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Abstract 
Suspended sediment in rivers is a major problem globally. Monitoring of water turbidity and 

suspended sediment concentration (SSC) using satellites and in-situ sampling has been used 

widely to assess fine sediment pollution. However, due to low image resolution, application of 

satellite remote sensing is limited to only large water bodies, while in-situ sampling does not 

provide the continuous spatial data that are needed to address certain scientific questions or 

management problems. This research aimed to understand the potential of using low-cost 

cameras to estimate SSC in smaller rivers and streams and produce reach scale ‘maps’ of SSC. The 

study consists of development and testing of statistical models to predict SSC from pixel 

information contained in digital images, and validation of these models through field tests. An 

overarching goal was to assess the transferability of models between rivers and the effects of 

different camera sensors on SSC predictions. Laboratory experiments developed predictive 

models for two cameras (Vivo V9 smartphone and DJI Mavic Pro drone). Experiments involved 

manipulation of SSC in a water filled tank, with images taken with each camera and over a 

different coloured bed at each controlled sediment concentration. Digital Number (DN) values for 

each bed colour, camera and colour channel combination was extracted, with Generalised 

Additive Models fitted to Red, Blue and Green (R, G, B) colour bands.  

 

In general, there were significant relations between SSC and the mean DN values, with G and B 

most frequently providing the best fits. Relations differed appreciably depending on bed 

characteristics, as a function of the relative colour of the bed and the material in suspension; some 

relations were direct (positive) and some indirect (negative). Thus, laboratory tests indicated that 

predictive relations need to be developed on a river-by-river basis due to differences in bed 

characteristics. There were some subtle differences between the two cameras, but in general both 

yielded images from which SSC could be predicted reliably in laboratory conditions. However, 

almost all relations broke down at very high SSCs depending on the bed colour, camera and colour 

channel combination; once the amount of fine material in suspension exceeded a certain 

threshold, SSC could not be predicted reliably from DN values. The field tests demonstrated that 

it is possible to produce accurate maps of SSC using an orthomosaic developed directly using DN 

values. These involved developing a calibration relationship for SSC v DN from images collected 

from drone flights at 30 m height above a reach of the Semenyih River, Malaysia. This relationship 

successfully predicted SSC, with the B colour band providing the best fit (R2 >0.86 for the 

observed v predicted). The SSC map was able to shed light on the influence of a tributary on main 



ii 
 

stem SSCs and patterns of mixing of the fine sediment delivered by the tributary. Such fine scale 

spatial patterns (1cm2/pixel) are evident neither from satellite data nor in-situ monitoring.  The 

methods presented here are applicable to a variety of questions and contexts, from understanding 

downstream changes in SSC in glacial rivers to assessing effects of forest loss on SSC in tropical 

systems.  
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1. Chapter 1 General Introduction 

1.1. Fine sediment: Sources, significance and ecological 
effects  

Sediments play an important role in shaping the geomorphic conditions of river systems, 

influence their ecological inhabitants and play an important role in providing natural resources 

for human livelihoods. Sediments provide structure for fluvial forms such as floodplains and 

mudflats and organic material in suspension provides nutrients for freshwater and marine 

ecosystems (Kondolf et al. 2014). Catchments produce sediment that is delivered to channels via 

a variety of processes and routes. Once in the channel, this material is transported downstream 

in ways governed by the interaction of flow magnitude, channel gradient, sediment size and 

cohesive properties.  A river’s sediment load can be broken into dissolved, suspended and 

bedload. This thesis focuses on suspended fine sediment and stems from the need to monitor its 

spatial and temporal dynamics.   

  Globally, the fluvial system contributes an estimated 13.5-22 billion tonnes of fine 

sediment per year to the oceans (Holeman 1968; Syvitski et al. 2005; Walling 2006), making up 

an estimated 90-95 % of the total sediment flux (Vörösmarty et al. 2003). This overall flux is 

affected by two dominant anthropogenic factors which act in opposite ways. Land use and land 

cover change (particularly deforestation and intensive agriculture) has led to increases in soil 

erosion and delivery to the river system which magnifies the effects for small to medium-sized 

catchments (Dearing and Jones 2003). This is countered by the presence of barriers such as dams 

that retain fine sediment with great efficiency and so can result in sediment starvation in 

downstream reaches.   

Anthropogenic activities have greatly increased the sediment flux into river systems 

(Syvitski and Kettner 2011) with the anthropogenic annual sediment load estimated at 

15±0.5 Gt/year (Syvitski et al. 2005 as cited in Syvitski and Kettner 2011).  The major cause of 

anthropogenic river sediment loads is Land Use and Land Cover Change (LULCC), notably 

deforestation, conversion of pastureland to cropland and mining activities. Sediment from 

LULCC is expected to rise as the human population increases and countries undergo economic 

development. There are an estimated 50 000 large dams globally of heights greater than 15 m 

(Berga et al. 2006) with China having over 22 000 dams which consist of nearly half of global 

dams (Berga et al. 2006; Hu et al. 2009). Dams can trap up to 80% of all sediment (i.e. coarse and 

fine material; Hu et al. 2009; Tena and Batalla 2013) and it is estimated that 30% of the global 

sediment flux is trapped in reservoirs (Vörösmarty et al. 2003). These apposing influences affect 
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river sediment budgets, with implications for the physical and ecological character in river 

systems. 

Fine sediment plays a major role in determining the suitability of rivers and streams for 

aquatic organisms. Unchecked, it is considered one of the major forms of aquatic pollution due to 

its detrimental effects on ecosystems and impacts on people through, for example, increased 

water treatment costs. Fig. 1.1 is a conceptual diagram produced by Kemp et al. (2011), which 

explains the effects of excessive fine sediment loads on aquatic ecosystems.  Fine sediments in the 

water column increase turbidity and limit light penetration, reducing the population of 

photosynthetic organisms in the upper water column and, in turn, impacting the food chain (Van 

Nieuwenhuyse and LaPerriere 1986; Davies-Colley et al. 1992). High concentrations of fine 

sediments cause physical problems for benthic organisms such as gill abrasion which may be 

compounded by ingestion of harmful chemicals bounded to fine sediment (e.g. heavy metals may 

bind due to the tendency of fine sediment to flocculate and coagulate) (Kemp et al. 2011; Zhang 

et al. 2014).  When deposited, fine sediment greatly modifies the substrate by altering its surface 

conditions (Graham 1990). The deposition of fine sediments can smother riverbed surfaces which 

inhibits the growth of periphyton, an important food source for invertebrates (Kemp et al. 2011), 

as well as changing channel morphology (Nuttall 1972; Doeg and Koehn 1994) and clogging the 

interstices between substrate clasts (Kemp et al. 2011).   
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Fig. 1.1 Negative impacts of anthropogenic enhanced sediment input to lotic aquatic systems. 
Rectangles denote physicochemical effects while ovals denote direct and long-term biological 

and ecological responses (Kemp et al. 2011). 

1.2. Monitoring SSC  

1.2.1. Methods of monitoring SSC 

Monitoring of fine sediment is necessary to assess changes in the physical and ecological health 

of rivers and coastal ecosystems and provide the foundation for developing river management 

designed to mitigate problems. Fine sediment monitoring stations have existed in many countries 

for decades, mainly as part of hydrometric networks established by government agencies.  

Paradoxically, these stations tend to be sparse in regions where they are needed most - tropical 

areas where the interaction of soil type and rainfall intensity can give rise to naturally high rates 

of sediment runoff, but also where this runoff is being increased by activities such as land 

clearance, logging and urbanisation or where river sediment loads are being altered by damming 

(Julien and Shah 2005).  The result is that in areas where rapid changes in fine sediment 
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concentrations are occurring, agencies may struggle to formulate comprehensive mitigation plans 

due to insufficient data.  

Monitoring stations mostly use continuously logging sensors to record turbidity, which is 

then used to estimate Suspended Sediment Concentration (SSC) via a calibration relationship. In 

other instances, SSC is quantified from water samples which are filtered and weighed. The former 

method provides the high temporal resolution data that are needed to compute fine sediment 

loads and budgets (Béjar et al. 2017; Marteau et al. 2017a), but it is limited in spatial coverage by 

the high cost of deploying loggers at more than a few sites. The latter method is time-consuming 

and constrained by its typically low spatial (small numbers of sites) and temporal (intermittent 

sampling) resolution.   

To address these issues, methods have been developed within the past few decades to 

utilise various remote sensing spectral sensors to quantify fine sediments. These have mostly used 

Earth observation satellite data, to assess fine sediment in deltaic floodplains (Dang et al. 2018), 

reservoirs (Ritchie et al. 1976), large freshwater lakes and wetlands (Mertes et al. 1993) or coastal 

areas (Liedtke et al. 1995; Hoguane et al. 2012) for example. A key limitation of Earth observation 

data for monitoring SSC in rivers is that its application is restricted to larger systems, where river 

width is significantly wider than pixel size (i.e. > 2m or larger river width for quantifying SSC 

using Landsat images) (Isidro et al. 2018; Gallay et al. 2019).  

Recent studies have tested aerial and close-range (i.e. on the ground) remote sensing 

approaches, including images taken from bridge vantage points looking down on the water surface 

of rivers (Mosbrucker et al. 2015) or captured using consumer-grade cameras attached to drones 

(Vogt and Vogt 2016). Parallel work has demonstrated that it is possible to estimate SSC from 

both standard and modified cameras, including smartphone cameras (Bejestan and Nouroozpour 

2007; Mosbrucker et al. 2015; Haque and Adhikary 2016; Leeuw and Boss 2018). The ubiquity of 

digital cameras, and especially in smartphones and drones, opens the potential for extensive 

‘citizen science’ monitoring of suspended sediments in rivers that could provide valuable data in 

countries where existing water monitoring networks are sparse.   

In a digital image, primary colours (Red, Green and Blue (RGB)) are separated into each 

colour component for each pixel. The pixel value is a vector of all three numbers. Digital number 

(DN) is a generic term for pixel value and is commonly used to describe uncalibrated pixel value. 

Reflectance measures the proportion of radiation striking a surface which is reflected by the 

subject of interest (Schaepman-Strub et al. 2004). Reflectance values are calculated from DN 

values which have been calibrated to remove the effects of variation in surface illumination due 

to the angle of the sun, cloud cover and atmospheric distortion. Existing methods for determining 
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SSC from remote sensing images rely on reflectance values rather than the more direct use of DN 

values. The use of DN values would avoid the need for the collection of calibration data, making 

the use of digital images in citizen science water monitoring projects more straightforward.  

The proliferation of mobile apps suggests that they may have utility for citizen science 

assessments of SSC using smartphones. Leeuw and Boss (2018) developed a protocol for 

estimating SSC from reflectance values using a smartphone camera but this was rather 

cumbersome, requiring multiple images (including of the sky) and grey balance that was then 

used for correction that deals with the influence of ambient conditions as seen in the equation 

below    

𝑅𝑟𝑠 =
𝐿𝑡−𝜌𝐿𝑠
𝜋

𝑅𝑟𝑒𝑓
𝐿𝑐

           (1) 

Where 𝑅𝑟𝑠 refers to the above water remote sensing reflectance (sr-1), 𝐿𝑡 is the radiance leaving 

the water surface, 𝐿𝑠 is the sky radiance, 𝑅𝑟𝑒𝑓 is the irradiance reflectance of a reflectance standard 

(grey balance), 𝐿𝑐 is the measured radiance leaving the reflectance standard, and 𝜌 is the sea 

surface reflectance factor. The protocol then derives a correlation with the suspended sediment 

which it itself is derived from turbidity values (NTU).  Simpler methods - using DN values directly 

to estimate SSC - would ease application, but tests of such methods are currently lacking. 

Section 1.2.3 discusses in detail the theoretical framework that serves as the foundation to 

this study. This theory concerns (1) how materials in a water column interact with light and in 

particular the interaction of light with suspended sediment, and (2) the factors that influence the 

how light reflecting off suspended sediment may be detected by remote sensing sensors. Before 

this, however, it is useful to consider the Malaysian context, to help establish the importance of 

the current work. 

1.2.2. Remote sensing and suspended sediment monitoring: 

Malaysia 

The Environmental Quality Act 1974 has become the key policy driver in Malaysia to ensure the 

protection of freshwater ecosystems. This has led to the continuous effort of the government to 

monitor suspended sediment dynamics, supplemented by various research projects conducted by 

various high level institutions, to understand, manage and mitigate the impacts of anthropogenic 

activities on catchment systems. Various models have been applied in order to properly 

understand catchments processes and dynamics, including SWAT (Lai and Arniza 2011; Khalid et 

al. 2016), numerical models (Toriman et al. 2010; Talib et al.2012) and erosion models (Teh 2011; 

Anees et al. 2018). These models require spatial and temporal data on a range of variables 
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(depending on their respective purposes), including precipitation, temperature, wind speed, soil, 

and topographic data, and some require in-situ measurements for model calibration and 

validation. Some work using remote sensing-based approaches has been undertaken in Malaysia, 

including studies centred on coastal regions with dense populations such as the Langat estuary, 

Selangor (Othman et al. 2004), the coast of Penang (Lim et al. 2008; Asadpour et al. 2012), the 

coast of Langkawi, Kedah (Alasloo et al. 2013), and the coast of Johor (Nichol et al. 1993a; Nichol 

et al. 1993b). The coastal focus is consistent with the spectral resolution of the satellite sensors 

(>15m) and hence best suited to monitoring larger areas. Studies focusing on remote sensing of 

suspended sediment in inland waterbodies in Malaysia are lacking, with existing work and mainly 

focuses on large waterbodies such as reservoirs and lakes (Wan Mohd et al. 2007).  

While models such as SWAT have been used to help assess river fine sediment loads and 

budgets in Malaysia, they have a different purpose and generate data at a different spatial scale to 

the current study. These models are designed to understand the effects of land cover and land 

cover change on fine sediment loads and budgets. They can help understand sediment yield from 

catchments and how this influences the amount of material conveyed by the channel. SWAT is 

designed to be a catchment-scale tool, and is not capable of predicting fine spatial scale variation 

(sub-metre) in SSC. As of now, there have been no studies in Malaysia that utilised digital cameras 

to estimate SSC in small (1st and 2nd order) streams and rivers.  

This thesis will contribute to the growing literature in monitoring suspended sediment in 

smaller rivers and streams; this is important not least because of the abundance of small rivers 

(as per Horton’s Law of stream numbers). Its contributions will be: 1) the application of low-cost 

camera sensors from smartphones and commercial drones to estimate SSC in smaller 

watercourses, and 2) assess the possibility of using uncalibrated pixel values (DN) as opposed to 

the widely used calibrated reflectance values. The following section explores the theory that 

influences the possibility is using DN values directly.  Fig. 1.2 represents this theory 

diagrammatically – it shows how various factors influence the signal received by a sensor being 

used to assess suspended material present in river channels. 
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1.2.3. Theoretical framework 

Material present in water (e.g. chlorophyll a, SSC) can significantly change its 

backscattering characteristics (Kirk, 1994). Remote sensing techniques depend on the ability to 

measure these changes in the spectral signature backscattered from water and relate them by 

analytical or empirical models to the water quality parameter of interest (Ritchie et al. 2003). The 

optimal wavelength used to measure a water quality parameter is dependent on the substance or 

material of interest, its concentration, and the sensor characteristics. The signal reflected from 

suspended sediment has been shown to be within the Near Infrared (NIR) spectrum under 

laboratory conditions (Witte et al. 1941; Qu et al. 2014). In terms of suspended sediment, there 

are a number of factors that can theoretically influence the signal. Table 1.1 provides summary 

information on the key aspects of the literature that has used remote sensing to assess fine 

sediment, and which can therefore influence the relationship between DN and SSC derived from 

images taken from a close-range - above the water surface. Fig. 1.2 illustrates these factors 

schematically. Factors can be grouped according to whether they relate to hydrogeomorphic 

conditions (e.g. river depth, sediment, and bed sediment colour) or those internal factors (related 

to the camera and sensor) or external factors (ambient conditions) that influence image 

characteristics. The following sections provide further details on each of these factors.  

‘Suspended Sediment Colour’, ‘Bed Colour’ and ‘River Depth’ interact with each other to 

determine the apparent colour received by the camera sensor and translated as a DN value. For 

the purpose of this thesis, these factors are referred to collectively as ‘River Colour.’ The 

interaction (relative values) of these factors influences the direction of the relationship between 

SSC and DN. Dark-bed colour (i.e. low DN), when combined with a light-fine sediment colour 

(high DN), would yield a positive relationship. This is because when the relative colour values of 

the light-fine sediment increases, the influence of the dark-bed colour decreases. Conversely, a 

light-bed colour (high DN) when combined with a dark-fine sediment colour (low DN) would yield 

a negative relationship. The negative relation arises because as the relative colour of the dark-fine 

sediment increases, the influence of the light-bed colour decreases. River Depth adds another 

layer of complexity as the apparent “Darkness” or “Lightness” of Bed Colour is determined by the 

distance of the bed from the water surface. This is because as the depth increases, a greater 

amount of light spectrum is absorbed by the water column, reducing the amount of light reflected 

off the riverbed – thus, deeper water appears darker. As the depth continues to increase it will 

reach a certain point where light can no longer reach the riverbed, so the bed colour no longer 

influences the signal (Geyman and Maloof 2019).  
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Another group of factors that affect the signal are grouped here under the term ‘River 

Physiography’. The factor include ‘Benthic Sediment Composition’, ‘Bed Topography’, ‘River 

Width’ and ‘Suspended Sediment Composition’. These parameters reflect the physical 

environment of the catchment, in terms of the geological composition of sediment, how the flow 

regime and valley form influence channel type and in turn bed forms and topography, and the 

relative balance of organic and inorganic material in the suspended load. As seen in Fig. 1.2, the 

‘River Physiography’ does not directly influence DN values but instead interacts with other factors 

by way of influencing the overall colour such as how both the ‘Benthic Sediment Composition’ and 

‘Bed Topography’ effect the overall ‘Bed Colour’ under the factor ‘River Colour’. ‘River 

Physiography’ also affects the quality of the DN values as seen with ‘River Width’ which influences 

the effects of ‘Riverbank Shading’.  

The influence of ‘River Physiography’ by way of colours is largely influenced by the 

inorganic and organic material and also the roughness and smoothness of the bed stemming from 

the basin’s geology. ‘Benthic Sediment Composition’ and ‘Bed Topography’ are parameters that 

interact together to determine the “Lightness” and “Darkness” of ‘Bed Colour’. ‘Benthic Sediment 

Composition’ refers to the ratio of organic and inorganic material found in the bed which 

determines the overall Bed Colour. A study conducted by Tolk et al. (2000), found that white 

riverbed sediments had minimal influence on surface reflectance in the visible spectrum when 

SSC was >100 mg/L, but black riverbed sediments can increase surface reflectance in the blue and 

green bands.  

Microscale ‘Bed Topography’ may influence the signal because of the influences of 

shadows caused by individual clasts. This shading effect of the bed darkens the tone of the overall 

colour of the bed (Geyman and Maloof 2019) thereby making the ‘Bed Colour’ signal in the DN 

values appear darker.  Furthermore, ‘Bed Topography’ effects the quality of DN within the factor 

‘Water Surface’ specifically ‘River Surface Morphology’ by inducing the rippling effect on the river 

surface which causes light reflection on the water surface – preventing image capture of the water 

surface.  

‘Suspended Sediment Composition’ determines the “Lightness” and “Darkness” of ‘Fine 

Sediment Composition’. This is driven by the ratio of organic and inorganic material suspended 

in the water column. Organic and inorganic material interact differently with light and its ratio 

determines the overall colour of fine sediment. Rochelle-Newall and Fisher (2002), found that 

Coloured Dissolved Organic Matter (CDOM) changes the light field by absorbing shorter 

wavelength light (Blue spectrum). Whereas model estimation of inorganic matter is strongest with 

longer wavelength (Red spectrum) (Kobayashi et al. 2011).  
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Lastly, ‘River Width’ affects the quality of DN within the factor ‘Image Analysis’ specifically 

the parameter ‘Riverbank Shading’. Narrow rivers maybe completely or partially shaded or 

obstructed (preventing image capture of the water surface) by vegetation and/or man-made 

structures whereas wide rivers offer a larger surface area for images to be captured that are not 

shaded nor obstructed.  

‘Image Analysis’ refers to three factors: ‘Water Surface’, ‘Environmental Conditions’ and 

‘Camera Specification and Use’. These factors can potentially lead to inaccuracies or uncertainties 

in the relationship between SSC and DN by causing changes in DN which are not related to 

changes in SSC. ‘Water Surface’ has two parameters: ‘River Surface Morphology’ and ‘Riverbank 

Shading’. This parameter includes any forms of disturbances on the water surface that prevents 

the capturing of accurate DN value of the water surface.  River Surface Morphology pertains the 

influence of ripples and pools which affect the attenuation of light (France 1993). Ripples cause 

uneven surfaces that reflect light on the water surface preventing light to interact with the water 

column and causes sun glint (France 1993). ‘Riverbank Shading’ on the other hand pertains to the 

influence of shadows formed by vegetation or man-made structures that cast shadows onto river 

surfaces. These shadows block direct light from hitting the water surface (Shahtahmassebi et al. 

2013) and may cause an inaccurate representation of the river sediment in its DN. As discussed 

previously, the effect of shading is determined by the river width as well as by riparian land cover.  

‘Environmental Conditions’ such as: ‘Sun Angle’ and ‘Cloud Cover’ can impact the quality 

of DN values. ‘Sun Angle’ involves the influence of specular reflection of direct solar beam from 

the water surface into the sensor also known as sun glint (Mount 2005; Overstreet and Legleiter 

2017). Sun glint thus occurs in an image when the sensor’s viewing angle is equal to the angle of 

reflection of the direct solar beam. Image capture of the river is best conducted when the sun angle 

is at 45o or lower to prevent reflected light (from the direct beam) from passing under the field of 

view (Mount 2005; Overstreet and Legleiter 2017). For high-elevation remote sensing such as 

satellites, Cloud Cover physically blocks the view of the study area. This problem does not occur 

for low-elevation remote sensing such as drones, as the images are taken below the clouds. 

However, cloud cover produces blurring of the images as it scatters light and absorbs incident 

light (Kokhanovsky 2004; Li et al. 2019). Cloud cover also changes the ambient lighting of the 

study area. These changes in ambient lighting may vary throughout the day and between sampling 

visits as cloud cover changes; this may lead to inconsistent image quality across a temporal scale.  

A final factor is ‘Camera Specification and Use’ which contains parameters related to the 

digital technology that influence the images and results of subsequent analysis. ‘Spatial 

Resolution’ is a measure of the smallest object that can be resolved by the sensor. The higher the 
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spatial resolution the finer the detail that can be measured. This can be improved by increasing 

the number of pixels in a camera sensor or by capturing the image of the subject from a shorter 

distance above the water surface. ‘Spectral Resolution’ refers to the ability of the sensor to define 

spectral intervals such as Red, Green, Blue, Near-infrared etc. The finer the spectral resolution 

the better the sensor at detecting unique spectral wavelengths that respond to the subject of 

interest (Novo et al. 1989). Han et al. (1994) found that Near-Infrared radiation can be used to 

measure chlorophyll in suspended sediment. Table 1.1 (‘Selected Band’ column) gives details of 

the spectral bands used in different studies.  In general, remote sensing instruments without the 

capacity to detect different spectral bands may be less suitable for quantifying SSC. Due to the 

different conditions and circumstances in the environment, sensors that can capture a number of 

bands has a greater likelihood of detecting relationships in the study area. Finally, ‘Image 

Processing and Storage System’ is the ability of the sensor to store large amounts of information 

without compromising its quality. This quality pertains to the amount of information such as 

highlights and shadows, dynamic range, white balance etc.  An image stored as a raw file loses 

little information while a JPEG file pre-processes the images leading to a decline information and 

flexibility for later processing (Yuan and Sun 2011). This means that in the raw file, there is an 

opportunity to recover information from underexposed or overexposed images which are not 

possible for JPEG file. The downside is that images in raw occupy a lot of memory space as 

compared to JPEG files which is why it is not preferred in remote sensing. Other than the file 

format, the physical size of the sensor also plays a role. Larger sensors allow more light to enter 

to produce an image, therefore, allowing the coverage of a wide range of light (dynamic range) 

and improve the signal to noise ratio (Fellgett 1953; Crisp 2013). This allows for more information 

to be captured without image deterioration 

1.2.4.  Key points 

 

The foregoing discussion, summarised in Fig. 1.2, shows that: 1) complex interactions 

between a number of factors might result in location and condition-specific relationships between 

DN and SSC. 2) The direction of the relationship (positive or negative) depends on the colour of 

suspended sediments in comparison to the bed colour (in addition to the absolute colour values 

of both). This is in turn dependent on the composition of the various variables mentioned within 

each parameter of the factor ‘River Physiography’. 3) The accuracy of estimating DN value is 

dependent on various external factors. These factors need to be considered to ensure that as much 

information as possible (in terms of accurate DN value of the subject of interest) is preserved.  
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Several of these have already been explored extensively in the literature (e.g. sun angle, cloud 

cover, depth) but others are less well known (relative colours of suspended sediment and bed) and 

while in general sensor specifications are known to influence images, no studies have directly 

compared DN-SSC relations developed using smartphone and drone-mounted sensors, both of 

which have the potential utility for citizen science    
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Fig. 1.2 Schematics of the factors that can influence the digital numbers in pixels in an image captured of the surface of a river.   This 
schematic in affect represents the theoretical backgrounds that underpins this study. Numbers indicated in each box give examples of 

papers that have assessed respective factors. See text for details.



14 
 

Table 1.1 List of research papers that use remote sensing to measure SSC in freshwater bodies. The table provides information on the 
camera sensors used, country, whether the studies use DN or reflectance values, the maximum SSC recorded, selected bands that 

have the strongest mode fit and the direction of trend line. 

No. Authors Model Country  DN/ 
Reflectance 

Water Body 
(Lake/ River/ 
Lab) 

Maximum 
SSC (mg/L) 

Selected Band Direction of 
trend line 

1 Bejestan and 
Nouroozpour 
(2007) 

Sony DSC-H1 Iran DN Lab 1000 Red, Green, Blue Negative 

 

2 Haque and Adhikary 
(2016) 

Nikon D3000 
DSLR and 
Canon S110 

Bangladesh DN Lab 5500 Blue Negative 

 

3 Mosbrucker et al. 
(2015) 

Nikon D800E U.S.A DN River 7339 Blue Negative 

 

4 Mertes et al. (1993) Landsat TM Brazil (Field) 
U.S.A (Lab) 

Reflectance River, Lab 180 (Field) 
207 (Lab) 

Blue, Green, Red, 
NIR 

Negative 

 

5 Pereira et al. (2019) RapidEye Brazil Reflectance River 230 Green, NIR Positive 

 

6 Gallay et al. (2019) MODIS Venezuela 
Colombia 

Reflectance River 560 NIR Positive 

 

7 Dang et al. (2018) Landsat 
TM/ETM+ 

Vietnam Reflectance River 400 Coastal aerosol, 
Blue, Green, Red, 
NIR 

Positive 
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8 Isidro et al. (2018) RapidEye, 
Pleades-1A, 
SPOT-6 

Philippines  Reflectance River 4251 Red Positive 

 

9 Witte et al. (1981) Transmissio-
meter 

U.S.A Reflectance Lab 700 NIR Positive 

10 Han et al. (1994) Spectroradio-
meter 

U.S.A Reflectance Lab 1000 (Red, NIR) 
response for 
chlorophyll-a 

Positive 

11 Tolk et al. (2000) Spectroradio-
meter 

U.S.A Reflectance Lab 400 Red, NIR Positive 

12 Novo et al. (1989) Spectroradio-
meter 

U.S.A Reflectance Lab 100 (White clay) Red, 
NIR (Red silt) 
Blue,Green 

NA 

13 Bartolucci et al. 
(1977) 

Spectroradio-
meter 

U.S.A Reflectance River, Lake 99 Red NA 

14 Mantovani et al. 
(1992) 

Spectroradio-
meter 

U.S.A Reflectance Lab 140 NA (Negative) 
response to 
depth 

15 Legleiter et al. 
(2004) 

Spectroradio-
meter 

U.S.A Reflectance River 8 Red, Green (Negative) 
response to 
depth 

16 Legleiter et al. 
(2011) 

Spectroradio-
meter 

U.S.A Reflectance River 108 
(Cottonwoo
d) 

161 (Rowe) 

Blue, NIR Negative 
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1.3. Problem statement and research gaps  

There is already a considerable literature using remote sensing to assess different aspects of 

freshwater quality, including suspended sediment.  However, many have focussed on larger 

rivers.  There is a need to look at prospects for use in small rivers. Also, small streams and rivers 

tend to have shallower depths and accordingly, it is more likely that the bed is visible in aerial 

images.  In turn this means that many of the factors than can impact DN come into play (e.g. bed 

colour relative to suspended material) in shallow streams, and inter-location differences may 

make transferability of regression models problematic. More generally, the majority of studies use 

reflectance rather than DN. Those that have used DN have often required complex image 

sequence to be taken at each location (e.g. of sky, water and of a white balance) which limit 

application in citizen science. Some authors have tested the use of individual consumer-grade 

cameras for quantifying changes in SSC and have found a strong fit between SSC and DN using 

these cameras (e.g. Bejestan and Nouroozpour (2007); Mosbrucker et al. (2015)). Haque and 

Adhikary (2016) conducted tank experiments to develop DN-SSC relationships using low costs 

cameras.  However, in the paper they did not directly compare relations developed using images 

from respective cameras.  None of these papers explicitly assessed the general transferability of 

the derived models between sites.  

From the literature reviewed above (summarised in Table 1.1), it can be concluded that 

there are several research gaps that can be addressed in this study. 1) Whether robust estimates 

of SSC can be derived directly from DN, rather than reflectance, 2. whether DN values derived 

from smartphones and sensors in cheap, consumer drones can produce reliable estimates of SSC,  

and 3) How interactions between fine sediment and bed colour influence DN-SSC relations and, 

in turn, what this means for transferability of models in small streams where the bed is commonly 

visible.  This thesis aims to address each of these three gaps. 
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1.4. Research Aims and Objectives 

Suspended sediment is one of the key parameters that influence the health of river ecosystems. 

Thus, monitoring fine sediment is key to reducing the degradation of river ecosystems. This thesis 

aims to access the potential application of low-cost cameras for monitoring suspended sediment 

through close-range remote sensing. The main objectives are:  

 

1. Assess whether it is possible to estimate SSC from simple, uncalibrated DN values 

(rather than reflectance). 

2. Assess the influence of different camera sensors and bed colour on the strength and 

statistical form of relationships between SSC and DN. 

3. Assess whether it is possible to use DN to reliably predict spatial SSC across a river 

reach. 

 

Objective 1 and 2 will be addressed in Chapter 3 through an experimental setup to produce a 

calibration model. Objective 3 will be addressed in Chapter 4 through drone flight test in the 

field to validate the calibrated models. In depth explanation in Chapter 2.3. 

1.5. Structure of the thesis 

This thesis consists of five chapters: The present chapter provides a general introduction to the 

research. Chapter 2 provides information on the study area and gives an overview of the 

approaches used to address the objectives. Detailed methods are then given in respective chapters. 

The laboratory experiments used to address objective 1 and 2 are described in Chapter 3, while 

field tests used to address objective 3 are described in Chapter 4. Chapter 5 provides a summary 

of each chapter's results and discusses implications. 

 

2. Chapter 2 Study Area and Methods 

2.1. Langat Basin: rationale of study area selection 

The Langat Basin straddles the states of Selangor and Negeri Sembilan on Peninsular Malaysia 

(latitude 2° 40′ 12″ N to 3° 16′ 15″ N and the longitude 101° 19′ 20″ E to 102° 1′ 10″ E). It 
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originates to the northeast of Kuala Lumpur and then skirts around the southern edge of Selangor; 

accordingly, it is one of the most populated and developed catchments in Malaysia (Fig. 2.1). The 

area of the basin is 2 140.6 km2 and the main tributaries of the Langat River are the Semenyih 

River, Lui River and Beranang River. The study site within the study area (indicated with a red 

star)  is located near the University of Nottingham Malaysia where one of the main tributaries 

(Semenyih River) is located less than 10km away from the campus (further details of exact 

location is stated in Chapter 4). This has allowed ease in logistics and data acquisition over a 

regular basis. The location of the river basin at one of the most populated areas in Malaysia has 

been the subject of interest of previous hydrological and remote sensing studies (Noorazuan et al. 

2003; Idrus and Samad 2006; Ayub et al. 2009; Memarian et al. 2012; Basheer et al. 2017) 

 

Fig. 2.1 Map of Langat River basin (Department of Irrigation and Drainage, 2007 as cited by 
Roslan et al. 2012). 
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2.2. Characteristics of the Langat 

2.2.1. Climate 

The climate of the Langat Basin is greatly influenced by the moist monsoonal air streams. In 

particular, the southwest monsoon provides more precipitation to the region than the northeast 

monsoon where precipitation is obstructed by the Titiwangsa range (Suhaila et al. 2010). The 

climate is characterized by high humidity (between 80-88%), abundant rainfall and little 

variation in temperature throughout the year with an average of 26 to 32°C (Azhari et al. 2008). 

Long term data by Amirabadizadeh, Huang, and Lee (2015) indicates that the mean annual 

rainfall of the Langat River Basin is 1 994.1 mm with the highest recorded monthly rainfall at 327.1 

mm, occurring in November; the lowest at 97.6 mm in June (Fig. 2.2a). These two maximum and 

minimum precipitations occurred in the northeast monsoon and the southwest monsoon periods, 

respectively. While the mean annual maximum temperature (Fig. 2.2b) and minimum 

temperature (Fig. 2.2c) ranged from 31.6 to 33°C and 21.6 to 24.2°C respectively. Overall the study 

showed that climate change are expected to cause an upward trend of annual precipitation (from 

12.6 to 17.1 mm/year) and an upward trend for the annual and seasonal maximum and minimum 

temperature range (from 3.5 to 4°C /century). 

 

 

Fig. 2.2 a) Annual precipitation, b) Maximum temperature and c) Minimum temperature of the 
Langat Basin (Amirabadizadeh, Huang, and Lee 2015). 
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2.2.2. Geology and Soils 

The mountainous region located north to northeast of the Langat Basin is part of the Titiwangsa 

range and has a bedrock layer composed of Permian igneous rocks and Pre-Devonian schist and 

phyllite of the Hawthornden Formation (Gobbett et al. 1973).  Downstream of this region, the hilly 

areas in the Langat regions are made up of the Kenny Hill Formation and Kajang formation which 

is comprised of metamorphosed sandstone, shale, mudstone and schist from Middle Silurian to 

the Triassic period (Lee 2001; Leslie et al. 2020). On the coastal plains, the basin consists of thick 

quaternary alluvium deposits from the Paleocene through Holocene (Leslie et al. 2020). These 

layers reside in the low flatlands of the Simpang, Kempadang, Gula, and Beruas Formations that 

are identifiable due to their unconformable overlay eroded bedrock that grows younger and 

thicker towards the coast (Abd Manap et al. 2014). 

Islam et al. (2020) developed soil profiles of the Langat Basin from the digitized Soil Map 

of the World which was prepared by the Food and Agriculture Organization of the United Nations 

(Fig. 2.3). Key soil units found in the region can be referred in Table 2.1. Each soil unit is further 

divided according to its dominant, and associated soil orders. The map shows that the majority of 

the soil type of the Langat Basin comes from the soil group Ao108-2ab at roughly 50% located in 

the central area the Langat Basin. These soil group is dominated by Orthic Acrisols which has a 

clay rich subsoil. The next soil group is dominated by Ge55-3a and Od21-a each occupying roughly 

20% of the basin located near the coast. Ge55-3a soil group is dominated by Eutric Gleysols which 

are soils that hold wetland water and are saturated in groundwater for long periods of time. Od21-

a soil group is dominated by Dystic Histosols which are peat soils that comprise of incomplete 

decomposed plant remains. The last soil group is Ao90-2/3c which occupy roughly 12% of the 

basin located in the mountainous region where it also has a dominant Orthic Acrisols soil profile. 
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Fig. 2.3 Soil Map of the Langat River Basin depicting the different soil groups found in the 
Langat Basin (Islam et al. 2020). 

Table 2.1 Spatial distribution of soil features in the Langat River Basin (Islam et al. 2020). 

Soil mapping unit 

symbol 

Soil unit Soil group 

Ao90-2/3c Dominant soil Orthic Acrisols 

First associated soil Humic Acrisols 

Second associated soil Dystric Cambisols 

Third associated soil Lithosols 

Ge55-3a Dominant soil Eutric Gleysols 

First associated soil Gleyic Cambisols 

Second associate soil Thionic Fluvisols 

Ao108-2ab Dominant soil Orthic Acrisols 
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First associated soil Ferric Acrisols 

Second associated soil Dystric Nitosols 

Third associated soil Gleyic Acrisols 

Forth associated soil Chromic Vertisols 

Od21-a Dominant soil Dystric Histosols 

First associated soil Humic Gleysols 

Second associated soil Thionic Fluvisols 

 

2.2.3. Land use and Land cover  

Land cover analysis of the Langat Basin by Islam et al. (2020) has shown that the basin is 

dominated by agricultural land, particularly by oil palm plantations and other permanent crops 

(39.25%). At least 25% of the area is occupied by forest, including swamp mangrove and the 

wetland forest. These forests and wetlands are mostly protected areas, serving as water catchment 

areas and conservation areas (Ekhuemelo et al. 2016; Widney et al. 2018). The urban settlements 

and associated non-agricultural areas make up approximately 20% of the basin.  

Idrus and Samad (2006) conducted a study of the rate of land cover change in the Langat 

Basin between the years 1974-2001. The study showed that the percentage of urbanisation almost 

doubled from the year 1996 (7.85%) to 2001 (13.86%). Much of the Langat Basin was occupied by 

agriculture in the 1960s and 1970s occupying roughly 50% of the basin. The rapid land-use change 

from 1996 to 2001 was due to the development of an administrative centre now known as 

Putrajaya and Cyberjaya. This development paved the way for the acceleration of the conversion 

of agriculture areas into urban areas. Agricultural areas have shown a decline from 176 640 

hectares in 1996 to 164 841 hectares in 2001 and continues to this day. 
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Fig. 2.4 Land use map of the Langat Basin (Islam et al. 2020). 

2.2.4. Hydrology 

As mentioned above, the Langat Basin has experienced accelerated change, particularly in 

intensive agriculture and urbanisation which have led to marked changes in its river hydrology. 

There has been a significant increase in discharge in the Langat Basin over the last 30 years 

(Memarian et al. 2012). The study was conducted at the Langat River and Semenyih River. The 

study shows that the mean water discharge of the Langat River experienced a 77% increase while 

the Semenyih River experienced a 44% decrease.  
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2.2.5. Characteristics of the study site 

The study site is located at a confluence between the Semenyih River and the Lalang River which 

is a 2nd and 1st order river respectively. The interaction between the climate, geology and soils, 

land use and land cover, and hydrology as mentioned in the previous sections are critical in 

determining the influence of various factors mentioned in Fig. 1.2 but most importantly the 

influence of bed colour on the estimation of SSC. More details on the study site are discussed in 

Chapter 3. 

To demonstrate, the study site of this thesis is located within the soil group Ao108-2ab 

which is dominated by a clay rich subsoil. The Lalang River has a river bed that is characterised 

with the mentioned soil group which gives off a light-brown bed colour. The deposition of fine 

sediment is further amplified by large scale agricultural activities upstream of the catchment 

which results in an uncontrolled erosion rate. On the other hand, the Semenyih River is a 2nd order 

river and does not show the characteristics of this soil group, instead has a sand and gravel bed 

which gives off a dark-brown bed colour. This is due to the higher water velocity of 0.5 m/s as 

compared to the Lalang River of 0.15 m/s which transports fine sediment downstream, depositing 

larger sand/gravel sediment particles. Furthermore, the upstream catchment of the Semenyih 

River is a protected forest reserve maintaining a lower erosion rate than the Lalang River. The 

interaction between the natural and anthropogenic characteristics resulted in a change in bed and 

water colour between the two rivers despite occupying the same catchment. These interactions 

also influence other factors such as channel depth and suspended sediment type which are 

discussed in Chapter 4.4.2. 
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2.3. Methodological framework     

The theoretical background related to the signature and detection of material present in water 

(section 1.2.3) raised a number of issues that potentially affect estimates of SSC derived directly 

from DN values. The methods adopted for this work were designed to address some of these 

issues, and accordingly the overall framework blended approaches used in previous work and 

expanded certain areas to explore them in greater depth.  In particular, this thesis builds upon the 

methods (and underlying theory) of Mosbrucker et al. (2015) and Haque and Adhikary (2016). 

The former was a study of the applicability of using consumer-grade cameras to estimate SSC 

using DN values from images taken from bridge vantage points. Their field site was deep so the 

bed was not visible, therefore some of the complications related to shallows streams were not 

considered. Their general approach to deriving DN and calibrating values from images was used 

here, but adopted in both laboratory experiments and field tests. These experiments followed 

Haque and Adhikary (2016) methodologically, but unlike these authors data were used to make 

statistical comparisons of the shape and quality of models fitted to DN v SSC. Unlike either of 

these studies, the present work also involved developing and validating calibration equations in 

the field using drone-surveys. Thus, the methodological framework blended field and laboratory 

studies and included using drone images to produce SSC maps of river reaches.  In addition, 

unlike previous work flexible, non-linear models (Generalised Additive Models (GAMs) were used 

to assess and compare relations between cameras and across different types of bed conditions. 

Advantages of GAMs are discussed further below.   

The methodological framework of this thesis is represented schematically in Figure 2.5. It 

involves 1) obtaining remote sensing imagery at controlled SSCs in the laboratory, with different 

experiments designed to assess the influence of bed colour and sensor, 2) undertaking drone 

flights and developing field calibrations from images, to produce (3) a final orthomosaic that 

shows SSC in a small, shallow river. Methods specific to each objective are detailed in respective 

chapters, as illustrated in Fig. 2.5. Chapter 3 presents the methods and results of lab work 

designed to address Objective 1 and 2.  It will explore the influence of multiple parameters (bed 

colour and camera sensor) that may affect the strength and nature of the relationship between 

SSC and DN. Chapter 4 details the field studies using the drone. It sets out how images were 

processed in order to develop a field calibration relationship, and tests (validates) this using 

empirical SSC data for the site. The final product is a map showing fine-scale (cm resolution) 

spatial variation in SSC across the reach, something which would be difficult and/or expensive to 

achieve using traditional SSC monitoring approaches (i.e. in-situ sensors and satellite-based 

remote sensing). 
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Fig. 2.5 Research framework used in this thesis. 
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3. Chapter 3 Close Range Remote Sensing of 
Suspended Sediment in Tropical Rivers: 
Determination of key drivers using laboratory 
experiments 

 

3.1. Introduction 

Rivers and streams around the world are threatened by a range of stressors (Dudgeon et al. 2006; 

Ormerod et al. 2010). While some new stressors have emerged quite recently (Reid et al. 2019), 

others have remained persistent and widespread. One of the most persistent and globally 

pervasive threats to aquatic ecosystems comes from elevated concentrations of fine sediment 

(Owens et al. 2005). The impacts of changes in river fine sediment loads have long been 

recognized (Lal 1985), and a substantial literature now exists on causal processes and transport 

mechanisms (Wenger et al. 2017, Vercruysse and Grabowski 2019), and the ecological impacts of 

fine sediment both in suspension and once deposited on the bed (Wood and Armitage 1997; 

Buendia et al. 2014, Wenger et al. 2012). Changes in the amount of fine material transported by 

rivers have implications for coastal regions that impact the flow of nutrients (Noe and Hupp 2009) 

and changes the deposition-erosion dynamic that governs the size of coastal ecosystems such as 

mangroves and wetlands (Caldwell and Edmonds 2014). As a result, coastal regions that 

experiences increase fine sediment also experiences heavy metal concentrations due to the 

cohesive and flocculating nature of fine sediment (Qian et al. 2015). High concentrations of heavy 

metals then enter the nutrient cycle in coastal food webs. Areas that experience deficit fine 

sediment have reduced nutrient flow such as nitrogen and phosphorus (Noe and Hupp 2009) but 

most concerning, experiences loss in coastal areas due to an increase in coastal erosion and a 

decrease in sediment deposition (Aiello et al. 2013).  

As discussed in Chapter 1.2 and illustrated in Fig. 1.2, published tests of simple direct 

methods remain limited but so far have suggested that DN has potential for river applications. 

For instance, Mosbrucker et al. (2015) developed linear equations that were able to predict, SSC 

from DN with a mean error of 10%. Bejestan and Nouroozpour (2007) used laboratory tests to 

generate values of SSC from DN values. While these studies show the potential for this approach, 

they were one-dimensional in that they showed the existence of relationships in a particular set 

of circumstances (single rivers, single sensor), and used a narrow range of SSC conditions with 

the exception of Haque and Adhikary (2016) which used two different sensors but the differences 

from the results were not discussed in detail.  Thus, there remains the need to assess whether SSC 
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can be predicted from DN using ‘generic’ transferable equations, or whether specific ones are 

needed for each application (reflecting the sensor being used in local conditions). This experiment 

addresses objective 1 and objective 2 of the thesis as mentioned in Chapter 1.3 and 2.3. 

 

Objective 1.  Assess whether it is possible to estimate SSC from simple, uncalibrated DN (i.e. 

rather than reflectance). 

Objective 2.  Assess the influence of different camera sensors and bed colour on the strength 

and statistical form of relationships between SSC and DN. 

 

To fully realise the stated objectives, there are three research questions needed to be answered:  

 

1. What are/is the statistically best colour channels to estimate SSC?  

 

2. Do different cameras sensors affect the quality of estimation? and  

 

3. Does the change in bed colour affect the estimation of SSC?   

 

3.2. Methods 

3.2.1 Experimental setup 

 

SSC-DN relations were developed from a series of laboratory tank experiments (Fig. 3.1). The tank 

was 0.7 m long, 0.3 m wide and 0.5 m deep; it was open at the top and had white walls and base. 

All experiments were conducted in a closed room, under fluorescent ceiling lights with no natural 

lighting.   

For each experiment, the tank was filled with water to a depth of 0.3 m. A sediment of 

<56µm was added incrementally in known weights to the water to produce a series of controlled 

suspended sediment concentrations extending from 0 to 2.5 g/L. This range was set to reflect 

SSCs in the river from which the sediment was collected (Langat River, Selangor, Malaysia; min 

0.0028 g/L and max 2.3123 g/L) and whose bed colours were mimicked (Fig. 3.2). 

For each concentration, four photographs (JPEG) looking down at an angle 45◦ onto the 

tank were taken using two different cameras – a commercial drone camera (DJI Mavic Pro) and 

a smartphone camera (Vivo V9) (Table 3.1).  The specific camera angle is set to reduce glare and 

reduce reflection from the camera setup and follows Mosbrucker et al. (2015). Water was agitated 
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immediately before each image was taken, to suspend sediment and mix it as evenly as possible 

within the water volume. The cameras were set to identical image capture settings as per Table 

3.1 where a Kodak white reference card was used to ensure that the images were set to true white. 

Photographs were taken from 0.5 m above the water surface. Before and after the experiment a 

photograph was taken of the aforementioned white balance with each camera. This was to ensure 

that any changes in the ambient lighting before and after the experiment could be corrected. A 

two-tailed paired t-test was conducted for the respective R, G and B from the images of the white 

balance before and after the experiment. The test showed that no significant change in the RGB 

values (P<0.001, df=520 198) occurred before and after the experiment. 

A 0.3 m x 0.3 m commercial non-polished ceramic tile was placed on the bed of the tank. 

In the first set of experiments, this tile was painted with a grey-brown colour (Nippon Paint 3616 

Pebble Walk) to represent light riverbed material.  A series (n= 80) of images were taken for each 

camera-SSC combination. Experiments were then repeated with a different tile colour (Anchor 

Spray No. 19 Anti-Rust Primer) which represents the more brown-red sediments found in the 

Langat. For the red-brown tile, only 30 experiments (n= 30) were undertaken, covering the same 

SSC range (0-2.5g/L). The same cameras and camera settings were used for the red-brown tile. 

Fig. 3.2 shows the two tiles representing different bed colours where the first colour is grey-brown 

while the other is brown-red. Experimental treatments using the left tile (grey-brown) will be 

referred to as Grey tile while treatments using the right tile (brown-red) will be referred to as the 

Brown tile for simplicity. 
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Fig. 3.1 Setup of the laboratory experiments indicating the position and angle (45◦) of the 
camera relative to the water filled tank and bed tile. 

 

Table 3.1 Camera specifications and settings of the drone (DJI Mavic Pro) and phone (Vivo V9). 
There was no available information on the sensor size of the Vivo V9 rear camera. Digital white 
balance is set according to a physical white balance card before the experiment began. 

 DJI Mavic Pro Vivo V9 (rear camera) 

Sensor Complementary Metal Oxide 

Semiconductor (CMOS) 

CMOS 

Sensor size 6.2 x 4.6 mm (½.3”) N/A 

Pixel Resolution 12 MP  16 MP  

ISO 200 200 

Exposure time 1/50 1/50 

White Balance Sunny Sunny 
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Fig. 3.2 Different tiles used to simulate effects of bed colour on estimates of SSC. These images 
are from the painted tiles that are immersed in potable water (0.0 g/L) and then cropped. 

 

3.2.2 Data processing and statistical analysis 

 

All data processing and statistical analysis were conducted using Microsoft Excel 2008 and R 

Studio 4.0.2 (R Core Team 2020) using the ‘raster’ (v3.3-13; Robert 2020), ‘plotrix’ (Lemon 2006) 

and ‘rgdal’ (v1.5-16; Bivand et al. 2020) packages. The photographs were cropped to include only 

the central part of each tile in the image for analysis. This cropping ensured that the area used for 

analysis (25cmx25cm) was not affected by shadows from the tank sides.  

DN values for each pixel were extracted for Red, Green, and Blue (R, G, and B) channels 

for each image crop. For each RGB colour channel from each image, the mean DN values were 

calculated. The mean DN value was used based on a preliminary study that compared the fits for 

the mean, median, maximum, and minimum DN values. The preliminary study found that the 

mean and median DN values displayed the strongest and most consistent relationship to SSC with 

both having deviance explained of 96%. The minimum and maximum values had the weakest 

relationship with deviance explained of 87% and 74% respectively.  

The relationships between SSC and mean DN were initially explored for each ‘tile colour-

camera-colour channel’ combination using x-y scatter plots. The main method of identifying a 

suitable statistical relationship was by fitting a Generalised Additive Model (GAM). GAM is a 

generalized linear model where the linear response variable is linearly dependent on unknown 

smooth functions of some predictor variables (Nisbet et al. 2018). This allows the GAM to produce 
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a flexible model that find the best ‘shape’ without imposing a fix or assumed response (Nisbet et 

al. 2018). From the GAM models produced for every combination, the fit of the modelled 

relationships was quantified using model p-value, R2 , and deviance explained, while the relative 

fit between different models was assessed using Bayesian Information Criterion (BIC) values. BIC 

is a quantitative way to represent information loss in a model, with smaller values representing a 

better fit (i.e. less information loss). One model is considered better than another if its BIC value 

is smaller by a value 2 BIC units (Kass and Raftery 1995). 

 

3.3 Results 

3.3.1 Thresholds for measurement of Suspended Sediment 
Concentrations (SSC) using Red, Green and Blue Digital 
Number (DN) values in camera images   

 

Fig. 3.3 is the SSC-DN data fitted to GAMs. All the models gave a P<0.001 with the Grey tile having 

a deviance explained between 60% and 80% while the Brown tile having a deviance explained 

between 80% and 30% with varying smoothness indicated by the estimated degrees of freedom 

(edf). The larger the edf, the more flexible and more complex the model is. The GAMs show that 

there is a statistically distinct trend between tile colour with the Grey tile having a negative 

relationship while the Brown tile having a positive relationship. Though GAM fits are statistically 

significant (P<0.001) it is evident that in many cases there is a systematic pattern in the error 

around models with high scattering at high SSCs.  

Generally, the relationship is much stronger at lower SSC and as SSC increases the 

estimation breaks down at a certain point. For instance, the Grey-Drone-R/G/B combinations 

breakdown when SSC > 0.5 g/L. The inclusion of this scatter prevents the accurate estimation of 

SSC, as such the threshold must be identified, and a new model must be fitted to the truncated 

dataset accordingly. The presence of a threshold is not as evident for models from the Brown tiles. 

The models for the Brown-Drone-Red, Brown-Phone-Red and Brown-Phone-Green combination 

(highlighted in red) can be argued to reasonably show relations across the complete range of SSC.  

BIC values can be used to quantitatively assess (aided by visual interpretation) whether 

the Brown tile models are accepted for subsequent analysis or would require truncation like the 

Grey tile models. Models of low BIC value of differences < 2 BIC units indicate that the models 

are statistically the strongest model that have the least amount of information loss at the same 

time has the simplest models. The Brown-Drone-Red, Brown-Phone-Red, and Brown-Phone-

Green was chosen to not have this vertical wall based on the fact that they have the smallest BIC 
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value (44.07, 42.20, 45.91 respectively) among all other models while at the same time, there is a 

fair amount of distribution of DN that can be interpreted to predict SSC value. Hence, these 

selected models will not undergo truncation like the other models and will be used in subsequent 

analysis. 

The truncation is dependent on a quantitative analysis on the location of the threshold. A 

visual estimation was first required to estimate the breakpoint where DN remains constant as SSC 

increases for each SSC-DN combination.  GAMs were iteratively fitted from low SSC values until 

a bit over the estimated breakpoint value. For each iteration, the BIC value is recorded and plotted 

against the sample size. The breakpoint is identified when there is a sudden change in the BIC 

value trend. For example, the Grey tile has 80 samples size of SSCs ranging from 0.0-2.5 g/L, 

visual estimation of the breakpoint occurs when SSC is at 0.5 g/L. A GAM was iteratively produced 

from 0.0-0.75 g/L with each BIC value recorded. This process is repeated for every SSC-DN 

combination.  

Appendix 1 is the plotted points between the sample size and BIC value for every SSC-DN 

combination. The points in red are the BIC value that occurs before a large gap and is indicative 

of a breakpoint presented. The breakpoint for each SSC-DN combination is presented in Table 

3.2. The results show that across different SSC-DN combination, the blue channel has the lowest 

SSC threshold followed by the green and red colour channel. The highest SSC threshold was from 

the Grey-Phone-Red combination at 0.95 g/L while the lowest SSC threshold was from the Brown-

Phone-Blue combination at 0.25 g/L. These thresholds indicate the maximum SSC above which 

DN values cannot be reliably used to differentiate higher SSCs. 
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Fig. 3.3 GAMs for the SSC-DN combinations organised based on the ‘tile colour-camera-colour 
channel’.  
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Table 3.2. Threshold for each SSC-DN combination indicated by the largest gap in BIC value. 

SSC-DN combination SSC threshold (g/L) 

Grey-Drone-Red 0.40 

Grey-Drone-Green 0.40 

Grey-Drone-Blue 0.25 

Grey-Phone-Red 0.95 

Grey-Phone-Green 0.60 

Grey-Phone-Blue 0.30 

Brown-Drone-Green 0.50 

Brown-Drone-Blue 0.20 

Brown-Phone-Blue 0.25 

 

All truncated datasets were fitted to GAMs as seen in Fig. 3.4. along with the models that 

did not require truncation (highlighted in red). Table 3.3 is a summary statistic for each SSC-DN 

combination; Grey tile for the RGB of the phone and drone has an R2 of >0.98, indicating that the 

model explains more than 98% of all the variability of the response data around its mean. In 

respect to the Grey tile, the strongest model is the blue channel for the phone with BIC = -295 and 

green channel for the drone with BIC = -332; the model fits for the Brown tile for the blue channel 

for both cameras has an R2 of >0.8 where the blue channel has the strongest BIC value of -83 for 

the phone and -93 for the drone.  
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Fig. 3.4 GAM functions between Digital Number (DN) values of the Red, Green and Blue colour 
channel and Suspended Sediment Concentration (SSC) organised based on ‘tile colour-camera-

colour channel’.  
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Table 3.3 Generalised Additive Models a) Grey tile and b) Brown tile for the RGB channel of each 
camera with their respective BIC, R2, p-value, deviance explained % and edf. The strongest model 
is indicated by the BIC value labelled with *. 

a)  

Grey tile Drone Phone 

Channel Red Green Blue Red Green Blue 

BIC -248.87 -332.16* -298.21 -204.84 -235.39 -295.67* 

R2 0.988 0.999 0.994 0.989 0.990 0.995 

Dev exp % 98.9 99.8 99.4 98.9 99.1 99.5 

p-value < 0.001  < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

edf 2.77 2.99 2.97 2.99 2.98 2.97 

 

b)  

Brown tile Drone Phone 

Channel Red Green Blue Red Green Blue 

BIC 44.07 -36.02 -93.04* 42.20 45.91 -83.91* 

R2 0.804 0.916 0.967 0.816 0.816 0.928 

Dev exp % 82.1 92.8 97.2 83.1 81.7 93.8 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

edf 2.60 2.83 2.80 2.42 2.88 2.23 

 

3.3.2 Influence of camera type on estimated Suspended Sediment 
Concentrations using Digital Numbers from camera images 
 

Fig. 3.4 shows that the overall DN values for the RGB of the drone camera has a slightly wider 

range than the phone for both tiles. The Grey-Drone has a DN range difference of 144, while the 

Grey-Phone has a difference of 83; Brown-Drone has a difference of 160, while the Brown-Phone 

has a difference of 103. The chi-squared test has shown that the differences in the range are 

statistically significant with a P < 0.001, df=1. Furthermore, the maximum SSC for the phone 
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camera is consistently higher than the drone camera across tile colour. E.g.  the Grey-Drone-Red 

model has a maximum SSC of 0.4 g/L while the Grey-Phone-Red model has a maximum SSC of 

0.95 g/L. 

3.3.3 Influence of riverbed colour on estimated Suspended Sediment 
Concentrations using Digital Numbers from camera images 

 

The direction of the trend line in Fig. 3.3 (positive or negative) indicates different relations 

between DN and SSC when bed colour differs. On the Grey tile, when the bed colour is lighter than 

the sediment, there is a negative direction and the trend appears to be exponential but in actuality, 

there is a wide range of SSCs at low DN values as discussed previously. On the Brown tile, when 

the bed colour is darker than the sediment colour, the slope is in the opposite direction and in 

most cases with scattering in DN at high SSCs. The only possible relations to exist across the whole 

range comes from the Brown-Drone-R, Brown-Phone-R/G colour channel, where there is no clear 

breakpoint that marks the breakdown in the relationship.  

The direction of the relationship seen from the truncated data in Fig. 3.4 is that the Grey 

tile has a negative direction while the Brown tile has a positive direction. The overall range of DN 

values between the Brown tile is much wider than the Grey. The Grey-Drone has a DN range 

difference of 144, while the Brown-Drone has a difference of 160; Grey-Phone has a difference of 

83, while the Brown-Phone has a difference of 103. Chi-squared test shows that these differences 

in range between tiles are statistically significant (P<0.05, df=1). Both bed colours provide a good 

predictive model (R2>0.8) as seen in Table 3.3.  

3.4 Discussion 

3.4.1 Potential of close-range remote sensing for monitoring 
suspended sediments in tropical streams and rivers 

 

Close-range remote sensing has the potential in monitoring suspended sediments in smaller 

streams than satellite imagery and at a much greater spatial resolution (Mosbrucker et al. 2015). 

This technology may prove particularly beneficial in tropical environments where, first- to third-

order streams are responsible for transporting high volumes of sediments into downstream river 

networks (Chappell et al. 2004) yet are typically too small for satellite remote sensing. The basic 

principles of extracting information on fine sediment from camera images are well established, 

and previous studies have shown that it is possible to estimate both water turbidity (Vogt and 

Vogt 2016) and suspended sediment concentration in lentic and lotic systems (Bejestan and 
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Nouroozpour 2007; Haque and Adhikary 2016). The laboratory tests reported here provide 

further evidence that that SSC can be predicted from DN values with confidence (i.e. significant 

models with high R2), but they also indicate that 1) relationships may not be transferrable between 

rivers or sites where bed material differs in colour with respect to materials in suspension, 2) 

different camera sensors yield different calibration coefficients, and 3) in most cases, there is an 

upper SSC limit above which camera images are not able to differentiate further increases in SSC. 

These conclusions have implications for the use of digital photography for routine monitoring of 

suspended sediments and its utility in citizen science, as discussed below. 

 

3.4.2 Thresholds for monitoring of SSC using DN values 

 

The breakdown of the relationship between SSC and DN values has not been reported in 

the three studies that existed for close-range remote sensing for monitoring SSC through DN. The 

lab experiments indicate a threshold SSC value above which DN may not be able to distinguish 

further increases in SSC. Mosbrucker et al. (2015) used field data SSC values ranging from 0.25 -

7.3 g/L to produce a calibration relationship. The trend line produced was logarithmic (base 10) 

with a negative relationship. Haque and Adhikary (2016) conducted laboratory tests with SSC 

values ranging from 0-0.5 g/L. The trend line produced was linear with a negative relationship. 

And finally, Bejestan and Nouroozpour (2007) conducted laboratory tests with SSC value ranging 

from 0-0.1 g/L. The trend line produced was a quadratic equation with a negative relationship. 

None of these studies indicate a breakdown when SSC increases; such a breakdown might have 

been expected in Mosbrucker et al. (2015) as the maximum range of SSC in their study were three 

times higher than this current study.  The breakdown is suspected to be a result of digital artefacts 

from the images. The digital artefacts mentioned could be a result of dark areas (cause by 

shadows) within the photos that conceal DN. Hence, a simple digital image processing was 

conducted on the image JPEG file by digitally increasing the exposure of the images and replotting 

the SSC-DN scatterplot. The results showed that the breakdown remained. Thus, interference 

from the image processors of the camera was ruled out. Future experiments could be replicated 

using images stored in raw as the preservation of image quality from this file format may remove 

the artefact.  It is important to note that some SSC-DN combination of the Brown tile (red and 

green colour channel) shows no evident threshold and as such was not truncated as compared to 

the Grey tile. These models that were not truncated allowed for a much higher SSC coverage. E.g. 

the highest SSC for the truncated data is 0.95 g/L, while the non-truncated data goes up to 2.5 
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g/L. This can be used to affirm that the threshold is not likely an experimental artefact and that 

the presence of a threshold is influenced by the “Darkness” or “Lightness” of bed colour.  

The most likely explanation for the breakpoint in our data is that DN values upon 

increasing SSC indicate that the maximum colour in the tank has been achieved (ratio of fine 

sediment colour is higher than the ratio of bed colour). Thus, any increments of suspended 

sediment can no longer change the overall colour of the image.  Models that were not truncated 

simply has not reached its maximum colour. Applying these finding in the field, calibration 

models derived from the field that have a light bed colour (at least that of similar in colour to the 

Grey tile), the models would expect to only predict SSC at a drastically lower range than in areas 

that have a darker bed colour similar to the Brown tile. Despite the lack of ability for DN to 

estimate specific SSC above certain threshold for some situations, this approach can be used to 

test whether SSC exceeds particular levels. Thus, it can be used to assess if water sources meet 

water quality standards. According to the National Water Quality Standards of Malaysia, river 

water with Total Suspended Solids (TSS) higher than 3.0 g/L would be classified as Class 5 

(Poorest water quality class) (National Water Quality Standards of Malaysia 2019) which is well 

below the threshold. This indicates that close-range remote sensing using smartphone or drone 

cameras can potentially be used to assign water quality classes based on SSC to Malaysian streams 

and rivers through cross calibrations of SSC v TSS. 

 

3.4.3 Influence of colour band on DN values 

 

The strongest fit for the colour channel was the green and blue channel. This conforms to 

Mosbrucker et al. (2015) and Haque and Adhikary (2016). Remote sensing literature particularly 

in freshwater bodies, have shown that there are no unified colour channels that can be used to 

predict SSC (Pereira et al. 2019). This is due to the multiple parameters that dynamically influence 

one another as illustrated in Chapter 1.2. That being said, a majority of the literature agrees that 

the Near-Infrared (NIR) channel is important in estimating SSC. This was demonstrated by a 

study by Witte et al. (1981) which showed through laboratory experiments that increasing the SSC 

values increases the reflectance linearly between the red and NIR band. This would suggest that 

the red channel should have provided the strongest fit.  

It is suspected that the choice in the green and blue channel could be due to the ratio of 

organic and inorganic material found in the collected sediment. In areas with very high coloured 

dissolved organic matter (CDOM) concentrations such as black water rivers which is most 

common in peat swamp hydrology, the blue band has been shown to provide strong relations with 
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SSC (Nichol 1993). Loss of Ignition (LOI) tests using a subset of sample sediment used in the lab 

experiment indicated that SSC contained 5% organic matter. The small organic percentage in the 

sediment is too low to suggest that the organic material is a factor for green and blue channel to 

be favoured. Thus, this factor is ruled out. The reason why the blue and green channel has the 

strongest fit remains unclear. 

 

3.4.4 Influence of camera type on DN values and implications 

 

A standardised approach for monitoring SSC from close-range remote sensing has so far not yet 

been converged upon. One of the major challenges to the widespread use of consumer-grade 

cameras for close-range remote sensing of SSC in rivers is that different camera sensors may 

influence the relationship between SSC and DN in different ways, and this would make it 

challenging to compare DN values from different cameras. Some authors have used cameras 

modified by replacing the standard filters with multispectral sensors to match those of the 

Landsat 4-5 satellite: Vogt and Vogt (2016) for example replaced the UV/NIR filters of a GoPro 

HERO3 with an external multiband-pass ZB2 (violet) filter to suppress UV, green, and red 

wavelengths. This provided blue and NIR sensitivity in the sensor’s blue and red channels, but 

such modification is not likely to be possible in large scale, multi-user citizen science surveys. 

Unmodified and, ideally, inexpensive cameras are needed for this.  

Unmodified cameras have been used in several studies, but different authors have typically 

developed their own way of treating pixel information to estimate SSC or turbidity. Methods have 

differed in their complexity, some directly use DN values extracted from images (Bejestan and 

Nouroozpour 2007; Haque and Adhikary 2016) and others include atmospheric correction, which 

requires capturing images of the sky and a grey card at the same time as the water surface to 

account for sky irradiance before assessing correlation with SSC (Leeuw and Boss 2018). Choice 

of colour band has also varied as stated previously, as has the way values from the many pixels 

making up a single image are integrated (see Chapter 3.3.3). Mosbrucker et al. (2015) used the 

maximum pixel value in the blue band and found a good fit for river SSC. However, when the 

maximum DN values were used in the experiment, the models provided a poor fit as compared to 

the mean and median DN values.  The present study found that across camera sensors and 

differences in bed colour, the blue and green channel have the strongest fit.  

Both cameras used in the lab experiment have the same CMOS sensor but different sensor 

size. Crisp (2013), states that the size of the sensor determines the dynamic range of the camera 

where a larger sensor allows more light and vice versa. This is translated into the range of DN 
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values for each camera. The DJI Mavic Pro drone camera has a sensor size of ½.3” while the Vivo 

V9 (rear) camera does not provide the dimensions for the sensor size. However, smartphone 

cameras due to their small size have an average sensor size comparable to that of the drone sensor 

at ½.5” (Triggs 2020). The chi-squared test has shown that the DN range between the two 

cameras was statistically different with the drone camera having a wider range of DN values than 

the phone camera. This has serious outcomes when selecting a suitable camera for estimating 

SSC. Small changes in sediment loads in rivers can have marked ecological effects. For example, 

when DN value is 50, the Brown-Drone-Blue model estimates SSC at 0.05 g/L while the Brown-

Phone-Blue model estimates SSC at 0.2 g/L. This phenomenon is consistent across all models. 

Estimating SSC is especially critical in monitoring sediment sensitive species such as invertebrate 

assemblages that can drastically drop in species richness and diversity from minute increase in 

SSC Buendia et al. (2011). Thus, the application of an inappropriate model (a model developed for 

one camera being used to predict SSC from DN values for an image taken with another camera) 

may lead to overestimation or underestimation of ecological effects.  Additionally, the results 

indicate that although the phone camera has a narrower DN width, the sensors can predict higher 

SSC values as compared to the drone camera. E.g. The Grey-Drone-Green model has a maximum 

predicted SSC of 0.4 g/L while the Grey-Phone-Green has a maximum SSC of 0.6 g/L. It can be 

argued that the width of the DN is more important as it involves with the accuracy of SSC values 

than the maximum threshold of SSC. A high SSC threshold does not provide any meaningful 

prediction if the model is not accurate. Future experiment can focus on field-based calibration 

and validation between the two camera sensors to examine which cameras sensors are the best at 

predicting SSC. 

 

3.4.5 Influence of bed colour on DN values  

 

The largest and most obvious influence of bed colour towards the experiment is that the models 

change in direction when subjected to different bed colour. As to the reason why the change in 

direction for the Grey tile (negative) and Brown tile (positive), this is due to the relative DN value 

of the bed colour and fine sediment colour. If the DN of the bed is much lower than the DN of the 

fine sediment colour, then increasing the concentration of fine sediment would produce a ratio 

colour that moves towards a higher DN value i.e. a positive relationship. Conversely, if the position 

of the DN of the bed is much higher than the DN of the fine sediment colour, then increasing the 

concentration of fine sediment would produce a ratio colour that moves towards a lower DN value 

i.e. negative relationship. This demonstrates that models produced from a particular river channel 
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may not be transferable to other rivers due to differences in bed colour. This can even be extended 

to the colouration of the SSC as the inorganic material of fine sediment are derived from the 

geology of the catchment. Furthermore, as brought up in Chapter 3.3.2, the presence of a 

breakpoint is undeniable in the Grey tile while it is much less evident in the Brown tile. This would 

suggest that the darker Brown tile allows the estimation of higher SSC values than the lighter Grey 

tile. This could be the reason to why there are no records of a threshold in previous literature as 

(although not stated) the Brown tile would likely reflect most riverbed colours. However, this only 

applies on some SSC-DN combinations of the Brown tile. The threshold is evident for the blue 

channel in this study even though no threshold was observed in the study by Mosbrucker et al. 

(2015). Replication of this experiment needs to be conducted for a variety of bed colours in order 

to observe whether the threshold is present. Furthermore, more research could be done on 

whether the models produced in a river reach could be used to estimate SSC values within the 

same basin as they would share similar geological conditions. It is also important to note that the 

effects of bed colour would decrease as the depth of the water increases as discussed in Chapter 

1.2.2. 

3.5 Conclusion 

This chapter aimed to answer three key questions. 1) What are/is the statistically best colour 

channels to estimate SSC? The models have shown that the green and blue colour channels were 

statistically the best colour channel across camera sensors with the Grey tile favouring both the 

green and blue while the Brown tile favouring the blue colour channel. 2) Do different cameras 

sensors affect the quality of estimation? The quality of estimation of the drone and phone is 

statistically different through a chi-squared test. The model estimation from the drone camera 

has a wider DN range than the phone. The differences in DN range results in the overestimation 

or underestimation of SSC values. The phone model, however, has a higher estimation of SSC than 

the drone across models. 3) Does the change in bed colour affect the estimation of SSC?  The 

influence of bed colour resulted in the direction of the model completely changes due to the bed 

colour from a negative (Grey bed) to a positive (Brown bed) relationship. This experiment has led 

to an unexpected discovery of a maximum threshold in estimating SSC values when using low-

cost cameras which have not been recorded in previous papers. The presence of a threshold is less 

evident in some combinations of the Brown bed while the Grey bed shows clear evidence of a 

threshold. 
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4. Chapter 4 Application of aerial surveys to 
develop suspended sediment maps of river 
reaches 

4.1 Introduction 

There is growing interest in remote sensing of rivers to monitor water quality. Water monitoring 

stations provide relatively sparse information about spatial variation in water quality.  Remote 

sensing has been used to fill this gap for some water quality parameters, including suspended 

sediments, temperature, and chlorophyll a (which is indicative of nutrient pollution). Despite the 

increasing popularity of satellite remote sensing for monitoring water quality, particularly in 

monitoring suspended sediment (e.g. Tomsett and Leyland 2019; Deithier et al. 2020), there are 

various limitations faced by this technology, as explained in Chapter 1.2. One such limitation 

mentioned was its spatial resolution. Satellite remote sensing is limited to larger rivers as the 

typical spatial resolution of freely available satellite imagery is 10-30m, and a minimum of around 

2m. Thus, finer-scale variation in sediments or nutrients, which can play an important role in the 

suitability of habitats for aquatic organisms, cannot be differentiated using satellite remote 

sensing (Isidro et al. 2018; Yadav et al. 2019; Gallay et al. 2019). In addition, weather conditions 

can greatly impede data collection particularly cloud cover that directly obstructs the object in 

focus and reduces data quality through shadows. This is a greater problem in tropical regions 

where it is extremely hard to obtain <10% cloud cover (Sano et al. 2007) even during dry seasons. 

These challenges mean that the use of satellite-based remote sensing to monitor small river 

systems is difficult. The increased availability of low-cost unmanned aerial vehicles (UAVs or 

drones) has led to an expansion in the use of this technology for a range of environmental 

monitoring applications (Tomsett and Leyland 2019). Close-range remote sensing using cameras 

mounted on drones generates images at a higher spatial resolution than satellite-based remote 

sensing and with less interference from cloud cover (Fig. 1.2), this opens the potential for water 

quality monitoring in small rivers. This is especially practical in tropical countries such as 

Malaysia where high-intensity rainfall coupled with extensive land cover change is generating 

high sediment concentrations in rivers (Chakrapani 2005; Sun et al. 2019). First, to third-order 

river channels are a major source of sediment inputs in a typical river network (Chappell et al. 

2004), meaning that monitoring and detection of high sediment concentrations in small rivers is 

an important aspect of understanding sedimentation hotspots in tropical water catchments. The 

value of drones is emphasised by the limited number of conventional monitoring stations. E.g. 
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there are only eight suspended sediment monitoring stations throughout the three river basins of 

the most populated state in Malaysia – Selangor (Department of Irrigation and Drainage n.d.).  

This chapter builds on the results obtained in the laboratory experiments in Chapter 3.  

The experiments demonstrated that a good relationship can be derived from Digital Number (DN) 

to estimate Suspended Sediment Concentration (SSC) through laboratory tests. However, the 

laboratory experiments also found that relationships are site-specific and camera-specific partly 

due to the influence of bed colour that can drastically change the direction of the relationship. 

This chapter explores the application of the approach from Chapter 3 i.e. to estimate SSC in the 

field using a drone mounted sensor. Chapter 4 begins by using images captured from the same 

drone camera used in Chapter 3 (DJI Mavic Pro) to quantify spatial variation for a section of the 

Semenyih River. These relations were then used to produce a map of SSC, which was then 

validated using spot measurements of sediment concentration. This chapter addresses objective 

3 of this thesis: Assess whether it is possible to use DN to reliably predict spatial patterns of SSC 

across a river reach. The chapter addresses three research questions:  

 

1. Can significant relations between DN and SSC be found using aerial images of a river taken 

from a drone-mounted camera?  

 

2. Can these relations be used to reliably predict SSC values and produce 'maps' of SSC in a section 

of the river?   

 

3. What is the magnitude of spatial variation in SSC in a typical section of the river? 

 

4.2 Materials and Methods  

4.2.1 Study site 

The Semenyih River is one of the main sources of water for over 1 million residents that reside 

within the basin (Heng et al. 2006) and is essential in supplying water to the agricultural regions 

which cover the largest percentage of land use type at roughly 40%  (Islam et al. 2020). In recent 

years, the water quality of the Semenyih River has been shown to deteriorate due to increase 

development and increase in illegal discharge of industrial waste into the river system (Rahman 

2014). This has caused frequent and extensive water shortages of clean water over the years and 
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has prompted the urgency for better monitoring and management of pollution of the Semenyih 

River (Rahman 2014; Shah 2020).   

The study site is a confluence situated adjacent to a recreational area - Sungai Lalang 

Hotspring (3.04196, 101.87303). The Lalang River is a tributary of the Semenyih River which is 

part of the larger Langat Basin in Selangor state, Peninsular Malaysia. This study site is located at 

a river confluence upstream, where the main channel is the Semenyih River while its tributary is 

the Lalang River. Through observation and satellite images, the tributary experiences higher SSC 

as its catchment is surrounded by agricultural land use while the main channel experiences lower 

SSC as it is surrounded by a forested area. This makes the confluence a hydromorphically dynamic 

area that is likely to contain a wide range of SSC values along a relatively small section of the river. 

Furthermore, the sediments used in the lab experiment came from the same river which acts as a 

controlled variable in terms of fine sediment composition in the river.  

4.2.2 SSC Measurements 

To obtain the SSC values of the study site, 24 metal poles were inserted in the bed of the river to 

act as sampling points (Fig. 4.1). These poles were inserted in locations that include the upstream 

of the confluence, tributary, mixing zone of the confluence and downstream channel as well as 

covering the span of the river– i.e. to capture a range of different SSC values which are 

representative of this river section. These metal poles were then locally coordinated using a Leica 

TS60 Total Station with an accuracy of 2mm ± 2ppm. Then, 500 ml of river water was collected 

from each sampling point. The sampling was conducted on the 22nd January 2020 from 09:30-

9:50 am.  

SSC values of samples were determined using a vacuum filtration apparatus based on the 

standard protocol EPA 160.2 (United States Environmental Protection Agency 1999). Firstly, a 

clean filter membrane was weighed before the filtration process. The filter membrane used for 

this experiment was Bioflow filter paper: Nylon membrane filter of pore size 0.45 microns. 

Second, 500ml of water sample was then filtered through the filter membrane and oven-dried at 

120 degrees Celsius for 24 hours. Lastly, the oven-dried filter membranes were then weighed and 

the differences in weight before and after filtration were divided by the volume to derive an SSC 

in g/L. The 24 samples were later divided into 2 groups; 14 samples were used to derive a 

calibration relationship, while the remaining 10 was used to validate the calibration model. The 

14 SSC values were paired with the DN derived from the orthomosaic to produce an SSC-DN 

scatterplot. 
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4.2.3 UAV Imagery Acquisition 

Nine Ground Control Points (GCPs) were positioned throughout the left and right bank of the 

main stem and confluence and were locally coordinated using the Leica TS60 to ensure accurate 

georeferencing. Once all the water samples were collected, the DJI Mavic Pro drone was 

immediately deployed to collect images of the channel flown at 30m high. Collecting drone images 

immediately after sampling is essential to ensure that the images have undergone minimal 

temporal hydromorphological changes from the time the samples were collected. The drone used 

in this experiment is the same drone used in the lab experiment in Chapter 3 and act as a 

controlled variable. The drone camera uses a 14MP CMOS sensor with a sensor size of 6.2 x 

4.6mm (½.3”). Three flights were needed to capture the full study site with a total flight time of 

30 mins (10:00-10:30 am) and a total of 378 images collected. At the time and date of the drone 

flight, the sun angle was between 35◦ to 42◦. This was done to reduce specular water reflection 

(sun glint). The weather during the experiment was sunny with sparse cloud cover. The in-built 

white balance of the drone camera was pre-set to ‘sunny’ which was adjusted according to the 

physical white balance card to ensure that DN values can be retrieved from white images and 

black images. This ensures an optimal dynamic range of the subsequent images. The camera 

settings were ISO 200, shutter speed 1/600 sec and aperture F2.2.  

4.2.4 Calibration, Validation and Production of Orthomosaic 

All Red, Green, Blue (RGB) images were processed and stitched using the Pix4dmapper Version 

4.6.3 (Pix4D) to produce a continuous orthomosaic. Image analysis was conducted in ArcGIS 

Version 10.5.0.6491 (Esri). To provide an accurate scale of the study site, the orthomosaic was 

georeferenced to the local coordinates using the 9 GCPs to increase the absolute accuracy. This 

was also needed to identify the exact locations of the sampling points on the orthomosaic. At each 

of the 14 sampling points (calibration points), an area of 100cm2 was drawn on the orthomosaic 

using the ‘pixel inspector’ tool from ArcGIS.  The pixel inspector tool provided the DN values of 

the R, G and B colour channel that lie within the 100cm2. The pixel resolution of the orthomosaic 

was 1cm2 for 1-pixel thus 100cm2 occupied exactly 100 pixels and produced 100 DN values of the 

RGB channel. An average of the DN values for each colour channel was then produced. SSC-DN 

models were fitted to identify a statistical relationship using the p-value and R2 for each colour 

channel.  The strongest model denoted with a high R2 was then used to produce an SSC map of 

the site. In ArcGIS, the selected colour channel is exported as a separated TIF file from the 

orthomosaic and a polygon shapefile was used to outline the whole river section. The polygon was 

then used as a template to clip the extent of the orthomosaic using the ‘clip raster’ tool. The clipped 
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orthomosaic of the single colour channel was then used to calculate the estimated SSC by applying 

the equation from the model using the ‘raster calculator’ tool in ArcGIS.  

From the SSC map produced, the validation process requires the comparison of estimated 

SSC values and the observed values. I used the 10 sampling points as the observed value and 

compared the estimated value at the locations. The strength of the relationship was then verified 

by the p-value and R2. 

4.3 Results  

4.3.1 Orthomosaic 

Fig. 4.1 shows the orthomosaic of the study site with each sampling points labelled. The area of 

the orthomosaic covered 0.013 km2/1.2861 ha with an average ground sampling distance of 

1.01cm. 100% of the images were successfully calibrated (378 images out of 378 images 

calibrated).  The GCPs have an accuracy of 1cm in the XY axis and 2cm in the Z-axis with a root 

mean square error of 10.461 cm (X), 8.936 cm (Y), and 12 cm (Z). The GCPs provide scale and 

allow accurate measurements of the orthomosaic. 
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Fig. 4.1 The study site is at a river confluence with the Semenyih River as the main channel and 
the Lalang River as the tributary. Red arrows indicate flow direction for each river. Green circles 

indicate the location of water sampling points. 
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4.3.2 DN v SSC Calibration and Validation 

The lowest SSC recorded is 0.0038 g/L while the highest SSC recorded is 0.6524 g/L (µ=0.1054 

g/L, σ=0.2099 g/L). There are two outliers of 0.5264 and 0.6524 g/L which are the two upstream 

most sampling point of the tributary in Appendix 2. Fig. 4.2 depicts the x-y scatter plot of the SSC 

vs Red, Green, Blue DN. The scatter points indicate that there is a gradual slope from 0.0021-

0.0084 g/L until the slope increases drastically from 0.0084-0.652 g/L which is synonymous with 

an exponential curve. When fitting a trend line, the exponential function has the strongest R2 as 

compared to other function such as the quadratic function at R2 >0.74 and >0.5 respectively. The 

trend line is a positive relationship thereby as SSC increases DN increases. Among the RGB 

channels, the blue channel has the strongest R2 followed by the green and red at 0.82, 0.80, and 

0.75 respectively. There is a gradual increase in SSC at low DN values but a wide range of SSC at 

high DN values. The large scatter is akin to the threshold seen from the laboratory tests in Chapter 

3. A range of sampling points between 0.1-0.7 g/L would indicate if there is a clear threshold as 

seen in Chapter 3. The blue colour channel is used to calibrate the orthomosaic of the field site to 

produce the SSC map as seen in Fig. 4.4.  

The model of the observed and predicted SSC values is shown in Fig. 4.3 represented by 

the dashed line gave an R2 of 0.8491 and P<0.001. R2 indicates that roughly 85% of the variation 

in the observed SSC is explained by the variation in the predicted SSC. When compared to the 

solid line which represents an accurate prediction of the model (y = x), the current model has a 

slope of 0.69 which underestimates the observed values (y < x) – when the predicted value is 0.6 

g/L, the observed value is actually 0.04 g/L. Despite the high R2, the estimation of SSC through 

DN decreases in accuracy as the model is systematically over predicting from the solid line.   

 

 

Fig. 4.2 Field calibration of the SSC and DN values for RGB. 
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Fig. 4.3 Observed v Predicted SSC values (dashed line) based on the calibration of the blue 
band. The solid line represents the 1:1 line. 

4.3.3 Spatial Distribution of SSC 

Fig. 4.4 represents the SSC map of the study site using the calibration model from the blue colour 

channel. The highest SSC estimated is 7.4498 g/L and is located at the tributary while the lowest 

SSC estimated is 0.0021 g/L. Most of the study site is estimated to have SSC < 0.5 g/l with the 

upstream main stem at < 0.025 g/L indicated by the blue hue. The mixing zone between the main 

stem and tributary is represented by a multi-coloured thin line that straddles the sandbar. The 

tributary has SSC values >0.5 g/L while the main stem has an SSC value <0.5 g/L, with the main 

stem having little variation in SSC as compared to the tributary at σ=0.0025 g/L and σ=0.254 g/L 

respectively. 
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Fig. 4.4 SSC map of the Sungai Lalang Hotspring showing spatial variation in SSC at the 
confluence of Lalang River and Semenyih River. 
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4.4 Discussion 

4.4.1 Spatial Distribution of SSC 

The SSC map from Fig. 4.4 has provided valuable insight into the hydromorphic conditions of the 

river confluence. The Semenyih River has a significantly lower SSC value than the Lalang River 

which is reflected from predicted SSC values from the SSC map. The low SSC values from the main 

stem could be attributed to the Semenyih dam situated 3 km upstream which would inhibit 

natural sediment transport. The highest predicted SSC value is 7 g/L which is from Sungai Lalang 

despite observed SSC values from this area only reaching up to 0.6 g/L. The over prediction of 

SSC is a result of the systematic over prediction of the calibrated model (Fig. 4.3) which only 

decreases in accuracy as the observed SSC values increases. This over prediction is due to the 

limited sample size of only 24 sample points taken in the field where 14 sample points were used 

in the calibration stage and the remainder used for validation. The limited sample size was not 

able to acquire a wide set of SSC values that can produce a model that reflect the nature of the 

confluence.  

In addition to the over prediction of SSC due to the model, high estimates of SSC values in 

some areas of the river may also be due to the estimation of the riverbed DN instead of the water 

column due to the shallow depth of Sungai Lalang (average 0.16 m depth v 0.38 m in Sungai 

Semenyih). This effect can be confirmed by observing the left bank of the downstream channel, 

the red areas across the left bank are capturing DN values of the sandbar hence why it is perceived 

to have a higher SSC. Areas of the upstream tributary display low SSC (seen in blue) intermix with 

high SSC (seen in red). Whereas the high SSC value is a result of the camera capturing the riverbed 

instead of the water column. SSC analysis must be taken into consideration of false estimation of 

SSC by the influence of riverbed, as was demonstrated by the laboratory experiments in Chapter 

3, and highlights the importance of accounting for water depth and bed topography before using 

drone-based cameras to quantify SSC in small streams and rivers 

Fig. 4.4 shows that despite the high SSC in the tributary there is no evidence of a spatially 

extensive mixing zone; instead of forcing its way out into the main channel, a narrow channel of 

higher SSC is evident along the left bank adjacent to the sand bar. This pattern may however be 

discharge specific, as a function of the relative discharge magnitude in the tributary and main 

stem. In the low flow conditions prevailing during the current flights, velocity in the tributary was 

low compared to the main stem (0.15 and 0.5 m/s respectively) and so lacked the momentum to 

create an extensive mixing area. However, under different prevailing conditions, the pattern of 

mixing and hence SSC may be very different. 
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4.4.2 Mapping SSC Distribution in small rivers 

Although the strongest model relationship of SSC-DN is the exponential function, the 

strength of the relationship between SSC and DN deteriorates as the SSC increases. Fig. 4.2 shows 

that the exponential trend line cannot fit observed SSC >0.3 g/L indicating that SSC estimations 

are more reliable at lower values. The reasoning for the choice of selecting a simpler function as 

opposed to GAMs was based on the smooth trend line of the GAMs in the lab experiment where a 

simpler function would suffice for the field test. The choice of the blue colour channel is consistent 

with the calibrations from Chapter 3 which also favoured the blue and green colour channel. This 

matches previous studies of close-range remote sensing for measuring SSC concentrations by 

Mosbrucker et al. (2015) and Haque and Adhikary (2016). However, other studies have found 

different optimal colour bands and statistical relationships for estimating suspended sediment 

(Dang et al. 2018; Isidro et al. 2018; Pereira et al. 2019; Gallay et al. 2019). This is due to the 

complex interaction between different parameters (e.g. fine sediment and benthic composition, 

river depth, and bed topography) affecting the visual characteristics of aquatic environments (as 

discussed in Chapter 1.2) that may prevent a unified model for remote sensing of water quality 

characteristics. These parameters are partly explored in the following sections. 

According to on-site field observation, despite the difference in bed colour between the 

tributary which has a lighter bed colour than the main channel, the overall trend line of the model 

is a positive relationship i.e. as DN increases, SSC increases. In retrospect from the lab experiment 

from Chapter 3, the lighter grey bed colour has a negative relationship whereas the darker brown 

bed colour has a positive relationship. The change of direction between both bed colours was due 

to the contrast between the DN value of each bed colour against the suspended sediment colour. 

The field tests inform us that despite the contrasting bed colours in the field, both bed colours 

have a lower DN value than the fine sediment colour. Another prevailing influence is river depth 

concerning bed colour. In principle, river depth is inversely related to bed colour, i.e. the shallower 

the river, the greater the influence of the bed colour in the estimation of SSC and vice versa. In 

this instance, the shallow depth of the tributary has resulted in the overestimation of SSC to an 

unreasonable value of 7 g/L (seen in red) despite the observed samples measure to only 0.6 g/L. 

Estimation of SSC at shallow river depths has proven to be unreliable due to the overarching 

influence of the bed colour.  

Additionally, the accuracy of predicting SSC is affected by riparian shade, the shadows cast 

onto the water surface blocks direct sunlight which prevents accurate reading of river DN 

(Shahtahmassebi et al. 2013). This effect is observed in Fig. 4.5 in the upstream region of the 

tributary where it is estimated to have lower SSC (seen in blue) than the rest of the tributary (seen 
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in orange and red). Due to the small width of the tributary, the influence of riparian shade greatly 

exacerbates the ability to obtain usable information. This relates to the parameter of River Width 

under the factor ‘River Physiography’ from the conceptual diagram discussed in Chapter 1.2. De-

shadowing algorithms can be applied to remove or relax the impacts of shadows (Shahtahmassebi 

et al. 2013). One such algorithm was used by Shahtahmassebi et al. (2011), to reduce the effects 

of topographic shadow by restoring information in shadow areas based on surrounding 

information. This was proven simple and cost-effective but require a homogenous landscape to 

ensure accurate removal of shadows. Filippi and Güneralp (2013) developed a de-shadowing 

algorithm specifically to cater for riparian vegetation and have proven to significantly increase 

classification accuracy and improves detection. This method however requires the use of 

hyperspectral images which is not possible for low-cost drones. More research can be done to 

explore the effectiveness of de-shadowing algorithms in narrow rivers using RGB sensors.  

 

Fig. 4.5 Effects of riparian vegetation on the estimation of SSC. The left image shows the 
orthomosaic section of the upstream tributary which is greatly covered by vegetation while the 

right image is the SSC map derived from the orthomosaic. 

4.4.3 Use of fine-scale SSC maps for ecology and conservation 

 

Despite the potential sources of inaccuracy described above, the very high spatial resolution (1cm2 

/pixel) of the SSC map can quantify small-scale differences in SSC within a section of the river. 

High spatial resolution SSC maps can be an important tool for monitoring small-scale spatial 

changes in SSC to understand the relationships between species and habitat (Owens et al. 2005; 

Marteau et al. 2020a, b). Despite considerable research, there is little agreement on the ecological 

effects of suspended sediment as a function of concentration and duration of exposure 

(Newcombe and Macdonald 2011; Jones et al. 2012). This research can be used to study the 

response of targeted species in hydromorphically dynamic areas such as river confluences or 

regions that experience intensive LULCC. The range of suitable and unsuitable SSC conditions for 

aquatic species can be used to partition the SSC values accordingly in the map which will then be 

turned into a map of habitat suitability for the targeted species.  Marteau et al. (2017b) conducted 
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a study on the effects of fine sediment dynamics from the reconnection of the Ben Gill tributary 

towards the Ehen River. Their studies show that the reconnection of the tributary resulted in a 

65% increase in sediment load into the river system. The current method can be used to regularly 

monitor temporal and spatial differences of SSC within the confluence particularly for the interest 

of protecting sediment sensitive species.  

In addition to monitoring river ecology. This method can potentially be applied as a proxy 

to monitor water quality for human consumption. Identifying sources of sediment pollution can 

be expensive and time-consuming, requiring multiple site inspections and sample processing at 

each point source in different LULCCs. Drone-based remote sensing can be applied to survey 

multiple sites to identify fine sediment hotspots before deploying in-situ site sampling and 

analysis. Although water management bodies measure suspended sediment in turbidity and Total 

Suspended Sediment (TSS), cross-calibration on a site by site basis can be applied to derive 

turbidity and TSS values from SSC in order to match the Water Quality Index classes for 

Malaysian water monitoring (Glysson et al. 2000; Pavanelli and Palgliarani 2002).  

Although this study has shown the potential effectiveness of the models, the study has also 

highlighted key constraints that can be further explored and built upon before being utilised by 

the public. These constraints are 1) the model is over predicting observed values as SSC increases 

which is evident in Fig. 4.3, and 2) these models cannot accommodate variations in bed colour 

that are different to the study site according to the lab experiments conducted in Chapter 3. Hence 

the models are site specific; this means that new models should be developed for each site. This 

is discussed further in Chapter 5.  

4.5 Conclusion 

This chapter aimed to answer three research questions. (1) Can significant relations between DN 

and SSC be found using aerial images of a river taken from a drone-mounted camera? Strong 

statistical relations were found using consumer-grade drones with an RGB sensor to monitor 

suspended sediment in river systems. (2) Can these relations be used to reliably predict SSC values 

and produce 'maps' of SSC in a river section? Our results have demonstrated that through in-situ 

sampling, the estimation of SSC is proven to have strong predictive power (R2>0.8), however the 

model over predicts SSC values. Due to the high spatial resolution and accuracy of the estimation, 

this method provides great promise towards understanding the effects of small-scale fluvial 

dynamics within ecosystems. Results of the present study however suggest that the influence of 

riverbanks, riparian shading and water depth are primary sources of inaccuracy as discussed in 

Chapter 1.2. Particularly the effects of shallow river depth greatly amplify the ratio of riverbed 
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colour concerning fine sediment colour. Therefore, this technique is likely to be more suitable for 

monitoring SSC in relatively deep and/or turbid streams and rivers compared to shallow and/or 

clear water streams where the bed is visible. (3) What is the magnitude of spatial variation in SSC 

in a typical section of the river?  Overall, the SSC map has a fine spatial scale of 1cm2/pixel. The 

tributary has an order of magnitude higher SSC (>0.5 g/L) than the upstream main stem (<0.025 

g/L), with the main stem having little variation in SSC as compared to the tributary at σ=0.0025 

g/L and σ=0.254 g/L respectively.  This method shows great potential offering a cost-effective 

approach to SSC monitoring in narrow streams and rivers in the tropics.  
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5. Chapter 5. Conclusions 

5.1 Synthesis 

The studies conducted in Chapter 3 and Chapter 4 have shown that the mathematical relationship 

between estimated SSC (from DN in camera images) and measured SSC in laboratory conditions 

cannot be directly applied to estimate SSC in the field. This is due to the interaction of bed colour 

and relative colour of suspended sediment. Different relations of different sites mean that the best 

approach is to develop specific calibration for each location. 

The laboratory experiment has also provided clear evidence that the types of cameras used 

will affect the quality of estimation driven by the camera sensor size which determines the range 

of DN received by the sensor. Larger cameras sensors are more favoured as they can capture a 

wider range of DN values which will increase the accuracy of SSC estimation. The phone sensor 

due to the smaller sensor size provided a narrower DN range as opposed to the drone camera that 

has a larger sensor size hence wider DN range. This may only act as a temporary limitation for 

phone cameras as newer phones are adopting larger camera sensors as consumer demand for 

better image quality rises (Diamandis and Kotler 2020). 

Additionally, an SSC threshold was detected throughout the study (Chapter 3), where 

further changes in SSC concentration could not be distinguished by DN values providing no 

meaningful SSC estimation. This observation has not been recorded in previous studies. The SSC 

threshold was evident in the laboratory where the trend line linking SSC and DN deteriorates 

above an SSC concentration of 0.2 g/L- 1 g/L and was observed across all tile colour, camera and 

colour channel combinations with the exception of the Brown tile where the threshold was not as 

clear. The inclusion of values above the threshold would severely impact the models produced due 

to the high scatter within the y axis. The diminished presence of an apparent breakdown for the 

Brown tile seems to indicate that the darker bed colour can still produce meaningful DN values as 

SSC increases. This would also suggest that the breakdown was not a result of an experimental 

artefact. This study suggests that the cause could come from limited sensor capabilities of the 

cameras or that the breakdown is dependent on the apparent colour of the bed in relation to the 

colour of fine sediment within the water column. 

Estimation of SSC in the field requires field calibrations that ideally should include 

samples with a wide range of SSC values. Despite the potential of this methodology to generate 

valuable new information about spatial variation in SSC, particularly in the tropics where fine 

sediment monitoring networks are typically sparse, there are several key limitations which must 
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be considered before this approach can be widely applied: 1) The effects of shallow river depth 

which amplify the influence of bed colour relative to fine sediment colour, and 2) the difficulty of 

estimating SSC in small tributaries due to riparian shading which covers a larger proportion of 

the river surface compared to larger rivers. 

The findings of the present study indicate that 1) estimating SSC through DN is possible 

and does not require the conversion of DN value to reflectance value while still providing a strong 

model fit, 2) larger camera sensors are required to provide an accurate estimation of SSC and that 

camera sensors from smartphones are currently inadequate, 3) calibrations are site-specific and 

require in-situ sampling for each new site, and 4) SSC concentrations above a threshold value are 

difficult to measure using digital images. This last finding may be particularly important for the 

potential use of digital cameras to monitor SSC in tropical rivers, where SSC values are typically 

higher than in temperate streams and rivers 

5.2 Limitations 

In hindsight, there were many limitations faced and have been made clear throughout the process 

of completing this study. The lack of available literature on estimating SSC through DN values 

was a core limitation. Although many studies employ reflectance values, there was a large gap in 

exploring the utility of low-cost cameras to estimate SSC using DN about which only three papers 

exist: Bejestan and Nouroozpour (2007), Mosbrucker et al. (2015), and Haque and Adhikary 

(2016). Due to the limited literature on the subject matter, multiple knowledge gaps were needed 

to fill, particularly the applicability of smartphone and drone cameras, the influence of riverbed 

colour on the estimation of SSC and model functions derived from these parameter combinations. 

Another clear limitation is the limited sample size from the field tests, obtaining sample 

sizes larger than the current study could produce a better prediction as the data collected have 

shown that there is a gap of SSC values measured in the field between 0.1 g/L and 0.7 g/L seen in 

Fig. 4.2. The gap in SSC values within the 0.1-0.7 g/L range was simply due to only having five 

sampling points within the tributary.  A larger sample size that captured SSC values within this 

range could identify the possible presence of a threshold as seen from the laboratory experiment.  

5.3 Future Research 

Several knowledge gaps remain concerning the use of remote sensing tools and digital images to 

estimate SSC in rivers. The conceptual diagram (Figure 1.2) is mostly populated with studies that 

focuses on reflectance values and not DN values. One of the most important areas for future 
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research would be direct comparisons between models estimating SSC from DN and those using 

reflectance values. Another useful research avenue would be to compare the model fits of different 

smartphone cameras. This study compared a Vivo V9 smartphone camera with a DJI Mavic Pro 

drone camera which has shown that the smaller sensor size of the phone camera as compared that 

to the drone camera makes it less accurate at predicting SSC. Smartphone camera technology is 

improving rapidly, and already there are many new models that may produce better predictions 

than reported here.  Thus, a study comparing across multiple high spec mobile phone cameras 

may prove insightful.  Another important gap concerns the influence of different bed 

characteristics on estimates SSC.  This thesis and other recent studies have shown the influence 

of bed colour,  but no one has yet looked for example at how shadows produced by gravel beds 

could influence DN values, and in turn how this might affect estimates of SSC.    

On a larger scale, future research can be done on the applicability of low-cost drones in 

estimating SSC at a catchment scale. Having a SSC distribution map is useful for ecological 

studies. For example, invertebrates are known to be sensitive to increase in SSC because it can 

increase gill damage (Beussink 2007).  Researchers can use these maps to structure a sampling 

program within a stream reach and sample invertebrate populations from places that have 

consistently higher and consistently lower SSC to observe levels of gill damage. Patterns of spatial 

variation in SSC across a stream reach may vary over time (e.g. as a function of discharge) so SSC 

maps could also be used to look at how rapidly (or otherwise) invertebrate distributions change 

in response to spatial patterns of high and low SSC across a reach. Increases in SSC have also been 

found to initiate an increase in invertebrate drift (Behar et al. (2019). SSC maps would be used to 

explore this at fine spatial scales, to assess differential patterns of drift loss across a reach as a 

result of variation in SSC.  The method could be applied to help with management. For example, 

the impacts of oil palm plantations on SSC have not been extensively studied. This new method 

can very easily survey along the main stretch of a river to quantify the contribution and mixing of 

SSC from oil palm plantations, to identify contamination sources and, accordingly, target 

mitigation (better land husbandry, better riparian management etc.).  The fact that cameras can 

be used to assess suspended sediment also opens the possibility for them to collect temporal data; 

for instance, time lapse cameras could be used to take images at specified time interval, much the 

same way that turbidity sensors log NTU values.  Thus, they may have utility as an alternative to 

turbidity sensors. All such studies would be valuable to help understand spatio-temporal variation 

in SSC and how this affects aquatic communities. 

 Another application of camera sensors is water quality monitoring through citizen 

science. Citizen science is defined as the active public involvement in scientific research (Irwin 
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2018). Individual citizens could, in theory, simply take and image of a river that they have an 

interest in and this could be used to compute SSC using a mobile application. This opens up the 

possibility for co-ordinated, geographically extensive citizen surveys of SSC. For this to be 

possible, research is needed to assess transferability of SSC models across smartphone devices of 

different camera sensor quality. Technology companies are increasingly successful in converging 

smartphone technology with photographic hardware. Sensors and lenses have improved with 

successive smartphone models and are now comparable to that of compact cameras in some 

aspects, but work is still needed to assess the consistency (or otherwise) of DN-SSC models.  If 

they differ, the prospects for citizen science would be undermined by having to have models for 

each phone model.  

5.4 Concluding remarks 

This study provides insight into the applicability of using low-cost cameras to estimate SSC using 

DN values. Additionally, this study also examined the influence of different bed colours and 

different camera sensors towards the estimation of SSC using DN. In chapter 3, it can be 

concluded that uncalibrated DN values can be used to estimate SSC. The estimation of SSC can 

be conducted using different camera sensors but the model estimates are not transferable between 

different camera sensors (smartphone, drone). The influence of different bed colours 

substantially changes the direction of the model estimates and hence indicates that model 

estimates are not transferrable across rivers. In chapter 4, it can be concluded that it is possible 

to use DN to reliably predict spatial SSC across a river reach with great accuracy (R2>0.8) and 

produce high resolution SSC distribution maps (1cm2/pixel). The accuracy of model estimates is 

further improved if the river bed is not visible (ensuring no river bed reflectance) and there is an 

absence/minimal shadows on the river surface. These findings provide important insights into 

the potential application of this methodology for freshwater ecological research and water quality 

monitoring and management. However, more research is required before this technology can be 

utilised for citizen science water quality monitoring programmes. 
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Appendices 

 

Appendix 1.  BIC-Sample size plots. Red dots indicate the point at which the threshold occurs 
indicated by a large jump in BIC value. 

 

Appendix 2. Box plot of the 14 SSC values collected in the field. 


