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Abstract 

The effect waterlogged soil can have on plant production is a serious concern for UK 

wheat and barley farmers. Inhibition of aerobic respiration due to the hypoxic 

condition of waterlogged soil causes detrimental effects to field crops leading to a 

loss in yields. Plants can respond to this abiotic stress through regulation of their 

morphological structure, energy metabolism or via hormonal and signalling 

adaptations. This review aims to outline the adaptations wheat and barley undertake 

in morphological structure, respiration, reactive oxygen species damage and plant 

hormone biosynthesis when subjected to waterlogging stress. Finally, we indicate 

the areas in which waterlogging research still needs further investigation to better 

understand waterlogging tolerance in these plant species. 

Introduction  

The development of agriculture has allowed humanity to survive throughout the ages 

and increase in population. The first sign of crops contributing to mankind’s 

development can be seen in the ‘Neolithic Revolution’ (Hole, 1984) which involved 

the transition from hunter-gatherer to farmer. A key component to the progression to 

and from the ‘Neolithic Revolution’ were cereal crops which produced a reliable food 

source for the growing population.  

The early cultivated forms of cereals were selected by farmers from wild populations 

based on the yields provided or any other desirable structural trait (Shewry, 2009). In 

the case of wheat, cultivars showing beneficial traits were repeatably selected 

becoming the recognisably “cultivated forms” such as the diploid einkorn or the 

emmer tetraploid both of which data indicates originated from south-eastern Turkey 

from natural populations (Shewry, 2009). However, common bread wheat was 

developed through cultivation via the hybridization of emmer with the grass Triticum 

tauschii (Shewry, 2009). The modern cultivated barley Hordeum vulgare L was bred 

from the Hordeum spontaneum C.Koch, domesticated in locations such as Tibet, 

Central Asia or the Near East Fertile Crescent (Wang et al., 2015). The importance 

of these cereals is still observed today as both species are key food staples (Food 

and Agriculture Organization of the United Nations, 1995). Current figures show the 

global production of wheat during the market year of 2020/2021 was 772.64 MMT 

(million metric ton) (Shahbandeh, 2021) and barley of 156.41 MMT in 2019/2020 

(Shahbandeh, 2020). Within the UK the production of wheat and barley stated by the 

Department for Environmental Food & Rural Affairs for the year 2020 was 10.1 and 

8.3 million tonnes respectively (Department for Environment Food and Rural Affairs, 

2020). 

However, this total production of wheat in the UK is a ~40% reduction to the previous 

year (Department for Environment Food and Rural Affairs, 2020). Coincidentally, the 

average yearly rainfall within the UK in 2020 increased 324.5 mm over what fell in 



2019 based on data published on Statista (Madhumitha, 2021). Although there is no 

evidence this is causal, it is likely to be more than just a coincidence. Increases in 

rainfall or patterns of rainfall are associated with flooding of farmlands and the 

development of waterlogged soil, both of which can lead to dramatic decreases in 

crop yields. Waterlogged soil occurs when water replaces the gas spaces found 

around the root zone of plants (Sasidharan et al., 2017). Reduced gas spaces 

disrupt oxygen exchange between the plant tissues and its environment and when 

this occurs, plants experience a hypoxic environment (oxygen levels lower than 21% 

v/v in air). Under hypoxic conditions wheat and barley yields can be significantly 

reduced - up to 25% - and the yield reduction is correlated with the duration of 

waterlogged soil (Herzog et al., 2016). This reduction in yield is associated with a 

considerable reduction in gas diffusion rates leading to impaired root function, 

stomatal limitation, and loss in energy production (Herzog et al., 2016). To adapt to 

this hypoxic environment, plants develop various morphological responses to 

ameliorate the effects of the waterlogged soil. These adaptations include a change in 

energy production methods using fermentation in exchange of aerobic respiration, 

the development of root aerenchyma to increase gas exchange between plant cells 

and the production of adventitious roots to replace previously established root 

systems.  

 

The increased rainfall observed in the UK during 2020 is not an isolated event.  The 

occurrence of waterlogged soil has increased worldwide over the past decade due to 

higher intensity rainfall and unpredictable weather patterns (Hirabayashi et al., 

2013). Moreover, increased waterlogging events are expected to persist within the 

coming years due to climate change. As explained above, waterlogging can 

significantly affect crops’ growth rate and production. If maintained in the upcoming 

years due to climate change, reduced production because of waterlogging events 

can pose a serious threat to human survival. The world population is currently 

estimated to reach ~10 billion people by 2050 (FAO, 2017). It has been estimated 

that in order to meet demands, global yields of cereal crops would have to increase 

by 1.2-1.3% per year (Fischer et al., 2014), however, once climate effects are taken 

into account this required increase in yield is raised to 1.7% (Reynolds et al., 2016). 

To meet the required food demands for the human population, we require a further 

understanding of how climate change will affect crop yields. Although the current 

focus is being placed on water scarcity (Bita and Gerats, 2013) and subsequent heat 

stress to be experienced by crops leading to large scale decline in yields (Fahad et 

al., 2017), there is one paradox that must still be considered. The paradox of global 

warming is that because of increased changeability and unpredictability of the 

weather patterns, increased occurrences of drought in one place are matched with 

the simultaneous increase in precipitation rates across other areas meaning we must 

expect a rise in occurrences of waterlogged soils and flooding as well as increased 

drought and water scarcity. 

This review aims to review the current knowledge of how morphological and 
metabolic adaptations increase the survivability of wheat and barley and to provide a 
general overview of what traits might be changed to improve future crops, so they 



are better able to cope with waterlogging. Herein we will focus on the UK’s two major 
arable crops, wheat and barley, and explore the structural, energetic, hormonal and 
signalling adaptations they have developed to cope with waterlogging stress.  
 

Structural adaptations 

  As mentioned, the hypoxic conditions imposed on plants by waterlogged soil can 

lead to a variety of stresses and even cause plant death. Most plants suffer greatly 

because these conditions affect the diffusion rates of gasses such as oxygen (O2) 

and carbon dioxide (CO2) through their stems and root systems. This reduction in 

diffusion rate leads to a significant decrease in their metabolic functions (see 

sections below on ethylene and ROS scavenging). However, plants can develop a 

series of morphological changes to assist with oxygen deficiency. The main 

morphological adaptation plants undertake are the development of adventitious roots 

(ARs), the development of aeration tissues (i.e. aerenchyma), or creating barriers to 

radial oxygen loss (ROL) (Gunawardena et al., 2001; Nishiuchi et al., 2012; 

Yamauchi et al., 2014b). Here, we will define what these structures are, where they 

are located, and how they develop in response to waterlogging stress.  

Production of ARs can be considered a typical morphological response during 

extended waterlogging (Steffens and Rasmussen, 2016). They are produced from 

the hypocotyl or the stem nodes (Figure 1) where they can promote gaseous 

exchange and absorption of nutrients and water; these are new roots formed at the 

surface or just below the soil surface that replaces the primary roots that have died 

due to hypoxic stress allowing the plant to maintain metabolic functions (Rasmussen 

et al., 2017). In wheat, their formation is controlled by reducing the formation or 

elongation of other roots (such as axial or lateral roots) and altering hormone 

biosynthesis at the location in the stem nodes where the AR will emerge  (Nguyen et 

al., 2018). These roots often develop aerenchyma and are connected to the shoot to 

help improve the diffusion of gas (Sauter, 2013; Steffens and Rasmussen, 2016). 

A significant factor that allows adventitious roots to maintain gaseous exchange 

rates within plants under waterlogged soil, is their aerenchyma content which 

augments the uptake and diffusion rate of O2 (Visser and Voesenek, 2005). 

Aerenchyma are tissue cavities produced by programmed cell death in cortical cells 

of plant roots and shoots. They allow for O2 transport across waterlogged and non-

waterlogged tissue while also being able to discharge CO2, playing a vital role in 

maintaining physiological metabolism in plant cells (Drew et al., 2000; Yamauchi et 

al., 2013). There are two main types of aerenchyma: schizogenous or lysigenous 

aerenchyma. Schizogenous aerenchyma develops spaces for gas diffusion via cell 

separation and differential expansion without causing cell death (Evans, 2004). 

Lysigenous aerenchyma, however, forms space for gas diffusion via programmed 

cell death and is commonly seen in cereal crops (Arikado and H., 1955; Trought and 

Drew, 1980). Lysigenous aerenchyma (Figure 2) in the root cortex forms when the 

contents of the cell that form the aerenchyma are digested leaving behind only the 

cell wall (Evans, 2004). However, some lysigenous aerenchyma cells may remain 

intact in order to function as radial bridges, therefore, retaining root structural rigidity. 

The development of lysigenous aerenchyma is only triggered in dryland cereal crops 



such as wheat and barley when roots are faced with poorly aerated soils e.g., 

waterlogged soils, and do not develop in well-drained soils (Trought and Drew, 

1980). 

Aerenchyma provides a robust way to allow gaseous exchange throughout the plant 

cells under waterlogged conditions, however, they can lead to a loss of O2 via both 

consumption for respiration and through lateral leakage into intercellular spaces of 

the rhizosphere (Yamauchi et al., 2018). This loss of oxygen through aerenchyma is 

termed radial oxygen loss (ROL).  To counteract this oxygen loss and allow further 

adventitious root growth, plants can form a ROL barrier on the root exterior that 

reduces ROL (Pedersen et al., 2021). This barrier is formed by the addition of 

suberin within the walls of the hypodermis and exodermis cells (Kotula et al., 2009). 

This barrier development is observed in rice as the accumulation of suberin in the 

outer layers of cell walls allow it to withstand submerged conditions (Nishiuchi et al., 

2012). In regards to this review’s focus i.e., wheat and barley, the formation of the 

ROL barrier with suberin is not possible, potentially due to specific genetic variations 

between rice and these cereals (Ouyang et al., 2020), although this is not yet fully 

understood but can also be attributed to the differences in root physiology between 

these plants (Kreszies et al., 2018). However, it is interesting to note that wheat has 

the ability to develop the ROL barrier when it is crossed to Hordeum marinum (Malik 

et al., 2011; Watanabe et al., 2013). Although ROL barrier development is not 

normally possible, wheat and barley plants still change their morphology in order to 

decrease ROL by regulating the surface area and volume (SA: V) of their 

adventitious roots. Thin roots are found to have high SA : V causing higher rates of 

oxygen diffusion to hypoxic/anoxic soils therefore by increasing the thickness of 

roots reduces the SA : V values leading to a reduction in ROL within wheat and 

barley (Pedersen et al., 2021).   

 

Energy production adaptations 

Energy production the most crucial factor for plant development and growth, 

however under hypoxic conditions the energy metabolism of plants are stunted 

leading to a reduction in the plant’s capacity to develop and survive (Loreti et al., 

2016). Plant energy metabolism is primarily based on the mitochondrial electron 

transport chain, where oxygen is used as an electron acceptor to produce adenosine 

triphosphate (ATP). Under normal soil conditions dissolved oxygen (in water) is 

found at approximately 0.23 mol/ m3, however, under waterlogged conditions, this 

oxygen concentration is reduced to 0.05 mmol/m3 (Armstrong, 1980; Bailey-Serres 

and Voesenek, 2008). Depletion of oxygen availability, therefore, affects the amount 

of ATP a plant can produce via mitochondrial respiration. To maintain energy levels 

a plant would rely on the ATP production of glycolysis and ethanol fermentation, 

however, such modes of metabolism are not as efficient as mitochondrial respiration. 

Using 1 mol of glucose in mitochondrial respiration can produce 36 to 38 mol of ATP, 

in contrast glycolysis and fermentation (Figure 3) can only produce 2 mol ATP 

(Melkonian and Schury, 2019). To supplement this glycolysis and ethanol 

fermentation must be accelerated to provide the necessary ATP. Production of ATP 



via anaerobic fermentation can follow two different paths, through lactate 

dehydrogenase (LDH) producing lactic acid or via pyruvate decarboxylase (PDC) 

resulting in acetaldehyde that is reduced to ethanol by alcohol dehydrogenase (ADH) 

(Zabalza et al., 2009). Both ADC and PDC are key to ethanol fermentation and their 

activity is used as indexes reflecting a plants tolerance to waterlogging. To sustain 

the plants under hypoxic conditions the expression levels of both ADH and PDC 

along with related enzymes must be regulated accordingly. Through a genome-wide 

analysis of waterlogged barley, it was shown that the expression levels of both ADH 

and LDH was induced and expression levels for them were higher in the 

waterlogging-susceptible Yerong species in comparison to a waterlogging-resistant 

variety Deder2 (Borrego-Benjumea et al., 2020). However, the study by Borrego-

Benjumea et al., (2020) surprisingly showed that in barley varieties PDC expression, 

which is involved with the first steps of fermentation, was mostly downregulated. 

These alternative methods of energy production do assist the plant to survive longer 

periods under waterlogged conditions (Zabalza et al., 2009). Yet if the hypoxic 

environment persists for extended periods of time the formation of toxic substances 

such as lactic acid, alcohols and aldehydes produced by these modes of energy 

production can lead to a reduction in plant health and eventually cause death (Pan et 

al., 2021). 

 

 

Impact of ethylene 

The phytohormone ethylene (ET) has been associated with the regulation of plant 

growth and senescence relative to its concentration and timing within plant species 

(Iqbal et al., 2017). Within plants, ET is synthesized from 1-aminocyclopropane-1-

carboxylic acid (ACC) (Houben and Van de Poel, 2019). The accumulation of ET is 

an important mechanism in waterlogging resistance in plants (Hartman et al., 2021), 

however, its production is an oxygen dependant reaction, where ACC is converted to 

ET by ACC oxidase (ACO) (Houben and Van de Poel, 2019). This requirement for 

oxygen is overcome by the continuous transport of ACC from the hypoxic root 

system to the aerobic region of the plant where the oxidation reaction can be 

achieved (Pan et al., 2021). It has been previously shown that ET induces the 

formation of aerenchyma (Gunawardena et al., 2001) and that its inhibition can block 

the aerenchyma development under hypoxic conditions within various plant species 

(Jackson et al., 1985; Konings, 1982). To understand if this connection existed within 

wheat, Yamauchi et al., (2014b) researched the effects of wheat seedling pre-treated 

with an ethylene precursor (ACC) under aerated soil conditions or stagnant (to 

simulate waterlogged soil) conditions. Results from pre-treatment of seedlings with 

ACC under stagnant conditions showed greater positive results in comparison to the 

non-pre-treated seedlings (Yamauchi et al., 2014b). These experiments also showed 

that the percentage of aerenchyma development in first seminal roots was also 

higher in pre-treated samples grown in stagnant conditions (Yamauchi et al., 2014b). 

ET aids in the development of the lysogenic aerenchyma by stimulating programmed 

cell death (Sasidharan and Voesenek, 2015).   



Simultaneously the accumulation of ethylene also contributes to the development of 

adventitious roots within cereals. Research investigating the effects of inhibition on 

ET biosynthesis showed that this can impede the development of adventitious roots 

(Vidoz et al., 2010). The role of ethylene has also been connected with the 

development of adventitious roots in rice and their ability to withstand submerged 

conditions (Hattori et al., 2009; Van Der Straeten et al., 2001). Although the 

connection between ET and adventitious root development has been deeply 

researched in connection to surviving submergence, and connections with specific 

transcription factors and related genes have been demonstrated, most of this work 

has been done in other species such as rice (Fukao et al., 2019)rather than in wheat 

or barley. However, Yamauchi et al., (2014a) analysed the effects of pre-treatment to 

ACC could have on wheat seedling grown initially in aerated soil, then transferred to 

stagnant i.e. hypoxic soil conditions. Their work showed that wheat seedlings when 

pre-treated with ACC would develop adventitious roots sooner in comparison to 

controls, these pre-treated seedling adventitious roots would be larger in diameter in 

comparison to non-ACC pre-treated seedlings. 

I would like to also briefly mention a potential connection between ethylene and the 

amelioration of damage caused by reactive oxygen species (ROS). The control of 

ROS via ethylene is associated with increased NADPH oxidase levels and 

activity(Desikan et al., 2006). The connection between ethylene-regulated oxidative 

stress tolerance associated with abiotic stresses such as drought, heat or salt stress 

has been mentioned in the literature (Peng et al., 2014; Wu et al., 2008). However, 

no functional link has yet been established between reduction of ROS damage and 

ethylene during waterlogged or flooding stress, or specifically within cereal crops. It 

is possible to assume that ethylene could also contribute to ROS damage 

amelioration under hypoxic conditions, but further research is necessary. 

 

 

ROS signalling and scavenging 

Production of reactive oxygen species (ROS) is a normal occurrence within plant 

metabolism, however, reduction in O2 availability leads to increased intracellular 

ROS levels (Bailey-Serres and Chang, 2005; Pucciariello et al., 2012). The 

production of superoxide radicals (·O2), hydroxyl radicals (·OH),  and hydrogen 

peroxide (H2O2) leads to lipid peroxidation and delipidation of leaf membranes and 

oxidative damage to proteins, DNA, cell membranes and organelles due to their 

oxidizing activity (Sharma et al., 2012). Although the presence of ROS can lead to 

severe damage to plant cells, they are still considered important signalling molecules 

for plants under stress. For example, plant NADPH oxidase is a significant enzyme 

that is associated with the production of ROS and plays a role in ROS-mediated 

signal transduction. When looking at the expression of ALCOHOL 

DEHYDROGENASE 1 (ADH1), a gene associated with ethanol fermentation in 

Arabidopsis under waterlogging stress, it has been observed that the increase in 

ADH1 expression is caused by the expression of the NADPH oxidase related gene 

AtRbohD, one of the respiratory burst oxidase homologues (Rbohs), via H2O2 



signalling (Sun et al., 2018). Similarly, the production of this signalling molecule is 

connected to ET induced aerenchyma formation by modulating the transcription of 

hypoxia-induced genes such as ETHYLENE-RESPONSIVE FACTORS73 

(ERF73/HRE1) in Arabidopsis (Yang, 2014). Unfortunately, these connections within 

wheat or barley have not fully been annotated or understood, however, through 

phylogeny analysis, it has been shown that the TaNOX2 in wheat or the HvFRO1 in 

barley are similar to AtRbohD (Hu et al., 2018) and therefore could be the key to 

these responses in these cereals.  

 

To counteract the increased ROS production due to waterlogging stress plants rely 

on antioxidant enzymes to maintain ROS balance, reducing oxidative damage 

(Hasanuzzaman et al., 2020). Genome analysis of barley under waterlogged stress 

has revealed the activity of numerous enzymes, such as CATALASE (CAT), 

ASCORBATE PEROXIDASE (APX) and SUPEROXIDE DISMUTASE (SOD) to 

mitigate damage (Borrego-Benjumea et al., 2020). However, based on various 

insights on the activity of antioxidants under waterlogging stress, it is difficult to 

identify a general correlation between stress tolerance and antioxidant activity, but 

instead, there may be a more genotype-dependent correlation. For example, 

Yordanova et al., (2004) reported that soil flooding led to varying levels of activity of 

antioxidant enzymes in barley leaves, showing that 72 – 120 h after waterlogging led 

to the significant decrease in the activity of SOD, meanwhile the activity of POD, 

CAT and APX significantly increased. The changes in POD activity over time was 

also observed by Borrego-Benjumea et al., (2020), with the Deder2 barley, where 

three POD up-regulated genes identified in their study showed increased expression 

at 72 h (2.56, 2.00 and 2.21 logFC) but expression decreased at 120 h (2.15, 1.48 

and 1.47 logFC). It has also been shown by Luan et al., (2018)  that this antioxidant 

response is not limited to waterlogging tolerant crops, by inducing both susceptible 

and tolerant genotypes of barley experiments showed that SOD, POD and Cat 

activities were increased in both genotypes. 

Another enzyme that is believed to aid with reducing oxidative damage is 

GLUTATHIONE-S-TRANSFERASE (GST). GSTs are a group of multi-gene 

isoenzymes involved with cellular detoxification from both xenobiotic and endobiotic 

compounds. They catalyse the conjugation of glutathione (GSH) to the xenobiotic 

and/or endobiotic compound creating less toxic hydrophilic products that can be 

metabolised, stored within vacuoles, and/or removed from the organism. Genomic 

analysis has reported that several GST-encoding genes were significantly 

upregulated by waterlogging stress (Borrego-Benjumea et al., 2020). With regards to 

barley, research shows that GST expression was increased in multiple genotypes, 

but greater changes were observed within the more waterlogging tolerant genotypes, 

suggesting that a more efficient ROS detoxification occurs within them, however 

further research is required to understand the difference in function (Luan et al., 

2018). 

 

 



Conclusion 

As we can see the maintenance of plant growth and development under 

waterlogging stress involves a combination of different factors, such as changes to 

metabolic, hormonal, and structural traits to improve survivability. These methods of 

adaptation vary greatly amongst different crops and even different varieties of the 

same crop.  So far research on waterlogging tolerance has prioritised focusing on 

the morphological, physiological, biochemical, and metabolic gene signalling of 

plants, as outlined in this review. Based on current understanding, the most effective 

methods to enhance plant waterlogging tolerance would be to prevent waterlogging 

from occurring using improved cultivation management to reduce the level of 

damage crops experience under waterlogged soils, but there are also opportunities 

to use molecular biology, genetics, and genomics to identify key genes within plant 

species that regulate tolerance to this stress and once their functions have been 

verified, generate crops that carry the improved traits. 

Based on the research results for this review, there are various identified gaps within 

our understanding of wheat and barley waterlogging tolerance. Firstly, research so 

far has focused on the vegetative growth stages of plants in waterlogged soils (Pan 

et al., 2021), however, very little is available in regards to the molecular responses 

during seed germination or the late reproductive growth stages under waterlogging 

stress. Furthermore, although genes have been identified that regulate waterlogging 

and submergence tolerance via transcriptomics, proteomics and other methods, 

these have focused primarily on model plants such as Arabidopsis  (Lee et al., 

2011)or other major crops such as soybean  (Lin et al., 2019) or maize  (Yu et al., 

2015); the majority of these still require functional characterization. The same cannot 

be said regarding wheat or barley as only recently have researchers carried out 

proteomic studies of these plants under waterlogged soils. Therefore, further 

exploitation of genetic resources using isolated populations and natural populations 

should be utilized to further identify waterlogging tolerant genes. Due to the current 

predictions on how global warming will affect our ecosystem, major focus over the 

past few years has been on drought tolerance of crops and understanding the 

morphological and genetic adaptations contributed to drought tolerance. To illustrate 

this, at the time of writing performing a search on the NCBI PMC database with the 

terms “Drought tolerance in wheat and barley” reveal a total of 8405 hits while a 

search on “Waterlogging tolerance in wheat and barley” reveal 680 hits. Therefore, 

we can observe that there is still much left to learn about the effects this abiotic 

stress has on plant survival and the development of tolerance to it. However, this 

topic is slowly gaining more interest amongst the scientific community so we can 

hope that with time, we will grasp a better level of knowledge on this area in order to 

guarantee a stronger sense of food security, as our environment continues to 

change around us. 
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Figure 1. Comparison of adventitious root formation of wheat in control (A) and 28 d waterlogged (B) plants. Image taken 
from Nguyen et al., (2018) 



 

 

Figure 2. Waterlogged wheat lysigenous aerenchyma (indicated by arrow) formed within cortex of adventitious roots. 
Image taken after 14 days of waterlogging treatment. Figure taken from Malik et al., (2001) 

 

 

Figure 3. Simplified diagram demonstrating production of 2 ATP molecules from glycolysis combined with ethanol 
fermentation pathway utilising pyruvate from glycolysis. Image taken from Saika et al., (2006) 
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Abstract 

Plants display a variety of morphological and structural adaptation to stress survival. 

These adaptations are varied and differ between species, however, structural 

adaptations are often seen to be similar across various species. Waterlogged soils 

cause plants to face hypoxic stress due to the reduction in gas exchange 

surrounding the root system. This abiotic stress is of growing concern around 

temperate regions due to the increase in rainfall associated with climate change. A 

method in which plants adapt to waterlogged soil is via the development of 

adventitious roots. Adventitious roots are those that develop after prolonged 

waterlogging and are located around the hypocotyl or stem nodes of plants typically 

on the surface or directly below the soil surface and help to promote gaseous 

exchange and nutrient absorption. Under waterlogged stress plants begin to produce 

large amounts of the plant hormone ethylene, this hormone is associated with 

regulation of plant growth and senescence, simultaneously it is known that the 

hormone is connected to environmental stress adaptations. In this case the hormone 

is connected to adventitious root development. For this project we aim to test the 

development of adventitious roots on an ethylene insensitive Arabidopsis mutant 

against (ein2) against the wild type and a mutant with impaired ethylene 

biosynthesis. Simultaneously we aim to test an innovative protocol using dissolved 

starch to simulate the hypoxic conditions of waterlogged soils. We take into 

consideration any and all shortcomings such a protocol may have and aim to assess 

its viability and suggest further improvements for future research. 

Intro 

The human population is expected to grow to roughly 10 billion citizens by the year 

2050 (FAO, 2017), this high increase in population leads to growing concerns 

regarding food security and availability. In order to match food demands, global 

yields of cereal crops alone would be required to increase by 1.2-1.3% per 

annum(Fischer et al., 2014). However, these estimates do not take into account the 

impact of climate change, which when considered would raise the minimum increase 

per annum to 1.7%(Reynolds et al., 2016). Focus is currently being given to the 



effects water scarcity will have on food production and how heat stress leads to large 

scale decline in yields(Bita and Gerats, 2013; Fahad et al., 2017), however, the 

opposite of this biotic stress should still be considered. Global warming poses one 

significant paradox in that because of its high variability and the overall 

unpredictability of weather patterns, drought occurrences in one location are usually 

matched with a simultaneous increase in precipitation rates across other areas. 

Therefore, it is reasonable to expect increased occurrences of waterlogged soils and 

flooding as well as drought and water scarcity. Such an increase in waterlogged soils 

has already been observed globally over the past decade due to the increased 

intensity of rainfall and unpredictable weather patterns (Hirabayashi et al., 2013). 

Waterlogged soil affects crop yield due to the replacement of gas spaces 

surrounding plant roots with water (Sasidharan et al., 2017), which leads to 

disruption of oxygen exchange between plant tissues and its environment; 

generating a hypoxic environment (oxygen levels lower than 21% v/v in air). Hypoxic 

environments have been shown to significantly reduce yields of cereal crops – up to 

25% - and yield reduction shows correlations with the duration of waterlogging 

(Herzog et al., 2016). 

To survive under these conditions plants employ various mechanisms to ameliorate 

their circumstances, these can be either structural or metabolic adaptations. For this 

paper, we will be focusing on structural adaptations, specifically adventitious root 

development. The hypoxic conditions imposed on plants in waterlogged soils affect 

the diffusion rates of gasses e.g. oxygen (O2) and carbon dioxide (CO2) through their 

stems and root systems. A reduction in gaseous exchange leads to negative 

implications to plant metabolic function. Adventitious root (AR) development is 

considered a typical morphological response to prolonged waterlogging (Nishiuchi et 

al., 2012; Steffens and Rasmussen, 2016). These types of roots are produced from 

the hypocotyl or stem nodes of plants typically on the surface or directly below the 

soil surface and help to promote gaseous exchange and nutrient absorption 

(Rasmussen et al., 2017; Steffens and Rasmussen, 2016). The development of 

these roots is controlled by both the reduction in axial and lateral root development 

along with alterations in hormone biosynthesis located near the nodes where AR 

develop (Nguyen et al., 2018). 



Plant hormones (phytohormones) regulate a variety of plant metabolic functions, 

such as shoot and root growth, fruit development, senescence as well as playing role 

in the symbiosis between plants and microbes (Foo et al., 2019). As mentioned plant 

hormone biosynthesis plays a role in the development of adventitious roots, for this 

morphological adaptation auxin and ethylene play key roles. Ethylene is also 

associated with the regulation of plant growth and even plant senescence, however, 

the hormone is strongly associated with adapting the plant to environmental 

stress(Pan et al., 2021). The synthesis of ethylene is achieved by the oxygen 

dependant reaction where 1-aminocyclopropane-1-carboxylic acid (ACC) is 

converted to ethylene by ACC oxidase (ACO) (Houben and Van de Poel, 2019). The 

accumulation of ethylene is highly associated with plants response to waterlogging 

and plays a significant role in the development of adventitious roots in order to 

increase a plants survivability under a hypoxic environment (Hartman et al., 2021). 

The way in which ethylene helps the development of adventitious roots under 

waterlogged soils is associated with how it interacts with the phytohormone auxin 

(Rasmussen et al., 2017). Auxin is a well know plant hormone involved with the 

promotion of cell division leading to elongation in plant cells i.e. plant growth, and it is 

often produced within the tips of growing stems and roots. Auxin and ethylene form 

reciprocal interactions within root systems, whereby ethylene accumulation leads to 

an increase in auxin transport from plant shoots and/or enhances its biosynthesis in 

root caps through increasing the expression of tryptophan aminotransferase genes 

(involved in auxin biosynthesis); in retrospect, auxin is able to up-regulate ACC 

synthase gene expression forming an auto-enhancing cycle (He et al., 2011; 

Stepanova et al., 2007, 2005). However, this cycle can cause alteration in the 

basipetal auxin movement due to disturbances in the overall auxin gradient within 

the plant (Růžička et al., 2007; Vandenbussche et al., 2012). Under hypoxic 

conditions of waterlogged soils, the accumulation of ethylene inhibits the basipetal 

auxin movement (potentially associated with alterations to internal auxin gradient 

due to the increase in auxin production) causing the development of adventitious 

roots higher up in the plant hypocotyl (Rasmussen et al., 2017) 

The role of ethylene goes further than the stimulation of adventitious roots. Within a 

hypoxic environment, the accumulation of ethylene leads to a range of rapid 

ethylene-dependent signalling, for example within 1 hour of submergence a large 



accumulation of Ethylene Insensitive 3 (EIN3), a principal transcriptional regulator of 

ethylene signalling was noticed in Arabidopsis root tips (Hartman et al., 2021). This 

signalling pathway enables the activation of hypoxia tolerance genes believed to 

regulate prolonged hypoxia survival. These core genes regulate waterlogging 

survival processes of fermentation, oxidative damage repair, aerenchyma and 

adventitious root development (Pan et al., 2021). For example, in the development of 

aerenchyma in waterlogged wheat, there is evidence indicating that when seedlings 

were pre-treated with an ethylene precursor i.e. ACC, and grown in stagnant soil 

conditions (simulating hypoxic conditions) led to increased development of 

aerenchyma in roots in comparison to those that didn’t receive the pre-treatment  

(Yamauchi et al., 2014). The majority of research into hypoxic tolerance of plants has 

been targeted at submergence tolerance in Oryza sativa and Zea mays (Morrell and 

Greenway, 1989)and some work done on Arabidopsis thaliana and Rumex palustris 

(van Veen et al., 2013). 

Based on the knowledge we have on how ethylene contributes to waterlogged soil 

survivability; it would be safe to assume that the removal of this plant hormone would 

reduce the rate at which they develop structural adaptations and reduce their 

survival rate. The development of adventitious roots is a simple to quantify 

adaptation and can be done within a short period of time using Arabidopsis. We aim 

to compare the development of such roots between ethylene insensitive (ein2) 

Arabidopsis mutants versus wild type Arabidopsis growing in either normoxic or 

hypoxic conditions. To simulate the hypoxia-induced by waterlogged soils, two main 

techniques can be utilized, the use of a hypoxic chamber (He et al., 2007)or more 

commonly the use of specialised growth media which is then flushed with nitrogen 

gas to deoxygenate the media (Yamauchi et al., 2014). Simultaneously for this 

project, we aim to test the efficacy of an alternative, low cost and easily accessible 

method in inducing hypoxia in plants through the use of the dissolved starch solution. 

Previous work on flooding tolerance in maize was done using this method of 

inducing hypoxia within potted plants (Mano et al., 2006), we are now aiming to see 

if such a method could show significant results within a plant cell culture. If this 

altered protocol proves successful, we assume that adventitious root development 

will be reduced within the ethylene insensitive plants in comparison to their wild type 

controls. 



Methods 

Seeds source and growth conditions 

For this experiment, Arabidopsis (Arabidopsis thaliana) wild type (Col-0) seeds, 

along with ein2 (CS66117) and R002 (CS8102) mutant seeds, were obtained from 

NASC (Nottingham Arabidopsis Stock Center). Unless otherwise stated, all plants 

were grown under 16-h/8-h day/night conditions at 22°C. 

Seeds to be used for plant cell culture were the first surface sterilized in 5% bleach 

for 5 min and then rinsed with distilled water 4 times. For the root growth 

assessment, between 5 and 8 seeds were sown on circular Petri dishes containing 

a 0.7% agar with 4.4g/L Murashige and Skoog basal medium powder (Sigma- 

Aldritch) then left to vernalize for 3 d at 4°C under. Afterwards, plates were left to 

grow for 4 d in dark conditions to promote etiolation. Plates were then returned to 16- 

h daylight conditions at 22°C for another 12 days. During this 12 day growth period, 

plants were separated between normal watering conditions and waterlogged 

conditions. Waterlogged conditions were induced by watering petri dishes with a 

0.2% dissolved starch solution to a point where a small film of water could be seen 

above agar. The number of adventitious roots was then counted and measured. 

Counting of adventitious roots was only done for roots grown above the root-shoot 

junction and was achieved by the use of a stereoscope and all images were taken 

using an Honor Pro 20 phone camera. 

Results 

Adventitious root development 

As stated in the methods roughly 5 to 10 seeds were sown in each petri dish with a 

total of three petri dishes used for each mutant and treatment type. Seeds were 

sown and watered under a flow hood to prevent contamination, however, once 

treatments began with 0.2% dissolved starch solution a large majority of petri dishes 



became contaminated. Due to the potential effects, this could cause on root growth, 

dishes with severe contamination were discarded, and unfortunately, due to time 

constraints, the second batch of samples was not possible to produce. Therefore, for 

the analysis of adventitious root growth and development, three Arabidopsis 

seedlings from each variant and treatment type were selected. Each plant was then 

viewed under a stereoscope and all adventitious roots grown along the hypocotyl 

and above the shoot/root junction were counted regardless of length, and images 

were taken using a mobile phone camera. The main assumption made for these 

experiments was that plants with hindered ethylene metabolism or detection within 

their signalling mechanisms would suffer some level of impairment in the 

development of adventitious roots under waterlogging stress. Here we aimed to test 

this hypothesis through an unorthodox method in instigating a hypoxic environment 

within a plant cell culture. After the specific growth period for the experiments, it was 

observed that both waterlogged and non-waterlogged plants did develop 

adventitious roots to some degree based on our selection criteria (Figure 1 & 2). 

Figure 1: Adventitious root count of waterlogged Arabidopsis plants. Collected 

data showed that Wild Type (A) Arabidopsis produced the highest amount of 

adventitious roots after waterlogging treatment (average of 3.3 roots). As expected, 



the R002 Arabidopsis mutant developed the least number of adventitious roots 

(average of 1.7 roots). The ethylene insensitive mutant ein2 fell directly between 

both Wild Type and R002 mutant in the total number of developed roots (average of 

2.3 roots). 

The ein2 mutant Arabidopsis plants (CS66117) are considered to be ethylene 

insensitive and were therefore chosen as the main mutant to test our hypothesis. 

However, based on the observed data (Figure 1 & 2) the mutant demonstrated a 

small difference in adventitious root growth between the waterlogged and non- 

waterlogged plants (Table 1). Waterlogged treatment of this mutant did however 

show other signs of growth impairment. For example, during growth stage 1.04 

identified by the 4 rosetta leaves, a slight yellow colouration could be observed from 

the first two leaves which were not observed in the non-waterlogged plant. This 

colouration difference was considered as an indicator of internal cell damage from 

the hypoxic environment; possible oxidative damage (Figure 3). 

The wild type Arabidopsis plants in contrast to the mutants, showed an increase in 

adventitious root development when grown under waterlogged conditions based on 

the data observed (Figure 1). However, similar to the mutant Arabidopsis plants the 

difference in the amount of adventitious root development between treated and 

untreated plants were low (Table 1). Yellow colouration of leaves was also observed 

for the waterlogged wild type Arabidopsis plants. Although not a focused factor for 

this experiment, it is interesting to note that the seminal and lateral root development 

below the shoot/root junction was of higher quantity to the mutant plants. 



Figure 2: Adventitious root count of untreated Arabidopsis plants. Collected 

data showed that the ein2 Arabidopsis mutant developed the highest amount of 

adventitious roots (average of 3 roots), however the difference between ein2 and 

the Wild Type (average of 2.3 roots) or R002 (average of 2.7 roots) mutant was low. 

The R002 Arabidopsis mutant was selected as a positive control for this experiment 

due to it having no detectable alcohol dehydrogenase; a major enzyme involved in 

ethylene biosynthesis (Zabalza et al., 2009). It was assumed that this mutant would 

serve as a suitable positive control to compare with the ein2 mutant. It was assumed 

that this mutant would have the lowest amount of adventitious root development 

under waterlogged treatment, which our results confirmed (Table 1). Similar to the 

ein2 mutant, these plants also demonstrated yellow colouration in the leaves under 

waterlogged treatment (Figure 3) 



Table 1: Table showing number of adventitious roots developed for each Arabidopsis 

variant along with the difference of each sample from Wild Type. 

Overview of starch protocol 

Based on these results, we can confirm that there was a difference in the 

development of adventitious roots from the Arabidopsis plants when watered with a 

0.2% starch solution. However, due to the small differences between the number of 

roots formed between treated and untreated plants, several questions are generated 

on whether this method of inducing hypoxia was the true reason for the difference or 

if the difference is significant at all (see Discussion). As mentioned above this 

protocol did lead to numerous amounts of sample loss due to bacterial 

contamination. Further testing and improvement of this protocol would be necessary 

to correctly determine its utility with plant cell cultures. 



Figure 3: Image demonstrating yellow colouration of Arabidopsis leaves due to 

waterlogged treatment (A) and an example of bacterial contamination (B). 

Discussion 

The objective of this project was to both identify if ethylene insensitive mutants of 

Arabidopsis would show inferior adventitious root development under waterlogged 

conditions in comparison to its wild type counterpart, and to see if such a result could 

be observed using a simple low-cost protocol. In retrospect, we have observed that 

under waterlogged conditions ethylene insensitive mutants do on average produce 

less adventitious roots (Table 1). Both mutants demonstrated lower counts of 

adventitious roots in comparison to WT. But the ein2 mutant still produced more 

adventitious roots than the R002 mutants, this is attributed to the fact that ein2 

mutants are ethylene insensitive, meaning that the signalling pathways regarding 

ethylene are in a sense disrupted, yet they are still able to have some level of 

ethylene within their cells, unlike the R002 mutants which possess no alcohol 

dehydrogenase and therefore are unable to produce ethylene. However, due to 

various implications, time constraints and the aim to keep costs low, it is hard to 

define if these results can be considered significantly valuable. The reason for this 

assumption can be attributed to a variety of factors. The most obvious one would be 

regarding how a large amount, of experimental samples, was lost due to the bacteria 



contamination issue (Figure 3). Although work was done in sterile conditions it was 

unfortunate to lose a large majority of our samples, and regrettably, the time 

constraints for this project did not allow for a second run in order to collect further 

experimental data. 

Due to the innovative nature of this experiment, it lacked a key factor normally 

attributed to more conventional methods in testing the effect of hypoxia in plants, the 

main factor in question is the confirmation that the treatment truly induced a hypoxic 

environment. Normally this would be confirmed by the results. However, due to the 

small differences observed between treated and untreated plants (Table 1), we 

cannot guarantee if the protocol was successful in inducing hypoxia. By 

conventional methods, we refer to the precise control of the stagnant deoxygenated 

environment which is normally achieved either via mechanical regulation of gaseous 

exchange rates (He et al., 2007; Kölling et al., 2015) within the growth environment, 

through the regulation of chemicals in a hydroponic system (Carbonare et al., 2019), 

or finally through the removal of oxygen from the growth media entirely via the use of 

nitrogen gas (Yamauchi et al., 2014) to induce hypoxia. 

As mentioned in the introduction, to test the effect of hypoxia on plant development, 

researchers either utilize complex hypoxic chambers which can precisely regulate 

and maintain the hypoxic condition throughout the experimental process or utilize a 

unique media recipe to enhance growth and then flush this set media with a 

chemical to reduce the oxygen exchange rate. An example of the hypoxic chamber 

can be seen with the Low Pressure Plant Growth System (LPPG) (He et al., 2007), a 

fully automated system capable of regulating the gas concentrations, moisture 

content, and pressure in growth chambers. In this method, every detail is precisely 

recorded and maintained so that the room for experimental error significantly 

decreases and you are able to accurately determine the plant response to specific 

environmental factors. Such high levels of precision were not possible with our 

protocol as maintaining such a system would be of too high a cost for this project. 

Improvements 

As with any innovative work, once it is complete regardless of the result 

considerations regarding improvements are made so that if a repeat was to occur the 



many shortcomings could be avoided and the quality of the experiment can be 

improved. For this experimental protocol, a series of considerations have been 

taken. For instance, after the collection of data, it was considered whether the results 

would have been of better value if the plants had a longer growth period before being 

subjected to the dissolved starch solution. During the waterlogging treatment 

process of the seedlings, constant care had to be taken so that the leaf tissue was 

not stuck to the agar media in order to prevent any interference with shoot 

development as it would be in this surrounding area where we would identify the 

development of adventitious roots. Assuming our method of inducing hypoxia truly 

functions, having older plants would have provided greater ease in both the 

identification and counting of adventitious roots, therefore, reducing further the risk of 

human error in counting the roots as there would have been a greater distinction 

between the root types. It is suggested that a possible increase of a minimum of 20 

days growth, therefore reaching growth stage 1.08 (Boyes et al., 2001), before 

initiating treatment would have allowed significant time for the plant to both adjust 

well enough to the agar media, as well as allowed for better selection of seedlings to 

use for treatment and finally provided significant time for normal root development to 

occur. 

Following on from this, we came to understand that there was little information on 

how these Arabidopsis mutants would develop within the agar media. Perhaps it 

would have been beneficial to grow each seed variant previously simply under 

normal conditions over the desired period within the agar media and take note of the 

precise time taken for the plants to reach specific growth stages(Boyes et al., 2001). 

With this background information, we could then grow a second batch and induce 

that to the waterlogging treatment with a better understanding of the ideal time and 

growth stage to induce the treatments and collect better results. Although initially 

considered, for this experiment it was decided against using any additives to the 

agar media which would have assisted in root development i.e. sucrose addition 

(MacGregor et al., 2008). Perhaps including root development enhancers in the 

media would facilitate the development of the root system during the early growth 

stages of the plant, then when it has reached the desired growth stage, plants can 

be transplanted into neutral media without any sucrose and experience the 

waterlogging treatment. Doing this would provide us with better-developed plants, a 



more defines root/shoot distinction and potentially the opportunity to test another 

consideration that being using a range of dissolved starch solutions to see the 

differences in effect on Arabidopsis. As mentioned the inspiration for using dissolved 

starch originated from a different work using such a method on maize to identify QTL 

controlling flood tolerance (Mano et al., 2006), in which they tested a range of 

different dissolved starch concentrations. For our work, we decided to use the 0.2% 

concentration as it caused a hypoxic effect on the maize experiment but was not too 

severe to cause large damage to plants and since our work was to test this method 

on seedlings we did not wish to overstress them during early development. As stated 

an occurring issue faced was that during the watering process of the plates, it was 

common for the plant leaves to fall and stick to the agar after being sprayed. The 

necessity to move the plant with sterile tweezers to return them upright involved 

quite delicate handling to not disturb the placement of the plant or roots themselves 

since the agar was very delicate. Perhaps utilizing parafilm to prevent contact 

between media and leaf tissue would be an ideal solution (MacGregor et al., 2008) 

Outside of these practical adjustments to improve result quality, we can also 

consider the inclusion of other factors to try and further validate the results give by 

this method and further pursue the understanding of how ethylene contributes to the 

adventitious root response. A major way in doing so would be to also include 

samples with some form of auxin inhibition or even use mutants with genes removed 

associated with both auxin and ethylene biosynthesis or signalling. As mentioned 

before both auxin and ethylene form a feedback loop during hypoxic stress that 

triggers the development of adventitious roots (He et al., 2011; Stepanova et al., 

2007, 2005). By testing samples with inhibited auxin signalling or biosynthesis we 

can gain further knowledge on the connections between these hormones and stress 

responses. Simultaneously in order to get further validation of this method, it would 

be advised to also run a few sample plates flushed with nitrogen gas beforehand to 

create a stagnant condition. By running these samples alongside the dissolved 

starch waterlogged plates, we can compare the development of plants under this 

innovative method against a more established method. We may also consider 

combining both methods and see what results we can obtain from the combination. 

Conclusion 



Overall, our primary goal was to gain further insight into the importance of ethylene 

to waterlogging tolerance. Although our data does indicate a reduction in the amount 

of developed adventitious roots and therefore would suggest the importance of 

ethylene in this phenomenon, we believe further testing is necessary to further 

validate our results. The importance of ethylene in the survival of waterlogged soils 

and the genetic connections to these hormones biosynthesis has been of great focus 

in terms of understanding submerged tolerance in rice with the remaining focus 

being on maize, Arabidopsis or soybean. However, in regards to the genetic data 

available, functional characterization and clear identification of signalling pathways 

still require further study. Our global environment is forever becoming harder to 

predict, and this poses a great risk to future food security. Our goal was to simply 

identify if ethylene plays a role or not in waterlogging tolerance if further data 

confirms its importance more than the next steps into understanding how to improve 

our food sources must be taken. Further steps can be to identify levels of gene 

expression relating to ethylene biosynthesis in plants when grown under waterlogged 

conditions. Normally this would be done using model plants such as Arabidopsis, but 

perhaps this work should be pursued using plant species of more significance in the 

human diet, e.g. wheat, maize and soy. If key genes can be identified and 

characterized perhaps progressing into developing new mutants with improved 

genetic tolerance to waterlogging would provide a new gateway into food security. 

Interestingly, this field of research i.e. waterlogging tolerance has prioritised the 

vegetative growth stages of plants in waterlogged soils, yet, low amount of research 

has been done regarding the effects waterlogging has on germination, seedling 

stages or late reproductive stages. Therefore, there is much left to comprehend in 

terms of tolerance to this abiotic stress, especially when focusing on crops that do 

not grow naturally in submerged fields as is the case for rice. 

Regrettably, the work done for this project did not yield results that we believe 

provides significant advances in this field, however, it has provided a good 

opportunity to explore this area of science associated with waterlogged tolerance 

and provided many ideas into ways of further researching the importance of plant 

hormones in plant survival. 
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