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Abstract

The ability to successfully navigate the physical environment is a vital skill for numer-

ous species, including humans, to find food and shelter and remember how to return to

important locations. As environments are inherently variable, brains have evolved amaz-

ing capabilities to adapt to various new situations. In particular, animals and humans

have the ability to return to specific locations based on as few as a single experience.

The mechanisms underlying behavioural flexibility in spatial navigation is the focus of

ongoing research with repercussions in behavioural sciences, neurosciences, and artificial

intelligence.

In particular, the field of Reinforcement Learning (RL), which investigates how an or-

ganism, virtual or living, learns to generate actions based on the reception of rewards, has

been extremely active since the 1970s for the exploration of the mechanisms of flexibil-

ity underlying decision making. In parallel, neuroscience has also significantly advanced

in uncovering the neural basis underlying spatial navigation mechanisms, for example

with the discovery of neurons underlying the computation of cognitive maps [O’Keefe

and Dostrovsky, 1971, Hafting et al., 2005], an internal representation of space. Past RL

models design relies on representations that do not allow efficient flexibility in spatial

navigation. However, models provide a theoretical framework that influences the inter-

pretation of neural recordings. As recent recording technologies enable experimentalists

to target an increasing number of neurons, there is a compelling need to develop new RL

computational approaches for flexible spatial navigation, in particular to bridge the gap

between neural population recordings and the production of behaviours.

In this thesis, I consider RL approaches in which the known coding properties of the

cognitive map are used as a basis to perform spatial navigation. Specifically, I investigate

computational ideas which enable agents to be more flexible in virtual spatial navigation

scenarios. In particular, this thesis focuses on the Morris watermaze, an experimental

apparatus in which rodents have to find a hidden platform within a pool of cloudy water.

Rapid place learning in the Morris watermaze, demonstrated by rodents requiring only

one exposure to a new platform location to subsequently be able to retrieve its position, is

an example of flexibility in spatial navigation. I present different RL-based architectures

which generate flexible behaviours in a virtual watermaze equivalent, and compare them

to behavioural observations. I discuss both the similarity in behavioural performance
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(i.e., how well they reproduce behavioural measures of rapid place learning) and neuro-

biological realism (i.e., how well they map to neurobiological substrates involved in rapid

place learning).

I propose distinct biologically realistic computational properties which enable an agent

to be more flexible towards changes in goal locations. Behavioural flexibility requires hier-

archical and generalisable representations for flexible transfer of knowledge. Hierarchical

control is useful to generalise action chains, such as selecting a trajectory, to fulfil differ-

ent purposes, such as reaching different goal locations. It also enables the adjustment of

ongoing behaviour to unforeseen situations, for example, adapting to misprediction of the

goal’s location. Continuous encoding of space, action and time, permits smoother control

and generalisation of experience, and removes the constraints caused by the choice of the

representation’s granularity. Neural networks in which connections between neurons re-

flect predictions about most likely future scenarios enable efficient planning of trajectories

to adapt to novel situations. In a nutshell, flexibility requires efficient representations,

and this thesis contributes to the investigation of their neural implementations.
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Chapter 1

Introduction

Brains receive sensory information inputs and produce behavioural outputs. Information

is transferred and transformed in order to guarantee a species' or individual's survival

and prosperity. Although recent technological advances enable experimentalists to

accessin-vivo neural activity in di�erent forms and from tens of thousands of neurons,

interpreting this information to determine the underlying neural computations that

support a particular behaviour is an ongoing challenge.

Computational neuroscience, which aims at elucidating how neural signalling is

used in the brain to process information, has enabled major advances in inferring,

reproducing and understanding the natural computations that underlie the transfer

and transformation of information employed to produce a behaviour. In particular,

Reinforcement Learning (RL) investigates how an animal or arti�cial agent learns from

the reception of a reward. An iconic example of RL contribution to neurosciences is the

demonstration that dopaminergic phasic activation in monkeys' brains resembles the

reward prediction error in RL models [Schultz et al., 1997]. One exemplar success of RL

development in arti�cial intelligence has enabled a computer program to beat a human

grandmaster at GO [Silver et al., 2016].

Animals, including humans, show great behavioural exibility. In particular, in a

spatial navigation context, animals can return to speci�c locations based on as little as

a single experience. In this thesis, I focus on the analysis and development of new RL

approaches in computational neurosciences aiming at reproducing the exibility shown
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2 Chapter 1. Introduction

by rodents in spatial navigation. The work presented here contributes to explaining the

underlying neural mechanisms which support such behaviours.

Watermaze tasks, in which rats have to �nd a hidden platform in a pool of cloudy

water surrounded by spatial cues, have long been used to study spatial navigation in the

laboratory [Morris, 1981, Morris et al., 1982, Steele and Morris, 1999, Bast et al., 2009,

Buckley and Bast, 2018]. Analogous tasks have been developed for human participants

using virtual environments [Buckley and Bast, 2018]. Advances in experimental neu-

rosciences [Bast et al., 2009] raise the need to revisit, combine, and synthesise existing

spatial navigation models to achieve an enhanced multi-disciplinary understanding; and

require new approaches to help us understand the computations underlying the exibility

shown by rodents and humans in a watermaze.

In this thesis, I investigate how exibility can be generated using RL models in a

virtual watermaze environment. I compare the behaviours of agents to those shown

by rodents and humans in the watermaze. I discuss both the similarity in behavioural

performance between agents, humans and rodents,i.e., how well do they reproduce

behavioural measures of rapid place learning, and the neurobiological realism of the

models considered,i.e., how well do they map to neurobiological substrates involved in

rapid place learning.

Chapter 2 provides a review of experimental knowledge in the �eld of neuroscience

of spatial navigation that will be relevant within this thesis. Spatial learning involves

spatial memories organised within generalised representations, and the ability to make

use of them to inform decision-making. In the watermaze, spatial learning is facilitated

by the hippocampus [Morris et al., 1982], an area of the brain involved in memory and

in which key spatial representations have been found [O'Keefe and Dostrovsky, 1971,

Hafting et al., 2005]. Crucially, exibility in the watermaze requires the hippocampus

[Bast et al., 2009].

Chapter 3 presents general background notions to set the scene for RL [Sutton and

Barto, 2018]. RL models have long been used to produce agents that can learn to

perform certain actions or chains of actions based on the reception of a reward. The
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comparison of behaviours shown by agents with those of animals or humans enables

the investigation of the mechanisms underlying decision-making. RL can be applied

to spatial navigation, in which spatial representations can be linked to action selection

mechanisms to produce trajectories to goal locations. Current arti�cial architectures

have to balance the e�ciency of computation with exibility. A similar trade-o� applies

to the context of the watermaze.

In chapter 4, I discuss a previously published RL agent which uses hippocampal-

inspired place representations to perform navigation in the watermaze [Foster et al.,

2000]. The model describes the evolution of the link between places and actions, leading

to direct trajectories towards a �xed goal location in a watermaze environment. However,

the agent is not exible towards changes in goal location. To address this, the model can

be extended to learn coordinates over the space in order to e�ciently compare locations

for goal-directed navigation, thereby enabling exibility [Foster et al., 2000]. For both

the original approach and its extension, I discuss their biological realism in the light

of recent experimental �ndings. Both architectures are in line with the involvement of

striatal control and dopaminergic learning in spatial navigation. The coordinate-based

extension is consistent with recent experimental results regarding goal and goal-directed

encoding in the brain. To further facilitate the comparison of the model's behaviours to

those of rodents, I implemented an additional behavioural metric commonly used in the

watermaze literature.

Chapter 5 discusses a particular version of the model architecture examined in

chapter 4 that considers continuous representations of actions and time. Continuous

representations enable generalisation of knowledge and smoother control. This chapter

discusses a mathematical framework consistent with continuous representations [Doya,

2000]. Fr�emaux et al. [2013] extended the continuous RL framework using spiking

networks, and to spatial navigation tasks. Here, I adapt their approach in a new rate

model, which considers temporal constraints of a biological neural code, for spatial

navigation in the morris watermaze. I discuss the requirement for precision of the

representation, by comparing spiking, discrete and continuous RL approaches in three



4 Chapter 1. Introduction

RL tasks, and in particular in the case of watermaze navigation. I show that precision

of control and timescale of representation are linked, and that, in the example of the

watermaze, high temporal precision does not seem necessary.

Given that exibility relies on mechanisms that permit generalisation of experience,

and that hierarchical reinforcement learning enables generalisation through abstraction,

in chapter 6 I propose a new approach to exibility in the watermaze using hierarchical

representations. A hierarchical architecture, in which the selection of the goal is separated

from the selection of the actions that lead to the goal, together with meta-computations,

which adapt the behaviour of the agent from errors in goal selection, permit an agent to

exibly adjust to changes in goal locations. I show that the hierarchical model proposed

is consistent with recent experimental results implicating prefrontal cortical areas in

exible spatial navigation.

Finally, exibility in spatial navigation involves e�cient planning procedures. Chapter

7 discusses how predictive properties of the tuning of hippocampal spatial representations

can be used to plan trajectories. This chapter mixes results from graph theory, neural

engineering and dynamical systems to derive a predictive representation of the 2D space

for e�cient memory storage and computations. Using this representation in a recurrent

neural network enables the generation of trajectories to arbitrary goal locations [Corneil

and Gerstner, 2015]. I investigate this approach further to examine the link between

precision, timescale and computational cost within this framework. I show that the

precision of the generated trajectory reduces with the distance of its spatial reach, and

that precise trajectory plans are computationally costly.

To summarise, in this thesis, three computational concepts are discussed in their con-

tribution to underlie exibility in spatial navigation in the watermaze. First, behavioural

exibility seems to require generalisable and continuous representations for exible

transfer of knowledge, and to not restrict the resolution of the representations. Second,

hierarchical control is useful to generalise action chains, such as selecting a trajectory, to

any goal location. Third, predictive representations, which reect the temporal statistics

of experience, enable the generation of the most likely future scenarios to plan e�ciently.
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Chapter 2

Spatial navigation: the remarkable

exibility of animals and its neural

substrates

2.1 Introduction

Successful spatial navigation is required in many every day tasks: humans and animals

need to �nd food, shelter, and remember how to �nd these in diverse situations. Successful

navigation requires knowledge of one's current location and where one wants to go, and

requires choosing a favourable trajectory to get there. As our environments are constantly

changing, animals have developed diverse strategies to succeed at such navigation. Spatial

navigation requires reliable and exible memory and decision mechanisms that enable

animals to successfully adjust to changing situations.

In this chapter, I provide a general background on spatial navigation and its neural

substrates. After introducing the basics of information transmission in the brain in section

2.2, I discuss the brain areas involved in memory and control of behaviours that are

important for spatial navigation, and bridge the gap between behavioural studies and

spatial navigation studies. In section 2.3, I introduce neurons specially tuned to represent

spatial features. Behavioural procedures enable experimentalists to test how animals learn

6
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to associate a chain of actions to a reward, for example to reach a location in space, and

section 2.4 provides a general background about the neural basis of action selection in

the brain. Given the wide range of animal behaviours, and environments in which they

take place, diverse control mechanisms have adapted so that brains save computational

power when the situation is highly predictable and engage in more pre-processing when

the situation demands prior careful considerations.

A commonly used apparatus to study spatial navigation is the Morris watermaze, which

I describe in section 2.5. In particular, studies in this apparatus have revealed that the

hippocampus, an area involved in memory and in which key neural correlates of spatial

navigation have been found, is particularly crucial for exibility in spatial navigation.

2.2 Information transmission in the brain: spikes and

�ring rates

In this section, I describe the basis of communication between neurons, following the ex-

positions of Gerstner et al. [2014] and Galizia and Lledo [2013]. In this thesis, I focus on

the level of networks of neurons. Figure 2.1 provide a schematic of a neuron and the im-

portant terminology that will be used in this thesis. Neurons are composed of dendrites,

from which information is received, a cell body, called \soma", that contains all the ap-

paratus necessary for a normal cell to function (e.g., a nucleus to store the DNA), and

axons, through which the electrical activity propagates towards the following neurons.

Neurons communicate with each other through chemical synapses. Synapses are small

gaps between the cells through which information transmission occurs. A neuron that

sends information to another neuron is called presynaptic and the neuron that receives

the information is called postsynaptic. The information transmission between two neu-

rons relies on neurotransmitters and ions: the di�erence in ion concentration inside and

outside the cell generates an electrical voltage across the membrane of the cell which is

known as \membrane potential". Neurotransmitters are molecules that can bind to their

allocated receptors in the synapses to modulate the opening of ion channels and trigger



8 Chapter 2. Spatial navigation: exibility and neural substrates

the release of ions in the synaptic cleft. This ion release modi�es the membrane potential

of both the pre and postsynaptic neurons.

When the membrane potential increases to a certain threshold, it can give rise to an

electric discharge, which is characterised by a sudden sharp increase in potential, fol-

lowed by a refractory period necessary for the membrane potential to return to baseline.

This temporally localised sharp increase in the membrane potential is known as an action

potential or spike. Figure 2.2a shows the temporal evolution of an action potential. A

spike is temporally very localised (lasting only a few milliseconds). Figure 2.2b shows

the temporal spiking patterns (also known as spike trains) of a neuron in response to

the same stimulus. Spikes can be counted over a time window, and sometimes, when the

experiment allows, averaged over similar subsequent situations to compute the �ring rate

which is indicative of a neuron's global activity. In �gure 2.2c, the rate was computed

from 50 responses to the same stimulus using a 10 ms window [van Drongelen, 2007]. In

this thesis, I use mainly rate-based models, in which all units involved in the networks

are described by a quantity referred to as \activity" which corresponds to a �ring rate in

biological tissues. Section 5.2.2 discusses the reason and the validity of the choice of the

description of a neuron's activity by a rate.

Neurons can be excitatory, in which case their �ring triggers an increase in potential

in the postsynaptic neuron, which then becomes more likely to emit an action potential

[Sayer et al., 1990]. The associated change in membrane potential is referred to as an

excitatory postsynaptic potential (EPSP). Contrarily, certain neurons are inhibitory, in

which case they reduce the probability of emitting a spike of the postsynaptic neuron. The

postsynaptic neuron potential is then referred to as an inhibitory postsynaptic potential

(IPSP).

The modi�cation of the strength of a synapse is known as synaptic plasticity. It results

in a stronger or weaker activation of the postsynaptic neuron from a presynaptic spike,

depending on whether the synapse is strengthened or weakened. Synaptic plasticity is a

phenomenon that seems to happen continuously, and that underlies learning [Citri and

Malenka, 2008]. In the models considered in this thesis, the synaptic strength between
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Figure 2.1: Schematic of a neuron (green cell) and a synapse (top right). Information from
the presynaptic neuron (on the left) enters from the dendrites. This modi�es the membrane
potential of the neuron, which leads to the emission of a spike when it reaches a threshold. An
electrical signal travels down the axon to release ions through the synapses, inducing a change of
activity in the postsynaptic neuron. Top-right corner: the synapse is the locus of transmission
of information of two neurons. Neurotransmitters bind to receptors to modulate the opening of
ion (red dots) channels (blue \doors").

two cells is referred to as a \connection weight". Two units of the network will be linked

by only one connection weight. In reality, the number of synapses between two neurons

follows a bimodal distribution with a peak at 0 and a second peak at a small number

(between 3 and 8) [Fauth et al., 2015].

The strength of the synapses between neurons de�nes pathways of information pro-

cessing, which underlie cognition. In these pathways of information, neurons or groups

of neurons can be speci�c to certain functions, and in particular for spatial navigation

purposes. The following section focuses on the role of a particular brain area, the hip-

pocampus, in spatial navigation.

2.3 The hippocampus and spatial navigation

The hippocampus is an area located in the medial temporal lobe (�gure 2.3) traditionally

associated with episodic memory, a type of memory where events occur within a certain

spatio-temporal framework [Hasselmo, 2011]. Episodic memory is one of the two main

kinds of long-term memory, along with semantic memory, which includes facts that are
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