

A FRAMEWORK FOR EVALUATING THE

IMPACT OF COMMUNICATION ON

PERFORMANCE IN LARGE-SCALE

DISTRIBUTED URBAN SIMULATIONS

Kwabena Ntim Amponsah

Intelligent Modelling and Analysis Group

School of Computer Science

University of Nottingham

This thesis is submitted for the degree of Doctor of Philosophy

May 2021

ABSTRACT

A primary motivation for employing distributed simulation is to enable the execution

of large-scale simulation workloads that cannot be handled by the resources of a

single stand-alone computing node. To make execution possible, the workload is

distributed among multiple computing nodes connected to one another via a

communication network. The execution of a distributed simulation involves

alternating phases of computation and communication to coordinate the co-operating

nodes and ensure correctness of the resulting simulation outputs. Reliably estimating

the execution performance of a distributed simulation can be difficult due to non-

deterministic execution paths involved in alternating computation and

communication operations. However, performance estimates are useful as a guide for

the simulation time that can be expected when using a given set of computing

resources. Performance estimates can support decisions to commit time and

resources to running distributed simulations, especially where significant amounts of

funds or computing resources are necessary. Various performance estimation

approaches are employed in the distributed computing literature, including the

influential Bulk Synchronous Parallel (BSP) and LogP models. Different approaches

make various assumptions that render them more suitable for some applications than

for others. Actual performance depends on characteristics inherent to each distributed

simulation application. An important aspect of these individual characteristics is the

dynamic relationship between the communication and computation phases of the

distributed simulation application. This work develops a framework for estimating

the performance of distributed simulation applications, focusing mainly on aspects

relevant to the dynamic relationship between communication and computation during

distributed simulation execution. The framework proposes a meta-simulation

approach based on the Multi-Agent Simulation (MAS) paradigm. Using the approach

proposed by the framework, meta-simulations can be developed to investigate the

performance of specific distributed simulation applications. The proposed approach

enables the ability to compare various what-if scenarios. This ability is useful for

comparing the effects of various parameters and strategies such as the number of

computing nodes, the communication strategy, and the workload-distribution

strategy. The proposed meta-simulation approach can also aid a search for optimal

parameters and strategies for specific distributed simulation applications. The

framework is demonstrated by implementing a meta-simulation which is based on

case studies from the Urban Simulation domain.

ACKNOWLEDGEMENTS

"He has made everything beautiful in its time." Ecc 3:11.

The outcome of this journey has been influenced directly or indirectly by the

immense support that I have been fortunate enough to receive from numerous people,

and I would like to express my profound gratitude to them.

First of all, I thank my principal supervisor Dr Peer-Olaf Siebers for his patient

guidance, encouraging mentorship, for always being ready to lend an ear, and

inspiring confidence. I have been blessed with an outstanding supervision team who

have helped me navigate the journey. I am indebted to Dr Brian Logan for his

knowledgeable comments and invaluable suggestions, to Dr Sameh Zakhary for his

constant support, attention to detail and critical feedback, and to Professor Paul

Nathanail for his indispensable advice and lending a broader perspective. I am

privileged to have received guidance from my supervisors, and this work would not

be possible without the counsel they provided.

I am grateful for the companionship of my PhD comrades from the Intelligent

Modelling and Analysis group (IMA), and from the Laboratory for Urban

Complexity and Sustainability (LUCAS). Their company has helped to brighten the

path on this journey and made it more fun and interesting.

The unrelenting care and support I have received from my family throughout my life

has made this moment possible. I am thankful for my father James and my sister

Abena. This thesis is dedicated to my mother Christine of blessed memory.

CONTENTS

1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 AIM AND OBJECTIVES .. 6

1.3 CONTRIBUTION .. 9

1.4 PUBLICATIONS ... 9

1.5 STRUCTURE OF THE THESIS ... 10

2 LITERATURE REVIEW ... 12

2.1 COMPUTER MODELLING AND SIMULATION ... 12

2.1.1 Model Properties: Discrete, Stochastic and Dynamic 13

2.1.2 Levels of Abstraction: Micro to Macro ... 14

2.1.3 Time Flow Mechanisms ... 15

2.1.4 Live, Virtual and Constructive (LVC) Simulations 17

2.1.5 Simulation Modelling Paradigms.. 18

2.2 LARGE-SCALE SIMULATION METHODS ... 22

2.2.1 Model Simplification ... 22

2.2.2 Modelling Paradigm Shift ... 23

2.2.3 Vertical Resource Scaling ... 23

2.2.4 Horizontal Resource Scaling ... 23

2.3 DISTRIBUTED SIMULATION .. 24

2.3.1 Strong and Weak Scaling .. 25

2.3.2 Task and Data-Parallelism ... 28

2.4 PARALLEL DISCRETE EVENT SIMULATION .. 31

2.4.1 Logical Process Decomposition .. 31

2.4.2 LP Time Synchronization .. 32

2.4.3 Conservative Synchronization ... 33

2.4.4 Optimistic Synchronization ... 35

2.4.5 Scalability of Conservative and Optimistic Approaches 36

2.5 OTHER DISTRIBUTED SIMULATION APPROACHES .. 38

2.5.1 PDES-MAS .. 38

2.5.2 Distributed ABS Toolkits ... 39

2.5.3 Custom-Built Distributed Simulations .. 44

2.6 DISTRIBUTED SIMULATION INTEROPERABILITY .. 45

2.6.1 The High Level Architecture (HLA) .. 45

2.6.2 The Functional Mock-Up Interface ... 59

2.6.3 Hybrid HLA and FMI .. 59

2.7 COMMUNICATION IN DISTRIBUTED SIMULATION ... 61

2.7.1 Message Types .. 61

2.7.2 Communication Message Volume ... 62

2.7.3 Disk Caching Alternative .. 63

2.7.4 Communication Networks ... 65

2.8 DISTRIBUTED PERFORMANCE MODELS ... 65

2.8.1 The Parallel Random-Access Machine ... 65

2.8.2 The Bulk Synchronous Parallel Model ... 66

2.8.3 The LogP Model .. 68

2.8.4 Other Approaches ... 69

3 METHODOLOGY .. 71

3.1 OVERVIEW .. 71

3.2 DISTRIBUTED SIMULATION APPROACH ... 72

3.2.1 Distributed Simulation Standard .. 72

3.2.2 Homogeneous Simulation Scalability Support .. 73

3.2.3 Heterogeneous Simulation Interoperability Support 73

3.2.4 Standard Time Synchronization .. 74

3.2.5 Supporting Documentation ... 74

3.2.6 Choice of Middleware ... 76

3.3 COMMUNICATION MANAGEMENT STRATEGIES ... 76

3.3.1 Approximation Strategy .. 76

3.3.2 Message Elimination Strategy .. 77

3.3.3 Batching and Compression Strategy ... 78

3.3.4 Hybrid Strategies .. 80

3.4 CASE STUDY SELECTION ... 80

3.5 MAS PARADIGM ... 81

3.6 SUMMARY OF METHODOLOGY .. 83

4 FRAMEWORK BACKGROUND ... 85

4.1 BUILDING ENERGY SIMULATION ... 85

4.1.1 Physical Building Energy Simulation ... 86

4.1.2 Building Occupancy Simulation .. 90

4.1.3 Distributed Building Energy Simulation ... 90

4.2 PERFORMANCE LIMITING FACTORS ... 91

4.2.1 Communication and Computation .. 92

4.2.2 Communication and Load Balancing .. 94

4.2.3 Communication and Heterogeneous Workloads 95

4.2.4 Communication and Sequential Workloads .. 95

4.2.5 Communication and Time Synchronization .. 96

4.2.6 Communication and Latency Hiding... 97

4.2.7 Communication and Number of Nodes ... 98

4.2.8 Summary .. 98

5 CASE STUDIES .. 99

5.1 OVERVIEW ... 99

5.2 CASE STUDY ONE: HOMOGENEOUS DISTRIBUTED SIMULATION 99

5.2.1 Case Study One: HLA Federation ... 105

5.2.2 Initial Experiments .. 108

5.2.3 Reduced Building Scene .. 116

5.2.4 Message Elimination Experiments .. 116

5.2.5 Batch Compression Experiments .. 125

5.3 CASE STUDY TWO: HETEROGENEOUS DISTRIBUTED SIMULATION 129

5.3.1 Nottingham Multi-Agent Stochastic Simulation 130

5.3.2 Case Study Two: HLA Federation .. 132

5.3.3 Initial Experiments .. 136

5.3.4 Batch Compression Experiments .. 139

5.4 SUMMARY ... 139

6 FRAMEWORK ... 141

6.1 OVERVIEW ... 141

6.2 CONCEPTUAL MODEL .. 141

6.2.1 Framework Components ... 141

6.2.2 Experimental Factors .. 143

6.2.3 Responses .. 145

6.3 MODEL CONTENT .. 147

6.3.1 Node Agent .. 147

6.3.2 Coordinator Agent .. 150

6.3.3 Packet Transmission Time .. 153

6.4 FRAMEWORK EVALUATION ... 154

6.4.1 Parameter Settings .. 154

6.4.2 Calibration Results ... 156

6.4.3 Test Results ... 157

6.5 SUMMARY ... 160

7 CONCLUSION .. 161

7.1 CONTRIBUTION .. 161

7.2 ACHIEVEMENT OF AIM AND OBJECTIVES .. 162

7.3 LIMITATIONS ... 163

7.4 FUTURE WORK .. 165

REFERENCES ... 167

LIST OF TABLES

TABLE 6.1: FRAMEWORK PARAMETERS .. 143

TABLE 6.2: FRAMEWORK RESPONSES ... 146

TABLE 6.3: GENERAL PARAMETER SETTINGS FOR META-SIMULATION 155

TABLE 6.4: PARAMETER SETTINGS FOR REDUCED SCENE AND COMPRESSION

EXPERIMENT .. 156

TABLE 6.5: CALIBRATION RESULTS FOR META-SIMULATION 157

TABLE 6.6: PARAMETER SETTINGS FOR SIMPLE SCENE AND COMPLEX SCENE 157

TABLE 6.7: META-SIMULATION RESULTS FOR SIMPLE SCENE AND COMPLEX SCENE .. 158

TABLE 6.8: PARAMETER SETTINGS FOR SIMPLE SCENE WITH BATCH COMPRESSION ... 159

TABLE 6.9: META-SIMULATION RESULTS FOR SIMPLE SCENE WITH BATCH

COMPRESSION .. 159

LIST OF FIGURES

FIGURE 2.1: TIME-DRIVEN AND EVENT-DRIVEN SIMULATION EXECUTION (MODIFIED

FROM SOURCE: FUJIMOTO 2000) ... 17

FIGURE 2.2: OVERVIEW OF MODELLING PARADIGMS ... 22

FIGURE 2.3: PROCESS AND TIME LP DECOMPOSITION METHODS (ADAPTED FROM

SOURCE: FUJIMOTO, 2000) .. 32

FIGURE 2.4: AREAS OF INTEREST IN A SPATIALLY PARTITIONED ABS 42

FIGURE 2.5: OVERVIEW OF THE HLA .. 47

FIGURE 2.6: OVERVIEW OF HLA FEDERATION MANAGEMENT SERVICES 49

FIGURE 2.7: OVERVIEW OF HLA DECLARATION MANAGEMENT SERVICES 50

FIGURE 2.8: OVERVIEW OF HLA OBJECT MANAGEMENT SERVICES 51

FIGURE 2.9: OVERVIEW OF HLA OWNERSHIP MANAGEMENT SERVICES 52

FIGURE 2.10: OVERVIEW OF HLA TIME MANAGEMENT SERVICES 53

FIGURE 2.11: HLA DDM PUBLICATION AND SUBSCRIPTION REGIONS 55

FIGURE 2.12: OVERVIEW OF HLA DATA DISTRIBUTION MANAGEMENT SERVICES 55

FIGURE 2.13: OVERVIEW OF HLA SUPPORT SERVICES .. 56

FIGURE 2.14: EXAMPLE HLA FEDERATION EXECUTION .. 57

FIGURE 2.15: RTI IMPLEMENTATIONS... 58

FIGURE 2.16: CONCEPTUAL ILLUSTRATION OF A BSP SUPERSTEP 67

FIGURE 2.17: LOGP MODEL INTERACTIONS ... 69

FIGURE 3.1: STANDARDS – HLA AND OTHER APPROACHES .. 72

FIGURE 3.2: SCALABILITY – HLA AND OTHER APPROACHES 73

FIGURE 3.3: INTEROPERABILITY – HLA AND OTHER APPROACHES 73

FIGURE 3.4: TIME SYNCHRONIZATION – HLA AND OTHER APPROACHES 74

FIGURE 3.5: DOCUMENTATION – HLA AND OTHER APPROACHES 75

FIGURE 3.6: SOFTWARE – HLA AND OTHER APPROACHES ... 75

FIGURE 3.7: MESSAGE ELIMINATION STRATEGY .. 78

FIGURE 3.8: BATCHING AND COMPRESSION STRATEGY ... 80

FIGURE 4.1: SIMPLE AND COMPLEX BUILDING SURFACE STRUCTURES. 86

FIGURE 4.2: ILLUSTRATION OF SOME BUILDING RADIATION EXCHANGES IN AN URBAN

ENVIRONMENT ... 88

FIGURE 4.3: CITYSIM TIME-STEP LOOP .. 89

FIGURE 4.4: COMMUNICATION AND COMPUTATION .. 93

FIGURE 4.5: COMMUNICATION AND LOAD BALANCING .. 94

FIGURE 4.6: COMMUNICATION AND HETEROGENEOUS WORKLOADS 95

FIGURE 4.7: COMMUNICATION AND SEQUENTIAL WORKLOAD 96

FIGURE 4.8: COMMUNICATION AND TIME SYNCHRONIZATION 97

FIGURE 4.9: COMMUNICATION AND LATENCY HIDING .. 98

FIGURE 5.1: ILLUSTRATION OF BUILDING SURFACE RELATIONSHIPS 101

FIGURE 5.2: BUILDING SCENE WITH 12 PARTITIONS SCENE SHOWING SOME

INTERACTIONS ... 102

FIGURE 5.3: CONCEPTUAL ILLUSTRATION OF CITYSIM-FEDERATES’ AREAS OF

INTEREST ... 103

FIGURE 5.4: CONCEPTUAL DIAGRAM OF CITYSIM HLA FEDERATION EXECUTION 104

FIGURE 5.5: CLASS DIAGRAM SHOWING HLA FOM OBJECTS FOR CASE STUDY ONE 105

FIGURE 5.6: SEQUENCE DIAGRAM OF HLA FEDERATION EXECUTION FOR CASE STUDY

ONE ... 106

FIGURE 5.7: CLASS DIAGRAM FOR CITYSIM-FEDERATE .. 107

FIGURE 5.8: COMPUTATION AND COMMUNICATION EVENTS WITHIN AN HOURLY TIME-

STEP .. 109

FIGURE 5.9: COMPUTATION VS COMMUNICATION WALL-CLOCK TIME (SIMPLE SCENE)

 .. 110

FIGURE 5.10: COMPUTATION VS COMMUNICATION WALL-CLOCK TIME (COMPLEX

SCENE) .. 111

FIGURE 5.11: COMPUTATION WALL-CLOCK TIME VS NUMBER OF SURFACES (SIMPLE

SCENE) .. 112

FIGURE 5.12: COMPUTATION WALL-CLOCK TIME VS NUMBER OF SURFACES (COMPLEX

SCENE) .. 112

FIGURE 5.13: COMMUNICATION VS PUBLISHED SURFACES AND INTER-FEDERATE LINKS

(SIMPLE SCENE) ... 113

FIGURE 5.14: COMMUNICATION VS PUBLISHED SURFACES AND INTER-FEDERATE LINKS

(COMPLEX SCENE) ... 113

FIGURE 5.15: COMPUTATION AND COMMUNICATION WALL-CLOCK TIME BOXPLOTS

(SIMPLE SCENE) ... 115

FIGURE 5.16: COMPUTATION AND COMMUNICATION WALL-CLOCK TIME BOXPLOTS

(COMPLEX SCENE) ... 115

FIGURE 5.17: EFFECT OF MESSAGE ELIMINATION ON COMMUNICATION TIME 118

FIGURE 5.18: SUMMARY OF SW AND DL OUTPUT ERRORS FOR WHOLE SCENE 119

FIGURE 5.19: SUMMARY OF LW AND TH OUTPUT ERRORS FOR WHOLE SCENE 120

FIGURE 5.20: SW OUTPUT ERRORS FOR TWO SURFACES: LOW (LEFT) AND HIGH (RIGHT)

 .. 121

FIGURE 5.21: DL OUTPUT ERRORS FOR TWO SURFACES: LOW (LEFT) AND HIGH (RIGHT)

 .. 122

FIGURE 5.22: LW OUTPUT ERRORS FOR TWO SURFACES: LOW (LEFT) AND HIGH (RIGHT)

 .. 123

FIGURE 5.23: TH OUTPUT ERRORS FOR TWO SURFACES: LOW (LEFT) AND HIGH (RIGHT)

 .. 124

FIGURE 5.24: MODIFIED CLASS DIAGRAM WITH SIMPLIFIED HLA FOM OBJECTS FOR

CASE STUDY ONE ... 126

FIGURE 5.25: BATCH COMPRESSION RESULTS FOR REDUCED SCENE 127

FIGURE 5.26: BATCH COMPRESSION RESULTS FOR SIMPLE SCENE 128

FIGURE 5.27: EXAMPLE COMMUNICATION PATTERN BETWEEN FOUR FEDERATES OF

TWO TYPES .. 129

FIGURE 5.28: CONCEPTUAL ILLUSTRATION OF INTERACTIONS IN THE CITYSIM / NO-

MASS FEDERATION .. 131

FIGURE 5.29: CLASS DIAGRAM SHOWING SIMPLIFIED HLA FOM OBJECTS FOR CASE

STUDY TWO .. 132

FIGURE 5.30: CLASS DIAGRAM SHOWING EXPANDED HLA FOM OBJECTS FOR CASE

STUDY TWO .. 133

FIGURE 5.31: SEQUENCE DIAGRAM OF HLA FEDERATION EXECUTION FOR CASE STUDY

TWO .. 135

FIGURE 5.32: INITIAL EXPERIMENT FOR CITYSIM /NO-MASS FEDERATION 137

FIGURE 5.33: SUB-PARTITIONS FOR CITYSIM/NO-MASS FEDERATION 138

FIGURE 5.34: COLLOCATED CITYSIM/NO-MASS FEDERATION 138

FIGURE 5.35: BATCHING COMPRESSION EXPERIMENT FOR CITYSIM/NO-MASS

FEDERATION ... 139

FIGURE 6.1: NODE AGENT STATE CHART .. 150

FIGURE 6.2: COORDINATOR AGENT STATE CHART ... 153

LIST OF ABBREVIATIONS

ABS Agent-Based Simulation

BES Building Energy Simulation

BSP Bulk Synchronous Parallel model

CA Cellular Automata

CityGML City Geographic Mark-up Language

CMB Chandy-Misra-Bryant algorithm

COTS Commercial Off-The-Shelf

DES Discrete Event Simulation

DS Distributed Simulation

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FOM Federation Object Model

HLA High Level Architecture

HPC High Performance Computing

LP Logical Process

MAS Multi-Agent Simulation

MPI Message Passing Interface

No-MASS Nottingham Multi-Agent Stochastic Simulation

OMT Object Model Template

PDES Parallel Discrete Event Simulation

PRAM Parallel Random Access Machine model

RO Receive Order

RTI Run Time Infrastructure

SOM Simulation Object Model

TAG Time Advance Grant

TAR Time Advance Request

TSO Time Stamp Order

TWOS Time Warp Operating System

1 INTRODUCTION

1.1 Motivation

Some Urban Simulations can grow in scale to the point where they cannot be

executed efficiently using the resources (e.g. memory, CPU, disk space) of a single

stand-alone computer (Zehe et al., 2015). One approach to managing such large-

scale simulations is to execute them on a distributed computer system composed of

two or more computing nodes connected to one another via a communication

network. Using the distributed approach, a large-scale simulation workload is

partitioned into smaller workloads which are assigned to various computing nodes

and executed in coordination. In order for the distributed simulation to produce

correct results, it is important for the participating computing nodes to cooperate with

one another by communicating during simulation execution. In this manner, a

distributed simulation involves alternating computation and communication

operations.

Communication is used in the distributed simulation to ensure data integrity by

supplying each computing node with the data it requires from other nodes to process

simulation events during distributed execution. As the concurrent execution paths of

the distributed nodes proceed in a non-deterministic order, it is also essential for

communication to deliver timing information that can be used to synchronize the

nodes and ensure that distributed simulation events are processed in the correct

causal order. Consequently, synchronization regulates the pace at which separate

parts of the distributed simulation advance with respect to one another.

Communication between computing nodes involves sending and receiving data over

their interconnecting network, which introduces an additional performance

bottleneck that is not normally present in stand-alone simulations. The extent to

which the added communication overheads can impact distributed simulation

performance depends on factors such as the frequency of communication between

the distributed computing nodes, the size of data that needs to be exchanged and the

latency and bandwidth of the interconnecting network.

The work in this thesis focuses on developing a framework for evaluating the

execution performance of distributed simulations, taking into account the dynamic

relationship between non-deterministic communication and computation operations

necessary to produce correct outputs.

The case studies that are employed to demonstrate the framework proposed in this

thesis are selected from the Urban Simulation domain. Cities are large complex

systems where simulation studies are needed to support important decision making.

This is evident in the range of tools available for conducting simulation studies on

various urban systems including buildings and transportation. The need to conduct

Urban Simulations is given urgency by the fast-growing world urban population. The

United Nations Department of Economic and Social Affairs (UN DESA) reports that

the proportion of the world’s population residing in urban areas rose from 30% in

1950 to 54% in 2014. The UN DESA further projects that the proportion of the

world’s urban population will exceed 66% by 2050. These figures represent a

progression from 746 million urban dwellers in 1950 to 3.9 billion in 2014 and 6.3

billion in 2050. The UN DESA also reports that while about half of urban dwellers in

2014 lived in cities with a population less than 500,000, there were 28 highly

populated mega-cities in 2014, each with a population in excess of 10 million people.

These mega-cities accounted for one-eighth of the global urban population in 2014

(United Nations, 2014). This rapid growth in the urban population creates a

significant need for support tools to assist decision-makers in making the right

choices that will enable urban areas to accommodate population growth in a

sustainable manner as urban demand continues to grow for energy, housing,

transportation and other resources and services (Jain et al., 2016).

Cities are composed of subsystems such as transportation and housing which

encompass concerns that can logically be separated, but which also have influential

interactions with one another. As it is difficult to capture all urban subsystems in a

single model, Urban Simulation approaches normally focus on modelling specific

urban subsystems rather than attempting to build a unified urban model that

encompasses all subsystems. This approach has the advantage of focusing on a single

problem so that the required domain expertise can be brought to bear on the specific

urban subsystem being studied in order to produce a sufficiently accurate model for

the limited set of concerns covered by that subsystem. However, in cases where the

simulation study requires interaction between one or more urban subsystems, it

becomes necessary for the model to capture relationships between the concerns

covered by all subsystems relevant to the study. A convenient solution to this case is

to employ distributed simulation to unify existing models that focus on separate

urban subsystems. This has the advantage of re-using established domain-specific

simulation models developed by domain experts to prevent the unnecessary

duplication of efforts which may require a significant investment of time. The

heterogeneous simulations need be coordinated together in a single distributed

simulation execution such that they interact meaningfully to produce correct and

reproducible results. Enabling such interoperability between heterogeneous

simulations requires careful consideration of aspects such as different simulation

paradigms and implementation tools, the consistency of measurement units between

simulations, and compatibility of modelling assumptions.

The simulation approach employed can have a significant impact on simulation size.

On one hand, micro-level simulations try to replicate the behaviour of low-level

entities in the system being studied. On the other hand, macro-level simulations

focus on directly reproducing high-level patterns that may arise as a result of

interactions between low-level entities. Simulations that model micro-level

interactions in particular tend to grow large when considering the urban scale. The

number of low-level entities and interactions tends to be much larger than the

corresponding number of high-level entities and interactions. This generally results

in a greater need for computing resources where micro-level simulations are

involved. Therefore, using the macro-level simulation approach is a sensible choice

in cases where it is applicable because complexity is reduced, and fewer computing

resources are required. However, some cases are better suited to the micro-level

simulation approach. This includes cases where it is difficult to directly reproduce

high-level behaviours with sufficient accuracy. For example, emergent phenomena

occur in Agent-Based Simulations in scenarios where micro-level interactions can

lead to macro-level patterns that would be difficult to program explicitly.

Simulation approaches that result in large simulation size are essential in some cases

but can place a large demand on computing resources. This presents the challenge of

scaling up computing resources to support a single large homogeneous simulation

that may not be possible to execute on a stand-alone computing node. A suitable

example of this case is the CitySim (Robinson 2012) tool for Building Energy

Simulation (BES). When provided with a large enough model configuration, its

execution requirements can exceed the memory capacity of a single computing node

with reasonable memory resources. CitySim is designed to run physics-based

Building Energy Simulations on a cluster of buildings represented by a 3D model. It

calculates micro-level interactions between building surfaces and the environment

during execution. Simulations at the neighbourhood scale consider only a few

hundred buildings and can be executed on a single computing node within reasonable

time. However, simulations at the urban scale comprising tens of thousands of

buildings are more difficult to manage on a single node.

Taylor (2019) identifies three main modes for the use of distributed simulation:

• Scalability (Mode A): In this mode, a single homogeneous simulation model

is partitioned into sub-models and distributed over multiple computing nodes,

offering the prospect of speedup due to parallel execution. For large-scale

models that cannot be managed within the resources of a single computing

node, this mode also makes it possible for the simulation to be executed in the

first place. For example, Collier, Ozik and Macal (2015) develop a distributed

simulation, using multiple computing nodes to execute a large-scale disease

transmission model which tracks the movements and interactions of 2.9

million individuals in a large city.

• Interoperability (Mode B): For this mode, multiple heterogeneous simulation

models which would normally be executed separately are linked together to

enable communication and co-ordinated as a single simulation execution.

This mode also facilitates the re-use of existing simulation models. For

example, Anagnostou, Nouman and Taylor (2013) develop a distributed

simulation for Emergency Medical Services which links an Ambulance

service model with an Accident & Emergency service model.

• Batch Runs (Mode C): This mode refers to the case where a large number of

separate simulation runs is needed to obtain a required level of confidence in

the results of a simulation experiment (Law and Kelton, 1984). The

simulation runs can be performed in parallel to obtain the desired results. As

the simulation runs in this case are independent of one another, this is

considered a pleasingly parallel problem and communication involved is

minimal.

The framework proposed in this thesis considers two approaches to using the

distributed simulation approach: to tackle the scalability concern for large

homogeneous Urban Simulations, and to tackle the interoperability concern for

heterogeneous Urban Simulations. This scope is reasonable because both approaches

are useful in the urban context. Urban simulations can grow exceptionally large and

may also need to be coupled with simulations of other urban subsystems. However,

the scope does not cover the third concern of batch runs as communication is

minimal or non-existent in this case.

These issues of scalability and interoperability are important matters in the wider

literature, in which several approaches have been proposed for orchestrating

distributed simulations to address these concerns. A discussion of approaches to

distributed simulation is presented in Chapter 2. Among these, the IEEE High Level

Architecture (HLA) (IEEE, 2010a) is one approach that is considered a mature

standard (Strassburger, Schulze and Fujimoto, 2008). The experimental work

conducted on distributed Urban Simulation in Chapter 5 is based on the HLA

standard, as it includes features that support dealing with interoperability as well as

scalability in distributed simulations. Chapter 3 outlines a more detailed rationale for

selecting this approach.

The research work carried out in this thesis has been performed within the context of

the Leverhulme Sustaining Urban Habitats (SUH) project. The SUH project is an

interdisciplinary research effort to understand and evaluate urban sustainability in

order to inform policies for sustainable urban growth. To achieve its goals, one of the

methods used by the SUH project is to utilize various Urban Simulation applications

to investigate different what-if policy scenarios and estimate the long-term effects on

urban sustainability. Following this approach, the project has a need to run Urban

Simulations on real life case studies, some of which can grow large in scale to the

point where the resources required to execute the simulation exceed the capacity of a

single computer. The SUH project is composed of six themes. Three reflect various

aspects of urban sustainability – the Environmental, Economic, and Social themes.

Two include the expertise needed to conduct modelling and simulation efforts – the

Measurement and Data, and the Modelling and Optimisation themes. The sixth

theme, Policy and Governance, investigates policy issues related to urban

sustainability. The SUH project aims to develop methodology that is general enough

for broad application to urban areas other than its two case study cities: Nottingham

and Shanghai.

1.2 Aim and Objectives

The work in this thesis focuses on developing a framework for evaluating the

execution performance of distributed simulations, taking into account the dynamic

relationship between interleaved non-deterministic communication and computation

operations necessary to produce correct simulation outputs. Following this approach,

the framework will consider various communication related parameters and

alternative communication strategies that can have significant impact on distributed

simulation performance. The proposed framework will enable selection of optimal

communication related parameters and strategies for the efficient execution of Urban

Simulations that require distribution over multiple computing nodes. The

development of the framework, which is the primary contribution of this thesis, will

be informed by distributed simulation experiments that will be carried out using

appropriate case studies from the Urban Simulation domain. A concrete meta-

simulation will also be implemented to demonstrate the application of the completed

framework.

The aim will be achieved by carrying out the following objectives:

• Literature Review:

o Identify performance bottlenecks from research literature relevant to

the execution of large-scale distributed simulations.

o Isolate significant bottlenecks and investigate how they exert a

concerted influence on distributed execution performance.

o Identify relevant parameters and alternative strategies for managing

communication during distributed simulation execution.

o Identify existing distributed performance models.

• Homogeneous Experimentation:

o Case Study Selection:

Identify homogeneous Urban Simulation that satisfies the criteria:

▪ At whole city level, the scalability problem is encountered.

The simulation becomes too large to execute using a stand-

alone computing node.

▪ The simulation workload can be distributed.

▪ The simulation can potentially interoperate meaningfully with

other Urban Simulation models for a heterogeneous case

study.

o Experimentation:

▪ Develop a homogeneous distributed simulation based on the

selected Urban Simulation, using the HLA to address the

scalability concern.

▪ Conduct experiments to obtain performance measurements,

varying parameters and using alternative communication

strategies.

• Heterogeneous Experimentation:

o Case Study Selection:

Identify a second Urban Simulation that satisfies the criteria:

▪ The simulation can interoperate meaningfully with the

simulation selected for Case Study One.

▪ The simulation workload can be distributed.

▪ The simulation will introduce communication patterns that

differ from those investigated in Case Study One.

o Experimentation:

▪ Develop a heterogeneous distributed simulation based on the

two selected Urban Simulations, using the HLA to address the

interoperability issue.

▪ Conduct experiments to obtain performance measurements,

varying parameters and using alternative communication

strategies.

• Framework Development:

o Analysis of Experimental Results:

▪ Compare the effects that various communication strategies

have on performance.

▪ For communication strategies that can incur data loss,

investigate the effect on simulation output accuracy.

o Conceptual Model:

▪ Identify the main components required to model the

distributed case study experiments.

▪ Isolate the important interactions between the identified

components.

▪ Identify the significant parameters that influence relationships

between the identified components.

▪ Incorporate the capability to consider alternative

communication strategies.

o Demonstration:

▪ Implement a meta-simulation based on the developed

framework.

▪ Use the implemented simulation to reproduce the performance

of the experimental case studies.

1.3 Contribution

The primary contribution of the work in this thesis is the development of a

framework for estimating the execution performance of distributed simulation

applications. The framework is a contribution to the research field of Parallel and

Distributed Simulation. The developed framework proposes a meta-simulation

approach which enables performance evaluation for distributed simulation

applications in which the dynamic relationship between communication and

computation can significantly influence execution performance. The framework uses

the Multi-Agent Simulation (MAS) paradigm to set out the main components of a

distributed simulation and define how they interact with one another during

execution. Using the framework, custom meta-simulations can be created for

evaluating specific distributed simulation applications. The approach proposed by the

framework also enables the comparison of various what-if scenarios, exploring

different communication strategies. This capability can aid a search for optimal

strategies for the distributed simulation application under investigation. A

demonstration of the framework has been provided by the implementation of a meta-

simulation based on real world case studies selected from the Urban Simulation

domain.

1.4 Publications

Part of the research work presented in this thesis has been published at the following

conference:

Amponsah, K., Zakhary, S., Robinson, D., Nathanail, P., Logan, B., & Siebers, P. O.

(2019). ‘Distributed building energy simulation with the HLA’, Proceedings of the

2019 Summer Simulation Conference, pp. 1-12.

1.5 Structure of the Thesis

Chapter 1 introduces the subject matter of this thesis and explains the motivation and

context for performing the research work. Set against this background, the research

aim is explained, and details are provided for the relevant objectives required to

achieve the aim.

Chapter 2 provides a review of the literature on previous research relevant to the

work conducted in this thesis. This mostly includes research from the field of Parallel

and Distributed Simulation. It also covers work from the field of Urban Simulation,

focusing in particular on Building Energy Simulation.

Chapter 3 proposes an approach for performing the work that is set out in the

research aims and objectives. It explains the approach selected and provides rationale

for justifying the choice of approach. This includes the advantages and disadvantages

of the chosen approach in comparison to other potentially feasible approaches. This

chapter also introduces appropriate Urban Simulation case studies which are suitable

for the chosen approach. Finally, this chapter provides details of various

communication strategies which will be employed in the case study experiments.

Chapter 4 discusses the context within which the framework is to be developed,

exploring the key factors to consider. Several factors relevant to distributed

simulation performance are discussed. The relationships between the factors are

established in relation to communication. These preliminary considerations provide a

background context within which the framework will be developed, based on the

results from subsequent experimental work conducted on the selected case studies.

Chapter 5 explains the Urban Simulation case studies in more detail. Distributed

simulation experiments are conducted on the selected case studies using the

methodology proposed in Chapter 3. Results from the experiments are presented,

showing the influence of the communication strategies used on execution

performance and simulation output accuracy.

Chapter 6 presents the framework based on the context provided by Chapter 4, the

results from the distributed simulation experiments in Chapter 5, and lessons learned

from developing the distributed simulations for experimental work. Here, details are

given about the components of the framework, explaining how they interact with one

another. A demonstration of the framework is provided using a concrete

implementation of the framework, based on the experimental results from Chapter 5.

Chapter 7 provides a summary of the contributions made by the work in this thesis. It

explains how the aim and objectives which were set out in Chapter 1 have been

achieved by the work in various chapters. It discusses the current limitations of the

framework and proposes potential directions for future work.

2 LITERATURE REVIEW

2.1 Computer Modelling and Simulation

As explained by White and Ingalls (2016), a simulation model is a simplified

representation of a real or abstract system, and simulation is the process of executing

an experiment on such a representative model in order to mimic the behaviour of the

modelled system. As noted by Epstein (2008), simulations are useful for many

different purposes; among other things, they can be used to predict and compare the

outcomes of various what-if-scenarios, to gain a better understanding or explanation

of how a system functions, and can also be used for training purposes. Robinson

(2014) further elaborates that some circumstances where simulations are useful

include instances where it is not feasible nor desirable to run experiments on an

actual system, and situations where the desired results cannot be easily obtained from

direct mathematical analysis, as is the case with many real-life complex systems

including cities. A simulation model captures the system components and

interactions that are essential to the phenomena being studied, and incorporate rules

that govern how the system state evolves as time moves forward (Borshchev and

Filippov, 2004). Different approaches to simulation modelling vary in how they

capture these essential elements, and the characteristics of the system and

phenomena being studied determines the suitability and effectiveness of a given

modelling approach. A general overview of simulation characteristics and alternative

modelling approaches is provided in the following sections.

2.1.1 Model Properties: Discrete, Stochastic and Dynamic

As explained by Law & Kelton (2000), simulation models can be classified using

three sets of properties, as either continuous or discrete, as either deterministic or

stochastic, and as either static or dynamic. The state in a computer simulation is

represented by a collection of variables that are updated as and when necessary, to

reflect changes in the simulated system.

• Continuous vs Discrete:

In continuous simulation models, the phenomena being studied in the real

system varies continuously through time, and the relevant state variables are

continuously updated in the simulation to track the changing system state. On

the other hand, the system state in discrete models changes at instantaneous

points in time, and accordingly the relevant state variables need only to be

updated at those specific points in time when the changes occur.

• Deterministic vs Stochastic:

Deterministic simulation models do not include any elements of randomness

during simulation execution. From a given initial state, a deterministic

simulation always proceeds along the same execution path and produces the

same results. Stochastic simulation models, on the other hand, include

elements of randomness and can therefore proceed along different execution

paths with given probabilities. Stochastic computer simulations handle

randomness by drawing values from pseudo-random number streams. This

procedure is important for the reproducibility of stochastic simulation

experiments, as using a fixed seed for the pseudo-random number generator

will reproduce the same stream of numbers. Using the same random seed

effectively reduces a stochastic simulation to follow a single deterministic

execution path, which makes it possible for experiments to be reproduced.

• Dynamic vs Static:

For dynamic simulation models, tracking the passage of time is an explicit

part of the model which is essential for the progression of the simulation

execution. The system state in a dynamic simulation is updated progressively

as time moves forward. On the other hand, static simulation models do not

have a need to model the flow of time as part of simulation execution.

Nevertheless, static simulation models can potentially be used to produce

forecasts into the future, for example with the use of Monte-Carlo simulation

methods for the purpose of risk analysis (Schriber, 2009).

2.1.2 Levels of Abstraction: Micro to Macro

Simulation models can be used to capture the behaviour of systems at different levels

of abstraction, ranging from the micro-level or low abstraction level to the macro-

level or high abstraction level (Borshchev and Filippov, 2004). Simulation models

created at the micro-level include detailed representations of the entities comprising

the system and their interactions with one other. The collective behaviour of the

individual micro-level entities produces aggregate patterns and trends that can be

observed on the entire system.

On the other hand, macro-level simulation models focus on modelling the aggregate

system behaviour directly without modelling the micro-level entities that contribute

to producing the aggregate trends. For a given system, it may be possible to use both

the micro-level and macro-level modelling approaches to produce simulation models

at different levels of abstraction. For example, traffic simulation models have been

created using both the micro-level and macro-level modelling approaches (Helbing et

al., 2002). Traffic simulation at the micro-level defines the movements of each car

and the interactions it has with neighbouring cars. The flow of traffic in the

simulation emerges from these defined micro-level behaviours. On the other hand,

traffic simulation at the macro-level accounts directly for flow of traffic. Generally, a

macro-level simulation model of a given system can be executed faster than an

equivalent micro-level model as it the macro-level simulation does not need to

account for micro-level behaviour.

2.1.3 Time Flow Mechanisms

As discussed, tracking the flow of time as simulation execution progresses is an

essential property of dynamic simulation models. Fujimoto (1998) describes three

different concepts of time that are of interest during a simulation execution – wall-

clock time, physical time, and simulation time:

• Wall-Clock Time:

This refers to the actual time that passes in the real world while the

simulation executes. For example, a traffic simulation that is run for 1 minute

to simulate 24 hours of traffic flow has used up 1 minute of wall-clock time.

• Physical Time:

This refers to the progression of time within the simulated system itself. For

example, the previously mentioned traffic simulation progresses 24 hours in

physical time.

• Simulation/Logical Time:

This is closely related to the concept of physical time. Simulation time or

logical time refers to the units used within the simulation to represent the

passage of physical time during simulation execution. For example, if time is

represented by a positive integer in the traffic simulation with an increment of

1 corresponding to an advancement of 1 minute in physical time, simulation

time after 24 hours of physical time is 1,440.

Fujimoto (1998) further describes how the relationships between these concepts of

time are used to control time flow in various simulation applications: real-time,

scaled real-time and as-fast-as-possible simulations.

• Real-Time:

In real-time simulations, simulation time proceeds at the same pace as wall-

clock time.

• Scaled Real-Time:

In scaled real-time simulations, the pace at which simulation time proceeds is

directly proportional to the pace of wall-clock time, but not equal. Assuming

sufficient processor speed, the pace may be greater to allow quicker

execution than real-time, or slower to allow more detailed examination of

processes that occur too quickly in real-time for direct observation. For

example, simulation time may advance at 10 seconds for every second of

wall-clock time for execution that is faster than real-time. Conversely,

simulation time may advance at 1 second for every 10 seconds of wall-clock

time for execution slower than real-time.

• As-Fast-As-Possible:

In as-fast-as-simulations, the goal is simply to complete the simulation

execution in the quickest time allowed by the available processing resources.

In this case, the simulation time is not paced proportionally to wall-clock time

at all.

During the execution of a dynamic computer simulation model, simulation time is

divided into discrete timesteps. In practice, both discrete and continuous computer

simulations use such discrete timesteps. Continuous simulations use them as an

approximation for continuous time flow, and the chosen size of timestep reflects on

the fidelity of simulation results. Smaller timesteps produce more accurate results,

but also demand more processing time for simulation execution as the total number

of timesteps is increased. A computer simulation execution progresses in simulation

time by moving from the current timestep to another timestep in the future, updating

the system state each time it advances in time. As noted by Ferscha and Tripathi

(1998), the two main approaches for advancing simulation time are the time-driven

mechanism and the event-driven mechanism. With the time-driven approach,

simulation time progresses at regular time intervals, commonly referred to as ticks,

and state variables are updated at each tick. On the other hand, event-driven time

flow uses the concept of events to designate points in time where system state is

scheduled to change. Event-driven simulation execution skips over time steps where

no events are scheduled and therefore system state does not need to be updated. It

only processes those timesteps where events are scheduled to occur, and thus

progresses at potentially irregular intervals compared to the time-driven approach.

For this reason, an event-driven simulation can also be faster to execute than a

corresponding time-driven simulation as not all timesteps require processing. Figure

2.1, adapted from (Fujimoto 2000) illustrates state updates in the time-driven and

event-driven approaches.

Figure 2.1: Time-driven and event-driven simulation execution

(Modified from source: Fujimoto 2000)

2.1.4 Live, Virtual and Constructive (LVC) Simulations

The LVC simulation classification framework, which originates from military

simulation research, is useful for clarifying whether a simulation application involves

real-world interaction or not. Depending on the degree of interaction between

simulations and the real world, simulations can be classified as live, virtual or

constructive.

2.1.4.1 Live Simulation

According to Hodson and Baldwin (2009), the term live simulation does not refer to

simulation in the sense of computer simulations at all, but can more accurately be

described as a rehearsal or dry run operation, in which actual human beings operate

real-life equipment.

2.1.4.2 Virtual Simulation

The term virtual simulation includes simulations which involve either live humans

and simulated equipment, or simulated humans and actual equipment. This class

covers human-in-the-loop simulations such as flight simulators used for pilot

training, hardware-in-the-loop simulations used for testing prototype equipment, and

simulations of Cyber-Physical systems (Rajkumar et al., 2010). These types of

simulations are usually constrained to real-time execution to allow normal interaction

with the live human or equipment.

2.1.4.3 Constructive Simulation

Unlike live simulations and virtual simulations, constructive simulations do not

involve any real-world interaction with equipment or humans but consist entirely of

simulated components.

Hodson and Hill (2014) note that the divisions in the LVC classification are not

always clear and that it could benefit from the idea of the “reality-virtuality

continuum” (Milgram and Kishino, 1994) which provides a more nuanced taxonomy

for the degree of involvement between the real world and the computer simulation.

2.1.4.4 Research Scope

For clarity, the scope of the work in this thesis is limited to constructive as-fast-as-

possible computer simulations. Therefore, no consideration is given to the possibility

of any interactions with live humans or equipment during simulation execution.

Admittedly, virtual real-time distributed simulations also have a need to manage

communication efficiently, for example with the use of dead reckoning algorithms in

training exercises conducted using distributed simulation (Lin, Blair and Woodyard,

1997). However, this type of simulation is not within the scope of the work covered

in this thesis.

2.1.5 Simulation Modelling Paradigms

Multiple modelling paradigms exist for specifying simulation models. Each

paradigm takes a different view of how to reduce a real system to a representative

model and incorporates a separate set of techniques for mapping parts of the system

to entities within the simulation model, defining the relationships between the model

entities, representing system state, and directing the simulation execution flow.

Simulation modelling paradigms that are widely used in various domains include

System Dynamics (SD), Discrete Event Simulation (DES), and Agent-Based

Simulation (ABS) (Borshchev and Filippov, 2004). Other paradigms commonly

employed in the Urban Simulation context include Cellular Automata (CA) and

Microsimulation Modelling (MSM). Although the paradigms mentioned in this

section are not meant to form an exhaustive list, they provide a good overview of the

main modelling approaches relevant to Urban Simulation. Some modelling

paradigms are better suited for certain types of systems and may be easier to apply to

a given system than other approaches. Also, some paradigms take a macro-level view

of systems while others are more suited for the micro-level view. The following

sections provide brief descriptions of the modelling paradigms mentioned in this

section.

2.1.5.1 System Dynamics

System Dynamics is a well-established simulation modelling paradigm rooted in the

seminal work of Forrester on Industrial Dynamics (Forrester, 1968) and Urban

Dynamics (Forrester, 1970). As explained by Kirkwood (1998), SD makes use of

causal links and feedback loops to express the dynamic relationships that exist

between system components. A causal link from X to Y specifies that a change in X

causes a change in Y, and the nature of this change is represented mathematically

using differential equations. A feedback loop results when X indirectly causes a

change to itself through its influence on other parts of the system. For instance, if a

causal link exists from X to Y, another from Y to Z, and yet another back from Z to

X, a feedback loop has been established. SD models are normally presented

conceptually with causal loop diagrams and stock-and-flow diagrams. The SD

paradigm is mainly employed for continuous, deterministic, dynamic modelling at

the macro-level of abstraction, and has been applied in a wide range of

domains(Morecroft and Robinson, 2005).

2.1.5.2 Discrete Event Simulation

Discrete Event Simulation is a commonly used paradigm that is especially suited for

modelling systems that consist of processes which can be represented as a network of

connected queues. Models created with DES are normally discrete, stochastic, and

dynamic (Morecroft and Robinson, 2005). Unlike most other modelling paradigms,

DES particularly employs event-driven execution rather than time-driven execution.

As explained by Schriber et al. (2016), a DES model is composed of entities that

arrive in a system and queue to access limited resources, creating and responding to

events while doing so. Events mark points in the model where system state changes.

For example, the instants of arrival or exit of an entity, and the times when an entity

starts or finishes using a resource are all marked by events. A DES simulation

maintains an event list that determines the order in which events need to be

processed. In some cases, processing one event will lead to scheduling other events.

For instance, when an entity gains access to a resource that supplies a service, a

future event is scheduled for the time when the service being provided to the entity is

due to end. The DES paradigm is described as process-oriented because it mainly

focuses on representing system processes as queues. Because many business and

industrial systems easily lend themselves to this way of thinking, DES is a popular

method in those application domains.

2.1.5.3 Agent-Based Simulation

The Agent-Based Simulation paradigm is relatively novel compared to the more

established SD and DES modelling paradigms (Siebers et al., 2010). However, it has

gained popularity over time, especially for modelling complex systems behaviour

(Heath and Hill, 2010). As explained by Macal & North (2015), an ABS model is

composed of individual autonomous agents that interact with each other and with

their environment. These dynamic interactions can cause patterns to arise in system

behaviour, which is called emergent behaviour as such behaviour is not explicitly

defined by the model. An agent makes autonomous decisions concerning its own

actions, and for this it may consider its own present state, the states of other agents,

and the state of its environment. A frequently cited early example of ABS is the

Boids artificial life simulation (Reynolds, 1987), which mimics the synchronized

flight pattern of a flock of birds by treating each bird as an individual autonomous

agent that adjusts its own flight path to fit in with its closest neighbours. As a result,

a complex collective flocking pattern emerges which would be difficult to define

directly as system behaviour. As the ABS paradigm defines micro-level behaviours

that result in macro-level patterns, it is considered a bottom-up modelling approach.

ABS has been applied in a wide range of domains including Economics (Zhang,

Siebers and Aickelin, 2012) and Sociology (Schelling, 1971) (Epstein and Axtell,

1996). The Multi-Agent Simulation (MAS) paradigm (Wooldridge and Jennings,

1995) and the ABS paradigm are similar in their approach, and the terms are

sometimes used interchangeably. While ABS is normally associated with research

work related to the social sciences, MAS research work usually belongs to the field

of Artificial Intelligence. Although the focus and goals of the research areas might

differ, MAS and ABS share a similar view of modelling and employ similar

language and techniques.

2.1.5.4 Cellular Automata

The Cellular Automata modelling paradigm is older than the ABS paradigm. It may,

however, be described as a restricted form of ABS that makes use of a two-

dimensional grid of cells to represent a spatial environment, with agents residing in

square grid cells. Rules defined for the CA model determine how cells interact with

neighbouring cells to update the system state. Two of the most common ways for

defining CA neighbourhoods are the Moore neighbourhood and the von Neumann

neighbourhood. In the Moore neighbourhood, each cell considers all eight cells

surrounding it as neighbours. On the other hand, the von Neumann neighbourhood

defines neighbour cells as those that share an edge, resulting in four neighbours per

cell. Wolfram (2002) investigates various rules for CA models in some detail and

compares the emergent patterns to various natural phenomena. Belying their apparent

simplicity, CA models have been used to model some complex systems such as

traffic flow (Nagel and Schreckenberg, 1992).

2.1.5.5 Microsimulation Modelling

The Microsimulation modelling paradigm is rooted in the seminal work of Orcutt

(1957). Similar to the ABS paradigm, MSM models view a system as comprising of

micro-level decision-making entities. However, as explained by Birkin and Wu

(2012), MSM places specific emphasis on fitting the properties and behaviour of the

population of decision-making entities to reliable statistical data, resulting in a model

that can be used as a basis for forecasting future population states through simulation

experiments. MSM is a frequently used paradigm for investigating the effect of

public policy on a population, and has been applied widely in Economics

(Bourguignon and Spadaro, 2006).

2.1.5.6 Paradigm Comparison

Figure 2.2 provides an overview of the properties of the modelling paradigms that

have been discussed briefly in the previous sections. The figure illustrates the normal

characteristics of the paradigms, although work has been done to extend them. For

example, Meyer (2014) proposes a framework for using event-driven execution in

ABS.

Figure 2.2: Overview of modelling paradigms

2.2 Large-Scale Simulation Methods

Parry and Bithell (2012) provide an overview of alternative approaches for executing

large-scale simulations that require computing resources which exceed the memory

or processing capacity of a reasonably resourced stand-alone computer. The

approaches for enabling large scale simulation include model simplification,

modelling paradigm shift, vertical resource scaling and horizontal resource scaling.

2.2.1 Model Simplification

Model simplification aims to reduce the scale of the model by lowering the fidelity

of model contents to the extent that will permit the simulation to be executed in

reasonable time on the available computing resources. One way to achieve

simplification is to reduce the number of entities involved in the model to a number

that can be managed within the available computing resources. Another

simplification method involves the use of a single model entity to represent multiple

system entities, aggregating them together into a “super” entity. Although model

simplification methods provide a straightforward means for scaling down simulation

models to fit within the limits of computing resources, such approaches may result in

modelled behaviour that does not reflect that of the system being modelled with

sufficient accuracy.

2.2.2 Modelling Paradigm Shift

This approach involves converting a simulation model from one paradigm to another

that requires fewer computing resources. For example, a model created using a

paradigm with a micro-level view can be converted to an equivalent macro-level

model. This approach assumes that such a conversion is feasible and that the outputs

from both models will be equivalent. If these assumptions are true, then the essence

of this process is the translation of the simulation model in question into a more

suitable modelling paradigm. These assumptions do not hold where the behaviour

produced by the original model cannot readily be replicated using the target

paradigm. For example, emergent behaviour from collective individual actions in a

micro-level model may not be feasible to replicate using macro-level approaches.

2.2.3 Vertical Resource Scaling

Vertical resource scaling refers to upgrading the resources of a single computing

node to enable the execution of larger workloads. Vertical scaling includes actions

such as increasing the amount of installed memory and replacing the processor with a

faster one. Where applicable, the advantage of this approach is that no changes need

to be made to the simulation model. In essence, a more powerful computer is simply

made available to run the simulation. However, the application of vertical scaling has

physical limits. Processor speeds, for example, have stagnated in recent times (Sutter,

2005).

2.2.4 Horizontal Resource Scaling

In horizontal resource scaling, total computing resources are scaled up by adding

more computing nodes to form a greater pool of resources which can be coordinated

to execute the large-scale simulation. This is the approach used in Distributed

Simulation, in which a large-scale simulation model is partitioned and distributed

among the computing nodes in the pool which communicate with one another via an

interconnecting network. Unlike vertical scaling, horizontal resource requires

changes to be made to the structure of the stand-alone simulation.

Of the four different approaches discussed in this section for handling large-scale

simulations, horizontal resource scaling is one of the most generally applicable for

executing large-scale models without losing model fidelity and offers flexibility for

scaling up total computing resources beyond the physical limits of a stand-alone

node.

2.3 Distributed Simulation

The research field of Parallel and Distributed Simulation is concerned with the use of

computer systems composed of multiple interconnected processors to execute

simulation experiments. Although both the terms Parallel Simulation and Distributed

Simulation have this concern in common and are used interchangeably, they are

sometimes employed individually to indicate different primary concerns. Fujimoto

(2016) explains how the use of these two terms originated from the development of

the research field from groups with different perspectives. The Parallel Simulation

research perspective primarily focused on methods for accelerating the execution of

large-scale homogeneous simulations by dividing the workload between

communicating processors. Distributed Simulation research, on the other hand, was

principally interested in establishing interoperability between heterogeneous

simulations. This would enable existing simulation models to be reused in

combination with other models and would reduce the need for re-implementing

existing functionality when simulation studies with new questions can be answered

by re-using existing models in a co-ordinated manner. Fujimoto (2000) points out

that the early work in Parallel Simulation was mainly from the scientific High-

Performance Computing community, emphasizing techniques for efficient parallel

simulation execution, while Distributed Simulation work was mainly carried out in

military research which focused on applications such as enabling joint training

simulation exercises to be performed by geographically distributed participants.

The computing platforms considered by each research perspective for achieving its

primary goals also differ. Parallel Simulation tended to rely on High-Performance

Computing (HPC) computing clusters composed of computing nodes connected by

high-speed, low latency interconnects in order to run as-fast-as-possible simulations

efficiently. Distributed Simulation, on the other hand, had to cover needs such as

enabling real-time collaboration between members of a geographically dispersed

team and therefore had to consider constraints involved in the use of geographically

dispersed computing nodes connected by unreliable networks having low data

transmission rates and high latency. The use of parallel and distributed simulation is

also a concern in other areas such as the entertainment industry where it is used in

massively multiplayer online games (Improbable, 2020) and in films for rendering

CGI simulations.

In this work, the term Distributed Simulation (DS) is used as an all-inclusive term.

The relevant goals are specified where they are not clear from the surrounding

context. The two main goals for using DS in this work are simulation scalability and

interoperability as explained in Section 1.1 based on the classification by Taylor

(2019).

2.3.1 Strong and Weak Scaling

With regards to simulation scaling, the two main types are strong scaling and weak

scaling. These two types refer to different goals for applying horizontal resource

scaling.

Strong scaling refers to the case where additional computing nodes are added with

the aim of accelerating the execution of a fixed size workload (Amdahl, 1967).

Weak scaling, on the other hand, refers to the case where more computing nodes are

added as the size of the workload increases in order to complete execution of the

larger workload in the same time required by the smaller workload (Gustafson,

1988).

In both cases, distributing the workload over multiple computing nodes makes it

possible to execute large workloads that cannot be managed within the resources of a

single stand-alone computing node.

2.3.1.1 Horizontal Scaling Measurements

Two of the main measurements for evaluating the performance obtained from

horizontal scaling are speedup and efficiency (Karp and Flatt, 1990).

Speedup is defined as:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁

Where 𝑇1 is the time taken to complete the workload sequentially on a stand-alone

computing node, and 𝑇𝑁 is the time required to process the workload in parallel using

𝑁 computing nodes.

Efficiency is defined as:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑁
=

𝑇1

𝑁 𝑇𝑁

In the ideal case, efficiency is 1 which indicates that the processing resources on each

computing node is fully utilized.

2.3.1.2 Strong Scaling

Using 𝑁 nodes for a problem of fixed size, the maximum possible speedup that can

theoretically be achieved is 𝑁, in which case scaling up to 𝑁 nodes produces ideal

linear speedup. However, the limits of strong scaling are described by Amdahl’s

Law (Amdahl, 1967) which reasons that for a fixed computational workload with a

sequential portion that cannot be distributed, the execution time required for the

sequential portion represents a lower bound on the total execution time for the entire

workload. This places an upper bound on the speedup, regardless of how many

computing nodes are added to share the workload.

Amdahl’s Law is summarized as follows:

𝑇1 = 𝑓 𝑇1 + (1 − 𝑓) 𝑇1

Where 𝑓 is the Amdahl fraction, the fraction of the workload that is inherently

sequential and cannot be distributed.

𝑇𝑁 = 𝑓 𝑇1 +
(1 − 𝑓) 𝑇1

𝑁

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁
=

1

𝑓 +
(1 − 𝑓)

𝑁

According to Amdahl, this provides an upper bound on the speedup possible, with

the maximum achievable speedup being lim
𝑁→∞

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1 𝑓⁄ .

2.3.1.3 Weak Scaling

The potential of weak scaling is described by Gustafson’s Law (Gustafson, 1988).

Contrary to Amdahl’s Law, Gustafson’s Law does not assume a fixed problem size

and proposes that the motivation for increasing the number of computing nodes

depends on the practical need to process larger workloads in the same amount of

time as the original workload. In place of a fixed problem size, Gustafson’s Law

assumes a fixed execution time and scales up the number of nodes with the aim of

maintaining a constant execution time as the workload grows larger. As the

inherently sequential portion of many practical problems does not necessarily grow

with problem size, there is the additional potential for exploiting more parallelism

from the workload structure as the problem size grows larger. Therefore, Gustafson’s

Law assumes a fixed size for the inherently sequential workload rather than

assigning it a fixed fraction of the total workload.

Gustafson’s Law is summarized as follows:

Let 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 be the scaled sequential fraction of the workload. Unlike the Amdahl

fraction, 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 depends on the size of the problem. As the problem size grows and

𝑁 is increased to accommodate the larger workload, 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 decreases. The execution

time 𝑇𝑁 remains constant as 𝑁 scales with problem size.

𝑇1 is the time it would take to complete a given workload sequentially on a stand-

alone computing node instead of parallel execution on 𝑁 nodes:

𝑇1 = 𝑓𝑠𝑐𝑎𝑙𝑒𝑑𝑇𝑁 + 𝑁 × (1 − 𝑓𝑠𝑐𝑎𝑙𝑒𝑑) 𝑇𝑁

Therefore,

𝑆𝑐𝑎𝑙𝑒𝑑 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇1

𝑇𝑁
= 𝑁 + (1 − 𝑁) 𝑓𝑠𝑐𝑎𝑙𝑒𝑑

Gustafson’s Law shows that for practical problems where 𝑓𝑠𝑐𝑎𝑙𝑒𝑑 diminishes as

problem size grows, the upper bound on speedup imposed by the inherently

sequential workload is not as low as the strict view held by Amdahl’s Law.

Snyder (1986) provides an analysis of weak scaling, determining how N varies with

problem size if a constant execution time is maintained. For a given problem of size

𝑛 which exhibits a time complexity of 𝑂(𝑛𝑥),

𝑇 = 𝑐𝑛𝑥

Where 𝑇 is the sequential execution time on a single computing node.

Assuming that the entire workload can be executed in parallel and the inherently

sequential workload is negligible, linear weak scaling applies. As problem size

increases, a constant execution time 𝑇 can be maintained by scaling up resources to

𝑁 computing nodes. If problem size increases by a factor of 𝑚,

𝑇 =
𝑐(𝑚𝑛)𝑥

𝑁

The number of computing nodes 𝑁 required to maintain a constant execution time is

then

𝑁 = 𝑚𝑥

According to Snyder (1986), 𝑁 grows at a rate similar to the time complexity of the

problem. This is an important consideration for determining the resources required

for weak scaling in various types of large-scale simulation problems as their model

configurations grow large.

In this section, the analyses presented for speedup in both strong and weak scaling

does not account for the communication and synchronization overheads associated

with distributed simulation. Communication and synchronization costs comprise

additional overheads that are not included in the computational workload. These

overheads can increase with the number of nodes, N, and can present a significant

performance bottleneck in distributed simulations where exchanging messages

between computing nodes is necessary to ensure correct execution.

This work focuses on the weak scaling approach and not on strong scaling, as the

primary goal is to enable the execution of large simulation workloads by horizontal

resource scaling while managing communication between computing nodes

efficiently.

2.3.2 Task and Data-Parallelism

As Lin & Snyder (2009) explains, two general strategies for performing parallel

computations are the task-parallel and the data-parallel approaches. With the task-

parallel approach, the total workload is divided among processors such that each

processor is entrusted with a different kind of computation from the others. With the

data-parallel approach, on the other hand, all processors perform the same kind of

computation at the same time, but each performs it on a different subset of data from

the others. Both the task-parallel and data-parallel approaches have been used in the

parallel simulation literature, as discussed in the following sections.

2.3.2.1 Task Parallelism

Much of the early research literature on Parallel Simulation that adopts the task-

parallel approach is from the scientific High-Performance Computing community

working on Parallel Discrete Event Simulation (PDES). This large body of work is

concerned with distributing Discrete Event Simulations (DES) over multiple

computing nodes for parallel execution. The PDES research literature proposes

various techniques for efficient synchronization between nodes. The techniques seek

to exploit as much parallelism as possible by allowing each node to advance

independently of the others wherever possible, while ensuring that simulations

execute correctly by processing all events in the right order. Comprehensive surveys

conducted on the PDES research field over the years include those of Righter and

Walrand (1989), Fujimoto (1990), Ferscha and Tripathi (1998), Fujimoto (2000),

Perumalla (2006), Jafer, Liu and Wainer (2013), and Fujimoto (2015). Although the

PDES field primarily focuses on the DES paradigm which relies on event-driven

execution, the techniques developed from PDES research has also been applied to

other paradigms such as Multi-Agent Simulation (Theodoropoulos and Logan, 1999).

2.3.2.2 Data Parallelism

In recent years, much attention has been paid to using data-parallel methods for

performing computer simulations using GPU hardware. As noted by Huang et al.

(2008), the reasons for this interest include the stagnation of CPU clock in recent

times (Sutter, 2005) and the fact that GPUs incorporate a larger number of

processing cores than CPUs. Also, GPUs are cheaper and easier to set up and

manage compared to a cluster of interconnected CPU nodes with a similar number of

processing cores. The interest in data-parallel simulation using GPUs has also been

helped by recent development of frameworks for convenient General-Purpose

computing on GPUs (GPGPU), including CUDA and OpenCL. Such frameworks

enable programmers to more easily harness the high data-parallel processing

throughput that GPUs provide for computations that are not related to computer

graphics.

GPUs are able to combine large numbers of processing cores on a single chip

because individual GPU cores are relatively simple and slow compared to CPU cores

and therefore are able to take up less space. Although individual GPU cores are

slower than CPU cores, combining them in large numbers to perform data-parallel

tasks provides a higher processing throughput than can be achieved by CPUs which

have a comparatively small number of cores.

The GPGPU programming model involves an arrangement which includes a CPU

and an attached GPU co-processor. The CPU performs sequential tasks and offloads

large data-parallel tasks to the attached GPU co-processor to accelerate execution.

Many modern high-performance computing platforms include GPU co-processors,

including several in the Top500 (Top500, 2020).

Prior to the introduction of GPGPU frameworks such as CUDA and OpenCL,

research efforts towards using GPUs for simulation relied on techniques to

repurpose the GPU’s graphics programming capabilities to perform general

computing (Owens et al., 2006). For example, using such techniques Lysenko &

D’Souza (2008) created a framework for executing agent-based simulations on

GPUs, reporting a speedup of 1000 compared to corresponding sequential execution

using mature ABS toolkits and demonstrated the capability of their framework to

handle more than 2,000,000 agents on the Sugarcape model of Epstein and Axtell

(1996). The GPGPU approach has been shown to produce significant speedup in

large-scale simulation case studies. Work on ABS simulation using GPGPU

frameworks includes Chen et al. (2015) who use CUDA to implement a simulation

of evacuation scenarios showing a speedup of 38 for 8000 agents, and Ho et al.

(2015) who execute an ABS over multiple GPUs, achieving speedups greater than

180.

To enable execution on GPU co-processors, simulation workloads need to be re-

formulated as data-parallel computations in order to take advantage of the resources

GPUs provide. However, re-working simulations to fit in with the data-parallel

execution strategy is not straightforward. Tools such as FLAME-GPU (Richmond

and Chimeh, 2017) for ABS help to address this issue by providing a framework for

specifying simulation models such that the required computations can be mapped to

data-parallel execution on GPU hardware. Using FLAME-GPU, Richmond (2015)

reports a speedup of 250 for an experimental model with over 130,000 agents which

includes features such as agent movement within an environment and detection of

nearby agents.

2.3.2.3 Research Scope

Although off-loading large data-parallel workloads from the CPU to the GPU for

faster processing can be a useful approach for some problems, this work focuses on

the task-parallel approach which is more generally applicable to Distributed

Simulation.

2.4 Parallel Discrete Event Simulation

2.4.1 Logical Process Decomposition

The Parallel Discrete Event Simulation (PDES) literature, rooted in the seminal work

of Chandy and Misra (1979), approaches parallel DES by decomposing a DES

simulation model into a set of Logical Processes (LPs). LPs are assigned to separate

interconnected processors which will execute the LPs in parallel while exchanging

the messages necessary for ensuring overall simulation correctness. Fujimoto (2000)

points out that a DES can be decomposed into LPs in two different ways. One

method is the process-oriented approach, where each LP is used to represent one of

the various processes that constitute the DES model. Each process is responsible for

a distinct subset of the system state. The process-oriented decomposition approach is

the one generally taken in the PDES literature. The second approach is an alternative

decomposition method in which the simulation run length is divided into multiple

blocks of time, with each block being a separate LP. While the second approach

proposed is simpler than the first and would require fewer messages to be exchanged

between LPs during simulation execution, it is not generally applicable. However,

time decomposition would work for particular applications where the system states at

the start and end of the specified time block can be predicted accurately. Figure 2.3,

adapted from (Fujimoto, 2000), illustrates the two approaches to LP decomposition

discussed in this section.

Figure 2.3: Process and Time LP decomposition methods

(Adapted from source: Fujimoto, 2000)

2.4.2 LP Time Synchronization

A large part of PDES research work is dedicated to time synchronization algorithms,

which includes several proposed methods to coordinate concurrently executing LPs,

ensuring that the distributed execution produces correct results by following the same

execution path that a corresponding sequential simulation would follow. Time

synchronization algorithms attempt to exploit parallelism in the distributed execution

by allowing LPs to execute independently of one another as much as possible.

As set out by Chandy and Misra (1979), LPs communicate during distributed

simulation execution by sending each other timestamped messages which contain

events to be processed by the receiving LP. If at any time an LP receives a new event

that should have been processed before another event that the LP has already

processed, the simulation execution is considered invalid because a causal

relationship may have been broken. Time synchronization algorithms achieve

correctness by ensuring that all events are processed in the same order as they would

have been processed in a sequential execution, making certain that causal

relationships between events are respected. Fujimoto (1990) explains that in order to

achieve correct parallel execution, it is sufficient for each LP to process its own

events in non-decreasing timestamp order. This is referred to as the local causality

constraint. Peschlow and Martini (2007) point out that simultaneous events which

have the same timestamp need to be adequately handled by deterministic tie-breaking

rules consistent with sequential execution in order to guarantee correctness.

Although observing causal order guarantees correctness, it is not always required in

all cases. This is because the timestamp order of two events does not necessarily

imply a causal relationship between those two events. An event that occurs later in

simulation time may be completely independent of one that comes before in terms of

the aspects of system state which they have an effect on. Therefore, restricting event

execution order too rigorously by observing event timestamp order too strictly can

limit the independent execution of LPs and result in less exploitable parallelism. In

spite of this, the local causality constraint remains necessary as a generally applicable

method for ensuring distributed simulation correctness without incorporating

application-specific information into time synchronization algorithms.

The PDES literature covers two main classes of time synchronization algorithms:

conservative algorithms, and optimistic algorithms. On one hand, conservative

algorithms always respect the local causality constraint and therefore prevent events

within the same LP from executing out of timestamp order. On the other hand,

optimistic algorithms allow the local causality constraint to be violated but provide a

means for correcting out-of-order event execution after it has been detected.

2.4.3 Conservative Synchronization

Chandy, Misra (1979) and Bryant (1977), independently presented the first

conservative synchronization algorithm for PDES, known as the

Chandy/Misra/Bryant (CMB) algorithm. In their proposed scheme, DES LPs execute

in parallel, each advancing in time by processing the next event on its event list that

has the smallest timestamp. When an LP processes an event, it may result in a need

to schedule future events for itself or for other LPs. If the scheduled event needs to

be processed by another LP, it sends the other LP a message containing the

scheduled event. In the CMB scheme, each LP is restricted from processing its next

event until it can guarantee that none of the other LPs will send it any subsequent

events that may have a smaller timestamp. This guarantee is obtained in the

following manner: since an LP, labelled LP_1, cannot schedule events in its past,

other LPs can rely on the timestamp of the latest message they received from LP_1

as a lower bound on the timestamp of any events LP_1 will send in the future.

Although this provides the needed safety guarantee, the CMB algorithm recognizes

that it can result in a deadlock situation where all the LPs block, each waiting for one

of the others to send a message so that a safety guarantee can be inferred from its

timestamp. The CMB algorithm prevents such deadlocks by requiring each LP to

send a null message to the other LPs each time it advances in simulation time and

processes an event. When an LP sends a null message to the others, it also specifies a

future time horizon within which it can guarantee that it will not send any further

events. This time horizon, known as lookahead, varies depending on the simulation

application. Larger lookahead values mean that more freedom is allowed for parallel

LP execution and LPs can execute independently of each other for longer periods

without the need to exchange any messages. Chandy & Misra (1979) show that this

method is guaranteed to prevent deadlocks from occurring between LPs. In general,

conservative synchronization algorithms follow this pattern of generating safety

guarantees to refrain from violating the local causality constraint. The size of

lookahead is a principal factor in the performance of conservative synchronization

algorithms. This implies that for conservative algorithms to be used efficiently, they

need to incorporate specific information about the simulation application in order to

adequately exploit the potential parallelism available.

Research work on conservative synchronization algorithms is mainly concerned with

proposing efficient means to handle deadlock and maximize lookahead. With regards

to deadlock handling, conservative algorithms either prevent deadlocks, as with the

CMB algorithm, or try to detect and break them. Deadlock-avoiding conservative

algorithms generally employ the method of sending null messages and specifying a

lookahead value. As noted by Jafer et al. (2013), such conservative algorithms

usually need to deal with a substantial amount of null message overhead during

simulation execution. Several strategies have been proposed to reduce the volume of

null message communications, for example by sending null messages only on-

demand (Misra, 1986). Deadlock-breaking conservative algorithms first allow a

deadlock to occur and then attempt to break it. This class does not need to send null

messages regularly. For example, in the approach of Chandy & Misra (1981), a

controller process breaks deadlock by identifying the events with the smallest global

timestamp, and instructing the LPs processing those events to resume execution

because it is safe for them to proceed.

2.4.4 Optimistic Synchronization

D. R. Jefferson and Sowizral (1982) and D. R. Jefferson (1985) introduced the first

optimistic synchronization algorithm, called the Time Warp Operating System

(TWOS). Unlike the conservative approach, the optimistic approach does not require

any safety guarantees from LPs in order to advance simulation time. Consequently,

optimistic algorithms allow events to potentially be processed out of causal order.

However, to correct out-of-order execution and observe the local causality constraint,

optimistic algorithms provide a mechanism for rollback. Events that are received out

of timestamp order are labelled straggler events. An LP detects that an event it

receives is a straggler if the LP has already processed another event with a lower

timestamp. When an LP detects a straggler event, it deduces that the local causality

constraint has been violated. The LP then proceeds to initiate the rollback mechanism

to revert to the most recent historical state where it was safe to process the straggler

event without violating local causality. As part of the rollback process, the effect of

all previous messages sent from the LP to other LPs after the established safe point

must be undone. Time Warp handles this by using anti-messages, which are sent to

negate specific messages that have previously been dispatched. When an LP receives

an anti-message, it discards the corresponding message if it has not already processed

it. If the corresponding message has already been processed, then the receiving LP

must initiate its own rollback procedure to return to a safe point in time before the

original message was processed. This leads to a cascading sequence of rollbacks that

undoes all computation until a globally safe historical state has been reached where

local causality has not been violated by any of the LPs.

The rollback process requires that the historical states of the simulation execution

should be stored in memory. The Time Warp mechanism uses the concept of Global

Virtual Time (GVT) to track the lower bound of simulation time across all LPs. At

any point, GVT considers the current simulation time reached by each LP as well as

the timestamps of undelivered messages still in transit. GVT is useful for the process

known as fossil collection, by which historical states earlier than GVT are discarded

to free up memory. This is safe because it is not possible for any LP to schedule a

new event that occurs before GVT and therefore rollbacks cannot revert to a time

before GVT.

The research work on improving the performance of optimistic algorithms is largely

focused on decreasing the number of cascading rollbacks and reducing the amount of

memory required for storing historical states. Some approaches for improving

memory efficiency include techniques for using memory sparsely or salvaging

memory (Jefferson, 1990), and techniques for using reverse computation instead of

saving historical states (Carothers, Perumalla and Fujimoto, 1999). Reverse

computation is not applicable in cases where computations can only be performed in

one direction. Optimistic algorithms suffer from significant performance degradation

in cases where one rollback causes an avalanche of subsequent cascading rollbacks,

destabilizing simulation execution. Methods to counter this include throttling the

degree of optimism by using a global execution window (Tay and Teo, 2001), and

lazy event cancellation (Lin and Edward, 1991) which delays anti-messages until

rolled back events have been re-processed and confirmed to produce different results

from their earlier out-of-order execution.

2.4.5 Scalability of Conservative and Optimistic Approaches

Several software systems have been created to support developing PDES, including

the µsik micro-kernel (Perumalla, 2005), Rensselaer’s Optimistic Simulation System

(ROSS) (Carothers, Bauer and Pearce, 2002), the Georgia Tech Time Warp (GTW)

system (Das et al., 1994) and the Time Warp Operating System (TWOS) (Jefferson

et al., 1987). These provide APIs that ease the implementation and execution of

PDES using conservative and optimistic synchronization methods.

The Parallel Hold (PHOLD) model (Fujimoto, 1990b) is widely used for testing the

performance of time synchronization algorithms. PHOLD is a parallel DES model in

which the time between scheduled events on each LP is drawn from a given

probability distribution. When processing one event results in scheduling a new

event, the LP responsible for processing the new event is drawn from a uniform

distribution. This makes the PHOLD model useful as a general artificial benchmark

which is not based on any specific application.

PDES conservative and optimistic methods have been applied to several large-scale

simulation applications, enabling the execution of such large-scale simulations in

High-Performance Computing (HPC) environments. Neither the conservative nor the

optimistic synchronization approach performs better than the other in all cases. The

relative performance of the time synchronization approaches depends on the specific

simulation application. Each time synchronization approach possesses characteristics

that make it better suited than the other for specific types of applications. On the one

hand, conservative algorithms depend on high lookahead values for good

performance. However, determining optimal lookahead values requires knowledge of

application-specific information. On the other hand, optimistic algorithms are more

general and do not require application-specific information such as look-ahead.

However, optimistic algorithms can suffer from cascading rollbacks leading to poor

performance. Carothers and Perumalla (2010) show that conservative algorithms

perform poorly on applications with small lookahead values, and optimistic

algorithms are more efficient at exploiting parallelism in this type of application.

However, optimistic algorithms require more memory resources due to the need to

store historical states in case rollback becomes necessary. Also, optimistic algorithms

cannot be used in applications where operations cannot be rolled back once they have

been completed.

Fujimoto (2015) surveys the results of several simulation experiments using PDES

techniques on high-performance computers from 2003 to 2013 including:

• Fujimoto et al. (2003): 1,536 processors, ~200 million events per second

• Perumalla (2007): 16,384 processors, ~500 million events per second

• Bauer et al. (2009): 65,536 processors, ~12 billion events per second

• Barnes et al. (2013): 1,966,080 processors, ~500 billion events per second

To compare the results between these sets of experiments, their performance is

measured as the number of events per second per processor:

• Fujimoto et al. (2003): ~130,000 events/s/processor (conservative)

• Perumalla (2007): ~30,000 events/s/processor (conservative, PHOLD)

• Bauer et al. (2009): ~180,000 events/s/processor (optimistic, PHOLD)

• Barnes et al. (2013): ~250,000 events/s/processor (optimistic, PHOLD)

These experiments demonstrate the feasibility of employing distributed computing

systems to enable the execution of large-scale DES models that would not be

possible to execute sequentially using the memory resources of a single stand-alone

computing node.

2.5 Other Distributed Simulation Approaches

As discussed in previous sections, much research work has been conducted on

approaches to enabling the efficient execution of large-scale PDES simulations. An

evident limitation is that the methods proposed are developed specifically for the

DES paradigm which uses the event-driven time flow mechanism. Other simulation

paradigms that use the time-driven mechanism will need to have these methods

adapted appropriately. Another limitation is that work on PDES does not account for

aspects regarding enabling interoperability between heterogeneous simulations. This

is natural as the primary focus of PDES research is on efficiently scaling of

homogenous DES simulations. Therefore, the need to coordinate existing simulations

together to answer new questions is not a priority.

2.5.1 PDES-MAS

As discussed in previous sections, the LP decomposition in PDES set out by Chandy

and Misra (1979) assumes that each LP is responsible for a distinct portion of the

system state that does not overlap with the portion of state managed by the other LPs.

The portion of system state managed by each LP can only be modified by events

which that LP itself processes. The essential idea, according to Chandy and Misra

(1979), is that LPs “cannot interfere with each other”. Theodoropoulos and Logan

(1999) extend ideas developed from PDES research to enable the distributed

execution of MAS simulations. They point out that the view of a non-shared state is

reasonable for a process-oriented paradigm such as DES where the communication

topology between LPs is generally static and not expected to change during

simulation execution. However, a non-shared state is not a sound assumption to

make when considering an individual-oriented paradigm such as MAS where the

topology of interactions between autonomous agents can be unstable and

unpredictable. Unlike the processes in DES, the agents in MAS can interfere with

each other either through direct interaction or indirectly through their shared

environment. Theodoropoulos and Logan (1999) define shared state as the portion of

system state to which multiple LPs have write or read access. This is analogous to a

critical section in general concurrent programming and therefore read and write

dependencies need to be observed carefully to guard against data hazards. They

propose a PDES-MAS framework (Oguara et al., 2007) which uses an optimistic

synchronization approach and consists of three different types of LPs:

1. Agent Logical Processes (ALPs),

2. Environment Logical Processes (ELPs), and

3. Communication Logical Processes (CLPs):

In their proposed framework, CLPs manage the shared state and the communication

between all ALPs and ELPs. ALPs and ELPs have different spheres of influence, the

subset of shared state each ALP or ELP can read or write. The simulation workload

is balanced by clustering ALPs and ELPs together based on their spheres of

influence.

2.5.2 Distributed ABS Toolkits

Simulation toolkits have been created which provide libraries and a development

environment to facilitate the process of implementing and executing distributed ABS.

Popular distributed ABS toolkits include Repast HPC (Collier and North, 2012), D-

MASON (Cordasco et al., 2013), and FLAME (Coakley et al., 2016). The toolkits

include different approaches for accomplishing necessary tasks such as partitioning

the model environment and agents into LPs, managing communication between

agents in different LPs, and synchronizing time flow among all LPs to ensure

simulation correctness. The following sections provide an overview of the

approaches to these tasks used by various ABS toolkits.

2.5.2.1 Distributed ABS Partitioning Strategies

Model partitioning strategies attempt to optimize two objectives together

1. Balancing the computational workload evenly between LPs.

2. Minimizing the communication between agents in different LPs.

Cordasco, Spagnuolo and Scarano (2017) identify four broad strategies for ABS

partitioning: load-based, space-based, relationships-based and space-relationships-

based.

• Load-Based Partitioning:

The load-based approach primarily focuses on optimizing the first objective,

balancing the processing workload among LPs. This results in assigning

equal numbers of agents to each LP without regard to where they may reside

in the environment or their relationships with other agents. Each LP is

responsible for performing the simulation computations on the specific subset

of agents to which it has been assigned. The load-based approach is a simple

strategy that can be useful in cases where there are few relationships between

agents and communication is minimal. Where there is significant

communication in the ABS, it can lead to poor performance due to large

volume of communication between LPs.

• Space-Based Partitioning:

The space-based approach attempts to optimize both the balanced workload

and minimal communication objectives by dividing the spatial environment

into different partitions. Each partition is assigned to a separate LP which is

responsible for simulating all the agents that reside in that partition. The

space covered by partitions may be equally sized or unequally sized to

balance the computational workload by having large-spaced partitions in

parts of the environment where agents are sparse and small-spaced partitions

in areas where agents are dense. This approach attempts to minimize

communication between LPs based on the assumption that agents are more

likely to interaction with other agents that are close in proximity and less

likely to interaction with those that are far away. If this assumption holds, the

partition borders can be drawn to put agents that are closely clustered

together in the same partition and agents that are far apart from one another in

different partitions. The effect of this is to reduce the communication between

agents in different LPs by increasing local interactions. Partitions generated

using this strategy may not remain optimal where agents can move around the

environment space. One method to account for movement is to keep the

partition borders static and re-assign agents from one LP to another when

they move out of the space managed by one LP into the space managed by

the other. Another method is to dynamically re-draw the partition borders as

and when necessary.

• Relationships-Based Partitioning:

The relationships-based approach attempts to optimize both objectives using

the graph of relationships between agents where each agent is a vertex and an

edge between two vertices indicates that an interaction relationship exists

between the two agents. Vertices are assigned to partitions such that the

number of local edges is high and the number of edges between vertices in

different partitions is low. This approach attempts to minimize

communication by reducing the number of inter-LP agent relationships while

balancing the workload by assigning each LP an equal number of agents. This

approach is useful in models where interactions between agents are defined

by explicitly assigned relationships and do not need to be inferred from

spatial proximity. Relationship-based partitioning can be carried out using

graph partitioning algorithms such as METIS (Antelmi et al., 2015).

Partitions created using this strategy may not remain optimal if the

relationships between agents can change dynamically as the simulation

progresses. One method for address this is dynamic re-partitioning to re-

assign agents to LPs as and when necessary.

• Space and Relationships Based Partitioning:

This approach is a combination of the space-based approach and the

relationship-based approach. It is useful in cases where interactions between

agents can occur either as a result of their proximity or due to explicitly

defined relationships between the agents. One approach to partitioning in this

situation is to add edges to the relationships graph based on the proximity of

agents. Relationships-based techniques can then be applied to create the

partitions.

In order to minimize communication, both the space-based approach and the

relationships-based approach rely on the assumption that partitions can be created in

such a way that dense inter-agent interactions can be localized to LPs, leaving sparse

interactions for inter-LP communication. The two approaches are not effective in

cases where this assumption of locality of interactions does not hold, for example in

the extreme case of a fully connected ABS in which every agent can interact with all

the other agents at any time.

2.5.2.2 Distributed ABS Communication

After partitioning the model, each LP has an area of interest which includes:

• Local agents assigned to the LP.

• The local spatial environment assigned to the LP.

• Non-local agents in other LPs with whom local agents can interact.

• The non-local spatial environment in other LPs with which local agents can

interact.

Each LP is responsible for executing the simulation computations concerning its

local agents and environment. One method for implementing interactions with non-

local parts of the model is to let each LP keep local reference copies of the non-local

agents and environment which fall within its area of interest. These reference copies

are updated when their information changes by exchanging messages with the LPs

responsible for simulating their originals. Figure 2.4 illustrates this approach with an

ABS that has been spatially partitioned between four LPs. Each LP in the diagram

maintains a copy of a portion of the non-local environment that borders on its own as

well as copies of non-local agents located within those regions.

Figure 2.4: Areas of interest in a spatially partitioned ABS

Distributed ABS simulation toolkits generally exchange information between LPs by

message passing. Updating the non-local data in LPs can be accomplished using this

method. Communication strategies for updating non-local data are mainly based on

the publish-subscribe pattern. Using the publish-subscribe approach, each LP

subscribes to receive updates relevant to the non-local copies it keeps. At each

timestep, all LPs publish updates concerning their local agents to the other LPs that

require those updates. This may result in unnecessary communication if the

published data has not changed since the last timestep. Hence this strategy can be

made more efficient by publishing only data that has changed since the previous

timestep. Some updates might still be strictly unnecessary because the subscribing

LPs may not actually have any use for the updated data at the timestep when it is

delivered. However, regular updates help maintain a coherent view of global data

across all LPs and prevent errors in distributed simulation outputs.

2.5.2.3 Distributed ABS Time Synchronization

In distributed ABS simulation toolkits, time synchronization is generally

conservative, and LPs are only allowed to move forward to the next timestep when it

is safe to do so. In this case, safety is guaranteed in two steps: first, LP performs all

their local computations and then exchange the resulting updated data. When each

LP has received all updates relevant to its areas of interest, it is safe for it to advance

to the next timestep. Generally, distributed ABS simulations move all LPs forward

together in lockstep using a synchronization barrier at the end of each timestep.

Distributed simulation toolkits are useful and applicable to various types of

simulation problems. The toolkits ease the process of implementing distributed

simulations, providing the common functionality required for communication and

time synchronization, and in some cases generating code from inputs such as state

charts or XML. However, distributed simulation toolkits do not generally provide

direct support for integration with other existing simulations that may or may not

have been created using other tools. This limits the type of distributed simulation that

can be created using this approach alone to a homogeneous simulation that uses one

or more of the simulation paradigms supported by the toolkit being used.

2.5.3 Custom-Built Distributed Simulations

Apart from using toolkits, distributed simulation can also be custom-built by

implementing the simulations in programming languages such as C++ or Java and

making use of communication libraries such as the Message Passing Interface (MPI)

(Gropp et al., 1999), Java Message Service (Hapner et al., 2002) and JGroups

(JGroups, 2020). The custom-built approach is used for building specialized

simulation software for particular problems in specific domains, as well as for

creating ad-hoc distributed simulations. Many examples of custom-built distributed

simulations are found in the literature of scientific high-performance computing. For

example, Buchholz, Bungartz and Vrabec (2011) use C++ and MPI to implement a

distributed molecular dynamics simulation, Ouro et al. (2019) implement a

distributed computational fluid dynamics simulation using MPI, Mostaccio, Suppi

and Luque (2005) create a custom distributed fish school simulation using MPI,

Komann, Kauhaus and Fey (2005) use MPI communication in a custom distributed

Cellular Automata simulation, and Plesser et al. (2007) simulate a biological neural

network using MPI on a cluster of computing nodes.

Message passing libraries such as MPI enable communication in distributed

simulations by transmitting data packets containing messages over the

interconnecting network between nodes. Message passing is the standard method for

communication in distributed computing systems which do not share a common

memory address space. Message passing libraries include functions which provide

the programmer with various methods for sending and receiving messages between

nodes, including point-to-point communication and collective communication such

as broadcasting and multicasting. MPI is the most popular message passing library

for high-performance computing applications and includes a rich and mature set of

communication functions for a wide range of operations. Some of the main MPI

functions include MPI_Send, MPI_Recv, MPI_Bcast and MPI_Barrier for sending,

receiving, broadcasting and creating a synchronization barrier. Communication in

MPI can be synchronous or asynchronous. In synchronous (or blocking) mode, the

sender waits until the transmitted message has been received at the destination before

it can proceed with further execution. In asynchronous (or non-blocking) mode on

the other hand, the sender can continue along its execution path without waiting for

the message to reach its destination.

The custom-built distributed simulation approach is aided by communication

libraries such as MPI and this approach works well for specific problems that require

ad-hoc solutions or for creating specialized software for a particular domain,

especially in scientific high-performance computing. Although this approach

provides fine-grained control for the software developer, it also comes with the

added responsibility of manually implementing measures to avoid deadlock and the

responsibility of implementing measures to ensure that time advances are correctly

synchronized to avoid corrupting simulation results. This approach is also limited in

the sense that the end-product cannot easily be integrated with other simulations in a

heterogeneous distributed simulation, although this can be addressed by building

support for a common simulation interoperability standard into the custom-built

software.

2.6 Distributed Simulation Interoperability

This section provides an overview of two leading standards for enabling

interoperability between heterogeneous simulations, the High Level Architecture

(HLA) and the Functional Mock-Up interface (FMI).

2.6.1 The High Level Architecture (HLA)

The High Level Architecture (HLA) is a standard for distributed simulation which

originated as a military specification designed to facilitate the coordinated execution

of simulation models (Kuhl, Weatherly and Dahmann, 1999). As explained by Topçu

and Oğuztüzün (2017), some earlier military standards upon which the HLA was

founded include Simulation Networking (SIMNET) (Miller and Thorpe, 1995),

Distributed Interactive Simulation (DIS) (Hofer and Loper, 1995) and the Aggregate

Level Simulation Protocol (ALSP) (Wilson and Weatherly, 1994) which were

focused mainly on virtual simulations for training exercises and therefore involved

real-time interaction between humans in virtual environments. The first version of

the HLA specification was published in 1998 by the US Defense Modeling and

Simulation Office (DMSO) as HLA 1.3. The HLA was eventually adapted into an

IEEE standard which is currently developed by the Simulation Interoperability

Standards Organization (SISO). The first IEEE version was published in 2000 as

HLA 1516-2000, followed by a second version in 2010 known as HLA 1516-2010 or

HLA-Evolved (IEEE, 2010a). The HLA standard provides a standard framework for

integrating heterogeneous simulations and orchestrating their individual execution to

create a joint distributed simulation. The framework provides a rich set of standard

services including services for coordinating the exchange of data between the

simulations and for regulating their advancement in simulation time with respect to

one another. The wide range of services provided by the HLA are also useful for

coordinating the distributed execution of a partitioned homogeneous simulation.

Consequently, HLA can be useful both for interoperability between heterogeneous

simulations and for scaling up homogenous simulations. To the latter end, for

example, Lees et al. (2003) make use of the HLA for executing a distributed MAS

simulation, and Minson and Theodoropoulos (2004) use the HLA for executing

distributed simulations created with the Repast Simphony ABS toolkit (North et al.,

2013).

In HLA terminology, individual simulations are referred to as federates and the

whole distributed simulation is referred to as a federation. The HLA standard also

specifies a software component referred to as a Run-Time Infrastructure (RTI) which

is responsible for coordinating the federation execution. The RTI controls all

communication between federates and directs time synchronization in the federation

execution. HLA federates exchange messages by means of HLA objects which

persist throughout federation execution and HLA interactions which are transient

events. HLA object classes and interaction classes function as structures for grouping

attributes and provide a template for creating concrete instances of objects and

interactions. However, HLA object classes and interaction classes and do not include

any methods unlike normal OOP classes. An HLA Federation Object Model (FOM)

is a federation-level document used to establish an agreement between federates

regarding data involved in the federation execution, including object classes and

interaction classes. Federates may also have a SOM (Simulation Object Model) to

decentralize the definitions specific to individual federates. Figure 2.5 provides a

high-level conceptual overview of the HLA, showing how the main components

interact with one another.

Figure 2.5: Overview of the HLA

 The HLA standard is composed of three parts: Framework and Rules, Interface

Specification and Object Model Template (OMT).

2.6.1.1 The HLA Framework and Rules

The HLA Framework and Rules (IEEE, 2010a) provides an overview of the HLA

framework, defining its terminology, describing its components and establishing how

the components relate to one another. It sets out ten HLA Rules that describe the

behaviour of federations and expected behaviour from well-behaved federates,

including rules about communication and time management.

 The first set of five rules describe HLA requirements for federations:

i. A federation’s FOM must conform to the OMT specification.

ii. The RTI is not responsible for storing simulation objects, but

individual federates are.

iii. All data exchanges between federates use the RTI as a conduit.

iv. All RTI–federate interactions must be done according to the Interface

Specification.

v. Federates cannot share joint ownership of a single object instance

attribute.

The second set of five rules describe HLA requirements for federates:

vi. A federate’s SOM must conform to the OMT specification.

vii. A federate can send or receive attribute updates according to the

details in its SOM.

viii. A federate can transfer or accept attribute ownership according to the

details in its SOM.

ix. A federate can determine the conditions under which it is necessary

for it to provide attribute updates according to the details in its SOM.

x. A federate manages its own local time but must be able to coordinate

with other federates for communication and time synchronization.

2.6.1.2 The HLA Federate Interface Specification

The HLA Interface Specification (IEEE, 2010b) provides detailed definitions for

several services that can be used by the RTI and federates to interact with each other

and accomplish specific tasks. The services defined by the Interface Specification are

grouped into seven classes. Each class of services includes a set of related calls that

federates can use to interact with the RTI. Each service class also contains callbacks

that the RTI uses to interact with federates. Each federate make calls to the RTI via

an RTI Ambassador component. Federates also implement the necessary functions in

a Federate Ambassador component to receive callbacks from the RTI. The seven

service classes defined by the HLA Interface Specification are Federation

Management, Declaration Management, Object Management, Ownership

Management, Time Management, Data Distribution Management and Support

Services.

1. HLA Federation Management Services

This group includes services for managing federations and federates

including functions such as:

• Creating and destroying federations

• Adding and removing federates from a federation

• Managing federation barrier synchronization points

• Saving and restoring federation state.

Figure 2.6 provides an overview of main services in the HLA Federation

Management category.

Figure 2.6: Overview of HLA Federation Management services

2. HLA Declaration Management Services

In the HLA, data exchange between federates is conducted according to the

publish-subscribe pattern. Federates declare the types of data they wish to

send and receive, and the RTI manages the routing of relevant updates to

appropriate federates during federation execution. This arrangement ensures

that federates are anonymous to one another. A subscribing federate need not

know the identities of the other federates that publish the data it requires, and

a publishing federate does not need to keep a list of other federates that must

receive the updates that it publishes during federation execution. Only the

RTI needs to have the global view of publishers and subscribers, receiving

and forwarding updates as necessary.

The services in the Declaration Management group include functions to allow

federates to inform the RTI regarding the types of object attributes and

interactions they intend to publish or wish to subscribe to during federation

execution. Figure 2.7 provides an overview of main services in the HLA

Declaration Management category.

Figure 2.7: Overview of HLA Declaration Management services

3. HLA Object Management Services

The services in the Object Management group are used for performing

functions relevant to concrete instances of HLA objects and interactions

including:

• Federates registering new object instances with the RTI.

• Federates discovering object instances that others have registered.

• Deleting object instances.

• Sending interactions and attribute value updates.

• Receiving interactions and (reflecting) attribute value updates.

• Specifying reliable or unreliable data transmission.

As prescribed in the HLA Rules, federates store the data related to simulation

objects. Object instances must be registered with the RTI before their

attributes updated to the federation. Before a federate can register an object

instance with the RTI, it must first declare that it wishes to publish the

relevant object class attributes. When a federate registers the object instances

which it owns with the RTI, the RTI creates a handle which is a unique

identifier for each object instance. The federate can then use the unique

handles to refer to those specific object instances in future calls to the RTI.

The RTI also forwards registered object instance handles to other federates

that have subscribed to receive updates for the relevant object class attributes

using the Discover Object Instance service. Figure 2.8 provides an overview

of main services in the HLA Object Management category.

Figure 2.8: Overview of HLA Object Management services

4. HLA Ownership Management Services

As prescribed by the HLA Rules, each object instance attribute can be owned

by at most one federate. Only the owner federate will be granted permission

to send the relevant attribute value updates for the object instance. When a

federate registers a new object instance with the RTI, that federate is the

default owner of the object instance attributes which it registers. However,

ownership of object attributes can be transferred from one federate to another

by means of the functionality provided through HLA Ownership

Management services. Using these services, a federate may divest its

ownership of an object instance attribute either unconditionally or on the

condition that the RTI first searches for a suitable federate willing to take

ownership. Only federates that have declared their intention to publish the

relevant object class attribute can assume ownership of the divested object

instance attribute. A federate may also make a request to acquire ownership

of an object instance attribute that is already owned by another federate or

that has previously been divested by another federate and has no owner.

Figure 2.9 provides an overview of main services in the HLA Ownership

Management category.

Figure 2.9: Overview of HLA Ownership Management services

5. HLA Time Management Services

An HLA federation execution proceeds according to a logical time axis. At

any point during federation execution, each federate can be at a different

logical time, coordinated by the RTI. Federates joined to a federation may be

time-regulating, time-constrained, both or neither. Time-regulating federates

can influence the flow of logical time in the federation execution by sending

timestamped messages to the RTI. Federates that are not time-regulating can

send only messages that do not include any timestamp information. Time-

constrained federates can observe the flow of logical time in the federation

execution by receiving timestamped messages from the RTI. Federates that

are not time-constrained can receive messages that do not have any

timestamp information, as well as messages that were originally timestamped

but have had the timestamp information stripped away by the RTI.

In the HLA, federates exchange messages with one another by using Object

Management services. Services such as Update Attribute Values and Send

Interaction are used for sending messages, while services such as Reflect

Attribute Values and Receive Interaction are used for receiving messages.

Using these services, messages may be sent and received either in Time

Stamp Order (TSO) or Receive Order (RO). In order to send a TSO message,

the sending federate must be time-regulating and must supply a logical

timestamp together with the message. In order to receive a TSO message, the

receiving federate must be time-constrained. For subscribing federates that

are not time-constrained, the RTI converts TSO messages into RO messages

as appropriate.

Federates move forward in logical time by requesting permission from the

RTI using Time Management services such as Time Advance Request (TAR)

and Next Message Request (NMR). The RTI responds to such requests by

first delivering any necessary TSO messages. When all TSO messages have

been delivered and it is safe to honour the request to move forward in logical

time based on the states of all time-regulating federates, the RTI then notifies

the requesting federate using the Time Advance Grant (TAG) service.

Although this approach to time synchronization is conservative in nature, it is

also possible to implement optimistic synchronization using HLA Time

Management services. For example, Ferenci, Perumalla and Fujimoto (2000)

perform optimistic synchronization in HLA using their Federated Simulations

Development Kit (Georgia Tech, 2001) to develop an RTI that implements a

subset of HLA Time Management services including Retract, Request

Retraction, Flush Queue Request and Time Advance Grant.

Figure 2.10 provides an overview of services in the HLA Time Management

category.

Figure 2.10: Overview of HLA Time Management services

6. HLA Data Distribution Management Services

Federates subscribe to receive updates concerning relevant object class

attributes and interaction classes using HLA Declaration Management

services. However, there are no mechanisms in the Declaration Management

services that allow federates to subscribe to updates for specific object

instance attributes or specific interaction instances. On the receiving end, this

may result in federates receiving an excessive number of updates concerning

object instances in which they have no interest. On the transmission end, this

can result in federates sending instance updates which none of the other

federates needs. HLA Data Distribution Management (DDM) services

provide additional functionality that helps to further refine the sending and

receiving of messages during federation execution by filtering out irrelevant

updates concerning specific object instance attributes and interaction

instances.

HLA DDM filtering is accomplished by the use of publication and

subscription regions. A region is composed of a set of defined ranges of

values for specified class attributes. Each range is a continuous interval that

specifies a lower bound and upper bound for a class attribute. A range must

fall within the minimum and maximum bounds for the given class attribute,

which is specified as a dimension. The default region covers the full range of

all dimensions. Federate can publish updates to regions they specify or

subscribe to receive updates from custom regions they define. When the

publication region of one federate overlaps with the subscription region of

another, the RTI routes the relevant updates from the sender to the recipient.

Using these means, DDM can be used to filter out updates concerning

instance attribute values which fall outside the region of interest of

subscribing federates.

Figure 2.12 shows four example DDM publication and subscription regions

based on two dimensions X and Y. From the diagram, Pub_Region_2 does

not overlap with either subscription region. Consequently, the RTI will not

forward any Pub_Region_2 updates to federates in either of the subscription

regions. Similarly, as Sub_Region_1 does not overlap with either of the

publication regions, a federate in Sub_Region_1 will not receive any updates

from the two publication regions. However, Pub_Region_1 and

Sub_Region_2 do overlap with one another. This means that all updates

published to Pub_Region_1 will be forwarded by the RTI to Sub_Region_2.

This includes updates in Pub_Region_1 with attribute values that fall outside

the ranges in Sub_Region_2.

Figure 2.11: HLA DDM publication and subscription regions

Figure 2.12 provides an overview of main services in the HLA DDM

category.

Figure 2.12: Overview of HLA Data Distribution Management services

7. HLA Support Services

The support service group includes calls that enable federates to query

information from the RTI that is relevant to the state of federation execution.

This includes services to retrieve handles for various components of the

federation such as object classes and interaction classes. This group also

includes services to retrieve various settings such as upper and lower bounds

for DDM ranges.

Figure 2.13 provides examples of HLA Support Services.

Figure 2.13: Overview of HLA Support services

2.6.1.3 The HLA Object Model Template

The HLA Object Model Template (OMT) (IEEE, 2010c) specifies a standard

structure for federation data description documents such as FOMs and SOMs. The

OMT defines the structure of FOM and SOM components such as object classes and

their related attributes, interaction classes and their related parameters, data

distribution dimensions, ranges and regions. It is on the basis of the structures

defined by the OMT standard that FOM and SOM documents are used to specify

details of federation components.

2.6.1.4 HLA Federation Execution

Figure 2.14 shows an example of an HLA federation execution with two federates

that are both time-regulated and time-constrained. The illustration uses services from

the categories discussed in previous sections. Federation Management services are

used for high level federation execution functions including Connect, Create

Federation Execution, Join Federation Execution, Resign Federation Execution and

Destroy Federation Execution. Declaration Management Services are used to declare

publication and subscription interests including Publish Object Class Attributes,

Subscribe Object Class Attributes, Publish Interaction Class and Subscribe

Interaction Class.

Figure 2.14: Example HLA federation execution

Object Management services are used to create instances and update values,

including Register Object Instance, Discover Object Instance, Update Attribute

Values, Send Interaction, Reflect Attribute Values and Receive Interaction.

Time Management services are used to set the time-regulation and time-constrained

status of federates, as well as for coordinating time advance, including Enable Time

Regulation, Time Regulation Enabled, Enable Time Constrained, Time Constrained

Enabled, Time Advance Request and Time Advance Grant.

2.6.1.5 RTI Implementations

Various RTI implementations have been developed by commercial and open-source

projects using the specifications in the HLA standard. RTI implementations may be

fully compliant or partially compliant with the version of the HLA standard they

support and may include the full set of services or offer a subset of the services

defined in the Federate Interface Specification. Figure 2.15 provides a list of some

popular commercial and open-source RTI implementations. The performance of a

federation execution can vary depending on the RTI implementation used, as shown

in experimental work by Fujimoto and Hoare (1998), Malinga and Le Roux (2009)

and Gutlein et al. (2020).

Figure 2.15: RTI Implementations

2.6.2 The Functional Mock-Up Interface

The Functional Mock-Up Interface (FMI) is a simulation interoperability standard

developed by the Modelica Association. The FMI is popular in industry applications

for supporting the integration of heterogeneous simulations. The FMI standard is

developed with two main objectives in mind (Blochwitz et al., 2011):

1. FMI for Model Exchange

To produce representations of simulation models in a standard format such

that the models can be used by different simulation tools apart from the one

in which they were originally created.

2. FMI for Co-Simulation

To enable interoperability between heterogeneous simulations by providing

an interface specification that enables coordinating data exchange and time

synchronization among the heterogeneous simulations.

In the FMI, individual simulations are referred to as Functional Mock-up Units

(FMUs). The FMI for Co-Simulation standard includes a component called the

master algorithm which performs the function of coordinating the execution of the

FMUs. FMUs cannot communicate directly with one another, but only through the

master. The role of the master algorithm is similar to that of the RTI in the HLA. As

with the HLA, the FMI standard provides specifications for an interface between the

master and the FMUs consisting of function calls. However, unlike the HLA RTI, the

FMI does not prescribe how interactions between the master and FMUs should

proceed for the purposes of time synchronization and data exchange. The

implementation of a master algorithm that performs these functions appropriately is a

task that is left up to the simulation developer.

2.6.3 Hybrid HLA and FMI

Although the HLA and FMI are developed separately, it can be useful to combine the

strengths of these two leading simulation interoperability standards. While the FMI is

more widely supported in industry applications, it lacks a generic master algorithm

and is geared towards coordinating FMUs together on a single computing node. On

the other hand, the HLA has more support in military than in industry applications

but has the advantage of including a generic RTI with a rich set of services for

coordinating federates across multiple computing nodes. Some work has been done

to fuse the two standards and take advantage of their individual strengths. For

example, Awais et al. (2013) employ the HLA RTI as a generic master to coordinate

the execution of FMUs. (Neema et al., 2014) follow a similar approach and

demonstrate a method for automatically wrapping FMUs as HLA federates.

2.7 Communication in Distributed Simulation

As discussed in section 1.1, the work in this thesis is primarily concerned with the

efficient management of communication in large-scale distributed Urban

Simulations. Communication in distributed simulations is necessary for data

exchange and time synchronization. However, the additional overheads due to the

need for communication can present a significant bottleneck to the performance of

distributed simulations. Therefore, it is important to make efficient use of the

communication bandwidth available on the interconnecting network between

computing nodes.

2.7.1 Message Types

As discussed in section 2.4, time synchronization is necessary for producing correct

results from distributed simulations. Both conservative and optimistic

synchronization approaches employ communication to achieve their goals. Time

synchronization messages carry information that is required for the synchronization

algorithms to work properly. Apart from time synchronization information,

distributed simulation messages are also used for the purpose of exchanging

information related to simulation entities in order to maintain a consistent global

view of data. The two concerns are usually related, as data received at the wrong

time can lead to causal errors due to out-of-order execution. In respect of the two

concerns of time synchronization and simulation data exchange, distributed

simulation messages may be of three types:

1. Time and Data

These are messages that contain both time synchronization information and

data concerning simulation entities. These are usually in the form of

timestamped messages. For example, PDES timestamped events contain

information that is relevant for time synchronization as well as data

concerning the event to be processed. Similarly, HLA time-regulating

federates send timestamped messages that carry attribute updates relevant to

simulation objects as well as logical time information that influences

decisions by the RTI to send TAGs in response to TARs from other time-

constrained federates joined to the federation execution.

2. Time Only

These are messages that contain only information pertinent to time

synchronization. For example, conservative algorithms can employ null

messages which carry timestamp information used to provide additional

lower bound time guarantees that help to prevent deadlocks from occurring

during distributed execution. Optimistic algorithms use anti-messages which

carry information about previous messages whose effect must be cancelled

during cascading rollbacks when causal errors are detected. Another example

of this type of message is the use of TARs and TAGs in the HLA for

requesting and granting permission for federates to move forward in time.

3. Data Only

These are messages that carry information about simulation entities but do

not include any time-related information. For example, HLA federates that

are not time-regulating can only send RO messages which have no timestamp

information and do not affect time synchronization decisions made by the

RTI. Similarly, federates that are not time-constrained can only receive RO

messages. A situation where this may be appropriate is in the case of an

observer federate that aggregates data from other federates during distributed

execution.

2.7.2 Communication Message Volume

The volume of communication messages required during distributed execution may

vary from one distributed simulation to another depending on factors such as the

synchronization algorithm used, the number of entities involved in the simulation,

the partitioning strategy and whether the computations required in the simulation are

tightly coupled and require frequent communication or loosely coupled and

communication is consequently infrequent.

As regards messages solely devoted to time synchronization, reducing the volume of

communication depends on the synchronization algorithm. As discussed in section

2.4, strategies for addressing this issue include conservative algorithms reducing the

volume of null messages by only transmitting them on request, and optimistic

algorithms employing lazy event cancellation to prevent sending unnecessary anti-

messages.

With respect to messages that carry information relevant to both time

synchronization and simulation data, one approach to reducing communication

overheads in distributed simulations is by the use of dead reckoning algorithms.

Dead reckoning algorithms have been used extensively in joint training simulations

that are based upon the HLA, DIS and other related standards (Lin, Blair and

Woodyard, 1997), (Miller and Thorpe, 1995). Using the dead reckoning approach,

each federate needs to keep internal approximate models of external objects that it

has an interest in but does not own. Federates can then make local approximations to

estimate an external object’s attributes based on its expected behaviour. This local

approximation can serve as a substitute in place of a message containing an update of

the external object’s attributes. The updates only become necessary when the owning

federate detects that an object’s simulated behaviour deviates significantly from its

approximation on other federates. An example where this method is useful is a

spatially partitioned scenario in which each federate simulates a number of vehicles

moving across a terrain and each federate needs to keep track of the positions of

vehicles in other federates. The position of an external vehicle moving at a constant

velocity can be estimated locally on tracking federates as long as it does not perform

actions such as changing direction, accelerating, decelerating, or stopping. In cases

like these, position updates for the vehicle can be provided in a message from the

owning federate. Otherwise, it is not necessary to communicate position updates for

the vehicle. This method is effective where communication can be substituted with

additional local computation. However, the dead reckoning approach is not

applicable in circumstances where accurate local approximations cannot be made to

replace the simulation data delivered by communication messages.

2.7.3 Disk Caching Alternative

To supplement the discussion on reducing communication overheads, an alternative

approach worth mentioning is the use of disk caching as a substitute for workload

distribution across multiple computing nodes. The approach of disk caching has been

applied to large-scale data processing (Kyrola, Blelloch and Guestrin, 2012) (Zhu,

Han and Chen, 2015) (Ko and Han, 2018). However, there is a lack of application of

this method in the literature to large-scale simulation, which includes additional

considerations such as time synchronization. The disk caching approach involves

caching portions of large-scale datasets to disk in cases where the entire dataset

cannot be processed together due to memory constraints (Dementiev, Kettner and

Sanders, 2008) (Imgrund and Arth, 2017).

It could be argued that if the aim is to avoid communication over a network, this

approach could be applied to a large-scale simulation whose configurations exceeds

the memory requirements of a single computing node. This could be executed in a

scheme where the simulation is partitioned into LPs that meet the memory

constraints and are loaded into memory turn by turn in a round robin fashion,

processed and cached back to disk. In such a scheme, the LPs could communicate

with one another using shared memory. It could further be argued that the use of

newer storage technologies such as SSDs could improve the I/O performance issues

associated with reading and writing to traditional HDDs (Kyrola, Blelloch, and

Guestrin 2012). Although such an approach would only require a single computing

node, eliminate network communication overheads, and increase processor

utilization, the scale to which this approach can be extended is limited as it depends

on vertical scaling of disk storage rather than horizontal scaling. As simulation size

grows very large, vertical scaling approaches practical limitations which can be

overcome using the horizontal scaling approach (Appuswamy et al., 2013). In this

case, horizontal scaling also has the added advantage of adding more processing

power to share the total computational workload, which is not possible with vertical

scaling.

It could also be argued that a combination of the disk caching approach with

horizontal scaling could be applied in an approach where each computing node

processes multiple LPs to increase processor utilization and aid latency hiding, where

useful computational tasks are performed to keep the processor busy while waiting to

receive communication messages over the interconnecting network. Although this

argument has merits and would be a potentially useful direction for exploration, the

primary focus of this thesis is on managing communication efficiently for a large-

scale simulation running on a distributed system. Therefore, full attention is given to

communication between the computing nodes without detailed scrutiny of the local

execution schemes that may be possible on individual nodes.

2.7.4 Communication Networks

As noted in previous sections, the volume of messages exchanged during distributed

execution can affect performance by increasing communication time.

Communication time also depends on the interconnecting network technology

including aspects such as the physical medium and the network protocol used.

Variance in performance between different network technologies is shown in

experiments by Bell et al. (2003) and Fujimoto and Hoare (1998). Some high-level

properties of the network that affect communication time are bandwidth, latency and

error rate. Bandwidth is a measure of throughput capacity calculated as the number

of bits transmitted per unit time. Latency is a measure of speed calculated as the

delay between the time a bit leaves the sender and the time it arrives at the recipient.

Depending on whether a reliable or unreliable communication protocol is used, data

that is corrupted or lost in transit may need to be re-transmitted. A high error rate

results in a large number of re-transmissions and poor network performance.

Although performance differences may result from using different networking

technologies, the work in this thesis focuses on making efficient use of the available

network resource within its given constraints and does not attempt to optimize for

any specific networking technology.

2.8 Distributed Performance Models

A variety of approaches have been proposed in the relevant literature that are useful

for estimating the performance of distributed computations. This section provides an

overview of the main existing approaches. Each approach considers several factors

relevant to distributed performance. Some factors are shared between them, while

others are unique to specific approaches. All approaches make assumptions and

simplifications that may render them more suitable for some distributed applications

than for others.

2.8.1 The Parallel Random-Access Machine

The Parallel Random-Access Machine (PRAM), introduced by Fortune and Wyllie

(1978) is a model of parallel computation that consists of multiple cooperating

processors communicating via shared memory. The PRAM has several built-in

assumptions which help it to realize a simplified approach to estimating the

performance of parallel computations. One of the assumptions it makes is that no

additional cost is incurred due to communication between processors during parallel

execution. The PRAM also assumes that synchronization cost is negligible, and no

additional effort is required to synchronize the execution of the processors. The

application of the PRAM model is suitable for shared memory systems where

processors execute in lockstep with to one another, and this fits in well with Single

Instruction Multiple Data (SIMD) processing. However, due to these inherent

assumptions, it is not practical for distributed simulations, where communication

costs and time synchronization costs can be significant concerns. Despite these

shortcomings, the PRAM has been influential in the development of subsequent

models of parallel computation that address some of its limitations.

2.8.2 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model introduced by Valiant (1990) is a model

of parallel execution composed of three essential elements:

• Processors that perform the required computations.

• A router that delivers messages between the processors.

• A method for performing global barrier synchronization at regular intervals.

In the BSP model, parallel execution proceeds according supersteps, during which

three stages are conducted in sequence:

• Computation

• Communication

• Global barrier synchronization

Figure 2.16 provides a conceptual illustration of the three stages in a single BSP

superstep.

Figure 2.16: Conceptual illustration of a BSP superstep

Unlike in the PRAM model, the BSP model includes both communication costs and

synchronization costs in its distributed performance estimates. Also, processors in

the BSP model are not assumed to work in lockstep as they are in the PRAM.

Because of these considerations, the BSP is applicable to Multiple Instruction

Multiple Data (MIMD) processing and can offer more realistic performance

estimates for distributed simulations. The BSP model is useful for estimating an

upper bound on total execution time. It achieves this result by treating each of the

three stages of a superstep as one bulk operation that covers all of the individual

operations conducted by the processors. Therefore, the total cost of each super-step is

an upper bound on the sum of computation cost, communication cost and barrier

synchronization cost. Calculating costs in the BSP model relies on the following

parameters:

• S: Number of supersteps.

• 𝑃: Number of processors.

• g: Minimum time required to send or receive a message between processors.

• l: Synchronization cost in a superstep.

• h𝑆: Maximum number of messages sent or received by any processor in a

superstep s.

• wS: Maximum time for work completed by any processor in a superstep s.

For each superstep s, an upper bound on communication cost is determined by:

communication costS = hS × g

For each superstep s, an upper bound on the total cost is determined as:

total costS = wS + h𝑆 × g + l

For all supersteps, an upper bound on the total cost is determined as:

total cost = W + H × g + S × l

Where:

W = ∑ ws

S

s = 1

and

H = ∑ hs

S

s = 1

Some parameters, such as S and wS depend on the simulation application. Other

parameters such as h𝑆 depend on the communication strategy during distributed

execution. The value of the parameter l depends on the cost of barrier

synchronization. The parameter g, also called the bandwidth factor, depends on the

properties of the interconnecting network, and can be measured empirically. As g is

measured empirically, the BSP model is non-specific with respect to the topology

and protocols used in the interconnecting network.

2.8.3 The LogP Model

The LogP model introduced by Culler et al. (1993) is a model of parallel computing

introduced after the PRAM and BSP models. Similar to the BSP model, the LogP

model considers communication and synchronization costs in its performance

estimation. The LogP model relies on the following parameters:

• L: Upper bound on the latency of message transmission.

• 𝑜: The overhead associated with communication operations.

• g: Lower bound on the time gap between send operations or between receive

operations.

• 𝑃: Number of processors.

Figure 2.17 provides an illustration showing LogP model parameters in an

interaction between two processors. Unlike the BSP model, the LogP model is not

limited to the use of barriers as the sole method for synchronization.

Figure 2.17: LogP model interactions

The LogGP model proposed by Alexandrov et al. (1995) extends the LogP model to

account for performance differences due to long messages. This extension is applied

with the recognition that communicating with long message can lead to better

performance than multiple equivalent short messages. The LogGP model relies on

the four parameters of the LogP model together with a new parameter, 𝐺, the time

gap per byte.

Another notable extension is the LogGPS model introduced by Ino, Fujimoto and

Hagihara (2001) which extends the LogGP model to account for additional overhead

incurred due to synchronous or blocking communication.

2.8.4 Other Approaches

From the systematic review conducted by Flores-Contreras et al. (2020) approaches

for estimating the performance of parallel applications include analytical methods,

statistical methods and trace-based methods.

Analytical methods are equation-based and can produce accurate performance

evaluations. However, a new set of equations needs to be crafted for each

application, relying on application-specific domain knowledge to produce good

accuracy. With equation-based approaches, it can be difficult to account for non-

deterministic behaviour in parallel applications.

Statistical approaches attempt to use regression-based methods or machine learning

methods to fit a statistical model to the performance characteristics of the parallel

application. Although such approaches can produce good estimates, they are data-

intensive and require substantial amounts of performance data to fit an accurate

statistical model. Multiple executions of the parallel application need to be conducted

to provide enough data for this purpose. As with the analytical approach, it can be

difficult to account for non-deterministic behaviour in parallel applications when

using statistical approaches.

Trace-based methods attempt to replicate the behaviour of the parallel application,

relying on trace data recorded from previous executions. As with statistical methods,

this approach is data intensive and requires multiple executions of the parallel

application to replicate application behaviour accurately. Trace-based methods may

also require setting up a system that scales similarly to the one being replicated.

3 METHODOLOGY

3.1 Overview

Chapter 1 set out the aim for this research work as the development of a framework

for evaluating the performance of distributed simulations. There, a list of objectives

was also provided which will be carried out in order to accomplish the stated aim.

This chapter provides an overview of the systematic approach adopted to address the

stated aim and objectives. The framework development is carried out by first

implementing selected distributed simulations in order to identify the major

components involved. Experiments will be conducted using the implemented

simulations to identify key factors that exert significant influence on communication

time during distributed execution. The framework will consider alternative

communication strategies which are aimed at reducing the communication overheads

in distributed simulations. Following this approach, appropriate case studies will be

used from the Urban Simulation field which meet the requirements that were set out

in the aim and objectives.

One of the listed objectives is to develop distributed simulations for conducting

experiments. The approach adopted for developing these distributed simulations is

based on the High Level Architecture (HLA) standard which was introduced in

section 2.6. However, as noted in Chapter 2, the HLA is not the only possible

approach. In Chapter 2, other potential methods for implementing distributed

simulations were discussed. Alternative approaches include the use of distributed

simulation toolkits (e.g. Repast HPC, D-MASON and FLAME), custom

development using communication libraries (e.g. MPI), other distributed simulation

standards (e.g. FMI). The HLA was selected from among the alternative approaches

due to advantages such as maturity of the standard, support for scalability when

executing large homogeneous simulations, support for interoperability between

heterogeneous simulations, extensibility, flexibility, inclusion of standard procedure

for time synchronization, availability of supporting documents such as manuals and

standard specifications, and availability of software. Although there are merits to

basing the distributed simulation implementation on the HLA standard, one

limitation of using this approach is that additional development work needs to be

done for existing simulations that are not already HLA-compliant to bring them in

line with the standard, modifying them to observe the HLA Rules and function as

well-behaved federates during federation execution. In many cases, this requires

having direct access to the application code or developing a middleware capable of

translating between the RTI and the simulation application. However, this

disadvantage is not peculiar to the HLA alone and is shared by all the other

approaches discussed.

3.2 Distributed Simulation Approach

The following sections expand on the points raised in the previous section,

highlighting the main advantages of employing the HLA and comparing it to other

potential approaches for implementing distributed simulations. In the following

sections, the factors chosen to compare the alternative distributed simulation

approaches reflect practical concerns for enabling the experiments proposed in the

aim and objectives.

3.2.1 Distributed Simulation Standard

It is useful to build the work on a mature distributed simulation standard as this

opens it up to support other existing simulation applications that are compliant with

the standard. The HLA and FMI share this advantage as both are distributed

simulation standards with detailed specifications. However, the other approaches

discussed do not have this advantage. Figure 3.1 compares the HLA with other

approaches in relation the standardization of their approach to distributed simulation.

The MPI library is a mature standard for message passing in distributed systems.

However, it is targeted towards distributed applications in general, and does not

directly address concerns specific to distributed simulations such as time

management and interoperability.

Figure 3.1: Standards – HLA and other approaches

3.2.2 Homogeneous Simulation Scalability Support

All the approaches discussed offer support for scaling up computing resources to

coordinate the execution of a large-scale homogeneous simulation that has been

partitioned. The degree of support offered various from one approach to another.

Scalability support is the main goal of some approaches. For example, simulation

toolkits such as Repast HPC and FLAME are primarily designed to support

homogeneous simulation scalability. Similarly, most custom distributed simulations

in the literature that employ MPI on HPC have this goal in mind. Other approaches

such as HLA and FMI also offer support for this goal. Although it not their main

concern, it is not difficult to adopt them for this purpose. Figure 3.2 compares the

HLA with other approaches in relation to their support for homogeneous scalability.

Figure 3.2: Scalability – HLA and other approaches

3.2.3 Heterogeneous Simulation Interoperability Support

The HLA and FMI distributed simulation standards are purposely designed to allow

interoperability between heterogeneous simulations and consequently define

specifications that facilitate the coordination of such simulations. The other

approaches discussed do not have this facility and may require significant

development work to enable this functionality. The support or lack of support for

interoperability affects the extensibility of the approach. This is evident in cases

where existing simulation tools need to be connected together conduct simulation

experiments. Figure 3.3 compares the HLA with other approaches in relation to their

support for heterogeneous interoperability.

Figure 3.3: Interoperability – HLA and other approaches

3.2.4 Standard Time Synchronization

As discussed in section 2.4, time synchronization is an essential element in

distributed simulation which sets it apart from other distributed computing

applications. The HLA Time Management services, introduced in section 2.6

prescribes basic functionality that can readily be employed to perform conservative

synchronization, as well as additional services that can be useful for implementing

optimistic synchronization. Distributed simulation toolkits such as Repast HPC and

D-MASON also include mechanisms for synchronization. Although the FMI

provides functions that can be used for time synchronization purposes, it does not

offer any specification for how synchronization is to be done. Time synchronization

is a function performed by the master algorithm. However, as discussed in section

2.6.2, there is no generic FMI master algorithm, and the implementation details are

left to the developer (Neema et al., 2014). Custom approaches using the MPI library

also do not have prescribed methods for time synchronization, although this can be

developed using methods from the library to drive simulation time forward while

avoiding deadlocks and preserving causal order. Figure 3.4 compares the HLA with

other approaches in relation to their inclusion of a standard procedure for time

synchronization.

Figure 3.4: Time Synchronization – HLA and other approaches

3.2.5 Supporting Documentation

Supporting documentation in the form of specifications, manuals, forums and

email lists are helpful aids for development. Without such documentation,

development work can prove difficult. It is also helpful to have a development

community that is active and available to offer peer-to-peer support. Detailed

specifications exist for the HLA and FMI which are useful for development, as

well as related websites and GitHub projects. The availability of supporting

documentation for distributed simulation toolkits varies from one toolkit to

another. While Repast HPC offers detailed documentation and maintains an

email support group, not all toolkits have these advantages. Widely used

communication libraries such as MPI have detailed documentation that can serve

as a useful resource for development. Figure 3.5 compares the HLA with other

approaches in relation to the availability of their supporting documentation.

Figure 3.5: Documentation – HLA and other approaches

• Availability of Key Software:

The availability of relevant software is also an important consideration in

selecting the approach. The HLA provides specifications regarding how the RTI

functions to coordinate a distributed simulation execution. As discussed in

section 2.6, several alternative RTI implementations exist, some of which have

been developed as open-source projects and others for commercial interests.

Unlike with the HLA, the master algorithm for FMI which coordinates the FMUs

is developed on an ad hoc basis. Several open-source distributed simulation

toolkits exist including Repast HPC, FLAME and D-MASON. Similarly,

multiple versions of the MPI library have been developed by open-source

projects, based on the specifications set out by the MPI standard. Figure 3.6

compares the HLA with other approaches in relation to the availability of

supporting software.

Figure 3.6: Software – HLA and other approaches

The features discussed in the preceding sections are important considerations for

selection of the approach. Although other methods are also applicable to this work,

the HLA was selected as the most workable approach given the considerations

discussed.

3.2.6 Choice of Middleware

The previous sections have provided justification for employing the HLA as an

approach to implementing distributed simulations. As discussed, the RTI is a key

component of the HLA of which several implementations have been developed based

on HLA specifications. Some RTI implementations are developed by open-source

projects and others are commercial. An RTI implementation may support more than

one version of the HLA standard, or it may support a particular version of the

standard, such as HLA 1.3, HLA 1516-2000 or HLA 1516-2010. While some

implementations offer the full range of HLA services for the standards they support,

other RTI implementations offer a limited set of functions. Some examples of RTI

implementations are Portico RTI, CERTI, OpenRTI, Open HLA, MAK-RTI, and

Pitch pRTI. From the available options, the Portico RTI has been selected for use in

experiments due to its open-source status, its active development community on

GitHub, and its support for an extensive range of HLA services. Although the open-

source Portico RTI implementation does not cover the entire spectrum of HLA

services, the set of services it does implement are adequate for the development of

the distributed simulation experiments.

3.3 Communication Management Strategies

The primary of the planned framework is to provide a means for estimating the

execution performance for distributed simulations. The framework will consider

factors related to communication during simulation execution. As there are various

strategies that can be applied to improve communication performance in distributed

simulations, the framework will consider alternative methods of communication

management. The performance differences from the application of these methods

should be reflected in the results produced from an implementation of the

framework. The effects of various strategies on communication time during

distributed execution will be evaluated by experimentation. The strategies considered

are discussed in the following sections. These methods are neither exhaustive nor

mutually exclusive and can be used in combination.

3.3.1 Approximation Strategy

This strategy is a generalized form of the dead reckoning method discussed in section

2.7. As with the dead reckoning method, this strategy attempts to perform local

computations to approximate the properties of external objects that are not present

locally, but which are essential to the local simulation due to their interactions with

local objects. This eliminates the need to exchange update messages regarding the

properties of such external objects. As the data dependencies for performing the

required calculations are incomplete, the resulting properties are only an

approximation. Depending on the simulation application, this approach could result

in a significant loss of accuracy. The resulting degree of accuracy depends on how

well external objects can be approximated locally. In distributed simulations where

the behaviour of external objects is unpredictable, accuracy is likely to be more

heavily impacted than situations where external behaviour can be accurately

predicted. Heterogeneous distributed simulations in particular are likely to include

more variations in object types, each with a different behaviour. The behaviour of

some objects may be easier to predict than others. In such cases, this strategy can be

limited to those external objects whose behaviour can be predicted accurately.

Update messages will still need to be exchanged for external objects whose

behaviour cannot easily be predicted.

3.3.2 Message Elimination Strategy

This strategy is similar to the approximation method because it prevents exchanging

unnecessary messages. However, it does not try make predictions of the behaviour of

external objects. Instead, messages are eliminated if it can be estimated that the

impact of their content on local computations will be insignificant. Identifying and

preventing such non-essential communication results in reducing the overall volume

of messages exchanged during distributed execution. Practically, identifying non-

essential messages depends on the characteristics of the particular simulation

application under investigation. This strategy can result in a loss of accuracy if the

method for judging the impact of message contents is unreliable. Some high impact

messages may be blocked while allowing low impact messages to transfer. However,

there will be little impact on accuracy if a reliable method can be found to distinguish

between high impact messages and low impact ones.

If a reliable method exists for separating high and low impact messages, the potential

performance gains from using this method depend on the characteristics of messages

exchanged during distributed simulation execution. In cases where many messages

are low impact and few are high impact, communication overheads can be reduced

significantly. On the other hand, there will be little performance gain in cases where

most messages are essential for computations. The diagram in Figure 3.7 illustrates a

scenario showing a simple application of this method. Messages are exchanged

between federates at every time step. However, at certain timesteps all messages are

determined to be low impact. These are indicated by the crossed-out arrows. No

messages are exchanged at those time steps, and this essentially makes the federates

more loosely coupled. This simple scenario is practical in some cases. For example,

in physical Building Energy Simulations, daylight computations will not be

conducted at night when there is no solar radiation. Therefore, all attribute update

messages solely intended for daylight computations can be eliminated for timesteps

that occur at night.

Figure 3.7: Message elimination strategy

3.3.3 Batching and Compression Strategy

As discussed in section 2.7, the performance of the interconnecting network is

constrained by factors such as latency and bandwidth. The batching and compression

strategy attempts to make efficient use of available network resources by combining

multiple individual messages into a single message batch. The message batch is

compressed before transmission to reduce the total size of data that needs to be

transmitted over the network. This strategy can be effective in cases where high

compression ratios can be achieved. It has the advantage of enabling the

communication data to be transmitted in fewer packets, avoiding the extra overhead

incurred in appending metadata (such as headers) to multiple smaller packets. This

strategy has the disadvantage that additional time is required at the sender to pool

messages together for batching. If all messages required to be included in a batch are

not readily available at transmission time, this can add some delay to the process.

This strategy also has the disadvantage that additional time is required at the sender

for compressing the message batch into a compact form. Compression time and final

compressed size will vary depending on the contents of messages and the

compression algorithm employed. It would be ideal to obtain a high compression

ration with low compression time. In practice, there is a trade-off between

compression ratio and compression time. At the receiving end, additional time is also

required for de-compressing and un-batching messages. The performance of this

strategy also depends on the maximum size of data that can be transmitted in a single

packet on the interconnecting network.

A best-case scenario for the batching and compression strategy is the scenario where

all messages can be combined into a single packet for transmission. This would make

efficient use of the available network resource. A worst-case scenario is the case

where the number of packets after batching and compression is equal to the number

of original messages. In this scenario additional processing overhead is added

without improving the efficiency of network resource usage. This scenario can occur

in a case where each individual message is large, but message contents cannot be

compressed further, yielding a low compression ratio.

Unlike the approximation strategy and the message elimination strategy, the batching

and compression strategy preserves all messages, assuming the compression

algorithm is lossless. Therefore, this approach preserves the fidelity of the distributed

simulation and does not result in a loss of accuracy.

The diagram in Figure 3.8 provides an illustration for the batching and compression

strategy, showing the process of combining individual messages together into

batches, compressing batches to reduce total size and transmitting via packets.

Figure 3.8: Batching and compression strategy

3.3.4 Hybrid Strategies

The three strategies discussed in previous sections are not mutually exclusive.

Neither are they intended to represent an exhaustive list of communication strategies

in distributed simulations. Two or more communication strategies can potentially be

combined to produce a hybrid communication strategy. Such hybrid strategies will

achieve the best results when used in contexts where each strategy can make a

valuable contribution. Any hybrid strategy which includes one of the lossy strategies

such as approximation or message elimination can result in a loss of accuracy in the

simulation outputs. Where more than one lossy strategy is involved, the total loss of

accuracy can potentially be higher than the loss due to any single strategy.

3.4 Case Study Selection

To shape the development of the framework, case studies from the domain of Urban

Simulation will be used to conduct experiments. As discussed in Chapter 1, the

Urban Simulation domain provides a variety of simulations that meet the

requirements set out in the objectives: large-scale simulations that can be interoperate

meaningfully in a simulation study. As set out in the objectives, two case studies are

selected: a homogeneous distributed simulation and a heterogeneous distributed

simulation. The following sections provide a brief overview of the selected case

studies. A more detailed treatment is provided in Chapter 5.

Case Study One considers an Urban Simulation which is capable of growing

exceptionally large at city scale. At this scale, the computing resources required to

execute the simulation exceeds the capacity of a single stand-alone computing node.

Therefore, it is necessary to distribute the simulation workload among multiple

computing nodes in order to enable the possibility of execution. The simulation tool

selected for Case Study One is the physical Building Energy Simulation tool

CitySim. Multi-building simulation can be managed by CitySim using a single

computing node when only considering a few hundred buildings. However, when

considering thousands of buildings at city scale, memory requirements exceed the

capacity of a single computer. Therefore, distributed simulation is necessary in order

to use CitySim at city scale.

Case Study Two extends Case study one by adding a separate Urban Simulation that

can interoperate meaningfully with CitySim in a heterogeneous distributed

simulation. This case study enriches the framework by examining the effect of

different communication patterns on performance in the distributed simulation. In the

heterogeneous arrangement, communication patterns between similar simulators

differs from those between dissimilar simulators. For instance, a distributed

simulation with type A simulators and type B simulators can have four potential

communication arrangements: A-to-A communication, B-to-B communication, A-to-

B communication, and B-to-A communication. Each communication type can

happen at different frequencies and have different message sizes. Because of these

additional considerations, Case Study Two can be viewed as a more general form of

Case Study One. Alternatively, Case Study One can be viewed as a special form of

Case Study Two. The additional simulation selected for Case Study Two is the

Nottingham Multi-Agent Simulation (No-MASS) tool. No-MASS is a Building

Occupancy Simulation, simulating the influence of building occupants on energy

usage. Interoperation between CitySim and No-MASS is potentially meaningful and

can provide better energy predictions.

3.5 MAS Paradigm

As discussed in Chapter 1, the performance framework will adopt a meta-simulation

approach. This will be based on the Multi-Agent Simulation (MAS) Paradigm

discussed in Chapter 2. The following sections offer justification for the choice of the

MAS paradigm for use in the framework:

• Paradigm Suitability:

The different parts of the federation, including the federates and RTI, readily

lend themselves to modelling as agents co-operating to complete a given task.

• Concurrent Execution:

MAS agents execute concurrently, similar to how federates operate in a

distributed simulation.

• Message Exchange:

Agents communicate with one another by exchanging messages during

simulation execution similar to the federates and RTI passing messages to

one another during federation execution.

• Stochastic Experiments:

The non-deterministic execution paths due to concurrency in distributed

simulations can be captured by executing multiple stochastic runs of the MAS

and determining confidence intervals.

• Heterogeneous Agents:

MAS includes the flexibility to include different types of agents with varying

behaviours. This can be used to capture the execution behaviour of

heterogeneous distributed simulators.

• What-If Scenarios:

MAS can be used to explore various what-if scenarios. This can be used in

designing a distributed simulation by adjusting relevant parameters to

estimate the impact that they will have on performance.

• Parameter Optimization:

MAS enables performance optimization by exploring the parameter search

space to find optimal parameters for executing the distributed simulation.

• Complex Dynamics:

MAS can help capture and understand complex dynamics between the

different parts of the distributed simulation without having to set up the

computing resources required to execute the actual distributed simulation.

For these reasons, the MAS paradigm lends itself naturally to the proposed meta-

simulation approach. As the MAS paradigm uses a bottom-up modelling approach,

the behaviour of agents involved in the simulation is specified directly for each

agent. However, system behaviour is not explicitly specified but arises from

interactions between agents. This feature can be useful for testing the effect of

different agent co-operation strategies on the performance of distributed simulations.

Agent behaviour can be modified to follow the desired co-operation strategy, which

may involve agents taking simple actions or making complex decisions to adapt to

changing conditions. This can produce emergent system level patterns that cannot

easily be replicated using other modelling paradigms.

The framework to be developed will make use of the MAS paradigm to specify the

key components of a distributed simulation, the behaviour of each component, the

interactions between them, and the essential aspects of their shared environment that

significantly influence communication performance. As the framework will be

specifically designed for distributed simulations, it will account for considerations

that are important for distributed simulations but are not required for distributed

systems in general, such as the synchronization of timesteps among distributed

simulators to avoid causal errors. A meta-simulation based on the framework can be

implemented using any simulation toolkit that supports the MAS paradigm such as

Repast Simphony or AnyLogic. Meta-simulations derived from the framework may

also conceivably be implemented using simulation toolkits designed for general

distributed systems, including packet-level simulators such as ns-3 (Henderson and

Riley, 2006) or grid resource scheduling simulators such as GridSim (Buyya and

Murshed, 2002).

3.6 Summary of Methodology

This chapter has provided details of the approach that will be applied to carry out the

work listed by the objectives in Chapter 1. As discussed, Urban Simulation case

studies are selected from the Building Energy Simulation and Building Occupancy

Simulation application areas. Based on the selected case studies, distributed

simulations will be developed using the HLA approach. Experiments will be

conducted using the HLA distributed simulations to measure execution performance.

Case Study One, the homogeneous distributed simulation, will includes multiple

instances of a physical Building Energy Simulation. Case Study Two, the

heterogeneous distributed simulation, will includes Building Energy Simulation

instances as well as Building Occupancy Simulation instances. The communication

strategies discussed in this chapter will be employed in the experiments. The

performance estimation framework, which is the main focus of this thesis, will be

informed by lessons learned from the development process and by the outcomes of

conducted experiments. Following the development of the framework, a concrete

meta-simulation will be implemented based on the case study experiments in order to

evaluate the framework and demonstrate its application.

4 FRAMEWORK BACKGROUND

4.1 Building Energy Simulation

As discussed in section 1.1, simulation studies in urban areas are needed to support

planning and sustainably manage rapidly growing urban populations worldwide. One

of the key planning areas for the urban environment is the management of energy

resources. A substantial portion of energy use in the urban built environment is

consumed by transportation and buildings. According to Eurostat (2019), energy

consumed in the EU by households alone accounts for more than 27% of total energy

demand in the EU, with transportation accounting for about 30%. Building Energy

Modelling aims to forecast the total energy requirements for indoor heating, cooling,

lighting, and powering appliances. According to surveys conducted by Foucquier et

al. (2013), Reinhart and Davila (2016) and Johari et al. (2020), Urban Building

Energy Modelling methods can be categorized into two main approaches: Statistical

methods and Physical methods.

Statistical methods attempt to predict future building energy requirements based on

historical usage. This approach is data-driven and requires substantial amounts of

historical data to make accurate predictions. The statistical approach includes various

regression methods and machine learning techniques.

Physical methods are simulations based on physics models of heat transfer. Physical

Building Energy Simulations make use of thermal equations to forecast building

energy requirements. Inputs to physical Building Energy Simulations include the

location of buildings, properties of building materials, and weather data. Some

physical Building Energy Simulation tools are designed to make energy forecasts for

individual buildings e.g. EnergyPlus (Crawley et al., 2001). Single building tools do

not model interactions between different buildings in detail. As the focus is on a

single building, detailed information is required about the simulated building in order

to generate accurate predictions for its energy requirement. Other physical Building

Energy Simulation tools are designed to make energy forecasts for a group of

buildings in close proximity to one another, such as the CitySim (Robinson 2012)

tool. Multi building simulation tools model interactions between separate buildings

in detail as these interactions are important for making accurate predictions for the

group of buildings.

4.1.1 Physical Building Energy Simulation

This section provides an overview of the physical Building Energy Simulation

process used by the CitySim tool. The inputs to CitySim include a scene file and a

weather file. The scene file contains 3D representations of a group of buildings

positioned in physical space, and the weather file contains data about weather

patterns in the area. CitySim makes use of the information provided by these inputs

to calculate the energy exchanges between buildings and the environment over a

period of time. The results from these energy exchange calculations are used to

estimate the building energy requirements over the simulated time period.

Each 3D building in a scene file is a collection of geometric surfaces. Types of

surfaces in scene files include wall surfaces, roof surfaces and floor surfaces. These

surfaces combine to create one or more internal thermal zones within each building

which can exchange heat with one another. Building scenes may range widely in

complexity. A simple building scene may contain a few shoebox-like buildings, each

with four walls and a flat roof which join together to create a single internal thermal

zone. A more complex building scene may contain several thousand buildings with

complex surface structures and multiple internal thermal zones. Figure 4.1 shows an

example of simple and complex building surface structures.

Figure 4.1: Simple and complex building surface structures.

CitySim accepts building scene files in a specific XML format. Zakhary et al.,

(2016) extended CitySim to load building scenes created with the City Geographic

Mark-up Language (CityGML) standard instead of a previous custom XML format.

CityGML (CityGML, 2020) is an XML-based standard for representing urban

structures in 3D physical space.

As explained by Robinson (2012), CitySim calculates the radiation exchanges in a

building scene during simulation execution. This includes interactions between one

building surface and another, as well as interactions between building surfaces and

the environment. These radiation exchanges contribute to indoor and outdoor

temperatures and have an impact on heat transfer between building zones. The

purpose of the radiation exchange calculations is to obtain a basis for estimating the

energy demands required to suit building occupant comfort. Factors that contribute to

occupant comfort include adjust indoor temperature via Heating, Ventilation and Air

Conditioning systems (HVACS) as well as adjusting window blinds to let the

sunshine in. Radiation exchange calculations performed by CitySim include different

sets of equations for shortwave and longwave radiation exchange. Shortwave

radiation exchange refers to the portion of solar radiation with wavelengths in the

range of 0.3µm to 3µm that is absorbed by building surfaces. Longwave refers to

infrared radiation exchanged between buildings in the wavelengths ranging from

3µm to 100µm.

Calculating these radiation exchanges in the urban setting is complicated by the fact

that some building surfaces obstruct other building surfaces from directly exchanging

radiation with one another. Building surfaces may also obstruct one another from

directly exchanging radiation with the sun and sky. However, this can also serve to

make the calculations more computationally tractable because not all pairs of

surfaces in a large scene will need to exchange radiation with each other. In CitySim,

the relationships between building surfaces that are not obstructed from one another

and are therefore capable of exchanging radiation is represented using a sparse

matrix for storage efficiency. Figure 4.2 provides a conceptual illustration of various

shortwave and longwave radiation exchanges between buildings and the environment

in an urban setting.

The details of the mathematical equations which form the basis for physical

calculations of the radiation exchanges that occur between buildings and the

environment is expanded upon in great detail by Robinson (2012). A brief summary

is provided in the following sections.

Figure 4.2: Illustration of some building radiation exchanges in an urban environment

• Shortwave Calculations:

For each building surface, CitySim calculates the shortwave radiation that it

receives from various sources. These sources include direct shortwave

radiation received from the sun, diffuse solar radiation through the sky, and

reflected solar radiation from other building surfaces. CitySim makes use of

the Simplified Radiosity Algorithm (SRA) of Robinson and Stone (2006) to

calculate the radiation exchanges in building scenes.

• Longwave Calculations:

For each building surface, CitySim calculates the longwave radiation that is

received from various sources. Sources of longwave radiation include the sky

and the other surrounding building surfaces.

• Daylight Calculations:

In addition to longwave and shortwave radiation exchange calculations,

CitySim also performs calculations to determine the level of illuminance

within internal building zones received from sunlight. These are referred to as

daylight calculations and provide useful measures which serve as a basis for

determining the indoor lighting or shading requirements for occupant

comfort.

• Thermal Zone Calculations:

Finally, CitySim performs calculations for all internal zones, which includes

determining the internal temperature that results from the radiation exchange

calculations performed in previous steps. These are referred to as thermal

calculations in CitySim.

Figure 4.3 provides an overview showing how the calculations described in the

previous sections are performed by CitySim in a loop, with each loop iteration

representing a single timestep representing one hour.

Figure 4.3: CitySim time-step loop

4.1.2 Building Occupancy Simulation

The energy demand in a building is regulated by its occupants. Building occupants

use energy consuming HVACS to regulate indoor temperatures to suit their comfort.

Building occupants also interact with building features such as windows and light

switches to regulate indoor lighting. The bodies of occupants in buildings also

exchange heat with their surroundings and consequently has an effect on indoor

temperatures. Building energy consumption depends on the number of occupants and

their activities within the building. Therefore, in order to produce more accurate

energy predictions, it is useful to simulate the presence of occupants in buildings and

their interaction with various building features.

However, creating a single monolithic simulation that performs Building Occupancy

Simulation in addition to physical Building Energy Simulation is not ideal, and it is

useful to both concerns. While physical Building Energy Simulation uses an

approach based on physics equations, Building Occupancy Simulation lends itself to

paradigms that model the behaviour of autonomous individuals interacting with their

environment. For example, the MAS paradigm is used for Building Occupancy

Simulation in the Nottingham Multi-Agent Stochastic Simulation (No-MASS) tool

(Chapman, Siebers and Robinson, 2018).

4.1.3 Distributed Building Energy Simulation

Research work has previously been conducted in distributed Building Energy

Simulation both for the purpose of interoperability with other simulations and for the

goal of scaling up computing resources to execute large-scale Building Energy

Simulations.

With the goal of performing distributed Building Energy Simulation for

interoperability, Jain et al. (2016) use the HLA to integrate the urban land use model

UrbanSim (Waddell, 2002) with the urban transportation model MATSim (Horni,

Nagel and Axhausen, 2016). In another example, Menassa et al. (2014) employ the

HLA to integrate the single Building Energy Simulation tool DOE2 (Rousset et al.,

2016) with a custom building occupancy ABS developed using the AnyLogic

simulation toolkit. Wang, Siebers, and Robinson (2017) use the FMI to integrate the

single Building Energy Simulation tool EnergyPlus with the Building Occupancy

Simulation tool No-MASS.

Regarding the goal of performing distributed Building Energy Simulation to address

the scalability issue, Hong et al. (2016) develop the City Building Energy Saver

(CityBES) as a web-based platform to enable urban-scale Building Energy

Simulation and provide analysis on potential energy savings from retrofitting

measures. CityBES uses the CityGML standard for representing 3D building scenes.

CityBES also makes use of the EnergyPlus tool as an engine for running physical

Building Energy Simulations.

SimStadt is an urban energy simulation platform introduced by Nouvel et al., (2015).

Similar to CityBES, SimStadt also uses a CityGML representation for 3D building

scenes. SimStadt allows a choice between different radiation exchange models

including the Simplified Radiosity Algorithm and Perez Sky model that is also used

by CitySim. SimStadt is also designed to be extensible by plug-in modules to allow

different types of Urban Simulation studies to be conducted.

As discussed in Chapter 3, the content of the framework to be developed in this work

will be informed by experiments conducted on HLA-based distributed simulations.

The framework will enable the creation of meta-simulations that can be used to

estimate the execution performance of specific distributed simulation applications.

Although the framework will focus on HLA-based distributed simulations, it can

potentially be extended to make performance estimations for other distributed

simulation applications that are not based on the HLA, including the examples

discussed in this section.

4.2 Performance Limiting Factors

Several factors play a part in determining the performance of distributed simulations.

These factors can constitute potential bottlenecks during simulation execution. Some

performance-limiting factors can influence both stand-alone simulations and

distributed simulations. Some of these common factors include processor speed,

memory size and I/O bandwidth (Park et al., 2016; Hambrusch, Hameed and

Khokhar, 1995). Other factors impact the performance of distributed simulations but

are not performance concerns for stand-alone simulations. These additional factors

include communication overheads, load balancing strategy, and the proportion of

computational workload which is inherently sequential and cannot be shared between

multiple computing nodes (Lemeire, 2001). Among these factors, the communication

overheads add on an obvious bottleneck that is absent from stand-alone simulations

but can significantly influence the performance of distributed simulations (Kumar,

1992). As explained in Chapter 1, the performance framework developed from this

work focuses on the dynamic relationship between computation and communication

operations during distributed execution. Therefore, aspects of distributed

performance related to communication are of particular interest. Chapter 3 has

introduced various communication strategies which are to be applied in the

experiments that will inform the development of the framework. However, it is

evident that communication is not the only factor that influences execution

performance. The following sections provide a general overview of factors that affect

distributed performance and establish the place of communication among these other

considerations. Using simplified scenarios, the influence of communication is

compared with the influence of other performance-limiting factors. In the outlined

scenarios, emphasis is placed on the amount of communication required to achieve

ideal weak scaling. This approach is taken for convenience, as it makes it simpler to

compare the different scenarios. However, it must be noted that ideal weak scaling is

not the goal of the distributed simulation experiments which are to be conducted in

Chapter 5.

4.2.1 Communication and Computation

The diagram in Figure 4.4, adapted from (Skillicorn and Talia, 1998), illustrates a

simplified scenario showing how communication and computation together exert an

influence on the total time required for distributed simulation execution. In this

motivating example, the whole simulation is too large for a stand-alone computing

node. It is estimated that the whole simulation could be completed in 120 hours of

wall-clock time if stand-alone computing resources could support the large

configuration. This 120-hour estimate is extrapolated from the performance of

smaller simulation workloads. It is known that half of the full simulation workload

can be completed on a stand-alone computing node in 60 hours of wall-clock time.

Therefore, as shown in Figure 4.4, the full simulation workload has been divided

between two identical computing nodes. In this scenario, communication is

necessary during simulation execution to ensure correct outputs. To remove the

effect of other performance-limiting factors, the scenario incorporates the following

simplifications:

• Perfectly balanced workloads.

• Half the simulation workload can be completed in half the time.

• The entire workload can be distributed. There is no portion of the workload

that is inherently sequential.

• The impact of I/O operations are negligible.

• Communication does not overlap with computation.

• Time synchronization is free and does not add any extra costs.

From Figure 4.4, weak scaling is achieved at the point where the communication

time equals computation time. At this point, the distributed completion time is equal

to the stand-alone completion time. When communication time is less than

computation time, performance improves, and the distributed completion time is less

than the stand-alone completion time. On the other hand, when communication time

exceeds computation time, performance degrades, and distributed completion time is

longer than stand-alone completion time. From the simplified scenario, it is apparent

that there is an upper limit on communication time if ideal weak scaling is to be

achieved. The upper limit is equal to the difference between stand-alone computation

time and distributed computation time.

Figure 4.4: Communication and Computation

4.2.2 Communication and Load Balancing

Imbalanced workloads can negatively impact the performance of distributed

simulations (Tan and Lim, 2004). The motivating example from the previous section

can be extended to consider the impact of load balancing. Figure 4.5 illustrates a

scenario in which assumption of perfectly balanced workloads no longer holds. The

simulation workload is unevenly distributed. One computing node is responsible for

80% of the workload while the other handles 20%. Similar to the previous scenario,

there is an upper limit on communication time if ideal weak scaling is desired. The

upper limit is equal to the difference between stand-alone computation time and the

computation time required for the largest distributed workload. As shown in Figure

4.5, a large workload imbalance can lead to a tight constraint on communication

time. This motivating example has only considered the case where the workload

remains static throughout simulation execution. However, dynamic load balancing is

also a concern in distributed simulations where the computational workload can

change on each node as the simulation progresses (De Grande and Boukerche, 2011).

In such cases, the initial partitioning alone is not sufficient, and the workload needs

to be continuously re-distributed to prevent performance from deteriorating during

distributed execution.

Figure 4.5: Communication and Load Balancing

4.2.3 Communication and Heterogeneous Workloads

Heterogeneous distributed simulations, where each computing node executes a

different kind of simulation, can be considered as a special case for load balancing.

As the different simulators perform different computations, their computation times

may differ, even when considering the same set of simulation entities. Balancing the

simulation workload in this case is less straightforward than the homogeneous case

where simulation entities can be divided up between computing nodes. Figure 4.6

provides an illustration for this scenario. A stand-alone integrated simulator is

introduced which combines the functionality of both simulators and completes the

workload in the time required for both to complete. The impact on communication

time is similar to the previous scenario with imbalanced workloads.

Figure 4.6: Communication and Heterogeneous Workloads

4.2.4 Communication and Sequential Workloads

As discussed in section 2.3, the inherently sequential portion of computational

workload can significantly influence performance (Sun and Ni, 1993). The simple

motivating example can also be extended to consider the impact of inherently

sequential workloads. When a portion of the simulation workload cannot be

distributed between computing nodes, that portion can be executed redundantly on

all computing nodes. Alternatively, one node can perform the work and communicate

the results to the others. However, this alternative strategy is not favourable as it adds

extra complexity and communication overheads. Figure 4.7 provides an illustration

of a scenario in which the simulation workload includes an inherently sequential

portion. The larger the sequential portion, the tighter the constraint on

communication time.

Figure 4.7: Communication and Sequential Workload

4.2.5 Communication and Time Synchronization

Time synchronization between nodes can incur additional overheads apart from the

extra communication required to exchange timestamp information. The source of the

additional overheads depends on the synchronization algorithm employed. As

discussed in section 2.4, cascading rollbacks in optimistic algorithms can introduce

significant overheads when out-of-order execution is detected and needs to be

corrected by reverting the distributed simulation to an earlier point in time

(Lubachevsky, Schwartz and Weiss, 1991). On the other hand, low lookahead values

in conservative algorithms can significantly restrict parallel execution by holding

some nodes back while waiting for others to reach a point where a safety guarantee

can be provided (Nicol, 1993). The simplified diagram in Figure 4.8 illustrates this

by adding synchronization costs in the motivating example. Here, a larger

synchronization cost results in a tighter constraint on the communication time to

achieve ideal weak scaling.

Figure 4.8: Communication and Time Synchronization

4.2.6 Communication and Latency Hiding

In cases where communication operations can be performed asynchronously, they

can overlap with computations during distributed execution (Somani and Sansano,

1997). Using the latency hiding strategy, nodes can perform useful computational

work while exchanging messages. This reduces time spent idling by nodes and

lowers the impact of communication latency on performance. Figure 4.9 extends the

motivating example to provide an illustration for the simplest scenario where

communication and computation can completely overlap each other. As explained by

Strumpen and Casavant (1994), the total distributed execution time in this scenario is

the maximum of computation time and communication time. In cases where

communication time is less than or equal to computation time, the communication

can be completely hidden and incur no additional overheads.

Figure 4.9: Communication and Latency Hiding

4.2.7 Communication and Number of Nodes

The number of computing nodes involved in a distributed simulation also influences

communication time. Communication time tends to increase as the number of nodes

increases and the number of communication paths involved goes up. This has been

reported in experimental results such as those from Hambrusch, Hameed and

Khokhar (1995) and Ponnusamy, Choudhary and Fox (1992). The relationship

between communication time and the number of nodes depends on the properties of

the interconnecting network. Network properties that influence communication time

include bandwidth, latency, topology, and protocol. Communication time also

depends on the distribution of communication workload among the nodes i.e., how

much data each node needs to send and receive during distributed execution. This is

in turn related to load balancing, as the workload partitioning strategy also

determines for each node which data will be local and which will be external (De

Grande and Boukerche, 2011).

4.2.8 Summary

The concerns discussed in the previous sections have presented the place of

communication among other factors that are relevant for distributed simulation

performance. This discussion will inform the development of the performance

estimation framework, which will consider controlling various communication-

related parameters and strategies.

5 CASE STUDIES

5.1 Overview

As discussed in Chapter 3, two case studies are selected from Urban Simulation

domain for the purpose of experimentation. Case Study One is a homogeneous

distributed simulation using the physical Building Energy Simulation tool, CitySim

(Robinson 2012). Case Study Two is an extension to create a heterogeneous

distributed simulation by adding the Building Occupancy Simulation tool, No-

MASS. The simulation applications selected are normally used for stand-alone

simulation experiments in their respective domains. Using these tools demonstrates

that the approach employed in this work can be applicable to existing real-world

simulation tools. The C++ source code of the CitySim tool is made available by the

Sustaining Urban Habitats (SUH) project, of which this work forms a part. The open-

source No-MASS simulation tool (Chapman, 2018) is also developed in C++ as part

of the SUH project. Wang, Siebers, and Robinson (2017) have previously coupled

No-MASS with the EnergyPlus Building Energy Simulation tool on a stand-alone

computing node for small neighbourhood scale experiments.

5.2 Case Study One: Homogeneous Distributed Simulation

Case Study One is a distributed physical Building Energy Simulation using the

CitySim tool. The HLA is employed to develop a distributed simulation composed of

multiple computing nodes, each running an instance of CitySim, all working together

in a single coordinated execution. As discussed in Chapter 2, the simulation objects

in CitySim are building surfaces in an urban scene. Interactions exist between

surfaces that have line-of-sight to one another. These surfaces are able to exchange

various types of radiation during the simulation execution. Not all objects in the

simulation have such interactions, and therefore some pairs of surfaces cannot

exchange radiation with each other. In all the experiments conducted, it is assumed

that the relationships between building surfaces remain static, and do not change

throughout simulation execution. This assumption implies, for example, that no new

buildings are constructed, or changes made to existing buildings during the simulated

period.

Building surface objects can be represented as vertices in a simple graph. Vertices

connected by edges have interactions between them, while unconnected vertices

cannot exchange radiation. As not all vertices can interact with each other, the graph

is not fully connected, and connections between vertices are sparse. During

distributed simulation, edges that cross boundaries between computing nodes

represent communication paths between the nodes and determine which object

attributes need to be exchanged. Edges weights indicate the size of data that needs to

be exchanged. If a constant message size is assumed, the edges can be considered

unweighted. The volume of communication between computing nodes during

distributed simulation can be estimated by the number of edges between them. The

direction of an edge signifies the direction of data transmission from sender to

recipient. If it is assumed that two objects at opposite ends mutually require attribute

updates from each other, the edges can be considered undirected as data transmission

goes both ways. As the scenario is static, the set of vertices and edges remains the

same throughout distributed simulation execution. Figure 5.1 provides an illustration

of the graph representation for a scenario with four buildings, each having five

surfaces. The large broken circles represent buildings, the small solid circles

represent building surfaces, and the solid straight lines represent interaction

relationships between surfaces. The illustration shows interactions between surfaces

of the same building and interactions between surfaces of different buildings. If this

scenario is to be distributed among two computing nodes, two buildings can be

assigned to each computing node. The interactions between building surfaces

assigned to different nodes will mark the data that needs to be exchanged between

nodes. Each boundary-crossing interaction increases the total communication

message count. For this scenario, the buildings can be partitioned into {A, C} on

node one and {B, D} on node two. This would result in 6 boundary-crossing

interactions, the minimum that can be achieved in this particular case.

Figure 5.1: Illustration of building surface relationships

As described in Chapter 2, a CitySim building scene is a CityGML representation of

a collection of 3D buildings, each composed of multiple surfaces (walls and roofs)

and having one or more internal thermal zones (rooms). Obstructions in the building

scene means that not all surface pairs are able to exchange radiation with one

another. Therefore, radiation exchange relationships between building surfaces are

captured in a sparse view-factor matrix. This sparse view-factor matrix is computed

in a pre-processing step before starting the hourly time-stepped radiation exchange

simulation that was illustrated by Figure 4.3. Consequently, the sparse view-factor

matrix captures the relationships between building surfaces and can be represented

with a graph as described in the previous section.

The graph of view-factor relationships can be used to facilitate the partitioning of the

building scene for distribution among computing nodes. As the graph captures all the

communication relationships that exist in the scene, it can be used as a guide to split

groups of buildings into partitions of approximately equal size, while attempting to

minimize the number of partition-crossing edges. This partitioning serves to balance

the computational workload while attempting to minimize the number of messages

that need to be exchanged between computing nodes. After initial partitioning, other

methods can be employed to further reduce communication overheads during

distributed execution. Some of the communication management strategies which

address this concern have been discussed in Chapter 3.

Building scenes used for the experiments in this chapter make use of initial

partitioning produced from the work of Zakhary et al. (2020) in which a Greedy

Community Detection algorithm is employed. The surface interaction information

from the sparse view-factor matrix is employed to group together surfaces that are

densely connected, while minimizing the number of connections between different

groups. While the actual interaction relationships are between building surfaces,

partitioning is conducted at the building level. All surfaces belonging to the same

building are assigned to the same partition. This constraint is important because

surfaces in the same building tend to have strong relationships with one another. It

helps to reduce the total number of cross-partition edges, and therefore reduce the

communication message count. Figure 5.2 shows a building scene partitioned into 12

parts by Zakhary et al. (2020). The dots show the position of buildings in the scene,

with separate colours for different partitions. The solid straight lines show examples

where relationships exist between building surfaces.

Figure 5.2: Building scene with 12 partitions scene showing some interactions

In the HLA experiments in this chapter, each partition will be assigned to a separate

CitySim-Federate, which will own all the partition surfaces and be responsible for

simulating them and publishing relevant attribute updates. To ensure correct local

computations, each CitySim-Federate will keep track of external object attributes by

attribute reflection received updates. Therefore, the area of interest of each CitySim-

Federate will include local objects and external objects that interact with local

objects. Figure 5.3 shows a conceptual illustration of the areas of interest of

CitySim-Federates. The small solid circles represent surface objects, the thick solid

lines indicate partition boundaries, and the thick broken lines show the extent of the

area of interest of each CitySim-Federate. These areas of interest overlap depending

on the interaction relationships between surface objects.

From Figure 5.3, the surface objects that fall within the overlapping areas of interest

are the only ones that have an impact on communication overheads during

distributed simulation execution. Surfaces that do not fall within the overlapping

areas of interest only interact with other local surfaces. Therefore, their attributes do

not need to be shared with other CitySim-Federates. Indeed, no record needs to be

kept of them outside their own CitySim-Federate. Therefore, they need not be

registered with the central HLA RTI. Only objects within overlapping areas of

interest need to be registered with the RTI. This is necessary for establishing

ownership, as well as allowing publishing or subscribing to relevant attribute

updates.

Figure 5.3: Conceptual illustration of CitySim-Federates’ areas of interest

The conceptual diagram in Figure 5.4 illustrates the execution of a single time-step in

the distributed CitySim HLA Federation. As discussed in Chapter 2, each hourly

time-step in a CitySim simulation is composed of four calculations: shortwave

calculations (SW), daylight calculations (DL), longwave calculations (LW) and

thermal zone calculations (TH). These four have dependencies on one another in the

order illustrated by Figure 5.4. Thermal zone calculations depend on results from

longwave calculations within the same time-step. In turn, longwave calculations

depend on shortwave computations within the same time-step. All calculations

depend on the calculation results from the previous time-step, directly or indirectly.

Because of these dependencies, data needs to be exchanged between CitySim-

Federates within time-steps after partial calculations have been completed. This is

necessary to ensure the correctness of the simulation outputs. As shown in Figure

5.4, data is exchanged between federates during the shortwave, daylight and thermal

zone calculations. However, no data needs to be exchanged between CitySim-

Federates during longwave calculations. This is an effect of the scene partitioning

strategy. Thermal zone calculations only depend on the longwave results from

surfaces in the same building. Consequently, data exchange after longwave

calculations is not necessary for correct thermal zone calculations as all surfaces

belonging to the same building are owned by the same CitySim-Federate.

Figure 5.4: Conceptual diagram of CitySim HLA Federation execution

5.2.1 Case Study One: HLA Federation

The class diagram in Figure 5.5 shows a summary of the HLA object classes

contained in the FOM of the CitySim Federation. This represents the data that is

expected to be exchanged between federates during federation execution. This

includes the single Surface object class. Surfaces are persistent objects which will

exist throughout the federation execution. Messages concerning surface attributes

will be exchanged from timestep to timestep. For these reasons, surfaces are

represented by HLA object classes as opposed to HLA interaction classes.

Interaction classes are normally used for transient messages which will not persist

throughout the federation execution. The Surface object class includes three

attributes, one for each of the properties of the scene surface objects that needs to be

simulated. Messages containing updates of these attributes will be exchanged

between federates during distributed execution. The FOM attributes include SW, DL

and TH. The FOM does not include a LW attribute as these do need to be exchanged

between CitySim-Federates.

Figure 5.5: Class diagram showing HLA FOM objects for Case Study One

The sequence diagram in Figure 5.6 shows the exchanges between the RTI, the

CitySim-Federate Ambassador and the CitySim-Simulator during distributed

execution. The CitySim-Simulator is the component that performs the actual

Building Energy Simulation, while the CitySim-Federate Ambassador is the

component that coordinates message exchanges between the RTI and the CitySim-

Simulator. The CitySim-Federate Ambassador sends and receives attribute updates to

and from the RTI on behalf of the CitySim-Simulator. The CitySim-Federate

Ambassador also performs all the signalling required for creating and initializing the

federation, for time synchronization, and for destroying the federation at the

conclusion of the distributed simulation. A CitySim-Federate is a single unit

composed of a CitySim-Simulator and a CitySim-Federate Ambassador.

Figure 5.6: Sequence diagram of HLA federation execution for Case Study One

Although the sequence diagram in Figure 5.6 only shows one CitySim-Federate, a

federation includes multiple instances of such units, passing messages in the same

sequence described by the diagram. Certain functions such as creating and destroying

the federation can only be performed once. The first CitySim-Federate to start

performs the signalling required to create the federation, using the FOM. Subsequent

CitySim-Federates need only to join the existing federation. The last federate to

resign performs the signalling required to destroy the federation. The federation

cannot be destroyed while other federates are still joined.

The signalling required for time synchronization involves sending Time Advance

Requests (TARs) to the RTI and receiving Time Advance Grants (TAGs) in return.

By this means, the RTI coordinates the execution of CitySim-Federates, granting

TAGs when the CitySim-Federates can proceed safely to the next time step and all

required messages have been delivered. Figure 5.7 shows the class diagram for the

HLA CitySim-Federate.

Figure 5.7: Class diagram for CitySim-Federate

5.2.2 Initial Experiments

5.2.2.1 Experimental Setup

Initial experiments carried out with the HLA CitySim Federation were conducted on

a network of 12 virtual machines running CentOS Linux 7.4, each with 8GiB of

RAM and 2x Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz. The virtual machines

are connected to each other over a 10 Gigabit Ethernet LAN. The experiments make

use of the open source Portico RTI (Portico, 2020) to support federation execution.

As discussed in section 3.2, the Portico RTI implementation was selected for various

reasons, including its open-source status and active development community. In the

experiments, each computing node is responsible for executing a separate HLA

CitySim-Federate. The maximum number of computing nodes involved in the

experiments is 12 because the initial partitioning obtained from the work of Zakhary

et al. (2020) uses 12 partitions.

5.2.2.2 Building Scenes

The initial experiments were conducted using a CityGML scene composed of 2,980

buildings representing an area of the township of Sneinton in Nottingham, UK. This

CityGML scene is obtained from the work of Rosser et al. (2019) and is available in

two types: a “simple” scene and a “complex” scene. The two types represent the

same group of buildings with varying degrees of fidelity. The complex scene has

about five times the number of surfaces in the simple scene. In the simple scene, all

buildings are represented as simple shoebox-like shapes. This scene has a total of

25,514 building surfaces. The complex scene represents the building structures in

more realistic detail, raising the total number of building surfaces to 122,847. To

enable comparison between experiments, the same partitioning scheme is used for

both the complex scene and the simple scene. As the partitioning is done at the

building level and both scenes contain the same buildings, a partitioning created for

the complex scene can also be used for the simple scene. Each CitySim-Federate is

given responsibility for a different partition.

5.2.2.3 Experiment Run Configuration

The initial experiments were run for one year of simulation time. Every CitySim

simulation run also includes an additional fifteen-day warm-up period that is

discarded at the beginning. In these initial experiments, the number of partitions was

varied between 2 and 12. In experiments where fewer than 12 partitions were

required, the original 12 were re-combined to produce the desired number of

partitions, maintaining some of the original boundaries. The source code of the

CitySim-Federate implementation was instrumented to measure the time spent on

computation and total time for completion on each computing node. The extra

processing overheads added by this code instrumentation was small, typically less

than 1% of additional computation time. To illustrate how computation time and

communication time are measured, Figure 5.8 shows the events that occur for a

computation phase followed by a communication phase, assuming two CitySim-

Federates with balanced workloads. Each CitySim-Federate completes its

computation, transmits data to the RTI and waits to receive data from other federates

via the RTI. After all required data has been exchanged, the RTI grants a time

advance to all federates, allowing them to proceed. This sequence of a computation

phase followed by a communication phase and a synchronization barrier follows the

BSP execution pattern described in section 2.8.

Figure 5.8: Computation and communication events within an hourly time-step

5.2.2.4 Initial Results

Figure 5.9 and Figure 5.10 present the results of the experiments for the simple scene

and the complex scene. Figure 5.9 compares the measured computation time and

communication time for the simple scene. The experiment runs vary the number of

computing nodes from 2 to 12. Figure 5.10 shows the same comparison for the

complex scene. For the complex scene, the memory requirements exceed the

resources available on 2 computing nodes. Therefore, the minimum number of nodes

is 4 in this case. From the previous illustration in Figure 5.8, communication time is

measured on each node from the point where computation ends until a TAG is

received from the RTI. Error bars in Figure 5.9 and Figure 5.10 show differences in

computation time between federates due to imbalanced workloads. Initial scene

partitioning cannot always perfectly fulfil the multiple objectives under

consideration, and therefore attempts to compromise for a satisfactory trade-off

between balancing workloads and minimizing communication. In both figures, the

results presented examine the variation between nodes during a single execution of

the distributed simulation. Although both graphs have error bars, the differences

between federate workloads are more visible in the complex scene.

Figure 5.9: Computation vs communication wall-clock time (simple scene)

Figure 5.10: Computation vs communication wall-clock time (complex scene)

The trends from Figure 5.9 and Figure 5.10 show communication time increasing

with the number of nodes while computation time decreases. The decreasing

computation time is due to smaller workloads when more nodes are involved. In all

cases, communication time exceeds computation time. As discussed, using the

motivating examples in Chapter 4, this case is not ideal. However, it appears from

the results that communication costs are lowest when the minimum number of nodes

are involved: 2 nodes for the simple scene, and 4 nodes for the complex scene. The

initial results suggest that when communication overheads are dominant, it is

favourable to use the minimum number of nodes that can support the workload in

order to avoid communication overheads. It is worth noting that while the number of

surfaces has increased about five-fold from the simple scene to the complex scene,

the communication overheads only grow by about 1.3 times. In the 4 federate

experiment, the average communication time is 150 min for the simple scene and

about 200 min for the complex scene. In the 12 federate experiment, the average

communication time is about 220 minutes for the simple scene and 270 minutes for

the complex scene.

For the same initial experiments, Figure 5.11 and Figure 5.12 show how computation

time varies with assigned workload. The error bars indicate variations between

federates. The trend confirms that computation time is proportional to the assigned

workload for this simulation application.

Figure 5.11: Computation wall-clock time vs number of surfaces (simple scene)

Figure 5.12: Computation wall-clock time vs number of surfaces (complex scene)

Figure 5.13 and Figure 5.14 show the trends in communication time, together with

the number of inter-federate links (cross-node interactions) and total number of

published surfaces (surfaces in the overlapping areas of interest). The number of

inter-federate links is larger than the number of published surfaces as a single

published surface can interact with more than one external surface.

Figure 5.13: Communication vs published surfaces and inter-federate links (simple scene)

Figure 5.14: Communication vs published surfaces and inter-federate links (complex scene)

As previously displayed in Figure 5.8, the communication time for each node is

measured as time not spent performing computation. This measurement incorporates

multiple components:

1. Time spent actively transmitting attribute update messages to the RTI.

2. Time spent passively idling while waiting for other federates to complete

their computational workloads.

3. Time spent actively receiving attribute reflection messages from the RTI.

4. Time spent actively sending and receiving signalling information to/from the

RTI, such as for time advancement.

While actively sending and receiving messages (1, 2, 4) can be considered useful

work, idling passively (3) cannot. Therefore, it is important to estimate the

portion of the measured communication time that is actually spent idling. The

boxplots in Figure 5.15 and Figure 5.16 show the variations between nodes in the

12-federate experiments for the simple and complex scenes. In the simple scene

experiment, the range in computation times shows the slowest federate lagging

behind the fastest by about 3.1 min, accumulated over the duration of the

simulation. This lag can be used as an estimate for the idle time of the fastest

federate, measured as part of its communication time. As the total measured

communication time exceeds 220 min for all federates, the idle time of 3.1 min

represents a small fraction (~1.4%) of the total communication time. This

suggests that the majority of the measured communication time is spent actively

sending and receiving messages. In the complex scene experiment, the lag in

computation time is 5.8 min between the fastest and slowest federates. This is a

small fraction (~2.1%) of the total communication time which exceeds 270 min

for all federates. Similar to the simple scene, the major portion of the measured

communication time is due to active communication, and only a minor portion

can be explained by idling due to imbalanced workloads.

Figure 5.15: Computation and communication wall-clock time boxplots (simple scene)

Figure 5.16: Computation and communication wall-clock time boxplots (complex scene)

As active communication time is the main performance bottleneck, the analysis of

experimental results in subsequent sections will focus specifically on communication

time rather than total simulation time. Following this approach, it is useful to make

direct comparisons between the measured communication times for various

distributed simulation scenarios which involve different numbers of computing nodes

or employ alternative communication strategies. As this explicitly accounts for

communication time, it is more convenient than other measures, such as speedup,

which implicitly account for communication time as part of total simulation time

without separating it from computation time. Additionally, the definition of speedup

requires the execution time on a single node as well as the execution time on multiple

nodes. However, execution on a single node is not always possible when dealing

with large-scale experiments.

5.2.3 Reduced Building Scene

The experiments in the previous section have shown that communication overheads

can significantly influence the performance of distributed Building Energy

Simulations. To further reduce communication overheads, subsequent experiments

will apply the communication strategies discussed in Chapter 3, and measure any

performance gains made. For communication strategies that can result in a loss of

output accuracy, the resulting errors in simulation outputs will be measured as well.

The initial simple and complex experiments in this section completed execution in

1.5 to 5 hours of wall-clock time. In order to allow more experiments to be

conducted, the lengthy wall-clock time for each run needs to be reduced. For this

purpose, a reduced building scene is introduced. This reduced building scene is a

subset of the simple scene, consisting of 51 buildings with 320 surfaces. The run

length of the experiments is also reduced from one year to four months. After

running experiments using this reduced scene, the findings can be applied to the full

scene of 2,980 buildings.

5.2.4 Message Elimination Experiments

For these experiments, the message elimination strategy introduced in Chapter 3 was

implemented for Case Study One. The experiments were conducted on the reduced

51-building scene with 320 surfaces, distributed over two computing nodes using the

experimental setup described in the previous section. The experiments begin with a

base case, in which communication occurs normally during every timestep. This is

followed by an edge case experiment during which all attribute update messages are

eliminated. Only communication related to time management is permitted. This edge

case experiment serves to measure the amount of communication time that is not due

to attribute updates. Subsequent experiments vary the period between successive

attribute updates. The length of the period varies from 2 timesteps to 12 timesteps.

The period values used in the experiments are chosen because they are factors that

align with a day length of 24 hours. The results are presented in the following

sections by comparing the normal case where communication occurs at every

timestep with the other cases where communication is less frequent. As this is a lossy

strategy, the comparisons made include the accuracy of the outputs as well as the

wall-clock times involved, exploring the trade-off between these two concerns for

this simulation.

Figure 5.17 shows the impact of the message elimination strategy on computation

and communication time. The edge case with no communication is labelled 00 on the

chart. The trend shows communication time reducing as the communication points

grow farther apart due to larger update period values. As federates do not exchange

attribute updates in time-steps between communication points, only synchronization

messages are exchanged, resulting in fewer messages and a reduction in

communication overheads. From Figure 5.17, the normal base case 01 has a

communication wall-clock time of about 200 s. By contrast, the edge case 00, which

eliminates all attribute updates, has a communication wall-clock time of about 20 s.

The edge case establishes a lower limit on the communication time necessary to

execute the distributed simulation. The trend in Figure 5.17 shows that the

communication roughly halves when the period between communication points

doubles. From the normal (01) base case of 199 s to the 2-timestep period (02) case

of 105 s, to the 4-timestep period (04) case of 60 s to the 8-timestep period (08) case

of 30 s. This roughly reflects the fact that the number of attribute update messages

has been reduced by half.

Figure 5.17: Effect of message elimination on communication time

Although the message elimination strategy improves execution performance, it also

reduces simulation output accuracy due to its lossy nature. However, different

simulation outputs are affected differently. The degree of error also varies from one

surface to another. This section will examine how the four main outputs from the

simulation are impacted: the surface shortwave (SW), daylight (DL) and longwave

(LW) outputs as well as the thermal zone temperature (TH) outputs.

The boxplots in Figure 5.18 and Figure 5.19 show the overall distributions of the

four main outputs for all surfaces in the top row. In the middle row, the boxplots

show the absolute error of all surfaces in each experiment compared to the normal

base case 01. The bottom row provides a bar charts displaying the mean absolute

error for all surfaces. The diagrams confirm that the largest output errors occur in the

edge case experiment 00 where no attribute updates occur. This applies to all four

outputs but is especially noticeable for the SW and DL outputs. Although the edge

case 00 represents the best-case scenario for communication time, it also represents

the worst-case scenario for simulation output accuracy. This confirms that

communication between CitySim-Federates is important for ensuring accurate

results.

Figure 5.18: Summary of SW and DL output errors for whole scene

Apart from the edge case 00 which has no attribute updates, the mean absolute errors

for the other experiments are small when averaged for all surfaces in the scenes. This

is illustrated by the bar charts in the bottom rows of Figure 5.18 and Figure 5.19.

However, the absolute error boxplots in the middle rows show that the absolute

errors are significant for many individual surfaces in the scene. From these results it

can be inferred that all surfaces in the scene are not equally affected by the

eliminated attribute update messages. Whether the output errors for individual

surfaces are important or not depends on the purpose for executing the distributed

Building Energy Simulation. If only macro-level average values over the entire scene

are required, then individual errors would only be significant to the extent to which

they have an impact on the overall average. However, if the Building Energy

Simulation is for a purpose such as exploring the impact of retrofitting options for

individual buildings, the surface output errors can be considered important regardless

of the negligible impact they have on the overall scene average. This discussion will

assume that the output errors for individual surfaces are important.

Figure 5.19: Summary of LW and TH output errors for whole scene

While some surfaces in the scene have small output errors and others have large

output errors, there does not appear to be a simple rule to reliably predict which

surfaces will produce large errors and which ones will not. Intuitively, it might be

supposed that surfaces which have interactions with external surfaces rely on

attribute updates for correct computations. Therefore, they are more likely to produce

large errors when the required attribute updates have been eliminated. On the other

hand, surfaces which only have local interactions should produce small errors.

However, the experiments show that this intuition does not generally hold for all

surfaces. Some of the surfaces that produce the largest errors have only local

interactions, while some surfaces that have external interactions only produce small

errors. The number of external interactions a surface has does not reliably predict

whether its associated output errors will be large or small. However, the

experimental results indicate that surfaces in the same building tend to have similar

degrees of errors. If the errors produced in a surface are large, errors for the other

surfaces in the building are usually large as well. However, this observation does not

explain all the results. In some buildings, some surfaces have large errors while

others have small errors. The diagrams from diagrams from Figure 5.20 to Figure

5.23 illustrate two surfaces in the reduced scene. The surface on the left has external

interactions but produces small output errors, while the surface on the right has only

local interactions but produces large output errors.

From the whole scene boxplots in the middle rows of Figure 5.18 and Figure 5.19,

the largest surface errors are significant even when the edge case 00 is excluded. This

is true for all outputs. The SW absolute error boxplots show a maximum of about

800 for the edge case and 80 for the other cases. As shown in the top rows of Figure

5.18, SW values in the experiments range from 0 to approximately 1200. Therefore,

absolute errors of 800 and 80 respectively correspond to 66% and 6% of the SW

value range. Figure 5.20 compares the SW output errors for two surfaces with

different error responses.

Figure 5.20: SW output errors for two surfaces: low (left) and high (right)

From Figure 5.18, the largest absolute error for DL is approximately 6500 for the

edge case 00, and 1000 for the other cases. The range for DL values is approximately

18000 in the experiments. Therefore, error of 6500 and 1000 respectively correspond

to about 36% and 6% of the DL range respectively. Figure 5.21 compares the DL

output errors for two surfaces with different error responses.

Figure 5.21: DL output errors for two surfaces: low (left) and high (right)

For the LW output, Figure 5.19 shows that the range of values is about 1200. The

largest absolute error is approximately 600 for all cases. This corresponds to about

50% of the LW range. Figure 5.22 compares the LW output errors for two surfaces

with different error responses.

Figure 5.22: LW output errors for two surfaces: low (left) and high (right)

From Figure 5.19, the top row boxplots show that the value range for the TH output

is about 14. The largest absolute error is approximately 3.3 for the edge case 00, and

about 1.8 for the other cases. Respectively, these values correspond to 24% and 13%

of the TH range. Figure 5.23 compares the TH output errors for two surfaces with

different error responses.

Figure 5.23: TH output errors for two surfaces: low (left) and high (right)

The experiments in this section have demonstrated that eliminating messages

between CitySim-Federates can help to improve the performance of the distributed

Building Energy Simulation. However, they have also shown, that communication is

essential for the correctness of all outputs. In all cases, the errors produced due to

reduced communication are significant for individual surfaces. However, the mean

absolute errors over the entire scene are small. The results have shown that surfaces

are not equally impacted by the eliminated attribute update messages. Although

intuitive rationalizations have been explored, there does not appear to be a sufficient

explanation to determine which of the surfaces will be highly impacted when

messages are eliminated.

5.2.5 Batch Compression Experiments

In these experiments, the batching and compression strategy discussed Chapter 3 is

implemented to evaluate its effectiveness on improving the communication

performance of the federates in Case Study One. As this is a lossless method, the

outputs produced from the distributed simulation in this case are the same as the

original outputs. Therefore, there is no loss in accuracy even at the individual surface

level, unlike the case of the message elimination experiments from the previous

section.

The experiments make use of the reduced 51-building scene. The scene is distributed

over two computing nodes using the experimental setup described for the initial

experiments. As discussed in Chapter 3, this method attempts to reduce

communication overheads by combining several update messages into a single batch

and compressing the batched messages together to obtain a smaller number of

packets for transmission over the network. During these distributed simulation

experiments, the batch size is varied between 1 and 200. The batch size is the

maximum number of messages which will be combined together into a single batch.

The minimum batch size of 1 is the same as the normal case where individual

messages are transmitted separately. As there are a total of 320 surface objects in the

51-building scene, neither CitySim-Federate in these experiments owns more than

200 surface objects. Therefore, the maximum batch size of 200 is set as a threshold

for combining all updates into a single batch. Each message batch is compressed and

transmitted to the RTI, which forwards it to the other federates. On arrival at the

receiving federate, the packets are uncompressed to retrieve the original messages.

To aid the batching and compression method, the FOM was modified to facilitate

sending attribute updates together for multiple surface objects. The class diagram in

Figure 5.24 shows the modified objects. An object class has been added for each of

the attributes that needs to be updated during federation execution, one each for SW,

DL and TH. Each of the three new object classes has two attributes, both being lists.

The first is a list of the ids of surface object instances included in the update and the

second is a list of the corresponding attribute value updates for the surface objects in

the list. The ids of the surface object instances are obtained from the unique integer

handles assigned to the instances by the RTI when the instances are registered during

federation initialization. In this modified FOM, the Surface object class no longer has

any attributes of its own. This is because federates no longer exchange updates

directly for individual surface objects. However, individual surface object instances

still need to be registered with the RTI in order to obtain the globally unique handles

from which the ids are derived. Consequently, the Surface class is still required as

these globally unique ids are depended upon for batching attribute updates together

at the sending federate and unpacking the updates at the receiving federate. It should

be noted that the attribute-oriented FOM in Figure 5.24 can be viewed as a

generalization of the original FOM from Figure 5.5, as this new FOM permits

sending and receiving attribute updates for individual surface objects. In the case

where it is desired to send single attribute updates, all that is required is to create an

id list with one item and a corresponding value list containing a single value. The

two FOMS also differ in the options available for updating FOM object attributes. In

the original FOM, an individual update can include more than one Surface attribute.

For example, it is possible to deliver attribute updates for DL and SW together.

However, the modified FOM only delivers updates for one attribute at a time,

although it does this in bulk for multiple surfaces. Also, its object attribute updates

need to include both the idList and valueList attributes in order for the update to have

meaning.

Figure 5.24: Modified class diagram with simplified HLA FOM objects for Case Study One

The graph in Figure 5.25 shows the results obtained from the batching and

compression experiments, plotting a trend which illustrates how the distributed

simulation wall-clock time reduces as larger numbers of messages are batched and

compressed together. In these experiments, the communication wall-clock time

continually reduces as the number of messages per batch is increased from 1 to 200.

The largest gains occur between 1 and 100. Doubling the batch size from 100 to 200

only produces marginal gains. The largest communication time occurs for a batch

size of 1, taking 184s. The minimum communication wall-clock time of 27s is

achieved using a batch size of 200. This represents almost a seven-fold reduction in

wall-clock time. From the previous section, the minimum achievable communication

time for the reduced scene is about 20s when federates do not perform any attribute

updates. The minimum of 20s is an indication of the overheads required for time

synchronization between federates. From the results in this section, this implies that

only 7s of additional communication overhead is added in the 200-batch experiment.

Figure 5.25: Batch compression results for reduced scene

Figure 5.26 shows the results from applying the batching and compression method to

the full simple scene with 2,980 buildings. To boost the message count for these

experiments, federates were configured to publish full attribute updates for all local

surfaces, including updates for surfaces of no interest to other federates. However,

the simulation run length was shortened to 4 months, as for the reduced scene. Two

federates are employed for the batch compression experiments, varying, the batch

size as 2, 10, 100 and 1000. The maximum number of surface objects owned by a

single federate is about 12,000. The results show a similar pattern to those of the

experiments for the reduced 51-building scene. Performance gains seem to diminish

after a batch size of 100. However, the communication time reduction is significant

from the 2-batch case to the 100-batch, falling from 2569s to 357s, which is a 7-fold

improvement.

Figure 5.26: Batch compression results for simple scene

The experiments in this section have demonstrated how the batching and

compression strategy can improve the performance of distributed Building Energy

Simulations. As discussed in Chapter 3, the potential drawbacks of this strategy

include additional time for compressing and de-compressing messages. In this case,

however, it appears that these considerations are outweighed by the advantage of

reduced communication overheads. The experiments have also shown that gains

made can become marginal after a point, as the batch size increases. An important

advantage of this strategy is that significant performance gains are made without

having to sacrifice output accuracy.

5.3 Case Study Two: Heterogeneous Distributed Simulation

Case Study Two is a heterogeneous simulation model that couples the Building

Energy Simulation from Case Study One, CitySim, with a Building Occupancy

Simulation, No-MASS. A Building Energy Simulation can interoperate meaningfully

with a Building Occupancy Simulation to obtain better energy use predictions fine-

tuned by the activities of the building’s occupants.

Case Study Two serves to present the additional concerns involved when the

individual simulators involved in the distributed simulation are of different types.

This section explores the impact on communication when maintaining

interoperability in a heterogeneous arrangement. Communication patterns in the

heterogeneous case can differ from patterns in the homogeneous case. For example,

the points where communication occurs are the same for all federates in the

homogeneous distributed simulation of Case Study One. However, the

communication points in a heterogeneous distributed simulation may differ

depending on the type of federate. This depends on the synchronization requirements

for different federates and can possibly lead to a need for tighter coupling. The more

types of federates that are added to the heterogeneous simulation, the greater the

potential complexity regarding communication. Figure 5.27 illustrates a possible

pattern of communication between four HLA federates, two federates of type A and

two federates of type B. In this case, the communication between A and B is more

loosely coupled than the communication between A federates or the communication

between B federates.

Figure 5.27: Example communication pattern between four federates of two types

5.3.1 Nottingham Multi-Agent Stochastic Simulation

The Nottingham Multi-Agent Stochastic Simulation (No-MASS) (Chapman, Siebers

and Robinson, 2018) is a Building Occupancy Simulation designed to integrate with

the Building Energy Simulation tool EnergyPlus (Crawley et al., 2001). No-MASS

couples with EnergyPlus using the FMI standard (Blochwitz et al., 2011). Although

EnergyPlus is a single building simulation tool, No-MASS can also be employed to

simulate a multi-building scene. This is important as the experiments in this chapter

all involve scenes with multiple buildings. No-MASS simulates each building

separately and does not account for any interactions between occupants of different

buildings. Consequently, no communication needs to occur between different No-

MASS-Federates. Each No-MASS-Federate only needs to exchange data with the

CitySim-Federates that simulate the same buildings. CitySim includes a simple

model of stochastic occupant presence which uses stochastic parameters to represent

factors such as the number of occupants present in a building, how occupants interact

with windows and lighting. In a meaningful coupling with No-MASS, the stochastic

occupant model can be replaced with parameters supplied by No-MASS. This is

ideal as No-MASS is a specialized tool for Building Occupancy Simulation and

offers better flexibility for modelling occupant behaviour using the ABS paradigm.

For the experiments in this section, the HLA federation from Case Study One will be

extended to include No-MASS. Figure 5.28 shows a conceptual illustration of the

CitySim / No-MASS HLA Federation. Each federate is run on a separate computing

node. Each CitySim-Federate will share a scene partition with a partner No-MASS-

Federate. Each CitySim-Federate / No-MASS-Federate pair will communicate to

exchange relevant updates. As in Case Study One, City-Sim-Federates continue to

exchange attribute updates with one another via the RTI. No-MASS-Federates,

however, do not need to communicate with one another. Figure 5.28 illustrates this

arrangement, pairing each No-MASS-Federate with a corresponding CitySim-

Federate. While the CitySim-Federate simulates building energy interactions for the

assigned partition, its partner No-MASS-Federate simulates occupant interactions for

buildings in the same partition. Communication occurs at two levels, hourly

timesteps and sub-hourly timesteps. CitySim-Federates exchange data as in Case

Study One, with sub-hourly attribute updates after each computation. At hourly

timesteps, however, CitySim-Federates and No-MASS-Federates exchange attribute

updates such as thermal zone (room) temperatures and occupant presence. It must be

noted that No-MASS can also perform sub-hourly simulation computations.

However, this level of resolution is not required for data exchange with CitySim.

Sub-hourly timesteps in No-MASS-Federates do not need to be regulated by the RTI

with TAGs as no data exchange is involved. Therefore, No-MASS-Federates can

safely and independently manage their own internal sub-hourly timesteps.

Figure 5.28: Conceptual illustration of interactions in the CitySim / No-MASS Federation

Synchronization in the heterogeneous simulation is complicated by the fact that No-

MASS-Federates must ignore the sub-hourly CitySim attribute updates. These are

regulated by the RTI due to the attribute updates involved. In the CitySim / No-

MASS Federation implementation, the general hourly timestep is tracked by an

integer, X. CitySim sub-timesteps are given incrementing fractional values such as

X.1, X.2, X.3. City-Sim Federates advance their simulation time in these steps.

However, No-MASS-Federates advance at an integral timestep, at the point where

data exchange occurs between all the types of federates.

In summary, timestep management ensures that:

• CitySim-Federates continue to synchronize with one another at sub-hourly

timesteps to exchange attribute updates after computations.

• During CitySim sub-timesteps, no data is exchanged between CitySim-Federates

and No-MASS-Federates.

• No-MASS-Federates are allowed to execute sub-hourly timesteps which are not

tracked by the RTI.

• At each hourly timestep, No-MASS-Federates and CitySim-Federates all

synchronize with one another.

5.3.2 Case Study Two: HLA Federation

The class diagram in Figure 5.29 provides an overview of the HLA object classes

in the FOM of the federation for Case Study Two. This case includes all the HLA

Surface object class attributes from Case Study One, as this data is still

exchanged between CitySim-Federates during federation execution. A new Zone

object class has been added to the FOM in order to exchange building zone data

between CitySim-Federates and No-MASS-Federates. Similar to surface objects,

zone objects are persistent throughout federation execution. Therefore, they are

represented as HLA object classes instead of interaction classes. The Zone object

class includes four attributes: Temperature, Illuminance, NumberOfOccupants

and LightState. Different federate types own different attributes, which differs

from the federation in Case Study One. Temperature and Illuminance are owned

by CitySim-Federates, while NumberOfOccupants and LightState are owned by

No-MASS-Federates. In this arrangement, CitySim-Federates subscribe to

NumberOfOccupants and LightState but cannot publish them. It is the

responsibility of the No-MASS-Federates to publish the required attributed

updates concerning those attributes. On the other hand, No-MASS-Federates

subscribe to Temperature and Illuminance but cannot publish them, since those

attributes are the responsibility of CitySim-Federates.

Figure 5.29: Class diagram showing simplified HLA FOM objects for Case Study Two

While Figure 5.29 provides a simplified view of the FOM, the actual FOM used in

the distributed simulation experiments for Case Study Two is structured as shown in

Figure 5.30. This structure is similar to the FOM that was created in Case Study One

to enable attribute updates to be transmitted in batches. The attributes from the

simplified FOM in Figure 5.29 are converted to HLA objects composed of pairs of

id and value lists. As observed for the expanded FOM in Case Study One, sending

independent attribute updates objects can be achieved by placing a single element in

the id and value lists. The Surface and Zone classes are retained in the expanded

FOM, similar to practice in Case Study One. This is important as individual surface

and zone objects need to be registered with the RTI in order to supply the globally

unique ids that will be used in the id lists.

Figure 5.30: Class diagram showing expanded HLA FOM objects for Case Study Two

As discussed in this section, the data dependencies between CitySim-Federates and

No-MASS-Federates have been identified and captured in the FOM. The purpose of

the experiments conducted on this case study is to measure communication time. For

this purpose, it is adequate to implement attribute update exchanges and time

synchronization between CitySim-Federates and No-MASS-Federates. As this is

sufficient for enabling the measurement of communication time, it is not necessary to

make further modifications to the internal workings of CitySim and No-MASS to

utilise the data received for internal computations.

The sequence diagram in Figure 5.31 illustrates the process of message exchange

between the RTI, CitySim-Federate and No-MASS-Federates during federation

execution. Similar to CitySim-Federates, a No-MASS Federates is a unit composed

of two parts, a No-MASS-Federate Ambassador and a No-MASS-Simulator. While

the No-MASS-Federate Ambassador performs all message exchanges with the RTI,

the No-MASS-Simulator performs the actual simulation. Similar to Case Study One,

No-MASS-Federate Ambassadors work with the RTI to create, initialize and destroy

the federation at the start and end of execution, and perform the signalling required

for synchronization between federates. While the sequence diagram in Figure 5.31

only shows one Federate of each type, a CitySim / No-MASS Federation can include

multiple CitySim-Federates and No-MASS-Federates, all working according to the

sequence described by the diagram. Creating the federation is done only once, by the

first federate to join, and destroying the federation is the responsibility of the last

federate to resign.

Similar to the federation in Case Study One, time synchronization involves federates

sending TARs to the RTI and waiting to receive TAGs before advancing to the next

timestep. However, as discussed in the previous section, there are multiple levels of

synchronization to consider for Case Study Two. On one level, hourly timestep

synchronization is used between CitySim-Federates and No-MASS-Federates. On

another level, CitySim-Federates also synchronize with one another at sub-hourly

timesteps. No-MASS-Federates do not participate in the sub-hourly attribute updates

but independently manage their own internal sub-hourly timesteps as these do not

require attribute updates. From this, it is evident that heterogeneous coupling

between No-MASS-Federates and CitySim-Federates is looser than homogeneous

coupling between CitySim-Federates. Also, there is no coupling between No-MASS-

Federates as they function independently of one another. The volume of

heterogeneous communication between No-MASS-Federates and City-Sim-

Federates is also lower than that between CitySim-Federates. This is due to the fact

that attribute update messages are exchanged at the higher zonal level rather than at

the lower surface level. By definition, a zone is composed of multiple surfaces. This

implies a smaller communication load between No-MASS-Federates and CitySim-

Federates.

Figure 5.31: Sequence diagram of HLA federation execution for Case Study Two

5.3.3 Initial Experiments

The experiments in this section use the reduced 51-building scene distributed over

two computing nodes, utilising the same experimental setup described for Case

Study One. One computing node hosts a CitySim-Federate while the other hosts a

No-MASS-Federate. Figure 5.32 shows the results from the initial experiments.

Although they both simulate the same building scene, the computation time of the

No-MASS-Federate significantly exceeds the computation time of the CitySim-

Federate. While the CitySim simulation workload requires about 5s to complete, the

No-MASS simulation workload requires about 15s to complete, which is three times

longer. This is due to the fact that the heterogeneous simulators perform different

computations even though they share the same scenario.

As discussed in previous sections, communication time is measured as the total time

spent in activities other than processing the simulation workloads, including:

1. Actively transmitting attribute updates.

2. Passively idling.

3. Actively receiving attribute updates.

4. Actively sending and receiving TARs, TAGs, and other signalling messages.

As there is a three-fold difference between the computation times, a significant

portion of measured communication time for the CitySim-Federate is due to passive

idling while waiting for the No-MASS-Federate to complete its workload. From

Figure 5.32, the measured communication clock time for the No-MASS-Federate is

about 60s, while the communication time for the CitySim-Federate is about 70s. The

10s difference corresponds to the difference between their computation times, which

indicates that the CitySim-Federate spends about 10s idling and 60s in active

communication.

Figure 5.32: Initial experiment for CitySim /No-MASS Federation

The initial results raise concerns about computation time imbalances between

heterogeneous simulators in distributed simulations. Large imbalances need to be

addressed as they can have an impact on performance, judging from the motivating

example discussions in Chapter 4. One possibility for reducing the workload

disparity between heterogeneous simulator types would be to perform further

partitioning. Following this approach, partitions can be sub-divided to reduce

computation times for the slower simulator. This, however, will require additional

computing nodes to handle each sub-partition. Figure 5.33 illustrates this

arrangement using the CitySim/No-MASS Federation. As there are no

communication paths between No-MASS-Federates, sub-partitioning in this case

does not need to consider interactions between sub-partitions. This may not

necessarily be the case for other heterogeneous simulations, and sub-partitioning may

introduce additional communication.

Figure 5.33: Sub-partitions for CitySim/No-MASS Federation

Another approach for reducing workload disparity would be to collocate

heterogeneous simulators on the same computing node as shown in Figure 5.34. This

arrangement is similar to a homogeneous distributed simulation, as each computing

node can be considered as a composite of the same two simulators. In this case,

initial partitioning is sufficient to balance the workload and sub-partitioning is not

necessary.

Figure 5.34: Collocated CitySim/No-MASS Federation

5.3.4 Batch Compression Experiments

The lossless batching and compression strategy is applied to the heterogeneous

distributed simulation for Case Study Two, and the resulting communication time is

measured. The batch size is set to the maximum of 200, which produced the largest

communication time reduction for Case Study One. The chart in Figure 5.35 shows

the results obtained from experiments. The communication wall-clock time of the

No-MASS-Federate is 17s. As discussed in the previous section, the communication

time measurement for the No-MASS-Federate does not include idle time. The new

communication time is about 28% of the original 60s from the base case. Similar to

Case Study One, the gains made by reduction in communication overheads outweigh

the additional time required to compressing and decompress messages.

Figure 5.35: Batching compression experiment for CitySim/No-MASS Federation

5.4 Summary

In this chapter, the experiments for Case Study One have shown how communication

time can be reduced by applying various communication strategies. They have

demonstrated that for a lossy method, such as message elimination, performance

gains are made at the expense of simulation accuracy. The message elimination

experiments for CitySim have shown that although the average errors measured at

system level may be negligible, the errors on individual objects can be significant.

They have also shown that objects may not all be affected equally by the loss of

messages. While this is the case, it may not be straightforward to establish a

sufficient explanation for the error pattern. For the Case Study One experiments, the

most intuitive hypothesis failed to explain the pattern. The degree of error a surface

generates appears to be unrelated to the number of external interactions it possesses.

The experiments show a significant reduction in communication time for the

batching and compression strategy. This performance gain is obtained at no cost to

simulation accuracy, as the strategy preserves all messages. In all cases, the

additional overheads introduced by this strategy were outweighed by the gains made

in communication time.

The experiments in this chapter have also examined time synchronization costs

separately from the general communication costs. This is investigated by a special

experiment in which no messages are exchanged except those required for time

advancement. The measured synchronization time serves to establish a bound for the

performance gains that can be achieved in the distributed simulation.

The experiments for Case Study Two have served to bring out the additional

concerns that must be taken into account by the framework when different types of

simulators are involved in a distributed simulation. These experiments have

demonstrated that compared to homogeneous distributed simulations, more complex

communication patterns can be introduced when heterogeneous simulators are

coupled. They have also shown that load balancing can potentially be more complex

for the heterogeneous case than the homogeneous case. For the heterogeneous

experiments, the batching and compression strategy produced a similar performance

improvement as in Case Study One.

6 FRAMEWORK

6.1 Overview

The framework proposed in this chapter forms the basis for implementation of meta-

simulations designed to evaluate the performance of distributed simulations. The

framework accounts for important performance-influencing factors related to

communication. The difference in performance between alternative communication

strategies is also an important consideration. The contents of the framework are

informed by the two case studies presented in Chapter 5. As discussed in Chapter 3,

the framework adopts the MAS paradigm.

6.2 Conceptual Model

The framework focuses on modelling the essential aspects of the federation that have

significant bearing on communication time. It does not attempt to model the

components of the HLA federation in great detail, such as all the services available

on the interface between federates and the RTI. The following sections describe the

essential elements of the federation execution that have been included in the

framework, following the MAS paradigm.

6.2.1 Framework Components

• Coordinator Agent:

The coordinator agent represents the component of the distributed simulation

that coordinates execution. For an HLA federation, this is represented by the

RTI. In a meta-simulation based on an HLA federation, this agent mimics the

sub-set of RTI functionality that is required for executing the distributed

simulation. For the case studies in Chapter 5, the Coordinator Agent can be

labelled RTI Agent. The responsibilities of the RTI Agent for the two case

studies include:

a. Routing messages between federates based on the publish-subscribe

paradigm.

b. Controlling federate time advancement during federation execution,

ensuring all federates have received the required messages in each

timestep before allowing Time Advance Grants (TAGs).

For distributed simulations based on the HLA, an implementation of the

framework will normally include a single RTI Agent, as is usually the case

with HLA federations. However, it is also possible to include more than one

RTI Agent to manage separate federations that can interact with one

another.

• Node Agent:

Node Agents represent the components of the distributed simulation that

perform the computations required to drive the simulation forward. A Node

Agent can generate messages to share its local state with other Node Agents.

For the case studies in Chapter 5, the Node Agents can be labelled Federate

Agents. Federate Agents simulate the functions performed by federates in the

case studies. The responsibilities of the Federate Agents include:

a. Performing computations

b. Publishing updates to the RTI Agent

c. Receiving updates from the RTI Agent

d. Sending Time Advance Requests to the RTI Agent and waiting to

receive a TAG before proceeding to the next time-step.

For distributed simulations based on the HLA, an implementation of the

framework will normally include multiple Federate Agents that only interact

directly with the RTI. Federate Agents can have properties to reflect the

conditions of a real system. For example, a Federate Agent parameter can be

added for the computation time per timestep. This can be set up as a

stochastic parameter with values drawn from a triangular distribution with a

min, max and mode. For homogeneous distributed simulations with

imbalanced workloads, different min, max and mode values can be set for

separate Federate Agents. Also, for heterogeneous distributed simulations,

distinct types of Federate Agents can have different triangular distributions

to reflect different computation times.

A parameter can also be added to the Federate Agent to represent the

number of timesteps between consecutive updates. For a heterogeneous

distributed simulation, this parameter that can be set differently according to

the type of Federate Agent. This can account for the different

communication patterns of distinct types of Federate Agents. This parameter

is also useful for testing communication strategies which employ message

elimination for some timesteps, by increasing the period between

consecutive updates.

6.2.2 Experimental Factors

The experimental factors in the framework include various parameters that govern

the distributed simulation execution and influence its performance. This includes

global parameters that affect all agents, such as network latency and bit rate. It also

includes parameters that are specific to Coordinator Agents and Node Agents. Table

6.1 provides a list of experimental factors considered in the framework. The list of

experimental factors is informed by the case study experiments conducted in Chapter

5.

Table 6.1: Framework Parameters

Level /

Component
Parameter Description Units

Global

Network Latency

One way latency associated with

point-to-point packet transfer over

the network.

ms

Network Bit Rate Data transfer rate over the network. bits/s

Payload Bytes
Size of data payload carried in each

network packet.
bytes

Header Bytes
Size of metadata appended to

network packets.
bytes

Max Timestep Total simulation run length. timesteps

Level /

Component
Parameter Description Units

Number of Nodes

Count of computing nodes co-

operating in the distributed

simulation.

number

Node Agent

Initialization Time

Computation time required for pre-

processing on each node before

starting the simulation execution.

This parameter can be drawn from a

specified triangular distribution with

min, mode, and max values.

ms

Computation Time

per Timestep

Different values can be set for each

node to reflect scenarios with

imbalanced computation workloads.

This parameter can be drawn from a

specified triangular distribution with

min, mode, and max values.

ms

Message Bytes

Size of individual messages

transmitted from the node.

This parameter can be drawn from a

specified triangular distribution with

min, mode, and max values.

bytes

Message Volume

per Timestep

Total number of individual

messages transmitted from the node

in each timestep.

Different values can be set for each

node to reflect variations in

communication requirements.

number

Batch Size

When applying the batching and

compression strategy, this

parameter indicates the number of

messages to combine in each batch.

A setting of 1 means batching is not

applied, and each message is

transmitted separately.

number

Level /

Component
Parameter Description Units

Compression Ratio

Applies to the batching and

compression strategy.

A setting of 1 means no

compression is applied.

number

Update Period

Specifies the number of timesteps

between subsequent message

transmissions. This can be used to

emulate the message elimination

strategy.

timesteps

Fixed Transmission

Cost

A fixed delay due to operations

required to establish the

communication link e.g.,

handshaking.

ms

Variable

Transmission Cost

Variable delay due to operations

required to process packets for

transmission.

ms

Coordinator

Agent
Initialization Time

Time required to set up the

distributed simulation session,

including signalling between nodes

and the coordinator.

This parameter can be drawn from a

specified triangular distribution with

min, mode, and max values.

ms

6.2.3 Responses

The measured responses of the framework track the performance of various aspects

of the meta-simulation. The main response to be measured is the total execution time.

This depends on the total communication time and total computation time for each

Node Agents. As established in Table 6.1, the total computation time for each Node

Agent depends on the specified input parameter setting for Computation Time per

timestep. However, the total communication time is not specified directly by an input

parameter. Instead, it is determined indirectly by executing the meta-simulation, and

depends on the settings of several input parameters including Message Bytes,

Message Volume, Batch Size, and Network Latency, among others. Similar to the

approach used for the case study experiments in Chapter 5, the total communication

time for each Node Agent is determined as time not spent performing computation.

This is measured as a sum of three parts:

(1) Active Transmit Time

(2) Active Receive Time

(3) Passive Idling Time + Synchronization Time.

Table 6.2 provides an overview of the responses measured by the framework.

Table 6.2: Framework Responses

Level /

Component
Output Description Units

Node Agent

Total Communication

Time

The total time spent on each node to

perform operations other than

computation of its simulation

workload. This includes time for

packet transmission and receipt as

well as for idle time.

ms

Total Transmit Time
The total time spent actively

transmitting messages by each node.
ms

Total Receive Time
The total time spent actively receiving

messages by each node.
ms

Total Idle Time

Time spent by each node while

neither performing computation nor

active communication operations.

ms

Total Packets

Transmitted

The total number of data packets

transmitted by each node during

distributed simulation execution.

This may differ from the number of

messages depending on factors such

as Payload Bytes, Message Bytes,

Batch Size, and Compression Ratio.

number

Level /

Component
Output Description Units

Total Packets

Received

The total number of data packets

received by each node during

distributed simulation execution.

number

Total Computation

Time

The total computation time for each

node. This depends directly on the

input parameter for Computation Time

per timestep.

ms

Global Total Execution Time

The total time elapsed from the start

of the distributed simulation to

completion.

ms

6.3 Model Content

6.3.1 Node Agent

Node Agents are modelled using state charts with transition rules that are governed

by the node parameters set out in Table 6.1. As illustrated by Figure 6.1, Node Agent

state charts include the following states:

• Initialize:

In this state, Node Agents perform the required signalling with the

Coordinator Agent to set up the distributed simulation. Node Agents also

perform pre-processing computations that are required before starting the

simulation timesteps. For an HLA distributed simulation, this state represents

the time taken by Federate Agents to join the federation, register objects to

establish ownership, declare class attributes they intend to publish, and

specify class attributes to which they wish to subscribe. From Figure 6.1, the

Initialize state transitions to the Compute state. This transition is triggered by

a timeout which is determined by the Node Agent parameter settings for

Initialization Time.

• Compute:

In this state, Node Agents perform the simulation computations for one

timestep. From Figure 6.1, the Compute state transitions to the Send state.

This transition is triggered by a timeout determined by the Node Agent

parameter settings for Computation Time. For scenarios where the simulation

workload is highly imbalanced, the Computation Time parameter settings will

vary significantly from one Node Agent to another. Sequential workloads can

be implicitly accounted for in the parameter settings for different Node

Agents. When comparing what-if scenarios for different numbers of Node

Agents, the Computation Time parameter will need to be adjusted

accordingly.

• Send:

In the Send state, Node Agents transmit data packets. For an HLA distributed

simulation, the Federate Agents will transmit data packets to the Coordinator

Agent. The number of data packets sent by each Node Agent is determined

parameter settings such as Message Size, Number of Messages, Batch Size,

and Compression Ratio. The time required to send data packets is determined

by global parameter settings for network Latency, Bit Rate, and Payload Size.

From Figure 6.1, the Send state transitions to the Receive state. This transition

is triggered by a timeout. The timeout is calculated on each Node Agent as

the time required to send all of its data packets.

• Receive:

In the Receive state, Node Agents wait to receive data packets. Node Agents

remain in this state until they receive a TAG from the Coordinator Agent. On

first entering the Receive state, a Node Agent sends a TAR message to the

Coordinator Agent to indicate that it is ready to proceed to the next timestep.

The Coordinator Agent will not respond with a TAG message until it is safe

to move forward. While in the Receive state, each Node Agent keeps track of

the time spent actively receiving data packets and the time spent idling.

For an HLA distributed simulation, Federate Agents receive data packets

which the RTI Agent forwards from other Federate Agents. The active

receive time depends on the number of data packets received from the RTI

Agent in this state. The remaining time is recorded as idling time. The

transition out of the Receive state is triggered when a TAG message is

received from the RTI Agent. The RTI Agent only sends a TAG when the

Federate Agent has acquired all relevant messages in the current timestep and

can therefore proceed safely forward to the next timestep.

From Figure 6.1, the Receive state can either transition back to the Compute

state, or transition forward to the Finish state. In both cases, the transition out

of the Receive state is triggered when the Node Agent receives a TAG

message from the Coordinator Agent. If the global setting for the Max

Timestep parameter has not yet been reached, the Node Agent transitions

back to the Compute state. If the final timestep has been completed, however,

the Node agent transitions forward to the Finish state.

• Finish:

In the Finish state, Node Agents perform post-processing operations and

carry out the signalling necessary for ending the distributed simulation

session. For an HLA distributed simulation, Federate Agents resign from the

federation execution and signal the RTI Agent to destroy the federation if no

other Federate Agents are still joined.

Figure 6.1: Node Agent State Chart

6.3.2 Coordinator Agent

Similar to the Node Agent, the Coordinator Agent also has an internal state-chart that

determines its behaviour. As illustrated by Figure 6.2, the Coordinator Agent state-

chart includes the following states:

• Initialize:

Similar to the Initialize state in the Node Agent, this state represents the

period of setting up the distributed simulation. For an HLA distributed

simulation, Federate Agents exchange messages with the Coordinator Agents

to create the federation, register objects, and declare publication and

subscription intentions. From Figure 6.2, the Initialize state transitions to the

Wait state. This transition is determined by a timeout which depends on the

Initialization Time parameter setting.

• Wait:

In the Wait state, the Coordinator Agent waits to receive messages from the

Node Agents. For an HLA distributed simulation, these messages can include

data packets and signalling messages. Examples of signalling messages an

RTI Agent may receive include TARs and resignation notifications from

Federate Agents. To manage different types of messages, a Coordinator

Agent can keep separate queues for each type. For example, an RTI Agent

can have one queue for data packets that need forwarding, a second queue for

TARs, and a third queue for resignation notifications. When the RTI Agent

receives a message, it places it in the appropriate queue. Each data packet can

be kept in the queue until it has been forwarded to all eligible subscribers,

after which it can be removed from the queue. TARs can be retained in their

own queue until all Federate Agents have sent in their own TARs. If the data

packet queue is empty TARs have been received from all Federate Agents,

the RTI Agent can safely grant TAGs to the Federate Agents.

From Figure 6.2, the Wait state can either transitions to the Process state or

the final state. The transition to the Process state is triggered whenever the

Coordinator Agent receives any message. It is also triggered by a periodic

timeout in order for the Coordinator Agent to continuously monitor the

message queues. The transition to the final state is triggered when the

distributed simulation is completed.

• Process:

In the Process state, the Coordinator Agent processes the messages stored in

its message queues. For example, in an HLA distributed simulation the RTI

Agent can use the following procedure to process its data packet queue and

honour publish-subscribe relationships:

o Forward data packets to appropriate Federate Agents if the subscribers

are currently in the Receive state but have not already been sent the

data packet.

o Keep track of which data packets have been forwarded to which

Federate Agents.

o Remove a data packet from the queue if it has been forwarded to all

relevant subscribers.

The RTI Agent can then use the following procedure to process its TAR

queue:

o Check if the data packet queue is empty.

o Check if all the Federate Agents have sent in TARs and are currently

in the Receive state.

o If the two conditions hold, sends TAG messages to all Federate

Agents, and flush the TAR queue.

Data packets transmitted by the RTI Agent while in the Process state

contribute to the active receive time of the subscribing Federate Agents in the

Receive state. If data packets are transmitted by multi-cast, the RTI Agent

only needs to send data packet once each time it enters the Process state. The

RTI Agent keeps track of the total number of data packets transmitted to all

Federate Agents during each round of processing. In each processing round,

idle time on each Federate Agent in the Receive state can accumulate based

on the difference between the number of data packets the Federate Agent

receives, and the total number sent by the RTI Agent in that round.

From Figure 6.2, the transition from the Process state to the Wait state is

triggered by a timeout. This timeout is determined by the time required for

the Coordinator Agent to complete the previous round of processing. For an

HLA distributed simulation, this is the time required for the RTI Agent to

transmit all data packets in the previous round of processing. The transition is

also triggered by a periodic timeout in order for the Coordinator Agent to

continuously cycle between the Wait state and the Process state while

monitoring the message queues.

Figure 6.2: Coordinator Agent State Chart

6.3.3 Packet Transmission Time

For each Node Agent, the number of packets transmitted in the Send state is

calculated based on the following message parameters from Table 6.1 as follows:

• Message Volume

• Message Bytes

• Batch Size

• Compression Ratio

• Payload Bytes

Number of Batches = ⌈
Message Volume

Batch Size
⌉

Bytes per Batch = ⌈
Message Bytes × Batch Size

Compression Ratio
⌉

Number of Packets = ⌈
Bytes per Batch

Payload Bytes
⌉ × Number of Batches

To calculate the transmission time for each data packet over the network, the

simplified cost model used by Thakur, Rabenseifner and Gropp (2005) is applied:

Packet Transmit Time = α + n × β

Where α, β, and n correspond to framework parameters from Table 6.1:

• α is the Network Latency parameter.

• β is the transfer time per byte, which is the inverse of the Bit Rate parameter.

• n is the number of bytes in the packet, which consists of Payload Bytes and

Header Bytes.

6.4 Framework Evaluation

6.4.1 Parameter Settings

In this section, the framework is evaluated by implementing a meta-simulation with

the AnyLogic simulation toolkit which follows the descriptions of components and

interactions discussed in the previous sections. As this concrete implementation of

the framework is based on the case studies from Chapter 5, the implemented

behaviour and interactions of the agents follows the HLA approach to distributed

simulation. The Coordinator Agent is labelled RTI Agent, and the Node Agent is

labelled Federate Agent. Table 6.3 provides a listing of general parameter settings

for the meta-simulation. These settings are derived from the characteristics of the

experiments conducted in Chapter 5.

Table 6.3: General parameter settings for meta-simulation

Level /

Component
Parameter Value Remarks

Global

Network Latency 15 µs

Derived from empirical

measurement of one-way

network latency using the qperf

tool.

Network Bit Rate 10 Gbps

Network type is 10 Gigabit

Ethernet. Confirmed empirically

with qperf tool.

Payload Bytes 536 bytes
Default Maximum Segment

Size (MSS) for TCP.

Header Bytes 40 bytes
Default TCP header (20 bytes)

+ default IP header (20 bytes).

Fixed Transmission

Cost
1 ms Determined by calibration.

Variable

Transmission Cost
25 µs Determined by calibration.

Federate

Agent
Message Bytes

Triangular (5, 7, 9)

bytes

Estimated from case study

experiments.

From Table 6.3, settings for the Fixed Transmission Cost and Variable Transmission

Cost parameters are obtained by calibrating the meta-simulation to the results

observed for the reduced scene experiment and the batch compression experiment in

Chapter 5. In order to perform this calibration, the remaining meta-simulation

parameters are set according to the values Table 6.4, which are based on the

experiments from Chapter 5. For example, Message Volume can be determined from

the scene partitioning and Computation Time per timestep is estimated from the

measured computation time in the original experiments.

Table 6.4: Parameter settings for reduced scene and compression experiment

Level /

Component
Parameter Reduced Scene

Reduced Scene + Batch

Compression

Global

Max Timestep

3264

This corresponds to a

simulated period of four

months plus a 15-day

warm-up period, using

hourly timesteps.

3264

Number of Nodes 2 2

Federate

Agent

Initialization Time Triangular (6, 7, 8) s Triangular (6, 7, 8) s

Computation Time

per Timestep
Triangular (1, 2, 3) ms Triangular (1, 2, 3) ms

Message Volume

per Timestep
Triangular (200, 270, 340) Triangular (200, 270, 340)

Batch Size 1 (no batching) 200

Compression Ratio 1 (no compression) 2

Update Period 1 (no skipped timesteps) 1 (no skipped timesteps)

6.4.2 Calibration Results

Using the parameter values from Table 6.3 and Table 6.4, the meta-simulation was

calibrated to find appropriate settings for the Fixed Transmission Cost and Variable

Transmission Cost parameters. The calibration was performed by parameter variation

over multiple runs for both scenarios. Table 6.5 presents the meta-simulation results

for the chosen values of Fixed Transmission Cost = 1ms and Variable Transmission

Cost = 25 µs. Compared to the original experiment, the difference in communication

time for the batch compression scenario is 1s. For the normal reduced scene

experiment, the difference from the original communication time is 59s.

Table 6.5: Calibration results for meta-simulation

Experiment
Actual Communication

Time (s)

Meta-Simulation

Communication Time (s)

Reduced Scene 199 125

Reduced Scene +

Batch Compression
27 28

6.4.3 Test Results

Further meta-simulation runs were conducted to test the calibrated parameters on the

simple scene and the complex scene experiments from Chapter 5. Table 6.6 provides

a listing of the scenario-specific parameters used, which are based on the

characteristics of the original experiments.

Table 6.6: Parameter settings for simple scene and complex scene

Level /

Component
Parameter Simple Scene Complex Scene

Global

Max Timestep

9120

This corresponds to a

simulated period of one

year plus a 15-day warm-

up period, using hourly

timesteps.

9120

Number of Nodes 2 4

Federate

Agent

Initialization Time Triangular (250, 300, 350) s
Triangular (0.14 × 106,

1 × 106, 1.33 × 106) s

Computation Time

per Timestep
Triangular (70, 80, 90) ms

Triangular (50, 150, 200)

ms

Message Volume

per Timestep

Triangular (2700, 3200,

3600)

Triangular (2900, 5900,

7700)

Level /

Component
Parameter Simple Scene Complex Scene

Batch Size 1 (no batching) 1 (no batching)

Compression Ratio 1 (no compression) 1 (no compression)

Update Period 1 (no skipped timesteps) 1 (no skipped timesteps)

Table 6.7 presents the results of meta-simulation runs for the simple scene and the

complex scene. In the case of the simple scene, the meta-simulation produces 61 min

of communication time compared to 70 min for the original case, showing a

difference of 9 min. For the complex scene, the meta-simulation produces 240 min

compared to the actual result of 198 min, which is a difference of 42 min.

Table 6.7: Meta-simulation results for simple scene and complex scene

Experiment
Actual Communication

Time (min)

Meta-Simulation

Communication Time (min)

Simple Scene 70 61

Complex Scene 198 240

Another set of meta-simulation runs was conducted for the simple scene experiments

for which the batch compression strategy was applied in Chapter 5. Table 6.8 lists

the parameter settings used for the meta-simulation, reflecting the conditions of the

original experiments. As discussed in Chapter 5, these experiments were run for four

months of simulation time. Also, message counts were boosted by allowing federates

to transmit attribute updates for all local surface objects, regardless of whether other

federates were interested in those updates or not.

Table 6.8: Parameter settings for simple scene with batch compression

Level /

Component
Parameter

Simple Scene

(Batch Size = 2)

Simple Scene

(Batch Size = 1000)

Global

Max Timestep 3264 3264

Number of Nodes 2 2

Federate

Agent

Initialization Time
Triangular (0.7 × 106,

0.75 × 106, 0.8 × 106) s

Triangular (0.7 × 106,

0.75 × 106, 0.8 × 106) s

Computation Time

per Timestep
Triangular (70, 80, 90) ms Triangular (70, 80, 90) ms

Message Volume

per Timestep
Triangular (18k, 19k, 20k) Triangular (18k, 19k, 20k)

Batch Size 2 1000

Compression Ratio 2 2

Update Period 1 1

Table 6.9 presents the results of meta-simulation runs for the simple scene with batch

compression. For a batch size of 2, the meta-simulation resulted in 63 min of

communication time compared to 42 min in the actual experiment, a difference of 21

min. For a batch size of 1000, the meta-simulation shows a communication time of

about 1.5 min compared to the actual result of 6 min, which is a difference of 4.5

min.

Table 6.9: Meta-simulation results for simple scene with batch compression

Experiment
Actual Communication

Time (min)

Meta-Simulation

Communication Time (min)

Simple Scene

(Batch Size = 2)
42 63

Simple Scene

(Batch Size = 1000)
6 1.5

The communication times predicted by the meta-simulation in the test runs from the

previous sections are not exact. Regardless of this, the results provide a good

indication of the performance expectation for large-scale simulations, based on

parameters calibrated by small-scale experiments. The experiments have also

demonstrated how a communication strategy applied to a small-scale experiment can

be tested for a large-scale experiment without the need to set up and execute the

large-scale scenario.

6.5 Summary

This chapter has provided details of a framework for evaluating performance trends

in distributed simulations. The proposed framework is based on the lessons learned

from development and experimentation with the Urban Simulation case studies from

Chapter 5. These have informed the components of the framework and their

interactions with one another, as well as the communication parameters and

strategies considered by the framework. An implementation of the framework can be

developed for specific distributed simulations in order to evaluate the effect that

various communication-related parameters can have on distributed performance. In

this chapter, this has been demonstrated by the implementation of a meta-simulation

which reproduces the components and interactions described by the framework. The

meta-simulation was calibrated with the reduced scene experiments from Chapter 5.

Using the calibrated parameters, further meta-simulation runs were conducted to

demonstrate the usefulness of the proposed approach for making performance

evaluations for distributed simulations.

7 CONCLUSION

7.1 Contribution

The work in this thesis has primarily been concerned with the development of a

framework for estimating the execution performance of distributed simulation

applications. The framework developed is a contribution to the research field of

Parallel and Distributed Simulation. It proposes a meta-simulation approach based on

the MAS paradigm to enable performance evaluation for distributed Urban

Simulation applications. The proposed framework focuses on aspects of the dynamic

relationship between communication and computation that can significantly

influence execution performance. It sets out the main components of the meta-

simulation and defines the interactions between components during distributed

execution. Using the approach proposed by the framework, custom meta-simulations

can be created for specific distributed simulation applications. The performance

estimates produced from such meta-simulations can support decisions to commit

time and computing resources to developing and executing large-scale distributed

simulations. Meta-simulations based on the framework can also be employed to

investigate the effect that various communication strategies and parameters can have

on the distributed simulation under investigation. Comparing the results of various

what-if scenarios can aid the search for optimal parameters and communication

strategies for the distributed simulation application under investigation. A

demonstration of the framework has been provided in Chapter 6 by the

implementation of a meta-simulation based on the experiments conducted in Chapter

5. The concrete meta-simulation serves to provide an example of the framework in

use and evaluate its usefulness for the purpose of estimating distributed simulation

performance. While the case studies chosen for the experiments in Chapter 5 were

developed in C++, the framework that has been presented is not specific to the

implementation details of the selected simulations. Simulations that are implemented

in different programming languages may exhibit variations in execution performance

which can be accounted for in a meta-simulation by adjusting the computation time

parameters to appropriate values for each simulation. Similarly, the framework is not

specific to the computing nodes or the network employed in the experiments, but can

account for differences between platforms by adjusting relevant parameters such as

network latency and bit rate.

7.2 Achievement of Aim and Objectives

The aim of the work in this thesis, as set out in Chapter 1, has been achieved by the

development of the framework described in Chapter 6. As stated in the aim, the

proposed framework considers communication related parameters and strategies that

can have significant impact on distributed simulation performance. The aim has been

fulfilled by completing the list of objectives that was set out in Chapter 1:

• Literature Review:

Chapters 2 has covered the relevant research literature on large-scale

distributed Urban Simulation.

Chapter 3 has provided justification for the methodology selected,

considering various approaches that have been applied in related work. It has

also proposed various communication strategies for consideration in the

framework.

Chapter 4 has explored the relationships between communication and other

relevant distributed performance considerations. It has also discussed existing

approaches to distributed performance estimation.

• Homogeneous Experimentation:

Chapter 3 has introduced the selected physical Building Energy Simulation

and provided justification for the selection as Case Study One.

Chapter 5 has discussed Case Study One in more detail. An HLA distributed

simulation has been developed for Case Study One and experiments have

been conducted, applying communication strategies previously discussed in

Chapter 3.

• Heterogeneous Experimentation:

Chapter 3 has introduced the Building Occupancy Simulation selected for

Case Study Two and provided justification for the choice.

Chapter 5 has detailed the development of a heterogeneous HLA distributed

simulation for Building Energy Simulation and Building Occupancy

Simulation. Differences in communication patterns between the Case Study

One and Case Study Two have been discussed. From these discussions, it has

been established that the homogeneous arrangement is a special case of the

heterogeneous arrangement, which has more variation in communication

patterns. Experiments have been conducted for Case Study Two, and results

have been discussed and compared with Case Study One.

• Framework Development:

Chapter 6 outlines a meta-simulation framework for estimating distributed

simulation performance, based on the lessons learned from development and

experimentation with the case studies in Chapter 5. The proposed framework

makes it possible to investigate the effects that various communication

parameters and strategies can have on distributed simulation performance.

Due to its reliance on a meta-simulation approach, the proposed framework

enables the process of selecting optimal parameters by comparing what-if

scenarios. The framework has been demonstrated using an implementation

based on experiments conducted in Chapter 5.

7.3 Limitations

The simplifications listed in the following sections are features of the framework

which constrain the scope within which it can be applied.

• Reliable Communication:

It is assumed that a reliable communication protocol such as TCP is used, and

that the network connection is 100% reliable. Therefore, the framework does not

account for dropped packets and the additional delays that could be introduced by

the need to re-transmit corrupted or lost packets.

• Network Congestion:

The potential impacts of network congestion on communication performance in

high traffic scenarios has been simplified. It is assumed that the input parameters

are adequate to represent the network performance under any load conditions.

• Communication Topology:

The network structure has been based on the general structure of the HLA,

assuming a star topology with a central RTI and peripheral Federates. Although

the HLA experiments conducted in Chapter 5 form the basis of the framework,

the framework can be adapted or extended to suit other communication

topologies.

• Barrier Synchronization:

The framework uses conservative barrier synchronization based on the

experiments from the case studies in Chapter 5. As other time synchronization

approaches have not been considered, the framework will need to be modified or

extended to account for the difference if other synchronization approaches are to

be employed.

• Output Accuracy:

The framework focuses on distributed performance dynamics related to

exchanging messages between nodes over the network. However, it does not

have a means to account for the loss in output accuracy that may result from the

use of lossy communication strategies such as those introduced in Chapter3.

• Communication Method:

The framework assumes that data exchange between computing nodes is

accomplished via message passing over the shared network. It does not cover

cases in which other communication methods are used, such as shared memory or

one-sided communication.

• Size of Experiments:

The case studies in Chapter 5 have experimented on building scenes containing

various numbers of buildings ranging from 50 to 3,000. However, experiments

have not been conducted at true city-scale with hundreds of thousands of

buildings to simulate.

• Static Interactions:

For both the homogeneous and heterogeneous case studies in Chapter 5, the

publish-subscribe relationships between federates do not change during

simulation execution. In other distributed simulations, this may not be the case

and message exchange relationships between computing nodes can change

dynamically as execution progresses. In such cases, dynamic load balancing to

transfer ownership of objects between federates may have important implications

for performance.

• Other Performance Bottlenecks

As discussed in Chapter 4, the performance of distributed simulations can be

influenced by other factors apart from communication. The proposed framework

focuses on communication and does not address bottlenecks that may arise as a

result of other factors.

7.4 Future Work

The framework proposed in this thesis has been developed based on the HLA

approach to distributed simulation. This is a practical consequence of the

methodology which was suitably employed for the experimental work conducted in

Chapter 5. Although this approach has been useful for the development of the

framework, some of the limitations listed in the previous section shed light on other

considerations which have not yet been fully accounted for by the framework. Future

work will involve gradually expanding the framework to consider these other factors

where it is deemed useful. The future expansion will also enable the framework to

cover other distributed simulation approaches apart from the HLA, such as the

alternatives discussed in Chapter 3. The MAS paradigm, which is essential to the

framework, has not been fully exploited for the case studies examined in this work,

especially with regard to “intelligent” agents. This concept can potentially be useful

in future expansions of the framework. For example, co-operating “intelligent nodes”

or an “intelligent co-ordinator” can be introduced in cases where interaction

relationships are not static and alternative dynamic load balancing strategies need to

be tested. In this case the “intelligent nodes” and “intelligent co-ordinator” can co-

operate to dynamically shift workloads during distributed execution. In summary,

future work will include expansions to reduce limitations, enrich the framework and

enable the creation of useful tools for evaluating the execution performance of large-

scale distributed simulations.

REFERENCES

Alexandrov, A., Ionescu, M. F., Schauser, K. E. and Scheiman, C. (1995) ‘LogGP:

Incorporating Long Messages into the LogP Model’, in Proceedings of the

seventh annual ACM symposium on Parallel algorithms and architectures -

SPAA ’95. New York, New York, USA: ACM Press, pp. 95–105. doi:

10.1145/215399.215427.

Amdahl, G. M. (1967) ‘Validity of the single processor approach to achieving large

scale computing capabilities’, in Proceedings of the April 18-20, 1967, spring

joint computer conference on - AFIPS ’67 (Spring). doi:

10.1145/1465482.1465560.

Anagnostou, A., Nouman, A. and Taylor, S. J. E. (2013) ‘Distributed hybrid agent-

based discrete event emergency medical services simulation’, Proceedings of

the 2013 Winter Simulation Conference - Simulation: Making Decisions in a

Complex World, WSC 2013, pp. 1625–1636. doi: 10.1109/WSC.2013.6721545.

Antelmi, A., Cordasco, G., Spagnuolo, C. and Vicidomini, L. (2015) ‘On evaluating

graph partitioning algorithms for distributed agent based models on networks’,

in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). doi: 10.1007/978-3-

319-27308-2_30.

Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson, O. and Rowstron, A.

(2013) ‘Scale-up vs scale-out for hadoop: Time to rethink?’, Proceedings of the

4th Annual Symposium on Cloud Computing, SoCC 2013. doi:

10.1145/2523616.2523629.

Awais, M. U., Palensky, P., Elsheikh, A., Widl, E. and Matthias, S. (2013) ‘The High

Level Architecture RTI as a master to the functional mock-up interface

components’, 2013 International Conference on Computing, Networking and

Communications, ICNC 2013, pp. 315–320. doi:

10.1109/ICCNC.2013.6504102.

Barnes, P. D., Carothers, C. D., Jefferson, D. R. and LaPre, J. M. (2013) ‘Warp

Speed: Executing Time Warp on 1,966,080 Cores’, Proceedings of the 2013

ACM SIGSIM conference on Principles of advanced discrete simulation -

SIGSIM-PADS ’13, p. 327. doi: 10.1145/2486092.2486134.

Bauer, D. W., Carothers, C. D. and Holder, A. (2009) ‘Scalable time warp on blue

gene supercomputers’, Proceedings - Workshop on Principles of Advanced and

Distributed Simulation, PADS, pp. 35–44. doi: 10.1109/PADS.2009.21.

Bell, C., Bonachea, D., Cote, Y., Duell, J., Hargrove, P., Husbands, P., Iancu, C.,

Welcome, M. and Yelick, K. (2003) ‘An evaluation of current high-

performance networks’, Proceedings - International Parallel and Distributed

Processing Symposium, IPDPS 2003, 00(C). doi:

10.1109/IPDPS.2003.1213106.

Birkin, M. and Wu, B. (2012) ‘A Review of Microsimulation and Hybrid Agent-

Based Approaches’, in Agent-Based Models of Geographical Systems.

Dordrecht: Springer Netherlands, pp. 51–68. doi: 10.1007/978-90-481-8927-

4_3.

Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauss, C., Elmqvist, H.,

Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson,

H., Peetz, J.-V. and Wolf, S. (2011) ‘The Functional Mockup Interface for Tool

independent Exchange of Simulation Models’, in Proceedings from the 8th

International Modelica Conference, Technical Univeristy, Dresden, Germany.

Dresden, Germany: Linköping University Electronic Press, pp. 105–114. doi:

10.3384/ecp11063105.

Borshchev, A. and Filippov, A. (2004) ‘From System Dynamics and Discrete Event

to Practical Agent Based Modeling: Reasons, Techniques, Tools’, 22nd

International Conference of the System Dynamics Society, 25-29 July 2004, p.

45.

Bourguignon, F. and Spadaro, A. (2006) ‘Microsimulation as a tool for evaluating

redistribution policies’, Journal of Economic Inequality, 4(1), pp. 77–106. doi:

10.1007/s10888-005-9012-6.

Bryant, R. E. (1977) Simulation of Packet Communication Architecture Computer

Systems, Tr-188.

Buchholz, M., Bungartz, H. J. and Vrabec, J. (2011) ‘Software design for a highly

parallel molecular dynamics simulation framework in chemical engineering’,

Journal of Computational Science, 2(2), pp. 124–129. doi:

10.1016/j.jocs.2011.01.009.

Buyya, R. and Murshed, M. (2002) ‘GridSim: A toolkit for the modeling and

simulation of distributed resource management and scheduling for grid

computing’, Concurrency and Computation: Practice and Experience, 14(13–

15), pp. 1175–1220. doi: 10.1002/cpe.710.

Carothers, C. D., Bauer, D. and Pearce, S. (2002) ‘ROSS: A high-performance, low-

memory, modular time warp system’, Journal of Parallel and Distributed

Computing, 62(11), pp. 1648–1669. doi: 10.1016/S0743-7315(02)00004-7.

Carothers, C. D., Perumalla, K. S. and Fujimoto, R. M. (1999) ‘Efficient Optimistic

Parallel Simulations Using Reverse Computation’, ACM Transactions on

Modeling and Computer Simulation, 9(3), pp. 224–253.

Carothers, C. and Perumalla, K. S. (2010) ‘On deciding between conservative and

optimistic approaches on massively parallel platforms’, in Proceedings of the

2010 Winter Simulation Conference. IEEE, pp. 678–687. doi:

10.1109/WSC.2010.5679119.

Chandy, M. K. and Misra, J. (1979) ‘Distributed Simulation: A Case Study in Design

and Verification of Distributed Programs’, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, 5(5), pp. 440–452.

Chandy, M. K. and Misra, J. (1981) ‘Asynchronous Distributed Simulation via a

sequence of Parallel computations’, Communications of the ACM, 24(11), pp.

198–20. doi: 10.1016/0010-4655(86)90224-9.

Chapman, J. (2018) No-MASS Repository, Github repository. Available at:

https://github.com/jacoblchapman/No-MASS (Accessed: 4 September 2021).

Chapman, J., Siebers, P.-O. and Robinson, D. (2018) ‘On the multi-agent stochastic

simulation of occupants in buildings’, Journal of Building Performance

Simulation, 11(5), pp. 604–621. doi: 10.1080/19401493.2017.1417483.

Chen, D., Wang, L., Zomaya, A. Y., Dou, M. G., Chen, J., Deng, Z. and Hariri, S.

(2015) ‘Parallel simulation of complex evacuation scenarios with adaptive agent

models’, IEEE Transactions on Parallel and Distributed Systems, 26(3), pp.

847–857. doi: 10.1109/TPDS.2014.2311805.

CityGML (2020) CityGML Standard. Available at: http://www.citygml.org/

(Accessed: 19 October 2020).

Coakley, S., Richmond, P., Gheorghe, M., Chin, S., Worth, D., Holcombe, M. and

Greenough, C. (2016) ‘Large-Scale Simulations with FLAME’, Intelligent

Agents in Data-intensive Computing, 14, pp. 1–20. doi: 10.1007/978-3-319-

23742-8.

Collier, N. and North, M. (2012) ‘Parallel agent-based simulation with Repast for

High Performance Computing’, Simulation, 89(November), pp. 1215–1235. doi:

10.1177/0037549712462620.

Collier, N., Ozik, J. and Macal, C. M. (2015) ‘Large-scale agent-based modeling

with repast HPC: A case study in parallelizing an agent-based model’, Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 9523, pp. 454–465. doi:

10.1007/978-3-319-27308-2_37.

Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V. and Spagnuolo,

C. (2013) ‘Bringing together efficiency and effectiveness in distributed

simulations: The experience with D-Mason’, Simulation, 89(10), pp. 1236–

1253. doi: 10.1177/0037549713489594.

Cordasco, G., Spagnuolo, C. and Scarano, V. (2017) ‘Work partitioning on parallel

and distributed agent-based simulation’, in Proceedings - 2017 IEEE 31st

International Parallel and Distributed Processing Symposium Workshops,

IPDPSW 2017. doi: 10.1109/IPDPSW.2017.87.

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J.,

Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., Witte, M. J. and

Glazer, J. (2001) EnergyPlus: Creating a new-generation building energy

simulation program, Energy and Buildings. doi: 10.1016/S0378-

7788(00)00114-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Erik Schauser, K., Santos, E.,

Subramonian, R. and Von Eicken, T. (1993) ‘LogP: Towards a realistic model

of parallel computation’, Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPOPP, Part F1296, pp. 1–

12. doi: 10.1145/155332.155333.

Das, S., Fujimoto, R. M., Panesar, K., Allison, D. and Hybinette, M. (1994) ‘GTW: a

time warp system for shared memory multiprocessors’, Proceedings of Winter

Simulation Conference, pp. 1332–1339.

Dementiev, R., Kettner, L. and Sanders, P. (2008) ‘STXXL: standard template

library for XXL data sets’, Software: Practice and Experience, 38(6), pp. 589–

637. doi: 10.1002/spe.844.

Epstein, J. M. (2008) ‘Why Model?’, Jasss, 11(4), p. 12. doi:

10.1080/01969720490426803.

Epstein, J. M. and Axtell, R. (1996) Growing artificial societies: social science from

the bottom up.

Eurostat (2019) Energy, Transport and environment statistics. 2019 edition. doi:

10.2785/660147.

Ferenci, S. L., Perumalla, K. S. and Fujimoto, R. M. (2000) ‘An Approach for

federating parallel simulators’, Proceedings of the Workshop on Parallel and

Distributed Simulation, PADS, pp. 63–70. doi: 10.1109/pads.2000.847145.

Ferscha, A. and Tripathi, S. K. (1998) Parallel and distributed simulation of discrete

event systems. doi: 10.1.1.19.6226.

Flores-Contreras, J., Duran-Limon, H. A., Chavoya, A. and Almanza-Ruiz, S. H.

(2020) Performance prediction of parallel applications: a systematic literature

review, Journal of Supercomputing. Springer US. doi: 10.1007/s11227-020-

03417-5.

Forrester, J. (1970) ‘Urban dynamics’, IMR; Industrial Management Review (pre-

1986).

Forrester, J. W. (1968) ‘Industrial Dynamics—A Response to Ansoff and Slevin’,

Management Science, 14(9), pp. 601–618. doi: 10.1287/mnsc.14.9.601.

Fortune, S. and Wyllie, J. (1978) ‘Parallelism in random access machines’, in

Proceedings of the tenth annual ACM symposium on Theory of computing -

STOC ’78. New York, New York, USA: ACM Press, pp. 114–118. doi:

10.1145/800133.804339.

Foucquier, A., Robert, S., Suard, F., Stéphan, L. and Jay, A. (2013) ‘State of the art

in building modelling and energy performances prediction: A review’,

Renewable and Sustainable Energy Reviews, 23, pp. 272–288. doi:

10.1016/J.RSER.2013.03.004.

Fujimoto, R. M. (1990a) ‘Parallel discrete event simulation’, Commun. ACM, 33, pp.

30–53. doi: 10.1145/84537.84545.

Fujimoto, R. M. (1990b) ‘Performance of time warp under synthetic workloads’,

Simulation Series, pp. 23–28.

Fujimoto, R. M. (1998) ‘Time Management in the High Level Architecture’,

Scenario, 0280(6), pp. 388–400. doi: 10.1177/003754979807100604.

Fujimoto, R. M. (2000) Parallel and distributed simulation systems. New York:

Wiley.

Fujimoto, R. M. (2015) ‘Parallel and distributed simulation’, in 2015 Winter

Simulation Conference (WSC). IEEE, pp. 45–59. doi:

10.1109/WSC.2015.7408152.

Fujimoto, R. M. (2016) ‘Research Challenges in Parallel and Distributed

Simulation’, ACM Trans. Model. Comput. Simul. Article, 26(29). doi:

10.1145/2866577.

Fujimoto, R. M. and Hoare, P. (1998) ‘HLA RTI Performance in High Speed LAN

Environments’, in Proceedings of the Fall Simulation Interoperability

Workshop.

Fujimoto, R. M., Perumalla, K., Park, A., Wu, H., Ammar, M. H. and Riley, G. F.

(2003) ‘Large-scale network simulation: How big? How fast?’, in Proceedings -

IEEE Computer Society’s Annual International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunications Systems,

MASCOTS, pp. 116–123. doi: 10.1109/MASCOT.2003.1240649.

Georgia Tech (2001) Federated Simulations Development Kit. Available at:

https://www.cc.gatech.edu/computing/pads/fdk.html (Accessed: 4 September

2021).

De Grande, R. E. and Boukerche, A. (2011) ‘Dynamic balancing of communication

and computation load for HLA-based simulations on large-scale distributed

systems’, Journal of Parallel and Distributed Computing. doi:

10.1016/j.jpdc.2010.04.001.

Gropp, W., Gropp, W. D., Lusk, E., Skjellum, A. and Lusk, A. D. F. E. E. (1999)

Using MPI: portable parallel programming with the message-passing interface.

MIT press.

Gustafson, J. L. (1988) ‘Reevaluating amdahl’s law’, 31(5), pp. 532–533.

Gutlein, M., Baron, W., Renner, C. and Djanatliev, A. (2020) ‘Performance

Evaluation of HLA RTI Implementations’, Proceedings of the 2020 IEEE/ACM

24th International Symposium on Distributed Simulation and Real Time

Applications, DS-RT 2020. doi: 10.1109/DS-RT50469.2020.9213641.

Hambrusch, S. E., Hameed, F. and Khokhar, A. A. (1995) ‘Communication

operations on coarse-grained mesh architectures’, Parallel Computing, 21(5),

pp. 731–751. doi: 10.1016/0167-8191(94)00110-V.

Hapner, M., Burridge, R., Sharma, R., Fialli, J. and Stout, K. (2002) ‘Java Message

Service’, Sun Microsystems Inc., Santa Clara, CA, 9.

Heath, B. and Hill, R. (2010) ‘Some insights into the emergence of agent-based

modelling’, Journal of Simulation, 4, pp. 163–16916. doi: 10.1057/jos.2010.16.

Helbing, D., Hennecke, A., Shvetsov, V. and Treiber, M. (2002) ‘Micro- and macro-

simulation of freeway traffic’, Mathematical and Computer Modelling, 35(5–6),

pp. 517–547. doi: 10.1016/S0895-7177(02)80019-X.

Henderson, T. R. and Riley, G. F. (2006) ‘Network Simulations with the ns-3

Simulator’, Proc. Sigcomm, p. 527.

Ho, N. M., Thoai, N. and Wong, W. F. (2015) ‘Multi-agent simulation on multiple

GPUs’, Simulation Modelling Practice and Theory. doi:

10.1016/j.simpat.2015.06.008.

Hodson, D. D. and Baldwin, R. O. (2009) ‘Characterizing, Measuring, and

Validating the Temporal Consistency of Live--Virtual--Constructive

Environments’, Simulation, 85(10), pp. 671–682. doi:

10.1177/0037549709340732.

Hodson, D. D. and Hill, R. R. (2014) ‘The art and science of live, virtual, and

constructive simulation for test and analysis’, Journal of Defense Modeling and

Simulation: Applications, Methodology Technology, 11(2), pp. 77–89. doi:

10.1177/1548512913506620.

Hofer, R. C. and Loper, M. L. (1995) ‘DIS Today’, Proceedings of the IEEE, 83(8),

pp. 1124–1137. doi: 10.1109/5.400453.

Hong, T. (LBNL), Chen, Y. (LBNL), Lee, S. H. (LBNL), Piette, M. P. (LBNL),

Chen, Y. (LBNL) and Piette, M. P. (LBNL) (2016) ‘CityBES: A web-based

platform to support city-scale building energy efficiency’, 5th International

Urban Computing Workshop, At San Francisco, (August), p. 10.

Horni, A., Nagel, K. and Axhausen, K. W. (2016) The Multi-Agent Transport

Simulation MATSim. United Kingdom: Ubiquity Press. doi: 10.5334/baw.

Huang, Q., Huang, Z., Werstein, P. and Purvis, M. (2008) ‘GPU as a general purpose

computing resource’, in Parallel and Distributed Computing, Applications and

Technologies, PDCAT Proceedings. doi: 10.1109/PDCAT.2008.38.

IEEE (2010a) ‘IEEE Std 1516-2010, High Level Architecture (HLA) Framework and

Rules’. doi: 10.1109/IEEESTD.2010.5553440.

IEEE (2010b) ‘IEEE Std 1516.1-2010, High Level Architecture (HLA) Federate

Interface Specification’. doi: 10.1109/IEEESTD.2010.5557728.

IEEE (2010c) ‘IEEE Std 1516.2-2010, High Level Architecture (HLA) Object Model

Template (OMT) Specification’. doi: 10.1109/IEEESTD.2010.5557731.

Imgrund, M. and Arth, A. (2017) ‘Rambrain - a library for virtually extending

physical memory’, SoftwareX. doi: 10.1016/j.softx.2017.07.004.

Improbable (2020) Improbable SpatialOS. Available at: https://improbable.io/

(Accessed: 4 September 2021).

Ino, F., Fujimoto, N. and Hagihara, K. (2001) ‘LogGPS: A parallel computational

model for synchronization analysis’, SIGPLAN Notices (ACM Special Interest

Group on Programming Languages), 36(7), pp. 133–142. doi:

10.1145/568014.379592.

Jafer, S., Liu, Q. and Wainer, G. (2013) ‘Synchronization methods in parallel and

distributed discrete-event simulation’, Simulation Modelling Practice and

Theory, 30, pp. 54–73. doi: 10.1016/j.simpat.2012.08.003.

Jain, A., Robinson, D., Dilkina, B. and Fujimoto, R. (2016) ‘An approach to integrate

inter-dependent simulations using HLA with applications to sustainable urban

development’, in 2016 Winter Simulation Conference (WSC). IEEE, pp. 1218–

1229. doi: 10.1109/WSC.2016.7822178.

Jefferson, D. (1990) ‘Virtual Time II: Storage Management in Conservative and

Optimistic Systems’, Proceedings of the 9th Annual ACM Symposium on

Principles of Distributed Computing, pp. 75–89. doi: 10.1145/93385.93403.

Jefferson, D., Beckman, B., Wieland, F., Blume, L., Di Loreto, M., Hontalas, P.,

Laroche, P., Sturdevant, K., Tupman, J., Warren, V., Wedel, J., Younger, H. and

Bellenot, S. (1987) ‘Distributed simulation and the time warp operating system’,

Proceedings of the 11th ACM Symposium on Operating Systems Principles,

SOSP 1987, pp. 77–93. doi: 10.1145/41457.37508.

Jefferson, D. R. (1985) ‘Virtual time’, ACM Transactions on Programming

Languages and Systems, 7(3), pp. 404–425. doi: 10.1145/3916.3988.

Jefferson, D. R. and Sowizral, H. (1982) Fast Concurrent Simulation Using the Time

Warp Mechanism. Part I. Local Control. RAND CORP SANTA MONICA CA.

JGroups (2020) JGroups: a toolkit for reliable multicast communication. Available

at: http://www.jgroups.org/ (Accessed: 4 September 2021).

Johari, F., Peronato, G., Sadeghian, P., Zhao, X. and Widén, J. (2020) ‘Urban

building energy modeling: State of the art and future prospects’, Renewable and

Sustainable Energy Reviews, 128(September 2019). doi:

10.1016/j.rser.2020.109902.

Karp, A. H. and Flatt, H. P. (1990) ‘Measuring Parallel Processor Performance’,

Communications of the ACM, 33(5), pp. 539–543. doi: 10.1145/78607.78614.

Kirkwood, C. (1998) ‘System dynamics methods’, College of Business Arizona State

University.

Ko, S. and Han, W.-S. (2018) ‘TurboGraph++’, pp. 395–410. doi:

10.1145/3183713.3196915.

Komann, M., Kauhaus, C. and Fey, D. (2005) ‘Calculation of Single-File Diffusion

Using Grid-Enabled Parallel Generic Cellular Automata Simulation’, in

European Parallel Virtual Machine/Message Passing Interface Users’ Group

Meeting, pp. 528–535. doi: 10.1007/11557265_67.

Kuhl, F., Weatherly, R. and Dahmann, J. (1999) ‘Creating computer simulation

systems: an introduction to the high level architecture’.

Kumar, D. (1992) ‘Systems with Low Distributed Simulation Overhead’, IEEE

Transactions on Parallel and Distributed Systems, 3(2), pp. 155–165. doi:

10.1109/71.127257.

Kyrola, A., Blelloch, G. and Guestrin, C. (2012) ‘GraphChi’, USENIX Symposium on

operating systems design and implementation, 10(31), pp. 31–46.

Law, A. M. and Kelton, W. D. (1984) ‘Confidence Intervals for Steady-State

Simulations: I. a Survey of Fixed Sample Size Procedures.’, Operations

Research, 32(6), pp. 1221–1239. doi: 10.1287/opre.32.6.1221.

Law, A. M. and Kelton, W. D. (2000) Simulation Modelling and Analysis. McGraw-

Hill.

Lees, M. H., Logan, B., Oguara, T. and Theodoropoulos, G. (2003) ‘Simulating

Agent-Based Systems with HLA: The case of SIM_AGENT -- Part II’, 2003

European Simulation Interoperability Workshop.

Lemeire, J. (2001) ‘Performance factors in parallel discrete event simulation’, in

Proc. of the 15th European Simulation Multiconference. Prague.

Lin, K.-C., Blair, J. L. and Woodyard, J. M. (1997) ‘Study on Dead-Reckoning

Translation in High-Level Architecture’, SIMULATION, 69(2), pp. 103–109.

doi: 10.1177/003754979706900203.

Lin, Y.-B. and Edward, D. L. (1991) ‘A Study of Time Warp Rollback Mechanisms’,

ACM Transactions on Modeling and Computer Simulation (TOMACS), 1(1), pp.

51–72. doi: 10.1145/102810.102813.

Lin, Y. C. and Snyder, L. (2009) Principles of Parallel Programming. Pearson.

Lubachevsky, B., Schwartz, A. and Weiss, A. (1991) ‘An Analysis of Rollback-

Based Simulation’, ACM Transactions on Modeling and Computer Simulation

(TOMACS), 1(2), pp. 154–193. doi: 10.1145/116890.116912.

Lysenko, M. and D ’Souza, R. M. (2008) ‘A Framework for Megascale Agent Based

Model Simulations on Graphics Processing Units’, Journal of Artificial

Societies and Social Simulation, 11(4).

Macal, C. and North, M. (2015) ‘Introductory tutorial: Agent-based modeling and

simulation’, in Proceedings - Winter Simulation Conference. doi:

10.1109/WSC.2014.7019874.

Malinga, L. and Le Roux, W. H. (2009) ‘HLA RTI performance evaluation’, SISO

European Simulation Interoperability Workshop 2009, EURO SIW 2009, pp.

37–42.

Menassa, C. C., Kamat, V. R., Lee, S., Azar, E., Feng, C. and Anderson, K. (2014)

‘Conceptual Framework to Optimize Building Energy Consumption by

Coupling Distributed Energy Simulation and Occupancy Models’, Journal of

Computing in Civil Engineering, 28(1), pp. 50–62. doi:

10.1061/(ASCE)CP.1943-5487.0000299.

Meyer, R. (2014) ‘Event-Driven Multi-agent Simulation’, in International Workshop

on Multi-Agent Systems and Agent-Based Simulation. Springer. doi:

10.1007/978-3-319-14627-0.

Milgram, P. and Kishino, F. (1994) ‘A taxonomy of mixed reality visual displays’,

IEICE Transactions on Information Systems, 77(12), pp. 1321–1329.

Miller, D. C. and Thorpe, J. A. (1995) ‘SIMNET: the advent of simulator

networking’, Proceedings of the IEEE, 83(8), pp. 1114–1123. doi:

10.1109/5.400452.

Minson, R. and Theodoropoulos, G. (2008) ‘Distributing RePast agent‐based

simulations with HLA’, Concurrency and Computation: Practice and

Experience, 20(10), pp. 1225–1256. doi: 10.1002/cpe.1280.

Misra, J. (1986) ‘Distributed Discrete-event Simulation’, ACM Comput. Surv., 18(1),

pp. 39–65. doi: 10.1145/6462.6485.

Morecroft, J. and Robinson, S. (2005) ‘Explaining Puzzling Dynamics: Comparing

the Use of System Dynamics and Discrete- Event Simulation’, Proceedings of

the 23rd International Conference of the System Dynamics Society, pp. 1–32.

Mostaccio, D., Suppi, R. and Luque, E. (2005) ‘Simulation of Ecologic Systems

Using MPI’, in European Parallel Virtual Machine/Message Passing Interface

Users’ Group Meeting, pp. 449–456. doi: 10.1007/11557265_57.

Nagel, K. and Schreckenberg, M. (1992) ‘A cellular automaton model for freeway

traffic’, J. Phys. I France, 2, pp. 2221–2229. doi: 10.1051/jp1:1992277.

Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty, T.,

Batteh, J., Tummescheit, H. and Sureshkumar, C. (2014) ‘Model-Based

Integration Platform for FMI Co-Simulation and Heterogeneous Simulations of

Cyber-Physical Systems’, Proceedings of the 10th International Modelica

Conference, March 10-12, 2014, Lund, Sweden, 96, pp. 235–245. doi:

10.3384/ecp14096235.

Nicol, D. M. (1993) ‘The Cost of Conservative Synchronization in Parallel Discrete

Event Simulations’, Journal of the ACM (JACM), 40(2), pp. 304–333. doi:

10.1145/151261.151266.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M. and

Sydelko, P. (2013) ‘Complex adaptive systems modeling with Repast

Simphony’. doi: 10.1186/2194-3206-1-3.

Nouvel, R., Brassel, K.-H., Bruse, M., Duminil, E., Coors, V., Eicker, U. and

Robinson, D. (2015) SIMSTADT, a New Workflow-driven Urban Energy

Simulation Platform for CityGML City Models, CISBAT International

conference. doi: 10.5075/epfl-cisbat2015-889-894.

Oguara, T., Theodoropolous, G., Dan, C., Logan, B. and Lees, M. (2007) PDES-

MAS: A Unifying Framework for the Distributed Simulation of Multi-Agent

Systems.

Orcutt, G. H. (1957) ‘A new type of socio-economic system’, Review of Economics

and Statistics, 39(2), pp. 116–123. doi: 10.2307/1928528.

Ouro, P., Fraga, B., Lopez-Novoa, U. and Stoesser, T. (2019) ‘Scalability of an

Eulerian-Lagrangian large-eddy simulation solver with hybrid MPI/OpenMP

parallelisation’, Computers and Fluids, 179, pp. 123–136. doi:

10.1016/j.compfluid.2018.10.013.

Owens, J. D., Luebke, D., Govindraju, N., Harris, M., Kruger, J., Lefohn, A. E. and

Purcell, T. J. (2006) ‘A Survey of General Purpose Computation on Graphics

Hardware’, Computer Graphics Forum, 26(1), pp. 80–113. doi: 10.1111/j.1467-

8659.2007.01012.x.

Park, E., Eidenbenz, S., Santhi, N., Chapuis, G. and Settlemyer, B. (2016)

‘Parameterized benchmarking of parallel discrete event simulation systems:

Communication, computation, and memory’, in Proceedings - Winter

Simulation Conference. IEEE, pp. 2836–2847. doi:

10.1109/WSC.2015.7408388.

Parry, H. R. and Bithell, M. (2012) ‘Large Scale Agent-Based Modelling: A Review

and Guidelines for Model Scaling’, in Agent-Based Models of Geographical

Systems. Dordrecht: Springer Netherlands, pp. 271–308. doi: 10.1007/978-90-

481-8927-4_14.

Perumalla, K. S. (2005) ‘µsik — A Micro-Kernel for Parallel/Distributed Simulation

Systems’, in Workshop on Principles of Advanced and Distributed Simulation

(PADS’05). IEEE, pp. 59–68. doi: 10.1109/PADS.2005.1.

Perumalla, K. S. (2006) ‘Parallel and distributed simulation: Traditional techniques

and recent advances’, in Proceedings - Winter Simulation Conference. doi:

10.1109/WSC.2006.323041.

Perumalla, K. S. (2007) ‘Scaling time warp-based discrete event execution to 10^4

processors on a Blue Gene supercomputer’, Proceedings of the 4th international

conference on Computing frontiers - CF ’07, p. 69. doi:

10.1145/1242531.1242543.

Peschlow, P. and Martini, P. (2007) ‘Efficient Analysis of SimultaneousEv ents in

Distributed Simulation’, in Proceedings - IEEE International Symposium on

Distributed Simulation and Real-Time Applications, DS-RT, pp. 244–251. doi:

10.1109/DS-RT.2007.21.

Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M. and Gewaltig, M.-O.

(2007) ‘Efficient Parallel Simulation of Large-Scale Neuronal Networks on

Clusters of Multiprocessor Computers’, in European Conference on Parallel

Processing, pp. 672–681. doi: 10.1007/978-3-540-74466-5_71.

Ponnusamy, R., Choudhary, A. and Fox, G. (1992) ‘Communication overhead on the

CM5: an experimental performance evaluation’, in [Proceedings 1992] The

Fourth Symposium on the Frontiers of Massively Parallel Computation. IEEE

Comput. Soc. Press, pp. 108–115. doi: 10.1109/FMPC.1992.234899.

Portico (2020) Portico Repository. Available at: https://github.com/openlvc/portico

(Accessed: 14 October 2020).

Rajkumar, R., Lee, I., Sha, L. and Stankovic, J. (2010) ‘Cyber-physical systems: The

next computing revolution’, Proceedings - Design Automation Conference, pp.

731–736. doi: 10.1145/1837274.1837461.

Reinhart, C. F. and Davila, C. C. (2016) ‘Urban building energy modeling - A review

of a nascent field’, Building and Environment, 97, pp. 196–202. doi:

10.1016/j.buildenv.2015.12.001.

Reynolds, C. W. (1987) ‘Flocks, herds and schools: A distributed behavioral model’,

ACM SIGGRAPH Computer Graphics, 21(4), pp. 25–34. doi:

10.1145/37402.37406.

Richmond, P. (2015) ‘Complex Systems Simulation with CUDA’.

Richmond, P. and Chimeh, M. K. (2017) ‘Flame GPU: Complex system simulation

framework’, in Proceedings - 2017 International Conference on High

Performance Computing and Simulation, HPCS 2017. doi:

10.1109/HPCS.2017.12.

Righter, R. and Walrand, J. C. (1989) ‘Distributed simulation of discrete event

systems’, Proceedings of the IEEE, 77(1), pp. 99–113. doi: 10.1109/5.21073.

Robinson, D. (2012) ‘The Urban Radiant Environment’, in Computer Modelling for

Sustainable Urban Design. Routledge, pp. 35–74.

Robinson, S. (2014) Simulation: the practice of model development and use.

Palgrave Macmillan.

Rosser, J. F., Long, G., Zakhary, S., Boyd, D. S., Mao, Y. and Robinson, D. (2019)

‘Modelling Urban Housing Stocks for Building Energy Simulation using

CityGML EnergyADE’, ISPRS International Journal of Geo-Information, 8(4),

p. 163. doi: 10.3390/ijgi8040163.

Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2016) ‘A survey on parallel

and distributed multi-agent systems for high performance computing

simulations’, Computer Science Review, 22(2), pp. 27–46. doi:

10.1016/j.cosrev.2016.08.001.

Schelling, T. C. (1971) ‘Dynamic models of segregation†’, The Journal of

Mathematical Sociology, 1(2), pp. 143–186. doi:

10.1080/0022250X.1971.9989794.

Schriber, T. J. (2009) ‘Simulation for the masses: Spreadsheet-based Monte Carlo

simulation’, in Proceedings of the 2009 Winter Simulation Conference (WSC).

IEEE, pp. 1–11. doi: 10.1109/WSC.2009.5429310.

Schriber, T. J., Brunner, D. T. and Smith, J. S. (2017) ‘Inside discrete-event

simulation software: How it works and why it matters’, in 2017 Winter

Simulation Conference (WSC). IEEE, pp. 735–749. doi:

10.1109/WSC.2017.8247828.

Siebers, P.-O., Macal, C. M., Garnett, J., Buxton, D. and Pidd, M. (2010) ‘Discrete-

event simulation is dead, long live agent-based simulation!’, Journal of

Simulation, 4(3), pp. 204–210. doi: 10.1057/jos.2010.14.

Skillicorn, D. B. and Talia, D. (1998) ‘Models and Languages for Parallel

Computation’, ACM Computing Surveys, 30(2), pp. 123–169. doi:

10.1145/280277.280278.

Snyder, L. (1986) ‘Type Architectures, Shared Memory and the Corollary of Modest

Potential’, pp. 289–317.

Somani, A. K. and Sansano, A. M. (1997) Minimizing Overhead in Parallel

Algorithms Through Overlapping Communication/Computation. Institute for

Computer Applications in Science and Engineering HAMPTON VA.

Strassburger, S., Schulze, T. and Fujimoto, R. M. (2008) ‘Future Trends in

Distributed Simulation and Distributed Virtual Environments: Results of a Peer

Study’, Proceedings of the 2008 Winter Simulation Conference, pp. 777–785.

doi: 10.1109/WSC.2008.4736140.

Strumpen, V. and Casavant, T. L. (1994) ‘Exploiting communication latency hiding

for parallel network computing: model and analysis’, Proceedings of the

Internatoinal Conference on Parallel and Distributed Systems - ICPADS, pp.

622–627. doi: 10.1109/icpads.1994.590409.

Sun, X. H. and Ni, L. M. (1993) ‘Scalable Problems and Memory-Bounded

Speedup’, Journal of Parallel and Distributed Computing, 19(1), pp. 27–37.

doi: 10.1006/jpdc.1993.1087.

Sutter, H. (2005) The Free Lunch is Over: A Fundamental Turn Toward

Concurrency in Software.

Tan, G. and Lim, K. C. (2004) ‘Load Distribution Services in HLA’, in Eighth IEEE

International Symposium on Distributed Simulation and Real-Time

Applications. IEEE, pp. 133–141. doi: 10.1109/DS-RT.2004.27.

Tay, S. C. and Teo, Y. M. (2001) ‘Performance optimization of throttled time-warp

simulation’, Proceedings. 34th Annual Simulation Symposium, pp. 211–218.

doi: 10.1109/SIMSYM.2001.922134.

Taylor, S. J. E. (2019) ‘Distributed simulation: state-of-the-art and potential for

operational research’, European Journal of Operational Research, 273(1), pp.

1–19. doi: 10.1016/j.ejor.2018.04.032.

Thakur, R., Rabenseifner, R. and Gropp, W. (2005) ‘Optimization of collective

communication operations in MPICH’, International Journal of High

Performance Computing Applications, 19(1), pp. 49–66. doi:

10.1177/1094342005051521.

Theodoropoulos, G. and Logan, B. (1999) ‘A framework for the distributed

simulation of agent-based systems’, in Proceedings of the 13th European

Simulation Multiconference (ESM’99), pp. 58–65.

Top500 (2020) Top500 Supercomputer Sites. Available at:

https://www.top500.org/lists/top500/2021/06/ (Accessed: 4 September 2021).

Topçu, O. and Oğuztüzün, H. (2017) Guide to Distributed Simulation with HLA,

Guide to Distributed Simulation with HLA. Springer. doi: 10.1007/978-3-319-

61267-6.

United Nations (2014) ‘World Urbanization Prospects: The 2014 Revision,

Highlights. Department of Economic and Social Affairs’, Population Division,

United Nations.

Valiant, L. G. (1990) ‘A bridging model for parallel computation’, Communications

of the ACM. doi: 10.1145/79173.79181.

Waddell, P. (2002) ‘UrbanSim: Modeling Urban Development for Land Use,

Transportation, and Environmental Planning’, Journal of the American

Planning Association, 68(3), pp. 297–314. doi: 10.1080/01944360208976274.

Wang, K., Siebers, P. and Robinson, D. (2017) ‘Towards Generalized Co-simulation

of Urban Energy Systems’, in Procedia Engineering. doi:

10.1016/j.proeng.2017.07.092.

White, K. P. and Ingalls, R. G. (2016) ‘Introduction to simulation’, Proceedings -

Winter Simulation Conference, 2016-Febru, pp. 1741–1755. doi:

10.1109/WSC.2015.7408292.

Wilson, A. L. and Weatherly, R. M. (1994) ‘Aggregate level simulation protocol: an

evolving system’, Winter Simulation Conference Proceedings, pp. 781–787.

doi: 10.1109/wsc.1994.717433.

Wolfram, S. (2002) A new kind of science. Wolfram media Champaign, IL.

Wooldridge, M. and Jennings, N. R. (1995) ‘Intelligent agents: Theory and practice’,

The Knowledge Engineering Review. doi: 10.1017/S0269888900008122.

Zakhary, S., Allen, A., Siebers, P. and Robinson, D. (2016) ‘A computational

workflow for urban micro-simulation of buildings’ energy performance’, in

Urban Transitions Global Summit.

Zakhary, S., Rosser, J., Siebers, P.-O., Mao, Y. and Robinson, D. (2020) ‘Using

unsupervised learning to partition 3D city scenes for distributed building energy

microsimulation’, Environment and Planning B: Urban Analytics and City

Science, p. 239980832091431. doi: 10.1177/2399808320914313.

Zehe, D., Knoll, A., Cai, W. and Aydt, H. (2015) ‘SEMSim Cloud Service: Large-

scale urban systems simulation in the cloud’. doi:

10.1016/j.simpat.2015.05.005.

Zhang, T., Siebers, P.-O. and Aickelin, U. (2012) ‘A three-dimensional model of

residential energy consumer archetypes for local energy policy design in the

UK’, Energy Policy, 47, pp. 102–110. doi: 10.1016/j.enpol.2012.04.027.

Zhu, X., Han, W. and Chen, W. (2015) ‘Gridgraph: Large-scale graph processing on

a single machine using 2-level hierarchical partitioning’, Proceedings of the

2015 USENIX Annual Technical Conference, USENIX ATC 2015, pp. 375–386.

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Aim and Objectives
	1.3 Contribution
	1.4 Publications
	1.5 Structure of the Thesis

	2 Literature Review
	2.1 Computer Modelling and Simulation
	2.1.1 Model Properties: Discrete, Stochastic and Dynamic
	2.1.2 Levels of Abstraction: Micro to Macro
	2.1.3 Time Flow Mechanisms
	2.1.4 Live, Virtual and Constructive (LVC) Simulations
	2.1.4.1 Live Simulation
	2.1.4.2 Virtual Simulation
	2.1.4.3 Constructive Simulation
	2.1.4.4 Research Scope

	2.1.5 Simulation Modelling Paradigms
	2.1.5.1 System Dynamics
	2.1.5.2 Discrete Event Simulation
	2.1.5.3 Agent-Based Simulation
	2.1.5.4 Cellular Automata
	2.1.5.5 Microsimulation Modelling
	2.1.5.6 Paradigm Comparison

	2.2 Large-Scale Simulation Methods
	2.2.1 Model Simplification
	2.2.2 Modelling Paradigm Shift
	2.2.3 Vertical Resource Scaling
	2.2.4 Horizontal Resource Scaling

	2.3 Distributed Simulation
	2.3.1 Strong and Weak Scaling
	2.3.1.1 Horizontal Scaling Measurements
	2.3.1.2 Strong Scaling
	2.3.1.3 Weak Scaling

	2.3.2 Task and Data-Parallelism
	2.3.2.1 Task Parallelism
	2.3.2.2 Data Parallelism
	2.3.2.3 Research Scope

	2.4 Parallel Discrete Event Simulation
	2.4.1 Logical Process Decomposition
	2.4.2 LP Time Synchronization
	2.4.3 Conservative Synchronization
	2.4.4 Optimistic Synchronization
	2.4.5 Scalability of Conservative and Optimistic Approaches

	2.5 Other Distributed Simulation Approaches
	2.5.1 PDES-MAS
	2.5.2 Distributed ABS Toolkits
	2.5.2.1 Distributed ABS Partitioning Strategies
	2.5.2.2 Distributed ABS Communication
	2.5.2.3 Distributed ABS Time Synchronization

	2.5.3 Custom-Built Distributed Simulations

	2.6 Distributed Simulation Interoperability
	2.6.1 The High Level Architecture (HLA)
	2.6.1.1 The HLA Framework and Rules
	2.6.1.2 The HLA Federate Interface Specification
	2.6.1.3 The HLA Object Model Template
	2.6.1.4 HLA Federation Execution
	2.6.1.5 RTI Implementations

	2.6.2 The Functional Mock-Up Interface
	2.6.3 Hybrid HLA and FMI

	2.7 Communication in Distributed Simulation
	2.7.1 Message Types
	2.7.2 Communication Message Volume
	2.7.3 Disk Caching Alternative
	2.7.4 Communication Networks

	2.8 Distributed Performance Models
	2.8.1 The Parallel Random-Access Machine
	2.8.2 The Bulk Synchronous Parallel Model
	2.8.3 The LogP Model
	2.8.4 Other Approaches

	3 Methodology
	3.1 Overview
	3.2 Distributed Simulation Approach
	3.2.1 Distributed Simulation Standard
	3.2.2 Homogeneous Simulation Scalability Support
	3.2.3 Heterogeneous Simulation Interoperability Support
	3.2.4 Standard Time Synchronization
	3.2.5 Supporting Documentation
	3.2.6 Choice of Middleware

	3.3 Communication Management Strategies
	3.3.1 Approximation Strategy
	3.3.2 Message Elimination Strategy
	3.3.3 Batching and Compression Strategy
	3.3.4 Hybrid Strategies

	3.4 Case Study Selection
	3.5 MAS Paradigm
	3.6 Summary of Methodology

	4 Framework Background
	4.1 Building Energy Simulation
	4.1.1 Physical Building Energy Simulation
	4.1.2 Building Occupancy Simulation
	4.1.3 Distributed Building Energy Simulation

	4.2 Performance Limiting Factors
	4.2.1 Communication and Computation
	4.2.2 Communication and Load Balancing
	4.2.3 Communication and Heterogeneous Workloads
	4.2.4 Communication and Sequential Workloads
	4.2.5 Communication and Time Synchronization
	4.2.6 Communication and Latency Hiding
	4.2.7 Communication and Number of Nodes
	4.2.8 Summary

	5 Case Studies
	5.1 Overview
	5.2 Case Study One: Homogeneous Distributed Simulation
	5.2.1 Case Study One: HLA Federation
	5.2.2 Initial Experiments
	5.2.2.1 Experimental Setup
	5.2.2.2 Building Scenes
	5.2.2.3 Experiment Run Configuration
	5.2.2.4 Initial Results

	5.2.3 Reduced Building Scene
	5.2.4 Message Elimination Experiments
	5.2.5 Batch Compression Experiments

	5.3 Case Study Two: Heterogeneous Distributed Simulation
	5.3.1 Nottingham Multi-Agent Stochastic Simulation
	5.3.2 Case Study Two: HLA Federation
	5.3.3 Initial Experiments
	5.3.4 Batch Compression Experiments

	5.4 Summary

	6 Framework
	6.1 Overview
	6.2 Conceptual Model
	6.2.1 Framework Components
	6.2.2 Experimental Factors
	6.2.3 Responses

	6.3 Model Content
	6.3.1 Node Agent
	6.3.2 Coordinator Agent
	6.3.3 Packet Transmission Time

	6.4 Framework Evaluation
	6.4.1 Parameter Settings
	6.4.2 Calibration Results
	6.4.3 Test Results

	6.5 Summary

	7 Conclusion
	7.1 Contribution
	7.2 Achievement of Aim and Objectives
	7.3 Limitations
	7.4 Future Work

	References

