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Abstract 

Cellular energy metabolism is a key player in both physiological and 

pathological scenarios. In mouse mesenchymal stem cell populations 

(MSC), changes in bioenergetics are associated with differentiation into 

adipocyte and osteoblast lineages. As new phenotypes are adopted by 

differentiated cells, unique metabolic profiles are observed. On a tissue 

scale, metabolites associated with cellular bioenergetics (e.g. pyruvate, 

lactate) show potential as biomarkers for disease, such as Alzheimer’s. 

Changes in tissue metabolic profiles are the result of the pathological 

mechanisms associated with disease. Additionally, metabolites are 

known to reflect upstream perturbations in the proteome and the 

genome. Thus, detection of specific metabolite signatures is a promising 

approach for the interpretation of physiological and pathological 

processes. 

In this project, we explored the possible application of 1H nuclear 

magnetic resonance spectroscopy to observe pyruvate metabolism in 

real-time in mMSCs and mouse tissues (wild-type and Alzheimer’s 

model). Following administration of 13C-labelled pyruvate, we observed 

a significant increase in the production of 13C-labelled lactate and 

alanine. Comparison of newly generated metabolite ratios allowed us to 

determine the metabolic phenotype of cells and tissues.  Following from 

there, we investigated changes in upstream gene and protein expression 

in relation to observed metabolite signatures. Our target enzymes were 

lactate dehydrogenase, alanine aminotransferase, and pyruvate 

dehydrogenase, as well as the genes associated with the expression of 

these enzymes.   

Our results suggest that 1H NMR spectroscopy is a viable technique for 

real-time metabolic studies, as we were able to discern cell and tissue 

phenotypes based on the observed [1-13C]lactate/[1-13C]alanine ratios. 
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In Alzheimer’s tissue, metabolites levels also reflected sexual 

dimorphism and treatment-associated effects. Indecisive results were 

observed when correlating metabolite signatures with changes in 

protein and gene expression. Lastly, using metabolomics, we identified 

some potential target metabolites for future investigation. 
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Chapter 1: Introduction 

1.1 Pyruvate metabolism 

Pyruvate is a major intermediate metabolite in the bioenergetic network 

of eukaryotic and mammalian cells. Primarily generated during the 

breakdown of glucose in the cytosol, pyruvate is the end of product of 

glycolysis and closely associated with the energetic state of the cell. 

Although the standard fate of pyruvate is to support adenosine 

triphosphate (ATP) synthesis in the mitochondria by providing carbon 

source to the tricarboxylic acid cycle (TCA), alternative pathways (e.g. 

lactate and/or alanine biosynthesis, gluconeogenesis) grant metabolic 

flexibility to this metabolite. The reversibility of the cytosolic pyruvate 

conversions further allows for rapid pyruvate allocation and regeneration 

to fulfil the energetic and biosynthetic demands of cells (Gray, Tompkins 

and Taylor, 2014). This is well-documented in the context of stem cell 

differentiation, with the inherent metabolic plasticity termed “metabolic 

reprogramming” (Shyh-Chang, Daley and Cantley, 2013; Loeffler et al., 

2018). The control of pyruvate metabolism confers an additional 

mechanism that influences lineage commitment, specification, and self-

renewal (Ito and Suda, 2014; Song et al., 2019). As such, metabolic 

reprogramming through pyruvate-associated pathways allows for 

metabolic adjustments that determine cell identity. For instance, there is a 

shift from glycolysis towards mitochondrial oxidative phosphorylation and 

oxidative stress during the maturation of stem cells into differentiated cells 

(Rafalski, Mancini and Brunet, 2012). In addition to influencing tissue 

differentiation, the pivotal role of pyruvate in the generation of 

mitochondrial ATP and driving key biosynthetic pathways makes it a 

vulnerable target for disruption in disease. Aberrant energy metabolism 

is a hallmark trait of certain pathologies, such as cancer or 
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neurodegenerative disease (e.g. Alzheimer’s disease) (Michelson et al., 

2001; DeBerardinis et al., 2008). Understanding the differences between 

pyruvate metabolism in both health and disease states is key to 

developing novel methods of detection and intervention. 

1.1.1 Pyruvate metabolism in health 

Pyruvate metabolism in eukaryotic and human cells can be classified into 

two distinct groups based on cellular compartments in which the pyruvate 

is present: the cytosol and the mitochondria. Cytosolic pyruvate is 

primarily generated by the dephosphorylation of phosphoenolpyruvate 

through the activity of enzyme pyruvate kinase (PK; EC 2.7.1.40) during the 

last step of glycolysis (Gupta and Bamezai, 2010). Complete breakdown of 

a single glucose molecule via the glycolytic pathway reactions yields two 

molecules of pyruvate along with two net molecules of ATP. The generated 

pyruvate then undergoes one of three fates: 1) conversion to lactate by 

the enzyme lactate dehydrogenase (LDH; EC 1.1.1.27); 2) transamination 

into alanine by the enzyme alanine aminotransferase (ALT; EC 2.6.1.2); 3) 

transportation into the mitochondria mediated by the mitochondrial 

pyruvate carrier (MPC), ultimately linking pyruvate to the TCA carbon flux. 

While the latter is the most predominant fate of pyruvate in high energy 

demand tissues, the alternative cytosolic conversions of pyruvate fulfil 

situational metabolic demands (Brosnan, 2000; Hui et al., 2017) (Figure 1) 

Reduction of pyruvate to lactate is a reversible reaction catalyzed by LDH 

and is coupled with the regeneration of NAD+ from NADH (Figure 2). This 

reaction is crucial in managing excessive glycolytic flux associated with 

spontaneous increase in tissue energy demand (Greenhaff et al., 2004). 

The most prominent example of such stressful metabolic conditions is 

during periods of intense physical exercise in humans (Stallknecht, Vissing 

and Galbo, 1998). Under immense strain, the energy demands for 

maintaining skeletal muscle contractions far exceeds the 
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Figure 1: Major pathways of pyruvate metabolism in health. Pyruvate occupies 

a crucial position in the central carbon metabolism. Various biochemical 

reactions are linked to the generation of pyruvate, including glycolysis, lactate 

oxidation, and alanine transamination. Pyruvate entry into the mitochondrial 

matrix is regulated by the MPC. Similar as in the cytosol, pyruvate has multiple 

fates inside the mitochondrial matrix. In the form of Acetyl-CoA, pyruvate enters 

the citric acid cycle and facilitates ATP synthesis. Pyruvate conversion to 

oxaloacetate serves as an anaplerotic pathway to replenish the citric acid cycle 

intermediates. Alternatively, oxaloacetate can be metabolized to 

phosphoenolpyruvate, thus facilitating gluconeogenesis. Molecular structures of 

all the core compounds, as well as the enzymes involved in reaction catalysis, 

are shown. PK, pyruvate kinase; LDH, lactate dehydrogenase; ALT, alanine 

aminotransferase; MPC, mitochondrial pyruvate carrier; PDH, pyruvate 

dehydrogenase; PC, pyruvate carboxylase; PEPCK, phosphoenolpyruvate 

carboxykinase; IMS, intermembrane space. Taken from (Gray, Tompkins and 

Taylor, 2014) 
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rate of mitochondrial ATP production (Mookerjee et al., 2017). 

Simultaneously, the resulting accumulation of NADH inhibits glycolysis, as 

glycolysis required NAD+ as a cofactor. LDH promotes glycolytic ATP 

generation by recycling NADH into NAD+ for glycolysis, concomitantly 

producing lactate (Figure 2). As a result of the LDH reaction, glycolysis is 

switched to an anaerobic mode of function, producing ATP to support 

work rates unsustainable by oxidative phosphorylation alone. Given 

renewed oxygen supply, this process is reversed via the Cori cycle, where 

the lactate produced in the muscle is delivered to the liver via the 

bloodstream and converted back to pyruvate by an isoform of LDH 

(Markert, Shaklee and Whitt, 1975). The free interconvertibility between 

pyruvate and lactate allows utilization of lactate as a gluconeogenic 

precursors during periods of fasting. Although seemingly a situational 

metabolite in healthy tissues, lactate maintains importance in certain 

tissues even under conditions of normoxia and abundant energy supply. 

Lactate synthesis has been found to be prioritized by cultured and primary 

mammalian adipocytes even in times of glucose deprivation, indicating 

adipose tissue contribution to whole-body lactate turnover (Krycer et al., 

2020). Furthermore, neurons have been found to preferentially take up 

lactate released by astrocytes to fuel oxidative phosphorylation (Bouzier- 

Sore et al., 2006). However, elevated lactate synthesis is closely associated 

with some disease states, as discussed later. 

Cytosolic mammalian pyruvate metabolism is closely associated with the 

catabolism of amino acids such as alanine, serine, and threonine. The 

former is noteworthy as it is a major protein-derived gluconeogenic 

precursor. In vitro and in vivo studies have shown that glucose biosynthesis 

from alanine heavily outclasses all other amino acids in terms of synthesis 

rate and reaction saturation (Felig, 1975). At the core of this alanine utility 

is the enzyme ALT, also often referred to as glutamic-pyruvic transaminase 
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Figure 2: The lactate dehydrogenase reaction. The reaction catalyzed by LDH 

links the production the of lactate from pyruvate to the regeneration of NAD+ 

from NADH. Reversible interconversion of these metabolites allows for 

metabolic flexibility. 

 

(GPT). ALT mediates the reversible conversion of alanine and α- 

ketoglutarate to pyruvate and glutamate, effectively bridging energy 

metabolism with amino acid biosynthesis pathways (Figure 3). Further 

investigations of this link have revealed a direct linear relationship 

between pyruvate and alanine levels in the blood plasma. With increased 

glucose utilization by the skeletal muscle during periods of exercise, 

simultaneous increases in the levels of circulatory alanine have been 

observed (Felig, 1973). Termed the alanine cycle, this interplay between 

pyruvate and alanine closely resembles the Cori cycle in that, during 

increased energy consumption, excess circulatory alanine is scavenged up 

by the liver and is recycled back to pyruvate for utilization in 

gluconeogenesis. However, the alanine cycle suffers from inefficiency due 

to necessitated detoxification of ammonia, a by-product of glutamate 

deamination. It is estimated that the alanine cycle, with respect to its 

contribution to hepatic glucose synthesis and role as peripheral tissue by-

product endpoint, occurs at a rate of approximately 50% of that observed 

for the Cori cycle. Alanine cycling is also a crucial mechanism in brain 

tissue, where, despite not contributing to energy or neurotransmitter 

metabolism directly, alanine 
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plays a role in carbon skeleton recycling in both rodents and humans 

(Evans et al., 2004; Bröer et al., 2007). 

 
 

 

 

Figure 3: The alanine aminotransferase reaction. This pathway links pyruvate to 

amino acid metabolism. Pyruvate can be thus utilized for biosynthetic purposes, 

while the reverse reaction allows for amino acid utilization for energy 

generation in the absence of other substrates. 

 

In most mammalian tissues, the pyruvate produced in the cytosol is 

predominantly imported into the mitochondrial matrix where it drives the 

TCA cycle flux, thereby facilitating ATP production by oxidative 

phosphorylation (OXPHOS) and numerous biosynthetic pathways (Figure 

4). Linkage between cytosolic and mitochondrial pyruvate is mediated by 

the mitochondrial pyruvate carrier (MPC), a carrier protein located on the 

inner mitochondrial membrane (Bricker et al., 2012). Once inside the 

mitochondria, pyruvate has several potential fates. Nevertheless, the 

majority is oxidized to carbon dioxide in the TCA cycle to support ATP 

production. In this pathway, pyruvate dehydrogenase (PDH) complex 

catalyzes the irreversible set of reactions that ultimately converts pyruvate 

and NAD+ into acetyl-CoA, NADH, and carbon dioxide. Acetyl-CoA then 

enters the TCA cycle, where the remainder of the pyruvate carbon skeleton 

is metabolized. Alongside energy metabolism, acetyl-CoA can contribute 

anabolic pathways, including lipogenesis, cholesterol synthesis, and the 

production of acetylcholine (Pietrocola  et al., 2015). The oxidation of 
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pyruvate in the TCA cycle results in the reduction of NAD+ and FAD to NADH 

and FADH2, respectively. These electron carriers are utilized by the 

electron transport chain (ETC) machinery to generate a proton gradient in 

the intermembrane space of the mitochondria necessary for OXPHOS. The 

final electron acceptor in this chain is oxygen, the absence of which deems 

mitochondrial energy production futile and upregulates anaerobic 

glycolysis. Overall, the full oxidation of a single glucose molecule leads to 

the generation of approximately 30 molecules of ATP, demonstrating the 

efficiency of OXPHOS and the difference between cytosolic and 

mitochondrial energy metabolism (Nath, 2016). 

An alternative fate to decarboxylation by PDH to acetyl-CoA is the 

irreversible, ATP-dependent carboxylation of pyruvate to oxaloacetate, 

catalysed by the enzyme pyruvate carboxylase (PC; EC 6.4.1.1) (Utter and 

Keerch, 1960). The utility of mitochondrial pyruvate is therefore not 

limited to ATP production, but also includes carbon flux provision for 

biosynthetic pathways intersecting the TCA cycle through several 

intermediate metabolites. Oxaloacetate is one such intermediate that is 

used for aspartate and asparagine biogenesis (Curthoys, 1995; Wu and 

Morris, 1998). Furthermore, oxaloacetate, along with citrate, are key 

players in gluconeogenesis and lipogenesis, respectively (Owen, Kalhan 

and Hanson, 2002). Other examples of biosynthetic precursors associate 

with the TCA cycle include α-ketoglutarate (used in glutamine, glutamate, 

arginine and proline biosynthesis) and succinyl-CoA (heme production) 

(Curthoys, 1995; Wu and Morris, 1998; Orkin and Zon, 2008). The 

multitude of pathways associated with the TCA cycle place a significant 

strain on the carbon pool available in the mitochondria. Any intermediates 

consumed for biosynthetic purposes must be replenished to maintain the 

TCA cycle carbon flux. Anaplerotic reactions, such as the one catalysed by 

PC, fulfil a vital role by replenishing the diminished carbon pool in the form 
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Figure 4: ATP generation through cooperation between TCA cycle and 

OXPHOS. Every complete TCA cycle rotation generates reduced counterparts of 

NAD+ and FAD, termed NADH and FADH2, respectively. The electrons (e-) on 

NADH and FADH2 proceed to be transported to the enzymatic complexes 

(marked in Roman numerals) of the electron transport chain (ETC), located on the 

inner mitochondrial membrane (IMM). Passage of electrons through the ETC 

complexes and the IMM promotes export of protons (H+) into the 

intermembrane space of the mitochondria, thus generating a proton gradient. 

This gradient is utilized to drive ATP synthesis by complex V. Intermediates of 

the TCA cycle, such as α-KG or oxaloacetate, also participate in biosynthetic 

reactions (not shown). α-KG, α-ketoglutarate; SDH, succinate dehydrogenase; 

NAD+/NADH, nicotinamide adenine dinucleotide; FAD/FADH2, flavin adenine 

dinucleotide. Taken from (Martínez-Reyes and Chandel, 2020) 
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of cycle intermediates (Owen, Kalhan and Hanson, 2002).The anaplerotic 

role of oxaloacetate generated by PC is to serve as an acceptor for the 

acetyl-CoA produced by PDH. Brain cells are especially reliant on 

anaplerosis, as they suffer heavy TCA cycle intermediate losses during 

neurotransmission events involving glutamate and γ-aminobutyric acid 

(GABA) (Hassel, 2000). Another crucial anaplerotic reaction is the 

breakdown of glutamine and glutamate to α-ketoglutarate, which is often 

observed to be vital for some the proliferation of many cancer cells 

(Brosnan, 2000). 

1.1.2 Pyruvate metabolism in disease 

The disruption of energy metabolism in mammalian cells has been 

implicated in the onset and progression of disease (Raichur et al., 2014; 

Tchetina, 2018). The severity of a specific disease is closely associated 

with the localization of the disruption (often a mutation) within the 

organism. Tissues with a high consumption rate of ATP, such as the 

nervous system, are at the highest risk due to their prioritization of ATP 

production through carbohydrate metabolism. Most aberrations in 

pyruvate metabolism originate from mutations in any of the numerous 

genes encoding regulatory enzymes. A plethora of diseases are linked to 

pyruvate dysmetabolism, with the most prominent ones being cancer, 

neurodegeneration and heart failure. 

Aberrant cell bioenergetics have been widely observed across numerous 

types of neoplasia (Sellers et al., 2015; Diers et al., 2016; Bensard et al., 

2020). One recurring theme among the variety of tumours is the cellular 

dependence on the Warburg effect – a phenomenon described by a 

markedly increased uptake of glucose and conversion of pyruvate to 

lactate preferentially to OXPHOS in the presence of sufficient oxygen 

supply. This effect, also termed aerobic glycolysis, was first observed by 

Otto Warburg almost a century ago and was originally believed to be the 
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result of impaired mitochondrial metabolism (Warburg, 1931, 1956). 

However, the discovery of Warburg effect-driven bioenergetics in highly 

proliferative cell types, including human and mouse lymphocytes, has shed 

some light on the functional advantages of glycolytic metabolic modes. 

Despite the inherent energetic inefficiency of glycolysis in comparison to 

OXPHOS, a major advantage of aerobic glycolysis over OXPHOS is the rate 

of the ATP production. If the glycolytic flux is sufficiently high, the ATP 

production can easily outpace the ATP yield from OXPHOS. Therefore, 

when glucose supply is abundant, the inefficiency to glycolysis is 

compensated for by the faster breakdown of glucose to meet the high 

demands of growing and dividing cells (Lunt and Vander Heiden, 2011). A 

direct consequence of the upregulation of the glycolytic carbon flux is the 

elevated biosynthesis of lactate. This metabolic mode makes glycolysis 

self-sufficient, as it regenerates NAD+ necessary to keep the glycolysis 

running. 

In addition to sustaining aerobic glycolysis, other explanations for elevated 

lactate production could be observed through closer inspection of 

anaerobic glycolysis machinery. Although glycolysis uncoupling from 

OXPHOS is predictable under hypoxic conditions, molecular mechanisms 

that prevent oxidative breakdown of pyruvate are known. This switch is 

necessary to prevent mitochondrial oxidative stress by reducing electron 

flux through oxidative phosphorylation in the absence of sufficient oxygen. 

Expression levels of both pyruvate dehydrogenase kinase (PDK) and lactate 

dehydrogenase A (LDHA) are induced in response to hypoxia (Shim et al., 

1997; Kim et al., 2006). Through phosphorylation of PDH, PDK prevents the 

import of pyruvate into the mitochondrial matrix, while LDH-A converts 

the cytosolic pyruvate to lactate. As PDH has a low Vmax, this consumption 

of pyruvate is critical to avoid potentially harmful accumulation of 

pyruvate in addition to NAD+ regeneration (Fantin, St-Pierre and Leder, 
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2006). Meanwhile, the TCA cycle ensures the flux of biosynthetic 

intermediates for lipid and amino acid synthesis. For example, the export 

and cleavage of citrate in the cytosol produces acetyl-CoA and 

oxaloacetate, which are utilised in lipogenesis and non-essential amino 

acid synthesis, respectively. The lactate is utilised by cancer cells to 

facilitate their proliferation through several mechanisms: (i) the inhibition 

of the immune system by tumour microenvironment acidification, (ii) 

regulation of extracellular matrix metalloproteinase activity, and (iii) 

maintenance of superficial tumour cell bioenergetics through conversion 

to pyruvate (Pavlova and Thompson, 2016). The flexibility of energetic, and 

thus, pyruvate metabolism is key mechanism in cancer pathology that has 

recently emerged as a novel hallmark in the benign-malignant transition of 

tumours (Hanahan and Weinberg, 2011). 

In addition to cancer, neurodegenerative disease pathology is also closely 

associated with perturbations in energy metabolism. Defects in various 

enzyme activities, including PDH, MPC, and PC, have been associated with 

neurological disorders (Sorbi, Bird and Blass, 1983; Patel and Tiwari, 2014; 

Rossi et al., 2020). The human brain relies heavily on glucose and pyruvate 

for ATP production, accounting for almost a quarter of daily whole-body 

glucose consumption (Mink, Blumenschine and Adams, 1981). Research 

has determined that neurons are highly reliant on oxidative metabolism 

and may actively import lactate to support pyruvate flux into the 

mitochondria (Attwell and Laughlin, 2001). Simultaneously, glucose is 

redirection to the pentose phosphate pathway to generate NADPH for 

glutathione regeneration (Dienel, 2019). Such metabolism in neurons is 

supported by astrocytes, a highly glycolytic population of cells in the brain 

(Pellerin et al, 1994, 2007). Lactate produced by astrocytic glycolysis is 

released into the extracellular space and is subsequently taken up by 

neurons as a carbon source for the TCA cycle. This coupling mechanism is 
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referred to as the astrocyte-neuron lactate shuttle (ANLS) (Pellerin and 

Magistretti, 1994; Bélanger, Allaman and Magistretti, 2011). Recent 

research indicates that the metabolic coupling of neurons and astrocytes 

is crucial in maintaining neuronal energy supply, as well as fulfilling 

homeostatic and cytoprotective roles (Stuart et al., 2011; Magistretti and 

Allaman, 2018; Ioannou et al., 2019). Inability to satisfy neuronal energetic 

demand leads to loss of proper neuronal function, which is absolutely 

central for the pathogenesis of Alzheimer’s disease (AD) (Acosta, Anderson 

and Anderson, 2017). 

Several factors are associated with the abnormal pyruvate metabolism 

observed in AD, including the generation of reactive oxygen species (ROS), 

decreased glucose uptake, and neuronal hyper-excitability (Uemura and 

Greenlee, 2001; Valko et al., 2007; Horan, Pichaud and Ballard, 2012; 

Šišková et al., 2014). ROS production, in particular, is noted as a hallmark 

of AD pathogenesis. Major sources of endogenous ROS include the 

mitochondria and NADPH oxidase. ROS radicals indirectly stimulate the 

cleavage of amyloid precursor protein (APP) into amyloid beta (Aβ) 

oligomers, the peptide widely recognized as the main pathogen in AD. 

Through the activation of NADPH oxidase, Aβ upregulates the production 

of more ROS, creating a feedforward cycle leading to increased 

neurotoxicity. Eventually, the ROS-upregulated hypoxia inducible factor- 

1α (HIF-1α) signaling reduces PDH activity (Casley et al., 2002). 

Alternatively, PDH can be inhibited by acrolein, a product of lipid 

peroxidation in the presence of high oxidative stress (Pocernicha and 

Butterfielda, 2003). Inactivated PDH severely impacts the ATP generation 

capacity of the neurons, leading to cellular dysfunction, and, ultimately, 

neuronal death. As a result, pyruvate concentrations in the cerebrospinal 

fluid directly correlate with severity of dementia (Parnetti et al., 1995). 

Conversely, recent research has discovered that systematic pyruvate 
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administration alleviated the neurodegenerative burden in both rat and 

mouse models of AD (Isopi et al., 2015; Wang et al., 2015). All these 

findings solidify the pivotal role of neuron bioenergetics in AD progression. 

Looking at the precursor of pyruvate, glucose, a more complex picture of 

metabolic dysfunction in AD can be drawn. Hyperglycemia, alongside 

impaired glycemic regulation, has been shown to be closely linked to 

cognitive decline (Cukierman-Yaffe et al., 2009). Ageing-associated 

factors, including reduced insulin signaling and PI3K/Akt pathway 

dysregulation are implicated in the impairment of glucose uptake across 

the blood-brain barrier(Barone et al., 2016). Consequently, capacity for 

glucose utilization is notably impaired in AD. In turn, both glycolysis and 

OXPHOS enter altered states of function in AD patients. Altered glycolysis 

in neuronal cells can lead to mitochondrial leakage-facilitated cell death, 

while altered OXPHOS leads to neuronal cell death via ROS generation 

(Petit-Taboué et al., 1998; Lemeshko, 2018). Due to reduced insulin 

signaling, AD patients seem to be at increased risk for type 2 diabetes 

(Janson et al., 2004). Summing up, AD metabolic dysfunction is heavily 

implicated in the causality and progression of AD. Metabolic pathways, 

therefore, present a potential target for both early diagnosis, as well as 

therapy. 

Certain physiological conditions have the potential to exacerbate AD 

pathogenesis. Namely, inflammation has emerged as a driving force 

behind AD progression (Wyss-Coray and Rogers, 2012; Kinney et al., 2018). 

Genetic factors associated with an increased inflammatory state presence 

have been linked to AD susceptibility in subjects. Additionally, elevated 

levels of pro-inflammatory biomarkers can be observed in circulation in 

subjects at risk for developing late-onset AD, as well as those in the 

preclinical stage of AD, termed mild cognitive impairment (Koyama et al., 

2013). These findings suggest that inflammation is a key catalyst 
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mechanism that can potentially exacerbate cognitive decline and Aβ 

plaque accumulation in patients. This picture is further complicated by the 

presence of a sexual dimorphism – in comparison to men, women 

experience more rapid AD-associated neurodegeneration, as well as a 

more prominent inflammatory response (Klein and Flanagan, 2016; 

Andrew and Tierney, 2018). Consequently, observations of inflammation- 

induced AD phenotypes yield some distinctions between the sexes. On a 

metabolic level, this interaction between inflammation and AD 

progression has not been extensively studied. 

1.2 Key enzymes in pyruvate metabolism 

Three key enzymes associated with pyruvate fate allocation are LDH, ALT 

and PDH. These enzymes convert pyruvate to lactate, alanine, and acetyl- 

CoA, respectively. LDH and ALT are cytosolic enzymes, while PDH is located 

in the mitochondria. Each of these three enzymes has unique structural 

properties and regulatory mechanisms, which contribute to the fate of 

pyruvate in mammalian cells. It is therefore imperative to understand the 

specifics of each enzyme in context of studying pyruvate metabolism in 

eukaryotes. 

LDH is tetrameric oxidoreductase that is almost ubiquitously expressed 

across all mammalian tissues. Five isoforms of the LDH enzyme exist, each 

a unique combination of subunits (Drent et al., 1996). The two most 

prevalent subunits in a mammalian system are LDHA and LDHB. These 

subunits are often defined by the tissue they are predominantly expressed 

in - LDHA is commonly termed as the M subunit (for muscle), while LDHB 

is referred to as the H subunit (for heart). The five isoforms of LDH (LDH1- 

5) are therefore various combinations of M and H subunits: H4, H3M1, 

H2M2, H1M3, and M4. While enzymatically similar, these isozymes differ in 

tissue distribution (Laughton et al., 2000). For example, H4 is found in the 

heart, while H2M2 is the primary isozyme of the lungs. This tissue-specific 
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isozyme distribution is based on a clear functional and regulatory 

distinction between the M and H isoforms (Świderek and Paneth, 2011). 

The M form promotes the biosynthesis of lactate, whereas H favours the 

opposite direction of the same reaction, producing pyruvate. Furthermore, 

the H isoform seems to be allosterically inhibited by pyruvate that 

otherwise has no effect on the M isoform. These seemingly minor 

differences in LDH isozyme functionality are linked to the distribution 

pattern of tetramers, although studies have suggested that LDH isozyme 

patterns play no physiological role (Quistorff and Grunnet, 2011). On a 

genetic level, LDH is encoded by multiple genes in mice, each encoding a 

specific subunit. H and M subunits are encoded by Ldha and Ldhb genes, 

respectively. In mammalian systems, other subunits, such as LDHC and 

LDHBx can also be included in the final tetramer, although in very specific 

environments (Goldberg et al., 2010; Schueren et al., 2014). 

LDH is subject to three levels of regulation: allosteric effects, substrate- 

level regulation, and transcriptional control (Valvona et al., 2016). 

Substrate availability and their concentration greatly impact the activity of 

LDH. Generally, allosteric activation of LDH occurs in the presence to 

fructose-1,6-biphosphate (FBP) (Feldman-Salit et al., 2013). As FBP 

interacts with LDH, it increases LDH affinity for its substrates. The 

availability of substrates, as well as their concentration, is perhaps the 

most crucial regulator of LDH activity. For example, during strenuous 

muscle activity, OXPHOS machinery cannot keep up with the ATP demand. 

Therefore, pyruvate accumulates. 

Additionally, due to limited oxygen supply, NAD+ cannot be regenerated. 

The excessive levels of pyruvate and NADH are therefore channelled 

through LDH. On a transcriptional level, genes encoding LDH proteins 

contain regulatory sequences that can bind major transcription factors, 

such as HIF-1α and c-Myc (Firth, Ebert and Ratcliffe, 1995; Lewis et al., 
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1997). As HIF-1α is only stabilised under hypoxic conditions, LDHA gene 

expression becomes upregulated in response. C-Myc regulation of LDHA is 

rather complex, with some research suggesting a negative feedback loop. 

LDHA gene expression is often upregulated in cancers (Feng et al., 2018). 

Similar to LDH, ALT exists in several isoforms – ALT1 and ALT2, expressed 

by Gpt1 and Gpt2 genes in mice, respectfully (Rafter et al., 2012). The 

major differences between these two variants lie in the localization on a 

cellular and tissue level. ALT1 predominates in the cytosol and is highly 

expressed in adipose, intestinal, and hepatic tissues. Conversely, ALT2 is 

compartmentalized entirely within the mitochondria of muscle and brain 

cells. An additional layer of complexity is added by the varying expression 

profiles across different species. In rats and mice, for example, both ALT 

isoforms are abundant in liver tissue. In contrast, human tissues display a 

clear dominance of ALT1, with ALT2 showing little to no presence in the 

liver (Glinghammar et al., 2009). One common pattern is the 

predominance of ALT in liver tissue. Compared to the serum, the activity 

of ALT is roughly 3000 times higher in hepatocytes. Therefore, individuals 

suffering from acute or chronic hepatocellular injury present with 

increased ALT activity in the serum. Assays specific to ALT isoforms have 

been developed to allow separation of ALT1 and ALT2 levels in the blood 

(Liu et al., 2008). No metabolic diseases are associated with deleterious 

ALT mutations. However, the absence of ALT may predispose the body to 

other disorders. In terms of enzyme regulation, ALT has not been 

extensively studied. However, research suggest that androgens, 

aminothiols, and vitamin B6 derivatives are all implicated in the control of 

ALT activity (Coss et al., 2012; Mechie et al., 2015). Additionally, 

transcription of Alt1 and Alt2 are upregulated during periods of fasting 

(Zhang et al., 2011). 

Unlike LDH and ALT, PDH is localised within the mitochondria, where it 
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directs pyruvate flux through OXPHOS. PDH is often referred to as the E1 

component of the pyruvate dehydrogenase complex (PDC), a massive 

~10MDa protein. The role of the PDC is to catalyse a sequence of enzymatic 

reactions, the summary of which is the generation of acetyl-CoA, NADH, 

and CO2 from pyruvate and NAD+. PDH itself is a heterotetramer, 

composed of two α (α1 and α2) and two β subunits (Ciszak et al., 2003). In 

mice, these subunits are encoded by Pdha1, Pdha2, and Pdhb genes. 

Mutations in the Pdha1 are a well-established cause for pyruvate 

dehydrogenase deficiency (Patel et al., 2012a). In terms of enzymatic 

regulation, phosphorylation-driven inhibition is a critical mechanism in 

PDH activity control. In response to elevated ATP, NADH, and acetyl-CoA, 

PDK enzymes phosphorylate PDH at specific serine residues (such as Ser-

264 or Ser-293), thus inactivating PDH (Morales-Alamo et al., 2018). 

Following phosphorylation, these residues lose their binding affinity for 

lipoyl domains, which are crucial for reaction catalysis. Pyruvate 

dehydrogenase phosphatases (PDP) act in opposition to PDKs, removing 

phosphate groups from inhibited PDH. PDP activity is upregulated in the 

presence of insulin, phosphoenolpyruvate, and AMP (Holness and Sugden, 

2003). Expression patterns of PDKs and PDPs vary depending on tissue 

(Huang et al., 1998; Klyuyeva et al., 2019). Overall, given the importance 

of pyruvate in tissue differentiation and metabolic disorders, accessible 

and reliable markers that could measure pyruvate metabolism, including 

LDH, ALT, and PDH, are therefore needed as they would have the potential 

to monitor tissue differentiation, diagnose and treat diseases. 

1.3 Pyruvate metabolism in stem cells 

Although conventionally viewed as a by-product of cell lineage 

commitment and specialization, stem cell metabolism has recently 

received appreciation as a regulatory mechanism influencing the stem cell 

epigenome (Ryall et al., 2015). This concept of “metabolic reprogramming” 
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describes the plasticity of stem cell bioenergetics in response to signals 

instructing quiescence, self-renewal, and differentiation. The turnover rate 

of tissue-specific stem cells varies dramatically, with some populations 

undergoing constant proliferation while others exist in quiescence. 

Bioenergetic flexibility ensures the provision of sufficient metabolic fuel to 

sustain specific cell states and the generation of substrates and cofactors 

involved in epigenetic regulation (Folmes, 2017). The balance between 

glycolytic and oxidative metabolic modes is thus indicative of stem cell fate 

status. Similar to cancer cells, proliferating stem cell populations avidly 

uptake and metabolize glucose, but limit the mitochondrial oxidation of 

the generated pyruvate (Simsek et al., 2010; Ito and Suda, 2014). This 

glycolytic program is usually followed up by a transition to OXPHOS during 

cell differentiation (Rodríguez-Colman et al., 2017). The initial step in the 

transition from glycolytic to oxidative metabolic mode is the increased 

utilisation of pyruvate and its derivative carbon sources. Therefore, 

pyruvate metabolism has a key role in stem cell fate dynamics. 

The positioning of pyruvate at the intersection of numerous crucial 

metabolic pathways is exploitable in the context of tissue engineering and, 

more precisely, regenerative medicine. These fields investigate the 

potential of regenerative therapies that could heal or replace tissues and 

organs affected by age, disease, or physical trauma (Berthiaume, Maguire 

and Yarmush, 2011). In recent years, regenerative medicine has seen a 

drastic rise in interest in the UK, leading to nation-scale initiatives being 

undertaken to realise the full potential of this research area (McCall, 2012; 

O’Dowd, 2013). Much emphasis is placed on stem cell-based therapies, the 

development of which has resulted in clinically important treatments (Mao 

and Mooney, 2015). However, while stem cell transplantation is a very 

well-established and clinically validated intervention for some diseases, in 

others the outcomes have remained poor (Coppell et al., 2010; Moya et 

al., 2018). Ceaseless investigations into improving stem cell therapies, such 
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as better safety and effective differentiation ability, have been a priority in 

the field.  

Nowadays, multiple types of stem cells are available to researchers, 

each with differing potencies: pluripotent (tri-lineage - ESCs, iPSCs), 

unipotent (single lineage – hematopoietic tissue progenitor cells, such as 

myeloids), and multipotent (more than one lineage – adult and tissue-

specific MSCs) (Levenberg et al., 2002; Tabar and Studer, 2014; Liu, Xia 

and Li, 2015). Choosing the right type of stem cell is crucial for obtaining 

favourable results in regenerative therapy development. Mesenchymal 

stem cells isolated from bone marrow, adipose tissue, and umbilical cord 

have shown considerable potential in combating certain pathologies, such 

as musculoskeletal disorders (Richardson et al., 2016). Coincidentally, MSCs 

have also demonstrated promise in the treatment of neurological disorders, such 

as AD (Liu, Yang and Zhao, 2020). Treatments using MSCs derived from the bone 

marrow and the human umbilical cord have been demonstrated to reduce 

astrocytic inflammation and Aβ plaque burden in AD model mice, 

respectively (Lee et al., 2012; Nakano et al., 2020). Furthermore, MSCs 

demonstrate capacity for neuronal differentiation, suggesting potential 

clinical roles in restoration of neuronal connectivity and neuroprotection 

(Lee et al., 2003; Li et al., 2016; Urrutia et al., 2019). In addition, MSCs are 

easy to handle and demonstrate better survivability than compared to 

other stem cells (Bianco, Robey and Simmons, 2008; Nakaji-Hirabayashi, 

Kato and Iwata, 2013). However, a number of challenges for the 

application of MSCs in regenerative medicine persist and new approaches 

are needed to overcome them. 

Mesenchymal stem cells (MSCs), otherwise known as mesenchymal 

stromal cells, are generally recognized as a heterogenous population of 

multipotent stromal progenitor cells with osteoblastic, adipocytic, and 

chondrogenic lineage differentiation capacity (Uccelli, Moretta and Pistoia, 
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2008). Despite significant debate with regards to their nature, MSCs meet 

general stem cell criteria – they possess self-renewal capacity, 

demonstrate plastic adherence, and present a specific set of surface 

markers, such as CD44 and CD105 (Maleki et al., 2014). Since the original 

discovery of MSCs in the bone marrow, a plethora of tissues, including 

skeletal muscle, adipose tissue, and liver, have been shown to contain 

residing populations of MSCs in a perivascular localization (Crisan et al., 

2008). Consequently, the International Society for Cellular Therapy (ISCT) 

guidelines for identification of MSCs state that: i) MSCs must be purified 

from the stromal cell population of the bone marrow; ii) MSCs must not 

present hematopoietic lineage surface markers; iii) MSCs must 

demonstrate in vitro differentiation into osteoblasts, adipocytes, and 

chondrocytes (Dominici et al., 2006). Some evidence suggests that MSCs 

can transdifferentiate into non-mesenchymal cell types, such as 

astrocytes or hepatocytes (Schwartz et al., 2002; Wang et al., 2004; 

George, Hamblin and Abrahamse, 2019). MSCs of the bone marrow 

remain the most well-studied and best characterized are believed to be 

imperative in the physiological control of their tissue microenvironment 

(Kfoury and Scadden, 2015). They act as precursors to regulatory 

hematopoietic environment components, thus contributing to the 

homeostasis of the bone marrow and generating a niche for cells of the 

hematopoietic lineage. Immunomodulatory activity of MSCs has also 

been observed in some experiments (Li and Hua, 2017). The contribution 

of MSCs to their native environments is closely associated with their ability 

to differentiate into mesenchymal cell lineages (Liu, Xia and Li, 2015; 

Ambrosi et al., 2017). 

In the context of metabolic reprogramming, significant differences in 

metabolic modes can be observed between undifferentiated bone marrow 

MSCs and their differentiated progeny (Yuan, Logan and Ma, 2019). MSC 

localisation within hypoxic microenvironments coincides with their 
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preference for a highly glycolytic state. A low rate of ROS production 

coupled with abundant anabolic supply is highly advantageous for both 

quiescent and proliferating stem cells. Even under normoxic conditions, 

MSCs have been observed to retain HIF- 1α signaling and maintain aerobic 

glycolysis (Palomäki et al., 2013). However, the presence of oxygen may 

also cause a switch towards a bimodal metabolic phenotype (Pattappa et 

al., 2011). Osteogenic MSC differentiation is accompanied by a shift 

towards a more aerobic metabolism, with increased reliance on OXPHOS, 

although glycolysis levels are maintained to support osteoblast 

differentiation and biosynthetic demand (Shum et al., 2016; Lee et al., 

2017; Wu et al., 2017). Major observed changes during osteoblast 

formation include increases in electron transport chain enzyme activity, 

oxygen consumption rate, and mitochondrial DNA copy number (Chen et 

al., 2008). In a similar fashion, MSC commitment to the adipocyte 

lineage is characterized by an early increase in mitochondrial 

metabolism and ROS production (Tormos et al., 2011). As they mature, 

however, adipocytes display upregulated glycolysis and elevated levels of 

cytosolic acetyl-CoA, the latter being the result of increased ATP-citrate 

lyase (ACLY) expression in response to carbohydrate consumption (Fukuda, 

Katsurada and Iritani, 1992). Acetyl-CoA serves as a critical building block 

for glucose-fuelled de novo synthesis of both cholesterol and fatty acids, 

and is a key player in lipid storage and adipocyte epigenetics (Wellen et 

al., 2009; Zhao et al., 2016; Fernandez et al., 2019). 

1.4 Assessing pyruvate metabolism 

As numerous cellular processes both in disease and health revolve around 

the management of cell bioenergetics, measurement of pyruvate 

metabolism provides valuable clinical insight on such processes. Most 

historical and conventional techniques employed in quantitating pyruvate 

include high-performance liquid chromatography (HPLC) (Minniti et al., 
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1982; Ewaschuk et al., 2004), colorimetric and fluorimetric enzymatic 

assays (Neville et. al., 1971; Olsen et. al., 1971), and amperometric 

biosensors (Bergmann, Rudolph and Spohn, 1999). The choice in applied 

method usually depends on time and sensitivity required for a specific 

experiment. A recurring feature of the aforementioned methods is the ex 

vivo approach to clinical metabolite quantification, relying on biofluid 

extracts such as blood plasma, serum, or urine. Metabolite level 

measurement in these biofluids can serve as indicators of specific 

pathologies. For example, measurement of serum lactate levels is 

associated with increased risk of mortality in patients with cancer (Maher 

et al., 2018). Other metabolic disorders, such as those associated with 

mitochondrial dysregulation, usually require tissue biopsy samples 

(Wibom, Hagenfeldt and Von Döbeln, 2002). However, a major limitation 

associated with these approaches is the lack of dynamic info on the flux of 

metabolites, a more reliable marker of in vivo metabolic change. It is now 

known that cells can undergo dramatic metabolic programme shifts during 

disease and/or life cycle progression. While univariate metabolite 

quantification can serve as a disease phenotype indicator, more powerful 

and less invasive tools are required to provide diagnostic data for early 

intervention planning. 

The rising interest in MSC properties and applications in regenerative 

medicine requires effective selection techniques to identify populations of 

interest. As stated before, MSC populations in the highly heterogenous, 

coexisting in the same environment skeletal stem cells (cells that show no 

adipogenic capacity) and non-stem stromal progenitor cells (no self- 

renewal) (Uccelli, Moretta and Pistoia, 2008; Chan et al., 2018). Effective 

characterization protocols are thus a necessity to overcome technical 

hurdles imposed by the nature of MSCs, such as low reproducibility over 

different cell batches, the demands of dealing with low/precious cell 

starting populations, and transition from bench-scale production to 
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engineering and manufacturing tissue products (Mao and Mooney, 2015). 

Currently, cellular and molecular analysis techniques, such as flow 

cytometry, immunostaining, and gene expression analysis are either 

damaging or destructive, offer slow through-put, and are not compatible 

with real-time monitoring (Mushahary et al., 2018). Furthermore, 

biomarkers are in demand to allow imaging of MSC immune-mediated 

response in patients (Li and Hua, 2017). To date, reporter genes and 

nanoparticles have been used to track stem cells, but these approaches 

are limited by toxicity from ionizing radiation and potential compromising 

effect on cell function, respectively (Bhirde et al., 2011; Jurgielewicz et al., 

2017). Finally, MSCs are now being used as an assessment platform for 

predicting cell toxicity in drug trials (Scanu, Mancuso and Cao, 2011). It has 

emerged that antineoplastic drugs have a negative effect on MSC 

replication, which may affect MSC behaviour and phenotype in vivo 

(Houthuijzen et al., 2012). In order to better understand these toxic effects 

on MSCs and MSC-derived populations, new in vitro biomarkers of toxicity 

that can be translate into the in vivo setting are needed.  

1.5 Metabolic phenotyping using nuclear magnetic resonance 

(NMR) spectroscopy 

The phenotype of an organism describes how the sum of various 

parameters characterizes the functional biology of an individual. It is now 

recognised that the phenotype represents the result of complex crosstalk 

between the genetic factors of an individual and the external 

environmental factors, namely diet, aging, drugs, physical and 

psychological stress. Consequently, the metabolome of an individual is 

therefore descriptive of the phenotype at the molecular level (Fiehn, 

2002). It is this connection that is the basis of the concept of metabolic 

phenotyping. 

Metabolic phenotyping, also referred to as metabolomics, offers a 
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comprehensive snapshot of the thousands of metabolites present in 

biological fluids and/or cell extracts, as well as structural and quantitative 

data of individual molecules. This snapshot, termed the metabotype, 

represents the metabolic state of particular compartments (fluid or tissue) 

within an individual at any time point. Such an approach to metabolite 

identification and quantification is fundamentally different from targeted 

or univariate metabolic measurements. The key notion underlying the 

distinction between the two approaches is that the observation of a 

complex network of metabolites, as well as their fluctuations and interplay 

in response to various conditions, offers powerful diagnostic insight. 

Consequently, metabolic phenotyping has already been applied various 

mammalian systems, including humans, to investigate the metabolic 

dynamics associated with disease states, drug supplementation, and 

nutrition (Wishart, 2008; Wikoff et al., 2009; Shah and Newgard, 2015; 

Zaitsu et al., 2016). The ultimate goal of such studies is the identification 

of biomarker metabolites indicative of pathological of physiological 

phenotypes. Once the biomarkers are determined, the mechanistic 

knowledge of how specific phenotypes are generated can be inferred. 

Although metabolic phenotyping shows promising initial results in many 

areas of clinical practice in its current state, the lack of universal 

methodologies and insufficient validation persist as roadblocks for further 

metabolic phenotyping implementation in clinical settings (Robertson, 

Watkins and Reily, 2011; Song et al., 2019). 

While metabolomics revolves around measuring large quantities of 

metabolites in any given biological system, the field of fluxomics seeks to 

obtaining kinetic information about the observed metabolites. Specifically, 

fluxomic studies measure the metabolic flux, or the rate of metabolic 

conversion, of various biochemicals in biological systems. Various systems’ 

biology tools, including genomics, transcriptomics, and proteomics, offer 

predominantly qualitative snapshots of cell component sets, thus 



37 
 

providing metabolic pathway indicators rather than quantitative data 

(Winter and Krömer, 2013). In contrast, fluxomics combines in vivo 

metabolic flux data with reaction stoichiometry, thus determining the 

absolute fluxes of metabolites to and from their respective pools. As the 

origin of metabolites relates to the upstream components of the genome, 

transcriptome, and the proteome, the analysis of metabolic fluxes 

provides quantitative information on biological mechanisms in health and 

disease. Like metabolomics, fluxomics is the study of small molecules, but 

involving isotopically labelled compounds with tracer functionality to 

determine the target set of metabolic fluxes. The standard fluxomics 

experimental method relies on introducing a 13C-labeled metabolite into 

the biological system, followed by observation and measurement of the 

rate of incorporation of 13C from the supplied precursor into other 

biochemicals. Inclusion of fluxomics as an additional layer of data has 

helped comprehend aerobic/anaerobic metabolic responses in E.coli and 

yeast (Celton et al., 2012; Foster et al., 2019). In studies involving 

mammalian cells and tissues, fluxomics data have given insights on key 

cellular mechanisms, such as cell cycle progression and cell 

differentiation (Ahn et al., 2017). Despite the mutual distinction, 

metabolomics and fluxomics are two sides of the same coin - highly 

complementary approaches to answering complex biological and 

biochemical questions.  

Two technologies are most prominent in the routine analysis of metabolic 

profiles in biological samples: nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS). NMR spectroscopy is a 

powerful and accurate tool used in metabolite detection, identification, 

and quantification. The great majority of metabolites have their own 

unique and reproducible NMR signature, therefore enabling 

spectroscopic analysis of hundreds of metabolites on a variety of human  
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Figure 5: Example of 13C label incorporation in a biological system. In a 

fluxomics study, a metabolite labelled with 13C is introduced into a biological 

system, where it is metabolized. Consequently, the 13C label gets transferred 

onto downstream molecules. The gradual increase in downstream label 

incorporation can be then detected by NMR spectroscopy, producing kinetics 

data. The given example demonstrates the 13C label transfer from pyruvate to 

lactate and/or alanine. 

samples, ranging from biofluids to tissues (Boesch and Kreis, 2000; Song 

et al., 2019). Whereas biofluid analysis provides a more global overview 

of the body metabolism, tissue samples are more indicative of local 

responses to physiological or pathological stimuli. In contrast, MS-based 

approaches provide more sensitivity (nM-pM range vs µM-mM in NMR), 

particularly if coupled with liquid chromatography (LC) (Nagana Gowda 

and Djukovic, 2014; Emwas et al., 2019). An LC-MS setup allows targeted 

metabolites to be quantitate even at levels as low as picomolar 

concentrations. Further differences between the two techniques lie in 

the cost and sample preparation. Typically, the costs associated with an 

NMR experiment prove to be less than those of MS (Bjerrum, 2015). 

Furthermore, no chemical of physical treatment of the sample is 

necessary when working with NMR, limiting the damage to the sample 
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and enabling reuse. Overall, the major advantages of NMR over MS are 

the high throughput capacity and reproducibility, all while maintaining 

comparatively low expenditures. Ultimately, however, the combined use 

of these two techniques can provide complementary analysis of the 

metabolome with the efficiency of NMR and the sensitivity of MS (Abd 

Ghafar et al., 2020). In this study, we employed an NMR-based approach 

as we focused on the quantitative analysis of abundant soluble 

metabolites. 

Table 1: Comparison of NMR and Mass Spectrometry techniques. The table 

summarizes the key differences between NMR and Mass spectrometry within 

seven key aspects.  

 NMR Mass spectrometry 

Sensitivity Low, but methods 

exist to improve 

signal 

(hyperpolarization, 

probe cryo-cooling, 

etc.) 

High, metabolites can be 

detected at concentrations 

as low as nanomolar 

Reproducibility Highly reproducible Less reproducible than NMR 

Sample preparation Simple, usually 

involves transfer to 

NMR tube and 

addition of 

deuterated solvent 

More complex, usually 

requires chromatographic 

methods (liquid or gas) 

Quantification Intrinsically 

quantitative, 

metabolite signals 

are proportional to 

concentrations 

Metabolite signals are not 

correlated with 

concentrations 

Selectivity Usually used for 

untargeted 

investigations, signal 

makes identification 

difficult 

Very selective, especially in 

combination with 

chromatographic methods 
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Automation Can be automated Cannot be automated 

Fluxomics Both in vitro and in 

vivo flux analysis are 

possible 

Possible, but limited by the 

destructive nature of MS 

methodology 

 

To reveal metabolic status information of the sample, various nuclei have 

been employed, such as 1H, 13C, 31P and 13F. Many metabolomics studies 

rely of the measurement of 1H NMR because of its relatively high 

sensitivity and significant natural abundance in most metabolites. Over 

the recent years, the improvements in NMR machinery and methodology 

have facilitated the extensive growth in metabolomic characterization. 

Developments of high-resolution NMR spectrometers (800mHz) and 

cryoprobes enable high-resolution NMR measurement with mass limited 

samples for ex vivo and in vivo samples (Voehler et al., 2006; Alexandri et 

al., 2017). Moreover, additions such as the 1D Nuclear Overhauser Effect 

Spectroscopy (NOESY) pulse sequence for water signal suppression, 

maximization of entropy to reduce experiment time, and improved probe 

design have significantly improved 1H NMR-based metabolomics 

experiment outcomes. Meanwhile, nuclei like 13C and 15N have been 

predominantly used to monitor pathway regulation through metabolite 

enrichment with said nuclei (Nagana Gowda, Shanaiah and Raftery, 

2019). However, the low intrinsic NMR sensitivity of 13C and 15N nuclei 

significantly extended the time required to obtain sufficient data on the 

metabolic flux rates. Furthermore, as fluxomics is focused on measuring 

time-associated changes in metabolites, it became essential to perform 

NMR studies in real-time using live organelle, cell, or tissue samples. 

The application of hyperpolarization, the process of polarizing nuclear 

spins by altering the nuclei populations beyond their thermal equilibrium, 

has become a crucial approach for enhancing the low intrinsic NMR 
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sensitivity of 13C nuclei and therefore 13C NMR use for in vivo metabolite 

imaging (Chen et al., 2020). The development of one particular method 

termed dynamic nuclear polarisation (DNP), has been a major 

breakthrough in hyperpolarization-assisted NMR metabolomics. Utilising 

low temperature, a strong magnetic field, and DNP, this approach 

strongly polarizes nuclear spins in the solid state (Ardenkjær-Larsen et al., 

2003). The subsequent rapid dissolution of the solid-state sample creates 

a solution of molecules with hyperpolarized spins, tremendously 

increasing the sensitivity of the signal. The overall result of this method is 

an increase in signal- to-noise ration by over 10,000-fold, opening NMR up 

for easier in vivo application. With such a technique available, the 

prospect of in vivo NMR study presents feasibility. 

13C-labeled compounds are widely used in dissolution DNP studies 

because of their large chemical shift range and low natural abundance. 

One of the probes chosen for visualization of in vivo metabolic processes 

is pyruvate enriched with 13C at the C1 position. This is due to the long T1 

relaxation for the C1 carbon atom, allowing long retention of the signal 

(Merritt et al., 2007). These in vivo studies depend on the sensitivity 

boost provided by the DNP method to visualize the different degree of 

conversion of pyruvate into alanine, lactate, or carbon dioxide, 

depending on the energetic status of the tissue. DNP has already been 

used to follow the kinetics of pyruvate metabolism in cancer cells and in 

vivo in breast cancer mouse models (Gutte et al., 2015; Tran et al., 2019; 

Granlund et al., 2020). While NMR studies using cell cultures rely on 

culturing with [1-13C] pyruvate as energy substrate, in vivo studies 

supplement [1-13C] pyruvate through an intravenous (i.v.) injection. 

Following an i.v. injection, the 13C-labelled pyruvate is rapidly distributed 

in the body and is absorbed by various organs and tissues. It is known that 

only insignificant amounts of the injected pyruvate leave the body 

through the regular excretory pathways, consequently ensuring the 
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complete metabolization of pyruvate within a short time of injection. 

Hyperpolarized 13C pyruvate is converted to [1-13C] lactate, [1-13C] 

alanine and [1-13C] bicarbonate, and this is used to measure LDH, ALT and 

PDH activities in cells, respectively (Albers et al., 2010; Serrao et al., 2016, 

2018). The relative amounts of metabolites produced from the injected 

pyruvate depends on the actual condition of the cells and a number of 

basic cell viability parameters, such as pO2, pH, and need for protein 

synthesis. 

1.6 Aims 

In summary of current research, metabolic studies demonstrate great 

potential in fields of regenerative medicine, stem cell research, and 

neuroscience. In our study, we propose to use 1H NMR to observe 13C-

labelled pyruvate metabolism in real-time to detect metabolic changes in 

mMSCs, wild-type mouse tissues, and Alzheimer’s model mouse tissues. 

Our hypothesis is that the exchange of the 13C label between pyruvate 

and downstream metabolites (lactate and alanine) can act as a biomarker 

in physiology and disease. In particular, we expect that the ratio between 

[1-13C]lactate and [1-13C]alanine could be representative of metabolic 

changes associated with cell differentiation, inflammation, and sexual 

dimorphism. Additionally, we aim to investigate upstream genomic and 

proteomic factors associated the observed metabolite signatures. Specific 

experimental objectives are as follows: 

• Culture and differentiate mMSCs into mMSC-derived adipocytes 

and osteoblasts. (Section 3.1) 

• After confirming effective differentiation via staining, enzymatic 

activity assays will be performed to evaluate LDH and ALT enzyme 

activities at specific timepoints during differentiation.  (Section 

3.2) 

• At identical timepoints, 1H NMR, qRT-PCR, and Western Blot 
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techniques will be applied, effectively generating multi-aspect 

(metabolic, genomic, and proteomic; respective to each 

technique) snapshots of mMSC differentiation. (Sections 3.3, 3.5 

and 3.6) 

• The same experimental approach will then be used to investigate 

wild-type and Alzheimer’s disease model mouse tissues. Tissues 

will be collected, and their metabolic, genomic, and proteomic profiles 

will be analyzed via the same techniques. (Section 3.7 and onwards) 

• For wild- type tissues, we will examine mouse brain, liver, adipose, 

and bone tissues. In the context of AD, we will look at liver and 

cortex tissues.  

• Lastly, we will perform metabolomics testing of all gathered 1H 

NMR data with the aim to detect any potential biomarkers outside 

of the pyruvate-associated pathways. (Sections 3.4, 3.8, and 3.12) 

Our prediction is that mMSC-derived adipocytes and osteoblasts will 

present unique [1-13C]lactate/[1-13C]alanine ratios, corresponding to 

differences in gene and protein expression. In wild-type tissue samples, 

we expect to see differences in reaction rates ([1-13C]lactate and [1-

13C]alanine synthesis) and upstream factors (gene and protein 

expression), allowing distinction between tissues and cell phenotypes 

based on these factors. Lastly, in AD tissues, we will examine for any 

metabolic, proteomic, and genomic differences in pyruvate metabolism 

that arise due to sexual dimorphism and inflammation. 
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Chapter 2: Methods 

2.1 Cell culture 
 

2.1.1 Mesenchymal stem cell differentiation 

The complete medium used to maintain undifferentiated mMSC cultures 

consisted of Dulbecco’s Modified Eagle Medium (1g/L D-glucose) 

supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) minimum 

essential medium (MEM) non-essential amino acid solution, 1% (v/v) L-

glutamine 200mM and 1% (v/v) penicillin/streptomycin 10,000 U/mL (all 

from Thermo Fisher, UK). Our cells of choice for the experiment were of a 

murine bone marrow-derived D1 MSC cell line. Cell populations were 

split in a 1:2 ratio twice before being seeded for the experiment (at 0.2 

million cells/cm2 density). Cell populations were split using 0.05% 

Trypsin/Ethylenediaminetetraacetic acid (EDTA) (Thermo Fisher,UK) upon 

reaching ~75% confluency. For the first experimental replicate, the cells 

were thawed from -80°C storage at passage 22, while the second 

replicate used cells from passage 25. Cells were incubated at 37°C in 5% 

CO2. To induce MSC differentiation, the complete medium was replaced 

with osteogenic or adipogenic medium. Osteogenic medium: 50mM 

ascorbic acid, 1M β-glycerophosphate, and 5mM dexamethasone in 

complete MSC medium (all from Cayman Chemicals, USA). Adipogenic 

medium: 10μg/mL insulin, 5mM dexamethasone, 0.1M 

isobutylmethylxanthine (IBMX) and 10mM rosiglitazone (all from Cayman 

Chemicals, USA) in complete MSC medium. Differentiation medium was 

regularly replenished (every 2 days). The same media and supplements 

were used throughout the study to ensure consistency. Analysis of all cell 

groups was performed at three timepoints: day 5, day 10, and day 13. 
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2.1.2 Alizarin Red staining and quantification 

Osteogenic differentiation was confirmed using Alizarin Red (Sigma- 

Aldrich, UK) staining to detect matrix calcium deposits. Before staining, 

cells were washed with phosphate-buffered saline (PBS) and fixed for 10 

minutes using 500µL of ice-cold 4% (v/v) paraformaldehyde (PFA) (Sigma- 

Aldrich, UK). Following fixation, cells were treated with 500µL of 1% 

Alizarin Red staining solution (distilled water-based) and incubated for 15 

minutes at room temperature. Afterwards, the stained cells were washed 

with distilled water to remove any excess staining. To quantify the 

amount of staining, the cells were treated with 500µL of de-staining 

solution (20% methanol, 10% acetic acid) and a Tecan Infinity 200 PRO 

microplate reader (TECAN, Switzerland) was used optical density reading 

(absorbance measurement). Samples were spectrophotometrically 

analysed in triplicates, 100µL per well in a 96-well plate. Absorbance was 

measured at 405nm and was expressed in Relative Absorbance Units 

(a.u.). Images of the stained cells were acquired on a Nikon Eclipse TS100 

light microscope (Nikon Instruments Inc., UK). Absorbance values were 

not normalized to the number of cells from each condition. 

2.1.3 Oil Red O staining and quantification 

Adipogenic differentiation was confirmed using Oil Red O staining to 

detect the presence of lipid vacuoles (Kraus et al., 2016). In preparation for 

staining, cells were rinsed with PBS and fixed for 10 minutes using 500µL 

of ice-cold 4% (v/v) PFA. Afterwards, the cells were incubated in 500µL of 

staining solution containing the Oil Red O (Sigma-Aldrich, UK) stain for 15 

minutes at room temperature. Then, cells were washed, first with 500µL 

of 60% isopropanol, and then with distilled water in order to remove 

excess staining before quantification. In preparation for quantification, 

cells were de-stained with 500µL of 60% isopropanol for around 3 minutes. 

Spectrophotometric analysis was performed at 510nm using a Tecan 
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Infinite 200 PRO microplate reader (TECAN, Switzerland). Samples were 

analysed in triplicates on a 96-well plate. Absorbance was expressed in 

Relative Absorbance Units. Images of stained cells were acquired via Nikon 

Eclipse TS100 light microscope (Nikon Instruments Inc., UK). Absorbance 

values were not normalized to the number of cells from each condition. 

2.1.4 Alanine aminotransferase (ALT) activity assay 

Triplicates of mMSCs were seeded in 6-well plates, each well containing 

500,000 cells. Within each triplicate, two mMSC populations were 

induced to differentiate into osteoblasts and adipocytes (see section 

2.1.1), while undifferentiated mMSC populations were used as control 

samples. The enzymatic activity of ALT was measured using a commercial 

assay kit (MAK052, Sigma-Aldrich, UK), following the protocol provided by 

the manufacturer. Trypsin treatment was used to harvest the cells (n=3 

for each condition) and 1 x 106 cells were used for this assay. Cell samples 

were homogenized in 200µL of ALT assay buffer (Sigma-Aldrich, UK) and 

centrifuged at 15,000g for 10 minutes at room temperature to remove 

insoluble cellular debris. 20µl of the supernatant of each sample was 

transferred to a 96-well plate in duplicates. The enzymatic activity of ALT 

was quantified based on a colorimetric reaction induced by the reagents 

provided in the assay kit. Absorbance was measured at 570nm on a 

SpectraMax 190 microplate reader (Molecular Devices, USA). 

Measurements were taken every 5 minutes for 60 minutes at 37°C. ALT 

activity is expressed in moles per minute per mL (mU/mL). 

2.1.5 Lactate dehydrogenase (LDH) activity assay 

Triplicates of mMSC samples were seeded in 6-well plates, each well 

containing 500,000 cells. Within each triplicate, two mMSC populations 

were induced to differentiate into osteoblasts and adipocytes, while 

undifferentiated mMSC populations were used as control samples. The 

enzymatic activity of LDH was measured using a commercial assay kit, 
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following the protocol provided by the manufacturer. Trypsin treatment 

was used to harvest the cells (n=3 for each condition) and 1x106 cells were 

used of the assay. Cell samples were homogenized in 500µL of cold LDH 

assay buffer and centrifuged at 15,000g for 10 minutes at room 

temperature to remove insoluble cellular debris. 10µl of the of the 

supernatant of each samples was transferred to a 96-well plate in 

duplicates. The enzymatic activity of LDH was quantified based on a 

colorimetric reaction induced by the reagents provided by the reagents 

provided in the assay kit. Absorbance was measured at 450nm using a 

SpectraMax 190 microplate reader (Molecular Devices, USA). 

Measurements were taken every 2.5 minutes for 30 minutes at 37°C. LDH 

activity is expressed in moles per minute per mL (mU/mL). 

2.2 Western blotting 
 

2.2.1 Tissue sample collection 

All procedures for tissue collection were approved by the Institutional 

Animal Care and Use Committee of University of Nottingham. All animals 

used in this study were bred and maintained at the University of 

Nottingham Biomedical Service Unit. Following a schedule 1 method of 

humane killing, brain, bone, fat (subcutaneous), and liver tissues were very 

rapidly (within 2-3 minutes) collected from a 4.5-month-old female wild- 

type C57BL/6J mice via dissection using tools cleaned with 70% IMS. 

Immediately following collection, tissue samples were snap frozen in liquid 

nitrogen. Samples were stored at -80oC for later use. 

Samples of Alzheimer’s model APP/PS1 mouse tissues (cortex and liver) 

were kindly provided by Dr Marie-Christine Pardon (Radde et al., 2006). 

APP/PS1 mouse tissues were collected from 4.5-month-old male and 

female mice. Before tissue collection, APP/PS1 mice were subjected to 

lipopolysaccharide (LPS, E.coli serotype Sigma0111:B4, Sigma-Aldrich, 

UK) or PBS treatment (randomly allocated) (Agostini et al., 2020). 
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Administration of treatment was through intravenous injection via lateral 

tail vein (100µg/kg of body weight of LPS or 1µl/g of body weight of PBS). 

4 hours following the treatment, mice were culled. Tissues were collected 

via dissection. Collected mouse livers and cortex samples were snap 

frozen and stored at -80°C. 

The C57BL/6J mice were not control littermates of the APP/PS1 mice. In 

the wild-type, we compared data between different tissues, while in 

APP/PS1 mice we looked at differences related to sexual dimorphism and 

inflammation in AD-affected tissues. 

2.2.2 Preparation of lysate from tissues 

Sample tissues were lysed in ice-cold radioimmunoprecipitation assay 

(RIPA) buffer (150mM NaCl, 50mM Tris-HCl, 1% Triton X-100, 0.5% sodium 

deoxycholate, 0.1% sodium dodecyl sulfate (SDS) (all from Sigma-Aldrich, 

UK), diluted to required volume with distilled water. Before use, the 

buffer was supplemented with cOmpleteTM mini EDTA-free protease 

inhibitor tablets (Sigma-Aldrich, UK) at a ratio of 1 tablet per 10mL of 

buffer. Homogenization was performed using an IKA T10 basic ULTRA-

TURRAX homogenizer (IKA® England LTD, UK). Following a 20-minute 

centrifugation at 12,000 rpm at 4OC in a microcentrifuge, the supernatant 

was aspirated and aliquoted for future use. Aliquoted lysates were stored 

at -80°C. 

2.2.3 Protein Quantification – Bradford Assay 

The Bradford Assay was employed to quantify protein abundance in tissue 

and cell lysates (Bradford, 1976). A bovine serum albumin (BSA) (Sigma-

Aldrich, UK) stock solution of 50mg/ml was created by dissolving 0.5g of 

BSA powder in 10ml of distilled water. 80μL of the stock solution was 

added to 920μL of dH2O to generate a standard with a concentration of 

4000μg/mL. Serial dilutions were then performed to produce standards 

with the following concentrations: 2000μg/mL, 1000μg/mL, 500μg/mL, 
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250μg/mL, 125μg/mL, 62.5μg/mL, 31.25μg/mL, 15.625μg/mL, and 

0μg/mL. The last standard contained only distilled water and was used as 

a negative control. Experimental samples were diluted 1:20 with distilled 

water. Both standards and experimental samples were run in triplicate in 

a 96-well plate, 10μl of per well. 250μl of Bradford Reagent dye (BioRad 

Laboratories, UK) was added to each well. After 10 minutes of color 

development on the bench, the plate was read at 595nm using a 

SPECTROstar Nano absorbance plate reader (BMG Labtech, Ortenberg, 

Germany). The raw data was then subsequently analysed in Excel 

(Microsoft, USA). 

2.2.4 Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-
PAGE) 

In preparation for SDS-PAGE, protein samples were mixed with 4x 

Laemmli (BioRad Laboratories, UK) working solution in the ratio of 1:3 

(Laemmli to protein sample. The 4x Laemmli working solution consisted 

of 900μl of 4x Laemmli supplemented with 100µl β-mercaptoethanol 

(Sigma Aldrich, UK). Laemmli-stained protein samples were boiled at 95oC 

for 7 minutes before loading into the gel wells. The amount of protein 

loaded per well was 50μg. Gel electrophoresis was performed using the 

Mini-Protean Tetra Cell 1-D vertical kit (BioRad, UK). Proteins were 

separated based on their size using hand-cast gels. The resolving gel 

(10%) recipe: 6.3mL dH2O, 5.3mL 30% acrylamide, 4mL 1.5M Tris pH8.8, 

160µl 10% SDS, 160µl 10% ammonium persulfate, and 16µl N,N,N',N'-

tetramethylethane-1,2-diamine (TEMED). Isopropanol was used to level 

the cell surface. Stacking gel (4%) recipe: 6mL dH2O, 1.3mL 30% 

acrylamide, 2.5mL 0.5M Tris pH 6.8, 100µL 10% SDS, 100µL 10% APS, and 

10µL TEMED (all from Sigma-Aldrich, UK). The larger pore size and a 

lower pH of the stacking gel ensured simultaneous entry of all protein 

samples into the resolving gel, where size-based separation of proteins 
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occurred. 4μl of Precision Plus Protein™ Dual Color Standard ladder 

(BioRad, UK) was used to identify protein weights. Gels were run at a 

constant 110 volts for 2 hours, until the migrating bands reached the end 

of the resolving gel. 

2.2.5 Gel transfer 

Immediately following the completion of SDS-PAGE, the resolved proteins 

were transferred onto a nitrocellulose membrane (0.45μm pore size) 

(BioRad, UK) using a wet transfer technique overnight. The gel was placed 

in a “transfer sandwich” (filter paper-gel-nitrocellulose membrane- filter 

paper), cushioned by sponge pads and held together by a support grid. 

The supported gel sandwich was placed vertically in a tank containing 

transfer buffer (25mM Tris-HCl, 192mM glycine, 20% methanol (v/v), pH 

adjusted to 8.3) and electrodes. Proteins were transferred overnight by 

running a constant 10V, 40mA current. Following the transfer, 

nitrocellulose membranes were blocked in 5% BSA (w/v) Tris-Buffered 

Saline (TBS) (Sigma Aldrich, UK) for 1 hour at room temperature or 

overnight at 4oC, aided by gentle rocking in both cases. 

2.2.6 Immunoblotting 

Following the blocking procedure (section 2.2.5), membranes were 

incubated in 5mL of primary antibody diluted in 5% BSA [w/v] TBS for 3 

hours at room temperature. All incubation and wash steps were 

performed with gentle rocking. The loading control used for all samples 

was glyceraldehyde 3- phosphate dehydrogenase (GAPDH). After 

incubation with primary antibodies (Table 2), the membranes were 

washed 3 times in TBS-Tween 0.1% (v/v) for 5 minutes per wash. 

Membranes were then incubated with secondary antibodies (Table 2) 

diluted with 5% BSA (w/v) TBS for an hour at room temperature while 

protected from light with aluminum foil. Before imaging, the membrane 

was washed another 3 times using TBS- Tween. Fluorescent signals from 
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secondary antibodies were acquired via Odyssey FC Imaging System (LI-

COR, UK) using dual-color detection at 700nm (red fluorescent range) and 

800nm (green fluorescent range). The acquired images were analysed 

using Image Studio software (LI-COR, UK). The antibodies used in this 

study can be found in the tables below. 

Table 2: List of primary antibodies. The list shows all the primary antibodies 

that were used to detect enzymes of interest in cells and tissues. All antibodies 

were diluted in 5% BSA (w/v) TBS. 

 

Target Host Predicted 
molecular 

weight 
(kDa) 

Dilution Manufacturer 

Lactate 
dehydrogenase A 

Rabbit 35 kDa 1:5000 Abcam, UK 

Alanine 
aminotransferase 

Mouse 48 kDa 1:1000 Santa Cruz 
Biotechnology, 

UK 

Pyruvate 
dehydrogenase α 

subunit 

Rabbit 43kDa 1:1000 Cell Signaling 
Technology Inc., 

UK 

Pyruvate 
dehydrogenase α 

subunit [p Ser 293] 

Rabbit 43kDa 1:1000 Novus 
Biologicals, UK 

Glyceraldehyde 
3-phosphate 

dehydrogenase 

Rabbit 37 kDa 1:1000 Cell Signaling 
Technology Inc., 

UK 

 
Table 3: List of secondary antibodies. The list shows all the secondary 

antibodies that were used to detect enzymes of interest in cells and tissues. All 

antibodies were diluted in 5% BSA (w/v) TBS. 

Target Host Dilution Manufacturer 

Anti-rabbit 
(700) 

Donkey 1:5000 LI-COR, UK 

Anti-rabbit 
(800) 

Donkey 1:15000 LI-COR, UK 

Anti-mouse 
(700) 

Goat 1:5000 LI-COR, UK 
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2.2.7 Processing of immunoblot data 

Fluorescent signal intensity of individual protein bands was identified using 

Image Studio software (LI-COR, UK). Target proteins band were recorded 

at 700nm, while the loading control was recorded at 800nm. Following 

normalization to the control, data was visualized in graphs using GraphPad 

Prism 8. One-way ANOVA tests were performed to compare signal means 

between sample groups. Tukey’s multiple comparison was used as a post- 

hoc test to determine statistical significance 

2.3 Quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) 

2.3.1 Sample preparation for RNA purification 

The workspace was decontaminated with RNaseZap (Sigma Aldrich, UK) to 

prevent RNAase contamination of the workspace. For total RNA 

purification from wild-type (liver, brain, bone, adipose) and APP/PS1 (liver, 

cerebral cortex) tissues, ~50mg of each tissue was measured. Tissue 

samples were weighed on a scale while frozen using liquid nitrogen. If 

necessary, tissue was processed using a mortar and pestle. Liquid 

nitrogen levels were maintained in the mortar to prevent defrosting of the 

tissue. Tissue samples were then kept in RNAlater (Thermo Fisher, UK) and 

were allowed to thaw on ice. 

In preparation for total RNA extraction from cells (controls mMSCs, mMSC- 

derived adipocytes and mMSC-derived osteoblasts) cells were treated with 

TRIzol (Invitrogen, UK) in 6-well plates (3 wells per cell group) and were 

incubated at room temperature for 10 minutes to allow thorough lysis. 

Afterwards, cell lysates were collected, pooled, and used for further RNA 

extraction (section 2.3.2). 

2.3.2 Total RNA Purification 

Total tissue RNA was purified using the RNeasy Mini Kit (Qiagen, UK). The 
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protocol was followed as described by the manufacturer. RNA 

concentration and purity were evaluated using the NanoDropTM 2000 

SpectroPhotometer (Thermo Fisher, UK). The absorbance of RNA was 

measured at 260nm, while wavelengths of 230nm and 280 were indicative 

of salt and protein contaminants, respectively. A260/A280 and A260/230 

ratios were measured to determine adequate RNA purity and quantity, 

with both ratios being between 1.8 – 2.0 indicating acceptable levels. If 

necessary, the samples were diluted with nuclease-free water (Thermo 

Fisher, UK) to adjust the final RNA concentration levels. Optimal 

concentration for further experimentation was 500-1000 ng/μl. The entire 

procedure was carried out in the fume hood. 

2.3.3 cDNA synthesis 

cDNA was synthesized from the purified RNA. 2ng of RNA per sample group 

was used for the cDNA synthesis. The kit used was SuperScript™ III Reverse 

Transcriptase (Thermo Fisher, UK). 11.375μl volume samples were made 

up, containing 2ng of RNA and nuclease-free water. The reaction volume 

was topped up to 20μl by the following additions: 1.625μl Master Mix 1 

(Random primers, 10mM dNTP mix), and Master Mix 2 (5X buffer, 0.1M 

DTT, RNase out RNase inhibitor, Superscript III reverse transcriptase) (all 

from Qiagen, UK). The recipes of master mixes can be found in the 

appendix. The final 20μl mix was inserted into the thermocycler, where the 

reaction was performed. In the thermocycler, a three step program was 

run: 25°C for 5 minutes, 50°C for 60 minutes, and 70°C for 15 minutes, in 

that order. Samples were kept on ice after the reaction was complete. 

Long term storage of cDNA was at -20oC. 

2.3.4 Relative quantification 

qRT-PCR was carried out to detect real-time amplification of genes of 

interest relative to reference gene (Gapdh), using SYBR™ Green Master 

Mix - PowerUp™ (Applied Biosystems, UK). Relative quantification of gene 
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expression was carried out for mMSC and AD tissue samples. All primers 

were used at 10μM concentration and aliquoted using the protocol 

provided by the manufacturer. Master mixes were made up for each 

target gene (Table 4). The experiment was run in 96-well PCR plate 

(ThermoFisher, UK), with duplicates for every individual gene of interest. 

2µl of cDNA (section 2.3.3) was used per every well. The reaction was 

performed in a StepOneTM Real-Time PCR System (Thermo Fisher, UK). 

See appendix for thermocycling program. 

Table 4: qRT-PCR master mix recipe. 

Reagent Volume (μL) 

Forward Primer (10mM 
working solution) (see 

1 

Reverse Primer (10mM 
working solution) 

1 

Ultra-Pure Nuclease Free 

Water 
6 

PowerUp™SYBR™ Green 
Master Mix 

10 

cDNA 2 

Total volume per reaction 20 

 
Forward and reverse primers for target genes were designed using Roche 

Universal ProbeLibrary Assay Design Center (Sigma-Aldrich, UK). Primer 

sequences for Ldha, Gpt1, Pdha1, and Gapdh are listed in the appendix. 

After completion of the qPCR programme, Ct of target genes were 

generated by integrated StepOneTM Real-Time PCR System software. Data 

was then transferred to Excel (Microsoft), where it was analysed using the 

ΔCt method. Means of both the target gene and housekeeper gene 

(Gapdh) Ct values for each condition were calculated. 

Fold expression = 2-ΔCt 

Where ΔCt = Ct gene of interest – Ct internal control 
 

Fold expression values were then normalised to a control value and 
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exported to and visualised in GraphPad Prism. One-way ANOVA tests 

alongside Tukey’s multiple comparison post hoc test were used to 

compare means and determine statistical significance. 

2.3.5 Absolute quantification 

Due to varying expression of reference Gapdh gene across wild- type 

tissues, absolute quantification of gene expression was performed 

instead. cDNA generated from wild-type tissues was serially diluted in a 

1:1 ratio with distilled water to generate standards (100ng/µl, 50ng/µl, 

25ng/µl, 12.5ng/µl, 6.25ng/µl, 3.125ng/µl). These standards were plated 

in duplicates (2µl each). The same master mix and thermal program were 

used as in relative quantification. The data from the standards was used to 

generate standard curves for each target gene (ALT, PDH, LDH) in each 

tissue (brain, liver, adipose, bone). Standard curves consisted of standard 

Ct values plotted against log concentration of each standard. The Ct values 

of target genes acquired from wild-type tissues were then compared to 

the curve, allowing extrapolation of target replicon concentration. 

2.4 Nuclear magnetic resonance (NMR) spectroscopy 
 

2.4.1 Sample preparation for NMR 

 
1H NMR was used to measure 13C-label incorporation in alanine and lactate 

in real time. On the day of the experiment, five solutions were made up: 

(i) 6mM glutamate, (ii)3mM pyridoxal phosphate, (iii) 6mM NAD+, 

(iv)1.2mM alanine, and (v) 6.4mM lactate. All the solutions were made up 

using an NMR buffer (40mM HEPES, 10mM nicotinamide, 0.1mM pyridoxal 

phosphate, 2mM DTT, and 0.2M KCl, pH corrected to 7.1 with KOH). The 

NMR buffer was specifically formulated to mimic intracellular conditions. 

Additionally, the buffer helped enhance pyruvate isotopic exchange by 

adjusting for metabolite concentration differences arising from the 

addition of 13C-labelled pyruvate. 
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In preparation of the experiment, tissue samples (wild-type and 

Alzheimer’s) were homogenized with ice-cold NMR buffer supplemented 

with cOmpleteTM Mini EDTA-free protease inhibitor tablets (1 tablet per 

10mL buffer, prepared separately) (Sigma Aldrich, UK). A ratio of 2ml of 

buffer per 1g of tissue was used to generate the homogenates. The only 

exception were the APP/PS1 cortex samples, for which the ratio was 10ml 

per 1g of tissue (due to small tissue amount). For mMSCs samples, they 

were washed with PBS and harvested via trypsinization. Following 

centrifugation at 1100rpm for 5 minutes, the resulting pellet was 

homogenized in 500µl of NMR buffer. 

After a thorough resuspension with a 40mm gauge needle (SHD Medical, 

UK), all homogenates (mMSC, wild type and AD tissue) were centrifuged 

at 4000rpm for 15 minutes at 4°C. The supernatant from the post- 

centrifugation homogenate was used in the following NMR experiment. 

2.4.2 Running the 1H NMR experiment 

The following reagents were mixed in a 5mm NMR tube (Sigma-Aldrich, 

UK): 

Table 5: Sample composition for 1H NMR experiment 

Reagent Amount 

Pyridoxal phosphate, 3mM 20µL 

NAD+, 6mM 40µL 

Glutamate, 6mM 20µL 
D2O 35µL 

Lactate, 6.4mM 30µL 
Alanine, 1.2mM 20µL 

TSP, 1mM 7µL 
Tissue/cell extract 250µL 

NMR buffer 185µL 
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The tube was then inserted into a Bruker 800MHz NMR spectrometer 

(Bruker, Germany), where data was acquired at 18.8T by applying a 1D 

Nuclear Overhauser Effect Spectroscopy (NOESY) pulse sequence to 

observe all 1H -13C and 1H-12C couplings. Example spectra can be found 

in the appendix. The pulse sequence included water suppression (pre- 

saturation), a 0.12s mixing time, a 12.5 second recycling delay, all the while 

averaging over 8 transients. Following an initial calibration run, the sample 

was briefly removed to allow addition of 10µL of [1-13C]pyruvate, after 

which the sample was reinserted into the magnet and the experiment was 

continued. Transfer of the 13C label from pyruvate onto lactate and alanine 

was measured in real time by performing repeated data acquisition of the 

same sample every 2 minutes and 50 seconds. This was performed for at 

least two hours, or until a steady state plateau was identifiable in the 

metabolites of interest. 13C methyl satellite signals were distinguished 

from 12C methyl signals based on the 13C coupling pattern (see Appendix). 

Sample temperature was maintained at 37°C at all times. Chemical shifts 

were referenced to 1mM of (3-(trimethylsilyl)-2,2’,3,3’- 

tetradeuteropropionic acid (TSP; 0.0ppm). 1H NMR data was analysed 

using MestReNova software (Mestrelab Research, Spain). Peaks of interest 

were integrated, and the area of the spectra were used to calculate 

changes in concentration in [1-13C]pyruvate, [1-13C]alanine, and [1- 

13C]lactate at each timepoint. One-phase association functions were fit to 

the data points to calculate rates of [1-13C]alanine and [1-13C]lactate 

generation. The equation for the one-phase association curve fit: 

Y=Y0 + (Plateau-Y0)*(1-exp(-K*x)) 
 

Where: 

 
Y0 is the Y value when X is zero, expressed in the same units as Y,  
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Plateau is the Y value at infinite time, expressed in the same units as Y, 

K is the rate constant, expressed in reciprocal of the X axis time units, 

Tau is the is the time constant, expressed in the same units as the X axis. 

It is computed as the reciprocal of K. 

Concentration and rate constants were normalized for differences in 

proton number (9H+ in TSP versus 3H+ in both lactate and alanine). [1- 

13C]lactate/[1-13C]alanine ratios were calculated. One-way and two-way 

ANOVA tests followed by Tukey’s multiple comparison post hoc test were 

utilised to compare means and determine statistical significance, 

respectively. 

2.4.3 Principal component analysis of 1H NMR spectra 
 

Principal component analysis was performed on the initial spectra 

(without [1-13C] pyruvate) in each dataset. The goal of this PCA was to 

identify any other metabolites outside of pyruvate-associated pathways 

that could potentially act as untargeted biomarkers for physiological and 

pathological conditions. Data pre-treatment and analysis was carried out 

using SIMCA-P software (Sartorius, Germany). Spectra used in PCA were 

binned (bucketed) into 0.04ppm-wide bins from 0.2ppm to 10ppm using 

the sum method in MestReNova. Noise levels were averaged from regions 

0.24-0.84ppm and 9.48-10ppm and were subtracted from every individual 

bin. Negative bin values were set to 0. Each spectrum was then normalized 

by the total sum of all the cells within the spectrum. Data were mean- 

centered and auto-scaled to remove data offsets and equalize importance 

of all metabolites, respectively. Some data were excluded from PCA, 

including water, alanine, lactate, and pyruvate signals. This was to 

minimize the effect of metabolite additions through buffers on the final 

PCA model. Score plots generated by PCA allowed observation of 

similarities and differences between samples, while loading plots provided 

insight on metabolic factors affecting the scores. PCA results were 
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evaluated based on parameters R2X (amount of data explained by PCA) 

metric and Q2(predictive power of the PCA model) 

2.5 Statistical analysis 

Results from all experiments were expressed as mean (n=3) ± SEM. All 

statistical analysis and data visualization (except for PCA) was performed 

using GraphPad Prism 8 (GraphPad Software, USA). One-way and two-way 

ANOVA followed by post hoc Tukey’s multiple comparisons tests were 

used to determine statistical significance between different groups. A p 

value of <0.05 was used a marker of significance. 
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Chapter 3: Results 
3.1 Adipogenic and osteogenic differentiation of mouse mesenchymal 

stem cells (mMSCs) in vitro was successful. 

To investigate pyruvate metabolism of mouse mesenchymal stem cells 

(mMSCs) and their differentiated cells, we developed a chemically 

induced experiment model of mesenchymal differentiation in vitro. 

Similar models are described in literature (Gimble et al., 2008; Lai et al., 

2017). Differentiation was driven by addition of chemical supplements to 

cell culture media during cell growth (section 2.1.1). Cell culture staining 

using Alizarin Red and Oil Red O (sections 2.1.2 and 2.1.3) was used to 

evaluate the progression of mMSC differentiation on days 10 (Figure 6) 

and 13 (Figure 7) for all conditions. The Oil Red O (ORO) stain was used to 

observe lipid vacuole production (characteristic of adipocytes), while 

Alizarin Red (AR) staining identified formation of a calcium-enriched 

mineralized matrix (characteristic of osteoblasts) in cell cultures. Staining 

of mMSC populations was quantified using relative absorbance at 570nm 

(ORO stain) and 405nm (AR stain). While a mineralized matrix was only 

present in osteogenically- induced mMSCs, varying levels of ORO staining 

were detected across all experimental groups on both days 10 and 13. 

The greatest level of ORO absorbance was observed in adipogenically-

induced mMSCs, with lower levels seen in both control and osteogenic 

mMSCs (Figures 6G and 7G). Through image analysis, an absence of lipid 

vacuoles in mMSCs was identified, suggesting incomplete stain removal 

during the washing steps of the staining protocol. Conversely, lipid 

vacuoles were present in mMSC-derived osteoblasts, although at a level 

significantly lower than observed in adipogenic mMSCs. 

3.2 mMSC differentiation into adipocyte and osteoblast lineages is 

associated with changes in LDH and ALT activities. 

At days 10 and 13 of mMSC differentiation, enzymatic assays were  
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Figure 6: ORO and AR staining of control and differentiated mMSC populations 

at day 10 of differentiation in vitro. Images A-C represent staining of lipid 

vacuoles by the Oil Red O stain in control mMSCs (A), adipogenic mMSCs (B), and 

osteogenic mMSCs (C). Images D-F show the staining of calcium deposits by the 

Alizarin Red stain in control mMSCs (D), adipogenic mMSCs (E), and osteogenic 

mMSCs (F). Scale bars = 50nm. Bar charts G and H show the quantification of 

both Oil Red O and Alizarin Red stain absorbances at 510nm (G) and 405 (H), 

respectively. N=3; One-way ANOVA, error bars ± SEM; **** p ≤ 0.0001, *** p ≤ 

0.001, ** p ≤ 0.01; ns p≥ 0.05. 

 employed to measure ALT and LDH activity levels in control, adipogenic, 

and osteogenic mMSC populations. In terms of ALT activity, little to no 

significance was seen in the differences between all experimental groups   

on day 10 (Figure 8A). Similar results were seen in the LDH assay, where 

no significance was seen in LDH activity variation on day 10 (Figure8C). 
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However, changes in ALT and LDH activities were clearly visible on day 13. 

The highest ALT activity was observed in the osteogenic mMSC group 

(4.5mU/mL), followed by adipogenic (2.7mU/mL) and control groups 

(1.35mU/mL) (Figure3B). In contrast, the highest LDH activity was 

detected in mMSC-derived adipocytes (132.5mU/mL), with the 

osteoblasts (77.78mU/mL) and control mMSCs (39.78mU/mL) showing 

significantly lower LDH presence (by 54.72 mU/mL and 92.72mU/mL, 

respectively) (Figure 8D). 
 

 

 

 

Figure 7: ORO and AR staining of control and differentiated mMSC populations 

at day 13 of differentiation in vitro.. Images A-C represent staining of lipid 

vacuoles by the Oil Red O stain in control mMSCs (A), adipogenic mMSCs (B), 

and osteogenic mMSCs (C). Images D-F show the staining of calcium deposits by 

the Alizarin Red stain in control mMSCs (D), adipogenic mMSCs (E), and 
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osteogenic mMSCs (F). Scale bars = 50nm. Bar charts G and H show the 

quantification of both Oil Red O and Alizarin Red stain absorbances at 510nm (G) 

and 405 (H), respectively. N=3; One-way ANOVA, error bars ± SEM; **** p ≤ 

0.0001, *** p ≤ 0.001, ** p ≤ 0.01; * p ≤ 0.05. 

 
 

Figure 8: Changes in ALT and LDH activity associated with mMSC 

differentiation in vitro. Bar charts represent the results of ALT and LDH activity 

assays of all experimental groups (n=3). Graphs A and B represent ALT activity in 

control, adipogenic, and osteogenic cell groups at days 10 and 15, respectively. 

Graphs C and D represent LDH activity in the same cell groups at days 10 and 15. 

N=3; One-way ANOVA, error bars ± SEM; **** p ≤ 0.0001; *** p ≤ 0.001; ** p ≤ 

0.01; * p ≤ 0.05; ns p > 0.05. 

3.3 1H NMR observation of 13C label incorporation into alanine and 

lactate can be used as biomarker of mMSC lineage determination during 

differentiation 

Building on the results of the enzymatic assays, 1H NMR spectroscopy 

was performed at day 10 on all experimental cell groups to determine the 

exchange of 13C label from [1-13C]pyruvate to generate [1-13C]lactate and 

[1-13C]alanine. A linear increase in both [1-13C]lactate and [1-13C]alanine 
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was observed in all three cell groups following addition of 13C labelled 

pyruvate (Figure 9A and 9B). In adipocytes, the concentration of [1- 

13C]alanine and [1-13C]lactate increased during the experimental time to 

21.75±0.72µM and 359.77±26.65µM, respectively. These numbers were 

much higher than the ones seen in control MSCs 23.25±19.343µM for [1- 

13C]alanine; 92.79±17.96µM for [1-13C]lactate) and osteoblasts 

(2.81±0.84µM for [1-13C]alanine; 90.69±10.4 for [-13C]lactate). Label 

exchange ratios between [1-13C]lactate and [1-13C]alanine were calculated 

and revealed that adipocytes can be clearly distinguished from control 

MSCs and osteoblasts using these ratios (Figure 9E). 
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Figure 9: Distinction between mMSC-derived adipocytes and osteoblasts using 

1H NMR and 13C-labelled pyruvate. Plots A and B show measurements acquired 

using 1H NMR spectroscopy to observe 13C label exchange from pyruvate to 

lactate and alanine at day 10 of differentiation. Representative data are shown, 

one set from each control MSC (red), adipocyte (black), and osteoblast (blue) 

experiment. Example NMR spectra in images C (pre-pyruvate addition) and D 

(post-pyruvate addition, end of time course) show a region of the spectrum 

where alanine and lactate signals are found (between 1.24ppm and 1.60ppm). 

The arrows indicate the identities of the peaks. The table (E) shows a summary 

of 13C label exchange rates between specific metabolites; (n=3 for each 

experimental group). Values in the table are shown as means ± SEM. *** - 

significant against all other groups, p<0.001. 

 

3.4 Distinction of metabolic profiles in mMSC-derived populations using 

principal component analysis (PCA) 

Multivariate analysis of baseline spectra acquired from all mMSC sample 

groups revealed that overall metabolic profiles of osteoblasts and 

adipocytes (excluding the pyruvate-associated pathways) were quite 

distinct. As seen in the score plot from the PCA analysis (Figure 10A), 

adipocyte and osteoblast populations are clearly separated by principal 

component 1. Control mMSC metabolic profiles were similar to osteoblasts 

but were overall more centrally located. Principal component 2 separated 

some outliers within cell groups, likely based on inconsistencies in 



66 
 

repeated experiments. Moreover, the loadings plot provided insight on 

which data buckets within the spectra were the cause for cell profile 

separation (excluding pyruvate-associated metabolites). Adipocyte 

metabolic phenotypes seemed to be linked to bins 3, 3.92, and 3.2. 

Conversely, on the osteoblast side, bins 3.16, 3.84, 3.68, and 3.76 seemed 

to be the key variables. Metabolites contained within the 

aforementioned bins could therefore present biomarker potential. In 

terms of quality metrics, principal components 1 and 2 described 62.7% 

and 22.8% of observed variance, respectively, as indicated by the R2X[1] 

and R2X[2] values shown under the plots. A cumulative R2X value (0.855) 

suggested that this model explained the data provided quite well. A third 

principal component was deemed unnecessary due to lack of significant effect on 

the cumulative R2X value . Additionally, the Q2 value (0.634) indicated that 

this model has good predictive power in terms of explaining any future 

data, but still lacked robustness (Q2<0.7). 

3.5 mMSCs indicated fluctuations in gene expression during 

mesenchymal differentiation. 

Following analysis of metabolic profiles in mMSCs, adipocytes, and 

osteoblats, we performed qRT-PCR analysis to investigate changes in LDH, 

ALT, and PDH expression at a genomic level. Our goal was to determine 

whether any alterations in the expression of these genes in adipogenic and 

osteogenic lineages occur in parallel to the metabolic changes observed by 

1H NMR. We observed unique gene expression patterns between in both 

adipocytes, and osteoblasts. Heatmaps were generated to showcase gene 

expression changes at all three different timepoints (Figure 11). Gene 

expression data were expressed as fold difference. All data were 

normalized to and compared to the control group. A two-way ANOVA was 

used to determine significance of the data. 
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A 
 

Figure 10: Principal component analysis of mMSC populations. Data were 

gathered from pre-pyruvate addition spectra and normalized to total sum. A – 

the scores plot, showing how the observations were distributed on the two 

principal component axes. Green – control group, blue – adipocytes, red – 

osteoblasts. B – the loadings plot, showing how the variables were distributed 

on the two principal component axes. At the bottom of both pictures, the 

cumulative R2X values provided by each principal component can be seen. t[1]– 

principal component 1; t[2] – principal component 2. n=3 for each cell group. 

 

As shown in Figure 11, the expression levels of all three target enzymes 

varied highly over time in adipocytes and osteoblasts. At day 5, both 

adipocytes and osteoblasts showed a smaller fold change in ALT gene 

expression vs control MSCs (-20.76, p=0.0055 and -16.87, p=0.0219, 
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respectively) (Figure 11A). Having reached day 10, ALT gene expression in 

adipocytes and osteoblast had surpassed that of the control group (-20.76 

to 2.11, p>0.05 and -16.87 to 7.24, p>0.05, respectively (two-way 

ANOVA)). Finally, at day 13, adipocytes seemed to again show smaller fold 

changes in ALT gene expression (2.11 to -5.17, p>0.05) compared to 

control MSCs, whilst osteoblasts maintained expression above the control 

group (7.24 to 1.83, p>0.05). In sum, the data suggests an upregulation of 

ALT expression in osteogenically-induced mMSCs over the course of 

differentiation. This is likely representative of a shift towards a more 

biosynthetic metabolism commonly observed in osteoblasts. However, 

no significant differences between adipocytes and osteoblasts in terms 

ALT gene expression were seen at any timepoint (p>0.05). 
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Figure 11: Gene expression heatmaps in cultured mMSCs and mMSCs- derived 

adipocytes and osteoblasts. Each heatmap represents a specific gene, as 

indicated by the graph titles. Values in the cells indicate mean expression fold 

difference values compared to the control group. Heatmaps A, B, and C 

represent ALT, LDH, and PDH data, respectively. All data were normalized to 

GAPDH. ALT – alanine aminotransferase; LDH – lactate dehydrogenase; PDH – 

pyruvate dehydrogenase; D5 – day 5 of differentiation; D10 – day 10 of 

differentiation, D13 – day 13 of differentiation. N=3. 

 

LDH gene expression in adipocytes experienced a steady decline over the 

differentiation time course (9.17, p<0.0001 to 3.32, p>0.05 to -5.09, 

p<0.0001 at days 5, 10, 13, respectively) compared to the control group 

(Figure 11B). Meanwhile, osteoblast expression of the LDH gene followed 

a similar pattern to the ALT gene - from day 5 to day 10, we saw an LDH 

gene expression level change from 1.61 (p>0.05 vs control) to 2.93 

(p=0.0028 vs control). At day 13, however, there was a decrease in 

osteoblast LDH gene expression (2.93 to 1.07-fold, p>0.05), very similar to 

the level of LDH gene expression in the control group. Days 5 and 13 

were also timepoints of significant difference between adipocytes and 

osteoblasts in terms of LDH gene expression (p<0.0001 at both 

timepoints). It can be inferred that osteoblasts maintain a glycolytic 

bioenergetic profile similar to undifferentiated mMSCs, while adipocytes 

shift away from lactate production as differentiation progresses. 

Similar patterns to those seen in ALT and LDH genes expression were also 

seen in PDH expression. From day 5 to day 10, PDH gene expression 

increased in both adipocyte and osteoblast populations (1.56 to 3.32, 

p>0.05 in adipocytes, 0.53 to 4.14, p>0.05 in osteoblasts) compared to the 

control MSCs. However, none of these changes showed statistical 

significance. At day 13, following decreases in PDH expression in both 

adipocytes (3.32 to -5.09, p=0.0029) and osteoblasts (4.14 to 1.10, p>0.05), 
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significance could be seen between adipocyte and osteoblast populations 

(p=0.0025). These findings suggest an upregulation of OXPHOS in both 

adipocytes and osteoblasts at D10. As with LDH, osteoblasts seem to 

maintain a similarity to the control group, while adipocytes develop a 

more distinct profile of pyruvate metabolism. 

3.6 Levels of proteins involved in pyruvate metabolism indicate minimal 

differentiation-associated changes. 

To complement the metabolic and genomic data acquire from NMR and 

qPCR, Western blots were employed to determine any changes in 

pyruvate-associated enzyme expression. Chosen target enzymes were ALT, 

LDH, PDH, and pPDH. pPDH is a phosphorylated version of PDH with a 

phosphate residue attached to serine residue 293- a region where PDH is 

commonly inactivate through pyruvate dehydrogenase kinase activity. As 

seen in Figure 12A, detection of target enzyme via immunoblotting was 

successful overall. Some enzymes, such as ALT and pPDH, displayed very 

low abundance, although still within quantifiable range. ALT enzyme levels 

seemed to be in accordance with low ALT enzymatic activity (see above). 

Based on the blots, statistical analysis (two-way ANOVA) was performed 

to determine whether the visual differences observed – variance in 

enzyme presence withing differentiated mMSC groups and over time – 

were substantial. The data used for statistical analysis was based on the 

relative intensity of the bands seen in the pictured blots. Looking at the 

data gathered within groups, no substantial changes in the levels of LDH, 

ALT, PDH and pPDH in both adipocytes and osteoblasts were seen during 

differentiation. In osteoblasts, LDH and ALT seemed to maintain mostly 

stable levels (1.509±0.53 at day 5, 1.128±0.27 at day 10, 1.627±0.23 at 

day 13 for LDH; 0.085±0.02 at day 5, 0.233±0.001 at day 10, 0.147±0.01 at 

day 13 for ALT). There was a moderate increase in PDH and
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Figure 12: Western blotting results in cultured and differentiated mMSCs. A – 

representative images of protein blots acquire via LI-COR imaging. Well 

identities are indicated above, while the enzyme names of corresponding 
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images are shown on the left. Enzymes sizes in respective bands are shown on 

the right. This set of data is representative of one experimental repeat. GAPDH 

signal intensity was measure at 800nm, while LDH, PDH, and ALT were measured 

at 700nm.B and C – quantified data of enzyme expression in osteoblasts and 

adipocytes, respectively. Relative intensity of antibody fluorescence was 

measured via densitometric analysis (expressed in arbitrary units). Values 

shown are mean (n=3) ± SEM. Both groups were normalized to the control MSC 

group data at the D5 timepoint. *p<0.05. All unspecified multiple comparisons 

were non-significant. 

pPDH expression, although it was not statistically significant (1.791±0.11 

at day 5 vs 2.987±1.28 at day 13 for PDH; 0.546±0.37 at day 5 vs 

1.424±0.93 at day 13 for pPDH). In the context of adipocytes, however, a 

significant decrease in LDH expression between days 5 and 13 could be 

seen (9.611±4.14 at day 5 vs 2.870±1.59 at day 13, p<0.05). This decrease 

seemed to correlate with the pattern observed in qPCR, where a decrease 

in LDH gene expression could be seen with time. Interestingly, collective 

genomics and proteomics data of LDH in mMSC-derived adipocytes 

seemed to contradict the high LDH activity seen in the assay experiment 

(Figure 8D). Outside of LDH, however no other enzymes seemed to 

drastically change during the differentiation process in mMSCs. 

Quite noticeably, the abundance of GAPDH was considerably lower in 

adipocytes when compared to osteoblasts and control mMSCs (Figure 

12A). The reduced protein yield is likely due to high lipid content in 

adipocytes. This factor has been known to complicate protein extraction 

procedures (An and Scherer, 2020).  

3.7 13C label incorporation into alanine and lactate occurs much faster in 

tissue samples 

As a follow up to our experiments in mMSCs, we decided on investigate 

whether the same methodology could be applied to tissue samples. 

Identical 1H NMR spectroscopy experiments to those in mMSCs were thus 
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performed on mouse tissue (liver, adipose, bone, and brain) homogenates 

(Figure 13). The timescale of 1H NMR experiments (~2 hours) was 

selected to allow the formation of kinetic steady states in the 13C label 

exchange reactions. In direct comparison to the data from mMSC 

samples, the changes in [1-13C]lactate and [1-13C]alanine concentration 

displayed little to no linearity.. Moreover, a non-linear regression analysis 

of the data showed that most curves demonstrate almost perfect curve-

fitting (R2>0.9). Nevertheless, [1-13C]alanine data proved to lean more 

towards linearity in comparison to [1-13C]lactate, especially in adipose 

tissue. This means that the exchange of pyruvate to alanine is much 

slower than pyruvate to lactate. 
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Figure 13: 1H NMR spectroscopic measurements of 13C label incorporation in 

tissue samples. Representative images A and B show plotted representative 

kinetics graphs from bone, brain, adipose, and liver tissues. Red – bone, blue – 

brain, black – adipose, green – liver. One phase association curves are shown in 

corresponding colours. Image A shows 13C-label incorporation into lactate, while 

image B shows the 13C-label incorporation into alanine. Table C shows the 

calculated label transfer rates and rations between specific metabolites in 

tissues. Values are shown as mean ± SEM. N=3 for all groups. 

 

Overall, we observed a larger metabolite concentration in tissue samples 

compared to mMSC samples, which is likely due to a difference in both 

enzyme and cell quantity between cell and tissue samples. This difference 

in metabolite concentration was also apparent when comparing different 

tissues. Liver tissue demonstrated the highest levels of both [1-13C]alanine 

(6.6±3.6mM) and [1-13C]lactate (11.1±3.8mM). This was expected, as the 

liver is a key organ in the Cori and alanine cycles (Waterhouse and 

Keilson, 1969; Felig, 1973). As such, high levels of LDH and ALT 

abundance and activity are expected to be seen in hepatocytes. The 

brain, on the other hand, was close to the liver in terms of [1-13C]lactate 

(5.9±1.8mM), but showed drastically lower [1-13C]alanine levels 

(1.5±0.6mM). Astrocytes, the most common cells found in the mouse 

central nervous system, have been known to produce lactate as part of a 
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coupled metabolic system between astrocytes and neurons (Keller, Erö 

and Markram, 2018; Dienel, 2019; Ioannou et al., 2019). Therefore, 

substantial levels of LDH would be expected in brain tissue. Regarding [1-

13C]alanine levels observed in the brain, studies have shown that alanine 

is not utilized as an energy source or neurotransmission in the brain. 

However, alanine plays an important role in ammonia transfer during 

glutamate/glutamine cycling in brain tissue (Bröer et al., 2007). 

Therefore, it is likely that ALT generates levels of alanine in the brain only 

sufficient for the maintenance of local metabolic processes. 

Meanwhile, adipose and bone tissues displayed very similar levels of [1-

13C]lactate (1.6±0.5mM in adipose vs 1.6±0.3mM in the bone). However, 

[1-13C]alanine levels between bone and adipose were not as similar 

(0.869±0.34mM in the adipose vs 0.1±0.02mM in the bone), with the 

bone tissue showing surprisingly low levels. Lactate production is an 

integral aspect of both adipocyte and osteoblast metabolic profiles. 

Adipocytes prioritize lactate biosynthesis to dispose of excess glucose, 

while the bone tissue microenvironment is highly hypoxic, making cells 

rely on glycolytic bioenergetics (Esen and Long, 2014; Krycer et al., 2020). 

Thus, the observed levels of generated [1-13C]lactate coincide with the 

functionality of the host cells. However, the same cannot be said about 

the observed [1-13C]alanine levels. With particular attention to the bone 

tissue, a much more substantial increase in [1-13C]alanine levels was 

expected due to the high abundance to highly biosynthetic osteoblasts. A 

possible explanation for the difference between expectation and the 

result is that during tissue processing for 1H NMR experiments, whole 

bone was homogenized. The homogenate thus likely contained traces of 

non-osteoblast cells, such as bone marrow cells, skewing the metabolic 

data.
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3.8 Wild-type tissue metabolomics display no clear grouping of tissues 

As for mMSCs, multivariate statistical analysis was employed to screen 

baseline (pre-pyruvate addition) spectra for any biomarkers metabolites 

linked to pyruvate. Spectra from all wild-type tissues were binned, 

normalized to total spectra sum, and analyzed. outside of the PCA analysis 

showed no significant differences between most tissues. However, brain 

tissues displayed some difference to other tissues, being exclusively  
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Figure 14: Principal component analysis of wild-type mouse tissues. Data were 

obtained from the pre-pyruvate addition spectra and normalized to total sum of 

spectral bins. A – the scores plot, showing how the observations are distributed 

on the two principal component axes. Green – liver, blue – bone, red – adipose, 

yellow – brain tissue. B – the loadings plot, showing how the variables are 

distributed on the two principal component axes. At the bottom of both 

pictures, the cumulative R2X values provided by each principal component can 

be seen. t[1] – principal component 1; t[2] – principal component 2. N=3 for 

each tissue. 

 

allocated to one quarter on the score plot (Figure 14A). The remaining 

tissues, however, could be found randomly distributed across the plot. 

Confidence values generated by two principal components were 0.706 for 

R2X and 0.432 Q2. These numbers suggested that the presented model 

explains the present data sufficiently well, but may potentially lack 

predictive power to determine how incoming data would be treated. 

The loadings provided some insight on which bins, and therefore 

metabolites present in those bins, affect the distribution (Figure 14B). 

Seemingly, brain tissue separation was highly influenced by bins 3, 3.2, and 

3.92. Heavy pull to the left hand side was seen from bins 3.68 and 3.76. 

Some pull up was seen from bins 3.16, 2.96, and 3.08. Lastly, pull to the 

right was mostly affected by bin 3.12 

3.9 Differences in gene expression responsible for pyruvate metabolism 

in mouse tissues 

Absolute quantification of LDH, PDH and ALT gene expression was 

performed due to differences in GAPDH expression (reference gene) 

levels between different tissues. A heatmap was generated to show the 

gene expression distribution in our tested tissues (Figure 15). As the data 

was generated using absolute quantification, instead of fold expression 

difference the data is expressed as replicon concentrations ng/µL. 



79 
 

Expression of ALT gene in the liver tissue was significantly higher compared 

to both adipose and bone tissues (107.53±10.33ng/µL in the liver vs 

69.23±5.69ng/µL in the adipose(p=0.0362), and 67.29±0.34ng/µL in the 

bone; p=0.0293), and differed little from brain tissue (107.53±10.33ng/µL 

in the liver vs 82.31±2.83ng/µL, p>0.05). In terms of LDH gene expression, 

adipose tissue data showed substantial differences to liver and bone 

tissues (105.52±5.04ng/µL in adipose vs 73.66±4.79ng/µL in the liver 

(p=0.0087) and 81.88±1.66ng/µL (p=0.0341)). LDH gene expression in the 

brain was noticeably smaller than in the adipose (92.52±3.45 ng/µL in the 

brain vs 105.52±5.04ng/µL in adipose), but the significance threshold was 

not crossed (p>0.05). PDH copy numbers seemed to remain stable across 

all tissues (106.32±11.95ng/µL in the brain, 102.15±5.52ng/µL in the liver, 

103.66±8.28ng/µL in the adipose, 106.52±5.97ng/µL in the bone, p>0.05). 
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Figure 15: Absolute quantification of gene expression in wild-type mouse 

tissues. Each cell in the heatmaps shows the concentration of replicons of an 

individual gene of interest in four wild-type mouse tissues. Graphs show mean 

data (n=3). Data were generated using a standard curve for each gene in every 

tissue. 
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Expression of the ALT gene in the liver tissue was significantly higher 

compared to both adipose and bone tissues (107.53±10.33ng/µL in the 

liver vs 69.23±5.69ng/µL in the adipose(p=0.0362), and 67.29±0.34ng/µL 

in the bone (p=0.0293)) and differed little from brain tissue 

(107.53±10.33ng/µL in the liver vs 82.31±2.83ng/µL, p>0.05). In terms of 

LDH, adipose tissue data showed substantial differences to liver and bone 

tissues (105.52±5.04ng/µL in adipose vs 73.66±4.79ng/µL in the liver 

(p=0.0087) and 81.88±1.66ng/µL (p=0.0341)). LDH gene expression in the 

brain was noticeably lower than in the adipose (92.52±3.45 ng/µL in the 

brain vs 105.52±5.04ng/µL in adipose), but the significance threshold was 

not crossed (p>0.05). PDH copy numbers seemed to remain stable across 

all tissues (106.32±11.95ng/µL in the brain, 102.15±5.52ng/µL in the liver, 

103.66±8.28ng/µL in the adipose, 106.52±5.97ng/µL in the bone, p>0.05). 

3.10 Differences in enzyme expression responsible for pyruvate 

metabolism in mouse tissues 

To complete our elucidation of pyruvate metabolism in mouse wild-type 

tissues, we performed Western blotting on tissue homogenates. Images of 

the blots can be seen in Figure 16A. As previously described, we quantified 

the signals and plotted them on a bar chart (Figure 16B). Values were 

expressed at relative intensity (arbitrary value). 

Following quantification and normalization of data, we could adequately 

compare enzyme levels between the tissues. In contradiction to LDH gene 

expression data in wild-type tissues, the most LDH protein was present in 

the bone tissue (3.82 in the bone vs 2.56 in the liver; 2.82 in the adipose; 

1 in the brain). ALT was the highest in the liver (73.99 in the liver vs 29.74 

in the bone; 7.43 In the adipose, 1 in the brain). Again, an inconsistency 

was present when comparing gene expression with protein expression 

for ALT. Protein expression of ALT in the brain was the lowest of all 

tissues, yet the gene expression was higher than both bone 
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Figure 16: Western blot results of wild-type mouse tissues. A – images of 

blots. Well identities are indicated above the blots, while the enzyme names 

of the corresponding images are shown on the left. Enzyme sizes in respective 

bands are shown on the right. 50µg of protein was loaded in every well. This 

data set was gathered from one experimental repeat. GAPDH signal was 

measured at 800nm, while all other enzymes were imaged at 700nm. Data 

was normalized to GAPDH. B – quantified data from blots. Relative intensity 

of antibody fluorescence was measured via densitometric analysis (expressed 

in arbitrary units). Values shown are means (n=1). Brain tissues values were 

used as calibrators to allow easier comparison. Insufficient repeats prevented 

statistical testing. 
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and adipose. While PDH gene expression was very similar across all tissues, 

the protein was barely detectable, being the most abundant in the liver 

(2.99 in the liver vs 1.11 in the bone; 1 in the brain, undetected in adipose). 

pPDH levels were also highest in the liver, although very similar to both 

bone and brain (1.06 in the liver vs 0.94 in the bone; 1 in the bone, 

undetected in adipose). The poor signals in adipose tissue could be due to 

high lipid content. 

3.11 1H NMR data collected from Alzheimer’s Disease mouse tissue 

cannot differentiate between sex or states of inflammation 

Having successfully collected data from wild-type tissues, we carried out 

the same approach tissue gathered from APP/PS1 (Alzheimer’s model) 

mice. Wild-type and AD model tissues could not be compared directly 

due to difference in genotype. We aimed to assess pyruvate metabolism 

as a potential biomarker in Alzheimer’s disease (AD), particularly in 

relation to sexual dimorphisms and the effects of inflammation. Four 

groups of APP/PS1 mouse tissue were used. These four groups 

represented two sexes (male(M) and female(F)) and two different 

treatments that the mice were subjected to (PBS treatment (non-

inflamed) and LPS treatment (inflamed)). Two types of tissue were 

analyzed: liver and cerebral cortex. Although the disease process of AD 

primarily affects brain tissue, some evidence suggests that the liver is 

involved with Aβ clearance, and is also among the organs affected by 

amyloid pathology progression (Sutcliffe et al., 2011; Zheng et al., 2019). 

Thus, in the context of AD, liver tissue was examined alongside brain 

tissue. 

13C label transfer from pyruvate to lactate and alanine showed similarity in 

terms of kinetics compared to wild-type tissues. The kinetics data were 

fitted using one phase association equation and not a linear fit as for mMSC 

data (Figure 17). A two-way ANOVA followed by a post hoc Tukey’s 
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multiple comparison was used to compare the 13C label transfer rates in all 

four experimental groups within AD mouse tissues. In the liver, statistical 

analysis showed no significant difference in [1-13C]lactate generation rate 

based on sex or inflammation (0.31±0.28µM/sec in M PBS; 

0.25±0.084µM/sec in M LPS; 0.14±0.004µM/sec in F PBS; 

0.13±0.012µM/sec). For [1-13C]alanine, however, there was a significant 

change in the reaction rate associated with inflammation, 

(0.26±0.05µM/sec in M PBS, 0.26±0.007µM/sec in F PBS vs 

0.13±0.02µM/sec in M LPS 0.22±0.018µM/sec in F LPS, p=0.0111). Data 

are summarized in a table (Figure 17E). Additionally, no substantial 

difference was found between [1- 13C]lactate/[1-13C]alanine ratios in all 

four liver groups (p>0.05). Overall, our results suggest that both 13C-

labelled lactate and alanine are produced at very similar rates in these 

livers, and that neither sex nor inflammation impact these numbers. 
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Figure 17: Production of 13C-labelled lactate and alanine in APP/PS1 mouse 

tissue. Images A and B show representative graphs of 13C-label incorporation 

into alanine and lactate in APP/PS1 livers, respectively. Images C and D 

represent 13C-label incorporation into alanine and lactate in APP/PS1 cortex 

tissue. Sex and treatment groups are color coded: red – M PBS, blue – M LPS, 

green – F PBS, black – F LPS. N=3 in all groups. Tables E (liver) and F (cortex) 

show reaction rates in each group. * - significant change versus the other 

treatment group. Values are shown as means (n=3) ± SEM. 

 

3.12 Metabolomics of Alzheimer’s tissues reveals differences between 

different sexes and treatments. 

While kinetics data of pyruvate-associated enzymes indicated little 

capacity for tissue group separation, multivariate analysis of metabolic 

phenotypes revealed that differences between different groups indeed 

exist. Score plots from livers (Figure 18A) presented a neat organization of 

all observations into 3 groups: M PBS, F PBS, and the LPS treated group. 

Overlap was also present, where some LPS treated tissues were found next 

to the F PBS tissues, regardless of sex. Based on the loadings plot (Figure 

18B), we identified that this model was most affected by metabolites in 

bins 3, 3.92, 3.2, 3.88, 2.96, and 3.12, 3.16. 

Looking at the cortex data (Figure 19), three observation clusters are 

visible, same as for liver tissues. However, no clear pattern can be 

identified, based on either sex or treatment. Despite this, the data seemed 

to be well defined based on the quality metrics (R2X=0.945, Q2=0.77). 

Nevertheless, data from variables suggest mostly the same culprit bins as 

in the liver – 3, 3.92, 3.2, 2.96, 3.16. This implies that while the signals 

from these metabolites varied in the cortex samples, it had no correlation 

with the treatment group, unlike the liver. However, more statistical 

power would be required to confirm these findings. 
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Figure 18: Principal component analysis of APP/PS1 livers. Data was gathered 

from pre-pyruvate addition spectra and normalized to total sum of bins. A – the 

scores plot, showing how the observations are distributed on the two principal 

component axes. Green – M PBS, blue – M LPS, yellow – F PBS, red – F LPS.  B 

– the loadings plot, showing how the variables are distributed on the two 

principal component axes. At the bottom of both pictures, the cumulative R2X 

values provided by each principal component can be seen. t[1] – principal 

component 1; t[2] – principal component 2. N=3 for all 
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Figure 19: Principal component analysis of APP/PS1 cortex. Data were 

obtained from pre-pyruvate addition spectra and normalized to total 

spectra sum. A – the scores plot, showing how the observations are 

distributed on the two principal component axes. Green – M PBS, blue – 

M LPS, yellow – F PBS, red – F LPS. B – the loadings plot, showing how the 

variables are distributed on the two principal component axes. At the 

bottom of both pictures, the cumulative R2X values provided by each 

principal component can be seen. t[1] – principal component 1; t[2] – 

principal component 2. N=2 for all groups. 
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3.13 Gene expression of pyruvate-associated enzymes display changes 

based on sex and treatment 

Having acquired data of metabolite kinetics in AD tissues, we also 

investigated whether sex or treatment affect gene expression of ALT, LDH, 

and PDH genes. Data were normalized to reference gene (GAPDH). As a 

follow up, we used wild-type expression levels as calibrator samples, 

allow easier comparison in terms or relative gene expression. All data were 

presented as heatmaps (Figure 16). 

In AD mouse livers (Figure 16A), a substantial downregulation in ALT gene 

expression was apparent when comparing our four experimental groups 

with the wild-type. This change remained consistent across all sex and 

treatment groups (0.27±0.05 in M PBS, 0.13±0.01 in M LPS, 0.04±0.01 in F 

PBS, 0.13±0.01 in F LPS; p<0.0001). No substantial difference in ALT gene 

expression was found between all four groups of AD mouse livers. A more 

complex picture was seen in the context of LDH. In response to PBS 

treatment, LDH seemed to be expressed at a higher level compared to both 

wild-type and LPS-treated livers (1.57±0.04 in M PBS, p<0.01; 1.32±0.005 

in F PBS, p<0.01). LPS-treated livers seemed to express LDH at a level 

comparable to the wild-type, with the F LPS group indicating some level of 

LDH gene downregulation (0.74±0.007, p=0.0074). Finally, PDH data 

showed substantial variance, to the point where the error prevented 

identification of any relevant changes, be it sex or treatment related 

(3.48±2.87 in M PBS, 7.96±2.12 in M LPS, 3.59±1.00 in F PBS, 1.67±0.64 in 

F LPS; p>0.05). Although, current data indicates a potential increase in PDH 

expression in the AD phenotype. 
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0.27 0.13 0.04 0.13 

1.57 0.86 1.32 0.74 

3.48 7.96 3.59 1.67 

0.44 1.29 1.37 2.13 

0.83 0.95 2.50 1.54 

0.85 1.06 4.80 0.57 

Unlike liver samples, AD cortex samples (Figure 16B) showed no clear 

disposition to changes in the gene expression of ALT. A trend is 

discernable, such as an increase in ALT expression in LPS-treated tissue 
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Figure 20: Relative gene expression levels of ALT, LDH, and PDH in 

Alzheimer’s model mouse. All data is adjusted to GAPDH expression and 

normalized to the wild type to allow easy comparison. Values in cells show 

fold expression level vs wild-type. Graphs show mean (n=3). 

 

 

(1.29±0.68 in M LPS vs 0.44±0.08 in M PBS; 2.13±0.11 in F LPS vs 1.37±0.38 

in F PBS; p>0.05), but poor data robustness prevented identification of any 

significant effects. Conversely, data showed a clear and substantial 

increase in LDH presence in the F PBS group (2.50±0.24 in F PBS vs 

0.83±0.03 in M PBS, 0.95±0.06 in M LPS, 1.54±0.69 in F LPS; p>0.01), while 

all other groups maintained very similar levels amongst themselves. PDH 

gene expression also showed upregulation in the F PBS treated group 

(4.80±0.27 in F PBS vs 0.85±0.52 in M PBS, 1.06±0.03 in M LPS, 0.57±0.24 

in F LPS; p<0.01) 

3.14  Western blot analysis reveals differences in protein levels associated 

with sex and inflammation 

Lastly, we measured enzyme levels in all 4 experimental groups with the 

aim to identify changes in protein expression associated with AD. All 

protein expression levels were normalized to the GAPDH loading control 

and calibrated using a wild-type sample. In AD mouse livers, western blot 

analysis revealed some sex-specific difference in ALT protein expression, 

but no changes in response to the treatment. In both male treatment 

groups, ALT suffered a significant reduction in quantity (0.25±0.13 in M PBS 

and 0.21±0.06 in M LPS, p<0.05) compared to wild-type tissues. Although 

lacking significance, the data suggested a trend towards reduce expression 

of ALT enzyme in female AD mice (0.35±0.10 in F PBS, 0.54± 0.20 in F LPS). 

This finding seemed to agree with qPCR data, where ALT production on a 

genomic level was significantly reduced in all groups compared to wild- 
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type tissues. For LDH, PDH, and pPDH, however, there was no significant 

differences between sex and/or treatment groups as shown by a two-way 

ANOVA analysis and post hoc Tukey’s comparison test(p>0.05). Moreover, 

any other significant qPCR data found in these same liver groups failed to 

match protein data. 
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Figure 21: Analysis of Western blots in AD phenotype livers. A – images of 

blots made in livers. Well identities are indicated above the blots, while the 

enzyme names of the corresponding images are shown on the left. Enzyme 

sizes in respective bands are shown on the right. B – quantified blots. 

Relative intensity of antibody fluorescence was measured via densitometric 

analysis (expressed in arbitrary units). This set of images was gathered from 

one experimental repeat. GAPDH signal was measured at 800nm, while all 

other enzymes were imaged at 700nm. Graphs show mean (n=3) ± SEM. All 

data was normalized to the wild-type to allow easy comparison. *p<0.05. All 

unspecified relationships were not significant. 

 

A similar pattern was observed in cortex samples of APP/PS1 mice (Figure 

22). ALT protein levels seemed to be reduced in all groups compared to the 

wild type (0.23±0.14 in M PBS, 0.45±0.37 in M LPS, 0.22±0.019 in F PBS, 

0.36±0.26 in F LPS, p>0.05), although variance of this data was higher, LDH 

seemed to be present at levels very similar to those of the wild-type, 

completely unrepresentative of the qPCR data. PDH seemed to be present 

in much larger quantities, especially in males (3.85±1.12 in M PBS and 

5.05±0.5 in M LPS versus 1.58±0.7 in F PBS and 2.8±0.84 in F LPS, p>0.05). 

pPDH was also quite abundant (4.51 ± 0.95 in M PBS, 1.55±0.10 in M LPS, 

2.47±0.35 in F PBS, 1.92±1.28), indicating strong inhibition of PDH in AD 

cortex. However, more statistical power is necessary to elucidate this 

relationship. 
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Figure 22: Analysis of Western blots in Alzheimer’s phenotype cortex. A – 

images of blots made in cortex. Well identities are indicated above the blots, 

while the enzyme names of the corresponding images are shown on the left. 

Enzyme sizes in respective bands are shown on the right. B – quantified blots.  

Relative intensity of antibody fluorescence was measured via densitometric 

analysis (expressed in arbitrary units). This set of images was gathered from 

one experimental repeat. GAPDH signal was measured at 800nm, while all 

other enzymes were imaged at 700nm. Graphs show mean (n=3) ± SEM. All 

data was normalized to the wild-type to allow easy comparison. *p<0.05. All 

unspecified relationships were not significant. 
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Chapter 4: Discussion 

 
To determine whether pyruvate conversion to lactate and alanine could be 

used as potential biomarkers of tissue phenotypes, cell differentiation, and 

disease, we investigated metabolic changes associated with pyruvate 

metabolism using 1H NMR spectroscopy. We showed that the conversions 

of 13C pyruvate to lactate and alanine were indicative of LDH, and ALT 

enzymes activities in real time and could be used to determine catabolic 

and anabolic changes in cells and tissues. Additionally, we investigated 

potential correlation between metabolic fluxes measured by 1H NMR and 

genomic and proteomics analysis of LDH, ALT and also PDH for 

mitochondrial metabolism. This approach aimed to ascertain any impact 

or connection between upstream genomic and proteomic factors and the 

observed downstream metabolic phenotypes. With varying degrees of 

success, we performed the aforementioned analysis using a mouse model 

of mesenchymal differentiation, Alzheimer’s Disease, and wild-type mouse 

tissues, and findings for each model were rather distinct and will be 

discussed sequentially below. 

4.1 mMSCs demonstrate lineage plasticity 

During mMSC differentiation, we found some overlap between both 

osteogenic and adipogenic lineages in terms of differentiation pathways. 

Following the chemical induction of mMSC differentiation through 

addition of media supplements, formation of lipid vacuoles was observed 

in the osteogenically-induced group. An immediate point of interest were 

the media supplements associated with the differentiation procedure. One 

particular component, dexamethasone, was identified to be present in 

media aimed to invoke both adipogenic and osteogenic differentiation. At 

the molecular level, dexamethasone has been shown to interact with pro- 

osteogenic transcription factors RUNX2 and Osterix, as well as bone matrix 
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genes (Rickard et al., 1994; Hamidouche et al., 2008). Conversely, 

adipogenesis is upregulated through the interaction of dexamethasone 

with C/EBPδ via glucocorticoid receptor binding (Gregoire, Smas and Sul, 

1998). Furthermore, research suggests that mature somatic cells derived 

from human bones can undergo lineage reprogramming and assume an 

adipocyte phenotype upon exposure to a combination of dexamethasone 

and IBMX (Nuttall et al., 1998). This suggests that a certain level of 

phenotypic plasticity exists between adipogenic and osteogenic lineages. 

In our study, lineage plasticity in mMSCs presents a limitation, as it results 

in adipocytes arising in osteogenically-induced mMSC populations, thus 

leading to a mixed population of cells that does not accurately represent 

metabolic, proteomic, and genomic features of pure osteoblast cultures. 

4.3 Differences in enzyme activity levels reflect post-differentiation 

phenotypes 

Enzymatic assays measured in differentiating mMSCs indicated drastic 

changes in the activity levels of ALT and LDH enzymes for both osteogenic 

and adipogenic lineages. In particular, ALT activity was the highest in 

osteoblasts while LDH was the most prominent in adipocytes at the end of 

the differentiation process. It can therefore be assumed that the activity 

levels of these enzymes are closely correlated to the function of their host 

cells. 

Osteoblasts are highly biosynthetic cells involved in growth and 

maintenance of the skeleton, producing large quantities of extracellular 

matrix proteins (Long, 2012). Additionally, the synthesis of type I collagen, 

a major component of bone ECM, is closely linked to the expression of 

osteocalcin, a gene involved in osteoblast differentiation (MacDonell, 

Hamrick and Isales, 2016). Therefore, ALT could potentially participate in 

driving a feedforward mechanism that not only drives pyruvate towards 

amino acid synthesis, but also promotes osteoblast formation. Meanwhile, 
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proliferating preadipocytes stop growth, usually through contact 

inhibition, thus reducing their dependence on protein biosynthesis and 

ALT anabolic activity (Rosen et al., 2017). The remaining use for ALT in 

adipocytes could therefore be to divert alanine to lipid biosynthesis by 

converting it to pyruvate and subsequently to acetyl-CoA, the core building 

block of lipids. Finally, it is difficult to pinpoint why ALT activity decreased 

in control mMSCs between days 10 and 15. One factor could be that overly 

confluent cell population at day 15 would inhibit proliferation by cell 

contact and therefore would reduce biosynthetic demand. 

In contrast, LDH activity seemed to increase in adipocytes between days 

10 and 15 of mesenchymal differentiation Recent research has shown that 

lactate is a substantial output product of adipocytes and is produced 

independently of glucose metabolism (Krycer et al., 2020). This could 

explain why LDH activity is elevated in adipocytes. Furthermore, LDH 

expression in adipocytes is epigenetically controlled through histone 

acetylation, where acetyl CoA acts as an acetyl group donor (Wellen et al., 

2009). As mentioned previously, acetyl-CoA is a core building block in lipid 

biosynthesis. These findings highlight a direct connection between cellular 

metabolism and epigenetics. The role of lactate produced by adipocytes 

remains elusive, but it is currently theorized that it potentially has a key 

role in mammalian glucose homeostasis, either as signal molecule or 

substrate (Landau and Wahren, 1988; Ahmed et al., 2010). In the context 

of osteoblasts, LDH activity also seemed to increase between days 10 and 

15 of mesenchymal differentiation, although the values remained within 

the error margins. Studies suggest that osteoblasts are highly glycolytic 

cells, similarly to cancer cells (Lunt and Vander Heiden, 2011; Esen and 

Long, 2014). Considering the high metabolic productivity of osteoblasts, 

they require a steady supply of ATP and carbon skeletons to maintain de 

novo protein synthesis (Lee et al., 2017). Glycolysis
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fulfills this demand by allowing a more rapid (although less  efficient) 

generation of energy alongside provision of building materials. 

4.4 Real-time observation of 13C-label exchange offers a promising 

approach to mMSC phenotyping 

1H NMR spectroscopy was used in conjunction with 13C-labelled pyruvate 

to measure pyruvate conversion to lactate and alanine, indicative of LDH 

and ALT activities in vivo. In this experiment, we established that 13C 

lactate/13C alanine signal ratios from 13C pyruvate labelling in rapidly 

extracted cell-free homogenates of control MSCs and lineage-committed 

cells correlate with mesenchymal differentiation. Based on this evidence, 

we hypothesize that the fate of 13C tracers could be used as early and 

sensitive biomarkers of mesenchymal differentiation using intact cells, and 

also in vivo in transplants. Although more work is required to clarify the 

consistency of [1-13C]lactate/[1-13C]alanine ratio differences at other 

stages of differentiation, the relationship between these two metabolites 

currently shows great potential as a biomarker. Coupled with dynamic 

nuclear polarization (DNP or hyperpolarization) of 13C-labelled tracers that 

enhances the sensitivity to detection of 13C tracers >104‐fold (Ardenkjær- 

Larsen et al., 2003) there is a great potential for NMR spectroscopy non- 

destructively observe and measure metabolic fluxes in real-time in stem 

cell-derived populations cultured in bioreactors. In addition, this method 

could potentially prove useful in screening for drug toxicity in mMSCs. In 

vitro evaluation of drug toxicity in mMSCs offers an alternative model for 

testing substances that are otherwise difficult to test in humans due to 

ethical considerations (Denning et al., 2016). Moreover, mMSC 

differentiation capacity offers a more versatile and physiologically relevant 

model when compared to immortalized cell lines (Chang et al., 2011). By 

employing 1H NMR-based quality control, mMSC cultures could be 
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expanded with greatly reduced batch-to-batch variation, ensuring 

successful differentiation. 

4.5 Creatine level fluctuations seem to be associated with mMSC 

differentiation 

In terms of metabolomic analysis, we noticed a clear separation between 

adipocyte and osteoblast lineages. Control mMSC profiles seemed very 

similar to osteoblasts in terms of metabolite profile compared to 

adipocytes. The high similarity between osteoblasts and undifferentiated 

mMSCs has already been defined on an epigenetic level, therefore 

metabolic similarity seems unsurprising (Rauch et al., 2019). We also 

identified several metabolites that were shown by multivariate analysis to 

be a source of distinction between adipocytes and osteoblasts. For 

example, creatine (Cr) and phosphocreatine (pCr) seemed to distinguish 

adipocytes from the other cell phenotypes. Literature on the physiological 

role of creatine in adipose tissue is rather limited, but currently suggests 

that creatine stimulates mitochondrial bioenergetics, suppresses diet- 

induced thermogenesis, and combats obesity (Kazak et al., 2018). 

4.6 Gene and protein expression data allows insight into cell 

biology changes during differentiation 

Genomics and proteomics data obtained during mesenchymal 

differentiation showed some insights on how upstream factors impact the 

observed metabolite behaviors. Interestingly, we noted a drop in LDHA 

gene and protein expression in adipocytes nearing the end of 

differentiation. Considering the previously established significance of 

lactate production in adipocytes, this seemed rather counterintuitive. One 

possible explanation could be the overaccumulation of lactate in an in vitro 

setting. Whereas in vivo adipocyte-generated lactate is secreted into the 

bloodstream, in cell culture conditions lactate accumulates, leading to 

feedback-induced downregulation of LDH synthesis. A concrete 
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mechanism behind this is a subject of speculation, but it could be related 

to reversible inactivation of HIF-1α hydroxylation and upregulated LDH 

isoform B synthesis (Nadal-Ginard, 1978; Lu et al., 2005). Regardless of 

gene expression levels, ALT seemed to remain stable in both adipocytes 

and osteoblasts. It could therefore be assumed that the detected increase 

in ALT activity in osteoblasts can be associated with allosteric regulation or 

post-translational modification of the enzyme. Indeed, it has been shown 

that metabolites involved in bone maintenance pathways, such as L- 

cysteine or B-vitamins, exert varying levels of regulation on ALT (Adcock, 

Buckberry and Teesdale-Spittle, 1995). Moreover, ALT isoenzyme 

expression can also influence ALT activity (Jadaho et al., 2004). Similarly, 

both osteogenic and adipogenic lineages showed relatively stable protein 

levels of PDH, seemingly completely independent of any fluctuations in 

PDH expression on a genomic level. However, the inactive pPDH was more 

prevalent in the osteoblasts. This seems to coincide with the preference 

for glycolytic energy generation in osteoblasts, as rapid production of ATP 

could activate pyruvate dehydrogenase kinases, which would then 

proceed to downregulate OXPHOS (Sugden and Holness, 2003). 

4.7 Kinetics data clearly separated cell and tissue sample groups 

In this MRes, we also investigated whether our metabolic phenotyping 

approach could be applied to wild-type tissue samples. In the context of 

13C-labelled metabolite kinetics, we immediately noticed a change from 

mMSCs samples, which was we the presence of concentration plateaus (i.e 

metabolite steady states). In this case, all the variables within a system, 

such as the substrates and products of an enzymatic reaction, maintain a 

chemical equilibrium and the net reaction output is zero (Srinivasan, 2020). 

Assuming a stable biological environment, metabolites within tissues 

usually exist at steady states. Under such circumstances, obtaining data 

regarding metabolic fluxes is impossible. However, following addition of 
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13C-labelled substrates, the parameters of a steady state reaction, namely 

the reactants, are perturbed, invoking a measurable metabolic flux 

through the reaction until a new steady state is achieved. Data acquired 

during this transition between two steady states describes the full extent 

of the metabolic changes associated with the particular sample. This 

framework has already been applied in clinical settings to study various 

tissues, such as heart and liver (Darpolor et al., 2014; Cunningham et al., 

2016). Coming back to our study, the [1-13C]lactate/[1-13C]alanine 

exchange ratios acquired in tissues represented a “finalized” reaction, 

unlike the ratios observed in the mMSC experiments, where steady states 

were not achieved during the same timeframe. This difference between 

cell and tissue samples likely originates from differences in quantity of 

samples used - cells were measured in number, while the tissues were 

weighed. The resulting higher biomass of tissue samples means higher 

catalytic enzyme and metabolite abundances, allowing enzymatic 

reactions to more easily reach steady states within a short time period. 

Future work, particularly regarding cell samples, should take these findings 

into account and ensure that metabolic flux data is representative of 

steady states. 

4.8 Although initially successful, metabolic phenotyping of tissues 

presents further challenges 

Such as with mMSCs, the [1-13C]lactate/[1-13C]alanine ratios acquired from 

wild-type tissues seemed to be unique to each tissue. Except for liver, all 

tissues seemed presented higher flux of the 13C label into lactate compared 

to alanine. This outcome is logical considering a significant portion of cells 

residing adipose, brain, and bone tissues either favor lactate production, 

or are predominantly glycolytic (Bouzier-Sore et al., 2006; Lee et al., 2017; 

Krycer et al., 2020). The higher production of [1-13C]alanine over [1- 

13C]lactate observed is likely due to the high ALT expression in the liver, to 
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the point where ALT expression in the bloodstream is used a clinical 

marker for hepatic damage (Giannini, Testa and Savarino, 2005). All in all, 

the metabolic flux data acquired from these tissues were in range with 

parameters described by scientific literature and validated our primary 

hypotheses. However, we encountered issues while attempting to 

distinguish tissue metabolic profiles using metabolomics and PCA analysis. 

We have currently identified three reasons for why this could be the case. 

First, tissue sample preparation for 1H NMR experiments revolved around 

daily preparation of buffer solutions as well as manual weighing of tissue. 

Operator error could thus be a source of inconsistent measurements, 

skewing the PCA model. Furthermore, the NMR buffer employed may be 

incompatible with metabolomics, as the background signals generated by 

the buffer components could mask key signals from biomarker 

metabolites. While the buffer solution was adequate for fluxomics, 

another sample preparation technique, such as methanol extraction, 

should be used for global metabolomic profiling (Gines et al., 2018). Lastly, 

the regional complexity of tissues was largely ignored. Studies have shown 

that different regions within a tissue can have drastically different 

metabolisms (Tchernof et al., 2006; Kleinridders et al., 2018). As such, 

homogenizing an entire brain or bone yields a complex metabolic snapshot 

that may be heavily influenced by abnormalities within a single region. 

Taken together, all these factors pose as hurdles in terms of metabolomics, 

although our real-time fluxomics approach seems unaffected. 

4.9 1H NMR data allows elucidation of the inflammatory mechanism in 

APP/PS1 mice 
 

In the context of AD mouse tissues, we investigated the metabolic sexual 

dimorphism under systemic inflammation observed in APP/PS1 mice. A 

previous study had concluded that, following treatment with 

lipopolysaccharide (LPS), a downregulation of pyruvate metabolism could 
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be observed in hippocampi of male mice (Agostini et al., 2020). We aimed 

to determine whether this phenomenon is observed in other tissues (liver 

and cerebral cortex), and to quantify the extent of inflammation effects. 

Livers from all four groups displayed no significant variance in [1- 

13C]lactate/[1-13C]alanine ratios. Furthermore, all ratios seemed to be 

close to the value of 1, indicating similar production levels of lactate and 

alanine, slightly higher than the ratio seen in the wild-type mice. It should 

be noted, however, that the wild-type mice were not subjected to the 

same control procedures (injection, behavioural testing) as AD mice. 

Interestingly, the overall concentration of lactate was consistently higher 

in LPS-treated male mice compared to their PBS-treated counterparts. 

Although, in contrast with hippocampi’s data, our findings could be related 

to the work of Agostini and colleagues. For instance, key findings by other 

studies suggest that LPS upregulates glycolysis among other pathways, and 

that the APP/PS1 model mice present reduced neuronal lactate presence 

due to downregulated lactate transport between glia and neurons (Zhang 

et al., 2018). We could therefore interpret a mechanism where the 

production of lactate in glia is excessively upregulated by LPS, but, due to 

impaired transport to neurons, brain lactate is released in the 

bloodstream, transported to the liver where it is metabolized. 

Interestingly, this phenomenon was unique to male mice. An explanation 

could be the sexual dimorphism in the context of pro-inflammatory 

cytokines. Adult female mice have been shown to produce more mild 

inflammatory response and are thus less susceptible to endotoxin 

(including LPS) exposure (Kuo, 2016). 

Metabolomics analysis of AD mouse tissues suggested that the LPS 

treatment substantially alters the metabolome of AD mouse livers. Most 

of the LPS-treated liver data showed metabolic similarity regardless of sex. 

The remainder – PBS-treated male and female livers – were separated by 
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our PCA model. The latter phenomenon could be representative of sex 

asymmetry in terms of metabolic homeostasis observed across multiple 

species (Mauvais-Jarvis, 2015). Nonetheless, some LPS-treated livers 

indicated high metabolic similarity to female PBS-treated livers. A possible 

explanation is naturally occurring variability seen in living organism 

metabolisms (Pettersen, Marshall and White, 2018). Coupled with low 

number of animals used in this study, we cannot draw conclusions as to 

why this asymmetry was observed. Through PCA, we were able to identify 

creatine metabolism as a source of sexual dimorphism in APP/PS1 livers. 

Aberrant creatine metabolism has an established role in Alzheimer’s 

Disease pathology, particularly in brain tissue, where it accumulates and 

forms deposits (Bürklen et al., 2006). Future work could therefore 

investigate this connection between Alzheimer’s and creatine metabolism, 

and how it is affects the liver. 

4.10 AD mouse livers metabolic profiles depend on sex and treatment 

Across all AD mouse livers (both sexes and treatments), ALT gene and 

protein expression was strongly downregulated compared to the wild-type 

mice. These findings are concomitant with another study that looked at 

associations between liver enzymes and AD diagnosis in human patients 

(Nho et al., 2019). In this study, researchers found that ALT levels were 

decreased and that the aspartate aminotransferase (AST) ratio with ALT 

was increased in patients with AD. The exact benefits of ALT gene 

downregulation to AD pathology remain elusive. Some potential 

candidates include altered glutamate metabolism and perturbed 

bioenergetics through gluconeogenesis downregulation (Isik and Bozoglu, 

2010). Unlike ALT, genomics and proteomics data of LDH were quite 

different. LDH gene expression seemed to be downregulated exclusively in 

LPS-treated livers. As LPS is associated with glycolysis upregulation, 

reduction in LDH gene expression seems counterintuitive. Nonetheless, 
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literature suggests that the underlying mechanism could be associated not 

with regulation of the LDH gene, but rather with tissue injury cause by LPS 

supplementation (Ajuwon, Oguntibeju and Marnewick, 2014; Hamesch et 

al., 2015). Following LPS administration, increased serum ALT and LDH 

levels can be detected in mice models, indicating acute liver injury. This 

theory, however, is contradicted by the elevated LDH protein expression 

in liver of LPS-treated male as seen in our proteomics data. Lastly, high 

presence of phosphorylated PDH in agreement with the PDH gene and 

protein expression across all groups represented a common AD-associated 

perturbation (Patel et al., 2012b). Overall, the combination of 

metabolomics, genomics, and proteomics techniques provided deep 

insight on the effects of sex and inflammation on AD-affected liver tissue. 

4.11 Amino acid metabolism seemingly plays a key role in AD cortex 

tissue 

1H NMR data acquired in AD-afflicted cortex showed that [1-13C]lactate/[1- 

13C]alanine ratios in both sex and treatment groups were <1, indicating the 

prioritization of alanine production. As previously discussed, lactate 

exchange between astrocytes and neurons is impaired in AD (Zhang et al., 

2018). Additionally, neurons do not possess sufficient levels of enzymes 

involved in ß-oxidation to rely on fatty acids for energy generation (Panov 

et al., 2014). The viable substrates left for ATP generation in AD neurons 

are therefore ketone bodies and amino acids (Cunnane et al., 2012; 

Puchalska and Crawford, 2019). Our data could therefore be indicative of 

the latter - an upregulation of amino acid catabolism in order to satisfy the 

energetic demand in the AD neurons (Griffin and Bradshaw, 2017). 

Glutamate and glutamine are often identified as the most abundant 

amino acids in the brain. These two amino acids participate in a cycle 

termed the glutamate- glutamine cycle, where glutamate used in 

neuronal signaling is converted to glutamine in astrocytes, exported and 

taken up by neurons, and converted back to glutamate (Walton and 
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Dodd, 2007). While the primary function of this cycle is the 

replenishment of glutamatergic neurotransmitters in the neurons, AD-

affected neurons can also direct glutamate towards energy production. 

The high production of [1- 13C]alanine could therefore correspond to an 

increased flux of amino acids towards glutamate production. Astrocytes 

may support this pathway by upregulating glutamine output. However, as 

we did not measure glutamate concentration in our study, we cannot 

therefore be certain if this in fact occurs. Future work should remedy this 

gap in order to fully characterize the connection between [1-13C]alanine 

flux and AD brain metabolism. 

In concordance with observed reduced [1-13C]lactate/[1-13C]alanine ratios, 

ALT gene expression in AD cortex seemed upregulated across most groups, 

with the exception of male PBS-treated cortices. The reason behind this 

observation is not clear, as sexual dimorphisms regarding amino acid 

metabolism in AD have not been well studied. However, these results 

should be taken with caution, as our studied wild-type was female, and not 

a littermate to the AD mice. Curiously, ALT protein expression data 

indicated a reduction in ALT across all groups. A similar mismatch between 

genomic and proteomic data in gathered from AD cortex tissue could also 

be observed in the context of LDH and PDH. While LDH gene expression 

seemed similar in all groups, it was drastically upregulated in the female 

PBS-treated cortex. In terms of protein expression, however, LDH levels 

were consistently higher in all AD cortexes in comparison to wild-type 

tissue. These observations are suggestive of glycolysis upregulation in 

response to increased ATP demand in AD brain tissue, and are consistent 

with the stimulatory effect of LPS on glycolytic pathways. Lastly, gene 

expression of PDH seemed the highest in female PBS-treated cortex tissue, 

yet the highest levels of PDH protein were seen in both male cortex groups. 
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The extent of PDH phosphorylation seemed high in all groups, except for 

LPS-treated males. 

4.12 Real-time study is imperative when correlating metabolomics, 

proteomics, and genomics 

The discrepancy between genomic and proteomic data obtained from AD 

cortex tissue highlights an importance of the real-time aspect of metabolic 

studies. In vivo, both gene expression and protein expression are highly 

regulated processes that can be stimulated or suppressed by a plethora of 

stimuli. In response to physiological or pathological processes that invoke 

metabolic reprogramming in cells, the mechanism follows the central 

dogma order: genes are expressed, proteins are synthesized, and 

metabolites are produced (Veenstra, 2012). However, by the time 

metabolic signatures are observed by a technique such as 1H NMR, 

feedback inhibition or other regulatory signals could have already 

downregulated gene or protein expression associated with a particular 

pathway. The temporal “snapshot” of the genome or the proteome 

acquired at any single time point can therefore be unrepresentative of the 

metabolic state of the target cell or tissue. Such could be the case with our 

qPCR and Western blot experiments. While the described scenario is 

applicable to other tissues, it seemed to be the most prevalent in the 

cortex, where little correlation could be seen between genomic, 

metabolomic, and proteomic data. 

4.13 Tissue complexity limits reliability of acquired data 

And yet, another explanation to the aforementioned issue may lie in our 

sample preparation method. For 1H NMR sample preparation, we used 

pieces surgically removed from the cortex, rather than the whole cortex. 

This raises a potential problem related to cortex cell population ratios and 

their gene expression patterns. In the whole cortex, glial cells and neurons 

exist at a ratio of ~1.5 (glia to neurons) (Christopher S. von Bartheld, 2017). 
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Nevertheless, the cortex is composed of multiple anatomically defines 

areas and layers throughout which the glia-to-neuron ratios vary. As 

previously discussed, glia and neurons have unique metabolic patterns. 

Further complications arise when considering the differential gene and 

protein expression patterns across the multiple regions of the cortex, 

particularly in relation with AD severity (Herculano-Houzel, Watson and 

Paxinos, 2013; Xu et al., 2019). As we did not consider this aspect when 

sampling the cortex tissue, it is likely that the cortex samples used in our 

experiments lacked consistency in terms of anatomical composure. This 

would have then resulted in differences both in protein and gene 

expression unrelated to either sex or treatment across all groups, which is 

what was observed. 

4.14 Further development of NMR methodology is required 

PCA of AD cortex samples failed to replicate the metabolic profile grouping 

pattern previously seen in AD liver tissue. In fact, no clear grouping was 

seen based on either sex or treatment. While creatine metabolism was 

again implicated as key player characterizing certain samples, other 

unidentified metabolites seemed to affect the model with the same 

impact. Curiously, there is large overlap between these newfound pivotal 

metabolites in the cortex, and those that only slightly affected the PCA 

model in AD livers. This likely represents the natural difference between 

the metabolic profiles of these two tissues due to their function, 

metabolism, and cell composition. Nonetheless, due to our inability to 

identify these molecules, it is uncertain what role they play and whether 

they have promise as targets in future NMR-based metabolic studies of AD. 

In our obtained NMR spectra, the signals of unidentified metabolites were 

mostly found in areas of high signal peak overlap, severely impeding 

identification attempts. It is thus imperative that our NMR methodology is 

improved to allow better peak separation. An NMR spectroscopy 
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technique termed heteronuclear single quantum coherence (HSQC) shows 

promise, as it would introduce a second dimension to the NMR spectra. 

The two dimensions correspond to different target nuclei, such as 1H and 

13C, allowing observation of correlations between carbons and their 

attached protons. Many studies have successfully used 1H-13C HSQC in real- 

time metabolic studies, even managing to monitor acetyl-CoA formation 

(Mahrous and Farag, 2015; Xu et al., 2018). Therefore, introducing 1H-13C 

HSQC into our study model could help elucidate metabolic profiles of AD 

tissues by separating signals, allowing circumvention of peak overlap. 

4.15 Conclusion 

Our study suffered from several limitations and flaws in design. Some 

drawbacks and potential improvements were already identified 

previously. Due to resource and time constraints, some of our data lacked 

statistical power to draw any concrete conclusions. Further repetition of 

these experiments would therefore be imperative to clarify relationships 

between data sets. For the analysis of AD mouse tissues, a significant 

drawback was the absence of a wild-type control of each sex and 

treatment. In the presence of such a control, we could have determined 

whether the sexual dimorphisms and treatment impacts observed in our 

tissue samples were exclusive to AD or were purely the result difference in 

sex and/or inflammatory effect. Tissue collection methods may also 

require a review, particularly in the brain, to prevent overlap of data from 

phenotypically distinct regions. Finally, the in vitro environment of this 

served as another limitation. The use of buffers and media enriched with 

specific metabolites might have affected resulted in metabolic signatures 

that would otherwise not be seen in vivo. Nevertheless, investigations of 

metabolic changes can greatly advance the fields of stem cell and AD 

research. The globally growing attention shift to studying the role of 

metabolites in physiology and pathophysiology show promise in unfolding 
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a unified framework in which metabolites, proteins, and genes cooperate 

to modify the identities and function of cells, tissues, and organs (Wishart, 

2019). 

In summary, our study confirmed that the real-time observation of 

metabolic changes linked with pyruvate metabolism can as biomarkers 

when determining cell and tissue phenotypes. Physiological processes, 

such as mesenchymal stem cell differentiation into adipocytes or 

osteoblasts, result in specific metabolic signatures detectable via 1H NMR. 

Beside cell samples, we were also able to characterize wild-type mouse 

tissues based on the [1-13C]lactate/[1-13C]alanine ratios. In AD model 

mouse livers and cortical tissues, flux data from 13C-labelled metabolites 

was not directly definitive of sexual dimorphisms or treatments. However, 

AD fluxomic data provided insight on already established metabolic 

perturbations in AD seen in literature. We were also able to examine 

upstream proteomic and genomic changes associated with observed 

metabolite signatures. Our findings conclude that while not necessarily 

directly correlated with changes in metabolite levels, genomics and 

proteomics data could be indicative of regulatory mechanisms and/or 

alternative pathways. Finally, via metabolomics and multivariate analysis, 

we were able to determine some metabolites that also shown biomarker 

potential. 
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6. Appendix 

 
Table A: Components of Master Mix 1 (for cDNA synthesis). Values given 

are per sample. 

 
 
 
 
 
 

Table B: Components of Master Mix 2 (for cDNA synthesis). Values given 

are per sample 

 

Component Volume (µL) 

5X First Strand Buffer 4 

Dithiothreitol (0.1M) 1 

RNaseOUT RNase inhibitor 1 

Superscript III Reverse 
transcriptase 

1 

 

Table C: list of primers used for qPCR 
 

Gene Forward primer Reverse primer 

Gpt 5’- 
CCTTCAAGCAGTTTCAAGCA- 
3’ 

5’- 
GCTCCGTGAGTTTAGCCTTG- 
3’ 

Ldha 5’- 
TTAACCCAGAACTGGGCACT- 
3’ 

5’- 
GTAGGCACTGTCCACCACCT- 
3’ 

Pdha1 5’- 
GGTGGTGTGGTCCTAGCTGT- 
3’ 

5’- 
ATTCCTGGTGGCTGCTACAC- 
3’ 

Gapdh 5’- 
AAGAGGGATGCTGCCCTTAC- 
3’ 

5’- 
CCATTTTGTCTACGGGACGA- 
3’ 

Component Volume (µL) 

Total RNA (500ng/µL) 10 

Random primers 0.5 

Deoxynucleotide mix (10mM) 1 

Nuclease-free water 1.5 
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Lactate 

Alanine 

13C Alanine 13C Lactate 

Table D: Thermocycler programe for qPCR 
 

Step temperature (°C) Time (s) 

Holding stage 95 20 

Cycling stage 95-60 3-30 (40 cycles) 

Melt curve stage 95-60-95 15-60-15 

 
 

Figure A: Example spectra acquire via 1H NMR 
 

 


