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ABSTRACT 

A primary motivation for employing distributed simulation is to enable the execution 

of large-scale simulation workloads that cannot be handled by the resources of a 

single stand-alone computing node. To make execution possible, the workload is 

distributed among multiple computing nodes connected to one another via a 

communication network. The execution of a distributed simulation involves 

alternating phases of computation and communication to coordinate the co-operating 

nodes and ensure correctness of the resulting simulation outputs. Reliably estimating 

the execution performance of a distributed simulation can be difficult due to non-

deterministic execution paths involved in alternating computation and 

communication operations. However, performance estimates are useful as a guide for 

the simulation time that can be expected when using a given set of computing 

resources. Performance estimates can support decisions to commit time and 

resources to running distributed simulations, especially where significant amounts of 

funds or computing resources are necessary. Various performance estimation 

approaches are employed in the distributed computing literature, including the 

influential Bulk Synchronous Parallel (BSP) and LogP models. Different approaches 

make various assumptions that render them more suitable for some applications than 

for others. Actual performance depends on characteristics inherent to each distributed 

simulation application. An important aspect of these individual characteristics is the 

dynamic relationship between the communication and computation phases of the 

distributed simulation application. This work develops a framework for estimating 

the performance of distributed simulation applications, focusing mainly on aspects 

relevant to the dynamic relationship between communication and computation during 

distributed simulation execution. The framework proposes a meta-simulation 

approach based on the Multi-Agent Simulation (MAS) paradigm. Using the approach 

proposed by the framework, meta-simulations can be developed to investigate the 

performance of specific distributed simulation applications. The proposed approach 

enables the ability to compare various what-if scenarios. This ability is useful for 



comparing the effects of various parameters and strategies such as the number of 

computing nodes, the communication strategy, and the workload-distribution 

strategy. The proposed meta-simulation approach can also aid a search for optimal 

parameters and strategies for specific distributed simulation applications. The 

framework is demonstrated by implementing a meta-simulation which is based on 

case studies from the Urban Simulation domain. 
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1 INTRODUCTION 

1.1 Motivation 

Some Urban Simulations can grow in scale to the point where they cannot be 

executed efficiently using the resources (e.g. memory, CPU, disk space) of a single 

stand-alone computer (Zehe et al., 2015). One approach to managing such large-

scale simulations is to execute them on a distributed computer system composed of 

two or more computing nodes connected to one another via a communication 

network. Using the distributed approach, a large-scale simulation workload is 

partitioned into smaller workloads which are assigned to various computing nodes 

and executed in coordination. In order for the distributed simulation to produce 

correct results, it is important for the participating computing nodes to cooperate with 

one another by communicating during simulation execution. In this manner, a 

distributed simulation involves alternating computation and communication 

operations. 

Communication is used in the distributed simulation to ensure data integrity by 

supplying each computing node with the data it requires from other nodes to process 

simulation events during distributed execution. As the concurrent execution paths of 

the distributed nodes proceed in a non-deterministic order, it is also essential for 

communication to deliver timing information that can be used to synchronize the 

nodes and ensure that distributed simulation events are processed in the correct 

causal order. Consequently, synchronization regulates the pace at which separate 

parts of the distributed simulation advance with respect to one another. 

Communication between computing nodes involves sending and receiving data over 

their interconnecting network, which introduces an additional performance 

bottleneck that is not normally present in stand-alone simulations. The extent to 

which the added communication overheads can impact distributed simulation 

performance depends on factors such as the frequency of communication between 

the distributed computing nodes, the size of data that needs to be exchanged and the 

latency and bandwidth of the interconnecting network.  



The work in this thesis focuses on developing a framework for evaluating the 

execution performance of distributed simulations, taking into account the dynamic 

relationship between non-deterministic communication and computation operations 

necessary to produce correct outputs. 

The case studies that are employed to demonstrate the framework proposed in this 

thesis are selected from the Urban Simulation domain. Cities are large complex 

systems where simulation studies are needed to support important decision making. 

This is evident in the range of tools available for conducting simulation studies on 

various urban systems including buildings and transportation. The need to conduct 

Urban Simulations is given urgency by the fast-growing world urban population. The 

United Nations Department of Economic and Social Affairs (UN DESA) reports that 

the proportion of the world’s population residing in urban areas rose from 30% in 

1950 to 54% in 2014. The UN DESA further projects that the proportion of the 

world’s urban population will exceed 66% by 2050. These figures represent a 

progression from 746 million urban dwellers in 1950 to 3.9 billion in 2014 and 6.3 

billion in 2050. The UN DESA also reports that while about half of urban dwellers in 

2014 lived in cities with a population less than 500,000, there were 28 highly 

populated mega-cities in 2014, each with a population in excess of 10 million people. 

These mega-cities accounted for one-eighth of the global urban population in 2014 

(United Nations, 2014). This rapid growth in the urban population creates a 

significant need for support tools to assist decision-makers in making the right 

choices that will enable urban areas to accommodate population growth in a 

sustainable manner as urban demand continues to grow for energy, housing, 

transportation and other resources and services (Jain et al., 2016). 

Cities are composed of subsystems such as transportation and housing which 

encompass concerns that can logically be separated, but which also have influential 

interactions with one another. As it is difficult to capture all urban subsystems in a 

single model, Urban Simulation approaches normally focus on modelling specific 

urban subsystems rather than attempting to build a unified urban model that 

encompasses all subsystems. This approach has the advantage of focusing on a single 

problem so that the required domain expertise can be brought to bear on the specific 

urban subsystem being studied in order to produce a sufficiently accurate model for 

the limited set of concerns covered by that subsystem. However, in cases where the 



simulation study requires interaction between one or more urban subsystems, it 

becomes necessary for the model to capture relationships between the concerns 

covered by all subsystems relevant to the study. A convenient solution to this case is 

to employ distributed simulation to unify existing models that focus on separate 

urban subsystems. This has the advantage of re-using established domain-specific 

simulation models developed by domain experts to prevent the unnecessary 

duplication of efforts which may require a significant investment of time. The 

heterogeneous simulations need be coordinated together in a single distributed 

simulation execution such that they interact meaningfully to produce correct and 

reproducible results. Enabling such interoperability between heterogeneous 

simulations requires careful consideration of aspects such as different simulation 

paradigms and implementation tools, the consistency of measurement units between 

simulations, and compatibility of modelling assumptions. 

The simulation approach employed can have a significant impact on simulation size. 

On one hand, micro-level simulations try to replicate the behaviour of low-level 

entities in the system being studied. On the other hand, macro-level simulations 

focus on directly reproducing high-level patterns that may arise as a result of 

interactions between low-level entities. Simulations that model micro-level 

interactions in particular tend to grow large when considering the urban scale. The 

number of low-level entities and interactions tends to be much larger than the 

corresponding number of high-level entities and interactions. This generally results 

in a greater need for computing resources where micro-level simulations are 

involved. Therefore, using the macro-level simulation approach is a sensible choice 

in cases where it is applicable because complexity is reduced, and fewer computing 

resources are required. However, some cases are better suited to the micro-level 

simulation approach. This includes cases where it is difficult to directly reproduce 

high-level behaviours with sufficient accuracy. For example, emergent phenomena 

occur in Agent-Based Simulations in scenarios where micro-level interactions can 

lead to macro-level patterns that would be difficult to program explicitly. 

Simulation approaches that result in large simulation size are essential in some cases 

but can place a large demand on computing resources. This presents the challenge of 

scaling up computing resources to support a single large homogeneous simulation 

that may not be possible to execute on a stand-alone computing node. A suitable 



example of  this case is the CitySim (Robinson 2012) tool for Building Energy 

Simulation (BES). When provided with a large enough model configuration, its 

execution requirements can exceed the memory capacity of a single computing node 

with reasonable memory resources. CitySim is designed to run physics-based 

Building Energy Simulations on a cluster of buildings represented by a 3D model. It 

calculates micro-level interactions between building surfaces and the environment 

during execution. Simulations at the neighbourhood scale consider only a few 

hundred buildings and can be executed on a single computing node within reasonable 

time. However, simulations at the urban scale comprising tens of thousands of 

buildings are more difficult to manage on a single node. 

Taylor (2019) identifies three main modes for the use of distributed simulation: 

• Scalability (Mode A): In this mode, a single homogeneous simulation model 

is partitioned into sub-models and distributed over multiple computing nodes, 

offering the prospect of speedup due to parallel execution. For large-scale 

models that cannot be managed within the resources of a single computing 

node, this mode also makes it possible for the simulation to be executed in the 

first place. For example, Collier, Ozik and Macal (2015) develop a distributed 

simulation, using multiple computing nodes to execute a large-scale disease 

transmission model which tracks the movements and interactions of 2.9 

million individuals in a large city. 

 

• Interoperability (Mode B): For this mode, multiple heterogeneous simulation 

models which would normally be executed separately are linked together to 

enable communication and co-ordinated as a single simulation execution. 

This mode also facilitates the re-use of existing simulation models. For 

example, Anagnostou, Nouman and Taylor (2013) develop a distributed 

simulation for Emergency Medical Services which links an Ambulance 

service model with an Accident & Emergency service model. 

 

• Batch Runs (Mode C): This mode refers to the case where a large number of 

separate simulation runs is needed to obtain a required level of confidence in 

the results of a simulation experiment (Law and Kelton, 1984). The 

simulation runs can be performed in parallel to obtain the desired results. As 



the simulation runs in this case are independent of one another, this is 

considered a pleasingly parallel problem and communication involved is 

minimal. 

 

The framework proposed in this thesis considers two approaches to using the 

distributed simulation approach: to tackle the scalability concern for large 

homogeneous Urban Simulations, and to tackle the interoperability concern for 

heterogeneous Urban Simulations. This scope is reasonable because both approaches 

are useful in the urban context. Urban simulations can grow exceptionally large and 

may also need to be coupled with simulations of other urban subsystems. However, 

the scope does not cover the third concern of batch runs as communication is 

minimal or non-existent in this case.  

These issues of scalability and interoperability are important matters in the wider 

literature, in which several approaches have been proposed for orchestrating 

distributed simulations to address these concerns. A discussion of approaches to 

distributed simulation is presented in Chapter 2. Among these, the IEEE High Level 

Architecture (HLA) (IEEE, 2010a) is one approach that is considered a mature 

standard (Strassburger, Schulze and Fujimoto, 2008). The experimental work 

conducted on distributed Urban Simulation in Chapter 5 is based on the HLA 

standard, as it includes features that support dealing with interoperability as well as 

scalability in distributed simulations. Chapter 3 outlines a more detailed rationale for 

selecting this approach. 

The research work carried out in this thesis has been performed within the context of 

the Leverhulme Sustaining Urban Habitats (SUH) project. The SUH project is an 

interdisciplinary research effort to understand and evaluate urban sustainability in 

order to inform policies for sustainable urban growth. To achieve its goals, one of the 

methods used by the SUH project is to utilize various Urban Simulation applications 

to investigate different what-if policy scenarios and estimate the long-term effects on 

urban sustainability. Following this approach, the project has a need to run Urban 

Simulations on real life case studies, some of which can grow large in scale to the 

point where the resources required to execute the simulation exceed the capacity of a 

single computer. The SUH project is composed of six themes. Three reflect various 



aspects of urban sustainability – the Environmental, Economic, and Social themes. 

Two include the expertise needed to conduct modelling and simulation efforts – the 

Measurement and Data, and the Modelling and Optimisation themes. The sixth 

theme, Policy and Governance, investigates policy issues related to urban 

sustainability. The SUH project aims to develop methodology that is general enough 

for broad application to urban areas other than its two case study cities: Nottingham 

and Shanghai. 

 

1.2 Aim and Objectives 

The work in this thesis focuses on developing a framework for evaluating the 

execution performance of distributed simulations, taking into account the dynamic 

relationship between interleaved non-deterministic communication and computation 

operations necessary to produce correct simulation outputs. Following this approach, 

the framework will consider various communication related parameters and 

alternative communication strategies that can have significant impact on distributed 

simulation performance. The proposed framework will enable selection of optimal 

communication related parameters and strategies for the efficient execution of Urban 

Simulations that require distribution over multiple computing nodes. The 

development of the framework, which is the primary contribution of this thesis, will 

be informed by distributed simulation experiments that will be carried out using 

appropriate case studies from the Urban Simulation domain. A concrete meta-

simulation will also be implemented to demonstrate the application of the completed 

framework. 

 

The aim will be achieved by carrying out the following objectives: 

• Literature Review:  

o Identify performance bottlenecks from research literature relevant to 

the execution of large-scale distributed simulations. 

o Isolate significant bottlenecks and investigate how they exert a 

concerted influence on distributed execution performance. 



o Identify relevant parameters and alternative strategies for managing 

communication during distributed simulation execution. 

o Identify existing distributed performance models.  

 

• Homogeneous Experimentation: 

o Case Study Selection:  

Identify homogeneous Urban Simulation that satisfies the criteria: 

▪ At whole city level, the scalability problem is encountered. 

The simulation becomes too large to execute using a stand-

alone computing node. 

▪ The simulation workload can be distributed. 

▪ The simulation can potentially interoperate meaningfully with 

other Urban Simulation models for a heterogeneous case 

study. 

 

o Experimentation:  

▪ Develop a homogeneous distributed simulation based on the 

selected Urban Simulation, using the HLA to address the 

scalability concern. 

▪ Conduct experiments to obtain performance measurements, 

varying parameters and using alternative communication 

strategies. 

 

• Heterogeneous Experimentation: 

o Case Study Selection:  

Identify a second Urban Simulation that satisfies the criteria: 

▪ The simulation can interoperate meaningfully with the 

simulation selected for Case Study One. 

▪ The simulation workload can be distributed. 

▪ The simulation will introduce communication patterns that 

differ from those investigated in Case Study One. 

 

 



o Experimentation:  

▪ Develop a heterogeneous distributed simulation based on the 

two selected Urban Simulations, using the HLA to address the 

interoperability issue. 

▪ Conduct experiments to obtain performance measurements, 

varying parameters and using alternative communication 

strategies. 

 

• Framework Development: 

o Analysis of Experimental Results:  

▪ Compare the effects that various communication strategies 

have on performance.  

▪ For communication strategies that can incur data loss, 

investigate the effect on simulation output accuracy. 

 

o Conceptual Model: 

▪  Identify the main components required to model the 

distributed case study experiments. 

▪ Isolate the important interactions between the identified 

components. 

▪ Identify the significant parameters that influence relationships 

between the identified components. 

▪ Incorporate the capability to consider alternative 

communication strategies.  

 

o Demonstration: 

▪ Implement a meta-simulation based on the developed 

framework. 

▪ Use the implemented simulation to reproduce the performance 

of the experimental case studies. 

  



1.3 Contribution 

The primary contribution of the work in this thesis is the development of a 

framework for estimating the execution performance of distributed simulation 

applications. The framework is a contribution to the research field of Parallel and 

Distributed Simulation. The developed framework proposes a meta-simulation 

approach which enables performance evaluation for distributed simulation 

applications in which the dynamic relationship between communication and 

computation can significantly influence execution performance. The framework uses 

the Multi-Agent Simulation (MAS) paradigm to set out the main components of a 

distributed simulation and define how they interact with one another during 

execution. Using the framework, custom meta-simulations can be created for 

evaluating specific distributed simulation applications. The approach proposed by the 

framework also enables the comparison of various what-if scenarios, exploring 

different communication strategies. This capability can aid a search for optimal 

strategies for the distributed simulation application under investigation. A 

demonstration of the framework has been provided by the implementation of a meta-

simulation based on real world case studies selected from the Urban Simulation 

domain.  

1.4 Publications 

Part of the research work presented in this thesis has been published at the following 

conference: 

Amponsah, K., Zakhary, S., Robinson, D., Nathanail, P., Logan, B., & Siebers, P. O. 

(2019). ‘Distributed building energy simulation with the HLA’, Proceedings of the 

2019 Summer Simulation Conference, pp. 1-12.  



1.5 Structure of the Thesis 

Chapter 1 introduces the subject matter of this thesis and explains the motivation and 

context for performing the research work. Set against this background, the research 

aim is explained, and details are provided for the relevant objectives required to 

achieve the aim. 

 

Chapter 2 provides a review of the literature on previous research relevant to the 

work conducted in this thesis. This mostly includes research from the field of Parallel 

and Distributed Simulation. It also covers work from the field of Urban Simulation, 

focusing in particular on Building Energy Simulation. 

 

Chapter 3 proposes an approach for performing the work that is set out in the 

research aims and objectives. It explains the approach selected and provides rationale 

for justifying the choice of approach. This includes the advantages and disadvantages 

of the chosen approach in comparison to other potentially feasible approaches. This 

chapter also introduces appropriate Urban Simulation case studies which are suitable 

for the chosen approach. Finally, this chapter provides details of various 

communication strategies which will be employed in the case study experiments. 

 

Chapter 4 discusses the context within which the framework is to be developed, 

exploring the key factors to consider. Several factors relevant to distributed 

simulation performance are discussed. The relationships between the factors are 

established in relation to communication. These preliminary considerations provide a 

background context within which the framework will be developed, based on the 

results from subsequent experimental work conducted on the selected case studies.  

 

Chapter 5 explains the Urban Simulation case studies in more detail. Distributed 

simulation experiments are conducted on the selected case studies using the 

methodology proposed in Chapter 3. Results from the experiments are presented, 

showing the influence of the communication strategies used on execution 

performance and simulation output accuracy. 



 

Chapter 6 presents the framework based on the context provided by Chapter 4, the 

results from the distributed simulation experiments in Chapter 5, and lessons learned 

from developing the distributed simulations for experimental work. Here, details are 

given about the components of the framework, explaining how they interact with one 

another. A demonstration of the framework is provided using a concrete 

implementation of the framework, based on the experimental results from Chapter 5. 

 

Chapter 7 provides a summary of the contributions made by the work in this thesis. It 

explains how the aim and objectives which were set out in Chapter 1 have been 

achieved by the work in various chapters. It discusses the current limitations of the 

framework and proposes potential directions for future work. 

 



2 LITERATURE REVIEW 

2.1 Computer Modelling and Simulation 

As explained by White and Ingalls (2016), a simulation model is a simplified 

representation of a real or abstract system, and simulation is the process of executing 

an experiment on such a representative model in order to mimic the behaviour of the 

modelled system. As noted by Epstein (2008), simulations are useful for many 

different purposes; among other things, they can be used to predict and compare the 

outcomes of various what-if-scenarios, to gain a better understanding or explanation 

of how a system functions, and can also be used for training purposes. Robinson 

(2014) further elaborates that some circumstances where simulations are useful 

include instances where it is not feasible nor desirable to run experiments on an 

actual system, and situations where the desired results cannot be easily obtained from 

direct mathematical analysis, as is the case with many real-life complex systems 

including cities. A simulation model captures the system components and 

interactions that are essential to the phenomena being studied, and incorporate rules 

that govern how the system state evolves as time moves forward (Borshchev and 

Filippov, 2004). Different approaches to simulation modelling vary in how they 

capture these essential elements, and the characteristics of the system and 

phenomena being studied determines the suitability and effectiveness of a given 

modelling approach. A general overview of simulation characteristics and alternative 

modelling approaches is provided in the following sections. 

  



2.1.1 Model Properties: Discrete, Stochastic and Dynamic 

As explained by Law & Kelton (2000), simulation models can be classified using 

three sets of properties, as either continuous or discrete, as either deterministic or 

stochastic, and as either static or dynamic. The state in a computer simulation is 

represented by a collection of variables that are updated as and when necessary, to 

reflect changes in the simulated system. 

• Continuous vs Discrete:  

In continuous simulation models, the phenomena being studied in the real 

system varies continuously through time, and the relevant state variables are 

continuously updated in the simulation to track the changing system state. On 

the other hand, the system state in discrete models changes at instantaneous 

points in time, and accordingly the relevant state variables need only to be 

updated at those specific points in time when the changes occur. 

 

• Deterministic vs Stochastic:  

Deterministic simulation models do not include any elements of randomness 

during simulation execution. From a given initial state, a deterministic 

simulation always proceeds along the same execution path and produces the 

same results. Stochastic simulation models, on the other hand, include 

elements of randomness and can therefore proceed along different execution 

paths with given probabilities. Stochastic computer simulations handle 

randomness by drawing values from pseudo-random number streams. This 

procedure is important for the reproducibility of stochastic simulation 

experiments, as using a fixed seed for the pseudo-random number generator 

will reproduce the same stream of numbers. Using the same random seed 

effectively reduces a stochastic simulation to follow a single deterministic 

execution path, which makes it possible for experiments to be reproduced. 

 

• Dynamic vs Static:  

For dynamic simulation models, tracking the passage of time is an explicit 

part of the model which is essential for the progression of the simulation 

execution. The system state in a dynamic simulation is updated progressively 

as time moves forward. On the other hand, static simulation models do not 



have a need to model the flow of time as part of simulation execution. 

Nevertheless, static simulation models can potentially be used to produce 

forecasts into the future, for example with the use of Monte-Carlo simulation 

methods for the purpose of risk analysis (Schriber, 2009). 

 

2.1.2 Levels of Abstraction: Micro to Macro 

Simulation models can be used to capture the behaviour of systems at different levels 

of abstraction, ranging from the micro-level or low abstraction level to the macro-

level or high abstraction level (Borshchev and Filippov, 2004). Simulation models 

created at the micro-level include detailed representations of the entities comprising 

the system and their interactions with one other. The collective behaviour of the 

individual micro-level entities produces aggregate patterns and trends that can be 

observed on the entire system.  

On the other hand, macro-level simulation models focus on modelling the aggregate 

system behaviour directly without modelling the micro-level entities that contribute 

to producing the aggregate trends. For a given system, it may be possible to use both 

the micro-level and macro-level modelling approaches to produce simulation models 

at different levels of abstraction. For example, traffic simulation models have been 

created using both the micro-level and macro-level modelling approaches (Helbing et 

al., 2002). Traffic simulation at the micro-level defines the movements of each car 

and the interactions it has with neighbouring cars. The flow of traffic in the 

simulation emerges from these defined micro-level behaviours.  On the other hand, 

traffic simulation at the macro-level accounts directly for flow of traffic. Generally, a 

macro-level simulation model of a given system can be executed faster than an 

equivalent micro-level model as it the macro-level simulation does not need to 

account for micro-level behaviour. 

 

 

 

 



2.1.3 Time Flow Mechanisms 

As discussed, tracking the flow of time as simulation execution progresses is an 

essential property of dynamic simulation models. Fujimoto (1998) describes three 

different concepts of time that are of interest during a simulation execution – wall-

clock time, physical time, and simulation time: 

• Wall-Clock Time:  

This refers to the actual time that passes in the real world while the 

simulation executes. For example, a traffic simulation that is run for 1 minute 

to simulate 24 hours of traffic flow has used up 1 minute of wall-clock time. 

 

• Physical Time:  

This refers to the progression of time within the simulated system itself. For 

example, the previously mentioned traffic simulation progresses 24 hours in 

physical time. 

 

• Simulation/Logical Time:  

This is closely related to the concept of physical time. Simulation time or 

logical time refers to the units used within the simulation to represent the 

passage of physical time during simulation execution. For example, if time is 

represented by a positive integer in the traffic simulation with an increment of 

1 corresponding to an advancement of 1 minute in physical time, simulation 

time after 24 hours of physical time is 1,440. 

Fujimoto (1998) further describes how the relationships between these concepts of 

time are used to control time flow in various simulation applications: real-time, 

scaled real-time and as-fast-as-possible simulations.  

• Real-Time:  

In real-time simulations, simulation time proceeds at the same pace as wall-

clock time.  

 

• Scaled Real-Time:  

In scaled real-time simulations, the pace at which simulation time proceeds is 

directly proportional to the pace of wall-clock time, but not equal. Assuming 

sufficient processor speed, the pace may be greater to allow quicker 



execution than real-time, or slower to allow more detailed examination of 

processes that occur too quickly in real-time for direct observation. For 

example, simulation time may advance at 10 seconds for every second of 

wall-clock time for execution that is faster than real-time. Conversely, 

simulation time may advance at 1 second for every 10 seconds of wall-clock 

time for execution slower than real-time.  

 

• As-Fast-As-Possible:  

In as-fast-as-simulations, the goal is simply to complete the simulation 

execution in the quickest time allowed by the available processing resources. 

In this case, the simulation time is not paced proportionally to wall-clock time 

at all. 

During the execution of a dynamic computer simulation model, simulation time is 

divided into discrete timesteps. In practice, both discrete and continuous computer 

simulations use such discrete timesteps. Continuous simulations use them as an 

approximation for continuous time flow, and the chosen size of timestep reflects on 

the fidelity of simulation results. Smaller timesteps produce more accurate results, 

but also demand more processing time for simulation execution as the total number 

of timesteps is increased. A computer simulation execution progresses in simulation 

time by moving from the current timestep to another timestep in the future, updating 

the system state each time it advances in time. As noted by Ferscha and Tripathi 

(1998), the two main approaches for advancing simulation time are the time-driven 

mechanism and the event-driven mechanism. With the time-driven approach, 

simulation time progresses at regular time intervals, commonly referred to as ticks, 

and state variables are updated at each tick. On the other hand, event-driven time 

flow uses the concept of events to designate points in time where system state is 

scheduled to change. Event-driven simulation execution skips over time steps where 

no events are scheduled and therefore system state does not need to be updated. It 

only processes those timesteps where events are scheduled to occur, and thus 

progresses at potentially irregular intervals compared to the time-driven approach. 

For this reason, an event-driven simulation can also be faster to execute than a 

corresponding time-driven simulation as not all timesteps require processing. Figure 



2.1, adapted from (Fujimoto 2000) illustrates state updates in the time-driven and 

event-driven approaches. 

 

Figure 2.1: Time-driven and event-driven simulation execution  

(Modified from source: Fujimoto 2000) 

2.1.4 Live, Virtual and Constructive (LVC) Simulations 

The LVC simulation classification framework, which originates from military 

simulation research, is useful for clarifying whether a simulation application involves 

real-world interaction or not. Depending on the degree of interaction between 

simulations and the real world, simulations can be classified as live, virtual or 

constructive.  

2.1.4.1 Live Simulation 

According to Hodson and Baldwin (2009), the term live simulation does not refer to 

simulation in the sense of computer simulations at all, but can more accurately be 

described as a rehearsal or dry run operation, in which actual human beings operate 

real-life equipment.  

2.1.4.2 Virtual Simulation 

The term virtual simulation includes simulations which involve either live humans 

and simulated equipment, or simulated humans and actual equipment. This class 

covers human-in-the-loop simulations such as flight simulators used for pilot 

training, hardware-in-the-loop simulations used for testing prototype equipment, and 

simulations of Cyber-Physical systems (Rajkumar et al., 2010). These types of 

simulations are usually constrained to real-time execution to allow normal interaction 

with the live human or equipment.  



2.1.4.3 Constructive Simulation 

Unlike live simulations and virtual simulations, constructive simulations do not 

involve any real-world interaction with equipment or humans but consist entirely of 

simulated components. 

Hodson and Hill (2014) note that the divisions in the LVC classification are not 

always clear and that it could benefit from the idea of the “reality-virtuality 

continuum” (Milgram and Kishino, 1994) which provides a more nuanced taxonomy 

for the degree of involvement between the real world and the computer simulation. 

2.1.4.4 Research Scope 

For clarity, the scope of the work in this thesis is limited to constructive as-fast-as-

possible computer simulations. Therefore, no consideration is given to the possibility 

of any interactions with live humans or equipment during simulation execution. 

Admittedly, virtual real-time distributed simulations also have a need to manage 

communication efficiently, for example with the use of dead reckoning algorithms in 

training exercises conducted using distributed simulation (Lin, Blair and Woodyard, 

1997). However, this type of simulation is not within the scope of the work covered 

in this thesis. 

2.1.5 Simulation Modelling Paradigms 

Multiple modelling paradigms exist for specifying simulation models. Each 

paradigm takes a different view of how to reduce a real system to a representative 

model and incorporates a separate set of techniques for mapping parts of the system 

to entities within the simulation model, defining the relationships between the model 

entities, representing system state, and directing the simulation execution flow. 

Simulation modelling paradigms that are widely used in various domains include 

System Dynamics (SD), Discrete Event Simulation (DES), and Agent-Based 

Simulation (ABS) (Borshchev and Filippov, 2004). Other paradigms commonly 

employed in the Urban Simulation context include Cellular Automata (CA) and 

Microsimulation Modelling (MSM). Although the paradigms mentioned in this 

section are not meant to form an exhaustive list, they provide a good overview of the 

main modelling approaches relevant to Urban Simulation. Some modelling 

paradigms are better suited for certain types of systems and may be easier to apply to 

a given system than other approaches. Also, some paradigms take a macro-level view 



of systems while others are more suited for the micro-level view. The following 

sections provide brief descriptions of the modelling paradigms mentioned in this 

section. 

2.1.5.1 System Dynamics 

System Dynamics is a well-established simulation modelling paradigm rooted in the 

seminal work of Forrester on Industrial Dynamics (Forrester, 1968) and Urban 

Dynamics (Forrester, 1970). As explained by Kirkwood (1998), SD makes use of 

causal links and feedback loops to express the dynamic relationships that exist 

between system components. A causal link from X to Y specifies that a change in X 

causes a change in Y, and the nature of this change is represented mathematically 

using differential equations. A feedback loop results when X indirectly causes a 

change to itself through its influence on other parts of the system. For instance, if a 

causal link exists from X to Y, another from Y to Z, and yet another back from Z to 

X, a feedback loop has been established. SD models are normally presented 

conceptually with causal loop diagrams and stock-and-flow diagrams. The SD 

paradigm is mainly employed for continuous, deterministic, dynamic modelling at 

the macro-level of abstraction, and has been applied in a wide range of 

domains(Morecroft and Robinson, 2005). 

2.1.5.2 Discrete Event Simulation 

Discrete Event Simulation is a commonly used paradigm that is especially suited for 

modelling systems that consist of processes which can be represented as a network of 

connected queues. Models created with DES are normally discrete, stochastic, and 

dynamic (Morecroft and Robinson, 2005). Unlike most other modelling paradigms, 

DES particularly employs event-driven execution rather than time-driven execution. 

As explained by Schriber et al. (2016), a DES model is composed of entities that 

arrive in a system and queue to access limited resources, creating and responding to 

events while doing so. Events mark points in the model where system state changes. 

For example, the instants of arrival or exit of an entity, and the times when an entity 

starts or finishes using a resource are all marked by events. A DES simulation 

maintains an event list that determines the order in which events need to be 

processed. In some cases, processing one event will lead to scheduling other events. 

For instance, when an entity gains access to a resource that supplies a service, a 

future event is scheduled for the time when the service being provided to the entity is 



due to end.  The DES paradigm is described as process-oriented because it mainly 

focuses on representing system processes as queues. Because many business and 

industrial systems easily lend themselves to this way of thinking, DES is a popular 

method in those application domains. 

2.1.5.3 Agent-Based Simulation 

The Agent-Based Simulation paradigm is relatively novel compared to the more 

established SD and DES modelling paradigms (Siebers et al., 2010). However, it has 

gained popularity over time, especially for modelling complex systems behaviour 

(Heath and Hill, 2010). As explained by Macal & North (2015), an ABS model is 

composed of individual autonomous agents that interact with each other and with 

their environment. These dynamic interactions can cause patterns to arise in system 

behaviour, which is called emergent behaviour as such behaviour is not explicitly 

defined by the model. An agent makes autonomous decisions concerning its own 

actions, and for this it may consider its own present state, the states of other agents, 

and the state of its environment. A frequently cited early example of ABS is the 

Boids artificial life simulation (Reynolds, 1987), which mimics the synchronized 

flight pattern of a flock of birds by treating each bird as an individual autonomous 

agent that adjusts its own flight path to fit in with its closest neighbours. As a result, 

a complex collective flocking pattern emerges which would be difficult to define 

directly as system behaviour. As the ABS paradigm defines micro-level behaviours 

that result in macro-level patterns, it is considered a bottom-up modelling approach. 

ABS has been applied in a wide range of domains including Economics (Zhang, 

Siebers and Aickelin, 2012) and Sociology (Schelling, 1971) (Epstein and Axtell, 

1996). The Multi-Agent Simulation (MAS) paradigm (Wooldridge and Jennings, 

1995) and the ABS paradigm are similar in their approach, and the terms are 

sometimes used interchangeably. While ABS is normally associated with research 

work related to the social sciences, MAS research work usually belongs to the field 

of Artificial Intelligence. Although the focus and goals of the research areas might 

differ, MAS and ABS share a similar view of modelling and employ similar 

language and techniques. 

2.1.5.4 Cellular Automata 

The Cellular Automata modelling paradigm is older than the ABS paradigm. It may, 

however, be described as a restricted form of ABS that makes use of a two-



dimensional grid of cells to represent a spatial environment, with agents residing in 

square grid cells. Rules defined for the CA model determine how cells interact with 

neighbouring cells to update the system state. Two of the most common ways for 

defining CA neighbourhoods are the Moore neighbourhood and the von Neumann 

neighbourhood. In the Moore neighbourhood, each cell considers all eight cells 

surrounding it as neighbours. On the other hand, the von Neumann neighbourhood 

defines neighbour cells as those that share an edge, resulting in four neighbours per 

cell. Wolfram (2002) investigates various rules for CA models in some detail and 

compares the emergent patterns to various natural phenomena. Belying their apparent 

simplicity, CA models have been used to model some complex systems such as 

traffic flow (Nagel and Schreckenberg, 1992). 

2.1.5.5 Microsimulation Modelling 

The Microsimulation modelling paradigm is rooted in the seminal work of Orcutt 

(1957). Similar to the ABS paradigm, MSM models view a system as comprising of 

micro-level decision-making entities. However, as explained by Birkin and Wu 

(2012), MSM places specific emphasis on fitting the properties and behaviour of the 

population of decision-making entities to reliable statistical data, resulting in a model 

that can be used as a basis for forecasting future population states through simulation 

experiments. MSM is a frequently used paradigm for investigating the effect of 

public policy on a population, and has been applied widely in Economics 

(Bourguignon and Spadaro, 2006). 

2.1.5.6 Paradigm Comparison 

Figure 2.2 provides an overview of the properties of the modelling paradigms that 

have been discussed briefly in the previous sections. The figure illustrates the normal 

characteristics of the paradigms, although work has been done to extend them. For 

example, Meyer (2014) proposes  a framework for using event-driven execution in 

ABS. 



 

Figure 2.2: Overview of modelling paradigms 

 

2.2 Large-Scale Simulation Methods 

Parry and Bithell (2012) provide an overview of alternative approaches for executing 

large-scale simulations that require computing resources which exceed the memory 

or processing capacity of a reasonably resourced stand-alone computer. The 

approaches for enabling large scale simulation include model simplification, 

modelling paradigm shift, vertical resource scaling and horizontal resource scaling. 

2.2.1 Model Simplification 

Model simplification aims to reduce the scale of the model by lowering the fidelity 

of model contents to the extent that will permit the simulation to be executed in 

reasonable time on the available computing resources. One way to achieve 

simplification is to reduce the number of entities involved in the model to a number 

that can be managed within the available computing resources. Another 

simplification method involves the use of a single model entity to represent multiple 

system entities, aggregating them together into a “super” entity. Although model 

simplification methods provide a straightforward means for scaling down simulation 

models to fit within the limits of computing resources, such approaches may result in 

modelled behaviour that does not reflect that of the system being modelled with 

sufficient accuracy. 



2.2.2 Modelling Paradigm Shift 

This approach involves converting a simulation model from one paradigm to another 

that requires fewer computing resources. For example, a model created using a 

paradigm with a micro-level view can be converted to an equivalent macro-level 

model. This approach assumes that such a conversion is feasible and that the outputs 

from both models will be equivalent. If these assumptions are true, then the essence 

of this process is the translation of the simulation model in question into a more 

suitable modelling paradigm. These assumptions do not hold where the behaviour 

produced by the original model cannot readily be replicated using the target 

paradigm. For example, emergent behaviour from collective individual actions in a 

micro-level model may not be feasible to replicate using macro-level approaches. 

2.2.3 Vertical Resource Scaling 

Vertical resource scaling refers to upgrading the resources of a single computing 

node to enable the execution of larger workloads. Vertical scaling includes actions 

such as increasing the amount of installed memory and replacing the processor with a 

faster one. Where applicable, the advantage of this approach is that no changes need 

to be made to the simulation model. In essence, a more powerful computer is simply 

made available to run the simulation. However, the application of vertical scaling has 

physical limits. Processor speeds, for example, have stagnated in recent times (Sutter, 

2005). 

2.2.4 Horizontal Resource Scaling 

In horizontal resource scaling, total computing resources are scaled up by adding 

more computing nodes to form a greater pool of resources which can be coordinated 

to execute the large-scale simulation. This is the approach used in Distributed 

Simulation, in which a large-scale simulation model is partitioned and distributed 

among the computing nodes in the pool which communicate with one another via an 

interconnecting network. Unlike vertical scaling, horizontal resource requires 

changes to be made to the structure of the stand-alone simulation.  

Of the four different approaches discussed in this section for handling large-scale 

simulations, horizontal resource scaling is one of the most generally applicable for 

executing large-scale models without losing model fidelity and offers flexibility for 



scaling up total computing resources beyond the physical limits of a stand-alone 

node. 

 

2.3 Distributed Simulation 

The research field of Parallel and Distributed Simulation is concerned with the use of 

computer systems composed of multiple interconnected processors to execute 

simulation experiments. Although both the terms Parallel Simulation and Distributed 

Simulation have this concern in common and are used interchangeably, they are 

sometimes employed individually to indicate different primary concerns. Fujimoto 

(2016) explains how the use of these two terms originated from the development of 

the research field from groups with different perspectives. The Parallel Simulation 

research perspective primarily focused on methods for accelerating the execution of 

large-scale homogeneous simulations by dividing the workload between 

communicating processors. Distributed Simulation research, on the other hand, was 

principally interested in establishing interoperability between heterogeneous 

simulations. This would enable existing simulation models to be reused in 

combination with other models and would reduce the need for re-implementing 

existing functionality when simulation studies with new questions can be answered 

by re-using existing models in a co-ordinated manner. Fujimoto (2000) points out 

that the early work in Parallel Simulation was mainly from the scientific High-

Performance Computing community, emphasizing techniques for efficient parallel 

simulation execution, while Distributed Simulation work was mainly carried out in 

military research which focused on applications such as enabling joint training 

simulation exercises to be performed by geographically distributed participants. 

The computing platforms considered by each research perspective for achieving its 

primary goals also differ. Parallel Simulation tended to rely on High-Performance 

Computing (HPC) computing clusters composed of computing nodes connected by 

high-speed, low latency interconnects in order to run as-fast-as-possible simulations 

efficiently. Distributed Simulation, on the other hand, had to cover needs such as 

enabling real-time collaboration between members of a geographically dispersed 

team and therefore had to consider constraints involved in the use of geographically 

dispersed computing nodes connected by unreliable networks having low data 



transmission rates and high latency. The use of parallel and distributed simulation is 

also a concern in other areas such as the entertainment industry where it is used in 

massively multiplayer online games (Improbable, 2020) and in films for rendering 

CGI simulations. 

In this work, the term Distributed Simulation (DS) is used as an all-inclusive term. 

The relevant goals are specified where they are not clear from the surrounding 

context. The two main goals for using DS in this work are simulation scalability and 

interoperability as explained in Section 1.1 based on the classification by Taylor 

(2019). 

2.3.1 Strong and Weak Scaling 

With regards to simulation scaling, the two main types are strong scaling and weak 

scaling. These two types refer to different goals for applying horizontal resource 

scaling. 

Strong scaling refers to the case where additional computing nodes are added with 

the aim of accelerating the execution of a fixed size workload (Amdahl, 1967).  

Weak scaling, on the other hand, refers to the case where more computing nodes are 

added as the size of the workload increases in order to complete execution of the 

larger workload in the same time required by the smaller workload (Gustafson, 

1988).  

In both cases, distributing the workload over multiple computing nodes makes it 

possible to execute large workloads that cannot be managed within the resources of a 

single stand-alone computing node. 

2.3.1.1 Horizontal Scaling Measurements 

Two of the main measurements for evaluating the performance obtained from 

horizontal scaling are speedup and efficiency (Karp and Flatt, 1990). 

Speedup is defined as: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁
 



Where 𝑇1 is the time taken to complete the workload sequentially on a stand-alone 

computing node, and 𝑇𝑁 is the time required to process the workload in parallel using 

𝑁 computing nodes. 

Efficiency is defined as: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
=

𝑇1

𝑁 𝑇𝑁
 

In the ideal case, efficiency is 1 which indicates that the processing resources on each 

computing node is fully utilized. 

2.3.1.2 Strong Scaling 

Using 𝑁 nodes for a problem of fixed size, the maximum possible speedup that can 

theoretically be achieved is 𝑁, in which case scaling up to 𝑁 nodes produces ideal 

linear speedup. However, the limits of strong scaling are described by Amdahl’s 

Law (Amdahl, 1967) which reasons that for a fixed computational workload with a 

sequential portion that cannot be distributed, the execution time required for the 

sequential portion represents a lower bound on the total execution time for the entire 

workload. This places an upper bound on the speedup, regardless of how many 

computing nodes are added to share the workload. 

Amdahl’s Law is summarized as follows: 

𝑇1 = 𝑓 𝑇1 +  (1 − 𝑓) 𝑇1 

Where 𝑓  is the Amdahl fraction, the fraction of the workload that is inherently 

sequential and cannot be distributed. 

𝑇𝑁 =  𝑓 𝑇1 +
(1 − 𝑓) 𝑇1

𝑁
 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁
=

1

𝑓 + 
(1 − 𝑓)

𝑁

 

According to Amdahl, this provides an upper bound on the speedup possible, with 

the maximum achievable speedup being lim
𝑁→∞

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1 𝑓⁄  . 

2.3.1.3 Weak Scaling 

The potential of weak scaling is described by Gustafson’s Law (Gustafson, 1988). 

Contrary to Amdahl’s Law, Gustafson’s Law does not assume a fixed problem size 



and proposes that the motivation for increasing the number of computing nodes 

depends on the practical need to process larger workloads in the same amount of 

time as the original workload. In place of a fixed problem size, Gustafson’s Law 

assumes a fixed execution time and scales up the number of nodes with the aim of 

maintaining a constant execution time as the workload grows larger. As the 

inherently sequential portion of many practical problems does not necessarily grow 

with problem size, there is the additional potential for exploiting more parallelism 

from the workload structure as the problem size grows larger. Therefore, Gustafson’s 

Law assumes a fixed size for the inherently sequential workload rather than 

assigning it a fixed fraction of the total workload.  

Gustafson’s Law is summarized as follows: 

Let 𝑓𝑠𝑐𝑎𝑙𝑒𝑑  be the scaled sequential fraction of the workload. Unlike the Amdahl 

fraction, 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 depends on the size of the problem. As the problem size grows and 

𝑁 is increased to accommodate the larger workload, 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 decreases. The execution 

time 𝑇𝑁 remains constant as 𝑁 scales with problem size.  

𝑇1 is the time it would take to complete a given workload sequentially on a stand-

alone computing node instead of parallel execution on 𝑁 nodes: 

𝑇1 = 𝑓𝑠𝑐𝑎𝑙𝑒𝑑𝑇𝑁 +  𝑁 × (1 − 𝑓𝑠𝑐𝑎𝑙𝑒𝑑) 𝑇𝑁 

Therefore, 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁
= 𝑁 + (1 − 𝑁) 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 

Gustafson’s Law shows that for practical problems where 𝑓𝑠𝑐𝑎𝑙𝑒𝑑  diminishes as 

problem size grows, the upper bound on speedup imposed by the inherently 

sequential workload is not as low as the strict view held by Amdahl’s Law. 

 

Snyder (1986) provides an analysis of weak scaling, determining how N varies with 

problem size if a constant execution time is maintained. For a given problem of size 

𝑛 which exhibits a time complexity of 𝑂(𝑛𝑥), 

𝑇 = 𝑐𝑛𝑥 

Where 𝑇 is the sequential execution time on a single computing node. 



Assuming that the entire workload can be executed in parallel and the inherently 

sequential workload is negligible, linear weak scaling applies. As problem size 

increases, a constant execution time 𝑇 can be maintained by scaling up resources to 

𝑁 computing nodes. If problem size increases by a factor of 𝑚,  

𝑇 =
𝑐(𝑚𝑛)𝑥

𝑁
 

The number of computing nodes 𝑁 required to maintain a constant execution time is 

then 

𝑁 = 𝑚𝑥 

According to Snyder (1986), 𝑁 grows at a rate similar to the time complexity of the 

problem. This is an important consideration for determining the resources required 

for weak scaling in various types of large-scale simulation problems as their model 

configurations grow large. 

 

In this section, the analyses presented for speedup in both strong and weak scaling 

does not account for the communication and synchronization overheads associated 

with distributed simulation. Communication and synchronization costs comprise 

additional overheads that are not included in the computational workload. These 

overheads can increase with the number of nodes, N, and can present a significant 

performance bottleneck in distributed simulations where exchanging messages 

between computing nodes is necessary to ensure correct execution. 

This work focuses on the weak scaling approach and not on strong scaling, as the 

primary goal is to enable the execution of large simulation workloads by horizontal 

resource scaling while managing communication between computing nodes 

efficiently. 

2.3.2 Task and Data-Parallelism 

As Lin & Snyder (2009) explains, two general strategies for performing parallel 

computations are the task-parallel and the data-parallel approaches. With the task-

parallel approach, the total workload is divided among processors such that each 

processor is entrusted with a different kind of computation from the others. With the 

data-parallel approach, on the other hand, all processors perform the same kind of 



computation at the same time, but each performs it on a different subset of data from 

the others. Both the task-parallel and data-parallel approaches have been used in the 

parallel simulation literature, as discussed in the following sections. 

2.3.2.1 Task Parallelism 

Much of the early research literature on Parallel Simulation that adopts the task-

parallel approach is from the scientific High-Performance Computing community 

working on Parallel Discrete Event Simulation (PDES). This large body of work is 

concerned with distributing Discrete Event Simulations (DES) over multiple 

computing nodes for parallel execution. The PDES research literature proposes 

various techniques for efficient synchronization between nodes. The techniques seek 

to exploit as much parallelism as possible by allowing each node to advance 

independently of the others wherever possible, while ensuring that simulations 

execute correctly by processing all events in the right order. Comprehensive surveys 

conducted on the PDES research field over the years include those of Righter and 

Walrand (1989), Fujimoto (1990), Ferscha and Tripathi (1998), Fujimoto (2000), 

Perumalla (2006), Jafer, Liu and Wainer (2013), and Fujimoto (2015).   Although the 

PDES field primarily focuses on the DES paradigm which relies on event-driven 

execution, the techniques developed from PDES research has also been applied to 

other paradigms such as Multi-Agent Simulation (Theodoropoulos and Logan, 1999). 

2.3.2.2 Data Parallelism 

In recent years, much attention has been paid to using data-parallel methods for 

performing computer simulations using GPU hardware. As noted by Huang et al. 

(2008), the reasons for this interest include the stagnation of CPU clock in recent 

times (Sutter, 2005) and the fact that GPUs incorporate a larger number of 

processing cores than CPUs.  Also, GPUs are cheaper and easier to set up and 

manage compared to a cluster of interconnected CPU nodes with a similar number of 

processing cores. The interest in data-parallel simulation using GPUs has also been 

helped by recent development of frameworks for convenient General-Purpose 

computing on GPUs (GPGPU), including CUDA and OpenCL. Such frameworks 

enable programmers to more easily harness the high data-parallel processing 

throughput that GPUs provide for computations that are not related to computer 

graphics.  



GPUs are able to combine large numbers of processing cores on a single chip 

because individual GPU cores are relatively simple and slow compared to CPU cores 

and therefore are able to take up less space. Although individual GPU cores are 

slower than CPU cores, combining them in large numbers to perform data-parallel 

tasks provides a higher processing throughput than can be achieved by CPUs which 

have a comparatively small number of cores.  

The GPGPU programming model involves an arrangement which includes a CPU 

and an attached GPU co-processor. The CPU performs sequential tasks and offloads 

large data-parallel tasks to the attached GPU co-processor to accelerate execution. 

Many modern high-performance computing platforms include GPU co-processors, 

including several in the Top500 (Top500, 2020).  

Prior to the introduction of GPGPU frameworks such as CUDA and OpenCL, 

research efforts towards using GPUs for simulation  relied on techniques to 

repurpose the GPU’s  graphics programming capabilities to perform general 

computing (Owens et al., 2006). For example, using such techniques Lysenko & 

D’Souza  (2008) created a framework for executing agent-based simulations on 

GPUs, reporting a speedup of 1000 compared to corresponding sequential execution 

using mature ABS toolkits and demonstrated the capability of their framework to 

handle more than 2,000,000 agents on the Sugarcape model of Epstein and Axtell 

(1996). The GPGPU approach has been shown to produce significant speedup in 

large-scale simulation case studies. Work on ABS simulation using GPGPU 

frameworks includes Chen et al. (2015) who use CUDA to implement a simulation 

of evacuation scenarios showing a speedup of 38 for 8000 agents, and Ho et al. 

(2015) who execute an ABS over multiple GPUs, achieving speedups greater than 

180. 

To enable execution on GPU co-processors, simulation workloads need to be re-

formulated as data-parallel computations in order to take advantage of the resources 

GPUs provide. However, re-working simulations to fit in with the data-parallel 

execution strategy is not straightforward. Tools such as FLAME-GPU (Richmond 

and Chimeh, 2017) for ABS help to address this issue by providing a framework for 

specifying simulation models such that the required computations can be mapped to 

data-parallel execution on GPU hardware. Using FLAME-GPU, Richmond (2015) 

reports a speedup of 250 for an experimental model with over 130,000  agents which 



includes features such as agent movement within an environment and detection of 

nearby agents.  

2.3.2.3 Research Scope 

Although off-loading large data-parallel workloads from the CPU to the GPU for 

faster processing can be a useful approach for some problems, this work focuses on 

the task-parallel approach which is more generally applicable to Distributed 

Simulation. 

 

2.4 Parallel Discrete Event Simulation 

2.4.1 Logical Process Decomposition 

The Parallel Discrete Event Simulation (PDES) literature, rooted in the seminal work 

of Chandy and Misra (1979), approaches parallel DES by decomposing a DES 

simulation model into a set of Logical Processes (LPs). LPs are assigned to separate 

interconnected processors which will execute the LPs in parallel while exchanging 

the messages necessary for ensuring overall simulation correctness. Fujimoto (2000) 

points out that a DES can be decomposed into LPs in two different ways. One 

method is the process-oriented approach, where each LP is used to represent one of 

the various processes that constitute the DES model. Each process is responsible for 

a distinct subset of the system state. The process-oriented decomposition approach is 

the one generally taken in the PDES literature. The second approach is an alternative 

decomposition method in which the simulation run length is divided into multiple 

blocks of time, with each block being a separate LP. While the second approach 

proposed is simpler than the first and would require fewer messages to be exchanged 

between LPs during simulation execution, it is not generally applicable. However, 

time decomposition would work for particular applications where the system states at 

the start and end of the specified time block can be predicted accurately. Figure 2.3, 

adapted from (Fujimoto, 2000), illustrates the two approaches to LP decomposition 

discussed in this section. 



 

Figure 2.3: Process and Time LP decomposition methods  

(Adapted from source: Fujimoto, 2000) 

 

2.4.2 LP Time Synchronization 

A large part of PDES research work is dedicated to time synchronization algorithms, 

which includes several proposed methods to coordinate concurrently executing LPs, 

ensuring that the distributed execution produces correct results by following the same 

execution path that a corresponding sequential simulation would follow. Time 

synchronization algorithms attempt to exploit parallelism in the distributed execution 

by allowing LPs to execute independently of one another as much as possible. 

As set out by Chandy and Misra (1979), LPs communicate during distributed 

simulation execution by sending each other timestamped messages which contain 

events to be processed by the receiving LP. If at any time an LP receives a new event 

that should have been processed before another event that the LP has already 

processed, the simulation execution is considered invalid because a causal 

relationship may have been broken. Time synchronization algorithms achieve 

correctness by ensuring that all events are processed in the same order as they would 

have been processed in a sequential execution, making certain that causal 

relationships between events are respected. Fujimoto (1990) explains that in order to 

achieve correct parallel execution, it is sufficient for each LP to process its own 

events in non-decreasing timestamp order. This is referred to as the local causality 

constraint. Peschlow and Martini (2007) point out that simultaneous events which 

have the same timestamp need to be adequately handled by deterministic tie-breaking 

rules consistent with sequential execution in order to guarantee correctness.  



Although observing causal order guarantees correctness, it is not always required in 

all cases. This is because the timestamp order of two events does not necessarily 

imply a causal relationship between those two events. An event that occurs later in 

simulation time may be completely independent of one that comes before in terms of 

the aspects of system state which they have an effect on. Therefore, restricting event 

execution order too rigorously by observing event timestamp order too strictly can 

limit the independent execution of LPs and result in less exploitable parallelism. In 

spite of this, the local causality constraint remains necessary as a generally applicable 

method for ensuring distributed simulation correctness without incorporating 

application-specific information into time synchronization algorithms. 

The PDES literature covers two main classes of time synchronization algorithms: 

conservative algorithms, and optimistic algorithms. On one hand, conservative 

algorithms always respect the local causality constraint and therefore prevent events 

within the same LP from executing out of timestamp order. On the other hand, 

optimistic algorithms allow the local causality constraint to be violated but provide a 

means for correcting out-of-order event execution after it has been detected. 

2.4.3 Conservative Synchronization 

Chandy, Misra (1979) and Bryant (1977), independently presented the first 

conservative synchronization algorithm for PDES, known as the 

Chandy/Misra/Bryant (CMB) algorithm. In their proposed scheme, DES LPs execute 

in parallel, each advancing in time by processing the next event on its event list that 

has the smallest timestamp. When an LP processes an event, it may result in a need 

to schedule future events for itself or for other LPs. If the scheduled event needs to 

be processed by another LP, it sends the other LP a message containing the 

scheduled event.  In the CMB scheme, each LP is restricted from processing its next 

event until it can guarantee that none of the other LPs will send it any subsequent 

events that may have a smaller timestamp. This guarantee is obtained in the 

following manner: since an LP, labelled LP_1, cannot schedule events in its past, 

other LPs can rely on the timestamp of the latest message they received from LP_1 

as a lower bound on the timestamp of any events LP_1 will send in the future. 

Although this provides the needed safety guarantee, the CMB algorithm recognizes 

that it can result in a deadlock situation where all the LPs block, each waiting for one 



of the others to send a message so that a safety guarantee can be inferred from its 

timestamp. The CMB algorithm prevents such deadlocks by requiring each LP to 

send a null message to the other LPs each time it advances in simulation time and 

processes an event. When an LP sends a null message to the others, it also specifies a 

future time horizon within which it can guarantee that it will not send any further 

events. This time horizon, known as lookahead, varies depending on the simulation 

application. Larger lookahead values mean that more freedom is allowed for parallel 

LP execution and LPs can execute independently of each other for longer periods 

without the need to exchange any messages. Chandy & Misra (1979) show that this 

method is guaranteed to prevent deadlocks from occurring between LPs. In general, 

conservative synchronization algorithms follow this pattern of generating safety 

guarantees to refrain from violating the local causality constraint. The size of 

lookahead is a principal factor in the performance of conservative synchronization 

algorithms. This implies that for conservative algorithms to be used efficiently, they 

need to incorporate specific information about the simulation application in order to 

adequately exploit the potential parallelism available. 

Research work on conservative synchronization algorithms is mainly concerned with 

proposing efficient means to handle deadlock and maximize lookahead. With regards 

to deadlock handling, conservative algorithms either prevent deadlocks, as with the 

CMB algorithm, or try to detect and break them. Deadlock-avoiding conservative 

algorithms generally employ the method of sending null messages and specifying a 

lookahead value. As noted by Jafer et al. (2013), such conservative algorithms 

usually need to deal with a substantial amount of null message overhead during 

simulation execution. Several strategies have been proposed to reduce the volume of 

null message communications, for example by sending null messages only on-

demand (Misra, 1986). Deadlock-breaking conservative algorithms first allow a 

deadlock to occur and then attempt to break it. This class does not need to send null 

messages regularly. For example, in the approach of Chandy & Misra (1981), a 

controller process breaks deadlock by identifying the events with the smallest global 

timestamp, and instructing the LPs processing those events to resume execution 

because it is safe for them to proceed. 



2.4.4 Optimistic Synchronization 

D. R. Jefferson and Sowizral (1982) and D. R. Jefferson (1985) introduced the first 

optimistic synchronization algorithm, called the Time Warp Operating System 

(TWOS). Unlike the conservative approach, the optimistic approach does not require 

any safety guarantees from LPs in order to advance simulation time. Consequently, 

optimistic algorithms allow events to potentially be processed out of causal order. 

However, to correct out-of-order execution and observe the local causality constraint, 

optimistic algorithms provide a mechanism for rollback. Events that are received out 

of timestamp order are labelled straggler events. An LP detects that an event it 

receives is a straggler if the LP has already processed another event with a lower 

timestamp. When an LP detects a straggler event, it deduces that the local causality 

constraint has been violated. The LP then proceeds to initiate the rollback mechanism 

to revert to the most recent historical state where it was safe to process the straggler 

event without violating local causality. As part of the rollback process, the effect of 

all previous messages sent from the LP to other LPs after the established safe point 

must be undone. Time Warp handles this by using anti-messages, which are sent to 

negate specific messages that have previously been dispatched. When an LP receives 

an anti-message, it discards the corresponding message if it has not already processed 

it. If the corresponding message has already been processed, then the receiving LP 

must initiate its own rollback procedure to return to a safe point in time before the 

original message was processed. This leads to a cascading sequence of rollbacks that 

undoes all computation until a globally safe historical state has been reached where 

local causality has not been violated by any of the LPs.  

The rollback process requires that the historical states of the simulation execution 

should be stored in memory. The Time Warp mechanism uses the concept of Global 

Virtual Time (GVT) to track the lower bound of simulation time across all LPs. At 

any point, GVT considers the current simulation time reached by each LP as well as 

the timestamps of undelivered messages still in transit. GVT is useful for the process 

known as fossil collection, by which historical states earlier than GVT are discarded 

to free up memory. This is safe because it is not possible for any LP to schedule a 

new event that occurs before GVT and therefore rollbacks cannot revert to a time 

before GVT. 



The research work on improving the performance of optimistic algorithms is largely 

focused on decreasing the number of cascading rollbacks and reducing the amount of 

memory required for storing historical states. Some approaches for improving 

memory efficiency include techniques for using memory sparsely or salvaging 

memory (Jefferson, 1990), and techniques for using reverse computation instead of 

saving historical states (Carothers, Perumalla and Fujimoto, 1999). Reverse 

computation is not applicable in cases where computations can only be performed in 

one direction. Optimistic algorithms suffer from significant performance degradation 

in cases where one rollback causes an avalanche of subsequent cascading rollbacks, 

destabilizing simulation execution. Methods to counter this include throttling the 

degree of optimism by using a global execution window (Tay and Teo, 2001), and 

lazy event cancellation (Lin and Edward, 1991) which delays anti-messages until 

rolled back events have been re-processed and confirmed to produce different results 

from their earlier out-of-order execution. 

2.4.5 Scalability of Conservative and Optimistic Approaches 

Several software systems have been created to support developing PDES, including 

the µsik micro-kernel (Perumalla, 2005), Rensselaer’s Optimistic Simulation System 

(ROSS) (Carothers, Bauer and Pearce, 2002), the Georgia Tech Time Warp (GTW) 

system (Das et al., 1994) and the Time Warp Operating System (TWOS) (Jefferson 

et al., 1987). These provide APIs that ease the implementation and execution of 

PDES using conservative and optimistic synchronization methods. 

The Parallel Hold (PHOLD) model (Fujimoto, 1990b) is widely used for testing the 

performance of time synchronization algorithms. PHOLD is a parallel DES model in 

which the time between scheduled events on each LP is drawn from a given 

probability distribution. When processing one event results in scheduling a new 

event, the LP responsible for processing the new event is drawn from a uniform 

distribution. This makes the PHOLD model useful as a general artificial benchmark 

which is not based on any specific application.  

PDES conservative and optimistic methods have been applied to several large-scale 

simulation applications, enabling the execution of such large-scale simulations in 

High-Performance Computing (HPC) environments. Neither the conservative nor the 

optimistic synchronization approach performs better than the other in all cases. The 



relative performance of the time synchronization approaches depends on the specific 

simulation application. Each time synchronization approach possesses characteristics 

that make it better suited than the other for specific types of applications. On the one 

hand, conservative algorithms depend on high lookahead values for good 

performance. However, determining optimal lookahead values requires knowledge of 

application-specific information. On the other hand, optimistic algorithms are more 

general and do not require application-specific information such as look-ahead. 

However, optimistic algorithms can suffer from cascading rollbacks leading to poor 

performance. Carothers and Perumalla (2010) show that conservative algorithms 

perform poorly on applications with small lookahead values, and optimistic 

algorithms are more efficient at exploiting parallelism in this type of application. 

However, optimistic algorithms require more memory resources due to the need to 

store historical states in case rollback becomes necessary. Also, optimistic algorithms 

cannot be used in applications where operations cannot be rolled back once they have 

been completed. 

Fujimoto (2015) surveys the results of several simulation experiments using PDES 

techniques on high-performance computers from 2003 to 2013 including: 

• Fujimoto et al. (2003): 1,536 processors, ~200 million events per second 

• Perumalla (2007): 16,384 processors, ~500 million events per second 

• Bauer et al. (2009): 65,536 processors, ~12 billion events per second 

• Barnes et al. (2013): 1,966,080 processors, ~500 billion events per second 

To compare the results between these sets of experiments, their performance is 

measured as the number of events per second per processor: 

• Fujimoto et al. (2003): ~130,000 events/s/processor (conservative) 

• Perumalla (2007): ~30,000 events/s/processor (conservative, PHOLD) 

• Bauer et al. (2009): ~180,000 events/s/processor (optimistic, PHOLD) 

• Barnes et al. (2013): ~250,000 events/s/processor (optimistic, PHOLD) 

These experiments demonstrate the feasibility of employing distributed computing 

systems to enable the execution of large-scale DES models that would not be 

possible to execute sequentially using the memory resources of a single stand-alone 

computing node.  



2.5 Other Distributed Simulation Approaches 

As discussed in previous sections, much research work has been conducted on 

approaches to enabling the efficient execution of large-scale PDES simulations.  An 

evident limitation is that the methods proposed are developed specifically for the 

DES paradigm which uses the event-driven time flow mechanism. Other simulation 

paradigms that use the time-driven mechanism will need to have these methods 

adapted appropriately. Another limitation is that work on PDES does not account for 

aspects regarding enabling interoperability between heterogeneous simulations. This 

is natural as the primary focus of PDES research is on efficiently scaling of 

homogenous DES simulations. Therefore, the need to coordinate existing simulations 

together to answer new questions is not a priority. 

2.5.1 PDES-MAS 

As discussed in previous sections, the LP decomposition in PDES set out by Chandy 

and Misra (1979) assumes that each LP is responsible for a distinct portion of the 

system state that does not overlap with the portion of state managed by the other LPs. 

The portion of system state managed by each LP can only be modified by events 

which that LP itself processes. The essential idea, according to Chandy and Misra 

(1979), is that LPs “cannot interfere with each other”. Theodoropoulos and Logan 

(1999) extend ideas developed from PDES research to enable the distributed 

execution of MAS simulations. They point out that the view of a non-shared state is 

reasonable for a process-oriented paradigm such as DES where the communication 

topology between LPs is generally static and not expected to change during 

simulation execution. However, a non-shared state is not a sound assumption to 

make when considering an individual-oriented paradigm such as MAS where the 

topology of interactions between autonomous agents can be unstable and 

unpredictable. Unlike the processes in DES, the agents in MAS can interfere with 

each other either through direct interaction or indirectly through their shared 

environment. Theodoropoulos and Logan (1999) define shared state as the portion of 

system state to which multiple LPs have write or read access. This is analogous to a 

critical section in general concurrent programming and therefore read and write 

dependencies need to be observed carefully to guard against data hazards. They 

propose a PDES-MAS framework (Oguara et al., 2007) which uses an optimistic 

synchronization approach and consists of three different types of LPs:  



1. Agent Logical Processes (ALPs),  

2. Environment Logical Processes (ELPs), and  

3. Communication Logical Processes (CLPs):  

In their proposed framework, CLPs manage the shared state and the communication 

between all ALPs and ELPs. ALPs and ELPs have different spheres of influence, the 

subset of shared state each ALP or ELP can read or write. The simulation workload 

is balanced by clustering ALPs and ELPs together based on their spheres of 

influence. 

2.5.2 Distributed ABS Toolkits 

Simulation toolkits have been created which provide libraries and a development 

environment to facilitate the process of implementing and executing distributed ABS. 

Popular distributed ABS toolkits include Repast HPC (Collier and North, 2012), D-

MASON (Cordasco et al., 2013), and FLAME (Coakley et al., 2016). The toolkits 

include different approaches for accomplishing necessary tasks such as partitioning 

the model environment and agents into LPs, managing communication between 

agents in different LPs, and synchronizing time flow among all LPs to ensure 

simulation correctness.  The following sections provide an overview of the 

approaches to these tasks used by various ABS toolkits. 

2.5.2.1 Distributed ABS Partitioning Strategies 

Model partitioning strategies attempt to optimize two objectives together  

1. Balancing the computational workload evenly between LPs. 

2. Minimizing the communication between agents in different LPs. 

Cordasco, Spagnuolo and Scarano (2017) identify four broad strategies for ABS 

partitioning: load-based, space-based, relationships-based and space-relationships-

based. 

• Load-Based Partitioning:  

The load-based approach primarily focuses on optimizing the first objective, 

balancing the processing workload among LPs. This results in assigning 

equal numbers of agents to each LP without regard to where they may reside 

in the environment or their relationships with other agents. Each LP is 

responsible for performing the simulation computations on the specific subset 



of agents to which it has been assigned. The load-based approach is a simple 

strategy that can be useful in cases where there are few relationships between 

agents and communication is minimal. Where there is significant 

communication in the ABS, it can lead to poor performance due to large 

volume of communication between LPs. 

 

• Space-Based Partitioning:  

The space-based approach attempts to optimize both the balanced workload 

and minimal communication objectives by dividing the spatial environment 

into different partitions. Each partition is assigned to a separate LP which is 

responsible for simulating all the agents that reside in that partition. The 

space covered by partitions may be equally sized or unequally sized to 

balance the computational workload by having large-spaced partitions in 

parts of the environment where agents are sparse and small-spaced partitions 

in areas where agents are dense. This approach attempts to minimize 

communication between LPs based on the assumption that agents are more 

likely to interaction with other agents that are close in proximity and less 

likely to interaction with those that are far away. If this assumption holds, the 

partition borders can be drawn to put agents that are closely clustered 

together in the same partition and agents that are far apart from one another in 

different partitions. The effect of this is to reduce the communication between 

agents in different LPs by increasing local interactions. Partitions generated 

using this strategy may not remain optimal where agents can move around the 

environment space. One method to account for movement is to keep the 

partition borders static and re-assign agents from one LP to another when 

they move out of the space managed by one LP into the space managed by 

the other. Another method is to dynamically re-draw the partition borders as 

and when necessary. 

 

• Relationships-Based Partitioning:  

The relationships-based approach attempts to optimize both objectives using 

the graph of relationships between agents where each agent is a vertex and an 

edge between two vertices indicates that an interaction relationship exists 

between the two agents. Vertices are assigned to partitions such that the 



number of local edges is high and the number of edges between vertices in 

different partitions is low. This approach attempts to minimize 

communication by reducing the number of inter-LP agent relationships while 

balancing the workload by assigning each LP an equal number of agents. This 

approach is useful in models where interactions between agents are defined 

by explicitly assigned relationships and do not need to be inferred from 

spatial proximity. Relationship-based partitioning can be carried out using 

graph partitioning algorithms such as METIS (Antelmi et al., 2015). 

Partitions created using this strategy may not remain optimal if the 

relationships between agents can change dynamically as the simulation 

progresses. One method for address this is dynamic re-partitioning to re-

assign agents to LPs as and when necessary.  

 

• Space and Relationships Based Partitioning:  

This approach is a combination of the space-based approach and the 

relationship-based approach. It is useful in cases where interactions between 

agents can occur either as a result of their proximity or due to explicitly 

defined relationships between the agents. One approach to partitioning in this 

situation is to add edges to the relationships graph based on the proximity of 

agents. Relationships-based techniques can then be applied to create the 

partitions. 

 

In order to minimize communication, both the space-based approach and the 

relationships-based approach rely on the assumption that partitions can be created in 

such a way that dense inter-agent interactions can be localized to LPs, leaving sparse 

interactions for inter-LP communication. The two approaches are not effective in 

cases where this assumption of locality of interactions does not hold, for example in 

the extreme case of a fully connected ABS in which every agent can interact with all 

the other agents at any time. 

 

 



2.5.2.2 Distributed ABS Communication 

After partitioning the model, each LP has an area of interest which includes: 

• Local agents assigned to the LP. 

• The local spatial environment assigned to the LP. 

• Non-local agents in other LPs with whom local agents can interact. 

• The non-local spatial environment in other LPs with which local agents can 

interact. 

Each LP is responsible for executing the simulation computations concerning its 

local agents and environment. One method for implementing interactions with non-

local parts of the model is to let each LP keep local reference copies of the non-local 

agents and environment which fall within its area of interest. These reference copies 

are updated when their information changes by exchanging messages with the LPs 

responsible for simulating their originals. Figure 2.4 illustrates this approach with an 

ABS that has been spatially partitioned between four LPs. Each LP in the diagram 

maintains a copy of a portion of the non-local environment that borders on its own as 

well as copies of non-local agents located within those regions. 

 

Figure 2.4: Areas of interest in a spatially partitioned ABS 



Distributed ABS simulation toolkits generally exchange information between LPs by 

message passing. Updating the non-local data in LPs can be accomplished using this 

method. Communication strategies for updating non-local data are mainly based on 

the publish-subscribe pattern. Using the publish-subscribe approach, each LP 

subscribes to receive updates relevant to the non-local copies it keeps. At each 

timestep, all LPs publish updates concerning their local agents to the other LPs that 

require those updates. This may result in unnecessary communication if the 

published data has not changed since the last timestep. Hence this strategy can be 

made more efficient by publishing only data that has changed since the previous 

timestep. Some updates might still be strictly unnecessary because the subscribing 

LPs may not actually have any use for the updated data at the timestep when it is 

delivered. However, regular updates help maintain a coherent view of global data 

across all LPs and prevent errors in distributed simulation outputs. 

2.5.2.3 Distributed ABS Time Synchronization 

In distributed ABS simulation toolkits, time synchronization is generally 

conservative, and LPs are only allowed to move forward to the next timestep when it 

is safe to do so. In this case, safety is guaranteed in two steps: first, LP performs all 

their local computations and then exchange the resulting updated data. When each 

LP has received all updates relevant to its areas of interest, it is safe for it to advance 

to the next timestep. Generally, distributed ABS simulations move all LPs forward 

together in lockstep using a synchronization barrier at the end of each timestep. 

Distributed simulation toolkits are useful and applicable to various types of 

simulation problems. The toolkits ease the process of implementing distributed 

simulations, providing the common functionality required for communication and 

time synchronization, and in some cases generating code from inputs such as state 

charts or XML. However, distributed simulation toolkits do not generally provide 

direct support for integration with other existing simulations that may or may not 

have been created using other tools. This limits the type of distributed simulation that 

can be created using this approach alone to a homogeneous simulation that uses one 

or more of the simulation paradigms supported by the toolkit being used. 

 



2.5.3 Custom-Built Distributed Simulations 

Apart from using toolkits, distributed simulation can also be custom-built by 

implementing the simulations in programming languages such as C++ or Java and 

making use of communication libraries such as the Message Passing Interface (MPI) 

(Gropp et al., 1999), Java Message Service (Hapner et al., 2002) and JGroups 

(JGroups, 2020). The custom-built approach is used for building specialized 

simulation software for particular problems in specific domains, as well as for 

creating ad-hoc distributed simulations. Many examples of custom-built distributed 

simulations are found in the literature of scientific high-performance computing. For 

example, Buchholz, Bungartz and Vrabec (2011) use C++ and MPI to implement a 

distributed molecular dynamics simulation, Ouro et al. (2019) implement a 

distributed computational fluid dynamics simulation using MPI, Mostaccio, Suppi 

and Luque (2005) create a custom distributed fish school simulation using MPI, 

Komann, Kauhaus and Fey (2005) use MPI communication in a custom distributed 

Cellular Automata simulation, and Plesser et al. (2007) simulate a biological neural 

network using MPI on a cluster of computing nodes. 

Message passing libraries such as MPI enable communication in distributed 

simulations by transmitting data packets containing messages over the 

interconnecting network between nodes. Message passing is the standard method for 

communication in distributed computing systems which do not share a common 

memory address space. Message passing libraries include functions which provide 

the programmer with various methods for sending and receiving messages between 

nodes, including point-to-point communication and collective communication such 

as broadcasting and multicasting. MPI is the most popular message passing library 

for high-performance computing applications and includes a rich and mature set of 

communication functions for a wide range of operations. Some of the main MPI 

functions include MPI_Send, MPI_Recv, MPI_Bcast and MPI_Barrier for sending, 

receiving, broadcasting and creating a synchronization barrier. Communication in 

MPI can be synchronous or asynchronous. In synchronous (or blocking) mode, the 

sender waits until the transmitted message has been received at the destination before 

it can proceed with further execution. In asynchronous (or non-blocking) mode on 

the other hand, the sender can continue along its execution path without waiting for 

the message to reach its destination.  



The custom-built distributed simulation approach is aided by communication 

libraries such as MPI and this approach works well for specific problems that require 

ad-hoc solutions or for creating specialized software for a particular domain, 

especially in scientific high-performance computing. Although this approach 

provides fine-grained control for the software developer, it also comes with the 

added responsibility of manually implementing measures to avoid deadlock and the 

responsibility of implementing measures to ensure that time advances are correctly 

synchronized to avoid corrupting simulation results. This approach is also limited in 

the sense that the end-product cannot easily be integrated with other simulations in a 

heterogeneous distributed simulation, although this can be addressed by building 

support for a common simulation interoperability standard into the custom-built 

software. 

 

2.6 Distributed Simulation Interoperability 

This section provides an overview of two leading standards for enabling 

interoperability between heterogeneous simulations, the High Level Architecture 

(HLA) and the Functional Mock-Up interface (FMI). 

2.6.1 The High Level Architecture (HLA) 

The High Level Architecture (HLA) is a standard for distributed simulation which 

originated as a military specification designed to facilitate the coordinated execution 

of simulation models (Kuhl, Weatherly and Dahmann, 1999). As explained by Topçu 

and Oğuztüzün (2017), some earlier military standards upon which the HLA was 

founded include Simulation Networking (SIMNET) (Miller and Thorpe, 1995), 

Distributed Interactive Simulation (DIS) (Hofer and Loper, 1995) and the Aggregate 

Level Simulation Protocol (ALSP) (Wilson and Weatherly, 1994) which were 

focused mainly on virtual simulations for training exercises and therefore involved 

real-time interaction between humans in virtual environments. The first version of 

the HLA specification was published in 1998 by the US Defense Modeling and 

Simulation Office (DMSO) as HLA 1.3. The HLA was eventually adapted into an 

IEEE standard which is currently developed by the Simulation Interoperability 

Standards Organization (SISO). The first IEEE version was published in 2000 as 



HLA 1516-2000, followed by a second version in 2010 known as HLA 1516-2010 or 

HLA-Evolved (IEEE, 2010a). The HLA standard provides a standard framework for 

integrating heterogeneous simulations and orchestrating their individual execution to 

create a joint distributed simulation. The framework provides a rich set of standard 

services including services for coordinating the exchange of data between the 

simulations and for regulating their advancement in simulation time with respect to 

one another.  The wide range of services provided by the HLA are also useful for 

coordinating the distributed execution of a partitioned homogeneous simulation. 

Consequently, HLA can be useful both for interoperability between heterogeneous 

simulations and for scaling up homogenous simulations.  To the latter end, for 

example, Lees et al. (2003) make use of the HLA for executing a distributed MAS 

simulation, and  Minson and Theodoropoulos (2004) use the HLA for executing 

distributed simulations created with the Repast Simphony ABS toolkit (North et al., 

2013). 

In HLA terminology, individual simulations are referred to as federates and the 

whole distributed simulation is referred to as a federation. The HLA standard also 

specifies a software component referred to as a Run-Time Infrastructure (RTI) which 

is responsible for coordinating the federation execution. The RTI controls all 

communication between federates and directs time synchronization in the federation 

execution. HLA federates exchange messages by means of HLA objects which 

persist throughout federation execution and HLA interactions which are transient 

events. HLA object classes and interaction classes function as structures for grouping 

attributes and provide a template for creating concrete instances of objects and 

interactions. However, HLA object classes and interaction classes and do not include 

any methods unlike normal OOP classes. An HLA Federation Object Model (FOM) 

is a federation-level document used to establish an agreement between federates 

regarding data involved in the federation execution, including object classes and 

interaction classes. Federates may also have a SOM (Simulation Object Model) to 

decentralize the definitions specific to individual federates. Figure 2.5 provides a 

high-level conceptual overview of the HLA, showing how the main components 

interact with one another. 



 

Figure 2.5: Overview of the HLA 

 

 The HLA standard is composed of three parts: Framework and Rules, Interface 

Specification and Object Model Template (OMT). 

2.6.1.1 The HLA Framework and Rules 

The HLA Framework and Rules (IEEE, 2010a) provides an overview of the HLA 

framework, defining its terminology, describing its components and establishing how 

the components relate to one another. It sets out ten HLA Rules that describe the 

behaviour of federations and expected behaviour from well-behaved federates, 

including rules about communication and time management. 

 The first set of five rules describe HLA requirements for federations:  

i. A federation’s FOM must conform to the OMT specification. 

ii. The RTI is not responsible for storing simulation objects, but 

individual federates are. 

iii. All data exchanges between federates use the RTI as a conduit. 

iv. All RTI–federate interactions must be done according to the Interface 

Specification. 

v. Federates cannot share joint ownership of a single object instance 

attribute. 

 



The second set of five rules describe HLA requirements for federates: 

vi. A federate’s SOM must conform to the OMT specification. 

vii. A federate can send or receive attribute updates according to the 

details in its SOM. 

viii. A federate can transfer or accept attribute ownership according to the 

details in its SOM. 

ix. A federate can determine the conditions under which it is necessary 

for it to provide attribute updates according to the details in its SOM. 

x. A federate manages its own local time but must be able to coordinate 

with other federates for communication and time synchronization. 

 

2.6.1.2 The HLA Federate Interface Specification 

The HLA Interface Specification (IEEE, 2010b) provides detailed definitions for 

several services that can be used by the RTI and federates to interact with each other 

and accomplish specific tasks. The services defined by the Interface Specification are 

grouped into seven classes. Each class of services includes a set of related calls that 

federates can use to interact with the RTI. Each service class also contains callbacks 

that the RTI uses to interact with federates. Each federate make calls to the RTI via 

an RTI Ambassador component. Federates also implement the necessary functions in 

a Federate Ambassador component to receive callbacks from the RTI. The seven 

service classes defined by the HLA Interface Specification are Federation 

Management, Declaration Management, Object Management, Ownership 

Management, Time Management, Data Distribution Management and Support 

Services. 

1. HLA Federation Management Services 

This group includes services for managing federations and federates 

including functions such as: 

• Creating and destroying federations  

• Adding and removing federates from a federation 

• Managing federation barrier synchronization points  

• Saving and restoring federation state.  



Figure 2.6 provides an overview of main services in the HLA Federation 

Management category. 

 

Figure 2.6: Overview of HLA Federation Management services 

2. HLA Declaration Management Services 

In the HLA, data exchange between federates is conducted according to the 

publish-subscribe pattern. Federates declare the types of data they wish to 

send and receive, and the RTI manages the routing of relevant updates to 

appropriate federates during federation execution. This arrangement ensures 

that federates are anonymous to one another. A subscribing federate need not 

know the identities of the other federates that publish the data it requires, and 

a publishing federate does not need to keep a list of other federates that must 

receive the updates that it publishes during federation execution. Only the 

RTI needs to have the global view of publishers and subscribers, receiving 

and forwarding updates as necessary.  

The services in the Declaration Management group include functions to allow 

federates to inform the RTI regarding the types of object attributes and 

interactions they intend to publish or wish to subscribe to during federation 

execution. Figure 2.7 provides an overview of main services in the HLA 

Declaration Management category.  



 

Figure 2.7: Overview of HLA Declaration Management services 

3. HLA Object Management Services 

The services in the Object Management group are used for performing 

functions relevant to concrete instances of HLA objects and interactions 

including: 

• Federates registering new object instances with the RTI. 

• Federates discovering object instances that others have registered. 

• Deleting object instances. 

• Sending interactions and attribute value updates. 

• Receiving interactions and (reflecting) attribute value updates. 

• Specifying reliable or unreliable data transmission. 

As prescribed in the HLA Rules, federates store the data related to simulation 

objects. Object instances must be registered with the RTI before their 

attributes updated to the federation. Before a federate can register an object 

instance with the RTI, it must first declare that it wishes to publish the 

relevant object class attributes. When a federate registers the object instances 

which it owns with the RTI, the RTI creates a handle which is a unique 

identifier for each object instance. The federate can then use the unique 

handles to refer to those specific object instances in future calls to the RTI. 

The RTI also forwards registered object instance handles to other federates 

that have subscribed to receive updates for the relevant object class attributes 

using the Discover Object Instance service. Figure 2.8 provides an overview 

of main services in the HLA Object Management category. 



 

Figure 2.8: Overview of HLA Object Management services 

4. HLA Ownership Management Services 

As prescribed by the HLA Rules, each object instance attribute can be owned 

by at most one federate. Only the owner federate will be granted permission 

to send the relevant attribute value updates for the object instance. When a 

federate registers a new object instance with the RTI, that federate is the 

default owner of the object instance attributes which it registers. However, 

ownership of object attributes can be transferred from one federate to another 

by means of the functionality provided through HLA Ownership 

Management services. Using these services, a federate may divest its 

ownership of an object instance attribute either unconditionally or on the 

condition that the RTI first searches for a suitable federate willing to take 

ownership. Only federates that have declared their intention to publish the 

relevant object class attribute can assume ownership of the divested object 

instance attribute. A federate may also make a request to acquire ownership 

of an object instance attribute that is already owned by another federate or 

that has previously been divested by another federate and has no owner. 

Figure 2.9 provides an overview of main services in the HLA Ownership 

Management category. 



 

Figure 2.9: Overview of HLA Ownership Management services 

5. HLA Time Management Services 

An HLA federation execution proceeds according to a logical time axis. At 

any point during federation execution, each federate can be at a different 

logical time, coordinated by the RTI. Federates joined to a federation may be 

time-regulating, time-constrained, both or neither. Time-regulating federates 

can influence the flow of logical time in the federation execution by sending 

timestamped messages to the RTI. Federates that are not time-regulating can 

send only messages that do not include any timestamp information. Time-

constrained federates can observe the flow of logical time in the federation 

execution by receiving timestamped messages from the RTI. Federates that 

are not time-constrained can receive messages that do not have any 

timestamp information, as well as messages that were originally timestamped 

but have had the timestamp information stripped away by the RTI. 

In the HLA, federates exchange messages with one another by using Object 

Management services. Services such as Update Attribute Values and Send 

Interaction are used for sending messages, while services such as Reflect 

Attribute Values and Receive Interaction are used for receiving messages. 

Using these services, messages may be sent and received either in Time 

Stamp Order (TSO) or Receive Order (RO). In order to send a TSO message, 

the sending federate must be time-regulating and must supply a logical 

timestamp together with the message. In order to receive a TSO message, the 

receiving federate must be time-constrained. For subscribing federates that 

are not time-constrained, the RTI converts TSO messages into RO messages 

as appropriate. 

Federates move forward in logical time by requesting permission from the 

RTI using Time Management services such as Time Advance Request (TAR) 



and Next Message Request (NMR). The RTI responds to such requests by 

first delivering any necessary TSO messages. When all TSO messages have 

been delivered and it is safe to honour the request to move forward in logical 

time based on the states of all time-regulating federates, the RTI then notifies 

the requesting federate using the Time Advance Grant (TAG) service. 

Although this approach to time synchronization is conservative in nature, it is 

also possible to implement optimistic synchronization using HLA Time 

Management services. For example, Ferenci, Perumalla and Fujimoto (2000) 

perform optimistic synchronization in HLA using their Federated Simulations 

Development Kit (Georgia Tech, 2001) to develop an RTI that implements a 

subset of HLA Time Management services including Retract, Request 

Retraction, Flush Queue Request and Time Advance Grant.  

Figure 2.10 provides an overview of services in the HLA Time Management 

category. 

 

Figure 2.10: Overview of HLA Time Management services 

6. HLA Data Distribution Management Services 

Federates subscribe to receive updates concerning relevant object class 

attributes and interaction classes using HLA Declaration Management 

services. However, there are no mechanisms in the Declaration Management 

services that allow federates to subscribe to updates for specific object 

instance attributes or specific interaction instances. On the receiving end, this 

may result in federates receiving an excessive number of updates concerning 

object instances in which they have no interest. On the transmission end, this 

can result in federates sending instance updates which none of the other 



federates needs. HLA Data Distribution Management (DDM) services 

provide additional functionality that helps to further refine the sending and 

receiving of messages during federation execution by filtering out irrelevant 

updates concerning specific object instance attributes and interaction 

instances. 

HLA DDM filtering is accomplished by the use of publication and 

subscription regions. A region is composed of a set of defined ranges of 

values for specified class attributes. Each range is a continuous interval that 

specifies a lower bound and upper bound for a class attribute. A range must 

fall within the minimum and maximum bounds for the given class attribute, 

which is specified as a dimension. The default region covers the full range of 

all dimensions. Federate can publish updates to regions they specify or 

subscribe to receive updates from custom regions they define. When the 

publication region of one federate overlaps with the subscription region of 

another, the RTI routes the relevant updates from the sender to the recipient. 

Using these means, DDM can be used to filter out updates concerning 

instance attribute values which fall outside the region of interest of 

subscribing federates. 

Figure 2.12 shows four example DDM publication and subscription regions 

based on two dimensions X and Y. From the diagram, Pub_Region_2 does 

not overlap with either subscription region. Consequently, the RTI will not 

forward any Pub_Region_2 updates to federates in either of the subscription 

regions. Similarly, as Sub_Region_1 does not overlap with either of the 

publication regions, a federate in Sub_Region_1 will not receive any updates 

from the two publication regions. However, Pub_Region_1 and 

Sub_Region_2 do overlap with one another. This means that all updates 

published to Pub_Region_1 will be forwarded by the RTI to Sub_Region_2. 

This includes updates in Pub_Region_1 with attribute values that fall outside 

the ranges in Sub_Region_2. 



 

Figure 2.11: HLA DDM publication and subscription regions 

Figure 2.12 provides an overview of main services in the HLA DDM 

category. 

 

Figure 2.12: Overview of HLA Data Distribution Management services 

 

7. HLA Support Services 

The support service group includes calls that enable federates to query 

information from the RTI that is relevant to the state of federation execution. 

This includes services to retrieve handles for various components of the 

federation such as object classes and interaction classes. This group also 

includes services to retrieve various settings such as upper and lower bounds 

for DDM ranges.  

Figure 2.13 provides examples of HLA Support Services. 



 

Figure 2.13: Overview of HLA Support services 

2.6.1.3 The HLA Object Model Template 

The HLA Object Model Template (OMT) (IEEE, 2010c) specifies a standard 

structure for federation data description documents such as FOMs and SOMs. The 

OMT defines the structure of FOM and SOM components such as object classes and 

their related attributes, interaction classes and their related parameters, data 

distribution dimensions, ranges and regions. It is on the basis of the structures 

defined by the OMT standard that FOM and SOM documents are used to specify 

details of federation components. 

2.6.1.4 HLA Federation Execution 

Figure 2.14 shows an example of an HLA federation execution with two federates 

that are both time-regulated and time-constrained. The illustration uses services from 

the categories discussed in previous sections. Federation Management services are 

used for high level federation execution functions including Connect, Create 

Federation Execution, Join Federation Execution, Resign Federation Execution and 

Destroy Federation Execution. Declaration Management Services are used to declare 

publication and subscription interests including Publish Object Class Attributes, 



Subscribe Object Class Attributes, Publish Interaction Class and Subscribe 

Interaction Class.  

 

Figure 2.14: Example HLA federation execution 

Object Management services are used to create instances and update values, 

including Register Object Instance, Discover Object Instance, Update Attribute 

Values, Send Interaction, Reflect Attribute Values and Receive Interaction.  



Time Management services are used to set the time-regulation and time-constrained 

status of federates, as well as for coordinating time advance, including Enable Time 

Regulation, Time Regulation Enabled, Enable Time Constrained, Time Constrained 

Enabled, Time Advance Request and Time Advance Grant. 

2.6.1.5 RTI Implementations 

Various RTI implementations have been developed by commercial and open-source 

projects using the specifications in the HLA standard. RTI implementations may be 

fully compliant or partially compliant with the version of the HLA standard they 

support and may include the full set of services or offer a subset of the services 

defined in the Federate Interface Specification. Figure 2.15 provides a list of some 

popular commercial and open-source RTI implementations. The performance of a 

federation execution can vary depending on the RTI implementation used, as shown 

in experimental work by Fujimoto and Hoare (1998), Malinga and Le Roux (2009) 

and Gutlein et al. (2020). 

 

Figure 2.15: RTI Implementations 

  



2.6.2 The Functional Mock-Up Interface 

The Functional Mock-Up Interface (FMI) is a simulation interoperability standard 

developed by the Modelica Association. The FMI is popular in industry applications 

for supporting the integration of heterogeneous simulations. The FMI standard is 

developed with two main objectives in mind (Blochwitz et al., 2011): 

1. FMI for Model Exchange 

To produce representations of simulation models in a standard format such 

that the models can be used by different simulation tools apart from the one 

in which they were originally created. 

 

2. FMI for Co-Simulation 

To enable interoperability between heterogeneous simulations by providing 

an interface specification that enables coordinating data exchange and time 

synchronization among the heterogeneous simulations. 

 

In the FMI, individual simulations are referred to as Functional Mock-up Units 

(FMUs). The FMI for Co-Simulation standard includes a component called the 

master algorithm which performs the function of coordinating the execution of the 

FMUs. FMUs cannot communicate directly with one another, but only through the 

master. The role of the master algorithm is similar to that of the RTI in the HLA. As 

with the HLA, the FMI standard provides specifications for an interface between the 

master and the FMUs consisting of function calls. However, unlike the HLA RTI, the 

FMI does not prescribe how interactions between the master and FMUs should 

proceed for the purposes of time synchronization and data exchange. The 

implementation of a master algorithm that performs these functions appropriately is a 

task that is left up to the simulation developer.  

2.6.3 Hybrid HLA and FMI 

Although the HLA and FMI are developed separately, it can be useful to combine the 

strengths of these two leading simulation interoperability standards. While the FMI is 

more widely supported in industry applications, it lacks a generic master algorithm 

and is geared towards coordinating FMUs together on a single computing node. On 

the other hand, the HLA has more support in military than in industry applications 



but has the advantage of including a generic RTI with a rich set of services for 

coordinating federates across multiple computing nodes. Some work has been done 

to fuse the two standards and take advantage of their individual strengths. For 

example, Awais et al. (2013) employ the HLA RTI as a generic master to coordinate 

the execution of FMUs. (Neema et al., 2014) follow a similar approach and 

demonstrate a method for automatically wrapping FMUs as HLA federates. 

 

  



2.7 Communication in Distributed Simulation 

As discussed in section 1.1, the work in this thesis is primarily concerned with the 

efficient management of communication in large-scale distributed Urban 

Simulations. Communication in distributed simulations is necessary for data 

exchange and time synchronization. However, the additional overheads due to the 

need for communication can present a significant bottleneck to the performance of 

distributed simulations. Therefore, it is important to make efficient use of the 

communication bandwidth available on the interconnecting network between 

computing nodes. 

2.7.1 Message Types 

As discussed in section 2.4, time synchronization is necessary for producing correct 

results from distributed simulations. Both conservative and optimistic 

synchronization approaches employ communication to achieve their goals. Time 

synchronization messages carry information that is required for the synchronization 

algorithms to work properly. Apart from time synchronization information, 

distributed simulation messages are also used for the purpose of exchanging 

information related to simulation entities in order to maintain a consistent global 

view of data. The two concerns are usually related, as data received at the wrong 

time can lead to causal errors due to out-of-order execution. In respect of the two 

concerns of time synchronization and simulation data exchange, distributed 

simulation messages may be of three types: 

1. Time and Data 

These are messages that contain both time synchronization information and 

data concerning simulation entities. These are usually in the form of 

timestamped messages. For example, PDES timestamped events contain 

information that is relevant for time synchronization as well as data 

concerning the event to be processed. Similarly, HLA time-regulating 

federates send timestamped messages that carry attribute updates relevant to 

simulation objects as well as logical time information that influences 

decisions by the RTI to send TAGs in response to TARs from other time-

constrained federates joined to the federation execution. 

 



 

2. Time Only 

These are messages that contain only information pertinent to time 

synchronization. For example, conservative algorithms can employ null 

messages which carry timestamp information used to provide additional 

lower bound time guarantees that help to prevent deadlocks from occurring 

during distributed execution. Optimistic algorithms use anti-messages which 

carry information about previous messages whose effect must be cancelled 

during cascading rollbacks when causal errors are detected. Another example 

of this type of message is the use of TARs and TAGs in the HLA for 

requesting and granting permission for federates to move forward in time. 

 

3. Data Only 

These are messages that carry information about simulation entities but do 

not include any time-related information. For example, HLA federates that 

are not time-regulating can only send RO messages which have no timestamp 

information and do not affect time synchronization decisions made by the 

RTI. Similarly, federates that are not time-constrained can only receive RO 

messages. A situation where this may be appropriate is in the case of an 

observer federate that aggregates data from other federates during distributed 

execution. 

2.7.2 Communication Message Volume 

The volume of communication messages required during distributed execution may 

vary from one distributed simulation to another depending on factors such as the 

synchronization algorithm used, the number of entities involved in the simulation, 

the partitioning strategy and whether the computations required in the simulation are 

tightly coupled and require frequent communication or loosely coupled and 

communication is consequently infrequent. 

As regards messages solely devoted to time synchronization, reducing the volume of 

communication depends on the synchronization algorithm. As discussed in section 

2.4, strategies for addressing this issue include conservative algorithms reducing the 

volume of null messages by only transmitting them on request, and optimistic 



algorithms employing lazy event cancellation to prevent sending unnecessary anti-

messages. 

With respect to messages that carry information relevant to both time 

synchronization and simulation data, one approach to reducing communication 

overheads in distributed simulations is by the use of dead reckoning algorithms. 

Dead reckoning algorithms have been used extensively in joint training simulations 

that are based upon the HLA, DIS and other related standards (Lin, Blair and 

Woodyard, 1997), (Miller and Thorpe, 1995). Using the dead reckoning approach, 

each federate needs to keep internal approximate models of external objects that it 

has an interest in but does not own. Federates can then make local approximations to 

estimate an external object’s attributes based on its expected behaviour. This local 

approximation can serve as a substitute in place of a message containing an update of 

the external object’s attributes. The updates only become necessary when the owning 

federate detects that an object’s simulated behaviour deviates significantly from its 

approximation on other federates. An example where this method is useful is a 

spatially partitioned scenario in which each federate simulates a number of vehicles 

moving across a terrain and each federate needs to keep track of the positions of 

vehicles in other federates. The position of an external vehicle moving at a constant 

velocity can be estimated locally on tracking federates as long as it does not perform 

actions such as changing direction, accelerating, decelerating, or stopping. In cases 

like these, position updates for the vehicle can be provided in a message from the 

owning federate. Otherwise, it is not necessary to communicate position updates for 

the vehicle. This method is effective where communication can be substituted with 

additional local computation. However, the dead reckoning approach is not 

applicable in circumstances where accurate local approximations cannot be made to 

replace the simulation data delivered by communication messages.  

2.7.3 Disk Caching Alternative 

To supplement the discussion on reducing communication overheads, an alternative 

approach worth mentioning is the use of disk caching as a substitute for workload 

distribution across multiple computing nodes. The approach of disk caching has been 

applied to large-scale data processing (Kyrola, Blelloch and Guestrin, 2012) (Zhu, 

Han and Chen, 2015) (Ko and Han, 2018). However, there is a lack of application of 



this method in the literature to large-scale simulation, which includes additional 

considerations such as time synchronization. The disk caching approach involves 

caching portions of large-scale datasets to disk in cases where the entire dataset 

cannot be processed together due to memory constraints (Dementiev, Kettner and 

Sanders, 2008) (Imgrund and Arth, 2017). 

It could be argued that if the aim is to avoid communication over a network, this 

approach could be applied to a large-scale simulation whose configurations exceeds 

the memory requirements of a single computing node. This could be executed in a 

scheme where the simulation is partitioned into LPs that meet the memory 

constraints and are loaded into memory turn by turn in a round robin fashion, 

processed and cached back to disk. In such a scheme, the LPs could communicate 

with one another using shared memory. It could further be argued that the use of 

newer storage technologies such as SSDs could improve the I/O performance issues 

associated with reading and writing to traditional HDDs (Kyrola, Blelloch, and 

Guestrin 2012). Although such an approach would only require a single computing 

node, eliminate network communication overheads, and increase processor 

utilization, the scale to which this approach can be extended is limited as it depends 

on vertical scaling of disk storage rather than horizontal scaling. As simulation size 

grows very large, vertical scaling approaches practical limitations which can be 

overcome using the horizontal scaling approach (Appuswamy et al., 2013). In this 

case, horizontal scaling also has the added advantage of adding more processing 

power to share the total computational workload, which is not possible with vertical 

scaling. 

It could also be argued that a combination of the disk caching approach with 

horizontal scaling could be applied in an approach where each computing node 

processes multiple LPs to increase processor utilization and aid latency hiding, where 

useful computational tasks are performed to keep the processor busy while waiting to 

receive communication messages over the interconnecting network. Although this 

argument has merits and would be a potentially useful direction for exploration, the 

primary focus of this thesis is on managing communication efficiently for a large-

scale simulation running on a distributed system. Therefore, full attention is given to 

communication between the computing nodes without detailed scrutiny of the local 

execution schemes that may be possible on individual nodes. 



2.7.4 Communication Networks 

As noted in previous sections, the volume of messages exchanged during distributed 

execution can affect performance by increasing communication time.  

Communication time also depends on the interconnecting network technology 

including aspects such as the physical medium and the network protocol used. 

Variance in performance between different network technologies is shown in 

experiments by Bell et al. (2003) and Fujimoto and Hoare (1998). Some high-level 

properties of the network that affect communication time are bandwidth, latency and 

error rate. Bandwidth is a measure of throughput capacity calculated as the number 

of bits transmitted per unit time. Latency is a measure of speed calculated as the 

delay between the time a bit leaves the sender and the time it arrives at the recipient. 

Depending on whether a reliable or unreliable communication protocol is used, data 

that is corrupted or lost in transit may need to be re-transmitted. A high error rate 

results in a large number of re-transmissions and poor network performance. 

Although performance differences may result from using different networking 

technologies, the work in this thesis focuses on making efficient use of the available 

network resource within its given constraints and does not attempt to optimize for 

any specific networking technology. 

2.8 Distributed Performance Models 

A variety of approaches have been proposed in the relevant literature that are useful 

for estimating the performance of distributed computations. This section provides an 

overview of the main existing approaches. Each approach considers several factors 

relevant to distributed performance. Some factors are shared between them, while 

others are unique to specific approaches. All approaches make assumptions and 

simplifications that may render them more suitable for some distributed applications 

than for others. 

2.8.1 The Parallel Random-Access Machine 

The Parallel Random-Access Machine (PRAM), introduced by Fortune and Wyllie 

(1978) is a model of parallel computation that consists of multiple cooperating 

processors communicating via shared memory. The PRAM has several built-in 

assumptions which help it to realize a simplified approach to estimating the 

performance of parallel computations. One of the assumptions it makes is that no 



additional cost is incurred due to communication between processors during parallel 

execution. The PRAM also assumes that synchronization cost is negligible, and no 

additional effort is required to synchronize the execution of the processors. The 

application of the PRAM model is suitable for shared memory systems where 

processors execute in lockstep with to one another, and this fits in well with Single 

Instruction Multiple Data (SIMD) processing. However, due to these inherent 

assumptions, it is not practical for distributed simulations, where communication 

costs and time synchronization costs can be significant concerns. Despite these 

shortcomings, the PRAM has been influential in the development of subsequent 

models of parallel computation that address some of its limitations. 

2.8.2 The Bulk Synchronous Parallel Model 

The Bulk Synchronous Parallel (BSP) model introduced by Valiant (1990) is a model 

of parallel execution composed of three essential elements: 

• Processors that perform the required computations. 

• A router that delivers messages between the processors. 

• A method for performing global barrier synchronization at regular intervals. 

In the BSP model, parallel execution proceeds according supersteps, during which 

three stages are conducted in sequence:  

• Computation 

• Communication 

• Global barrier synchronization 

Figure 2.16 provides a conceptual illustration of the three stages in a single BSP 

superstep. 



 

Figure 2.16: Conceptual illustration of a BSP superstep 

Unlike in the PRAM model, the BSP model includes both communication costs and 

synchronization costs in its distributed performance estimates. Also, processors in 

the BSP model are not assumed to work in lockstep as they are in the PRAM. 

Because of these considerations, the BSP is applicable to Multiple Instruction 

Multiple Data (MIMD) processing and can offer more realistic performance 

estimates for distributed simulations. The BSP model is useful for estimating an 

upper bound on total execution time. It achieves this result by treating each of the 

three stages of a superstep as one bulk operation that covers all of the individual 

operations conducted by the processors. Therefore, the total cost of each super-step is 

an upper bound on the sum of computation cost, communication cost and barrier 

synchronization cost. Calculating costs in the BSP model relies on the following 

parameters: 

• S: Number of supersteps. 

• 𝑃: Number of processors. 

• g: Minimum time required to send or receive a message between processors. 

• l: Synchronization cost in a superstep. 

• h𝑆: Maximum number of messages sent or received by any processor in a 

superstep s. 

• wS: Maximum time for work completed by any processor in a superstep s. 

For each superstep s, an upper bound on communication cost is determined by: 

communication costS =  hS  ×  g 



For each superstep s,  an upper bound on the total cost is determined as: 

total costS  =  wS  + h𝑆  ×  g +  l 

For all supersteps, an upper bound on the total cost is determined as: 

total cost =  W +  H ×  g +  S ×  l 

Where: 

W =  ∑ ws

S

s = 1

 

and 

H = ∑ hs

S

s = 1

 

Some parameters, such as S  and wS  depend on the simulation application. Other 

parameters such as h𝑆  depend on the communication strategy during distributed 

execution. The value of the parameter l  depends on the cost of barrier 

synchronization. The parameter g, also called the bandwidth factor, depends on the 

properties of the interconnecting network, and can be measured empirically. As g is 

measured empirically, the BSP model is non-specific with respect to the topology 

and protocols used in the interconnecting network. 

2.8.3  The LogP Model 

The LogP model introduced by Culler et al. (1993) is a model of parallel computing 

introduced after the PRAM and BSP models. Similar to the BSP model, the LogP 

model considers communication and synchronization costs in its performance 

estimation. The LogP model relies on the following parameters: 

• L: Upper bound on the latency of message transmission. 

• 𝑜: The overhead associated with communication operations. 

• g: Lower bound on the time gap between send operations or between receive 

operations. 

• 𝑃: Number of processors. 



Figure 2.17 provides an illustration showing LogP model parameters in an 

interaction between two processors. Unlike the BSP model, the LogP model is not 

limited to the use of barriers as the sole method for synchronization. 

 

Figure 2.17: LogP model interactions 

The LogGP model proposed by Alexandrov et al. (1995) extends the LogP model to 

account for performance differences due to long messages. This extension is applied 

with the recognition that communicating with long message can lead to better 

performance than multiple equivalent short messages. The LogGP model relies on 

the four parameters of the LogP model together with a new parameter, 𝐺, the time 

gap per byte. 

Another notable extension is the LogGPS model  introduced by Ino, Fujimoto and 

Hagihara (2001) which extends the LogGP model to account for additional overhead 

incurred due to synchronous or blocking communication. 

2.8.4 Other Approaches 

From the systematic review conducted by Flores-Contreras et al. (2020) approaches 

for estimating the performance of parallel applications include analytical methods, 

statistical methods and trace-based methods.  

Analytical methods are equation-based and can produce accurate performance 

evaluations. However, a new set of equations needs to be crafted for each 

application, relying on application-specific domain knowledge to produce good 



accuracy. With equation-based approaches, it can be difficult to account for non-

deterministic behaviour in parallel applications. 

Statistical approaches attempt to use regression-based methods or machine learning 

methods to fit a statistical model to the performance characteristics of the parallel 

application. Although such approaches can produce good estimates, they are data-

intensive and require substantial amounts of performance data to fit an accurate 

statistical model. Multiple executions of the parallel application need to be conducted 

to provide enough data for this purpose. As with the analytical approach, it can be 

difficult to account for non-deterministic behaviour in parallel applications when 

using statistical approaches. 

Trace-based methods attempt to replicate the behaviour of the parallel application, 

relying on trace data recorded from previous executions. As with statistical methods, 

this approach is data intensive and requires multiple executions of the parallel 

application to replicate application behaviour accurately. Trace-based methods may 

also require setting up a system that scales similarly to the one being replicated. 

 

  



3 METHODOLOGY 

3.1 Overview 

Chapter 1 set out the aim for this research work as the development of a framework 

for evaluating the performance of distributed simulations. There, a list of objectives 

was also provided which will be carried out in order to accomplish the stated aim. 

This chapter provides an overview of the systematic approach adopted to address the 

stated aim and objectives. The framework development is carried out by first 

implementing selected distributed simulations in order to identify the major 

components involved. Experiments will be conducted using the implemented 

simulations to identify key factors that exert significant influence on communication 

time during distributed execution. The framework will consider alternative 

communication strategies which are aimed at reducing the communication overheads 

in distributed simulations. Following this approach, appropriate case studies will be 

used from the Urban Simulation field which meet the requirements that were set out 

in the aim and objectives. 

One of the listed objectives is to develop distributed simulations for conducting 

experiments. The approach adopted for developing these distributed simulations is 

based on the High Level Architecture (HLA) standard which was introduced in 

section 2.6. However, as noted in Chapter 2, the HLA is not the only possible 

approach. In Chapter 2, other potential methods for implementing distributed 

simulations were discussed. Alternative approaches include the use of distributed 

simulation toolkits (e.g. Repast HPC, D-MASON and FLAME), custom 

development using communication libraries (e.g. MPI), other distributed simulation 

standards (e.g.  FMI). The HLA was selected from among the alternative approaches 

due to advantages such as maturity of the standard, support for scalability when 

executing large homogeneous simulations, support for interoperability between 

heterogeneous simulations, extensibility, flexibility, inclusion of standard procedure 

for time synchronization, availability of supporting documents such as manuals and 

standard specifications, and availability of software. Although there are merits to 



basing the distributed simulation implementation on the HLA standard, one 

limitation of using this approach is that additional development work needs to be 

done for existing simulations that are not already HLA-compliant to bring them in 

line with the standard, modifying them to observe the HLA Rules and function as 

well-behaved federates during federation execution. In many cases, this requires 

having direct access to the application code or developing a middleware capable of 

translating between the RTI and the simulation application. However, this 

disadvantage is not peculiar to the HLA alone and is shared by all the other 

approaches discussed.  

3.2 Distributed Simulation Approach 

The following sections expand on the points raised in the previous section, 

highlighting the main advantages of employing the HLA and comparing it to other 

potential approaches for implementing distributed simulations. In the following 

sections, the factors chosen to compare the alternative distributed simulation 

approaches reflect practical concerns for enabling the experiments proposed in the 

aim and objectives. 

3.2.1 Distributed Simulation Standard 

It is useful to build the work on a mature distributed simulation standard as this 

opens it up to support other existing simulation applications that are compliant with 

the standard. The HLA and FMI share this advantage as both are distributed 

simulation standards with detailed specifications. However, the other approaches 

discussed do not have this advantage. Figure 3.1 compares the HLA with other 

approaches in relation the standardization of their approach to distributed simulation. 

The MPI library is a mature standard for message passing in distributed systems. 

However, it is targeted towards distributed applications in general, and does not 

directly address concerns specific to distributed simulations such as time 

management and interoperability. 

 

Figure 3.1: Standards – HLA and other approaches 



3.2.2 Homogeneous Simulation Scalability Support 

All the approaches discussed offer support for scaling up computing resources to 

coordinate the execution of a large-scale homogeneous simulation that has been 

partitioned. The degree of support offered various from one approach to another. 

Scalability support is the main goal of some approaches. For example, simulation 

toolkits such as Repast HPC and FLAME are primarily designed to support 

homogeneous simulation scalability. Similarly, most custom distributed simulations 

in the literature that employ MPI on HPC have this goal in mind. Other approaches 

such as HLA and FMI also offer support for this goal. Although it not their main 

concern, it is not difficult to adopt them for this purpose. Figure 3.2 compares the 

HLA with other approaches in relation to their support for homogeneous scalability. 

 

Figure 3.2: Scalability – HLA and other approaches 

3.2.3 Heterogeneous Simulation Interoperability Support 

The HLA and FMI distributed simulation standards are purposely designed to allow 

interoperability between heterogeneous simulations and consequently define 

specifications that facilitate the coordination of such simulations. The other 

approaches discussed do not have this facility and may require significant 

development work to enable this functionality. The support or lack of support for 

interoperability affects the extensibility of the approach. This is evident in cases 

where existing simulation tools need to be connected together conduct simulation 

experiments. Figure 3.3 compares the HLA with other approaches in relation to their 

support for heterogeneous interoperability. 

 

Figure 3.3: Interoperability – HLA and other approaches 



3.2.4 Standard Time Synchronization 

As discussed in section 2.4, time synchronization is an essential element in 

distributed simulation which sets it apart from other distributed computing 

applications. The HLA Time Management services, introduced in section 2.6 

prescribes basic functionality that can readily be employed to perform conservative 

synchronization, as well as additional services that can be useful for implementing 

optimistic synchronization. Distributed simulation toolkits such as Repast HPC and 

D-MASON also include mechanisms for synchronization. Although the FMI 

provides functions that can be used for time synchronization purposes, it does not 

offer any specification for how synchronization is to be done. Time synchronization 

is a function performed by the master algorithm. However, as discussed in section 

2.6.2, there is no generic FMI master algorithm, and the implementation details are 

left to the developer (Neema et al., 2014). Custom approaches using the MPI library 

also do not have prescribed methods for time synchronization, although this can be 

developed using methods from the library to drive simulation time forward while 

avoiding deadlocks and preserving causal order. Figure 3.4 compares the HLA with 

other approaches in relation to their inclusion of a standard procedure for time 

synchronization. 

 

Figure 3.4: Time Synchronization – HLA and other approaches 

3.2.5 Supporting Documentation 

Supporting documentation in the form of specifications, manuals, forums and 

email lists are helpful aids for development. Without such documentation, 

development work can prove difficult. It is also helpful to have a development 

community that is active and available to offer peer-to-peer support. Detailed 

specifications exist for the HLA and FMI which are useful for development, as 

well as related websites and GitHub projects. The availability of supporting 

documentation for distributed simulation toolkits varies from one toolkit to 

another. While Repast HPC offers detailed documentation and maintains an 

email support group, not all toolkits have these advantages. Widely used 



communication libraries such as MPI have detailed documentation that can serve 

as a useful resource for development. Figure 3.5 compares the HLA with other 

approaches in relation to the availability of their supporting documentation. 

 

Figure 3.5: Documentation – HLA and other approaches 

• Availability of Key Software: 

The availability of relevant software is also an important consideration in 

selecting the approach. The HLA provides specifications regarding how the RTI 

functions to coordinate a distributed simulation execution. As discussed in 

section 2.6, several alternative RTI implementations exist, some of which have 

been developed as open-source projects and others for commercial interests. 

Unlike with the HLA, the master algorithm for FMI which coordinates the FMUs 

is developed on an ad hoc basis. Several open-source distributed simulation 

toolkits exist including Repast HPC, FLAME and D-MASON. Similarly, 

multiple versions of the MPI library have been developed by open-source 

projects, based on the specifications set out by the MPI standard. Figure 3.6 

compares the HLA with other approaches in relation to the availability of 

supporting software. 

 

Figure 3.6: Software – HLA and other approaches 

The features discussed in the preceding sections are important considerations for 

selection of the approach. Although other methods are also applicable to this work, 

the HLA was selected as the most workable approach given the considerations 

discussed. 



3.2.6 Choice of Middleware 

The previous sections have provided justification for employing the HLA as an 

approach to implementing distributed simulations. As discussed, the RTI is a key 

component of the HLA of which several implementations have been developed based 

on HLA specifications. Some RTI implementations are developed by open-source 

projects and others are commercial. An RTI implementation may support more than 

one version of the HLA standard, or it may support a particular version of the 

standard, such as HLA 1.3, HLA 1516-2000 or HLA 1516-2010. While some 

implementations offer the full range of HLA services for the standards they support, 

other RTI implementations offer a limited set of functions. Some examples of RTI 

implementations are Portico RTI, CERTI, OpenRTI, Open HLA, MAK-RTI, and 

Pitch pRTI. From the available options, the Portico RTI has been selected for use in 

experiments due to its open-source status, its active development community on 

GitHub, and its support for an extensive range of HLA services. Although the open-

source Portico RTI implementation does not cover the entire spectrum of HLA 

services, the set of services it does implement are adequate for the development of 

the distributed simulation experiments.  

3.3 Communication Management Strategies 

The primary of the planned framework is to provide a means for estimating the 

execution performance for distributed simulations. The framework will consider 

factors related to communication during simulation execution. As there are various 

strategies that can be applied to improve communication performance in distributed 

simulations, the framework will consider alternative methods of communication 

management. The performance differences from the application of these methods 

should be reflected in the results produced from an implementation of the 

framework. The effects of various strategies on communication time during 

distributed execution will be evaluated by experimentation. The strategies considered 

are discussed in the following sections. These methods are neither exhaustive nor 

mutually exclusive and can be used in combination.  

3.3.1 Approximation Strategy 

This strategy is a generalized form of the dead reckoning method discussed in section 

2.7. As with the dead reckoning method, this strategy attempts to perform local 



computations to approximate the properties of external objects that are not present 

locally, but which are essential to the local simulation due to their interactions with 

local objects. This eliminates the need to exchange update messages regarding the 

properties of such external objects. As the data dependencies for performing the 

required calculations are incomplete, the resulting properties are only an 

approximation. Depending on the simulation application, this approach could result 

in a significant loss of accuracy. The resulting degree of accuracy depends on how 

well external objects can be approximated locally. In distributed simulations where 

the behaviour of external objects is unpredictable, accuracy is likely to be more 

heavily impacted than situations where external behaviour can be accurately 

predicted. Heterogeneous distributed simulations in particular are likely to include 

more variations in object types, each with a different behaviour. The behaviour of 

some objects may be easier to predict than others. In such cases, this strategy can be 

limited to those external objects whose behaviour can be predicted accurately. 

Update messages will still need to be exchanged for external objects whose 

behaviour cannot easily be predicted. 

3.3.2 Message Elimination Strategy 

This strategy is similar to the approximation method because it prevents exchanging 

unnecessary messages. However, it does not try make predictions of the behaviour of 

external objects. Instead, messages are eliminated if it can be estimated that the 

impact of their content on local computations will be insignificant. Identifying and 

preventing such non-essential communication results in reducing the overall volume 

of messages exchanged during distributed execution. Practically, identifying non-

essential messages depends on the characteristics of the particular simulation 

application under investigation. This strategy can result in a loss of accuracy if the 

method for judging the impact of message contents is unreliable. Some high impact 

messages may be blocked while allowing low impact messages to transfer. However, 

there will be little impact on accuracy if a reliable method can be found to distinguish 

between high impact messages and low impact ones.  

If a reliable method exists for separating high and low impact messages, the potential 

performance gains from using this method depend on the characteristics of messages 

exchanged during distributed simulation execution. In cases where many messages 



are low impact and few are high impact, communication overheads can be reduced 

significantly. On the other hand, there will be little performance gain in cases where 

most messages are essential for computations. The diagram in Figure 3.7 illustrates a 

scenario showing a simple application of this method. Messages are exchanged 

between federates at every time step. However, at certain timesteps all messages are 

determined to be low impact. These are indicated by the crossed-out arrows. No 

messages are exchanged at those time steps, and this essentially makes the federates 

more loosely coupled. This simple scenario is practical in some cases. For example, 

in physical Building Energy Simulations, daylight computations will not be 

conducted at night when there is no solar radiation. Therefore, all attribute update 

messages solely intended for daylight computations can be eliminated for timesteps 

that occur at night. 

 

Figure 3.7: Message elimination strategy 

3.3.3 Batching and Compression Strategy 

As discussed in section 2.7, the performance of the interconnecting network is 

constrained by factors such as latency and bandwidth. The batching and compression 

strategy attempts to make efficient use of available network resources by combining 

multiple individual messages into a single message batch. The message batch is 

compressed before transmission to reduce the total size of data that needs to be 

transmitted over the network. This strategy can be effective in cases where high 

compression ratios can be achieved. It has the advantage of enabling the 

communication data to be transmitted in fewer packets, avoiding the extra overhead 

incurred in appending metadata (such as headers) to multiple smaller packets. This 

strategy has the disadvantage that additional time is required at the sender to pool 

messages together for batching. If all messages required to be included in a batch are 

not readily available at transmission time, this can add some delay to the process. 

This strategy also has the disadvantage that additional time is required at the sender 



for compressing the message batch into a compact form. Compression time and final 

compressed size will vary depending on the contents of messages and the 

compression algorithm employed. It would be ideal to obtain a high compression 

ration with low compression time. In practice, there is a trade-off between 

compression ratio and compression time. At the receiving end, additional time is also 

required for de-compressing and un-batching messages. The performance of this 

strategy also depends on the maximum size of data that can be transmitted in a single 

packet on the interconnecting network.  

A best-case scenario for the batching and compression strategy is the scenario where 

all messages can be combined into a single packet for transmission. This would make 

efficient use of the available network resource. A worst-case scenario is the case 

where the number of packets after batching and compression is equal to the number 

of original messages. In this scenario additional processing overhead is added 

without improving the efficiency of network resource usage. This scenario can occur 

in a case where each individual message is large, but message contents cannot be 

compressed further, yielding a low compression ratio.  

Unlike the approximation strategy and the message elimination strategy, the batching 

and compression strategy preserves all messages, assuming the compression 

algorithm is lossless. Therefore, this approach preserves the fidelity of the distributed 

simulation and does not result in a loss of accuracy. 

The diagram in Figure 3.8 provides an illustration for the batching and compression 

strategy, showing the process of combining individual messages together into 

batches, compressing batches to reduce total size and transmitting via packets. 

 



Figure 3.8: Batching and compression strategy 

3.3.4 Hybrid Strategies 

The three strategies discussed in previous sections are not mutually exclusive. 

Neither are they intended to represent an exhaustive list of communication strategies 

in distributed simulations. Two or more communication strategies can potentially be 

combined to produce a hybrid communication strategy. Such hybrid strategies will 

achieve the best results when used in contexts where each strategy can make a 

valuable contribution. Any hybrid strategy which includes one of the lossy strategies 

such as approximation or message elimination can result in a loss of accuracy in the 

simulation outputs. Where more than one lossy strategy is involved, the total loss of 

accuracy can potentially be higher than the loss due to any single strategy. 

 

3.4 Case Study Selection 

To shape the development of the framework, case studies from the domain of Urban 

Simulation will be used to conduct experiments. As discussed in Chapter 1, the 

Urban Simulation domain provides a variety of simulations that meet the 

requirements set out in the objectives: large-scale simulations that can be interoperate 

meaningfully in a simulation study. As set out in the objectives, two case studies are 

selected: a homogeneous distributed simulation and a heterogeneous distributed 

simulation. The following sections provide a brief overview of the selected case 

studies. A more detailed treatment is provided in Chapter 5. 

Case Study One considers an Urban Simulation which is capable of growing 

exceptionally large at city scale. At this scale, the computing resources required to 

execute the simulation exceeds the capacity of a single stand-alone computing node. 

Therefore, it is necessary to distribute the simulation workload among multiple 

computing nodes in order to enable the possibility of execution.  The simulation tool 

selected for Case Study One is the physical Building Energy Simulation tool 

CitySim. Multi-building simulation can be managed by CitySim using a single 

computing node when only considering a few hundred buildings. However, when 

considering thousands of buildings at city scale, memory requirements exceed the 

capacity of a single computer. Therefore, distributed simulation is necessary in order 

to use CitySim at city scale. 



Case Study Two extends Case study one by adding a separate Urban Simulation that 

can interoperate meaningfully with CitySim in a heterogeneous distributed 

simulation. This case study enriches the framework by examining the effect of 

different communication patterns on performance in the distributed simulation. In the 

heterogeneous arrangement, communication patterns between similar simulators 

differs from those between dissimilar simulators. For instance, a distributed 

simulation with type A simulators and type B simulators can have four potential 

communication arrangements: A-to-A communication, B-to-B communication, A-to-

B communication, and B-to-A communication. Each communication type can 

happen at different frequencies and have different message sizes. Because of these 

additional considerations, Case Study Two can be viewed as a more general form of 

Case Study One. Alternatively, Case Study One can be viewed as a special form of 

Case Study Two. The additional simulation selected for Case Study Two is the 

Nottingham Multi-Agent Simulation (No-MASS) tool. No-MASS is a Building 

Occupancy Simulation, simulating the influence of building occupants on energy 

usage. Interoperation between CitySim and No-MASS is potentially meaningful and 

can provide better energy predictions. 

 

3.5 MAS Paradigm 

As discussed in Chapter 1, the performance framework will adopt a meta-simulation 

approach. This will be based on the Multi-Agent Simulation (MAS) Paradigm 

discussed in Chapter 2. The following sections offer justification for the choice of the 

MAS paradigm for use in the framework: 

• Paradigm Suitability:  

The different parts of the federation, including the federates and RTI, readily 

lend themselves to modelling as agents co-operating to complete a given task. 

 

• Concurrent Execution:  

MAS agents execute concurrently, similar to how federates operate in a 

distributed simulation. 

 

 



• Message Exchange:  

Agents communicate with one another by exchanging messages during 

simulation execution similar to the federates and RTI passing messages to 

one another during federation execution. 

 

• Stochastic Experiments:  

The non-deterministic execution paths due to concurrency in distributed 

simulations can be captured by executing multiple stochastic runs of the MAS 

and determining confidence intervals. 

 

• Heterogeneous Agents:  

MAS includes the flexibility to include different types of agents with varying 

behaviours. This can be used to capture the execution behaviour of 

heterogeneous distributed simulators. 

 

• What-If Scenarios:  

MAS can be used to explore various what-if scenarios. This can be used in 

designing a distributed simulation by adjusting relevant parameters to 

estimate the impact that they will have on performance. 

 

• Parameter Optimization:  

MAS enables performance optimization by exploring the parameter search 

space to find optimal parameters for executing the distributed simulation. 

 

• Complex Dynamics:  

MAS can help capture and understand complex dynamics between the 

different parts of the distributed simulation without having to set up the 

computing resources required to execute the actual distributed simulation. 

 

For these reasons, the MAS paradigm lends itself naturally to the proposed meta-

simulation approach. As the MAS paradigm uses a bottom-up modelling approach, 

the behaviour of agents involved in the simulation is specified directly for each 

agent. However, system behaviour is not explicitly specified but arises from 



interactions between agents. This feature can be useful for testing the effect of 

different agent co-operation strategies on the performance of distributed simulations. 

Agent behaviour can be modified to follow the desired co-operation strategy, which 

may involve agents taking simple actions or making complex decisions to adapt to 

changing conditions. This can produce emergent system level patterns that cannot 

easily be replicated using other modelling paradigms.  

The framework to be developed will make use of the MAS paradigm to specify the 

key components of a distributed simulation, the behaviour of each component, the 

interactions between them, and the essential aspects of their shared environment that 

significantly influence communication performance. As the framework will be 

specifically designed for distributed simulations, it will account for considerations 

that are important for distributed simulations but are not required for distributed 

systems in general, such as the synchronization of timesteps among distributed 

simulators to avoid causal errors. A meta-simulation based on the framework can be 

implemented using any simulation toolkit that supports the MAS paradigm such as 

Repast Simphony or AnyLogic. Meta-simulations derived from the framework may 

also conceivably be implemented using simulation toolkits designed for general 

distributed systems, including packet-level simulators such as ns-3 (Henderson and 

Riley, 2006) or grid resource scheduling simulators such as GridSim (Buyya and 

Murshed, 2002). 

3.6 Summary of Methodology 

This chapter has provided details of the approach that will be applied to carry out the 

work listed by the objectives in Chapter 1. As discussed, Urban Simulation case 

studies are selected from the Building Energy Simulation and Building Occupancy 

Simulation application areas. Based on the selected case studies, distributed 

simulations will be developed using the HLA approach.  Experiments will be 

conducted using the HLA distributed simulations to measure execution performance. 

Case Study One, the homogeneous distributed simulation, will includes multiple 

instances of a physical Building Energy Simulation. Case Study Two, the 

heterogeneous distributed simulation, will includes Building Energy Simulation 

instances as well as Building Occupancy Simulation instances. The communication 

strategies discussed in this chapter will be employed in the experiments. The 



performance estimation framework, which is the main focus of this thesis, will be 

informed by lessons learned from the development process and by the outcomes of 

conducted experiments. Following the development of the framework, a concrete 

meta-simulation will be implemented based on the case study experiments in order to 

evaluate the framework and demonstrate its application. 

 

 



4 FRAMEWORK BACKGROUND 

4.1 Building Energy Simulation 

As discussed in section 1.1, simulation studies in urban areas are needed to support 

planning and sustainably manage rapidly growing urban populations worldwide. One 

of the key planning areas for the urban environment is the management of energy 

resources. A substantial portion of energy use in the urban built environment is 

consumed by transportation and buildings. According to Eurostat (2019), energy 

consumed in the EU by households alone accounts for more than 27% of total energy 

demand in the EU, with transportation accounting for about 30%. Building Energy 

Modelling aims to forecast the total energy requirements for indoor heating, cooling, 

lighting, and powering appliances. According to surveys conducted by Foucquier et 

al. (2013), Reinhart and Davila (2016) and Johari et al. (2020), Urban Building 

Energy Modelling methods can be categorized into two main approaches: Statistical 

methods and Physical methods. 

Statistical methods attempt to predict future building energy requirements based on 

historical usage. This approach is data-driven and requires substantial amounts of 

historical data to make accurate predictions. The statistical approach includes various 

regression methods and machine learning techniques. 

Physical methods are simulations based on physics models of heat transfer. Physical 

Building Energy Simulations make use of thermal equations to forecast building 

energy requirements. Inputs to physical Building Energy Simulations include the 

location of buildings, properties of building materials, and weather data. Some 

physical Building Energy Simulation tools are designed to make energy forecasts for 

individual buildings e.g. EnergyPlus (Crawley et al., 2001). Single building tools do 

not model interactions between different buildings in detail. As the focus is on a 

single building, detailed information is required about the simulated building in order 

to generate accurate predictions for its energy requirement. Other physical Building 

Energy Simulation tools are designed to make energy forecasts for a group of 



buildings in close proximity to one another, such as the CitySim (Robinson 2012) 

tool. Multi building simulation tools model interactions between separate buildings 

in detail as these interactions are important for making accurate predictions for the 

group of buildings.  

4.1.1 Physical Building Energy Simulation 

This section provides an overview of the physical Building Energy Simulation 

process used by the CitySim tool. The inputs to CitySim include a scene file and a 

weather file. The scene file contains 3D representations of a group of buildings 

positioned in physical space, and the weather file contains data about weather 

patterns in the area. CitySim makes use of the information provided by these inputs 

to calculate the energy exchanges between buildings and the environment over a 

period of time. The results from these energy exchange calculations are used to 

estimate the building energy requirements over the simulated time period.  

Each 3D building in a scene file is a collection of geometric surfaces. Types of 

surfaces in scene files include wall surfaces, roof surfaces and floor surfaces. These 

surfaces combine to create one or more internal thermal zones within each building 

which can exchange heat with one another. Building scenes may range widely in 

complexity. A simple building scene may contain a few shoebox-like buildings, each 

with four walls and a flat roof which join together to create a single internal thermal 

zone. A more complex building scene may contain several thousand buildings with 

complex surface structures and multiple internal thermal zones. Figure 4.1 shows an 

example of simple and complex building surface structures. 

 

Figure 4.1: Simple and complex building surface structures. 

CitySim accepts building scene files in a specific XML format. Zakhary et al., 

(2016) extended CitySim to load building scenes created with the City Geographic 

Mark-up Language (CityGML) standard instead of a previous custom XML format. 



CityGML (CityGML, 2020) is an XML-based standard for representing urban 

structures in 3D physical space. 

As explained by Robinson (2012), CitySim calculates the radiation exchanges in a 

building scene during simulation execution. This includes interactions between one 

building surface and another, as well as interactions between building surfaces and 

the environment. These radiation exchanges contribute to indoor and outdoor 

temperatures and have an impact on heat transfer between building zones. The 

purpose of the radiation exchange calculations is to obtain a basis for estimating the 

energy demands required to suit building occupant comfort. Factors that contribute to 

occupant comfort include adjust indoor temperature via Heating, Ventilation and Air 

Conditioning systems (HVACS) as well as adjusting window blinds to let the 

sunshine in. Radiation exchange calculations performed by CitySim include different 

sets of equations for shortwave and longwave radiation exchange. Shortwave 

radiation exchange refers to the portion of solar radiation with wavelengths in the 

range of 0.3µm to 3µm that is absorbed by building surfaces. Longwave refers to 

infrared radiation exchanged between buildings in the wavelengths ranging from 

3µm to 100µm.  

Calculating these radiation exchanges in the urban setting is complicated by the fact 

that some building surfaces obstruct other building surfaces from directly exchanging 

radiation with one another. Building surfaces may also obstruct one another from 

directly exchanging radiation with the sun and sky. However, this can also serve to 

make the calculations more computationally tractable because not all pairs of 

surfaces in a large scene will need to exchange radiation with each other. In CitySim, 

the relationships between building surfaces that are not obstructed from one another 

and are therefore capable of exchanging radiation is represented using a sparse 

matrix for storage efficiency. Figure 4.2 provides a conceptual illustration of various 

shortwave and longwave radiation exchanges between buildings and the environment 

in an urban setting. 

The details of the mathematical equations which form the basis for physical 

calculations of the radiation exchanges that occur between buildings and the 

environment is expanded upon in great detail by Robinson (2012). A brief summary 

is provided in the following sections. 



 

 

Figure 4.2: Illustration of some building radiation exchanges in an urban environment 

 

• Shortwave Calculations: 

For each building surface, CitySim calculates the shortwave radiation that it 

receives from various sources. These sources include direct shortwave 

radiation received from the sun, diffuse solar radiation through the sky, and 

reflected solar radiation from other building surfaces. CitySim makes use of 

the Simplified Radiosity Algorithm (SRA) of Robinson and Stone (2006) to 

calculate the radiation exchanges in building scenes. 

 

• Longwave Calculations: 

For each building surface, CitySim calculates the longwave radiation that is 

received from various sources. Sources of longwave radiation include the sky 

and the other surrounding building surfaces.  

• Daylight Calculations: 

In addition to longwave and shortwave radiation exchange calculations, 

CitySim also performs calculations to determine the level of illuminance 

 



within internal building zones received from sunlight. These are referred to as 

daylight calculations and provide useful measures which serve as a basis for 

determining the indoor lighting or shading requirements for occupant 

comfort. 

 

• Thermal Zone Calculations: 

Finally, CitySim performs calculations for all internal zones, which includes 

determining the internal temperature that results from the radiation exchange 

calculations performed in previous steps. These are referred to as thermal 

calculations in CitySim. 

Figure 4.3 provides an overview showing how the calculations described in the 

previous sections are performed by CitySim in a loop, with each loop iteration 

representing a single timestep representing one hour. 

 

Figure 4.3: CitySim time-step loop 

 



4.1.2 Building Occupancy Simulation 

The energy demand in a building is regulated by its occupants. Building occupants 

use energy consuming HVACS to regulate indoor temperatures to suit their comfort. 

Building occupants also interact with building features such as windows and light 

switches to regulate indoor lighting. The bodies of occupants in buildings also 

exchange heat with their surroundings and consequently has an effect on indoor 

temperatures. Building energy consumption depends on the number of occupants and 

their activities within the building. Therefore, in order to produce more accurate 

energy predictions, it is useful to simulate the presence of occupants in buildings and 

their interaction with various building features. 

However, creating a single monolithic simulation that performs Building Occupancy 

Simulation in addition to physical Building Energy Simulation is not ideal, and it is 

useful to both concerns. While physical Building Energy Simulation uses an 

approach based on physics equations, Building Occupancy Simulation lends itself to 

paradigms that model the behaviour of autonomous individuals interacting with their 

environment. For example, the MAS paradigm is used for Building Occupancy 

Simulation in the Nottingham Multi-Agent Stochastic Simulation (No-MASS) tool 

(Chapman, Siebers and Robinson, 2018). 

4.1.3 Distributed Building Energy Simulation 

Research work has previously been conducted in distributed Building Energy 

Simulation both for the purpose of interoperability with other simulations and for the 

goal of scaling up computing resources to execute large-scale Building Energy 

Simulations.  

With the goal of performing distributed Building Energy Simulation for 

interoperability, Jain et al. (2016) use the HLA to integrate the urban land  use model 

UrbanSim (Waddell, 2002) with the urban transportation model MATSim (Horni, 

Nagel and Axhausen, 2016). In another example, Menassa et al. (2014) employ the 

HLA to integrate the single Building Energy Simulation tool DOE2 (Rousset et al., 

2016) with a custom building occupancy ABS developed using the AnyLogic 

simulation toolkit. Wang, Siebers, and Robinson (2017) use the FMI to integrate the 

single Building Energy Simulation tool EnergyPlus with the Building Occupancy 

Simulation tool No-MASS. 



Regarding the goal of performing distributed Building Energy Simulation to address 

the scalability issue, Hong et al. (2016) develop the City Building Energy Saver 

(CityBES) as a web-based platform to enable urban-scale Building Energy 

Simulation and provide analysis on potential energy savings from retrofitting 

measures. CityBES uses the CityGML standard for representing 3D building scenes. 

CityBES also makes use of the EnergyPlus tool as an engine for running physical 

Building Energy Simulations. 

SimStadt is an urban energy simulation platform introduced by Nouvel et al., (2015). 

Similar to CityBES, SimStadt also uses a CityGML representation for 3D building 

scenes. SimStadt allows a choice between different radiation exchange models 

including the Simplified Radiosity Algorithm and Perez Sky model that is also used 

by CitySim. SimStadt is also designed to be extensible by plug-in modules to allow 

different types of Urban Simulation studies to be conducted. 

As discussed in Chapter 3, the content of the framework to be developed in this work 

will be informed by experiments conducted on HLA-based distributed simulations. 

The framework will enable the creation of meta-simulations that can be used to 

estimate the execution performance of specific distributed simulation applications. 

Although the framework will focus on HLA-based distributed simulations, it can 

potentially be extended to make performance estimations for other distributed 

simulation applications that are not based on the HLA, including the examples 

discussed in this section. 

 

 

4.2 Performance Limiting Factors 

Several factors play a part in determining the performance of distributed simulations. 

These factors can constitute potential bottlenecks during simulation execution. Some 

performance-limiting factors can influence both stand-alone simulations and 

distributed simulations. Some of these common factors include processor speed, 

memory size and I/O bandwidth (Park et al., 2016; Hambrusch, Hameed and 

Khokhar, 1995). Other factors impact the performance of distributed simulations but 

are not performance concerns for stand-alone simulations. These additional factors 

include communication overheads, load balancing strategy, and the proportion of 



computational workload which is inherently sequential and cannot be shared between 

multiple computing nodes (Lemeire, 2001). Among these factors, the communication 

overheads add on an obvious bottleneck that is absent from stand-alone simulations 

but can significantly influence the performance of distributed simulations (Kumar, 

1992). As explained in Chapter 1, the performance framework developed from this 

work focuses on the dynamic relationship between computation and communication 

operations during distributed execution. Therefore, aspects of distributed 

performance related to communication are of particular interest. Chapter 3 has 

introduced various communication strategies which are to be applied in the 

experiments that will inform the development of the framework. However, it is 

evident that communication is not the only factor that influences execution 

performance. The following sections provide a general overview of factors that affect 

distributed performance and establish the place of communication among these other 

considerations. Using simplified scenarios, the influence of communication is 

compared with the influence of other performance-limiting factors. In the outlined 

scenarios, emphasis is placed on the amount of communication required to achieve 

ideal weak scaling. This approach is taken for convenience, as it makes it simpler to 

compare the different scenarios. However, it must be noted that ideal weak scaling is 

not the goal of the distributed simulation experiments which are to be conducted in 

Chapter 5.  

4.2.1 Communication and Computation 

The diagram in Figure 4.4, adapted from (Skillicorn and Talia, 1998), illustrates a 

simplified scenario showing how communication and computation together exert an 

influence on the total time required for distributed simulation execution. In this 

motivating example, the whole simulation is too large for a stand-alone computing 

node. It is estimated that the whole simulation could be completed in 120 hours of 

wall-clock time if stand-alone computing resources could support the large 

configuration. This 120-hour estimate is extrapolated from the performance of 

smaller simulation workloads. It is known that half of the full simulation workload 

can be completed on a stand-alone computing node in 60 hours of wall-clock time. 

Therefore, as shown in Figure 4.4, the full simulation workload has been divided 

between two identical computing nodes. In this scenario, communication is 

necessary during simulation execution to ensure correct outputs. To remove the 



effect of other performance-limiting factors, the scenario incorporates the following 

simplifications: 

• Perfectly balanced workloads. 

• Half the simulation workload can be completed in half the time. 

• The entire workload can be distributed. There is no portion of the workload 

that is inherently sequential. 

• The impact of I/O operations are negligible.  

• Communication does not overlap with computation. 

• Time synchronization is free and does not add any extra costs. 

 

From Figure 4.4, weak scaling is achieved at the point where the communication 

time equals computation time. At this point, the distributed completion time is equal 

to the stand-alone completion time. When communication time is less than 

computation time, performance improves, and the distributed completion time is less 

than the stand-alone completion time. On the other hand, when communication time 

exceeds computation time, performance degrades, and distributed completion time is 

longer than stand-alone completion time. From the simplified scenario, it is apparent 

that there is an upper limit on communication time if ideal weak scaling is to be 

achieved. The upper limit is equal to the difference between stand-alone computation 

time and distributed computation time. 

 

Figure 4.4: Communication and Computation  



4.2.2 Communication and Load Balancing 

Imbalanced workloads can negatively impact the performance of distributed 

simulations (Tan and Lim, 2004). The motivating example from the previous section 

can be extended to consider the impact of load balancing. Figure 4.5 illustrates a 

scenario in which assumption of perfectly balanced workloads no longer holds. The 

simulation workload is unevenly distributed. One computing node is responsible for 

80% of the workload while the other handles 20%. Similar to the previous scenario, 

there is an upper limit on communication time if ideal weak scaling is desired. The 

upper limit is equal to the difference between stand-alone computation time and the 

computation time required for the largest distributed workload. As shown in Figure 

4.5, a large workload imbalance can lead to a tight constraint on communication 

time. This motivating example has only considered the case where the workload 

remains static throughout simulation execution. However, dynamic load balancing is 

also a concern in distributed simulations where the computational workload can 

change on each node as the simulation progresses (De Grande and Boukerche, 2011). 

In such cases, the initial partitioning alone is not sufficient, and the workload needs 

to be continuously re-distributed to prevent performance from deteriorating during 

distributed execution. 

 

 

Figure 4.5: Communication and Load Balancing 

 



4.2.3 Communication and Heterogeneous Workloads 

Heterogeneous distributed simulations, where each computing node executes a 

different kind of simulation, can be considered as a special case for load balancing. 

As the different simulators perform different computations, their computation times 

may differ, even when considering the same set of simulation entities. Balancing the 

simulation workload in this case is less straightforward than the homogeneous case 

where simulation entities can be divided up between computing nodes. Figure 4.6 

provides an illustration for this scenario. A stand-alone integrated simulator is 

introduced which combines the functionality of both simulators and completes the 

workload in the time required for both to complete. The impact on communication 

time is similar to the previous scenario with imbalanced workloads. 

 

 

Figure 4.6: Communication and Heterogeneous Workloads 

4.2.4 Communication and Sequential Workloads 

As discussed in section 2.3, the inherently sequential portion of computational 

workload can significantly influence performance (Sun and Ni, 1993). The simple 

motivating example can also be extended to consider the impact of inherently 

sequential workloads. When a portion of the simulation workload cannot be 

distributed between computing nodes, that portion can be executed redundantly on 

all computing nodes. Alternatively, one node can perform the work and communicate 

the results to the others. However, this alternative strategy is not favourable as it adds 



extra complexity and communication overheads. Figure 4.7 provides an illustration 

of a scenario in which the simulation workload includes an inherently sequential 

portion. The larger the sequential portion, the tighter the constraint on 

communication time. 

 

 

 

Figure 4.7: Communication and Sequential Workload 

4.2.5 Communication and Time Synchronization 

Time synchronization between nodes can incur additional overheads apart from the 

extra communication required to exchange timestamp information. The source of the 

additional overheads depends on the synchronization algorithm employed. As 

discussed in section 2.4, cascading rollbacks in optimistic algorithms can introduce 

significant overheads when out-of-order execution is detected and needs to be 

corrected by reverting the distributed simulation to an earlier point in time 

(Lubachevsky, Schwartz and Weiss, 1991). On the other hand, low lookahead values 

in conservative algorithms can significantly restrict parallel execution by holding 

some nodes back while waiting for others to reach a point where a safety guarantee 

can be provided (Nicol, 1993). The simplified diagram in Figure 4.8 illustrates this 

by adding synchronization costs in the motivating example. Here, a larger 

synchronization cost results in a tighter constraint on the communication time to 

achieve ideal weak scaling. 



 

 

Figure 4.8: Communication and Time Synchronization 

4.2.6 Communication and Latency Hiding 

In cases where communication operations can be performed asynchronously, they 

can overlap with computations during distributed execution (Somani and Sansano, 

1997). Using the latency hiding strategy, nodes can perform useful computational 

work while exchanging messages. This reduces time spent idling by nodes and 

lowers the impact of communication latency on performance. Figure 4.9 extends the 

motivating example to provide an illustration for the simplest scenario where 

communication and computation can completely overlap each other. As explained by 

Strumpen and Casavant (1994), the total distributed execution time in this scenario is 

the maximum of computation time and communication time. In cases where 

communication time is less than or equal to computation time, the communication 

can be completely hidden and incur no additional overheads. 

 

 



 

Figure 4.9: Communication and Latency Hiding 

4.2.7 Communication and Number of Nodes 

The number of computing nodes involved in a distributed simulation also influences 

communication time. Communication time tends to increase as the number of nodes 

increases and the number of communication paths involved goes up. This has been 

reported in experimental results such as those from Hambrusch, Hameed and 

Khokhar (1995) and Ponnusamy, Choudhary and Fox (1992). The relationship 

between communication time and the number of nodes depends on the properties of 

the interconnecting network. Network properties that influence communication time 

include bandwidth, latency, topology, and protocol. Communication time also 

depends on the distribution of communication workload among the nodes i.e., how 

much data each node needs to send and receive during distributed execution. This is 

in turn related to load balancing, as the workload partitioning strategy also 

determines for each node which data will be local and which will be external (De 

Grande and Boukerche, 2011). 

4.2.8 Summary 

The concerns discussed in the previous sections have presented the place of 

communication among other factors that are relevant for distributed simulation 

performance. This discussion will inform the development of the performance 

estimation framework, which will consider controlling various communication-

related parameters and strategies.  



5 CASE STUDIES 

5.1 Overview 

As discussed in Chapter 3, two case studies are selected from Urban Simulation 

domain for the purpose of experimentation.  Case Study One is a homogeneous 

distributed simulation using the physical Building Energy Simulation tool, CitySim 

(Robinson 2012). Case Study Two is an extension to create a heterogeneous 

distributed simulation by adding the Building Occupancy Simulation tool, No-

MASS. The simulation applications selected are normally used for stand-alone 

simulation experiments in their respective domains. Using these tools demonstrates 

that the approach employed in this work can be applicable to existing real-world 

simulation tools. The C++ source code of the CitySim tool is made available by the 

Sustaining Urban Habitats (SUH) project, of which this work forms a part. The open-

source No-MASS simulation tool (Chapman, 2018) is also developed in C++ as part 

of the SUH project. Wang, Siebers, and Robinson (2017) have previously coupled 

No-MASS with the EnergyPlus Building Energy Simulation tool on a stand-alone 

computing node for small neighbourhood scale experiments. 

 

5.2 Case Study One: Homogeneous Distributed Simulation 

Case Study One is a distributed physical Building Energy Simulation using the 

CitySim tool. The HLA is employed to develop a distributed simulation composed of 

multiple computing nodes, each running an instance of CitySim, all working together 

in a single coordinated execution.  As discussed in Chapter 2, the simulation objects 

in CitySim are building surfaces in an urban scene. Interactions exist between 

surfaces that have line-of-sight to one another. These surfaces are able to exchange 

various types of radiation during the simulation execution. Not all objects in the 

simulation have such interactions, and therefore some pairs of surfaces cannot 

exchange radiation with each other. In all the experiments conducted, it is assumed 

that the relationships between building surfaces remain static, and do not change 



throughout simulation execution. This assumption implies, for example, that no new 

buildings are constructed, or changes made to existing buildings during the simulated 

period. 

Building surface objects can be represented as vertices in a simple graph. Vertices 

connected by edges have interactions between them, while unconnected vertices 

cannot exchange radiation. As not all vertices can interact with each other, the graph 

is not fully connected, and connections between vertices are sparse. During 

distributed simulation, edges that cross boundaries between computing nodes 

represent communication paths between the nodes and determine which object 

attributes need to be exchanged. Edges weights indicate the size of data that needs to 

be exchanged. If a constant message size is assumed, the edges can be considered 

unweighted. The volume of communication between computing nodes during 

distributed simulation can be estimated by the number of edges between them. The 

direction of an edge signifies the direction of data transmission from sender to 

recipient. If it is assumed that two objects at opposite ends mutually require attribute 

updates from each other, the edges can be considered undirected as data transmission 

goes both ways. As the scenario is static, the set of vertices and edges remains the 

same throughout distributed simulation execution. Figure 5.1 provides an illustration 

of the graph representation for a scenario with four buildings, each having five 

surfaces. The large broken circles represent buildings, the small solid circles 

represent building surfaces, and the solid straight lines represent interaction 

relationships between surfaces. The illustration shows interactions between surfaces 

of the same building and interactions between surfaces of different buildings. If this 

scenario is to be distributed among two computing nodes, two buildings can be 

assigned to each computing node. The interactions between building surfaces 

assigned to different nodes will mark the data that needs to be exchanged between 

nodes. Each boundary-crossing interaction increases the total communication 

message count. For this scenario, the buildings can be partitioned into {A, C} on 

node one and {B, D} on node two. This would result in 6 boundary-crossing 

interactions, the minimum that can be achieved in this particular case. 



 

Figure 5.1: Illustration of building surface relationships 

 

As described in Chapter 2, a CitySim building scene is a CityGML representation of 

a collection of 3D buildings, each composed of multiple surfaces (walls and roofs) 

and having one or more internal thermal zones (rooms). Obstructions in the building 

scene means that not all surface pairs are able to exchange radiation with one 

another. Therefore, radiation exchange relationships between building surfaces are 

captured in a sparse view-factor matrix. This sparse view-factor matrix is computed 

in a pre-processing step before starting the hourly time-stepped radiation exchange 

simulation that was illustrated by Figure 4.3. Consequently, the sparse view-factor 

matrix captures the relationships between building surfaces and can be represented 

with a graph as described in the previous section. 

The graph of view-factor relationships can be used to facilitate the partitioning of the 

building scene for distribution among computing nodes. As the graph captures all the 

communication relationships that exist in the scene, it can be used as a guide to split 

groups of buildings into partitions of approximately equal size, while attempting to 

minimize the number of partition-crossing edges. This partitioning serves to balance 

the computational workload while attempting to minimize the number of messages 

that need to be exchanged between computing nodes. After initial partitioning, other 

methods can be employed to further reduce communication overheads during 

distributed execution. Some of the communication management strategies which 

address this concern have been discussed in Chapter 3. 



Building scenes used for the experiments in this chapter make use of initial 

partitioning produced from the work of Zakhary et al. (2020) in which a Greedy 

Community Detection algorithm is employed. The surface interaction information 

from the sparse view-factor matrix is employed to group together surfaces that are 

densely connected, while minimizing the number of connections between different 

groups. While the actual interaction relationships are between building surfaces, 

partitioning is conducted at the building level. All surfaces belonging to the same 

building are assigned to the same partition. This constraint is important because 

surfaces in the same building tend to have strong relationships with one another. It 

helps to reduce the total number of cross-partition edges, and therefore reduce the 

communication message count. Figure 5.2 shows a building scene partitioned into 12 

parts by Zakhary et al. (2020). The dots show the position of buildings in the scene, 

with separate colours for different partitions. The solid straight lines show examples 

where relationships exist between building surfaces. 

 

Figure 5.2: Building scene with 12 partitions scene showing some interactions 

 



In the HLA experiments in this chapter, each partition will be assigned to a separate 

CitySim-Federate, which will own all the partition surfaces and be responsible for 

simulating them and publishing relevant attribute updates. To ensure correct local 

computations, each CitySim-Federate will keep track of external object attributes by 

attribute reflection received updates. Therefore, the area of interest of each CitySim-

Federate will include local objects and external objects that interact with local 

objects.  Figure 5.3 shows a conceptual illustration of the areas of interest of 

CitySim-Federates. The small solid circles represent surface objects, the thick solid 

lines indicate partition boundaries, and the thick broken lines show the extent of the 

area of interest of each CitySim-Federate. These areas of interest overlap depending 

on the interaction relationships between surface objects. 

From Figure 5.3, the surface objects that fall within the overlapping areas of interest 

are the only ones that have an impact on communication overheads during 

distributed simulation execution. Surfaces that do not fall within the overlapping 

areas of interest only interact with other local surfaces. Therefore, their attributes do 

not need to be shared with other CitySim-Federates. Indeed, no record needs to be 

kept of them outside their own CitySim-Federate. Therefore, they need not be 

registered with the central HLA RTI. Only objects within overlapping areas of 

interest need to be registered with the RTI. This is necessary for establishing 

ownership, as well as allowing publishing or subscribing to relevant attribute 

updates. 

 

Figure 5.3: Conceptual illustration of CitySim-Federates’ areas of interest 

 



The conceptual diagram in Figure 5.4 illustrates the execution of a single time-step in 

the distributed CitySim HLA Federation. As discussed in Chapter 2, each hourly 

time-step in a CitySim simulation is composed of four calculations: shortwave 

calculations (SW), daylight calculations (DL), longwave calculations (LW) and 

thermal zone calculations (TH). These four have dependencies on one another in the 

order illustrated by Figure 5.4. Thermal zone calculations depend on results from 

longwave calculations within the same time-step. In turn, longwave calculations 

depend on shortwave computations within the same time-step.  All calculations 

depend on the calculation results from the previous time-step, directly or indirectly. 

Because of these dependencies, data needs to be exchanged between CitySim-

Federates within time-steps after partial calculations have been completed. This is 

necessary to ensure the correctness of the simulation outputs. As shown in Figure 

5.4, data is exchanged between federates during the shortwave, daylight and thermal 

zone calculations. However, no data needs to be exchanged between CitySim-

Federates during longwave calculations. This is an effect of the scene partitioning 

strategy. Thermal zone calculations only depend on the longwave results from 

surfaces in the same building. Consequently, data exchange after longwave 

calculations is not necessary for correct thermal zone calculations as all surfaces 

belonging to the same building are owned by the same CitySim-Federate. 

 

Figure 5.4: Conceptual diagram of CitySim HLA Federation execution 

 



5.2.1 Case Study One: HLA Federation 

The class diagram in Figure 5.5 shows a summary of the HLA object classes 

contained in the FOM of the CitySim Federation. This represents the data that is 

expected to be exchanged between federates during federation execution. This 

includes the single Surface object class. Surfaces are persistent objects which will 

exist throughout the federation execution. Messages concerning surface attributes 

will be exchanged from timestep to timestep. For these reasons, surfaces are 

represented by HLA object classes as opposed to HLA interaction classes. 

Interaction classes are normally used for transient messages which will not persist 

throughout the federation execution. The Surface object class includes three 

attributes, one for each of the properties of the scene surface objects that needs to be 

simulated.  Messages containing updates of these attributes will be exchanged 

between federates during distributed execution. The FOM attributes include SW, DL 

and TH. The FOM does not include a LW attribute as these do need to be exchanged 

between CitySim-Federates.  

 

Figure 5.5: Class diagram showing HLA FOM objects for Case Study One 

The sequence diagram in Figure 5.6 shows the exchanges between the RTI, the 

CitySim-Federate Ambassador and the CitySim-Simulator during distributed 

execution. The CitySim-Simulator is the component that performs the actual 

Building Energy Simulation, while the CitySim-Federate Ambassador is the 

component that coordinates message exchanges between the RTI and the CitySim-

Simulator. The CitySim-Federate Ambassador sends and receives attribute updates to 

and from the RTI on behalf of the CitySim-Simulator. The CitySim-Federate 

Ambassador also performs all the signalling required for creating and initializing the 

federation, for time synchronization, and for destroying the federation at the 

conclusion of the distributed simulation. A CitySim-Federate is a single unit 

composed of a CitySim-Simulator and a CitySim-Federate Ambassador. 



 

Figure 5.6: Sequence diagram of HLA federation execution for Case Study One 

Although the sequence diagram in Figure 5.6 only shows one CitySim-Federate, a 

federation includes multiple instances of such units, passing messages in the same 

sequence described by the diagram. Certain functions such as creating and destroying 

the federation can only be performed once. The first CitySim-Federate to start 

performs the signalling required to create the federation, using the FOM. Subsequent 

CitySim-Federates need only to join the existing federation. The last federate to 

resign performs the signalling required to destroy the federation. The federation 

cannot be destroyed while other federates are still joined. 



The signalling required for time synchronization involves sending Time Advance 

Requests (TARs) to the RTI and receiving Time Advance Grants (TAGs) in return. 

By this means, the RTI coordinates the execution of CitySim-Federates, granting 

TAGs when the CitySim-Federates can proceed safely to the next time step and all 

required messages have been delivered. Figure 5.7 shows the class diagram for the 

HLA CitySim-Federate. 

 

Figure 5.7: Class diagram for CitySim-Federate 

  



5.2.2 Initial Experiments 

5.2.2.1 Experimental Setup 

Initial experiments carried out with the HLA CitySim Federation were conducted on 

a network of 12 virtual machines running CentOS Linux 7.4, each with 8GiB of 

RAM and 2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. The virtual machines 

are connected to each other over a 10 Gigabit Ethernet LAN. The experiments make 

use of the open source Portico RTI (Portico, 2020) to support federation execution. 

As discussed in section 3.2, the Portico RTI implementation was selected for various 

reasons, including its open-source status and active development community. In the 

experiments, each computing node is responsible for executing a separate HLA 

CitySim-Federate. The maximum number of computing nodes involved in the 

experiments is 12 because the initial partitioning obtained from the work of Zakhary 

et al. (2020) uses 12 partitions. 

5.2.2.2 Building Scenes 

The initial experiments were conducted using a CityGML scene composed of 2,980 

buildings representing an area of the township of Sneinton in Nottingham, UK. This 

CityGML scene is obtained from the work of Rosser et al. (2019) and is  available in 

two types: a “simple” scene and a “complex” scene. The two types represent the 

same group of buildings with varying degrees of fidelity. The complex scene has 

about five times the number of surfaces in the simple scene. In the simple scene, all 

buildings are represented as simple shoebox-like shapes. This scene has a total of 

25,514 building surfaces. The complex scene represents the building structures in 

more realistic detail, raising the total number of building surfaces to 122,847. To 

enable comparison between experiments, the same partitioning scheme is used for 

both the complex scene and the simple scene. As the partitioning is done at the 

building level and both scenes contain the same buildings, a partitioning created for 

the complex scene can also be used for the simple scene. Each CitySim-Federate is 

given responsibility for a different partition. 

5.2.2.3 Experiment Run Configuration 

The initial experiments were run for one year of simulation time. Every CitySim 

simulation run also includes an additional fifteen-day warm-up period that is 

discarded at the beginning. In these initial experiments, the number of partitions was 



varied between 2 and 12. In experiments where fewer than 12 partitions were 

required, the original 12 were re-combined to produce the desired number of 

partitions, maintaining some of the original boundaries. The source code of the 

CitySim-Federate implementation was instrumented to measure the time spent on 

computation and total time for completion on each computing node. The extra 

processing overheads added by this code instrumentation was small, typically less 

than 1% of additional computation time. To illustrate how computation time and 

communication time are measured, Figure 5.8 shows the events that occur for a 

computation phase followed by a communication phase, assuming two CitySim-

Federates with balanced workloads. Each CitySim-Federate completes its 

computation, transmits data to the RTI and waits to receive data from other federates 

via the RTI. After all required data has been exchanged, the RTI grants a time 

advance to all federates, allowing them to proceed. This sequence of a computation 

phase followed by a communication phase and a synchronization barrier follows the 

BSP execution pattern described in section 2.8. 

 

Figure 5.8: Computation and communication events within an hourly time-step 

5.2.2.4 Initial Results 

Figure 5.9 and Figure 5.10 present the results of the experiments for the simple scene 

and the complex scene. Figure 5.9 compares the measured computation time and 

communication time for the simple scene. The experiment runs vary the number of 

computing nodes from 2 to 12. Figure 5.10 shows the same comparison for the 

complex scene. For the complex scene, the memory requirements exceed the 



resources available on 2 computing nodes. Therefore, the minimum number of nodes 

is 4 in this case. From the previous illustration in Figure 5.8, communication time is 

measured on each node from the point where computation ends until a TAG is 

received from the RTI. Error bars in Figure 5.9 and Figure 5.10 show differences in 

computation time between federates due to imbalanced workloads. Initial scene 

partitioning cannot always perfectly fulfil the multiple objectives under 

consideration, and therefore attempts to compromise for a satisfactory trade-off 

between balancing workloads and minimizing communication. In both figures, the 

results presented examine the variation between nodes during a single execution of 

the distributed simulation. Although both graphs have error bars, the differences 

between federate workloads are more visible in the complex scene. 

 

Figure 5.9: Computation vs communication wall-clock time (simple scene) 

 



 

Figure 5.10: Computation vs communication wall-clock time (complex scene) 

The trends from Figure 5.9 and Figure 5.10 show communication time increasing 

with the number of nodes while computation time decreases. The decreasing 

computation time is due to smaller workloads when more nodes are involved. In all 

cases, communication time exceeds computation time. As discussed, using the 

motivating examples in Chapter 4, this case is not ideal. However, it appears from 

the results that communication costs are lowest when the minimum number of nodes 

are involved: 2 nodes for the simple scene, and 4 nodes for the complex scene. The 

initial results suggest that when communication overheads are dominant, it is 

favourable to use the minimum number of nodes that can support the workload in 

order to avoid communication overheads. It is worth noting that while the number of 

surfaces has increased about five-fold from the simple scene to the complex scene, 

the communication overheads only grow by about 1.3 times. In the 4 federate 

experiment, the average communication time is 150 min for the simple scene and 

about 200 min for the complex scene. In the 12 federate experiment, the average 

communication time is about 220 minutes for the simple scene and 270 minutes for 

the complex scene. 

For the same initial experiments, Figure 5.11 and Figure 5.12 show how computation 

time varies with assigned workload. The error bars indicate variations between 

federates. The trend confirms that computation time is proportional to the assigned 

workload for this simulation application. 



 

Figure 5.11: Computation wall-clock time vs number of surfaces (simple scene) 

 

 

Figure 5.12: Computation wall-clock time vs number of surfaces (complex scene) 

 

Figure 5.13 and Figure 5.14 show the trends in communication time, together with 

the number of inter-federate links (cross-node interactions) and total number of 

published surfaces (surfaces in the overlapping areas of interest). The number of 

inter-federate links is larger than the number of published surfaces as a single 

published surface can interact with more than one external surface. 



 

Figure 5.13: Communication vs published surfaces and inter-federate links (simple scene) 

 

 

Figure 5.14: Communication vs published surfaces and inter-federate links (complex scene) 

 

As previously displayed in Figure 5.8, the communication time for each node is 

measured as time not spent performing computation. This measurement incorporates 

multiple components:  

1. Time spent actively transmitting attribute update messages to the RTI. 

2. Time spent passively idling while waiting for other federates to complete 

their computational workloads. 



3. Time spent actively receiving attribute reflection messages from the RTI. 

4. Time spent actively sending and receiving signalling information to/from the 

RTI, such as for time advancement. 

 

While actively sending and receiving messages (1, 2, 4) can be considered useful 

work, idling passively (3) cannot. Therefore, it is important to estimate the 

portion of the measured communication time that is actually spent idling. The 

boxplots in Figure 5.15 and Figure 5.16 show the variations between nodes in the 

12-federate experiments for the simple and complex scenes. In the simple scene 

experiment, the range in computation times shows the slowest federate lagging 

behind the fastest by about 3.1 min, accumulated over the duration of the 

simulation. This lag can be used as an estimate for the idle time of the fastest 

federate, measured as part of its communication time. As the total measured 

communication time exceeds 220 min for all federates, the idle time of 3.1 min 

represents a small fraction (~1.4%) of the total communication time. This 

suggests that the majority of the measured communication time is spent actively 

sending and receiving messages. In the complex scene experiment, the lag in 

computation time is 5.8 min between the fastest and slowest federates. This is a 

small fraction (~2.1%) of the total communication time which exceeds 270 min 

for all federates. Similar to the simple scene, the major portion of the measured 

communication time is due to active communication, and only a minor portion 

can be explained by idling due to imbalanced workloads. 

 



 

Figure 5.15: Computation and communication wall-clock time boxplots (simple scene) 

 

 

Figure 5.16: Computation and communication wall-clock time boxplots (complex scene) 

 

As active communication time is the main performance bottleneck, the analysis of 

experimental results in subsequent sections will focus specifically on communication 



time rather than total simulation time. Following this approach, it is useful to make 

direct comparisons between the measured communication times for various 

distributed simulation scenarios which involve different numbers of computing nodes 

or employ alternative communication strategies. As this explicitly accounts for 

communication time, it is more convenient than other measures, such as speedup, 

which implicitly account for communication time as part of total simulation time 

without separating it from computation time. Additionally, the definition of speedup 

requires the execution time on a single node as well as the execution time on multiple 

nodes. However, execution on a single node is not always possible when dealing 

with large-scale experiments. 

 

5.2.3 Reduced Building Scene 

The experiments in the previous section have shown that communication overheads 

can significantly influence the performance of distributed Building Energy 

Simulations. To further reduce communication overheads, subsequent experiments 

will apply the communication strategies discussed in Chapter 3, and measure any 

performance gains made. For communication strategies that can result in a loss of 

output accuracy, the resulting errors in simulation outputs will be measured as well. 

The initial simple and complex experiments in this section completed execution in 

1.5 to 5 hours of wall-clock time. In order to allow more experiments to be 

conducted, the lengthy wall-clock time for each run needs to be reduced. For this 

purpose, a reduced building scene is introduced. This reduced building scene is a 

subset of the simple scene, consisting of 51 buildings with 320 surfaces. The run 

length of the experiments is also reduced from one year to four months. After 

running experiments using this reduced scene, the findings can be applied to the full 

scene of 2,980 buildings. 

 

5.2.4 Message Elimination Experiments 

For these experiments, the message elimination strategy introduced in Chapter 3 was 

implemented for Case Study One. The experiments were conducted on the reduced 

51-building scene with 320 surfaces, distributed over two computing nodes using the 

experimental setup described in the previous section. The experiments begin with a 



base case, in which communication occurs normally during every timestep. This is 

followed by an edge case experiment during which all attribute update messages are 

eliminated. Only communication related to time management is permitted. This edge 

case experiment serves to measure the amount of communication time that is not due 

to attribute updates. Subsequent experiments vary the period between successive 

attribute updates. The length of the period varies from 2 timesteps to 12 timesteps. 

The period values used in the experiments are chosen because they are factors that 

align with a day length of 24 hours. The results are presented in the following 

sections by comparing the normal case where communication occurs at every 

timestep with the other cases where communication is less frequent. As this is a lossy 

strategy, the comparisons made include the accuracy of the outputs as well as the 

wall-clock times involved, exploring the trade-off between these two concerns for 

this simulation. 

Figure 5.17 shows the impact of the message elimination strategy on computation 

and communication time. The edge case with no communication is labelled 00 on the 

chart. The trend shows communication time reducing as the communication points 

grow farther apart due to larger update period values. As federates do not exchange 

attribute updates in time-steps between communication points, only synchronization 

messages are exchanged, resulting in fewer messages and a reduction in 

communication overheads. From Figure 5.17, the normal base case 01 has a 

communication wall-clock time of about 200 s. By contrast, the edge case 00, which 

eliminates all attribute updates, has a communication wall-clock time of about 20 s. 

The edge case establishes a lower limit on the communication time necessary to 

execute the distributed simulation. The trend in Figure 5.17 shows that the 

communication roughly halves when the period between communication points 

doubles. From the normal (01) base case of 199 s to the 2-timestep period (02) case 

of 105 s, to the 4-timestep period (04) case of 60 s to the 8-timestep period (08) case 

of 30 s. This roughly reflects the fact that the number of attribute update messages 

has been reduced by half. 



 

Figure 5.17: Effect of message elimination on communication time 

 

Although the message elimination strategy improves execution performance, it also 

reduces simulation output accuracy due to its lossy nature. However, different 

simulation outputs are affected differently. The degree of error also varies from one 

surface to another. This section will examine how the four main outputs from the 

simulation are impacted: the surface shortwave (SW), daylight (DL) and longwave 

(LW) outputs as well as the thermal zone temperature (TH) outputs. 

The boxplots in Figure 5.18 and Figure 5.19 show the overall distributions of the 

four main outputs for all surfaces in the top row. In the middle row, the boxplots 

show the absolute error of all surfaces in each experiment compared to the normal 

base case 01. The bottom row provides a bar charts displaying the mean absolute 

error for all surfaces. The diagrams confirm that the largest output errors occur in the 

edge case experiment 00 where no attribute updates occur. This applies to all four 

outputs but is especially noticeable for the SW and DL outputs. Although the edge 

case 00 represents the best-case scenario for communication time, it also represents 

the worst-case scenario for simulation output accuracy. This confirms that 

communication between CitySim-Federates is important for ensuring accurate 

results. 



 

Figure 5.18: Summary of SW and DL output errors for whole scene 

Apart from the edge case 00 which has no attribute updates, the mean absolute errors 

for the other experiments are small when averaged for all surfaces in the scenes. This 

is illustrated by the bar charts in the bottom rows of Figure 5.18 and Figure 5.19. 

However, the absolute error boxplots in the middle rows show that the absolute 

errors are significant for many individual surfaces in the scene. From these results it 

can be inferred that all surfaces in the scene are not equally affected by the 

eliminated attribute update messages. Whether the output errors for individual 

surfaces are important or not depends on the purpose for executing the distributed 

Building Energy Simulation. If only macro-level average values over the entire scene 

are required, then individual errors would only be significant to the extent to which 

they have an impact on the overall average. However, if the Building Energy 

Simulation is for a purpose such as exploring the impact of retrofitting options for 

individual buildings, the surface output errors can be considered important regardless 

of the negligible impact they have on the overall scene average. This discussion will 

assume that the output errors for individual surfaces are important. 



 

Figure 5.19: Summary of LW and TH output errors for whole scene 

While some surfaces in the scene have small output errors and others have large 

output errors, there does not appear to be a simple rule to reliably predict which 

surfaces will produce large errors and which ones will not. Intuitively, it might be 

supposed that surfaces which have interactions with external surfaces rely on 

attribute updates for correct computations. Therefore, they are more likely to produce 

large errors when the required attribute updates have been eliminated. On the other 

hand, surfaces which only have local interactions should produce small errors. 

However, the experiments show that this intuition does not generally hold for all 

surfaces. Some of the surfaces that produce the largest errors have only local 

interactions, while some surfaces that have external interactions only produce small 

errors. The number of external interactions a surface has does not reliably predict 

whether its associated output errors will be large or small. However, the 

experimental results indicate that surfaces in the same building tend to have similar 

degrees of errors. If the errors produced in a surface are large, errors for the other 

surfaces in the building are usually large as well. However, this observation does not 



explain all the results. In some buildings, some surfaces have large errors while 

others have small errors. The diagrams from diagrams from Figure 5.20 to Figure 

5.23 illustrate two surfaces in the reduced scene. The surface on the left has external 

interactions but produces small output errors, while the surface on the right has only 

local interactions but produces large output errors. 

From the whole scene boxplots in the middle rows of Figure 5.18 and Figure 5.19, 

the largest surface errors are significant even when the edge case 00 is excluded. This 

is true for all outputs. The SW absolute error boxplots show a maximum of about 

800 for the edge case and 80 for the other cases. As shown in the top rows of Figure 

5.18, SW values in the experiments range from 0 to approximately 1200. Therefore, 

absolute errors of 800 and 80 respectively correspond to 66% and 6% of the SW 

value range. Figure 5.20 compares the SW output errors for two surfaces with 

different error responses. 

 

Figure 5.20: SW output errors for two surfaces: low (left) and high (right) 

 



From Figure 5.18, the largest absolute error for DL is approximately 6500 for the 

edge case 00, and 1000 for the other cases. The range for DL values is approximately 

18000 in the experiments. Therefore, error of 6500 and 1000 respectively correspond 

to about 36% and 6% of the DL range respectively.  Figure 5.21 compares the DL 

output errors for two surfaces with different error responses.  

 

Figure 5.21: DL output errors for two surfaces: low (left) and high (right) 

For the LW output, Figure 5.19 shows that the range of values is about 1200. The 

largest absolute error is approximately 600 for all cases. This corresponds to about 

50% of the LW range. Figure 5.22 compares the LW output errors for two surfaces 

with different error responses. 



 

Figure 5.22: LW output errors for two surfaces: low (left) and high (right) 

From Figure 5.19, the top row boxplots show that the value range for the TH output 

is about 14. The largest absolute error is approximately 3.3 for the edge case 00, and 

about 1.8 for the other cases. Respectively, these values correspond to 24% and 13% 

of the TH range. Figure 5.23 compares the TH output errors for two surfaces with 

different error responses. 

 



 

Figure 5.23: TH output errors for two surfaces: low (left) and high (right) 

The experiments in this section have demonstrated that eliminating messages 

between CitySim-Federates can help to improve the performance of the distributed 

Building Energy Simulation. However, they have also shown, that communication is 

essential for the correctness of all outputs. In all cases, the errors produced due to 

reduced communication are significant for individual surfaces. However, the mean 

absolute errors over the entire scene are small. The results have shown that surfaces 

are not equally impacted by the eliminated attribute update messages. Although 

intuitive rationalizations have been explored, there does not appear to be a sufficient 

explanation to determine which of the surfaces will be highly impacted when 

messages are eliminated.  

  



5.2.5 Batch Compression Experiments 

In these experiments, the batching and compression strategy discussed Chapter 3 is 

implemented to evaluate its effectiveness on improving the communication 

performance of the federates in Case Study One. As this is a lossless method, the 

outputs produced from the distributed simulation in this case are the same as the 

original outputs. Therefore, there is no loss in accuracy even at the individual surface 

level, unlike the case of the message elimination experiments from the previous 

section.  

The experiments make use of the reduced 51-building scene. The scene is distributed 

over two computing nodes using the experimental setup described for the initial 

experiments. As discussed in Chapter 3, this method attempts to reduce 

communication overheads by combining several update messages into a single batch 

and compressing the batched messages together to obtain a smaller number of 

packets for transmission over the network. During these distributed simulation 

experiments, the batch size is varied between 1 and 200. The batch size is the 

maximum number of messages which will be combined together into a single batch. 

The minimum batch size of 1 is the same as the normal case where individual 

messages are transmitted separately. As there are a total of 320 surface objects in the 

51-building scene, neither CitySim-Federate in these experiments owns more than 

200 surface objects. Therefore, the maximum batch size of 200 is set as a threshold 

for combining all updates into a single batch. Each message batch is compressed and 

transmitted to the RTI, which forwards it to the other federates. On arrival at the 

receiving federate, the packets are uncompressed to retrieve the original messages. 

To aid the batching and compression method, the FOM was modified to facilitate 

sending attribute updates together for multiple surface objects. The class diagram in 

Figure 5.24 shows the modified objects. An object class has been added for each of 

the attributes that needs to be updated during federation execution, one each for SW, 

DL and TH. Each of the three new object classes has two attributes, both being lists. 

The first is a list of the ids of surface object instances included in the update and the 

second is a list of the corresponding attribute value updates for the surface objects in 

the list. The ids of the surface object instances are obtained from the unique integer 

handles assigned to the instances by the RTI when the instances are registered during 

federation initialization. In this modified FOM, the Surface object class no longer has 



any attributes of its own. This is because federates no longer exchange updates 

directly for individual surface objects. However, individual surface object instances 

still need to be registered with the RTI in order to obtain the globally unique handles 

from which the ids are derived. Consequently, the Surface class is still required as 

these globally unique ids are depended upon for batching attribute updates together 

at the sending federate and unpacking the updates at the receiving federate. It should 

be noted that the attribute-oriented FOM in Figure 5.24 can be viewed as a 

generalization of the original FOM from Figure 5.5, as this new FOM permits 

sending and receiving attribute updates for individual surface objects. In the case 

where it is desired to send single attribute updates, all that is required is to create an 

id list with one item and a corresponding value list containing a single value. The 

two FOMS also differ in the options available for updating FOM object attributes. In 

the original FOM, an individual update can include more than one Surface attribute. 

For example, it is possible to deliver attribute updates for DL and SW together. 

However, the modified FOM only delivers updates for one attribute at a time, 

although it does this in bulk for multiple surfaces. Also, its object attribute updates 

need to include both the idList and valueList attributes in order for the update to have 

meaning. 

 

Figure 5.24: Modified class diagram with simplified HLA FOM objects for Case Study One 

The graph in Figure 5.25 shows the results obtained from the batching and 

compression experiments, plotting a trend which illustrates how the distributed 

simulation wall-clock time reduces as larger numbers of messages are batched and 

compressed together. In these experiments, the communication wall-clock time 

continually reduces as the number of messages per batch is increased from 1 to 200. 

The largest gains occur between 1 and 100. Doubling the batch size from 100 to 200 



only produces marginal gains. The largest communication time occurs for a batch 

size of 1, taking 184s. The minimum communication wall-clock time of 27s is 

achieved using a batch size of 200. This represents almost a seven-fold reduction in 

wall-clock time. From the previous section, the minimum achievable communication 

time for the reduced scene is about 20s when federates do not perform any attribute 

updates. The minimum of 20s is an indication of the overheads required for time 

synchronization between federates. From the results in this section, this implies that 

only 7s of additional communication overhead is added in the 200-batch experiment.  

 

Figure 5.25: Batch compression results for reduced scene 

Figure 5.26 shows the results from applying the batching and compression method to 

the full simple scene with 2,980 buildings. To boost the message count for these 

experiments, federates were configured to publish full attribute updates for all local 

surfaces, including updates for surfaces of no interest to other federates. However, 

the simulation run length was shortened to 4 months, as for the reduced scene. Two 

federates are employed for the batch compression experiments, varying, the batch 

size as 2, 10, 100 and 1000. The maximum number of surface objects owned by a 

single federate is about 12,000. The results show a similar pattern to those of the 

experiments for the reduced 51-building scene. Performance gains seem to diminish 

after a batch size of 100. However, the communication time reduction is significant 

from the 2-batch case to the 100-batch, falling from 2569s to 357s, which is a 7-fold 

improvement. 



 

Figure 5.26: Batch compression results for simple scene 

The experiments in this section have demonstrated how the batching and 

compression strategy can improve the performance of distributed Building Energy 

Simulations. As discussed in Chapter 3, the potential drawbacks of this strategy 

include additional time for compressing and de-compressing messages. In this case, 

however, it appears that these considerations are outweighed by the advantage of 

reduced communication overheads.  The experiments have also shown that gains 

made can become marginal after a point, as the batch size increases. An important 

advantage of this strategy is that significant performance gains are made without 

having to sacrifice output accuracy. 

  



5.3 Case Study Two: Heterogeneous Distributed Simulation  

Case Study Two is a heterogeneous simulation model that couples the Building 

Energy Simulation from Case Study One, CitySim, with a Building Occupancy 

Simulation, No-MASS. A Building Energy Simulation can interoperate meaningfully 

with a Building Occupancy Simulation to obtain better energy use predictions fine-

tuned by the activities of the building’s occupants. 

Case Study Two serves to present the additional concerns involved when the 

individual simulators involved in the distributed simulation are of different types. 

This section explores the impact on communication when maintaining 

interoperability in a heterogeneous arrangement. Communication patterns in the 

heterogeneous case can differ from patterns in the homogeneous case. For example, 

the points where communication occurs are the same for all federates in the 

homogeneous distributed simulation of Case Study One. However, the 

communication points in a heterogeneous distributed simulation may differ 

depending on the type of federate. This depends on the synchronization requirements 

for different federates and can possibly lead to a need for tighter coupling. The more 

types of federates that are added to the heterogeneous simulation, the greater the 

potential complexity regarding communication. Figure 5.27 illustrates a possible 

pattern of communication between four HLA federates, two federates of type A and 

two federates of type B. In this case, the communication between A and B is more 

loosely coupled than the communication between A federates or the communication 

between B federates. 

 

Figure 5.27: Example communication pattern between four federates of two types 



5.3.1 Nottingham Multi-Agent Stochastic Simulation 

The Nottingham Multi-Agent Stochastic Simulation (No-MASS) (Chapman, Siebers 

and Robinson, 2018) is a Building Occupancy Simulation designed to integrate with 

the Building Energy Simulation tool EnergyPlus (Crawley et al., 2001). No-MASS 

couples with EnergyPlus using the FMI standard (Blochwitz et al., 2011). Although 

EnergyPlus is a single building simulation tool, No-MASS can also be employed to 

simulate a multi-building scene. This is important as the experiments in this chapter 

all involve scenes with multiple buildings. No-MASS simulates each building 

separately and does not account for any interactions between occupants of different 

buildings. Consequently, no communication needs to occur between different No-

MASS-Federates. Each No-MASS-Federate only needs to exchange data with the 

CitySim-Federates that simulate the same buildings. CitySim includes a simple 

model of stochastic occupant presence which uses stochastic parameters to represent 

factors such as the number of occupants present in a building, how occupants interact 

with windows and lighting. In a meaningful coupling with No-MASS, the stochastic 

occupant model can be replaced with parameters supplied by No-MASS. This is 

ideal as No-MASS is a specialized tool for Building Occupancy Simulation and 

offers better flexibility for modelling occupant behaviour using the ABS paradigm.  

For the experiments in this section, the HLA federation from Case Study One will be 

extended to include No-MASS. Figure 5.28 shows a conceptual illustration of the 

CitySim / No-MASS HLA Federation. Each federate is run on a separate computing 

node. Each CitySim-Federate will share a scene partition with a partner No-MASS-

Federate. Each CitySim-Federate / No-MASS-Federate pair will communicate to 

exchange relevant updates. As in Case Study One, City-Sim-Federates continue to 

exchange attribute updates with one another via the RTI. No-MASS-Federates, 

however, do not need to communicate with one another. Figure 5.28 illustrates this 

arrangement, pairing each No-MASS-Federate with a corresponding CitySim-

Federate. While the CitySim-Federate simulates building energy interactions for the 

assigned partition, its partner No-MASS-Federate simulates occupant interactions for 

buildings in the same partition. Communication occurs at two levels, hourly 

timesteps and sub-hourly timesteps. CitySim-Federates exchange data as in Case 

Study One, with sub-hourly attribute updates after each computation. At hourly 

timesteps, however, CitySim-Federates and No-MASS-Federates exchange attribute 



updates such as thermal zone (room) temperatures and occupant presence. It must be 

noted that No-MASS can also perform sub-hourly simulation computations. 

However, this level of resolution is not required for data exchange with CitySim. 

Sub-hourly timesteps in No-MASS-Federates do not need to be regulated by the RTI 

with TAGs as no data exchange is involved. Therefore, No-MASS-Federates can 

safely and independently manage their own internal sub-hourly timesteps. 

 

Figure 5.28: Conceptual illustration of interactions in the CitySim / No-MASS Federation 

Synchronization in the heterogeneous simulation is complicated by the fact that No-

MASS-Federates must ignore the sub-hourly CitySim attribute updates. These are 

regulated by the RTI due to the attribute updates involved. In the CitySim / No-

MASS Federation implementation, the general hourly timestep is tracked by an 

integer, X. CitySim sub-timesteps are given incrementing fractional values such as 

X.1, X.2, X.3. City-Sim Federates advance their simulation time in these steps. 

However, No-MASS-Federates advance at an integral timestep, at the point where 

data exchange occurs between all the types of federates. 

In summary, timestep management ensures that: 

• CitySim-Federates continue to synchronize with one another at sub-hourly 

timesteps to exchange attribute updates after computations. 

• During CitySim sub-timesteps, no data is exchanged between CitySim-Federates 

and No-MASS-Federates. 



• No-MASS-Federates are allowed to execute sub-hourly timesteps which are not 

tracked by the RTI. 

• At each hourly timestep, No-MASS-Federates and CitySim-Federates all 

synchronize with one another. 

 

5.3.2 Case Study Two: HLA Federation 

The class diagram in Figure 5.29 provides an overview of the HLA object classes 

in the FOM of the federation for Case Study Two. This case includes all the HLA 

Surface object class attributes from Case Study One, as this data is still 

exchanged between CitySim-Federates during federation execution. A new Zone 

object class has been added to the FOM in order to exchange building zone data 

between CitySim-Federates and No-MASS-Federates. Similar to surface objects, 

zone objects are persistent throughout federation execution. Therefore, they are 

represented as HLA object classes instead of interaction classes. The Zone object 

class includes four attributes: Temperature, Illuminance, NumberOfOccupants 

and LightState. Different federate types own different attributes, which differs 

from the federation in Case Study One. Temperature and Illuminance are owned 

by CitySim-Federates, while NumberOfOccupants and LightState are owned by 

No-MASS-Federates. In this arrangement, CitySim-Federates subscribe to 

NumberOfOccupants and LightState but cannot publish them. It is the 

responsibility of the No-MASS-Federates to publish the required attributed 

updates concerning those attributes. On the other hand, No-MASS-Federates 

subscribe to Temperature and Illuminance but cannot publish them, since those 

attributes are the responsibility of CitySim-Federates.  

 

Figure 5.29: Class diagram showing simplified HLA FOM objects for Case Study Two 



While Figure 5.29 provides a simplified view of the FOM, the actual FOM used in 

the distributed simulation experiments for Case Study Two is structured as shown in 

Figure 5.30. This structure is similar to the FOM that was created in Case Study One 

to enable attribute updates to be transmitted in batches. The attributes from the 

simplified FOM in  Figure 5.29 are converted to HLA objects composed of pairs of 

id and value lists. As observed for the expanded FOM in Case Study One, sending 

independent attribute updates objects can be achieved by placing a single element in 

the id and value lists. The Surface and Zone classes are retained in the expanded 

FOM, similar to practice in Case Study One. This is important as individual surface 

and zone objects need to be registered with the RTI in order to supply the globally 

unique ids that will be used in the id lists.  

 

 

Figure 5.30: Class diagram showing expanded HLA FOM objects for Case Study Two 

 

As discussed in this section, the data dependencies between CitySim-Federates and 

No-MASS-Federates have been identified and captured in the FOM. The purpose of 

the experiments conducted on this case study is to measure communication time. For 



this purpose, it is adequate to implement attribute update exchanges and time 

synchronization between CitySim-Federates and No-MASS-Federates. As this is 

sufficient for enabling the measurement of communication time, it is not necessary to 

make further modifications to the internal workings of CitySim and No-MASS to 

utilise the data received for internal computations. 

The sequence diagram in Figure 5.31 illustrates the process of message exchange 

between the RTI, CitySim-Federate and No-MASS-Federates during federation 

execution. Similar to CitySim-Federates, a No-MASS Federates is a unit composed 

of two parts, a No-MASS-Federate Ambassador and a No-MASS-Simulator. While 

the No-MASS-Federate Ambassador performs all message exchanges with the RTI, 

the No-MASS-Simulator performs the actual simulation. Similar to Case Study One, 

No-MASS-Federate Ambassadors work with the RTI to create, initialize and destroy 

the federation at the start and end of execution, and perform the signalling required 

for synchronization between federates. While the sequence diagram in Figure 5.31 

only shows one Federate of each type, a CitySim / No-MASS Federation can include 

multiple CitySim-Federates and No-MASS-Federates, all working according to the 

sequence described by the diagram. Creating the federation is done only once, by the 

first federate to join, and destroying the federation is the responsibility of the last 

federate to resign. 

Similar to the federation in Case Study One, time synchronization involves federates 

sending TARs to the RTI and waiting to receive TAGs before advancing to the next 

timestep. However, as discussed in the previous section, there are multiple levels of 

synchronization to consider for Case Study Two. On one level, hourly timestep 

synchronization is used between CitySim-Federates and No-MASS-Federates. On 

another level, CitySim-Federates also synchronize with one another at sub-hourly 

timesteps. No-MASS-Federates do not participate in the sub-hourly attribute updates 

but independently manage their own internal sub-hourly timesteps as these do not 

require attribute updates. From this, it is evident that heterogeneous coupling 

between No-MASS-Federates and CitySim-Federates is looser than homogeneous 

coupling between CitySim-Federates. Also, there is no coupling between No-MASS-

Federates as they function independently of one another. The volume of 

heterogeneous communication between No-MASS-Federates and City-Sim-

Federates is also lower than that between CitySim-Federates. This is due to the fact 



that attribute update messages are exchanged at the higher zonal level rather than at 

the lower surface level. By definition, a zone is composed of multiple surfaces. This 

implies a smaller communication load between No-MASS-Federates and CitySim-

Federates. 

 

 

Figure 5.31: Sequence diagram of HLA federation execution for Case Study Two 

 

 

 

 



5.3.3 Initial Experiments 

The experiments in this section use the reduced 51-building scene distributed over 

two computing nodes, utilising the same experimental setup described for Case 

Study One. One computing node hosts a CitySim-Federate while the other hosts a 

No-MASS-Federate. Figure 5.32 shows the results from the initial experiments. 

Although they both simulate the same building scene, the computation time of the 

No-MASS-Federate significantly exceeds the computation time of the CitySim-

Federate. While the CitySim simulation workload requires about 5s to complete, the 

No-MASS simulation workload requires about 15s to complete, which is three times 

longer. This is due to the fact that the heterogeneous simulators perform different 

computations even though they share the same scenario. 

As discussed in previous sections, communication time is measured as the total time 

spent in activities other than processing the simulation workloads, including: 

1. Actively transmitting attribute updates. 

2. Passively idling. 

3. Actively receiving attribute updates. 

4. Actively sending and receiving TARs, TAGs, and other signalling messages. 

 

As there is a three-fold difference between the computation times, a significant 

portion of measured communication time for the CitySim-Federate is due to passive 

idling while waiting for the No-MASS-Federate to complete its workload. From 

Figure 5.32, the measured communication clock time for the No-MASS-Federate is 

about 60s, while the communication time for the CitySim-Federate is about 70s. The 

10s difference corresponds to the difference between their computation times, which 

indicates that the CitySim-Federate spends about 10s idling and 60s in active 

communication. 

 



 

Figure 5.32: Initial experiment for CitySim /No-MASS Federation 

 

The initial results raise concerns about computation time imbalances between 

heterogeneous simulators in distributed simulations. Large imbalances need to be 

addressed as they can have an impact on performance, judging from the motivating 

example discussions in Chapter 4. One possibility for reducing the workload 

disparity between heterogeneous simulator types would be to perform further 

partitioning. Following this approach, partitions can be sub-divided to reduce 

computation times for the slower simulator. This, however, will require additional 

computing nodes to handle each sub-partition. Figure 5.33 illustrates this 

arrangement using the CitySim/No-MASS Federation. As there are no 

communication paths between No-MASS-Federates, sub-partitioning in this case 

does not need to consider interactions between sub-partitions. This may not 

necessarily be the case for other heterogeneous simulations, and sub-partitioning may 

introduce additional communication.  

 



 

Figure 5.33: Sub-partitions for CitySim/No-MASS Federation 

 

Another approach for reducing workload disparity would be to collocate 

heterogeneous simulators on the same computing node as shown in Figure 5.34. This 

arrangement is similar to a homogeneous distributed simulation, as each computing 

node can be considered as a composite of the same two simulators. In this case, 

initial partitioning is sufficient to balance the workload and sub-partitioning is not 

necessary. 

 

 

Figure 5.34: Collocated CitySim/No-MASS Federation 



5.3.4 Batch Compression Experiments 

The lossless batching and compression strategy is applied to the heterogeneous 

distributed simulation for Case Study Two, and the resulting communication time is 

measured. The batch size is set to the maximum of 200, which produced the largest 

communication time reduction for Case Study One. The chart in Figure 5.35 shows 

the results obtained from experiments. The communication wall-clock time of the 

No-MASS-Federate is 17s. As discussed in the previous section, the communication 

time measurement for the No-MASS-Federate does not include idle time. The new 

communication time is about 28% of the original 60s from the base case. Similar to 

Case Study One, the gains made by reduction in communication overheads outweigh 

the additional time required to compressing and decompress messages. 

 

Figure 5.35: Batching compression experiment for CitySim/No-MASS Federation 

 

5.4 Summary 

In this chapter, the experiments for Case Study One have shown how communication 

time can be reduced by applying various communication strategies. They have 

demonstrated that for a lossy method, such as message elimination, performance 

gains are made at the expense of simulation accuracy. The message elimination 

experiments for CitySim have shown that although the average errors measured at 

system level may be negligible, the errors on individual objects can be significant. 

They have also shown that objects may not all be affected equally by the loss of 

messages. While this is the case, it may not be straightforward to establish a 

sufficient explanation for the error pattern. For the Case Study One experiments, the 



most intuitive hypothesis failed to explain the pattern. The degree of error a surface 

generates appears to be unrelated to the number of external interactions it possesses. 

The experiments show a significant reduction in communication time for the 

batching and compression strategy. This performance gain is obtained at no cost to 

simulation accuracy, as the strategy preserves all messages. In all cases, the 

additional overheads introduced by this strategy were outweighed by the gains made 

in communication time.  

The experiments in this chapter have also examined time synchronization costs 

separately from the general communication costs. This is investigated by a special 

experiment in which no messages are exchanged except those required for time 

advancement. The measured synchronization time serves to establish a bound for the 

performance gains that can be achieved in the distributed simulation. 

The experiments for Case Study Two have served to bring out the additional 

concerns that must be taken into account by the framework when different types of 

simulators are involved in a distributed simulation. These experiments have 

demonstrated that compared to homogeneous distributed simulations, more complex 

communication patterns can be introduced when heterogeneous simulators are 

coupled. They have also shown that load balancing can potentially be more complex 

for the heterogeneous case than the homogeneous case. For the heterogeneous 

experiments, the batching and compression strategy produced a similar performance 

improvement as in Case Study One. 

 



6 FRAMEWORK 

6.1 Overview 

The framework proposed in this chapter forms the basis for implementation of meta-

simulations designed to evaluate the performance of distributed simulations. The 

framework accounts for important performance-influencing factors related to 

communication. The difference in performance between alternative communication 

strategies is also an important consideration. The contents of the framework are 

informed by the two case studies presented in Chapter 5. As discussed in Chapter 3, 

the framework adopts the MAS paradigm. 

6.2 Conceptual Model 

The framework focuses on modelling the essential aspects of the federation that have 

significant bearing on communication time. It does not attempt to model the 

components of the HLA federation in great detail, such as all the services available 

on the interface between federates and the RTI. The following sections describe the 

essential elements of the federation execution that have been included in the 

framework, following the MAS paradigm. 

6.2.1 Framework Components 

• Coordinator Agent:  

The coordinator agent represents the component of the distributed simulation 

that coordinates execution. For an HLA federation, this is represented by the 

RTI.  In a meta-simulation based on an HLA federation, this agent mimics the 

sub-set of RTI functionality that is required for executing the distributed 

simulation. For the case studies in Chapter 5, the Coordinator Agent can be 

labelled RTI Agent. The responsibilities of the RTI Agent for the two case 

studies include: 

a. Routing messages between federates based on the publish-subscribe 

paradigm. 



b. Controlling federate time advancement during federation execution, 

ensuring all federates have received the required messages in each 

timestep before allowing Time Advance Grants (TAGs). 

 

For distributed simulations based on the HLA, an implementation of the 

framework will normally include a single RTI Agent, as is usually the case 

with HLA federations. However, it is also possible to include more than one 

RTI Agent to manage separate federations that can interact with one 

another. 

 

• Node Agent:  

Node Agents represent the components of the distributed simulation that 

perform the computations required to drive the simulation forward. A Node 

Agent can generate messages to share its local state with other Node Agents. 

For the case studies in Chapter 5, the Node Agents can be labelled Federate 

Agents. Federate Agents simulate the functions performed by federates in the 

case studies. The responsibilities of the Federate Agents include: 

a. Performing computations 

b. Publishing updates to the RTI Agent 

c. Receiving updates from the RTI Agent 

d. Sending Time Advance Requests to the RTI Agent and waiting to 

receive a TAG before proceeding to the next time-step. 

 

For distributed simulations based on the HLA, an implementation of the 

framework will normally include multiple Federate Agents that only interact 

directly with the RTI. Federate Agents can have properties to reflect the 

conditions of a real system. For example, a Federate Agent parameter can be 

added for the computation time per timestep. This can be set up as a 

stochastic parameter with values drawn from a triangular distribution with a 

min, max and mode. For homogeneous distributed simulations with 

imbalanced workloads, different min, max and mode values can be set for 

separate Federate Agents. Also, for heterogeneous distributed simulations, 

distinct types of Federate Agents can have different triangular distributions 

to reflect different computation times. 



A parameter can also be added to the Federate Agent to represent the 

number of timesteps between consecutive updates. For a heterogeneous 

distributed simulation, this parameter that can be set differently according to 

the type of Federate Agent. This can account for the different 

communication patterns of distinct types of Federate Agents. This parameter 

is also useful for testing communication strategies which employ message 

elimination for some timesteps, by increasing the period between 

consecutive updates. 

 

6.2.2 Experimental Factors 

The experimental factors in the framework include various parameters that govern 

the distributed simulation execution and influence its performance. This includes 

global parameters that affect all agents, such as network latency and bit rate. It also 

includes parameters that are specific to Coordinator Agents and Node Agents. Table 

6.1 provides a list of experimental factors considered in the framework. The list of 

experimental factors is informed by the case study experiments conducted in Chapter 

5. 

 

Table 6.1: Framework Parameters 

Level / 

Component 
Parameter Description Units 

Global 

Network Latency 

One way latency associated with 

point-to-point packet transfer over 

the network. 

ms 

Network Bit Rate Data transfer rate over the network. bits/s 

Payload Bytes 
Size of data payload carried in each 

network packet. 
bytes 

Header Bytes 
Size of metadata appended to 

network packets. 
bytes 

Max Timestep Total simulation run length. timesteps 



Level / 

Component 
Parameter Description Units 

Number of Nodes 

Count of computing nodes co-

operating in the distributed 

simulation. 

number 

Node Agent 

Initialization Time 

Computation time required for pre-

processing on each node before 

starting the simulation execution. 

This parameter can be drawn from a 

specified triangular distribution with 

min, mode, and max values. 

ms 

Computation Time 

per Timestep 

Different values can be set for each 

node to reflect scenarios with 

imbalanced computation workloads. 

This parameter can be drawn from a 

specified triangular distribution with 

min, mode, and max values. 

ms 

Message Bytes 

Size of individual messages 

transmitted from the node. 

This parameter can be drawn from a 

specified triangular distribution with 

min, mode, and max values. 

bytes 

Message Volume 

per Timestep 

Total number of individual 

messages transmitted from the node 

in each timestep. 

Different values can be set for each 

node to reflect variations in 

communication requirements. 

number 

Batch Size 

When applying the batching and 

compression strategy, this 

parameter indicates the number of 

messages to combine in each batch. 

A setting of 1 means batching is not 

applied, and each message is 

transmitted separately. 

number 



Level / 

Component 
Parameter Description Units 

Compression Ratio 

Applies to the batching and 

compression strategy. 

A setting of 1 means no 

compression is applied. 

number 

Update Period 

Specifies the number of timesteps 

between subsequent message 

transmissions. This can be used to 

emulate the message elimination 

strategy. 

timesteps 

Fixed Transmission 

Cost 

A fixed delay due to operations 

required to establish the 

communication link e.g., 

handshaking. 

ms 

Variable 

Transmission Cost 

Variable delay due to operations 

required to process packets for 

transmission. 

ms 

Coordinator 

Agent 
Initialization Time 

Time required to set up the 

distributed simulation session, 

including signalling between nodes 

and the coordinator. 

This parameter can be drawn from a 

specified triangular distribution with 

min, mode, and max values. 

ms 

 

6.2.3 Responses 

The measured responses of the framework track the performance of various aspects 

of the meta-simulation. The main response to be measured is the total execution time. 

This depends on the total communication time and total computation time for each 

Node Agents. As established in Table 6.1,  the total computation time for each Node 

Agent depends on the specified input parameter setting for Computation Time per 

timestep. However, the total communication time is not specified directly by an input 

parameter. Instead, it is determined indirectly by executing the meta-simulation, and 



depends on the settings of several input parameters including Message Bytes, 

Message Volume, Batch Size, and Network Latency, among others. Similar to the 

approach used for the case study experiments in Chapter 5, the total communication 

time for each Node Agent is determined as time not spent performing computation. 

This is measured as a sum of three parts:  

(1) Active Transmit Time 

(2) Active Receive Time 

(3) Passive Idling Time + Synchronization Time.  

Table 6.2 provides an overview of the responses measured by the framework. 

 

Table 6.2: Framework Responses 

Level / 

Component 
Output Description Units 

Node Agent 

Total Communication 

Time 

The total time spent on each node to 

perform operations other than 

computation of its simulation 

workload. This includes time for 

packet transmission and receipt as 

well as for idle time. 

ms 

Total Transmit Time 
The total time spent actively 

transmitting messages by each node. 
ms 

Total Receive Time 
The total time spent actively receiving 

messages by each node. 
ms 

Total Idle Time 

Time spent by each node while 

neither performing computation nor 

active communication operations. 

ms 

Total Packets 

Transmitted 

The total number of data packets 

transmitted by each node during 

distributed simulation execution.  

This may differ from the number of 

messages depending on factors such 

as Payload Bytes, Message Bytes, 

Batch Size, and Compression Ratio. 

number 



Level / 

Component 
Output Description Units 

Total Packets 

Received 

The total number of data packets 

received by each node during 

distributed simulation execution. 

number 

Total Computation 

Time 

The total computation time for each 

node. This depends directly on the 

input parameter for Computation Time 

per timestep. 

ms 

Global Total Execution Time 

The total time elapsed from the start 

of the distributed simulation to 

completion. 

 

ms 

 

6.3 Model Content 

6.3.1 Node Agent 

Node Agents are modelled using state charts with transition rules that are governed 

by the node parameters set out in Table 6.1. As illustrated by Figure 6.1, Node Agent 

state charts include the following states: 

• Initialize:  

In this state, Node Agents perform the required signalling with the 

Coordinator Agent to set up the distributed simulation. Node Agents also 

perform pre-processing computations that are required before starting the 

simulation timesteps. For an HLA distributed simulation, this state represents 

the time taken by Federate Agents to join the federation, register objects to 

establish ownership, declare class attributes they intend to publish, and 

specify class attributes to which they wish to subscribe. From Figure 6.1, the 

Initialize state transitions to the Compute state. This transition is triggered by 

a timeout which is determined by the Node Agent parameter settings for 

Initialization Time. 

 

 



• Compute:  

In this state, Node Agents perform the simulation computations for one 

timestep. From Figure 6.1, the Compute state transitions to the Send state. 

This transition is triggered by a timeout determined by the Node Agent 

parameter settings for Computation Time. For scenarios where the simulation 

workload is highly imbalanced, the Computation Time parameter settings will 

vary significantly from one Node Agent to another. Sequential workloads can 

be implicitly accounted for in the parameter settings for different Node 

Agents. When comparing what-if scenarios for different numbers of Node 

Agents, the Computation Time parameter will need to be adjusted 

accordingly.  

 

• Send:  

In the Send state, Node Agents transmit data packets. For an HLA distributed 

simulation, the Federate Agents will transmit data packets to the Coordinator 

Agent. The number of data packets sent by each Node Agent is determined 

parameter settings such as Message Size, Number of Messages, Batch Size, 

and Compression Ratio. The time required to send data packets is determined 

by global parameter settings for network Latency, Bit Rate, and Payload Size. 

From Figure 6.1, the Send state transitions to the Receive state. This transition 

is triggered by a timeout. The timeout is calculated on each Node Agent as 

the time required to send all of its data packets. 

 

• Receive:  

In the Receive state, Node Agents wait to receive data packets. Node Agents 

remain in this state until they receive a TAG from the Coordinator Agent. On 

first entering the Receive state, a Node Agent sends a TAR message to the 

Coordinator Agent to indicate that it is ready to proceed to the next timestep. 

The Coordinator Agent will not respond with a TAG message until it is safe 

to move forward. While in the Receive state, each Node Agent keeps track of 

the time spent actively receiving data packets and the time spent idling.  

For an HLA distributed simulation, Federate Agents receive data packets 

which the RTI Agent forwards from other Federate Agents. The active 

receive time depends on the number of data packets received from the RTI 



Agent in this state. The remaining time is recorded as idling time. The 

transition out of the Receive state is triggered when a TAG message is 

received from the RTI Agent. The RTI Agent only sends a TAG when the 

Federate Agent has acquired all relevant messages in the current timestep and 

can therefore proceed safely forward to the next timestep.  

From Figure 6.1, the Receive state can either transition back to the Compute 

state, or transition forward to the Finish state. In both cases, the transition out 

of the Receive state is triggered when the Node Agent receives a TAG 

message from the Coordinator Agent. If the global setting for the Max 

Timestep parameter has not yet been reached, the Node Agent transitions 

back to the Compute state. If the final timestep has been completed, however, 

the Node agent transitions forward to the Finish state. 

 

• Finish:  

In the Finish state, Node Agents perform post-processing operations and 

carry out the signalling necessary for ending the distributed simulation 

session. For an HLA distributed simulation, Federate Agents resign from the 

federation execution and signal the RTI Agent to destroy the federation if no 

other Federate Agents are still joined. 



 

Figure 6.1: Node Agent State Chart 

 

6.3.2 Coordinator Agent 

Similar to the Node Agent, the Coordinator Agent also has an internal state-chart that 

determines its behaviour. As illustrated by Figure 6.2, the Coordinator Agent state-

chart includes the following states: 

• Initialize:  

Similar to the Initialize state in the Node Agent, this state represents the 

period of setting up the distributed simulation. For an HLA distributed 

simulation, Federate Agents exchange messages with the Coordinator Agents 



to create the federation, register objects, and declare publication and 

subscription intentions. From Figure 6.2, the Initialize state transitions to the 

Wait state. This transition is determined by a timeout which depends on the 

Initialization Time parameter setting. 

 

• Wait:  

In the Wait state, the Coordinator Agent waits to receive messages from the 

Node Agents. For an HLA distributed simulation, these messages can include 

data packets and signalling messages. Examples of signalling messages an 

RTI Agent may receive include TARs and resignation notifications from 

Federate Agents. To manage different types of messages, a Coordinator 

Agent can keep separate queues for each type. For example, an RTI Agent 

can have one queue for data packets that need forwarding, a second queue for 

TARs, and a third queue for resignation notifications. When the RTI Agent 

receives a message, it places it in the appropriate queue. Each data packet can 

be kept in the queue until it has been forwarded to all eligible subscribers, 

after which it can be removed from the queue. TARs can be retained in their 

own queue until all Federate Agents have sent in their own TARs. If the data 

packet queue is empty TARs have been received from all Federate Agents, 

the RTI Agent can safely grant TAGs to the Federate Agents. 

From Figure 6.2, the Wait state can either transitions to the Process state or 

the final state. The transition to the Process state is triggered whenever the 

Coordinator Agent receives any message. It is also triggered by a periodic 

timeout in order for the Coordinator Agent to continuously monitor the 

message queues. The transition to the final state is triggered when the 

distributed simulation is completed. 

 

• Process:  

In the Process state, the Coordinator Agent processes the messages stored in 

its message queues. For example, in an HLA distributed simulation the RTI 

Agent can use the following procedure to process its data packet queue and 

honour publish-subscribe relationships: 



o Forward data packets to appropriate Federate Agents if the subscribers 

are currently in the Receive state but have not already been sent the 

data packet. 

o Keep track of which data packets have been forwarded to which 

Federate Agents. 

o Remove a data packet from the queue if it has been forwarded to all 

relevant subscribers. 

 

The RTI Agent can then use the following procedure to process its TAR 

queue: 

o Check if the data packet queue is empty. 

o Check if all the Federate Agents have sent in TARs and are currently 

in the Receive state.  

o If the two conditions hold, sends TAG messages to all Federate 

Agents, and flush the TAR queue. 

 

Data packets transmitted by the RTI Agent while in the Process state 

contribute to the active receive time of the subscribing Federate Agents in the 

Receive state. If data packets are transmitted by multi-cast, the RTI Agent 

only needs to send data packet once each time it enters the Process state. The 

RTI Agent keeps track of the total number of data packets transmitted to all 

Federate Agents during each round of processing. In each processing round, 

idle time on each Federate Agent in the Receive state can accumulate based 

on the difference between the number of data packets the Federate Agent 

receives, and the total number sent by the RTI Agent in that round.  

From Figure 6.2, the transition from the Process state to the Wait state is 

triggered by a timeout. This timeout is determined by the time required for 

the Coordinator Agent to complete the previous round of processing. For an 

HLA distributed simulation, this is the time required for the RTI Agent to 

transmit all data packets in the previous round of processing. The transition is 

also triggered by a periodic timeout in order for the Coordinator Agent to 

continuously cycle between the Wait state and the Process state while 

monitoring the message queues. 



  

Figure 6.2: Coordinator Agent State Chart 

 

6.3.3 Packet Transmission Time 

For each Node Agent, the number of packets transmitted in the Send state is 

calculated based on the following message parameters from Table 6.1 as follows: 

• Message Volume 

• Message Bytes 

• Batch Size 

• Compression Ratio 

• Payload Bytes 

 



Number of Batches =  ⌈
Message Volume

Batch Size
⌉ 

 

Bytes per Batch =  ⌈
Message Bytes × Batch Size

Compression Ratio
⌉ 

 

Number of Packets =  ⌈
Bytes per Batch

Payload Bytes
⌉ × Number of Batches 

 

To calculate the transmission time for each data packet over the network, the 

simplified cost model used by Thakur, Rabenseifner and Gropp (2005) is applied: 

Packet Transmit Time =  α +  n ×  β 

Where α, β, and n correspond to framework parameters from Table 6.1: 

• α is the Network Latency parameter. 

• β is the transfer time per byte, which is the inverse of the Bit Rate parameter. 

• n is the number of bytes in the packet, which consists of Payload Bytes and 

Header Bytes. 

 

6.4 Framework Evaluation 

6.4.1 Parameter Settings 

In this section, the framework is evaluated by implementing a meta-simulation with 

the AnyLogic simulation toolkit which follows the descriptions of components and 

interactions discussed in the previous sections. As this concrete implementation of 

the framework is based on the case studies from Chapter 5, the implemented 

behaviour and interactions of the agents follows the HLA approach to distributed 

simulation. The Coordinator Agent is labelled RTI Agent, and the Node Agent is 

labelled Federate Agent. Table 6.3 provides a listing of general parameter settings 

for the meta-simulation. These settings are derived from the characteristics of the 

experiments conducted in Chapter 5. 



 

Table 6.3: General parameter settings for meta-simulation 

Level / 

Component 
Parameter Value Remarks 

Global 

Network Latency 15 µs  

Derived from empirical 

measurement of one-way 

network latency using the qperf 

tool. 

Network Bit Rate 10 Gbps 

Network type is 10 Gigabit 

Ethernet. Confirmed empirically 

with qperf tool. 

Payload Bytes 536 bytes 
Default Maximum Segment 

Size (MSS) for TCP. 

Header Bytes 40 bytes 
Default TCP header (20 bytes) 

+ default IP header (20 bytes). 

Fixed Transmission 

Cost 
1 ms Determined by calibration. 

Variable 

Transmission Cost 
25 µs Determined by calibration. 

Federate 

Agent 
Message Bytes 

Triangular (5, 7, 9) 

bytes 

Estimated from case study 

experiments. 

 

From Table 6.3, settings for the Fixed Transmission Cost and Variable Transmission 

Cost parameters are obtained by calibrating the meta-simulation to the results 

observed for the reduced scene experiment and the batch compression experiment in 

Chapter 5. In order to perform this calibration, the remaining meta-simulation 

parameters are set according to the values Table 6.4, which are based on the 

experiments from Chapter 5. For example, Message Volume can be determined from 

the scene partitioning and Computation Time per timestep is estimated from the 

measured computation time in the original experiments. 



 

Table 6.4: Parameter settings for reduced scene and compression experiment 

Level / 

Component 
Parameter Reduced Scene 

Reduced Scene + Batch 

Compression 

Global 

Max Timestep 

3264 

This corresponds to a 

simulated period of four 

months plus a 15-day 

warm-up period, using 

hourly timesteps. 

3264 

 

Number of Nodes 2 2 

Federate 

Agent 

Initialization Time Triangular (6, 7, 8) s Triangular (6, 7, 8) s 

Computation Time 

per Timestep 
Triangular (1, 2, 3) ms Triangular (1, 2, 3) ms 

Message Volume 

per Timestep 
Triangular (200, 270, 340) Triangular (200, 270, 340) 

Batch Size 1 (no batching) 200 

Compression Ratio 1 (no compression) 2 

Update Period 1 (no skipped timesteps) 1 (no skipped timesteps) 

 

6.4.2 Calibration Results 

Using the parameter values from Table 6.3 and Table 6.4, the meta-simulation was 

calibrated to find appropriate settings for the Fixed Transmission Cost and Variable 

Transmission Cost parameters. The calibration was performed by parameter variation 

over multiple runs for both scenarios. Table 6.5 presents the meta-simulation results 

for the chosen values of Fixed Transmission Cost = 1ms and Variable Transmission 

Cost = 25 µs. Compared to the original experiment, the difference in communication 

time for the batch compression scenario is 1s. For the normal reduced scene 

experiment, the difference from the original communication time is 59s. 



Table 6.5: Calibration results for meta-simulation 

Experiment 
Actual Communication 

Time (s) 

Meta-Simulation 

Communication Time (s) 

Reduced Scene 199 125 

Reduced Scene + 

Batch Compression 
27 28 

 

6.4.3 Test Results 

Further meta-simulation runs were conducted to test the calibrated parameters on the 

simple scene and the complex scene experiments from Chapter 5. Table 6.6 provides 

a listing of the scenario-specific parameters used, which are based on the 

characteristics of the original experiments. 

 

Table 6.6: Parameter settings for simple scene and complex scene 

Level / 

Component 
Parameter Simple Scene Complex Scene 

Global 

Max Timestep 

9120 

This corresponds to a 

simulated period of one 

year plus a 15-day warm-

up period, using hourly 

timesteps. 

9120 

Number of Nodes 2 4 

Federate 

Agent 

Initialization Time Triangular (250, 300, 350) s 
Triangular (0.14 × 106,  

1 × 106, 1.33 × 106) s 

Computation Time 

per Timestep 
Triangular (70, 80, 90) ms 

Triangular (50, 150, 200) 

ms 

Message Volume 

per Timestep 

Triangular (2700, 3200, 

3600) 

Triangular (2900, 5900, 

7700) 



Level / 

Component 
Parameter Simple Scene Complex Scene 

Batch Size 1 (no batching) 1 (no batching) 

Compression Ratio 1 (no compression) 1 (no compression) 

Update Period 1 (no skipped timesteps) 1 (no skipped timesteps) 

 

Table 6.7 presents the results of meta-simulation runs for the simple scene and the 

complex scene. In the case of the simple scene, the meta-simulation produces 61 min 

of communication time compared to 70 min for the original case, showing a 

difference of 9 min. For the complex scene, the meta-simulation produces 240 min 

compared to the actual result of 198 min, which is a difference of 42 min. 

 

Table 6.7: Meta-simulation results for simple scene and complex scene 

Experiment 
Actual Communication 

Time (min) 

Meta-Simulation 

Communication Time (min) 

Simple Scene 70 61 

Complex Scene 198 240 

 

Another set of meta-simulation runs was conducted for the simple scene experiments 

for which the batch compression strategy was applied in Chapter 5. Table 6.8 lists 

the parameter settings used for the meta-simulation, reflecting the conditions of the 

original experiments. As discussed in Chapter 5, these experiments were run for four 

months of simulation time. Also, message counts were boosted by allowing federates 

to transmit attribute updates for all local surface objects, regardless of whether other 

federates were interested in those updates or not. 

 



Table 6.8: Parameter settings for simple scene with batch compression 

Level / 

Component 
Parameter 

Simple Scene  

(Batch Size = 2) 

Simple Scene  

(Batch Size = 1000) 

Global 

Max Timestep 3264 3264 

Number of Nodes 2 2 

Federate 

Agent 

Initialization Time 
Triangular (0.7 × 106,  

0.75 × 106, 0.8 × 106) s 

Triangular (0.7 × 106,  

0.75 × 106, 0.8 × 106) s 

Computation Time 

per Timestep 
Triangular (70, 80, 90) ms Triangular (70, 80, 90) ms 

Message Volume 

per Timestep 
Triangular (18k, 19k, 20k) Triangular (18k, 19k, 20k) 

Batch Size 2 1000 

Compression Ratio 2 2 

Update Period 1 1 

 

Table 6.9 presents the results of meta-simulation runs for the simple scene with batch 

compression. For a batch size of 2, the meta-simulation resulted in 63 min of 

communication time compared to 42 min in the actual experiment, a difference of 21 

min. For a batch size of 1000, the meta-simulation shows a communication time of 

about 1.5 min compared to the actual result of 6 min, which is a difference of 4.5 

min. 

Table 6.9: Meta-simulation results for simple scene with batch compression 

Experiment 
Actual Communication 

Time (min) 

Meta-Simulation 

Communication Time (min) 

Simple Scene 

(Batch Size = 2) 
42 63 

Simple Scene 

(Batch Size = 1000) 
6 1.5 



The communication times predicted by the meta-simulation in the test runs from the 

previous sections are not exact. Regardless of this, the results provide a good 

indication of the performance expectation for large-scale simulations, based on 

parameters calibrated by small-scale experiments. The experiments have also 

demonstrated how a communication strategy applied to a small-scale experiment can 

be tested for a large-scale experiment without the need to set up and execute the 

large-scale scenario. 

 

6.5 Summary 

This chapter has provided details of a framework for evaluating performance trends 

in distributed simulations. The proposed framework is based on the lessons learned 

from development and experimentation with the Urban Simulation case studies from 

Chapter 5. These have informed the components of the framework and their 

interactions with one another, as well as the communication parameters and 

strategies considered by the framework. An implementation of the framework can be 

developed for specific distributed simulations in order to evaluate the effect that 

various communication-related parameters can have on distributed performance. In 

this chapter, this has been demonstrated by the implementation of a meta-simulation 

which reproduces the components and interactions described by the framework. The 

meta-simulation was calibrated with the reduced scene experiments from Chapter 5. 

Using the calibrated parameters, further meta-simulation runs were conducted to 

demonstrate the usefulness of the proposed approach for making performance 

evaluations for distributed simulations. 

 



7 CONCLUSION 

7.1 Contribution 

The work in this thesis has primarily been concerned with the development of a 

framework for estimating the execution performance of distributed simulation 

applications. The framework developed is a contribution to the research field of 

Parallel and Distributed Simulation. It proposes a meta-simulation approach based on 

the MAS paradigm to enable performance evaluation for distributed Urban 

Simulation applications. The proposed framework focuses on aspects of the dynamic 

relationship between communication and computation that can significantly 

influence execution performance. It sets out the main components of the meta-

simulation and defines the interactions between components during distributed 

execution. Using the approach proposed by the framework, custom meta-simulations 

can be created for specific distributed simulation applications. The performance 

estimates produced from such meta-simulations can support decisions to commit 

time and computing resources to developing and executing large-scale distributed 

simulations. Meta-simulations based on the framework can also be employed to 

investigate the effect that various communication strategies and parameters can have 

on the distributed simulation under investigation. Comparing the results of various 

what-if scenarios can aid the search for optimal parameters and communication 

strategies for the distributed simulation application under investigation. A 

demonstration of the framework has been provided in Chapter 6 by the 

implementation of a meta-simulation based on the experiments conducted in Chapter 

5. The concrete meta-simulation serves to provide an example of the framework in 

use and evaluate its usefulness for the purpose of estimating distributed simulation 

performance. While the case studies chosen for the experiments in Chapter 5 were 

developed in C++, the framework that has been presented is not specific to the 

implementation details of the selected simulations. Simulations that are implemented 

in different programming languages may exhibit variations in execution performance 

which can be accounted for in a meta-simulation by adjusting the computation time 



parameters to appropriate values for each simulation. Similarly, the framework is not 

specific to the computing nodes or the network employed in the experiments, but can 

account for differences between platforms by adjusting relevant parameters such as 

network latency and bit rate. 

7.2 Achievement of Aim and Objectives 

The aim of the work in this thesis, as set out in Chapter 1, has been achieved by the 

development of the framework described in Chapter 6. As stated in the aim, the 

proposed framework considers communication related parameters and strategies that 

can have significant impact on distributed simulation performance. The aim has been 

fulfilled by completing the list of objectives that was set out in Chapter 1: 

 

• Literature Review:  

Chapters 2 has covered the relevant research literature on large-scale 

distributed Urban Simulation.  

Chapter 3 has provided justification for the methodology selected, 

considering various approaches that have been applied in related work. It has 

also proposed various communication strategies for consideration in the 

framework.  

Chapter 4 has explored the relationships between communication and other 

relevant distributed performance considerations. It has also discussed existing 

approaches to distributed performance estimation.  

 

• Homogeneous Experimentation: 

Chapter 3 has introduced the selected physical Building Energy Simulation 

and provided justification for the selection as Case Study One.  

Chapter 5 has discussed Case Study One in more detail. An HLA distributed 

simulation has been developed for Case Study One and experiments have 

been conducted, applying communication strategies previously discussed in 

Chapter 3. 

 

 

 



• Heterogeneous Experimentation: 

Chapter 3 has introduced the Building Occupancy Simulation selected for 

Case Study Two and provided justification for the choice.  

Chapter 5 has detailed the development of a heterogeneous HLA distributed 

simulation for Building Energy Simulation and Building Occupancy 

Simulation. Differences in communication patterns between the Case Study 

One and Case Study Two have been discussed. From these discussions, it has 

been established that the homogeneous arrangement is a special case of the 

heterogeneous arrangement, which has more variation in communication 

patterns. Experiments have been conducted for Case Study Two, and results 

have been discussed and compared with Case Study One. 

 

• Framework Development: 

Chapter 6 outlines a meta-simulation framework for estimating distributed 

simulation performance, based on the lessons learned from development and 

experimentation with the case studies in Chapter 5. The proposed framework 

makes it possible to investigate the effects that various communication 

parameters and strategies can have on distributed simulation performance. 

Due to its reliance on a meta-simulation approach, the proposed framework 

enables the process of selecting optimal parameters by comparing what-if 

scenarios. The framework has been demonstrated using an implementation 

based on experiments conducted in Chapter 5. 

 

 

7.3 Limitations 

The simplifications listed in the following sections are features of the framework 

which constrain the scope within which it can be applied. 

• Reliable Communication: 

It is assumed that a reliable communication protocol such as TCP is used, and 

that the network connection is 100% reliable. Therefore, the framework does not 

account for dropped packets and the additional delays that could be introduced by 

the need to re-transmit corrupted or lost packets. 



 

• Network Congestion: 

The potential impacts of network congestion on communication performance in 

high traffic scenarios has been simplified. It is assumed that the input parameters 

are adequate to represent the network performance under any load conditions. 

 

 

• Communication Topology: 

The network structure has been based on the general structure of the HLA, 

assuming a star topology with a central RTI and peripheral Federates. Although 

the HLA experiments conducted in Chapter 5 form the basis of the framework, 

the framework can be adapted or extended to suit other communication 

topologies. 

 

• Barrier Synchronization: 

The framework uses conservative barrier synchronization based on the 

experiments from the case studies in Chapter 5. As other time synchronization 

approaches have not been considered, the framework will need to be modified or 

extended to account for the difference if other synchronization approaches are to 

be employed. 

 

• Output Accuracy: 

The framework focuses on distributed performance dynamics related to 

exchanging messages between nodes over the network. However, it does not 

have a means to account for the loss in output accuracy that may result from the 

use of lossy communication strategies such as those introduced in Chapter3. 

 

• Communication Method: 

The framework assumes that data exchange between computing nodes is 

accomplished via message passing over the shared network. It does not cover 

cases in which other communication methods are used, such as shared memory or 

one-sided communication. 

 



• Size of Experiments: 

The case studies in Chapter 5 have experimented on building scenes containing 

various numbers of buildings ranging from 50 to 3,000. However, experiments 

have not been conducted at true city-scale with hundreds of thousands of 

buildings to simulate. 

 

 

• Static Interactions: 

For both the homogeneous and heterogeneous case studies in Chapter 5, the 

publish-subscribe relationships between federates do not change during 

simulation execution. In other distributed simulations, this may not be the case 

and message exchange relationships between computing nodes can change 

dynamically as execution progresses. In such cases, dynamic load balancing to 

transfer ownership of objects between federates may have important implications 

for performance. 

 

• Other Performance Bottlenecks 

As discussed in Chapter 4, the performance of distributed simulations can be 

influenced by other factors apart from communication. The proposed framework 

focuses on communication and does not address bottlenecks that may arise as a 

result of other factors. 

 

 

7.4 Future Work 

The framework proposed in this thesis has been developed based on the HLA 

approach to distributed simulation. This is a practical consequence of the 

methodology which was suitably employed for the experimental work conducted in 

Chapter 5. Although this approach has been useful for the development of the 

framework, some of the limitations listed in the previous section shed light on other 

considerations which have not yet been fully accounted for by the framework. Future 

work will involve gradually expanding the framework to consider these other factors 

where it is deemed useful. The future expansion will also enable the framework to 



cover other distributed simulation approaches apart from the HLA, such as the 

alternatives discussed in Chapter 3. The MAS paradigm, which is essential to the 

framework, has not been fully exploited for the case studies examined in this work, 

especially with regard to “intelligent” agents. This concept can potentially be useful 

in future expansions of the framework. For example, co-operating “intelligent nodes” 

or an “intelligent co-ordinator” can be introduced in cases where interaction 

relationships are not static and alternative dynamic load balancing strategies need to 

be tested. In this case the “intelligent nodes” and “intelligent co-ordinator” can co-

operate to dynamically shift workloads during distributed execution. In summary, 

future work will include expansions to reduce limitations, enrich the framework and 

enable the creation of useful tools for evaluating the execution performance of large-

scale distributed simulations. 
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