid-twentieth century before the arrival of cheap and accessible air travel, 

as well as an exit point from the region. Since the mean population size of Pembroke MB 

during the study period was ~10,000, the size at which one would expect long periods of 

disease fadeout and irregularly timed outbreaks, it seems very likely that the constant flow 

of individuals through Pembroke MB due to its status as a ferry port played a considerable 

role in elevating the levels of disease endemicity observed there.  

 

This population structure results in a much more significant degree of spacing between 

susceptible individuals in the South Wales region compared to Lancashire, thus increasing 

the likelihood of breakdown for chains of disease transmission, reducing the duration of 

epidemic outbreaks and the number of weeks in which cases of childhood infections are 

reported. This ultimately leads to more prolonged fadeout periods in the majority of rural 

and urban districts in South Wales which are not located in Glamorgan and necessitates a 

larger threshold population to maintain disease persistence to compensate for the high 

levels of population dispersion and small local population sizes.  

 

5.6.5 The Decline of Scarlet Fever 
 

An almost identical upward trend in the size of the endemic threshold population estimates 

for both regions, districts of varying levels of population density and varying levels of 

connectivity, over the course of the study period is observed for one of the diseases: scarlet 

fever (see Figs. 5.11-15). Additionally, there is a progressive region-wide decline in scarlet 

fever endemicity in Lancashire and South Wales over the course of the nine time periods. 

Endemicity is still greater in Lancashire, with lower endemic threshold population estimate 

for the disease  compared to South Wales, due to the greater levels of population density 

and higher rates of susceptible recruitment in the Lancashire region.  
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It is important to recognise both the morbidity and severity of scarlet fever had declined 

considerably by the beginning of the study period, compared to the start of the twentieth 

century when the disease was a leading cause of childhood mortality (Gale, 1945; 

McKinnon, 1946). The exact mechanisms for the diminishing caseload of scarlet fever up 

until the late 1950s, when the rate of decline suddenly becomes more precipitous, remain 

poorly understood. This is largely due to the dearth of research previously conducted in this 

area, despite the richness of morbidity data that is available in the Weekly Returns, perhaps 

reflecting the historical ack of public health attention paid to the disease after antibiotic 

treatments were introduced in the early postwar period. Perhaps one factor is improved 

nutrition, with the ending of rationing in the 1950s, recognising the findings of Duncan et al. 

(1996, 2000) which found the intensity of scarlet fever rose during periods of food shortages 

and high wheat prices during the latter half of the nineteenth century. Other factors include 

improvements in hygiene, decreased crowding as a result of population decentralisation 

and slum clearances in towns and cities, and introduction of antibiotics (Lamagni et al., 

2018). It is possible that evolutionary drift facilitated the proliferation of less pathogenic 

strains may have been a deciding factor in the historical trajectory of the disease (Lamagni 

et al., 2018). 

 

5.7 Chapter Summary 
 

It is important here to recap the key findings presented in this chapter. For both regional 

metapopulations of Lancashire and South Wales, lower endemic threshold values are 

estimated across all nine time windows among high density and high connectivity districts, 

with the endemic threshold population consistently lower among these districts than the 

overall regional endemic threshold population values estimated for the full sample of 

Lancashire and South Wales districts. In the context of Lancashire, these low endemic 

threshold estimates in densely populated, highly-connected districts are indicative of high 

levels of spatial coupling between the Manchester and Liverpool conurbations and 
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surrounding urban districts, which fuels a consistent transmission of infection to 

neighbouring areas and satellite towns further afield, similar to the spatio-temporal travelling 

waves of measles observed across England and Wales in the mid-to-late 20th century 

(Grenfell et al., 2001). Unsurprisingly, given the swamping effect of Manchester and 

Liverpool CB on the wider regional metapopulation, with a significant share of the overall 

regional population either residing or working within the two urban centres, endemic 

threshold population estimates are found to be consistently lower among all districts in the 

Lancashire region compared to South Wales, regardless of  population density or 

connectivity.  

 

Within the context of South Wales, the high endemic threshold values for time windows at 

the beginning of the study period visible for measles and pertussis in Sections 5.1 and 5.2 

can be attributed to a combination of low population density and high levels of internal 

isolation. Much of the region is rural, sparsely populated with high levels of dispersion. 

Immediately following World War II, the post-war baby boom resulted in substantial growth 

in the number and density of susceptibles within districts  of all sizes across South Wales, 

leading to a notable fall in the value of endemic threshold estimates. 

 

As evidenced in Section 5.2, the introduction of routine pertussis vaccination nationwide 

from 1957 onwards is followed by significant growth in the size of the endemic threshold 

population growth in both regional metapopulations. Mass vaccination served to increase 

regional endemic threshold populations by depleting the pool of susceptibles, thereby 

increasing the population size requirements for maintaining chains of pertussis 

transmission. Of the two regions, the impact of vaccination was considerably more dramatic 

in South Wales, with the endemic threshold population growing from 229,000 before routine 

pertussis vaccination to 1,461,000 in the vaccine era. This finding is unsurprising since the 

effective implementation of vaccination in more sparsely populated and widely dispersed 

communities effectively confined epidemic activity to Glamorgan, where a significant 
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majority of the regional population resides in urban districts in the Valleys or major 

population centres such as Cardiff CB. However, rescue effects restrict the growth of 

regional endemic threshold populations in the vaccine era (see Section 5.2), due to the 

constant reinfection of districts encouraging by tight spatial coupling between districts 

particularly in the southern portion of the region. This is despite an effective vaccine uptake 

rate of approximately 80% in England and Wales after the onset of routine vaccination 

(Amirthalingam et al., 2013), which theoretically should have significantly reduced the rate 

of disease reintroduction in Lancashire by eliminating chains of transmissions. This finding 

emphasises the significant role spatial structure and the geographical distribution of 

subpopulations within a regional metapopulation can play in dictating the size of the 

endemic threshold population, even with the introduction of a powerful tool with which to 

breakdown chains of disease transmission. This finding also raises a key question. Namely 

to what extent does geographical connectivity affect the estimation of endemic threshold 

population size and impede efforts to control disease via vaccination? This question and 

aforementioned findings will be explored in greater detail in the following chapter, analysing 

hotspots of pertussis activity in the pre-vaccine and vaccine eras in the Lancashire and 

South Wales regions. 

 

  



 

263 
 

Chapter 6: Hotspot & Survival Analyses 

 

6 Introduction 

 
In the following chapter, findings are presented for a hotspot analysis of spatial coupling on 

pertussis persistence in the pre-vaccine and vaccine eras for Lancashire and South Wales. 

Survival analyses are conducted using a Cox regression model and Kaplan-Meier curves 

to analyse differences in fadeout survival probability and times of disease reintroduction for 

Lancashire and South Wales in the pre-vaccine and vaccine eras. A discussion of the 

findings and the insights they generate is provided at the end of the chapter. The analyses 

presented here has since been published, in the journal Social Science & Medicine (Munro 

et al., 2021). 

 
 

6.1 Hotspot Analysis 

 

6.1.1 Spatial Correlation & Coupling Patterns 

 
Linear regression analysis reveals a negative association between TAFs and mean 

population size in Lancashire (R2 = 0.26) (see Fig. 6.1A) and South Wales (R2 = 0.17) (see 

Fig. 6.1B). Negative residuals were detected for 55 Lancashire LGDs and 31 South Wales 

LGDs in the OLS regression model, indicating districts with less-than-expected fadeout 

events related to population size, suggesting higher levels of pertussis persistence than 

would otherwise be expected. Moran’s I tests reveal that both Lancashire LGDs (Moran's I 

statistic = -0.03, p = 0.77) and South Wales LGDs (Moran's I statistic = -0.14, p = 0.15) with 

negative residuals are not significantly spatially auto-correlated. In Fig. 6.2A, a clearly 

defined spatial pattern of districts with inflated rates of pertussis reintroduction is not evident 

but does provide initial visual indication of infection fanning out from conurbations that serve 

as geographical reservoirs of infection for surrounding areas. 
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Figure 6.1 Total annual number of fadeouts (TAFs) against mean population size for the pre-vaccine era in Lancashire and South Wales. 

Circle size increases with mean fadeout duration. Black = positive residuals, grey = negative residuals. A: Lancashire, B: South Wales. 
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Figure 6.2 Pre-vaccine era: Districts with higher rates of pertussis reintroduction in relation to population size in Lancashire and South 

Wales, identified by red shading (‘hotspots’). A: Lancashire, B: South Wales. 

  



Chapter 6: Hotspot & Survival Analyses 

266 
 

In South Wales, districts with inflated pertussis reintroduction rates are not concentrated 

spatially and are distributed unevenly across the region in Southeast Carmarthenshire, 

Southeast Pembrokeshire, and patches of ‘the Valleys’ in Glamorgan and Monmouthshire. 

In general, these districts represent small and medium sized urban centres and market 

towns (see Fig. 6.2B).  

 

6.1.2 Disease Persistence 
 

LGDs with cases above the mean after the onset of vaccination act as a flag for likely 

importation due to enhanced spatial connectivity, and hotspots are categorised according 

to this criterion. Thirty-eight Lancashire LGDs reported more pertussis cases than the 

regional mean following the introduction of mass vaccination. Thirty-five of these hotspots 

had higher-than-expected rates of reintroduction in the pre-vaccine era. The hotspots vary 

considerably in population size (16,655–728,271) and display significant positive spatial 

autocorrelation (Moran's I statistic = 0.14, p <0.01). Fig. 6.3A shows pertussis hotspots in 

the vaccine era are concentrated mainly in the Greater Manchester and Merseyside 

conurbations, incorporating Manchester CB, Liverpool CB, and their surrounding districts. 

Several CBs in East and North Lancashire are also hotspots of pertussis persistence. 

 

Seventeen LGDs in South Wales were found with more pertussis cases than the regional 

mean in the vaccine era. Of the 31 districts identified as hotspots in the pre-vaccine era, 

only nine districts continued to exhibit signs of pertussis persistence in the vaccine era. The 

17 potential hotspots vary considerably in population size (21,039–264,663) and were not 

significantly spatially autocorrelated (Moran's I statistic = 0.09, p = 0.22). Vaccine era 

hotspots tend to be located within or surrounding ‘the Valleys’ area and include the largest 

population centres in South Wales (e.g., Cardiff CB, Swansea CB, Newport CB) and their 

neighbouring districts (Fig. 6.3B). Many of these districts contain key trunk roads and rail 

lines, important components of regional network connectivity.  
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Figure 6.3 Vaccine era: Districts reporting a higher number of pertussis cases than the regional mean in Lancashire and South Wales, 

identified by red shading (hotspots). A: Lancashire, B: South Wales. 
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6.2 Cox Regression: Rates of Re-Introductions 

 
In the pre-vaccine era, fadeout duration in pertussis hotspots was relatively consistent 

regionally, with fadeout periods on average lasting approximately two weeks before 

pertussis was reintroduced (see Table 6.1). Mean fadeout duration for other districts in 

Lancashire during this period was half the fadeout duration for other districts in South Wales, 

indicating an overall higher number of transmission events between and within 

subpopulations in Lancashire. The introduction of vaccination sees mean fadeout duration 

almost double in length for hotspots and triple for other districts in South Wales (Table 6.1), 

indicating a significant decline in transmission events by decreasing the susceptible pool 

through immunisation. In contrast, vaccine era hotspots in Lancashire experienced a 

marginal increase in mean fadeout duration, from 2 to 2.7 weeks (SD = 1.40). There is a 

significant increase in fadeout duration in other districts in the region, but this is still far lower 

compared to South Wales, standing at 10.6 weeks (SD = 26.55). 

 

Table 6.1 Mean fadeout duration (in weeks) for hotspots and other districts in Lancashire 

and South Wales, pre-vaccine era (1946-1957) vs. vaccine era (1958-1969). 

 
Mean fadeout duration (in weeks) 

 Pre-vaccine  Vaccine   Pre-vaccine  Vaccine 

Lancashire    

 

South Wales 

   

Hotspots 
1.96  2.73 

 

Hotspots 

2.03  4.21 

(Mean)     
(Mean) 

   

N 55  38  
N 

31  8 

SD 1.4  1.4  
SD 

0.71  1.81 

Other 

districts 

(Mean) 
3.27  10.62 

 

Other 

districts 

(Mean) 

7.43  19.93 

N 70  87  
N 

43  66 

SD 2.21  7.91  SD 6.62  26.55 
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Table 6.2 Cox regression model results: Rates of reintroduction in Lancashire and South 

Wales, pre-vaccine era (1946-1957) vs. vaccine era (1958-1969). 

  

Parameter Estimate SE HR 95% CI 

 

 

 

Lancashire 

 

Pre-

vaccine 

Population size  0.047** 0.023 1.048 1.003-1.096 

Susceptible input  -0.521 1.473 0.594 0.033-1.065 

Susceptible density  0.186 0.116 1.205 0.960-1.512 

Distance from endemic 

centre 

-0.008 0.011 0.992 0.970-1.014 

 

Vaccine 

Population size  0.040 1.041 1.041 0.983-1.102 

Susceptible input  0.257 1.293 1.293 0.048-3.510 

Susceptible density  0.190* 1.209 1.209 0.976-1.498 

Distance from endemic 

centre 

-0.042** 0.960 0.960 0.928-0.992 

 

 

 

South 

Wales 

 

Pre-

vaccine 

Population size  0.028 0.021 1.028 0.986-1.072 

Susceptible input  0.871 1.290 2.390 0.191-2.900 

Susceptible density  0.110 0.157 1.116 0.820-1.519 

Distance from endemic 

centre 

-0.013 0.009 0.987 0.970-1.005 

 

Vaccine 

Population size  0.181*** 0.058 1.198 1.069-1.342 

Susceptible input  -0.774 1.604 0.461 0.020-1.070 

Susceptible density  -0.070 0.196 0.932 0.635-1.370 

Distance from endemic 

centre 

0.005 0.014 1.005 0.977-1.034 

Note: *p <0.1 **p <0.05*** p <0.01 

 

 
The results of the multivariate Cox regression analyses reveal that population size makes 

a very marginal contribution to increasing the rate of disease reintroductions in hotspot 

districts in pre-vaccine Lancashire, a hazard ratio (HR) of 1.048 (95% CI, 1.003–1.096; p 

<0.05). This would suggest that larger population size is positively associated with the rate 
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of reintroductions. However, since the confidence interval for HR includes 1, these results 

indicate that population size makes a very small contribution. Neither susceptible input, 

density or distance from endemic centre are significant factors in relation to fadeout 

duration. This notably changes in the vaccine era; a HR of 0.96 (95% CI, 0.93-0.99; p <0.05) 

suggests increasing distance from endemic centres leads to a 4% decrease in the rate of 

reintroductions among hotspots. Susceptible density is associated with an increased risk of 

pertussis in the vaccine era (HR = 1.209,  95% CI, 1.003–1.096; p <0.1), although this 

association is weak in terms of statistical significance. In South Wales, there is no 

statistically significant difference between hotspots and other districts in terms of the rate of 

disease reintroduction. In vaccine era South Wales, population size was found to have a 

strong positive relationship with the rate of reintroductions in hotspots after holding the other 

covariates constant (HR = 1.198,  95% CI, 1.069–1.342; p <0.01). A full breakdown of the 

parameters and hazard ratios for the multivariate Cox regression models are presented in 

Table 6.2. 

 

6.3 Survival Analysis: Fadeouts 

 

6.3.1 Lancashire 

 

The estimated mean time to disease reintroduction in Lancashire in the pre-vaccine era is  

2.3 weeks for pertussis hotspots, as opposed to 3.2 weeks for other districts in the regional 

metapopulation. With the introduction of mass vaccination in 1957, there is marked change 

in the mean time to disease reintroduction in districts which are not defined as hotspots, 

rising to a mean of 9.6 weeks. However, there is only a negligible increase in the mean time 

to disease reintroduction in hotspots in the vaccine era, increasing to 2.8 weeks. The 

median survival time between the onset of a fadeout period and pertussis reintroduction is 

2 weeks for hotspot districts compared to 2.6 weeks for districts in the pre-vaccine era. The 

difference in median survival time is much more prominent after the onset of vaccination,  
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growing three-fold, to 7.8 weeks, in districts other than hotspots. Similar to the trend in mean 

survival time, there was only a marginal increase in median survival time of fadeouts in 

hotspots in the vaccine era, rising to 2.5 weeks. A full breakdown of summary statistics for 

survival probability in hotspots versus other districts in Lancashire in the pre-vaccine and 

vaccine eras can be viewed in Table 6.3.  

 

Figure 6.4 Kaplan-Meier survival curves for the cumulative risk of reintroduction of pertussis 

in hotspots of infection and other districts in pre-vaccine era (1946-1957) and vaccine era 

(1958-1969) Lancashire. Shading indicates 95% confidence intervals (CI) on the Kaplan-

Meier survival curves. 

 
Fig. 6.4 indicates clearly that fadeout survival probability is significantly greater among other 

districts in the vaccine-era that the pre-vaccine era, with a far lower time to diseases 

reintroduction. There is no difference in fadeout survival probability in hotspot districts after 

the introduction of pertussis vaccination in 1957. 
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Table 6.3 Summary statistics for mean and median survival times for fadeout periods in 

pertussis hotspots and other districts in Lancashire, pre-vaccine era (1946-1957) vs. 

vaccine era (1958-1969). 

 Summary statistics 

N Mean S.E. Median 

95% CI 

Lower Upper 

Pre-vaccine era       

Hotspots 90 3.197 0.196 2.60 2.41 3.07 

Other districts 35 2.292 0.237 2.00 1.67 2.60 

Vaccine era       

Hotspots 87 9.643 0.581 7.80 6.56 9.83 

Other districts 38 2.800 0.169 2.52 2.24 3.50 

 

Log-rank tests were performed to determine if there are statistically significant differences 

in the survival distribution of hotspots and other districts in the pre-vaccine and vaccine eras 

in the Lancashire and South Wales regional metapopulations. The expectation was that the 

introduction of mass vaccination would significantly reduce the number of pertussis hotspots 

and increase the length of time until pertussis is reintroduced, once the disease has faded 

out, from an external source. This assume that mass vaccination effectively breaks down 

chains of transmission and thus increases the size of the endemic threshold population 

required to generate and sustain a sufficient susceptible population to maintain endemicity 

of infection (Broutin et al., 2005; Beyer et al., 2012).  
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The log-rank test is testing the null hypothesis that there is no difference in the overall 

survival distributions between the groups in the population. In this analysis, the following 

hypothesis is tested: 

- H0: There is no overall difference in the overall survival distribution of pertussis hotspots 

and other districts in the Lancashire region in pre-vaccine and vaccine eras. 

- HA: There is a statistically significant difference in the overall survival distribution of  

pertussis hotspots and other districts in the Lancashire region in pre-vaccine and 

vaccine eras. 

 

Table 6.4 Results of log-rank test for difference in survival between pertussis hotspots and 

other districts in Lancashire, pre-vaccine era (1946-1957) vs. vaccine era (1958-1969). 

 Pre-vaccine era  Vaccine-era 

 N Observed Expected  N Observed Expected 

Other 

Districts 
90 90 100.8  87 87 117.6 

Hotspots 35 30 19.2  38 37 8.4 

𝝌𝟐   7.4    144 

df   1    1 

p-value   0.007    0.0005 

 
 
The results of the log-rank tests in Table 6.4 indicate that there is a statistically significantly 

difference in survival between hotspots and other districts in the pre-vaccine era (𝜒2= 7.4, 

p < 0.05). The number of observed hotspots exceeds the number expected by 11, from n = 
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19 to n = 30 hotspots. In the vaccine era, a statistically significantly difference in survival 

between hotspots and other districts is also detected (𝜒2= 144, p < 0.05). Thus, the null 

hypothesis is rejected. The large size of the chi-square test statistic produced by the log-

rank test indicates the data is a poor fit. Notably, only eight hotspots were expected in the 

regional metapopulation, yet 37 were observed. 

 

6.3.2 South Wales 

 
Table 6.5 Summary statistics for mean and median survival times for fadeout periods in 

pertussis hotspots and other districts in South Wales, pre-vaccine era (1946-1957) vs. 

vaccine era (1958-1969). 

 Summary statistics 

N Mean S.E. Median 

95% CI 

Lower Upper 

Pre-vaccine era       

Hotspots 23 2.123 0.122 2.19 1.80 2.45 

Other districts 51 6.806 0.607 5.32 4.55 6.78 

Vaccine era       

Hotspots 17 4.471 0.378 4.39 4.23 6.06 

Other districts 57 21.170 2.418 13.3 10.33 22.83 

 

The estimated mean time to disease reintroduction in South Wales in the pre-vaccine era 

is  2.1 weeks for pertussis hotspots, as opposed to 6.8 weeks for other districts in the 

regional metapopulation. With the onset of vaccination, there is a significant change in the 
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mean time to disease reintroduction in non-hotspot districts, increasing in length  by almost 

fourfold, to a mean of 21.2 weeks. The mean time to disease reintroduction in hotspots in 

the vaccine era doubles, but remains considerably shorter than other districts, increasing to 

approximately 4.5 weeks. The median survival time between the onset of disease fadeout 

and pertussis reintroduction is 2.19 weeks for pertussis hotspots, comparable to the median 

time for hotspots in Lancashire, while the median time for other districts in the pre-vaccine 

era is 5.3 weeks. In the vaccine era, the median survival time for fadeouts in pertussis 

hotspots is 4.39 weeks, compared to 13.3 weeks for other districts. A full breakdown of 

summary statistics for survival probability in hotspots versus other districts in South Wales 

in the pre-vaccine and vaccine eras can be viewed in Table 6.5. 

 

Figure 6.5 Kaplan-Meier survival curves for the cumulative risk of reintroduction of pertussis 

in hotspots of infection and other districts in pre-vaccine era (1946-1957) and vaccine era 

(1958-1969) South Wales. Shading indicates 95% confidence intervals (CI) on the Kaplan-

Meier survival curves. 
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Fig. 6.5 clearly indicates that fadeout survival probability is significantly greater among other 

districts in the vaccine-era that the pre-vaccine era, with a far lower time to diseases 

reintroduction. Despite the introduction of routine mass vaccination, there is also minimal 

difference in fadeout survival probability in hotspot districts in the vaccine era (1958-1969). 

 

Table 6.6 Results of log-rank test for difference in survival between pertussis hotspots and 

other districts in South Wales, pre-vaccine era (1946-1957) vs. vaccine era (1958-1969). 

 Pre-vaccine era  Vaccine-era 

 N Observed Expected  N Observed Expected 

Other 

Districts 

51 51 68.3  

 

57 57 70.5 

Hotspots 23 22 4.7  17 16 2.5 

𝝌𝟐   80.4    85.8 

df   1    1 

p-value   0.0005    0.0005 

 
 
Log-rank tests were performed to determine if there are statistically significant differences 

in the survival distribution of hotspots and other districts in South Wales in the pre-vaccine 

and vaccine eras. The following hypothesis was tested: 

 

- H0: There is no overall difference in the overall survival distribution of pertussis hotspots 

and other districts in the South Wales region in pre-vaccine and vaccine eras. 

- HA: There is a statistically significant difference in the overall survival distribution of  

pertussis hotspots and other districts in South Wales in pre-vaccine and vaccine eras. 
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The results of the log-rank tests in Table 6.6 indicate that there is a statistically significantly 

difference in survival between hotspots and other districts in the pre-vaccine era (χ2= 80.4, 

p < 0.05). However, the significant size of the chi-square test statistic produced by the log-

rank test indicates the data is a poor fit. The number of observed hotspots exceeds the 

number expected by 17, with 22 hotspots observed compared to an expected total of 

approximately five. A similar result is observed in the vaccine era, with a statistically 

significantly difference in survival between hotspots and other districts is also detected (χ2= 

85.8, p < 0.05), producing another large chi-square value. Notably, when rounded, only 

three hotspots were expected in the regional metapopulation, yet 16 were observed within 

South Wales during the vaccine era. 

 

6.4 Discussion of Findings 

 

The introduction of mass vaccination served to increase regional endemic threshold 

populations by depleting the pool of susceptibles, thereby increasing the population size 

requirements for maintaining chains of pertussis transmission. In both regions, mean 

fadeout duration doubled in pertussis hotspots and increased threefold for other districts, 

echoing Rohani et al. (1999)’s finding that the introduction of the pertussis vaccine in 

England and Wales served to significantly increase the duration of each individual fadeout. 

 

The results of the Cox regression analyses indicate vaccination serves to significantly 

reduce the effect of geographical coupling on disease persistence in South Wales, with 

increasing distance from endemic centres significantly associated with a fall in the rate of 

reintroductions among hotspots during the vaccine era. This finding is unsurprising since 

the effective implementation of vaccination in more sparsely populated and widely 

dispersed communities effectively confined epidemic activity to Glamorgan, where a 

significant majority of the regional population resides, in Cardiff CB, Swansea CB, and 

urbanised valleys. Limited connectivity across the wider region amplified the impact of 
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vaccination, with districts such as Haverfordwest MB and Llandeilo MB, key towns in 

Pembrokeshire and Carmarthenshire, becoming isolated from the broader metapopulation 

in the vaccine era and no longer presenting as pertussis hotspots. 

 

A noticeable finding in South Wales is the presence of districts located in Glamorgan which 

do not register as hotspots despite being bordered on all sides by districts with high levels 

of pertussis persistence during the vaccine era (Fig. 6.3B). It is possible that these sparsely 

populated districts, with high population dispersal and low rates of susceptible recruitment 

effectively act as barriers to local diffusion of pertussis, restricting epidemic disease activity 

and circulation to urban centres and surrounding districts with which they are tightly 

coupled. The high level of pertussis persistence observed in valley districts, such as Merthyr 

Tydfil CB and Gelligaer UD, may reflect the valleys functioning as corridors of infection, with 

disease spread driven by population flows between communities that move in a linear 

fashion, since rail lines and roads that tie valley communities together are restricted to the 

valley floor, constricted by topographical obstacles that loom on either side of the river 

valleys. This serves perhaps to increase the density of transient infectious individuals within 

intra-valley population flows.  

 

The high level of pertussis persistence in the Valleys detected by the hotspot analysis does 

not chime with the findings of the correlation analysis performed in Section 4.7.2, which 

indicated the mining districts in the Valleys were lightly correlated with the overall regional 

pattern of pertussis activity, with pertussis cases strongly correlated in either market towns 

or the larger urban centres located on the coastal plain in Glamorgan. However, it must be 

noted that the correlation analysis did not control for the spatial impact of vaccination, which 

would inevitably have significantly affected pertussis activity in the latter half of the time 

series. In future, an analysis of spatial synchrony of pertussis should be performed 

separately for the pre-vaccine and vaccine era time series, to facilitate a more informed 

comparison of findings between different methods of analysis.  
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The valleys of South Wales serve as an ideal candidate for future work exploring the 

epidemiological impact of regional transport connections and topography on the endemicity 

of childhood infections infection. The historic mining districts of Rhondda MB and Merthyr 

Tydfil CB represent divergent geographies valley districts, the former consisting of 

numerous hamlets, villages, while the latter represents a large, densely populated 

settlement at the head of the valleys. The geographical make-up of Rhondda MB may help 

to produce asynchronous pertussis activity at the district-level, between local 

subpopulations, ensuring high levels of persistence in the vaccine era, despite vaccination 

successfully serving to increase the endemic threshold population for pertussis by removing 

susceptibles from the wider population, as illustrated in Section 5.2, Chapter 5.  

 

With the exceptions of Llanelli MB and RD in Southeast Carmarthenshire and a handful of 

districts in Monmouthshire, hotspots of pertussis persistence are absent outside of 

Glamorgan during the vaccine era. This contrasts sharply with the period without disease 

intervention, in which hotspots of pertussis activity included market towns in Pembrokeshire, 

Carmarthenshire and Monmouthshire, such as Haverfordwest MB, Llandeilo MB, and 

Abergavenny MB, important local population centres located on the edges of the region and 

further inland in the hinterland. These districts operated as pertussis hotspots despite their 

low population sizes, most likely due to the spatial import of infection from the multiple 

surrounding hamlets and villages economically linked to the towns. The loss of these 

hotspots in the vaccine era may reflect the geographical synchronisation of pertussis activity 

achieved through high vaccination coverage, with sufficient coupling between such towns 

and neighbouring districts to ensure a significant fall in pertussis endemicity countywide.  

 

Moreover, vaccination is analogous to a significant reduction in birth rates. When coupled 

with declining fertility rates during the 1960s, this provides inhospitable conditions for the 

survival of pertussis infection, particularly in the relatively empty rural spaces beyond 

Glamorgan on the periphery of settlement, with highly dispersed populations. In these small, 
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isolated populations, demographic stochasticity ensures the elimination of pertussis in the 

deep troughs between epidemics outbreaks, which are dependent on reintroductions from 

other geographical areas. It is therefore unsurprising that the time to disease reintroduction 

extends considerably during the vaccine eras, as demonstrated by the analysis of Kaplan-

Meier curves and fadeout survival probability. With high levels of remoteness and very low 

rates of susceptible recruitment with vaccination diminishing existing pools of susceptibles, 

pertussis retreats to the more densely populated urban districts and areas of the region; 

rescue effects are unable to sustain infection beyond urban centres and their metropolitan 

hinterlands over long distances due to the absence of sufficient density of contact between 

individuals from ‘donor areas’ and susceptibles in ‘recipients’ subpopulations (Xia et al., 

2004). These conditions only serve to further the growth of endemic threshold populations 

over time.  

 

In Lancashire, the densely-populated districts at the heart of the region’s conurbations, 

Manchester CB and Liverpool CB, serve as key endemic centres for pertussis, where the 

high, sustained levels of susceptible recruitment coupled with more limited spacing between 

susceptibles prevents fadeout of infection. This supports previous findings discussed in 

Section 4.6.2, which revealed Manchester CB to possess the strongest correlation with the 

regional pattern of disease activity, not just for pertussis, but also true to measles and scarlet 

fever. This suggests that these urban centres are the endemic reservoirs from which waves 

of infection radiate out into the wider region. Endemicity patterns for pertussis in Lancashire 

visualised and described in the preceding chapter, in Section 5.4.2, reveal that pertussis 

only persists endemically in Manchester CB and Liverpool CB after the onset of vaccination, 

with a drastic fall in incidence and persistence across the regional metapopulation. 

immunisation diminishes the potential for susceptible recruitment among infants and 

reduces the density of susceptible populations, sharply increasing the size of the endemic 

threshold population. 
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In previous research on measles metapopulations in England and Wales (Xia et al., 2004), 

it has been implied that large urban centres play a disproportionately important role in 

‘donating’ infection to surrounding hinterlands since spatial coupling increases faster than 

linear with community size. This phenomenon may occur if the urban centres are 

disproportionately attractive in terms due to significant social or economic pull factors. 

Undoubtedly with the collapse of the textile industry across the Lancashire during the post-

war period, inflicting significant job losses in smaller cotton mill towns and settlements 

associated with textile manufacture, the urban centres of Manchester CB and Liverpool CB 

gained even greater prominence as the industrial engines of the region and providers of 

employment opportunities.  

 

The urban agglomeration of the metropolitan hinterlands of the Greater Manchester and 

Merseyside conurbations increases throughout the study period, with the growth of satellite 

settlements fuelled by families seeking economic opportunities in Manchester CB and 

Liverpool CB and by population decentralisation, with the clearance of thousands of unfit 

homes moving significant overspill populations from the urban cores to surrounding districts. 

For instance, districts such as Droylsden UD, Stretford MB and Middleton MB, which share 

contiguous borders with Manchester CB, became home to much of the city’s overspill 

population during the late 1950s and 1960s. The impact of the development of new towns 

for overspill populations from the Liverpool and Manchester conurbations on disease 

persistence is discussed in Section 5.6.2. Significant numbers of Liverpool’s overspill 

population migrated to the Skelmersdale new town in the late 1950s and 1960s, following 

the extensive slum clearance in the city. Coupled with the high extrinsic variation in birth 

rates during the baby boom period, the explosive growth of the and explosive growth of the 

district dragged disease activity in Skelmersdale UD away from the regional disease 

pattern, with highly asynchronous, localised epidemic outbreaks leaving the district very 

weakly correlated from the dynamics of the wider regional metapopulation. Within these 

contexts and complex inter-relationships between places, significant spatial interaction 
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exists between endemic reservoirs, large towns, and surrounding communities’, fuelling 

rescue effects. Rescue effects restrict the growth of the regional endemic threshold 

population for pertussis in Lancashire in the vaccine era (see Section 5.2), with constant 

reinfection of districts as a result of tight spatial coupling. This is despite an effective vaccine 

uptake rate of approximately 80% in England and Wales after the onset of routine 

vaccination (Amirthalingam et al., 2013), which theoretically should have significantly 

reduced the rate of disease reintroduction in Lancashire by eliminating chains of 

transmissions. This would explain the notable concentration of pertussis persistence within 

Liverpool and Manchester CB and their surrounding hinterlands in the vaccine era, and the 

much higher number of hotspots observed despite the relatively small population sizes of 

districts which neighbour the two endemic centres. 

 

Pertussis persistence dynamics in vaccine era South Wales and Lancashire generally 

conform to Bartlett (1960)’s model of disease persistence. The most populous settlements 

were more strongly coupled to the metapopulation at large, outweighing the adverse impact 

of distance decay. There is strong evidence that the Lancashire and South Wales regions 

represent classic examples of a core-satellite metapopulation, with source-sink dynamics 

explaining pertussis persistence and recurrent outbreaks of infection. These dynamics are 

clearly visible with the introduction of routine pertussis vaccination in 1957. The population 

flow between the ‘core’ districts of Manchester CB and Liverpool CB and ‘satellite’ districts, 

located within a distance of 24km of the two endemic centres, ensures pertussis persistence 

in less populated subpopulations due to high levels of geographical coupling and regular 

occurrence of rescue effects. In the South Wales regional metapopulation, the same 

dynamics are apparent between the core district of Cardiff CB, and to a lesser extent 

Swansea, and satellite districts situated within a 36km radius of the core. 
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6.5 Chapter Summary 

 

The introduction of routine mass pertussis vaccination nationwide from 1957 onwards was 

largely successful in breaking chains of transmission by depleting the pool of susceptible 

individuals, significantly reducing disease incidence. Thus, this increased the population 

size requirements for maintaining chains of pertussis transmission. The findings of the 

hotspot and survival analyses laid out in this chapter build upon those described in Sections 

5.2 and 5.5.2. In both the Lancashire and South Wales regions, mean fadeout duration 

doubled in pertussis hotspots and increased threefold for other districts, echoing Rohani et 

al. (1999)'s finding that the introduction of the pertussis vaccine in England and Wales 

served to significantly increase the duration of each individual fadeout. The Cox regression 

analyses also indicated vaccination reduced the effect of geographical coupling on disease 

persistence in Lancashire, with increasing distance from endemic centres significantly 

associated with a fall in the rate of reintroductions among hotspots during the vaccine era. 

Limited connectivity across the wider region amplified the impact of vaccination, with 

districts such as Haverfordwest MB and Llandeilo MB, key local population centres in 

Pembrokeshire and Carmarthenshire, becoming isolated from the broader metapopulation 

in the vaccine era and no longer suggesting pertussis hotspots.  

 

The methods presented here enables the study of regional and local transmission patterns 

which are fundamentally rooted in human mixing behaviour across spatial scales. 

Identifying spatial interactions that contribute to recurring epidemic outbreaks or sustaining 

disease persistence are vital for understanding the wider geographical picture in which the 

growth of the endemic threshold population is shaped. It is clear that the spatial impact of 

vaccination was to isolate persistent hotspots of infection located in the most heavily 

urbanised areas often regional populations, districts which continue to possess rates and 

densities of susceptible recruitment that can main disease circulation in the presence of 

growing immunisation coverage. However, pertussis hotspots in the vaccine-era, beyond 
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Manchester CB and Liverpool CB in Lancashire and Cardiff CB in South Wales, are 

seemingly dependent on tight spatial coupling with such urban centres to ensure a much 

more regular reintroduction of disease to facilitate the persistence of pertussis within the 

district. In the next chapter, a rich multivariate regression framework in the form of the HHH 

model will be utilised to further study the spatial spread and persistence of the three 

childhood diseases under study in this thesis within the two regional metapopulations, to 

develop a greater understanding of the processes and factors which influence the 

persistence of such infections during the study period.  
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Chapter 7: Endemic–Epidemic Modelling 
 

7 Introduction 
 

This chapter presents the results of endemic-epidemic modelling of pertussis, measles and 

scarlet fever incidence across nine time–windows in the Lancashire and South Wales 

regions, using various sub-model formulations of the HHH model, a multivariate time series 

model for infectious disease count data. For a full description of the modelling procedure, 

model formulations fitted and analyses performed here, refer back to Section 2.10, Chapter 

2. The presentation of results is followed by a discussion of findings, exploring what results 

obtained from the HHH models reveal about the spatial spread of childhood infections in 

Lancashire and South Wales across the study period. The purpose of this analysis is to 

elucidate greater understanding of potential mechanisms and factors behind long-term 

spatiotemporal changes in endemic threshold size in regional populations. 

 

Firstly, two baseline models are fitted and described for pertussis, measles and scarlet fever 

counts in the regional populations of Lancashire and South Wales for each time–window: 

the endemic HHH model and the first-order HHH model. The simplest baseline model, the 

endemic HHH model only includes an endemic component, with an endemic mean and a 

multiplicative, district-specific offset in the form of population fractions that serve as the key 

demographic covariate accounting for the scaling of subpopulations. The log-linear 

predictor includes a linear trend and accounts for basic seasonal behaviour. A more 

complex baseline model, the first-order HHH model contains three components: the 

endemic, autoregressive, and spatiotemporal components. This spatiotemporal or 

‘neighbourhood’ component, models the flow of infection from neighbouring districts, with 

transmission weights assumed to be known. Local districts distribute cases of infection 

uniformly to all first-order neighbours, limited by adjacency order. Thus, disease spread is 

considered a purely contiguous process. 
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The two central assumptions of the first-order HHH model formulation, that epidemic spread 

of infection only travels from directly-adjacent neighbouring districts and that all districts 

have the same potential for importing cases from neighbouring subpopulations, are overly-

simplistic and problematic for several reasons. Firstly, these assumptions ignore wide 

variation in the size, density and replenishment rate of susceptible populations in local 

districts within a regional metapopulation. Secondly, it is well understood that humans have 

the ability to travel further and most often to metropolitan areas due to factors such as 

employment (Meyer and Held, 2014). Thirdly, it has been widely demonstrated that the 

spread of childhood diseases such as measles is a product not just of contiguous diffusion 

but a mixture of diffusion processes, including hierarchical diffusion of disease (Trevelyan, 

et al., 2005; Cliff et al., 1998). The first-order HHH model formulation was modified to embed 

more realistic networks of spatial interaction and disease spread into the modelling 

framework and analyse to what extent human mobility, viewed as an important driver of 

epidemic spread, influences the persistence of childhood infections in regional 

metapopulations with divergent spatial structures and demographic characteristics. 

 

7.1 Results: Lancashire Region 

 

7.1.1 Pertussis 

 

Overdispersion 

For the endemic HHH model, there is significantly greater levels of overdispersion across 

all time–windows compared to all other model formulations (see Fig. 7.1), with the least 

level of residual heterogeneity detected in time–window four (𝜓 =  2.07, 95% CI: 2.02–2.12). 

From time–window four onwards, the overdispersion parameter rises consistently (Fig. 7.1) 

to a high of 𝜓 = 5.20 in time–window nine (95% CI: 4.94–5.45). The overall mean 𝜓 

parameter = 3.42 (95% CI: 3.30–3.55). The exclusion of epidemic components from the 

HHH endemic models results in a significant rise in residual heterogeneity and an inferior 
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fit to the count data, suggesting pertussis incidence is primarily driven by epidemic activity. 

First-order, gravity and power-law HHH models all report significantly lower overall levels of 

overdispersion than the endemic model formulation (see Fig. 7.1). The mean overdispersion 

parameters are 𝜓 = 1.81 (95% CI: 1.72–1.89) for the first–order HHH model, 𝜓 = 1.79 (95% 

CI: 1.70–1.87) for the gravity HHH model, and 𝜓 = 1.76 (95% CI: 1.68–1.84) for the power-

law HHH model. 

 

Figure 7.1 Dispersion parameter estimates for five HHH model formulations analysing 

pertussis spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

Pink shaded area denotes the vaccine era. 

 

The power-law + gravity HHH model provides the optimum fit in terms of residual 

heterogeneity, with the exclusion of random effects (Fig. 7.1). The mean 𝜓 parameter is 
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1.67 (95% CI: 1.59–1.74). Underdispersion is observed in across time–windows one to four 

(Fig. 7.1), indicating less variation than would be expect based on a negative binomial 

distribution. This may be result of autocorrelation among adjacent districts, with clusters of 

heightened pertussis activity as well as clusters of sparsely populated, isolated districts with 

no cases dotted across the region. However, with the advent of vaccination, from time–

window six onwards, overdispersion features rises considerably in successive windows 

(See Fig. 7.1). With the inclusion of random effects in the power-law + gravity HHH model 

formulation, the mean overdispersion rises to 𝜓 = 1.30 (95% CI: 1.23–1.36).  

 

Distance Decay  

 

Figure 7.2 Distance decay parameter estimates for three HHH model formulations 

analysing pertussis spread in Lancashire, across nine time–windows (1940–1969). Dots 

represent estimates for each window. Fitted lines have been applied to the points for the 

time trend. Pink shaded area denotes the vaccine era. 
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For the power-law HHH model formulation, the mean distance decay parameter estimate is 

𝑑 = 2.46 (95% CI: 2.26–2.65). Inclusion of a gravity component leads to a significant fall in 

the mean distance decay parameter (𝑑 = 1.49, 95% CI: 1.32–1.66). Addition of random 

effects sees a substantial decline in the overall strength of the distance decay parameter in 

compared to previous HHH model formulations (see Fig. 7.2), with the greatest fall in the 

final two time–windows (Fig. 7.2). The extended power-law + gravity RI HHH model 

formulation has a mean distance decay parameter of 0.69 (95% CI: 0.58–0.81).  

 

Gravity Parameter 

 

Figure 7.3 Gravity parameter estimates for three HHH model formulations analysing 

pertussis spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

Pink shaded area denotes the vaccine era. 
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A mean 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter value of 0.65 (95% CI: 0.58–0.71) is calculated across the nine 

time–windows after extending the power-law HHH model to include a gravity component. 

The lowest parameter estimate is found in time–window two, at 0.30 (95% CI: 0.19–0.41). 

Despite an initially high parameter estimate in time–window one (0.69; 95% CI: 0.64–0.75), 

the strength of the estimates falls in time–windows two and three (see Fig. 7.3). From time–

windows four onwards there is a gradual, consistent increase in the strength of the 

parameter across successive time–windows, peaking at 0.92 in time–window eight (95% 

CI: 0.86–0.98). 

 

Using the gravity HHH model formulation, the 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter estimate is extremely 

weak across the first six time–windows, prior to vaccination. After negative values are 

observed for the 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter in the first five time–windows, from time–window six 

onwards there is a large jump in the strength of the parameter estimate (Fig. 7.3), from 0.08 

(95% CI: -0.04–0.20) in time–window six to 0.67 (95% CI: 0.48–0.86) by time–window nine. 

The mean value of the 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter across the nine time–windows is 0.07 (95% CI: -

0.06–0.20).  

 

With the addition of random effects to the power-law + gravity HHH model, there is a slight 

fall in the overall mean 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  value, to 0.55 (95% CI: 0.41–0.68) compared to 0.65 for the 

power-law + gravity HHH model. Yet, with the advent of vaccination, there is a significant 

rise in the strength of the 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  estimate (Fig. 7.3), increasing from 0.22 in time–window 

five to 0.86  (95% CI: 0.75–0.97) in the next window). The strength of the 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter 

estimate continues to rise across the vaccine era in successive time–windows (Fig. 7.3). 

 

maxEigenvalues 

The strength of the maximum eigenvalue grows with the increasing complexity of the HHH 

formulation fitted, rising from 𝑀𝑎𝑥𝐸𝑉 = 0.61 for the first–order model to 0.76 for the power-
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law + gravity HHH model (see Fig. 7.4). However, no HHH model formulation prior to the 

inclusion of random effects signify a major epidemic outbreak within the time–windows (Fig. 

7.4), indicated by no maximum eigenvalue exceeding one in value. Heightened levels of 

epidemic activity are observed in the power-law + gravity HHH models, in time–windows 

one (0.82), six (0.86) and seven (0.80) respectively. Accounting for random effects leads to 

a further increase in the epidemic proportion of cases captured by the HHH models (Table 

V.32, Appendix V). The power-law + gravity RI HHH model formulation reduces the number 

of major epidemic outbreaks detected across the study period to two (in time–windows six 

and eight). The mean maximum eigenvalue is 0.95 (min = 0.87, max = 1.03). 

 

Figure 7.4 Maximum eigenvalues for four HHH model formulations analysing pertussis 

spread in Lancashire, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend. Pink shaded 

area denotes the vaccine era. 
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Predictive Assessment Scores 

An assessment of the goodness–of–fit of the HHH model formulations based upon the AIC 

values reveals the HHH power-law + gravity model provides the best fit of the five model 

formulations (endemic, first–order, power-law, gravity and power-law + gravity), with a mean 

AIC value of 8.0844 x 105 (80844.6) across the nine time–windows Goodness–of–fit 

assessments using scoring rules suggests the power-law HHH model provides the best fit, 

without inclusion of random effects (LogS = 0.196, RPS = 0.202). This is despite the lack of 

convergence for HHH model formulations in time–window eight and lack of statistical 

significance. With inclusion of random effects, the power-law + gravity RI HHH model 

provides the best fit of the model formulations (RPS = 0.171). A full breakdown of AIC values 

and predictive mean scores by time–window and model fit for pertussis in Lancashire can 

be found in Appendix V (Tables V.36 and V.41). 

 

7.1.2 Measles 

 

Overdispersion 

There is less overdispersion in the power-law + gravity models (see Fig. 7.5) compared to 

previous formulations, indicating reduced residual heterogeneity. The mean overdispersion 

parameter is 1.02 (95% CI: 1.00−1.07), with underdispersion detected in the time–window 

three (0.91, 95% CI: 0.88−0.94) and the highest level of overdispersion noted in time–

window nine (1.12, 95% CI: 1.09−1.15). With the exception of the endemic HHH models, 

the overdispersion parameter 𝜓 hovers around 1 for all other model formulations (Fig. 7.5). 

The higher levels of overdispersion in the endemic HHH models (x̄ = 3.75,  95% CI: 

3.68−3.82) indicates the importance of within-district and spatio-temporal epidemic 

components for providing a suitable fit for measles spread. With the addition of random 

effects, the fit for power-law + gravity RI HHH models indicates some underdispersion (Fig. 

7.5), with a mean 𝜓 of 0.92 (95% CI: 0.89−0.94) across the nine time–windows.  
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Figure 7.5 Dispersion parameter estimates for five HHH model formulations analysing 

measles spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

 
Distance Decay  

For the power-law HHH model formulation, the mean distance decay parameter estimate is 

𝑑 = 3.03  (95% CI: 2.90–3.17). The inclusion of a gravity measure leads to a notable fall in 

the mean distance decay parameter (𝑑 = 2.25, 95% CI: 1.32–1.66). With the inclusion of 

random effects in the power-law + gravity HHH model, there is a further decrease in the 

size of the distance decay parameter in each time–window compared to previous HHH 

model formulations (see Fig. 7.6). But like previous fixed-effect formulations, distance decay 

estimates remain relatively consistent in size over the course of the study period (Fig. 7.6).  
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Figure 7.6 Distance decay parameter estimates for three HHH model formulations 

analysing measles spread in Lancashire, across nine time–windows (1940–1969). Dots 

represent estimates for each window. Fitted lines have been applied to the points for the 

time trend. 

 

Gravity Model  

Extending the first–order HHH model formulation to include a gravity measure yielded a 

mean estimated coefficient of 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓) = 0.03 (95% CI: -0.03−0.09), suggesting no evidence 

of agglomeration effect. Models for time–windows one to three failed to produce an estimate 

with confidence intervals. However, the addition of a power-law to the model resulted in a 

drastic increase in the parameter 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓) , rising to a mean of 0.46 (95% CI: 0.42−0.50), 

with a low 0.38 and a high of 0.57 in time–windows three and nine (see Fig. 7.7), 
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respectively. The power-law + gravity HHH model provides strong evidence for an 

agglomeration effect, with urban centres importing larger number of cases from 

neighbouring districts due to commuter-driven spread. The added weight given to the 

𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter results in a smaller estimation of the decay parameter compared to the 

power-law HHH model formulation (Fig. 7.7), falling to a mean of 2.25 (95% CI: 2.12−2.37) 

from 3.03 and all other effects remain relatively unchanged (Fig. 7.7). With the inclusion of 

random effects, 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  falls by a fraction from 0.46 to x̄ = 0.44 (95% CI: 0.33−0.55).  

 

 

Figure 7.7 Gravity parameter estimates for three HHH model formulations analysing 

measles spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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maxEigenvalues 

Regarding measles in Lancashire, the combined measure is more or less unchanged upon 

accounting for higher-order neighbours with a power-law, with a mean max eigenvalue of 

0.92. This is in line with the first-order HHH model, which assumes a fixed adjacency 

between neighbours. With the addition of random effects, the epidemic proportion increases 

disease incidence increases markedly (see Fig. 7.8).  

 

 

Figure 7.8 Maximum eigenvalues for four HHH model formulations analysing measles 

spread in Lancashire, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend. Endemic 

model excluded due to absence of epidemic component. 
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Random Effects 

With the inclusion of random effects, the  𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)  parameter falls by a fraction from 0.46 to 

a mean of 0.44 (95% CI: 0.33−0.55). A comparison of HHH models using proper scoring 

rules reveals only a marginal improvement in predictive performance, with the mean LogS 

score across all time–window models decreasing from -0.207 to -0.259 (p = 0.152). The 

variance of the random effect of the spatiotemporal component is slightly reduced from 0.65 

to 0.43, reflecting a decrease in residual heterogeneity between districts.  

 

Predictive Assessment Scores 

Based on the AIC values calculated, of the five models fitted, the power-law + gravity HHH 

model formulation provides the best fit to the measles incidence data across the nine time–

windows with a mean AIC score = 13761.3 (1.3761 x 105). A full breakdown of AIC values 

and predictive mean scores by time–window and model fit for measles in Lancashire can 

be found in Appendix V (Tables V.34 and V.40). 

 

7.1.3 Scarlet fever 

 

Overdispersion 

Comparison of the strength of the overdispersion parameter of the five fixed-effects HHH 

model formulations and two formulations incorporating random effects indicates that the 

endemic HHH model may provide the best fit with observed scarlet fever incidence across 

the nine time–windows. The endemic HHH model consistently demonstrates significantly 

less underdispersion in parameter estimates (see Fig. 7.9), which would suggest significant 

autocorrelation in the data. Residual heterogeneity rises across the time–windows over the 

course of the study period as scarlet fever incidence gradually declines across the region, 

rising from a low of 𝜓 = 0.66 (95% CI: 0.64–0.69) in time–window one to 𝜓 = 1.12 (95% CI: 

1.07–1.18) in time–window nine. Overdispersion peaks in time–window eight (𝜓 = 2.09 
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(95% CI: 1.98–2.19). The overall mean for the endemic HHH model formulation is 𝜓 = 1.12 

(95% CI: 1.07–1.18). With the inclusion of epidemic and spatiotemporal components, 

significantly greater levels of underdispersion are estimated, with the mean parameter value 

for first-order, gravity, power-law and power-law + gravity HHH formulations ranging 

between 0.65–0.67. Overdispersion is only found in time–windows eight and nine for these 

model formulations (Fig. 7.9). Inclusion of random effects with the power-law + gravity HHH 

formulation only sees the levels of underdispersion detected, and thus presence of 

autocorrelation, increase. 

 

 

Figure 7.9 Dispersion parameter estimates for five HHH model formulations analysing 

scarlet fever spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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Distance Decay 

Positive distance decay estimates are observed for the power-law extended HHH models 

across all time–windows (see Fig. 7.10). The overall mean 𝑑 = 0.96 (95% CI: 0.74–1.19). 

As observed with measles and pertussis incidence in the Lancashire region, there is a 

significant fall in the strength of the distance decay parameter after inclusion of a gravity 

measure. The overall mean 𝑑 parameter = 0.47 (95% CI: 0.31–0.63). There is no clear 

downward trend in the distance decay estimates over the course of the nine time–windows, 

(Fig. 7.10). The distance decay parameter falls from 0.73 in time–windows six (95% CI: 

0.59–0.88) to 𝑑 =0.32 by the final time–window (95% CI: 0.10–0.55).  

 

Figure 7.10 Distance decay parameter estimates for three HHH model formulations 

analysing scarlet fever spread in Lancashire, across nine time–windows (1940–1969). Dots 

represent estimates for each window. Fitted lines have been applied to the points for the 

time trend. 
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The inclusion of random effects only serves to further reduce the strength of the distance 

decay parameter estimate, although this is only marginal (Fig. 7.10). The largest distance 

decay parameter is observed in time–window three and falls significantly from time–window 

six onwards. The overall mean 𝑑 parameter = 0.45 (95% CI: 0.28–0.62). In time–window 

nine, there is no distance decay parameter estimate due to a failure of convergence in the 

model. 

 

Gravity Parameter 

 

Figure 7.11  Gravity parameter estimates for three HHH model formulations analysing 

scarlet fever spread in Lancashire, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

 



Chapter 7: Endemic–Epidemic Modelling 

301 

 

The mean parameter estimate for the gravity HHH models is 𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 = 0.22 (95% CI: 0.10–

0.35). The power-law + gravity HHH model fit sees a significant increase in the strength of 

the gravity parameter estimates across all nine time–windows (see Fig. 7.11). Estimates 

range between 0.84 and 1.00, with a mean 𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 estimate of 0.93 (95% CI: 0.88–0.97). 

The inclusion of random effects results in slightly weaker estimates of the gravity parameter 

across the time–windows. The power-law + gravity RI HHH model fails to converge in time–

window nine (Fig. 7.11). The mean gravity parameter across all nine time–windows 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

= 0.70 (95% CI: 0.59–0.81). Noticeably, a pattern of growth emerges in later time–

windows, with the gravity parameter increasing from 0.54 (95% CI: 0.38–0.70) in time–

window five to a high of 1.02 (95% CI: 0.88–1.16) in time–window eight. Excluding time–

window two, parameter estimates in time–windows one to five range between 𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

= 

0.50–0.60. Increases in successive windows between time–windows five and eight coincide 

with the advent of pertussis vaccination and retreat of pertussis infection. 

 

MaxEigenvalues 

Assessment of the maximum eigenvalues reveals increasing weight given to the epidemic 

proportion of scarlet fever cases in each of the nine time–windows, with the stepwise 

extension of the HHH model formulation (Fig. 7.12). The growth in the mean epidemic 

eigenvalue is limited with the extension of the first-order model formulation to include, 

separately, gravity and power-law components, rising from 𝑚𝑎𝑥𝐸𝑉 = 0.61 for the first-order 

HHH model to 𝑚𝑎𝑥𝐸𝑉 = 0.64 for the gravity HHH model, and 𝑚𝑎𝑥𝐸𝑉 = 0.65 for the power-

law HHH model. With the extension of the HHH model formulation to include both gravity 

and power-law components, the epidemic proportion of scarlet fever incidence rises to a 

mean 𝑚𝑎𝑥𝐸𝑉 = 0.76 across the nine time–windows. With the power law + gravity HHH 

model extended to include random effects, major epidemic outbreaks are observed in only 

two of the nine time–windows: six and eight. Although marginally, the epidemic proportion 

of scarlet fever incidence in the other seven time–windows are nevertheless extremely high.  
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Figure 7.12 Maximum eigenvalues for four HHH model formulations analysing scarlet fever 

spread in Lancashire, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend.  

 

Predictive Assessment Scores 

A goodness-of-fit assessment using AIC values for each HHH model formulation reveals 

the HHH power-law + gravity model provides the best fitting model across the nine time- 

windows compared to the four other models, with a mean AIC score = 73931.3 (7.3931 x 

105). Assessment of predictive mean scores using scoring rules indicate the power-law + 

gravity RI HHH model is the most parsimonious model, suggesting the best fit of the seven 

models fitted across the nine time–windows in Lancashire (LogS = 1.32, RPS = 1.19). A 

breakdown of AIC values and predictive mean scores by time–window and model fit for 

scarlet fever in Lancashire can be found in Appendix V (Tables V.38 and V.42). 
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7.2 Results: South Wales Region 

 

7.2.1 Pertussis 

 

Overdispersion 

 

Figure 7.13  Dispersion parameter estimates for four HHH model formulations analysing 

pertussis spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

Pink shaded area denotes the vaccine era. 

 
Assessment of the overdispersion parameter for the HHH model formulations reveals 

significantly greater levels of overdispersion estimated with the endemic HHH model 

compared to other model formulations (See Fig. 7.13). The overall mean 𝜓 parameter = 
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6.58 (95% CI: 6.15–7.00). The least amount of residual heterogeneity is detected in time–

window three (𝜓 = 4.05, 95% CI: 3.87–4.22). From time–window three onwards, there is a 

gradual increase in the overdispersion parameter estimates in the next two time–windows 

(Fig. 7.13), rising to 𝜓 = 4.63 (95% CI: 4.43–4.84) by time–window five. With the advent of 

routine mass vaccination by the end of time–window six (1952-57), a significant increase in 

the level of overdispersion is observed, increasing to 𝜓 =  6.55 (95% CI: 6.19–6.91). The 

rise  in overdispersion is dramatic over the course of the further three time–windows, 

reaching a high of 𝜓 = 10.84 (95% CI: 9.93–11.75) in the final time–window (1964-69).  

 

With the inclusion of epidemic components and neighborhood adjacency in the first-order 

HHH model formulation, less residual heterogeneity is observed (Fig. 7.13), although 

residual heterogeneity is still significant (𝜓 = 3.87, 95% CI: 3.58–4.16). Echoing the 

overdispersion trend observed in the endemic HHH models, the least parameter estimate 

was observed in time–window three (𝜓 = 2.44, 95% CI: 2.31–2.56). The level of 

overdispersion gradually increases across successive time–windows rising to 𝜓 = 3.92 

(95% CI: 3.67–4.16) in time–window six, before growing substantially in vaccine-era time–

windows, reaching a maximum of 𝜓 = 6.52 (95% CI: 5.90–7.14). There is negligible 

difference in the level of overdispersion with the inclusion of a gravity component in the 

HHH model (Fig. 7.13), with a slightly lower mean of 𝜓 = 3.82 (95% CI: 3.54–4.10). Once 

again, the same pattern of growth in the level of residual heterogeneity by individual time–

window is visible for the gravity HHH models as observed with previous first-order and 

endemic formulations (Fig. 7.13). A power-law + gravity HHH model formulation sees further 

reduction in the overall level of residual heterogeneity across the nine time–windows, with 

a mean 𝜓 parameter = 3.51 (95% CI: 3.25–3.77).  
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Distance Decay  

Negative distance decay estimates are observed for the power-law HHH models across all 

time–windows (see Fig. 7.14), with the exception of time–window one (𝑑 = 0.95, 95% CI: 

0.48–1.42). The overall mean 𝑑 = -0.73 (95% CI: -1.40–-0.05). The strongest negative 

distance decay parameter estimated was in time–window five (𝑑 = -1.38: 95% CI: -2.20–-

0.57), coinciding with the dramatic fall in birth rate, and thus rate of susceptible recruitment, 

in the immediate years following the baby boom. The distance decay parameter does 

recover some strength in the final two time–windows, rising from 𝑑 = -1.38 in time–window 

five (1952-57) to 𝑑 = -0.32 in time–window nine (1964-69).   

 

Figure 7.14 Distance decay parameter estimates for two HHH model formulations 

analysing pertussis spread in South Wales, across nine time–windows (1940–1969). Dots 

represent estimates for each window. Fitted lines have been applied to the points for the 

time trend. Pink shaded area denotes the vaccine era. 
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Gravity Parameter 

The mean parameter estimate for the gravity-extended HHH models is 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓) = 0.54 (95% 

CI: 0.17–0.92), with negative parameter values estimates reported in the first two time–

windows, coinciding with the wartime years (see Fig. 7.15). With the addition of a power-

law to the gravity HHH model, there is an overall positive increase in the strength of the 

gravity parameter estimates with a rising trend of growth in the gravity parameter estimates 

across successive time–windows are notable (Fig. 7.15).   

 

Figure 7.15 Gravity parameter estimates for two HHH model formulations analysing 

pertussis spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 

Pink shaded area denotes the vaccine era. 
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maxEigenvalues 

 

Figure 7.16 Maximum eigenvalues for four HHH model formulations analysing pertussis 

spread in South Wales, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend. Endemic 

model excluded due to absence of epidemic component. Pink shaded area denotes the 

vaccine era. 

 

Assessment of the maximum eigenvalues reveals much lower epidemic proportions of 

pertussis incidence across the nine time–windows compared to measles incidence (see Fig. 

7.16). The mean maximum eigenvalue for the first-order HHH model formulation is 0.50, 

rising to 0.60 when the model is extended to include a gravity model component. When 

extending the first-order model to include power-law transmission, there is an increase of 

0.09 (in other words, nine percent), with 𝑀𝑎𝑥𝐸𝑉 = 0.59. Extending the first-order HHH 



Chapter 7: Endemic–Epidemic Modelling 

308 

 

formulation to include both a gravity model component and power-law transmission 

increases the mean maximum eigenvalue to 0.76, a 26% increase in the epidemic 

proportion of pertussis incidence compared to the first-order HHH model. According to this 

model formulation, the most prominent period of epidemic pertussis activity was recorded 

in time–window three (1946-51; 𝑀𝑎𝑥𝐸𝑉 = 0.84), closely followed by time–window four 

(1949-54; 𝑀𝑎𝑥𝐸𝑉 = 0.82) and time–window eight (1961-66; 𝑀𝑎𝑥𝐸𝑉 = 0.80), all coinciding 

with growth periods in birth rates. 

 

Predictive Assessment Scores 

An assessment of the goodness-of-fit of the five HHH model formulations (endemic, first–

order, power-law, gravity and power-law + gravity), based upon AIC values, reveals the 

power-law + gravity HHH model provides the most consistent best fit, with a mean AIC value 

of 30161.1 (3.01611 x 105) across the nine time–windows. A full breakdown of AIC values 

time–window and model fit for pertussis in South Wales can be found in Appendix V (Tables 

V.37). 

 

7.2.2 Measles 

 

Overdispersion 

Assessment of residual heterogeneity in the HHH model formulations reveals there is 

significantly greater levels of overdispersion with the endemic HHH model, compared to 

other model formulations (see Fig. 3.17). The overall mean 𝜓 parameter = 9.63 (95% CI: 

9.36–9.90). The exclusion of epidemic components from the HHH endemic models results 

in a significant rise in residual heterogeneity and an inferior fit to the weekly incidence data 

modelled. With the inclusion of epidemic components and disease transmission via 

neighbourhood adjacency in the first-order HHH models, there is a sizable fall in residual 

heterogeneity in each time–window (Fig. 3.17), although overdispersion is still significant. 
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The overall mean 𝜓 parameter = 3.06 (95% CI: 2.95–3.18). The overdispersion parameter 

increases progressively over successive windows from a low of 2.28 (95% CI: 2.10–2.37) 

in time–window three to a high of 3.86 (95% CI: 3.72–4.00) at the end of the study period, 

in time–window nine. Incorporating a gravity measure results almost no change in the level 

of residual heterogeneity compared to the first-order HHH models. The overall mean 𝜓 

parameter = 3.04 (95% CI: 2.93–3.16). However, the inclusion of a power law to account 

for long-distance transmission events in lead to a further reduction in the overall level of 

overdispersion across the nine time–windows (Fig. 3.17), with an overall mean 𝜓 parameter 

= 2.51 (95% CI: 2.42–2.61).  

 

Figure 7.17 Dispersion parameter estimates for four HHH model formulations analysing 

measles spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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The least level of overdispersion was detected in time–windows time–window three (1946-

1951), coinciding with the beginning of the baby boom period. Across successive windows, 

the value of the overdispersion parameter slowly climbed, rising from 2.01 (95% CI: 1.93–

2.09) in time–window three to 3.26 (95% CI: 3.14–3.38) in time–window nine. Extending the 

HHH model formulation to include a power-law and gravity measure reveals almost no 

difference in the value of the overdispersion parameter estimated for individual time–

windows (Fig. 7.17) or the mean 𝜓 parameter = 2.51 (95% CI: 2.41–2.60). 

 

Distance Decay  

 

Figure 7.18 Distance decay parameter estimates for two HHH model formulations analysing 

measles spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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Negative distance decay estimates are observed for power-law HHH models across all 

time–windows with the exception of time–window three (Fig. 7.18). The overall mean 𝑑 

parameter = -0.53 (95% CI: -0.81–-0.24). The most negative distance decay parameter 

estimated was in time–window four (𝑑 = - 2.03: 95% CI: -2.38–-1.68), coinciding with the 

dramatic fall in fertility rate during this period, and thus rates of susceptible recruitment. In 

later time–windows, the distance decay parameter estimates are weakly negative, with the 

weakest parameter value observed in time–window nine (𝑑 = -0.01, 95% CI: -0.22–0.19). 

The power-law + gravity HHH model formulation produces more negative distance decay 

parameter estimates, with an overall mean 𝑑 = -0.66 (95% CI: -0.99–-0.33).  

 

Gravity Parameter 

 

Figure 7.19 Gravity parameter estimates for two HHH model formulations analysing 

measles spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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The mean parameter estimate for the gravity HHH models is 𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 = -0.68 (95% CI: -

0.79–-0.57), with negative parameter estimate values estimated for all time–windows. The 

largest gravity parameter estimates are found in the first two time–windows (see Fig. 7.19). 

The weakest negative gravity parameter estimate was found in time–window five (𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 

= -0.40, 95% CI: -0.50–-0.30), before rising across successive time–windows (Fig. 7.19). A 

mean 𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 parameter value of -0.15 (95% CI: -0.21–-0.10) is calculated across the nine 

time–windows for the power-law + gravity HHH formulation, with significantly weaker 

negative gravity parameter estimates in each time–window. The value of the gravity 

parameters estimated are relatively stable and weakly negative across the study period 

(Fig. 7.19).  

 

maxEigenvalues 

Assessment of the maximum eigenvalues reveals significant similarities across the first–

order, gravity, power-law and power-law + gravity HHH model formulations (see Fig. 7.20). 

Since the power-law + gravity HHH models were found to provide the overall best 

goodness-of fit (Table V.35, Appendix V), the maximum eigenvalues for the gravity + power-

law HHH models will be reported here. Epidemics outbreaks were detected in time–

windows five, six, seven and nine, with the eigenvalue exceeding unity (value of 1). The 

scale of epidemic activity is extremely significant in other time–windows in which an 

outbreak was not detected; the epidemic proportion of measles cases in South Wales is 

equivalent to 99% (0.96) in time–window one, while in time–window eight this had fallen 

slightly to 96% (0.96). This fall in time–window eight might reflect an exhaustion of 

susceptibles due to the outbreak detected in the preceding time–window.  
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Figure 7.20 Maximum eigenvalues for four HHH model formulations analysing measles 

spread in South Wales, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend. Endemic 

model excluded due to absence of epidemic component. 

 
Predictive Assessment Scores 

An assessment of the goodness-of-fit of the HHH model formulations based upon the AIC 

values reveals power-law + gravity HHH model provides the most consistent best fit of the 

five model formulations (endemic, first–order, power-law, gravity and power-law + gravity), 

with a mean AIC value of 62699.0 (6.2699 x 105) across the nine time–windows. In time–

window nine (1964-69), the power-law HHH model formulation was found to provide the 

best fit. A breakdown of AIC values by time–window and model fit for measles in South 

Wales can be found in Appendix V (Tables V.35). 
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7.2.3 Scarlet fever 

 

Overdispersion 

 

Figure 7.21 Dispersion parameter estimates for four HHH model formulations analysing 

scarlet fever spread in South Wales, across nine time–windows (1940–1969). Dots 

represent estimates for each window. Fitted lines have been applied to the points for the 

time trend. 

 

Assessment of residual heterogeneity in HHH model formulations reveals significantly lower 

levels of overdispersion for scarlet fever, compared to measles and pertussis, using the 

endemic HHH model. The overall mean 𝜓 parameter = 2.11 (95% CI: 1.94–2.28). 

Overdispersion parameter values rise consistently across the nine time–windows (see Fig. 
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7.21), from a low of 0.93 (95% CI: 0.88–0.98) in time–window one, indicating 

underdispersion, to a high of 6.02 (95% CI: 5.55–6.50) in time–window nine. The velocity 

of growth in the level of residual heterogeneity increases substantially in time–windows 

seven to nine. The largest rise came between time–windows eight and nine, jumping from 

𝜓 = 3.25 (95% CI: 2.92–3.57) to 𝜓 = 6.02 in the final time–window. 

 

With the inclusion of the epidemic and spatiotemporal components in first-order HHH 

models, there is a sizable fall in the estimated level of residual heterogeneity in each time–

window, with considerable underdispersion detected in time–windows one to five (Fig. 

7.21). However, the presence of underdispersion declines progressively over time, with the 

overdispersion parameter rising across successive time–windows. The overall mean ψ 

parameter = 1.20 (95% CI: 1.09–1.32).  The gravity HHH formulation produces a slight 

increase in the level of residual heterogeneity observed for each time–window model fit 

(Fig. 7.21). The overall mean 𝜓 parameter = 1.25 (95% CI: 1.13–1.37). Overdispersion is 

detected from time–window six onwards, rising to a high of 2.85 (95% CI: 2.56–3.12) by 

time–window nine. The power-law HHH model sees an increase in the overall level of 

overdispersion, with mean 𝜓 = 1.26 (95 CI: 1.14–1.38). Mirroring the pattern of previous 

HHH model formulations, high levels of underdispersion are detected in time–windows one 

to five (Fig. 7.21). 

 

Applying a power-law + gravity HHH model formulation reveals a fall in the strength of 

overdispersion parameters estimated for individual time–windows, with a reduced overall 

mean overdispersion parameter estimate of 𝜓 = 1.20 (95 CI: 1.09–1.32). Underdispersion 

is detected in time–windows one, three and five. From time–windows six onwards, the level 

of overdispersion parameter increases consistently across successive time–windows, 

reaching a high of 𝜓 = 2.74 in time–window nine (95 CI: 2.47–3.02). 
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Distance Decay 

 

Figure 7.22 Distance decay parameter estimates for two HHH model formulations 

analysing scarlet fever spread in South Wales, across nine time–windows (1940–1969). 

Dots represent estimates for each window. Fitted lines have been applied to the points for 

the time trend. 

 
Positive distance decay estimates are observed using power-law HHH models across 

seven of the nine time–windows for which convergence was achieved in the modelling 

process and estimates for distance decay were generated (see Fig. 7.22). There was a 

failure of convergence in time–windows four and seven. The largest distance decay 

parameter was estimated in time–window two (𝑑 = 6.58, 95 CI: -1.74–10.77). The mean 

distance decay parameter for the power-law HHH models is 𝑑 = 2.75 (95 CI: -3.81–3.55). 
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As observed with measles and pertussis incidence, addition of a gravity measure sees a 

fall in the strength of the distance decay parameter (Fig. 7.22). No distance decay parameter 

estimate is provided for time–window four due to lack of convergence. There are two 

negative distance decay parameter estimates: time–window three (𝑑 = 0.36, 95 CI: -0.58–-

0.13) and time–window five (𝑑 = -0.19, 95 CI: -0.38–-0.01). The strength of the distance 

decay parameter estimates increases across successive windows, from time–window five 

to time–window nine, rising to a maximum estimate of 𝑑 = 0.93 (95 CI: 0.61–1.25).  

 

Gravity Parameter 

 

 

Figure 7.23 Gravity parameter estimates for two HHH model formulations analysing scarlet 

fever spread in South Wales, across nine time–windows (1940–1969). Dots represent 

estimates for each window. Fitted lines have been applied to the points for the time trend. 
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The mean parameter estimate for the gravity HHH models is 𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓) = 1.02 (95% CI: 0.79–

1.26). There is no gravity parameter estimate for time–window four due to lack of model 

convergence. The largest parameter estimates for the gravity component are visible in the 

middle of the study period, in time–windows five, six and seven (see Fig. 7.23). The strength 

of gravity parameter estimates decreases by nearly 50% between time–windows seven and 

nine, falling to 𝛽
log (𝑝𝑜𝑝)
(𝜙) = 0.65 (95 CI: 0.41–0.88). Inclusion of a gravity measure in the power-

law HHH model sees a significant increase in the strength of the gravity parameter 

estimates across the time–windows (excluding time–window four). The overall mean 

𝜷
𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓) = 1.19 (95 CI: 1.10–1.29). It is noticeable that there is significantly less variation in 

the size of the parameter estimates across time–windows (Fig. 7.23). However, there is a 

significant downward trend in the final two windows in the strength of the gravity parameter, 

echoing the previous gravity HHH model formulation. 

 

maxEigenvalues 

Assessment of maximum eigenvalues reveals the epidemic proportion of scarlet fever 

cases across individual time–windows is far lower than the epidemic proportions observed 

for measles and pertussis incidence in the South Wales region (see Fig. 7.24). A mean 

𝑀𝑎𝑥𝐸𝑉 of 0.34 using the first-order HHH model formulation suggests approximately just 

one-third (30%) of scarlet fever cases in South Wales are the result of epidemic activity. 

Extending the first-order HHH model to include a power-law only increases the mean 

epidemic proportion of scarlet fever incidence by 2%, to 0.36. However, extending the first-

order model to incorporate a gravity component increases the epidemic proportion of scarlet 

fever incidence to 0.47, an increase of 17%. Inclusion of both a power-law and gravity 

measure see the mean epidemic proportion of scarlet fever incidence jumps considerably 

(𝑚𝑎𝑥𝐸𝑉 = 0.63).   
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Figure 7.24 Maximum eigenvalues for four HHH model formulations analysing scarlet fever 

spread in South Wales, across nine time–windows (1940–1969). Dots represent estimates 

for each window. Fitted lines have been applied to the points for the time trend. Endemic 

model excluded due to absence of epidemic component. 

 

Predictive Assessment Scores 

A goodness-of-fit assessment comparing AIC values for each HHH model formulation 

reveals the gravity + power-law HHH model provides the most consistent, best fitting model 

across the nine time–windows, with a mean AIC score of 3.0561 x 105 (30561.1). A 

breakdown of AIC values by time window and model formulation for scarlet fever in South 

Wales can be found in Appendix V (Tables V.39). 
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7.3 Discussion of Findings 

 
In this chapter, several sub-model formulations of the HHH model have been fitted and 

utilised to analyse the endemic-epidemic dynamics of pertussis, measles and scarlet fever, 

in a quest to build a more detailed understanding of the spatiotemporal dynamics of 

measles, pertussis and scarlet fever incidence and transmission within the regional 

metapopulations of South Wales and Lancashire. Such understanding can help inform 

interpretation of the rise and fall of endemic threshold populations over time and space, 

elucidating on the influence of spatial structure, mobility and demographic stochasticity on 

disease persistence. 

 

The first major extension to the baseline first-order HHH models fitted to better capture the 

endemic-epidemic dynamics of the three childhood infections under analysis in the 

Lancashire and South Wales region was the inclusion of a power-law decay of spatial 

interaction. This was embedded into the spatiotemporal epidemic component and estimated 

jointly with all other unknown parameters using likelihood inference. The application of 

power-law transmission kernels to model the spatial dynamics of infectious diseases can 

be found in models for the 2001 UK foot-and-mouth epidemic (Keeling et al., 2001; Ster and 

Ferguson, 2007) and modelling human infectious diseases. Geilhufe et al. (2014) used 

power-law weights in place of traffic data to predicting influenza incidence in Northern 

Norway. Motivated by the work of Brockmann et al. (2006), who claimed human travel can 

be well-described by a decreasing power-law of distance thus serving as a ‘starting point 

for the development of a novel class of models for the spread of human infectious diseases’ 

(Brockmann et al., 2006: 465), Meyer and Held (2014) incorporated a power-law in the 

neighborhood component of the HHH model to describe the spread of invasive 

meningococcal diseases and influence in Germany between 2002 and 2008, using 

aggregated count data.  
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The incorporation of power-law distance decay within the networks of geographical districts 

of the  regional metapopulations of Lancashire and South Wales required a distance 

measure on which the power-law acts require definition. An important characteristic of the 

power-law is its slow convergence to zero, indicative of a heavy tailed distribution in which 

the distribution is not exponentially bounded (Cappé et al., 2002; Clauset et al., 2009). 

Within the context of HHH modelling, this ‘heavy tail’ enables intermittent long-range 

transmissions of infection in addition to primary short-distance disease transmissions to be 

accounted, thus allowing consideration of a mixture of diffusion processes and their role in 

disease persistence within a regional metapopulation. The analysis here found that power-

law formulations performed better than the baseline first-order interaction models, with 

significant improvements in goodness-of-fit based on assessment of AIC Values. This 

confirms that the power-law distribution of short-time human travel translates to the 

modelling of infectious disease spread. The heavy tail of the power-law which enables long-

range dependence between cases to be accounted results in greater weight given to the 

importance and strength of the epidemic component in the power-law HHH and power-law 

+ gravity HHH models. This is reflected in the growth of the epidemic proportion of disease 

cases with increases observed in maximum eigenvalues in time–windows with the inclusion 

of a power-law, and outbreaks more frequently detected in time–windows. 

 

Allowing for the long-range transmission of cases recognises the hierarchical diffusion of 

childhood diseases which would correlate with the existence of a well-established urban 

hierarchy, with the  infection waves originating in  the  largest  urban centres before 

spreading to settlements next  in  size  and  so  on,  through  to  the  smallest, least densely 

populated, and perhaps least connected, settlements (Bartlett, 1957; Grenfell et al., 2001). 

This is arguably more prominently the case for the Lancashire region. The spatial structure 

of the regional metapopulation and network of connectivity which exists between larger 

towns and the endemic centres of Liverpool CB and Manchester CB is heavily associated 

with the emergence and development of the textile industry in the late-eighteenth and early-
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nineteenth centuries. In South Wales, the industrial revolution arrived later with the 

exploitation of the South Wales coalfield gathering pace midway through the nineteenth 

century. But unlike Lancashire, where the various functions and markets associated with 

the textile industry were widely distributed across the region and thus nurturing the 

development of urban settlements  dozens of kilometres away from the two dominant urban 

centres in the South of the region, urban development, and thus the population distribution, 

of South Wales became concentrated in a relatively narrow geographical area, within the 

mineral-rich valleys of Glamorgan and West Monmouthshire, and the towns located at the 

valley mouths on the coast, from which resources and goods were exported, and saw these 

settlements grow exponentially to become the main regional urban and population centres. 

 

The significant fall in the distance decay parameter in the final two time–windows, for both 

the power-law and power-law + gravity HHH model formulations, reflects the extensive 

impact of disease intervention in reducing the viability of long–distance transmission of 

pertussis infection. This mirrors findings of the survival analysis of pertussis hotspots in 

Lancashire and South Wales in Section 6.3. The survival time of fadeout periods increases 

significantly after the onset of vaccination, as chains of transmission breakdown and inhibit 

long-range transmission of infection. The vaccination of susceptibles in districts that are 

home to satellite settlements or major towns that are located, but do not immediately 

neighbour, the regional endemic centres of Manchester and Liverpool CB creates a form of 

productive barrier against commuter–driven spread of infection. High vaccination uptake 

shields susceptibles from disease transmission fuelled by significant spatial interaction with 

the two conurbations.  

 

Adopting a power-law approach is very useful in the absence of movement network data, 

which is certainly difficult to obtain when working with historical epidemiological surveillance 

data. However, if such data were available, neighbourhood weights in a power-law HHH 

model could instead be based on the more realistic connectivity between districts described 



Chapter 7: Endemic–Epidemic Modelling 

323 

 

by commuter traffic data for instance rather than using discrete spatial measures. This 

possibility has been explored by Schrödle et al. (2012) in their study of the spatiotemporal 

spread of Coxiellosis in Swiss cows, as well as by Geilhufe et al. (2014) in their study of 

influenza spread in Northern Norway.  

 

In the past, spatial coupling between district and regions has been assumed to be an inverse 

function of distance (Okubo and Levin, 2013). However, this assumption has been found to 

be too simplistic to account for the complex interactions between humans since movement 

between large communities is often disproportionately more frequent than between smaller 

settlements (Erlander and Stewart, 1990). This more complex pattern of human movement 

results in ‘gravity transmission’ (Murray and Cliff, 1975; Cliff et al., 1993). What is more 

certain is that the network of spatial spread, in other words epidemiological coupling, can 

often relate to connectivity network within a host regional metapopulation and urban 

hierarchy. Influenced by the work of Xia et al. (2004), who proposed a gravity model for 

modelling the spread of measles in regional metapopulation, a gravity model was 

incorporated in a sub-model HHH formulation. This is based on the straightforward 

assumption that larger settlements attract more individuals, resulting in greater likelihood of 

disease spread; for instance, one would expect more traffic to a regional conurbation such 

as Manchester CB, which are thus expected to import a higher number of cases from 

surrounding districts (Bartlett, 1957), as well as function as a centre of endemicity. 

 

The findings described for the sub-model formulations which include a gravity measure 

provide significant insights into how the interplay between temporal changes in population 

distribution, epidemiological coupling and regional spatial structure affect the nature of 

disease spread, and thus influence changes in disease endemicity and growth of endemic 

threshold populations over time. In both regional metapopulations, there is significant 

growth in the strength of the gravity parameter over the course of the nine time-windows, 

further increasing with the inclusion of a power law decay of spatial interaction, and the 
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inclusion of a gravity measure almost uniformly improves the goodness-of-ft of the HHH 

models in each time window. This indicates that commuting between subpopulations, with 

spatial interactions often concentrated around urban centres which function as the major 

population and employment centres with the region, supports the transmission and 

persistence of childhood disease. This reflects the evidence of tight spatial coupling 

between the urban centres of Manchester CB, Liverpool CB and Cardiff CB and surrounding 

districts generated by the correlation analyses performed in Sections 4.6 and 4.7. Urban 

centres are found to possess the strongest correlation with the regional pattern of disease 

activity, followed by neighbouring districts regardless of the significant differences in total, 

and by extension susceptible, population size. The finding is also corroborated by the 

conclusions of past research on the spatial dynamics of influenza and measles, which 

indicate more heavily populated districts draw a greater quantity of infection from 

neighbours than smaller districts, reflecting commuter-type imports (Viboud et al., 2006; 

Meyer and Held, 2017).  

 

Manchester CB and Liverpool CB in Lancashire, and Cardiff CB in South Wales, dominate 

their respective regions. With growing deindustrialisation during the study period crippling 

free-standing towns in the surrounding metropolitan hinterland of the two regions, whether 

they be the historic mining districts of the Valleys in Glamorgan or the once thriving cotton 

mill towns of South Lancashire, a significant proportion of the urbanised populations of 

South Wales and Lancashire became reliant on a handful of regional urban centres for 

employment and commerce (Bax and Fairfield, 1978; Hebbert and Deas, 2000; Jenkins, 

2014). Many urban districts and municipal boroughs home to small and medium-sized 

settlements were relegated from operating relatively autonomously as centres of industrial 

activity to serve a primarily residential function (Hartwell et al., 2004). This transformed the 

nature of individual movement and spatial interaction between urban centres and 

surrounding settlements, placing greater and greater importance on commuting over time. 

For instance, In his analysis of the changing nature of commuting patterns in North West 
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England, focusing on the counties of Lancashire and Cheshire, Warnes (1972) found the 

distribution of commuting distances changed significantly between the 1920s and the mid-

1960s, from one of dominant regional variations, with long journeys characterising South 

Lancashire and short journeys being found in north east and the extreme east of 

Lancashire, to one where the evolving metropolitan situation in postwar Lancashire 

transformed the nature of travel. By the end of the study period, the large urban, 

employment centres, Liverpool CB and Manchester CB, had the shortest average 

commuting distances, with peripheral neighbours supporting the longest mean journey-to-

work distances. This evolution in the pattern of travel ensures that higher rates of pertussis 

transmission, and elevated levels of pertussis by extension, are sustained in districts in the 

metropolitan hinterlands close to endemic centres of infection, by maintaining tight 

epidemiological coupling between districts through consistent spatial import and export of 

infection. However, some caution should be exercised when making inferences on the 

importance of commuting as a factor in the spread and persistence of pertussis in the 

Lancashire and South Wales metapopulations. 

 

Firstly, a difficulty in interpreting high levels of spatial coupling due to greater levels of 

commuting is partly borne from the fact that mobile infectious individuals, whose presence 

in subpopulations in which they have travelled might be fleeting, do not necessarily pose 

significant dynamical consequences. Past research has highlighted that epidemic 

immigration within the context of measles sometimes has negligible dynamical 

consequences (Bjørnstad et al., 2002); transients infections are irrelevant as soon as the 

morbidity of the infection exceeds a certain threshold (in the case of measles, approximately 

10 cases). This threshold is only crossed in minor populations during the troughs between 

epidemic outbreaks. However large settlements such as Liverpool CB and Manchester CB 

have population greater than the endemic threshold size for measles, as well as pertussis 

and scarlet fever based on the size of endemic threshold populations for each disease 

estimated in Chapter 5 and thus will almost consistently have number of cases notified 
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above the minimum mentioned for measles on a weekly basis. The influence of transient 

infectious individuals on the dynamical behaviour of childhood infection is of greater 

relevance if the number and density of infected individuals travelling is high and if transient 

individuals, whether they be susceptible or infected, function in local subpopulations in a 

similar manner to resident individuals (Xia et al., 2004). In this context, the probability of 

susceptibles acquiring non-local infection, from an endemic centre or large town for 

example, from mobile individuals would be much higher. 

 

Secondly, processes of population and economic decentralisation in the postwar period, 

fundamentally changed commuting patterns among adults in Lancashire (Warnes, 1972; 

Hall, 1974), whilst the provision of rail and road infrastructure serving the region’s 

subpopulations of Lancashire also transformed in the postwar period, due to the systematic 

closure of many sub-regional rail lines (as exemplified by the ‘Beeching axe’) and mass 

road construction driven by growth in private car ownership (Hartwell et al., 2004; Pooley et 

al., 2010). However, this does mean that the mobility of children of school age, or infants, 

who are the primary group susceptible to pertussis infection, also changed in such a way 

that it influenced the spatial dynamics and persistence of the disease on a local or regional 

scale. Pooley et al. (2010) found that the everyday mobility and range of travel among 

school children in Manchester and Lancaster had changed very little since between the 

1940s and 2010. For instance, in Manchester, children travelled a mean distance of 1.3km 

in the 1940s, yet the mean trip distance among school children had only increased by 200 

metres by the 2000s. Xia et al. (2004) emphasise that the transmission of childhood 

diseases, whether it be pertussis, measles or scarlet fever, is not a spatially random 

diffusion process, and instead follows the fastest route to a target location of individual due 

to directed movement, often preferring susceptibles or susceptible environments in close 

proximity rather than over greater distances (Xia et al., 2004). 
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In the pre-vaccine eras for pertussis and measles in particular, incidence of such infection 

was almost entirely restricted to children of primary school age or infants of nursey age. In 

this context, the scaling of diffusive movement of individuals and infection using a gravity 

model may be less advantageous than modelling with explicit movement data on travel 

distance. However, to acquire such data given the historical context, in this case mid-

twentieth century England and Wales, is far easier said than done. Data on journey-to-

school distances are not readily available in archives in the way that journey-to-work 

distances obtained from the Census of England and Wales utilised by Warnes (1972) might 

be. Data from national travel surveys provide some general information such as mean 

distance travelled to school from around the mid-1960s, but data prior to the 1960s is much 

more limited. In their study, Pooley et al. (2010) turned to a qualitative oral history approach 

in which  cohorts of individuals were questioned about their mobility experience at different 

stages of their life in Manchester, Salford, Lancaster and Morecambe, to collect qualitative 

explanatory data of sufficient detail to generate estimates of travel distance in the 1940s. 

However, such data is drawn from a small sample and is the product of self-reporting, and 

thus must be handled with caution.  

 

Although not included in the model formulation, one must consider the influence of 

vaccination coverage on the pertussis spread and persistence. Effective rates of vaccination 

coverage in later time–windows places greater importance on rescue effects to maintain 

regional persistence of an infection. There must be sufficient levels of geographical coupling 

between subpopulations achieved through frequent connections to fuel disease spread. 

This is demonstrated in the findings of the hotspot and survival analyses discussed in 

Section 6.4. With declining pertussis incidence in later time–windows in Lancashire and 

South Wales due to the onset of routine mass vaccination in 1957 (see Sections 5.4.2 and 

5.5.2), commuting may take much greater prominence for ensuring disease persistence, as 

vaccination serves to deplete pools of susceptible. Commuting is a means by which 

coupling remains sufficiently tight between reservoirs of infection in populations of greater 
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size than the endemic threshold population, such as Manchester CB, and neighbouring 

districts, thus limiting growth in threshold populations in highly connected districts and 

Lancashire as a whole in the vaccine era (as is observed in Section 5.2), but also the greater 

strength of gravity parameters in later time–windows.  

 

The gravity HHH models for scarlet fever incidence in South Wales reveal a notable decline 

in the strength of gravity parameters in later time–windows, even when the formulation is 

extended to include distance decay. This fall coincides with a period of dramatic fall in 

scarlet fever incidence across Wales, with the pace of decline accelerating in from the 1950s 

onwards. This is demonstrated by the exploratory analysis of scarlet fever time series for 

South Wales and a small subset of districts (Cardiff CB, Merthyr Tydfil CB and Fishguard & 

Goodwick UD) of varying population size in Section 4.3.3. The substantial fall in the strength 

of the gravity parameter in later time–windows also mirror the unrelenting decline in scarlet 

fever endemicity, and the significant growth in the size of the regional endemic threshold 

population for scarlet fever in South Wales (see Sections 5.3 and 5.5.3). One can conclude 

that the fall in the strength of the gravity parameter estimates reflects the diminishing 

caseload of scarlet fever in Lancashire and South Wales from the late 1950s onwards. 

Limited incidence, alongside improvements in hygiene, nutrition and reduced crowding, 

factors previously cited for explain scarlet fever’s declining morbidity in the postwar period 

(Lamagni et al., 2018), may have resulted in constricting spread of the disease and isolate 

the infection to within-district, endemic activity. To some extent, this is supported by analysis 

of the residual heterogeneity detected in the HHH model formulations for scarlet fever in 

South Wales, which reveals the endemic HHH model results in the least levels of 

overdispersion and thus variation round the mean. The inclusion of epidemic and 

spatiotemporal components only serves to increase the presence of overdispersion. This is 

in stark contrast to HHH formulations of the other two childhood infections measles and 

pertussis, for which increasing model complexity and inclusion of covariates reduced levels 

of dispersion significantly compared to the endemic model.  
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Despite the decline in later windows, the strength of the gravity measure is notably higher 

in South Wales compared to Lancashire, where gravity parameter estimates are weakly 

positive across multiple time–windows, declining from time window one to seven before 

staging some recover in the final time–windows. Similarities between gravity parameters in 

Lancashire and South Wales are evident once a power-law is incorporated in the gravity 

HHH model formulations, substantially increasing parameter strength while also reducing 

the strength of the distance decay considerably. With both short- and long- range disease 

transmission accounted for (Meyer et al., 2017), the importance of transportation for 

maintaining persistence of infection via spatial coupling between lightly populated urban 

districts in the metropolitan hinterland and endemic centres of infection is  emphasised. This 

relationship corresponds crudely to the development of a ‘core and satellite’ metapopulation 

(Grenfell and Harwood, 1997), which poses a barrier for disease control, and limits the 

growth of endemic threshold population size overtime, due to the interplay between 

intermediate levels of vaccination coverage, frequency and density of contacts between 

susceptibles and infected individuals, and geographical rescue effects (Bolker and Grenfell, 

2016; Keeling and Rohani, 2008; Meyer et al., 2014). 

 

The extension of the HHH model formulation to include random effects alongside fixed 

effects, a power-law decay of spatial interaction and gravity model measure enables 

unobserved covariates which influence disease spread to be considered. From a 

geographical perspective, edge effects on borders of the regional metapopulations are of 

particular interest. In the context of Lancashire, with the major conurbations of Liverpool CB 

and Manchester CB situated very close to the regional border, there are undoubtedly 

missing potential sources on infection from the from the unobserved side of the border, 

since the metropolitan hinterland of both urban centres stretches into the neighbouring 

county of Cheshire, with settlements such as Chester and Birkenhead in the Wirral 

Peninsula, tightly associated economically with Liverpool CB (Pollard et al., 2006), and the 

town of Stockport, as well as communities in North Derbyshire and South Yorkshire have 
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historically strong economic ties with Manchester CB (Carter, 1962). One must also take 

into the account edge effects as a result of commuting between large towns and the main 

urban centre of the Greater Manchester area with large urban centres in neighbouring 

Yorkshire, particularly the cities of Leeds, Sheffield and Bradford as well as towns such as 

Halifax and Huddersfield (Baker and Hebbert, 1995). 

 

By incorporating district-specific random effects in the endemic component, unobserved 

heterogeneity due to immigration into the region and edge effects was accounted for in the 

power-law HHH and power-law + gravity HHH model formulations. Additionally, the 

inclusion of random effects allows one to account for unobserved heterogeneity as a 

consequence of underreporting of disease incidence, something which affects the 

surveillance data of all three childhood diseases under analysis in this thesis. The results 

reveal that the inclusion of random effects increase the proportion of cases attributed to 

epidemic activity, with rises in maximum eigenvalues and increases of disease decay 

parameter values/ gravity parameter values. Analysis of predictive performance using 

proper soring rules also reveal that the inclusion of random effects significantly improves 

predictive performance compared to previous sub-model formulations, with the power-law 

+ gravity RI HHH model providing the best predictive performance for all three diseases in 

the Lancashire region across the nine time–windows. A better way of accounting for edge 

effects would thus be to explicitly incorporate immigration between regions and districts, 

commuting data such as journey-to-work distances from census statistics (Warnes, 1972) 

or data on labour flows. For instance, Geilhufe et al. (2014) utilise incoming road or air traffic 

from outside North Norway as a suitable proxy for the risk of importing cases of influenza. 

This revealed improved predictive performance when coupled with a gravity model of spatial 

interaction to account for population in the spatio-temporal component. 
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7.3.1 Convergence Issues 

 
Due to convergence issues in the modelling process, results are not provided for HHH 

model formulations that were extended to include random effects for measles or pertussis 

in time-window in the South Wales region. Convergence issues prevented the modelling of 

an uninterrupted period of disease activity across all nine time-windows in the study period, 

handicapping attempts at meaningful inference and interpretation of results.  

 

A major issue encountered in the application of HHH modelling relates to convergence 

issues, primarily experienced when including random effects to the power-law HHH models 

and power-law + gravity HHH models. Difficulties with convergence are not unexpected 

when fitting and running complex models, but convergence issues prevent inferences from 

being made, thus representing a barrier for productive analysis. The primary issue is a 

failure of the likelihood maximisation algorithm to converge. Lack of convergence can be an 

indication that the data does not fit the model well, due to the presence of too many poorly 

fitting observations (Allison, 2004). More often, this failure of convergence is as a result of 

data patterns known as complete or quasi-complete separation (Allison, 2009). For these 

patterns, the maximum likelihood estimates simply cannot be calculated. This is of course 

highly problematic when in most applied circumstances, every parameter dimension must 

be converged for the model to converge (Gill, 2008). 

 

Complete separation occurs when a linear combination of the predictors yields a precise 

prediction of the response variable (Albert and Anderson, 1984). Quasi-complete separation 

is similar, only predictors yield a perfect prediction of the response variable for most values 

of the predictors, but not all (Allison, 2004). Separation can occur when the dataset is too 

small to observe events with low probabilities (Allison, 2009). This may explain why 

modelling of infectious disease counts in South Wales with the inclusion of random effects 

resulted in far more numerous convergence failures in contrast to HHH models with random 
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effects applied to the time-window datasets for Lancashire. Other factors which may result 

in complete or quasi-compete separation include the incorporation of several fixed-effect or 

random effect parameters in the model which can increase the likelihood of separation due 

to individual groups in the data having smaller sample sizes (Allison, 2004). Greater 

complexity of the model fit, with more predictors included in the model, only makes it more 

difficult to identify the potential cause of complete of quasi-complete separation. Maximum 

likelihood estimates may fail to converge and result in significant standard errors, without 

prior warning. Complete separation can be addressed by regularisation; using penalised 

regression on the fixed effects has been cited as one such approach (Allison, 2009). 

However, the HHH model formulation already maximises penalised and marginal log-

likelihoods alternately in order to achieve convergence. 

 

The R package surveillance does not feature a diagnostic tool which can help aid the 

identification of potential causes of convergence errors. An oft-cited method for addressing 

convergence issues is to increase the maximum number of iterations in the optimisation of 

regression and variance parameters. The default number of inner iterations for the HHH 

model is 20 and this can be increased to 50 (Höhle, 2007). However, this did not provide 

any solution to convergence errors encountered in the modelling of measles and pertussis 

incidence with random effects in time-windows for the South Wales region. Due to the 

inherent errors within the modelling procedure, it was decided that, since the absence of 

random effects allows maximum likelihood estimates to converge and parameters to be 

estimated, the HHH models of measles, pertussis and scarlet fever spread in South Wales 

were limited to fixed-effects formulations. 

 

7.4 Chapter Summary 

 

In the analysis presented in this chapter, several sub-model formulations of the HHH model 

were fitted and utilised to analyse the endemic-epidemic dynamics of pertussis, measles 
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and scarlet fever, in a quest to build a more detailed understanding of the spatiotemporal 

dynamics of measles, pertussis and scarlet fever incidence and transmission within the 

regional metapopulations of South Wales and Lancashire. Such understanding can help 

inform interpretation of the rise and fall of endemic threshold populations over time and 

space, elucidating on the influence of spatial structure, mobility and demographic 

stochasticity on disease persistence.  

 

The HHH modelling framework reveals commuter-driven spread as a key mechanism for 

disease persistence in both regional metapopulations. The extension of the baseline HHH 

models to include gravity and power-law components to capture the short and long-range 

transmission of infection significantly improved the model fit to the observed data, for all 

three childhood diseases in successive time windows. In Lancashire and South Wales, 

disease persistence in communities with smaller populations was driven primarily by 

commuter traffic to and from endemic reservoirs, with pertussis, measles and scarlet fever 

incidence all concentrated within districts with high levels of population mobility and spatial 

proximity. In South Wales, there was significant commuter spread between urban centres 

in Glamorgan and communities in the Valleys area. Regarding Lancashire, districts 

immediately surrounding the Liverpool and Manchester conurbations were found to be of 

disproportionate importance in the spatial transmission of pertussis, suggestive of an 

‘agglomeration effect’, as indicated in the hotspot and survival analyses performed in 

Chapter 6.  

 

In the context of analysing and understanding spatiotemporal changes in the size of 

endemic threshold populations, these findings indicate that geographical mobility and 

connectivity play not only a pivotal role in both the spread of disease but also limiting the 

growth of endemic threshold populations, by ensuring subpopulations remain tightly 

coupled with regional endemic centres. High levels of connectivity, nurtured by a historically 

close spatial structure of settlements and subpopulations constructed from a myriad of 
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economically co-dependent relationships, only serve to foster these epidemiological 

agglomeration effects, ensuring infections are regularly reintroduced into susceptible 

populations with high levels of mixing. The net effect of this is significantly limiting the growth 

of endemic threshold populations even in the presence of effective disease interventions, 

such as vaccination. This is most evident from the very limited increase in the size of 

regional endemic threshold estimates for pertussis in Lancashire during in vaccine era time 

windows (see Section 5.2). 

 

The following and final chapter of thesis shall now provide a broader discussion of the 

results presented in this and preceding chapters, summarising key research findings, 

considering the limitations of the research undertaken, identifying areas to improve and 

avenues for future research before making some final remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

335 

 

Chapter 8: Conclusion 

 

8 Summary of Research Findings  

 

Hagenaars et al. (2004) called for more efforts to be made to develop greater insights into 

how spatial heterogeneity affects persistence across a variety of population-dynamical 

regimes. The analysis of two populous regions in England and Wales with contrasting 

spatial structures, settlements of varying population size, density and dispersion, and 

networks of connectivity presented in this study reveals significant regional differences 

across endemic threshold populations for multiple childhood infections, despite sharing 

metapopulation dynamics. These findings are notwithstanding the successful uptake of the 

pertussis vaccine following its introduction in 1957. The empirical work documented in study 

has provided a comprehensive account of spatiotemporal changes in endemic threshold 

populations for three childhood infections by applying a methodology previously confined to 

the study of island populations (Cliff et al., 2000), elucidating the influence of spatial 

structure, connectivity, and dispersion on shaping the endemic persistence of childhood 

disease through time and space. 

 

Endemic threshold estimates for the pre-vaccine era reveal stark regional differences in 

endemic threshold populations for pertussis, demonstrating the influence of geographical 

variability in population density and spatial connectivity on shaping the size of endemic 

threshold populations (see Sections 5.1, 5.2 & 5.3). Within the context of South Wales, the 

high endemic threshold values for time windows at the beginning of the study period can be 

attributed to a combination of low population density and high levels of internal isolation. 

Much of the region is rural, sparsely populated with high levels of dispersion. Incidence 

rates are often low (see Section 4.5), the risk of fadeout, even in the absence of public 

health interventions such as mass vaccination, is high (see Section 6.3.2), and many 
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districts located in rural areas in South Wales are weakly correlated with wider regional 

disease activity (see Section 4.7), resulting in a lack of spatial synchrony. Immediately 

following World War II, the post-war baby boom resulted in substantial growth in the number 

and density of susceptibles within districts of all sizes across South Wales, leading to a 

dramatic fall in the value of endemic threshold estimates. Intriguingly, low-density districts 

in Lancashire experienced a significant increase in the endemic threshold population size 

in the two time windows before the introduction of vaccination. One hypothesis is that 

migration from rural areas to urban centres and newly emerging suburbs throughout the 

1950s further reduced the density of small rural communities and the number of 

transmission events. Overall, there was only modest growth in the endemic threshold in 

Lancashire during the pre-vaccine period, despite the post-war baby boom. High levels of 

spatial coupling between the Manchester and Liverpool conurbations and surrounding 

urban districts, communities often intimately connected economically to the urban centres, 

ensured a consistent transmission of infection to neighbouring areas and satellite towns 

further afield, similar to the spatio-temporal travelling waves of measles observed across 

England and Wales in the mid-to-late twentieth century (Grenfell et al., 2001). 

 

As has been extensively detailed in Chapter Seven, a number of HHH model formulations 

were implemented across the nine time–windows to analyse the nature of measles, 

pertussis and scarlet fever spread through time in the regional metapopulations of 

Lancashire and South Wales, generating insights which help to illuminate the influence of 

mobility, connectivity and population density in shaped local and regional disease 

persistence. The HHH models generally reveal commuter-driven spread as a key driver for 

measles and pertussis persistence in both regional populations, with the most complex HHH 

model formulation including a power-law decay of spatial interaction, gravity model 

component and random effects, to account for unobserved heterogeneities such as edge 

effects and underreporting. found to provide the best performing model fit to observed 

measles, pertussis and scarlet fever data across successive time windows. In Lancashire 
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and South Wales, disease persistence in communities with smaller populations was driven 

primarily by commuter spread to and from endemic reservoirs, with incidence concentrated 

in districts with high levels of population mobility and significant degree of spatial coupling 

with largely populated districts. In South Wales, there was significant commuter-driven 

spread between urban centres in Glamorgan and communities in the Valleys area. Districts 

immediately surrounding Liverpool and Manchester were of disproportionate importance in 

the spatial transmission of pertussis, suggestive of an ‘agglomeration’ effect highlighted in 

the vaccine era hotspot analysis. Waves of pertussis infection radiated from the endemic 

reservoirs of Liverpool CB and Manchester CB to neighbouring districts which formed the 

urban overspill or suburbs of the conurbations. The consistent spatial interaction between 

Manchester CB, Liverpool CB, and surrounding settlements, driven by commuter flows, 

resulted in a positive feedback loop with both conurbations importing a large number of 

cases from neighbouring districts (Bartlett, 1957), amplifying already significant disease 

activity.  

 

A key internal factor for limiting disease persistence in South Wales is the topography of the 

landscape, playing profound role in shaping the geographical characteristics of the regional 

population structure. The steep ridges and rugged landscape which hang over the long pre-

industrial valleys of Carmarthenshire, Glamorgan and Monmouthshire significantly limit the 

direction in which disease spread travels from the densely populated urban centres that lie 

on the coast; Cardiff, Swansea and, to a lesser extent, Newport. Communities in urban and 

rural districts located in the Valleys tend to be linear in their distribution, hugging the 

communication links, road and rail lines, found on the valley floor. Reinforced by the intense 

socio-economic interactions which exist between the major towns and cities on the coast 

and the once thriving industrial communities in the valleys, internal mobility is constricted 

and disease spread outside of Glamorgan, in which the majority of Valley communities are 

located alongside Cardiff and Swansea, is much more restricted. The reduced rate of 

disease transmission from Glamorgan to neighbouring counties in the South Wales region 
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aids in sustaining lower levels of disease persistence, which are then exacerbated by the 

high levels of population dispersion  and extremely limited rates of susceptible recruitment 

in the urban and rural districts of Carmarthenshire, Pembrokeshire and Monmouthshire, the 

latter of which are predominant in the geographical make-up of the three aforementioned 

counties.  

 

In Lancashire, there is a consistent pattern of lower endemic threshold populations across 

the study period, reflecting the greater levels of connectivity, accessibility and density 

across subpopulations. The regional population of Lancashire has a greater overall 

population size than South Wales, with a number of large towns and urban centres 

distributed across the region, despite the two largest settlements, the conurbations of 

Liverpool and Manchester, being located on the eastern and western edges of the southern 

portion of the region. These two cities function as lungs of endemicity, regularly breathing 

life into infectious waves of pertussis, measles and scarlet fever, which spread across to 

neighbouring districts but also travel down the population hierarchy in large towns further 

afield which has strong economic ties with Liverpool and Manchester. Both these cities 

provide a constant source of epidemic activity and a ready pool of susceptibles, recharged 

by high birth rates. 

 

In summary, the higher levels of mobility and accessibility among Lancashire’s districts with 

greater density and availability of susceptibles in the subpopulations ensure that the 

endemic threshold population is consistently lower across the nine time windows in 

Lancashire compared to South Wale. The profound differences in the spatial structure of 

the regional populations which shape this trend also explain why high density and high 

connectivity districts in Lancashire have a much lower endemic threshold population size 

than the high density and highly connected districts in South Wales. In the former, 

population centres are more evenly distributed across the region yet tightly bound to 

endemic centres, despite significant distance, while in the latter, highly connected districts 
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with dense populations go hand-in-hand, located in the Vale of Glamorgan and the valleys 

immediately adjacent. 

 

8.1 Limitations & Areas for Future Work 

 

An important caveat when working with infectious disease data, and in particular when 

calculating thresholds using such data is underreporting, which introduces  uncertainties. 

Previous analyses have suggested that only 25% of the actual number of pertussis cases 

were notified and collated by the Weekly Returns (Clarkson and Fine, 1985), with subclinical 

cases of the disease being a common occurrence. Widespread under-reporting may result 

in an over-estimate of weeks experiencing fade-out.  

 

Childhood diseases often share symptoms with other viral and bacterial infections that affect 

young children, and subclinical cases are also common. Although there have been studies 

which have assessed the quality of historical measles and pertussis disease data in 

England and Wales (Clarkson and Fine, 1985; Gunning et al., 2014), there has been an 

absence of work assessing the quality of scarlet fever incidence data, despite being a 

statutorily notifiable disease consistently since 1899 (Lamagni et al., 2018). According to 

one study of contemporary scarlet fever surveillance in the two countries, which compares 

scarlet fever notification data with the Public Health England syndromic surveillance system, 

a sentinel network of primary care general practitioners, it was estimated that scarlet fever 

cases were underreported by approximately 50% in the mid-2010s (Lamagni et al., 2018). 

It is therefore possible that a similar rate of underreporting existed in Lancashire and South 

Wales during the mid-twentieth century, particularly if the issue of subclinical cases was 

compounded by misdiagnoses and the failure of parents to seek GPs for whatever reason 

when their children fell ill to scarlet fever. It is therefore possible that the magnitude of cases 

was greater than reported, and the disease was more persistent than notification data in the 

Weekly Returns suggests.  
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Another issue with scarlet fever in terms of endemic threshold estimation and analysing the 

persistence of the infection is the infectious period of the disease. Without antibiotics, the 

infectious period of the disease can last up to three weeks; with antibiotic treatment, the 

infectious period shortens dramatically to around one week (Lamagni et al., 2018). The 

increasing use of antibiotics to treat illnesses like scarlet fever during the postwar period, 

may explain the reduced persistence and incidence of the infection as the study period 

progresses. One would expect that if a significant volume of scarlet fever cases had been 

regularly left untreated, the longer infectious period would result in lower endemic threshold 

population estimates and greater levels of endemicity, providing greater opportunity to form 

new chains of transmission that maintain persistence of the disease (Metcalf et al., 2013).  

 

Moreover, the endemic threshold estimation also leaves out factors previously cited as 

potentially influencing threshold size, including seasonal term-time forcing, realistic age 

structure, and non-exponential waiting times. However, despite the relative crudeness of 

the ‘moving window’ approach, threshold estimates compare well with pre-vaccine and 

vaccine era estimates calculated for England and Wales in past research (Wearing and 

Rohani, 2009).  

 

The HHH models utilised in this study do not represent an exhaustive list of formulations 

that could have implemented and there is considerable scope to expand this work in future. 

Historical-based infectious disease surveillance data possess characteristics which can 

challenge classical statistical approaches (Lloyd-Smith et al., 2015); these include non-

independent observations and the underlying epidemic process being only partially 

observable when analysing multivariate time series of disease counts if the process is 

continuous in space. Another problematic feature of surveillance data is the absence of 

subclinical cases of infection which fuel underreporting, alongside the misclassification of 

cases. However, the versatility and utility of the multivariate regression modelling framework 

for endemic-epidemic disease dynamics enables a range of possibilities, too numerous for 
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one chapter to explore in great detail, to account and control for a wide range of exogenous 

and unobserved covariates which may aid understanding for disease spread in local and 

regional populations.  

 

A particularly fruitful avenue to purse with regards to further enriching the HHH model 

formulation would be to incorporate the impact of disease interventions, namely the 

implementation of mass vaccination, in the case of pertussis during the study period. 

Including some measure of vaccination coverage would importantly reflect changing nature 

of the (remaining) susceptible population, in response to effective disease intervention. Past 

research has observed that vaccination coverage is be associated with outbreak size, whilst 

also capturing evidence of considerable heterogeneity in vaccination coverage (Herzog et 

al., 2011). The work of Herzog et al. (2011) provides the template for the inclusion of 

vaccination coverage as an explanatory variable, demonstrating the covariate to be strongly 

associated with the size and occurrence of measles epidemics in Germany at state level. 

They propose an extension to the two component model for disease counts outlined by Held 

et al. (2005, 2006). Herzog et al. (2011) found that the inclusion of the susceptible proportion 

of the population in the autoregressive component of the model to be the most effective 

approach , according to the mass action principle (Keeling and Rohani, 2008). The mass 

action principle assumes that the rate of disease propagation is proportional to the density 

of susceptibles multiplied by the density of infected individuals.  

 

Although patchy in quality, owing to the idiosyncratic and qualitative nature of reporting, 

annual data on the number of infants and children immunised for pertussis, either by the 

whole-cell (wP) or triple antigen vaccine, can be obtained from the Medical Officer of Health 

(MOH) reports for several local government districts in Lancashire and South Wales from 

1957 to 1969. The Wellcome Library holds printed copies of MOH reports in its archives 

and beginning in August 2016, digitised and uploaded all existing MOH reports it holds for 

LGDs in England and Wales from the late nineteenth century onwards, in pdf format. As of 
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5th February 2020, 68,410 documents have been uploaded, including all annual MOH 

reports for districts in  the Lancashire and South Wales regions for the period 1957–1969. 

These reports can be accessed from the following source: 

https://archive.org/details/medicalofficerofhealthreports.  

 

MOH reports can provide information on the total number of children under five years of 

age immunised by GPs, mobile units and infant welfare and special clinics. MOH reports 

were produced annually from the late-nineteenth century to 1972 by the Medical Officer of 

Health for the reporting district, who would describe the work carried out by district public 

health officers during the year, provide detailed statistical information on birth rates, death 

rates, infant mortality and incidence of notifiable infectious diseases, as well as publish a 

general statement on the overall health of the district population. 

 

As alluded to, the format of MOH reports vary considerably over time, by district and by 

author.  As a consequence, immunisation data is not always present in the reports for 

notifiable diseases; data might be present in a district MOH report one year yet absent for 

the same district in the next. Overcoming the hurdles posed by the extremely patchy nature 

of such historical epidemiological data might prove a time-consuming and complex task, but 

one that may hold tremendous insight into illustrating the impact of vaccination on the spatial 

dynamics and persistence of pertussis in local subpopulations and region-wide, and how 

this contributes to growth in endemic threshold populations, which hold great relevance in 

informing vaccination strategies. 

 

With regards to the incorporation of gravity models, in addition to population, the gravity 

extension of the HHH model formulation could utilise a second complementary ‘gravity 

measure’ to model spatiotemporal spread of infection. Past research has proposed an 

‘urbanicity’ measure, founded on the size of the largest place within a geographical district, 

for including urban effects on epidemiological variables (Kafadar and Tukey, 1993). This 

https://archive.org/details/medicalofficerofhealthreports
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would address a key shortcoming of using population-based measures such as population 

fractions or population density, which are not necessarily based upon large towns or cities 

and thus are found to be sometimes inconsistent with what one might consider a logical 

urban hierarchy. For instance, Narberth UD, a small community in South Pembrokeshire 

with a mean population of just 1,068 in time–window one (1940-45) has a mean population 

density of 2,125.1 per square kilometre during the same period. This exceeds the population 

density of Swansea CB, which has a mean population density of 1,863.21 per square 

kilometre over the corresponding period yet a mean population size which is approximately 

133 times greater than that of Narberth UD, standing at 142,273. In this example, population 

density fails to distinguish between the second largest town and second smallest district by 

population size in South Wales in time–window one.  

 

Goodall et al. (1998) propose three variations on urbanicity: the population of the largest 

subunit in each geographical unit, the square root of the sum of the squared population of 

the top three largest subunits in each geographical unit, and the square root of the sum of 

the squares of all subunit populations. In the analyses detailed and discussed in this 

chapter, the geographical units are the 125 local government districts (LGDs) of Lancashire 

and 75 of the four counties of South Wales respectively, with the most likely candidates for 

subunits being urban settlements, villages and hamlets. However, since many LGDs 

contain no smaller subunits, specifically the county boroughs and many of the municipal 

boroughs found in each region, where the district is essentially the subunit, population of 

the largest subunit would be the most logical choice as measure of urbanicity. This would 

allow the one to consider more explicitly the epidemiological effects of shifting urban 

patterns in regional populations over time and space, on disease spread and persistence. 

One could analyse, with more confidence perhaps, to what extent significant fluctuations in 

population densities and  local population size as a result of population decentralisation, 

slum clearance and deindustrialisation experienced in Lancashire and South Wales 

affected the nature of disease endemicity in the 1950s and 1960s. In addition to gravity 
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measures including a population effect in the epidemic component as well as the 

spatiotemporal component may be beneficial to reflect higher contact rates and thus 

infectivity in districts with more dense populations, which results in the depletion of 

susceptible pools and more regular occurrence of fadeout events in large and medium-

sized towns. 

 

There are patterns in the spatiotemporal spread of infection which can easily go unobserved 

when utilising geographical distance to explore the impact of human mobility and 

accessibility on infectious disease persistence. In their work describing describe the 

geographical spread of 2009 H1N1 influenza pandemic, Brockmann and Helbing (2013) 

introduce the concept of ‘effective distance’ to describe the spatiotemporal patterns not 

easily seen when using geographical distances, collapsing geographical space by 

visualising and computing only effective-distances based upon mobility or population flow 

data (Brockmann and Helbing, 2013). This approach relates to what Brown and Horton 

(1970) terms ‘functional distance’; the function of (inter-) regional properties such as 

commuter or travel flows such that it “reflects the net effect of entity properties upon the 

propensity of the entities to interact” (Brown and Holmes, 1971: 388).  

 

Another fertile area of future research is the statistical analysis of age-stratified surveillance 

data. For directly transmitted human diseases, the social tendency for individuals to 

congregate and gravitate around each other creates contact patterns between subgroups 

of a population, potentially acting to broaden the pure distance decay of interaction. Since 

contact patterns vary across age (Mossong et al., 2008; Truscott et al., 2012), there is a 

need for spatiotemporal models of disease spread which attempt to unify across age groups 

and geographical districts. The Censuses for England and Wales in 1951, 1961 and 1971 

provide a breakdown of local government district populations stratified by age, providing 

statistical data on the number of children aged between 0-4 years of age, 5-9 years of age 

and 10-14 years of age. Coupled with spatially aggregated birth rate data reported in the 
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annual publications of the Registrar–General’s Statistical Review, it may be possible to 

construct age-stratified spatiotemporal datasets of areal-level measles, pertussis and 

scarlet fever counts which could be used to incorporate the inherent contact structure in the 

regression-oriented, endemic–epidemic HHH model. This three-dimensional approach 

would offer a more detailed description of disease spread than unstratified or non-spatial 

models, which characteristically assume homogeneous mixing within each district 

subpopulation (Meyer and Held, 2017). This provides a much deeper understanding of the 

nature of disease persistence in susceptible populations on a local scale and within the 

wider regional metapopulation. Although the historical nature of the epidemiological data 

analysed here may preclude attempts to enact the following approach, replacing the 

parametric formulation of distance decay with  a social contact matrix, stratified by spatial 

distance in addition to age group could prove very fruitful for understanding the short-term 

spread and long term-persistence of childhood infections. Separate movement data for 

school children and adults could be utilised to quantify the strength of epidemiological 

coupling between districts (Kucharski et al., 2015).  

  

Although weekday versus weekend differences in contact patterns are not relevant for 

models which used weekly counts of infectious disease data, there are possibly relevant 

seasonal effects on larger time scales which need to be considered. Soper (1929) first 

demonstrated temporal heterogeneity in the transmission rate of disease, in his study of 

high amplitude outbreaks of measles in Glasgow. Elevated transmission rates were 

observed in October and fell throughout the academic year, resulting a trough in the summer 

months, implying higher transmission rates as a result of term-time forcing. Undoubtedly, 

the contact structure of school children changes considerably between regular and school 

holiday periods (Hens et al., 2009; Rohani and King, 2010), and the conclusions of Soper 

(1929) have been supported by a large number of studies analysing the transmission and 

incidence of childhood infections such as measles, chickenpox, pertussis, and mumps, in 

England and Wales and the United States (London and Yorke, 1973; Finkenstädt and 
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Grenfell, 2000). One approach for accounting seasonality in the coefficient of transmission 

may be to adopt a binary function, with two different values of the coefficient of transmission; 

one for the school terms and one for the holidays. However, this may necessitate a 

knowledge of the academic calendar in local populations, which is not always possible, 

particularly for historical data. A more straightforward approach, in the context of HHH 

modelling, would be to include a time-varying contact matrix by estimating seasonality in 

the epidemic component (Held and Paul, 2012), which is supported by the model 

framework. Relatedly, following an alternative approach adopted by Fanshawe et al. (2008), 

seasonality parameters could be allowed to change annually according to a random walk 

model. Implementation would then necessitate the need to use Markov chain Monte Carlo 

or other more demanding techniques for inference. 

 

Seeking a solution to the multiple convergence issues faced when running the HHH models 

including random effects discussed in Section 7.3 opens the door to an alternative modelling 

framework; using Bayesian methods. Complete separation can be addressed by Bayesian 

regression, with appropriate priors with a prior distribution on the fixed effects (Hsu and 

Leonard, 1997; Kahn and Raftery, 1996). Although it has often be claimed that the main 

advantage of utilising a Bayesian modelling framework over frequentists method is the 

ability to incorporate of prior knowledge by specifying appropriate prior probabilities 

(Greenland, 2007), Bayesian methods are particularly useful for statistical inference of 

complex models which present significant difficulties for frequentist methods. Calculating 

the maximum of very complex likelihood functions can be a difficult task in practice, despite 

the advances in computer software and hardware in recent years. In such situations, the 

frequentist approach usually involves numerical tools, such as Newton-Raphson or Quasi-

Newton algorithms in the HHH model. However, convergence problems may occur, and 

solutions may be highly dependent on initial values. Bayesian methods can overcome these 

issues by utilising MCMC methods (Smith and Roberts, 1993; Brooks, 1998).Adopting this 

approach, inference is centred on the simulated samples, utilising parameters of interest. 
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The missing data alongside parameters are treated as random variables, and a MCMC 

algorithm is employed to use the missing data and  parameter values and provide robust 

inferences and quantify uncertainty in parameter estimates. An advantage of using a 

Bayesian approach for the analysis of epidemiological data is that it enables the inclusion 

of unobserved variables such as infectious and incubation period (Cauchemez,et al., 2004; 

Lekone and Finkenstädt, 2006), in stochastic modelling approaches, which are  quantified  

along with all other model parameters to enrich insights on the mechanisms of disease 

transmission. 

 

8.2 Final Remarks 
 

To conclude, the South Wales region exhibits consistently higher endemic threshold 

populations than the Lancashire region over the course the study period charting 

spatiotemporal changes in endemic and epidemic activity of measles, pertussis and scarlet 

fever across the mid-twentieth century, from January 1940 to December 1969. A range of 

internal and external factors explain the regional differences in disease persistence and the 

respective thresholds of childhood infections. South Wales represents a more sparsely 

inhabited regional population, in which communities are more widely dispersed and 

population densities are notably lower across the region’s urban and rural districts 

compared to the Lancashire region. In a more dispersed metapopulation, coupled with lower 

rates of population growth, rates of susceptible recruitment are more limited due to the 

greater degree of spacing between susceptibles and infected individuals. Chains of disease 

transmission are also more prone to fracture and collapse, reducing the duration of 

epidemic outbreaks and limiting the potential for disease spread. Population mobility 

exercised through short-range travel  patterns that typify commuting play an important role 

in maintaining high levels of spatial coupling between the metropolitan hinterland and urban 

centres which function as endemic reservoirs of infection. Such dynamics maintain 

persistence of disease, which are only reinforced by dense populations and high levels of 
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susceptible recruitment in large urban districts where vaccination coverage is at 

intermediate levels. Breaking the strong, intimate ties of spatial coupling between urban 

centres and their satellite settlements through aggressive diseases intervention is vital to 

prevent constraints on growth of endemic threshold populations in attempts to eliminate 

childhood infections such as pertussis and measles. 

 

The methodological approaches adopted and presented in this research provide a 

straightforward method for analysing changes in regional disease persistence over time by 

studying long-term spatiotemporal changes in endemic threshold populations. This could 

be applied to other regional populations and the study of other vaccine-preventable, directly-

transmitted childhood infections to uncover spatial heterogeneities in disease persistence. 

Recognising spatial heterogeneities such as rescue effects radiating from hotspots of 

epidemic activity is necessary to devise successful disease intervention strategies. This has 

even greater currency today, with vaccine supply issues across the world inhibiting progress 

to bring the COVID-19 pandemic under control, stressing the practical importance of 

spatially targeted, geographical informed vaccination strategies. Identifying and describing 

significant variations in threshold estimates for complex regional populations can better 

inform vaccination efforts in resource-constrained settings, by highlighting the sometimes 

stark differences in persistence and invasion dynamics of a target disease in a 

metapopulation with core-satellite dynamics. In such a context, district-based or regionally-

targeted mass vaccination programmes might represent more effective strategies for 

disease elimination than nationwide mass vaccination.
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APPENDIX I 
 

I. Additional Maps: Regional Administrative Geographies  

 

Figure I.1 Administrative map of the Lancashire region, with local government districts 

(LGDs) numbered for identification purposes (See following page). 
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List of Lancashire LGD numbers with corresponding name: 
 

1. Abram UD 

2. Accrington MB 

3. Adlington UD 

4. Ashton-in-Makerfield UD 

5. Ashton-under-Lyne MB 

6. Aspull UD 

7. Atherton UD 

8. Audenshaw UD 

9. Bacup MB 

10. Barrowford UD 

11. Barrow-in-Furness CB 

12. Billinge & Winstanley UD 

13. Blackburn CB 

14. Blackburn RD 

15. Blackpool CB 

16. Blackrod UD 

17. Bolton CB 

18. Bootle CB 

19. Brierfield UD 

20. Burnley CB 

21. Burnley RD 

22. Bury CB 

23. Carnforth UD 

24. Chadderton UD 

25. Chorley MB 

26. Chorley RD 

27. Church UD 

28. Clayton-le-Moors UD 

29. Clitheroe MB 

30. Clitheroe RD 

31. Colne MB 

32. Crompton UD 

33. Crosby MB 

34. Dalton-in-Furness UD 

35. Darwen MB 

36. Denton UD 

37. Droylsden UD 

38. Eccles MB 

39. Failsworth UD 

40. Farnworth MB 

41. Fleetwood MB 

42. Formby UD 

43. Fulwood UD 

44. Fylde RD 

45. Garstang RD 

46. Golborne UD 

47. Grange UD 

48. Great Harwood UD 

49. Haslingden MB 

50. Haydock UD 

51. Heywood MB 

52. Hindley UD 

53. Horwich UD 

54. Huyton-with-Roby UD 

55. Ince-in-Makerfield UD 

56. Irlam UD 

57. Kearsley UD 

58. Kirkham UD 

59. Lancaster MB 

60. Lancaster RD 

61. Lees UD 

62. Leigh MB 

63. Leyland UD 

64. Litherland UD 

65. Little Lever UD 

66. Littleborough UD 

67. Liverpool CB 

68. Longridge UD 

69. Lunesdale RD 

70. Lytham St Anne's MB 

71. Manchester CB 

72. Middleton MB 

73. Milnrow UD 

74. Morecambe & Heysham 

MB 

75. Mossley MB 

76. Nelson MB 

77. Newton-le-Willows UD 

78. Oldham CB 

79. Ormskirk UD 

80. Orrell UD 

81. Oswaldtwistle UD 

82. Padiham UD 

83. Poulton-le-Fylde UD 

84. Preesall UD 

85. Prescot UD 

86. Preston CB 

87. Preston RD 

88. Prestwich MB 

89. Radcliffe MB 

90. Rainford UD 

91. Ramsbottom UD 

92. Rawtenstall MB 

93. Rishton UD 

94. Rochdale CB 

95. Royton UD 

96. Salford CB 

97. Skelmersdale UD 

98. Southport CB 

99. St. Helens CB 

100. Standish-with-Langtree 

UD 

101. Stretford MB 

102. Swinton & Pendlebury MB 

103. Thornton Cleveleys UD 

104. Tottington UD 

105. Trawden UD 

106. Turton UD 

107. Tyldesley UD 

108. Ulverston UD 

109. Ulverston/North Lonsdale 

RD 

110. Upholland UD 

111. Urmston UD 

112. Walton-le-Dale UD 

113. Wardle UD 

114. Warrington CB 

115. Warrington RD 

116. West Lancashire RD 

117. Westhoughton UD 

118. Whiston RD 

119. Whitefield UD 

120. Whitworth UD 

121. Widnes MB 

122. Wigan CB 

123. Wigan RD 

124. Withnell UD 

125. Worsley UD 
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Figure I.2 Administrative map of the South Wales region, with LGDs numbered for identification purposes (See following page). 

  



Appendix I 

392 

 

List of South Wales LGD numbers with corresponding name: 
 

1. Abercarn UD 

2. Abergavenny MB 

3. Abergavenny RD 

4. Abertillery UD 

5. Bedwas & Machen 

UD 

6. Bedwellty UD 

7. Blaenavon UD 

8. Caerleon UD 

9. Chepstow RD 

10. Chepstow UD 

11. Ebbw Vale UD 

12. Magor & St. Mellons 

RD 

13. Monmouth MB 

14. Monmouth RD 

15. Mynyddislwyn UD 

16. Nantyglo & Blaina 

UD 

17. Newport CB 

18. Pontypool RD 

19. Pontypool UD 

20. Rhymney UD 

21. Risca UD 

22. Tredegar UD 

23. Usk UD 

24. Aberdare UD 

25. Barry MB 

26. Bridgend UD 

27. Caerphilly UD 

28. Cardiff CB 

29. Cardiff RD 

30. Cowbridge MB 

31. Cowbridge RD 

32. Gelligaer UD 

33. Glyncorrwg UD 

34. Gower RD 

35. Llantrisant & 

Llantwitfardre RD 

36. Llwchwr UD 

37. Maesteg UD 

38. Merthyr Tydfil CB 

39. Mountain Ash UD 

40. Neath MB 

41. Neath RD 

42. Ogmore & Garw UD 

43. Penarth UD 

44. Penybont RD 

45. Pontardawe RD 

46. Pontypridd UD 

47. Port Talbot MB 

48. Porthcawl UD 

49. Rhondda MB 

50. Swansea CB 

51. Ammanford UD 

52. Burry Port UD 

53. Carmarthen MB 

54. Carmarthen RD 

55. Cwmamman UD 

56. Cwmbran UD 

57. Kidwelly MB 

58. Llandilo RD 

59. Llandilo UD 

60. Llandovery MB 

61. Llanelli MB 

62. Llanelli RD 

63. Newcastle Emlyn RD 

64. Cemaes RD 

65. Fishguard & 

Goodwick UD 

66. Haverfordwest MB 

67. Haverfordwest RD 

68. Milford Haven UD 

69. Narberth RD 

70. Narberth UD 

71. Neyland UD 

72. Pembroke MB 

73. Pembroke RD 

74. Tenby MB  
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Figure I.3 Population distribution by form of urban and rural settlement in the 

Lancashire region, 1940-1969. Settlements with mean population size greater than  

100,000 inhabitants are labelled. 
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Figure I.4 Population distribution by form of urban and rural settlement in the South Wales region, 1940-1969. Settlements with 

mean population size greater than 100,000 inhabitants are labelled.   
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APPENDIX II 

 

I. Problem of Using Percentage Data In Regression 

 

There are some inherent issues using percentage data in regression. For linear models, the 

dependent variable does not need to be normally distributed, but it must possess the 

following properties; be continuous, unbounded, and measured on an interval or ratio scale. 

Percentage data does not fit these criteria, despite being continuous and measured on a 

ratio scale. The issue is the boundaries capped at 0 and 100. Proportional data is, by its 

nature, bound at 0 and 1, and is therefore often not normally distributed or homoscedastic. 

When one has a bounded dependent variable but the model being fitted is unbounded, such 

as an OLS model, this may produce significant problems when describing the mean. Some 

fitted and predicted values may be impossible, with values below 0 or above 1. The true 

relationship must eventually become flatter than it is at the middle as it approaches the 

bounds, resulting in a bend of some form. There may also be issues when describing the 

variance; as the mean approaches the bound, the variance will tend to decrease as well. 

With less room between the mean and bounds, the overall variability tends to fall. 

 

Percentage endemicity is derived from discrete counts of “successes” and “failures”, or in 

this instance “absent” and “present”, with the number of months in which disease is 

“present” divided by the total number of months.  Data of this kind is perhaps better suited 

to analysis by logistic or beta regression. If the proportion data is for a count variable, a 

common model for the distribution of the proportion is a binomial GLM. There are several 

options for the form of the relationship of the mean proportion and the predictors, but the 

most common one would be a logistic GLM. Beta regression can be conducted with the 

betareg function in the R package betareg (Cribari-Neto and Zeileis, 2010). With this 

function, the dependent variable varies between 0 and 1, but no observation can equal 

exactly 0 or 1. The model assumes that the data follows a beta distribution. 

 



Appendix II 

396 

 

II. Two-Component Model for Disease Counts 

 

Let 𝑌 = (𝑌1, . . ., 𝑌𝑛) denote the time series of weekly counts of a specific infectious disease. 

In its most basic form, without temporal or seasonal trends, the model is specified to let 

previous counts act directly on the conditional mean 𝜇𝑡 of 𝑌𝑡|𝑌𝑡−1, not the log mean). An 

identity link is used, rather than a log link 

𝜇𝑡 =  𝜈 +  𝜆𝑌𝑡−1, (1.1) 

where  𝜈 is the endemic parameter and 𝜆 is the autoregressive parameter. Model 1.1 would 

not be appropriate in most cases when applied to infectious disease data since it does not 

allow for seasonal patterns and temporal trends. Thus, 𝜈 is replaced with a time-varying 𝜈𝑡. 

The autoregressive parameter 𝜆 is also allowed to vary over time, to reflect situations where 

infectiousness of a disease changes over time for instance, perhaps due to the 

implementation of immunisation programmes or other public health interventions, or through 

external factors which influence the spread of infection. Other scenarios include a declining 

number of susceptibles over time, which would effectively decrease 𝜆, and sudden 

outbreaks where 𝜆𝑡 >  1 for a limited time period to be estimated from infectious disease 

data.  

 

Assume that 𝑌𝑡 follows a Bienaymé–Galton–Watson (BGW) Poisson branching process 

with immigration and time-varying parameters 𝜈𝑡 and 𝜆𝑡: 

 

𝑌𝑡 =  𝑋𝑡  + 𝑍𝑡  , 𝑡 =  1, . . . , 𝑛 with 

𝑋𝑡 ∼  𝑃𝑜(𝜈𝑡  ), and 

𝑍𝑡  |𝑌𝑡 − 1 ∼  𝑃𝑜(𝜆𝑡 𝑌𝑡−1) 

 

The observed number of counts 𝑌𝑡 is now separated into two (unknown) components: 𝑋𝑡 

and 𝑍𝑡, with conditional rate 𝜆𝑌𝑡 − 1, and it is assumed that they are independent. These 
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two components are termed the ‘endemic’ and ‘epidemic’ components, respectively (Held 

et al., 2005, 2006). The endemic component 𝑋𝑡 parametrically models seasonal variation 

and trends in endemic incidence and should exhibit a persistent, stable temporal pattern. 

With regards to the epidemic component 𝑍𝑡, occasional outbreaks in epidemic incidence 

should be captured and eventually fade out (provided 𝜆 <  1).  

 

For constant 𝜈 and 𝜆, 𝑌𝑡 is a simple branching process with immigration. Here, 𝜈 >  0 and 

0 <  𝜆 <  1, the number of counts (𝑍𝑡) is stationary with mean and variance 

𝜇 =  
𝜈

1 − 𝜆
, 𝜎2 =  

𝑣

(1 −  𝜆)(1 − 𝜆2)
. (1.2) 

 

The stationary mean 𝜇 =  𝜈/(1 –  𝜆) enables an effective interpretation of 𝜆. For endemic 

incidence, the stationary mean is ν, whilst epidemic incidence has a stationary mean 

𝜈/(1 –  𝜆) –  𝜈 =  𝜆𝜈/(1 –  𝜆), therefore the ratio of epidemic to total stationary mean rate is 

equal to the autoregressive parameter 𝜆. 

 

Held et al. (2006) extend the model to allow seasonal terms in the endemic rate, and to 

enable the inclusion of an additional influx of endemic cases with rate ν to ensure that 

whenever 𝜆 ≥  1 an outbreak will occur, while for 𝜆 <  1 the process will be stable and will 

not fade-out completely with probability 1 (depending on the actual value of λ). This would 

not be the case according to an ordinary branching process. This is also advantageous as 

infectious disease surveillance data tends to exhibit a mixture of endemic and epidemic 

behaviours given the dynamical nature of disease systems. When 𝜆 is close to 1, 

simulations show the two component model displays occasional epidemic outbreaks, 

indicating the formulation provides a more realistic fit than a solely parameter-driven model 

(Held et al., 2005, 2006)   
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The model (1.1) does not fit a generalized linear model (GLM) framework but numerical 

techniques for likelihood inference can be used. Maximum likelihood estimates can be 

simply obtained using generic optimisation routines so more complicated simulation-based 

inferences such as Markov chain Monte-Carlo (MCMC) algorithms are not required. 

 

In most applications of the model outlined, it will be necessary to replace the Poisson 

distribution with a more flexible observation model to adjust for overdispersion resultant 

from a variety of factors: underreporting or reporting delays of infectious disease counts, 

the influence of unobserved covariates and mechanisms which affect disease incidence, 

spatial autocorrelation, amongst others. Overdispersion can be allowed for by replacing the 

Poisson distribution with a negative binomial model, where the conditional mean 𝜇𝑡  remains 

the same but the conditional variance 𝜎𝑡
2 increases to  

𝜎𝑡
2 = 𝜇𝑡 +

𝜇𝑡
2

𝜓
= 𝜇𝑡 (1 +

𝜇𝑡

𝜓
) , (1.3) 

 

where 𝜓 is the overdispersion parameter. 𝜓 >  0 is estimated from the available data.  
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Table II.A Glossary of notation for parameters in HHH model formulations. 

 

Notation Parameter 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 Population in the spatio-temporal component 

(‘Gravity’ parameter) 

𝒅 Distance decay 

𝜶(𝝀) Fixed effect, epidemic component 

𝜶(𝝓) Fixed effect, spatio-temporal component 

𝜶(𝒗) Fixed effect, endemic component 

𝝍 Dispersion 

𝝈𝝀
𝟐 Variance, epidemic random effect 

𝝈𝝓
𝟐  Variance, spatio-temporal  random effect 

𝝈𝛎
𝟐 Variance, endemic random effect 

𝒎𝒂𝒙𝑬𝑽 Maximum Eigenvalues 

𝓵𝒑𝒆𝒏 Penalised log-likelihood 

𝓵𝒎𝒂𝒓𝒈 Marginal log-likelihood 

𝓵 Log-likelihood 
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APPENDIX III 
 

I. Endemic Threshold Population Estimates: Measles, 1940–1969 

 

Table III.1 Parameter estimates, measures of dispersion and endemic threshold estimates 

for measles with 95% CI for nine Lancashire and South Wales time windows (all districts). 

Table III.2 Parameter estimates, measures of dispersion and endemic threshold estimates 

for measles with 95% CI for low density and high density districts in Lancashire, for nine 

time windows. 

Table III.3 Parameter estimates, measures of dispersion and endemic threshold estimates 

for measles with 95% CI for low density and high density districts in South Wales, for nine 

time windows. 

Table III.4 Parameter estimates, measures of dispersion and endemic threshold estimates 

for measles with 95% CI for low connectivity and high connectivity districts in Lancashire, 

for nine time windows. 

Table III.5 Parameter estimates, measures of dispersion and endemic threshold estimates 

for measles with 95% CI for low connectivity and high connectivity districts in South Wales, 

for nine time windows. 
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Table III.1. 

 

  

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Lancashire  

       

1940-45 -140.251 44.335 -1.981 0.80 263 215 322 

1943-48 -134.642 42.075 -2.319 0.73 378 295 484 

1946-51 -140.398 43.788 -2.246 0.76 301 246 390 

1949-54 -148.471 45.793 -1.911 0.83 267 221 322 

1952-57 -139.263 43.312 -1.689 0.84 335 281 399 

1955-60 -140.645 43.237 -1.611 0.86 368 311 436 

1958-63 -149.694 45.788 -1.750 0.85 284 239 338 

1961-66 -151.636 47.308 -1.949 0.83 209 174 252 

1964-69 -165.784 49.592 -2.018 0.83 229 191 275 

South Wales 

       

1940-45 -110.126 34.622 -2.617 0.70 1,180 834 1,650 

1943-48 -104.077 32.632 -2.463 0.71 1,795 1,277 2,523 

1946-51 -118.435 36.918 -2.253 0.79 826 627 1,088 

1949-54 -117.257 35.826 -2.136 0.79 1,160 886 1,518 

1952-57 -110.099 33.682 -2.377 0.73 1,730 1,258 2,378 

1955-60 -108.942 33.678 -2.36 0.74 1,600 1,167 2,196 

1958-63 -102.857 31.824 -2.315 0.72 2,370 1,706 3,288 

1961-66 -120.000 37.090 -2.733 0.72 855 613 1,192 

1964-69 -126.170 37.632 -2.868 0.70 1,025 726 1,444 
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Table III.2. 

 

 

  

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -113.358 37.314 -3.650 0.63 523 336 813 

1943-48 -89.737 30.347 -4.269 0.45 1,788 948 3,375 

1946-51 -107.766 35.162 -4.136 0.54 811 477 1,379 

1949-54 -132.134 41.473 -3.668 0.68 396 266 590 

1952-57 -129.722 40.887 -3.220 0.72 416 292 593 

1955-60 -117.174 37.206 -2.797 0.74 688 490 965 

1958-63 -138.840 42.903 -3.107 0.76 369 267 512 

1961-66 -150.168 46.795 -3.901 0.70 222 153 324 

1964-69 -153.220 46.164 -3.570 0.73 306 216 434 

High density 

       

1940-45 -143.505 45.335 -2.968 0.80 236 175 316 

1943-48 -142.421 44.301 -3.158 0.77 297 215 410 

1946-51 -138.999 43.953 -3.159 0.76 275 199 379 

1949-54 -146.218 45.534 -2.795 0.82 256 194 338 

1952-57 -143.556 44.315 -2.619 0.83 314 240 410 

1955-60 -145.748 44.538 -2.716 0.82 330 251 434 

1958-63 -146.650 45.294 -2.829 0.81 279 211 370 

1961-66 -144.160 45.789 -2.708 0.83 215 165 281 

1964-69 -156.152 47.789 -3.055 0.80 230 172 306 
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Table III.3. 

 

 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low connectivity  

       

1940-45 -132.681 41.729 -2.725 0.81 377 281 506 

1943-48 -117.772 37.086 -3.078 0.77 745 513 1,084 

1946-51 -120.705 38.160 -3.413 0.76 608 406 910 

1949-54 -134.140 41.575 -3.176 0.79 430 304 605 

1952-57 -132.877 41.478 -2.708 0.82 412 307 553 

1955-60 -127.646 39.801 -2.654 0.83 525 389 709 

1958-63 -133.052 41.350 -3.006 0.82 433 312 601 

1961-66 -137.316 43.401 -2.979 0.82 294 216 401 

1964-69 -145.826 44.114 -3.175 0.82 374 271 518 

High connectivity 

       

1940-45 -134.239 43.717 -2.677 0.80 229 174 301 

1943-48 -137.810 43.708 -3.199 0.68 276 199 385 

1946-51 -146.873 46.150 -2.734 0.76 224 172 293 

1949-54 -149.670 46.838 -2.015 0.87 215 177 260 

1952-57 -140.575 43.911 -2.214 0.85 302 240 379 

1955-60 -149.548 45.581 -1.984 0.87 299 246 364 

1958-63 -159.838 48.547 -1.926 0.88 226 189 270 

1961-66 -157.508 49.124 -2.591 0.82 175 138 222 

1964-69 -171.617 51.628 -2.403 0.84 183 148 226 
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Table III.4. 

 

 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -108.748 33.488 -3.906 0.67 1,713 1,012 2,899 

1943-48 -100.528 31.055 -3.952 0.63 2,866 1,614 5,090 

1946-51 -124.765 38.117 -3.619 0.75 789 514 1,211 

1949-54 -99.394 31.414 -3.502 0.69 2,225 1,346 3,680 

1952-57 -96.978 30.224 -3.795 0.63 3,291 1,868 5,800 

1955-60 -99.005 31.019 -3.742 0.65 2,605 1,511 4,488 

1958-63 -95.118 29.922 -3.806 0.63 3,320 1,869 5,892 

1961-66 -118.245 36.817 -4.788 0.62 847 471 1,524 

1964-69 -103.895 31.820 -4.838 0.54 2,560 1,288 5,090 

High density 

       

1940-45 -104.309 34.006 -3.466 0.73 1,020 644 1,614 

1943-48 -99.800 32.294 -3.172 0.74 1,538 988 2,396 

1946-51 -113.070 35.981 -3.036 0.80 836 571 1,223 

1949-54 -129.071 38.624 -2.744 0.85 853 619 1,176 

1952-57 -116.179 35.402 -3.098 0.78 1,278 861 1,897 

1955-60 -113.133 34.926 -3.129 0.77 1,266 845 1,897 

1958-63 -107.109 32.868 -3.007 0.77 2,010 1,325 3,024 

1961-66 -121.692 37.346 -3.323 0.78 864 578 1,290 

1964-69 -136.297 40.473 -3.472 0.79 690 468 1,016 
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Table III.5. 

 

 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low connectivity  

       

1940-45 -90.810 29.416 -3.890 0.73 3,070 1,689 5,580 

1943-48 -81.686 26.537 -3.560 0.74 7,030 3,835 12,870 

1946-51 -101.268 32.166 -3.340 0.79 1,810 1,132 2,889 

1949-54 -104.350 32.185 -3.100 0.80 2,240 1,447 3,452 

1952-57 -89.017 27.570 -3.400 0.75 7,180 4,116 12,515 

1955-60 -91.728 28.769 -3.840 0.70 4,620 2,530 8,430 

1958-63 -95.335 29.840 -3.800 0.68 3,520 1,979 6,250 

1961-66 -108.260 33.888 -4.270 0.70 1,400 792 2,470 

1964-69 -101.850 31.047 -4.520 0.71 3,180 1,646 6,117 

High connectivity 

       

1940-45 -124.238 38.228 -3.849 0.62 735 467 1,157 

1943-48 -119.429 36.617 -3.624 0.59 983 629 1,537 

1946-51 -127.926 39.516 -3.296 0.72 587 403 854 

1949-54 -121.318 37.146 -3.200 0.74 908 616 1,340 

1952-57 -112.353 34.982 -3.205 0.67 1,176 778 1,778 

1955-60 -114.704 35.561 -3.036 0.71 1,091 742 1,604 

1958-63 -110.115 33.592 -3.269 0.70 1,800 1,160 2,792 

1961-66 -128.272 39.236 -4.058 0.66 658 413 1,049 

1964-69 -144.717 42.361 -4.001 0.62 599 391 917 
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II. Endemic Threshold Population Estimates: Pertussis, 1940–1969 

 
 
Table III.6 Parameter estimates, measures of dispersion and endemic threshold estimates 

for pertussis with 95% CI for nine Lancashire and South Wales time windows (all districts). 

Table III.7 Parameter estimates, measures of dispersion and endemic threshold estimates 

for pertussis with 95% CI for low density and high density districts in Lancashire, for nine 

time windows. 

Table III.8 Parameter estimates, measures of dispersion and endemic threshold estimates 

for pertussis with 95% CI for low density and high density districts in South Wales, for nine 

time windows. 

Table III.9 Parameter estimates, measures of dispersion and endemic threshold estimates 

for pertussis with 95% CI for low connectivity and high connectivity districts in Lancashire, 

for nine time windows. 

Table III.10 Parameter estimates, measures of dispersion and endemic threshold estimates 

for pertussis with 95% CI for low connectivity and high connectivity districts in South Wales, 

for nine time windows. 
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Table III.6. 

 

   

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Lancashire  

       

1940-45 -1.515 0.690 0.046 0.64 125 92 169 

1943-48 -1.379 0.662 0.047 0.62 130 94 175 

1946-51 -1.208 0.634 0.037 0.70 115 89 150 

1949-54 -1.136 0.623 0.031 0.76 109 87 136 

1952-57 -1.328 0.651 0.031 0.78 130 105 161 

1955-60 -1.915 0.750 0.037 0.77 166 133 208 

1958-63 -2.448 0.816 0.045 0.73 283 221 363 

1961-66 -2.688 0.834 0.056 0.64 418 308 568 

1964-69 -2.525 0.799 0.058 0.60 461 332 641 

South Wales 

       

1940-45 -1.564 0.652 0.076 0.50 293 173 498 

1943-48 -1.598 0.662 0.068 0.56 273 171 435 

1946-51 -1.708 0.708 0.055 0.69 173 122 245 

1949-54 -1.741 0.722 0.057 0.69 152 107 217 

1952-57 -2.099 0.787 0.056 0.73 162 118 223 

1955-60 -2.196 0.763 0.060 0.69 316 222 450 

1958-63 -2.109 0.681 0.059 0.64 1,082 732 1,603 

1961-66 -2.060 0.655 0.063 0.59 1,580 1,024 2,437 

1964-69 -2.078 0.654 0.073 0.52 1,720 1,114 2,843 
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Table III.7. 

 

 

  

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -1.275 0.623 0.089 0.44 157 80 307 

1943-48 -1.030 0.564 0.092 0.38 98 53 181 

1946-51 -1.080 0.593 0.077 0.49 128 76 215 

1949-54 -1.378 0.677 0.063 0.65 227 151 339 

1952-57 -1.426 0.671 0.065 0.64 579 378 880 

1955-60 -1.748 0.700 0.086 0.52 1,025 577 1,806 

1958-63 -1.975 0.690 0.100 0.44 1,593 766 3,313 

1961-66 -2.092 0.681 0.120 0.34 1,021 462 2,255 

1964-69 -1.808 0.614 0.117 0.30 1,593 672 3,774 

High density 

       

1940-45 -1.291 0.647 0.068 0.60 123 76 197 

1943-48 -1.104 0.610 0.061 0.62 123 78 193 

1946-51 -0.856 0.564 0.044 0.73 116 82 166 

1949-54 -0.690 0.528 0.042 0.73 125 88 178 

1952-57 -0.947 0.571 0.041 0.76 146 105 202 

1955-60 -1.516 0.669 0.042 0.81 181 137 239 

1958-63 -2.317 0.795 0.051 0.80 270 202 360 

1961-66 -2.809 0.866 0.069 0.73 358 250 512 

1964-69 -2.638 0.832 0.071 0.70 376 256 552 
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Table III.8. 

 

 

  

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -1.433 0.608 0.133 0.36 443 166 1188 

1943-48 -1.838 0.707 0.129 0.45 269 118 611 

1946-51 -1.867 0.747 0.110 0.56 151 78 292 

1949-54 -1.55 0.684 0.091 0.61 155 86 282 

1952-57 -2.14 0.801 0.086 0.70 148 91 240 

1955-60 -2.299 0.789 0.085 0.70 281 173 458 

1958-63 -1.937 0.639 0.080 0.64 1,450 826 2,546 

1961-66 -1.932 0.626 0.091 0.56 1,911 993 3,678 

1964-69 -2.236 0.679 0.119 0.47 1,733 784 3,828 

High density 

       

1940-45 -1.519 0.653 0.097 0.55 245 127 480 

1943-48 -1.385 0.625 0.080 0.62 261 147 471 

1946-51 -1.648 0.693 0.063 0.77 184 122 278 

1949-54 -1.981 0.77 0.075 0.74 148 96 230 

1952-57 -2.097 0.783 0.076 0.75 171 111 265 

1955-60 -2.143 0.75 0.086 0.68 335 200 561 

1958-63 -2.204 0.704 0.088 0.64 937 533 1,648 

1961-66 -2.142 0.673 0.090 0.60 1,428 781 2,610 

1964-69 -1.923 0.629 0.093 0.56 1,726 888 3,356 



Appendix III 

410 

 

Table III.9. 

 

 

 

 

Time 

Window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

lower upper 

Low connectivity  

       

1940-45 -1.64 0.708 0.057 0.65 139 97 199 

1943-48 -1.441 0.662 0.062 0.59 158 104 241 

1946-51 -1.302 0.644 0.046 0.70 135 98 186 

1949-54 -1.232 0.635 0.043 0.73 123 91 167 

1952-57 -1.297 0.634 0.045 0.76 159 115 219 

1955-60 -1.732 0.696 0.049 0.80 231 168 317 

1958-63 -1.927 0.681 0.056 0.82 585 404 845 

1961-66 -1.974 0.654 0.074 0.75 1,193 714 1,993 

1964-69 -1.754 0.603 0.076 0.73 1,681 950 2,976 

High connectivity 

       

1940-45 -1.062 0.599 0.071 0.62 130 77 221 

1943-48 -0.953 0.578 0.067 0.61 129 76 218 

1946-51 -0.761 0.545 0.055 0.69 117 75 184 

1949-54 -0.75 0.546 0.043 0.78 109 77 156 

1952-57 -1.126 0.615 0.042 0.78 122 89 166 

1955-60 -1.885 0.754 0.055 0.72 143 103 198 

1958-63 -2.853 0.919 0.068 0.61 191 137 267 

1961-66 -3.376 0.999 0.083 0.50 241 166 350 

1964-69 -3.246 0.973 0.085 0.44 247 167 366 
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Table III.10. 

 

 

 

 

Time 

Window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

lower upper 

Low connectivity  

       

1940-45 -1.059 0.518 0.106 0.58 805 321 2,020 

1943-48 -1.094 0.53 0.094 0.65 689 317 1,532 

1946-51 -1.68 0.694 0.091 0.60 201 111 364 

1949-54 -1.872 0.753 0.101 0.55 139 76 254 

1952-57 -2.446 0.872 0.084 0.64 126 82 195 

1955-60 -2.438 0.821 0.079 0.67 255 165 394 

1958-63 -2.104 0.676 0.099 0.55 1,178 609 2,280 

1961-66 -1.852 0.594 0.105 0.52 3,054 1,372 6,802 

1964-69 -2.059 0.638 0.120 0.39 2,305 987 5,373 

High connectivity 

       

1940-45 -1.97 0.754 0.120 0.33 185 90 379 

1943-48 -2.078 0.779 0.108 0.39 172 92 323 

1946-51 -1.561 0.68 0.075 0.70 173 105 284 

1949-54 -1.521 0.674 0.069 0.77 168 106 267 

1952-57 -1.639 0.683 0.081 0.76 213 125 366 

1955-60 -1.808 0.676 0.098 0.66 430 224 828 

1958-63 -1.991 0.658 0.083 0.64 1,163 658 2,055 

1961-66 -2.089 0.669 0.087 0.56 1,295 719 2,332 

1964-69 -1.735 0.585 0.103 0.51 2,425 1,097 5,359 
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III. Endemic Threshold Population Estimates: Scarlet fever, 1940–1969 

 

Table III.11 Parameter estimates, measures of dispersion and endemic threshold estimates 

for scarlet fever with 95% CI for nine Lancashire and South Wales time windows (all 

districts). 

Table III.12 Parameter estimates, measures of dispersion and endemic threshold estimates 

for scarlet fever with 95% CI for low density and high density districts in Lancashire, for nine 

time windows. 

Table III.13 Parameter estimates, measures of dispersion and endemic threshold estimates 

for scarlet fever with 95% CI for low density and high density districts in South Wales, for 

nine time windows. 

Table III.14 Parameter estimates, measures of dispersion and endemic threshold estimates 

for scarlet fever with 95% CI for low connectivity and high connectivity districts in 

Lancashire, for nine time windows. 

Table III.15 Parameter estimates, measures of dispersion and endemic threshold estimates 

for scarlet fever with 95% CI for low connectivity and high connectivity districts in South 

Wales, for nine time windows. 
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Table III.11. 

 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Lancashire  

       

1940-45 -1.288 0.678 0.034 0.77 71 57 89 

1943-48 -1.365 0.690 -0.033 0.79 76 61 94 

1946-51 -1.657 0.739 -0.036 0.78 89 72 111 

1949-54 -1.797 0.768 -0.036 0.79 88 72 109 

1952-57 -2.102 0.811 -0.041 0.76 115 91 144 

1955-60 -2.351 0.831 -0.048 0.71 173 133 224 

1958-63 -2.550 0.869 -0.056 0.67 173 129 231 

1961-66 -2.964 0.935 -0.066 0.62 204 149 281 

1964-69 -2.863 0.913 -0.066 0.61 213 154 294 

South Wales 

       

1940-45 -1.580 0.720 -0.045 0.78 94 71 125 

1943-48 -1.809 0.774 -0.054 0.74 84 61 115 

1946-51 -2.134 0.835 -0.054 0.77 90 67 120 

1949-54 -2.118 0.806 -0.060 0.71 130 92 180 

1952-57 -2.425 0.852 -0.060 0.74 157 114 215 

1955-60 -2.590 0.869 -0.056 0.77 192 144 256 

1958-63 -2.335 0.766 -0.069 0.62 457 304 686 

1961-66 -2.393 0.751 -0.079 0.55 708 440 1,137 

1964-69 -2.533 0.781 -0.078 0.58 637 406 1,000 
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Table III.12. 

 
  

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -0.435 0.492 -0.034 0.78 89 66 122 

1943-48 -0.776 0.561 -0.043 0.73 89 63 126 

1946-51 -1.154 0.630 -0.045 0.76 102 74 141 

1949-54 -1.051 0.605 -0.040 0.79 111 82 149 

1952-57 -1.322 0.644 -0.055 0.69 145 98 212 

1955-60 -1.804 0.716 -0.063 0.68 206 139 306 

1958-63 -2.007 0.757 -0.068 0.67 197 131 295 

1961-66 -2.311 0.801 -0.089 0.57 242 146 398 

1964-69 -1.979 0.728 -0.092 0.51 293 166 517 

High density 

       

1940-45 -2.136 0.884 0.068 0.73 48 34 68 

1943-48 -1.886 0.815 -0.061 0.75 59 42 83 

1946-51 -2.042 0.830 -0.072 0.68 75 51 110 

1949-54 -2.530 0.945 -0.075 0.72 63 44 89 

1952-57 -2.531 0.910 -0.080 0.68 96 65 142 

1955-60 -2.550 0.874 -0.106 0.52 161 93 278 

1958-63 -2.611 0.876 -0.120 0.46 184 99 341 

1961-66 -2.950 0.920 -0.130 0.45 241 127 455 

1964-69 -3.085 0.956 0.123 0.49 209 117 373 
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Table III.13. 

 

  
 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low density  

       

1940-45 -2.272 0.884 -0.082 0.76 69 45 104 

1943-48 -2.800 1.011 -0.093 0.76 56 37 85 

1946-51 -2.958 1.031 -0.086 0.80 65 45 94 

1949-54 -1.887 0.749 -0.102 0.60 155 84 287 

1952-57 -2.065 0.766 -0.097 0.63 203 115 360 

1955-60 -2.503 0.848 -0.085 0.73 205 130 322 

1958-63 -2.124 0.715 -0.101 0.58 587 310 1,110 

1961-66 -1.999 0.654 -0.123 0.43 1,303 558 3,050 

1964-69 -2.381 0.727 -0.139 0.42 1,070 449 2,517 

High density 

       

1940-45 -1.244 0.646 -0.052 0.81 106 74 152 

1943-48 -1.353 0.671 -0.062 0.76 100 66 152 

1946-51 -1.756 0.751 -0.069 0.77 101 67 152 

1949-54 -2.270 0.842 -0.076 0.77 118 79 178 

1952-57 -2.644 0.903 -0.077 0.79 139 95 205 

1955-60 -2.641 0.881 -0.077 0.78 186 125 275 

1958-63 -2.455 0.795 -0.099 0.64 403 229 705 

1961-66 -2.615 0.805 -0.107 0.61 541 297 985 

1964-69 -2.528 0.796 -0.089 0.69 489 295 809 
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Table III.14. 

 
 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low connectivity  

       

1940-45 -1.455 0.710 -0.04 0.77 74 57 97 

1943-48 -1.532 0.720 -0.041 0.78 81 63 105 

1946-51 -1.771 0.756 -0.043 0.80 98 76 126 

1949-54 -1.834 0.769 -0.053 0.76 97 71 133 

1952-57 -2.027 0.783 -0.052 0.80 140 104 188 

1955-60 -2.245 0.796 -0.059 0.76 216 156 301 

1958-63 -2.475 0.846 -0.076 0.69 195 131 293 

1961-66 -2.895 0.905 -0.080 0.67 256 173 383 

1964-69 -2.862 0.899 -0.090 0.59 257 163 403 

High connectivity 

       

1940-45 -0.880 0.592 -0.051 0.76 74 50 109 

1943-48 -0.897 0.592 -0.048 0.79 79 55 114 

1946-51 -1.238 0.653 -0.055 0.75 91 63 133 

1949-54 -1.584 0.726 -0.052 0.78 87 63 120 

1952-57 -1.978 0.792 -0.064 0.71 106 74 152 

1955-60 -2.227 0.813 -0.077 0.63 159 104 243 

1958-63 -2.498 0.863 -0.086 0.61 163 105 256 

1961-66 -2.676 0.884 -0.105 0.54 195 115 333 

1964-69 -2.457 0.835 -0.100 0.56 218 127 374 
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Table III.15. 

 

 

 

 

Time 

window 

 

 

 

α 

 

 

 

b 

 

 

 

S.E. 

 

 

 

R2 

 

Threshold 

estimate 

(in 000s) 

95% CI 

Lower Upper 

Low connectivity  

       

1940-45 -1.248 0.628 -0.054 0.85 149 101 220 

1943-48 -1.459 0.675 -0.061 0.83 134 89 201 

1946-51 -1.742 0.722 -0.062 0.84 153 104 225 

1949-54 -1.857 0.724 -0.066 0.80 213 141 321 

1952-57 -2.199 0.784 -0.088 0.72 227 137 377 

1955-60 -2.488 0.829 -0.092 0.68 260 158 428 

1958-63 -2.329 0.757 -0.115 0.52 524 265 1,040 

1961-66 -2.169 0.686 -0.138 0.46 1,195 485 2,965 

1964-69 -2.423 0.738 -0.138 0.42 985 424 2,290 

High connectivity 

       

1940-45 -1.757 0.769 -0.076 0.65 77 50 121 

1943-48 -1.944 0.815 -0.092 0.59 70 42 115 

1946-51 -2.223 0.869 -0.090 0.64 73 46 116 

1949-54 -1.974 0.788 -0.102 0.58 111 62 199 

1952-57 -2.376 0.852 -0.089 0.68 137 86 220 

1955-60 -2.329 0.822 -0.072 0.79 185 125 275 

1958-63 -2.115 0.722 -0.097 0.63 501 273 919 

1961-66 -2.438 0.769 -0.106 0.53 591 317 1,100 

1964-69 -2.187 0.715 -0.100 0.60 718 382 1,350 
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IV. Additional Endemic Threshold Size Plots 
 

 

Figure III.1 Endemic threshold population size estimates for measles in Lancashire for time–

windows, accounting for population size, low/high geographical connectivity and low/high population 

density. 

  

Figure III.2 Endemic threshold population size estimates for pertussis in Lancashire for nine time–

windows, accounting for population size, low/high geographical connectivity and low/high population 

density. The red shaded area denotes the vaccine era. 
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Figure III.3 Endemic threshold population size estimates for scarlet fever in Lancashire for time–

windows, accounting for population size, low/high geographical connectivity and low/high population 

density. 

 

Figure III.4 Endemic threshold population size estimates for measles in South Wales for nine time–

windows, accounting for population size, low/high geographical connectivity and low/high population 

density. 
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Figure III.5 Endemic threshold population size estimates for pertussis in South Wales for time–

windows, accounting for population size, low/high geographical connectivity and low/high population 

density. The red shaded area denotes the vaccine era. 

 

Figure III.5 Endemic threshold population size estimates for scarlet fever in South Wales for nine 

time–windows, accounting for population size, low/high geographical connectivity and low/high 

population density.  
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APPENDIX IV 

 

V. Hotspot lists (Findings from Chapter 7: Hotspot & Survival Analysis) 

 

Table IV.1 Lists of pertussis hotspots in Lancashire, by era of disease intervention. 

 

Hotspots N District 

 

 

 

Pre-

vaccine 

era 

 

 

 

55 

Blackburn CB, Blackpool CB, Bolton CB, Bootle CB, Burnley CB, Bury CB, 

Oldham CB, Preston CB, Rochdale CB, St. Helens CB, Salford CB, 

Southport CB, Warrington CB, Wigan CB, Ashton-under-Lyne MB, Chorley 

MB, Crosby MB, Darwen MB, Eccles MB, Farnworth MB, Fleetwood MB, 

Lancaster MB, Leigh MB, Middleton MB, Morecambe & Heysham MB, 

Nelson MB, Radcliffe MB, Rawtenstall MB, Stretford MB, Swinton & 

Pendlebury MB, Widnes MB, Abram UD, Chadderton UD, Crompton UD, 

Denton UD, Droylsden UD, Golborne UD, Haydock UD, Hindley UD, Huyton-

with-Roby UD, Ince-in-Makerfield UD, Kearsley UD, Litherland UD, Newton-

le-Willows UD, Royton UD, Skelmersdale UD, Trawden UD, Tyldesley UD, 

Urmston UD, Walton-le-Dale UD, Withnell UD, Preston RD, Warrington RD, 

West Lancashire RD, Whiston RD 

 

 

Vaccine 

era 

 

 

38 

Blackburn CB, Blackpool CB, Bolton CB, Bootle CB, Burnley CB, Bury CB, 

Liverpool CB, Manchester CB, Oldham CB, Preston CB, Rochdale CB, St. 

Helens CB, Salford CB, Southport CB, Warrington CB, Wigan CB, 

Accrington MB, Ashton-under-Lyne MB, Chorley MB, Crosby MB, Darwen 

MB, Eccles MB, Farnworth MB, Lancaster MB, Middleton MB, Radcliffe MB, 

Stretford MB, Swinton & Pendlebury MB, Widnes MB, Denton UD, Golborne 

UD, Huyton-with-Roby UD, Irlam UD, Litherland UD, Urmston UD, Worsley 

UD, West Lancashire RD, Whiston RD 

 

 

Both eras 

 

 

35 

Blackburn CB, Blackpool CB, Bolton CB, Bootle CB, Burnley CB, Bury CB, 

Oldham CB, Preston CB, Rochdale CB, St. Helens CB, Salford CB, 

Southport CB, Warrington CB, Wigan CB, Liverpool CB, Manchester CB, 

Ashton-under-Lyne MB, Chorley MB, Crosby MB, Darwen MB, Eccles MB, 

Farnworth MB, Lancaster MB, Middleton MB, Radcliffe MB, Stretford MB, 

Swinton & Pendlebury MB, Widnes MB, Denton UD, Golborne UD, Huyton-

with-Roby UD, Litherland UD, Urmston UD, West Lancashire RD, Whiston 

RD 
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Table IV.2 Lists of pertussis hotspots in South Wales, by era of disease intervention. 

 

 

  

Hotspots N District 

 

 

Pre-vaccine era 

 

 

31 

Abergavenny MB, Barry MB, Bedwas & Machen UD, 

Blaenavon UD, Burry Port UD, Cardiff CB, Chepstow UD, 

Cowbridge MB, Cwmamman UD, Cwmbran UD, Ebbw 

Vale UD, Fishguard & Goodwick UD, Haverfordwest MB, 

Kidwelly MB, Llandilo UD, Llandovery MB, Llanelli RD, 

Narberth RD, Narberth UD, Newcastle Emlyn RD, Newport 

CB, Neyland UD, Ogmore & Garw UD, Pembroke RD, Port 

Talbot MB, Rhondda MB, Rhymney UD, Swansea CB, 

Tenby MB, Tredegar UD, Usk UD 

 

Vaccine era 

 

17 

Barry MB, Cardiff CB, Cardiff RD, Ebbw Vale UD, Gelligaer 

UD, Llanelli MB, Llanelli RD, Llantrisant & Llantwitfardre 

RD, Merthyr Tydfil CB, Neath RD, Newport CB, Ogmore & 

Garw UD, Penybont RD, Pontypool UD, Port Talbot MB, 

Rhondda MB, Swansea CB 

Both eras 9 Barry MB, Cardiff CB, Ebbw Vale UD, Llanelli RD, Newport 

CB, Ogmore & Garw UD, Port Talbot MB, Rhondda MB, 

Swansea CB 
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APPENDIX V 
 

I. HHH Model Summaries: Measles 

 

Table V.1 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for analysis of measles spread in Lancashire time–windows. 

Table V.2 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for analysis of measles spread in South Wales time–windows. 

Table V.3 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for analysis of measles spread in Lancashire time–windows. 

Table V.4 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for analysis of measles spread in South Wales time–windows. 

Table V.5 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for analysis of measles spread in Lancashire time–windows. 

Table V.6 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for analysis of measles spread in South Wales time–windows. 

Table V.7 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for analysis of measles spread in Lancashire time–windows. 

Table V.8 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for analysis of measles spread in South Wales time–windows. 

Table V.9 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for analysis of measles spread in Lancashire time–windows. 

Table V.10 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for analysis of measles spread in South Wales time–windows. 

 



Appendix V 

424 

 

Table V.1 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.484 (0.022) 0.417 (0.022) 0.380 (0.022) 0.400 (0.023) 0.430 (0.021) 0.476 (0.021) 0.518 (0.021) 0.482 (0.022) 0.567 (0.019) 

𝒅 (se) 9.065 (0.540) 9.185 (0.590) 12.020 (0.840) 12.810 (0.97 8.940 (0.520) 8.629 (0.500) 8.278 (0.550) 9.104 (0.630) 8.012 (0.440) 

𝜶(𝝀) (se) 0.741 (0.0090) 0.766 (0.0092) 0.789 (0.0087) 0.777 (0.0087) 0.78 (0.0092) 0.804 (0.0097) 0.797 (0.0094) 0.757 (0.0088) 0.688 (0.0092) 

𝜶(𝝓) (se) 0.001 (0.0002) 0.002 (0.0004) 0.002 (0.0005) 0.002 (0.0004) 0.001 (0.0003) 0.001 (0.0002) 0.001 (0.0001) 0.001 (0.0002) 0.001 (0.0001) 

𝜶𝒕
(𝒗)

 (se) 0.997 (0.0005) 1.000 (0.0006) 0.998 (0.0005) 1.001 (0.0004) 0.998 (0.0005) 0.999 (0.0006) 1.002 (0.0006) 1.005 (0.0006) 1.002 (0.0008) 

𝝍 (se) 1.046 (0.015) 1.005 (0.015) 0.911 (0.013) 0.953 (0.014) 1.041 (0.015) 1.095 (0.016) 1.048 (0.015) 0.996 (0.013) 1.124 (0.016) 

𝒎𝒂𝒙𝑬𝑽 0.89 0.91 0.91 0.90 0.90 0.93 0.94 0.93 0.93 

𝒍𝐥𝐨𝐠 -68996.23 -63795.54 -67590.91 -68443.69 -68422.11 -67275.77 -69467.41 -75177.95 -69997.90 
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Table V.2 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.152 (0.026) -0.229 (0.030) -0.232 (0.030) -0.196 (0.029) -0.090 (0.027) -0.119 (0.027) -0.114 (0.026) -0.221 (0.028) -0.022 (0.028) 

𝒅 (se) 0.556 (0.078) 0.706 (0.120) 0.784 (0.160) 0.129 (0.024) 0.181 (0.037) 0.807 (0.100) 0.866 (0.100) 0.556 (0.130) 0.963 (0.110) 

𝜶(𝝀) (se) 0.871 (0.021) 0.884 (0.022) 0.908 (0.019) 0.903 (0.020) 0.9382 (0.022) 0.9503 (0.022) 0.9063 (0.023) 0.8546 (0.022) 0.836 (0.024) 

𝜶(𝝓) (se) 0.508 (0.120) 0.917 (0.240) 0.779 (0.200) 0.561 (0.140) 0.233 (0.056) 0.276 (0.067) 0.289 (0.068) 0.883 (0.220) 0.203 (0.051) 

𝜶𝒕
(𝒗)

 (se) 1.005 (0.0007) 0.9987 

(0.0006) 

1.003 (0.0004) 0.9955 

(0.0004) 

1.001 (0.0007) 0.9959 

(0.0005) 

1.004 (0.0007) 1.005 (0.0005) 0.9987 

(0.0007) 

𝝍 (se) 2.422 (0.047) 2.546 (0.052) 2.000 (0.040) 2.031 (0.042) 2.300 (0.048) 2.444 (0.049) 2.685 (0.054) 2.871 (0.052) 3.26 (0.061) 

𝒎𝒂𝒙𝑬𝑽 0.99 0.99 1.00 0.99 1.04 1.04 1.00 0.96 1.00 

𝒍𝐥𝐨𝐠 -32448.37 -30035.44 -32259.99 -30264.71 -29793.09 -30991.59 -30339.91 -35044.89 -30890.48 

 

Table V.3 
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Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 1.876 (0.123) 1.932 (0.131) 2.632 (0.190) 2.95 (0.226) 1.627 (0.102) 1.669 (0.108) 2.073 (0.149) 2.209 (0.151) 2.049 (0.134) 

𝜶(𝝀) (se) 0.774 (0.009) 0.792 (0.009) 0.808 (0.009) 0.796 (0.009) 0.807 (0.009) 0.835 (0.010) 0.832 (0.009) 0.794 (0.009) 0.733 (0.009) 

𝜶(𝝓) (se) 0.091 (0.002) 0.099 (0.002) 0.090 (0.002) 0.084 (0.002) 0.080 (0.002) 0.081 (0.002) 0.087 (0.002) 0.107 (0.002) 0.130 (0.003) 

𝜶𝒕
(𝒗)

 (se) 0.997 (0.0003) 1.001 (0.0004) 0.999 (0.0003) 1.001 (0.0003) 0.998 (0.0003) 1.000 (0.0003) 1.000 (0.0003) 1.003 (0.0003) 1.000 (0.0003) 

𝝍 (se) 1.07 (0.015) 1.02 (0.015) 0.92 (0.014) 0.97 (0.014) 1.06 (0.015) 1.12 (0.016) 1.07 (0.015) 1.02 (0.014) 1.16 (0.016) 

𝒎𝒂𝒙𝑬𝑽 0.87 0.89 0.90 0.88 0.89 0.92 0.92 0.90 0.86 

𝒍𝐥𝐨𝐠 -69170.28 -63930.86 -67693.37 -68554.10 -68582.78 -67469.08 -69667.70 -75352.51 -70273.21 
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Table V.4 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 0.579 (0.083) 0.837 (0.126) 1.005 (0.143) 0.131 (0.024) 0.177 (0.036) 0.927 (0.104) 0.980 (0.104) 0.865 (0.137) 0.988 (0.103) 

𝜶(𝝀) (se) 0.860 (0.020) 0.868 (0.022) 0.898 (0.019) 0.893 (0.019) 0.934 (0.022) 0.947 (0.023) 0.900 (0.023) 0.842 (0.022) 0.835 (0.024) 

𝜶(𝝓) (se) 0.130 (0.004) 0.125 (0.004) 0.105 (0.003) 0.100 (0.003) 0.103 (0.003) 0.095 (0.003) 0.103 (0.003) 0.128 (0.004) 0.167 (0.005) 

𝜶𝒕
(𝒗)

 (se) 1.006 (0.0008) 0.998 (0.0007) 1.003 (0.0005) 0.996 (0.0004) 1.001 (0.0007) 0.996 (0.0005) 1.004 (0.0007) 1.004 (0.0006) 0.999 (0.0007) 

𝝍 (se) 2.43 (0.047 2.57 (0.052) 2.01 (0.040) 2.03 (0.043) 2.30 (0.048) 2.44 (0.049) 2.68 (0.054) 2.88 (0.052) 3.26 (0.061) 

𝒎𝒂𝒙𝑬𝑽 0.99 0.99 1 0.99 1.04 1.04 1 0.97 1 

𝒍𝐥𝐨𝐠 -32467.05 -30067.09 -32293.58 -30289.19 -29798.91 -31001.68 -30349.85 -35077.84 -30890.79 
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Table V.5 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.091 (0.031) -0.114 (0.029 -0.098 (0.028) -0.022 (0.029) -0.037 (0.031) 0.004 (0.031) 0.059 (0.029) 0.051 (0.026) 0.128 (0.027) 

𝜶(𝝀) (se) 0.769 (0.009 0.785 (0.009) 0.800 (0.009) 0.787 (0.009) 0.792 (0.009) 0.818 (0.010) 0.818 (0.010) 0.785 (0.009) 0.717 (0.009) 

𝜶(𝝓) (se) 0.038 (0.011) 0.053 (0.015) 0.042 (0.011) 0.019 (0.005) 0.021 (0.006) 0.014 (0.004) 0.009 (0.003) 0.012 (0.003) 0.006 (0.002) 

𝜶𝒕
(𝒗)

 (se) 0.997 (0.0002 1.001 (0.0003) 1.000 (0.0002) 1.001 (0.0002) 0.998 (0.0002) 1.000 (0.0002) 1.000 (0.0002) 1.002 (0.0002) 0.999 (0.0002) 

𝝍 (se) 1.118 (0.015) 1.077 (0.016) 0.965 (0.014) 1.004 (0.014) 1.11 (0.016) 1.163 (0.017) 1.108 (0.015) 1.052 (0.014) 1.194 (0.016) 

𝒎𝒂𝒙𝑬𝑽 0.88 0.91 0.91 0.89 0.89 0.92 0.93 0.92 0.87 

𝒍𝐥𝐨𝐠 -69764.81 -64443.91 -68102.4 -68927.92 -69158.36 -67935.87 -70101.46 -75898.71 -70629.97 
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Table V.6 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.92 (0.065) -1.019 (0.069) -0.642 (0.053) -0.409 (0.049) -0.401 (0.053) -0.510 (0.061) -0.730 (0.058) -0.848 (0.053) -0.648 (0.056) 

𝜶(𝝀) (se) 0.890 (0.024) 0.905 (0.025) 0.912 (0.020) 0.907 (0.021) 0.991 (0.024) 0.999 (0.025) 0.965 (0.027) 0.876 (0.024) 0.827 (0.026) 

𝜶(𝝓) (se) 49.22 (27.000) 87.03 (49.000) 3.414 (1.500) 0.546 (0.230) 0.468 (0.210) 0.863 (0.440) 10.06 (4.800) 31.44 (14.000) 5.278 (2.400) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0003) 0.999 (0.0003) 1.004 (0.0003) 0.995 (0.0003) 1.001 (0.0003) 0.996 (0.0003) 1.000 (0.0003) 1.004 (0.0003) 0.997 (0.0003) 

𝝍 (se) 3.14 (0.059) 3.219 (0.065) 2.277 (0.046) 2.356 (0.049) 2.757 (0.057) 2.891 (0.058) 3.498 (0.069) 3.411 (0.060) 3.831 (0.071) 

𝒎𝒂𝒙𝑬𝑽 1.01 1.01 0.99 0.98 1.05 1.05 1.07 1.01 0.93 

𝒍𝐥𝐨𝐠 -33875.49 -31311.92 -33235.62 -31240.28 -30801.41 -31932.21 -31612.5 -35959.68 -31752.26 
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Table V.7 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.765 (0.009) 0.779 (0.009) 0.795 (0.009) 0.786 (0.009) 0.79 (0.009) 0.819 (0.010) 0.821 (0.009) 0.788 (0.009) 0.725 (0.009) 

𝜶(𝝓) (se) 0.016 (0.0004) 0.018 (0.0004) 0.017 (0.0004) 0.016 (0.0004) 0.015 (0.0004) 0.015 (0.0004) 0.016 (0.0004) 0.019 (0.0005) 0.021 (0.0006) 

𝜶𝒕
(𝒗)

 (se) 0.997 (0.0002) 1.001 (0.0002) 1.000 (0.0002) 1.001 (0.0002) 0.998 (0.0002) 1.000 (0.0002) 1.000 (0.0002) 1.002 (0.0002) 0.999 (0.0002) 

𝝍 (se) 1.118 (0.015) 1.078 (0.016) 0.966 (0.014) 1.004 (0.014) 1.11 (0.016) 1.163 (0.017) 1.108 (0.015) 1.053 (0.014) 1.196 (0.016) 

𝒎𝒂𝒙𝑬𝑽 0.88 0.91 0.91 0.89 0.89 0.92 0.93 0.92 0.87 

𝒍𝐥𝐨𝐠 -69769.23 -64451.67 -68108.85 -68928.22 -69159.09 -67935.88 -70103.51 -75900.55 -70640.84 

 

  



Appendix V 

431 

 

Table V.8 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.881 (0.024) 0.892 (0.025) 0.905 (0.02) 0.901 (0.021) 0.985 (0.024) 0.995 (0.025) 0.949 (0.027) 0.850 (0.023) 0.815 (0.026) 

𝜶(𝝓) (se) 0.0176 

(0.0011) 

0.0142 

(0.0009) 

0.013 (0.0007) 0.015 (0.0008) 0.014 (0.0008) 0.011 (0.0007) 0.018 (0.0011) 0.023 (0.0012) 0.022 (0.0013) 

𝜶𝒕
(𝒗)

 (se) 1.001 

(0.00003) 

0.999 

(0.00003) 

1.004 (0.0003) 0.995 (0.0003) 1.002 (0.0003) 0.996 (0.0003) 1.000 (0.0003) 1.004 (0.0003) 0.997 (0.0003) 

𝝍 (se) 3.205 (0.061) 3.294 (0.066) 2.284 (0.046) 2.349 (0.049) 2.757 (0.057) 2.897 (0.058) 3.482 (0.07) 3.436 (0.061) 3.864 (0.072) 

𝒎𝒂𝒙𝑬𝑽 0.98 0.97 0.98 0.99 1.06 1.06 1.05 0.98 0.94 

𝒍𝐥𝐨𝐠 -34002.36 -31456.21 -33326.66 -31278.07 -30833.46 -31974.09 -31715.81 -36135.75 -31837.27 
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Table V.9 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 0.9972 

(0.00011) 

1.002 

(0.00012) 

1.001 

(0.00013) 

1.001 

(0.00012) 

1.001 

(0.00012) 

1.000 

(0.00012) 

1.001 

(0.00012) 

1.000 

(0.00011) 

0.996 

(0.00012) 

𝜶(𝒗)𝐴 (se) 0.385 

(0.015) 

0.806 

(0.016) 

0.736 

(0.015) 

0.676 

(0.015) 

0.611 

(0.016) 

0.559 

(0.017) 

0.673 

(0.015) 

0.576 

(0.014) 

0.317 

(0.014) 

𝜶(𝒗)𝑆 (se) 0.509 

(0.023) 

0.767 

(0.014) 

0.893 

(0.013) 

0.637 

(0.016) 

0.418 

(0.020) 

0.475 

(0.021) 

0.590 

(0.016) 

1.061 

(0.013) 

1.683 

(0.008) 

𝝍 (se) 3.617 

(0.036) 

3.978 

(0.041) 

3.793 

(0.038) 

3.635 

(0.036) 

4.061 

(0.040) 

4.302 

(0.043) 

3.808 

(0.038) 

3.319 

(0.032) 

3.247 

(0.033) 

𝒍𝐥𝐨𝐠 -81042.9 -76064.0 -80720.8 -80885.4 -80993.1 -79735.3 -81791.6 -87583.01 -80085.0 
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Table V.10 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 0.997 

(0.00022) 

1.001 

(0.00025) 

1.003 

(0.00025) 

0.995 

(0.00032) 

1.001 

(0.00026) 

0.995 

(0.00026) 

1.001 

(0.00025) 

0.998 

(0.00022) 

0.998 

(0.00025) 

𝜶(𝒗)𝐴 (se) 1.291 

(0.031) 

1.179 

(0.035) 

0.731 

(0.030) 

0.788 

(0.031) 

0.241 

(0.031) 

0.255 

(0.031) 

0.834 

(0.036) 

0.737 

(0.031) 

0.505 

(0.034) 

𝜶(𝒗)𝑆 (se) -0.287 

(0.023) 

-0.460 

(0.025) 

-0.375 

(0.034) 

0.293 

(0.036) 

-1.019 

(0.034) 

-0.508 

(0.060) 

-0.039 

(0.037) 

0.039 

(0.038) 

0.107 

(0.056) 

𝝍 (se) 9.177 

(0.128) 

9.940 

(0.145) 

8.426 

(0.117) 

9.189 

(0.132) 

11.210 

(0.161) 

10.240 

(0.147) 

10.830 

(0.158) 

8.580 

(0.118) 

9.041 

(0.134) 

𝒍𝐥𝐨𝐠 -38486.7 -35636.0 -38772.8 -36684.3 -36349.7 -37106.3 -36046.9 -40273.7 -35342.8 
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II. HHH Model Summaries: Pertussis 

 

Table V.11 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for pertussis spread in Lancashire time–windows. 

Table V.12 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for pertussis spread in South Wales time–windows. 

Table V.13 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for pertussis spread in Lancashire time–windows. 

Table V.14 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for pertussis spread in South Wales time–windows. 

Table V.15 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for pertussis spread in Lancashire time–windows. 

Table V.16 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for pertussis spread in South Wales time–windows. 

Table V.17 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for pertussis spread in Lancashire time–windows. 

Table V.18 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for pertussis spread in South Wales time–windows. 

Table V.19 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for pertussis spread in Lancashire time–windows. 

Table V.20 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for pertussis spread in South Wales time–windows. 
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Table V.11 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.691 (0.030) 0.299 (0.050) 0.431 (0.030) 0.449 (0.030) 0.557 (0.030) 0.760 (0.020) 0.875 (0.030) 0.926 (0.030) 0.842 (0.040) 

𝒅 (se) 2.362 (0.200) 7.509 (0.930) 6.189 (0.540) 6.478 (0.550) 5.668 (0.540) 3.504 (0.240) 3.361 (0.240) 3.923 (0.300) 3.669 (0.310) 

𝜶(𝝀) (se) 0.597 (0.010) 0.502 (0.010) 0.596 (0.010) 0.635 (0.010) 0.612 (0.010) 0.564 (0.010) 0.397 (0.020) 0.326 (0.020) 0.300 (0.020) 

𝜶(𝝓) (se) 0.0001 (0.000) 0.006 (0.000) 0.002 (0.000) 0.001 (0.000) 0.001 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.000) 1.000 (0.000) 1.001 (0.000) 1.000 (0.000) 0.999 (0.000) 0.999 (0.000) 0.995 (0.000) 1.000 (0.000) 0.999 (0.000) 

𝝍 (se) 1.383 (0.020) 1.302 (0.020) 0.898 (0.020) 0.823 (0.010) 1.091 (0.020) 1.392 (0.030) 2.371 (0.060) 2.663 (0.080) 3.068 (0.090) 

𝒎𝒂𝒙𝑬𝑽 0.82 0.62 0.74 0.79 0.79 0.86 0.80 0.76 0.67 

𝒍𝐥𝐨𝐠 -47516.79 -47777.18 -55390.75 -57780.20 -50760.32 -39862.60 -24724.57 -19332.27 -20571.67 
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Table V.12 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.476 (0.070) 0.707 (0.060) 0.809 (0.030) 0.685 (0.030) 0.799 (0.050) 0.869 (0.050) 1.102 (0.060) 1.117 (0.050) 1.124 (0.060) 

𝒅 (se) 1.363 (0.020) 0.432 (0.010) 0.360 (0.050) 0.437 (0.060) 0.896 (0.180) 1.107 (0.200) 0.906 (0.180) 0.874 (0.140) 1.081 (0.170) 

𝜶(𝝀) (se) 0.532 (0.020)  0.494 (0.020) 0.538 (0.020) 0.551 (0.020) 0.474 (0.020) 0.463 (0.030) 0.409 (0.030) 0.309 (0.030) 0.308 (0.030) 

𝜶(𝝓) (se) 0.002 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.000) 1.000 (0.000) 0.999 (0.000) 1.002 (0.000) 0.999 (0.000) 0.995 (0.000) 0.994 (0.000) 1.001 (0.000) 0.995 (0.000) 

𝝍 (se) 2.795 (0.080) 2.810 (0.080) 2.263 (0.060) 2.358 (0.060) 2.812 (0.070) 3.660 (0.120) 4.571 (0.210) 4.594 (0.240) 5.759 (0.290) 

𝒎𝒂𝒙𝑬𝑽 0.69 0.70 0.84 0.82 0.71 0.71 0.78 0.80 0.76 

𝒍𝐥𝐨𝐠 -18499.51 -18292.76 -21070.92 -22596.68 -19971.09 -13793.08 -7856.72 -6651.05 -6909.03 
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Table V.13 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 0.590 (0.055) 1.209 (0.129) 1.213 (0.113) 1.454 (0.141) 1.801 (0.206) 1.387 (0.146) 1.032 (0.092) 1.209 (0.115) 1.027 (0.115) 

𝜶(𝝀) (se) 0.630 (0.011) 0.505 (0.010) 0.602 (0.008) 0.638 (0.008) 0.616 (0.009) 0.586 (0.011) 0.480 (0.016) 0.413 (0.017) 0.353 (0.016) 

𝜶(𝝓) (se) 0.079 (0.003) 0.084 (0.004) 0.087 (0.003) 0.087 (0.003) 0.084 (0.003) 0.098 (0.004) 0.153 (0.006) 0.163 (0.007) 0.151 (0.008) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0002) 0.999 (0.0002) 1.001 (0.0002) 0.999 (0.0002) 0.998 (0.0002) 0.999 (0.0002) 0.996 (0.0003) 1.001 (0.0003) 0.998 (0.0003) 

𝝍 (se) 1.42 (0.025) 1.31 (0.024) 0.91 (0.016) 0.83 (0.014) 1.10 (0.020) 1.44 (0.030) 2.62 (0.066) 2.97 (0.089) 3.25 (0.093) 

𝒎𝒂𝒙𝑬𝑽 0.71 0.59 0.69 0.73 0.70 0.68 0.63 0.58 0.50 

𝒍𝐥𝐨𝐠 -47646.90 -47789.71 -55444.77 -57847.07 -50826.19 -40037.88 -25022.23 -19545.48 -20703.05 
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Table V.14 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 2.596 (0.622) 0.574 (0.334) 0.313 (0.071) 0.307 (0.060) 0.251 (0.105) 0.334 (0.184) 0.322 (0.126) 0.512 (0.117) 0.724 (0.191) 

𝜶(𝝀) (se) 0.538 (0.021) 0.501 (0.020) 0.580 (0.019) 0.594 (0.019) 0.503 (0.020) 0.501 (0.026) 0.492 (0.036) 0.396 (0.033) 0.387 (0.036) 

𝜶(𝝓) (se) 0.068 (0.006) 0.054 (0.006) 0.071 (0.005) 0.098 (0.006) 0.062 (0.006) 0.072 (0.008) 0.113 (0.011) 0.169 (0.015) 0.106 (0.013) 

𝜶𝒕
(𝒗)

 (se) 0.9997 

(0.0003) 1.001 (0.0003) 1.001 (0.0003) 1.001 (0.0003) 

0.9994 

(0.0003) 

0.9955 

(0.0003) 

0.9954 

(0.0004) 1 (0.0005) 

0.9965 

(0.0005) 

𝝍 (se) 2.82 (0.078) 2.85 (0.079) 2.35 (0.060) 2.44 (0.060) 2.91 (0.075) 3.82 (0.123) 4.95 (0.225) 5.19 (0.265) 6.29 (0.305) 

𝒎𝒂𝒙𝑬𝑽 0.61 0.56 0.65 0.69 0.57 0.57 0.6 0.56 0.49 

𝒍𝐥𝐨𝐠 -18512.33 -18319.57 -21190.47 -22723.08 -20053.69 -13875.44 -7965.11 -6787.95 -7004.3 

 

  



Appendix V 

439 

 

Table V.15 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.402 (0.061) -0.343 (0.067) -0.162 (0.052) -0.114 (0.046) -0.1 (0.056) 0.08 (0.063) 0.485 (0.069) 0.627 (0.079) 0.738 (0.107) 

𝜶(𝝀) (se) 0.601 (0.011) 0.488 (0.009) 0.593 (0.008) 0.630 (0.008) 0.603 (0.009) 0.568 (0.011) 0.440 (0.016) 0.369 (0.017) 0.309 (0.016) 

𝜶(𝝓) (se) 0.468 (0.261) 0.244 (0.151) 0.051 (0.025) 0.035 (0.016) 0.031 (0.017) 0.006 (0.004) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0002) 1.000 (0.0002) 1.001 (0.0002) 1.000 (0.0002) 0.999 (0.0002) 0.998 (0.0002 0.997 (0.0002) 1.001 (0.0003) 0.998 (0.0002) 

𝝍 (se) 1.445 (0.025) 1.33 (0.024) 0.931 (0.016) 0.85 (0.0146) 1.118 (0.020) 1.466 (0.030) 2.687 (0.068) 2.982 (0.090) 3.282 (0.095) 

𝒎𝒂𝒙𝑬𝑽 0.67 0.55 0.67 0.71 0.68 0.66 0.64 0.63 0.54 

𝒍𝐥𝐨𝐠 -47841.09 -47917.9 -55662.95 -58026.17 -50926.19 -40174.93 -25247.69 -19686.51 -20803.43 
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Table V.16 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.848 (0.226) -0.565 (0.269) 0.353 (0.446) 0.693 (0.114) 0.876 (0.139) 0.884 (0.132) 1.175 (0.111) 1.106 (0.132) 1.195 (0.162) 

𝜶(𝝀) (se) 0.519 (0.021) 0.486 (0.020) 0.541 (0.019) 0.548 (0.019) 0.470 (0.020) 0.469 (0.026) 0.429 (0.034) 0.350 (0.032) 0.355 (0.035) 

𝜶(𝝓) (se) 5.932 (10.55) 0.361 (0.766) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0002) 1.001 (0.0002) 1.003 (0.0002) 1.001 (0.0002) 0.999 (0.0002) 0.996 (0.0003) 0.995 (0.0004) 0.999 (0.0004) 0.996 (0.0004) 

𝝍 (se) 2.866 (0.080) 2.876 (0.080) 2.436 (0.062) 2.578 (0.063) 2.958 (0.076) 3.878 (0.124) 4.983 (0.229) 5.403 (0.279) 6.409 (0.311) 

𝒎𝒂𝒙𝑬𝑽 0.55 0.50 0.55 0.62 0.58 0.60 0.73 0.64 0.59 

𝒍𝐥𝐨𝐠 -18595.14 -18366.12 -21358.21 -22992.07 -20123.84 -13922.72 -8009.94 -6871.31 -7045.75 
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Table V.17 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.594 (0.011) 0.482 (0.010) 0.591 (0.008) 0.629 (0.008) 0.602 (0.009) 0.57 (0.011) 0.454 (0.016) 0.396 (0.017) 0.328 (0.016) 

𝜶(𝝓) (se) 0.011 (0.0005) 0.01 (0.0006) 0.011 (0.0005) 0.012 (0.0005) 0.012 (0.0006) 0.013 (0.0007) 0.018 (0.001) 0.02 (0.0012) 0.015 (0.0011) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0002) 1.000 (0.0002 1.001 (0.0002) 1.000 (0.0002) 0.999 (0.0002 0.998 (0.0002) 0.997 (0.0002) 1.001 (0.0003) 0.998 (0.0002) 

𝝍 (se) 1.446 (0.025) 1.330 (0.024) 0.930 (0.016) 0.850 (0.015) 1.118 (0.020) 1.467 (0.0298) 2.717 (0.068) 3.061 (0.092) 3.342 (0.096) 

𝒎𝒂𝒙𝑬𝑽 0.67 0.55 0.67 0.71 0.68 0.66 0.58 0.53 0.43 

𝒍𝐥𝐨𝐠 -47864.17 -47931.55 -55667.92 -58029.21 -50927.79 -40175.74 -25274.05 -19719.31 -20831.95 
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Table V.18 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.519 (0.021) 0.486 (0.020) 0.541 (0.019) 0.556 (0.019) 0.481 (0.020) 0.483 (0.026) 0.466 (0.036) 0.374 (0.033) 0.370 (0.036) 

𝜶(𝝓) (se) 0.005 (0.0008) 0.003 (0.0008) 0.0004 

(0.0005) 

0.004 (0.0008) 0.004 (0.0009) 0.004 (0.001) 0.004 (0.0014) 0.006 (0.0018) 0.003 (0.0016) 

𝜶𝒕
(𝒗)

 (se) 1.000 (0.0002) 1.001 (0.0002) 1.003 (0.0002 1.001 (0.0002) 0.999 (0.0002) 0.996 (0.0003) 0.996 (0.0004) 0.999 (0.0004) 0.996 (0.0004) 

𝝍 (se) 2.869 (0.080) 2.878 (0.080) 2.437 (0.062) 2.591 (0.063) 2.976 (0.077) 3.915 (0.125) 5.1 (0.234) 5.554 (0.286) 6.518 (0.317) 

𝒎𝒂𝒙𝑬𝑽 0.55 0.51 0.54 0.58 0.50 0.51 0.49 0.40 0.39 

𝒍𝐥𝐨𝐠 -18605.12 -18368.89 -21358.45 -23004.69 -20134.17 -13937.23 -8045.13 -6893.59 -7064.25 
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Table V.19 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 1.000 

(0.0001) 

1.000 

(0.0001) 

1.001 

(0.0001) 

0.999 

(0.0001) 

0.998 

(0.0001) 

0.997 

(0.0001) 

0.998 

(0.0002) 

1.000 

(0.0002) 

0.998 

(0.0002) 

𝜶(𝒗)𝐴 (se) 0.150 

(0.015) 

0.071 

(0.014) 

0.099 

(0.013) 

0.149 

(0.013) 

0.117 

(0.014) 

0.096 

(0.017) 

0.199 

(0.021) 

0.137 

(0.024) 

0.240 

(0.024) 

𝜶(𝒗)𝑆 (se) 0.382 

(0.036) 

-0.618 

(0.023) 

-0.335 

(0.038) 

0.003 

(0.085) 

-0.323 

(0.041) 

-1.255 

(0.014) 

-2.793 

(0.008) 

2.579 

(0.009) 

2.415 

(0.010) 

𝝍 (se) 2.786 

(0.040) 

2.305 

(0.035) 

2.133 

(0.028) 

2.067 

(0.026) 

2.479 

(0.035) 

3.301 

(0.053) 

4.920 

(0.104) 

5.629 

(0.142) 

5.197 

(0.130) 

𝒍𝐥𝐨𝐠 -51823 -51086.5 -61844.2 -65008.9 -56543.6 -44775.6 -27108.1 -21114.5 -21811.2 
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Table V.20 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 0.999 

(0.0002) 

1.000 

(0.0002) 

1.004 

(0.0002) 

0.999 

(0.0002) 

0.999 

(0.0002) 

0.996 

(0.0003 

0.996 

(0.0003) 

0.998 

(0.0004) 

0.996 

(0.0004) 

𝜶(𝒗)𝐴 (se) 0.040 

(0.026) 

0.074 

(0.026) 

0.127 

(0.024) 

0.179 

(0.024) 

0.274 

(0.025) 

0.135 

(0.030) 

0.239 

(0.040) 

0.565 

(0.044) 

0.273 

(0.044) 

𝜶(𝒗)𝑆 (se) 1.865 

(0.015) 

-3.059 

(0.009) 

-0.05067 

(0.170) 

0.01432 

(0.132) 

0.4496 

(0.049) 

1.088 

(0.030) 

1.955 

(0.021) 

0.7809 

(0.047) 

1.906 

(0.024) 

𝝍 (se) 5.118 

(0.119) 

4.821 

(0.115) 

4.047 

(0.090) 

4.329 

(0.089) 

4.632 

(0.103) 

6.550 

(0.182) 

9.281 

(0.367) 

9.557 

(0.429) 

10.840 

(0.463) 

𝒍𝐥𝐨𝐠 -19915.8 -19549.7 -22691.9 -24420.4 -21233.5 -14816.8 -8588.91 -7298.25 -7457.42 
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III. HHH Model Summaries: Scarlet fever 

 

Table V.21 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for analysis of scarlet fever spread in Lancashire time–windows. 

Table V.22 Estimated model parameters (with standard errors) for power-law + gravity HHH 

model formulation for analysis of scarlet fever spread in South Wales time–windows. 

Table V.23 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for analysis of scarlet fever spread in Lancashire time–windows. 

Table V.24 Estimated model parameters (with standard errors) for power-law HHH model 

formulation for analysis of scarlet fever spread in South Wales time–windows. 

Table V.25 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for analysis of scarlet fever spread in Lancashire time–windows. 

Table V.26 Estimated model parameters (with standard errors) for gravity HHH model 

formulation for analysis of scarlet fever spread in South Wales time–windows. 

Table V.27 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for analysis of scarlet fever spread in Lancashire time–windows. 

Table V.28 Estimated model parameters (with standard errors) for first-order HHH model 

formulation for analysis of scarlet fever spread in South Wales time–windows. 

Table V.29 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for analysis of scarlet fever spread in Lancashire time–windows. 

Table V.30 Estimated model parameters (with standard errors) for endemic HHH model 

formulation for analysis of scarlet fever spread in South Wales time–windows. 
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Table V.21 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 -0.064 (0.015) -0.05 (0.016) -0.124 (0.016 -0.152 (0.017 -0.177 (0.021) -0.247 (0.022) -0.268 (0.023 -0.375 (0.030) -0.517 (0.033) 

𝒅 (se) 1.876 (0.081) 2.072 (0.089) 2.136 (0.095) 2.306 (0.110) 2.063 (0.100) 1.794 (0.096) 1.886 (0.110) 1.856 (0.120) 1.876 (0.120) 

𝜶(𝝀) (se) 0.672 (0.007) 0.674 (0.007) 0.646 (0.008) 0.633 (0.008) 0.602 (0.009) 0.566 (0.010) 0.528 (0.011) 0.513 (0.013) 0.486 (0.013) 

𝜶(𝝓) (se) 0.452 (0.060) 0.380 (0.060) 0.854 (0.130) 1.211 (0.200) 1.632 (0.310) 3.606 (0.740) 5.036 (1.100) 13.87 (3.800) 54.29 (16.000) 

𝜶𝒕
(𝒗)

 (se) 0.999 (0.002) 0.998 (0.002) 0.997 (0.0014) 1.002 (0.001) 1.001 (0.001) 1.001 (0.0009) 0.999 (0.0009) 1.001 (0.0008) 0.999 (0.0005) 

𝝍 (se) 0.61 (0.013) 0.63 (0.014) 0.75 (0.017) 0.78 (0.018) 0.93 (0.024) 1.18 (0.031) 1.39 (0.039) 1.92 (0.054) 2.16 (0.057) 

𝒎𝒂𝒙𝑬𝑽 0.91 0.91 0.90 0.91 0.89 0.89 0.89 0.87 0.83 

𝒍𝐥𝐨𝐠 -53769.96 -52646.02 -47681.3 -46599.97 -39219.61 -34828.87 -29765.73 -26511.87 -27031.37 
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Table V.22 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 1.124 (0.035) 1.254 (0.028) 1.234 (0.026) − 1.268 (0.040) 1.252 (0.039) 1.348 (0.065) 1.155 (0.088) 0.923 (0.076) 

𝒅 (se) 1.046 (0.160) 0.701 (0.081) 0.823 (0.079) − 1.431 (0.160) 1.738 (0.190) 1.862 (0.270) 2.008 (0.370) 2.533 (0.410) 

𝜶(𝝀) (se) 0.341 (0.010) 0.292 (0.010) 0.302 (0.010) − 0.316 (0.012) 0.327 (0.014) 0.283 (0.015) 0.259 (0.017) 0.301 (0.020) 

𝜶(𝝓) (se) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) − 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.00002 

(0.00001) 

𝜶𝒕
(𝒗)

 (se) 1.002 

(0.00026 

0.999 (0.0003 0.998 

(0.00035 

− 0.999 (0.0004 0.998 

(0.00044 

0.997 

(0.00043 

1.000 

(0.00043 

0.999 

(0.00042 

𝝍 (se) 0.56 (0.020) 0.51 (0.019) 0.59 (0.022) − 0.76 (0.036) 1.00 (0.047) 1.45 (0.077) 2.03 (0.120) 2.74 (0.140) 

𝒎𝒂𝒙𝑬𝑽 0.61 0.67 0.70 − 0.68 0.73 0.61 0.50 0.52 

𝒍𝐥𝐨𝐠 -22799.22 -23399.18 -21459.39 − -15081.97 -13244.19 -9889.25 -8133.12 -8166.20 
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Table V.23 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 10.14 (4.998) 5.757 (1.309) 6.989 (1.850) 4.337 (1.808) 3.346 (0.852) 3.618 (0.935) 3.841 (1.328) 4.796 (1.715) 2.525 (0.583) 

𝜶(𝝀) (se) 0.386 (0.006) 0.420 (0.006) 0.402 (0.007) 0.363 (0.007) 0.352 (0.007) 0.334 (0.008) 0.286 (0.009) 0.308 (0.010) 0.318 (0.010) 

𝜶(𝝓) (se) 0.051 (0.003) 0.072 (0.003) 0.082 (0.003) 0.055 (0.004) 0.053 (0.004) 0.073 (0.005) 0.062 (0.005) 0.070 (0.006) 0.083 (0.007) 

𝜶𝒕
(𝒗)

 (se) 

1.002 (0.0001) 0.997 (0.0001) 1.000 (0.0001) 

0.999 

(0.00012) 

0.996 

(0.00013) 1.001 (0.0002) 0.996 (0.0002) 

1.002 

(0.00012) 0.999 (0.0002) 

𝝍 (se) 0.35 (0.009) 0.38 (0.010) 0.75 (0.017) 0.78 (0.018) 0.93 (0.024) 1.18 (0.031) 1.39 (0.039) 1.92 (0.054) 2.16 (0.057) 

𝒎𝒂𝒙𝑬𝑽 0.44 0.49 0.90 0.91 0.89 0.89 0.89 0.87 0.83 

𝒍𝐥𝐨𝐠 -50370.51 -49370.84 -47681.3 -46599.97 -39219.61 -34828.87 -29765.73 -26511.87 -27031.37 
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Table V.24 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝒅 (se) 249.5 (891.3) 6.58 (3612) 1.063 (266.1) − 1.531 (1.680) 0.811 (1.479) − 1.388 (1.079) 2.383 (0.634) 

𝜶(𝝀) (se) 0.360 (0.010) 0.338 (0.010) 0.354 (0.010) − 0.357 (0.012) 0.377 (0.014) − 0.271 (0.017) 0.336 (0.021) 

𝜶(𝝓) (se) 

0.0060 (0.003) 

0.00000003 

(0.00002) 

0.00000009 

(0.0001) 

− 

0.0064 (0.004) 0.0122 (0.005) 

− 

0.0145 (0.009) 0.0682 (0.009) 

𝜶𝒕
(𝒗)

 (se) 

1.002 (0.0002 0.999 (0.0001 0.999 (0.0002) 

− 

0.999 (0.0002) 0.998 (0.0002) 

− 

0.999 (0.0003) 

0.9995 

(0.0003) 

𝝍 (se) 0.57 (0.020) 0.54 (0.019) 0.63 (0.023) − 0.81 (0.037) 1.10 (0.050) − 2.08 (0.119) 2.82 (0.144) 

𝒎𝒂𝒙𝑬𝑽 0.37 0.34 0.35 − 0.36 0.39 − 0.29 0.40 

𝒍𝐥𝐨𝐠 -22845.79 -23535.89 -21624.82 − -15186.49 -13374.72 − -8159.52 -8209.64 
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Table V.25 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.362 (0.058) 0.377 (0.045) 0.342 (0.045) 0.193 (0.056) 0.118 (0.064) 0.099 (0.064) -0.004 (0.074) 0.247 (0.078) 0.278 (0.081) 

𝜶(𝝀) (se) 0.379 (0.006) 0.406 (0.006) 0.389 (0.007) 0.360 (0.007) 0.351 (0.007) 0.329 (0.008) 0.283 (0.009) 0.303 (0.010) 0.310 (0.010) 

𝜶(𝝓) (se) 0.0003 

(0.00017) 

0.0003 

(0.00015) 

0.0005 

(0.00023) 

0.0017 

(0.00091) 

0.0033 

(0.00204) 

0.0047 

(0.00292) 

0.0123 

(0.00878) 

0.0011 

(0.00087) 

0.0008 

(0.00065) 

𝜶𝒕
(𝒗)

 (se) 1.002 

(0.00011) 

0.997 

(0.00013) 

1.000 

(0.00013) 

0.999 

(0.00012) 

0.996 

(0.00014) 

1.001 

(0.00015) 

0.996 

(0.00016) 

1.002 

(0.00019) 

0.990 

(0.00018) 

𝝍 (se) 0.35 (0.009) 0.38 (0.010) 0.44 (0.012) 0.43 (0.012) 0.51 (0.016) 0.65 (0.021) 0.73 (0.026) 1.11 (0.037) 1.39 (0.041) 

𝒎𝒂𝒙𝑬𝑽 0.47 0.53 0.51 0.44 0.42 0.42 0.36 0.4 0.41 

𝒍𝐥𝐨𝐠 -50351.74 -49355.03 -44496.31 -43338.37 -36352.93 -32247.92 -27349.2 -24532.22 -25357.24 

 

  



Appendix V 

451 

 

Table V.26 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.82 (0.150) 1.198 (0.130) 1.054 (0.098) − 1.157 (0.091) 1.139 (0.069) 1.259 (0.120) 0.909 (0.190) 0.646 (0.120) 

𝜶(𝝀) (se) 0.359 (0.010) 0.333 (0.010) 0.348 (0.010) − 0.345 (0.012) 0.360 (0.014) 0.303 (0.016) 0.266 (0.017) 0.328 (0.021) 

𝜶(𝝓) (se) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) − 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.00002 

(0.00003) 

𝜶𝒕
(𝒗)

 (se) 1.002 (0.0002) 0.999 (0.0002) 0.999 (0.0002) − 0.999 (0.0002) 0.998 (0.0003) 0.997 (0.0003) 1.000 (0.0003) 1.000 (0.0003) 

𝝍 (se) 0.57 (0.020) 0.54 (0.019) 0.63 (0.023) − 0.80 (0.037) 1.07 (0.049) 1.51 (0.079) 2.07 (0.120) 2.84 (0.140) 

𝒎𝒂𝒙𝑬𝑽 0.42 0.43 0.45 − 0.52 0.62 0.50 0.36 0.43 

𝒍𝐥𝐨𝐠 -22838.74 -23524.01 -21609.57 − -15160.74 -13320.28 -9928.72 -8152.98 -8220.14 
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Table V.27 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.689 (0.010) 0.684 (0.010) 0.664 (0.009) 0.659 (0.009) 0.619 (0.010) 0.592 (0.011) 0.562 (0.013) 0.554 (0.015) 0.546 (0.016) 

𝜶(𝝓) (se) 0.034 (0.001) 0.033 (0.001) 0.036 (0.001) 0.040 (0.001) 0.034 (0.001) 0.036 (0.001) 0.037 (0.002) 0.029 (0.002) 0.028 (0.002) 

𝜶𝒕
(𝒗)

 (se) 1.001 (0.000) 0.998 (0.000) 1.000 (0.000) 0.999 (0.000) 0.998 (0.000) 1.000 (0.000) 0.997 (0.000) 1.002 (0.000) 0.999 (0.000) 

𝝍 (se) 0.885 (0.017) 0.896 (0.017) 1.081 (0.022) 1.115 (0.023) 1.404 (0.031) 1.908 (0.044) 2.283 (0.056) 3.117 (0.08) 3.437 (0.084) 

𝒎𝒂𝒙𝑬𝑽 0.92 0.91 0.91 0.93 0.86 0.84 0.82 0.75 0.74 

𝒍𝐥𝐨𝐠 -56785.72 -55467.43 -50532.84 -49398.59 -41915.59 -37613.81 -32238.02 -28764.63 -29287.5 
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Table V.28 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝝀) (se) 0.361 (0.010) 0.34 (0.010) 0.355 (0.010) 0.328 (0.011) 0.355 (0.012) 0.374 (0.014) 0.313 (0.016) 0.27 (0.017) 0.334 (0.021) 

𝜶(𝝓) (se) 0.0021 (0.00) 0.0008 (0.000) 0.0003 (0.000) 0.000 (0.000) 0.000 (0.000) 0.0005 (0.001) 0.000 (0.000) 0.0018 (0.002) 0.0087 (0.002) 

𝜶𝒕
(𝒗)

 (se) 1.002 (0.0002) 1.00 (0.0002) 0.999 (0.0002) 0.997 (0.0002) 0.999 (0.0002) 0.998 (0.0002) 0.996 (0.000) 1.00 (0.000) 1.00 (0.0003) 

𝝍 (se) 0.57 (0.020) 0.54 (0.019) 0.63 (0.023) 0.72 (0.029) 0.81 (0.0370) 1.09 (0.05) 1.53 (0.080) 2.07 (0.120) 2.85 (0.150) 

𝒎𝒂𝒙𝑬𝑽 0.37 0.34 0.36 0.33 0.35 0.38 0.31 0.28 0.38 

𝒍𝐥𝐨𝐠 -22844.73 -23534.95 -21624.73 -18025.31 -15188 -13378.7 -9949.99 -8160.12 -8232.82 
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Table V.29 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 1.002 

(0.00008) 

0.998 

(0.00008) 

1.000 

(0.00009) 

0.998 

(0.00009) 

0.9964 

(0.00010) 

1.000 

(0.00011) 

0.995 

(0.00012) 

1.002 

(0.00013) 

0.9983 

(0.00014) 

𝜶(𝒗)𝐴 (se) 0.233 (0.009) 0.268 (0.010) 0.380 (0.011) 0.408 (0.011) 0.385 (0.013) 0.455 (0.014) 0.413 (0.015) 0.470 (0.018) 0.512 (0.018) 

𝜶(𝒗)𝑆 (se) 2.197 (0.004) 1.946 (0.005) 1.454 (0.007) 1.327 (0.008) 1.22 (0.010) 1.182 (0.011) 1.241 (0.011) 0.901 (0.017) 0.862 (0.017) 

𝝍 (se) 0.66 (0.013) 0.81 (0.015) 0.91 (0.017) 0.77 (0.016) 0.95 (0.022) 1.15 (0.028) 1.07 (0.032) 1.69 (0.047) 2.09 (0.053) 

𝒍𝐥𝐨𝐠 -53170.2 -52828.3 -47577.9 -45679.9 -38460.1 -34061.5 -28453.8 -25652.1 -26474.3 
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Table V.30 

 

Parameter 

Model estimates 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜶(𝒗)𝒕 (se) 1.001 

(0.00012) 

0.9996 

(0.00011) 

0.999 

(0.00013) 

0.9963 

(0.00014) 

0.9993 

(0.00016) 

0.9971 

(0.00019) 

0.9959 

(0.00023) 

0.9993 

(0.00025) 

1.002 

(0.00030) 

𝜶(𝒗)𝐴 (se) 0.239 (0.015) 0.280 (0.015) 0.335 (0.016) 0.312 (0.018) 0.365 (0.021) 0.368 (0.023) 0.273 (0.028) 0.322 (0.033) 0.478 (0.038) 

𝜶(𝒗)𝑆 (se) 1.898 (0.008) 1.392 (0.010) 1.186 (0.013) 1.473 (0.012) 1.162 (0.017) 1.080 (0.020) 1.051 (0.026) 0.812 (0.038) 1.555 (0.023) 

𝝍 (se) 0.93 (0.026) 0.81 (0.024) 0.98 (0.029) 1.09 (0.037) 1.45 (0.052) 1.97 (0.071) 2.50 (0.112) 3.25 (0.167) 6.02 (0.243) 

𝒍𝐥𝐨𝐠 -23945.0 -24450.4 -22563.0 -18764.1 -16088.6 -14205.1 -10552.5 -8611.7 -8885.4 
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IV. HHH Model Summaries (With Random Effects) 

 

Table V.31 Estimated model parameters (with standard errors) and random effects for 

power-law + gravity RI HHH model formulation for measles spread in Lancashire time–

windows. 

Table V.32 Estimated model parameters (with standard errors) and random effects for 

power-law + gravity RI HHH model formulation for pertussis spread in Lancashire time–

windows. 

Table V.33 Estimated model parameters (with standard errors) and random effects for 

power-law + gravity RI HHH model formulation for scarlet fever spread in Lancashire time–

windows. 
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Table V.31 

 

  

 Model estimates 

 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.432 

(0.053) 

0.273 

(0.059) 

0.269 

(0.059) 

0.341 

(0.062) 

0.450 

(0.058) 

0.576 

(0.059) 

0.524 

(0.057) 

0.505 

(0.056) 

0.572 

(0.053) 

𝒅 (se) 3.18 

(0.086) 

3.56 

(0.100) 

4.30 

(0.123) 

4.56 

(0.129) 

3.46 

(0.082) 

3.43 

(0.085) 

3.22 

(0.100) 

3.16 

(0.083) 

3.17 

(0.089) 

𝝍 (se) 0.93 

(0.013) 

0.89 

(0.014) 

0.81 

(0.012) 

0.85 

(0.013) 

0.93 

(0.014) 

0.99 

(0.015) 

0.96 

(0.014) 

0.90 

(0.012) 

1.01 

(0.014) 

𝒎𝒂𝒙𝑬𝑽 0.86 − 

1.03 

0.87 − 

1.20 

0.83 − 

1.11 

0.83 − 

1.10 

0.84 − 

1.11 

0.88 − 

1.06 

0.86 − 

1.09 

0.99 − 

1.26 

0.86 − 

1.05 

Fixed  
         

𝜶(𝝀) (se) 0.658 

(0.016) 

0.662 

(0.018) 

0.676 

(0.018) 

0.677(0.

015) 

0.708 

(0.014) 

0.749 

(0.012) 

0.749 

(0.014) 

0.691 

(0.015) 

0.623 

(0.016) 

𝜶(𝝓)(se) 0.0020 

(0.001) 

0.0090 

(0.005) 

0.0094 

(0.005) 

0.0048 

(0.003) 

0.0015 

(0.001) 

0.0004 

(0.0002) 

0.0006 

(0.0003) 

0.0010 

(0.0005) 

0.0006 

(0.0003) 

Random 

         

𝝈𝝀
𝟐 0.046 0.064 0.061 0.041 0.028 0.012 0.020 0.035 0.053 

𝝈𝝓
𝟐  0.543 0.437 0.459 0.498 0.421 0.402 0.344 0.361 0.353 

𝝈𝛎
𝟐 1.375 1.207 1.015 0.777 0.999 1.33 0.495 0.742 1.085 

𝝆𝝀
𝟐 -0.008 -0.112 -0.117 0.043 -0.110 -0.174 -0.225 -0.110 -0.188 

𝝆𝝓
𝟐  -0.024 0.169 0.251 0.182 -0.009 -0.063 -0.240 -0.225 -0.118 

𝝆𝛎
𝟐 -0.407 -0.229 -0.271 -0.277 -0.114 0.006 -0.054 -0.199 -0.352 

𝒍𝒑𝒆𝒏 -

67928.2 

-

62648.8 

-

66430.6 

-

67333.6 

-

67302.2 

-

66158.7 

-

68547.3 

-

74093.9 

-

69008.4 

𝒍𝒎𝒂𝒓 -549.91 -551.57 -557.98 -528.13 -503.57 -474.65 -455.34 -505.77 -502.08 
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Table V.32 

 

 Model estimates 

 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.522 

(0.063) 

0.479 

(0.070) 

0.039 

(0.080) 

0.093 

(0.070) 

0.224 

(0.076) 

0.859 

(0.058) 

0.813 

(0.073) 

1.013 

(0.071) 

0.897 

(0.066) 

𝒅 (se) 1.99 

(0.098) 

2.38 

(0.115) 

2.80 

(0.121) 

3.46 

(0.150) 

2.78 

(0.129) 

2.01 

(0.103) 

2.09 

(0.094) 

1.09 

(0.088) 

0.89 

(0.094) 

𝝍 (se) 1.05 

(0.021) 

1.05 

(0.021) 

0.70 

(0.014) 

0.66 

(0.012) 

0.88 

(0.017) 

1.11 

(0.025) 

1.93 

(0.053) 

2.10 

(0.069) 

2.19 

(0.069) 

𝒎𝒂𝒙𝑬𝑽 0.88 − 

1.04 

0.79 − 

0.97 

0.90 − 

0.97 

0.82 − 

0.99 

0.90 − 

1.00 

0.87 − 

1.12 

0.80 − 

1.01 

0.94 − 

1.06 

0.96 − 

1.00 

Fixed  
         

𝜶(𝝀) (se) 0.356 

(0.018) 

0.335 

(0.015) 

0.368 

(0.017) 

0.404 

(0.016) 

0.402 

(0.019) 

0.334 

(0.019) 

0.264 

(0.017) 

0.193 

(0.015) 

0.153 

(0.014) 

𝜶(𝝓)(se) 0.0010 

(0.0006) 

0.0014 

(0.0010) 

0.08600 

(0.0671) 

0.0544 

(0.03735) 

0.01619 

(0.0121) 

0.00003 

(0.00002) 

0.00006 

(0.00005) 

0.00001 

(0.00001) 

0.00003 

(0.00002) 

Random 

         

𝝈𝝀
𝟐 0.221 0.169 0.205 0.154 0.219 0.280 0.253 0.221 0.169 

𝝈𝝓
𝟐  0.735 0.892 1.228 0.865 0.952 0.413 0.682 0.735 0.892 

𝝈𝛎
𝟐 1.308 0.957 1.603 1.826 0.787 2.122 1.217 1.308 0.957 

𝝆𝝀
𝟐 0.369 0.316 0.612 0.467 0.392 -0.042 0.225 0.369 0.316 

𝝆𝝓
𝟐  -0.274 0.031 -0.353 -0.206 -0.120 0.135 0.128 -0.274 0.031 

𝝆𝛎
𝟐 0.051 -0.350 -0.559 -0.481 -0.353 -0.427 -0.295 0.051 -0.350 

𝒍𝒑𝒆𝒏 -

46025.0 

-

46516.2 -538407 

-

56291.7 

-

49501.2 

-

38799.3 

-

23994.2 

-

46025.0 

-

46516.2 

𝒍𝒎𝒂𝒓 -586.88 -537.85 -580.49 -593.85 -581.54 -501.62 -424.73 -586.88 -537.85 
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Table V.33 

 

  

 Model estimates 

 

40−45 43−48 46−51 49−54 52−57 55−60 58−63 61−66 64−69 

𝜷𝐥𝐨𝐠 (𝒑𝒐𝒑)
(𝝓)

 0.510 

(0.037) 

0.658 

(0.035) 

0.544 

(0.044) 

0.591 

(0.053) 

0.537 

(0.082) 

0.766 

(0.066) 

0.963 

(0.056) 

1.018 

(0.071) 

0.94 

(0.064) 

𝒅 (se) 1.72 

(0.073) 

1.84 

(0.068) 

2.27 

(0.108) 

1.81 

(0.113) 

2.08 

(0.181) 

1.65 

(0.138) 

0.84 

(0.151) 

0.98 

(0.142) 

0.91 

(0.157) 

𝝍 (se) 0.24 

(0.008) 

0.24 

(0.008) 

0.31 

(0.010) 

0.32 

(0.010) 

0.35 

(0.013) 

0.45 

(0.018) 

0.49 

(0.021) 

0.71 

(0.028) 

0.91 

(0.031) 

𝒎𝒂𝒙𝑬𝑽 0.70 − 

1.07 

0.86 − 

1.01 

0.70 − 

0.88 

0.53 − 

0.87 

0.55 − 

0.85 

0.48 − 

0.86 

0.43 − 

0.94 

0.47 − 

0.93 

0.40 − 

1.02 

Fixed  
         

𝜶(𝝀) (se) 0.229 

(0.012) 

0.227 

(0.012) 

0.231 

(0.013) 

0.228 

(0.012) 

0.205 

(0.012) 

0.195 

(0.012) 

0.165 

(0.011) 

0.129 

(0.011) 

0.134 

(0.011) 

𝜶(𝝓)(se) 0.0019 

(0.0007) 

0.0004 

(0.0001) 

0.0011 

(0.0005) 

0.0006 

(0.0003) 

0.0007 

(0.0006) 

0.0001 

(0.0001) 

0.00001 

(0.0001) 

0.00001 

(0.0001) 

0.00001 

(0.0001) 

Random 

         

𝝈𝝀
𝟐 0.265 0.268 0.284 0.222 0.297 0.250 0.250 0.448 0.379 

𝝈𝝓
𝟐  0.385 0.253 0.263 0.349 0.521 0.431 0.464 0.701 0.727 

𝝈𝛎
𝟐 2.222 1.391 0.415 0.274 0.324 0.498 0.582 0.794 0.748 

𝝆𝝀
𝟐 0.742 0.617 0.529 0.479 0.377 0.406 0.063 0.314 0.336 

𝝆𝝓
𝟐  -0.277 -0.164 0.250 0.165 0.161 0.199 0.252 0.390 0.426 

𝝆𝛎
𝟐 -0.310 -0.293 0.097 0.129 0.205 0.305 0.753 0.693 0.799 

𝒍𝒑𝒆𝒏 -

48922.1 

-

47700.6 

-

43206.7 

-

42230.3 

-

35209.8 

-

31139.4 

-

26252.9 

-

23212.7 

-

23956.3 

𝒍𝒎𝒂𝒓 -535.59 -543.32 -475.93 -483.76 -494.31 -463.76 -432.14 -444.13 -436.78 
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Table V.34 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for measles in Lancashire. Values highlighted in yellow indicate best fitting model. 

 

 

Table V.35 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for measles in South Wales. Values highlighted in yellow indicate best fitting model. 

 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law PL + Gravity 

40−45 162095.9 139552.5 139545.6 138356.6 138010.5 

43−48 152138.0 128917.3 128903.8 127877.7 127609.1 

46−51 161451.6 136231.7 136220.8 135402.7 135199.8 

49−54 161780.7 137870.4 137871.8 137124.2 136905.4 

52−57 161996.3 138332.2 138332.7 137181.6 136862.2 

55−60 159480.5 135885.8 135887.7 134954.2 134569.5 

58−63 163593.2 140221.0 140218.9 139351.4 138952.8 

61−66 175176.0 151815.1 151813.4 150721.0 150373.9 

64−69 160179.9 141295.7 141275.9 140562.4 140013.8 

Mean 161974.5 138821.2 138815.6 137896.9 137560.8 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law Gravity + PL 

40−45 76983.5 68018.7 67767.0 64950.1 64914.7 

43−48 71281.9 62926.4 62639.8 60150.2 60088.9 

46−51 77555.7 66667.3 66487.2 64603.2 64537.9 

49−54 73378.7 62570.2 62496.6 60594.4 60547.4 

52−57 72709.5 61680.9 61618.8 59613.8 59604.2 

55−60 74222.6 63962.2 63880.4 62019.4 62001.2 

58−63 72103.9 63445.6 63241.0 60715.7 60697.8 

61−66 80557.4 72285.5 71935.4 70171.7 70107.8 

64−69 70695.7 63688.5 63520.5 61797.6 61799.0 

Mean 74387.7 65027.3 64843.0 62735.1 62699.9 
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Table V.36 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for pertussis in Lancashire. Values highlighted in yellow indicate best fitting model. 

 

 

Table V.37 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for pertussis in South Wales. Values highlighted in yellow indicate best fitting model. 

 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law PL + Gravity 

40−45 103656.0 95742.3 95698.2 95309.8 95051.6 

43−48 102183.0 95877.1 95851.8 95595.4 95572.4 

46−51 123698.5 111349.8 111341.9 110905.5 110799.5 

49−54 130027.8 116072.4 116068.3 115710.1 115578.4 

52−57 113097.1 101869.6 101868.4 101668.4 101538.6 

55−60 89561.2 80365.5 80365.9 80091.8 79743.2 

58−63 54226.1 50562.1 50524.5 50060.5 49473.1 

61−66 42238.9 39452.6 39391.3 39107.0 38683.1 

64−69 43632.4 41677. 9 41627.7 41422.1 41161.4 

Mean 89146.9 81441.0 81415.3 81096.7 80844.6 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law Gravity + PL 

40−45 39841.6 37224.2 37206.3 37040.7 37017.0 

43−48 39109.4 36751.8 36748.2 36655.1 36603.5 

46−51 45393.7 42730.9 42732.4 42397.0 42159.8 

49−54 48850.8 46023.4 46000.1 45462.2 45211.4 

52−57 42477.0 40282.3 40263.7 40123.4 39960.2 

55−60 29643.6 27888.5 27861.4 27766.9 27604.2 

58−63 17187.8 16104.3 16036.7 15946.2 15738.1 

61−66 14606.5 13801.2 13758.8 13591.9 13321.2 

64−69 14924.9 14142.5 14108.2 14024.6 13839.0 

Mean 32448.4 30549.9 30524.0 30334.2 30161.6 
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Table V.38 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for scarlet fever in Lancashire. Values highlighted in yellow indicate best fitting model. 

 

 

Table V.39 Goodness-of -fit assessments for HHH model formulations using AIC values, 

for scarlet fever in South Wales. Values highlighted in yellow indicate best fitting model. 

 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law PL + Gravity 

40−45 106350.4 100756.0 100719.5 100757.0 100446.6 

43−48 105666.6 98789.4 98726.1 98757.7 98172.1 

46−51 95165.7 89060.3 89008.6 89027.1 88702.2 

49−54 91369.9 86702.3 86692.7 86753.4 86577.2 

52−57 76930.2 72723.1 72721.9 72762.5 72714.6 

55−60 68133.0 64512.2 64511.8 64547.8 64423.2 

58−63 56917.6 54712.4 54714.4 54782.3 54669.2 

61−66 51314.2 49087.9 49080.5 49116.2 49041.1 

64−69 52958.5 50739.6 50730.5 50719.3 50635.0 

Mean 78311.8 74120.4 74100.7 74135.9 73931.3 

 

 

Time 

Window 

 

Model 

Endemic First-order Gravity Power Law Gravity + PL 

40−45 47900.1 45703.5 45693.5 45707.6 45616.4 

43−48 48910.8 47083.9 47064.0 47087.8 46816.4 

46−51 45135.9 43263.5 43235.2 43265.6 42936.8 

49−54 37538.1 36064.6 − − − 

52−57 32187.1 30390.0 30337.5 30389.0 30182.0 

55−60 28420.2 26771.4 26656.6 26765.4 26506.4 

58−63 21115.1 19914.0 19873.5 − 19796.5 

61−66 17233.3 16334.3 16321.9 16335.0 16284.2 

64−69 17780.7 16479.6 16456.3 16435.3 16350.4 

Mean 32913.5 31333.9 30704.8 32283.7 30561.1 
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Table V.40 Assessment of predictive performance of HHH model formulations for measles in Lancashire, using mean scores. Values highlighted 

in yellow indicate best performing model fits according to proper scoring rules. 

 

 

 Predictive Score Assessment 

 

TW  

Endemic First-order Gravity Power Law  PL + Gravity PL + Gravity RI 

LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS 

40−45 1.587 4.087*** 2.245* 2.082* 2.332** 2.168* 2.443* 1.980* 0.900 0.415 1.803 1.285 

43−48 2.147* 2.874** 1.656 1.140 1.699 1.186 0.824 0.178 0.117 0.814 0.685 0.413 

46−51 10.439*** 6.962*** 3.053** 4.810*** 2.886** 4.639*** 1.337 3.345*** 1.540 3.666*** 2.623** 6.178*** 

49−54 6.794*** 5.303*** 2.461** 1.519 2.463** 1.525 3.536*** 2.474* 3.398*** 2.065* 1.884 1.271 

52−57 13.774*** 4.945*** 4.002*** 4.217*** 3.941*** 4.136*** 1.514 1.819* 1.457 1.960* 1.221 1.471 

55−60 21.293*** 12.433*** 9.163*** 6.828*** 9.162*** 6.826*** 6.332*** 4.620*** 3.761*** 2.153* 2.729** 1.673 

58−63 19.183*** 12.086*** 3.891*** 5.081*** 3.988*** 5.194*** 2.238* 3.180*** 2.013* 2.994** 3.840*** 4.781*** 

61−66 18.331*** 11.584*** 6.170*** 3.152** 6.174*** 3.169** 4.030*** 1.164 2.055* 0.581 3.581*** 1.464 

64−69 1.614 2.563** 0.488 0.005 0.416* 0.107 0.997 0.512 1.075 0.380 0.663 1.001 

Mean 10.574 6.982 3.681 3.204 3.673 3.217 2.583 2.141 1.813 1.670 2.114 2.171 

* p < 0.05, ** p< 0.01, *** p < 0.001 
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Table V.41 Assessment of predictive performance of HHH model formulations for pertussis in Lancashire, using mean scores. Values highlighted 

in yellow indicate best performing model fits according to proper scoring rules. 

 

  

 Predictive Score Assessment 

 

TW  

Endemic First-order Gravity Power Law  PL + Gravity PL + Gravity RI 

LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS 

40−45 20.086*** 19.045*** 13.401*** 11.423*** 12.668*** 11.164*** 6.989*** 5.632*** 2.688** 1.035 0.905 1.147 

43−48 0.174 0.782 1.753 2.644 1.580 2.466* 0.504 1.369 0.554 1.442 1.720 2.523** 

46−51 4.611*** 3.015** 4.801*** 4.147*** 4.847*** 4.198*** 5.398*** 4.842*** 5.093*** 4.528*** 3.742*** 3.267*** 

49−54 3.750*** 3.234*** 1.177 1.548 1.089 1.451 1.120 1.551 1.678 2.155* 2.919** 3.610*** 

52−57 4.087*** 2.008* 0.942 0.276 0.882 0.221 0.390 0.940 1.555 1.916 0.710 0.572 

55−60 6.092*** 5.086*** 3.971*** 3.578*** 4.017*** 3.625*** 3.001** 2.800** 1.599 1.325 2.208* 2.484** 

58−63 1.721 0.615 0.826*** 0.554 0.721 0.415 0.353 0.521 1.612 1.741 1.433 1.721 

61−66 1.625 1.518 1.523*** 1.495 1.496 1.474 − − 1.538 1.511 0.896 0.780 

64−69 6.304*** 5.708*** 4.575*** 4.038*** 4.424*** 3.859*** 3.903*** 3.433*** 1.455 0.992 0.465 0.913 

Mean 2.558 2.281 1.241 1.149 1.132 1.090 0.196 0.202 0.526 0.526 0.159 0.482 

* p < 0.05, ** p< 0.01, *** p < 0.001 
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Table V.42 Assessment of predictive performance of HHH model formulations for scarlet fever in Lancashire, using mean scores. Values 

highlighted in yellow indicate best performing model fits according to proper scoring rules. 

 

 

 Predictive Score Assessment 

 

TW  

Endemic First-order Gravity Power Law  PL + Gravity PL + Gravity RI 

LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS LogS RPS 

40−45 0.129 0.477 2.013* 1.772 0.343 0.712 0.028 0.324 0.649 0.052 0.327 0.665 

43−48 0.552 0.562 2.552* 0.788 0.203 0.182 0.842 0.874 1.243 0.929 1.311 1.061 

46−51 3.140** 2.560*

* 

4.379*** 3.734*** 2.943** 2.372* 3.069** 2.525* 1.634 1.248 1.354 0.89 

49−54 3.219*** 2.785*

* 

5.269*** 5.409*** 3.132** 2.683** 3.244*** 2.828** 2.471* 2.083* 2.975** 2.424* 

52−57 2.652** 3.061*

* 

5.345*** 5.195*** 2.732** 3.159** - - 2.886** 3.292*** - - 

55−60 1.145 1.188 1.404 1.155 1.203 1.248 1.013 1.045 1.479 1.523 0.697 0.927 

58−63 4.413*** 4.002*

* 

6.410*** 5.728*** 4.411*** 4.000*** 4.297*** 3.922*** 2.336* 2.121* 2.140* 2.115* 

61−66 3.580*** 3.258*

* 

4.865*** 4.428*** 3.468** 3.144** 3.711*** 3.390*** 1.276 1.039 1.084 0.896 

64−69 2.918** 2.757*

* 

3.485*** 2.764** 3.012** 2.865** 2.462* 2.305* 1.668 1.566 0.664 0.561 

Mean 2.416 2.294 3.969 3.441 2.383 2.263 2.333 2.152 1.738 1.539 1.319 1.192 

* p < 0.05, ** p< 0.01, *** p < 0.001 


