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ABSTRACT 

 

The battle for sustainability will be won or lost in cities. Currently more than 50% of 

the World’s population reside in urban areas and this figure is estimated to reach 68% 

by 2050. New and innovative approaches are needed for managing urban areas and this 

demands the generation of appropriate data for evidence-based decision making. 

Geospatial technologies play an important role in meeting this demand and it is evident 

that 3D geospatial data of cities provide richer intelligence than 2D geospatial data. 

However, presently, there is a dearth of free, high-resolution 3D city models available 

for use especially in developing and underdeveloped countries, which, it could be 

argued, is where these data are most required.  

 

This thesis offers potential solutions to generating 3D data using open data and methods 

– it aims to provide globally replicable methodologies to generate low-cost Level of 

Detail 1(LOD) 3D city models from open data. Two geographically and 

morphologically different case study cities were used to develop and test this 

methodology: the Chinese city of Shanghai and the city of Nottingham in the UK. Two 

different methodologies for generating LOD1 3D city models are developed and tested, 

with their suitability for different applications discussed. The first method presented 

exploits that 2D building footprints are available as open data. However, this 

availability of 2D footprint data is not complete globally and so the second method 

presented seeks to generate 2D building footprint data with open data that has global 

coverage. It uses a method to spatial enhancement satellite remote sensing data 

(Sentinel-2) (from 10m to 1m resolution) for building footprint area generation, which 

is then used to generate a 3D city model.  
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As the idea of Digital Twin is gaining pace, this thesis represents a step in the journey 

towards Digital Twins of all cities – privileged with data or not. Digital twin is the 

virtual representation of the real world. Geographic Information System (GIS) creates 

Digital Twins of the natural and built environments and act as a unique base for 

integrating many subsequent data. It is concluded that the method presented goes some 

way to meeting the 3D data gap that currently exists for many cities. The successful use 

of these methods will depend on the application for which they are employed (e.g. 

disaster management, climate change and urban climate modelling), which in turn 

should point to what improvements in data models are required. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

Urbanisation refers to a broad based rural to urban transition involving population, 

land use, economic activity and culture, or indeed any one of these (Mcgranahan & 

Satterthwaite, 2014; Ritchie & Roser, 2018). Due to rapid urbanisation occurring the 

World over, achieving urban sustainability is now a global concern (Seto et al., 2017).  

With the agreement of the 2030 Agenda and the Sustainable Development Goals 

(SDGs) it is underlined that urban areas play a key role in achieving sustainability 

(United Nations, 2015). The SDG11, emphasizes the need to ‘make cities and human 

settlements inclusive, safe, resilient and sustainable’. 

 

According to the United Nations, Department of Economic and Social Affairs, 

Population Division (2019), at the census date of 2018, about 55% of the world 

population were living in urban areas, with a projected growth to 68% of the 

population to be urbanised by 2050 (United Nations, 2019). Urbanisation is commonly 

defined as the percentage of the population that lives in what each national statistics 

office calls as “urban areas’’ (Chauvin et al., 2016) or it is the process by which a large 

number of people becomes permanently concentrated in relatively small areas, 

forming cities (Hofmann & Wan, 2013; Seto et al., 2013). The definitions for ‘urban’ 

and ‘cities’ varies among nations and in general cities are considered larger than towns 

in terms of area, population size, population density, and urban functions.  
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As cities will most likely continue to be home for a large population, it is of high 

importance to ensure that they are as liveable as possible, for present and future 

generations. The concept of sustainability is one approach to secure this significant 

goal and to be sustainable the cities must themselves, or in the resources, they 

command, become low carbon, resilient, and liveable (de Jong et al., 2015). A 

sustainable city is one that can generate the maximum socio economic benefits for its 

population without losing the environmental and equity parameters, as measured by 

appropriate indicators (Mori et al., 2015; Mori & Yamashita, 2015).  

 

To achieve environmental sustainability, urban consumption must match or be below 

what the natural environment can provide, i.e., its carrying capacity (Yigitcanlar & 

Teriman, 2015). Henceforth, the sustainability of cities is constricted by the 

biophysical limits and finite resources that the surrounding environment, at multiple 

scales, can provide. However, cities today are generally not equipped to cope with the 

present rapid growth (Kammen & Sunter, 2016) and that warrants new ways of living 

towards sustainable cities. The sustainable approach implies that urban planning 

should be profound enough to tackle the multiple problems posed by the complexities 

around the present and future cities. Further, these approaches should be strategic in 

nature so as to contend with the changes, uncertainties, and multi-faceted challenges 

of modern cities (Bibri, 2019; Keivani, 2010; Kuddus et al., 2020). The solutions will 

vary with geography; nonetheless, all will require decision making at unprecedented 

levels. To assist such decision making data at the relevant scales, accuracy and 

temporal update are an absolute necessity.   
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1.2 Geospatial technologies and 3D city models for sustainable city 

planning 

Geospatial data and geographic information systems (GIS) play a key role in urban 

planning, as well as for building cities (Akanbi et al., 2013; Jensen, 2005; Rai & 

Kumra, 2011; Sun & Du, 2017). In the digital city era, digital maps and geospatial 

databases have long been integrated into workflows in land management, urban 

planning and transportation by the governments (Tao, 2013). It can aid in public policy 

decisions for more effective allocation of resources, better managed planning and 

growth, as well as for the efficient delivery and use of public services (Nour, 2011; 

Un-Habitat, 2010). Geospatial technology has largely developed beyond its 

applications in urban land use change analysis, urban sprawl dynamics assessment 

(Ahmad & Goparaju, 2016; Kar et al., 2018), urban facility management (Manonmani 

et al., 2012), and sustainable transport planning (Ogryzek et al., 2020; Ruhé et al., 

2013) to the modelling of urban systems to address the climate change challenges 

(Ahmed, 2018; Darabi et al., 2019; Hawchar et al., 2020), further to estimate the 

energy demand as well as to improve the energy efficiency (Dalla Longa et al., 2018; 

Schneider et al., 2017; Sztubecka et al., 2020).  

 

The potential of geospatial technologies together with improved allied visual and 3D 

modelling technologies holds far greater promise for sustainable urban management 

than earlier waves of geospatial technologies (LeGates et al., 2009; Toschi et al., 2017; 

Yao et al., 2018). A 3D city model is a digital model that represents the urban 

environment with a three dimensional geometry of common urban objects and 

structures, with buildings as the most prominent feature (Biljecki et al., 2015; Zhu et 

al., 2009). The importance of 3D city models is significantly growing as a resource for 
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planning, development and policy making in urban areas. Some of the present 

applications of 3D city models include environmental, training simulations, energy 

models, transport planning, navigation, and disaster management. All these 

applications have a common key goal to ensure sustainable cities in the context of the 

proportion of global residents present in cities.  

 

1.3 Underpinning research 

If poorly managed, urbanization itself can be detrimental to urban sustainability and 

many literatures already point out that urbanisation and cities will be either critical 

components or major threats in the transition to sustainability (Seto et al., 2017). Cities 

around the world are characterised by uneven urbanization. On one hand, cities are 

sites of economic growth, innovation and knowledge hubs with facilitation of access 

to employment, education and sanitation, as well as providing opportunities for higher 

resource efficiency in buildings, green urban planning, and low carbon urban mobility. 

However, on the other hand, cities can host high levels of pollution, environmental 

degradation as well as could be the key vulnerability hotspots of climatic change and 

natural hazards (Baker, 2013; Carter et al., 2015; Creutzig et al., 2015; Kharrazi et al., 

2016). Sustainable urbanisation coupled with efficient management and planning will 

undoubtedly be the viable solution considering the milieu of growing global 

sustainability issues.  

 

As mentioned in section 1.2, the wide range of applications makes it imperative that 

3D city models can aid in sustainable urban management (for example, sustainable 

energy modelling, climate risk reduction etc). However globally, a huge gap exists 

among cities in the availability of 3D city models, especially between developing and 

developed countries which makes it vital to develop a globally replicable method for 
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the generation of 3D city models, since unsustainable cities in one region have impacts 

elsewhere in the World.  

 

This PhD research forms part of the wider project, 'Sustaining Urban Habitats: An 

interdisciplinary approach’. The overall aim of the project was to transform our 

understanding of how sustainable cities can be. The project intended to explore ways 

of combining environmental and economic modelling with social and cultural 

ethnographic work considering, one growing city in China (Shanghai) and one 

transition city in Europe (Nottingham, UK) as the empirical focus. Transition Cities 

aims cities to be more sustainable, self-sufficient, decarbonise and reduce the potential 

effects of pea oil and climate destruction (Alexander, 2012; https://www.climate-

kic.org/projects/transition-cities/).  During the project implementation, the 

unavailability of 3D city models as well as lack of open source high resolution 2D 

footprints became an issue for Shanghai, which in turn encouraged the search for 

solutions to develop a low cost, globally replicable method for 3D city model 

generation from open data and formed the underpinning research question for this 

research. 

 

1.3.1 Measurement and data 

Appropriate data is very important to gain insight on urban sustainability, as well as to 

transform our understanding on how sustainable cities can be. Within just the last few 

decades, the breadth and variety of datasets available for urban studies have expanded 

significantly. However, much of the research that involves new datasets and methods 

have focused on activity in Western and East Asian countries resulting in a growing 

inequality between our understanding of urban contexts in the developed and 

developing worlds (Manley & Dennett, 2019).  The gap exists especially in the 
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availability of different datasets between developed and developing/underdeveloped 

countries with the cost of data as a large reason. One approach to overcome is to use 

open data sources that include data from volunteered geographic information (VGI) or 

crowdsourced geographic information.  However, there is a wide global disparity in 

the incompleteness of these datasets among and even within different countries 

(Barrington-Leigh & Millard-Ball, 2017). This is even more acute in the 3rd dimension 

of the data often required; the height of the buildings making up the urban area of 

focus. The question at this juncture is whether it is possible to generate a 3D city model 

from open source data, and if so, at what level of accuracy, temporal update, 

completeness and so on? Thus the major research questions this thesis aim to answer 

are: 

1. Is there open data available to generate a 3D city model? 

2. If so, what techniques are needed to generate the 3D city model from these 

open data? 

3. What is the level of accuracy of the generated 3D city models and where these 

models can be applied in the real world? 

The thesis uses the focal cities of Nottingham and Shanghai to explore these questions, 

with the following aim and objectives:   

 

1.4 Thesis Aim 

The principal aim of the study is to generate a 3D city model exclusively using open 

data with an intent to produce globally transferable methodologies and to discuss the 

applicability of these 3D city models in the real world. 
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1.5 Thesis Objectives 

The objectives of this PhD are to: 

1. Explore the availability of open data that can be used to generate 3D city 

models 

2. Develop applicable workflows that affords the global generation of 3D city 

data models from these open data 

3. Discuss the accuracy, execution and suitability of the different city data 

models (i.e., levels of detail) produced from open data for use in urban studies. 

 

1.6 Overall methodology 

In line with the already stated overarching aim of the research to generate 3D city 

models from open source data irrespective of the availability of 2D building footprints, 

the core chapters illustrate the methods to generate 3D city models regardless of the 

(un)availability of 2D buildings footprints. Figure 1.1 shows an overview of the core 

chapters.  

 

The thesis is structured as Introduction (Chapter 1), followed by the presentation of 

literature (Chapter 2) and subsequent three research chapters prior to the final summary 

and conclusion chapter.  The first research chapter (Chapter 3) deals with how to 

generate a 3D city model in the most ideal conditions where reliable 2D building 

footprints are available from open source. However, in many cases, reliable 2D 

building footprints may not be available or may not be complete. In such cases, the 

user has to depend on other sources including open source low resolution satellite 

datasets. Low resolution satellite datasets may hamper the proper interpretation of the 

open source satellite images.  
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The second core chapter (Chapter 4) demonstrates how to enhance low spatial 

resolution satellite images through sparse representation techniques. However, 

difficulties can arise even after the spatial resolution enhancement due to the 

misclassification of urban features.  The third core chapter (Chapter 5) illustrates an 

innovative approach of combining digital surface models with spatially enhanced 

satellite images and classification of urban features from the imagery, so as to avoid 

misrepresentation or misclassification of urban features. The chapter demonstrates the 

generation of 3D city models through urban classification from spatially enhanced and 

elevation induced satellite images. 

The methods adopted in each chapter are elaborated in detail in relevant chapters.  

 
Figure 1.1 Overview of research chapters 
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1.7 Thesis structure 

The thesis is organised into seven chapters as depicted below.  

 

Chapter I covers the introduction, aims, objectives, research questions and overall 

methodology. The overall methodology provides an overview and rationale for 

adopting three different methods for the three analytical chapters. 

 

Chapter II presents the literature review and includes information on urban 

sustainability, the role of geospatial technologies, urban management, the relevance of 

generating 3D city models from open data, open data sources, and existing challenges 

with using open data broadly. The chapter also presents a review of spatial 

enhancement techniques and different urban classification techniques.  

 

Chapter III illustrates the generation of 3D city models from open data with two case 

study examples of Nottingham, U.K and Shanghai, China. The chapter presents a 

method to generate 3D city models for the areas that already possess valid open 2D 

building footprints (for example, OpenStreetMap), digital surface models (for 

example, AW3D DSM) and digital elevation models (for example, GMTED2010). 

Further, this chapter also illustrates accuracy enhancement techniques for the 

generated 3D city model using high resolution satellite data. 

 

Chapter IV presents a spatial enhancement of open data based on sparse 

representation techniques in order to extract 3D buildings in areas where 2D footprints 

are not available. The chapter attempts the enhancement of Sentinel-2 satellite image 

with 10m spatial resolution with a high resolution WorldView III (1m spatial 

resolution) image for a sample area of Shanghai, China. 
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Chapter V demonstrates the extraction of 3D city models from enhanced Sentinel-2 

image of 1m spatial resolution through the DSM fusion and unsupervised 

classification. It has three major sections. The first section presents the classification 

of fused ALOS-30m-DSM with enhanced Sentinel-2 (1m) images to eliminate non-

building features based on elevation. Results provide the accuracy difference between 

3D city models before and after combining DSM. The second section of the chapter 

provides a comparison between the accuracy differences of LOD1 3D city model 

generated using already existing 2D building footprints (mentioned in chapter III) and 

LOD0 3D city models generated from the satellite data i.e. without 2D building 

footprints (mentioned in chapter IV and the first section of chapter V). The third 

section of the chapter presents the LOD1 3D city model generated from fused 

enhanced satellite data with ALOS DSM and the associated challenges of this method. 

 

Chapter VI provides a comprehensive discussion in relation to the major findings as 

well as potential areas of application for the present work. The chapter also discusses 

the potential to improve the research with new datasets.  

 

Chapter VII concludes the thesis. This chapter delivers salient findings and scope of 

future research. 
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CHAPTER II 

3D CITY MODELS FROM OPEN DATA: STATE OF THE 

ART AND NEED FOR NEWER APPROACHES 

 

2.1 Introduction 

Globally, urbanisation plays a key role in the transition towards sustainability, as 

urbanisation is also perceived as among the major threats to sustainability 

(Fuenfschilling et al., 2019; Seto et al., 2017; Soma et al., 2018). The phrase ‘urban 

sustainability’ fundamentally refers to the sustainability of the urban landscape as a 

whole (Huang et al., 2015; Wu, 2010). The 2030 Agenda for Sustainable Development, 

adopted by all United Nations Member States in 2015, recognise 17 Sustainable 

Development Goals (SDGs) also known as global goals that need urgent actions by all 

countries to end poverty, protect the planet and ensure that all people enjoy peace and 

prosperity by 2030 (UN Department of Economic and Social Affairs, n.d.). The SDG-

11 particularly addresses sustainable cities and communities, i.e. to "make cities 

inclusive, safe, resilient and sustainable" and to address many challenges that exist to 

maintain cities in a way that continues to create jobs and prosperity without straining 

land and resources. Current urban development trails are often unsustainable and 

contrary to the UN SDGs as cities are perceived as hotspots for environmental change 

drivers at multiple scales (Valencia et al., 2019). 

 

The question ‘How to achieve urban sustainability?’ is increasingly gaining attention 

and has been at the forefront of urban research for at least the last decade. Effective 

urban planning (Ahmadi & Toghyani, 2011; Diamantini & Zanon, 2000; 
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Rasoolimanesh et al., 2016), the inclusion of strategic actions in urban development 

(Rahman, 2016; Roy, 2009), urban facilities management through sustainable 

community assessment (Boyle & Michell, 2017), urban sustainability assessments 

(Cohen, 2017), consideration of sustainable transport in strategic planning (Pojani & 

Stead, 2015) and so on, are among the few of the proposed approaches to achieve urban 

sustainability. There are arguments that, in order to achieve urban sustainability, it is 

important to combine the quality of life, resilience and resource efficiency (Koch et al., 

2017). 

 

However, managing cities is often difficult as urban systems are highly complex, 

rapidly changing entities, shaped by a range of regional and global forces often beyond 

the control of local plans and planners. Many cities in developing countries display the 

relics of planned modernist urban cores, surrounded by vast areas of informal and 

‘slum’ settlement together with elite, developer driven, commercial and residential 

enclaves (UN-HABITAT, 2009). Hence, in order to make cities sustainable, need exists 

for radical, large-scale and integrated changes, which go well beyond traditional policy 

approaches (Koch et al., 2017; Vanden Bergh et al., 2011). Developing methods and 

tools that, while sensitive to context, can address the social, ecological, and technical 

infrastructure complexity of cities are key to advance the goals of urban sustainability 

improvement, at the global scale (McPhearson et al., 2016). 

 

There are also several misconceptions that city planning is a very costly and time 

consuming task. Even though many examples from developed country models may 

require advanced technology, high capacity analysis, wide-ranging modelling, and an 

extensive amount of resources, that is not the only form of planning. Instead, city plans 
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should go beyond conventional forms of planning and should be able to make use of 

available resources in cost effective and optimal ways. Modern technologies including 

information and communication technologies (ICTs) can bring numerous benefits to 

the cities at a local level, and can support the goal of achieving sustainable cities (Chang 

et al., 2018).  However, the implementation of ICTs as an end in itself is not enough to 

make a sustainable city (Ahvenniemi et al., 2017). In this context, geospatial data (data 

about objects, events, or phenomena that have a location on the surface of the Earth 

(Stock & Guesgen, 2016)) and geographic information systems (GIS) can play a key 

role in building sustainable cities (Jensen, 2005; LeGates et al., 2009; Rai & Kumra, 

2011). 

 

2.2 3D Geospatial data for city planning 

As discussed in Chapter I, geospatial technologies together with 3D modelling hold 

great potential for sustainable city planning. Due to the unprecedented growth of cities, 

the rapid increase in the need for 3D geospatial information in 3D city planning and 

development is indisputable (Jones et al., 2009). A three-dimensional GIS simulation 

can more effectively communicate than two-dimensional forms (Rajpriya et al., 2014). 

A 3D city model is a digital model that represents the urban environment with a three-

dimensional geometry of common urban objects and structures, with buildings as the 

most prominent feature (Zhu et al., 2009). According to Döllner et al., (2006), 3D city 

models usually consist of digital terrain models (DTMs), building models, street-space 

models, and green space models. 

 

A 3D city model can be derived from different data resources, such as LiDAR point 

clouds (Kada & Mckinley, 2009),  airborne captured images (Haala et al., 2015), 
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satellite captured images (Krauß et al., 2009), UAS-captured (unoccupied aerial 

system) images or a combination of DSM (digital surface model) data with cadastral 

maps (Buyukdemircioglu et al., 2018). Acquisition techniques used to derive a 3D city 

model can also be different such as photogrammetry and laser scanning (Rajpriya et al., 

2014; Tomljenovic et al., 2016), and volunteered geoinformation (Goetz & Zipf, 2012; 

Over et al., 2010). While there is no widely accepted taxonomy of (3D) urban models, 

there are a number of helpful classifications. For example, Meilland et al., (2015) 

distinguish between 3D parametric models and image based key frame models while 

Nebiker et al., (2010) distinguish between geometric 3D models, image based models, 

and a rich point cloud model. Nebiker et al., (2015) introduce the concept and 

implementation of geospatial 3D image spaces as new types of native urban models.  

Beyond the difference in data sources and techniques used for 3D model generation, 

the importance of 3D city models is growing significantly as a resource for planning, 

development and policy making in urban areas. 

 

2.2.1 3D modelling applications 

Several studies focus on the application of 3D modelling in urban studies (Chen, 2011; 

Czyńska & Rubinowicz, 2014; Rautenbach et al., 2015). Potential applications for 3D 

city models have moved from electromagnetic propagation for telecommunication to 

more demanding simulations for acoustic, urban planning, virtual or augmented reality 

applications (Flamanc et al., 2003; Mao et al., 2009). A conceptual study provided by 

Batty et al., (2012) segmented the use of 3D city models into 12 categories of 

endeavour: emergency services, urban planning, telecommunications, architecture, 

facilities and utility management, marketing and economic development, property 
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analysis, tourism and entertainment, e-commerce, environment, education and learning, 

and city portals. Some of the significant areas of applications of 3D city models include: 

 

a) Estimation of building geometry and shadow cast: Estimation of shadows cast by 

buildings is an important utility of 3D modelling as it can be used for assessment of the 

effectiveness of a planned building onto its neighbourhoods or to estimate the solar 

potential of buildings (Alam et al., 2012). Further, it can also be used to estimate how 

much a building is exposed to the Sun which can help to assess the suitability of solar 

panel installations on roofs (Wiginton et al., 2010).  

 

Geometric information about buildings such as the tilt, orientation and area of the roof 

etc. can be acquired from 3D models which also enhance its utility for the solar 

empirical models (Biljecki et al., 2015). Further, 3D city models have a potential 

application to estimate the internal size of a building including net area, floor space and 

so on, which is important for energy usage estimation of buildings (Boeters et al., 2015). 

 

b) Energy Demand Estimation: Energy Demand Estimation demonstrates the 

importance of semantic 3D city models in the estimation of the energy demand of 

individual level households (Biljecki et al., 2015). In recent years, studies explore the 

potential of 3D city models to combine the building information like volume and type 

of buildings, number of floors etc. to predict the energy demand for heating and cooling 

(Kaden & Kolbe, 2014; Robinson, 2006). Further, 3D city models in combination with 

other data can be used to determine thermal bridges and heat losses from the building 

envelope (Biljecki et al., 2015). 
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c) Climate Change Studies: The application of 3D modelling in climate change studies 

gains significant attention in recent years. Danahy et al., (2016) investigated the use of 

3D city models as a visualization reference against which analytical models were 

visualized to identify micro scale mitigation scenarios of urban heat island effects in 

the Toronto region. Masson et al., (2014) noted the usage of the 3D city model in 

systemic modelling approaches to explore climate change adaptation. 

 

2.2.2 Classification of buildings within models according to level of details (LOD)  

CityGML is a common information model and XML based encoding for the 

representation, storage, and exchange of digital 3D city and landscape models. The 

CityGML standard defines five Levels of Details (LOD) varying from LOD0 to LOD4 

to describe 3D building objects with respect to their geometry, topology, semantics and 

appearance (Groeger et al., 2008). It also considers generalization hierarchies between 

thematic classes, aggregations, relations between objects, and spatial properties 

(Groeger et al., 2008, 2012; Wate & Saran, 2015). As the LOD level of the model 

increases, it will have more detailed architectural information of the structures. 

Accordingly, different LODs can be used for different purposes (Buyukdemircioglu et 

al., 2018). 

 

The coarsest level LOD0 represents the lowest level of geometry as a 2.5D DTM with 

building footprints or roof edge polygons. LOD0 is mainly used for regional and 

landscape applications, while LOD1 is well known as the blocks model. In LOD1 the 

building height would be extruded with flat roofs and is widely used for city and region 

coverage. Compared to LOD1 models, LOD2 buildings differentiate roof structures as 

well as boundary surfaces. LOD2 is mainly applicable to city districts. LOD3 has more 
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architectural details including specific roof structures and wall structure details such as 

doors and windows. LOD3 models are widely used for landmarks. LoD4 has the highest 

level of detail and all interior details are represented with textures including rooms and 

furniture (Buyukdemircioglu et al., 2018; Groeger et al., 2012). Figure 2.1 shows LOD1 

to LOD4. The data demand increases for each LOD class, and this demand needs 

consideration with the intended application for the models to be generated. 

 

Figure 2.1 LOD Classification (Source: KIT) 

 

2.3 Open data for 3D city model data generation 

2.3.1 Need for the 3D city model generation from open data 

As previously mentioned (section 2.2), standard techniques for the creation of city 

models at large scale automatically or semi-automatically  commonly includes the use 

of stereo vision on aerial or satellite remote sensing imagery (Garouani et al., 2014). 

This can be an expensive and time/labour consuming process, particularly if high levels 

of accuracy in model outputs are required (Ohori et al., 2015). As a result, large scale 



Chapter II 
 

18 
 

3D city models are mostly available in countries with developed economies and/or 

those with national mapping agencies. However countries, including many that are 

transitioning their economies (and where this information is perhaps of most value), do 

not have the resources available to produce high accuracy 3D city models. In such 

situations, use of low cost or open source online free satellite datasets as a source of 

input data for 3D city model generation can be a solution. Especially given that in 

developing countries, low cost/open source GIS software and free satellite images, 

which tend to be of lower resolutions than those acquired by commercial companies, 

are already being used to solve day to day urban planning management and 

development problems. Hence, open data can be used for possible spatial applications 

where higher LODs are not required. However, while using the open data, it is 

important to have an understanding of the types and availability of these datasets.  

 

2.3.2 Existing scenario in open data 3D city model generation and GAP analysis 

Digital Surface Models (DSM) and Digital Terrain Models (DTM) can provide 

elevation data to develop 3D city models. Shuttle Radar Topography Mission (SRTM), 

Advanced Spaceborne Thermal Emission and Reflection Radiometer Digital Elevation 

Model (ASTER DEM,) Advanced Land Observing Satellite DSM (ALOS DSM), 

Global Multi-resolution Terrain Elevation Data (GMTED 2010) are the prominent open 

source elevation datasets with global coverage and all these are generated from remote 

sensing as the means of data capture (Table 2.1). Studies show that these open elevation 

datasets are largely utilised in geomorphological studies, or hazard mapping, or 

inundation modelling etc. to cite a few (Misra et al., 2018; Yamazaki et al., 2017). 

However, so far it is apparent that developing 3D city models from open source data 

have not yet been explored sufficiently, particularly with respect to producing models 
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of appropriate quality for use in aforementioned applications. There are only a few 

studies that have attempted to extract building heights from open DSMs.  For example, 

Wang et al., (2018) derived 3D building structures by fusing Landsat and global 

elevation data, while Misra et al., (2018a) attempted a comparison of building heights 

extracted from open DSMs including ALOS World 3D (AW3D), TerraSAR-X add-on 

for digital elevation measurements  (TanDEM-X), ASTER, and SRTM over Yangon 

City.  

 

However, usage of open DSMs alone cannot provide exact building heights or shapes. 

Rather it can result in more generalized individual building heights and distorted shapes 

due to issues of mixed pixels and low spatial resolution (Misra et al., 2018). Usage of 

2D data on building footprints along with high resolution DSMs can be a possible 

solution to the extraction of individual building heights without distorting building 

shapes. The recently available open source elevation datasets provide an excellent 

opportunity for data fusion by incorporating the elevation data with open licensed 2D 

building data for generating 3D city models. Conversely, so far, no studies have 

focussed on 3D city model generation using open licenced 2D building footprint data 

together with open source elevation datasets. 

 

Table 2.1 Properties of open source terrain models 

Terrain 
models 

Spatial resolution Ownership 

SRTM 30m and 90m NASA and NGA 

ASTER 30m METI and NASA 

ALOS DSM 30m JAXA 

GMTED 2010 7.5 arc-second (250 m), 15 arc-second 

(500 m) and 30 arc-second (1 km) 

USGS and NGA 
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2.3.3 Available open elevation data (ALOS DSM, GMTED 2010, ASTER, SRTM) 

ALOS DSM: ALOS World 3D - 30m (AW3D-30), the global digital surface model 

(DSM) with a horizontal resolution of approximately 30-meter mesh (1 arcsec) is 

released free of charge by the Japan Aerospace Exploration Agency (JAXA). This 

dataset was generated from the DSM dataset (5-meter mesh version) of the precise 

global digital 3D map ALOS World 3D" (AW3D), which is the world’s first and the 

most precise 3D map covering all global land scales with a 5-meter mesh (Santillan et 

al., 2016; Tadono et al., 2014, 2016). In March 2017, AW3D version 1.1 was released 

filling the void height values with existing DEMs and in April 2018 it has again been 

upgraded to version 2 (Takaku & Tadono, 2009). Continuous enhancements of AW3D-

30 DSM are expected, which can improve its future utility. AW3D-30 DSM also has 

considerable future potential in sustainable urban development due to its global 

coverage and open licence.  

 

GMTED2010: GMTED2010 is the digital elevation model produced by The United 

States Geological Survey (USGS) and The National Geospatial-Intelligence Agency 

(NGA). It has been available to the public since 2010 and replaces the existing model, 

Global 30 ArcSecond Elevation (GTOPO30) (Athmania & Achour, 2014; Grohmann, 

2016). GMTED2010 is mainly available in three resolutions i.e. with a horizontal 

spacing of 7.5 arc-second (about 250 meters), 15 arc-second (about 500 meters) and 30 

arc-second (about 1 kilometre). The main data source of GMTED2010 is SRTM version 

with a 01” resolution that is restricted to the NGA and not available to the general public 

(Khalid et al., 2016).  
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Other common data sources include the SPOT 5 Reference 3D, Canadian Digital 

Elevation Data (CDED), NED for the continental USA and Alaska, GEODATA 9 

Second Digital Elevation Model for Australia, DEMs for Antarctica and Greenland 

from laser altimetry (ICESat and GLAS data) and satellite radar (ERS-1 data) 

(Grohmann, 2016; Khalid et al., 2016). 

 

ASTER DEM: The first version of the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) was 

introduced to the global user community in July 2009. The DEM was later improved 

by compilation of over 1.5 million scenes acquired between 2000 and 2009 and was 

released in 2011 by NASA and Japan’s Ministry of Economy, Trade and Industry 

(METI) as an enhanced version (GDEM V2) (Tachikawa et al., 2011). GDEM V2 

contained additional data with improved spatial resolution and coverage, water body 

mask as well as improved horizontal and vertical accuracy (Alganci et al., 2018). This 

data is freely available at a 1-arcsecond posting from NASA’s Earth Explorer. 

However, studies also report that the advanced version also contains disturbances in the 

values due to an increased frequency of noise on account of usage of a smaller 

correlation kernel to enhance the horizontal resolution (Misra et al., 2018). Further, the 

RMSE accuracy of the ASTER GDEM varies with the location as well as with land 

cover type (Santillan et al., 2016). For example, the RMSE value for forested 

mountainous areas is 15.1 while in the case of urban areas it is 23.3 (Jing et al., 2014; 

Tachikawa et al., 2011).   

 

SRTM: The Shuttle Radar Topography Mission (SRTM) by NASA and NGA (US 

National Geospatial Agency) acquired a DEM of the Earth at a near global scale, 



Chapter II 
 

22 
 

covering about 80% of the Earth’s total landmass. According to Rumpler et al., (2012) 

SRTM produced the most complete digital topographic database of the Earth. Until 

2014, the global dataset was available at 1 arc-second resolution (SRTM-1, 

approximately 30 meters) for the United States and its territories and for the rest of the 

world at  3 arc-second resolution (SRTM-3, approximately 90 meters). In 2015, Land 

Processes Distributed Active Archive Center released the SRTM Version 3.0 Global 1-

arcsecond dataset (SRTMGL1) (USGS 2015). The RMSE of SRTMGL1 varies from 

5.9 m in urban areas to 10.4 m in bushland (Santillan et al., 2016).  

 

2.3.4 Volunteered geographic information (VGI) and OpenStreetMap (OSM data) 

The previous section provided an overview of existing open satellite datasets that could 

be used for the generation of 3D city models. However, apart from satellite data, there 

are several other sources of data, like governmental agencies or space and remote 

sensing centres data with varying degrees of availability for different scales and 

different administrative bodies. For example, most of the town planning offices possess 

cadastral level building information for their use which is however restricted for public 

use. Further, the conventional ways of mapping or collection, process and distribution 

of geographic information are being changed in recent years (Rumpler et al., 2012). In 

parallel with centralised managed and maintained geographic information there has 

been a growth in freely available, publicly maintained and voluntarily contributed 

geographic information (See et al., 2013; Senaratne et al., 2016). According to Elwood 

et al., (2012), when citizens collect geographic information and contribute it to crowd 

sourced data sets, to mark geographic locations, to annotate geographic features, or to 

add a geographic location to photographs by web based mapping interfaces, then these 

data are generally called volunteered geographic information. The power of the crowd 
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can sometimes be used to derive information that was impossible or at least impractical 

to obtain by other means (Foody et al., 2013). 

 

OpenStreetMap (OSM) is a prominent example of volunteered geographic information 

which is a collaborative project to create free editable geographic data (Knerr, 2013). 

The sites like OpenStreetMap and Wikimapia are empowering people to create a global 

patchwork of open source geographical information (Goodchild, 2007). OSM creates a 

set of free to use and editable maps which are licensed under new copyright schemes 

(Haklay, 2008). The OSM project has attracted more people from the developed world 

and acquired strikingly comprehensive data on large parts of the developed world. 

However, earlier studies have shown that other parts of the world are slightly under-

represented (Elwood et al., 2012). 

 

Studies report that there is a considerable increase in OSM building data in recent years. 

For example, there has been a 20 times increase in OSM building data in China from 

2012 to 2017 alone (Tian et al., 2019). One of the major concerns in OSM data usage 

is its quality. Most of the OSM data are provided by non-professionals and hence not 

just the coverage, but the quality of the data is also questionable  (Haklay, 2008; Nasiri 

et al., 2018; Senaratne et al., 2017). Despite this disadvantage, OSM is a good source 

of 2D building data, especially where free 2D building data are unavailable, as in China, 

where authorized building data are not freely available (Tian et al., 2019). Studies also 

reveal that the rate at which OSM receives contributions from users has been 

persistently increasing; complemented by OSM community’s efforts of collaborative 

mapping to quality check and quality improvements of the contributions (Arsanjani et 

al., 2015). 
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2.4 2D to 3D city model data integration  

Having secured open 2D building footprints and open elevation datasets, data 

integration is further required to generate 3D city models. It is recognized that acquiring 

data to represent a city area with a high LOD is expensive, complex and time 

consuming. At present, open data allows for the generation of low LOD city models 

(i.e. LOD0 or LOD1). In doing so, several queries are raised while generating 3D city 

models from open data: i) how the 2D data collected from many sources may be 

matched to generate 3D city models? And ii) how to integrate elevation attributes to 2D 

building footprints.  There are also methods where buildings are directly extracted from 

DSMs and thereby evading the integration of elevation data with 2D building footprints. 

The following sections discuss this further.  

 

2.4.1 Normalized digital surface model generation techniques (DSM – DTM)   

A common approach for building detection exploits the difference between a digital 

surface model (DSM) and a digital terrain model (DTM). A DSM represents the three 

dimensional Earth surfaces that includes all of the terrain and non-terrain objects while 

a DTM characterizes only the 3D bare Earth topography (Sefercik et al., 2014). The 

difference between DSM and DTM, called normalized DSM (nDSM = DSM-DTM), is 

the local elevation which can be used as a threshold to detect building heights (Beumier 

& Idrissa, 2016). An nDSM contains all objects above the terrain (Geiß et al., 2015). 

The potential of nDSM with respect to building extraction was explored by few authors 

using airborne laser scanning data (Yu et al., 2010).  
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Brédif et al., (2013) proposed techniques to extract polygonal building outlines from 

raw DSMs as well as demonstrate a scalable and fully automatic process that converts 

robustly raw DSMs into 3D city models. In the study, they employed nDSM as a 

method to derive polygonal rectangular building footprints. Sefercik et al., (2014) 

explored the contribution of nDSM to the automatic building extraction from mono 

high resolution satellite imagery based on ortho rectified pan sharpened IKONOS and 

Quickbird high resolution imagery. Further the study revealed that with nDSM, the 

number of extracted buildings was increased while, the number of falsely extracted 

buildings that occurred by automatic extraction errors was sharply decreased. In another 

study, Zheng et al., (2017) use Light Detection and Ranging (LiDAR) nDSM, the 2D 

building footprint and the high resolution orthophoto to build a 3D city model for the 

City of Indianapolis, USA. By adopting a novel ridge detection method the study also 

overcomes the limitation that building reconstruction with coarse resolution LiDAR 

nDSM cannot be based on precise horizontal ridge locations. 

 

2.4.2 Integration methods of 2D polygons with elevation information  

As mentioned in section 2.2.1, 3D city models can be derived from different data 

sources, such as LiDAR point clouds, satellite images, UAV images or a combination 

of DSM data with cadastral maps and by different techniques such as photogrammetry 

and laser scanning. For example initially Haala & Anders (1996) discussed a method 

to reconstruct 3D city models by combining 2D outlines and aerial images. In the study, 

to develop the 3D city model, initially, the building ground plans were extracted from 

digital cadastral maps and subsequently heights of buildings based on their type and 

location. The following assumptions were included: Garage – 3m, residential buildings 

and office blocks 9m for the ridge, industrial buildings -15m, church – 12m, tower – 
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25m, kindergarten – 5m, and others – 7.5m. As the studies were mainly based on 

assumptions of building heights, the results were further verified with aerial images and 

matched against the lines of the object model for missing information. They concluded 

that image interpretation is far from being solved in complex areas like built-up regions. 

However, they also stated that due to increase in digital data availability 3d building 

reconstruction will gain more importance in future applications which proved to be true 

in later years. 

 

In 1999, Stilla & Jurkiewicz  demonstrated a different method for generating building 

models from large scale vector maps and laser altimeter data. They analysed the vector 

map to group the outlines of buildings and to obtain a hierarchical description of 

buildings or building complexes. Further, the base area has been used to mask the 

elevation data of single buildings and to derive a coarse 3D description by prismatic 

models. Later in 2009, Alexander et al., combined building footprints and LIDAR 

elevation data to visualise buildings and to classify roof structures. According to their 

results, high density LiDAR yielded the highest overall accuracy of building type 

detection and proved useful in identification of roof features; yet lower densities proved 

more useful to reveal the overall roof morphology. 

 

Subsequently, Ledoux & Meijers, (2011) identified the extrusion of building footprints 

as one of the simplest methods to construct a 3D city model. Constrained triangulation 

was used, which is conceptually simple as well as offers great flexibility to create city 

models in different formats so as to develop a new extrusion procedure to construct 

topologically consistent 3D city models. Usage of existing 2D footprints and to extrude 

the footprints with a given height is a general procedure for 3D building construction. 
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The problem with this approach is that the detail of roofs cannot be modelled. However, 

this approach is very fast and sufficient for applications that do not need high LODs or 

many details (Stoter & Zlatanova, 2009).  

 

Recently, a study from Bagheri et al., (2019) exploited the possibilities of fusing OSM 

data with DEMs. They derived the heights of building outlines from fused DEMs. Steps 

taken to derive building heights included classification of points’ heights that are 

located inside and outside building outlines and exclusion of points located outside 

building outlines. For this purpose, they used heights derived from the TanDEM-X 

mission. Further they also implemented two DEM fusion experiments to improve the 

quality of TanDEM-X in urban areas. First is to fuse the TanDEM-X and Cartosat-1 

DEMs and the second experiment was to fuse multiple TanDEM-X raw DEMs. Their 

results confirmed the quality improvement of TanDEM-X after DEM fusion. 

 

2.4.3 Validation techniques for 3D city model data 

The applications of 3D city models is growing rapidly and reliable data is crucial for 

the successful performance of modern applications. Hence, quality assessment of 

generated models becomes obligatory for the effective utilisation of these new models. 

According to Wagner et al., (2013), although quality standards for geospatial data have 

been published in the ISO 19100 series, there is no common understanding of quality 

for 3D city models.  

 

Wagner et al., (2013) provide a validation process for the geometry of 3D city models. 

The modelling guidelines and recommendations based on the modelling handbook of 

SIG-3D Quality Working Group 2012 for the features in CityGML to define exact 
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specifications for a new city model were followed. Subsequent to the creation of the 

model, validation of the model was undertaken with specifications defined in the 

handbook. Wagner et al., (2015) presented methods to validate common geometric 

requirements for building geometry. The different checks were developed based on 

several algorithms for the software tool CityDoctor. The checks mainly included 

polygon level checks to validate the correctness of each polygon in 3D city models. 

Ledoux, (2018) presented an open source software ‘val3dity’ to validate 3D primitives 

according to the international definitions of ISO19107. Val3dity also supports a few 

GIS input formats and the validation reports have been designed to help users easily 

identify errors (Ledoux, 2018). 

 

However, different approaches and tools are in place for validating 3D city models. For 

example, in a study by Michelin et al., (2013) on quality evaluation of 3D city building 

models, with automatic error diagnosis validation of 3D features was done by using 

corresponding images. High radiometric discontinuities in images such as building 

edges, road marks, zinc roof battens etc. were considered. In another study, 

Buyukdemircioglu et al., (2018) did the validation of 3D city models based on reference 

data. Usage of software tools to validate 3D city models is also common. For example, 

Murshed et al., (2018), in a study on modelling, validation and quantification of climate 

and other sensitivities of building energy models on 3D city models, validated the 

model by simulation software TRNSYS. Janečka, (2019) used an open source 

geometric validation software val3dity for 3D model validation. Val3dity software is 

in accord with the international definitions of ISO 19107 (Ledoux, 2018).  
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2.5 VGI scenarios and possibilities for open data generation in VGI lacking 

areas 

2.5.1 Accuracy of volunteered geographic information (VGI) 

The main concern with VGI data used to be that it allows people with little knowledge 

in geographic information to contribute to the creation of maps that are made publicly 

available (Foody et al., 2013; Vandecasteele & Devillers, 2013). Hence as VGI was 

unlike in the past, where mapping was done by professional cartographers, it brought 

significant initial skepticism on the data quality.   

 

Hence, despite the great potential of VGI, it has not been widely used due to the 

uncertainty over its data quality (Fonte et al., 2017; Haklay, 2008; Vandecasteele & 

Devillers, 2013). The highly variable quality of VGI data can create several challenges 

to potential end users who are particularly concerned about the validation and the 

quality assurance of the data which are collected (Eshghi & Alesheikh, 2015).  

 

Furthermore, since the beginning VGI was perceived as datasets characterized by 

several lacking compared to earlier versions of professional maps. For example earlier 

studies showed that in VGI data some areas can be well mapped while others not 

(Goodchild, 2007), which is often the case with more data collection in urban areas than 

in rural areas (Neis & Zielstra, 2014). It can also be seen that popular and tourist areas 

get more attention. Studies on OSM from Europe have noted that dense areas appear to 

be better mapped (Neis et al., 2012). Studies also highlighted that VGI is characterized 

by  lack of uniformity and included heterogeneous data  (Fonte et al., 2017). 
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Further other issues pointed out included biases of contributors are influenced by 

several factors including access to, and knowledge of, digital resources, the language 

of the VGI application, cultural differences and how much time users have to participate 

(Zook & Graham, 2007; Zook & Breen, 2017).  All these factors may ultimately feed 

to spatial biases and influence the data quality and accuracy of VGI. Further, there are 

no data specifications or standard way in which the data are collected, which vary 

between the places and contributors as well as also within initiatives (Fonte et al., 2017). 

For example Ballatore et al., (2013) and Mooney & Corcoran, (2013) also state how 

different names sometimes represent similar geographical categories (for example 

forest and wood) whilst sometimes the same names may represent different attributes. 

Therefore, the quality as well as attributes of VGI data can be unclear and can vary over 

space and time (Ballatore et al., 2013).  

  

While the accuracy of VGI data remains something of consideration, the growing 

popularity of VGI projects such as OSM changes traditional geographic information 

(Vandecasteele & Devillers, 2013) and it can also be a valuable source of open data for 

3D city model construction, provided the quality of the data can be assessed and 

enhanced. A study by Fan et al., (2016) demonstrated that the building footprints data 

on OSM has a high degree of completeness and semantic accuracy. Further it was stated 

that, with respect to shape, OSM building footprints have high similarity to those in 

authoritative data. Moreover, OSM also has information about building height and roof 

structures, which is required for the 3D city model reconstruction. This information 

could be further enriched and used for 3D city models while introducing related 

information from other VGI projects, such as Flickr, WikiMapia, Panoramio etc (Fan 

et al., 2016). 
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2.5.2 Existing coverage of VGI in developing and developed world 

The sharp increases in VGI contributions have led to a number of diverse platforms that 

utilises the data in spatial decision making, participatory planning and citizen science 

(Neis & Zielstra, 2014). Among many VGI projects, OSM has grown into one of the 

most well-known, popular and largest VGI projects. OSM, provides good coverage in 

urban areas while considering particular completeness factors (Barron et al., 2014; 

Zielstra et al., 2013). However, when it comes to different regions of the world, results 

can potentially vary significantly. Studies point out that European cities provide 

quantitatively larger amounts of geodata and number of contributors in OSM, resulting 

in a better representation of the real world in the dataset (Barrington Leigh & Millard 

Ball, 2017; Zhuo et al., 2018, 2018). Reports of European countries have found that the 

network is virtually complete, and is comparable to or better than official or proprietary 

data sources (Graser et al., 2015; Neis et al., 2012). One way in which several countries 

achieved a large data collection in OSM was by importing commercial or governmental 

road network datasets that comply with the OSM license (for example Netherlands and 

Austria). While Spain and France have imported the cadastral building information to 

the OSM database. 

 

Another reason for the higher level of completeness in Europe is a large number of 

contributors from Europe. It was reported in 2012 that among the total contributors, 

three-quarters of the contributors were located in Europe  (Budhathoki & 

Haythornthwaite, 2012; Neis et al., 2012). The remaining quarter was distributed over 

North America and Asia. South America, Africa and Oceania proved to have only a 

small contributor number. Within Europe, the highest concentration of active 

contributors in OSM can be found in Germany (25% of all active OSM members) which 



Chapter II 
 

32 
 

also explains the higher quality of the German OSM dataset (Neis & Zielstra, 2014). 

Fan et al., (2016) observed that according to the statistics, the number of buildings in 

OSM are above 200 million, among which 18.4 million building footprints are in 

Germany. 

 

However, when it comes to other parts of the world, such as China, Tehran and Brazil, 

the completeness of OSM is not as good as Europe (Camboim et al., 2015; Forghani & 

Delavar, 2014; Zheng & Zheng, 2014). Barrington Leigh & Millard Bal (2017), 

estimated that globally about 77 countries among 185 have more than 95% of 

completeness of OSM road map. They also observed that countries like Kiribati, 

Afghanistan, Egypt and China have less than one third completeness.  Further the 

studies also revealed that not just developed countries have the maximum completeness 

but also areas with dense population and low income that faced humanitarian disasters. 

For example, Nepal and Haiti had intense mapping efforts following humanitarian 

disasters (Mooney & Corcoran, 2013). In case of developing countries, VGI 

contributions tend to be made in spurts, and also as previously mentioned, in response 

to a country that enters the global spotlight, as may be the case in the aftermath of a 

natural disaster (Verrucci et al., 2016), rather than as a regular, continuous process 

(Mahabir et al., 2017). The recent ‘Mapathon VGI project’ introduced by the 

Government of Kerala, India (https://mapmykerala.in/about) after the disastrous floods 

in 2018 and 2019 also serves as an example of the above mentioned argument. 

 

However, studies also reveal that OSM data are increasing all over the world. For 

example, a very recent study by (Tian et al., 2019) proves an almost 20 times increase 

in the OSM building count in China from 2012 to 2017. Research by Arsanjani et al., 

https://mapmykerala.in/about
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(2015)  projects many more contributions to OSM in the coming years. They also state 

that in the future more users will be involved in OSM mapping with contributions 

having more attributes that will be revised and edited by a greater number of users. 

However, due to several factors such as the lack of uniformity in attributes, diversity in 

spatial coverages (Barrington-Leigh & Millard-Ball, 2017), biases of contributors (Neis 

& Zielstra, 2014), unequal distribution of digital infrastructure (Haworth et al., 2018) 

etc. it is not possible to ensure the equal availability and quality of VGI data all over 

the world. Although it was shown that realistic estimates of land cover data and map 

accuracy can be derived easily and cost effectively (Foody & Boyd, 2013), as 

mentioned in the previous section, the quality and accuracy of VGI data can be varied 

in relation to the skills, knowledge and enthusiasm of the volunteers (Foody et al., 2013; 

See et al., 2013, 2016). The work also highlights the potential of satellite remote sensing 

to provide spatially and temporally detailed information on the Earth’s surface as well 

as the requirements to generate building data from other reliable sources like open 

source satellite images. 

 

2.5.3 Satellite images for urban studies 

Satellite images can provide an important source of data for urban infrastructure and 

transportation system planning, monitoring and implementation, mapping individual 

settlements and internal roads, urban complexes, urban utilities and urban land use (Al-

Bilbisi, 2019; Elfadaly & Lasaponara, 2019). Long before it was recognised that, in 

several countries, the lack of reliable mapping is a serious constraint to development in 

many sectors, particularly within the fields of urban development, planning and 

management (Maktav et al., 2006). Urban spaces are the areas developing most 

dynamically. No country can afford to update its maps at the same pace that 
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development and land use changes occur. The largest cities of the industrial world share 

this same problem with the megacities of the developing world. Maps are often out of 

date before they are distributed. This is where the highest demands are made on geodata 

in terms of their actuality and spatial resolution. Very high resolution satellite imagery 

provides the wherewithal to keep the urban geodata inventories up to date and to 

document them.  

 

Even before decades numerous studies have shown that satellite images are valuable 

tools for urban planning purposes. For example Maktav et al., (2006) illustrated map 

production and map updating in Turkey and also the importance of the use of satellite 

images for urban planning and detection of changes in ground features and further 

integration with existing maps into Geographic Information Systems. The study 

explained the relevance to utilise satellite images where traditional maps are old or non-

existent. The scope of high resolution SPOT images in preparation of urban maps has 

been discussed as early as 1980’s by Bertaud, (1989) based on a case study from 

Karachi, Pakistan. This study also highlighted how easily computerised information 

systems can be shared and updated among different planning agencies.  

 

The scope of remote sensing have subsequently improved later with developments high 

resolution satellite images however low resolution of open data still remained a 

challenge. A study by Malarvizhi et al., (2016) explored and recommends the 

possibilities of extraction of information on urban changes from high resolution Google 

Earth data at instances where obtaining high resolution imagery are either 

comparatively costly or available open source free imageries are of low or medium 

resolution. In addition to these, studies also have shown satellite based indicators can 
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be helpful to improve urban planning and management. Chrysoulakis et al., (2014) 

proposed satellite based indicators which have the potential to support assessments of 

urban environmental quality and the quality of life and further to provide useful 

information to urban planners and decision makers that can be exploited in sustainable 

urban planning. They suggested that although field data are important to climate change 

mitigation and adaptation activity, Earth Observation indicators can support urban 

planning, by saving time, reducing costs and providing higher flexibility, and have the 

potential to play an important role in managing land cover, designing the urban 

environment, transportation networks and sustainable development of economic, social 

and environmental initiatives. 

 

2.5.4 Satellite data for land cover extraction 

High resolution urban land cover maps have important applications in urban planning 

and management (Hu et al., 2016; Sztubecka et al., 2020; Zhuo et al., 2018). Infor-

mation about land cover and land use concerns many groups of people like local gov-

ernors, land managers, urban planners and decision makers, especially those in the ur-

ban areas that are undergoing dramatic land cover and land use changes (Tan & Wang, 

2007). Numerous studies deal with the usage of satellite images in land use extraction 

in urban areas across the globe. To cite a few: Ahadnejad Reveshty, (2011) assessed 

and predicted the land use changes to urban areas based on LANDSAT datasets with a 

case study from Iran. Fonji & Taff, (2014) analysed LANDSAT data to detect the land 

use changes in North Eastern Latvia. Li et al., (2015) record annual urban dynamics of 

Beijing City, China based on LANDSAT images. Feltynowski, (2017) discusses the 

need for satellite images for land use planning and green area protection based on a case 

study from Poland. 
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Jacobson et al., (2015) used Google Earth grids to identify anthropogenic land use con-

versions in East Africa, while a similar study has been done by Malarvizhi et al., (2016) 

considering Chennai City, India. An earlier study conducted in Beijing by Tan & Wang, 

(2007) evaluated the feasibility of hyperspectral satellite imagery for urban land 

use/land cover mapping and compared the performance of multispectral and hyperspec-

tral data in urban studies. The results showed that hyperspectral satellite imagery is 

suitable for urban land use/land cover mapping. They further argued that the hyperspec-

tral satellite image provides more accurate classification results than those extracted 

from the multispectral satellite image in urban land use mapping. Hu et al., (2016) de-

veloped a protocol to identify urban land use functions over large areas by satellite 

images and open social data which was tested in Beijing, China. The results showed 

that the generated land use map had an overall accuracy of 81.04% and 69.89% for 

Level I and Level II classes, respectively. They also argued that the map revealed sig-

nificantly more details of the spatial pattern of land uses in Beijing than the land use 

map released by the government. Thus the satellite data can be well used to differentiate 

various urban land cover classes including types of buildings. 

 

2.6 Open source satellite data: the need for accuracy enhancement 

Section 2.3 provides an overview of the availability of open source elevation data from 

satellite remote sensing. The main objective of acquiring these elevation datasets is to 

infuse elevation to the open source 2D building footprint datasets to generate 3D city 

models. However, as discussed before, the availability of open source 2D building 

footprints can be restrictive and open satellite data can be used as a source to generate 

2D building footprint in data void areas. The next section provides an overview of 
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available open source satellite datasets as well as the need to enhance their accuracy for 

effectively generating 2D building footprints. 

 

2.6.1 Open source satellite data: spatial resolution  

2.6.1.1 Landsat: The launch of the Earth Resource Technology Satellite (ERTS) 1, later 

called Landsat 1 in July 1972, has been widely recognised even many decades before 

in remote sensing applications such as land cover classification (see for example 

Goward et al., 2001; Haack, 1982). The main aim of the Landsat satellite program is to 

provide a tool for continuous monitoring of Earth’s resources (Masek et al., 2006). The 

U.S. Landsat archive is held at the United States Geological Survey (USGS) Earth 

Resources Observation and Science (EROS) Center and contains > 5.6 million 

acquisitions sensed by Landsat-1 through Landsat-8 (Dwyer et al., 2018).  

 

Landsat images are constantly improving in terms of their spectral, spatial, radiometric 

and temporal resolution (Hansen & Loveland, 2012; Z. Zhu et al., 2016). The spatial 

resolution of Landsat MSS is 60 m while Landsat TM, ETM+ and OLI have spatial 

resolutions of 30 m. Additionally, Landsat ETM+ and OLI have a panchromatic band 

with spatial resolutions of 15 m which can also be used to improve the spatial resolution 

of other bands using pan-sharpening technique (Wulder et al., 2019). Further in 2008, 

the Landsat data policy changed and the Landsat archive became free and open 

(Woodcock et al., 2008). Free and open access has greatly benefited operational 

applications, scientific studies, and discoveries as informed by analyses of large 

numbers of Landsat images (Wulder et al., 2018; Z. Zhu et al., 2019). 
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2.6.1.2 Sentinel-2: Sentinel-2 is an earth observation mission developed by the 

European Space Agency (ESA) as part of the Copernicus Programme to perform 

terrestrial observations in support of services such as forest monitoring, land cover 

changes detection, natural disaster management, humanitarian relief operations, risk 

mapping and security concerns. The launch of the Sentinel-2 has dramatically changed 

the landscape for land observations (Wulder et al., 2018). This has a temporal resolution 

of 10 days with one satellite and 5 days with two satellites. The spatial resolution varies 

between 10m, 20m, and 60m depending on the spectral bands with a swath width of 

290km (https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-

2). The sentinel 2 satellite has a multi spectral Earth observation system featuring the 

Multispectral Instrument with 13 bands spanning from the visible and the near infrared 

to the shortwave infrared bands. 

 

2.6.2 Open source satellite data: Need for spatial resolution enhancement 

The precise detection of buildings is of great importance to urban planning and 

management, urban cadastral management, urban geo-database updating, disaster risk 

assessment and rescue (Huo et al. 2017). With the increasing abundance of high-

resolution remote sensing images and the gradual reduction of acquisition costs, the 

research on extracting buildings using high-resolution images has been rapidly 

developed (Ding et al. 2018). High resolution remote sensing images contain a large 

amount of spectral, structure, and texture information and they provide more potential 

for accurate building detection (You et al. 2018; Song et al. 2019).  However the low 

resolution of open satellite data restricts their utility in building detection as that of high 

resolution images. Thus it is important to develop methods to increase the resolution of 

open satellite data to make use of their full potential. 
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2.7 Summary 

Literature shows that there is a dearth in the availability of low cost open 3D city mod-

els. With the rapid increase in the applications of 3D city models, it is increasingly 

important to develop low-cost 3D city models. One of the options to generate low cost 

3D city models is to depend on open 2D building footprints. However, existing open 

data from VGI does not provide complete and reliable coverage of areas. Even though 

open source satellite datasets have great potential for generating 2D building footprints, 

their low spatial resolution may pose a challenge in generation of 3D city models. 

Therefore it is important to find methods to enhance the accuracy of open source satel-

lite data to bring them to maximum use.  

  

In this context, forthcoming core chapters focus on addressing three major issues in line 

with thesis objectives. Firstly, there are no low cost open source 3D footprints are glob-

ally available; Secondly, like discussed before, availability of open 2D building foot 

prints are not uniform worldwide which prevents generation of 3D city models using 

2D open data globally; Thirdly, although open source satellite data can be used to gen-

erate 3D city models their coarse resolution is restricts its utility. Hence, this thesis will 

contribute in filling these research gaps by 1) exploring the availability of open data 

that can be used to develop a 3D city model and demonstrate developing a 3D city 

model for the areas where 2D footprints are available, 2) generating 2D footprint data 

for the data-poor regions using available open satellite data after enhancing them 

through sparse representation, and 3) developing 3D city models from enhanced open 

satellite data. 
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CHAPTER III 

GENERATION OF 3D CITY MODELS FROM OPEN 

SATELLITE DATA 

 

3.1. Introduction 

Three-dimensional city models have become an important resource for planning, 

development, and policymaking in urban areas (Albert et al., 2017; Garouani et al., 

2014; Jones et al., 2009; Liang et al., 2016; Oosterom, 2013). A 3D city model is a 

digital model of an urban environment with a three-dimensional geometry of urban 

structures, as well as related objects belonging to urban areas (Mittal, 2019). 

Applications using 3D city models have increased in their scope and complexity 

(Buyukdemircioglu et al., 2018), spanning from the analysis of electromagnetic 

propagation for telecommunications through environmental simulations analysing 

irradiation distribution (Compagnon, 2004; Robinson, 2006) and noise propagation 

(Kang, 2000) to virtual or augmented reality applications (Flamanc et al., 2003; Mao et 

al., 2009). This proliferation of applications is, in turn, driving an increasing demand 

for the creation and maintenance of reliable 3D city models.  

 

A standard approach to creating city models at a large scale automatically or semi-

automatically is to apply stereo vision on aerial or satellite remote sensing imagery 

(Garouani et al., 2014). This, however, can be an expensive and/or time/labour-

consuming process, particularly if high levels of accuracy in model outputs are required 

(Singh et al., 2013). As a result, large-scale 3D city models are mostly available in 
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countries with developed economies and/or those with national mapping agencies, 

while countries, including many that are transitioning their economies (and where this 

information is perhaps of most value), do not have the resources available to produce 

them (Albert et al., 2017). An approach underpinned by suitable open data could fill 

this gap in capability. 

 

Three-dimensional city models are characterized by their level of detail (LOD) (Ohori 

et al., 2015). The CityGML standard defines five levels of details (LOD) from LOD0 

to LOD4. The coarsest level, LOD0, represents the lowest level of geometry as a 2.5D 

DTM (digital terrain model) with building footprints or roof edge polygons. It is used 

for regional and landscape applications. LOD1, is well-known as a block model. In 

LOD1, the building height would be extruded with flat roofs. It is used for city and 

region coverage. In LOD2, buildings have differentiated roof structures and 

thematically differentiated boundary surfaces based on LOD1 models. It is applicable 

for city districts. LOD3 will add specific roof and wall structure details, such as doors 

and windows, to LOD2 models and it denotes architectural models. This one is widely 

used for landmarks. LOD4 gives interior structures, like doors, stairs, etc., within the 

buildings (Groeger et al., 2008, 2012; Wate & Saran, 2015). An increase in the LOD of 

a model enables more applications, but it also increases data demands and their 

processing involves higher computational costs (Biljecki et al., 2014; Ohori et al., 2015; 

X. Zhao et al., 2018). 

 

Many applications of 3D city models require only low level of details—LOD1 (e.g., 

vulnerability models, disaster mitigation, climate change and energy models). Here, we 

investigate the production of spatially reliable and globally replicable 3D city models 
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using open-licensed data in order to support that category of user. This research forms 

part of a wider project, ‘Sustaining Urban Habitats: An interdisciplinary approach’, 

which aimed to explore ways of combining environmental and economic modelling 

with social and cultural ethnographic work. The focus of the project was on two 

contrasting cities: a growth city in China (Shanghai) and a relatively stable city in 

Europe (Nottingham). During the implementation of the wider project, the dearth of 

accurate 3D models for many cities globally, including Shanghai, was observed. The 

project had very little budget to acquire data and thus raised the challenge of how to 

produce a 3D city model from open data. This study did not aim to alternate commercial 

3D city models with 3D city models from open data, instead, it focused on presenting 

a method that produces 3D city models from open data (only) to serve those regions 

that cannot acquire commercial data. Given that open datasets are usually characterized 

by low resolution, we present a method capable of producing the desired LOD 1 city 

model for anywhere. 

 

Possibilities of extracting building heights from open digital surface models (DSM) and 

digital elevation models (DEM) have previously been attempted (Misra et al., 2018; 

Wang et al., 2018). These include extraction of building heights from the Shuttle Radar 

Topographic Mission (SRTM), the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Digital Elevation Model (ASTER DEM), Advanced Land 

Observing Satellite (ALOS) World 3D (AW3D) DSM, and TerraSAR-X add-on for 

digital elevation measurements (TanDEM-X). However, using DSMs alone cannot 

provide exact building heights or shapes. Rather it will result in more generalized 

individual building heights and distorted shapes due to issues of mixed pixels (Misra et 

al., 2018). Using 2D data of building footprints along with high resolution DSMs can 
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be a possible solution to extract individual building heights without distorting the 

building shapes. The approach is predicated on the availability of open-source 2D 

spatial datasets, such as OpenStreetMap (OSM), albeit with varying degrees of 

completeness and reliability, to provide building footprint geometries. However, the 

third dimension is poorly represented in these datasets; less than 2.5% of the nodes in 

the OSM database carry an elevation attribute (Knerr, 2013; Mehlhorn & Sanders, 

2007).  

 

The recently available satellite-derived elevation datasets provide an opportunity for 

data fusion by incorporating the elevation data with open-licensed 2D building data to 

generate 3D models. Indeed Bagheri et al., (2019) generated LOD1 height values using 

multisensor and multimodal DEM fusion techniques - TanDEM-X DEM and Cartosat-

1 DEM data were joined with OpenStreetMap building footprints (Bagheri et al., 2019). 

This study confirmed that simple, prismatic building models can be reconstructed by 

combining OpenStreetMap building footprints with remote sensing-derived geodata. 

However, the assumption of a flat terrain at a constant height restricts globally 

applicability of this approach. Furthermore, Cartosat-1 data are not currently global in 

availability. Required, therefore, is a methodology that considers the terrain underlying 

the urban area of interest and uses datasets that are available worldwide. 

 

In this chapter, we used open DSM data as a foundation dataset and utility in a globally 

replicable methodology to generate 3D city models. Recently available elevation 

datasets such as the AW3D DSM (with a horizontal spatial resolution of approximately 

30 m) by the Japanese Aerospace Exploration Agency (JAXA) have an open license (a 

higher resolution (approx. 5 m) DSM is also produced, but only as a commercial 
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product (Santillan et al., 2016). Other common elevation-rich datasets include the 

ASTER DEM and that from the SRTM. Although these provide mainly terrain (a digital 

surface model includes all the natural and built features on the earth’s surface, whereas 

a digital terrain model is simply an elevation surface representing the bare earth 

referenced to a common vertical datum (https://gisgeography.com/dem-dsm-dtm-

dierences/) elevation values that are freely available under permissive data licenses 

(Gruen, 2012). We present a methodology that uses open data of 2D building footprints, 

along with DSM and DTM datasets, to generate 3D buildings in two geographically 

and morphologically diverse cities, namely the Huangpu district in Shanghai, China, 

which has a relatively flat topography, and Nottingham, United Kingdom, which has a 

more undulating terrain. Shanghai and Nottingham are inherently different from each 

other, not only in terms of physiography but also in terms of level of urbanization. 

While Shanghai is a rapidly urbanizing city, Nottingham is stabilized and saturated. 

Hence, these two cities provide end members to transfer the methods globally. 

 

A secondary objective was to consider scenarios of data availability that could improve 

the overall accuracy of the open source 3D building model generated (which we call a 

foundation model). Here, we exploited that often higher resolution elevation data are 

available, though not always, or never, open source, and/or of limited spatial coverage. 

For instance, there are a number of examples where previously proprietary LiDAR 

datasets are now being opened, though often these are for cities in the global North 

(https://gisgeography.com/top-6-free-lidar-data-sources/), or it may be the case that 

projects to produce 3D city models have a limited budget. Further, here we used the 

AW3D-30 DSM to generate building heights. AW3D-30 DSM is produced by 

resampling the 5 m ALOS DSM, resulting in accuracy reduction. Thus, it is not possible 

https://gisgeography.com/dem-dsm-dtm-dierences/
https://gisgeography.com/dem-dsm-dtm-dierences/
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to use this low resolution DSM directly in the same way you would with a high 

resolution commercial dataset. From high resolution DSMs, roof heights or building 

heights could be easily measured. Whereas, in low resolution ALOS DSM, this is not 

possible. This study thus also explored the optimal approach to using the AW3D-30m 

DSM. 

 

3.2. Materials and methods 

3.2.1. Study area 

The focus was on two cities of very different scale and character: Nottingham in the 

UK and Shanghai in China. These two cities also differ considerably with respect to 

data availability. The diverse topographical and urban morphologies of the two cities 

afforded a robust assessment of the methodology presented in this chapter to produce 

3D city models openly. 

 

The city of Nottingham (Figure 3.1) is located 206 km to the north of London, in the 

East Midlands region of the UK. The city has a total area of 75 km2 and accommodates 

a total population of 325,000 (ONS Mid-Year Population Estimates). Nottingham is 

situated on an area of low hills along the lower valley of the River Trent and has an 

undulating topography. The average elevation of Nottingham is about 61 m 

(http://www.floodmap.net/Elevation/ElevationMap/?gi=2641170). Although the 

population of Nottingham City has recently grown (by 13% between 2000 and 2010 

according to the Nottingham City Economic Review, 2011), compared to Shanghai, the 

city is less agglomerated with greater proportions of small (i.e. buildings less than 10m) 

and medium sized buildings (10m to 35m), and far fewer high-rise buildings (buildings 

with a height of 35m or more are classified as high rise buildings). Shanghai is also 

http://www.floodmap.net/Elevation/ElevationMap/?gi=2641170
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almost two orders of magnitude larger than Nottingham. Four wards were selected from 

Nottingham that represent the spatial characteristics of the city. 

 

Figure 3.1 Location map of Nottingham, U.K 

 

Shanghai (Figure 3.2), located on the east tip of the Yangtze River Delta and on the east 

coast of China, is one of the most urbanized areas in China. Being one of the most 

dynamic cities in the world, it is a difficult city to understand, plan, and manage 

(Morais, 2016). With a total area of 6340 km2, it is one of the fastest economically 

growing and most densely populated cities in East Asia. In 2014, it had a population of 

more than 24 million. The average elevation of the city varies between 3 to 5 m above 

mean sea level. At present, Shanghai has 16 districts and one county (Chongming) 

under its jurisdiction. In the first instance, our focus was on the Huangpu District, due 

to the complexity of the morphology and environs across this area. Huangpu covers an 
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area of 20 km2 and is located in the city centre. It is comprised of a mixture of very tall 

buildings (more than 100 m), as well as very old and clustered buildings. 

 

Figure 3.2 Location map of Shanghai, China 

 

Unlike Nottingham, Shanghai is characterized by flat topography and the average 

elevation of the city’s terrain is four meters above mean sea level (MSL). While 

Nottingham is less agglomerated, with greater numbers of medium and small sized 

buildings and far fewer high-rise buildings, Shanghai is occupied by a very dense and 

complex morphology with large numbers of medium and tall buildings. The availability 

of open data, including OSM, is very limited and non-uniform in coverage for 

Shanghai, particularly in comparison with Nottingham. Thus, Shanghai is an ideal case 

to be compared with Nottingham to gain insights on how our methodology may work 

across the spectrum of cities in their geographies and morphologies. 
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3.2.2. Data 

A DSM affords the extraction a variety of features, including terrain, buildings, 

vegetation, and any other surface features (Albert et al., 2017). Hence, the basic 

principle in obtaining the building heights from the AW3D DSM data was to remove 

the ground elevation from the DSM. For cities that have a flat terrain, the building 

heights can be generated by simply subtracting a mean ground elevation from DSM 

values. Whereas in the case of topographically varying city terrains, digital terrain 

models (DTM) can be used to obtain the ground elevation. DTMs are similar to DSMs, 

but exclude surface features.  

 

Thus, the datasets to be used with the OpenStreetMap data for Nottingham and 

Shanghai to produce globally replicable 3D city models were: (1) The open source 

AW3D-30 DSM, which has a spatial resolution of 30 m and (2) the open source Global 

Multi-resolution Terrain Elevation (GMTED2010) dataset - the minimum value layer. 

Although this has a resolution of 225 m, it is used since it is a globally applicable 

dataset. In addition to the globally available AW3D-30 DSM and GMTED2010 DTM 

datasets, we explored how additional datasets could enhance the quality of the 3D city 

models produced for both Nottingham and Shanghai under different scenarios of data 

availability. For the city of Nottingham, airborne LiDAR-generated DSM and DTM (2 

m spatial resolution) were used and for Shanghai a commercial high-resolution DSM 

(AW3D Enhanced at 2 m spatial resolution) was procured and used. For validation of 

the 3D city models produced, the BHA MasterMap data set and the AW3D Enhanced 

were used for Nottingham and Shanghai, respectively. The composition and 

provenance of all datasets are described below and further details about their purpose 

is given in Table 3.1. 



Chapter III 
 

49 
 

Table 3.1. Data types and pertinent details. 

Sl. 
No. Type of Data Coverage and 

Accessibility 

Purpose of 
Data 

Usage 
Source of Data Terms of 

Use/License 

1 

AW3D-30 
DSM of 30 

metres 
resolution 

Global, free 
data 

Foundation 
model 
height 

generation  

JAXA Open data 
license 

2 

LiDAR DSM 
& DTM, 

resolution of 
0.25–2 m and 

varies by 
location 

UK, free data 

Enhanced 
model 

regression 
value 

parameter 
creation  

Environment 
Agency 

Open data 
license 

3 

2D building 
data for 

Huangpu, 
Shanghai 

(vector layer) 

China, free 
data 

Building 
footprint 

generation  
OpenStreetMap Open 

license 

4 

2D building 
data for 

Nottingham 
(vector layer) 

UK, free data 
Building 
footprint 

generation 
OpenStreetMap Open 

license 

5 

Administrative 
boundary—

Shanghai 
(vector layer) 

China, free 
data 

Case study 
area 

selection 
OpenStreetMap Open 

license 

6 

Administrative 
boundary—
Nottingham 

(vector layer) 

UK, free data 
Case study 

area 
selection 

UK data 
service 

download 

Open 
license 

7 

Nottingham 
building data 
with height 

(vector layer) 
attributes  

UK, restricted 
for UK 

research only, 
commercial 

Validation MasterMap and 
BHA attribute 

EDINA 
Digimap 

educational 
institution 

license 

8 

AW3D-
Enhanced 2 

metre 
resolution 
DSM for 
Shanghai 

Commercial Validation Purchased from 
Digital Globe 

Commercial 
license  

9 

GMTED2010 
of 7.5-arc-

second (225–
250 m) for 

Nottingham 

Global, free 
data 

Ground 
elevation 

value 
generation 

USGS and 
NGA 

Open data 
license 
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3.2.2.1. OpenStreetMap (OSM) 

All the required 2D building footprints were gathered from the OSM database 

(https://download.geofabrik.de/). Open GIS data available for Shanghai, China were 

downloaded from the website mapzen.com, which relies on OSM for many of its 

products. OSM is a collaborative project to create free editable geographic data and a 

prominent example of volunteered geographic information (Knerr, 2013). The OSM 

building footprints (with relevant attribute information) were extracted for the Huangpu 

district—where the coverage is relatively dense (see Figure 3.3). 

 

OSM data are available for Nottingham from a number of sources, and include similar 

data layers as for Shanghai. As with Shanghai, the OSM building layer data for 

Nottingham is of a higher density in the city centre, with sparser coverage for the 

residential suburbs. Building footprints vary in their complexity and accuracy 

compared to the detailed mapping available from the Ordnance Survey’s MasterMap 

dataset(https://www.ordnancesurvey.co.uk/business-ndgovernment/products/imagery-

layer.html) (highest resolution digital mapping available for the UK). For some 

buildings, the OSM data are visually comparable to its MasterMap counterpart, 

although we note that in some instances, the OSM footprints have a simplified geometry 

and often do not include building subdivisions (e.g., between properties of terraced 

houses). 

 

https://download.geofabrik.de/
https://www.ordnancesurvey.co.uk/business-ndgovernment/products/imagery-layer.html
https://www.ordnancesurvey.co.uk/business-ndgovernment/products/imagery-layer.html
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Figure 3.3. OpenStreetMap (OSM) building coverage, Huangpu District, 

Shanghai, China. 

 

3.2.2.2. ALOS DSM (AW3D (At 30 m) and AW3D enhanced (At 2 m)) 

The DSM produced by the Japanese Aerospace Exploration Agency (JAXA) is of 

relatively fine resolution, at about 0.15 arcsec or approx. 5 m (Alganci et al., 2018; 

Tadono et al., 2014, 2016). JAXA used the archived data of the panchromatic remote-

sensing instrument for stereo mapping (PRISM) on-board the ALOS to generate a DSM 

for the whole globe, known as “Advanced Land Observing Satellite - ALOS World 3D 

(AW3D)” https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm. The AW3D-30 

global dataset, which has a 30 metre spatial resolution (1 arcsec), is a resampled version 

of the 5 m mesh version of the AW3D (Santillan et al., 2016). For this work, we used 

the latest AW3D-30 product, released in May 2017. For both Shanghai and Nottingham, 

30 m ALOS DSM data are currently the most precise global scale open source elevation 

(Alganci et al., 2018) dataset (free to the public since 2015). The AW3D Enhanced 
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product (at 2 m resolution) was also procured, giving a sample covering 16 sq.km of 

the high resolution DSM at 2 m for our study area in Shanghai. 

 

3.2.2.3. GMTED2010 

GMTED2010 is the digital elevation (DEM) model product of The United States 

Geological Survey (USGS) and The National Geospatial Intelligence Agency (NGA) 

to replace the existing model, as Global 30 ArcSecond Elevation (GTOPO30), and has 

been available to the public since 2010 (Athmania & Achour, 2014; Grohmann, 2016). 

It is available in three resolutions, i.e., with horizontal spacing of 7.5 arc-second (about 

250 m), 15 arc-second (about 500 m), and 30 arc-second (about 1 km), and its main 

data source is a SRTM version with 01” resolution restricted to the NGA and not 

available to the general public (Khalid et al., 2016). This study used the minimum band 

of GMTED2010 with 250 m resolution due to its global coverage. 

 

3.2.2.4. Digital terrain and surface models derived from airborne LiDAR data for the 

UK 

The U.K Environment Agency’s LiDAR data archive contains accurate digital 

elevation data for over 70% of England (https://data.gov.uk/dataset/6a117171-5c59-

4c7d-8e8b-8e7aefe8ee2e/lidar-composite-dtm-1m). For the city of Nottingham, 

LiDAR-derived DSM and DTM at 2 m resolution are openly available. For the present 

study, we used this dataset to extract the ground elevation value for the Nottingham 

study area in order to enhance the 3D city model produced. 

 

 

 

https://data.gov.uk/dataset/6a117171-5c59-4c7d-8e8b-8e7aefe8ee2e/lidar-composite-dtm-1m
https://data.gov.uk/dataset/6a117171-5c59-4c7d-8e8b-8e7aefe8ee2e/lidar-composite-dtm-1m
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3.2.2.5. OS Mastermap BHA 

The building height attribute (BHA) dataset published in 2014 is an enhancement to the 

Ordnance Survey (OS) MasterMap Topography Layer. BHA data are not available for 

the whole country, but it covers major cities and towns of Great Britain. BHA provides 

a set of height attributes (ground level, base of roof, and the highest part of the roof) for 

topographic area features with a buildings theme within OS MasterMap Topography 

Layer. OS publish the data as a single CSV file containing over 20 million records 

(https://www.ordnancesurvey.co.uk/documents/building-height-attribute; 

https://www.aw3d.jp/en/products/enhanced/). For the present study, we used the BHA 

data for Nottingham for validation. 

 

3.2.3. Methodology 

The overall methodology adopted is illustrated in Figure 3.4. The workflow describes 

different steps to be taken that are dependent, first, on the terrain on which an urban 

area resides and, second, on whether there are any relevant additional datasets available 

The foundation workflow yields a 3D model output possible for all urban areas 

globally, with the possibility of enhancement of that 3D model should other higher 

resolution data be available (but these are not a necessity). Further details are below. 

 

 

https://www.ordnancesurvey.co.uk/documents/building-height-attribute
https://www.aw3d.jp/en/products/enhanced/
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Figure 3.4. Overall methodology. Blue boxes indicates important steps and pink 

colour indicates intermediate steps. 
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3.2.3.1. Generating 3D buildings from open data (Foundation workflow) 

The first stage in applying this methodology is to establish whether the urban area of 

interest (AOI) has a terrain that is flat or undulating (workflow chart step 1), since this 

determines whether additional data and processing steps are required, on a building-by-

building basis, to identify the building heights. The term ‘flat’ corresponds to the urban 

area with relatively smooth topography and without any relief features and the 

topography with uneven elevation and presence of relief can be classified as 

‘undulating’. However, selecting the method also should depend on the purpose and 

application (details on potential application is provided in the discussion chapter) of the 

3D city model. If high level accuracy is required then it is advised to use a high 

resolution terrain model. If an error of +/-1m is negligible then choosing mean elevation 

is sufficient for the analysis. Detailed method is provided in below sections. After 

establishing the terrain type, the 2D building polygon data and the AW3D-30 data (i.e., 

the DSM) subsequently need to be co-registered, ensuring that there is no shift between 

the datasets. 

 

The methodology is developed to extract the optimal elevation results from the low-

resolution AW3D-30 DSM. As stated above the AW3D-30 open dataset has a 30 m 

spatial resolution (1 arcsec), which is a resampled version of the 5 m mesh version of 

the AW3D (Santillan et al., 2016), so already the elevation values are the average of 

many adjacent pixel values.  

 

In the case of an urban AOI with a flat terrain (i.e. Shanghai in our example case), the 

AW3D-30 DSM is joined to the 2D shapefile (workflow chart steps 2A to 6A). The 

AW3D-30 DSM is in raster format and the linear interpolation method is used in to 
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assign the elevation value from raster surface to the vertex of the polygon. This 

operation will assign a Z value to each vertex of the 2D building polygon. Out of these 

values, the maximum Z of the geometry is taken as the elevation value since this will 

reduce the effects of shift caused by different projection systems and to overcome the 

low resolution of AW3D-30 data. This is because if we calculate an average Z value it 

may also include ground elevations (i.e., due to height data relating to surfaces beyond 

the building footprint as AW3D-30 is a resampled version of many adjacent pixels), 

thereby reducing the overall height value; similarly, if we consider minimum Z there is 

a chance that this will give the ground elevation directly. It is worth noting that if the 

DSM was of higher resolution (e.g., 2 m resolution), we would have taken the average 

Z value within a polygon as the building height. After this process, the mean ground 

elevation of 4 m (this is the mean elevation of Shanghai) is removed from the AW3D-

30 DSM data in order to obtain the building heights (workflow chart steps 7 to 10). 

 

In the case of an undulating terrain (i.e., Nottingham in our example case), building 

roof heights were computed following the same steps as for Shanghai. However, to 

accommodate for the change in elevation of the terrain across the urban AOI an 

alternative workflow is necessary. In this case, to obtain the buildings’ ground 

elevation, the GMTED2010 (i.e., a DTM) is joined with the 2D building polygon using 

the same interpolate shape function and the minimum Z of the geometry is calculated 

and assigned to the attribute table of the 2D building polygon (flow chart step 2B to 

6B). Here, the minimum Z is used to reduce the effect of shift in the process. If we use 

an average or maximum of Z, there is a chance that it may reflect the building height 

values (the converse of the previous case). Once these steps are complete, the height 

values of the individual buildings are calculated by subtracting the maximum elevation 
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value obtained from the AW3D-30 DSM with the minimum elevation value obtained 

from the GMTED2010 DTM. The output generated is the estimated heights of 

individual buildings (workflow chart steps 7 to 10). 

 

3.2.3.2. Technical validation of building height (Foundation workflow) 

For Nottingham, our building heights were compared with the building height values 

provided by the OSGB MasterMap (https://download.geofabrik.de/). The computed 

heights of 15,000 buildings in Nottingham were compared with the corresponding 

building height attributes (BHA) (https://www.ordnancesurvey.co.uk/business-

andgovernment/products/imagery-layer.html) of the OSGB MasterMap for the city, 

using arithmetic differencing. Structured Query Languages (SQL) queries were then 

performed to count the instances of buildings for which height differences h were <1 

m, 1 m < h ≤ 2 m, 2 m < h ≤ 5 m, and >5 m, together with the corresponding percentages. 

For Shanghai, a similar validation exercise was performed. However, for Shanghai, 

there is no openly available high resolution building height data. Therefore, to validate 

our results, we used the AW3D Enhanced product at 2 m spatial resolution. This 

product is stated to be derived from the Digital Globe WorldView satellites 

(https://www.aw3d.jp/en/products/enhanced/). Building heights that are derived from 

AW3D-30 m could then be cross-checked with the heights derived from this 2 m DSM, 

and the resultant height values refined (flow chart step 11 and 12). In total, 2027 

buildings were used in this validation. 

 

3.2.3.3. 3D Foundation model enhancement 

The foundation workflow (Section 3.2.3.1) produces a 3D city model that is globally 

replicable, however, it may be the case that higher resolution elevation data are 

https://download.geofabrik.de/
https://www.ordnancesurvey.co.uk/business-andgovernment/products/imagery-layer.html
https://www.ordnancesurvey.co.uk/business-andgovernment/products/imagery-layer.html
https://www.aw3d.jp/en/products/enhanced/
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available (open) or could be procured as per limited budgetary resources. These data 

could enhance the accuracy of 3D buildings in the model by computing the error factor 

for building heights. The error factor is the deviation of height values generated in the 

foundation work flow to the height of the corresponding building obtained from high 

resolution data for each of the cities. Once computed, these values can be used to correct 

the building heights in other similar areas. For enhancement, a high resolution dataset 

needs to be available for a representative sample area of the AOI (Figure 3.5). 

 

Figure 3.5. Sample buildings considered for 3D generation and correlation, 

Nottingham, UK. 

 

We used consistent 1 m interval categories of maximum building height for the polygon 

concerned (e.g., an approximation of a ridge height for pitched roof houses). This 

interval selection helps in generating good correlation and is easy to apply to other 

similar areas. For the Nottingham case, the maximum number of building heights 

observed within the range of 2 m to 8 m was calculated using the AW3D-30 dataset 



Chapter III 
 

59 
 

(flowchart step 13 to 15). So, regression equations with 1 m intervals were created for 

this range (e.g., seven unique categories of building height: 2 ≤ h ≤ 3 m, 3 m < h ≤ 4 m, 

…, and 7 m < h ≤ 8 m). These 1 m ranges were chosen because they provide improved 

correlation over other ranges. In order to obtain the regression equations both AW3D-

30 derived heights and high resolution derived heights were exported to the excel scatter 

plot graphs created, from which a linear regression equation was derived (flowchart 

step 14). The regression equations derived from different ranges were then employed 

to correct building heights for all instances of that category that were found within the 

AW3D-30 dataset, both within and outside the high resolution sample area (flowchart 

step 16 to 18). The technical validation of the enhanced model was done in a similar 

way stated for validation of foundation model. This validation was done over exactly 

the same buildings using the same data that were considered for the validation of 

foundation model. 

 

3.3. Results 

3.3.1. Nottingham 

After obtaining the foundation 3D model (Figure 3. 6 shows a sample area) for 

Nottingham (i.e., AW3D-30 derived building heights), we compared these building 

heights with MasterMap BHA to assess the accuracy of this preliminary result. This 

revealed that 27.7% of all buildings fall within the accuracy level of +/−1 m elevation, 

and 51.45% and 84.47% within +/−2 m and +/−5 m, respectively. 15.53% of buildings 

were above +/−5 m accuracy level.  
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Figure 3.6. (a) 2D building footprints for Nottingham, (b) foundation 3D model 

building footprints generated from AW3D-30 as DSM and GMTED2010 as DTM 

data. 

When both sets of height values we compared, it was observed that a higher level of 

height difference occurred in the case of taller buildings. The percentage of buildings 

falling under each error ranges are shown in Figure 3.7. The low- and medium-rise 

buildings showed relatively good correlation with the MasterMap BHA values. 

 

 

Figure 3.7. Percentage of buildings under each range for foundation 3D model in 

Nottingham. 
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In the application of the accuracy enhancement method by way of a sample of high-

resolution elevation data, it was determined that the majority of building heights fall 

within the range of 2 m to 8 m (established using the AW3D-30 dataset). Hence, a 

regression equation with a 1 m interval was created for this range of 2 m to 8 m in order 

to enhance the accuracy of the foundation 3D model (Figure 3.8). This 1 m interval was 

chosen to obtain good correlation between two datasets of generated AW3D-30 height 

values and high resolution LiDAR data. The regression equations derived from these 

categories are given in Table 3.2 and these were applied to obtain an enhanced 3D city 

model. 

 

 

Figure 3.8. Scatter plot showing correlation between AW3D-30 DSM- and LiDAR 

DSM-generated heights for different ranges. 
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Table 3.2. Correlation values for different ranges and linear equation for accuracy 

enhancement (Nottingham). 

Sl. 
No. 

Height of Buildings 
in Meters 

Height Difference Range Used 
for Creating Equation in 

Meters 

Linear Equation Used 
for Accuracy Increase 

1 2 to 3  1 to 2  y = 0.984x − 1.358 

2 3 to 4 0 to 2 y = 0.936x − 0.554 

3 4 to 5 No equations required as the values already have good 
correlation  

4 5 to 6 −1.7 to 0.4 y = 0.986x + 0.610 

5 6 to 7 −3.6 to 0 y = 1.017x + 1.239 

6 7 to 8 −4.1 to −1.2 y = 1.041x + 2.080 

 

 

3.3.1.1. Technical validation of enhanced 3D model 

Validation of the enhanced 3D model demonstrated that applying the regression 

equations to the foundation model had the impact of improving its accuracy across the 

board. The proportion of buildings in the model having an accuracy level of +/−1 m 

increased from 27.7% to 32.81% (Table 3.3), having an accuracy level of +/−2 m 

increased from 51.45% to 57.43%, an accuracy level of +/−5 m increased to 88.46% 

from 84.47%, and buildings having an error value above +/−5 m were reduced from 

15.73% to 11.54%. It was noticed that even after enhancement, there was no significant 

height value correlation increase in the case of taller buildings. 
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Table 3.3. Validation results showing percentage of buildings within each interval 

before (foundation 3D model) and after accuracy enhancement (enhanced model), 

for Nottingham. 

Sl. 
No. Height Extracting Method 

Percentage of Buildings 
Having Accuracy of 

Percentage of 
Buildings Having an 

Error More than +/−5 
m +/−1 m +/−2 m +/−5 m 

1 

Foundation 3D model 
developed using AW3D 30 
m DSM and GMTED 2010 

DTM  

27.70 51.45 84.27 15.73 

2 
Enhanced 3D model via a 
sample of high resolution 

LiDAR (2 m) 
32.81 57.43 88.46 11.54 

 

It is worth noting that, as stated in the methodology, we considered maximum elevation 

value within a polygon as the AW3D-30 DSM height. Using the height generated via 

the minimum and average elevation value within was not as accurate. 

 

3.3.1.2. Replacing GMTED 2010 ground elevation data with high resolution ground 

elevation data 

To understand how the GMTED 2010 DTM data impact on the quality of the 

foundation 3D model, the model was again constructed using high resolution LiDAR 

DTM as the ground elevation input along with the AW3D 30 m DSM. Validation using 

the MasterMap BHA values demonstrated that about 31.43% of total buildings 

achieved an accuracy within +/−1 m elevation and 60.14% were within +/−2 m (Table 

3.4). Deviations for only 5.27% of all the buildings exceeded +/−5 m, but a significant 

proportion of the cases having this largest deviation were due to errors in the 

MasterMap BHA dataset or within AW3D-30 dataset (these errors were identified by 
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cross-checking these individual sites with other datasets like Google Earth™, where 

open street views are available). Further results show that errors among low-rise 

buildings are minimal than that of high-rise buildings. For example correlation values 

(Table 3.3) for different height ranges of Nottingham show higher correlation among 

lower height ranges (2-3, 3-4, 4-5, and 5-6) than higher ranges (above 6m). It is also 

significant to observe that using LiDAR DTM instead of GMTED 2010 together with 

AW3D-30 DSM yielded only 5% more buildings within +/- 1 m accuracy level and 9% 

within +/- 2 m and 10% within +/- 5 m respectively (Table 3.4). 

 

Table 3.4. Validation results showing percentage of buildings under each interval 

when ground elevation was extracted using high resolution LiDAR DTM data 

(Nottingham). 

Sl. 
No. Height Extracting Method  

Percentage of Buildings 
Having Accuracy of 

Percentage of 
Buildings Having an 

Error More than +/−5 
m +/−1 m +/−2 m +/−5 m 

1 

Foundation 3D model 
developed using AW3D-

30m DSM and 2 m LiDAR 
DTM  

31.43 60.14 94.73 5.27 

2 

Foundation 3D model 
developed using AW3D 30 
m DSM and GMTED 2010 

DTM  

27.70 51.45 84.27 15.73 

 

 

3.3.2. Shanghai 

We considered only a sample of the 2027 OSM buildings of the Huangpu District of 

Shanghai to generate the 3D model, as well as to calculate a correlation coefficient. The 

modelled building heights from AW3D-30 DSM for Huangpu District have been 
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compared with the commercial 2 m accuracy DSM that was procured for the study area. 

Unlike Nottingham, Huangpu, Shanghai has very tall buildings (Figure 3.9), hence the 

range of difference between the real height and generated 3D building heights were 

higher than for Nottingham. It was observed that about 33% of buildings fall within the 

error range of +/−2 m and about 30% of buildings within an error range of +/−2 m to 

+/−5 m (see Table 3.5). The regression equations used to enhance the accuracy of 

foundation model are given in Table 3.6. 

 

Figure 3.9. Sample of foundation 3D model generated from AW3D-30 data and 

classified according to the elevations, Shanghai (green colour represents low-rise 

buildings, brown colour represents medium-rise buildings, dark brown represents 

high-rise buildings). 
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Table 3.5. Percentage of buildings under each error range for foundation 3D 

model in Huangpu District, Shanghai. 

Sl. No. Height Difference in Meters Percentage of Buildings under Each Range 

1 ≤20 2 

2 −10 to −20 7 

3 −5 to −10 11 

4 −2 to −5 14 

5 ±2 15 

6 ±1 18 

7 2–5 16 

8 5 to 10 7 

9 10 to 20 3 

10 >20 7 

 

Table 3.6. Correlation values for different ranges and linear equations for 

accuracy enhancement (Huangpu District, Shanghai). 

Sl. 
No. 

Height Difference 
in Meters 

Correlation Obtained/R2 Value 
for Huangpu, Shanghai 

Linear Equation Used 
for Accuracy Increase 

1 5–6 0.997 y = 1.001x − 0.071 

2 6–7 0.985 y = 1.006x − 0.314 

3 7–8 0.989 y = 0.978x − 2.880 

4 8–9 0.989 y = 0.997x + 3.362 

5 11–12 0.988 y = 0.975x − 6.329 

6 14–15 0.990 y = 0.999x + 7.160 

7 16–17 0.961 y = 0.953x − 12.33 

8 18–19 0.971 y = 1.005x + 13.602 

9 >20 0.222 y = 0.256x + 5.020 
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3.3.2.1 Technical validation of enhanced 3D model 

It was observed from the validation results that the overall accuracy of the foundation 

3D model has improved using the accuracy enhancement method. The difference in the 

percentage of buildings with different accuracy level ranges before and after applying 

accuracy enhancement methods are given in Table 3.7. Higher rates of accuracy 

enhancement were observed for the lower ranges (i.e., up for +/−1 and +/−2). Where 

the difference in values between the actual height and the generated height increased, 

there was an observed decrease in accuracy enhancement level. For example, after 

accuracy enhancement in the range of +/−5 m, the total percentage enhanced from 

62.26% to 64.54% only and there was no accuracy increase for +/−10 m accuracy range 

(Table 3. 7). In lower height deviations (1 or 2 m) level we obtained a good accuracy 

increase by correlation, but in higher deviation sections (5 or 10 m), the accuracy 

improvement was relatively lower or null. 

 

Table 3. 7. Percentage of buildings under each level before (foundation 3D model) 

and after accuracy enhancement (enhanced model) for Huangpu District, 

Shanghai. 

Sl. 
No. 

Height Extracting 
Method 

Percentage of Buildings 
Having Accuracy of 

Percentage of 
Buildings Having 

an Error More 
than +/−10 m   +/−1 

m 
+/−2 

m 
+/−5 

m 
+/−10 

m 

1 
Foundation 3D model 

developed using AW3D-
30 DSM 

17.66 32.96 62.26 79.78 20.22 

2 

Enhanced 3D model via a 
sample of high resolution 

commercial 2 m DSM 
(AW3D Enhanced) 

28.3 41.69 64.54 79.78 20.22 
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Shanghai is characterized by high-rise buildings, hence the ranges considered for 

accuracy assessment were from +/−1 to more than +/−10 m. Whereas for Nottingham, 

the maximum range was +/−5 m, since the city is occupied by low-rise buildings. The 

proportion of buildings having an accuracy of +/−1 m was low (17.66%) in the case of 

Shanghai, which increased to 28.3% after accuracy enhancement. This contrasts with 

an accuracy of 27.7% for Nottingham, or 32.81% after accuracy enhancement. While 

64.54% of buildings were found to be within the accuracy range of +/−5 m for 

Shanghai, this was much higher for Nottingham at 88.46% (after enhancement in both 

cases). Further, even after accuracy enhancement, 20% of all the buildings in 

Shanghai’s Huangpu District were found to have an error of +/−10 m in their modelled 

height which can be attributed to the behaviour of AW3D-30DSM data which is 

elaborated in below section. 

 

3.3.3 Understanding the behaviour of AW3D-30 DSM data 

In order to understand the reliability of AW3D-30 DSM in generating 3D building 

height generation, it is important to understand how much it differs from the more 

accurate data (BHA data of Mastermap provided by Ordnance Survey, Figure 3.10).  

For this purpose a 3D city model is created by using AW3D-30 DSM (for generating 

building roof height elevation information) and LiDAR DTM (which gives ground 

elevation information). To generate it is essential to have ground elevation and building 

height. The LiDAR DTM with higher accuracy was selected for obtaining ground 

elevation, presuming that the maximum error caused may only be from AW3D-30 data 

alone.  
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Figure 3.10 Buildings considered for 3D generation and correlation, Nottingham, 
UK 

 

Thus the building height values of the generated 3D city model were compared with 

the corresponding building height values from BHA data of Mastermap provided by 

Ordinance Survey and calculated the percentage of error. The calculated percentage of 

buildings falling under different categories are given in the table below (Table 3.8). 

Table 3.8 Percentage of buildings under each range, Nottingham  

Sl. No. Height difference in meters Percentage of buildings 
under each range 

1 <-5 2 

2 -5 - <-2 8 

3 -2 - <-1 8 

4 -1- <0 13 

5 0-1 18 

6 >1 - 2 21 

7 >2 - 5 27 

8 >5 3 
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Linear regression model was developed in order to understand the behaviour of AW3D-

30 DSM in generating 3D city models. Based on the linear regression model, not only 

the correlation between building heights generated using AW3D-30 DSM and BHA 

Mastermap is computed but also these correlation values are used for further increasing 

the accuracy of building heights generated from AW3D-30 DSM. To estimate the linear 

regression model, the two sets of values (AW3D-30 DSM and validation) were 

imported from the shapefile attribute tables into a spreadsheet. The results were poor 

when fitting this equation using all data; but improved when categorising the data 

according to its corresponding height deviation range – estimating unique equations for 

each of the eight categories [covering negative and positive values of the eight ranges]. 

The corresponding linear regression equations, of the form hhr = a.hlr + b, where 

subscripts hr and lr refer to high resolution and low resolution datasets respectively, 

and a,b are regression coefficients. These equations were employed to correct the 

heights from the low resolution 3D city model and to correspondingly update the 

shapefile attribute table. This analysis also helped to understand the maximum accuracy 

that can be gained using enhancement techniques.   

 

For the city of Nottingham, foundation model AW3D-30 building heights were within 

+/- 1m of those in our high resolution (MasterMap) dataset for 31.43% of total buildings 

and +/-2m for 60.14% of buildings (Table 3.9). Deviations for only 5.27% of all the 

buildings exceeded +/-5m, but a significant proportion of the cases having this largest 

deviation were due to errors in the MasterMap dataset. These errors were identified by 

cross-checking with other datasets like google maps where open street views are 

available.  
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Table 3.9 Percentage of buildings under each level before accuracy enhancement, 

Nottingham  

Sl. 
No. 

Height extracting 
method 

Percentage of buildings 
having accuracy of 

Percentage of 
buildings having 
an error more 
than +/-5 meter +/-1 

meter 
+/-2 
meter 

+/-5 
meter 

1 Building height 
generated from AW3D-
30 DSM & LiDAR 
DTM (compared with 
BHA values) 

31.43 60.14 94.73 05.27 

 

The accuracy of the modelled building heights was improved by applying the linear 

regression method. The strongest correlation coefficient (R2 = 0.986) was observed for 

the range of <2 to <-1m which was followed by the range >1 to 2m (R2 value – 0.976) 

which suggests that there is a systematic error or a systematic pattern of variation 

among the height. About 29% (4373) of buildings fall within these two ranges (Table 

3.10). The maximum number of buildings i.e. 27% (4081) falls within the range of >2 

to 5m with a correlation value of 0.899. Maximum deviation from the trend line was 

observed for the range of buildings with <-5m accuracy with least correlation value (R2 

value – 0.543) (Figure 3.11, Table 3.9). However, only 310 buildings i.e. 2% of total 

buildings fall under this category. Using the linear model, accurate transform is more 

than 97% of building height values obtained from open source to the original value in 

the case of buildings having a height difference between 0 and 1. 
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Table 3.10 Correlation values for different ranges and linear equation for 

accuracy enhancement, Nottingham 

Sl. No. Height 

difference in 

meters 

Correlation 

obtained/R2 value  

Linear equation used 

for accuracy increase 

1 <-5 0.543 y = 0.9435x + 7.8151 

2 -5 to <-2 0.941 y = 1.0195x + 2.9387 

3 -2 to <-1 0.986 y = 0.9973x + 1.4754 

4 -1 to <0 0.980 y = 1.0018x + 0.4622 

5 0 to 1 0.976 y = 0.9981x - 0.5143 

6 >1 to 2 0.976 y = 0.9921x - 1.4500 

7 >2 to 5 0.899 y = 0.8946x - 2.2481 

8 >5 0.726 y = 0.5998x - 1.7038 
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Figure 3.11 Scatter plot showing correlation between actual heights and the 

generated heights from open source for different ranges, Nottingham, U.K 

After accuracy enhancement the proportion of buildings having accuracy level of +/-

1m increased from 31.43% to 90.8% after calibration (Table 3.11). The fraction of 

buildings within the accuracy level of +/-2m improved to 97.73% from 60.14% and 

within +/-5m accuracy level increased up to 99.52% from 94.73%. Lastly, buildings 

having an error more than +/-5m reduced to 0.48% from 5.27%.  
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Table 3.11 Percentage of buildings under each level before and after accuracy 

enhancement for both cases, Nottingham 

Sl. 
No. 

Height extracting 
method 

Percentage of buildings 
having accuracy of 

Percentage of 
buildings having 
an error more 
than +/-5 meter +/-1 

meter 
+/-2 
meter 

+/-5 
meter 

1 Building height 
generated from AW3D-
30 DSM & LiDAR 
DTM (compared with 
BHA values) 

31.43 60.14 94.73 05.27 

2 AW3D-30 DSM data 
calibrated using BHA 
building height data 
base 

90.8 97.73 99.52 0.48 

 

From the analysis it is observed that given there is an accurate ground elevation model, 

AW3D-30 DSM is capable of producing more accurate results especially for the 

buildings where the deviation is less than +/-1 meter.  Further errors in AW3D-30 DSM 

are systematic which can be reduced by correlating with other higher resolution datasets 

and are capable of producing high accuracy 3D city models. 

 

 3.4. Summary 

This chapter demonstrated a globally replicable methodology to generate 3D buildings 

from open data. Generation of 3D buildings exclusively using open data was the 

highlight of this chapter. This method is cost-effective, making it particularly attractive 

to users in low- and middle-income countries, where free 3D building data is not 

available. Further, this largely automated method requires minimal time to generate 3D 

city models, and also has flexibility for improvement in accuracy should higher 

resolution data be available. Given the use of relatively low resolution open data, this 
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methodology will be of particular relevance to studies that do not require high 

resolution 3D models, such as for global environmental change studies, global climate 

change and urban climate modelling, disaster vulnerability models, and energy models. 

Real world simulations for 3D games may be another potential area of interest. 

 

Finally, the methodology presented in this chapter can, in the future, be employed in 

conjunction with alternative 2D input data, for example as quality checked OSM data 

become more abundant, and with more accurate height data, as upgrades to AW3D-30 

are published, or other sources become available, such as those derived from LiDAR 

measurements. 

 

For those urban areas where 2D footprints are not available, alternative approaches will 

be required to provide the 2D data to be fused with the globally available 3D data. This 

thesis proposes that high resolution satellite data can be used to provide 2D footprints 

by way of building extraction. However, the current status of open satellite data is that 

they are of medium spatial resolution in general. Hence, the following chapter will 

assess the potential of spatial resolution enhancement of one such spatial resolution 

dataset. Here, Sentinel-2 data bands of Green, Red and NIR having spatial resolution 

of 10 metres will be enhanced in its spatial resolution via sparse representation 

techniques to afford the extraction of 2D building footprints from the enhanced image. 

Here the case study city of Shanghai is used for data enhancement as the OSM 2D 

footprint coverage is limited in the region. 
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CHAPTER IV 

SPATIAL RESOLUTION ENHANCEMENT OF 

SENTINEL – 2 (10m) SATELLITE DATA THROUGH 

SPARSE REPRESENTATION TECHNIQUES 

 
4.1 Introduction 

The major objective of the previous chapter (Chapter III) was to demonstrate a method 

to generate 3D city models from openly available 2D building footprints. Although 

afforded the generation of 3D city models (LOD1), this would only be applicable for 

areas across the world where 2D building footprints are already readily and freely 

available. There are still many regions for which the fine resolution 2D open building 

footprints are not available and or freely available. In the case of developing and least 

developed countries of the world especially, the availability of fine resolution 2D 

footprints present a major challenge, therefore generation of 3D city models can be hit 

and miss. 

 

Extraction of building features from fine resolution satellite datasets with global 

coverage could be a solution. Since fine resolution satellite images known as Very 

High Resolution (VHR) contain a large amount of spectral, structure, and texture 

information, they provide great potential for accurate building detection (Song et al., 

2019; You et al., 2018). However, to have global coverage of VHR satellite data (for 

example, WorldView, Pleiades) could be expensive and these data tend to be of limited 

temporal resolution. Alternatively, satellite imagery of coarser spatial resolution is 

used (for example: from Landsat, Sentinel-2), as these are openly available. One of the 
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limitations with available open data having global coverage is their coarse resolution, 

and so this limitation needs to be addressed. Accordingly, the overall objective of the 

current chapter and the next chapter (Chapters IV and V) focuses to extract building 

features from coarser resolution, but openly available, satellite data to be used in 3D 

city modelling. The present chapter seeks to optimally enhance the satellite data 

(Sentinel-2), with Chapter V demonstrating how this spatially enhanced imagery can 

be used to produce 3D city models. 

 

Sentinel-2 satellite data holds great potential for urban mapping due to its wide swath 

and frequent revisiting time (5-day revisiting time). However, the spatial resolution of 

10 m is not adequate to extract building features. Therefore, this chapter explores the 

potential to enhance the 10 m spatial resolution of Sentinel-2 satellite data wavebands 

band 3 – Green, band 4 – Red and band 8 - NIR using a sample of WorldView-3 data 

of respective bands, to a spatial resolution of 1m based on sparse representation 

techniques. The respective bands of WorldView-3 multispectral data are band - 3 

Green, band 5 - Red and band 7 - NIR1. If this works it should ultimately afford more 

accurate extraction of 2D building footprints in data void regions. 

 

Sparse representation is defined as the dictionaries containing sparse linear 

combinations of image structures such as textures, corners and edges having the 

support of direction information (vector quantity). It is a learning-based method used 

in super-resolution restitution or super-resolution mapping approaches. Super-

resolution refers to the task of enhancing resolution of images by combining one or 

more low-resolution observations of the same scene to produce high resolution images 

(Park et al., 2003; Kawulok et al., 2019). This chapter follows sparse representation 

for super-resolution analysis as used by Yang et al. (2010). The approach has yet to be 
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used to enhance spatially the resolution of imagery in order to extract building features. 

Accordingly, the objective of the present chapter is to spatially enhance the Sentinel-

2 image from 10m to 1m, by sparse representation techniques, so as to extract buildings 

features more accurately from the enhanced images. To demonstrate the resolution 

enhancement techniques Shanghai is taken as a testing site. In line with the broader 

objective, this chapter addresses mainly three questions: i) what are the optimal 

parameters required to enhance Sentinel-2 images, ii) what are the ideal bands to be 

used for the extraction of different urban features and buildings, and iii) how are the 

different buildings  (large, small, high rise, low rise) and other urban features presented 

after spatial enhancement. The enhanced Sentinel-2 images are also classified to 

extract features of the urban landscape, from which buildings would be extracted after 

additional processing (and fed into the next chapter to produce 3D city models). 

 

4.2 Study area 

In the previous chapter, both Nottingham and Shanghai were the focus to generate 3D 

models. It was observed that, unlike Nottingham, Shanghai does not have enough 

spatial coverage of open 2D building footprint data to perform the 3D model 

generation. This situation is applicable to most of China and other Asian countries. 

Therefore Shanghai is taken as an ideal case to test the spatial resolution enhancement 

methods. Areas outside Huangpu District where WorldView-3 data were freely 

available was taken to generate the training set (Figure 4.1). The training sets were 

applied in Huangpu District to enhance the spatial resolution.  
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Figure 4.1 Map of study area showing Huangpu District (red polygon) and the 

training area (yellow box) taken for dictionary generation 

 

4.3 Satellite EO data – openly available 

For applying the sparse representation technique to achieve satellite spatial data 

enhancement, a sample area is required where both fine and coarse resolution satellite 

data are present. For the current study, Sentinel-2 data was used as the coarse 

resolution data input and WorldView-3 data as the fine resolution data input. 

 

4.3.1 Sentinel-2 

The Sentinel-2 series contains two satellites namely Sentinel 2A launched on 23rd June 

2015 and Sentinel 2B launched on 7th March 2017 with an operational lifespan of 7.25 

years. This sensor has a temporal resolution of 10 days with one satellite and 5 days 

with two satellites. The spatial resolution varies between 10m, 20m, and 60m based 
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on the spectral bands (Table 4.1) with a swath width of 290km ( The European Space 

Agency, 2014; Immitzer et al., 2016). 

 

Table 4.1 Spectral properties of Sentinel-2, the bands considered for 

enhancement are highlighted as shaded values  

Spectral 
Bands 

Sentinel-2A Sentinel-2B  
Central 

wavelength 
(nm) 

Bandwid
th (nm) 

Central 
wavelength 

(nm) 

Band
width 
(nm) 

Spatial 
resolution 

(m) 
Band 1 – 
Coastal 
aerosol 

442.7 21 442.2 21 60 

Band 2 – Blue 492.4 66 492.1 66 10 
Band 3 – 
Green 559.8 36 559 36 10 

Band 4 – Red 664.6 31 664.9 31 10 
Band 5 – 
Vegetation re
d edge 

704.1 15 703.8 16 20 

Band 6 – 
Vegetation 
red edge 

740.5 15 739.1 15 20 

Band 7 – 
Vegetation 
red edge 

782.8 20 779.7 20 20 

Band 8 – NIR 832.8 106 832.9 106 10 
Band 8A – 
Narrow NIR 864.7 21 864 22 20 

Band 9 – 
Water vapour 945.1 20 943.2 21 60 

Band 10 – 
SWIR – 
Cirrus 

1373.5 31 1376.9 30 60 

Band 11 – 
SWIR 1613.7 91 1610.4 94 20 

Band 12 – 
SWIR 2202.4 175 2185.7 185 20 

 
Source: Earth Observation System (https://eos.com/find-satellite/sentinel-2/) 
 

The Sentinel-2 satellite has a multispectral EO system featuring the Multispectral 

Instrument with 13 bands that span from the visible and the near infrared to the 

shortwave infrared bands (Chastain et al., 2019). The visible and the near infrared 
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(NIR) bands have a spatial resolution of 10 m, the infrared bands have 20 m spatial 

resolution and the other bands have 60 m. The 10 m spatial resolution provides 

Sentinel-2 data with the potential for detailed exploration of the Earth’s surface (for 

example, urban sprawl and agriculture) (Phiri et al., 2020). Sentinel-2 offers improved 

data compared to other low to medium spatial resolution satellite images (for example, 

Landsat), especially in temporal and spatial resolution (Novelli et al., 2016). The main 

advantage of Sentinel-2 is the combination of wide swath and frequent revisiting time 

(5-day) which makes it highly suitable for mapping and monitoring human settlements 

at a global level (Pesaresi et al. 2016; Vuolo et al. 2018).  

 

The choice of image to be used from the Sentinel-2 satellite record was determined by 

the requirement for a negligible amount of shadowing of buildings and by the 

requirement for the VHR Worldview data to be close in date of capture. For the 

Shanghai study area, the cloud-free (less than 10% cover) satellite image captured in 

July 2016 was chosen for image processing and this meant that the effect of shadow 

on urban buildings was negligible. 

 

 4.3.2 WorldView-3 (WV-3) – openly available via a special arrangement 

Selective non-continuous tiles and metadata of WV-3 satellite data is openly available 

for certain cities upon request soley for research purposes. Shanghai is one of the cities 

where WV-3 is openly available. WV-3 was successfully launched on 13th August 

2014. WV-3 is the first multi-payload, super-spectral, fine resolution commercial 

satellite sensor operating at an altitude of 617 km (DigitalGlobe, 2016; Ye et al., 2017). 

WV-3 provides 31 cm panchromatic resolution, 1.24 m MS (Multispectral) resolution, 

3.7 m SWIR (Short-Wave Infrared) resolution, as well as 30 m CAVIS (Clouds, 

Aerosols, Vapors, Ice, and Snow) with 12 bands (desert clouds, aerosol-1, aerosol-2, 
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aerosol-3, green, water-1, water-2, water-3, NDVI-SWIR, cirrus, snow) and a ground 

resolution of 30 m at nadir (Barazzetti et al., 2016). CAVIS monitors the atmosphere 

and provides correction data to improve WorldView-3's imagery while it images earth 

objects through haze, soot, dust or other obscurants. Table 4.2 provides the spectral 

properties of WorldView-3. WV-3 has an average revisit time of < 1 day and is capable 

of collecting up to 680,000 km2 per day. WV-3 also collects shortwave infrared 

(SWIR) imagery in eight bands, offered on a commercial satellite for the first time 

(Barazzetti et al., 2016).  

 

Table 4.2 Spectral properties of WorldView-3, the bands considered for the 

enhancement of Sentinel 2 image are highlighted as shaded values  

Spectral 
Bands 

Central 
wavelength (nm) 

Effective band Width 
Δλ (μm) 

Resolutio
n 

Panchromatic 649.4 0.2896 0.3m 
Coastal 427.4 0.0405 

1.2m 

Blue 481.9 0.0540 
Green 547.1 0.0618 
Yellow 604.3 0.0381 
Red 660.1 0.0585 
Red Edge 722.7 0.0387 
NIR1 824.0 0.1004 
NIR2 913.6 0.0889 
SWIR1 1209.1 0.0330 
SWIR2 1571.6 0.0397 

7.2m 

SWIR3 1661.1 0.0373 
SWIR4 1729.5 0.0416 
SWIR5 2163.7 0.0389 
SWIR6 2202.2 0.0409 
SWIR7 2259.3 0.0476 
SWIR8 2329.2 0.0679 

 
Source: DigitalGlobe (2016) 
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4.4 Methodology of sparse representation 

The overall methodology as illustrated in figure 4.2 mainly addresses two questions: 

1) Is it possible to spatially enhance Sentinel-2 image using sparse representation, so 

that building footprints may be extracted to use in 3D city model? and 2) what are the 

optimal values (dictionary size, bands, sample size, patch size) required to enhance 

Sentinel-2 image to 1m resolution using sparse representation techniques? 

 

Figure 4.2 Overall methodology used for increasing the spatial resolution of 

Sentinel-2 (10m) satellite data based on sparse representation techniques 
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As stated earlier, for image spatial enhancement, sparse representation for super 

resolution analysis was adopted from Yang et al., (2010). The sparse representation 

method has two sections, one the training section where characteristics for image 

enhancement are acquired from a sample area, while the other is the image 

reconstruction phase where the enhanced image is produced using the input of the 

training phase. Accordingly, in general, the whole work of sparse representation can 

be subdivided into three sections namely the pre-processing phase, training phase and 

the reconstruction phase. In the pre-processing stage, the Matlab 2010 code has to be 

calibrated according to the Matlab 2018 version, as codes were different in earlier 

versions (Matlab 2010 used by (Yang et al., 2010)) than the 2018 version. Debugging 

and error identification would be very difficult in older versions. Following the 

process, satellite images were made in a specific format as the input for the training 

phase.  

 

4.4.1 Pre-processing phase 

4.4.1.1 Matlab calibration  

Original Matlab code published in open source by Yang et al., (2010)) was taken for 

the study which was compatible only in older versions of Matlab code. Hence, the 

initial task was to run the code in Matlab 2018. After multiple debugging, the problem 

was fixed and the major error found was ‘fmincon’ error. Fmincon error occurred 

while running the script Demo_Dictionary_training.m. The script line 34 in the 

l2ls_learn_basis_dual.m was modified to options = optimset('GradObj','on', 

'Hessian','on','Algorithm','trust-region-reflective'); to solve the issue. The error 

occurred because fmincon changed since the Matlab 2014 version. The original code 

was developed to enhance normal images with BMP format whereas, here the code 
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had to be applied to individual satellite bands. The Matlab code has been modified 

from original RGB format input to single band input in .tif format. The output was set 

to get the satellite image in .tif format. Customisation of the input, output and localised 

paths of codes in Demo_Dictionary_training.m and Demo_SR.m were done to make 

the code run. 

 

For the running of code, both fine resolution and coarse resolution satellite images of 

the same area have to be given as the input. The fine resolution image (WV-3) shall 

be stored in the training folder inside the data folder and the coarse resolution image 

(Sentinel-2) have to be stored in the testing folder inside the same data folder. 

Customising the input satellite images into a specific format is the subsequent task.   

 

Digital number or the pixel values computation and comparison is done in sparse 

representation. The method aims to generate a relation between coarse resolution and 

fine resolution images texture and edge content (Elad, 2010). The code enhances the 

spatial resolution by computing the fine resolution and coarse resolution dictionaries 

(output of training phase) trained by the usage of fine resolution satellite data (WV-3). 

In order to apply these values adequately for enhancement (reconstruction phase), both 

coarse and fine resolution images were radiometrically corrected. As DN values are 

different for both Sentinel-2 and WV-3 images, it is not possible to compare both raw 

images; this is better done after converting both images’ corresponding reflectance 

values. Hence DN was converted to the corresponding reflectance value.       

 

The radiometric corrections allow a more accurate assessment of ground surface 

properties and facilitate comparison between images acquired at different times or for 

different areas (MicroImages, 2016). This study employed absolute radiometric 
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correction for converting DN to radiance and radiance to reflection. Further it is not 

necessary to implement atmospheric correction as the urban area classification was the 

only concern (Lin et al., 2015). The equation to convert DN to the reflectance of 

WorldView-3 image is as follows (DigitalGlobe, 2016): 

 

Step 1: DN to Radiance (L) 

𝐿 = 𝐺𝐴𝐼𝑁 ∗ 𝐷𝑁 ∗ (
𝑎𝑏𝑠𝑐𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
) + 𝑂𝐹𝐹𝑆𝐸𝑇 

Step 2: Radiance (L) to Reflectance (ρ) 

𝜌 =
𝐿

𝐹0
 

 

Where F0 is the extraterrestrial solar irradiance (constant). The abscal factor, effective 

bandwidth and offset values are obtained from the WV-3 metadata file. The solar 

irradiance constant is obtained from the DigitalGlobe (2016) manual.  

In the case of Sentinel-2A, pixel radiometric measurements are provided in Top-Of-

Atmosphere (TOA) reflectance with all parameters, to transform them into radiances 

(Gascon et al., 2017; Gatti & Bertolini, 2016). The conversion formulae to apply to 

image DN to obtain physical values is: 

 

Reflectance (float) = DN / (QUANTIFICATION_VALUE) 

 

As the default quantification value for all Sentinel-2 images is 10000, Sentinel-2A 

image is divided by 10,000 so as to convert from DN to reflectance value.  In the case 

of satellite data, the code looks at the spectral values of the input satellite data. Hence 

it is very important to identify similar spectral bands in both coarse and fine images. 

The wavebands NIR, Red and Green of WV-3 with a spatial resolution of 1.2m were 
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taken for training and preparing a dictionary. The WV-3 images spatial resolution has 

been resampled to 1m for the smooth running of code. The corresponding NIR, Red 

and Green bands of Sentinel-2 with a spatial resolution of 10m have been taken as 

input data for spatial resolution enhancement. 

  

Sparse representation code execution requires a single band fine resolution image 

(WV-3) along with the respective spectral band of coarse resolution (Sentinel-2) image 

as input. Accordingly, the NIR, Red and Green bands are extracted separately in .tif 

format and given as input. The code has to be run separately for each band 

enhancement.  

 

4.4.2 Training phase     

Sparse representation works mainly in two phases, out of which the training phase is 

the first part. In this phase, the information to enhance the coarse resolution image is 

created and stored in .mat format called a dictionary. Using the input fine resolution 

satellite data two dictionaries (coarse and fine resolution) have to be created.   

 

To create a dictionary, optimum values for four parameters have to be found out. 

Further, dictionary size, sample numbers, zoom factor, and patch size have to be 

defined. There are no specific values to define these parameters (Yang et al., 2010), so 

the trial and error method has to be adopted to find optimum values. 

 

Dictionary size can be defined in 2n format, i.e. it can be 256, 512, 1024 and so on. 

Adopting a larger dictionary size could provide more accurate results (Cheng, 2015), 

but it also increases the computational time. The dictionary is the main part of the 

image reconstruction. Once a proper dictionary is generated from a sample area, then 
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it can be applied to any similar region. By considering all these factors, the dictionary 

size of 2048 was chosen.  

 

Sample number defines how many patches have to be selected. The designed 

dictionary will select patches randomly but the designed dictionary will select the 

patches having specific information. If any selected patch has repetitive information, 

the same will be discarded. The higher sample numbers give enrichment to the 

dictionary and different combinations will be stored. So a sample number of 1,00,000 

were assigned. 

 

Zoom factor (up-scale in Matlab code) lets the display zoom by a scale factor. Zoom 

factor is important in sparse representation during both the training and reconstruction 

phase, but it works the opposite in the two phases.  During the training phase, the zoom 

factor helps to discard a relevant number of columns and rows to form a new large 

cell, whereas, during the reconstruction phase, it acts as a magnification factor.  In the 

present study, during the training phase, input imagery (WV-3) was downscaled or 

degraded to 10m spatial resolution. i. e. 10*10 pixels of 1m were joined together to 

form one pixel of 10m resolution. Further during the reconstruction phase, coarse 

resolution (Sentinel-2) imagery was zoomed to 1m spatial resolution. Here one pixel 

with a spatial resolution of 10m was replaced by 10 pixels. One pixel of Sentinel-2 

account for 10*10 metre.  

 

Patch size is the other parameter to set and it determines the number of pixels or cells 

to be considered for forming a sample. A patch size of 10 was given as input because 

there is a relation between patch size and zoom factor. The minimum patch size should 

not be less than the zoom factor (Peleg & Elad, 2014).  
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Once all the parameters are set, the code was executed in a high-end workstation. A 

single band of fine resolution image (WV-3) was given as input in .tif format. It took 

approximately eight hours to generate the dictionary for one band. The optimum values 

were found out by the trial and error method. Two dictionaries (coarse and fine) are 

created for each band.    

 

4.4.3 Reconstruction phase  

This is the second phase of the sparse representation in which the coarse resolution 

image (Sentinel-2 of 10 metre spatial resolution) is considered. Based on the 

dictionaries already generated, the lost texture and edges are estimated. The zoom 

factor of 10 has been set as this could create an enhanced output image of one-metre 

pixel size from the original input of 10m Sentinel-2 image. The output locations are 

specified in this operation and the output will be in .tif format.  

 

Generation of the dictionary is the key thing in sparse representation. Dictionaries 

generated from one region can be applied to other similar regions (areas with similar 

topographical features, building types and structure, roof tops etc.) to enhance the 

resolution of spatial features. In the present work, two reconstruction works were done 

with the same dictionary. First, the reconstruction phase was applied to the Sentinel-2 

image for the same geographical area as the WV-3 image. Further, the reconstruction 

phase was applied to enhance the Sentinel-2 image of the Huangpu region. The 

reconstruction phase took approximately four hours to produce output for a single 

band. The parameters used in the training phase and the reconstruction phase are 

shown in the table (Table 4.3). 
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Resultant outputs provided individually enhanced spatial resolution for NIR, red and 

green spectrum. Many post-processing steps are required to prepare the satellite 

images ready for image classification and feature extraction. Firstly these images were 

stacked together to create the multispectral image. As the output of sparse 

representation will not have spatial referencing and projection system, the output 

images were georeferenced by keeping the original Sentinel-2 image as the base. 

Validation of the results by visual interpretation with the original Sentinel-2 image was 

the final task after the geo-referencing.    

 

Table 4.3 Parameters for training and reconstruction phase 

Phase Image Upscaling Sentinel-2 from 10 m to 1m 
Training Input Image WorldView-3 of 1m spatial resolution 

Spectral bands NIR, Red, Green 
Dictionary size 2048 
Number of samples 1,00,000 
Patch size 10 
Downscale factor 10 

Reconstruction Input Image Sentinel-2 with 10 m spatial resolution 
Spectral bands NIR, Red, Green 
Up-scale factor 10 

 

4.5 Evaluation of output from sparse representation   

This section explores how the spatial resolution of Sentinel-2 has been enhanced 

following sparse representation techniques with respect to its usage as an input into 

3D city modelling. As explained in the methodology section, spatial resolution 

enhancement for Sentinel-2 images has been carried out for two areas using the 

dictionary generated from training. One area is where the WV-3 data is available 

(Figure 4.1) and the other area is the Huangpu District. Therefore, this section is 

organised into two sub sections: i) results for sample area (4.5.1) and ii) results for 

Huangpu District (4.5.2). Based on selected sample features from both areas, these sub 
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sections mainly provide an overview of how the spatial resolution of selected features 

was enhanced after the usage of sparse representation techniques. The enhanced 

images appear reduced in colour, which is due to the histogram variation. The term 

variance refers to a statistical measurement of the spread between numbers in a data 

set. The enhanced Sentinel-2 image is for a small urban area which has more 

reflectance. Hence the colour shade is more towards the brighter side. While the raw 

Sentinel-2 image is for a larger scene and histogram include more vegetation, water 

and other features, so the histogram is more spread and has a little darker side or the 

DN representation is little different. 

 

An assessment of the output enhanced Sentinel-2 image was done via visual 

assessment and comparison of the outputs (10m Sentinel-2 image vs enhanced 

Sentinel-2 image to 1m) and the results are elaborated in below sections. Lastly, the 

comparison between the 10m and 1m (enhanced) Sentinel-2 data was undertaken via 

comparative assessment of an unsupervised classification based method to map urban 

features across the scene (4.5.3). 

 

 4.5.1 Visual assessment for the area coinciding with the WorldView data 

Large buildings, high rise/tall buildings, small buildings, road, water body and 

vegetation were the subset features identified in order to demonstrate their response to 

resolution enhancement from this area. Figure 4.3 to 4.8 provides subsets of these 

features and demonstrates how the spatial resolution of these features visually varies 

in WV-3, Sentinel-2 (10m) and spatially enhanced Sentinel-2 (1m) images. Each of 

these subsets is shown in two scales (1:10000 and 1:5000). These scales are chosen as 

they provide optimum visualisation as well as being easier to measure than in 4500 or 

9500 scales. 
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4.5.1.1 Large buildings 

Figure 4.3 represents a small subset of large buildings (that have a pixel size of 4*4 

pixels or more in Sentinel-2 10m image). It is to be noted that the comparison should 

be done between Sentinel-2 (10m) and spatially enhanced Sentinel-2 (1m) images so 

as to understand the nature and extent of enhancement. In this case, the major 

difference observed between original Sentinel-2 and spatially enhanced Sentinel-2 

images was on the edges of buildings. From the subset area given in Figure 3, it can 

be observed that the original Sentinel-2 image with 10m resolution has distorted edges 

with mixed pixels, whereas in the case of spatially enhanced Sentinel-2 image with 1m 

resolution these edges became more enhanced and sharpened.  

 

In each of these images, the maximum length of buildings has been measured by 

creating transects for random buildings. This method is chosen to understand the 

change of length of matching buildings in different satellite images. The actual length 

of the building is more accurately shown in the very high resolution WV-3 satellite 

image and considered as true value. The measured length values of the same buildings 

from the other two satellite images show how much closer these values are to the true 

value from WV-3 satellite image.  It is noted that the maximum length of buildings is 

greater in the Sentinel-2 (10m) image than the WV-3 images. The length of buildings 

for the enhanced Sentinel-2 (1m) image was found to be less than the length shown in 

the original Sentinel-2 (10m) but higher than the WV-3 image derived length.  Further,   

spatially enhanced images showed minimal mixed pixels for areas closer to vegetation 

and edges of buildings became more distinct from the adjacent vegetation. 



Chapter IV 
 

93 
 

  
Figure 4.3 Spatial enhancement of large buildings through sparse representation 
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4.5.1.2 High rise buildings 

Figure 4.4 represents a subset of high rise buildings in the sample area. Buildings with 

a height of 50m or more are classified as high rise buildings. From WV-3 it can be 

observed that the southern and eastern part of the image is occupied by high rise 

buildings. From the original Sentinel-2 image it is hard to distinguish these buildings. 

Especially at 1:5000 scale buildings are highly distorted and as in the case of large 

buildings due to mixed pixels, it is hard to define the shape and edges of buildings. In 

the case of high rise buildings, base areas of buildings are reduced compared to large 

buildings. Hence it is very difficult to identify these buildings in Sentinel-2 image with 

10m resolution and they appear highly mixed up and diluted. 

  

After the spatial enhancement, it can be observed as in Figure 4.4 that these buildings 

became more distinguishable. Further, the white coloured pixels are clustered together 

and display a very dense and accumulated appearance, unlike flat buildings. 
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Figure 4.4 Spatial enhancement of high rise buildings through sparse 
representation 
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4.5.1.3 Small buildings 

Figure 4.5 shows a subset area with a mix of small buildings i. e. buildings with a pixel 

size less than 2 lengths or breadth in Sentinel-2 10m image (towards the north) and 

medium rise buildings (southeast).  

  
Figure 4.5 Spatial enhancement of small buildings through sparse representation 
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From the original Sentinel-2 image it can be observed that small buildings are visible 

only as small, distorted and imperceptible linear features. Medium buildings also have 

a distorted shape but they are denser. After performing sparse representation 

techniques these buildings have become more prominent, continuous and 

distinguishable.  

 

To understand representation of small buildings in different images transects were 

created for buildings in each image and compared. WV-3 is taken as reference and 

length of small buildings in Sentinel-2 and enhanced Sentinel images are compared 

with reference to WV-3. Measurement of length of small buildings shows that these 

buildings are less distinguishable in Sentinel-2 images due to the issue of mixed pixels 

and length of buildings are longer than that of normal length. Table 4.4 shows 

measurement results for selected buildings and it can be observed that the deviation of 

length with respect to WV-3 is higher in Sentinel-2 (10m).  

 

Table 4.4 Comparison of length of small buildings in different images 

WV3 
Sentinel-
2 (10m) 

Enhanced 
Sentinel 

Change in building length with 
respect to WV3 (in %) 

 
Length in meters 

Sentinel – 2 and 
WV3 

Enhanced Sentinel  
and WV3 

 
98.05 107.06 94.43 9.19 -3.70 
72.72 84.77 71.27 16.57 -1.99 
82.37 94.18 87.42 14.34 6.13 
97.80 108.43 98.52 10.86 0.73 
35.73 42.80 34.60 19.78 -3.16 

120.88 120.02 113.24 -0.71 -6.32 
129.27 137.96 130.49 6.72 0.94 
99.07 103.13 98.99 4.10 -0.08 

140.21 150.15 143.83 7.09 2.58 
102.21 103.18 103.42 0.95 1.18 
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However it is also observed that the enhanced image tends to show lesser length in 

comparison to WV-3. This reduction is largely due to edge sharpening and separation 

between different buildings. Thus it is clear that enhanced Sentinel-2 image produces 

more accurate results in case of small buildings in comparison to Sentinel-2 images 

whereas achieving complete accuracy is not possible yet. 

 

4.5.1.4 Road features 

The response of road features to sparse representation techniques is as demonstrated 

in figure 4.6. In the subset area shown, big highway roads, as well as small footpaths, 

are visible and hence observations were made on both types. In the original Sentinel-

2 image, the edges of the big highway road are diluted with adjacent vegetation. 

Whereas, after the spatial enhancement, highway edges became prominent and distinct 

from vegetation.  There is a big circle in the subset where all four major roads meet. 

In WorldView-3, white marks along the roads at this junction point were visible, which 

is unclear in the original Sentinel-2 image. Figure 6 shows that after the spatial 

enhancement these white marks became clearer and prominent. 

 

In the subset, image footpaths were noticed along the sides of canals. Even though 

these footpaths are visible in the Sentinel-2 (10m) image they are discontinuous. 

Spatially enhanced Sentinel-2 (1m) image shows these footpaths as a single, 

continuous line feature. Another important feature observed was a circular shaped 

footpath towards the southwestern side of the subset image. In the original Sentinel-2 

image this circle is not visible but is enhanced and sharpened after the spatial 

enhancement.  
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Figure 4.6 Spatial enhancement of road feature through sparse representation 
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4.5.1.5 Vegetation 

Figure 4.7 portrays the subset for vegetation. Even though the enhancement of 

vegetation is not important in the current study, a clear difference before and after the 

spatial enhancement process was observed.  

 
Figure 4.7 Spatial enhancement of vegetation through sparse representation 
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The main advantage of the spatial enhancement, in this case, is that edges of vegetation 

become more prominent and sharpened which easily allows to avoid mixed pixels as 

well as to distinguish buildings and roads from vegetation.  

 

4.5.1.6 Waterbody 

Figure 4.8 represents the subset area with a waterbody. In the original Sentinel-2 image 

the boundaries of vegetation and the waterbody are overlapped whereas after the 

spatial enhancement these boundaries became clear and sharpened. However, 

according to different seasons, the water level may fluctuate and the shapes of water 

bodies can be altered. Hence, for classifications, it is important to consider the period 

of images for the analysis. 
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Figure 4.8 Spatial enhancement of waterbodies through sparse representation 
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4.5.2 Visual assessment for Huangpu District, Shanghai (beyond the Worldview 

area) 

This section provides an overview of how the sparse representation techniques 

enhanced the spatial resolution in Huangpu District. It may be noted that the dictionary 

generated was outside the Huangpu District. Figure 4.9 shows the visual difference 

between the original Sentinel-2 (10m) and enhanced Sentinel-2 (1m) image with 

examples of three selected subsets of Huangpu District. From the subset images it is 

clear that, after performing the sparse representation techniques, features like 

buildings, roads and water bodies became more prominent, sharp and distinct. Pixels 

on the edges of features are grouped to the main objects or features and this avoids the 

issue of mixed pixels. 

 

The subset image 4.9 (a) is occupied by very small buildings and patches of vegetation. 

In the original Sentinel-2 (10m) image this area looks very coarse textured and unclear. 

After the spatial enhancement, these features become clearer and individually 

identifiable. From subset images 4.9 (b) and 4.9 (c), it is clear that the shapes of 

individual buildings become clearer and identifiable after the sparse representation 

process. This is explained in more detail in the next paragraph. Likewise in the subset 

image 4.9 (c) the distinction between land areas and the water bodies is very clear and 

smooth after the spatial enhancement. 
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Figure 4.9 Visual difference between original Sentinel-2 (10m) and enhanced 

Sentinel-2 (1m) image after sparse representation with selected examples from 

Huangpu District 
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Figure 4.10 and 4.11 provides examples of different building shapes and their 

appearance before and after the sparse representation as well as in Google Earth Image. 

Figure 10 displays the subset image of an oval-shaped building. It can be observed that 

the shape of the building is not clear in the original Sentinel-2 (10m) image (Figure 

4.10a). After spatial enhancement (Figure 4.10b) the shape of the building becomes 

prominent with sharp edges and matches with the shape of the building in Google 

Earth (Figure 4.10c).   

 

 
Figure 4.10 Appearance of an oval shaped building in a) Original Sentinel-2 

image (10m), b) spatially enhanced Sentinel-2 image (1m), c) subset of Google 

Earth image (not to scale) 

 

In figure 4.11 also similar observations were made. The subset image shows an area 

with a big arch-shaped building complex and a large rectangle-shaped building. As in 

figure 10, it was observed that the shapes and edges of these buildings became 

prominent and matched with that of the Google Earth image. 

  

It may be noted that these results are obtained after using a dictionary generated outside 

of Huangpu District. These results shed light on the potential applications of both WV-

3 and Sentinel-2 images. Generating dictionaries from WV-3 across the globe has huge 

potential on one hand, while on the other hand, global coverage and a frequent revisit 
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of Sentinel-2 open up the scope of producing spatially enhanced Sentinel-2 images 

using dictionaries generated using WorldView-3. Further, these spatially enhanced 

Sentinel-2 datasets can be used in generating 2D buildings footprints for the regions 

where 2D building datasets are not available for free. 

 

 
Figure 4.11 Appearance of an arch-shaped building and a rectangle-shaped 

building in a) Original Sentinel-2 image (10m), b) spatially enhanced Sentinel-2 

image (1m), c) subset of Google Earth Image (not to scale) 

 
4.5.3 Assessment via unsupervised classification  

To extract urban features from the enhanced Sentinel-2 scene for Huangpu, an 

unsupervised classification was conducted and its efficacy compared with the same 

classification procedure being applied to the original Sentinel-2 scene. This 

classification process involved several steps, as outlined further. The detailed flow 

chart for the classification is shown in the next chapter. 
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4.5.3.1 Removal of vegetation from the urban scene  

The Normalized Differenced Vegetation Index (NDVI) was performed to remove the 

healthy vegetation area from the satellite image (NDVI = ((IR - R)/(IR + R)) where IR 

is the pixel values from the infrared band and R is the pixel values from the red band). 

NDVI analyses the photosynthetic activity of vegetation and is a good indicator for the 

vitality of vegetation or for its growth stage. Usually, this index is largely used to 

analyse the spatial distribution and seasonal fluctuation of vegetation over a region. 

Further, the index can also be used to differentiate between vegetation and plant fewer 

land covers, which is helpful for image classification. Here the NDVI was used to 

determine, where the vegetation across the urban scene was, in order to remove these 

from further analyses. Once the NDVI was generated for the study area, the whole 

NDVI image was classified into different classes based on the spectral values and the 

threshold for healthy vegetation was identified by visual interpretation. These healthy 

vegetation areas are removed from the original satellite image using a masking 

function. This was done to reduce the effect of vegetation on the impervious/building 

layer extraction process.  

 

4.5.3.2 Classification of an impervious layer 

As previously stated, the vegetation area was removed from the satellite image and the 

resultant image mainly shows the impervious layer and water body of the urban area. 

The impervious layer consists of road, buildings and other major human made features 

where the water penetration is limited (Frazer 2005). The unsupervised classification 

was then applied to the imagery. The k-means clustering algorithm was used for the 

classification. The convergence threshold was set as 0.950 with the maximum iteration 

of 25 times. The whole image was classified into 40 different classes and the grouping 
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of similar classes was done by comparing each class with the corresponding area on 

google earth. The initial classes of 40 were chosen by trial and error method. The 

unsupervised classes gave optimal spectral separation in the given area for Sentinel-2 

image.  Seven classes have been finalized by regrouping these 40 classes, which 

include water, road, resultant vegetation area, open area, buildings with high 

brightness roof, building with red/dark shade roofs and general buildings. 

 

Even though there are other image classification methods like supervised classification 

and object based classification, the unsupervised classification method was chosen, as 

this method allowed using the high resolution Google Earth satellite image for visual 

interpretation. The high resolution Google Earth image was geographically linked to 

the classified satellite image. Each of the forty classes derived from unsupervised 

classification was regrouped to seven classes by looking at the high resolution satellite 

data via visual interpretation technique.          

 

The grouping of classes representing water bodies was done with relative ease. The 

buildings which have high reflectance values or distinctive reflectance values were 

able to be extracted easily. The grouping of the buildings falling in a highly clustered 

area or with low spectral reflectance was found to be difficult to extract. In these 

regions, the pixel values were seen to have similarities with the pixel values of adjacent 

road features. These mixed pixel areas were extracted separately from the satellite 

image and the unsupervised classification applied again for this area to increase the 

overall classification accuracy. 
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4.5.3.3 Validation of classified images   

Both Sentinel-2 image (10 m) and enhanced Sentinel-2 image (1m) were classified 

using the above procedure. The accuracy of each classification was validated by 

selecting 30 random points for each class ( Richards 2012; Rwanga Olofsson et al. 

2014; and Ndambuki 2017). The points were selected with the help of ArcGIS high 

resolution base map and by use of raw Sentinel-2 image. The water and vegetation 

accuracy was not considered as the water area was limited and most of the vegetation 

area was removed using NDVI method. So 30 points were selected for each remaining 

class viz road, open area, general building, bright roof building and red/grey roof 

buildings. 

 

4.5.3.4 Classification outputs and comparison between original and enhanced 

Sentinel-2 scenes 

Figure 4.12 (LHS) shows the classified output based on the original Sentinel-2 data (at 

10 m spatial resolution). From the figure, it can be observed that the maximum area i. 

e. 42% (6.4 sq.km) falls in the open category followed by buildings with red/dark roofs 

(22%) and roads (16%). The area under buildings with the bright roof is less than 1% 

(0.14 sq.km) and of general buildings is around 6% (Table 4.5). 

 

Classification output for the enhanced Sentinel-2 image (1m) showed a decrease in 

open class (Figure 4.12 RHS) compared to that obtained using the original image. In 

the case of the enhanced Sentinel-2 image, the area under open class is reduced to 28% 

(4.3 sq.km) against 42% in the Sentinel-2 (10m) image. Other classes showed real 

differences. For example, area under general buildings was increased from 6% to 21% 

and buildings with the bright roof has been increased by 5%.  
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Figure 4.12 Classified map of 10 m Sentinel-2 satellite data left hand side (LHS); 

Classified map of enhanced 1m Sentinel-2 satellite data right hand side (RHS) 

 

The enhanced Sentinel-2 image was found to be more able to identify bright buildings 

or buildings with clear patterns and uniform colour. However, in the enhanced Sentinel 

image area of buildings with red/dark roof declined from 22% (3.3 sq. km) to 14% (2.1 

sq. km) as these buildings were largely moved to general buildings. This is due to the 

capability of enhanced Sentinel-2 images in distinguishing mixed pixels into 

corresponding classes with relative better accuracy than that of Sentinel-2 images. 
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Table 4.5 Areas of selected urban feature classes from Sentinel-2 (10m), enhanced 

Sentinel-2 (1m) 

 Sentinel-2 (10m) 
Enhanced Sentinel-2 

(1m) 
Land cover Area in sq.km 

Building (general) 0.96 3.24 
Building bright roof 0.14 1.00 
Building red/dark roof 3.34 2.13 
Open 6.44 4.34 
Road 2.53 2.39 
Vegetation 1.65 1.98 
Water 0.31 0.30 

 

Table 4.6 provides an overview of accuracy assessment results for Sentinel-2 images 

before and after spatial resolution enhancement. Results show that the accuracy of all 

features was improved after spatial enhancement except for the open class. While the 

accuracy of road features was increased from 73% in Sentinel-2 (10m) to 83% in 

spatially enhanced Sentinel-2 (1m), it declined for open class after spatial 

enhancement. The accuracy of the open class was relatively higher (83%) in the 

Sentinel-2 (10m) image in comparison to the enhanced sentinel-2 -1m (77%) image. 

Accuracy reduction in enhanced Sentinel-2 image can be attributed to relative edge 

sharpening and edge enhancement of features. This is because the Sentinel-2 image 

represents a 10*10 metre area as one pixel and it will be classified as either open or 

building class. Whilst in the enhanced Sentinel-2 image the same area is divided into 

10 pixels and each pixel is classified into open or building class depending on their 

relevance. Hence it results in edge enhancement and better separation is possible in 

enhanced Sentinel-2 image. 
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Overall, the Sentinel-2 image showed very high accuracy in the case of bright 

buildings (97% accuracy for Sentinel-2 (10m) and 100% accuracy for enhanced 

Sentinel (1m) images). Likewise dark/red tile buildings also showed relatively higher 

accuracy in both scenarios (about 87% in Sentinel-2 (10m) and 93% in enhanced 

Sentinel (1m) image). Whereas, the accuracy of general buildings was relatively low 

(50%) in the case of Sentinel-2 (10m) image which showed considerable improvement 

after the spatial resolution enhancement (i. e. 80% in enhanced Sentinel-2). 

 

Table 4.6 Accuracy assessment results (in %) of land cover classification from 

Sentinel-2 (10m) and enhanced Sentinel-2 (1m) images 

 Road Open 
Bright 
building 

Dark/red 
tile 
building 

General 
building 

Overall 
accuracy 

Sentinel-2 
Image (10m) 73 83 97 87 50 78 
Enhanced 
sentinel-2 
image 83 77 100 93 80 87 

 

4.6 Summary 

Third chapter of this thesis provided a methodology to generate 3D city models for the 

regions where 2D building footprints are available. Attributed to non-availability of 

uniform and accurate open source 2D building footprints it is important to find alter-

natives for generation of 2D building footprints. As discussed in the second chapter 

open source satellite data has huge potential for generation of 2D building footprints 

especially in terms of their global coverage and open license irrespective of their 

coarse resolution. Still to make use of their full potential it is essential to overcome 

their resolution issues. In this context this chapter explores probabilities in enhancing 

the spatial resolution of Sentinel-2 images based on sparse representation techniques. 
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 Results show that spatial enhancement through sparse representation contributes to 

edge sharpening of features and thereby results in better delineation of urban features 

especially of buildings. After performing sparse representation techniques all build-

ings that were originally distorted and amorphous in Sentinel-2 (10m) have become 

more prominent, continuous and distinguishable. Enhanced Sentinel images are also 

able to delineate road features and waterbodies from buildings and vegetation more 

accurately. Accuracy of all categories except open class were improved after spatial 

enhancement and the overall accuracy of buildings has increased from 78% to 87%. 

Accuracy reduction in open class can be attributed to relative edge sharpening and 

edge enhancement of features. Thus overall enhanced Sentinel-2 found to be more 

capable in distinguishing buildings and other urban features from adjacent features and 

in enhancing their shapes. 

 

The following chapter (Chapter V) examines the use of the enhanced Sentinel-2 

imagery in combination with the DSM data (as per Chapter III) to produce 3D city 

models. Ultimately, the efficacy of the approaches outlined in Chapter V with respect 

to use in different applications requiring a 3D city model will be considered – It is the 

case that low level 3D city models could now be produced globally via the methods 

presented in this thesis.  

 



Chapter V 

 

114 

 

CHAPTER V 

GENERATION OF LOD0 AND LOD1 3D CITY MODELS 

FROM OPEN SATELLITE DATA  

 

5.1 Introduction 

Chapter III illustrated how to generate 3D city models from open data if 2D building 

footprint data are available. However, as discussed in previous chapters, for many 

areas of interest across the world, access to open source fine (enough) resolution 2D 

building footprints are rare, which warrants alternative means to generate 2D 

building footprints. One approach is to use open source satellite images for 

generating building footprints (Shaloni et al., 2020; Zhang et al., 2017). However, 

the accuracy of the resultant 2D building footprints generated from satellite data 

largely depends on its spatial resolution (Bittner et al., 2018; Vakalopoulou et al., 

2015). Finer spatial resolution implies a higher chance of accurately identifying the 

buildings and other urban features (You et al., 2018). Images with coarse spatial 

resolution may result in absence of many features or misclassification of non-

building features as buildings and vice versa (Liu et al., 2019). Further, the 

identification of objects that are at the edge of visibility in these images remains a 

challenging task (Oehmcke et al., 2019).  Many open licenced satellite images are of 

coarse spatial resolution which restricts their utility in urban studies. For example, 

Sentinel-2 imagery shows features at a resolution of 10m per pixel and how 

distinguishable features at this spatial resolution are dependent on their size, which 

sometimes can reach sub-pixel size.  
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Chapter IV demonstrated the potential to enhance the spatial resolution of coarse 

resolution satellite data (Sentinel-2: 10m) with a sample of very high resolution data 

(WorldView-3: 1m) based on sparse representation techniques in order to extract 2D 

building footprints in data void regions. Results from chapter 4 show that the sparse 

representation is helpful in the sharpening of the boundaries of different features of 

Sentinel-2. However, extracting buildings from spatially enhanced images can be a 

challenging process as they contain a number of other objects like trees, roads, 

concrete pavements, shadows and the like (Chen et al., 2017). In the areas where 2D 

building footprints are not available, infusing satellite images with digital surface 

models (DSMs) can be a possible solution to differentiate buildings from non-

building impervious layers and thereby generate 3D city models.  Wang et al., (2018) 

derived 3D building structures by fusing Landsat (30m) and global elevation data 

based on object-based machine learning techniques. With a finer spatial resolution, 

the Sentinel-2 imagery could be a more suitable data source for fusion. 

 

This chapter reports the attempt to fuse spatially enhanced Sentinel-2 data (from 10m 

to 1m - generated in Chapter IV) with AW3D-30 DSM data in order to generate 

LOD0 3D and LOD1 3D buildings and thereby facilitate 3D city modelling in data 

void regions. To do this, urban features (buildings, roads etc.) are classified by an 

unsupervised classification technique. Even though many classification techniques 

such as object-based classification and supervised classification exist, the use of an 

unsupervised classification was chosen as it allows direct comparison with Google 

Earth images by geographically linking the satellite data with Google Earth images. 
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Given the absence of openly licenced satellite data, the highly urbanised Shanghai 

was chosen as the study area to demonstrate this method. 

 

The first section of this chapter attempts to generate the LOD0 3D city model, from 

open satellite data, while the second section provides a comparative perspective on 

how the LOD0 3D city model behaves in the already identified OSM building 

footprint area of Huangpu. Comparison has been done between the OMS derived 

LOD1 3D city models area (i.e., the 3D city model generated based on already 

existing open 2D building footprint data – as seen in Chapter III) and the LOD0 city 

models in the same area (i.e., the 3D city model generated from open satellite 

datasets where there is no availability of open 2D building footprint data). The last 

part of the chapter provides an overview, validation of the LOD1 3D city models and 

2D building polygons generated from the spatially enhanced satellite images and the 

associated challenges.  

 

5.2 Materials and methods 

5.2.1 Study area and data 

The area of interest for the study is the same as in chapter III, Huangpu District of 

Shanghai.  As stated in previous chapters, Huangpu District is characterised by tall 

and complex building structures with no readily available open source 2D building 

footprint data. A 10m Sentinel-2 image (captured in July 2016), the spatially 

enhanced 1m Sentinel-2 image (from chapter IV) and the ALOS Digital Surface 

Model (30m) were used.  
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5.2.2 Methodology 

The overall methodology adopted in this chapter is shown in the flow chart given 

below (Figure 5.1) and comprises two main steps.  

 

Figure 5.1 A flow chart of the steps taken to generate LOD0 and LOD1 3D city 

models by combining enhanced Sentinel-2 (1m) image with ALOS DSM (30m).  
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The enhanced 1m Sentinel-2 images generated through sparse representation are 

classified to extract the features with a special focus on building extraction. Further, 

the classified image will be joined with the height information from the ALOS DSM 

(30m) in the GIS environment to create more accurate building extraction in dense 

urban settings.  

 

5.2.2.1 Cloud-free & shadow less Sentinel-2 (10m) data and Image pre-processing 

The creation of 2D geospatial data are explained in the following steps. Earlier the 

Sentinel-2 satellite image which is open source and with a spatial resolution of 10 m 

was processed for data generation. The Sentinel-2 image has a temporal resolution of 

5 days. The high temporal resolution of the Sentinel-2 image will help to choose the 

satellite image time period that has only a negligible amount of shadows building. 

For the Shanghai study area, the cloud-free and shadow-less (less than 10%) satellite 

image of July 2016 is taken for image processing as the effect of shadow on Urban 

buildings are negligible in the month (Figure 5.2 a & b).  

 

The image pre-processing procedures such as layer stacking and sub-setting has been 

performed for the study area. The visible and NIR bands with a spatial resolution of 

10m were taken into consideration and these bands were stacked together. The 

satellite image was used for image classification to measure the classification 

accuracy of the raw Sentinel-2 image and the spatial accuracy was increased to 1m 

by the sparse representation technique explained in the previous chapter. The 

resultant enhanced Sentinel-2 image (1m resolution) also was subsequently classified 

to extract the urban features.  
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Figure 5.2 Maps showing difference between the cloud-free and shadow-less 

Sentinel-2 (10m) image (a) Sentinel-2 (10m) satellite with shadow and cloud 

cover (b) for Huangpu District, Shanghai 
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5.2.2.2 Utilising the digital surface model (DSM) 

As urban area building extraction is challenging, the above classified image has been 

fused with the elevation information from the AW3D-30 DSM to increase the 

accuracy. The DSM has been classified into seven different classes as per the height 

information in the DSM. The classes were selected by the knowledge of the general 

terrain and building information of the area. The seven classes selected were <0, 0 to 

6, 6 to 10, 10 to 15, 15 to 25, 25 to 50 and >50 metres. The logic is that as Shanghai 

has a mean elevation of four metres, the classified buildings that fall into the 0 to 6 

metre range have a high probability of being a paved area or parking area. Any area 

above 25 metres will be tall buildings and the area falling above 50 metres will have 

very high rise buildings. 

  

Road, open area and building mixed classification problems can be improved by 

looking at the intermediate elevation values and thereby the accuracy of the 

classified image can be increased. The land cover classified raster image was joined 

with the classified elevation raster information by the ‘combine’ operation in 

ArcGIS. With the assignment of integer values for each class, the ‘combine’ 

operation fuses multiple rasters so that a unique output value is assigned to each 

unique combination of input.  As there are seven classes for both land cover and 

ALOS DSM (30m) image, integer values from one to seven are assigned for 

respective classes. Subsequently, the fused operation is performed so that the 

attribute information of elevation classes will be added to the land cover 

classification attribute.  
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5.2.2.3 Reclassification  

Both land cover and associated height information were added in the attribute table 

and the land cover class was modified as per the height information. The vegetation 

class with an elevation above 25 metres was reclassified to the building class while 

the building class with an elevation below mean sea level was reclassified to road 

class. The ArcGIS base map was also used to fix the respective class. The open area 

with an elevation above 25 metres was reclassified to the building class. Altogether 

all the 49 (7 land cover and 7 elevation class combination) class combinations were 

checked by this logic and interchange of land cover classes was done.    

 

5.2.2.4 Validation and building extraction of LOD0 3D city models 

Validation of the fuse operation land cover was done by the same method adopted 

for satellite image derived classified data. All the building classes were extracted 

separately out of the resultant land cover classes and were classified as per the height 

information in the attribute. The resultant output in the raster format was LoD0 3D 

city model spatial data. Each pixel stores the height value of the area. 

 

5.2.2.5 Raster to vector conversion for footprint generation - LOD1 3D city models 

The raster output was converted to respective vector polygons to extract the building 

footprints. The polygons associated with height ranges of  6 to 10, 10 to 15, 15 to 25, 

25 to 50 and >50 metres were extracted separately. Each of these polygons acts as a 

building footprint for LOD1 3D city model generation and the associated height 

range as the height of the building. The validation of the footprint was done by 

comparing it against the manually digitized building footprint of the area.    
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5.3 Results 

5.3.1 Results of land cover classification from fused Sentinel-2 (1m) image with 

ALOS DSM (30m) and their accuracy for Huangpu District, Shanghai 

The main objective of the chapter  was attained by combining the spatially enhanced 

Sentinel-2 (1m) satellite image with AW3D-30 DSM so as to distinguish between 

different urban features and buildings as well as to extract the building footprints and 

further to generate LOD1 3D city model from the fused image. Same as in Chapter 

IV, fused enhanced Sentinel-2 (1m) image and AW3D-30 DSM was classified and 

grouped into seven classes (road, vegetation, water, buildings with red/dark roof, 

buildings with bright roof, buildings in general, and open) based on unsupervised 

classification. Based on the clarity of distinguishable classes, the buildings were 

mainly classified into two additional groups with red/dark roof and with bright roof 

and all other buildings were categorised as general buildings. The additional two 

classes of bright and red/dark roof buildings were classified just to show the potential 

ability of the Sentinel-2 satellite data in distinguishing these two spectrally different 

buildings. The non-building urban features that are not exactly distinguishable were 

categorised as open. Figure 5.3 shows the results of the classification of enhanced 

Sentinel-2 image (1m) fused with AW3D-30 DSM. 

 

The resultant image after classification (Figure 5.3 and Table 5.1) shows that, in 

comparison to Sentinel-2 (10m) and enhanced Sentinel-2 (1m) image, the latter fused 

with AW3D-30 DSM distinguishes buildings from open class in a better way. The 

objective of the chapter is to segregate the buildings class more accurately within the 

dense urban area, so an increase in the percentage of accurate buildings class  

accounts for better results.   



Chapter V 

 

123 

 

 

 

Figure 5.3 Classified map of enhanced 1m Sentinel-2 fused with ALOS DSM 

(30m) 
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Table 5.1 Calculated areas of selected urban feature classes with Sentinel-2 

(10m), enhanced 1m Sentinel-2 and enhanced 1m Sentinel-2 image fused with 

ALOS DSM (30m) 

 
Sentinel-2 

(10m) 

Enhanced 

1m Sentinel-

2 

Enhanced 1m 

Sentinel-2 & ALOS 

DSM fused 

LULC Area in sq.km 

Building (general) 0.96 3.24 5.99 

Building bright roof 0.14 1.00 0.56 

Building red/dark roof 3.34 2.13 1.68 

Open 6.44 4.34 2.68 

Road 2.53 2.39 2.43 

Vegetation 1.65 1.98 1.76 

Water 0.31 0.30 0.29 

 

For example, while areas classified under buildings were about 4.44 sq.km (28%) 

based on Sentinel-2 (10m), it was increased to 6.38 sq. km (41%) in enhanced 

Sentinel-2 (1m) and further increased to 8.23 sq.km (53%) in enhanced Sentinel-2 

image (1m) fused with AW3D-30 DSM. However, within the building category, 

those with the bright roof are better identified in enhanced Sentinel-2 image (1m) 

while general buildings were found to be more distinguishable from those with 

red/grey tile in enhanced Sentinel-2 image (1m) fused with AW3D-30 DSM. 

 

It was also observed that the area under open class reduced to 2.68 sq.km (17%) in 

enhanced Sentinel-2 (1m) image fused with AW3D-30 DSM from 6.44 sq. km (42%) 

in Sentinel-2 (10m) and 4.34 sq.km (28%) in enhanced Sentinel-2 (1m) image 

(Figure 5.4). On the other hand, roads show only slight variation among three images 

with increased area in the enhanced Sentinel-2 (1m) image that can be attributed to 

the edge enhancement in the enhanced image. 
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After the classification of urban features, the accuracy of classified urban features 

was assessed based on selecting 30 random points from each class with a total of 150 

points from the whole image. Vegetation and water classes are excluded from 

accuracy assessment as vegetation was removed earlier by NDVI and water was 

easier to exclude from other classes.  Figure 5.4 shows the accuracy results for 

different classes. The overall accuracy results show that the accuracy of building 

classification has significantly improved to 97% after combining the enhanced 

Sentinel-2 (1m) image with AW3D-30 DSM in comparison to 78% in Sentinel-2 

(10m) and 87% in enhanced Sentinel-2 (1m) image. Detailed interpretation of results 

shows that the accuracy of all urban features is higher in fused enhanced Sentinel-2 

(1m) images with AW3D-30 DSM.  

 

Both roads and open classes showed an accuracy of 97% in enhanced Sentinel-2 

(1m) fused with ALOS DSM (30m), while it was 73% in Sentinel-2 (10m) and 83% 

in spatially enhanced Sentinel-2 (1m) for roads , whereas 83% and 77% respectively 

for Sentinel-2 (10m) image and Sentinel-2 -1m (77%) image for open classes. It is 

significant to note that bright buildings and dark/red tile buildings both yielded 

maximum (100%) accuracy after combining ALOS DSM (30m) with enhanced 

Sentinel-2 (1m) image. However, it was also noted that the overall Sentinel-2 image 

is good for the detection of bright buildings irrespective of image enhancement as it 

yielded higher accuracies in all three scenarios. i. e. 97% in Sentinel-2 (10m) and 

100% accuracy both after enhancement as well as after the fuse process. 

 

The maximum accuracy increase among urban features was observed for general 

buildings after the fuse process.  While the accuracy of general buildings was only 
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50% in the case of Sentinel-2 (10m) image, it has improved significantly up to 80% 

after the image enhancement (1m Sentinel-2) and 93% after combining the enhanced 

Sentinel-2 (1m) with ALOS DSM (30m). Thus all the urban features show higher 

accuracy after the fuse process. 

 

 

Figure 5.4 Accuracy results of urban land cover classification  

 

5.3.2 Building classification and generation of LOD0 3D city model from 

enhanced Sentinel-2 (1m) fused with ALOS DSM (30m) 

The building features were successfully extracted separately after removing water, 

vegetation, road, and open classes from the land cover classified image to obtain 

LoD0 3D city model. Buildings were classified into 5 different classes based on 

building heights as >50 m, 25 to 50m, 15 to 25m, 10 to 15m and 6 to 10m , while 

areas under different height ranges were calculated based on the pixel values (Figure 
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5.5). Results of the building classification show that 13% of the total building areas 

are under high rise building class. i. e. buildings with an elevation above 50 meters 

and another 18.4% of building areas are of medium rise buildings with an elevation 

between 25 and 50 metres. 

 

Cumulatively, it was identified by this method that 31% of buildings of this region 

falls under the category of height range with an elevation more than 25 metres, while 

about 26.54% of area falls within the range of 15 to 25, and 23%, further 18.92% 

falls under the ranges of 10 to 15 metre and below 10 metres respectively. It is to be 

noted that all these values correspond to building areas under different height ranges 

as this classified image is in raster format and does not provide individual building 

heights.  

 

The number of pixels of the buildings gives the area of buildings and the 

multiplication with corresponding height values of the pixels provides the volume. 

Accordingly, this method could give building volume information of the 

corresponding area. For example, the user can easily identify the volume of buildings 

with 10 metres of height by a simple SQL query and multiplying the height value (10 

m in this case) to the count of pixels. Thus the raster area of buildings with height 

information pixels will constitute a LOD0 level 3D or 2.5 D city model. So 

understanding the classification accuracy is of high importance to assess the accuracy 

of building area and building volume.   
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Figure 5.5 Map of extracted buildings in raster format (LOD0 3D city model 

information) from DSM fused with enhanced 1m Sentinel-2 image 
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5.4 Validation of classification with OSM building footprint area  

As stated in chapter I, some areas in the Huangpu region had OSM building 

footprints. In the current chapter, an approach to extract building area for the whole 

region has been developed and data is generated. So a comparison of classification 

accuracy in the region of OSM building footprint is attempted as the OSM building 

footprints represent the area with actual buildings.  

 

To do this, the land cover mapping derived by the spatially enhanced Sentinel-2 (1m) 

fused with ALOS DSM (30m) data  under the exact locations of the 2D building 

footprint (obtained from OSM) area were extracted and is as shown in Figure 5.6. 

The derived land cover classification contains mostly classes of buildings and few 

open areas, road, vegetation and even water. The area of these different land covers 

was calculated by the pixel information and it is the case that 88.8% of the land cover 

class in these areas was marked as buildings which underline the efficiency of this 

method to extract buildings in highly dense cities. It may be noted that we are 

comparing with the building footprint polygons obtained from open source. 4.4% of 

these areas were classified as roads in the satellite image derived land cover map, 

while further 4.14% was classified in open class and 2.5% fall under the vegetation 

class. Only 0.008% of the area falls under water class which is a very negligible 

amount and shows good classification accuracy with the identified building area. 

Table 5.2 shows the associated statistics. 



Chapter V 

 

130 

 

 

Figure 5.6 Raster land cover data corresponding to the OSM building footprints 

for Huangpu, Shanghai 
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Table 5.2 Area of different land cover classes calculated based on the pixels for 

raster land cover data corresponding to the OSM building footprints for 

Huangpu, Shanghai 

Sl. No. Land cover class Percentage 

1 Building 88.8 

2 Open 4.14 

3 Road 4.4 

4 Vegetation 2.5 

5 Water 0.008 

 

Further analysis of the vegetation class revealed that the two building polygons were 

wrongly classified as buildings in the open data. Similarly, an open area was 

classified wrongly as a building in the open data. This was confirmed by looking at 

the corresponding satellite base map in the GIS environment. Accordingly, 

comparing the building footprint data with a satellite-derived land cover map could 

also help in identifying some of the digitisation errors in open data. As more than 

88.8% pixel areas were correctly classified as buildings in satellite-derived land 

cover data, it is purported here that this method can be used to enhance the existing 

open data of 2D building footprints, or where data are completely sparse the use of 

an enhanced Sentinel-2 image can be used to provide the 2D building footprints. 

 

As expected, the Huangpu region of Shanghai comprises tall buildings (Figure 5.7). 

More than 20% of the pixels have a height value of more than 50 metres and another 

28.87% of buildings have a height value between 25 to 50 metres. The low rise 

buildings which have a height value of less than 15 metres comprises 23%. The 

height level classification statistics are given in Table 5.3. 
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Figure 5.7 Building volume information for the areas where OSM 2D building 

footprints are available for Huangpu, Shanghai 
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Table 5.3 Percentage of buildings under different height ranges calculated from 

DSM infused enhanced Sentinel-2 (1m) image. 

Sl. No. Building height Percentage of buildings 

1 >50 metre 20.1 

2 10 to 15 metre 28.87 

3 15 to 25 metre 27.48 

4 25 to 50 metre 15.09 

5 6 to 10 metre 7.99 

 

One of the advantages of satellite-derived buildings is that they also indicate the type 

of buildings such as bright buildings, red or dark roof buildings etc. The buildings 

which show very distinctive brightness values were easy to classify as a separate 

class, whereas for the building footprint data in open source, this information was not 

available. The overall analysis shows that there was a good correlation between 

building information within the building footprint available area. But the satellite-

derived footprints still do not sufficiently give the exact shape of the building; hence 

it is recommended to use building footprint wherever available to generate the 3D 

city model. In the absence of the same, the method mentioned in this chapter can be 

used to generate the 3D city model of the range of LOD0. This method mainly 

provides the building volume rather than the building height. Whereas the method 

mentioned in chapter III shall provide building heights and can generate the 3D city 

model of the range of LOD1. The different potential application areas of these 3D 

city models data are described further.         
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5.5 LOD1 3D city model from open satellite data and extraction of 2D 

building footprints 

For the generation of LOD1 3D city model, vector polygon is needed as building 

footprints along with respective height information. As the generated LOD0 3D city 

model area derived from the combination of Sentinel-2 (1m) and ALOS DSM (30m) 

are in raster format, a raster to vector conversion is needed to generate building 

footprints.  

 

But the raster to vector conversion has some limitations. If the building is a flat roof 

and an isolated one, then it could generate a good separate building polygon. 

Whereas, if the roof is undulated, then multiple raster values will be there in a single 

building polygon and when single height values are taken (for example, 10m) it 

won’t provide exact building shape (as the building may have a raster value with 

example 11m or 12m). Hence, it is important to take all these height ranges to get 

more meaningful values (that’s why different height ranges were taken in this 

chapter). However, without knowing the height of the buildings of an area, it is not 

possible to set exact groups. Also in the dense urban areas, mixed pixels will be 

higher, which further prevents generation of the exact building shape.   

 

Nevertheless, in a raster (LOD0), it is easier to identify the number of pixels with 

different elevations (for example, 10m, 12m etc.) in an area/region because of which 

the calculation of building volume will be more accurate. Thus the enhanced 

Sentinel-2 (1m) shows higher accuracy in building volume rather than individual 

building polygons.  
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 With this limitation, the LOD1 3D city model for whole Huangpu was generated 

from the enhanced Sentinel-2 (1m)  fused AW3D-30 DSM data by giving height 

range (6 to 10m, 10 to 15m, 15 to 25m, 25 to 50m and above 50m), and thereby 

extracting the corresponding vector polygons. However, it is poorer in accuracy in 

comparison with manually digitized polygons for the reasons mentioned above. Still, 

this LOD1 3D city model will give the user an indication of locations of high-rise 

buildings and low-rise buildings etc., which shall be handy for many applications. 

Figure 5.8 shows the LoD1 3D city model generated from spatially enhanced 

Sentinel-2 satellite data fused with AW3D-30 DSM. 

 

  

Figure 5.8 LOD1 3D city model generated from enhanced Sentinel-2 data fused 

with DSM 
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5.5.1 Validation of 2D footprints generated for LOD1 3D city model  

The validation of these vector polygons which act as building footprints was 

conducted by comparing them with the manually digitized vector building polygons 

of the area. Buildings obtained from satellite data were extracted, grouped into five 

different height ranges (6 – 10m, 10-15m, 15-25m, 25-50m, and >50m) and overlaid 

on corresponding manually digitized 2D building footprints for comparison (Figure 

5.9a). Results show that, larger and taller buildings (>50m) (Figure 5.9b) provides 

more accurate shapes than small (<15m) or narrow and elongated buildings (Figures 

5.10a & 5.10d) which is the opposite of the results from chapter III where 2D 

building footprints were used for 3D city model generation. In that method, more 

accuracy was observed for smaller buildings and accuracy tended to reduce for taller 

buildings.  

 

From the visual interpretation of results shown in the images for different height 

ranges, it is evident that adequate identification of the exact shapes of the buildings is 

not possible for all cases. For areas with small and congested buildings, this method 

tends to group all buildings together and results in a larger single polygon. The 

buildings with good height (for example, 25 to 50m or above 50m) and with good 

ground area tend to segregate more evidently. Large buildings with a flat roof tend to 

segregate accurately in the raster to vector conversion.   
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Figure 5.9 Satellite derived 2D footprints overlaid on digitized 2D building 

footprints of  Huangpu District a) Shows all buildings, b) polygons for buildings 

greater than 50m 
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Figure 5.10 Satellite derived 2D footprints overlaid on digitized 2D building 

footprints of Huangpu a) polygons for buildings 25-50m, b) polygons for 

buildings 15-25m, c) polygons for buildings 10-15m, d)polygons for buildings 6-

10m 
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Even with all the limitations shown above, this LOD1 3D city model will give an 

indication of where the small and tall buildings are. Hence this model has many 

application potentials and some of the potential areas are explained in the discussion 

chapter.  

 

Figure 5.11 Final map combining LOD1 3D city model generated from 2D 

building footprints (wherever available) and from enhanced Sentinel-2 data 

fused with DSM (for the areas where 2D building footprints are unavailable) 

 

The map (Figure 5.11) shows the final 3D city model, where methods from chapter 

III are used wherever OSM building footprints were available and the rest of the area 

uses a 3D city model generated by the method of this chapter. 
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5.7 Summary  

The overall objective of the thesis was to develop methods to generate cost effective 

and globally replicable 3D city models from open data using geospatial techniques. 

During the study, it was observed that there is a huge discrepancy in the availability 

of the 2D building open data both in terms of accessibility as well as in terms of 

quality. Hence, it was of the need to develop two different methods for generating 

3D city models. One method was for the areas where 2D open building footprints are 

available and another was for the areas without any open 2D building footprint 

datasets. With this background, chapter III of the thesis demonstrated a method to 

generate 3D city models for the areas where 2D building footprints were available, 

following examples of the Nottingham city, UK and the city of Shanghai in China.  

 

The fourth and fifth chapters of the thesis depict the methods required to generate 3D 

LOD0 and the 3D LOD1 city models from the open satellite data for the areas where 

there is no availability of open source 2D building footprints. As discussed in 

previous chapters, open satellite datasets are mostly characterised by coarser 

resolution, which restricts their utility in building demarcation. In order to overcome 

this constraint, chapter IV of the thesis showed a method to increase the spatial 

resolution of Sentinel-2 satellite data from 10m resolution to 1m and used the 

resultant spatially enhanced 1m Sentinel-2 image in the present chapter (chapter V) 

to generate building volumes.  

 

Accordingly, chapter V illustrated the fusion of the ALOS DSM (30m) to the 

spatially enhanced (1m) Sentinel-2 satellite data and extraction of buildings from this 

fused data. The chapter also demonstrated the accuracy of various urban land cover 
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classes after combining DSM with enhanced satellite data and briefly compared them 

with the accuracy of urban features before and after spatial resolution enhancement. 

It was observed from the analysis that both sparse representation techniques and 

combining of DSM with enhanced 1m Sentinel-2 data improves urban land cover 

classification accuracy and thereby enables improved extraction of building volumes 

from open data. The overall accuracy of urban land cover classification found to be 

around 78% in Sentinel-2 (10m) image which has improved to 87% in enhanced 1m 

Sentinel-2 image after sparse representation and further to 97% after combining the 

enhanced 1m Sentinel-2 image with ALOS DSM. Thus, the chapter also 

substantiates the advantage of using sparse representation techniques and the fuse 

process in building extraction from open data. 

 

It is important to note that, by this method, it is only possible to extract the LOD0 

3D/2.5D city model more accurately than the LOD1 3D city model as well as the 

building footprints with limited accuracy. Hence, the last section of this chapter 

provides short comparative insights between 3D city models developed by the two 

methods: i.e. LoD1 3D city model developed by using open 2D building footprints 

and LoD0 3D city model generated by combining spatially enhanced 1m Sentinel-2 

image with ALOS DSM. One of the major difference between these two models is 

that in Chapter III (i.e. LOD1 3D city model generated using 2D building footprints), 

LOD1 3D city model is generated after infusing the building heights to the 2D 

building footprints, whereas in satellite based 3D city model, 2D building footprints 

are extracted only after infusing the elevation data to the satellite image.  
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One of the disadvantages of the satellite derived 3D city model is that it does not 

accurately depict the exact shape of the building, but largely provides building 

volume. However, a satellite derived 3D city model was found to be beneficial in 

identifying different types of buildings (such as bright buildings, red/dark roof 

buildings) which otherwise cannot be derived in the other method that uses 2D 

footprint. Further, this can also provide first-hand information on building areas, 

distribution and density of buildings etc. which is important in applications such as 

disaster mitigation and flood evacuation. However, as the satellite derived 3D city 

model does not provide accurate building shapes, it is recommended to use 2D 

building footprints wherever it is available.  

 

Finally, as this chapter produced LOD1 3D city model buildings for the areas which 

did not have building footprints, a complete 3D city model for the Huangpu region 

was developed by combining the results of both chapter III and chapter V (refer to 

Figure 5.11). The following chapter (VI) provides discussions of the thesis. 
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CHAPTER VI 

DISCUSSIONS 

 

6.1 Summary 

The central premise of this thesis is the requirement to generate 3D city models using 

globally available open-source data with an intent to do so via globally reproducible 

methodologies. Specific objectives of the study included to, i) develop workflows that 

afford the generation of LOD1 3D city models from open source data, ii) explore 

approaches to open data generation that could be used within the workflows developed, 

and iii) evaluate the execution and suitability of the different city data models (i.e., 

levels of detail) produced from open source data for use in urban studies.  

 

The level of detail (LOD) of a 3D city model is one of its most important characteristics. 

It denotes the adherence of the model to its real world counterpart, and it has 

implications on its usability (Biljecki et al., 2014). The CityGML standard defines five 

Levels of Details (LOD) varying from LOD0 to LOD4 to describe 3D objects building 

with respect to their geometry, topology, semantics and appearance (Groeger et al., 

2008). As the LOD level of the model increases, it will have more detailed architectural 

information of the structures. Accordingly, different LODs can be used for different 

purposes (Buyukdemircioglu et al., 2018). The coarsest level LOD0 represents the 

lowest level of geometry as a 2.5D DTM with building footprints or roof edge polygons, 

while LOD1, is well known as the blocks model. In LOD1 the building height would 

be extruded with flat roofs and is widely used for city and region coverage. Compared 

to LOD1 models, LOD2 buildings differentiate roof structures as well as boundary 
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surfaces. LOD3 have more architectural details including specific roof structures and 

wall structure details such as doors and windows and LoD4 has the highest level of 

detail and all interior details are represented with textures including rooms and furniture 

(Buyukdemircioglu et al., 2018; Groeger et al., 2008). It is also to be noted that, the 

data demand increases for each LOD class, and this demand needs consideration with 

the intended application for the models to be generated. 

 

Achieving the objectives of the thesis requires remote sensing and geospatial 

technology within urban studies to go beyond the 2-dimensional perspectives (for 

instance in urban landuse change analysis, analysis of urban sprawl dynamics (Ahmad 

& Goparaju, 2016), urban facility management (Boyle & Michell, 2017), and 

sustainable transport planning (Pojani & Stead, 2015)), to the 3rd dimension - 3D 

modelling of urban systems (i.e., to address climate change challenges (Danahy et al., 

2016; Masson et al., 2014) or to estimate energy demand as well as to improve energy 

efficiency (Kaden & Kolbe, 2014)).  

 

Studies have shown that the potential of geospatial technologies together with improved 

allied visual and 3D modelling technologies holds far greater promise for sustainable 

urban management than earlier waves of technology (LeGates et al., 2009). However, 

to fully exploit this potential in urban studies, it must be possible to replicate the 

methods to generate 3D city models the world over (Jovanović et al., 2020). The current 

status is that the creation of 3D city models typically relies upon time consuming 

editing, expensive proprietary datasets or both. Several research already demonstrated 

that 3D city model can be derived from different data resources, such as LiDAR point 

clouds (Kada & Mckinley, 2009), airborne images (Haala et al., 2015), satellite images 
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(Krauß et al., 2009), UAV (unmanned air vehicle) images or combination of DSM 

(digital surface model) data with cadastral maps (Buyukdemircioglu et al., 2018). The 

approach however can be an expensive and time/labour consuming process, particularly 

if high levels of accuracy in model outputs are required (Ohori et al., 2015). Large scale 

3D city models are mostly available in countries with developed economies and/or 

those with national mapping agencies. Whereas countries, including many that are 

transitioning their economies (and where this information is perhaps of most value), 

could not afford the resources to produce high accuracy 3D models. In such situations, 

the use of low cost or open source online free satellite datasets (open data) as a source 

of input data for 3D generation can be a feasible solution. 

 

The three research chapters (Chapter III, IV and V) of the thesis demonstrate 

approaches to generate 3D city models that are globally accessible. In Chapter III 3D 

models are generated for two contrasting cities, Nottingham in the UK and Shanghai in 

China, and further the features as well as limitations of the resultant approaches were 

discussed. A major limitation to the approach outlined is that the 3D models require 

open source 2D building footprints, yet this may not be readily available over the globe. 

Accordingly, the subsequent research chapters (Chapters IV and V) presented methods 

to generate 2D building data and LOD1 3D city models from open source satellite data 

(which tend to be of a lower resolution than the VHR commercial data).  

 

6.2 3D city model generation from open 2D building footprint data 

The first analytical chapter (Chapter III) of this thesis presented a relatively simple 

method of generating a 3D city model from open data that can be applied globally.  The 

results presented in this chapter show that AW3D-30 DSM data provides more accurate 
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results in the case of low and medium rise buildings and that errors can be improved 

through a calibrated enhancement process. Using OSM in combination with the 

medium resolution AW3D-30 DSM a set of building footprints with height information 

were created and their quality ascertained.  

 

For Nottingham, by this method, about 27.7% of buildings with +/-1m accuracy, 

51.45% with +/-2m accuracy and 84.27% with +/-5m were generated. In Shanghai, the 

accuracy was much lower than that of Nottingham i.e. percentage of buildings within 

the accuracy levels of +/-1m, +/-2m, and +/-5m were 17.66, 32.96 and 62.26 

respectively. The accuracy reduction in Shanghai is attributed to the increased number 

of tall buildings compared to the city of Nottingham. It is significant to observe that the 

AW3D-30 DSM provides more accurate results for low and medium rise buildings, but 

exhibits relatively large errors in height for very tall buildings. This result echoes the 

findings of Alganci et al., (2018) but contradicts that of Misra et al., (2018). Accuracy 

assessments of different DSMs by Alganci et al., (2018) revealed that the AW3D-30 

DSM performed worse for high rise buildings compared to SPOT DSM and PHR DSM; 

and further that AW3D-30 DSM has a high accuracy level in residential areas. 

 

This is due to the characteristics of AW3D-30 DSM global dataset that this dataset has 

has been originally resampled from 5 m mesh version of the AW3D to 30 metre spatial 

resolution (1 arcsec) (Santillan et al., 2016). This thesis used the latest AW3D-30 

product, released in May 2017 as AW3D-30 DSM data is currently the most precise 

global scale open source elevation (Alganci et al., 2018) dataset (free to the public since 

2015). To generate the same, many actions like sea mask correction, void filling by 

applying filters etc have been performed (Takaku et al., 2020). During this accuracy 
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reduction 5m to 30m DSM, the spike area or sudden variation might have smoothened. 

The tall buildings might act as sudden spikes and the same shall be smoothened during 

the accuracy reduction procedure. This accuracy reduction problem is mentioned in the 

paper (Girindran et al., 2020).  

 

In contrast to this, Misra et al., (2018) reported that AW3D-30 is most suitable for 

observing buildings taller than 9 m in height. However, this was in comparison with 

ASTER and SRTM based building heights, which are less suitable for extracting 

building height variation Misra et al., (2018). This chapter considered all buildings with 

height above 2 meters and results showed higher accuracy.  Hence,  the presented 

method even without any accuracy enhancement could provide better accuracy in cities 

with low and medium rise buildings compared to cities with high rise buildings. 

 

The chapter also evaluated enhancements of height accuracy through statistical analysis 

of a small sample area of high resolution data (thus limiting expense, where these data 

are not freely available).  The application of this accuracy enhancement method (by 

way of a sample of high resolution elevation data) resulted in improved reliability of 

3D models from open data (Nottingham study demonstrated enhancements in the 

percentages of buildings from 27.7% to 32.81% for an accuracy level of +/-1m, and 

from 51.45% to 57.43% for an accuracy level of +/-2m ). However, this method is 

limited to the containment of only systematic errors; random errors are not accounted 

for.  

 

Further, to understand the reliability of AW3D-30 DSM in generating 3D building 

height generation, a 3D city model was also created by using AW3D-30 DSM and high 
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resolution LiDAR DTM. Results of uncorrected AW3D-30 building heights (compared 

with Mastermap) within an accuracy level +/- 1m was 31.43% of total buildings  and 

+/-2m accounted for 60.14% of buildings. Deviations for only 5.27% of all the 

buildings exceeded +/-5m. After applying the accuracy enhancement method the 

proportion of buildings having accuracy levels of +/-1m increased to 90.8%, +/-2m to 

97.73% and +/-5m to 99.52% respectively. Further, buildings having an error more than 

+/-5m reduced to 0.48% from 5.27%. Thus it is clear from the analysis that there is a 

huge potential to improve the accuracy of 3D city models generated based on AW3D-

30 DSM provided that the errors within the AW3D-30 DSM is identified and there is 

an accurate ground elevation model. 

 

There are only a few studies that have attempted to extract building heights from open 

DSMs. For example, Nghiem et al., (2001) attempted to extract building heights from 

SRTM DSM data for large scale area mapping; Wang et al., (2018) derived 3D city 

structures by fusing Landsat and global elevation data; Misra et al., (2018) attempted a 

comparison of building heights extracted from open DSMs including AW3D, 

TanDEM-X, ASTER, and SRTM over Yangon City. After using SRTM DSM in Los 

Angeles (Gamba et al., 2000) and in Baltimore City (Quartulli & Datcu, 2003), it has 

been concluded that the SRTM could be used for detecting tall buildings. Since then, 

other global DSMs, including AW3D30, TanDEM-X (TerraSAR-X Add-On for Digital 

Elevation Measurements), and ASTER Global DEM (GDEM), have also been shared 

publicly.  

 

Usage of OSM in combination with AW3D-30 DSM data has substantial potential for 

future scientific research due to the former’s ever-growing size, and the latter’s global 
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coverage (Alganci et al., 2018; Bagheri et al., 2019; Tadono et al., 2016; Takaku & 

Tadono, 2009). Studies report a considerable increase in OSM building data in recent 

years. For example, from 2012 to 2017 alone there has been a 20 times increase in OSM 

building data in China (Tian et al., 2019). Effective derivation of elevation values for 

OSM data will likely extend its utility (Knerr, 2013). However, the absence of a global 

completeness assessment may hamper the use of OSM for urban planning and 

development, unless it is resolved (Barrington-Leigh & Millard-Ball, 2017).  Quality is 

one of the major concerns in using OSM data as mostly non-professionals provide the 

OSM data and therefore both the coverage as well as the quality of the data becomes 

debatable (Haklay, 2008; Nasiri et al., 2018; Senaratne et al., 2017). Despite the 

disadvantage, OSM can be a good source of 2D building data, especially in the context 

of non-availability of free 2D building data, as in China, where authorized building data 

are not freely available (Tian et al., 2019). Studies also reveal that the rate at which 

OSM is receiving contributions from users has been constantly increasing and 

continues to grow; complemented by collaborative mapping efforts amongst the OSM 

community to check and improve the quality of contributions (Arsanjani et al., 2015).  

 

AW3D-30 DSM also has considerable future potential, particularly for low and middle 

income countries, given its global coverage and open license. The JAXA released its 

first version AW3D-30 DSM with a horizontal resolution of approx. 30 meter mesh, 

free of charge in May 2015. This dataset was generated from the DSM dataset (5 meter 

mesh version) of the precise global digital 3D map ALOS World 3D" (AW3D), which 

is the world’s first and the most precise 3D map covering all global land scales with a 

5 meter mesh (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm). Although the 

AW3D-30 DSM had a 30 m grid spacing, it could be deduced that this was due to the 
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acquisition of strong signals from the original 5 m DSM, which was produced from the 

2.5 m images (Alganci et al., 2018). In March 2017, version 1.1 was released filling the 

void height values with existing DEMs in cloud and snow pixels between 60 degree 

North and 60 degree South. In April 2018 AW3D was upgraded to version 2. 

Continuous enhancements of AW3D-30 DSM are expected, improving its future utility. 

 

The approach presented in chapter III of this thesis can be applied by any user that has 

2D building footprint data and AW3D data and terrain information (i.e., from 

GMTED2010). AW3D-30 is the most suitable open DSM for building height 

generation in comparison with ASTER, SRTM and TanDEM-X  However, while using 

AW3D-30 DSM there is a challenge of dealing with mixed pixels, due to instances 

when buildings in the AW3D-5 digital building heights with a ground footprint of 

approximately 30 m or less were split into adjacent 30 m resolution pixels, each with a 

lower height than the original (Misra et al., 2018). Thus one of the important advantages 

of using OSM together with AW3D-30 DSM is that it helps to avoid the issues of mixed 

pixels and provides more accurate individual building heights and shapes. To the 

researcher’s knowledge, this is the first attempt at combining OSM data with AW3D 

data to generate 3D models. This research builds on previous studies that fuse OSM 

with satellite derived elevation data over flat terrain (Bagheri et al., 2019) however the 

study in chapter III of the thesis provides a method to generate 3D models for both flat 

and undulated terrain using open data, which makes it feasible to replicate globally with 

any kind of terrain.  

 

As this thesis intended to develop LOD1 models, it did not consider topological errors. 

If the 2D topological relationships between the footprints are not taken into account, 
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the resulting 3D city models will not necessarily be topologically consistent (i.e., 

primitives shared by 3D buildings will be duplicated and/or intersected and overlapped 

building parts etc.) (Giovanella et al., 2019; Ledoux & Meijers, 2011; Z. Zhao et al., 

2013). Models with topological inaccuracies often cannot be accepted by downstream 

analytical applications that demand 2-manifold exterior shells (Giovanella et al., 2019; 

Ledoux & Meijers, 2011). However,  the objective of the thesis was to develop LOD1 

3D city models, which do not require higher levels of accuracy. Hence all incomplete 

and irregular buildings are removed after creating the 3D city model. As the data used 

is 2D polygons from OSM, any topological errors in this dataset will be reflected in 

results as well. Hence it is recommended consideration of topology should higher 

accuracy in resultant models be required (i.e., LOD 2 +). 

 

6.2.1 Challenges in using OSM to generate global models 

Chapter III of this thesis presented an approach to generate 3D city models from open 

data considering OSM as a source for 2D building footprints wherever available. 

However,  the completeness of OSM varies significantly. In particular, OSM has good 

coverage in urban areas when considering particular completeness factors (Neis et al., 

2012). However, the example of Shanghai from this research shows that the 

completeness of OSM in urban areas is not far-reaching, unlike that of Nottingham. 

Studies from European cities show that in these regions, OSM provides quantitatively 

larger amounts of geodata and a better representation of the real world in the dataset 

(Barrington-Leigh & Millard-Ball, 2017; Graser et al., 2015; Neis & Zielstra, 2014). 

Some studies even show that road network OSM data for European countries is 

comparable to or better than official or proprietary data sources (Graser et al., 2015; 

Neis et al., 2012). This was achieved by importing commercial or governmental road 
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network datasets that comply with the OSM license (for example, Netherlands and 

Austria) as well as by importing cadastral building information to the OSM database 

(for example, Spain and France). 

 

 However, when it comes to other parts of the world, such as China, Tehran and Brazil, 

completeness of OSM is not as good as Europe (Camboim et al., 2015; Forghani & 

Delavar, 2014). Barrington-Leigh & Millard-Ball, (2017)Barrington Leigh & Millard 

Bal 2017, estimated that globally about 77 countries among 185 have more than 95% 

of completeness of OSM road map whereas, countries like Kiribati, Afghanistan, Egypt 

and China are all have less than one third completeness.  Their studies also revealed 

that not just developed countries have the maximum completeness but also areas with 

dense population and low income countries that faced humanitarian disasters. For 

example, Nepal and Haiti had intense mapping efforts following humanitarian disasters 

(Mooney & Corcoran, 2013).  The recent ‘Mapathon VGI project’ introduced by the 

Government of Kerala, India (https://mapmykerala.in/about) after the disastrous floods 

in 2018 and 2019 also contributes as an example to the above mentioned argument. 

 

Though studies reveal that OSM data is increasing all over the world, the equal 

availability and quality of OSM data could not be ensured globally due to several 

factors such as the lack of uniformity in attributes, diversity in spatial coverages 

(Barrington-Leigh & Millard-Ball, 2017), biases of contributors (Neis et al., 2012) and 

unequal distribution of digital infrastructure (Zook & Breen, 2017). The scenario 

highlights the necessity to generate building data from other reliable sources like open 

source satellite images. 
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6.2.2 Need for high resolution digital terrain models 

This research in chapter III also demonstrated ways to increase the accuracy of the 

generated 3D city models using a sample of high resolution DSM and DTM data. 

Further, it demonstrates that the usage of high resolution DTM for ground elevation 

extraction can result in higher accuracy of building height values. This research 

recommends using high resolution Digital Terrain Model  (DTM) wherever possible 

and in the absence of the same, GMTED 2010 data shall be used as ground elevation 

for undulating terrain and the mean elevation value as ground elevation for flat terrains 

like Shanghai. The study also highlights the need for the geospatial community to 

generate a global open access high resolution DTM. The need for generating global 

high resolution DEM in open access was also highlighted by Schumann & Bates, 

(2018). There are also initiatives like ‘Open Topography’ which facilitates community 

access to high resolution topographic data (https://opentopography.org/). These high 

resolution data (meter to sub metre scale) are derived from LiDAR and other 

technologies. These high accuracy terrain data further sheds light on to the extensive 

potential of generating highly accurate 3D city models using open data. 

 

 6.2.3 Advantages of generating 3D city models from open 2D building footprints 

Thus, one of the great advantages of our methodology is that 3D city models can be 

generated from any 2D building data in combination with any DSM and not just OSM 

and AW3D-30 DSM data. In case of the availability of any 2D building data, the user 

could generate the building elevation in combination with DSM data. Currently, only 

AW3D provides free DSM data. Even though ASTER DEM and SRTM provide 

elevation data,  such datasets are not used to generate 3D city elevation, as they are not 

surface models. However, in future higher resolution DSMs shall probably evolve like 
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in the case of LiDAR DSM and ICESat-2 data. LiDAR DSM data are already available 

for about 70% of England from the UK Environmental Agency (https://data.gov.uk/). 

Whereas, ICESat-2 (ICE, CLOUD, and Land Elevation Satellite) is an ambitious 

mission of NASA that provides a global distribution of geodetic measurements, of both 

the terrain surface and relative canopy heights; besides it also surveys the urban areas 

(Neuenschwander et al., 2018). Further, Global Ecosystem Dynamics Investigation 

(GEDI) LIDAR from NASA with its dense track sampling and precise geolocation form 

the basis of an important dataset of ground control points, to validate and calibrate 

global and regional DEMs as well as a reference for surface elevation change 

(https://gedi.umd.edu/). Thus, it is hypothesised that when more accurate DSMs 

become available, it will enable the user to produce more accurate 3D city models with 

better shape descriptions of buildings, especially roof modelling, and thereby 

generating higher LODs using the defined methodology. Knowing the nature of the 

terrain in the modelling area is a factor in our method. For cases with flat terrain (for 

example, Shanghai), the mean ground elevation is deducted from the DSM data to 

obtain the building height; whereas in cases of undulated terrain (for example, 

Nottingham), terrain elevation can be obtained from multiple sources,  such as contour 

topographic data or from satellite based sources like GMTED2010 and LiDAR DTM.  

 

The method also allows users to generate data in a cost effective manner. Though high 

resolution 3D datasets are very expensive, in fact, many applications do not require 

very precise datasets. Often, a model with LOD1 data is enough. Studies shows that 

LOD1 models provide a relatively high information content and usability compared to 

their geometric detail (Henn et al., 2012; Hofierka & Zlocha, 2012). LOD1 model is 

the simplest volumetric 3D city model and fundamentally considered coarse and 
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inferior to an LOD2. However, it may be more valuable than an LOD2 model for certain 

scenarios, especially when a finer footprint is more useful than the acquired roof shape 

(Biljecki et al., 2016). Examples of such cases include: climate change and urban 

climate modelling, property registration, energy modelling (Sousa et al., 2018), energy 

demand estimation (Bahu et al., 2013; Strzalka et al., 2012), shadowing simulations (M. 

Alam et al., 2012; Z. Li et al., 2015), navigation, estimation of noise pollution  (Stoter 

et al., 2014), design of urban green spaces, crisis management, vulnerability 

assessments for disaster mitigation and management, simulating floods (Varduhn et al., 

2015), for analysing wind comfort (Amorim et al., 2012), global change assessments 

(Biljecki et al., 2015; Pesaresi et al., 2016), and visualisation (Gesquière & Manin, 

2014). Computation of the net internal area of a building is another application area of 

LoD1 data, useful for energy estimations, real estate valuation, and population counts 

(Boeters et al., 2015; Kaden & Kolbe, 2014; Lwin & Murayama, 2009; Novelli et al., 

2016). 

 

As the method presented in this thesis relies on open datasets, it could be of great use 

for developing and low income nations to generate 3D city models in a  cost negated 

manner as well as with minimal effort and time. The approach has advantages over the 

usual tedious, time consuming procedures towards the generation of 3D city models 

and also bypasses the lengthy process of data procurement. Many applications like 

hazard and risk management require faster results and the data generation technique of 

the thesis can be very handy in such circumstances. The method presented in this thesis 

helps to develop 3D city information of LOD1 in case 2D building footprints are 

available, and accordingly could be adopted globally, where building height 

information of multiple cities is required. For example, this method has been used by 
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Shi et al., (2020) to find the building volume of buildings over multiple cities in Europe 

and the USA and the same were compared against the night time light data.   

 

6.2.4 Challenges in using AW3D-30m data and possible solutions  

One of the major disadvantages observed related to using AW3D-30m data was the 

accuracy limitation with high rise buildings (more than 100m). It was unable to obtain 

the accurate information of building heights for this region. In addition, even when a 

high resolution satellite data (AW3D-Enhanced 2 metre resolution DSM) used for 

validation and accuracy enhancement it yielded only a correlation of 20%. Hence it is 

important to find additional data sources for calibration of high rise buildings in data 

void regions. In this context building height data from websites like Skyscraper (which 

publishes the tall building information data from Council on Tall Buildings and Urban 

Habitat) can be used to compare the height values of these buildings. Further, as the 

accuracy level reduces with the increased percentage of tall buildings, it would be 

advantageous to know about the characteristics of a particular city before applying this 

methodology.  

 

Further, though this thesis used AW3D-30 DSM data which was published in 2017 this 

dataset utilizes the 2011 satellite data as base data. Hence, there could be an accuracy 

difference for the buildings that are constructed after 2011. While using this method, it 

is also recommended to cross check the results of building elevation having low height 

values for larger 2D footprints, as tall buildings may have a large low height podium. 

This can be done by visual interpretation from Google Earth satellite images. Original 

AW3D-30 DSM has some data void regions and these values are filled with the values 

from adjacent pixels (https://www.aw3d.jp/en/products/enhanced/). So some accuracy 
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difference could have originated due to this procedure. Large digitization errors or shifts 

in the 2D building footprints can result in the misrepresentation of height information. 

 

6.3 Spatial resolution enhancement of Sentinel-2 image through sparse 

representation 

The chapter IV of this thesis focused on the enhancement of the spatial resolution of 

the Sentinel-2 image using sparse representation techniques. The precise detection of 

buildings is of great importance to urban planning and management and urban cadastral 

management (Huo et al., 2018). As discussed in previous sections, open 2D footprints 

are incomplete or unavailable in many regions of the world. Hence, it is important to 

find other means to generate 2D buildings in order to develop 3D city models. High 

resolution satellite images provide great potential for accurate building detection since 

they contain a large amount of spectral, structure, and texture information (Song et al., 

2019; You et al., 2018). Chapter IV explored the potential to enhance the 10 m spatial 

resolution of Sentinel-2 (10m) satellite data using a sample very high resolution 

WorldView-3 (1m) based on sparse representation techniques. So far, there are no 

studies on enhancing the spatial resolution of the Sentinel-2 image. Spatial 

enhancement of the Sentinel-2 aimed to extract 2D building footprints in data void 

regions by the image classification technique.  

 

This chapter adopted sparse representation techniques for super-resolution analysis. 

Several studies have already discussed how super-resolution analysis can help in 

overcoming the limitations of low spatial resolution associated with relatively low cost 

or even free image data sources (Yang et al., 2010). An increase in spatial resolution 

can result in better identification of urban features. 
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This sparse representation has a much wider application capability. The main advantage 

of this method is that the dictionary generated from a sample fine resolution image can 

be applied to enhance not only the features in the same geographical location, but can 

be applied to any other geographical locations with similar characteristics. We have 

effectively demonstrated this capability by enhancing the Huangpu district Sentinel-2 

image using the dictionary generated from other areas. Considering the global coverage 

of the Sentinel-2 image, the generation of a worldwide library of sparse representation 

dictionaries itself can be taken for further study. This would enable it to enhance the 

spatial resolution of open source Sentinel-2 data. 

 

The chapter concentrated on the method to increase the spatial resolution of NIR, Red 

and Green bands having the spatial resolution of 10m of Sentinel-2. This chapter 

focussed on these bands as the major objective of the study is to extract urban features. 

The key requirement of the sparse representation is that the spectral bands of satellite 

imagery used both in the training phase and reconstruction phase should be similar.  So 

the other coarser spectral bands (20m and 60m) of Sentinel-2 can also be enhanced, if 

relevant sample fine resolution bands can be obtained.  

 

In the results section, it is clear that the sparse representation is particularly helpful in 

the sharpening of boundaries of different features of Sentinel-2. These enhancements 

are helpful in extracting dense urban features such as buildings and roads, where spatial 

resolution plays a very important role. This method also shows significant improvement 

in edge delineation of water bodies from land. So waterbody extraction could be more 

accurate using this method. However, this method is yet to prove its capability in 

distinguishing between different vegetation. So it is recommended to remove the 
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vegetation layer before attempting image classification by running a normalised 

vegetation index (NDVI) operation. Studies already highlighted the advantage of 

involving NDVI for the potential increase in accuracy of classification (Hamedianfar 

& Shafri, 2015).    

 

6.3.1 Influence of spatial resolution on sparse representation 

In sparse representation analyses, one coarse and one fine resolution image are used 

jointly to train both the low resolution and high resolution dictionary (Cheng, 2015). In 

this thesis, mainly six classes (large buildings, high rise/tall buildings, small buildings, 

road, water body, and vegetation) were identified to demonstrate their response to 

resolution enhancement. After applying sparse representation to Sentinel-2 (10m) 

images, resultant images with 1m spatial resolution showed a considerable increase in 

their spatial resolution, which resulted in an overall accuracy of urban land cover 

classification of around 87%. This is a large increase from the 78% accuracy obtained 

based on the Sentinel-2 (10m) image. This increase was further improved by combining 

AW3D-30 DSM with the spatially enhanced Sentinel-2 (1m) image, resulting in an 

overall accuracy of 97%. Thus this chapter pointed to the real potential of using sparse 

representation techniques to produce data from which the 2D building extraction could 

be undertaken.  

 

The spatial enhancement observed included edge enhancement or boundary 

enhancement of urban features. Results of the research showed sharpening of edges for 

all six classes, and consequently all urban features became easily distinguishable from 

enhanced Sentinel-2 (1m) image. After performing the sparse representation 

techniques, features like buildings, roads and water bodies became more prominent, 
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sharp and distinct. Pixels on the edges of features are grouped to the main objects or 

features and avoid the issues of mixed pixels. 

 

The process of sharpening edges and boundaries is referred to as the removal of the 

boundary effect. In low resolution images, boundaries of features are usually 

characterized by mixed pixels and are less distinguishable. Because of the boundary 

effect, individual features that are often smaller than individual pixels may fall within 

mixed pixels (Y. Sun et al., 2017). An early study from Latty et al., (1985) suggested 

that the boundary effect reduces by increasing the spatial resolution among the smaller 

size features and also reduces misclassification of features. According to Elad, (2010), 

sparse representation techniques are more robust to the noise of the training image and 

the technique can perform both denoising and spatial enhancement tasks 

simultaneously. The findings of Yang et al., (2010) also states that sparse representation 

techniques generate both realistic textures and sharp edges from the single input image. 

 

This research also demonstrated that edges of linear features like roads and water bodies 

became more prominent and continuous after resolution enhancement due to the 

removal of mixed pixels. Therefore, this approach can be particularly applied to extract 

road networks, to demarcate roads and buildings. The capability to delineate water 

bodies from land has also been established and hence, waterbody extraction could be 

more accurate by using this method. 
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6.3.2 Influence of spectral resolution on sparse representation 

Spectral bands are designated to detect electromagnetic radiation within a particular 

spectrum. Hence, in general, it is expected that having more spectral information could 

result in the identification of a wider range of land cover types and thereby higher 

mapping accuracy for urban areas, particularly in discriminating different land use 

types. The research of chapter IV aimed to increase the spatial resolution of the 

Sentinel-2 (10m) data. Thus, NIR, Red and Green bands of Sentinel-2 image were 

enhanced in the spatial resolution. Similarly, bands NIR, Red and Green of WorldView 

(WV)-3 having a spatial resolution of 1.2m were used for training and preparing the 

required dictionary. These bands were particularly selected as the objective of this 

research is to extract urban features. It was important to use bands with the same 

wavelengths from both images in order to avoid mis-classification as well as for better 

results. As the spectral resolution of VHR increases (for example, as promised by 

Planet), the chance of mirroring  the spectral resolution of these with the coarser (but 

open) satellite data and thus improving the spectral properties of the spatially enhanced 

data. 

 

6.3.3 Influence of sparse representation on Sentinel-2’s recognition of urban 

features 

As mentioned in the previous section, a total of six urban features were selected to 

verify the changes before and after enhancement. Our results show that the area of small 

buildings that appear blurred/unclear in Sentinel-2 (10m) images became sharper and 

individually identifiable after undergoing sparse representation. Likewise, the 

distinction between land areas and the waterbody became more prominent and smooth 

after the spatial resolution enhancement. Further, results also showed that the shapes 
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and appearance of different buildings become more accurate after sparse representation 

analysis. Example Figures (4.10a, 4.10b & 4.10c) shows how building shapes differ 

before and after sparse representation techniques in comparison to Google Earth 

images. It may be noted that these results are obtained after using a dictionary generated 

outside of the Huangpu District. These results shed light on the potential applications 

of both sparse representation techniques as well as WorldView-3 and Sentinel-2 

images.  

 

Results from this study showed that waterbody extraction shall be more accurate using 

this method. However, this method is yet to prove its capability in spatial enhancement 

between different vegetation types. Sparse representation techniques can be more 

effective in an environment with a diverse texture like a dense urban environment rather 

than the agricultural application which represents limited types of crops. Hence, it is 

recommended to remove the vegetation layer before attempting image classification by 

running a normalised vegetation index (NDVI) operation.  

 

6.3.4 Training phase and dictionary generation 

In this research, the WorldView-3 image has been taken as input for dictionary 

generation. The spatial resolution of the enhanced image is directly proportional to the 

resolution of the training image. i.e., when the training image is of higher resolution, 

then the enhanced image will show more features when compared to the enhanced 

image using a low resolution training image. Results from this study show that using 

WorldView-3 for dictionary generation was suitable. Hence, generating dictionaries 

from WorldView-3 across the globe has huge potential on one hand and on the other 

hand, global coverage and frequent revisit of Sentinel-2 open up the scope of producing 
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spatially enhanced Sentinel-2 images using dictionaries generated by WorldView-3. 

Albeit with the caveat that WorldView-3 data are not open source. However, a sampling 

approach that would reduce costs could be adopted to ensure global application. 

 

Further, the dictionary generated from a sample high resolution image of a small area 

can be applied to enhance not only the features in the same geographical location but 

also can be applied to any other geographical locations with similar characteristics. This 

study has effectively demonstrated this capability by enhancing the Huangpu district 

Sentinel-2 image using the dictionary generated from other areas. Considering the 

global coverage of the Sentinel-2 image, the generation of a worldwide library of sparse 

representation dictionaries itself can be taken for further study. This would enable it to 

enhance the spatial resolution of open source Sentinel-2 data. Further, these spatially 

enhanced Sentinel-2 datasets can be used in generating 2D buildings footprints for the 

regions where 2D building datasets are not available for free. 

 

6.3.5 Zoom factor 

The zoom factor is an important parameter that influences the sparse representing 

accuracy. The display could be zoomed by a scale factor and is important in sparse 

representation at both the training and reconstruction phase,  though it works opposite 

in two phases.  In the training phase, the zoom factor helps to discard a relevant number 

of columns and rows to form a new large cell, whereas, in the reconstruction phase, it 

acts as a magnification factor.  In the present study, during the training phase, input 

imagery (WV-3) was downscaled or degraded to 10m spatial resolution. i.e. 10 pixels 

of 1m were joined together to form one pixel of 10m resolution. Further during the 

reconstruction phase, the coarse resolution (Sentinel-2) imagery was zoomed to 1m 
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spatial resolution. Here one pixel with a spatial resolution of 10m was replaced by 10 

pixels. In previous studies, the zoom factor used was 3 (Yang et al., 2010) and it has 

been concluded that the accuracy of the sparse representation method is more likely to 

degrade rapidly using a greater zoom factor. 

 

6.4 Extraction of building footprints from enhanced satellite images 

The third core research chapter (Chapter V) attempts to classify spatially enhanced 

Sentinel-2 (1m) images and to fuse DSM with classified (enhanced) images so as to 

extract buildings. To understand the difference between various scenarios, three types 

of images were classified: Sentinel-2 (10m) image, Enhanced Sentinel-2 (1m) image 

and enhanced Sentinel-2 (1m) fused with AW3D-30 DSM. This chapter also 

demonstrated the difference in the accuracy of various urban land cover classes before 

and after spatial resolution enhancement, as well as, after combining DSM with 

enhanced satellite data. It was observed from the analysis that both sparse 

representation techniques and combining of DSM with enhanced Sentinel-2 data 

improves urban land cover classification and thereby enables improved extraction of 

building footprints from open data. 

 

6.4.1 Urban classification using Sentinel-2 (10m), enhanced Sentinel-2 (1m) and 

enhanced Sentinel-2 (1m) fused with DSM 

It was found that, in comparison to Sentinel-2 (10m) and enhanced Sentinel-2 (1m) 

images, AW3D-30 DSM DSM fused enhanced Sentinel-2 image distinguishes 

buildings from open class in a better way. For example, while areas classified under 

buildings were about 28% based on Sentinel-2 (10m), it further increased to 41% in 
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enhanced Sentinel-2 (1m) and to 8.23 sq.km 53% in DSM fused enhanced Sentinel-2 

image. However, buildings with bright roofs are better identified in the enhanced 

Sentinel-2 imagery while general buildings found to be more distinguishable from 

buildings with red/grey tile in DSM fused enhanced Sentinel-2 imagery. 

 

It is further observed that area under open class reduced to 2.68 sq.km (17%) in the 

fused map from 6.44 sq. km (42%) in Sentinel-2 (10m) and 4.34 sq.km (28%) in 

enhanced Sentinel-2 images. However, it was also observed that roads show only slight 

variation among the three images. Roads are shown higher in enhanced Sentinel-2 

images which can be attributed to the edge enhancement in enhanced images.  

 

The buildings were extracted after removing water, vegetation, road, and open classes 

from classified images. The buildings were classified into five height classes (6-10, 10-

15, 15-25, 25-50, >50) based on building heights. Areas with less than 6m height have 

been excluded, as in general these areas are less likely to be buildings. Building 

classification eased the capture of a medium and large building (area-wise), as well as 

all buildings with more than 6m heights. However, considering the area, small buildings 

with less than 10 sq.m could not be well captured in classified images. Further, it was 

also observed that some of the flyovers were classified as high rise buildings. 

Especially, in a country like China flyovers are very common and unless cross-checked 

with other sources like Google Earth and validated,  it may result in mis-classification 

of results. Hence, it is very important to have a good understanding of the study area 

before applying this method.   
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6.4.2 Accuracy assessment of classification outputs using Sentinel-2 (10m), 

enhanced Sentinel-2 (1m) and enhanced Sentinel-2 (1m) fused with DSM 

Accuracy assessment of each three classified images was carried out based on the 

confusion matrix and the point-based checking was conducted to compute the accuracy. 

30 random points were selected from each of the five classes and overall 150 points 

each from three images were verified. Our results showed that the accuracy of all 

features except bright buildings exhibits a considerable difference in each of the three 

scenarios. All classes showed comparatively low accuracy rates in Sentinel-2 (10m) 

image, which further increased in enhanced Sentinel-2 (1m) as well as in enhanced 

Sentinel-2 (1m) fused with AW3D-30 DSM. 

 

While the accuracy of road features was 73% in Sentinel-2 (10m) it increased to 83% 

in spatially enhanced Sentinel-2 (1m) and further combining DSM with enhanced 

Sentinel-2 image yielded 97% accuracy rate. As discussed before, sparse representation 

techniques help to enhance road features considerably. Further, combining DSM with 

enhanced Sentinel-2 image, augments to differentiate road features from other 

impervious layers. 

 

The accuracy of the open class was found to be relatively higher (83%) for the Sentinel-

2 (10m) image in comparison with the enhanced Sentinel-2 -1m (77%) image. 

However, DSM fused enhanced images showed higher accuracy (97%) than both 

scenarios. Urban features that are not distinguishable were categorized as an open class. 

Also due to shadows or low spectral resolution, small buildings sometimes become 

unidentifiable and tend to fall within open class.  Accuracy reduction in enhanced 

Sentinel-2 image can be again attributed to relative edge sharpening and edge 
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enhancement features. According to Labib & Harris, (2018) Sentinel-2 tended to 

misclassify several built up and vegetation classes like water, in case the shadow was 

dominant. Hence, after sparse representation, mixed pixels especially in the presence 

of shadows can be largely grouped to associated pixels and thereby pixels from open 

classes tend to fall within other urban classes. 

 

It was also observed that the Sentinel-2 image was able to capture bright buildings as 

well as buildings with dark/red tiles very effectively. The accuracy of bright buildings 

is very high in all scenarios. While Sentinel-2 (10m) provided 97% accuracy for bright 

buildings, the accuracy of Dark/red tile buildings in Sentinel-2 (10m) image was about 

87%, and in enhanced Sentinel-2 (1m) image, accuracy was about 93%. Accuracy of 

both bright buildings and buildings with dark/red tiles showed 100% after combining 

the DSM with enhanced Sentinel-2 image. Hence, this method can be effectively used 

to capture in areas with homogenous building roofs. 

 

General buildings, i.e. buildings that do not have specific shapes or heterogeneous 

structures or buildings that do not have homogenous roof colours etc showed relatively 

lower accuracy before enhancement. Accuracy was about 50% in the case of the 

Sentinel-2 image, whereas general buildings exhibited relatively very lower (50%) for 

the Sentinel-2 (10m) image. However, accuracy has shown a considerable increase up 

to 80% in enhanced Sentinel-2 (1m) images and further to 93% after the fuse process. 

Hence, it can be assumed that this method can be very effectively used for building 

detection and classification in those areas with non-homogenous buildings in terms of 

shapes, structure and roof colour.  
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6.4.3 The normalized differenced vegetation index (NDVI) and urban 

classification 

NDVI analyses the photosynthetic activity of vegetation and is a good indicator for the 

vitality of vegetation or for the growth status. Usually, this index is used to analyze the 

spatial distribution and seasonal fluctuation of vegetation over a region. However, this 

can also be used to differentiate between vegetation and plant fewer land covers, which 

is helpful to remove vegetation and supports accurate urban classification. According 

to Bhang & Lee, (2013), urban studies have several difficulties in segregating land 

covers as well as defining their properties with remote sensing images, as mixtures of 

land covers are very complex and spectrally ambiguous, typically with multispectral 

images.  

 

In this chapter through NDVI, areas under vegetation cover were demarcated and 

removed from Sentinel-2 images. Results highlight that NDVI can be effectively used 

in vegetation removal during urban classification. Several studies also used the same 

method. A study conducted by Braun & Herold, (2004) explores and compares two 

methods, based on the vegetation fraction from linear spectral unmixing and the NDVI 

to map the degree of imperviousness in the urban agglomeration of Cologne/Bonn in 

Western Germany. Bhang & Lee, (2013) attempted to retrieve and investigate pure land 

cover characteristics of urban areas in terms of NDVI and surface brightness 

temperature and found that urban covers, especially building rooftops, had a few factors 

controlling NDVI values. Bhandari et al., (2012) attempted feature extraction based on 

NDVI for Jabalpur City in India and their results showed that the NDVI is highly useful 

in detecting the surface features of the visible area which are extremely beneficial for 

municipal planning and management.  
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6.4.4 Unsupervised classification for building extraction 

In this thesis, unsupervised classification is used to classify urban features and to 

generate 3D city models. Images were classified into 40 different classes and further 

were grouped into seven classes. The seven classes include water, road, resultant 

vegetation area, open area, buildings with high brightness roofs, buildings with red/dark 

shade roofs, and general buildings. 

 

Among the several classification methods, pixel based classification is generally 

grouped as supervised or unsupervised classification. The major difference between 

supervised and unsupervised classification is that training of the images is involved in 

supervised classification while no training is done for unsupervised classification (Li et 

al., 2017). Data training is the process of selecting a sample of pixels from the image 

and using it to establish thresholds to delineate specific land covers on the ground. A 

representative set of pixel values for each class is the key to the implementation of a 

supervised classification (Foody, 2008). The accuracy of the methods highly depends 

on familiarity with geographical conditions as well as with the samples taken for 

training. 

  

Whereas, in unsupervised classification techniques prior field knowledge is not 

necessary and clustering mechanisms are used to group satellite image pixels into 

unlabeled classes/clusters. Training datasets are not required in unsupervised 

classification procedure and only specification of the number of classes is required by 

the user. In this research, initially, 40 classes were generated and later those classes 

were again clustered and grouped into seven classes. The K-means clustering algorithm 

was used for classification. Even though, several clustering algorithms exist that can be 



Chapter VI 
 

170 
 

used to group the pixels present in the image based on spectral values (Phiri & 

Morgenroth, 2017), the most popular classifiers that use this algorithm are K-means 

and iterative self-organizing data analysis (ISODATA).  

 

Both supervised and unsupervised classification techniques are used in building 

extraction from satellite images. For example, Ghaffarian & Ghaffarian (2014) 

presented a novel approach to detect the buildings by automating the training area 

collecting stage for supervised classification. The performance of the proposed 

approach was evaluated for both pixel based and object based classification. Evaluation 

of the results of the proposed study showed that based on the approach precision 

performances of overall buildings detected were about 88.4% and 85.3% in pixel based 

and object based classification respectively. Belgiu & Dra, (2014) compared supervised 

and unsupervised multiresolution segmentation approaches for extracting buildings 

from very high resolution QuickBird and WorldView-2 images with the inference that, 

though the two approaches produced different image objects, both yielded more or less 

similar classification results, with overall accuracies ranging from 82% to 86%. Further, 

they also concluded that as supervised segmentation requires prohibitive amounts of 

effort and time, unsupervised methods offer an important alternative that could improve 

the applicability of object based image analysis. 

 

As mentioned before this research was carried out based on unsupervised classification. 

The main advantage of the method is its non-requirement of prior knowledge about land 

cover types before classification and the interpreter is responsible for assigning a class 

to each cluster of pixels.  Hence, this technique is quicker, cheaper, and simpler than 

supervised methods (Goetz et al., 2003). Further, the result of the unsupervised 
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approach could reveal some hidden characteristics of data, while the pixels in the same 

class may not necessarily illustrate identical features. Accordingly, the result of the 

unsupervised technique does not necessarily correspond to the classes that users are 

interested in. Another advantage of unsupervised classification is that this method 

allows using the high resolution Google Earth hosted satellite imagery for visual 

interpretation (in line with the desire to use open data, although image updates do vary 

geographically). The high resolution Google Earth image was geographically linked to 

the classified satellite image and each of the forty classes derived from unsupervised 

classification was regrouped to respective seven classes by looking at the high 

resolution satellite data via visual interpretation technique. Hence, for studies that link 

with Google Earth or similar kinds of images, it is recommended to use unsupervised 

classification techniques. 

 

During the grouping process, classes representing water bodies were found to be much 

easier than other classes. Further, buildings with high reflectance values (i.e bright 

buildings or buildings with red tile roofs etc.) were relatively easier to extract. However, 

the grouping of buildings in highly clustered areas, buildings with low spectral 

reflectance values (for example roofs with multiple colours of tiles or with 

heterogeneous structures), smaller buildings with a mix of vegetation etc. were 

relatively difficult. In these regions, the pixel values have similarities with the pixel 

values of adjacent road features. These mixed pixel areas were extracted separately 

from the satellite image and the unsupervised classification has been applied again for 

this area to increase the overall classification accuracy. Shadows of bigger buildings 

pose an issue and to solve this requires analysis of multi temporal images captured 

during different times of the day. 
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6.5 Generating LOD1 3D city model from remote sensing satellite data 

Chapter V of the thesis presented methods to generate LOD0 and LOD1 3D city models 

from satellite remote sensing data with varying accuracies by taking the example of 

Huangpu District, Shanghai. Few studies have already attempted to generate 3D city 

models from remote sensing satellite data, however they are mostly limited to urban 

structure characterisation and building height and volume extraction (Gamba et al., 

2000; Goetz et al., 2003; Wang et al., 2018). The method used to generate LOD0 city 

model consisted of fusing enhanced Sentinel-2 (1m) with AW3D- 30 DSM and land 

cover classification. Accuracy assessment of building classification shows that this 

method yielded high accuracy in extracting buildings, i. e. 100% for both bright and 

dark/red building category and 93% for general buildings. Similarly, the fusion method 

fused with object based machine learning was adopted by Wang et al., 2018 to extract 

building heights by fusing Landsat image with Global Elevation Models (GEM) 

including AW3D30, SRTM and ASTER GDEM. However, their study showed 

relatively higher error in urban centre areas as a result of insufficient spatial resolution 

to resolve complex height variations which can be reduced to some extent by using 

enhanced Sentinel-2 (1m) images. Further, the fusion of the method adopted by Wang 

et al., 2018 with the enhanced Sentinel-2 (1m) as developed in this thesis may provide 

better results in building extraction. 

 

Further, the LOD0 3D city model generated in this chapter largely provided building 

volume information for the entire area and found more suitable for categorising the 

buildings of an area according to their height, as it could not provide the exact shape 

and height of individual buildings. Thus, this method is highly suitable for applications 

that require information on building volume as well as distribution of buildings 



Chapter VI 
 

173 
 

according to elevation ranges (for example disaster vulnerability assessment (Geiß et 

al., 2015) mapping of human settlements (Pesaresi et al., 2016), socio economic studies 

(Wang et al., 2018) etc.)). 

 

The second section of the chapter provided the method to generate LOD1 3D city 

models from fused enhanced Sentinel-2 (1m) and AW3D-30 DSM images. One 

prerequisite to build LOD1 3D city models is generation of 2D footprints, in this case 

from the open satellite data. Hence, 2D footprints were generated by converting raster 

building data (pixels) to corresponding vector polygons. However, it involved some 

challenges as this method cannot extract exact individual building footprints in cases 

where the buildings are undulated or clustered.  It was observed that when the roof is 

undulated,  it results in presence of multiple pixel values with different height attributes 

within the same building polygon area and consecutively it results in the classification 

of the same building as many or vice versa. Thus one of the main disadvantages of this 

method is that, without knowing the height of the buildings, exact groups for building 

classification cannot be set. This is one of the major challenges of generating 2D 

footprints from open satellite data. In this chapter, the LOD1 buildings are generated 

by setting arbitrary height ranges of buildings within the city. Due to this limitation, the 

2D building vector polygons generated are not of accurate shape but give the indication 

of the spread of buildings in the city. This method shall give the LOD1 3D city model 

but with limited accuracy. However, this LOD1 can provide the user with an indication 

of locations of high rise buildings and low rise buildings etc., which shall be handy for 

many applications (discussed in section 6.7). 
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6.6 Major limitations of the methods presented in this thesis 

The thesis demonstrated two different methods to generate 3D city models from open 

data. The limitations of both methods are discussed in the next sections. 

 

6.6.1 Major challenges associated with generation of 3D City Models from open 

2D building footprints 

Few challenges exist related to the generation of 3D city models from 2D open building 

footprint data based on the method demonstrated in the chapter III and are herewith 

elaborated further.  

 

6.6.1.1 Lack of accuracy in the input data 

The method used in Chapter III uses open 2D building data as an input (for example 

OSM) and as discussed in the chapter itself, the accuracy of these open datasets cannot 

be assured. All the errors including topological and data inconsistencies in the 2D 

building footprint data will be reflected in the resultant 3D city models (Girindran et 

al., 2020). Hence, the accuracy of the 3D city models largely depends on the accuracy 

of the input 2D open building footprint data. Likewise, another input data used includes 

AW3D-30 DSM. Data void regions of AW3D-30 DSM is filled with the height values 

of existing DEMs in cloud and snow pixels between 60◦ north and 60◦ south. 

Accordingly, the building height values in corresponding areas may not be accurate and 

the method may incur such errors.  
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6.6.1.2 Generalization of building heights 

Another limitation of the method is that it cannot provide height differences within the 

same polygon. As building heights in 2D building data are generalized and represented 

as single polygons, micro level height variations within the buildings cannot be well 

represented. Hence, this method is most effective for macro level simulations.  

 

6.6.2 Major challenges associated with the extraction of urban buildings from 

satellite images 

Chapter V of the thesis demonstrated how to extract building volumes from spatially 

enhanced Sentinel-2 images. Even though this method proved to be capable of 

extracting buildings in data-void regions still there are underlying issues such as the 

shape of buildings, differentiation among buildings with other impervious layers, 

temporal image requirements in the context of urban growth and shadows of big 

buildings,  as explained further. 

 

6.6.2.1 Shape of buildings  

In satellite images, features are represented as different pixels no matter what the shape 

of that particular feature is. In high resolution satellite images, these shapes are visible 

and easy to demarcate, whereas in low resolution images these shapes may not be 

accurate. Sentinel-2 has a spatial resolution of 10m and hence all features less than 10m 

will be represented only as a pixel. Further, small features may mostly be represented 

as mixed pixels. After spatial resolution enhancement, edges get sharpened reducing 

the mixed pixels. However, in this process, most of the small size features may lose 
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their shape or even their existence. Hence, this method is not that useful for building 

shape extraction, especially in the case of small buildings. 

 

6.6.2.2 Differentiation between buildings and other impervious layers  

Higher spatial resolution implies, higher the chance of accurately identifying  of 

buildings and other urban features. Images with low spatial resolution may either result 

in absence of many features or misclassification of non-building features as well as 

other impervious layers as buildings and vice versa. Impervious surfaces are usually 

defined as the entirety of impermeable surfaces such as roads, buildings, parking lots, 

and other urban infrastructures, where water cannot infiltrate through the ground (Sun 

et al., 2019). Challenges for mixed pixels may create confusion to delineate buildings 

from impervious surfaces in the large area mapping (Sun et al., 2019).  

 

Results from this study showed that there are instances where flyovers are mis-

classified as large buildings. Thus  negating chances of mis-classification of buildings 

with other impervious layers such as roads or parking lots can be done to some extent 

by combining DSM. Whereas, in the case of flyovers or elevated roads simply 

combining DSM may not solve the issue. In this case, c and cross verification with 

OSM or Google Earth may help to solve the problem. Barrington-Leigh & Millard-

Ball, (2017), estimated that globally about 77 countries among 185 have more than 95% 

of completeness of OSM road map. Hence,  usage of  OSM to delineate roads can be a 

possible solution. 
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6.6.2.3 Rapid urban growth and the importance of temporal image requirements 

Urban areas are growing rapidly and in order to generate 3D city models more 

accurately, it is important to use the latest sets of satellite images. In this research 

AW3D-30 DSM is used to generate building elevation. Each DSM is captured during 

different times using different acquisition methods. For example, AW3D and TanDEM-

X were acquired around the early 2010s, while ASTER and SRTM were acquired in 

the early 2000s (Misra et al., 2018). This affects what can be ‘seen’ in these DSMs 

which is important in the case of buildings. Hence, it is also important to use datasets 

that have continuous revisiting periods. In this study, AW3D-30 DSM was used to 

generate building heights. Continuous enhancements of AW3D-30 DSM are expected, 

which will improve its future utility. Hence, AW3D-30 DSM has considerable future 

potential in sustainable urban development due to its global coverage and open license. 

 

Using the newer satellite data as the input image to fuse with DSM also can increase 

the accuracy of output. Sentinel-2 and WorldView-3 images are used as input images 

for this study. Both of these datasets have frequent revisit times which enables 

continuous updating of urban features. Sentinel-2 has a temporal resolution of 10 days 

with one satellite and 5 days with two satellites. The spatial resolution varies between 

10m, 20m, and 60m depending on the spectral bands with a swath width of 290km. The 

main advantage of Sentinel-2 is the combination of wide swath and frequent revisiting 

time which makes it highly suitable for the mapping and monitoring of human 

settlements at a global level (Pesaresi et al., 2016). As the “Landsat-like” component of 

Copernicus, Sentinel-2 shares many of the technical characteristics of the existing 

Landsat system (Wulder et al., 2019). 
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The WorldView-3 satellite launched in 2014 has an average revisit time of < 1 day and 

is capable of collecting up to 680,000 km2 per day, further enhancing the DigitalGlobe 

collection capacity for more rapid and reliable collection. Hence Sentinel-2, 

WorldView-3, and AW3D-30 DSM have greater potential for urban management 

studies as well as for building generation. 

 

6.6.2.4 Shadows of big buildings 

High spatial resolution images produce detailed land cover and land use information, 

but the spectral similarity of different objects and shadows of tall buildings or large 

trees limit the impervious surface extraction (Guo et al., 2010). In this research, cloud 

free and shadowless images were procured. However, shadows of tall buildings still 

remain an issue in building extraction while using open data. These shadows create a 

higher number of mixed pixels and reduce the spectral reflection of small buildings. 

Hence, it has resulted in a larger area under open class. However, after combining DSM 

with enhanced Sentinel-2 image, the area under open class has been reduced to 2.68 

sq.km against 4.34 sq.km from Sentinel-2 (10m). The major reason for this reduction 

can be attributed to the improved classification of mixed pixels into other classes 

including small buildings after combining DSM.  

 

6.7 Potential applications of LOD1 and LOD0 3D city models 

The methods discussed in this thesis mainly dealt with the generation of LOD1 and 

LOD0 3D city models. As briefly discussed in chapter III, many applications require 

only low LOD 3D city models, especially when a finer footprint is more useful than the 

acquired roof shape and this method will support such kinds of applications. Examples 
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of such cases include climate change and urban climate modelling, property 

registration, energy modelling, navigation, design of urban green spaces, crisis 

management, vulnerability assessments for disaster mitigation and management, global 

change assessments and visualization.  

 

Further, not all applications require high LOD but rather are task specific and data 

volume dependent. For example, noise emission simulation is computationally 

expensive and the inclusion of the exact slope of roofs has little influence on the results, 

thus a LOD1 model is more appropriate in such an instance. In Westphalia, Germany, 

based on CityGML LOD1 Data, the mapping of environmental noise pollution has been 

done for the whole state of North Rhine that contains approximately 8.6 million 

buildings. Recently several studies show that LOD1 or LOD0 3D city model data has 

great potential to carry out global level studies. Selected studies that have used 3D city 

models are briefly elaborated in the following sections with implications on where the 

methods for the 3D city model generation described in this thesis could be used.  

  

6.7.1  Estimation of building volume and night time light (NTL) 

A study by Shi et al., (2020) used LOD1 building volume data to assess the relationship 

between night time light data and the area extent of urbanized land. The study 

hypothesized that the strength of the relationship with NTL (Night Time Light) can be 

increased by consideration of the volume rather than simply the area of urbanized land. 

In order to determine the relationships between NTL, the area and volume of urbanized 

land, the towns and cities of the UK, the USA and countries of the European Union 

were considered. Further, the study also suggests the need to provide more attention to 

the building volumes. As the height data becomes easier to acquire and increasingly 



Chapter VI 
 

180 
 

available, this may allow studies using NTL to relate more closely to key variables of 

urbanized areas and their populations. 

  

It is to be noted that, Shi et al., (2020) followed the method developed in chapter III of 

this thesis as the study fused building footprint data together with building height data, 

to estimate building volumes and thereby also reaffirms the potential of the present 

method for global level studies. 

 

 6.7.2 Estimation of building volume for macro simulations including housing 

stock energy models decarbonisation strategies 

LOD1 building models have huge potential in urban heat estimation and 

decarbonisation strategies. Building stock models have already been successfully used 

for modelling urban building energy at different spatial scales in different studies 

(Evans et al., 2009; Rosser et al., 2019). Further, studies like Sousa et al., (2018) 

demonstrated the use of building volume estimation to support the formulation of 

housing stock decarbonisation strategies.  The Sousa study paid particular attention to 

the systematic identification of housing models and their corresponding attributes to 

represent the stock. Further, it emphasised the relevance of a volumetric representation 

of archetypes, or the semantically attributed 3D representations of the archetypes 

comprising the housing stock, in achieving the housing stock decarbonisation. Similarly 

in another study, Wurm et al., (2021) used deep learning based LOD1 building stock 

modelling with aerial images for urban heat demand modelling. Wurm et al., 

(2021)  further highlighted the advantage of open data urban building energy modelling 

which substantiates the relevance of the current method.  
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Modern buildings built in our cities have high levels of energy consumption because of 

the requirements for air conditioning as well as lighting and in such scenarios, it is 

necessary to critically assess the utilization of resources for these activities. The 3D 

volume of buildings will be much needed for accurate energy modelling. For this 

application LOD1 3D city model developed using the method mentioned in chapter III 

would be handy or LOD0 3D city model generated for a city from satellite data shall 

be useful for macro modelling.  

 

6.7.3 Estimating building geometry and shadow cast 

Estimating shadows cast by buildings is an important utility of LOD1 3D modelling to 

assess the effect of a planned building onto its neighbourhood or to estimate the solar 

potential of buildings (Alam et al., 2013). Further, it can also be used to estimate how 

much a building is exposed to the sun, so as to assess the suitability for installation of 

solar panels on roofs (Strzalka et al., 2012).  

  

Geometric information about buildings such as the tilt, orientation and area of the roof 

etc can be acquired from 3D models which also enhance its utility for the solar empirical 

models (Biljecki et al. 2015b). Further, 3D city models have a potential application in 

the estimation of the internal size of a building including net area, floor space etc. which 

is of importance for energy usage estimation of buildings (Boeters et al., 2015). In this 

case, the LOD1 building model mentioned in chapter III can be used, whereas the 

LOD0/LOD1 3D city model derived from satellite data will not be handy, as the exact 

shape of buildings cannot be developed through the methodology of Chapter V with 

the usage of current open satellite data.  
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6.7.4  Climate change studies 

 The application of 3D modelling in climate change studies has gained significant 

attention in recent years. There are several applications (especially for mitigation and 

adaptation strategies) that require only LOD1 or LOD0 3D visualization. For example, 

Danahy et al., (2016) investigated the use of 3D city models as a visualization reference 

against which analytical models were visualized to identify micro scale mitigation 

scenarios of urban heat island effects in the Toronto region. In another study, Masson 

et al., (2014) reported the usage of 3D city models in systemic modelling approaches 

to explore the ways of climate change adaptation. Further, several studies have already 

explored the utility of LOD1 3D city models in microclimate analyses including 

prediction of ground surface temperatures and to understand the urban thermal 

environment, estimate of the wind flow and evaluate pedestrian wind comfort around 

buildings (Amorim et al., 2012; Janssen et al., 2013; Ujang et al., 2015; Upadhyay & 

Sharma, 2014). The LOD1 3D city model generated by both methodologies as well as 

the LOD0 3D city model mentioned in chapter V of this thesis will be highly useful in 

such studies. 

  

6.7.5 Disaster mitigation and management  

One of the advantages of the proposed 3D generation from open source is the relative 

speed at which the 3D information can be generated. The faster generation will be 

handy at the time of disaster management as the 3D information of buildings will help 

in modelling the movement of cyclones in a particular city. Similarly, the 3D 

information will be highly advantageous for the earthquake mitigation activities. One 

potential application of low LOD 3D city modelling is the estimation of the number of 

inhabitants in a disaster affected area (such as marking of flood affected population or 
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estimating the number of people affected by earthquakes or explosions etc.). Since the 

size of a building and its type provide a cue on the number of residents, usage of 3D 

geoinformation to estimate the population has been a key topic for research. Already, 

studies have explored the applicability of using building data in mapping dwelling units 

and estimating the number of people living in the buildings (Kunze & Hecht, 2015).  

  

The outcome of this case can be used in multiple application domains. For instance, to 

optimise the coverage of mobile radio signal coverage (i.e., to optimise the network to 

cover more people) (Tutschku, 1997), as emergency response for aid delivery and 

evacuation (for example, by estimating the population affected by flooding (Akbar et 

al., 2013; Schneiderbauer & Ehrlich, 2005). For disaster mitigation and management, 

LOD1 buildings generated by chapter III methodology can be used wherever possible 

and in the absence of the same, LOD1 3D city models can be derived from open satellite 

data. The ability to fastly generate the 3D city model using the mentioned 

methodologies shall be convenient at disaster response time too. 

  

6.7.6 Environmental management and planning 

To cope up with rapid urbanisation and higher population growth, the city exerts 

immense pressure on the environment, which demands sustainable solutions for better 

environmental management practices. Environmentally sustainable planning of urban 

centres is difficult and potentially ineffective in the absence of reasonably adequate 

spatial information.  

  

3D city models developed in this study will be particularly helpful in river management 

as well as in flood management and mitigation activities. Cities usually face problems 
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from recurrent floods for several years. Intense short duration rains result in flash floods 

disrupting city life considerably.  Changes in land use associated with urban 

development also result in flooding. Developmental projects taken up in the urban space 

over the years have created certain serious issues including flooding. A thorough 

understanding of the rivers and river basins in all their pluralities and intricacies is an 

essential pre-requisite for ensuring effective river conservation, river revival and 

management and in turn ensuring the wellbeing of the people and livelihoods. The 

rivers and their shores are precariously balanced, interacting ecosystems, easily upset 

by man, and there is increasing evidence to reiterate that man made activities have 

drastically modified the health of riverine ecosystems in a negative manner; many rivers 

no longer support socially valued native species or sustain dynamism that provides 

important goods and services. The pressure of urbanisation usually forces the 

construction of buildings even in flood plains. The 3D city information will help river 

planners to understand the volume of buildings in the floodplain and the information 

can be vital in case of evacuation at the time of the flood.  

  

Increasing impervious surface area (ISA) due to urban development is one of the most 

important components of human induced land use and land cover change. ISA 

increment impacts storm water discharge in terms of influencing the runoff and 

associated erosion. Drainage capacity in the urban area is primarily made up of a local 

storm water drainage system composed of storm drain pipes, inlets, manholes, 

channels, roadside drains and culverts. This system is intended to converge storm flows 

efficiently to the community’s primary drainage system, such as the main river channel 

or the nearest large body of water. Estimation of built up areas in a drainage basin with 

the degree of actual imperviousness is a must for estimating surface runoff and peak 
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flow in an urban watershed. The information on the volume of buildings generated 

using 3D models will be very apt in this scenario.  

  

The frequent flood logging area can be mapped and the building volume falling in these 

areas can be estimated for town planners. Uncontrolled growth of the urban population 

in developing countries in recent years has made changes in land use and other 

activities. An increase in concrete structures and pavements consuming bare soils 

without proper drainage systems may cause water logging/flooding. Apart from this, 

lack of maintenance of existing drainage systems and blockage of natural watercourses 

lead to water log problems during rain. Storm water drainage and sewerage system of 

cities, especially in developing nations, will be in a complex situation. Many cities have 

witnessed widespread water logging and disruption of traffic in recent days. Critical 

water logging is observed during intense rainfall, which results in the breakdown of 

vehicles, failure of signal systems, power disruptions and uprooting of trees. Non-

maintenance of drainage lines together with unmanaged waste dumping cause 

blockages and is a serious issue in many developing cities. The smooth flow of water 

is hindered in the rainy season and further results in water logging/flooding over roads. 

The 3D city model will help planners to properly understand the building density and 

thereby access the population pressure exerted in these frequently waterlogged areas.  

  

Similarly, the LOD0 and LOD1 3D city models will be useful for planners in 

conducting Environment Impact Assessment (EIA) for new building construction in an 

area, as the volume information gives a more accurate estimate of pressure exerted by 

the already constructed buildings in an area. EIA is a prior exercise to be carried out in 

any large project or major activity to be undertaken, so as to negate any harm to the 
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environment on a short term or long term basis. Any developmental endeavor requires 

the analysis of the need of such a project, the monetary costs as well as benefits involved 

and further most importantly requires consideration and detailed assessment of the 

effect of a proposed development on the environment. 

  

An EIA aims to ensure that potential impacts are identified and addressed at an early 

stage in the project’s planning and design. The output of the assessment is to be 

communicated to all the relevant stakeholders that make informed decisions about the 

proposed projects, the project developers, investors as well as regulators, planners and 

politicians. Upon reading the report of an environmental impact assessment, project 

planners and engineers can shape the project so that the objectives and benefits can be 

achieved in a sustained manner without causing adverse impacts. Geographical 

Information System (GIS), which is a tool for collecting, storing, retrieving at will, 

transforming and displaying spatial data for a particular set of purposes, is widely used 

for verifying EIA reports. The 3D city information along with the other GIS variables 

will greatly equip the planners to make decisions related to permitting new building 

constructions in the existing area.   

  

The 3D city information also helps in understanding the urban heat island issues related 

to climate change. Climate change is perhaps the most challenging environmental crisis 

confronting humanity today. Anthropocentric activities have substantially altered and 

fragmented our landscape and such disturbances can change the global atmospheric 

concentration of carbon dioxide, the principal heat trapping gas, further affect local, 

regional, and global climate by changing the energy balance on Earth's surface. 

Overwhelming scientific evidence suggests that emissions of several greenhouse gases 
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such as carbon dioxide, methane, and nitrous oxides in particular, are contributing to 

climatic change. The global trend toward increased urbanisation indicates that climate 

change impacts in most countries will mainly affect urban populations. Climate change 

and urban growth are therefore inextricably linked, and general issues of sustainability 

require an urban focus. In addition, rising temperatures and enhanced ‘heat island’ 

effects may alter the energy consumption spatial and temporal patterns of cities. Remote 

sensing and GIS is a sophisticated technology already in widespread use by planners, 

engineers, and scientists to display and analyze all forms of location referenced data 

related to climate change and its impacts. RS and GIS techniques make it easier to 

handle a large volume of spatial data and temporal data. The 3D data will help to 

advance in urban climate change studies especially related to urban heat island.  

  

Drainage characteristics of urban areas can be studied effectively using geospatial tools. 

It is important to understand the construct of likely flood events in a given situation to 

take preventive actions to mitigate likely damages. Domain knowledge on hydrology 

combined with spatial data assimilation and analyses using Remote Sensing and GIS 

would equip to precisely define the locations that are likely to get affected by flash 

floods during storm events. Changes in the urban area and storm intensity produce 

higher flows that exceed the capacity of small culverts under roads designed for the un-

urbanized situation. Although adequate when designed, their carrying capacity may 

turn out to be inadequate and thereby overflow onto the roads creating new water paths 

and flood built up areas. In developing cities mostly inadequate maintenance of the 

drainage channels, debris and solid waste disposed into such drainage systems may 

accentuate the situation. Authorities shall be able to understand the root cause of these 

by integrating the volume of buildings in an area along with these existing parameters. 
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LOD1 3D city model generated using both methodologies shall be useful in the 

mentioned situations.  

  

6.7.7  Land information system and tax collection 

The application of geospatial technology in urban land management is widely accepted. 

But the 3D city information can revolutionize the building tax collection for the city. 

As the 3D information gives the volume of buildings, the tax checker can use this 

information to estimate the ratio of tax collected in a particular area proportional to the 

volume. The cost effective 3D model development will be particularly useful for  cities 

in developing countries as the commercial 3D generation is still relatively costly. The 

LOD1 3D city model mentioned in chapter III shall be useful for this application.   

  

6.7.8  Solid waste management  

The amount and type of waste being generated largely varies within the areas of the 

city, which warrants proper management. Solid waste management in an effective 

manner is one of the key challenges cities across the globe are facing, as population and 

consumption growth results in an increasing quantity of waste. Solid waste if not 

handled properly potentially threatens and degrades environmental resources (air 

pollution through noxious smell, surface and ground water pollution through seepage 

of deposited and decomposed waste). Geospatial data along with 3D city information 

will help to understand the spatial distribution of the waste generation, its quantity and 

type. The 3D city volume information will help authorities to conduct route 

optimisation for solid waste collection. Similarly, the adequate allocation of waste bin 

collection can be done to the building density in a region. LOD1 3D city model 

generated using both methodologies shall be handy in this type of analysis.   



Chapter VI 
 

189 
 

 6.7.9   Tourism geo portal creation  

Information technologies and tourism, especially in cities are the two most dynamic 

motivators of the emerging global economy. Both tourism and IT increasingly provide 

strategic opportunities and powerful tools for economic growth, redistribution of wealth 

and development of equity around the globe. Usually, city tourism houses several 

attractions like captivating monuments, fascinating museums, architectural wonders, 

vivacious performing art scene, fabulous eating places, bustling markets, majestic forts 

etc. that lure the tourists. Attracting tourists is one of the prime focuses of every city 

and usually, tourists will be eager to gather reliable information for travel planning. The 

3D display of important buildings along with an interactive spatial web portal 

exclusively for tourism information that has all the relevant spatial information 

regarding tourism to attract tourists to a particular city. The LOD1 3D city model 

mentioned in chapter III shall be an effective contributor for developing such 

solutions.   

  

6.8 Sustainable development goals and 3D city models 

As discussed in the introduction chapter, cities play a significant role in achieving 

sustainable development. Reflecting the essential role of cities in our transition to 

sustainable global development, the 11th Sustainable Development Goal, aims to 

“make cities and human settlements inclusive, safe, resilient and sustainable”. 

Furthermore, several other SDGs are also linked to city development. The UN Habitat 

assumes that SDG 11 is directly related to at least eleven other SDGs and that one third 

of all 234 UN indicators can be assessed at the urban level (Un-Habitat, n.d.). The 

targeted implementation of SDGs in cities has the potential to support the integration 
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of sustainability into urban planning (Kharrazi et al., 2016). Klopp & Petretta, (2017) 

argue that an ongoing challenge for the SDGs is the poor availability of urban data and 

highlights that the availability of open datasets at the city level can contribute to 

innovations and value added city services (Meschede & Siebenlist, 2019). Literature 

shows that 3D city models aid in sustainable city planning, as well as management and 

there is a dearth of low cost open 3D city data globally. This thesis demonstrates 

methods to generate low cost open 3D city models and thereby contributes towards 

narrowing the gap.  

  

Further, the generation of low cost 3D city models can contribute to achieving multiple 

goals of SDGs that includes i) improving accessible and sustainable transport systems 

(SDG 11.2) where the LOD1 3D city models can aid in the simulation of the transport 

network, ii) enhancing integrated as well as sustainable human settlement planning and 

management in all countries (SDG 11.3), iii) minimising the number of deaths and the 

number of people affected and substantially decrease the direct economic losses relative 

to global gross domestic product caused by disasters, including water related disasters, 

with a focus on protecting the poor and people in vulnerable situations (SDG 11.5). and 

iv) increase the mitigation and adaptation capacities of cities to climate change, 

resilience to disasters, and develop and implement, in line with the Sendai Framework 

for Disaster Risk Reduction 2015 - 2030, holistic disaster risk management at all levels 

through proper planning (SDG 11.B). 

 

This chapter windsup with the discussion over the potential applications of the 

generated 3D city models. The following chapter (VII) provides future outlook and 

salient findings of the thesis. 
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CHAPTER VII 

FUTURE OUTLOOK AND CONCLUSIONS  

 

7.1 Outlook and scope of future research 

All data capture of relevance to this thesis continues to develop (for example, OSM 

data (which is now moving to 3D), optical satellite imagery, DSM and DTM data) and 

this has implications for improving the efficacy of the methods presented in this thesis. 

The new data set can be incorporated for 3D city model generation by analysing and 

slightly modifying the existing methodologies accordingly. For example, a new high 

resolution DSM can be used for height generation of the buildings, but the height value 

capture technique to be applied will depend on characteristics of the available DSM. 

There will more than likely be a need for recalibration of the methods presented in this 

thesis to use these new data sources, but the concept remains applicable. In short, more 

accurate DSM and DTM will help to generate more accurate 3D city models.  

 

In the future, there will likely be higher resolution DSMs. LiDAR DSM and ICESat-2 

data are examples. Many countries are already providing accurate LiDAR DSM data. 

For example, LiDAR DSM data are already available for about 70% of England from 

the UK Environmental Agency. ICESat-2 (ICE, CLOUD, and Land Elevation Satellite) 

is an ambitious mission from NASA, which will provide global distribution of geodetic 

measurements of both the terrain surface and relative canopy heights and it will also 

survey urban areas (Neuenschwander et al., 2018). Further, Global Ecosystem 

Dynamics Investigation (GEDI) LIDAR from NASA , with its dense track sampling 
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and precise geolocation, forms the basis of an important dataset of ground control points 

to validate and calibrate global and regional DEMs and serves as a reference for surface 

elevation change ( https://gedi.umd.edu/mission/mission-overview/; Dubayah et al., 

2020; Healey et al., 2020). 

  

The methodologies presented in this thesis afford the development of 3D models with 

LOD1 for any urban setting globally. High resolution 3D datasets with up to LOD2 are, 

of course, possible with the use of high resolution DSM and DTM but are very 

expensive to produce currently as many are not open source. But as more and more data 

like LiDAR DSM etc. are available as open data, a higher level of LOD building 

generation shall be possible. Especially to extract the roof top height shall be possible 

with the arrival of higher DSM and DTM data. Thus, it is hoped that when more 

accurate DSMs become available, it will enable the user to produce more accurate 3D 

models with better shape descriptions of buildings, especially roof modelling, thereby 

generating higher LODs using the defined methodology.   

 

Further, part of this study used open software (GDAL, QGIS). In the future, it is 

possible to develop open source software and tools to generate 3D city models and to 

automate the entire procedure which will considerably increase the application as well 

as usage of LOD1 3D city models. Likewise, producing a global repository of open 

source enhanced Sentinel-2 images (for example, open data repositories of ready‐to‐

use global street network models from OSM (Boeing, 2021)) could be achieved in the 

future to further the current research. 
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The increase in the coverage and accuracy of OSM will also help in generating more 

accurate 3D city models. Studies have reported that there has been a considerable 

increase in OSM building data in recent years. For example, from 2012 to 2017 alone 

there has been a 20 times increase in OSM building data in China (Tian et al., 2019). 

Effective derivation of elevation values for OSM data will likely extend its utility 

(Knerr, 2013). However, the absence of a global completeness assessment may hamper 

the use of OSM for urban planning and development, unless it is resolved (Barrington-

Leigh & Millard-Ball, 2017). One of the major concerns in using OSM data is quality. 

Even though the quality is more difficult to ascertain these data (Veregin, 1999), most 

OSM data are provided by non-professionals and hence both the coverage and the 

quality of the data can be questionable (Senaratne et al. 2017; Nasiri et al. 2018).  

 

Despite this disadvantage, OSM is a source of 2D building data, especially where free 

2D building data are unavailable, as in China, where authorized building data are not 

freely available (Tian et al., 2019). Studies have also revealed that the rate at which 

OSM is receiving contributions from users has been constantly increasing and is 

continuing to grow; complemented by collaborative mapping efforts amongst the OSM 

community to check and improve the quality of contributions (Arsanjani et al., 2015). 

The Humanitarian OpenStreetMap Team (HOT) which applies the principles of open 

source and open data sharing for humanitarian response and community led 

development are also positive developments in this field. Further, ArcGIS Living Atlas 

of the World provides foundation elevation layers and tools to support analysis and 

visualization across the ArcGIS system. These layers get updated quarterly with high 

resolution elevation data from open sources and the community maps program which 
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will in turn provide a good source of open data whilst it also shows that the relevance 

of open data is getting widely accepted (ArcGIS Living Atlas, 2021). 

 

If another satellite data type is being used for 2D footprint generation (for instance, 

Landsat data would be attractive for historical analyses of cities’ 3D landscapes), the 

parameters for enhancing that particular satellite data have to be analysed and generated 

for applying sparse representation techniques. This thesis has established the optimal 

parameters for enhancing Sentinel-2 satellite data of certain bands having a spatial 

resolution of 10m. As new higher resolution open data satellites come in, that data can 

be used for 2D footprint generation, but the parameters for applying sparse 

representation has to be found out. So in general, with these adjustments, any new 

satellite data can be incorporated in the developed methodology for 3D city model 

generation. The Planet data of 5m spatial resolution is promising and similar satellite 

data can be incorporated in future. Usually, these data are not open, but recently an 

initiative has opened these data for the tropics (Planet, 2020) and thus opens up 

opportunity.  

 

3D city modelling has significantly advanced in the last decades and digital twin finds 

widespread favour recently as digital infrastructure becomes ever more embedded in 

our industries, cities and communities (Batty, 2018). Digital twin is the virtual 

representation of the real world including physical objects or processes and about its 

relationship and behaviour (ArcGIS Blog, 2021). Digital twin uses real time world data 

to create simulations that can predict how a product or process will perform in the real 

world and to solve real world problems (Yan et al., 2019). There is an increasing 

demand in the geospatial industry over the emergence of digital twin. Three different 
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phases involved in geospatial digital twin concept are the data collection and 

visualisation, analytics and deployment (Park & Yang, 2020). The historic data as well 

as present data forms part of the analysis and both can be generated based on current 

methods. The 3D city model generated in this thesis using open data can act as the base 

of this digital twin process especially in the data poor regions.   

     

Further, the latest advancements in big data analysis through deep learning techniques 

have led to a paradigm shift in terms of accuracy for image analysis including city-scale 

building extraction (Le et al., 2015; Zhu et al., 2016; Wurm et al., 2019). Especially the 

methods using convolutional neural networks for the semantic segmentation of 

individual buildings in very high resolution imagery have proven their better 

performance compared to traditional image classification methods (Lin et al., 2016; 

Huang et al., 2019). In combination with height data from DSMs, deep learning may 

be used in successfully generating building stocks (Wurm et al., 2021). Considering the 

cutting-edge developments in deep learning-based image analysis there is undoubtedly 

a large scope for producing more accurate 3D city models from open data. 

 

7.2 Conclusions 

This thesis investigated and provided globally replicable methodologies to generate 3D 

city models from open data. Generation of 3D city models from open data is the 

highlight of the research. The thesis broadly covered two different cases that typically 

arise in cities of developing/underdeveloped countries, for developing LOD1 3D city 

models. The first case is for areas having 2D building footprints available in open data 

such as OSM, while the second case is for areas that do not have 2D building footprint 
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in open-source. Two different methods are developed for generating 3D city models in 

both cases.  

 

For the areas already having 2D building footprint, the 3D city model is generated from 

AW3D-30 DSM and GMTED 2010 data. For the area that doesn’t have 2D building 

footprint, enhanced Sentinel-2 satellite data were used to develop the building 

footprints. The enhancement of Sentinel-2 data is done with the help of a sample high 

resolution satellite data. The thesis henceforth also demonstrates the way to increase 

the spatial resolution of Sentinel-2 satellite data.  

 

The 3D city model developed using 2D building footprint from open source showed 

more structural accuracy as compared to the 3D city model developed using 2D 

building footprint generated via open satellite data. In both cases, a 3D city model of 

LOD1 level is generated, but the model generated using open satellite data has limited 

accuracy upon comparison with the other. Hence it is recommended that open source 

2D building footprints be used for generating 3D city models wherever possible and 

only in the absence of the same, the other option shall be considered. The 3D city model 

derived using open satellite data is best suited for providing building volume 

information in a City and the 3D city model developed using open data 2D building 

footprint is best suited to give individual building heights.  

 

The whole method is cost effective, making it particularly attractive to users in low and 

middle income countries, where free 3D city data are not available. Further, this largely 

automated method requires minimal time to generate 3D city models and also has 

flexibility for improvement in accuracy if higher resolution data be available. Given the 



Chapter VII 
 

197 
 

use of relatively low resolution open data, this methodology will be of particular 

relevance to studies that do not require high resolution 3D city models, such as for 

global environmental change studies, global climate change and urban climate 

modelling, real world simulations for 3D games, energy models and disaster 

vulnerability models.  

 

Finally, the methodologies presented in this thesis can, in the future, be employed in 

conjunction with alternative 2D input data. Examples for such instances are quality 

checked OSM data as these become more abundant with more accurate height data, 

upgrades to AW3D-30 or availability of other sources, such as those derived from 

LiDAR measurements. Similarly, advancement in the availability of high resolution 

satellite open data shall help to develop a more accurate 3D city model using the 

methodology mentioned in the thesis.   

  

It is concluded that the methodologies presented go some way to meeting the 3D data 

gap that currently exists for many cities especially in the developing and 

underdeveloped world. The successful use of these methods will depend on the 

application for which they are employed, which in turn should point to what 

improvements in data models are required. This thesis represents a step in the journey 

towards digital twins of all cities – privileged with data or not. 
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