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Abstract 
Nanomaterials have emerged as an exciting class of materials with tuneable chemical and 

physical properties and often enhanced performance when compared to their bulk 

counterpart.  However, the synthesis of nanomaterials remains complex, with a large 

number of process variables (temperature, reaction time, stoichiometry, pH etc.) having 

a significant effect on process outcome.  Furthermore, traditional optimisation strategies 

are typically inefficient and often fail to identify factor interactions. 

Recent advances in automation, machine learning and optimisation have given rise to the 

concept of “self-optimisation” in continuous-flow reactors.  These integrated cyber-

physical reactor systems combine online process analytical technologies with robotics and 

advanced optimisation algorithms, enabling closed-loop control of reaction outcome and 

the ability to rapidly optimise a chemical process. 

The work presented in this thesis aims to demonstrate the feasibility of self-optimisation 

in the continuous-flow hydrothermal synthesis of nanomaterials.  This Industry 4.0 

approach to research and development aims to reduce the timescale necessary for the 

development of new materials to the point of reliable manufacture.  A key objective in this 

work is the ability to transfer knowledge obtained from bench scale optimisation to pilot 

and industrial scale production.   

A bespoke autonomous reactor platform is presented; capable of generating, analysing 

and executing experiments without the need for user intervention.  Integrating online 

analytics with process control and machine learning ensures that the system can learn 

from and predict experiment outcome in real time, continually increasing in confidence 

over successive iterations. 

Following development of the reactor platform, the system was demonstrated across 

various nanomaterial examples and objectives, including targeted particle size in metal 

oxides and maximising the surface area in metal-organic frameworks.  This work 

represents the first reported example of self-optimisation in the continuous-flow 

hydrothermal synthesis of nanomaterials.  
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Chapter 1: Introduction to Nanomaterials 
and Optimisation 
 

1.0 Introduction to Nanomaterials and Optimisation 
This review highlights two of the key topics which are used extensively throughout this 

thesis; nanomaterials and their synthesis, as well as automation and optimisation in 

chemical synthesis.  Both of these topics have been areas of intense research in recent 

years; nanomaterials offer many significant advantages over their bulk material 

counterparts, while automation and optimisation has potential to significantly streamline 

the research and development process. 

This review therefore exists in two distinct parts.  First, an introduction to nanomaterials, 

their applications and a brief overview of their synthesis methods, with emphasis on the 

continuous-flow hydrothermal synthesis (CFHS) methods used in this work.  Second, an 

introduction to automation, optimisation and machine learning, as applied to chemical 

synthesis or processes.  This review aims to highlight some of the key reports in literature 

and provide a useful timeline of how the optimisation process has developed in recent 

decades, from traditional “one variable at a time” through to fully-integrated self-

optimising, autonomous reactors.  Furthermore, the optimisation algorithms which have 

been applied to chemical synthesis are discussed, including their working principles, 

advantages and limitations. 

Finally, the aims and objectives of this PhD are described in greater detail, with overview 

of the remaining chapters in this thesis. 
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1.1 Introduction to Nanomaterials 
Nanomaterials are defined as materials with dimensions of less than 100 nm in at least 

one dimension [1].  Nanomaterials have grown in popularity in recent years due to an 

increased realisation of their range of applications, resulting from a reduction in the 

achievable primary particle size and adjustable surface chemistry.   

Despite the recent advances in both synthesis and applications, nanotechnology is not a 

new phenomenon and examples can be dated back into ancient civilisations [2].  One such 

example is the Lycuragus Cup from AD400; embedded with colloidal gold and silver 

nanoparticles dispersed within the glass, resulting in a colour change which is dependent 

on the direction of incident light (red or green appearance when front- or back-lit 

respectively) [3].  It is unlikely that the reasoning for these effects were well understood 

at the time, however, several manufacturing processes exploited nanotechnology to 

improve on product performance; Damascus steel swords for instance were renowned for 

their exceptional strength and sharp cutting edge.  While this can be attributed to the 

highly skilled smiths and their utilisation of suitable materials and techniques, they were 

almost certainly unaware of the orientated wire-and-tube nanomaterial structures which 

they were embedding within the blade [4].  

Today, nanotechnology is a field of research attributed to the synthesis of materials or 

building of devices on the nanoscale.  The reduction in primary particle size can have 

significant impacts on the properties of these materials, which can be exploited for 

application in a wide range of scientific fields; the synthesis strategies and potential for 

these materials is an area of intense ongoing research and a brief overview of the 

materials, applications and synthesis methods are discussed throughout this chapter.  
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1.2 Advantages of Nanotechnology 
One of the key and most apparent advantages of nanomaterials stems from their increased 

surface area to volume ratio.  The surface area increases dramatically as particle size 

decreases, as can be understood from Figure 1, whereby the surface to volume ratio is 

greatest in the single (smallest) particle, and reduced in the bulk materials.  This increased 

surface area to volume ratio can have dramatic impacts on the material properties and 

applications as discussed below. 

1.2.1 Catalysis 
Catalysts can be categorised as homogenous (same phase) or heterogeneous (different 

phase) and the ideal catalyst exhibits the useful properties of each; heterogeneous 

catalysts for instance are often limited by their available surface area and interactions, but 

are easily separable and recoverable from the reaction medium by simple processes such 

as filtration [5].  An increase in surface area to volume ratio gives rise to an increase in 

the accessible, and therefore exploitable, surfaces of the material.  This feature has 

dramatic implications in catalytic applications, where the productivity and efficiency is 

often limited by the available material surfaces. 

Further to the available surface area, modifying the size of particles can also impact the 

electronic state, coordination environment and adsorption energy of surface atoms and 

reactant molecules [6].  Reducing the particle size to 1-2 nm in metals can result in 

Figure 1: Illustration showing the increased surface area to volume ration associated with 
particle size [329] 
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electronic structures much closer to that of molecules than the bulk material; for example, 

the catalytic performance of Au nanoparticles have been explored extensively in relation 

to their size and shape [7].  Goodman et al. demonstrated experimentally that the 

coordination number of Au nanoclusters supported on TiO2 was proportional to the particle 

size, with smaller Au nanoparticles exhibiting a size-dependent electronic environment [8].  

1.2.2 Optical & Electrical Properties 
It has long been known that nanomaterials exhibit unique and interesting optical 

properties; one of the earliest scientific recordings is in Faraday’s study of gold colloids, 

following an accidental discovery of the phenomenon while mounting gold leaf onto 

microscope slides [9].  Today, we understand this to primarily be a product of Surface 

Plasmon Resonance (SPR); consisting of the collective oscillation of conduction electrons 

excited by the electromagnetic field of light [10].  Following Faraday’s work, Gustav Mie 

continued the study of the optical effects of nanoparticles, which led to the Mie theory of 

scattering (also known as Lorenz-Mie or Lorenz-Mie-Debye), describing the scattering of 

an electronic plane wave by a homogenous sphere [11].   

Figure 2: (a) Composite images of 0.6x1.9 mm2 QD-LED pixels operating at applied bias voltage of 6, 

6, 4, 4 and 5 V for blue, cyan, green, orange and red respectively (right to left).  (b) 

Electroluminescence (Solid) and Photoluminescence (Dashed) spectra of samples from (a).  (c) 
Photograph of chloroform solutions excited by a UV-Lamp with fixed emission at wavelength 365 nm. 
Reproduced from Anikeeva et al. [14] 
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As particles approach a critical size, they divert from classical laws of physics and begin to 

follow quantum mechanics.  An example of this is quantum confinement, which is observed 

as particles approach or are smaller than the wavelength of the incident light; electrons 

that were previously subject to random motion then become restricted to discrete energy 

levels [12].  The size, shape and environment of particles all contribute to the variability 

of the band gap in these discrete energy levels, it is therefore possible to alter the observed 

opto-electric effects by correctly modifying the particle properties. 

While initially observed and studied in noble metals, the opto-electric effects of various 

other materials have been investigated at small scale.  Quantum dots have become an 

interesting area of increasing research due to the potential applications in photovoltaic 

devices, quantum dot displays and even in use as fluorescent labels for monitoring drug 

delivery [13, 14, 15].  Quantum dots of tailored size and shape have been synthesised to 

achieve precise band gap energies, which interact with specific wavelengths of incident 

light to absorb or emit energy in the form of absorption and photoluminescence 

respectively [16].   

1.2.3 Magnetic Susceptibility 
Certain nanomaterials may also exhibit superparamagnetic behaviour or magnetic 

susceptibility; the most explored of these are ferrite (iron oxide) nanoparticles in the 

magnetite crystal structure [17].  Identifying nanomaterials that show superparamagnetic 

behaviour creates opportunity for applications in catalysis, biosensors and MRI contrast 

agents, to name a few; the excitement stems from the ability to coat or functionalise Fe3O4 

nanoparticles with inorganic or organic layers to suit a particular application [18].  

Immobilising substances onto magnetite nanoparticles not only enables easy recovery, but 

the formation of a core-shell particle also serves to potentially reduce the material cost by 

minimising the volume of inaccessible active substrate, and replacing with typically less 

costly Fe3O4. 
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1.2.4 Melting Point 
Another interesting feature of nanomaterials exists in the variation in melting point of 

metal nanoparticles relative to their bulk counterpart.  While the melting point of bulk 

metals is normally considered independent of size, there is a direct correlation between 

the particle size and melting temperature as the particle diameter approaches atomic scale 

[19].  For example, the melting point of bulk gold is 1064 °C, whereas particles with 

diameters of 4 and 3 nm have melting points of 581 and 248 °C respectively [20].  This 

feature extends to other metallic nanomaterials, such as copper where the melting point 

decreases from 1085 °C in the bulk material to 130 °C in the 3-5 nm diameter range [21].  

The ability to depress the melting point of metals by exploiting their size opens 

opportunities such as the development of nano-metal inkjet formulations for use in printed 

and flexible electronics.  Not only do these formulations require greatly reduced 

temperatures to sinter particles into an electrically conductive strip, but the small particle 

size and size distribution aid the fluid dynamic properties of inks [22].   
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1.3 Synthesis Methods 
Many of the properties which make nanomaterials so exciting, i.e. particle size, 

morphology, surface area, superparamagnetic behaviour, are heavily influenced by the 

synthesis conditions and methods used.  There is no single “best” synthesis method for all 

materials, as each method will demonstrate particular respective advantages and 

limitations which may necessitate one synthesis method over another for a given 

application; a common example is the balance of cost, product quality and time. 

Generally, nanomaterial synthesis can be categorised into either “Top-down” or “Bottom-

up” synthesis methods.  “Top-down” refers to the physical pulverisation or leaching of bulk 

material in the systematic generation of nanomaterials; common techniques in large scale 

manufacture include mechanical milling, photolithography and anodization [23].  By 

contrast, “Bottom-up” approaches refer to the assemblage or coalescence of atoms and 

Figure 3: Overview of widely-used nanomaterial synthesis methods 
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molecules to form the nanomaterial through methods such as self-assembly, chemical 

precipitation and chemical vapour deposition (CVD) [24].   

Each of these methods can be further divided into biological, chemical or physical methods 

[25].  Biological methods are often eco-friendly; they include nanomaterial synthesis by 

the use of microorganisms, such as bacteria, fungi and algae from aqueous metal salt 

solutions [26, 27, 28].  While there have been significant improvements in the biological 

synthesis of nanomaterials in recent years, the process is still inefficient and slow when 

compared to chemical and physical methods [29]. Further work is needed to develop 

effective control on particle size and morphology, and so biological methods will not be 

considered further for use within this work.  

Physical methods often constitute the majority of “Top-down” synthesis methods; for 

example, the bulk material being pulverised down to the required size through mechanical 

milling.  While these methods often exhibit the advantage of being solvent and 

contaminant-free, they also demonstrate difficulty in consistently achieving the required 

particle size and shape, resulting in significant waste and poor process economy [24].   

 

1.3.1 Bottom-Up, Chemical Synthesis 
Some of the most commonly applied chemical methods for nanomaterial synthesis include 

sol-gel, co-precipitation and hydrothermal synthesis.  Each are discussed in this section, 

with particular focus on hydrothermal routes, as it will be the primary synthesis method 

applied in this thesis. 

Sol-Gel Methods: 

Sol-gel methods are often used in the synthesis of metal oxide nanoparticles, such as TiO2, 

SiO2 or ZnO.  The method is well-studied and has demonstrated the ability to control 

textural and surface properties in the product materials.  These processes typically require 

five steps; hydrolysis of precursors, condensation, aging, drying and thermal 

decomposition, as illustrated in Figure 4 [30, 31].   
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One of the most famous examples of the sol-gel method is the synthesis of SiO2 (Silica) 

particles in the Stöber process [32].  First described in 1968, the Stöber process is still 

one of the most widely-used synthesis methods for SiO2 nanoparticles, owing to the ability 

to produce particles of controlled, uniform size [33].  A typical synthesis starts with the 

hydrolysis of silica precursor, often tetraethyl orthosilicate (TEOS), in alcohol, such as 

ethanol or methanol, with an ammonia catalyst [34].  One of the most attractive features 

of this method is the simplicity, being a “One-pot” process, with both the hydrolysis and 

condensation reactions typically occurring in the same vessel.  Process conditions, such as 

concentration, temperature and time, all have significant effects on the particle size and 

distribution; understanding this enables tuneable synthesis. 

However, this method requires significant aging times, often hours or days, which limits 

the potential scalability of this process [35].  Despite this, sol-gel methods remain a 

popular option for laboratory nanomaterial synthesis, largely due to the enhanced level of 

control without the need for specialised process equipment. 

Co-Precipitation Synthesis: 

Co-precipitation is often considered to be the solid-state analogue to the sol-gel method 

[36].  Similar to sol-gel, co-precipitation begins with dissolved metal salt precursors; a 

Figure 4: Steps involved in the Sol-Gel method to synthesise Metal-Oxide Nanoparticles.  Reproduced 
from Parashar et al. [31] 
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precipitation agent, such as base, is then added, resulting in super-saturation of 

constituent ions and inducing formation of the solid-phase product.  Co-precipitation is 

often fast, with simultaneous occurrence of the nucleation, growth and agglomeration 

phases that are observed in sol-gel methods [37].  Often, a chemical reaction is necessary 

to achieve the super-saturation conditions required, as given in the example of ferric oxide 

nanomaterial synthesis [38].   

𝑋𝐴𝑦(𝑎𝑞)
+ +  𝑦𝐵𝑥(𝑎𝑞)

− →  𝐴𝑥𝐵𝑦(𝑠) 

𝐹𝑒(𝑎𝑞)
2+ + 2𝐹𝑒(𝑎𝑞)

3+ +  8𝑂𝐻(𝑎𝑞)
−  →  𝐹𝑒3𝑂4(𝑠)

+ 4𝐻2𝑂(𝑙) 

Co-precipitation has previously been explored for the synthesis of magnetic iron oxide 

nanoparticles, investigating the effect of reaction temperature and base on particle size 

and morphology [39].  The main advantages of the co-precipitation method include its 

speed and simplicity, however, the particle size and morphology have been shown to be 

heavily dependent on process conditions and the precursors used in synthesis [40].  While 

sol-gel methods typically utilise short nucleation and long growth periods, co-precipitation 

methods are unable to control the formation steps independently, often resulting in wide 

particle size distributions; furthermore, the method cannot be applied if multiple reactant 

species have significantly different precipitation rates.   

Hydrothermal & Solvothermal Synthesis: 

Hydrothermal (and solvothermal) synthesis techniques involve the heating of a precursor 

solution above its typical boiling point within a sealed or pressurised container.  Heating 

water, or other solvents, above their standard boiling point opens up possible chemistries 

which would not normally be available or practical.  Hydrothermal routes therefore enable 

a great deal of synthesis flexibility through good control of process parameters, such as 

temperature and pressure [41].   

As water is heated to near critical point (Tc = 374 °C, Pc = 22.1 MPa), the hydrogen bonds 

between molecules begin to break down, changing from a polar liquid to having reduced 

pH and a low dielectric constant, as observed in Figure 5.  The increased dissociation 
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constant, Kw, results in the breakdown of water molecules to form H+ and OH- ions.  In 

these conditions, non-polar molecules can be dissolved, while previously soluble inorganic 

metal salts become insoluble; it is this principle that forms the basis of hydrothermal 

synthesis of nanoparticles.  The choice of solvents, reagents, additives or pH then enables 

control of particle size or morphology, and achieving products which may not be attainable 

by other methods [42].   

Figure 5: Simplified Phase Diagram of Water (top) and selected properties of supercritical water 
(bottom).  Reproduced from Dunne et al. [47] 
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By exploiting the rapid change in solubility described above, inorganic nanomaterials can 

be formed from the precipitation of metal salt precursor solutions.  Under supercritical or 

near-supercritical conditions, the high concentration of OH- species leads to almost 

immediate hydrolysis followed by dehydration, generating metal oxide solids which 

precipitate out of solution due to super-saturation [43].  One of the earliest examples of 

hydrothermal synthesis for nanomaterials was in 1988 by Ioku et al. for the synthesis of 

hydroxyapatite [44].  Since then, hydrothermal and solvothermal methods have been used 

extensively for the synthesis of inorganic and metal-organic nanomaterials.  

A key aim in nanomaterial synthesis is achieving controlled size and size distribution of 

particles.  Many ‘bottom-up’ synthesis methods are described through sequential 

nucleation, agglomeration and growth steps; for effective size control, the process must 

be designed to ensure these phases do not coincide.  In hydrothermal synthesis, this can 

be likened to the LaMer model of nucleation and growth, first described in 1950 and 

illustrated in Figure 6 [45, 46].  Upon heating, there is an increase in solution 

concentration, resulting in a degree of super-saturation; when the concentration exceeds 

a critical threshold, nucleation occurs.  Assuming nucleation occurs at a faster rate than 

precursor formation, the concentration then falls below the nucleation threshold, however 

particle growth can continue [47].  Nanoparticle growth can be considered a function of 

multiple pathways [47, 48]:  

- Monomer Addition: deposition of further precursor onto existing nuclei 

- Ostwald Ripening: small nuclei dissolve back into solution, which are then deposited 

on larger, more energetically favourable particles 

- Coalescence: multiple nanoparticles combine into larger particles 
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Understanding the formation and growth steps of nanomaterial synthesis enables 

strategies to favour or limit particular transitions.  For example, sudden nucleation caused 

by rapid heating, followed by almost immediate quenching, would favour nucleation and 

minimise particle growth, resulting in small particles with narrow size distribution.  

Identifying and pursuing synthesis strategies such as this then leads to the development 

of sophisticated reactor designs, particularly when considering reaction scale up. 

Hydrothermal methods are considered a ‘green’ alternative to nanomaterial synthesis, 

chiefly due to the use of water as both a solvent and driving force for nucleation.  The 

concept is fast, scalable and can be achieved at moderate temperature and pressure, when 

compared to other means.   

 

  

Figure 6: LaMer model of nucleation and growth.  Reproduced from Dunne et al. [47] 
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1.3.2 Batch vs Continuous-Flow 
The demand for nanomaterials has increased dramatically in recent decades, creating the 

need for scalable, economical and sustainable process synthesis.  Traditional hydrothermal 

synthesis of nanomaterials requires the batch heating of a closed container over long 

reactions times, often hours or days.  The high pressure required to maintain liquid or 

supercritical phase means that thick-walled, Teflon-lined stainless steel autoclaves are 

often necessary for batch synthesis.   

In addition to long reaction times, batch technologies are not easily scalable; a common 

issue faced in the scaling of batch manufacture is the poor translation of heat and mass 

transfer from laboratory to plant scale.  This is particularly troublesome in nanomaterial 

synthesis as precursors are subjected to a temperature gradient for extended periods of 

time.  Allowing precursor solutions to remain above the nucleation threshold unnecessarily 

can lead to the simultaneous nucleation and growth of nanomaterials, resulting in uneven 

growth rates and increased particle size distribution. 

Continuous flow chemistry has become a major enabling technology for synthesis over the 

last two decades.  Bridging the gap between chemistry and chemical engineering, 

continuous-flow processes demonstrate many advantages over traditional batch 

counterparts, such as improved control over heat and mass transfer, simpler scale-up and 

reduced batch-to-batch variability [49].  Transfer of batch synthesis to a continuous 

process is often straightforward, with many of the same concepts, i.e. stoichiometry and 

reaction time, being controlled through respective pump flow rates and reactor volume.   

Historically, hydrothermal and solvothermal reactions were carried out in batch processes, 

which limited their potential scalability.  Continuous-flow hydrothermal synthesis (CFHS) 

has become an area of increasing interest due to improved process control and significantly 

reduced reaction times.  The process is relatively simple and environmentally friendly, 

requiring only water as the solvent medium, and has been proven for the production of 

inorganic nanomaterials [50].   
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The earliest demonstration of CFHS for nanomaterials is by Adschiri et al. in 1992 for the 

synthesis of seven different metal oxides, from ten different respective salts [43].  The 

simplest design concept for CFHS constitutes a metal salt solution being heated to near- 

or supercritical conditions to drive nucleation; however, the extended time at elevated 

temperature results in the same overlap of nucleation and growth that is observed in batch 

processes.  To solve this, Adschiri et al. proposed the mixing of ambient temperature metal 

salts with a pre-heated flow of water, enabling the rapid heating and cooling of precursors 

and resulting narrow size distribution [43, 51].  The schematic of this design is shown in 

Figure 7. 

 

Using metal salts of concentration up to 0.10 M and flowrates up to 10 ml.min-1, Adschiri 

et al. were successfully able to produce nanomaterials on the scale of grams per hour (up 

to 10 g.h-1) [52].  

Figure 7: Experimental Apparatus used by Adschiri et al. for the synthesis of metal oxide 
nanoparticles using CFHS [52].  PG: Pressure Gauge.  TC: Themocouple. 



 

16 

 

While the overall process proved successful, a key limitation has since been identified in 

the use of a TEE-piece in lieu of a bespoke reactor, which led to poor mixing regime and 

resulting in process blockages.  Work by Cabañas and Poliakoff in the early 2000’s, as part 

of the Clean Technology Group at the University of Nottingham, initially produced 

inconsistent products and several experiments were stopped prematurely due to blockages 

in the process [53].  Figure 8 shows the flowsheet used for nanoparticle synthesis by the 

Clean Technology Research group [50].  In this design, “R” denotes a Swagelok® TEE-

Piece reactor of 0.71 cm internal diameter; supercritical water enters via the side of the 

TEE-piece, while aqueous metal salt is introduced through the top. 

 

Subsequent work by the same group, in conjunction with the School of Chemical, 

Environmental and Mining Engineering (SChEME), investigated the mixing regimes and 

fluid dynamics within the process, with the aim of developing reactor geometries that 

would be more suited to particulate synthesis.  Blood et al. developed the process of Light 

Absorption Imaging (LAI) in place of CFD modelling; the complex non-Newtonian 

Figure 8: Flow diagram for continuous supercritical reactor system used by the Clean 
Technology Group at University of Nottingham [50].  PH: Pre-heater.  R: Reactor.  P1: Pump 
1.  P2: Pump 2.  WC: Water cooler.  BPR: Back-pressure regulator.  F: Filter.  P: Pressure 
controller/transducer. 
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behaviour of supercritical water meant that CFD was not well-suited to investigating the 

mixing regime [54].  LAI uses fluids with similar relative densities to supercritical water 

and the metal salt precursor, in this case methanol and 40 %w/w sucrose solution with 

methylene blue dye respectively; measuring the light absorbance from the dye before, 

during and after mixing then enables quantitative analysis of the mixing efficiency. 

Following refinement of the technique, work by Lester et al. highlighted the significance of 

the relative densities of the supercritical water and metal salt streams; this factor was key 

in identifying suitable reactor geometries and developing the final patented Nozzle Reactor 

design [50, 55].  Figure 10 shows the schematic of the Nozzle Reactor design, illustrating 

the counter-current mixing regime between the supercritical fluid and metal salt streams 

Figure 9: Steady-state concentration map using Light Absorption Imaging technique for continuous-

flow hydrothermal synthesis using a TEE-Piece reactor.  Reproduced from Blood et al. [54] 
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[56].  Several key engineering criteria were used to establish this design; including 

instantaneous mixing of the two streams, immediate heating of the metal salt stream, a 

short average residence time to minimise particle growth and strong downstream eddies 

to transport products away from the reactor [50]. 

This reactor design has been demonstrated extensively for nanomaterial CFHS research 

at the University of Nottingham, successfully producing a wide variety of oxides, sulphides, 

phosphates, metals and metal-organic framework nanomaterials [47, 57, 58, 59, 60].   

Following identification of the poor suitability of TEE-piece reactors in CFHS, and 

development of the LAI technique, several other groups have investigated reactor 

geometries for nanomaterial synthesis; the most similar of these designs exists in the Darr 

group at University College London [61].  Darr contributed to the original design of the 

counter-current reactor, but suggested in later work that certain conditions (high scW flow 

and low metal salt flow) would lead to jetting at the mixing point [62].  Rotating the reactor 

about the horizontal axis then led to the proposed Confined Jet Reactor [63].  Darr et al. 

Figure 10: Schematic of the final Nozzle Reactor design, highlighting the flow profile of both 
streams and heating/cooling profile [50] 
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argued that the co-current mixing regime results in more instantaneous mixing and 

improved scalability, demonstrating pilot scale production at >1 kg.h-1 of dry weight 

equivalent nanomaterials [64].  

 

Despite Darr’s suggestions of limitations, the counter-current mixing technology has 

demonstrated remarkable scalability and has been implemented in the large-scale 

manufacture of nanomaterials through the University of Nottingham spin-out company, 

Promethean Particles, as part of the SHYMAN (Sustainable Hydrothermal Manufacture of 

Nanomaterials) project [65, 66, 67].  To date, this is the largest multi-material, 

continuous-flow hydrothermal synthesis plant for nanomaterial production globally, with 

capacity of up to 1000 tons per annum of dry weight equivalent product [68]. 

Figure 11: Geometry of the Confined Jet Reactor, showing a co-current mixing regime with scW 
and metal salt precursor flowing vertically upwards.  Reproduced from Gruar et al. [64] 
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1.4 Nanomaterials in Continuous-Flow Hydrothermal Synthesis 
Many of the methods in continuous-flow hydrothermal synthesis have primarily been 

developed for the production of metal oxides.  Adschiri et al.’s pioneering work 

demonstrated the feasible production of seven different metal oxides from various 

constituent metal salts [43].  However, the technology has been further refined over the 

last two decades and now a wide range of materials have been successfully synthesised 

using these methods. 

1.4.1 Metal Oxides 
Metal oxide nanomaterials are some of the most widely-produced and utilised 

nanomaterials in industry today, owing to a wide range of potential applications as 

pigments, semi-conductors, catalysts and medicines to name a few [69].   

Nanomaterial CFHS was first demonstrated and then further developed using a small 

number of metal oxide examples; however, later research has demonstrated the suitability 

of CFHS for the production of ZnO, Co3O4 and mixed-metal oxides, such as BaTiO3 and 

various Ni-Co materials [70, 71, 72].   

Iron oxide nanomaterials have been an area of significant interest due to their low toxicity, 

low cost and change in magnetic behaviour associated to particle size and phase [73, 74]. 

Both magnetite and maghemite (Fe3O4 and γ-Fe2O3 respectively) exhibit 

superparamagnetic properties, which creates potential for biomedical applications such as 

magnetic resonance imaging (MRI) contrast agents.  Hematite (α-Fe2O3) is the alpha 

polymorph of maghemite, with the same chemical composition but different crystal 

structure; by contrast, hematite shows only very weak magnetic susceptibility [75].   

Further details of metal oxide synthesis will be outlined later in this work in Chapter 5, 

however, the general expression for the formation of metal oxides using supercritical water 

is as follows ( L = counter ion, e.g. (NO3)) : 

𝐻𝑦𝑑𝑟𝑜𝑙𝑦𝑠𝑖𝑠:    𝑀𝐿𝑥 +  𝑥𝑂𝐻−  →  𝑀(𝑂𝐻)𝑥 + 𝑥𝐿− 

𝐷𝑒ℎ𝑦𝑑𝑟𝑎𝑡𝑖𝑜𝑛:     𝑀(𝑂𝐻)𝑥 →  𝑀𝑂𝑥/2 +  
𝑥

2
𝐻2𝑂 
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The first reaction step involves the hydrolysis of the metal salt to produce the metal 

hydroxide, followed by dehydration to the metal oxide.  Various metal salts follow this 

reaction route, although Adschiri et al. noted that some salts result in different products, 

for instance use of Fe(NO3)3 results in hematite, while Fe(NH4)2H(C6H5O7)2 at the same 

conditions resulted in magnetite [43].  It was proposed that the thermal decomposition of 

citrate produced CO gas, which then partially reduced the Fe3+ cations, highlighting the 

significance of precursor selection. 

Metal oxides produced by CFHS often have a roughly-spherical morphology, with particle 

sizes that typically increase with reaction temperature [47].  This suggests a fast 

nucleation mechanism and it is likely that growth can be attributed to the additional time 

required for the process stream to cool down from higher temperatures.   

1.4.2 Metals 
Metallic nanoparticles have drawn much interest for applications in both biotechnology and 

wider engineering.  Noble metal nanomaterials, such as gold, silver or platinum, have been 

applied in contrast agents for medical imaging or in drug delivery systems.  Gold in 

particular is the most common, owing to unique physico-chemical properties, and ability 

to synthesise targeted sizes and morphologies with relative ease.  Au nanoparticles, like 

other noble metals, exhibit the phenomenon surface plasmon resonance, as previously 

described.  The combined absorbance and scattering of light (extinction) in both the visible 

and near-infrared (NIR) regions is proportional to the particle size and shape, making it 

useful in computed tomography (CT) scanning and photothermal therapy [76, 77].   

The most commonly used synthesis method for colloidal Au nanoparticles is the chemical 

reduction of AuHCl4 with aqueous citrate solution, known as the Turkevich method [78].  

Aside from simplicity, the popularity of this method stems from the ability to finely tune 

particle size, size distribution and morphology by altering process conditions, such as 

precursor concentration, temperature and reaction time [79].  Recent research has shown 

the ability to synthesise Au nanoparticles from biological sources using hydrothermal 

synthesis [80, 81].   
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Both Ag and Cu have been successfully synthesised by CFHS, and have demonstrated 

suitability for dispersion into conductive ink formulations, used in printed electronics [82, 

83, 84].  Cu nanoparticle dispersions represent a low-cost alternative to Ag or Au, meaning 

it is potentially better-suited to the electronics industry.  However, a known limitation of 

Cu is the spontaneous oxidation at ambient conditions, which detracts from the conductive 

properties.  A potential solution is the formation of Cu-Ag core-shell nanoparticles (CSNPs), 

whereby the bulk material constitutes the lower-cost Cu, surrounded by a thin protective 

layer of conductive Ag.  The formation of Cu-Ag CSNPs was successfully achieved by 

Grouchko et al. using a multi-step chemical method; initially Cu nanoparticles were 

synthesised through reduction of Cu(NO3)3 with an excess of hydrazine, followed by 

transmetalation of the outmost Cu layer with Ag+ ions, as illustrated in Figure 12 [85].  

The transmetalation process is possible due to the difference in standard redox potential 

for Ag and Cu, equal to 0.46 V, meaning that Cu metal at the surface of the nanoparticle 

can reduce Ag+ ions.  The standard redox potential of metals can therefore be used to 

guide the transmetalation process for a variety of other bimetallic CSNPs, with examples 

such as Ni-Cu, Co-Ag, and Co-Ni having been successfully synthesised [86].  

Although only previously demonstrated using batch methods, CSNPs could potentially be 

well-suited to continuous-flow methods; Grouchko et al. commented that a key step in the 

formation of Cu-Ag CSNPs was the removal of hydrazine, which if not removed would 

result in the formation of free Ag metal particles.  As previously discussed, continuous-

flow methods are well-suited to multi-step synthesis and could potentially simplify the 

process. 

Figure 12: Transmetalation process of Ag onto CuNPs to form Cu-Ag Core-shell Nanoparticles.  
Adapted from Grouchko et al.  [85] 
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1.4.3 Other Inorganic Nanomaterials 
Other commonly synthesised inorganic nanoparticles include sulphides and phosphates.  

Metal sulphides, such as ZnS, PbS and CdS, are better-known as quantum dot materials, 

with applications in medical imaging, photovoltaic cells and LED displays [16].  

The most well-known synthesis method for quantum dot synthesis is hot-injection, 

whereby the metal salt is dissolved and heated in a high-boiling point solvent.  Nucleation 

is initiated by the injection of sulphur-containing compounds, and growth is controlled 

through successive precursor injections.   

Hydrothermal synthesis represents a much greener alternative to the hot-injection 

method, largely due to the use of water as a solvent, in place of the high-boiling point 

solvents.  Dunne et al. were the first to demonstrate CFHS for metal sulphide 

nanoparticles, using the counter-current mixing reactor previously described.  By varying 

process parameters to favour either nucleation or growth mechanisms, Dunne et al. were 

able to successfully control the particle size of ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3 

nanomaterials [60].   

The synthesis of metal sulphides via CFHS presents the challenge of identifying a suitable 

sulphur source to promote synthesis of the metal sulphide in preference to the metal oxide.  

Although H2S or HS- can be produced by the hydrothermal breakdown of many common 

sulphur-containing compounds, the high toxicity and volatility of these materials limit their 

practicality.  Dunne et al. demonstrated the suitability of thiourea as a H2S precursor, 

identifying the advantages of being odourless and water-soluble; the reaction scheme for 

the synthesis of metal sulphides using thiourea is shown below: 

𝑁𝐻2𝐶𝑆𝑁𝐻2  ↔  𝑁𝐻4𝑆𝐶𝑁 

𝑁𝐻4𝑆𝐶𝑁 +  4𝐻2𝑂 →  𝐻𝑆− +  (𝑁𝐻4)2𝐶𝑂3
− +  𝐻2𝑂 

𝑀𝑥+ +  𝑥𝐻𝑆−  →  𝑀𝑆𝑥/2 +  (
𝑥

2
) 𝐻2𝑆 

When compared to the co-precipitation method described earlier, OH- ions are substituted 

by HS- for precipitation of the solid compound.  By generating HS- in situ, Dunne et al. 
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were able to promote either the nucleation or growth mechanism as required; pre-heating 

of the thiourea solution in the reactor Downflow meant that an excess of HS- was available 

at the mixing point, favouring nucleation.  Whereas growth could be favoured by the 

mixing of cold thiourea and metal salt solutions prior to contact with the superheated water 

flow.  The two methods are illustrated in Figure 13. 

 

Phosphate nanomaterials have also seen growth as an area of research in recent years, 

most prominently due to the potential of lithium iron phosphate (LiFePO4) as a next-

generation material for batteries [87].  LiFePO4 exhibits several major advantages to 

traditional metal oxide cathode materials, most notably its low toxicity, alongside a high 

stability and capacity.  While bulk LiFePO4 suffers relatively low conductivity in 

electrochemical systems, nano-LiFePO4 has potential to improve this by controlling particle 

size and shape to improve the Li+ ion diffusion path length [88].  Several groups have 

demonstrated the suitability of CFHS for the synthesis of LiFePO4 nanomaterials, and have 

further investigated the effect of various process conditions, such as precursor 

Figure 13: Simplified schematic of counter-current continuous flow reactor used for metal sulphide 
synthesis.  Reproduced from Dunne et al.  [60] 
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concentration, residence times from 9-72 seconds and also temperature between 300-400 

°C [89, 90].   

The hydrothermal synthesis of LiFePO4 remains challenging due to the potential formation 

of iron oxide by-products, which is particularly apparent under sub-critical conditions, 

although carefully degassing solvents and utilising supercritical conditions improves upon 

the product purity.  In 2011, large-scale CFHS was realised as Hanwha Chemicals 

completed construction of the world’s first supercritical hydrothermal plant for the 

synthesis of LiFePO4 nanomaterials, with capacity of up to 100 tonnes per annum [91, 92].   

Another highly-investigated phosphate nanomaterial in CFHS is hydroxyapatite (calcium 

phosphate, Ca5(PO4)3OH), with applications in biomedicine as a potential replacement for 

damaged bone [93].  The first reported synthesis of hydroxyapatite in CFHS is from 

Chaudhry et al. in 2006 using the counter-current mixing reactor previously described. 

[94]  Since then, further research has investigated the effect of pH and temperatures 

between 200-400 °C on particle size and shape, as well as consideration to doped 

materials [95, 96].   
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1.4.4 Metal-Organic Frameworks 
Metal-Organic Frameworks (MOFs) have emerged as a promising class of highly porous, 

crystalline materials, consisting of metal ion centres co-ordinately bonded to organic 

ligands, forming 3D periodic networks with large pore volumes and exceptionally large 

specific surface areas – ranging into the 1000’s of m2g-1 [97].   

Part of the scientific excitement surrounding MOFs is the ability to modify, or ‘tune’ the 

material by altering its composition and structure through the correct selection of metal 

ion, organic ligand or process conditions, creating a potentially infinite number of MOFs to 

be synthesised [98, 99].  As such, MOFs have huge potential in applications such as gas 

storage and separation [100, 101, 102], catalysis [103], energy storage [99, 104] and 

drug delivery [105] to name a few. 

MOF components are referred to as primary and secondary building units, representing 

the metal ion and metal-oxygen-complexes respectively.  In most conventional synthesis 

methods, a metal salt or oxide is used as a precursor; with the exception of electrochemical 

synthesis which uses metal rods.  The organic linker, used to connect metal ion centres, 

must contain a suitable functional group, capable of forming a coordinate bond; such as 

carboxylate, amine or phosphate.   

MOF synthesis entails the self-assembly of secondary building units (SBUs) into a 3D 

periodic network; the secondary building unit (SBU) is responsible for the topology of the 

MOF [106].  Although advances in MOF research have given rise to successful synthesis 

with microwave [107], sonochemical [108], electrochemical [109] and mechanochemical 

[110] techniques, the vast majority of commercially available MOFs are produced under 

solvothermal conditions in batch processes.  Conventional synthesis involves the mixing 

of metal ion salts and organic linkers in sealed vessels with long reactions times, typically 

hours or days, under solvothermal conditions to facilitate the nucleation and growth of 

MOF crystals [111, 112].  The long residence times, combined with the inherent difficulties 

achieving the reliable scale-up of batch manufacture, result in very few examples of MOFs 

being manufactured at scale.  Furthermore, MOFs which have been produced at industrial 
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scale are often high-cost, despite their constituents often being relatively simple, low-cost 

and commercially available. 

Gimeno-Fabra et al. achieved the first continuous-flow solvothermal synthesis of MOFs in 

2012, synthesising HKUST-1 (Cu3(BTC)2) and CPO-27(Ni) (also known as MOF-74) [113].  

Further examples of MOF continuous-flow hydro/solvothermal synthesis have since been 

reported, with Rubio-Martinez et al. and Munn et al. both demonstrating scalable methods 

with exceptionally high space time yields and product quality that meets or exceeds 

previous examples [114, 115].   

The high potential applicability of MOFs have made them an area of significant research in 

recent years, with many groups aiming to develop industrially-viable and scalable 

production methods [116].  While there has been significant success in recent years, our 

current understanding remains too limited to accurately guide process optimisation to the 

point of scalable and reliable manufacture for many MOFs.  Further to this, the nucleation 

and growth of MOF crystals is often complex and heavily dependent on several process 

parameters, such as temperature, stoichiometry, pH, residence time, mixing dynamics 

and solvent or additive selection [117, 118].  

Figure 14: Structures of four prototypical MOFs whose flow synthesis has been studied.  The 

linkers present in the structures are presented above the structures with blue polyhedral units 
showing the local coordination of metal ions.  Reproduced from Dunne et al. [116] 
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1.5 Overview & Introduction to Optimisation 
Process optimisation is the act of improving a specified variable while keeping all others 

within their respective constraints; a common goal is to maximise yield of a particular 

product, or to achieve a target yield but minimise cost of production.  The goal of an 

optimiser is to minimise or maximise an objective function, which relates the outcome to 

the design and operating variables [119].   

Assuming time and cost had no measurable impact to R&D, the ideal optimisation method 

would depict a simple grid search of all parameters at the highest attainable precision; in 

doing so, the chemist or operator would gain an almost complete insight into the process 

output in response to the input.  However, the time and resources necessary to achieve 

such a method are simply not feasible, and instead efforts are applied to developing more 

efficient search methods to better suit given problems. 

The oldest and most commonly taught optimisation method is the “One variable at a time” 

(OVAT) approach, whereby all variables but one are fixed; once the best result is achieved 

from varying the free input, it becomes fixed at the new value and another is varied.  While 

this approach is methodical, it assumes that the problem is simple or ‘flat’ in all directions, 

and there are no interactions between variables [120].  In chemical synthesis, this is often 

not the case, and OVAT methods fail to identify the true optimum values in complex 

systems.   

Various optimisation methods have been developed in recent decades which aim to 

improve upon the traditional OVAT approach; these range from statistical methods, such 

as Design of Experiments (DoE), all the way through to the integration of machine learning 

and ‘self-optimising’ processes.  This section aims to provide an overview of current 

optimisation strategies in chemical synthesis, with particular focus on the development of 

‘self-optimisation’ methods which are applied in this work. 
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1.6 Automation & High-Throughput Experimentation 
High-throughput experimentation (HTE) is the process of integrating automation, 

experimental design and rapid experimentation into scientific exploration.  This is often in 

the form of integrating robotics with suitably designed parallel or serial reactors, with the 

intention of creating large volumes of data to aid technical understanding [121].   

A fundamental part of the HTE strategy is the use of suitable computational methods to 

control equipment, as well as for the design and analysis of experiments.  Recently, 

Clayson et al. published a review discussing the recent advances of HTE in the synthesis, 

characterisation and optimisation of porous materials [122].  Porous and crystalline 

materials often exhibit additional challenges in HTE when compared to traditional solution-

based flow chemistry; namely the need in many cases to grow, handle and separate or 

process solids from the as-synthesised materials prior to analysis.  Nevertheless, the 

authors provide an excellent coverage of HTE development in zeolites, MOFs and COFs, 

despite there being significant differences in the chemistries and challenges for each case.  

High-throughput experimentation can focus predominantly on the advancement of 

experimental synthesis, material processing and characterisation, or computational 

screening and prediction of experimental outcome.  Perhaps the simplest example of a 

high-throughput reactor would be the implementation of robotics for the handling of either 

solid or liquid reagents for automated synthesis; this is often combined with multi-well 

plates (Shown in Figure 15) for the parallel screening of various precursor combinations 

or process conditions. 

Some of the earliest examples of batch HTE for MOF synthesis have been from the Stock 

group, from 2004 to 2012, screening synthesis parameters and their effect on particle 

morphology and topology using parallel synthesis multi-claves [123, 124, 118, 111] .  The 

wealth of information available from such methods mean the practice is still used today in 

a number of MOF optimisation studies [125, 126, 127].  The most extensive study in 

porous materials, was carried out by Banerjee et al. for the high-throughput synthesis of 

ZIFs for applications in CO2 capture [128].  Using 9600 different combinations of solvent, 
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metal source, linker, stoichiometry and process conditions (temperature range 65-150 °C 

and time 48-100 hours) in multi-well microreactor plates, the authors were able to 

discover 16 previously unknown compositions and structures, as well 5 topologies which 

had previously been unobserved in zeolites.   

The simple design and operation of multi-well plates (multiclaves) make them an attractive 

first step in HTE [123, 124].  However, this technology exhibits limited suitability for the 

exploration of process conditions, particularly reaction temperature, as it often requires all 

samples from a single plate to experience similar conditions.  The method has advanced 

beyond conventional heating methods to include examples in both sonicated and 

microwaves synthesis.  These synthesis methods are well-suited to HTE in MOFs as they 

have been shown to significantly reduce the required reaction time, further increasing the 

overall speed of experimentation [129, 130].  

Figure 15: Multiclave used for the screening of synthesis parameters on the formation of metal-
organic frameworks.  The stainless steel reactor block contains 24 reaction chambers with inserted 
miniaturized Teflon® Reactors organized in a 4x6 array [118] 
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While these studies have all resulted in large volumes of data for optimisation, including 

some leading to the discovery of new structures, they are all batch-based and so will suffer 

the inherent limitations of batch technologies, when considering scale-up or process 

variability.  To date there have been no reported studies of HTE in MOF flow synthesis, 

which represents a significant potential step forward in this methodology. 

 

1.6.1 High-Throughput MOF Synthesis – Post-processing & Characterisation 
Depending on the process bottleneck, it is advantageous to apply HTE methodology to 

either the synthesis or sample characterisation step.  However, MOF synthesis and 

experimentation often results in the formation more than just the targeted crystalline 

compounds, i.e. impurities or by-products.  After a successful synthesis, it is therefore 

important to be able to isolate the targeted solid product from the surrounding as-

synthesised material.   

MOF separation most often consists of either centrifuging or filtering processes [131], and 

manually processing each sample would be extraordinarily time consuming.  It is no 

surprise then that some groups have attempted to integrate robotics and automation into 

the processing stages, including the ability to wash and dry products through customised 

parallel-filtration devices in preparation for further characterisation [132, 133].   

Following any required isolation or washing stages, characterisation of the synthesised 

product is essential.  A commonly applied characterisation method for high-throughput 

MOF synthesis is powder X-ray diffraction (PXRD); with the ability to rapidly identify 

sample crystallinity and being the standard analytical method for crystalline materials, 

PXRD can be well-suited to HTE and fast characterisation for nanomaterials [131].  

However, the analysis becomes more complex if diffraction patterns are unable to be 

recognised automatically; from unknown or overlapping peaks, for instance. 

A fast alternative to determine initial success in crystallisation is the use of optical 

microscopy, as demonstrated in Banerjee et al.’s 9600 sample study of ZIFs for CO2 
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capture [128].  While this method provides no information regarding composition or 

application suitability, the ability to screen large numbers of samples using a relatively 

simple technology means that seemingly successful syntheses can be prioritised for further 

in-depth characterisation. 

Often, the primary characterisation methods used to identify MOF quality surrounds gas 

uptake and adsorption, but these methods often require several hours and therefore far 

too time consuming for HTE.  In such cases, the only option is to parallelise 

characterisation to achieve the required throughput [134, 135].   

1.6.2 Refining HTE Methods: Optimisation & Machine Learning 
One of the main advantages of HTE is that, once developed, the relative cost of additional 

experiments is low.  However, this can in some cases encourage a ‘brute force’ approach, 

systematically running experiments in a grid search pattern.  This approach can be 

beneficial when there is a lack of prior knowledge or understanding of the design space, 

but is highly inefficient as the number of required experiments increases dramatically with 

the experiment dimensionality [136].   

Incorporating reaction feedback into HTE can greatly reduce the need for a blanket 

approach by prioritising experimental exploration.  A relatively simple way to implement 

this is to run and analyse experiments in groups or batches, before generating the next 

batch of experiments.  This approach has been demonstrated in MOF synthesis by Maniam 

et al. for the discovery of new copper-based MOFs [137].  However, one of the most recent 

and advanced examples is demonstrated in the work of Moosavi et al. who developed a 

combined robotic microwave synthesis and computational approach to the optimisation of 

HKUST-1 synthesis [138].   

Using sample crystallinity as evaluated by the extent of diffraction peak broadening as 

their fitness evaluation, the authors use genetic algorithms (GA) across nine variables and 

three generations to achieve the highest reported surface area for HKUST-1 to date, as 

2045 m2g-1.  This was achieved through the ability of the GA to mimic the ‘chemical 

intuition’ a chemically trained operator would input into the decision-making process.  By 
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analysing both the successful and unsuccessful reactions throughout the 90 experiments, 

the authors train a supervised machine learning (random forest) model to both predict 

reaction outcomes to reasonable accuracy, as well as ‘learn’ the weighted importance of 

particular variables.  A chemist might instinctively develop a similar understanding of the 

process throughout optimisation, but to consider nine variables simultaneously is almost 

certainly beyond human capability.   

The developed machine learning model can be used to provide experiment predictions in 

silico which then helps to minimise the experimental cost associated to conditions which 

are expected to perform poorly.  A useful feature of the developed model is the ability to 

give a weighted importance to each variable (See Figure 16), which can be used to explore 

the high dimensional design space with greater efficiency, or can be potentially applied to 

similar studies.  This is demonstrated in Moosavi et al.’s subsequent synthesis of Zn-

HKUST-1, successfully producing MOF crystals in far fewer attempts than would have been 

statistically necessary, albeit with low purity and requiring further optimisation. 

 

To date, this approach represents one of the most advanced applications of high-

throughput experimentation to MOF synthesis.  One of the key benefits lies in requiring no 

prior knowledge of the chemical system, as well as the ability to learn important features 

of synthesis from both successful and unsuccessful reactions.  To encourage other 

Figure 16: Relative impact of 9 parameters on HKUST-1 synthesis, obtained from Random Forest 

machine learning (Left) & Multidimensional scaling of experimental conditions across successive 
generations [138] 
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scientists to work in this way, the authors published their optimisation and machine 

learning algorithms in a user-friendly web application, the Synthesis Condition Finder 

(SyCo Finder) [139].   

While Moosavi et al. have expertly integrated automation, optimisation and machine 

learning into MOF synthesis, they are limited by their selection of process technology.  By 

establishing their system around a batch process, they will always experience the inherent 

limitations, such a batch variation and poor scalability.  These limitations can be potentially 

mitigated through the implementation of continuous-flow synthesis, as previously 

discussed. 
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1.7 Online Process Analytical Technologies (PATs) 
Advances in continuous flow chemistry have been echoed and supported by the 

development of online process analytical technologies (PATs).  The integration of online 

PATs in chemical synthesis enables the real-time analysis of reaction progress; in addition 

to secondary features, such as the ability to monitor catalyst activity or precursor quality 

[140]. Applying this same methodology to flow chemistry further enhances these 

capabilities, particularly as process conditions can be modified relatively quickly to either 

improve synthesis outcome or to minimise disturbances.   

Online PATs are typically better suited to generating large volumes of data when compared 

to traditional sampling methods.  As such, the process output in response to changes in 

conditions, i.e. temperature, stoichiometry or flowrate, can be far better explored; this 

enables the rapid understanding of the process and can be used to develop kinetic and 

thermodynamic models from real data.   

Both ‘on-line’ and ‘in-line’ terms refer to methods of analysis which do not require manual 

transfer from the process; in-line describes systems where all of the process flow passes 

through the analytical equipment, while on-line methods typically refer to representative 

sampling [141].  A key distinction between the two setups is the time taken to both analyse 

the sample and generate data; in-line systems must inherently be able to analyse 

representative samples faster than the process can be modified or fluctuate in order to be 

suitable, while on-line systems generally have more time available for analysis and can 

often provide more detailed information of the sample. 

Sans and Cronin reviewed the majority of analytical techniques which have been, or could 

be, applied to flow chemistry, with the overarching aim of complete integration and the 

development of ‘Self-Optimising’ reactors [142].  Many of the techniques described have 

since been demonstrated in a number of further case studies, and the greatest recent 

advancement can be attributed to the algorithms employed or reactor designs; this is 

discussed in greater detail in the remainder of this chapter. 
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1.8 Self-Optimisation in Chemical Synthesis 
Self-Optimisation is the combination of robotics, on/inline analysis and machine learning 

algorithms for the autonomous optimisation of chemical synthesis.  In the simplest sense, 

this constitutes a reaction feedback loop based on experiment output, i.e. quality, % by-

product or yield, where the experiment inputs can be iteratively modified within a defined 

range of parameters, as illustrated in Figure 17.  Using this self-optimising methodology 

means that complex processes can be optimised with very little a priori information; this 

is particularly useful in the case of nanomaterial synthesis, where the formation 

mechanisms are not fully understood.   

The closed-loop design of this system enables iterative optimisation, whereby the 

experiment outcome can be scored against a predefined objective function and new 

synthesis conditions can be generated for subsequent experiments.  A key feature of this 

methodology is the ability to optimise these processes with almost-no user involvement, 

freeing the chemist or user to focus on more skilled tasks.  

The choice of machine learning and optimisation methods determine the proportion of 

experiments devoted to exploration or exploitation; many optimisation methods utilise 

random exploration, although recent works in literature have begun to investigate more 

intelligent and efficient exploration methods.   

Figure 17: Basic Schematic of a Self-Optimising Flow Reactor.  Online analysis is used to score 
experiments against a predefined objective function.  Process conditions (Temperature, flowrate 

etc.) are modified iteratively, dependent on the selected optimisation and machine learning 

methods. 
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Table 1 gives an overview of automation and self-optimisation studies available in 

literature, from Krishnadasan et al.’s 2007 study of CdSe quantum dots nanoparticles 

optimised using inline spectroscopy in combination with SNOBFIT [143].  Many of the self-

optimisation examples in literature utilise solution flow chemistry, using online techniques 

such as HPLC, GC or MS to attain quantitative information regarding the yield or reaction 

by-products; while this is inherently unsuitable for the formation of particles, it provides 

useful reference for the use and implementation of advanced algorithms, such as TSEMO 

or Bayesian optimisation [144, 145].   

Recently, UV-Vis spectroscopy has been used extensively as an inline analytical method 

for particle size tuning in quantum dot synthesis [146, 147, 148, 149, 150].  While the 

reaction process is somewhat similar to that of Krishnadasan et al., there have been 

significant advances in the machine learning and optimisation methods applied; 

particularly in the generation of new conditions and building of suitable models to conduct 

experiments in silico to reduce experimental cost. 

A large variety of methodologies and optimisation algorithms exist and in many case 

studies, several algorithms may be suitable.  To better understand the advantages, 

limitations and suitability of these algorithms to particular chemical examples, a brief 

background and the functionality is discussed in this chapter.  
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Table 1: Timeline of Self-Optimised experiments reported in literature from Jan 2007 to March 2021, 
showing PAT and Algorithms used.  First author is shown.  PAT: Process analytical technology.  DoE: 
Design of Experiments.  TSEMO: Thompson Sampling Efficient Multi-Objective.  NNE: Neural Network 
Ensemble. MOAL: Multi-Objective Active Learning.  SMSIM: Super-Modified Simplex.  HPLC: High-

Performance Liquid Chromatography.  NMR: Nuclear Magnetic Resonance.  MS: Mass Spectroscopy.  
FTIR: Fourier Transform Infrared.  GC: Gas Chromatography.  SEC: Size Exclusion Chromatography.  

Author Year Process PAT Algorithm Ref 

Krishnadasan 2007 Synthesis of CdSe 

nanoparticles 

Flow UV-

Vis 

SNOBFIT [143] 

McMullen 2010 Knoevenagel 

condensation 

HPLC Simplex, 

SNOBFIT, 

Steepest 

Descent 

[151] 

McMullen 2010 Heck reaction HPLC Nelder-Mead 

Simplex 

[152] 

Parrot 2011 Methylation in 

scCO2 

GC SMSIM [153] 

Moore 2012 Paal-Knorr Flow FTIR Steepest 

Descent, 

Conjugate 

Gradient 

[154] 

Skilton 2013 Solvent-free 

methylation of 1-

pentanol 

Flow FTIR SMSIM, 

SNOBFIT 

[155] 

Ley 2015 3D Heterogeneous 

catalytic reaction 

Flow FTIR Modified 

Simplex 

[156] 

Sans 2015 Imine formation Flow NMR Nelder-Mead 

Simplex 

[157] 

Reizman 2016 Suzuki-Miryaura LC / MS DoE-Based [158] 

Holmes 2016 Amide coupling + 

elimination 

HPLC SNOBFIT, DoE [159] 

Zhou 2017 Pomeranz-Fritsch MS Deep 

Reinforcement 

Learning 

[160] 

Echtermeyer 2017 Pd-Catalysed C-H 

activation 

Flow UV-

Vis & GC 

Model-based 

DoE, MOAL 

[161] 

Hsieh 2018 Photo-redox dual 

catalysed cross-

coupling 

HPLC DoE-based [162] 

Cortés-Borda 2018 Synthesis of natural 

carpanone 

HPLC & 

Flow NMR 

Custom 

Nelder-Mead 

Simplex 

[163] 
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Jeraal 2018 Claisen-Schmidt 

condensation 

HPLC SNOBFIT [164] 

Poscharny 2018 Photochemical 

reaction of 

benzophenone and 

furan 

Flow FTIR Modified 

Simplex 

[165] 

Schweidtmann 2018 SNAr & N-

benzylation 

HPLC TSEMO [144] 

Cherkasov 2018 Nitrobenzene 

hydrogenation 

GC SNOBFIT [166] 

Rubens 2019 Polymer synthesis SEC Custom [167] 

Waldron 2019 Esterification 

between benzoic 

acid and ethanol 

HPLC Model-based 

DoE 

[168] 

Epps 2020 Synthesis of metal-

halide quantum 

dots 

Flow UV-

Vis 

NNE, SNOBFIT [146] 

Li 2020 Discovery of chiral 

inorganic 

perovskite 

nanocrystals 

Flow UV-

Vis 

SNOBFIT [147] 

Li 2020 Inverse 

temperature 

crystallisation of 

perovskite 

Flow UV-

Vis 

Various  [148] 

Salley 2020 Shape 

programmable 

synthesis of Au 

nanoparticles 

UV-Vis Genetic 

Algorithm 

[169] 

Wang 2020 Parallel millifluidic 

synthesis of 

quantum dots  

Flow UV-

Vis 

Nelder-Mead 

Simplex 

[149] 

Burger 2020 Photocatalyst 

mixtures 

GC Bayesian [145] 

Abdel-Latif 2021 Multistep quantum 

dot synthesis 

Flow UV-

Vis 

NNE [150] 

Hall 2021 Au-catalysed 

phenol reduction 

Flow UV-

Vis 

SNOBFIT [170] 
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1.9 Optimisation & Machine Learning Algorithms 
Broadly, optimisation algorithms are described as either local or global methods; the 

suitability of the algorithm depends largely on the problem to be solved.  Local optimisers, 

for instance are very fast, but suffer the possibility of achieving only the local optimum.  

By contrast, global optimisers show high probability of achieving the global optimum, but 

suffer a relatively poor efficiency in exploration.  The result of a chemical optimisation 

study can therefore be greatly impacted by the algorithm selection and application, both 

in terms of final result and the experimental cost to do so.  This section aims to give further 

detail on the working principles and history of these algorithms where applied to chemical 

synthesis and optimisation. 

1.9.1 Design of Experiments (DoE) 
Design of experiments (DoE) is a statistical tool for optimising processes, it is well-studied 

in literature, and is readily used in both academia and industry [171].  This approach 

demonstrates many significant advantages over the traditional “One variable at a time”, 

including increased experimental efficiency, the ability to identify factor interactions and 

high probability of attaining the global optimum, as illustrated in Figure 19 [172].  DoE 

aims to explore and model the response with respect to each variable in a given design 

Figure 18: Example of Local & Global Minimum (Optimum) in a 1-D Optimisation 
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space by simultaneously varying multiple factors according to a predefined set of 

experiments; the result is the ability to evaluate the effect of significantly more parameters 

with fewer experiments, compared to traditional methods [173].   

When considering new materials, or for materials where little is known about factor 

influences, a DoE will usually begin with a fractional factorial design, with the aim of 

screening a large number of variables at small experimental cost; both continuous and 

discrete factors can be investigated at this stage.  Factor screening allows the user to 

determine the relative significance of each variable at an early stage of development, with 

some indication of factor interaction.  However, such designs are not detailed enough to 

provide accurate predictive models and will usually require a full factorial design or 

response surface optimisation to follow, often with less-significant factors omitted and a 

greater number of experimental points for the remaining factors [172].  

While DoE has become commonplace among pharmaceutical and life science industries, it 

has only recently emerged within the field of nanomaterials.  At nanoscale, this is arguably 

more appropriate due to the level of complex interactions between factors and process 

outputs, which traditional “One variable at a time” methods may miss [174].   

Recently DoE has been applied to the optimisation of gold nanoparticle synthesis, where 

Stiolica et al. used a two-level full factorial design to determine the effect of sodium citrate 

and chloroauric acid concentrations on particle size, using UV-Vis spectroscopy, DLS and 

ζ-potential to provide particle characteristics [175].  A further example is shown by Sadat-

Figure 19: Comparison between "One Variable at a Time" (OVAT), Design of Experiments (DoE) 
Factor Screening and DoE Response Surface Optimization (left-right) within a given design space.  
Objective response defined by the contour plot.  In this example, OVAT fails to identify the optimum 
region [172].    
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Shojai et al. in the optimisation of hydroxyapatite nanoparticles by hydrothermal 

synthesis. Using a two-level full factorial experimental design and considering reaction 

temperature, pH, reactant concentration and presence of urea as variables, the authors 

determined that temperature and pH were the two most significant factors affecting 

particle morphology [176].  

A DoE approach has many significant benefits when compared to more traditional 

optimisation methods, however, it suffers the drawback that very little is known about the 

reaction behaviour until all initial experiments are complete [172].  The method also 

becomes very complex in processes with a large number of factors; for a process with k 

number of variables, a two-level factorial design would require 2k experiments.  To reduce 

experiment time and cost, higher order interactions are often assumed less significant to 

the response, when compared to the main or second-order effects, allowing the number 

of experiments within the design to be reduced to a quarter or eighth of the original design 

[174].  Denoting the fraction of the factorial design as p, a two-level fractional factorial 

design is generally expressed in the form 2k-p.  Once a full or fractional factorial design is 

complete, the process can be further optimised through response surface methodology 

(RSM), whereby the second-order effect of factors can be determined. 

 

 

Figure 20: Central Composite Design comparison - Circumscribed, Inscribed, Face (Left-Right) 
[335] 
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Response surface optimisations most commonly use central composite designs (CCD), 

which consist of a factorial or fractional factorial design with centre points that are 

augmented with an additional group called “star points” [120].  Three central composite 

designs exist; circumscribed, face and inscribed, and are selected depending on the 

limitations of the process or experiment.  The circumscribed design is the original 

composite design, with start points exceeding the initial factorial design; this allows the 

generation of new limits for all factors.  However, this technique relies on exceeding the 

original design space, which may not always be possible.  Inscribed designs are very 

similar to circumscribed, but with star points within the initial limits of the factorial design.  

Both inscribed and circumscribed designs require 5 levels of each factor and exhibit 

circular, spherical or hyper-spherical symmetry.  The face-centred design consists of star 

points which are at the limit, or face, of the original factorial, requiring just 3 levels per 

factor to achieve a full quadratic model.  These designs are often selected due to their 

simplicity when compared to rotatable CCDs, but give rise to larger prediction errors for 

curvature effects [120]. These designs always require twice as many star points relative 

to the number of factors.   

An alternative to traditional central composite designs, Box-Behnken designs, are often 

used to determine full quadratic models and with typically fewer experiments.  Avoiding 

the corners of the design space, extreme factor combinations are not investigated; similar 

Figure 21: Box-Behnken Design as an alternative to traditional central composite designs.  [335] 
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to composite central face designs, this enables an efficient exploration within the design 

space but leads to poor estimations of factor extremes. 

DoE has become a powerful tool for process optimisation, particularly when investigating 

processes with little prior knowledge; however, DoE suffers several distinct disadvantages 

or limitations.  Relying heavily on statistics, DoE optimisation can be very complex, 

particularly when considering large numbers of variables, and achieving results which are 

statistically significant can require several data points for each combination of conditions.  

In addition, it is often difficult to control or identify all variables which impact the process; 

while some variables are non-linear, making it difficult to identify optimum conditions 

[177].  The greatest limitation in DoE is often in the execution, as many failed cases often 

start with DoE designs but resort to traditional trial and error, with little statistical 

awareness.  It is particularly important in complex investigations to analyse the 

quantitative data correctly, otherwise misinterpretations can easily occur.   

 

1.9.2 Local Optimisation Methods 
Many local optimisation methods originate from the simplex, introduced by Spendley et 

al. in 1962 [178].  The most commonly used of these is the Nelder-Mead simplex 

algorithm, proposed by John Nelder and Roger Mead in 1965 [179].  The Nelder-Mead 

simplex is a direct search method of local optimisation, often applied to non-linear 

problems where the derivatives are not known.  This method employs a polytope (simplex) 

of n+1 vertices in n dimensions, where n is the number of variables.  

Operating similar to other “Black Box” algorithms, this method is widely used where the 

function is not well defined and cannot be easily subjected to analytical methods [180].  

The simplex explores the feasible region within a predefined design space; the initial 

simplex can be randomly generated or defined by the user.  Each iteration involves the 

movement or reshaping of the simplex by adjusting a single vertex, subsequent iterations 

translate or transform the simplex within the design space until an optimum point is 

achieved [181].   
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A simple approach is to replace the worst point of the simplex with one reflected about the 

centroid of the remaining vertices; if the new position develops a more favourable result, 

it continues to stretch along that plane.  However, if the new position is less favourable, a 

contraction is used to explore the design space within the simplex itself, causing it to 

shrink.  This algorithm continues to iterate until the maximum number of iterations is 

reached, the best solution reaches a limit or the minimum simplex size is achieved. 

The Nelder-Mead Simplex algorithm is commonly used within machine learning as a fast 

and efficient optimisation method, however, for more complex applications the method is 

prone to finding the local optima, which may not be the most favourable solution within 

the entire design space.  The only solution for further exploration is to restart the algorithm 

with new initial conditions, and selecting the most favourable result across all runs.  One 

of the earliest examples of applying the Nelder-Mead Simplex algorithm to flow chemistry 

is the integrated self-optimisation of the Heck reaction by McMullen et al. [152].  Operating 

as a “Black box”, the system was able to maximize the yield by adjusting the reaction time 

and equivalents of alkene, while using online HPLC to provide feedback.  McMullen et al. 

Figure 22: Graphical representation of the Simplex algorithm.  (a) Reflection, (b) Expansion, (c) 
Outside contraction, (d) Inside Contraction, (e) Shrinking.  Blue lines represent the original simplex, 
nomenclature is as follows: xh: Worst, xi: Best, xs : Second-best, xr: Reflected, xc: Contracted, xe: 
Expanded.  Adapted from Mateos et al. [336] 
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then scaled up the reaction 50-fold and continued to demonstrate good agreement with 

initial results.  More recently, the Nelder-Mead Simplex has been used in combination of 

in situ flow-NMR for use in a self-optimising system by Sans et al. [182].  Here, the authors 

develop a closed-loop reactor system with the ability to monitor and control organic 

reactions in real time.  The technique is also applicable for a variety of kinetic and 

mechanistic studies and shows potential for the discovery of new compounds. 

Further advancement on the Nelder-Mead Simplex algorithm is the Super Modified Simplex 

developed by Routh et al. in 1977 [183].  In this method, the position of the new vertex 

is determined through second-order polynomial fitting, allowing much greater freedom in 

location of the new vertex, enabling the algorithm to more closely follow the system output 

and accelerate through the design space when necessary.  Comparison with the Nelder-

Mead Simplex shows fewer required data points and simplicies, as well as a reduced 

experimental time. 

The Super Modified Simplex was demonstrated for chemical synthesis by Bourne et al. for 

the self-optimised methylation of 1-pentanol in supercritical carbon dioxide [184].  

Figure 23: Example Nelder-Mead Simplex Optimisation. Reproduced from [181] 
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Combining online gas chromatography analysis with a continuous-flow reactor system 

allowed the authors to vary reaction parameters, including temperature, pressure, CO2 

flowrate and methylating agent, to optimise the yield of pentyl methyl; improving upon 

their previous work, which considered only three of the four variables [153].  During this 

study, the authors demonstrated the ability to optimise for more than one product from 

the same reaction mixture, but also noted the ability to optimise instead for alternative 

factors, such as reducing waste.   

An alternative and widely used local optimiser is the gradient-based, ‘steepest descent’ in 

minimisation, or ‘steepest ascent’ in maximisation.  Gradient descent methods require 

initialisation in the form of a 2k orthogonal polytope about a random or user-defined point.  

A polynomial is fit within the polytope and the optimisation continues in the direction 

inverse to the gradient, i.e. following the slope downhill until reaching a valley.  As the 

polytope moves along the surface response, a new local polynomial model is fit, allowing 

the optimiser to change direction.  The steepest descent method was applied to chemical 

synthesis in McMullen and Jensen’s optimisation of the Knoevenagel condensation reaction 

[151].  A later modification to the gradient descent method, conjugate gradient, was 

demonstrated by Moore and Jensen’s Paal-Knoor self-optimised synthesis [154].  The 

conjugate gradient combines the weighted sum of the previous search direction and that 

newly calculated to determine the next set of conditions; doing so prevents large changes 

Figure 24: Comparison between Nelder-Mead Simplex (Left) & Super Modified Simplex (Right) 
algorithms.  Reproduced from Bourne et al. [184] 
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of direction which can lead the algorithm into surface responses which are difficult to 

navigate [185].   

While local optimisation algorithms are simple to use and are fast-converging, they are 

highly susceptible to noise factors and likelihood of attaining a local optimum, which may 

neglect a potentially favourable optimum elsewhere in the design space.  To solve this, 

more complex global optimisation methods are typically needed, which are better able to 

mitigate noise factors and will often use statistical analysis to develop a more complete 

model, compared to the simpler “Black box” algorithms. 

  

Figure 25: Steepest Descent minimisation of 2 variables using a 2k orthogonal design.  Contours 
show Blue to be the response minima, while Red is Maxima.  Experiment trajectory is shown in 
Black points and dashed line.  Reproduced from Clayton et al. [187] 
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1.9.3 Global Optimisation Methods 
Global optimisers utilise various exploration methods to cover much larger regions of the 

design space, often fitting a suitable response surface model (RSM) which can be used to 

estimate process outcome within given constraints, without the need for further 

experimentation.  One such global optimisation method is SNOBFIT (Stable Noisy 

Optimisation by Branch and Fit) [186].  SNOBFIT generates experiments by random 

exploration in combination with local fits, and then approximates response values over the 

region by generating a polynomial surrogate model.  Surrogate models are built using 

process data to estimate the objective response to given variables, these can be optimised 

in silico as a far cheaper alternative to experimental execution.  The random exploration 

of SNOBFIT leads to a generous scatter across the design space, which increases the 

confidence of attaining the global optimum. 

Until 2018, SNOBFIT was the only single-objective global search algorithm which had been 

successfully applied to a self-optimising reactor system [187].  The first example of self-

optimised synthesis of nanoparticles was by Krishnadasan et al. in 2007, using inline 

spectrometry and an automated microfluidic reactor for the controlled synthesis of CdSe 

quantum dots [143].  By varying the temperature, reaction time and molar ratio of 

Figure 26: Comparison of SNOBFIT (Orange) and Simplex (Black) for the minimisation of a complex 
function, restricted at 30 evaluations.  Global minimum indicated by a blue cross.  Reproduced from 
Clayton et al.  [187] 
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components, the system was able to synthesise fluorescent CdSe quantum dots for a 

specific target emission wavelength, using a custom dissatisfaction coefficient for 

feedback.   

SNOBFIT was further implemented and compared to well-known local optimisation 

algorithms by McMullen et al. for multivariate optimisation of small molecule synthesis, 

using HPLC to provide feedback [151].  Noting that it is often difficult to determine which 

algorithm will best-suit a given reaction type, McMullen et al. designed their reactor system 

with the ability to use SNOBFIT as their global search algorithm, as well as Nelder-Mead 

simplex and steepest descent for local optimisation.  The importance of this is highlighted 

in reactions with non-linear variation, such as solvent composition and pH [188].  By 

implementing a combination of global and local optimisation methods, the user is better 

able to identify the true optimum of the reaction without applying a priori knowledge, as 

has been required by previous works [189, 190, 191].  McMullen et al. noted that the 

simpler, local optimisation algorithms used were often much faster at determining the 

optimum; this is largely attributed to the random search nature of SNOBFIT, compared to 

the gradient-based local optimisation methods.  However, it is likely that a more complex 

Figure 27: SNOBFIT optimisation of yield of pentyl methyl ether, optimum region circled. DMC: 
dimethyl chloride.  Reproduced from Skilton et al. [155] 
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chemistry, exhibiting several local optima would have better demonstrated the global 

capabilities of SNOBFIT [151].  

Skilton et al. later compared SNOBFIT with the Super Modified Simplex for the optimised 

methylation of 1-pentanol with dimethyl carbonate, using real-time ATR-FTIR 

spectroscopy [155].  Several benefits of SNOBFIT were noted, such as not needing to 

specify initial conditions for the algorithm, and instead specifying the total search area.  

Skilton et al. concluded that both SNOBFIT and Super Modified Simplex were able to 

converge upon the same optimum, achieving >99% yield, however the conditions were 

not the same for each algorithm, suggesting that the optimum can be better represented 

as a region, rather than a distinct peak.  Comparison with a grid of measurements, totalling 

252 experiments, confirmed that neither algorithm had missed a more favourable region 

within the overall design space [155].  

SNOBFIT has been successfully demonstrated as a robust global search algorithm within 

academia and industry; however, it has been noted that SNOBFIT typically struggles with 

systems of high dimensionality [192].  Simple, single-stage reactions tend to not be 

affected by this, but it may present significant issues when considering more complex 

systems with multiple-stage reactions.  In addition, SNOBFIT can only optimise continuous 

variables, eliminating the ability to optimise synthesis routes which consider both 

continuous and discrete variables [187].   

 

Genetic (Evolutionary) algorithms are a subgroup of stochastic optimisers which iteratively 

improve upon a solution, taking inspiration from Darwinian evolution.  Every iteration of 

the study consists of a fixed population size, whereby the ‘offspring’ of high-performing 

experiments inherit features which had led to their parents’ success [193].  An individual 

experiment is characterised by independent process variables, i.e. temperature, pressure, 

flowrate, which take the form of ‘Genes’, the combination of these variables which 

constitute an experiment is then the ‘Chromosome’.   
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Individuals within a population are measured against a fitness function (objective function) 

and the probability of selection for reproduction is then proportional to their fitness score.  

Reproduction occurs in two steps, Crossover and Mutation; crossover combines the genes 

of two successful parents from the previous generation, while mutation occurs with 

relatively low random probability in order to maintain diversity and exploration.  Over 

successive populations, unsuccessful chromosomes are not reproduced, until eventually 

only high performing individuals remain and the process converges.   

Genetic algorithms are often used when operating within a complex and diverse design 

space, such as high dimensional synthesis methods, or where it is known that several local 

optima exist [194, 195].  While genetic algorithms are very robust, they generally require 

large sample sets, and so are poorly suited to cases where the experimental cost is high.  

In addition, selection phases consider only the parent population, and so it is possible to 

Figure 28: Overview of Genetic Algorithm Optimisation, depicting the Selection and Reproduction 
Phases.  Gene availability and Population are shown for reference and to aid terminology. 
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unintentionally repeat experiments across multiple generations.  Despite this, and owing 

to their flexibility, genetic algorithms have been utilised in several chemical synthesis and 

optimisation studies.  Kreutz et al. discusses the evolution of catalysts for a plug-based 

microfluidic device, using the oxidation of methane by molecular oxygen as a model 

system [196].  The design variables, catalyst, co-catalyst, and ligands, take the form of 

independent genes, while each experiment constitutes one chromosome.  Noting the need 

for a large number (>300) of experiments across several generations, the authors 

suggested the potential parallelization of experiments through integration with platforms 

such as SlipChip for solution preparation [197].  The method proved successful and the 

authors were able to demonstrate successive generations of greater fitness to their 

calculated model, as well as identify the most relevant catalytic components and their 

effect on the objective function.   

Genetic algorithms have also been applied by Fernandes et al. in the synthesis and 

optimisation of monodisperse silver nanoparticles using a microfluidic flow reactor [198].  

Much of the excitement around this work lies in the use of a multi-objective optimiser to 

automate the optimisation of synthesis, as well as to reduce sample polydispersity, 

demonstrating a more holistic optimisation.  Using online UV-Vis spectroscopy and 

dynamic light scattering, the authors were able to identify the effects of each ‘gene’ with 

respect to both particle size and dispersity, providing a potentially scalable synthesis 

strategy for monodisperse silver nanoparticles with little requirement for human skill or 

intuition, and with greatly reduced development time. 

Several other examples of genetic algorithms are discussed by Leardi, including molecular 

modelling, curve fitting and regression [195].  However, the author notes that while 

genetic algorithms are a powerful tool for complex problems, it is often highly dependent 

on the correct structure and application from the onset.  Wehrens et al. provides a useful 

set of criteria for the correct structure and performance evaluation of a genetic algorithm, 

including coverage, reproducibility and evaluation of experiments [199].  The flexibility of 

design allows genetic algorithms to be very well suited to specific optimisations, with the 
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user able to define the ratio of exploration to exploitation that best suits the case.  This 

technique has shown high precision and reproducibility in finding the global optima, 

particularly in cases where a series of local optima exist. 

 

More recently, Bayesian optimisation has been applied to chemical synthesis as a 

derivative-free global optimiser, using surrogate models to optimise in place of expensive-

to-evaluate experiments.  In this instance, surrogate models are typically in the form of a 

Gaussian process, which is a collection of random variables, any finite number of which 

have consistent Gaussian (normal) distributions [200].  Gaussian process models can be 

defined by the mean function, m(x), which predicts the output for any set of conditions in 

the input space, and the covariance (kernel) function, K(x, x’), which is a statistical 

measure of how variables change together. 

𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝐾(𝑥, 𝑥′)) 

 

Introducing a noise term allows the algorithms to handle the level of noisy data normally 

consistent with experimental systems; this is an example of a hyper-parameter which can 

be tuned to better suit the study and specific datasets.  Hyper-parameters have significant 

impact on the model fit and can therefore be viewed as a limitation of these methodologies.  

A potential solution lies in the use of Bayesian optimisation to tune the selection of hyper-

parameters which result in the best, or most suitable, fit; this significantly reduces the 

computational time and ensures a robust model development. 

In self-optimisation scenarios, the surrogate model is used together with an acquisition 

function to determine the next conditions for evaluation; this ensures a suitable balance 

of exploration against exploitation, i.e. the likelihood of exploring unknown regions of the 

available design space, or targeting regions of expected high performance.  Common 

acquisition functions include probability of improvement, expected improvement, entropy 
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search and upper confidence bounds [201].  Figure 29 shows the Bayesian optimisation 

(minimisation) of an arbitrary function using expected improvement; initial iterations show 

high levels of exploration, before focussing on high performing regions [187].  

In chemical processes, it is often the case that multiple competing factors require 

optimisation, such as product quality, sustainability and process economy.  Historically, 

this has best been achieved through the scalarisation of factors into a single objective 

function, whereby the suitable weightings of each factor need to be identified.  More 

recently, the Bourne Group have demonstrated means of obtaining the Pareto front of a 

multi-objective optimisation study, whereby an improvement in one variable results in the 

loss of another; carrying out optimisation in this manner removes the need for a priori 

knowledge which could result in factor bias [202].  This approach provides the ability to 

simultaneously optimise multiple objectives at various points in the process, giving rise to 

significant potential savings in both time and resources. 

  

Figure 29:  Bayesian optimisation of an arbitrary function.  (i)-(viii) represent sequential iterations, 
whereby the acquisition function is shown in Red and current estimated function with 95 % 
confidence bounds shown in Blue.  Data are shown as red dots, with the next evaluation selected as 
the point which maximises the acquisition function.  Adapted from Clayton et al. [187] 
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1.10 Aims & Objectives of this PhD 
The primary aim of this work is to develop a robust and efficient platform for the 

optimisation of nanomaterials in order to reduce the time and resources necessary for 

reliable industrial manufacture.   

While the interest around nanomaterials continues to grow, so does the need for fast and 

reliable methods of development and scale-up.  Throughout this chapter, the principal 

methods of synthesising nanomaterials have been discussed, with a focus on continuous-

flow hydrothermal synthesis due to the proven reliability at scale and suitability for 

automation.  The counter-current mixing reactor (Nozzle Reactor) and adjoining processes 

have been demonstrated as a suitable technology for the synthesis and scale up of 

nanomaterials, but it currently lacks an appropriate methodology for intense optimisation 

of multiple cases.  To further develop this technology, this work has the following aims: 

- Automate the continuous-flow hydrothermal synthesis process in a manner suitable 

for high-throughput experimentation 

- Implement suitable online process analytical technologies to provide reaction 

feedback in real time 

- Apply machine learning and optimisation algorithms to efficiently explore and 

optimise process conditions within a pre-defined design space 

- Integrate automation, online PATs and machine learning to enable ‘self-

optimisation’ of the process 

- Demonstrate scalability of the optimised process conditions for industrial 

manufacture 

Using self-optimisation methods previously demonstrated in literature, together with the 

robust reactor geometry and scalability from Promethean Particles and the University of 

Nottingham, provides an excellent platform for the closed-loop, self-optimisation of 

nanomaterial synthesis.  Case study materials used in this work are well-known and highly 

reported.  The goal is not to further develop these products, but demonstrate a robust 
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platform which can be used for the development, optimisation and scale-up of future 

materials. 

Chapter 2 provides an overview of the methods applied in this work; this includes details 

of process analytical technologies which have previously been implemented in online 

analysis for flow chemistry or nanomaterial synthesis.  Furthermore, the reactor, 

automation control and optimisation methods are all discussed.  The development of the 

autonomous rig is discussed in Chapter 3, highlighting justifications to the final design. 

Chapter 4 is the first experimental chapter, focussing on the optimisation of HKUST-1 MOF 

using the automated reactor described in Chapter 2 in combination with offline analysis, 

machine learning and evolutionary optimisation.   

Chapter 5 integrates ‘self-optimisation’ into continuous-flow hydrothermal synthesis 

through the optimisation of particle size, using online dynamic light scattering and the 

case study material hematite, α-Fe2O3.  A customised supervised machine learning (SML) 

algorithm, which uses a Bayesian-optimised Gaussian process model, is then compared to 

previously demonstrated methods in literature.   

Chapter 6 extends the ‘self-optimisation’ methodology to CFHS for MOFs, using the case 

study material Al-Fumarate, with in situ FTIR spectroscopy.  The synthesis and 

optimisation of Al-based MOFs in current literature is reviewed, before applying the SML 

method developed in Chapter 5.  The optimum conditions determined from the self-

optimisation study are then demonstrated at pilot and industrial scale in Chapter 7, using 

the facilities at Promethean Particles. 

Finally, the conclusions and recommendations for further research are discussed in 

Chapter 8. 
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Chapter 2: Analytical Methods, Reactor 
Design and Automation 
 

2.0 Analytical Methods, Reactor Design and Automation 
This chapter provides details for analytical methods used throughout this work.  The 

working principles of each technique are discussed, as well as the advantages or limitations 

as applied to nanomaterial characterisation.  Furthermore, this chapter includes 

description of the reactor design and platform setup, highlighting features such as 

automation and process control which are essential for an autonomous reactor. 

Two bespoke graphical user interfaces (GUIs) were compiled for this work, in order to 

control the reactor instrumentation and machine learning algorithms, respectively.  The 

reactor control GUI (RC-GUI), written using NI LabVIEW, enables remote or autonomous 

control of the main components of the reactor, including pumps, heaters and sampling 

functions during experiments; some features such as pressure control, cooling water and 

alarms were controlled independently for safety purposes.  The machine learning and 

optimisation GUI (MLO-GUI), written in MATLAB 2020a, is responsible for building 

surrogate models for the process from the available analytical data, and subsequently 

generating new experiments.  Generated experiments can be run in silico which is used to 

balance the exploration and exploitation features of self-optimisation.  Several 

optimisation and machine learning model algorithms are available within the GUI, 

depending on the required complexity of the experiment case study. 

Further details for the setup of the reactor, process analytical technology and optimisation 

methods are given in each subsequent experimental chapter (Chapters 4-7).    
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2.1 Nanomaterial Characterisation 
The following section outlines the main analytical techniques currently applied in the 

characterisation of nanomaterials.  In each case, a brief explanation of the measurement 

principle is provided, with emphasis on methods which are the primary source of 

characterisation in this work. 

Characterisation of nanomaterials is often very different to that of the equivalent bulk 

material owing to their small size.  The choice of technique is first determined by the 

property one wishes to study, followed by the sample state and chemistry [203].  

Characteristics such as particle size, shape, composition and surface area are often of 

particular interest in the synthesis of nanomaterials, however, the product end-use may 

determine the need for more specific characteristics such as surface charge or morphology 

[204].  This complexity has given rise to a wide variety of possible analytical techniques, 

each with their particular advantages and disadvantages; it is therefore imperative to 

select the appropriate technique, or combination of, to best suit the specific material and 

property. 

Several reviews outlining the current techniques used in the characterisation of 

nanomaterials currently exist [203, 204, 205, 206], with Mourdikoudis et al. providing 

perhaps the most recent and comprehensive assessment; this includes the classification 

of each technique based on their operational principles and comparison in relation to the 

studied property in each case [204].  Often, a sample can be characterised through 

multiple techniques, with each technique showing respective advantages or limitations, 

specific to the physical or chemical properties of the sample.  To provide detailed 

characterisation, a combination of techniques is often applied. 
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2.1.1 UV-Visible Spectroscopy (UV-Vis) 
UV-Visible (UV-Vis) spectroscopy is an absorption technique that uses light within the 

ultraviolet and visible regions of the electromagnetic spectrum, to promote electronic 

transitions from ground to excited states within molecules of the sample.  Absorption or 

reflection of light from the visible range is directly responsible for the perceived colour of 

chemical samples.   

UV-Vis spectrometry is performed using a spectrophotometer (spectrometer), which 

measures the intensity of light passing through a sample (I), relative to a known reference 

(I0).  The ratio of the sample and reference intensity is called generally transmittance, %T, 

or alternatively absorbance, A.  Whereby: 

%𝑇 =  
𝐼

𝐼0

   ,    𝐴 =  − log (
%𝑇

100
) 

The spectrometer is responsible for filtering the light source using a monochromator, 

ensuring that only monochromatic light is passed to the sample and reference, as 

illustrated in Figure 30.  Often, a scanning monochromator is used, which scans the range 

of available wavelengths, resulting in the recording of an absorption or transmission 

spectrum. 

Where samples contain particles smaller than the wavelength of incident light, light can 

be elastically scattered, known as Rayleigh scattering.  In UV-Vis spectroscopy, this 

prevents light from returning to the detector, hence influencing the absorption spectra.  

Using Mie Theory of scattering, the optical cross-section of nanomaterials can be 

Figure 30: Simplified schematic of double beam UV-Vis Spectrophotometer.   
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calculated, assuming particles are spherical.  The total extinction cross-section is then a 

function of both the scattering and absorption of light from the sample [207].  

Samples in this work were analysed using a Cole-Parmer UV-Visible Spectrophotometer 

(WZ-83059-15) with a quartz cuvette of 10 mm path length.  Analysis was in the 

wavelength range 250-900 nm, step size 2 nm. 

 

2.1.2 Infrared Spectroscopy (IR) 
Infrared (IR) spectroscopy is a tool used to study a material’s structural properties at 

molecular level; most commonly on the absorption of electromagnetic radiation within the 

mid-Infrared region, with wavenumbers in the range 4000-400 cm-1 (2.5-25 μm).  The 

technique utilises the principle that molecules will absorb characteristic radiation 

frequencies dependent on their molecular structure, resulting from the strength of the 

bond and associated atomic mass [208].  To be considered “IR active”, a structure within 

the molecule must be able to exhibit a “dipole moment”, whereby electrons are unevenly 

distributed within the bond.  Different bonds and functional groups will give rise to 

Figure 31: Six types of vibrational modes.  Arrows depict the type or direction of vibrational motion, 
red and green arrows depict symmetry or asymmetry, respectively. Both wagging and twisting 
modes are in and out of plane. 
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particular frequency absorption, or vibrations, which can be compared to known absorption 

spectra, allowing the determination of the molecular structure [209].  

A molecule can vibrate in several ways, Figure 31 shows the six commonly recognised 

modes of vibration; these include two stretching modes: symmetric (vs) and asymmetric 

(vas), and four bending modes: wagging (ω), twisting (τ), scissoring (δ) and rocking (ρ). 

Dispersive spectroscopy measures the absorption of monochromatic light, repeated over 

a range of distinct wavelengths.  Fourier Transformed Infrared (FTIR) spectroscopy differs 

in that a broadband light source is used, containing the full spectrum to be measured.  

After determining the absorbance from the initial light source, the beam is modified to 

contain a different combination of frequencies; this process is repeated several times and 

the data used to infer the absorption at each wavelength within the spectral range [210].  

The two methods commonly applied in IR spectroscopy are Transmission and Attenuated 

Total Reflectance (ATR).   

ATR is often used in infrared spectroscopy due to the ease of sample preparation.  In ATR-

FTIR, radiation passes through an internal reflection element (IRE) crystal material, as 

shown in Figure 32.  The sample to be measured sits in contact with the crystal, allowing 

IR light to interact with the sample interface, with a penetration depth of around 1 μm 

[211].   

Transmission IR spectroscopy instead allows light to pass through the sample, any 

frequency of light which is not absorbed by the sample is then measured at the detector.  

Figure 32: Example of a multiple reflection ATR Infrared Spectroscopy light path [211] 
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It is therefore important to ensure that the sample path length is so large as to completely 

absorb all emitted light or saturate the detector [212]. 

When comparing spectra from ATR and transmission measurements, small variances in 

peak position and intensity can occur.  This due to the difference in refractive index of the 

sample and ATR crystal at varying frequencies of emitted light; an example is the peak 

shift demonstrated by a carbonyl band within a molecule, when measured with each 

method [212].  There are advantages to each technique, transmission spectroscopy often 

leads to higher quality spectra which can be used for quantitative analysis; whereas ATR 

is more reproducible and requires significantly less sample preparation.  The easy of 

sample preparation and robust flow cell design means that ATR-FTIR spectroscopy was 

used throughout this work. 

Samples in this work were analysed using a Bruker Alpha II Platinum FTIR Spectrometer 

fitted with Platinum Diamond-ATR QuickSnap Sampling Module.  All samples were 

measured and analysed using Bruker OPUS 8.5.  Measurements were taken in the range 

4000-400 cm-1.  FTIR spectroscopy is used extensively throughout Chapter 6, and further 

details specific to this work given the experimental chapter.   
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2.1.3 Powder X-ray diffraction (PXRD) 
Powder X-ray diffraction (PXRD) is a bulk analytical technique which provides information 

on the crystal structure and (indirectly) particle size of solid samples, based on their 

diffraction pattern.  During analysis, a sample is illuminated with X-rays of known 

wavelength, λ; X-rays impacting the sample are then elastically scattered by electrons 

within the sample atoms. 

In crystalline solids, atoms are arranged in repeating units of long-range order, forming 

distinct planes.  X-rays scattered by crystalline solids result in constructive interference, 

which are indicative of the spacing, d, between diffracting crystal planes and the incident 

angle, Θ, of X-rays to the sample, as shown by Bragg’s Law [213].   

𝑛𝜆 = 2𝑑 sin 𝜃 

This constructive interference is then detected by the instrument, which records the 

intensity in relation to the incident angle as a diffraction pattern.  A perfectly crystalline 

material, with no defects, displays a diffraction pattern with vertical lines and no peak 

broadening.   

Figure 33: Schematic representation of the parameters used in Bragg’s Law, by X-ray diffraction 
(XRD).  Image reproduced from [339] 
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Amorphous solids are samples in which there is no long-range order of atoms.  In 

amorphous materials, diffraction patterns lack intense reflections and are often 

represented by broad asymmetric features across a wide range of incident angles. 

In crystallography, a unit cell is the smallest portion of the crystal lattice that repeats 

across all three dimensions of the crystal.  Using Bragg’s Law, and by maintaining n 

constant (n = 1), the inter-planar spacing can be used to determine the lattice parameters 

of a unit cell, which are unique to each crystal. 

In this work, the technique requires dry, finely ground material, whereby the average bulk 

composition and properties can be determined.  The sample is prepared to ensure random 

orientation, and therefore minimise any preferred-orientation effects.  Diffraction may only 

occur if Bragg’s law is satisfied, and so a diffraction pattern is created by scanning the X-

rays across a range of angles and recording the detected intensity.  As the diffraction 

pattern is a function of the d-spacing and incident angle, the recorded diffraction pattern 

is then unique to each crystalline solid; this can then be used for phase identification of 

the sample. 

A perfectly crystalline material, with no defects, would display a diffraction pattern as a 

series of vertical lines.  However, a crystal is rarely structurally ‘perfect’ and any 

imperfections are represented by broadening of reflections in the diffraction pattern.  

Figure 34: Schematic diagram of a Crystal Lattice and a Unit Cell in crystallography.  Reproduced 
from [343] 
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Broadening effects can also occur due to small particle sizes, sample preparation and 

environment (e.g. temperature), or from the instrument itself.  In the case of size 

broadening, sub-micron particles are typically small enough so that there are insufficient 

planes across the particle to ensure complete destructive interference at angles close to 

the Bragg angle.  The breadth of peaks within the diffraction pattern can therefore be used 

in combination with the Scherrer equation to determine the mean particle size of crystalline 

materials. 

𝜏 =  
𝐾𝜆

𝛽 cos 𝜃
 

Whereby τ is the mean size of crystalline domain, K is the is Scherrer constant (Value = 

0.9, assuming particles are spherical), λ is the X-ray wavelength used for analysis, β is 

the line broadening at full-width at half-maximum value of the peak (FWHM) and Θ is the 

Bragg angle. 

It is important to remember that broadening can arise from multiple sources, and 

additional particle effects, such as agglomeration and shape, may lead to significant error 

in the particle size values determined by XRD alone.  It is therefore necessary to combine 

XRD with other techniques, such as SEM and TEM, for a more complete understanding of 

particle size and morphology. 

The rapid analysis time and ease of availability, in combination with the range of 

information that can be gathered from this technique, means that PXRD is the primary 

method of offline analysis used during this work.  Samples were analysed using a Bruker 

D8-Advance Da Vinci Diffractometer with Cu Kα radiation (λ = 1.5418 Å).  Diffraction 

patterns were recorded across a 2θ range of 5-70°, with a step size of 0.05° and 0.2 s per 

step (8 s per step in Chapter 5).  All analysis and processing was completed using Bruker 

EVA software, which allows comparison to known reference crystalline patterns. 
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2.1.4 Scanning electron microscopy (SEM) 
Following structural identification through X-ray diffraction techniques, nanomaterial 

samples are often further analysed by scanning electron microscopy (SEM) to study 

features such as surface morphology, topology or particle size distribution.  By contrast to 

optical microscopy, which uses a visible light source, SEM utilises a beam of electrons 

which are scanned across the sample surface.  Electrons beams are used due to their 

shorter wavelength when compared to visible light, resulting in much higher possible 

magnifications, typically between 100 and 100,000 times.  The narrow beam also results 

in a large depth of field, which is responsible for the three-dimensional appearance of 

images; this feature in particular makes SEM valuable for studying a sample’s surface 

structure. 

  

Figure 35: Schematic Illustration of Scanning Electron Microscope [346] 



 

68 

 

During analysis, electrons are generated and the beam focused through a series of lenses 

and apertures before it reaches the surface of the sample.  Upon interaction with the 

sample surface, electrons can either be backscattered or generate secondary electrons; 

both backscattered and secondary electrons can be used to provide information about the 

sample.  Secondary electrons arise through interaction of incident electrons with the 

sample surface; secondary electrons are typically lower in energy than backscattered 

electrons and are primarily used for high resolution imaging or studying the topology of 

the material.  Deeper penetration of the incident electron beam leads to interaction with 

the nuclei of atoms within the sample; this results in direct backscatter of electrons.  As 

materials of higher atomic mass cause more electrons to backscatter, the sample 

composition can be investigated through backscattering. 

For the purposes of this work, samples are in the form of dry powders, and are fixed to an 

aluminium stub through the use of carbon tape or glue.  Prior to analysis, the sample can 

be coated with a thin layer of gold or platinum to improve conductivity and give higher 

resolution.  Once the sample stub is placed into the sample chamber, the system is 

evacuated to produce a vacuum (See Figure 35). 

Samples in Chapter 4 were imaged using a FEI Quanta600 MLA SEM.  Sample powder was 

mounted onto a carbon glue coated stub.  The stub was allowed to dry before coating with 

platinum in a Polaron SC7640 set to 2.2 kV, coating was done for 90 seconds.  
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2.1.5 Transmission electron microscopy (TEM) 
Similar to SEM, transmission electron microscopy (TEM) utilises a beam of electrons which 

are fired upon a sample.  In contrast to SEM, TEM operates on the transmission of incident 

electrons through the sample, producing a projection upon a screen located underneath 

(See Figure 36).  Transmission of electrons is heavily influenced by a sample’s 

composition, density and particle size, which can all be studied through the projected 

image; for example, a 5 keV can penetrate 400 nm of Al, but only 88 nm for Au [214].  

TEM uses a much more focused electron beam, when compared to SEM, which enables 

higher resolution and magnification up to 1x106 times.  However, the field of view (FOV) 

is far smaller, meaning that detailed images are limited to only small regions of the sample.   

Figure 36: Schematic illustration of transmission electron microscope [347] 
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For analysis, samples are first transferred into a volatile solvent, such as ethanol, before 

deposition onto a copper or carbon grid for imaging.  As the solvent evaporates, a thin 

layer of nanomaterial sample is retained.  As before, the chamber is evacuated to ensure 

a vacuum prior to imaging. 

Owing to the many properties which can be investigated by electron microscopy, including 

particle size, morphology, topology and also composition; both SEM and TEM provide a 

powerful characterisation tool for this work.  Both methods are primarily used to validate 

the online analytical techniques used for self-optimisation.  While the imaging itself is rapid 

and non-destructive, the sample preparation is still too resource-intensive to consider 

analysing all samples; for this reason, only select samples from experiments in Chapters 

4-7 are analysed via SEM and TEM.  

Samples were analysed using a JEOL 2100F HRTEM equipped with a field emission gun 

(FEG) and operating at 100 kV.  Samples were transferred into ethanol and sonicated in 

an ultrasonic bath for 60 minutes to disperse agglomerates, before being distributed on a 

carbon grid.  All TEM images were provided courtesy of Dr Michael Fay of the Nanoscale 

and Microscale Research Centre (nmRC) at the University of Nottingham.   

Particle size analysis using SEM and TEM imaging was completed by Dr Vitaliy Sechenyh 

as part of the EPSRC project “Cognitive Chemical Manufacturing” (Ref: EP/R032807/1).  A 

custom algorithm written in MATLAB was used for analysis.  This method modifies the 

image contrast to produce a binary profile; particles are automatically detected as “holes” 

in the image background, whereby the major and minor axis of each particle is measured 

and counted.  
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2.1.6 Dynamic Light Scattering (DLS) 
Dynamic light scattering (DLS), also known as Photon Correlation Spectroscopy (PCS) is 

a technique used to determine the hydrodynamic radius of particles in suspension.  DLS 

utilises the principle of Brownian motion by illuminating particles within the solution with 

a monochromatic laser and analysing the intensity fluctuations in the scattered light, 

shown in Figure 37 [215].   

Particles suspended in solution do not remain stationary, but instead undergo Brownian 

motion.  Brownian motion is the movement of particles due to random collisions with 

molecules of liquid surrounding the particle [216].  As small particles move faster than 

larger particles, the particle size can be determined using the speed of the particles under 

Brownian motion, as defined by the Stokes-Einstein equation [217]. 

𝐷 =  
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻
   

Where D is the Translational Diffusion Coefficient, kB is the Boltzman constant, T is 

temperature, η is the solution viscosity and RH is the hydrodynamic radius.   

The DLS instrument measures the fluctuation in scattering intensity and then calculates 

the particle size.  It does this by comparing the degree of similarity between signals over 

short periods of time and creating a correlation function.  Over time, the degree of 

Figure 37: Diagram showing scattered light falling on a detector [215] 
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similarity will decrease; if the sample contains large particles, then the particles move 

slowly and the intensity fluctuation is relatively low.  For smaller particles, which move 

faster, the fluctuation intensity is much greater and therefore the rate of change in 

similarity is also greater; this effect is shown in Figure 38. 

While it is theoretically possible to detect scattered light in every direction, and therefore 

all angles, as illustrated in Figure 39, most instruments have fixed backscatter (173°) or 

classical (90°) arrangements.  Measuring backscatter has the advantages of not requiring 

the laser to travel through the entire sample, meaning higher concentration samples can 

be used while minimising the effects of multiple scattering.  This arrangement also reduces 

Figure 39: Basic setup of DLS measurement system.  Sample is contained within the cuvette and 
scattered light can be detected at different angles [217] 

Figure 38: Correlation function for small and large particles.  The rate of decay of the correlation 

function is greater for small particles, compared to large particles. [215] 
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the scattering effect of dust and other large contaminants as they typically scatter in the 

forward direction. 

DLS measurements in this research were carried out using a Malvern Panalytical Zetasizer 

Nano ZS, in backscatter arrangement with a detector angle of 173°.  For in-situ 

experiments, the measurement time was fixed at 10 seconds per run, and the 

measurement averaged across 10 runs.  Features within the Malvern Zetasizer software 

enabled optimisation of the measurement position between sampling, as well as the ability 

to increase or reduce the light intensity through use of the built-in attenuator.  A 

customised standard operating procedure (SOP) was created for each material, and used 

for all experiments, further details are given in Chapter 5. 
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2.1.7 Surface Area Analysis (BET N2 Adsorption) 
Gas adsorption using the Brunauer-Emmett-Teller (BET) model is a technique used to 

determine the surface area and pore size of a nanomaterial sample.  The technique is 

based on the adsorption of gas onto a solid surface, and is an extension of the Langmuir 

theory of monolayer adsorption relative to the pressure of a gas medium at constant 

temperature [218, 219].  

Various gases can be selected for BET surface area analysis, however, nitrogen is most 

commonly used due to its strong interaction with most solids, high chemical compatibility, 

size and availability in high purity.  To increase interaction between the gas and solid 

surface, the sample is cooled using liquid nitrogen at 77 K, known volumes of gas are then 

discharged into the sample cell.  High precision pressure monitors and transducers then 

measure the change in pressure within the cell due to adsorption.  Data are displayed as 

an adsorption isotherm, with types I-VI being generally accepted, plotting the adsorbed 

gas volume as a function of pressure [220].  Figure 40 shows the six possible adsorption 

isotherms.  

Figure 40: IUPAC classification of adsorption isotherms, na represents the quantity of adsorbed gas 
as a function of partial pressure, p/p0 [220] 
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Surface area is a key property when developing porous nanomaterials.  BET has become 

a standard analysis method for determining the surface area of microporous materials 

such as zeolites and MOFs.  However, there has been some debate regarding the validity 

of these measurements, questioning whether the reported surface areas were instead a 

result of a pore-filling mechanism, rather than the multilayer adsorption for which the test 

was originally intended [221, 222].    

Various MOFs can exhibit pore sizes ranging from below 7 Å (ultra-micropores), between 

7-20 Å (super-micropores), or greater than 20 Å (mesopores); it is this complication that 

can potentially contribute to inaccuracies in the BET equation [223].   

Rouquerol et al. further analyses the validity of the BET equation for use in microporous 

materials in 2007 [224].  In that work, Rouquerol et al. discusses that neither the BET, 

nor Langmuir equation should be blindly applied to microporous samples.  A “linearity 

criterion” is provided for analysis of BET plots to ensure consistency between 

measurements, mitigating subjectivity.  To support these findings, Rouquerol et al. 

conducted calorimetric analysis and found it to correspond well with the calculation of BET 

monolayer content through this criteria [224].  Despite these concerns, BET continues to 

be used as a standard metric for comparison of microporous materials, and as such is 

utilised in this work. 

Samples in this research were analysed using a MicroMeritics Tristar II 3020, with a pre-

loaded dosing program for surface area calculation.  All samples were degassed overnight 

at 200°C under vacuum to remove any surface water or other impurities which may 

confound the measurement.  Nitrogen gas was used for adsorption at 77 K due to ease of 

availability, at partial pressures between 0.001 and 0.99. 
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2.2 Autonomous Reactor Design 
This section describes the design and build of the autonomous reactor used for all 

experiments within this work.  The reactor itself is based on previous bench-scale designs 

of the counter-current flow reactor at the University of Nottingham, with some 

modifications to better suit an automated platform [56, 67].   

All pressurised components of the reactor were constructed from 316L stainless steel, and 

purchased from Swagelok®, unless otherwise stated.  Six high-performance liquid 

chromatography (HPLC) pumps (Gilson 305) were used for pumping solvent and precursor 

solutions into the system; pumps were allocated to the Upflow or Downflow based on the 

requirements of the specific case study, with further details given in experimental chapters 

(Chapter 4-7).  A Eurotherm 3216e PID controller with additional communications 

accessory was used to control power to a Watlow 1000 W mineral band heater, enabling 

control of the reactor Downflow.  The reactor itself comprises a 0.125” tube inside a 0.375” 

tube and mixing length of 100 mm, with all components at 0.065” wall thickness. 

Following the reactor, a tube-in-tube heat exchanger was used to rapidly cool the process 

stream (tube side) using recirculating deionised water (5 °C, shell side), controlled by an 

IKA RC2 Green Control recirculating chiller.  All post-reactor tubing was 0.25” in diameter.  

Pressure was maintained using a Tescom back pressure regulator, combined with a 

Tescom ER3000 electro-pneumatic valve actuator for automated pressure control.  The 

Tescom ER3000 was operated using Tescom proprietary software and PID control to 

maintain stable pressure throughout and avoid interference with pressure relief 

operations. 

The process stream from each experiment was set to normally flow to waste, however, a 

24 V, two-way solenoid valve, controlled by Arduino through LabVIEW, was used to divert 

samples flow to online analysis or sample retain.  A customised Gilson FC204 Fraction 

Collector was used to retain up to 50 ml from each sample, using polypropylene centrifuge 

tubes; up to 35 samples could be collected without intervention. 
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Figure 41: Schematic of the Autonomous Reactor used throughout this work.  Process equipment (Pumps and Heaters) are controlled via RS232 serial 

communication, using the custom reactor control graphical user interface (GUI) in NI LabVIEW.  Online process analytical technology (PAT) is shown in 
flow-through mode, but can be oriented in parallel or series to the process, depending on the PAT and setup.  Heat exchanger and Back pressure regulator 
are controlled using built-in software and set points constant throughout all experiments.  Thermocouples are not shown.  Machine learning (ML) and 
instrument control denotes the custom reactor control and optimisation GUIs. 
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Figure 42: Front view of the Autonomous Reactor used for all experiments within this work.  Pumps 1-6: Gilson 305 HPLC pumps.  Temperature Controller: 
Eurotherm 3216e PID Controller.  Pressure Trip: Pressure safety trip – cuts power to pumps and heaters at pressure >4000 psi.  Pressurised Reactor: 
More details given in Figure 43.  PC, recirculating chiller and auto-sampler and not shown. 
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Figure 43: (Left) Autonomous Reactor used throughout this work. R: Counter-current flow reactor.  H: Watlow Band Heater (1000 W).  NRV: Non-return 
valve.  PRV: Pressure relief valve (4000 psi).  PG: Pressure gauge.  PT: Pressure transducer.  P: Pressure gauge & transducer.  HX: Tube-in-tube heat 
exchanger.  BPR: Back pressure regulator (Automated, Tescom). CW: Cooling water. T: Thermocouple.  All major components are Swagelok® unless 
otherwise stated.  
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Figure 41 shows the simplified process flow diagram (PFD) for the self-optimising system.  

Figure 42 to Figure 44 show the autonomous reactor used throughout this work.  All 

components were operated using RS232 control with a single computer, running the 

bespoke reactor control graphical user interface, unless otherwise stated. 

Figure 45 and Figure 46 show the Bruker Alpha II ATR-FTIR spectrometer and Malvern 

Zetasizer Nano ZS respectively, used for online analysis in self-optimised experiments.  

Further details are given in experimental chapters (Chapter 5 and Chapter 6).  

Figure 44: Customised Gilson FC204 Fraction Collector utilised as an autonomous auto-sampler for 
all experiments in this work. 
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Figure 45: Bruker Alpha II FTIR Spectrometer, with Platinum ATR-QuickSnap attachment.  Bruker 
flow-through ATR accessory is shown, used for work in Chapter 5. 

Figure 46: Lleft) Malvern Zetasizer Nano ZS with flowcell for online DLS analysis, used in all Hematite 
synthesis experiments.  (Right) Quartz Flow Cell (ZEN0023) from Malvern for size and intensity 
measurements [340] 
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2.3 Reactor Control Graphical User Interface 
The reactor control graphical user interface (RC-GUI) was written and compiled using NI 

LabVIEW.  LabVIEW is a graphical programming platform in which data flow are generated 

by ‘wiring’ inputs and user-defined variables to operators and functions.  The visual nature 

of LabVIEW makes understanding the data-flow and overall structure of the GUI much 

more intuitive than traditional text-based programming methods; this is particularly useful 

when debugging. 

The GUI was built in several stages, starting with remote operation and control of the 

desired instrumentation, before integrating cyclic automation, allowing the reactor to 

follow a pre-defined set of automated protocols without user intervention.  Finally, the RC-

GUI was further developed to read and write text files to mediate the online process 

analytical technology (PAT), instrument hardware and a separate machine learning and 

optimisation GUI (MLO-GUI, described later).   

The RC-GUI uses a ‘Queued Message Handler’ (QMH) template, which facilitates sections 

of code running in parallel and allowing transmission of data between them.  Defining each 

subsection of code as a task (e.g. reading an instrument state), the GUI quickly becomes 

analogous to a state machine.  The front view of the RC-GUI is shown in Figure 47, the 

programme is too large to be fully described in this thesis; however, the key features and 

design are highlighted, and the files available on request. 

The RC-GUI is designed to enable autonomous experimentation, following a cyclic 

Standby-Heating-Run-Flush configuration.  These actions are predefined by the user ahead 

of a case study, and include inputs such as pump flowrates or temperature during each 

phase.  The RC-GUI moves between phases when triggered by an external state, such as 

reaching the temperature tolerance or waiting an allocated time.  Figure 48 shows a typical 

flowsheet for autonomous reactor control, integrating online dynamic light scattering 

(DLS) and experiments generated using the MLO-GUI.  
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Figure 47: Reactor Control graphical user interface (RC-GUI) created in NI LabVIEW. (a) Reactor and experiment controls (Pumps. Heater and Auto-
sampler).  (b) Online analysis import and monitoring.  (c) Data text file import and export, for external communication with set-point generation. 

(a) (b) 

(c) 
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Figure 48: Reactor automation protocol flowsheet.  Example shown uses online dynamic light 
scattering (DLS).  ML: Machine learning. 
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2.4 Machine Learning & Optimisation Graphical User Interface 
As part of the EPSRC project Cognitive Chemical Manufacturing (Ref: EP/R032807/1), a 

machine learning and optimisation graphical user interface (MLO-GUI) was developed by 

Dr Vitaliy Sechenyh, using the Statistics and Machine Learning Toolbox from MATLAB 

2020a [225].  This GUI was used for all self-optimised experiments (described in Chapter 

5 and Chapter 6), using a supervised machine learning (SML) to construct a model from 

available experiment data and generate predictions in the presence of uncertainty. 

Input data are generated from physically running experiments and analysing the outcome 

against a pre-defined objective function (i.e. particle size, conversion etc.).  Input data is 

used to train a SML model using regression, allowing the continuous prediction of response 

for previously untested conditions, with indication of prediction uncertainty.   

Two methods of regression are primarily used for self-optimised experiments in this work; 

polynomial and Gaussian process.  Polynomial regression models the relationship between 

a dependent and multiple independent variables, using a polynomial to the n degree, 

whereby n is usually the number of independent variables.  Polynomial regression in this 

instance is very similar to multiple linear regression (MLR) which is commonly applied in 

simple SML problems.  For more complex or detailed problems, a Gaussian process (GP) 

is often used, which defines a distribution over all possible functions for the available data.  

In this work, following the import of input data, several GP models were built using various 

hyper-parameters; Bayesian optimisation was used to minimise the re-substitution errors 

based on deviations of training to predictive data. 

Both regression methods were used to generate experiment points across the available 

design space, with each set of conditions having an associated prediction.  The user defines 

the proportion of exploration (random) and exploitation (high-performance) at the start of 

the process.  Figure 49 shows the MLO-GUI used within this work, with further details for 

operation available in experimental chapters (Chapter 5 and Chapter 6). 
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Figure 49: Options (top) and Model View (bottom) tabs of the Machine Learning and Optimisation 
graphical user interface (MLO-GUI).  Options allows the selection of base model, number of variables 
and optimiser used for self-optimised experiments.  Model view shows the contour plots of generated 

models at given 2D slices within the design space.  MLO-GUI developed by Vitaliy Sechenyh as part 
of the Cognitive Chemical Manufacturing EPSRC project.  (EP/R032807/1) 
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Chapter 3: Rig Development 
3.0 Rig Development & Commissioning 
To facilitate self-optimisation of nanomaterial synthesis, a robust, autonomous reactor 

platform must first be developed.  Chapter 2 describes the platform arrangement that was 

used in all bench-scale experiments presented in this thesis, however, several design 

iterations were necessary to finalise this design. 

The initial goals when designing the high-throughput reactor for use in this work were: 

- Maximum working temperature and pressure (TW = 380 °C, PW = 24.0 MPa) 

- Suitable for nanomaterial synthesis 

- Small internal volume 

- Fully automated and/or remote control operation 

- Rapid stabilisation after changes to process conditions 

- Low energy usage (Heating and cooling) 

To achieve this, the original bench-scale reactor design used at the University of 

Nottingham and Promethean Particles was adapted [56, 67].  The base design has 

previously been demonstrated to satisfy the working conditions and be suitable for 

nanomaterial synthesis.  However, the development of the self-optimising platform 

required several iterations to ensure robust yet efficient operation. 

This chapter describes the design iterations and justification for the final autonomous 

reactor system described in Chapter 2 and used in all bench-scale experiments in Chapter 

4 to Chapter 7.  Early iterations prioritise safe and robust reactor performance; once this 

was established, the reactor and auxiliary components were further modified to minimise 

variability across the process and analytical systems. 
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3.1 Iteration 1 (Initial Design) 
Reducing the total internal volume within the reactor minimises the volume of waste 

material and time required to achieve steady state conditions.  This means that for the 

same given time period, or volume of precursor solutions, more experiments can be 

executed and hence larger volumes of data. 

The original reactor design comprises a 0.125” in 0.375” (all dimensions refer to outer 

diameter) tube-in-tube counter-current reactor (Nozzle reactor), and 0.250” tubing for all 

main process lines post-reactor [56].  To reduce the total internal volume of the reactor, 

this design was scaled down one size, according to the availability of standard Swagelok® 

parts.  The proposed reactor consisted of a 0.0625” in 0.250” counter-current reactor, 

with 0.125” tubing post-reactor. 

Reducing the tube diameter also serves to improve the surface area to volume ratio of 

tubing, which is particularly important for achieving good heat transfer in heating and 

cooling applications.  However, there are other effects to consider when modifying the 

reactor geometry, such as adjusting the total flowrate to mitigate changes to the 

superficial velocity and flow regime of the process fluid. 

Further to changes in reactor geometry, the initial design aimed to improve the overall 

energy efficiency by employing simple methods of heat integration.  The reactor Downflow 

could be pre-heated using the thermal mass of the reactor outlet, this reduces the total 

heater duty required whilst simultaneously cooling the reactor outlet stream.  

Furthermore, the Downflow trim heater was designed to wrap around the Nozzle reactor 

itself, meaning that residual heat from the heater coil and mechanical support would 

transfer to the reactor through conduction.   

The completed initial rig design is shown in Figure 50, with the illustration of fittings and 

conceptual design shown in Figure 51.   
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Figure 50: Image of the high-throughput reactor (Iteration 1).  R: Counter-current mixing reactor.  
H: Heater.  HX: Heat exchanger (Shell: Downflow preheat, Tube: Reactor outlet).  PG: Pressure 
Gauge.  PRV: Pressure relief valve.  CW: Cooling water.  BPR: Back pressure regulator. 
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The rig was commissioned by increasing the system pressure with 30 ml.min-1 of deionised 

water and slowly adjusting the back-pressure regulator (BPR) until achieving 24.0 MPa.  

Following pressure testing, cooling water was recirculated from a large drum and the 

heater slowly ramped until the Downflow temperature achieved 380 °C.  This process was 

repeated immediately following all modifications to the rig design or parts.  The primary 

constraint is the back-pressure regulator temperature, which must not exceed 40 °C for 

personnel safety and equipment longevity. 

Figure 51: Illustration of the high-throughput reactor (Iteration 1).  T: Thermocouple, DF: Downflow, 
UF: Upflow, NRV: Non-return valve, PRV: Pressure-relief valve, CW: Cooling water, P: Pressure 
gauge and transducer, BPR: Back-pressure regulator. 
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Figure 52: Temperature ramp during commissioning of the initial high-throughput rig design.  
Downflow temperature achieves 380 °C, while the back pressure regulator (BPR) temperature range: 
17-23 °C. 

Figure 53: Image of the initial autonomous reactor platform (Iteration 1) during early scoping 
experiments. 
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Initial automation of reactor was achieved using RS232 serial communication, with 

commands sent using MATLAB 2018b.  Using multiple pumps meant that a range of 

flowrates and precursor concentrations were available through dilution in flow.  Figure 53 

shows the automated rig during operation of initial scoping experiments.  As the 

autonomous platform became more complex (integrating online analysis and optimisation 

algorithms) the automation methods were transferred into NI LabVIEW 2020, with the 

design of a new graphical user interface (Described in Chapter 2). 

The initial design for the automated CFHS reactor fulfilled many of the design requirements 

previously described; the total volume of pressurised components was calculated to be 

9.2 ml.  Furthermore, the heat integration methods applied meant that supercritical water 

could be achieved using only a 500 W heater, while the outlet process fluid could be cooled 

to <30 °C prior to the release of pressure at the BPR, using a short (70 mm) cooler. 

However, several aspects of the design required improvement before it could applied to 

the high-throughput experimentation required throughout this work.  The primary concern 

was the presence of large pressure fluctuations and frequent blockages when running 

scoping experiments.  Figure 54 shows the pressure trace during one of the early scoping 

experiments for the synthesis of metal organic frameworks.  The large fluctuations are 

Figure 54: Pressure trace during scoping experiments for the initial high-throughput rig design.  
Pressure trip triggered at 4000 psi, cutting power to the pumps and heater. 
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most likely attributed to accumulation of solids within sections of the rig, restricting the 

flow until either the solids are dislodged or the maximum working pressure is exceeded. 

 

Figure 55 highlights locations or fittings within the rig that are suspected to have 

contributed to solids accumulation and blockages.  Immediately following the 0.250” 

reactor outlet, the tubing reduces to 0.125”; furthermore, the vertical gain immediately 

after the reactor could contribute to uneven transport of solids within the mixture. 

In addition to the large fluctuations in the overall system pressure, significant variation 

between the Upflow and Downflow pressure was also observed, as shown in Figure 56.  

This can most likely be attributed to the 0.0625” Downflow tube, as this is the narrowest 

component following the non-return valves; it is possible that solids created during scoping 

experiments fouled the reactor internal surface of the tube, further restricting the flow. 

Figure 55: Areas of suspected solid accumulation: 0.250-0.125” reducer and 0.125” tubing with a 
sharp bend and vertical gain. 



 

94 

 

 

Issues surrounding pressure fluctuations, solids accumulation and blockages were not 

observed in all scoping experiments, and were more prevalent in the synthesis of metal-

organic frameworks.  This is likely due to the greater concentration of solids, increased 

particle sizes and higher tendency to agglomerate, when compared to the metal oxide 

materials which were also investigated in this work. 

 

Downflow Pressure: 

1000 psi 

Upflow Pressure: 

<200 psi 

Figure 56: Discrepancy in Upflow and Downflow pressure during operation.  Reactor was not 
intentionally pressurised, pressure reading shown is a result of backpressure along the Downflow 
process line. 
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3.2 Iteration 2 
After identifying the limitations of the initial design, several components of the high-

throughput reactor were modified.  The reactor scale was returned to the original 0.125” 

in 0.625” design; no variation in pressure was observed between the Upflow and Downflow 

lines after this, suggesting that the lower-scale reactor geometry was a significant 

contributing factor.  Further to this, all tubing post-reactor was changed to 0.250” and 

arranged to avoid to any elevation gain after the production of solids, as seen in Figure 

57.  

 

Figure 57: Image of the high-throughput reactor (Iteration 2).  R: Counter-current mixing reactor.  
H: Heater.  HX: Heat exchanger (Shell: Cooling water, Tube: Reactor outlet).  PG: Pressure Gauge.  
PT: Pressure transducer. PRV: Pressure relief valve.  BPR: Back pressure regulator. 
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To simplify the design at this stage, the heat integration previously employed to pre-heat 

the reactor Downflow was removed; this also served to significantly reduce the average 

stabilisation time when altering process conditions within the rig.  Figure 58 shows a 

schematic illustration of the design for reference. 

Figure 59 shows the system setup during further scoping work, investigating the use of 

inline FTIR analysis as a suitable online process analytical technology.  The process flow 

diagram (PFD) of the autonomous platform is shown in Figure 60. 

 

Figure 58: Illustration of the high-throughput reactor (Iteration 2).  T: Thermocouple, DF: Downflow, 
UF: Upflow, NRV: Non-return valve, PRV: Pressure-relief valve, CW: Cooling water, P: Pressure 
gauge and transducer, BPR: Back-pressure regulator. 
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Figure 59: High-throughput reactor, complete system including process analytical technology (PAT) 
during scoping experiments.   

Figure 60: Schematic of the high-throughput autonomous reactor (Iteration 2).  Online process 
analytical technology (PAT): inline ATR-FTIR spectroscopy.  ML: Machine learning. 
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To minimise user intervention, the manual spring-loaded back pressure regulator (BPR) 

was replaced with an air-actuated BPR (Tescom, 26-1700 Series), automated through an 

ER3000 electro-pneumatic controller. 

During commissioning of this design, it was immediately clear that the cooler was not 

sufficient when running at a total process flowrate of 30 ml.min-1.  The process fluid at the 

BPR should not exceed 40 °C, however, the Downflow could only be heated to 150 °C 

before the BPR temperature limit was reached.  This is far below the required temperature 

of 380 °C, and so the cooler length had to be increased.  For reasons of safety and 

equipment longevity, the outlet stream must not exceed 40 °C, in order to avoid burns to 

personnel or risk softening of the polymer seal within the BPR.  However, when considering 

online analysis, the outlet temperature must be very tightly controlled to ensure this does 

not result in measurement error. 

  

Figure 61: Temperature commissioning test for the high-throughput reactor (Iteration 2).  As the 
Downflow (DF) approaches 150 °C, the back pressure regulator (BPR) temperature exceeds 30 °C. 
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3.3 Iteration 3 
Iteration 3 of the reactor involved significantly increasing the cooling capacity.  The cooler 

design from Iteration 2 was repeated and applied in series, effectively doubling the heat 

exchanger length.  Additionally, the cooling water recycle drum was replaced with an IKA 

RC2 Green Control recirculating chiller, which maintained the cooling fluid temperature 

close to 5 °C.  The modified heat exchanger design is shown in Figure 62.   

 

 

The alterations to the cooling system showed excellent results, allowing the Downflow 

temperature to exceed 380 °C whilst maintaining a BPR temperature in the range 18-

24 °C, throughout the same commissioning tests previously described.  This level of 

control is excellent, especially given the large temperature ranges attainable within the 

reactor, and is suitable for experiments within this work. 

  

Figure 62: Image of the high-throughput reactor (Iteration 3).  R: Counter-current mixing reactor.  

H: Heater.  HX: Heat exchanger (Shell: Cooling water, Tube: Reactor outlet).  



 

100 

 

 

The third iteration of the reactor resulted in a high-throughput reactor design which was 

safe to operate, could achieve the desired process conditions and had a small reactor 

volume, at just 16.9 ml.  At this point the reactor could reasonably be used for experiments 

and the generation of data.   

However, several sources of possible error were identified, primarily surrounding the 

stabilisation time and rig dead-volume; these are features which could easily be 

overlooked and later result in significant experimental error.  For example, the automation 

protocols were developed to ensure the Downflow temperature is stable within 2% of the 

set-point temperature before starting the experiment.  Three reactor volumes were 

typically sent to waste before then collecting and analysing the synthesised product.  

Figure 64 shows the temperature trace of automated scoping experiments at various set 

Figure 63: Illustration of the high-throughput reactor (Iteration 3).  T: Thermocouple, DF: Downflow, 
UF: Upflow, NRV: Non-return valve, PRV: Pressure-relief valve, CW: Cooling water, P: Pressure 
gauge and transducer, BPR: Back-pressure regulator (Automated). 
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conditions.  While the process control surrounding the Downflow temperature is quick to 

respond, it is evident from the temperature trace that the reactor outlet temperature does 

not stabilise within the experiment time.  Observing very similar temperature profiles for 

the reactor outlet and heater block, it is likely that the integrated reactor-heater design is 

the cause of the slow stabilisation time.  Residual heat from the higher temperature 

Downflow tubing is transferred into the heater block, and then to the reactor itself.  A 

simple solution lies in increasing the experiment time to allow stabilisation, however, this 

would result in the unnecessary waste of both time and materials.  Instead, the rig was 

further modified to separate the heater and reactor components, as shown in Iteration 4.   

  

Figure 64: PicoLog trace of automated scoping experiments.  Back-pressure regulator (BPR) 
temperature range 20-26 °C.  Reactor outlet temperature does not achieve steady state within 

thee given experiment time (5 minutes).  Dashed line indicates expected temperature profile 
at extended reaction times. 
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3.4 Iteration 4 
Iteration 4 includes modifications to the heater and changes to the arrangement and 

fittings selection in order to minimise dead volume within the rig. 

To ensure a fast stabilisation time at the reactor outlet, the heater and reactor are 

separated into two distinct components.  Figure 65 shows the new heater design, 

consisting of a 1000 W mineral band heater from Watlow, surrounding 3 m length of 0.125” 

tubing on an aluminium mechanical support.   

 

Several regions of unnecessary dead volume were identified from Iteration 3; these include 

the 0.625” cross-piece at the reactor, and non-essential thermocouple locations which 

require TEE-piece fittings.  Dead volume describes regions of recirculation or accumulation 

of materials within the tubing and fittings of the rig.  Dead volume can significantly affect 

the residence time distribution of fluid parcels, as it flows through the process; depending 

on the location and conditions of this dead volume, increased residence time could result 

in increased particle growth, agglomeration of particles, or accumulation of solids which 

could lead to blockages.  For product quality purposes, it is therefore important to minimise 

unnecessary reactor dead volume, and minimise the fluid residence time distribution. 

Figure 65: New heater design, consisting of a 3 m length of 0.125” Swagelok® 316SS tubing, a 
custom aluminium mechanical support and a 1000 W mineral band heater supplied by Watlow. 
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Only dead volume after the reactor mixing point was considered to have any effect on the 

product quality; several components located before the reactor have intentional dead 

volume, such as the pressure relief valves and pressure transducers, to act as a buffer 

and protect these components from potentially damaging reagents. 

The final reactor design is shown in Figure 66 and respective illustration in Figure 67; this 

design was used for all bench-scale experiments in Chapters 4-7 and has an internal 

working volume of 12.4 ml.  Ideally, a study of the residence time distribution before and 

Figure 66: Image of the high-throughput reactor (Iteration 4).  R: Counter-current mixing reactor.  
H: Heater.  HX: Heat exchanger (Shell: Cooling water, Tube: Reactor outlet).  PG: Pressure Gauge.  
PRV: Pressure relief valve. BPR: Back pressure regulator. 
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after this iteration would have been performed using a suitable tracer and inline analysis; 

however, this was not possible due to time constraints and equipment availability. 

No operational issues, such as pressure fluctuations, blockages or significant fouling were 

observed during the experimental work described in this thesis.  This was aided by the 

automation protocols and experiment design, which included reactor flushing phases; this 

comprises 3-5 minutes of pumping deionised water and a cleaning agent (HNO3 or NaOH, 

depending on the material case study – further details given in Chapter 4-7).  The flushing 

phases ensure experiments are not able to ‘bleed’ into one another and confound results; 

while this approach is robust, there is a compromise in both the time and cost required 

per experiment. 

Figure 67: Illustration of the high-throughput reactor (Iteration 4).  T: Thermocouple, DF: Downflow, 
UF: Upflow, NRV: Non-return valve, PRV: Pressure-relief valve, CW: Cooling water, P: Pressure 

gauge and transducer, BPR: Back-pressure regulator (Automated). 
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Figure 68 shows the temperature profile during a predetermined, automated thermal 

cycling programme.  The process response time is excellent, with the reactor Downflow 

taking just 7 minutes to heat from ambient temperature to 350 °C, with a Downflow 

flowrate of 20 ml.min-1.  Furthermore, the reactor outlet trace shows that from the start 

of the experiment (identified by a small change to the temperature profile) the 

temperature stabilises to within 2% of a plateau in just 2 minutes, resulting in 3 minutes 

of run time at steady state conditions.  A fast stabilisation time is essential for high-

throughput experimentation, and the proposed reactor design shows excellent thermal 

control. 

The final modification consisted of two additional Gilson 305 HPLC pumps, bringing the 

total to six.  Having multiple pumps means that a wide range of flowrates, precursor 

concentrations and additives can be investigated with relative ease.  The final PFD is shown 

in Figure 69. 

  

Figure 68: Automated thermal cycling to test temperature response rates.  Downflow temperature 
heats from ambient to 350 °C in under 7 minutes.  Reactor outlet temperature stabilises within 2% 
in 2 minutes.  Back pressure regulator (BPR) temperature range: 19-25 °C. 
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Figure 69: Process flow diagram of the proposed autonomous reactor system.  PAT: Process analytical technology, shown in flow-through (inline) 
arrangement.  ML: Machine learning and optimisation algorithms. 
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3.5 Process Control 
Process control is the ability to monitor and adjust parameters within a process in order 

to ensure consistency.  For the hydrothermal process described in this work, temperature 

is one of the key parameters which can significantly affect the product quality; it is 

therefore imperative that these controllers are well tuned to the given process. 

Industrial process control typically comprises of either ‘On/Off’ or three-term control, more 

commonly referred to as proportional-integral-derivative (PID) control.  On/Off is the 

simplest approach, whereby the output is toggled from 0-100% in accordance to a 

predetermined dead-band.  This results in significant process oscillation and often poor 

control of the process.  Alternatively, PID control is typically far more accurate and 

responsive, and is often applied where a high degree of process control us required to 

ensure product quality. 

During commissioning of the high-throughput reactor, the temperature controller was 

tuned using the ‘Auto-tuning’ function of the Eurotherm 3216e PID controller.  Figure 70 

shows the temperature trace before, during and after tuning of the controller; the rig 

demonstrates excellent control over process temperature, which serves to minimise error 

Figure 70: Automatic PID tuning of the Eurotherm temperature controller and Watlow heater. 
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during the experiments in Chapters 4-7.  The BPR ER3000 electro-pneumatic controller 

was also tuned using PID control to ensure fast response times. 

3.6 Online Analysis Repeatability 
In addition to ensuring reliability in the synthesis process, it is also important to ensure 

repeatability in sample measurement and analytical results.  Using the hematite (α-Fe2O3) 

case study synthesis methods described in Chapter 5, a repeatability test was performed 

for the online dynamic light scattering (DLS) measurements.   

This test was performed automatically using the reactor control graphical user interface 

(RC-GUI) with process set point conditions of Downflow temperature: 240 °C, Upflow and 

Downflow flowrates 15 ml.min-1, respectively.  All other process conditions were similar to 

those described in Chapter 5.  The PicoLog temperature profile of the experiment is shown 

in Figure 71; in this case, the process was maintained at steady state conditions for one 

hour while discrete samples of product were sequentially injected into the DLS Flowcell 

every 5 minutes.  No operational issues were observed within this one hour study.  The 

recorded DLS measurements are shown in Table 2. 

  

Figure 71: Online dynamic light scattering (DLS) analysis test 1, (Red Star): Experiment starts, 
(Black Stars): Sample injected into the DLS.  At each sampling point, the DLS was injected with new 
sample, to identify steady state variability. 
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Table 2: Repeatability test for the online dynamic light scattering (DLS) instrument and injection 
loop. 

Sample No. 1 2 3 4 5 6 7 8 9 10 

Z-Average 
(nm) 

40.2 38.6 40.4 40.7 35.5 34.9 39.1 43.6 43.5 38.2 

Mean (nm) 39.5  (±2.7)         

 

To identify experiment cycle variation, the same test was performed with 6 repeat 

experiments, using the automation protocols outlined in Chapter 2; this test follows the 

same Standby-Heat-Run-Flush phases used for self-optimisation experiments, and so best 

emulates the potential sampling error for the investigation in Chapter 3.   

The temperature trace is shown in Figure 72; each cycle within the test clearly shows the 

heating, run and flush phases previously described.  In this instance, the ‘Heating’ phase 

utilises a reduced Upflow flowrate to conserve water; changing from 10 ml.min-1 to 15 

ml.min-1 when the Downflow temperature measures between 2% of the set point.  The 

Reactor Outlet trace shows a clear plateau within the 5 minutes of starting the ‘Run’ phase, 

and sudden decrease in temperature for the Downflow, Reactor Outlet and Heater Block 

components during the ‘Flush’ phases, due maximum flowrate of the water pumps (25 

ml.min-1 each) and temperature set point of 0 °C.  The overall trace shows excellent 

reproducibility, which was essential for reducing the experimental error in self-optimised 

experiments.  Prior to each ‘Flush’ phase, a sample was injected into the DLS instrument, 

with the recorded measurements shown in Table 3. 
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Table 3: Repeatability test for the reactor system, online dynamic light scattering (DLS) instrument 
and injection loop. 

Sample No. 1 2 3 4 5 6 

Z-Average (nm) 43.0 42.2 46.0 44.5 41.6 43.8 

Mean (nm) 43.9 (±1.3)     

 

Both tests show excellent reproducibility within their respective DLS measurements.  It is 

unclear why there is discrepancy between the average measurements across both tests.  

One explanation could be a slight difference in the average reactor outlet temperature, at 

151 and 155 °C, respectively; if this is the cause, then it demonstrates the sensitivity of 

the case study to the process conditions.  However, there are multiple external sources of 

error, such as environment temperature, which were uncontrolled throughout these 

investigations. 

 

Figure 72: PicoLog temperature trace for replicate automated experiments to identify repeatability 
of process conditions, subsequent sample injection and analysis of particle size by dynamic light 
scattering (DLS). 
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3.7 Conclusions: 
Following four significant design iterations, an autonomous continuous-flow hydrothermal 

reactor for nanomaterial synthesis was developed.  The proposed final design 

demonstrates safe and robust operation, while maintaining a rapid response to changes in 

process conditions.  A key feature of this design is range of attainable process conditions, 

meaning that the same reactor can be used for multiple case studies, providing chemical 

compatibility is observed. 

The final reactor design shown in Figure 66 and Figure 67 was used for all bench-scale 

experiments, throughout chapters 3-6.  The design permits easy modification of pump 

arrangement (Downflow: Upflow – 5:1, 4:2, 3:3, 2:4 or 1:5 are all feasible), as required.  

The PFD for each optimisation case study is given their respective chapters, with further 

details of any other modifications. 

The autonomous system has been developed with two available online process analytical 

technologies (PATs), DLS and FTIR spectroscopy.  The autonomous platform can easily be 

modified to accommodate alternative PATs, such as UV-Vis or Raman spectroscopy without 

significant changes to the pressurised rig or developed graphical user interfaces.  This 

generalised approach means that many nanomaterial case studies can be investigated 

with the same primary platform, only altering the auxiliary instrumentation as required. 

 

  



 

112 

 

Chapter 4: Combining Evolutionary 
Optimisation and Machine Learning with 
High-Throughput Experimentation 
 

4.0 Combining Evolutionary Optimisation and Machine Learning 

with High-Throughput Experimentation 
 

This chapter introduces the concepts of machine learning, optimisation and high-

throughput experimentation (HTE) to the flow synthesis of metal-organic frameworks 

(MOFs).  Using the well-studied case study material HKUST-1, the autonomous reactor 

previously described in Chapter 2 is used in combination with evolutionary optimisation, 

while also training a machine learning model to enable prediction of experiment outcome.  

A brief overview of the HKUST-1 material, applications and synthesis methods is provided, 

with a timeline highlighting key publications in literature. 

Offline characterisation by powder X-ray diffraction (PXRD), N2 adsorption and scanning 

electron microscopy (SEM) are used to evaluate sample crystallinity and specific surface 

area in relation to the given process variables.  Three Generations (1-3) of HKUST-1 

experiments are run, across five variables, with a total of 52 experiments.  Generation 3 

is run in conjunction with an in silico search to prioritise expected high performing 

experiments and minimise unnecessary experimental cost. 

The results show the highest surface area achieved in this work to be 1837 m2g-1 which is 

very similar to the highest reported value produced in continuous-flow solvothermal 

synthesis, 1852 m2g-1 by Rubio-Martinez et al. (See Table 4). 
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4.1 This work 
As discussed in Chapter 1, one of the most recent and advanced examples of HTE in MOF 

synthesis was demonstrated by Moosavi et al. for the optimisation of HKUST-1, using a 

robotic microwave batch reactor [138].  In this work, the authors achieved the highest-

reported surface area to date for HKUST-1, at 2045 m2g-1 (See Table 4), whilst also 

training a machine learning model to capture ‘Chemical Intuition’.  The experimental work 

in this chapter aims to apply the same methodology as presented by Moosavi et al. but 

with the continuous-flow hydrothermal synthesis (CFHS) reactor system previously 

described to ensure a scalable route to production.  HKUST-1 makes for an excellent case 

study material, and is also used here to enable an easy comparison of methods. 

Following initial scoping work and literature studies, five variables; temperature, 

stoichiometry, flowrate (analogous to residence time and thus crystallisation time) and the 

%v/v of methanol and ethanol in the solvent.  DMF is not used at any point in the process, 

including washing and activation, ensuring a greener synthesis route. 

To reflect the reduced number of variables, the population size of each generation is 

reduced to 20, compared to 30 in the work by Moosavi et al..  Having demonstrated the 

effectiveness of genetic algorithms and machine learning models for HKUST-1 synthesis, 

it is therefore reasonable to use the same SyCo Finder application in this work.  A minor 

modification to this strategy is demonstrated in the third generation, where a machine 

learning model is developed to provide an in silico search of new experiments, enabling 

prioritisation of experimental conditions – a feature discussed but not demonstrated in 

Moosavi et al.’s initial Cu-HKUST-1 optimisation.   

The primary aim of this optimisation is to maximise BET specific surface area, however, 

the objective function is determined by the sample crystallinity, calculated via the FWHM 

of the diffraction pattern peaks.  PXRD is used in the analysis of all samples due to the 

significantly faster method when compared to BET N2 adsorption; following XRD analysis, 

the 6 out of 20 most crystalline samples will be further analysed by BET. 
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This work therefore represents the first known published example of HTE combined with 

machine learning and optimisation for the flow synthesis of metal-organic frameworks. 

4.2 HKUST-1 Synthesis 
HKUST-1 (Hong Kong University of Science & Technology) is one of the most highly-

studied MOFs, due to a high specific surface area and large pore volume [226].  First 

reported in 1999 [227], the most well-known analogue of HKUST-1 consists of Cu2+ ion 

nodes surrounded by 1,3,5-benzenetricarboxylate (BTC) organic linkers.  The resulting 

framework exhibits a bimodal pore size distribution, with large and small pore diameters 

of 9 Å and 3.5 Å respectively [228]. 

Several analogues of HKUST-1 exist, typically consisting of metals with a +2 charge to 

achieve an overall neutral framework, including Mo2+, Cr2+, Ni2+ and Zn2+ [229, 230, 129, 

231];  although examples using metals with a 3+ charge have also been synthesised, 

resulting in an overall charge for the structure [232, 233].   

Figure 74 shows the dehydrated and hydrated state of HKUST-1 secondary building unit 

(SBU).  Commonly referred to as a ‘Paddlewheel’ unit, the SBU consists of four 1,3,5-

benzenetricarboxylic acid linkers bridging two metal centres.  In the hydrated state, one 

water molecule is coordinated to each of the metal centres; this is often the case when 

Figure 73: HKUST-1 2x2x2 Unit Cell Structure, generated from CIF 2300380 [254] 
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HKUST-1 is handled in air.  Activation through vacuum and heating is usually sufficient to 

remove these water molecules, resulting in a coordinatively unoccupied Lewis acidic site. 

 

This site is suitable for the selective binding of polar gas species, leading to the extensive 

exploration of HKUST-1 for use in gas separation and storage applications, in particular 

CO2 adsorption for carbon capture, utilisation and storage (CCUS).  Many synthesis routes 

have been reported for HKUST-1; these include microwave-assisted (MW) [234], 

mechano-chemical (MC) [235], electrochemical (EC) [236] and ultrasonic (US) [108] 

methods, however, the vast majority of research has surrounded the Hydro/Solvothermal 

approach (See Table 4).  The vast majority or previously reported synthesis utilise 

conventional electrical heating (CEH) and batch processes.  There have been relatively few 

reports of continuous flow-synthesis of HKUST-1, despite the potential scalability 

advantages of flow technologies (See Table 4). 

  

Figure 74: Dehydrated (Left) and Hydrated (Right) Secondary Building Unit (SBU) of HKUST-1, 
demonstrating Paddlewheel type structure. Hydrogen atoms removed for clarity 
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Table 4: Timeline of milestones in HKUST-1 Synthesis, highlighting new synthesis methods or due 
to high reported surface area.  First author is used for reference.  US: Ultrasound, MW: Microwave, 
MC: Mechanochemical, EC: Electrochemical, RT: Room Temperature, TSE: Twin Screw Extrusion.  
†Langmuir Specific Surface Area.  Conventional Electric Heating used unless otherwise stated. 

‡Highest reported value.   

Author Year 
Synthesis 

Method 

BET Surface 

Area (m2g-1) 
Solvent Ref 

Chui 1999 Solvothermal 692 H2O, EtOH [227] 

Wang 2002 Solvothermal 964 -1333 

 

H2O, EtOH [237] 

Chowdhurry 2008 Solvothermal 1482 DMF, H2O & 

EtOH 

[238] 

Li 2009 US 1100 DMF, EtOH [239] 

Seo 2009 MW 1392 H2O, EtOH [234] 

Schlesinger 2010 Solvothermal 

MW 

US 

EC 

Reflux 

MC 

1143 

1321 

1206-1499 

1119-1421 

897-1270 

424-1253 

H2O, EtOH 

 

 

 

 

No Solvent 

[236] 

Huo 2013 RT Synthesis 1403-1680 H2O [240] 

Kim 2013 Solvothermal, 

Flow 

1673 H2O, EtOH [241] 

Yang 2014 Solvothermal 1922 DMF [242] 

Rubio-Martinez 2014 Solvothermal, 

Flow 

1852 H2O, EtOH [114] 

Crawford 2015 MC 1738 No Solvent 

 

[243] 

McKinstry 2017 Solvothermal, 

Flow 

MW, Flow 

1200-2200† 

 

1857† 

EtOH [244] 

Elsaidi 2017 RT Synthesis 2014 MeOH [245] 

Mu 2018 Solvothermal 1542 H2O, EtOH [246] 

Chen 2018 Solvothermal 801-1615 MeOH, EtOH [247] 

Moosavi 2019 MW 2045‡ DMF, H2O, 

MeOH, EtOH, 

iPrOH 

[138] 

Vepsäläinen 2021 EC 1716 H2O, EtOH [248] 
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4.3 Variables & Optimisation 
This work adopts a similar synthesis strategy to that shown in the solvothermal route, 

reported by Rubio-Martinez et al. [114].  First, 1,3,5-benzenetricarboxylic acid (H3BTC) 

ligand is deprotonated by means of a suitable base and dissolved into deionised water, the 

resulting ligand solution is then reacted with an aqueous solution of copper (II) nitrate, 

resulting in the precipitation of the sky blue solid reaction product.  Factors such as 

reaction temperature, stoichiometry and the incorporation of alcohol co-solvents are all 

investigated with the aim of achieving the maximum crystallinity and specific surface area.  

Higher crystallinity is determined by means of minimising the full width at half-maximum 

(FWHM) of the three most intense reflections in the powder X-ray diffraction (PXRD) 

pattern.  Specific surface area is determined by Brunauer-Emmet-Teller (BET) method, 

using N2 adsorption at 77 K. 

Five variables were considered for the optimisation of HKUST-1, as shown in Table 5.  To 

enable comparison between samples, the concentrations of 1,3,5-benzenetricarboxylic 

acid and trimethylamine (TEA) are fixed at 0.02 M and 0.06 M respectively in the reactor 

Downflow.  The molar ratio of Cu(NO3)2 to 1,3,5-benzenetricarboxylic acid is investigated; 

while the ideal crystal structure consists of a 3:2 stoichiometry (Cu2+:BTC) [227], a wide 

range of reaction stoichiometry is reported with varying success. 

It has previously been shown that incorporating varying ethanol co-solvent concentrations 

into the aqueous reaction mixture can modulate the growth of HKUST-1 crystals, which 

affects both the crystallinity and defect density of the product [249].  Here, both ethanol 

and methanol are investigated independently, allowing a total alcohol concentration range 

of 0-40 %v/v in the reactor outlet (0-20 %v/v for methanol and ethanol respectively).  

Methanol was selected due to similarity in physical properties, but significantly reduced 

cost when compared to ethanol [250]. 

Process parameters, temperature and flowrate, are also varied to investigate the reaction 

kinetics.  The preheated Downflow has a temperature range of 50-200 °C, before mixing 
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with the unheated Upflow, to give a total reactor flowrate has range 20-30 ml.min-1, 

equally distributed between the reactor Upflow and Downflow. 

Table 5: Process Constraints for HKUST-1 Synthesis & Evolutionary Optimisation.  H3BTC = 1,3,5-
benzenetricarboxylic acid. 

 

4.4 Reactor Layout: 

  

Variable Synthesis Constraints Notes 

Temperature  50 – 200 [°C] Downflow temperature 

Reactant Ratio 1 – 5 [M ratio] Molar ratio of Cu(NO3)2 to 

H3BTC ligand 

Methanol 0 – 20 [%v/v] %v/v in reactor outlet 

Ethanol 0 – 20 [%v/v] %v/v in reactor outlet 

Flowrate 20 – 30 [ml.min-1] Equal ratio Downflow to Upflow 

Figure 75: Schematic of Automated High-Throughput Synthesis Reactor for HKUST-1 Optimisation.  
BTC = 1,3,5-benzenetricarboxylic acid.  TEA = trimethylamine. 
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4.5 Experimental & Analysis: 
In each generation, the precursor solutions and post-processing steps are as follows. All 

materials used through this study were purchased from the vendors as specified below. 

The materials were used as sold, without additional processing or modifications.  

Stock solution make-up corresponds to Pumps 1-6.  Stock solution 1 & 5 [5 L]: De-Ionised 

H2O.  Stock solution 2 [1 L]: 0.10 M 1,3,5-benzenetricarboxylic acid (BTC) (≥95%, 

22.120g – Sigma Aldrich) + 0.30 M trimethylamine (TEA) (≥99%, 30.906g – Alfa Aesar).  

Stock solution 3 [1 L]: Methanol (94-96%, Alfa Aesar).  Stock solution 4 [1 L]: Ethanol 

(94-96%, Alfa Aesar).  Stock solution 6 [1 L]: 0.15 M Copper (II) Nitrate Trihydrate 

(≥98%, 36.980g – Sigma Aldrich) 

All experimental conditions were determined using the SyCo Finder from Mossavi et al. 

[139].  Experiment conditions were imported into the custom reactor control graphical 

user interface (RC-GUI) in LabVIEW and converted into process set points (temperature 

and respective flowrates) based on stock solution concentrations.   

For each experiment, the RC-GUI follows a cyclic Standby-Heating-Experiment-Flush 

pattern.  To minimise waste of stock solutions, only water is pumped during the Standby, 

Figure 76: Reactor setup during HKUST-1 Evolutionary Optimisation Experiments.  (Auto-sampler & 
PC not shown) 
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Heating and Flush stages.  During the heating stage, the GUI does not proceed until the 

measured heater outlet temperature is within 2% tolerance of the set point. 

All samples are collected using a customised Gilson FC 204 Fraction Collector, combined 

with a 24 V solenoid two-way valve controlled by an Arduino.  Prior to collection, each 

experiment ran for two reactor volumes (where VReactor = 50 ml) to ensure steady state 

operation. 

For each experiment, a 40 ml sample was collected in a 50 ml polypropylene centrifuge 

tube.  The solids were separated from the supernatant via sequential centrifugation at 

3500 rpm for 5 minutes.  After each centrifugation step, the pellet was re-dispersed in 

methanol.  This process was repeated three times to remove any unreacted starting 

materials from within the MOF pores and replace pore-bound water with more volatile 

methanol.  Samples were then dried overnight at 80°C under vacuum (1000 mbar) to 

remove any residual solvent and yield the coordinatively unsaturated MOF structure.   

Vacuum activation was accompanied by a characteristic colour change from sky blue to 

navy/purple.  Following activation, care was taken to minimise exposure to atmospheric 

moisture during all subsequent manipulations.  
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4.6 Generation 1: Initialisation via Diverse Set 
The initial conditions are determined using the MaxMin method [251] to attain the 20 most 

diverse possible experiments within the given design space.  These experiments are 

generated using the SyCo Finder application [139], which will be used extensively during 

this investigation. 

Table 6: Experimental Conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, 
Generation 1.  Reactant ratio = Ratio of Cu(NO3)2 : 1,3,5-benzenetricarboxylic acid linker.  Product 
mass refers to the dry solid retained after completing the washing and activation steps. Temperature 
refers to the preheated Downflow temperature. 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

Product Mass 
[g.40ml-1] 

GA_1_1 50.0 1.00 0.00 0.00 20.0 0.0853 
GA_1_2 200.0 5.00 20.00 20.00 30.0 0.1329 
GA_1_3 50.0 1.00 10.00 20.00 30.0 0.0946 
GA_1_4 200.0 1.00 20.00 0.00 25.0 0.0763 
GA_1_5 200.0 3.00 0.00 20.00 20.0 0.1149 
GA_1_6 50.0 5.00 20.00 10.00 20.0 0.1392 
GA_1_7 125.0 5.00 0.00 0.00 30.0 0.0973 

GA_1_8 125.0 1.00 20.00 20.00 20.0 0.0961 
GA_1_9 200.0 1.00 0.00 10.00 30.0 0.0833 
GA_1_10 50.0 3.00 20.00 0.00 30.0 0.1240 
GA_1_11 50.0 5.00 0.00 20.00 25.0 0.1332 
GA_1_12 200.0 5.00 10.00 0.00 20.0 0.1216 
GA_1_13 50.0 1.00 0.00 0.00 30.0 0.0837 
GA_1_14 50.0 1.00 0.00 20.00 20.0 0.0916 
GA_1_15 50.0 1.00 20.00 0.00 20.0 0.0859 
GA_1_16 200.0 1.00 0.00 0.00 20.0 0.0719 
GA_1_17 200.0 1.00 20.00 20.00 30.0 0.0936 

GA_1_18 125.0 3.00 10.00 10.00 25.0 0.1312 
GA_1_19 50.0 5.00 0.00 0.00 20.0 0.1069 
GA_1_20 50.0 5.00 20.00 20.00 30.0 0.1309 

 

All experiments within Generation 1 resulted in the production of solids with a light blue 

colour, as shown in Figure 77, consistent with previous literature reports [252].  In each 

case, the dry mass of washed product was recorded, which can be later used in 

combination with the PXRD and BET data to determine the commercially optimum 

synthesis conditions. 
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Upon washing and activation, there was a noticeable colour change from light to dark blue 

in all samples, as shown in Figure 78.  This is likely due to a change in the coordination 

number of copper within the sample from six to four; this can be attributed to the removal 

of water or other coordinated solvents from the copper sites [252, 253].   

 

 

  

Figure 77: HKUST-1 samples from Generation 1 as-synth, collected via the Auto-sampler (left) and 
a typical HKUST-1 as-synthesised sample showing light blue colour (right)  

Figure 78: Typical HKUST-1 as-synthesised sample (left) and representative example of the colour 
change due to the washing & activation method (right) 
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Figure 79: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
1 Experiments 1-5.  Full at half-maximum value used for the fitness function is shown.  Simulated 

pattern generated from CIF [254] 

Figure 80: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
1 Experiments 6-10.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 
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Figure 81: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
1 Experiments 11-15.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 

Figure 82: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
1 Experiments 16-20.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 
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Figure 79 to Figure 82 show the diffraction patterns for all samples produced in Generation 

1.  The samples demonstrate significant variation in both crystallinity and phase purity, 

which is to be expected, given that the purpose of Generation 1 is to investigate the most 

diverse range of conditions possible within the 5-dimensional design space.   

The diffraction data shows 12 samples with high crystallinity and in close match the 

simulated pattern [254].  The FWHM was used to rank these samples as a measure of 

crystallinity; to avoid bias due to preferred orientation effects, the average FWHM of the 

3 most intense reflections was used.  In all samples, this corresponds to the (200), (220) 

and (222) reflections at 2Θ = 6.8°, 9.5° and 11.7° respectively. 

There is slight variation in the intensity ratios of the (200) to (220) plane, which could be 

attributed to the hydration state of powder samples.  It has previously been reported that 

the reduction in intensity of the (111) and (200) planes can be related to the hydration of 

HKUST-1 and subsequent loss of FCC crystal structure [255, 256].   

Samples showing the presence of significant additional peaks in the diffraction pattern, 

indicating poor phase purity, were represented by a FWHM penalty value of ‘0.5’ to 

evaluate the fitness function when running the evolutionary algorithm.  The samples with 

the six smallest FWHM values were then characterised using BET N2 adsorption. 

Vacuum activation during N2 adsorption preparation was accompanied by a characteristic 

colour change from sky blue to navy/purple.  Following activation, care was taken to 

minimise exposure to atmospheric moisture during all subsequent manipulations.  
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Table 7: HKUST-1 Generation 2 - BET Specific Surface Area Data & Synthesis Conditions 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

BET Specific 
Surface Area 

[m2g-1] 

GA_1_3 50 1 10 20 30 1514 

GA_1_5 200 3 0 20 20 1663 

GA_1_6 50 5 20 10 20 1648 

GA_1_10 50 3 20 0 30 1813 

GA_1_11 50 5 0 20 25 1767 

GA_1_18 125 3 10 10 25 1813 

 

  

Figure 83: HKUST-1 Generation 1 - BET N2 Adsorption Isotherms 
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The BET isotherms from Generation 1 show specific surface areas within the known range 

for HKUST-1 (shown in Table 4) with experiments GA_1_10 and GA_1_18 showing the 

highest values at 1813 m2g-1.  All samples demonstrate a Type I isotherm according to 

IUPAC classification, indicating a microporous structure (i.e. pores <2 nm) [235, 257].   

The large surface areas exhibited by all samples suggests that the washing, activation and 

degassing steps used are sufficient to remove guest molecules from within the pores; 

these steps will therefore remain consistent for subsequent generations. 

Interestingly, the six samples showing a high BET surface area were all produced by 

drastically different synthesis conditions; this suggests that the surface response within 

the available design space is complex and could potentially contain many local optima, 

which explains the large range of values reported in literature (See Table 4). 

Table 8 shows the synthesis conditions and characterisation data for samples produced in 

Generation 1.  The FWHM data was used to determine a fitness value, which was entered 

into the SyCo Finder application to generate a new set of conditions [139]. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛) = 1 − 𝐹𝑊𝐻𝑀 
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Table 8: Synthesis conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, Generation 1.  Reactant ratio = Ratio of Cu(NO3)2 : 1,3,5-
benzenetricarboxylic acid linker.  Product mass refers to the dry solid retained after completing the washing and activation steps. FWHM = Full width at 
half-maximum of the 3 most intense reflections in the HKUST-1 pattern.  Crystallite size was determined through use of the Scherrer equation and FWHM 
values.  Temperature refers to the preheated Downflow temperature.  Yield was calculated based on full conversion of the 1,3,5-benzenetricarboxilic acid 

linker.  †FWHM and crystallite size values could not be obtained due to poor phase purity, a penalty value of FWHM=0.5 is used to enable the algorithm 
to progress. 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

FWHM 
Crystallite 
Size [nm] 

BET Surface 
Area 

[m2g-1] 

Product 
Mass 

[g/40ml] 

Yield 
[%] 

GA_1_1 50.0 1.00 0.00 0.00 20.0 0.5 † N/A †  0.0853 35.2 

GA_1_2 200.0 5.00 20.00 20.00 30.0 0.234 345.7  0.1329 54.9 

GA_1_3 50.0 1.00 10.00 20.00 30.0 0.214 381.6 1514 0.0946 39.1 

GA_1_4 200.0 1.00 20.00 0.00 25.0 0.5 † N/A †  0.0763 31.5 

GA_1_5 200.0 3.00 0.00 20.00 20.0 0.201 406.1 1663 0.1149 47.5 

GA_1_6 50.0 5.00 20.00 10.00 20.0 0.204 400.1 1648 0.1392 57.5 

GA_1_7 125.0 5.00 0.00 0.00 30.0 0.215 377.9  0.0973 40.2 

GA_1_8 125.0 1.00 20.00 20.00 20.0 0.219 371.7  0.0961 39.7 

GA_1_9 200.0 1.00 0.00 10.00 30.0 0.5 † N/A †  0.0833 34.4 

GA_1_10 50.0 3.00 20.00 0.00 30.0 0.182 449.6 1813 0.1240 51.2 

GA_1_11 50.0 5.00 0.00 20.00 25.0 0.208 391.4 1767 0.1332 55.0 

GA_1_12 200.0 5.00 10.00 0.00 20.0 0.5 † N/A †  0.1216 50.2 

GA_1_13 50.0 1.00 0.00 0.00 30.0 0.5 † N/A †  0.0837 34.6 

GA_1_14 50.0 1.00 0.00 20.00 20.0 0.5 † N/A †  0.0916 37.9 

GA_1_15 50.0 1.00 20.00 0.00 20.0 0.5 † N/A †  0.0859 35.5 

GA_1_16 200.0 1.00 0.00 0.00 20.0 0.5 † N/A †  0.0719 29.7 

GA_1_17 200.0 1.00 20.00 20.00 30.0 0.235 345.3  0.0936 38.7 

GA_1_18 125.0 3.00 10.00 10.00 25.0 0.171 482.4 1813 0.1312 54.2 

GA_1_19 50.0 5.00 0.00 0.00 20.0 0.269 297.7  0.1069 44.2 

GA_1_20 50.0 5.00 20.00 20.00 30.0 0.226 358.7  0.1309 54.1 
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4.7 Generation 2: Set point generation via SyCo Finder & G1 fitness 

valuation 
Following input into the SyCo Finder web application [139], the synthesis conditions for 

Generation 2 were created.  As before, these conditions were run autonomously, collecting 

40 ml samples for further processing and analysis.  The dry product mass after washing 

and activation is shown in Table 9, along with the synthesis conditions. 

Table 9: Synthesis conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, 
Generation 2.  Reactant ratio = Ratio of Cu(NO3)2 : 1,3,5-benzenetricarboxylic acid linker.  Product 

mass refers to the dry solid retained after completing the washing and activation steps. Temperature 
refers to the preheated Downflow temperature. 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

Product Mass 
[g.40ml-1] 

GA_2_1 171.0 3.00 4.45 17.41 23.1 0.1325 

GA_2_2 50.0 5.00 0.00 0.00 20.0 0.1351 

GA_2_3 89.3 1.00 11.27 3.97 30.0 0.0911 

GA_2_4 100.1 1.26 5.55 6.63 23.9 0.1218 

GA_2_5 50.0 5.00 20.00 19.19 28.2 0.1216 

GA_2_6 72.5 3.15 15.45 12.58 30.0 0.1369 

GA_2_7 154.5 1.16 9.93 20.00 20.0 0.1101 

GA_2_8 73.8 3.07 19.32 20.00 23.4 0.1244 

GA_2_9 118.8 2.49 20.00 14.98 30.0 0.1338 

GA_2_10 139.3 1.00 0.14 0.00 20.0 0.0892 

GA_2_11 82.6 5.00 17.10 4.99 27.1 0.1365 

GA_2_12 137.7 5.00 1.16 0.00 23.4 0.1300 

GA_2_13 50.0 5.00 0.00 0.01 24.9 0.1250 

GA_2_14 55.5 1.69 2.95 2.26 20.0 0.1312 

GA_2_15 88.4 2.11 20.00 0.63 30.0 0.1239 

GA_2_16 67.2 1.44 20.00 12.23 20.6 0.1423 

GA_2_17 50.0 5.00 0.00 20.00 25.0 0.1358 

GA_2_18 50.0 1.00 10.00 20.00 30.0 0.0947 

GA_2_19 91.9 2.34 9.27 18.06 22.6 0.1423 

GA_2_20 74.5 4.25 14.96 20.00 21.3 0.1437 

 

Similar to Generation 1, the average FWHM of the three most intense peaks was used to 

rank experiments, with the six best performing samples being further analysed by BET N2 

adsorption.  Table 10 shows the BET specific surface area for these experiments, with 

several experiments exhibiting surface areas >1700 m2g-1.   

  



 

130 

 

  

Figure 84: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
2 Experiments 1-5.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 

Figure 85: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
2 Experiments 6-10.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 
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Figure 86: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
2 Experiments 11-15.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 

Figure 87: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
2 Experiments 16-20.  Full at half-maximum value used for the fitness function is shown.  Simulated 

pattern generated from CIF [254] 
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Table 10: HKUST-1 Generation 2 - BET Specific Surface Area Data & Synthesis Conditions 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

BET Specific 
Surface Area 

[m2g-1] 

GA_2_6 72.5 3.15 15.45 12.58 30.0 1563 

GA_2_7 154.5 1.16 9.93 20.00 20.0 1682 

GA_2_15 88.4 2.11 20.00 0.63 30.0 1809 

GA_2_16 67.2 1.44 20.00 12.23 20.6 1778 

GA_2_17 50.0 5.00 0.00 20.00 25.0 1784 

GA_2_19 91.9 2.34 9.27 18.06 22.6 1650 

 

  

Figure 88: HKUST-1 Generation 2 - BET N2 Adsorption Isotherms 
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Table 11: Experimental Conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, Generation 2.  Reactant ratio = Ratio of Cu(NO3)2 : 
1,3,5-benzenetricarboxylic acid linker.  Product mass refers to the dry solid retained after completing the washing and activation steps. FWHM = Full width 
at half-maximum of the 3 most intense reflections in the HKUST-1 pattern.  Crystallite size was determined through use of the Scherrer equation and 
FWHM values.  Temperature refers to the preheated Downflow temperature.  Yield was calculated based on full conversion of the 1,3,5-benzenetricarboxilic 

acid linker.   

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

FWHM 
Crystallite 
Size [nm] 

BET Surface 
Area 

[m2g-1] 

Product 
Mass 

[g/40ml] 

Yield 
[%] 

GA_2_1 171.0 3.00 4.45 17.41 23.1 0.222 364.8  0.1325 54.8 

GA_2_2 50.0 5.00 0.00 0.00 20.0 0.227 355.4  0.1351 55.8 

GA_2_3 89.3 1.00 11.27 3.97 30.0 0.297 270.2  0.0911 37.6 

GA_2_4 100.1 1.26 5.55 6.63 23.9 0.326 244.9  0.1218 50.3 

GA_2_5 50.0 5.00 20.00 19.19 28.2 0.216 375.9  0.1216 50.2 

GA_2_6 72.5 3.15 15.45 12.58 30.0 0.183 448.9 1563 0.1369 56.6 

GA_2_7 154.5 1.16 9.93 20.00 20.0 0.159 524.2 1682 0.1101 45.5 

GA_2_8 73.8 3.07 19.32 20.00 23.4 0.211 385.0  0.1244 51.4 

GA_2_9 118.8 2.49 20.00 14.98 30.0 0.209 388.4  0.1338 55.3 

GA_2_10 139.3 1.00 0.14 0.00 20.0 0.291 275.8  0.0892 36.9 

GA_2_11 82.6 5.00 17.10 4.99 27.1 0.223 361.8  0.1365 56.4 

GA_2_12 137.7 5.00 1.16 0.00 23.4 0.239 337.5  0.1300 53.7 

GA_2_13 50.0 5.00 0.00 0.01 24.9 0.199 409.3  0.1250 51.7 

GA_2_14 55.5 1.69 2.95 2.26 20.0 0.347 232.0  0.1312 54.2 

GA_2_15 88.4 2.11 20.00 0.63 30.0 0.164 506.1 1809 0.1239 51.2 

GA_2_16 67.2 1.44 20.00 12.23 20.6 0.160 518.2 1778 0.1423 58.8 

GA_2_17 50.0 5.00 0.00 20.00 25.0 0.172 480.5 1784 0.1358 56.1 

GA_2_18 50.0 1.00 10.00 20.00 30.0 0.210 386.4  0.0947 39.1 

GA_2_19 91.9 2.34 9.27 18.06 22.6 0.174 473.9 1650 0.1423 58.8 

GA_2_20 74.5 4.25 14.96 20.00 21.3 0.188 435.7  0.1437 59.4 
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4.8 Generation 3: Combined SyCo Finder with In Silico search 
The results from Generation 1 and 2 show a notable increase in the average fitness 

function value, as well as increased average specific surface area and product mass.  It is 

therefore reasonable to continue the synthesis optimisation with this method until a time, 

material or cost limit is reached.   

While evolutionary algorithms are able to determine favourable regions of the design space 

with a high degree of confidence, they do not converge upon a single set of conditions 

unless a specific stop condition is met.  Furthermore, genetic and evolutionary optimisers 

have the inherent flaw of only considering data from the previous generation.  This can 

result in the unnecessary repetition of previous experiments, or mutations which have 

previously been demonstrated as ineffective.   

To avoid the issue of repetition, experiments in Generation 3 were designed using a 

combination of the SyCo Finder application and an in silico search, by means of a 

supervised machine learning (SML) model.  Results from G1 and G2 were combined into 

Figure 89: Comparison of Model Prediction against Actual Training Data from Generation 1 & 
2 Samples 
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one dataset and the evolutionary optimiser was then run as before, generating 40 new 

experiments (Population of G1 + G2).   

In parallel, the existing 40 data points were used to develop a machine learning model, 

trained by Random Forest using the Statistics and Machine Learning Toolbox in MATLAB 

2020a [225].  The trained model was then used to provide an in silico prediction of the 

proposed experiments for Generation 3.  During this process, 90% of the data was used 

for training the model, while the remaining 10% was used for validation and testing. 

Following conditioning of the trained model (regularisation and shrinking), the number of 

trees was reduced to 100, corresponding to a mean-squared error (MSE) of 0.11 in the 

test data, which is suitable for predicting synthesis outcome for the purpose of screening 

experiments, shown in Figure 90.  A significant proportion of the model error is likely 

attributed to the penalty value applied to samples with low phase purity; applying a more 

suitable quantitative analysis for all samples would likely reduce the model error further. 

  

Figure 90: Mean squared error plot for the supervised machine learning model, used to provide in 
silico predictions for Generation 3 experiments.  
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In addition to predicting experiment outcome, the model can also be used to provide the 

weighted importance of variables, shown in Figure 91.  This knowledge can be 

implemented in further optimisation during this study to improve exploration efficiency, or 

can also be applied in the optimisation of similar analogues and MOFs. 

To produce the experiments for Generation 3, the SyCo Finder is run using the data from 

both G1 and G2, generating 40 new experiments; these experiment conditions are then 

run through the machine learning model to provide an initial prediction of reaction success.  

Using the objective function score, the experiments can be ranked and prioritised to reduce 

experimental cost.  The full list of possible experiments and predicted outcome is shown 

in Table 12, with highlighted experiments selected for synthesis and analysis. 

 

  

Figure 91: Weighted importance of variables for HKUST-1 synthesis, as determined by the 
supervised machine learning model.  ReaRatio = Reactant ratio of Cu(NO3)2 : 1,3,5-
benzenetricarboxylic acid.   
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Table 12: In Silico Search using machine learning model, trained using data from G1 & G2.  
Experiment outcome is predicted.  FWHM = Full width at half-maximum of the 3 most intense 
reflections.  †Experiments selected for execution, based on predicted FWHM.   

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

FWHM 
[Predicted] 

1 † 129.8 2.5 7.6 12.7 20.5 0.170 

2 † 137.0 1.5 15.5 20.0 21.7 0.176 

3 † 128.4 3.7 11.3 20.0 20.9 0.181 

4 † 58.8 4.3 1.9 20.0 21.9 0.185 

5 † 117.5 3.0 9.7 18.9 17.5 0.191 

6 † 62.0 2.4 20.0 11.9 20.0 0.194 

7 † 55.9 1.2 20.0 12.2 20.3 0.195 

8 † 70.1 4.6 12.6 13.2 30.0 0.196 

9 † 105.1 3.0 10.8 12.8 23.5 0.198 

10 † 90.6 5.0 10.3 16.0 29.8 0.202 

11 50.0 5.0 17.8 12.9 20.8 0.204 

12 175.0 1.9 14.9 13.6 20.6 0.205 

13 50.0 4.0 20.0 17.9 30.0 0.207 

14 148.3 3.7 22.2 19.9 27.7 0.208 

15 80.0 2.4 21.1 16.1 28.0 0.212 

16 109.5 5.0 0.0 2.2 29.0 0.213 

17 50.0 5.0 17.5 13.0 29.4 0.215 

18 147.1 2.0 10.0 15.6 28.4 0.218 

19 155.3 1.5 17.4 20.0 20.0 0.219 

20 98.5 2.4 6.3 9.0 21.8 0.224 

21 50.0 3.2 20.0 16.3 27.7 0.225 

22 87.9 1.4 20.0 6.7 24.9 0.227 

23 126.2 3.2 19.4 2.8 28.5 0.228 

24 84.3 2.2 14.4 6.2 25.1 0.228 

25 50.0 1.4 14.6 16.2 27.1 0.229 

26 50.0 1.7 0.0 20.0 22.0 0.233 

27 165.4 1.5 5.9 21.9 29.8 0.233 

28 82.0 1.1 5.8 18.6 29.2 0.238 

29 147.4 3.8 8.2 0.0 26.4 0.240 

30 50.4 2.2 0.3 13.6 23.7 0.250 

31 181.4 3.8 2.8 19.5 28.1 0.257 

32 50.8 4.0 9.3 1.0 20.3 0.257 

33 50.0 3.5 2.8 0.7 27.9 0.259 

34 196.3 4.9 20.0 14.2 25.4 0.261 

35 68.9 1.0 10.0 20.0 20.9 0.284 

36 69.6 2.3 19.1 4.1 22.9 0.284 

37 146.7 0.0 13.6 15.8 26.4 0.302 

38 99.3 2.2 6.5 8.1 21.0 0.311 

39 50.0 1.0 0.0 0.0 30.0 0.492 

40 91.6 1.0 0.0 12.1 25.2 0.519 

 



 

138 

 

Table 13 shows the synthesis conditions and yield data for Generation 3.  Experiments 1-

10 were selected based on their generation through the SyCo Finder and ranked using the 

in silico prediction.  As before, all samples were analysed via PXRD, with the diffraction 

patterns shown in Figure 92 to Figure 94. 

Table 13: Synthesis conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, 
Generation 3.  *Experiments 11 and 12 were randomly selected replicates of previous experiments 
which were used to determine the experimental error. (See section 4.10 Error Analysis) 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

Product Mass 
[g.40ml-1] 

GA_3_1 129.8 2.50 7.60 12.70 20.5 0.1311 

GA_3_2 137.0 1.50 15.50 20.00 21.7 0.1468 

GA_3_3 128.4 3.70 11.30 20.00 20.9 0.1395 

GA_3_4 58.8 4.30 1.90 20.00 21.9 0.1388 

GA_3_5 117.5 3.00 9.70 18.90 20.0 0.1448 

GA_3_6 62.0 2.40 20.00 11.90 20.0 0.1448 

GA_3_7 55.9 1.20 20.00 12.20 20.3 0.1316 

GA_3_8 70.1 4.60 12.60 13.20 30.0 0.1439 

GA_3_9 105.1 3.00 10.80 12.80 23.5 0.1500 

GA_3_10 90.6 5.00 10.30 16.00 29.8 0.1427 

GA_3_11* 88.4 2.10 20.00 0.60 30.0 0.1394 

GA_3_12* 50.0 3.00 20.00 0.00 30.0 0.1485 
 

Table 14 shows that in all cases, the experiments in Generation 3 performed better than 

predicted by the trained model; the size of this error is likely heavily influenced by the use 

of a penalty value applied to samples with poor crystallinity or phase purity.  Retraining 

the model using only samples which can be more precisely compared would likely reduce 

the magnitude of this error.    
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Table 14: HKUST-1 Generation 3 - Actual vs. Predicted full-width at half maximum (FWHM) Values 
and Average Error 

Exp Number FWHM – Actual FWHM – Predicted Error [%] 

GA_3_1 0.148 0.170 14.9 

GA_3_2 0.153 0.176 15.0 

GA_3_3 0.179 0.181 1.1 

GA_3_4 0.163 0.185 13.5 

GA_3_5 0.166 0.191 15.1 

GA_3_6 0.172 0.194 12.8 

GA_3_7 0.152 0.195 28.3 

GA_3_8 0.177 0.196 10.7 

GA_3_9 0.172 0.198 15.1 

GA_3_10 0.194 0.202 4.1 

Mean Absolute Error (%) 13.1 

Mean Squared Error (%) 5.56 

 

  

Figure 92: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 3 
Experiments 1-4.  Full at half-maximum value used for the fitness function is shown.  Simulated pattern 

generated from CIF [254] 
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Figure 93: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
3 Experiments 4-6.  Full at half-maximum value used for the fitness function is shown.  Simulated 
pattern generated from CIF [254] 

Figure 94: X-Ray Diffraction Patterns for HKUST-1 Evolutionary Algorithm Optimisation, Generation 
3 Experiments 7-9.  Full at half-maximum value used for the fitness function is shown.  Simulated 

pattern generated from CIF [254] 
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Figure 95: HKUST-1 Generation 3 - N2 Adsorption Isotherms (Samples 1-6) 

Figure 96: HKUST-1 Generation 3 - N2 Adsorption Isotherms (Samples 7-12) 
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Table 15: Experimental Conditions and collected sample mass for HKUST-1 Evolutionary Optimisation, Generation 2.  Reactant ratio = Ratio of Cu(NO3)2 : 
1,3,5-benzenetricarboxylic acid linker.  Product mass refers to the dry solid retained after completing the washing and activation steps. FWHM = Full width 
at half-maximum of the 3 most intense reflections in the HKUST-1 pattern.  Crystallite size was determined through use of the Scherrer equation and 
FWHM values.  Temperature refers to the preheated Downflow temperature.  Yield was calculated based on full conversion of the 1,3,5-benzenetricarboxilic 

acid linker.  *Samples were selected for replication from previous generations to assess repeatability. 

Exp. 
Number 

Temperature 
[°C] 

Reactant 
ratio 

MeOH 
[%v/v] 

EtOH 
[%v/v] 

Overall 
Flowrate 
[ml.min-1] 

FWHM 
Crystallite 
Size [nm] 

BET Surface 
Area 

[m2g-1] 

Product 
Mass 

[g/40ml] 

Yield 
[%] 

GA_3_1 129.8 2.50 7.60 12.70 20.5 0.148 566.5 1815 0.13 54.2 

GA_3_2 137.0 1.50 15.50 20.00 21.7 0.153 545.0 1786 0.15 60.7 

GA_3_3 128.4 3.70 11.30 20.00 20.9 0.179 458.3 1699 0.14 57.6 

GA_3_4 58.8 4.30 1.90 20.00 21.9 0.163 507.5 1820 0.14 57.4 

GA_3_5 117.5 3.00 9.70 18.90 20.0 0.166 497.2 1774 0.14 59.8 

GA_3_6 62.0 2.40 20.00 11.90 20.0 0.172 477.8 1740 0.14 59.8 

GA_3_7 55.9 1.20 20.00 12.20 20.3 0.152 549.0 1721 0.13 54.4 

GA_3_8 70.1 4.60 12.60 13.20 30.0 0.177 464.4 1742 0.14 59.5 

GA_3_9 105.1 3.00 10.80 12.80 23.5 0.172 480.2 1812 0.15 62.0 

GA_3_10 90.6 5.00 10.30 16.00 29.8 0.194 421.6 1721 0.14 59.0 

GA_3_11* 88.4 2.10 20.00 0.60 30.0 0.147 571.5 1837 0.14 57.6 

GA_3_12* 50.0 3.00 20.00 0.00 30.0 0.161 517.6 1827 0.15 61.4 
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4.9 SEM Analysis 

 

The morphology and particle size of two samples from this study was determined from 

SEM analysis (Figure 97).  Images of GA_3_11 and GA_3_12 confirm that the samples are 

highly crystalline.  The two samples show very similar morphologies and primarily 

octahedral structures, which are similar to those reported by Chen et al. [247].  

The particle size and distribution is shown in Figure 98 and Figure 99.  The crystal sizes 

are in the range 100-3000 nm, although the mean particle size and distribution is similar 

for both samples, with a mean particle size of 975 nm (±311) for GA_3_11 and 982 nm 

(±368) for GA_3_12. 

  

Figure 97: SEM Images for HKUST-1 GA_3_11 (Left) and GA_3_12 (Right) 
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Figure 98: Particle size and distribution from SEM analysis for sample GA_3_11.  Mean = 975 
nm, Standard Deviation = 311 nm 

Figure 99: Particle size and distribution from SEM analysis for sample GA_3_12.  Mean = 982 
nm, Standard Deviation = 368 nm 
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4.10 Error Analysis 
Automated and robotic reactors have previously been demonstrated as more reliable than 

comparable manual methods [258].  However, experimental error still exists in high-

throughput and robotic reactors and it is important to determine the extent of this prior to 

finalising process judgement. 

Many publications acknowledge error in analytical methods, but few report the repeat of 

entire experimental datasets, despite the relative cost of repeats being very low in high-

throughput reactors.  Given the sensitivity of MOF synthesis to minor variations in 

procedure, one can understand that even very small errors in process conditions could 

potentially result in large variation in the final product characteristics. 

In this work, two experiments (one from G1 and G2 respectively) were repeated to identify 

to total error in sample mass, crystallinity and BET specific surface area.  Comparing 

variance in this manner represents a far more complete approach than calculation through 

respective method error. 

Table 16: Error analysis using repeated experiments.  Full width at half-maximum determined as 
an average of the three most intense reflections 

Experiment 
Number 

Full width at Half-
Maximum 

BET Specific Surface Area 
[m2g-1] 

Product Mass 
[g.40ml-1] 

GA_1_10 0.182 1813 0.1240 

GA_3_12 0.161 1827 0.1485 

% Variation 11.9 0.7 16.5 

GA_2_15 0.164 1809 0.1239 

GA_3_11 0.147 1837 0.1394 

% Variation 10.4 1.5 11.1 

 

Table 16 shows the variation in the two sets of repeat samples.  The % Error in BET specific 

surface area measurements (which is the primary objective for this optimisation) is 

excellent at just 0.7% and 1.5% for GA_1_10/GA_3_12 and GA_2_15/GA_3_11 

respectively.  However, the % Error in crystallinity and product mass is significant at >10% 

for both parameters. 
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Some error in the product mass can be attributed to mechanical losses during the 

collection and washing procedures, while the FWHM error could be attributed to the 

moisture adsorption effects noted earlier.  Adsorption of moisture can lead to a reduction 

in the (200) reflection intensity at 2Θ = 6.8°, which may lead to a reduced FWHM value 

[259].  Given that Cu-HKUST-1 is known to absorb moisture from the atmosphere, it is 

very difficult to mitigate this issue during PXRD sample preparation without the use of 

specialised equipment and analysis under an inert, dry atmosphere, particularly in the 

context of HTE.  Figure 100 shows the variation in sample colour during PXRD analysis; 

the colour change from dark to light blue typically occurred in under 5 minutes. 

  

Figure 100: HKUST-1 Generation 1 Sample Preparation for XRD Analysis.  [a] Sample GA_1_11 
immediately after preparation, [b] within 5 mins of preparation, [c] HKUST-1 samples post-XRD 
analysis, activated equivalents are in vials 
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4.11 Conclusions 
This optimisation study has resulted in the synthesis of HKUST-1 with high crystallinity, 

phase purity and BET specific surface area.  Generation 3 shows 5 synthesis conditions 

which result in a specific surface area >1800 m2g-1, and all samples showing specific 

surface areas >1700 m2g-1, indicating a high quality of MOF product.  Furthermore, these 

results are very close to the highest reported flow synthesis values highlighted in Table 4, 

suggesting that further increases in surface area are either very difficult to achieve, or 

simply not attainable through this synthesis method. 

Experiment GA_3_11 achieves the overall optimum value for both the fitness function at 

0.853 (FWHM = 0.147) as well as the highest BET surface area of 1837 m2g-1.  While the 

optimisation work described above has been extremely effective at generating highly 

crystalline, high surface materials in line or superior to the vast majority of literature 

reports (See Table 4), there is still considerable scope for further improvement.  A small 

number of literature sources report surface areas of up to 2045 m2g-1, with a calculated 

theoretical maximum of 2153 m2g-1 [138].   

With a total population of 50 experiments (+2 repeats) this investigation has explored 

only a small part of the available design space and there is still much potential information 

to be gained from the remaining unexplored experiments.  For comparison, a 3-Level Full 

Factorial DoE design would require 246 experiments (+3 centre points) in order to 

estimate a full quadratic model [260]. 

This chapter demonstrates the ability to successfully optimise the synthesis conditions for 

Cu-HKUST-1, with no prior information using a combination of the SyCo Finder application 

and a SML model trained by boosted decision trees.  Using only 40 data points, an average 

relative error of just 13.1% (±7.3%) was attained when comparing model prediction to 

experiment outcome in Generation 3.  The combination of evolutionary algorithms with an 

in silico search not only mitigates the known limitations of evolutionary algorithms, but 

also enables the prioritisation of experiments based on their predicted outcome.  However, 

it should be noted that in this instance, the ML model was developed on a relatively small 
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data set, after only one generation of improvement.  This inherently limits the exploration 

features of the optimiser and may have resulted in experimental execution within a 

localised region of the design space, based on early model predictions.  To confidently 

address this, additional generations or increased population sizes within each generation 

could be used to provide more data prior to the development and use of the SML model. 

This work has focused on the optimisation of MOF synthesis, whereas one should consider 

both the synthesis and activation methods for holistic optimisation.  The activation method 

used in all experiments during this study is relatively simple and ‘green’, using only 

methanol for solvent exchange, followed by low heat under vacuum.  However, to 

confidently achieve the global optimum, alternative solvents such as ethanol or propanol 

could also be considered to remove unreacted ligand and bound water, as well as 

consideration given to the number and length of each washing cycle. 

This work considers only the optimisation of product quality, primarily through analysis of 

the sample crystallinity, reasoning that more crystalline materials will inherently give rise 

to increased surface areas.  However, this work doesn’t consider the ‘cost’ of quality, where 

minor increases in surface area could require significant increases in synthesis cost or 

sacrifice yield.  To promote the large scale production of MOFs, the holistic optimisation 

would consider scalarisation of multiple factors, such as quality, yield and cost into the 

objective function, or consider a multi-objective optimisation and generation of the 

optimisation Pareto front. 

Finally, this work required the synthesis, processing and analysis of all samples within a 

generation prior to obtaining any valuable information, although PXRD provided a valuable 

and relatively fast screening method in order to minimise BET usage.  This represents a 

significant requirement of operator resource and would be greatly improved with the use 

of an online screening method to guide the machine learning process in real time, reducing 

the total number of seemingly unsuccessful experiments which require the same level of 

post-processing and analysis – this methodology is considered in subsequent chapters. 
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Chapter 5: Self-Optimisation of Particle 
Size using online Dynamic Light Scattering 
5.0 Self-Optimisation of Particle Size using Online Dynamic Light 

Scattering 
Many of the key physical properties of nanomaterials arise due to their small size and 

specific morphology, as discussed in Chapter 1.  A major challenge in nanomaterial 

synthesis exists in determining the correct selection of process conditions which lead to 

particles with the desired characteristics, whilst still maintaining an economically viable 

and scalable process.  Traditional research and development often relies on ‘trial and error’ 

or ‘one-variable-at-a-time’ (OVAT) methods.  These techniques are not only inefficient and 

costly, but they also risk achieving less-than-optimal results by misidentifying factor 

interactions or by performing an unnecessary number of experiments.   

Chapter 4 demonstrated the advantages of applying machine learning, optimisation and 

automation to the synthesis of metal-organic frameworks.  However, each ‘generation’ of 

experiments required significant user intervention in order to process and characterise the 

as-synthesised material, before new experiments could be generated.  The process could 

be significantly improved through implementation of an appropriate online process 

analytical technology (PAT) which enables the rapid screening and possibly omission of 

experiments which show poor initial results.  Furthermore, complete integration of the 

online PAT with machine learning and optimisation algorithms would enable autonomous 

control of experiment generation and execution, removing the need for user intervention 

between experiments. 

Recently, autonomous, or ‘self-optimising’, reactor platforms have been developed and 

reported across multiple research areas, including organic chemical synthesis and in 

nanotechnology (See Table 1, Chapter 1).  The earliest report of a self-optimising 

continuous-flow reactor was by Krishnadasan et al. in 2007 for the synthesis of cadmium-

selenide quantum dots (QDs) [143].  In their publication, online spectroscopy was 
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combined with a microfluidic quantum dot synthesis method to achieve targeted maximum 

fluorescence at desired wavelengths, through autonomous control of reagent flowrates. 

In this work, the continuous-flow hydrothermal synthesis (CFHS) reactor, previously 

described, is used in combination with online dynamic light scattering (DLS) to determine 

particle size and size distribution in real time.  Following each experiment, the size and 

distribution results are used to build a supervised machine learning (SML) model, which 

can then predict experiment outcome for given process conditions.  As the platform 

generates more experiments, and therefore more data, the model updates and gains in 

confidence for future predictions.  The combination of an autonomous reactor and SML 

platform means that the process can be rapidly optimised without the need for user 

intervention, representing a significant saving in both time and resources. 

To develop and demonstrate the autonomous reactor platform, the case study material 

hematite (α-Fe2O3) was used, due to its relatively simple synthesis, low-cost precursors 

and high stability in colloidal suspension. 

Prior to enabling autonomous experiment generation or ‘self-optimisation’, a design of 

experiments (DoE) study was performed to assess the suitability and scope of the online 

DLS system and process constraints used.  Variables considered within this study were 

temperature, flow ratio and total flowrate.  The flow ratio is defined as the proportion of 

reactor Upflow relative to the reactor outlet, e.g. Flow Ratio = 0.5 (Upflow = Downflow), 

Flow Ratio = 0.33 (Upflow ≈ 0.5 x Downflow).   

Following the DoE study, the self-optimising capability of the reactor was demonstrated 

using a custom SML algorithm, which uses Bayesian optimisation to build a surrogate 

Gaussian process regression model, from which new experiments are generated.  The 

algorithm is designed to enable tuneable balance of exploration and exploitation; i.e. the 

probability of random experimentation across the design space in order to build more 

robust and accurate models, against the generation of experiments which target high 

performance against a pre-defined criteria. 
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The custom SML algorithm used in this work was then validated through comparison to 

the well-known global optimiser SNOBFIT [186].  SNOBFIT is a branch and fit optimiser 

which fits both local and global polynomial models and has previously been demonstrated 

as a robust optimiser in chemical synthesis self-optimisation. 

 

5.1 Hematite Synthesis 
Iron oxide exists in several crystalline forms, such as FeO, Fe3O4 and Fe2O3, due to 

different oxidising states at atmospheric conditions [261].  The similarities of these 

materials means that interconversion of one phase to another is possible through 

appropriate process conditions; for instance, the metastable γ-Fe2O3 (maghemite) can be 

heated in the absence of oxygen to form Fe3O4 (magnetite), whereas heating in air forms 

the more stable α-Fe2O3 (hematite). 

Hematite is one of the most common and stable forms of iron oxide, with a corundum 

structure, the same as α-Al2O3.  Hematite is often used in pigments, wastewater 

treatment, catalysis and photoelectric devices [262, 263, 264].  

Several different bottom-up approaches to synthesising hematite have been reported, 

including co-precipitation, sol-gel and hydrothermal/solvothermal methods [265, 266, 

43].  Previous work at the University of Nottingham has demonstrated the effect of 

temperature on particle size and crystallinity of hematite produced through continuous-

flow hydrothermal synthesis (CFHS) using the counter-current nozzle reactor system 

previously described [267, 268].   

The relatively simple synthesis of hematite, requiring only iron (III) nitrate and rapid 

mixing with near-critical or supercritical water, as well as its high stability in colloidal 

suspension, make it an excellent case study material to develop the closed-loop self-

optimising flow reactor herein described.  In this work, the process conditions 

(temperature and respective flowrates) were altered to determine their effect on particle 

size and crystallinity of the synthesised hematite.  Characterisation of particle size and 
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size distribution was achieved through the use of online dynamic light scattering (DLS), 

while validation of the methodology was achieved using offline characterisation methods, 

such as UV-Vis spectroscopy, powder X-ray diffraction (PXRD) and transmission electron 

microscopy (TEM).   

All materials used through this study were purchased from the vendors as specified below.  

The materials were used as sold, without additional processing or modifications.  

Stock solutions were prepared in deionised water as follows; iron nitrate solution (0.10 M, 

0.50 L): 20.61 g iron (III) nitrate nonahydrate (≥98.0% Fe(NO3)3.9H2O, Sigma Aldrich), 

0.10 M HNO3 solution (0.10 M, 1.0 L): 31.852 ml of concentrated HNO3 (70%, ρ25°C = 

1.413 g.ml-1, Sigma Aldrich). 
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5.2 Reactor Layout 
All experiments were run autonomously using the custom reactor control graphical user 

interface (RC-GUI) developed in NI LabVIEW (Described in Chapter 2).   

For each experiment, the GUI follows a cyclic Standby-Heating-Experiment-Flush pattern.  

To minimise waste of stock solutions, only water is pumped during the Standby, Heating 

and Flush stages.  During the Heating phase, the RC-GUI does not proceed until the 

measured Downflow temperature is within 2% tolerance of the set point.  Dilute nitric acid 

was used for the Flush stage to remove any particle fouling from within the reactor. 

A custom parallel sample loop was used for online DLS analysis; using a parallel setup 

removes the need for a flow-DLS system, which would limit the maximum process flowrate 

if used in series.  The process flow diagram and images of the system setup are shown in 

Figure 101 and Figure 102, respectively. 

Figure 101: Schematic of autonomous high-throughput reactor for metal oxide nanoparticle 
synthesis.  DLS: Dynamic light scattering, using the Malvern Zetasizer Nano ZS.  ML: Machine 
learning. 
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Figure 102: Images of Reactor and DLS for Self-Optimised Hematite Experiments.  PC, Auto-Sampler and recirculating chiller not shown.  BPR: Back 
Pressure Regulator.  Precursors: Deionised water, 0.10 M Fe(NO3)3 and 0.10 M HNO3 
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5.3 Online Process Analytical Technology (PAT): Dynamic Light Scattering 

(DLS) 
A Malvern Zetasizer Nano ZS, equipped with a continuous-flow cell of 3 mm path length 

(ZEN0023, Malvern) was used to obtain particle size and size distribution measurements 

in real time.  A custom two-way solenoid valve controlled by Arduino and software written 

in NI LabVIEW was used to inject samples into the flow cell following each experiment. 

In each case, three reactor volumes of material was produced from the reactor prior to 

sample injection to ensure steady state operation.  The DLS system was set to 

continuously obtain measurements using the standard operating procedure (SOP) player 

in the Zetasizer software.  All measurements were exported to a text file, which was then 

imported into and interpreted by the LabVIEW GUI after completing each experiment. 

Measurements were averaged across 10x 10 second scans for before being exported to 

text file.  Prior to each measurement, the attenuator and measurement position was 

automatically optimised to improve the quality of results and account for increased 

concentration of particles at higher conversion.  Both the Z-average and polydispersity 

index (PDI) values were recorded from each experiment, which allows results associated 

to a high (>0.45) PDI value to be excluded.  DLS is only suitable for monodisperse 

samples; as the Z-average or cumulants mean gives only a single value, the PDI is used 

to assess the suitability of the measurement, generated based on the width of a 

hypothetical Gaussian distribution [269].   

The LabVIEW RC-GUI was developed to import 3 consecutive DLS measurements per 

experiment, highlighting and excluding values with a high PDI value or where a 

discrepancy exists in the 3 measurements (due to particle growth, aggregation or settling). 

The in-situ analysis assumes the synthesised particles to have spherical morphology, with 

a refractive index of 3.0.  The as-synthesised sample is stabilised to standard temperature 

and pressure prior to analysis, and it is assumed that the viscosity remains constant 

throughout the study. 
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5.4 Design of Experiments (DoE) 
To determine the attainable design space for self-optimised experiments, and to provide 

an initial model response, a 3-Level full factorial DoE was constructed using Umetrics 

MODDE (12.1) with the process constraints shown in Table 17. 

Table 17: Process constraints for the Design of Experiments (DoE) Study. 

Constraint Lower Upper 

Downflow: Temperature [°C] 340 380 

Upflow Ratio 0.33 0.50 

Total Flowrate [ml.min-1] 25.0 35.0 

 

A total of 30 experiments (27 design and 3 centre points to determine reproducibility) 

were constructed using a centred composite face (CCF) design.  The purpose of replicate 

experiments is to identify the presence of uncontrolled variables within the process.   

Both the particle size and PDI values from each experiment were recorded.  Particle sizes 

associated with a PDI value >0.45 were excluded to ensure measurement validity.  All 

experiments were run in random order to identify response drifts over the course of the 

study, i.e. due to fouling of the reactor, or changes in environment temperature.  All 30 

experiments were completed in approximately 7 hours, with no observed operational 

issues. 

The DoE results are shown in Figure 103 to Figure 106.  Models were fit using multiple 

linear regression (MLR) to minimise the sum of the squares of residuals.  Initially, a 

saturated model with all square and interaction terms was generated; while this initial 

model results in a high R2 value, the presence of non-significant terms can result in a poor 

Q2 value or poor response prediction using cross validation.  To achieve a more robust 

model, non-significant terms were removed to ensure the difference in R2 and Q2 was low, 

as shown in Figure 104. 
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Figure 103: 4D Contour Plots for model response of Particle Size (top) and PDI (bottom) for the 3-
Level Full Factorial Design of Experiments Study.  Size refers to Z-average measurement in nm.  
PDI: polydispersity index. 
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Figure 104: Summary of fit plots for (Left) Particle Size: R2=0.893, Q2=0.752, Model Validity = 
0.601, Reproducibility = 0.942.  (Right) PDI: R2=0.703, Q2=0.503, Model Validity = 0.808, 
Reproducibility = 0.710.  Size: Z-average from online dynamic light scattering.  PDI: Polydispersity 
index. 

Figure 105:  Plots of Observed vs. Predicted responses for Particle Size (left) and PDI (right).  Points 
lying close to the straight diagonal indicate a good model fit to the experimental data. Size: Z-
average from online dynamic light scattering.  PDI: Polydispersity index. 
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Figure 106: Residuals Normal Probability Plots for Particle Size (left) and PDI (right).  A straight 
diagonal line indicates normal distribution, points outside 4 standard deviations represent outliers 

and would require repeating.  Size: Z-average from online dynamic light scattering.  PDI: 
Polydispersity index. 

Figure 107: Coefficient plots for models of (left) Particle Size and (right) PDI.  Coefficients which 

were deemed insignificant were removed during data processing.  Size: Z-average from online 
dynamic light scattering.  PDI: Polydispersity index.  Temp: Temperature.  Flo: Flowrate.  Rat: Flow 
Ratio. 
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Table 18: Design of Experiments (DoE) study results.  *indicates experiments excluded from model 
to improve fit.  †indicates highest-performing experiment.  Particle size: Z-average from online 
dynamic light scattering (DLS) measurements 

Exp. 
Name 

Run 
Order 

Temperature 
[°C] 

Flowrate 
[ml.min-1] 

Flow 
Ratio 

Particle Size 
[nm] 

PDI 

N1 27 340 30 0.330 43.3 0.248 

N2 6 360 30 0.330 56.3 0.210 

N3 25 380 30 0.330 83.7 0.103 

N4* 3 340 35 0.330 45.3 0.546 

N5* 9 360 35 0.330 34.6 0.494 

N6 20 380 35 0.330 73.8 0.252 

N7 2 340 25 0.330 41.3 0.226 

N8 7 360 25 0.330 56.9 0.210 

N9† 10 380 25 0.330 90.2 0.113 

N10* 26 340 30 0.415 42.9 0.528 

N11 18 360 30 0.415 38.6 0.314 

N12 1 380 30 0.415 71.7 0.217 

N13* 30 340 35 0.415 43.0 0.518 

N14 21 360 35 0.415 43.1 0.213 

N15 11 380 35 0.415 88.5 0.253 

N16* 13 340 25 0.415 62.1 0.623 

N17 12 360 25 0.415 36.7 0.414 

N18 5 380 25 0.415 70.7 0.232 

N19* 15 340 30 0.500 101.7 0.455 

N20* 29 360 30 0.500 63.7 0.599 

N21 4 380 30 0.500 49.4 0.282 

N22* 16 340 35 0.500 93.9 0.501 

N23* 22 360 35 0.500 51.2 0.665 

N24 23 380 35 0.500 81.8 0.298 

N25* 19 340 25 0.500 87.6 0.527 

N26* 24 360 25 0.500 50.7 0.587 

N27 28 380 25 0.500 56.9 0.236 

N28 8 360 30 0.415 34.4 0.297 

N29 17 360 35 0.415 33.8 0.400 

N30 14 360 35 0.415 33.9 0.392 
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Figure 103 shows the 4D contour plot generated for the response models of particle size 

and PDI, respectively.  The results indicate an increase in particle size with reaction 

temperature, low flow ratio values and lower flowrates.  These results are entirely intuitive 

when considering the LaMer model of nucleation and particle growth; an increase in 

reaction temperature results in a greater nucleation rate and conversion of Fe3+ species to 

Fe2O3.  In this process, this is achieved by an increased Downflow temperature and 

reduced flow ratio; furthermore, the reduced flowrate gives rise to an increase in reaction 

residence time, enabling further growth of particles (Further discussion given in 

subsequent sections). 

A key feature of this study was the ability to exclude certain results based on their PDI 

values.  PDI values >0.5 indicate a sample with high polydispersity; in these cases the Z-

average response cannot be utilised [215]. Using the PDI values obtained from the DoE 

study, broad regions of the design space were omitted from subsequent self-optimisation 

Figure 108: 4D Scatter of experiments and particle size from the Design of Experiments (DoE) study.  
Experiments excluded from the final model are not shown. 
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experiments.  The 4D scatter of synthesis conditions and particle size is shown in Figure 

108, with excluded experiments omitted from the plot. 

The feasible region defined by the PDI value is shown in Figure 109; the highlighted 

polygon therefore represents the design space and constraints applied further self-

optimisation studies in this chapter. 

It is possible to repeat the DoE study in the new design space, which would provide a more 

accurate model for that region.  However, a DoE relies on statistical interpolation between 

predefined experimental conditions; while this provides a useful model for the entire 

design space, it may not necessarily explore the local region around the optimum.  It is 

therefore useful to consider approaches such as self-optimisation, whereby experiments 

are generated throughout the study to either focus in on the optimum region, or further 

explore unknown areas of the design space. 

Figure 109: Feasible region for self-optimisation (yellow polygon), determined from polydispersity 
index (PDI) values obtained in the Design of Experiments (DoE) study.  Total volume indicates the 
design constraints used for the DoE study. 
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5.5 Self-Optimisation via Supervised Machine Learning (SML) 
In contrast to the DoE study, where experiments followed a pre-set table of conditions, 

the SML algorithm generates experiments based on a pre-defined target and analysis of 

previous data.  To demonstrate self-optimisation, the SML algorithm was set to achieve 

the maximum particle size within the process constraints shown in Table 19.  These 

constraints were obtained from the feasible region determined from the earlier DoE study.  

Following completion of self-optimisation using the SML algorithm, the study was repeated 

using SNOBFIT in order to validate the SML algorithm response and model.  The total 

number of experiments, per study, was limited to 30, taking around 6-7 hours for 

completion.   

Table 19: Constraints for the Supervised Machine Learning (SML) Self-Optimisation Study. 

Constraint Lower Upper 

Downflow: Temperature [°C] 360 380 

Upflow Ratio 0.33 0.40 

Total Flowrate [ml.min-1] 25.0 35.0 

 

 

The SML self-optimisation experiments were initialised using the CCF design shown in 

experiments N1-N6, shown in Table 20.  Initialisation in this manner ensures broad 

coverage of the design space, reducing the potential for bias early in the study. 

Following initialisation, experiments were generated in batches of 6, with the first 

experiment targeting the highest performing experiment as predicted by the model, and 

the remaining 5 randomly distributed across the design space.  The combination of high-

potential exploitation and random exploration increases the likelihood of achieving the 

global optimum; while the randomly generated data provides a sufficient scatter across 

the design space to fit an accurate supervised machine learning model. 

  



 

164 

 

5.6 Results & Discussion 
Both the custom SML algorithm and SNOBFIT self-optimisation studies show increased 

particle size at elevated temperature, reduced flowrates and lower flow ratios; this result 

agrees with the initial DoE study, although in a smaller region of the initial design space 

(See Table 19 or Figure 109). 

Figure 110 and Figure 111 shows the 4D scatter of particle size for the process conditions 

from each experiment in the SML and SNOBFIT studies, respectively.  All experiments 

show a PDI value <0.40, which indicates that the samples are monodisperse and no results 

require exclusion prior to model generation. 

Both algorithms were able to locate the optimum synthesis conditions and maximise 

particle size within the 30 experiment limit, converging upon the same conditions in each 

case.  Further to maximising the particle size, the exploration feature of both algorithms 

was used to distribute experiments across the design space, which means a more robust 

model can be built within the available design space.  For the SNOBFIT study, this results 

in a 3 factorial polynomial, while the SML builds a Bayesian-optimised Gaussian process 

(GP) regression model.  It is clear that in this (relatively) simple case study, the polynomial 

used by the SNOBFIT optimiser is suitable and very similar in appearance to the GP 

regression model, shown in Figure 112.  Achieving similar model responses through two 

independent studies and different methods suggests that the response is representative 

of the true system.   

The polynomial model developed during the SNOBFIT study has a much smoother 

appearance when compared to the GP regression model from the SML study.  In this 

instance, it is likely that the parameters selected for the GP regression model resulted in 

some overfitting to the given data, capturing experimental noise within the model itself.  

The SML algorithm used in this work builds several GP regression models with varying 

hyperparameters upon importing data.  Here, Bayesian optimisation is used to optimise 

the fitting method, kernel function and basis function in order to minimise the residuals 

from training to predicted data during cross-validation.  However, for a model to be 
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effective in real-world scenarios, it must obtain a balance between over and under fitting, 

ensuring that it generalises well. 

There is a clear difference in the location and level of scatter of experiments across the 

design space for the two algorithms (See Figure 110 and Figure 111).  Both algorithms 

employ random exploration, however, the SNOBFIT algorithm uses a probability of 

exploration, which is balanced against exploitation around high performing regions.  For 

the custom SML algorithm, only 17% of experiments intentionally targeted high 

performance, while the remaining 83% were randomly selected; while this generates a 

well-distributed scatter across the design space for model generation, it is less efficient at 

exploring regions close to the optimum.  Modifying the algorithm parameters to favour 

exploitation could significantly improve on this; this could simply be achieved by reducing 

the batch size of generated experiments, allowing the model to update more regularly with 

new data.  Lowering the batch size to between 1 and 3 would likely give a better balance 

of targeting predicted high performance and still exploring the remaining design space. 

Each study was completed in around 6-7 hours, without any user intervention and using 

less than 500 ml of the iron nitrate precursor solution.  This therefore represents a 

significant improvement in the time and resources required to for process optimisation. 

While the objective in this instance was to maximise particle size, the algorithms can easily 

be modified to target specific particle sizes, as determined by the online DLS 

measurements.  It is also clear that the optimum region is located in the corner of the 

proposed design space.  The original (DoE) design space constraints were arbitrarily 

selected based on expected performance after commissioning and some initial scoping 

work; it is possible that a more interesting surface response could be observed at harsher 

conditions (i.e. higher temperature and extended residence time), which the reactor is 

capable of achieving.   
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Figure 110: 4D Scatter of experiments and particle size from the self-optimised supervised 
machine learning (SML) study. 

Figure 111: 4D Scatter of experiments and particle size from the self-optimised SNOBFIT 
study. 
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Figure 112: SNOBFIT Polynomial (top) and Bayesian-Optimised Gaussian process (GP) regression (bottom) 4D Models generated in Hematite Self-
Optimisation Experiments. 
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Table 20: Supervised Machine Learning (SML) Self-Optimisation study results.  †indicates highest-
performing experiment. 

Exp. Name 
Temperature 

[°C] 
Flowrate 
[ml.min-1] 

Flow Ratio 
Particle Size 

[nm] 
PDI 

N1 360 30.0 0.365 44.5 0.241 

N2 370 25.0 0.365 62.5 0.217 

N3 370 30.0 0.330 66.4 0.206 

N4 370 30.0 0.400 49.1 0.222 

N5 370 35.0 0.365 42.1 0.324 

N6 380 30.0 0.365 69.8 0.187 

N7 380 26.0 0.330 83.9 0.135 

N8 370 26.8 0.356 58.7 0.183 

N9 373 27.0 0.330 69.0 0.216 

N10 373 31.4 0.382 53.3 0.208 

N11 371 25.0 0.330 64.0 0.212 

N12 368 28.1 0.356 54.5 0.193 

N13 380 25.9 0.330 84.3 0.181 

N14 380 25.0 0.331 83.3 0.184 

N15 380 25.0 0.373 76.8 0.187 

N16 364 25.5 0.333 72.1 0.240 

N17 361 30.4 0.398 43.2 0.389 

N18 378 26.3 0.330 77.9 0.187 

N19 380 25.5 0.330 84.9 0.158 

N20 380 32.1 0.399 64.4 0.197 

N21 367 29.6 0.393 44.9 0.215 

N22 380 27.4 0.369 76.0 0.199 

N23 360 25.2 0.400 47.0 0.413 

N24 361 26.9 0.330 68.7 0.296 

N25† 380 25.1 0.330 87.7 0.181 

N26 365 28.2 0.383 54.8 0.366 

N27 376 26.4 0.388 67.4 0.239 

N28 367 28.3 0.374 54.8 0.307 

N29 376 26.7 0.35 75.9 0.221 

N30 366 30.9 0.358 49.6 0.267 
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Table 21: SNOBFIT Self-Optimisation study results.  †indicates highest-performing experiment. 

Exp. Name 
Temperature 

[°C] 
Flowrate 
[ml.min-1] 

Flow Ratio 
Particle Size 

[nm] 
PDI 

N1 372 27.2 0.361 62.1 0.216 

N2 372 26.9 0.373 64.3 0.209 

N3 360 30.0 0.330 56.3 0.210 

N4 361 27.5 0.346 57.2 0.228 

N5 380 26.3 0.347 75.9 0.184 

N6 368 27.9 0.396 51.0 0.231 

N7 364 26.7 0.330 68.8 0.238 

N8 360 25.0 0.330 58.2 0.201 

N9 380 29.2 0.330 83.7 0.137 

N10 369 28.1 0.354 59.3 0.217 

N11 366 27.7 0.347 57.6 0.204 

N12 378 29.3 0.396 60.5 0.202 

N13 380 26.0 0.330 81.9 0.177 

N14 376 27.6 0.359 64.0 0.212 

N15 368 32.1 0.377 44.6 0.230 

N16 380 25.0 0.338 77.8 0.164 

N17 374 31.5 0.383 51.9 0.174 

N18 373 25.0 0.346 60.7 0.173 

N19† 380 25.0 0.330 91.1 0.125 

N20 364 25.5 0.335 72.8 0.251 

N21 380 27.7 0.358 76.0 0.208 

N22 365 33.5 0.345 42.7 0.308 

N23 378 28.4 0.330 75.8 0.213 

N24 377 25.0 0.330 77.7 0.227 

N25 376 26.9 0.343 73.9 0.225 

N26 377 27.3 0.346 74.5 0.216 

N27 380 28.2 0.354 74.5 0.206 

N28 380 26.2 0.330 84.1 0.170 

N29 380 29.3 0.330 78.7 0.194 

N30 380 25.0 0.330 84.4 0.184 
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5.7 Offline Characterisation 
In order to validate the online DLS system, six additional samples were produced which 

span the range of particle sizes seen in the self-optimised studies; these samples are 

shown in Figure 113 (Synthesis conditions and online measurements shown in Table 22, 

detailed reports available in Appendix: A).   

Samples A-D exhibit a dark red colour, while samples E and F exhibit a much brighter rust-

red colour, indicative of hematite particles which are >20 nm in diameter [270]. Hematite 

is known to have distinct absorption regions around 300, 420 and 550 nm.  Figure 114 

shows strong absorbance at 420 and 550 nm for samples E and F, which is the reason for 

the bright red colours observed in Figure 113.  These results agree with those shown by 

Schwaminger et al. in their hydrothermal one-pot synthesis of hematite from FeCl3 over 

1-6 hours [271].  

Table 22: Synthesis conditions, particle size and polydispersity index (PDI) obtained by online 
dynamic light scattering analysis. 

Sample 
Temperature 

[°C] 

Flowrate 

[ml.min-1] 

Flow 

Ratio 

Particle Size 

[nm] 
PDI 

A 360 30.0 0.365 45.41 0.195 

B 367 28.1 0.356 54.08 0.225 

C 370 30.0 0.330 66.95 0.252 

D 380 27.4 0.369 76.17 0.214 

E 380 26.0 0.330 84.05 0.131 

F 380 25.0 0.330 91.71 0.122 

Figure 113: Samples A-F (Left to Right) produced for offline characterisation and validation of the 
self-optimisation study. 
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Schwaminger et al. shows that ferrihydrite is the first stable product in the hydrolysis of 

the iron salt precursor.  The authors rationalise that the formation mechanism and growth 

of iron oxide nanomaterials follows the nucleation of ferrihydrite seeds, which then 

agglomerate and undergo a phase transition into hematite.  In order to distinguish the 

iron oxide phase of samples A-F, characterisation by PXRD was performed.   

Hematite offers an interesting challenge in obtaining useable PXRD data from the available 

equipment; in most cases, nanomaterial suspensions are washed and separated via 

centrifugation and the pellet is subsequently dried to form a powder for analysis.  Owing 

to the small size and stability of the hematite particles, separation via centrifugation was 

not possible; furthermore, simply concentrating the as-synthesised samples by boiling off 

water could potentially result in changes to the sample phase. 

To solve this challenge, a 2 ml aliquot from each sample was mixed with 1 ml of ethanol.  

These mixtures were then added dropwise onto the surface of a background-free silicon 

Figure 114: UV-Vis Absorbance spectra of samples A-F, used for offline characterisation.   
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wafer, allowing the water-ethanol mixture to gently evaporate at ambient temperature 

and pressure, slowly building a layer of the solid sample (Figure 115).  This process was 

done over several hours to minimise changes to the crystal phase. 

 

The PXRD patterns shown in Figure 116 show good agreement of the simulated hematite 

pattern to all samples A-F.  Sample crystallinity can be estimated using the full width at 

half-maximum (FWHM) of the five most intense reflections.  It is possible that some 

overlap exists in samples A and B with poorly crystalline ferrihydrite, as suggested by 

Schwaminger et al., however, samples C-F show clearly crystalline patterns which confirm 

the synthesis of hematite.  Unfortunately, samples E and F show distinct peaks at 29.4, 

31.9 and 39° which do not agree with the simulated hematite pattern; this is most likely 

attributed to the presence of NaNO3 in the samples.  Synthesis of the hematite particles 

yields free NO3
- ions, which appear to have reacted with contaminant Na+ to form NaNO3 

salt.  The origin of this contamination is unclear, but can most likely be attributed to poorly 

washed or handled sample vials.  The contaminant peaks do not interfere or overlap with 

the known hematite peaks, which still enables calculation of the crystallite size using the 

FWHM values and Scherrer equation (results summarised in Table 23).  

Figure 115: Dropwise addition of hematite samples C-F, used for powder X-ray diffraction analysis.  
Samples A and B were prepared in the same way.  The Wet (Left) and Dry (Right) samples are both 

shown. 
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Figure 116: PXRD Patterns for samples A-F, used for validation of the inline Dynamic Light 

Scattering method.  Simulated hematite pattern calculated from CIF: [341] 

Figure 117: PXRD patterns for samples E and F, compared to the simulated patterns for hematite 
(Simulated Fe2O3) and sodium nitrate (Simulated NaNO3).  Simulated patterns from CIF files [341] 
and [342] 
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The TEM images for samples A-F show various stages in the generation and growth of 

hematite nanoparticles (More images available in Appendix B).  

 

Samples A and B primarily show spherical-cubic particles in the range 5-10 nm (See 

Appendix: B), as conditions move to favour increased conversion of precursor to product, 

i.e. increased temperature and residence times, these begin to aggregate and cluster into 

larger particles.  There is a significant change in samples E and F compared to the previous 

samples, where distinct cubic α-Fe2O3 are clearly visible and show good crystallinity, 

suggesting an Ostwald ripening or oriented attachment growth process, rather than merely 

agglomeration of smaller particles [48].  Figure 119 illustrates the hydrolysis, seeding and 

growth stages of hematite synthesis proposed from the study data, adapted from a similar 

process outlined by Schwaminger et al. [271].  Although it is likely that this work follows 

the same mechanism of ferrihydrite nucleation and seeding, it is not possible to prove or 

disprove this with the methods applied in this work. 

  

Figure 118: TEM Images of Hematite samples A, C and F (left to right).  Scale bar at 200 nm. 

Figure 119: Illustration of proposed hematite synthesis mechanism, from hydrolysis of initial ferric 
precursor to distinct α-Fe2O3 particles.  Adapted from Schwaminger et al. [271] 
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Figure 120 shows the particle size distribution obtained for samples A-F from TEM imaging 

(TEM images available in Appendix: B).  The particle size determined by DLS analysis 

suggests a linearly distributed range from 41-92 nm, however, the TEM images clearly 

show a range from 5-40 nm.  Interestingly, there is an even progression in the particle 

size observed in samples A-D, from 5-11 nm (±3).  However, samples E and F exhibit 

much larger particles and size distribution at 27 nm (±8).   

The purpose of the offline characterisation was to validate the online DLS system.  Table 

23 shows the particle size determined by DLS, PXRD and TEM imaging; while there is some 

similarity in the PXRD and TEM data, there is a clear overestimation of particle size from 

the DLS measurements.  This is likely attributable to the measurement of hydrodynamic 

diameter in DLS, rather than measurement of the particle itself; furthermore, the TEM 

images show significant levels of aggregation, which can easily be misinterpreted for larger 

particles by DLS. 

Figure 120: Particle size analysis for Hematite samples A-F, determined from transmission 
electron microscopy (TEM) images 
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Further sampling and comparison of the techniques could potentially allow the conversion 

of one measurement to another; however, the six samples produced for validation do not 

sufficiently cover the design space to enable confident prediction.  The automated reactor 

system could easily produce a large sample set, complete with DLS data, however, this 

would require further user resources associated to the offline PXRD and TEM 

characterisation. 

Samples E and F showed strong absorption bands in the visible spectrum at 420 and 550 

nm, observed in Figure 114.  This is attributed to the larger particle sizes of the samples, 

and reports in literature suggest a blue shift in absorbance suggest larger particle sizes 

[270].  This represents a potential alternative online PAT for determining the particle size 

during hematite synthesis. 

Table 23: Comparison of particle size and distribution characterisation by Dynamic Light Scattering 

(DLS), Powder X-ray Diffraction (PXRD) and Transmission Electron Microscopy (TEM).  FWHM = Full 
width at half-maximum, averaged across the five most intense peaks.  PDI = Polydispersity index. 

 

 

5.8 Conclusions 
This work represents the first reported self-optimised continuous-flow hydrothermal 

synthesis for nanomaterials.  The autonomous generation, execution and analysis of 

experiments minimises the need for user intervention; this not only increases experiment 

efficiency, but also allows the user to focus on more complex tasks. 

 Sample 
DLS 

[nm] 
PDI FWHM 

PXRD 

[nm] 

TEM 

[nm] 

A 45.41 0.195 0.828 10.0 5.4 ±3.0 

B 54.08 0.225 0.811 10.3 7.1 ±4.1 

C 66.95 0.252 0.569 15.0 9.1 ±2.7 

D 76.17 0.214 0.466 18.2 10.7 ±3.2 

E 84.05 0.131 0.376 22.6 27.1 ±8.2 

F 91.71 0.122 0.360 23.7 27.0 ±7.8 
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The work presented in this chapter demonstrates the self-optimising capability of the 

continuous-flow hydrothermal reactor for metal oxide synthesis.  An online DLS system 

was used to provide real time information of particle size and distribution, which was then 

used to guide subsequent experiments. 

A DoE study was performed to determine the surface response within an extended design 

space, as well as identify a feasible region for subsequent self-optimised experiments 

based on the PDI value.  The custom SML and SNOBFIT algorithms used in the self-

optimisation studies performed equally well, with both methods identifying the global 

optimum and resulting in similar surface response models.  However, the high degree of 

random exploration used for the SML algorithm demonstrates poor efficiency in balancing 

exploration against exploitation.  In this instance, the algorithm efficiency had little effect 

on real parameters, such as experiment time and cost, as the number of experiments was 

predetermined and a low cost case study material was selected.  However, in 

circumstances where time and resources are limited, or precursors represent significantly 

more experimental cost, the poor optimisation efficiency becomes limiting. 

The SML algorithm is designed to allow modification to the exploration parameters, which 

can be altered to suit a particular optimisation problem; for example, a process which is 

expensive to evaluate would favour a high level of exploitation.  In this study, the SML 

algorithm obtained a result within 3% of the global optimum after just 7 experiments, 

indicating that the earliest model was able to identify the optimum region.  Identifying this 

region early in the optimisation process allows more detailed investigation of the local 

area.   

Offline characterisation of select samples showed the DLS significantly overestimated the 

particle size, when compared to PXRD and TEM analysis.  This can likely be attributed to 

the measurement of the hydrodynamic radius from DLS, as well as the misinterpretation 

of particle aggregates.  This autonomous optimisation platform is designed to suit several 

case study materials, but can be further improved with the incorporation of more refined 

or suitable online PATs, such as in situ particle or nanoparticle tracking analysis (PTA or 



 

178 

 

NTA, respectively) [204].  A distinct advantage of these methods is they are not biased 

towards measurement of larger particles or aggregates, which may have confounded the 

results for this study using hematite [269].  However, it is also important to consider the 

additional cost associated with the increased precision and accuracy of such technologies. 

The primary objective of this chapter was to commission and demonstrate the self-

optimising capability of the autonomous platform.  Although there are possible 

improvements in both the selected PAT and optimisation parameters, the autonomous 

reactor was able to self-optimise for maximum particle size, with no operational faults and 

no user intervention.  The same self-optimising methodology can therefore be considered 

for more complex case studies. 
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Chapter 6: Self-Optimisation of MOF 
Synthesis using inline FTIR Spectroscopy 
 

6.0 Self-Optimisation of MOF Synthesis using inline FTIR 

Spectroscopy 
 

The synthesis of metal organic frameworks (MOFs) can be complex, with several synthesis 

parameters affecting product quality, as discussed in Chapter 4.  Applying high-throughput 

experimentation enabled the optimisation of HKUST-1, however, the work was limited in 

the need to process and characterise all samples within a generation before initiating the 

next. 

This chapter aims to apply the same self-optimised methodology demonstrated in Chapter 

5, for the synthesis of MOFs.  Al-Fumarate (AlFu, MIL-53(Al)-FA, Basolite® A520) serves 

as a case study due to the simple structure, low toxicity and low cost of precursors.  Online 

Fourier transform infrared spectroscopy (FTIR) is employed as an online process analytical 

technology (PAT), further details are given in Section 6.2.  A brief introduction to the MIL-

53 structure, of which Al-Fumarate is an isoreticular analogue, is given in addition to 

applications and synthesis methods (See Section 6.1).   

Prior to self-optimisation using the supervised machine learning (SML) method described 

in Chapter 5, a design of experiments (DoE) study was performed.  This was done in order 

to assess the practicality of in situ FTIR spectroscopy with the autonomous reactor and 

gain an initial understanding of the surface response. 

The primary aim of this chapter is to determine synthesis conditions which enable a 

‘green’, scalable route to producing Al-Fumarate using continuous-flow hydrothermal 

synthesis.  Offline analysis through powder X-ray diffraction (PXRD) and N2 adsorption 

was used to validate the objective function score given by the online PAT.  
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6.1 MIL-53(Al) and Al-Fumarate 
MIL-53(Al) is one of the most well-studied Al-based metal-organic frameworks (MOFs), 

belonging to the MIL-53 (Matériaux de l′Institut Lavoisier) structural family first reported 

by the Férey group in 2002 [272].  The MIL-53 structure contains terephthalate-based 

ligands interconnecting inorganic [M-OH] chains; the first published MIL-53 MOF consisted 

of 1,4-benzenedicarboxylate linkers (terephthalic acid, H2BDC) and Cr3+ ions (See Figure 

121).  However, several analogues have since been reported with trivalent metal centres, 

including V3+, Al3+, Fe3+, In3+, Ga3+ and Sc3+ [273, 274, 275, 276, 277].  In addition, MIL-

53 structures have been reported incorporating divalent or tetravalent metal ions instead, 

such as Fe2+, Co2+, Mn2+, Ni2+ or V4+, respectively [275, 278, 279, 280, 281].   

The chemical diversity of the MIL-53 structure means that a wide range of possible 

applications have been reported, including gas separation and storage, catalysis, sensors 

and energy storage [282, 283, 284, 285].  MIL-53(Al) (aluminium terephthalate, 

commercially known as Basolite® A100), in particular has drawn much attention due to 

its low toxicity, relatively low-cost precursors and high thermal and chemical stability 

[286].  The high stability of MIL-53(Al) creates opportunity for applications in hot or humid 

conditions, but also means that biological or environmental applications are also possible, 

such as in drug delivery [287].  

  

Figure 121: MIL-53(Cr) structure, generated using CIF File from Mulder et al. [345] 
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MIL-53 structures are notable for their flexibility, with many exhibiting a “breathing effect” 

whereby the pore cross section reversibly changes in response to external stimuli, such as 

the chemical adsorption of guest molecules, mechanical pressure or changes in 

temperature [288].  This results in as much as 50% volume change within the MOF pores, 

as noted in the high and low temperature forms (MIL-53-ht and MIL-53-lt respectively) by 

Llewellyn et al. [289].   

The original MIL-53 structure comprises of terephthalate as the organic linker, however, 

several analogues have since been reported employing a variety of functionalised 

terephthalate linkers.  A comprehensive review of the isoreticular analogues of MIL-53 can 

be found by Millange and Walton in 2018 [290].  

MOF materials with the MIL-53 topology can also be generated from non-terephthalate-

based linkers, provided they maintain the same linear arrangement of carboxylate groups 

to that of terephthalate; an example of this is the use of fumarate with Al3+ ions to produce 

Al-Fumarate (Al-Fum, MIL-53(Al)-FA), commercially known as Basolite® A520.  By 

contrast, Al-Fumarate does not exhibit the same flexible breathing structure as MIL-53(Al), 

but does maintain several other useful features, such as reversible water uptake, as well 

as high thermal and chemical stability [291].  Furthermore, Al-Fumarate offers significant 

promise in mechanical energy storage, water adsorption or in heat pump applications 

[292, 293, 294].   

The precursors and conditions required for Al-Fumarate synthesis are typically of low cost 

and toxicity making it an excellent case study material for the development of a self-

optimising hydrothermal reactor platform, it is therefore the primary target material 

throughout the remainder of this work.  Given the structural and chemical similarities, it 

is also reasonable to suggest that the same methodology developed for Al-Fumarate can 

be extended to MIL-53(Al), and other similar analogues. 
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The synthesis of Al-Fumarate, was originally achieved through a solvothermal approach, 

using N,N-dimethylformamide (DMF) as the reaction solvent, over several hours [295].  

However, the need for expensive, harmful and environmentally damaging solvents and 

long reaction times limited process scalability; recent research has therefore focused on 

suitable alternatives such as aqueous, hydrothermal or mechano-chemical methods, with 

some reports demonstrating excellent promise in both product quality and production 

scalability (See Table 24). 

Aqueous and hydrothermal routes make up the vast majority of Al-Fumarate synthesis 

research, owing to ease of synthesis and ability to achieve high quality product (specific 

surface area >1000 m2g-1).  The process improves upon traditional solvothermal synthesis 

in both reaction time and simplicity through the use of base to deprotonate and solubilise 

the organic linker in water, in place of the solvents previously employed.  As deprotonation 

of the linker precursor is a slow process (often the rate limiting step in MOF synthesis), 

dissolving the ligand in aqueous solution as the carboxylate salt promotes a fast 

coordination and thus a faster MOF formation [296]. 

A range of process conditions, i.e. reaction time and temperature, as well as stoichiometry 

exist throughout the reported literature shown in Table 24.  In the literature, it is often 

the optimised value that is reported, although in some cases the optimisation process is 

also well documented. 

Figure 122: Structure of hydrated Al-Fumarate MOF (H atoms have been omitted for clarity).   
Generated using CIF file from Alvarez et al. [291] 
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Table 24: Timeline of Al-Fumarate synthesis.  FA = Fumaric Acid, DMF = Dimethylformamide, TSE 
= Twin Screw Extrusion.  In each case, first author is shown.  Aqueous synthesis denotes pressure 
<1.5 bar. 

Author Year 
Synthesis 

Method 

BET Surface 

Area (m2g-1) 
Reactants Ref 

Kiener 2009 Solvothermal 1033 FA, DMF, 

Al2(SO4)3 

[295] 

Leung 2012 Aqueous 1033 FA, NaOH,  

Al2(SO4)3 

[297] 

Jeremias 2014 Solvothermal 1021 FA, DMF, 

AlCl3 

[298] 

Alvarez 2015 Aqueous 1025 FA, NaOH,  

Al2(SO4)3 

[291] 

Crawford 2015 Mechano-

chemical, 

TSE 

1010 FA, NaOH,  

Al2(SO4)3 

[243] 

Karmarkar 2016 Aqueous 1156 FA, NaOH,  

Al2(SO4)3 

[299] 

Rubio-Martinez 2016 Hydrothermal, 

Continuous-flow 

1015-1084 FA, NaOH,  

Al2(SO4)3 

[300] 

Zhou 2017 Aqueous 925 FA, NaAlO2 [301] 

Rubio-Martinez 2017 Hydrothermal, 

Continuous-flow 

1054 FA, NaOH,  

Al2(SO4)3 

[302] 

Teo 2018 Solvothermal, 

Modulated 

792 FA, DMF, 

AlCl3, Formic 

Acid 

[303] 

Kashanaki 2018 Aqueous 780 FA, NaAlO2 [304] 

Jung 2018 Aqueous 330.3 FA, NaOH,  

Al2(SO4)3 

[305] 

Tannert 2018 Dry-Gel 

Conversion 

983-1189 FA, NaOH,  

Al2(SO4)3 

[306] 

      

Tannert 2019 Aqueous 780-1254 FA, NaOH,  

Al2(SO4)3 

[307] 

Peng 2019 Aqueous 1160 FA, Urea, 

Al2(SO4)3 

[308] 
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Improving on early batch processes, scalable continuous-flow hydrothermal synthesis of 

both MIL-53(Al) and Al-Fumarate has been demonstrated by Rubio-Martinez et al., utilising 

a continuous-flow process with a space-time yield (STY) of up to 97,159 kg m-3 day-1 [300].  

The authors were able to demonstrate suitability of the hydrothermal route using reactor 

volumes of 10 mL to 1.394 L, representing a 139 times increase in scale, without changes 

to the process conditions or significant impact on MOF quality.  In addition to reactor 

geometry, a key difference in the reactor reported by Rubio-Martinez et al. is the mixing 

of precursors before heating in the tubular reactor, necessitating a residence time of 1 

minute (although investigation into lower residence times were not reported).  By contrast, 

the Downflow precursor solution in the counter-current reactor is heated before mixing of 

the two solutions.  Preheating the Downflow solution has been reported to enhance the 

mixing regime in the reactor, due to respective buoyancy effects [55].  Furthermore, if Al-

Fumarate synthesis is enhanced by rapid coordination or the organic linker and metal ion, 

then it is hypothesised that preheating the precursor solutions may act to decrease the 

necessary residence time while still producing high quality product. 

For synthesis using the continuous-flow hydrothermal reactor described in this work, the 

same self-optimisation methodology demonstrated in Chapter 5 was applied to the 

synthesis of Al-Fumarate.  Given the large range of reported surface areas shown in Table 

24 (330-1254 m2g-1), the aim of this work is to achieve a specific surface area that is 

similar to, or exceeds, the highest reported flow synthesis, which is 1084 m2g-1 by Rubio-

Martinez et al. [300].  

The primary aim of this work is to determine process conditions which are suitable for 

‘green’ and scalable synthesis of high quality MOF material; to achieve this, the synthesis 

must only use commercially available precursors and solvents which can be easily recycled.  

Furthermore, the synthesis must be rapid, which would make the process suitable for 

continuous post-processing, rather than requiring significant aging time for crystallisation. 
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6.2 In Situ Analysis of MOF Synthesis 
One of the greatest difficulties in applying high-throughput experimentation and self-

optimisation to MOF synthesis is the need for suitable online process analytical 

technologies (PATs), which can provide synthesis feedback in real time [122].  In situ 

analysis of MOF crystallisation enables investigation into the effects of reaction 

parameters, identification of intermediates and further elucidation of the MOF formation 

steps.  Incorporating in situ analysis therefore has the potential to significantly increase 

the speed of optimising synthesis conditions.   

Van Vleet et al. recently published a review of the studies and in situ techniques previously 

reported for MOF synthesis [309].  Many in situ studies of MOF synthesis primarily monitor 

the nucleation and growth phases, using techniques such as X-ray diffraction (XRD) and 

nuclear magnetic resonance (NMR) spectroscopy [310, 311, 312].  Millange et al. report 

one of the earliest time-resolved studies of MOF synthesis, using energy dispersive X-ray 

diffraction (EDXRD) for the solvothermal synthesis of HKUST-1(Cu) and MIL-53(Fe) [313].  

The authors note that one of the main advantages of using high-energy X-rays to monitor 

crystallisation is their non-destructive penetration of lab-ware, whilst still maintaining 

elevated temperature and pressure within the synthesis vessel.  In situ monitoring of the 

MIL-53 system enabled Millange et al. to observe the transient appearance of another 

crystalline phase, later identified as MOF-235 [313]. 

Applying techniques such as XRD or NMR in situ can provide high quality and detailed 

information of the nucleation and growth phases in MOF crystallisation.  However, in situ 

XRD is a developmental technique and not currently accessible in most industrial 

applications, while NMR would require the use of a high-field solid-state spectrometer 

[312]. 

A commonly-used process analytical technology (PAT) which can potentially be employed 

to investigate MOF synthesis is Fourier transform infrared (FTIR) spectroscopy.  FTIR 

spectroscopy can be used to monitor chemical bond vibrations by measuring the 
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absorbance or emission of infrared radiation, which allows identification of distinct 

functional groups in a substance.   

Recently, Embrechts et al. applied simultaneous in situ FTIR and Raman spectroscopy in 

combination with turbidity measurements to monitor the formation mechanism of MIL-

53(Al) MOF in solvothermal synthesis [314].  Embrechts et al. demonstrated in their work 

that bands assigned to the metal-linker complex, or pre-nucleation building units (PNBUs), 

increased in absorbance with both time and temperature during synthesis.  Upon reaching 

a maximum threshold, the PNBU bands rapidly declined with the simultaneous formation 

of bands assigned to the solid MIL-53 product.   

Embrechts et al. determined that the FTIR band at 780 cm-1 was attributable the metal-

linker complex or PNBUs.  Following analysis of the time-resolved FTIR spectra, this band 

was observed to grow in intensity with both time and temperature, before a rapid decline.  

In situ Raman spectra and turbidity measurements showed this decline to coincide with 

formation of solid MIL-53.  It was therefore proposed that the relative contribution of 

colloidal MOF species and MOF nuclei to IR absorbance was much greater than that of the 

solid species.  This was credited to the sensitivity bias of FTIR to measurement of the liquid 

phase over solid, and the short penetration depth of the evanescent wave in ATR-FTIR 

spectroscopy. 

Later work by Embrechts et al. demonstrated the advantages of in situ spectroscopic 

analysis for MOF synthesis by studying the formation of the isomers MIL-68(Al) and MIL-

53(Al), despite the frameworks exhibiting near-identical FTIR and Raman spectra [315].  

Using in situ FTIR and Raman spectroscopy to monitor the δ(COO-) and δ(CH) bonding 

modes of the PNBUs and solid MOFs, respectively, allowed the authors to more closely 

investigate the modulation mechanism of formic acid.  Previously thought to act as a 

competitive modulator through interaction with the metal node, it was determined that 

formic acid instead forms hydrogen bonds via the carboxylate group of the organic linker, 

subsequently slowing the pre-nucleation and growth phases.  MIL-68(Al) has previously 

been identified as an intermediate in MIL-53(Al) synthesis, but better understanding the 
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formation steps through in situ spectroscopic analysis enabled the authors to target either 

MIL-53(Al) or MIL-68(Al) through low-temperature, modulated synthesis in DMF. 

Prior to the work published by Embrechts et al., only one study, by Ren et al., had been 

reported which employs in situ IR monitoring, investigating the modulated synthesis of 

Zr-Fumarate in both hydrothermal and solvothermal syntheses [100].  Ren et al. used a 

phased-addition approach while collecting in situ FTIR spectra, and was able to identify 

several peaks which were not observed in pristine precursors.  Upon heating, new peaks 

at 670, 983 and 1585 cm-1 were observed to grow and plateau, corresponding to the 

formation of Zr-Fumarate.  By employing in situ FTIR analysis, Ren et al. were able to 

monitor the consumption of the formic acid modulator in the DMF-based, solvothermal 

synthesis method, which was not observed in the hydrothermal system. 

Work by Embrechts et al. and Ren et al. has demonstrated the feasibility of spectroscopic 

techniques for monitoring MOF synthesis in real time.  This work aims to apply in situ ATR-

FTIR spectroscopy as an online PAT to provide reaction feedback in the synthesis of Al-

Fumarate, using a similar self-optimising method to the work in Chapter 5.  A customised 

fitness function was used, based on the relative intensities of the carboxylate group 

attributed to as-synthesised solid product and unreacted organic linker (See section 6.4). 
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6.3 Al-Fumarate Synthesis 
The Al-Fumarate synthesis in this work employs a similar hydrothermal method to that 

previously described by Bayliss et al. and Rubio-Martinez et al. for the synthesis of MIL-

53(Al) and Al-Fumarate; whereby the organic ligand is first solubilised by the addition of 

NaOH [296].  A similar method, albeit with terephthalate in place of fumarate, was used 

by Bayliss et al. to synthesise MIL-53(Al) using the same counter-current reactor described 

in this work [316].  In this instance, the solubilised sodium fumarate precursor solution 

acts as the preheated reactor Downflow and is mixed with ambient-temperature Al2(SO4)3 

solution in the reactor Upflow.  Reaction temperature, stoichiometry of ligand to metal salt 

and concentration of base were all varied to promote fast coordination between the 

carboxylate groups of the organic linker and metal ions.   

All materials used through this study were purchased from the vendors as specified below.  

The materials were used as sold, without additional processing or modifications. 

Stock solutions were prepared in deionised water as follows; Ligand Solution (0.50 M, 1 

L): 117.244 g fumaric acid (≥99.0%, Sigma Aldrich) solubilised with NaOH (1.0 M, 1 L): 

125 g NaOH 32 %w/w aqueous solution (Sigma Aldrich).  Metal Salt Solution (0.25 M, 1 

L): 168.182 g Al2(SO4)3·18H2O (≥99%, Sigma Aldrich).  Dilution in flow enables the 

screening of a wide range of precursor concentrations without altering the total flowrate.  

Additional NaOH solution (1.0 M, 500 ml): 62.5 g NaOH 32%w/w aqueous solution (Sigma 

Aldrich) is used to alter the concentration of NaOH and flush the reactor between cycles.  

Ethanol (94-96%, Alfa Aesar) was used during the post-processing & washing steps. 

The as-synthesised product (40 ml) was processed via sequential centrifugation (3500 

rpm, 5 minutes) and washing steps.  The retained product was washed twice with fresh 

deionised water (40 ml) and once with ethanol (40 ml). The washed material was oven 

dried overnight at 80°C under ambient pressure. 
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Table 25: Process constraints for Al-Fumarate synthesis throughout this work 

 

 

6.4 Online Process Analytical Technology (Inline FTIR Spectroscopy) 
Figure 123 shows the ATR-FTIR spectra for Al-Fumarate MOF and the precursor sodium 

fumarate solution (0.50 M fumaric acid + 1.00 M NaOH).  The premise for this work is 

straightforward, upon coordination of the Al3+ metal ion to the organic linker, there is an 

observable ~50 cm-1 blue shift of the 1558 cm-1 as(COO-) and 1368 cm-1 s(COO-) 

stretching vibrations to 1609 and 1422 cm-1 respectively, alongside the growth of new 

bands at lower wavelength attributed to Al-O vibrational modes.  Figure 123 shows 

comparative spectra of the organic linker precursor solution and Al-Fumarate product. 

Due to overlap with the H-O-H bending mode of water at 1640 cm-1, higher energy 

as(COO-) band is not used for evaluation of the fitness function, to mitigate the effect of 

Variable Synthesis Constraints Notes 

Temperature 50 – 200 [°C] Downflow temperature 

Al2(SO4)3 

Concentration 
0.05 – 0.15 [M] 

Concentration of Al2(SO4)3 in 

reactor Upflow 

NaOH 

Concentration 
0.40 – 0.80 [M] 

Concentration of NaOH in reactor 

Downflow 

Figure 123: ATR-FTIR Spectra for washed Al-Fumarate MOF (top) and Fumaric Acid precursor 
(bottom).  Samples analysed in solution, with water absorbance subtracted for spectral clarity. 
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subtraction error.  It is theoretically possible to use the 968, 803, 692 or 647 cm-1 bands, 

attributed to Al-O or Al-HBDC complexes, however, the low intensity, combined with 

overlap with the Al2(SO4)3 precursor, make these impractical (See Figure 124). 

The fitness function is therefore evaluated as the intensity ratio of the s(COO-) bands of 

the coordinated and uncoordinated ligand, as shown below. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
𝐴𝑏𝑠1422

𝐴𝑏𝑠1368

   [ ≈  
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑀𝑂𝐹

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝐿𝑖𝑔𝑎𝑛𝑑

] 

In situ ATR-FTIR spectra were recorded using a Bruker Alpha II spectrometer, with 

Platinum ATR attachment and commercially available flow-through cell.  Spectra 

acquisition occurred every 1.5 seconds and is averaged across 8 scans before being 

exported to the reactor control graphical user interface (Described in Chapter 2).  Exported 

spectra were processed using a 1-D low-pass filter (sampling frequency = 4, low cut-off 

frequency = 0.125) to reduce noise, prior to subtracting a deionised water spectrum, 

obtained at the start of experiments.  The weighted subtraction of the water spectrum is 

calculated to achieve a near-zero baseline in the region 1500-1000 cm-1, up to a maximum 

multiplier of 1 (i.e. up to 1x the water spectrum can be subtracted to prevent negative 

Figure 124: Signal processing of In-situ ATR-FTIR spectra, showing the Unprocessed (yellow, top), 
Background Subtracted (red, mid) and Background Subtracted & Filtered Spectra (blue, bottom).  All 
spectra were normalised, the unprocessed signal (yellow, top) was normalised to 1/5th intensity to 
account for increased absorbance of water. 
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values).  Figure 124 shows the representative effect of the baseline subtraction and data 

processing steps used this work, prior to recording analysis for each experiment. 

It should be noted that filtering of the FTIR spectra results is a slight loss of spectral clarity, 

as well as a slight shift in peak maxima position, as observed in Figure 124.  However, 

this data processing step is necessary to ensure that spectral noise does not interfere with 

the FTIR Objective function score assigned to each experiment. 

Figure 125 shows the time-resolved in situ ATR-FTIR spectra from initial scoping work, 

while developing the platform.  The time-resolved spectra shows good clarity in the 

symmetric s(COO-) region of fumarate, at wavenumbers 1350-1450 cm-1.  Additional 

peaks are clearly visible, assigned to the S-O bond of Al2(SO4)3 at 1100 cm-1, as well as 

the metal-organic complexes between 700-850 cm-1.  The low intensity and poor clarity of 

the 700-850 cm-1 region make it unsuitable for primary analysis in this work.  
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Figure 125: Time-resolved, processed in-situ ATR-FTIR Spectra for Al-Fumarate synthesis, obtained during initial scoping work while building the reactor 
platform.  The s(COO-) band at 1350-1420 cm-1 can be attributed to the coordination of metal ions to the organic linker, which is used for the self-

optimisation fitness function.  Each spectrum had the water background subtracted and data filtered prior to collation and analysis. 
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6.5 Reactor Layout 
The reactor was setup to run in a cyclic Standby-Heat-Reaction-Flush protocol, whereby 

each cycle represents one experiment.  During each experiment, the reactor Downflow 

temperature was set according to the experiment conditions, and allowed to stabilise to 

within 2% tolerance of the set-point before starting the Reaction phase.  To minimise the 

waste of precursor materials, only water was pumped during the Standby and Heat cycles.  

Pressure was maintained at 1000 psi throughout the study using a back pressure regulator.  

Post-reaction, the product stream was cooled via tube-in-tube heat exchanger to 20°C 

and then depressurised to ambient conditions.  Prior to collection and recording analysis, 

each experiment ran for 100 ml (equivalent to 3x reactor volumes) to ensure steady-state 

operation.  40 ml samples were then collected automatically via the customised Gilson 

FC204 Fraction Collector and two-way valve operated by Arduino. 

  

 

 

 

  

Figure 126: Reactor Schematic for Al-Fumarate Self-Optimisation 
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6.6 Design of Experiments 
To develop an initial understanding of the surface response across the design space, a 

Design of Experiments (DoE) study was performed.  A central composite face (CCF), 

fractional factorial design was selected to determine a basic quadratic model with relatively 

few experiments, while 3 centre-point experiments were run to determine reproducibility. 

All experiments were run autonomously with the conditions shown in Table 26.  Following 

each experiment, the FTIR objective function (objective function) was obtained in real 

time.   

In all experiments, a white precipitate was produced; the product mass was obtained from 

processing 40 ml of as-synthesised product using the auto-sampler.  Experiments were 

run in random order (run order shown in Table 26) to identify drift in either the analytical 

equipment or as a result of reactor fouling. 

Table 26: Design of Experiments study for Al-Fumarate Optimisation.  FTIR objective function was 

determined by the relative intensity of ligand to MOF s(COO-) absorbance values.  *Denotes the 

maximum Objective function result from this study.  †Sample 16 was processed the following day 
to determine if yield increased overnight. 

Exp No. Run 
Order 

Temperature 
[°C] 

NaOH 
[M] 

Al2(SO4)3 
[M] 

FTIR Objective 
Function 

Product 
[g.40ml-1] 

N1 14 50 0.40 0.05 7.584 0.0906 

N2 2 200 0.40 0.05 20.480 0.2345 

N3 16 50 0.80 0.05 3.227 0.0000 

N4 4 200 0.80 0.05 2.059 0.0410 

N5 5 50 0.40 0.15 7.440 0.0000 

N6* 8 200 0.40 0.15 26.055 0.3479 

N7 10 50 0.80 0.15 8.798 0.7154 

N8 13 200 0.80 0.15 19.322 0.5495 

N9 7 50 0.60 0.10 7.998 0.5329 

N10 3 200 0.60 0.10 22.510 0.5024 

N11 1 125 0.40 0.10 16.700 0.3926 

N12 11 125 0.80 0.10 7.670 0.4608 

N13 6 125 0.60 0.05 6.224 0.2507 

N14 9 125 0.60 0.15 14.502 0.5367 

N15 15 125 0.60 0.10 13.441 0.3607 

N16† 17 125 0.60 0.10 11.081 0.7003 

N17 12 125 0.60 0.10 11.089 0.4096 
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Figure 127 to Figure 132 show the response surface model and model quality of for both 

the FTIR objective function and mass of product obtained from each sample after 

processing.  Models were fit using multiple linear regression (MLR) without transformation 

or further processing or experimental data.   

The FTIR objective function model, shown in Figure 127, suggests that ligand to MOF 

conversion rate is increased at elevated temperature, lower NaOH concentration and slight 

excess of Al2(SO4)3.  Furthermore, an interaction was detected in the FTIR model for the 

concentrations of NaOH and Al2(SO4)3.  The initial saturated model was generated with all 

square and interaction terms; removing non-significant terms resulted in a model with 

improved Q2 and validity values, shown in Figure 129. 

 

  

Figure 127: Response surface of FTIR objective function for Al-Fumarate synthesis, calculated from 
the relative intensity of the s(COO-) carboxylate groups of the organic linker.  
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Figure 128: Response surface for mass obtained after processing 40 ml as-synthesised product.  
“Yield” denotes mass of dried product (g). 

Figure 129: Summary of fit plots for (Left) FTIR ObjFnc: R2=0.933, Q2=0.778, Model Validity = 
0.705, Reproducibility = 0.953.  (Right) Yield: R2=0.981, Q2=0.849, Model Validity = 0.884, 
Reproducibility = 0.955.  Reproducibility was determined from replicate experiments and infers 

model sensitivity towards factor effects 
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Figure 130:  Plots of Observed vs. Predicted for the models of FTIR Objective function (left) and 
product mass from 40 ml of as-synthesised sample (right) in Al-Fumarate CFHS.  A straight diagonal 

line indicates a good fit to experiment data. 

Figure 131: Residuals normal probability plot for FTIR Objective function (Left) and Product mass 
from 40 ml of as-synthesised sample (right) in Al-Fumarate CFHS.  A straight diagonal line indicates 
normal distribution, whereas experiments outside of 4 standard deviations represent outliers which 
should be repeated. 
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The PXRD patterns of all samples (See Figure 133 to Figure 135) confirm the synthesis of 

Al-Fumarate, with most samples exhibiting good agreement with the simulated pattern; 

only samples N7, N12 and N13 show additional, unidentified peaks at 16.4° and 42.6°.  

There is a clear range in broadening of the (011) reflection at 10.48°, which Alvarez et al. 

attributes to the sample hydration state; although the presence of small particles or 

structural defects could also be the contributory factor [291].   

To validate the proposed FTIR objective function, offline N2 sorption measurement analysis 

was used to determine specific surface area via the BET method (See Figure 136).  

Comparing results from experiments N6 and N15 shows an increase of 93.85% in the FTIR 

Objective function score and 98.64% increase in the specific surface area of activated 

product, suggesting that the proposed FTIR objective function is indeed suitable for this 

study. 

Figure 132:  Coefficient plots for the FTIR Objective function (left) and Product mass from 40 ml of 
as-synthesised sample (right) in Al-Fumarate CFHS.  Terms were determined from creation of a 

saturated model with all square and interaction terms, and removal of terms with low significance 
(p<0.05). 
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Figure 133: PXRD Pattern for Design of Experiments study samples N1-N8.  Simulated pattern 
calculated from CSD-Refcode DOYBEA [291] 

Figure 134: PXRD Pattern for Design of Experiments study samples N9-N13.  Simulated 
pattern calculated from CSD-Refcode DOYBEA [291] 
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Figure 136: N2 Adsorption Isotherms at 77 K for experiments N6, N15 and N16 in the DoE 
Study of Al-Fumarate CFHS. 

Figure 135: PXRD Pattern for Design of Experiments study samples N14-N17.  Simulated 
pattern calculated from CSD-Refcode DOYBEA [291] 
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Table 27: FTIR Objective Function score and BET Surface Area for experiments N6, N15 and N16.  
*N16 was processed the following day to assess completeness of crystallisation in other samples. 

 

 

To determine completeness of the reaction, experiment N16 (replicate of N15 and N17) 

was processed the following day, allowing 24 hours for crystallisation of the solid product 

to occur; this resulted in an increased product yield of 81.80% and increase of 93.95% in 

specific surface area (Results summarised in Table 28).  This suggests that an initially mid-

range FTIR objective function score can still result in a high quality MOF product and yield 

if the as-synthesised product is processed some time later, signifying that crystallisation 

can indeed occur at ambient conditions.  However, a key aim in this work is to identify 

synthesis conditions which allow the immediate processing of synthesised product, rather 

than requiring the product to crystallise over significant time periods.  As demonstrated 

by the results in experiment N6, the high FTIR objective function score gives rise to a high 

specific surface area, despite immediate processing of the sample.  

The high BET surface areas of both samples N6 and N16 (>1000 m2g-1) suggest that the 

washing, activation and degassing steps used were sufficient to remove residual precursor 

molecules within the pores, as these are in line with high values reported in literature (See 

Table 24).    

Exp. No. Temperature [°C] NaOH [M] Al2(SO4)3 [M] 
FTIR Objective 

Function 

BET Surface 
Area (m2g-1) 

N6 200 0.40 0.15 26.055 1111 

N15 125 0.60 0.10 13.441 559 

N16* 125 0.60 0.10 11.081 1085 
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Table 28: Summary table for Al-Fumarate Design of Experiments (DoE) study.  † denotes the maximum value obtained for the in situ FTIR analysis.  
*Insufficient solids produced post-processing, therefore no value provided.  ‡ Sample processed the following day to determine proximity to complete 
crystallisation.  FWHM: full-width at half-maximum of the (011) reflection at 10.48°.  Product was determined from processing 40 ml of as-synthesised 
material.  Yield is calculated based on full conversion of the organic ligand to MOF. 

Exp. No. 
Run 

Order 
Temperature [°C] 

NaOH 
[M] 

Al2(SO4)3 
[M] 

FTIR Objective 
Function 

Product [g.40ml-1] Yield [%] 
PXRD 

FWHM 
BET Surface 
Area (m2g-1) 

N1 14 50.0 0.40 0.05 7.584 0.0906 12.3 0.494  

N2 2 200.0 0.40 0.05 20.480 0.2345 31.9 0.385  

N3* 16 50.0 0.80 0.05 3.227 0.0000 0.0 * N/A *  

N4* 4 200.0 0.80 0.05 2.059 0.0410 0.0 * N/A *  

N5* 5 50.0 0.40 0.15 7.440 0.0000 0.0 * N/A *  

N6 † 8 200.0 0.40 0.15 26.055 0.3479 47.4 0.366 1111.1 

N7 10 50.0 0.80 0.15 8.798 0.7154 97.4 0.506  

N8 13 200.0 0.80 0.15 19.322 0.5495 74.8 0.275  

N9 7 50.0 0.60 0.10 7.998 0.5329 72.6 0.393  

N10 3 200.0 0.60 0.10 22.510 0.5024 68.4 0.309  

N11 1 125.0 0.40 0.10 16.700 0.3926 53.5 0.520  

N12 11 125.0 0.80 0.10 7.670 0.4608 62.8 0.653  

N13 6 125.0 0.60 0.05 6.224 0.2507 34.1 0.812  

N14 9 125.0 0.60 0.15 14.502 0.5367 73.1 0.417  

N15 15 125.0 0.60 0.10 13.441 0.3607 49.1 0.468 559.2 

N16 ‡ 17 125.0 0.60 0.10 11.081 0.7003 95.4 0.421 1084.9 

N17 12 125.0 0.60 0.10 11.089 0.4096 55.8 0.408  
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6.7 Self-Optimisation via Supervised Machine Learning (SML) 
In parallel to the DoE study, the custom supervised machine learning (SML) method, 

discussed previously in Chapter 5, was applied to the self-optimisation of Al-Fumarate 

synthesis.  In this study, an identical experimental setup was used (precursor makeup, 

data acquisition and process constraints), however, experiments were generated 

autonomously, following analysis of those previously run and the generation of a surrogate 

model.   

A total of 30 experiments were performed, with a total run time of approximately 7 hours.  

Experiments 1-5 were used for initialisation of the SML algorithm, generated via the 

MaxMin method to distribute experiments across the design space, without inducing early 

bias [251].  Following initialisation, the algorithm generated conditions to solely target 

high-performance in the experiment outcome.  Experiment generation occurred in a batch 

size of 1, immediately following analysis of the most recently completed experiment.  

Figure 137 shows the 4D scatter of FTIR objective function against process variables from 

this investigation.  

Figure 137: 4D Scatter of FTIR Objective function score at given synthesis conditions, proposed by 
the Supervised Machine Learning Self-Optimisation method.  After some initial exploration, the 
algorithm converges into a high performing region at elevated temperature, decreased NaOH 
concentration and slight excess of Al2(SO4)3. 
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Table 29: Synthesis conditions and initial results from Al-Fumarate Self-Optimisation. † Experiment 
16 resulted in the maximum FTIR Objective function score, therefore considered to be the global 
optimum.  *Experiment 24 had no recorded product mass due to a mechanical fault in the auto-
sampler.  

Exp. No. 
Temperature 

[°C] 
NaOH 

[M] 
Al2(SO4)3 

[M] 
FTIR Objective 

Function 
Product 

[g.40ml-1] 

1 50.0 0.400 0.050 4.14 0.0675 

2 200.0 0.800 0.150 9.47 0.5437 

3 125.0 0.800 0.050 1.25 0.0331 

4 200.0 0.400 0.100 25.43 0.2661 

5 50.0 0.600 0.150 5.75 0.3443 

6 188.4 0.452 0.090 16.79 0.2734 

7 148.8 0.798 0.140 5.22 0.5300 

8 195.0 0.658 0.125 14.90 0.4460 

9 186.7 0.706 0.096 5.41 0.3815 

10 156.8 0.421 0.092 11.82 0.1703 

11 185.0 0.451 0.111 19.74 0.2791 

12 190.8 0.434 0.127 22.25 0.2684 

13 195.7 0.436 0.108 27.17 0.3538 

14 193.9 0.432 0.089 23.75 0.2953 

15 193.7 0.467 0.134 26.13 0.3598 

16† 199.8 0.467 0.104 30.16 0.4370 

17 199.8 0.503 0.074 14.55 0.3066 

18 199.8 0.452 0.052 10.15 0.1943 

19 199.5 0.414 0.149 27.33 0.2710 

20 196.9 0.416 0.135 26.58 0.3013 

21 199.8 0.467 0.099 27.99 0.3734 

22 196.9 0.441 0.105 21.64 0.3362 

23 193.3 0.442 0.108 22.31 0.3778 

24 198.4 0.428 0.129 23.70 *N/A 

25 194.5 0.449 0.142 20.35 0.3273 

26 197.2 0.478 0.138 20.45 0.4033 

27 199.1 0.494 0.149 27.08 0.4142 

28 197.2 0.405 0.110 27.41 0.2938 

29 196.1 0.450 0.116 24.54 0.3477 

30 158.8 0.511 0.089 9.29 0.2296 
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6.8 In Situ ATR-FTIR Spectroscopy 
In situ ATR-FTIR spectroscopy was used to provide immediate feedback on experiment 

outcome.  The FTIR Objective function score recorded for each experiment was obtained 

by analysis of spectra after producing three reactor volumes of product to ensure steady 

state operation.  The flow-through design of the ATR Flowcell enabled continuous data 

acquisition, meaning that time-resolved spectra can easily be obtained. 

For each spectrum, three distinct regions are immediately apparent between 1000-2000 

cm-1; they include the symmetric and asymmetric carboxylate stretching modes of the 

organic linker, as describe earlier, as well as the most intense peak at 1100 cm-1, attributed 

to the S-O stretching mode from the Al2(SO4)3 precursor.  Figure 138  shows the time-

resolved, in situ ATR-FTIR spectra for experiments 21-23, demonstrating the uniform 

cyclic behaviour of the reactor, in addition to verifying the Flushing phase is adequate to 

remove precursor and synthesised material from the reactor between cycles.  The time-

resolved spectra show a ramp and plateau, suggesting that the reaction time is sufficient 

to achieve steady-state operation.  The full time-resolved spectra for self-optimised 

experiments 1-30 are shown available in Appendix: C. 

 

Figure 138: In-Situ FTIR Spectroscopy for Self-Optimised Experiments 21 (290-295 mins), 22 (300-
305 mins) & 23 (310-315 mins).  Individual spectra were first baseline-subtracted (Deionised water) 
and then filtered, prior to analysis and collation.   
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6.9 Offline Characterisation 
As with the DoE study, the in situ FTIR objective function measurements were further 

validated with offline PXRD and N2 adsorption analysis.  The PXRD patterns were obtained 

in the range 2θ = 5-50°, with the patterns for SML experiments 1-30 shown in Figure 139 

to Figure 142.  As before, the PXRD patterns of all samples confirm the synthesis of Al-

Fumarate MOF, with good agreement to the simulated pattern and a range of broadening 

of the (011) reflection. 

N2 sorption measurements show that Sample 13 exhibits the highest BET surface area, at 

1128 m2g-1, which exceeds the highest value from the DoE study and also the highest 

reported value using hydrothermal flow synthesis by Rubio-Martinez et al. [300].  

Surprisingly, sample 16, which attained the highest FTIR objective function score, did not 

achieve the highest BET surface area; however, the result is still excellent at 1112 m2g-1.   

To test the FTIR objective function efficacy, a low-scoring FTIR sample was selected for 

further characterisation; sample 7 obtained an online objective function score of 5.22 (in 

a total range of 1.25-30.16), offline characterisation by PXRD resulted in a FWHM score of 

0.461 and N2 adsorption resulted in a surface area of just 123 m2g-1.  This could be 

attributed to poor crystallinity and therefore inaccessible adsorption sites, or due to the 

presence of molecules or solvent which could not be removed through the washing and 

activation methods.  In this instance, all three characterisation methods suggest a low 

quality sample, signifying that the online FTIR screening method is initially valid.  However, 

significantly further sampling and analysis would be required to establish a good 

correlation between methods. 

The synthesis conditions, yield and characterisation data are summarised in Table 30.  
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Table 30: Summary table for Al-Fumarate self-optimised synthesis using supervised machine learning.  † denotes the maximum value obtained for the in 
situ FTIR analysis, therefore considered to be the global maximum.  * Insufficient solids produced post-processing, therefore no value obtained.  ‡ No 
offline data due to a mechanical fault with the auto-sampler.  FWHM: full-width at half-maximum of the (011) reflection at 10.48°.  Product was determined 
from processing 40 ml of as-synthesised material.  Yield is calculated based on full conversion of the organic ligand to MOF. 

 

Exp. No. Temperature [°C] NaOH [M] Al2(SO4)3 [M] 
FTIR Objective 

Function 
Product [g.40ml-1] Yield [%] 

PXRD 
FWHM 

BET Surface 
Area (m2g-1) 

1 50.0 0.400 0.050 4.14 0.0675 9.2 0.520  

2 200.0 0.800 0.150 9.47 0.5437 74.0 0.325  

3* 125.0 0.800 0.050 1.25 0.0331 0.0* N/A*  

4 200.0 0.400 0.100 25.43 0.2661 36.2 0.366 1097 

5 50.0 0.600 0.150 5.75 0.3443 46.9 0.471  

6 188.4 0.452 0.090 16.79 0.2734 37.2 0.355  

7 148.8 0.798 0.140 5.22 0.5300 72.1 0.461 123 

8 195.0 0.658 0.125 14.90 0.4460 60.7 0.319  

9 186.7 0.706 0.096 5.41 0.3815 51.9 0.318  

10 156.8 0.421 0.092 11.82 0.1703 23.2 0.479  

11 185.0 0.451 0.111 19.74 0.2791 38.0 0.385  

12 190.8 0.434 0.127 22.25 0.2684 36.5 0.383  

13 195.7 0.436 0.108 27.17 0.3538 48.2 0.361 1128 

14 193.9 0.432 0.089 23.75 0.2953 40.2 0.377  

15 193.7 0.467 0.134 26.13 0.3598 49.0 0.383  

16† 199.8 0.467 0.104 30.16 0.4370 50.8 0.368 1112 

17 199.8 0.503 0.074 14.55 0.3066 41.7 0.349  

18 199.8 0.452 0.052 10.15 0.1943 26.4 0.403 915 

19 199.5 0.414 0.149 27.33 0.2710 36.9 0.371  

20 196.9 0.416 0.135 26.58 0.3013 41.0 0.395 1118 
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21 199.8 0.467 0.099 27.99 0.3734 59.5 0.378 1130 

22 196.9 0.441 0.105 21.64 0.3362 45.8 0.379  

23 193.3 0.442 0.108 22.31 0.3778 51.4 0.412  

24 ‡ 198.4 0.428 0.129 23.70 N/A ‡ N/A ‡ N/A ‡  

25 194.5 0.449 0.142 20.35 0.3273 44.6 0.327  

26 197.2 0.478 0.138 20.45 0.4033 54.9 0.403  

27 199.1 0.494 0.149 27.08 0.4142 56.4 0.414  

28 197.2 0.405 0.110 27.41 0.2938 40.0 0.294  

29 196.1 0.450 0.116 24.54 0.3477 47.3 0.348  

30 158.8 0.511 0.089 9.29 0.2296 31.3 0.230  
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Figure 140: PXRD Pattern for supervised machine learning self-optimisation experiments 9-
15.  Simulated pattern calculated from CSD-Refcode DOYBEA [291] 

Figure 139: PXRD Pattern for supervised machine learning self-optimisation experiments 1-
8.  Simulated pattern calculated from CSD-Refcode DOYBEA [291] 
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Figure 141: PXRD Pattern for supervised machine learning self-optimisation experiments 
16-22.  Simulated pattern calculated from CSD-Refcode DOYBEA [291] 

Figure 142: PXRD Pattern for supervised machine learning self-optimisation experiments 
23-30.  Simulated pattern calculated from CSD-Refcode DOYBEA [291] 
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Table 31: BET Surface areas for select self-optimisation experiments during Al-Fumarate synthesis, 

determined from N2 adsorption at 77K. 

 

  

Exp. No. 
Temperature 

[°C] 
NaOH [M] Al2(SO4)3 [M] 

FTIR Objective 
Function 

BET Surface 
Area (m2g-1) 

4 200.0 0.400 0.100 25.43 1097 

7 148.8 0.798 0.140 5.22 123 

13 195.7 0.436 0.108 27.17 1128 

16 199.8 0.467 0.104 30.16 1112 

18 199.8 0.452 0.052 10.15 915 

20 196.9 0.416 0.135 26.58 1118 

Figure 143: N2 Adsorption Isotherms at 77K for Al-Fumarate samples from self-optimised 
supervised machine learning synthesis. 
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Figure 144: Contour plots of FTIR Objective Function Gaussian process regression model 
from Al-Fumarate self-optimisation.  Plots shown at NaOH concentration of 0.40 M (top), 

0.60 M (mid) and 0.80 M (bottom).   
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6.10 Discussion 
The SML self-optimisation methodology has promoted more efficient investigation of 

process conditions for Al-Fumarate synthesis by planning experiments based on predicted 

outcome.  In contrast to the DoE study, whereby only one experiment (N6) falls in the 

optimal region, the self-optimised method generated 18 experiments with a high-

performing FTIR objective function (≥20).   

Figure 144 shows the response surface contour plots generated using the Gaussian process 

(GP) regression model (SML) developed from 30 experiments.  The mean absolute 

percentage error of the trained model is 2.69% and the normalised route mean squared 

error (NRMSE) is 3.12%, which is excellent for 30 data points.   

Both the SML and DoE methods identified the same optimum region of the design space, 

at elevated temperature, reduced NaOH concentration and slight excess of Al2(SO4)3 (ca. 

200 °C, NaOH: 0.45 M, Al2(SO4)3: 0.12 M).  The synthesis conditions denoted by this 

optimum region are intuitive, as the high temperature and low concentration of NaOH 

likely promotes coordination of the metal-linker complexes, resulting in the rapid 

generation of pre-nucleation building units and subsequent crystallisation. 

The response surface models in Figure 127 (DoE) and Figure 144 (SML) show similar 

outcomes, however, there is clear variation in the scaling and detail provided.  The DoE 

quadratic model shows a much smoother model but provides very little detail in the region 

defined by an FTIR objective function score ≥20.  By contrast, the GP model obtained 

during the self-optimised experiments provides a much more comprehensive view of the 

objective function response where the NaOH concentration is 0.40 M.   

As discussed in Chapter 5, for the GP model obtained for hematite (α-Fe2O3) self-

optimisation, obtaining a model which precisely fits the experimental data is not 

necessarily optimum, as the algorithm can easily confuse experiment noise for the true 

signal.  The generation of several local maxima and minima within the design space of the 

GP model was not corroborated by the DoE study, suggesting some overfitting of the 

model and failure to generalise effectively.  However, it is also possible that the smooth 
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fit observed in the DoE model can be due to the small number of samples in the experiment 

design, which may have failed to capture some of the more complex factor interactions or 

quadratic effects.  It is possible that the observed differences between the two models can 

be attributed to the variation in training data and model structure; the DoE model is built 

using a CCF design with only 17 data sets, while the SML method uses 30 which are 

disproportionately located around the predicted optimum region.  Fine tuning of these 

methods was not in the scope of this work, which instead focused on the development and 

demonstration of the autonomous platform itself.  However, when considering real-world 

applications of these systems, it is important to ensure that the generated model used to 

guide optimisation is a true reflection of the process. 

 

It is hypothesised in this work that the spectral shift in the s(COO-) band position upon 

metal ion coordination is suitable for identifying conversion of unreacted ligand precursor 

to MOF product.  This concept appears suitable for these studies, but is limited and prone 

to noise error.  To improve on this, alternative (or multiple) absorption bands could be 

investigated to better correlate the objective function score obtained from online analysis 

with the product quality determined by offline characterisation; i.e. correlation between 

the FTIR score and BET surface area values.  Potential alternatives include the 1558 cm-1 

as(COO-) stretching mode of the organic linker, or the 968, 803, 692 or 647 cm-1 bands, 

attributed to Al-O or Al-HBDC complexes, all of which were not used due either to low 

intensity, or overlap with the H-O-H bending mode of water at 1640 cm-1.  However, the 

baseline subtraction method used throughout this study was very basic, and a more 

rigorous ‘curve-fitting’ approach may be better suited, potentially enabling the use of these 

spectral features. 

The in situ ATR-FTIR spectroscopy is not sufficient to fully characterise the as-synthesised 

product, however, it was able to provide a valuable screening tool which autonomously 

guided experiments during the study.  Given the total number of experiments was fixed 

at 30, and assuming equal cost per experiment, the system generated 18 experiments 
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which correspond to a >20 FTIR objective function score.  The data in Table 30 shows that 

for experiments analysed by both FTIR and N2 adsorption, a high FTIR objective function 

score resulted in a surface area far exceeding the 1000 m2g-1 threshold previously defined.  

This suggests that when experiments are guided by a high FTIR objective function score, 

a greater proportion will result in success.  Conversely, the same screening method could 

also be used to reduce the resource requirement of the offline characterisation method, 

by automatically rejecting samples which exhibit a low objective function score.  While this 

approach would decrease the total throughput in time-consuming offline characterisation, 

such as N2 adsorption measurements, it may also miss important features.  One example 

of this from the SML study is the higher than expected surface area from sample 18, which 

achieved a respectable surface area of 915 m2g-1, despite the low-mid FTIR objective 

function score. 

 

It is possible that maximising the objective function (Defined in Section 6.4) could instead 

favour the increased concentration of pre-crystalline (colloidal) MOF nuclei or pre-

nucleation building units (PNBUs), as suggested by Embrechts et al. due to preferential 

measurement of the solution over solids in ATR-FTIR spectroscopy [314, 315].  However, 

the authors also demonstrated that the crystallisation step is rapid and can occur at 

relatively low temperature for MIL-53(Al).  Given the similarities of this material to Al-

Fumarate, it is reasonable to suggest similar behaviour in this study.  Furthermore, the 

authors showed that increased time in solvothermal conditions was shown to impede MOF 

quality; demonstrated in reduced surface area measurements at extended residence time.  

This effect may be attributable to the induction of defects in the crystal structure; it may 

therefore be beneficial to target synthesis conditions which maximise the concentration of 

pre-crystalline (colloidal) MOF, on the basis that crystallisation occurs soon after exiting 

the reactor at ambient conditions.  Validation of the online analysis method through offline 

PXRD and BET showed no indication that pre-crystalline or colloidal MOF was produced, 
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however, this does not necessarily mean that the material analysed in situ was crystalline 

at the time of measurement.   

For the purpose of this investigation, the collected product was processed within a suitable 

timeframe (between 0-60 minutes) and gave no indication that prolonged aging times are 

required to achieve high quality crystalline MOF.  Synthesising materials which do not 

require significant aging periods promotes scalability, as the volume of stored intermediate 

products can be reduced.   

A key limitation of this work is the use of single-objective optimisation; a more robust 

approach would be to consider the impact of yield in combination with product quality.  

While this is difficult to achieve in using the self-optimising methodology applied, a 

potential simple solution could be to combine chemical or structural analysis with online 

turbidity measurements, which has previously been applied to MOF synthesis [314].  

However, developing more effective or efficient optimisation methods was not a primary 

objective in this work.  Furthermore, attaining single-objective optimal synthesis 

conditions in within just 7 hours, or 30 experiments, demonstrates a substantial 

improvement on previous methods. 

 

6.11 Conclusions 
The objective for the work presented within this chapter was to apply the self-optimisation 

methodology previously described in Chapter 4 to MOF synthesis.  Al-Fumarate was 

selected as the case study material due to its low toxicity, high stability and commercially 

available precursors. 

In situ ATR-FTIR spectroscopy was applied to monitor reaction success using a customised 

objective function, determined by the relative intensity of the s(COO-) peaks attributed 

to the MOF and ligand peaks.  Time-resolved FTIR spectra showed the reactor cycling 

phases (Standby-Heat-Run-Flush) were effective at preventing overlap of experiments, 

while the high-throughput reactor was able to perform 30 experiments in approximately 7 

hours, using less than 1 L for either the organic linker or metal salt stock solutions. 
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Comparison of the online and offline analytical methods was achieved through further 

characterisation of select samples; this indicated that a high FTIR objective function score 

(>20) results in highly crystalline Al-Fumarate with high specific surface area (>1000 m2g-

1).   

Measurements from the online FTIR analysis were used to train the custom supervised 

machine learning (SML) and optimisation algorithm, which generated a surface response 

model and new synthesis conditions in real time.  Experiments were generated to 

maximise the FTIR objective function, as predicted by the updated SML model, which 

resulted in identification of an optimum region at ca. Downflow temperature: 200 °C, 

NaOH concentration: 0.45 M and Al2(SO4)3 concentration: 0.12 M. 

The yield for each experiment was determined by mass of the dry, processed solids and 

evaluation against complete conversion of the organic linker; the yield for products with a 

high specific surface area varied between 41-59.5%.  Maximising yield was not an 

objective throughout this study, but is a critical parameter when considering 

commercialisation and process scale up.  Scalarisation of outputs such as yield, 

crystallinity and surface area into one output could provide a suitable option for holistic 

optimisation.  However, a more effective approach would be to apply multi-objective 

optimisation methods, to determine the trade-off between competing factors.  This 

approach was not attempted during this work due to time limitations but offers exciting 

potential in this area. 

Given the structural similarities of Al-Fumarate to MIL-53(Al) and its other analogues, it is 

reasonable to suggest that the self-optimisation methods described in this chapter could 

be applied to other MOFs.  Although FTIR spectroscopy provides limited information 

regarding the MOF crystal structure, it provides a useful and relatively low-cost alternative 

screening method for MOF synthesis, potentially reducing the resource requirement for 

offline characterisation. 
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Chapter 7: Scale-Up of MOF Synthesis 
from Bench-Scale Self-Optimisation 
 

7.0 Scale-Up of Metal-Organic Framework Synthesis 

7.1 Introduction 
Chapter 6 demonstrated a new methodology for the optimised synthesis of Al-Fumarate 

metal-organic framework (MOF) at lab scale, using in situ Fourier-transform infrared 

(FTIR) spectroscopy to monitor reaction progress.  This represents a significant step 

forward in the application of automation and supervised machine learning (SML) to 

optimise continuous-flow hydrothermal synthesis; however, a core objective of this PhD is 

the development of methods or processes which can be scaled to industrial production.   

This chapter aims to utilise the optimised synthesis conditions, determined from bench 

scale self-optimisation in Chapter 6, for both pilot (g.h-1) and plant (kg.h-1) scale 

production.  Furthermore, the washing and activation methods previously used in Chapter 

6 are investigated to identify more cost-effective alternatives to centrifugation and use of 

ethanol in solvent exchange. 

This work was completed with the help and resources available at Promethean Particles, 

including the pilot and industrial scale continuous-flow hydrothermal reactors, and plate-

and-frame filtration to process large volumes of synthesised materials. 

Offline characterisation methods, such as powder X-ray diffraction (PXRD), Brunauer-

Emmet-Teller (BET) N2 adsorption and transmission electron microscopy (TEM) were used 

to validate the synthesis and post-processing strategies. 
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7.2 Al-Fumarate Synthesis  
The lab-scale self-optimisation study described in Chapter 6 demonstrated that the 

optimum synthesis conditions could be represented as a region of the design space, rather 

than a single point.  This is not uncommon in chemical synthesis and allows some flexibility 

in the process to balance competing factors such as the cost of production or product yield, 

as required. 

Using the SML model, trained using the 30 self-optimised experiments, the optimum 

synthesis conditions selected for scale-up were as follows: 

- Downflow temperature:  200.0 °C 

- NaOH concentration:  0.45  M 

- Al2(SO4)3 concentration:  0.12 M 

The reactor Downflow temperature and concentrations of NaOH and Al2(SO4)3 were 

determined directly from interpretation of the model shown in Figure 144 (Chapter 6).    

Maintaining these synthesis conditions for the remaining experiments, the effect of reactor 

flowrate was also investigated; a parameter that had remained fixed in Chapter 6 for 

simplicity.  The total flowrate was varied at both bench and pilot scale to determine 

proximity to the nucleation threshold required for rapid MOF crystallisation, further details 

are given in Section 7.3 and Section 7.5. 
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7.3 Bench Scale Synthesis & Processing 
The self-optimised synthesis study described in Chapter 6 focused on the process 

conditions required to achieve rapid crystallisation of the Al-fumarate MOF.  However, 

there was no investigation into to the effect of the washing and activation (post-

processing) steps required to remove unreacted precursors and other guest molecules 

from the MOF pores, and subsequently separate the solid product from the supernatant.   

Previously, a 40 ml sample from each experiment was collected in a 50 ml polypropylene 

centrifuge tube.  The solids were separated from the supernatant via sequential 

centrifugation at 3500 rpm for 5 minutes.  After each centrifugation step, the pellet was 

re-dispersed in solvent, this process was repeated twice using deionised water and then 

once with ethanol to replace pore-bound water with a more volatile solvent.  The washed 

samples were then dried overnight at 80 °C and ambient pressure.   

The high surface areas (>1100 m2g-1) achieved by several samples in the self-optimised 

study suggest that the washing and activation methods were sufficient to remove guest 

molecules from within the MOF pores.  However, it is useful to investigate the use of 

alternative solvents, as well as further explore the effect of ageing time on the as-

synthesised material.   

In Chapter 6, ethanol was used for the final washing cycle for Al-Fumarate in all samples, 

however, this could potentially be replaced with the use of methanol as a lower-cost 

alternative.  Furthermore, replacing pore-bound water in Al-Fumarate may not be 

necessary at all, given the high thermal and chemical stability, and reversible water 

uptake.  Removing the requirement for large volumes of volatile solvent would drastically 

increase the potential scalability of the process, improving on both the economic and 

process safety considerations. 

Further to the washing and post-processing procedures, the initial design of experiments 

(DoE) study highlighted the potential increase in yield and surface area by processing the 

as-synthesised material >12 hours after synthesis, demonstrating 81.8% and 94.0% 

increases in yield and surface area, respectively (DoE samples N15 and N16).  While this 
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increase is certainly significant, it compares a sample synthesised at conditions which were 

known to be far from the optimum region.  It is likely that sample N16 was at an early 

stage of crystallisation, with a relatively low concentration of pre-nucleation building units 

(PNBUs) or colloidal MOF particles.  Hence, a much longer ageing time was necessary to 

see significant changes in the product quality and yield. 

 

7.4 Bench Scale Synthesis & Processing Results 
To investigate the effect of flowrate, select samples were synthesised at a reactor flowrate 

of 40 ml.min-1 (compared to 30 ml.min-1 as before), using the same bench-scale reactor 

configuration described in Chapter 6. 

Stock solutions were prepared in deionised water as follows; Ligand Solution (0.20 M, 1 

L): 23.43 g fumaric acid (≥99.0%, Sigma Aldrich) solubilised with NaOH (0.45 M, 1 L): 

56.25 g NaOH 32 %w/w aqueous solution (Sigma Aldrich).  Metal Salt Solution (0.12 M, 

1 L): 80.73 g Al2(SO4)3.18H2O (Tech., ReAgent).   

Methanol (94-96%, Alfa Aesar) and ethanol (94-96%, Alfa Aesar) were used for the 

washing and activation steps. 

The ageing time, separation method and solvent used for the final wash are all shown in 

Table 32.  Samples N1-N8 were synthesised using the same reactor setup previously 

described in Chapter 6; with the exception that samples N1-N6 were synthesised at 40 

ml.min-1 and N7-N8 were synthesised at 30 ml.min-1 total flowrate (equally distributed 

between Upflow and Downflow).   

Samples N1, N2 and N6 show a slight increase in surface area, from 1026 to 1086 m2g-1, 

when the sample was aged for 0, 1 and 12 hours, respectively.  While the surface area 

increases by just 5.6% across the 12 hour ageing time, there is a drastic increase in yield, 

from 31.4 to 60.1% for samples N1 and N6 respectively.   

Comparing samples N2, N3 and N4 shows no significant effect on yield when using ethanol, 

deionised water or methanol for the final solvent exchange.  There is a 3.5% loss in surface 
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area when using only deionised water, however, this is close to the error limits for the BET 

measurement and so repeated analysis would be needed to confirm this effect.  Given the 

significant cost savings in both material and equipment costs that could be applied through 

the use of water in place of volatile solvents, this is a very impactful discovery for industrial 

manufacture of Al-fumarate. 

Comparing samples N1 and N7 shows the effect of reactor flowrate, with an 80% increase 

in yield, but only 2.3% increase in surface area when the flowrate is reduced from 40 

ml.min-1 to 30 ml.min-1.  This demonstrates a good example of the economic 

considerations required in a commercial process, by balancing the loss of yield against the 

reactor throughput, for a similar quality of product.  For comparison, assuming 8 hour 

production using the bench scale reactor, N1 represents a higher throughput of material, 

but would only produce 110.8 g of dry material after processing, whereas N7 would 

produce 149.5 g.  This could be better represented as a Pareto front, whereby an increase 

in one objective results in the loss of another; however, this would require a multi-

objective approach to optimisation, which was not implemented in this work due to time 

limitations.   

Interestingly, the effect of flow rate on yield and surface area is significantly reduced when 

the ageing time of the as-synthesised material is increased to 12 hours; samples N6 and 

N8 show only a 3.8% change in yield, which is within the range of experimental error. This 

suggests that the current hydrothermal process produces a high concentration of PNBUs 

or colloidal MOF particles which are then able to further crystallise at ambient conditions.  

Embrechts et al. noted a similar mechanism with MIL-53(Al) synthesis, whereby the 

concentration of Al-BDC complexes increases with both time and temperature to a critical 

threshold, before rapid MOF crystallisation [314].  
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The separation strategy was also investigated, comparing centrifugation against gravity 

settling and decanting of the supernatant.  Centrifugation is a commonly-used technique 

in lab-scale synthesis and processing, but it is labour intensive and thus costly to 

implement scale.  Gravity settling offers a low-energy means of washing the material, but 

at the cost of storing large volumes of material during processing.  The highly porous 

structure and small size of MOF particles leads to a density similar to the solvent, making 

many separation processes inefficient or impractical [296]; for gravity settling, this results 

in a large settling time.  However, given the above discovery regarding the yield 

advantages of extended reaction times outlined above, some standing time could prove 

advantageous and so gravity settling could offer a low-energy method to aid separation.  

Sample N5 was separated via three gravity settling washes, using a 200 ml measuring 

cylinder; the MOF suspension was allowed to settle for 24 hours between washes, before 

the supernatant was decanted and replaced with fresh deionised water. 

Samples N5 and N6 (centrifuge separation method) show no significant variation in yield 

for the two methods, but a 48.8% decrease in surface area, which suggests that the 

gravity settling method was not able to remove all unreacted precursor materials from 

within the MOF pores.  Increasing the number of washing cycles could potentially improve 

the product quality, however, the time and resources necessary mean this approach is not 

commercially viable. 

Figure 145: Gravity settling process used to separate MOF solids from MOF-suspension, sample N5.  

For each washing phase, the solids settled to around 25% of the working volume, allowing 
decantation of the liquid supernatant.  Images shown are 24 hours apart. 



 

224 

 

Table 32: Effect of post-processing conditions for Al-Fumarate synthesis.  Product mass was determined from processing 40 ml of as-synthesised material.  
Yield is calculated based on full conversion of the organic linker to MOF.  FWHM = Full width at half-maximum of the (011) reflection at 10.48°.  †Ageing 
time was as close to immediate as reasonably possible.  Centrifugation was carried out as described earlier.  Gravity settling involved sequential settling 
of MOF under gravity for around 24 hours between washes.  ‡Solvent used for the final washing stage. 

Exp. No. 
Flowrate 
[ml.min-1] 

Ageing time 
[hours] 

Solvent ‡ 
Separation 

Method 
Product Mass 

[g.40ml-1] 
Yield [%] PXRD FWHM 

BET Surface Area 
[m2g-1] 

N1 40.0 0 † EtOH Centrifuge 0.2308 31.4 0.413 1026 

N2 40.0 < 1 EtOH Centrifuge 0.2749 37.4 0.403 1045 

N3 40.0 < 1 H2O Centrifuge 0.2682 36.5 0.344 1011 

N4 40.0 < 1 MeOH Centrifuge 0.2670 36.3 0.426 1047 

N5 40.0 > 12 EtOH Gravity settled 0.4343 59.1 0.296 730 

N6 40.0 > 12 EtOH Centrifuge 0.4418 60.1 0.403 1086 

N7 30.0 0 † EtOH Centrifuge 0.4153 56.5 0.392 1051 

N8 30.0 > 12 EtOH Centrifuge 0.4255 57.9 0.384 1098 
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Figure 146: PXRD Patterns for experiments N1-N4 in the Post-Processing study.  Simulated 

pattern calculated from CSD-Refcode DOYBEA [291] 

Figure 147: PXRD Patterns for experiments N1-N4 in the Post-Processing study.  Simulated 
pattern calculated from CSD-Refcode DOYBEA [291] 
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The PXRD patterns of all samples confirm the synthesis of the desired Al-Fumarate MOF 

structure, exhibiting good agreement with the simulated pattern and no additional or 

unidentified peaks (See Figure 146 and Figure 147).  The N2 adsorption isotherms are 

shown in Figure 148, with very similar measurements for all samples, with the exception 

of N5 (gravity settled).  

Figure 148: N2 Adsorption Isotherms at 77K for Al-Fumarate samples from Post-Processing 

study, BET surface areas are given in Table 32. 
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7.5 Pilot Scale Synthesis 
The pilot scale reactor uses the same tube-in-tube, counter-current flow design as the 

bench scale system [317].  However, the reactor itself is much larger, using a 1.50” outer 

tube with 0.188” wall thickness and a 0.50” inner tube with 0.065” wall thickness.  A Cast-

X 3000 27 kW heater is used to preheat the Downflow process stream, prior to mixing 

with the ambient temperature Upflow.  Similar to the bench scale system, a tube-in-tube 

heat exchanger cools the process stream prior to the release of pressure at the back 

pressure regulator (BPR).   

Key dimensions used for further calculations are given in Table 33. 

Table 33: Pilot rig volume and residence time calculations.  HX = First heat exchanger following 

the reactor.  BPR = Back pressure regulator and rig outlet. 

Description Volume [L] 
Residence Time [s] 

(Q = 26.4 L.h-1) 
Residence Time [s] 

(Q = 51.0 L.h-1) 

Total 1.4   

Reactor 0.26 35.5 18.4 

Reactor → HX 0.12 16.4 8.5 

Reactor → BPR 0.39 53.2 27.5 

 

Following investigation of the post-processing parameters, two pilot scale productions 

were performed (Pilot 1 and Pilot 2 respectively).  Pilot 1 was performed at the optimum 

conditions stated earlier (Downflow temperature: 200 °C, NaOH concentration: 0.45 M, 

Al2(SO4)3 concentration: 0.12) and a total reactor flowrate of 26.4 L.h-1, representing a 

14.5x increase compared to the original lab-scale synthesis.  Pilot 2 was performed at 51 

L.h-1 (maximum reactor throughput) to further assess the effect of reactor flowrate at 

increased scale.  The effect of flow rate on the flow regime within the reactor is discussed 

in Section 7.8. 
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P1 and P2 produced 17 and 37 L of as-synthesised material respectively, in a total time of 

approximately 40 minutes for each run.  In each case, the initial 3 L of produced material 

was discarded to ensure steady state operation of the reactor prior to sample collection. 

All materials used through this study were purchased from the vendors as specified below.  

The materials were used as sold, without additional processing or modifications.  

Pilot 1 Synthesis: 

Stock solutions were prepared in deionised water as follows; Ligand Solution (0.20 M, 10 

L): 234.34 g fumaric acid (≥99.0%, Sigma Aldrich) solubilised with NaOH (0.45 M, 10 L): 

562.50 g NaOH 32 %w/w aqueous solution (Sigma Aldrich).  Metal Salt Solution (0.12 M, 

10 L): 807.27 g Al2(SO4)3.18H2O (Tech., ReAgent).   

Pilot 2 Synthesis: 

Stock solutions were prepared in deionised as follows; Ligand Solution (0.20 M, 20 L): 

468.69 g fumaric acid (≥99.0%, Sigma Aldrich) solubilised with NaOH (0.45 M, 20 L): 

1125.00 g NaOH 32 %w/w aqueous solution (Sigma Aldrich).  Metal Salt Solution (0.12 

M, 20 L): 1614.55 g Al2(SO4)3.18H2O (Tech., ReAgent).   

In both cases, pressure was maintained at 1000 psi throughout the process through use 

of the BPR. 

 

 

7.6 Plant Scale Synthesis 
In addition to the pilot scale investigation, a plant scale production run was performed to 

produce 1000 L of as-synthesised material, using the industrial continuous-flow 

hydrothermal plant at Promethean Particles [65, 67].   

The plant scale reactor uses the same reactor geometry as the pilot scale system 

previously described.  However, the plant also utilises a heat recovery system in 

combination with a 1400 kW natural gas boiler to pre-heat the reactor Downflow.  The 

heat recovery system uses a tube-in-tube heat exchanger, whereby the reactor outlet 

stream is used to heat the Downflow inlet.  After heat recovery, the process stream is 
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cooled to ambient temperature and pressure is released at the BPR.  Key dimensions used 

for further calculations are given in Table 34. 

Table 34: Plant volume and residence time calculations.  † The same reactor geometry used for 
the pilot scale reactor is used for the industrial plant. HX = First heat exchanger following the 
reactor.  BPR = Back pressure regulator and rig outlet. 

Description Volume [L] 
Residence Time [s] 

(Q = 3 m3h-1) 

Total 230  

Reactor † 0.26 0.3 

Reactor → HX 25 30 

Reactor → BPR 50 57 

 

 

Stock solutions were prepared as follows; Ligand Solution (0.20 M, 500 L): 11.72 kg 

fumaric acid (≥99.0%, Sigma Aldrich) solubilised with NaOH (0.45 M, 500 L): 28.13 kg 

(20.83 L) NaOH 32 %w/w aqueous solution (Sigma Aldrich).  Metal Salt Solution (0.12 M, 

500 L): 40.36 kg Al2(SO4)3.18H2O (Tech., ReAgent).  Pressure was maintained at 1000 psi 

throughout the process through use of the BPR.   

The plant scale production followed the same process conditions as defined for the pilot 

synthesis, with the exception of flowrate, which was 3000 L.h-1.  50 L of as-synthesised 

material was discarded to ensure steady operation, resulting in 950 L of product.  No 

operational issues were observed throughout the production run. 
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Figure 149: IBC (1000 L) of as-synthesised Al-Fumarate from Plant production (left) and 25 L of 
as-synthesised Al-Fumarate from Pilot 2 production (right) 

Figure 150: As-synthesised Al-Fumarate produced at Plant scale (1000 L).  Sample was washed 
with a combination of gravity settling (in the IBC as shown) and plate and frame filtration. 
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7.7 Post-Processing: Filtration 
The increased volume of as-synthesised material produced in the pilot and plant scale 

productions enabled the investigation of plate and frame filtration for processing. 

A filter press is a mechanical solid-liquid separator; one of the oldest and well-known 

designs is the plate and frame filter (also known as the membrane plate filter), which 

consists of alternating plates and frames supported by rails, with filter membranes 

between each pair [318].  A Shuangfa SFP200-10 filter press was used with 100% cellulose 

filter cloths (5-13 micron, SLS). 

For continuous operation, the solid-liquid separation takes place through the filter cake, 

built up on the filter membranes; in this work, this was achieved by recycling of the MOF 

suspension through the filter until the supernatant was visibly clear.  After each washing 

step, the supernatant was discarded, and the filter cake re-dispersed into fresh deionised 

water before repeating.  Following three washes, the dewatered cake was then dried 

overnight at 80 °C and ambient pressure.  This same process was repeated for all pilot 

and plant production studies. 

Figure 151: Shuangfa SFP200-10 Filter press used for filtration and dewatering of the Al-Fumarate 
Pilot and Plant scale productions 
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Further to trialling the filtration method, a 50 ml sample was washed and separated though 

sequential centrifugation, allowing comparison of the bench, pilot and plant scale 

synthesised products.  All washes were completed using only deionised water. 

Due to the limited capacity of the plate and frame filter available, a combination of gravity 

settling and filtration was used for the material synthesised on the plant.  The as-

synthesised product was settled to 25-30% of the initial volume (Shown in Figure 150), 

before the clear supernatant was discarded and replaced with fresh deionised water; this 

process was repeated three times with 24 hours between cycles.  Simultaneously, the 

concentrated suspension was filtered in five distinct batches, using the same plate and 

frame filter process previously described and then recombined after filtration.  The earlier 

post-processing study had shown gravity settling to be insufficient as a standalone 

washing method, which necessitated the combination of gravity settling with filtration.  

The dewatered cake was then dried overnight at 80 °C and ambient pressure.  
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7.8 Results & Discussion 
Samples from the pilot and plant productions were further characterised by PXRD and BET 

N2 adsorption.  Yield was determined from the mass of dried product obtained from 50 ml 

of as-synthesised material and calculated from the theoretical full conversion of organic 

linker to MOF.  The 50 ml samples were taken from the bulk as-synthesised product and 

processed via centrifugation to enable comparison of the synthesis methods.  The surface 

area and yield of all scale-up syntheses are shown in Table 35. 

Table 35: BET surface area and Yield for Pilot and Plant scale synthesis, comparison of 50 ml sample 
processed via sequential centrifugation and Bulk samples processed via filtration.  Yield calculated 
from 50 ml sample taken for centrifugation and full conversion of the organic linker to MOF.  Yield 
for filtration not calculated due to large mechanical losses, which are not representative of the 
method.  † % increase from the 50 ml sample process via centrifugation to the bulk filtration method. 

Sample 
Processing 

Method 
BET Surface Area [m2g-1] Yield [%] 

Pilot 1 Centrifugation 1135 83.5 

 Filtration 1144 (+0.79%) † - 

Pilot 2 Centrifugation 1087 66.8 

 Filtration 1112 (+2.30%) † - 

Plant Centrifugation 1135 93.3 

 Filtration 1155 (+1.84%) † - 

 

Table 35 shows that in all cases, the BET surface area was greater in samples processed 

via filtration, compared to the sequential centrifugation method used previously; this could 

suggest that filtration offers a more suitable washing and separation method for MOF 

processing.  However, it is also important to consider the increased time required for 

filtration (up to 8 hours); earlier investigations demonstrated a slight increase in yield and 

product quality when samples were subject to increased ageing times.  It is therefore 

possible that the small increase in surface area could instead be attributed to the additional 

time required to process litre-volumes of material via filtration.  
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Figure 153: PXRD for Al-Fumarate samples at Pilot and Plant scale synthesis, comparing initial 
sample (Centrifugation) and representative bulk sample (Filtration).  Simulated pattern 
calculated from CSD-Refcode DOYBEA [291] 

Figure 152: Comparison of Sample (blue) and Bulk (red) BET Surface area for Pilot 1, Pilot 2 and 

Plant synthesis.  % increase denotes increase in surface area from 50 ml sample processed via 

centrifugation to bulk sample processed via filtration. 
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The increase in flowrate from 26.4 to 51 L.h-1 for pilot scale synthesis shows a 4.2% 

decrease in surface area, and 20.0% decrease in yield; which corroborates the findings of 

the earlier lab scale post-processing study.  This could stem from the reduced residence 

time at elevated temperature when increasing the reactor flowrate. 

Interestingly, the greatest BET surface area and yield exhibited was from the plant scale 

synthesis, achieving 1155 m2g-1 in the final product; which is the highest result throughout 

this work and far exceeds the highest value reported for continuous-flow hydrothermal 

synthesis, by Rubio-Martinez et al. at 1084 m2g-1 [300].  This can likely be attributed to 

the improved mixing efficiency and increased nucleation rate of the turbulent flow regime 

in the plant reactor, resulting from the significantly higher flowrates and 

disproportionately-scaled reactor geometry. 

Figure 154: N2 Adsorption isotherms at 77 K for Al-Fumarate samples at Pilot and Plant scale 
synthesis, comparing initial sample (Centrifugation) and representative bulk sample (Filtration) 
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The increase in reactor flowrate is not equal to the increase in reactor scale and geometry, 

resulting in changes to the flow regime, reaction time and space time yield, as shown in 

Table 33, Table 34 and Table 36.  The Reynolds number (Re) is calculated immediately 

after mixing point to the reactor outlet as follows: 

𝑅𝑒 =  
𝜌𝐷𝐻𝑣

𝜇
 

Where Re is the dimensionless Reynolds number, ρ is the fluid density (kg.m-3), DH is the 

hydraulic diameter of the tube (m), ν is the mean velocity of the fluid (m.s-1) and μ is the 

dynamic viscosity (Pa.s).   

Given the tube-in-tube design of the reactor, the hydraulic diameter and cross-sectional 

area are calculated from the annulus formed from the inner surface of the outer tube (Dα-

in) and the outer surface of the inner tube (Dβ-out).  This is illustrated as the green shaded 

region in Figure 155. 

The flow regime becomes transitional at Re>2300 and turbulent at Re>4000 [319].  This 

calculation suggests that in all bench and pilot scale studies, the flow regime is well within 

the laminar region; however, the dramatic increase in flowrate and similar reactor 

geometry from pilot to plant scale results in a flow regime that is clearly turbulent.   

The changes in flow regime and reactor geometry could potentially result in changes to 

the particle size and morphology.  A similar study using these reactors was reported by 

Clark et al. for the scale up of Zn2Al-CO3 layered double hydroxides, reporting some 

Figure 155: Cross-section of the annulus created by the tube-in-tube design of the counter-current 
heat exchanger.  Dα-in = inner diameter of outer tube, Dβ-out = outer diameter of inner (Downflow) 
tube.  Shaded region (green) illustrates reactor cross-sectional area. 
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changes to the crystal domain length and surface area when moving between reactor 

scales [320].  

Table 36: Synthesis scale and comparison between flowrate, Reynolds number, flow regime and 
space time yield.  For comparative purposes, the properties of water at 100°C and used for 
calculation.   

Scale 
Flowrate 

[Lh-1] 
Reynolds Number Flow Regime 

Space Time Yield 
 [kg.L-1h-1] 

Bench 1.8 212 Laminar 4.8 

Bench 2.4 283 Laminar 4.3 

Pilot 26.4 770 Laminar 1.2 

Pilot 51.0 1488 Laminar 1.9 

Plant 3000 87507 Turbulent 158.2 

 

 

 

7.8.1 TEM Analysis 
The TEM image in Figure 157 (Pilot 1 synthesis) shows lozenge-shaped particles, which is 

similar across all samples characterised by TEM in this work and agrees with previous 

reported images of Al-Fumarate in literature [291].  Size analysis considered both the 

minor and major axis of particles, defined in Figure 156.  Figure 158 shows the size 

distribution for samples taken from the bench, pilot and plant synthesis; in all cases the 

bench scale synthesis shows the smallest particles and size distribution.  The major axis 

increases from an average particle size of 31 nm at bench scale to 45 nm for the industrial 

scale synthesis.  Many of the TEM images, used for size analysis, are included in Appendix 

D.   

The cause of the increased particle size distribution for the samples produced at industrial 

scale is unclear.  One explanation could be the change in flow regime from laminar to 

turbulent flow within the reactor; however, it may also be an artefact of the TEM images 
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used for size analysis (See Appendix D).  The images show far fewer particles and 

significant agglomeration, which when processed via the size analysis algorithm in this 

work, could easily give rise to a misrepresentative response.  

Figure 156: Definition of Major and Minor axis of lozenge-shaped Al-Fumarate samples for 
transmission electron microscopy (TEM) size analysis. 

Figure 157: Transmission Electron Microscopy (TEM) image of Al-Fumarate from Pilot 1 synthesis. 
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Figure 158: Size analysis of Al-Fumarate from transmission electron microscopy (TEM) 
images.  Samples were synthesised at Bench, Pilot and Plant scale. 
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7.8.2 Error Analysis: Yield & Surface Area 
To assess the sampling error in BET characterisation and yield calculations, five 50 ml 

samples were taken from the Pilot 1 synthesis and processed using the sequential 

centrifugation steps previously described.  The N2 adsorption isotherms and yield show 

excellent consistency across the five independent samples, with an average BET surface 

area of 1128 m2g-1 (±4) and yield of 83.9% (±0.5). 

Table 37: Mean BET Surface area and Yield for five 50 ml samples taken from Pilot 1 synthesis.  Yield 
calculated from full conversion of the organic linker. 

Sample BET Surface Area  [m2g-1] Yield [%] 

Pilot 1: A 1129 83.7 

Pilot 1: B 1131 83.3 

Pilot 1: C 1126 84.4 

Pilot 1: D 1135 83.5 

Pilot 1: E 1121 84.5 

Average 1128 ± 4 83.9 ± 0.5 

 

Figure 159: N2 Adsorption Isotherms at 77 K for Pilot 1 samples A-E. 
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7.9 Conclusions 
This chapter has demonstrated the scalability of the Al-Fumarate synthesis conditions for 

obtaining high surface area product, determined from the self-optimisation study in 

Chapter 6.  Prior to scale-up, the washing and activation methods were assessed to 

determine the effect of ageing time on the optimised product, as well as the significance 

of volatile solvent during the washing stages.  The results indicated a 91% increase in 

product yield when as-synthesised material was aged for over 12 hours.  Additionally, the 

surface area and sample crystallinity were not significantly affected, suggesting that non-

crystalline MOF or intermediates were removed during the post-processing steps of 

samples which were processed immediately. 

The optimised synthesis conditions were trialled at pilot and plant scale, demonstrating 

excellent scalability with the full-scale production (3 m3h-1) producing 1000 L of as-

synthesised material (approximately 12 kg of dry product).  Following processing through 

a combination of plate and frame filtration and gravity settling, the final BET Surface area 

for the bulk material was 1155 m2g-1, which exceeds the highest value reported for 

continuous-flow hydrothermal synthesis, by Rubio-Martinez et al. at 1084 m2g-1 [300].   

Calculation of the Reynolds numbers at bench, pilot and plant scale show that the flow 

regime of the bench and pilot systems is likely laminar, whereas the high flowrate and 

similar reactor geometry of the plant reactor result in a turbulent flow regime.  This likely 

contributes to far more efficient mixing, when compared to the bench and pilot systems, 

resulting in an increased nucleation rate, and subsequently higher yield and quality of MOF 

product.  It is possible that the turbulent flow regime in the industrial scale synthesis was 

responsible for the large variation in particle size; however, the PXRD and N2 adsorption 

analysis gave no indication of reduced product quality.  

Although the synthesis method has demonstrated excellent scalability, the need for 

suitable washing and solid-liquid separation of the as-synthesised material presents a 

significant challenge in the overall process.  Through use of a plate and frame filtration 

method, the large volumes of as-synthesised materials could be processed during this 
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study, however, the limited capacity meant that several batches were required.  

Furthermore, the method required recycling of the filtrate in order to build a filter cake on 

the filter membrane, significantly increasing the time required for processing.  Notably 

there is no technical barrier to post-processing by this method; in the future this limitation 

can be trivially addressed by the purchase of commercially available, large capacity 

filtration apparatus should commercial volume requirements warrant it. 

Further investigation of inline filtration methods could significantly improve the scalability 

of MOF production.  Rubio-Martinez et al. has previously demonstrated the use of 

megasonics as a fast and cost effective processing strategy for Al-Fumarate and MIL-

53(Al) MOFs; while Munn et al. have investigated the use of ultrasound in the activation 

of ZIF-8, with both groups reporting excellent surface areas for their respective materials 

[296, 115].   

While filtration, ultrasound and megasonics have been demonstrated as suitable for scale, 

there is still the need for optimisation of the processes, such as the number of washing 

cycles, or power and frequency of the ultrasound technologies.   

The work in this chapter utilised the optimised conditions determined at bench scale and 

demonstrated their suitability for pilot and plant scale production.  The synthesis conditions 

have shown excellent scalability, however, the process is not yet well-understood, and 

small changes in the reactor geometries or flow regimes can potentially have significant 

impacts on characteristics such as particle size and morphology, crystallinity and surface 

area.  In order to attain the optimum conditions needed at pilot or plant scale, a similar 

self-optimisation process to that of the bench system could be applied at scale.  This would 

pose significant engineering and economic challenges. However, the potential to self-

optimise large scale synthesis could drastically reduce the timescales required for 

industrial production.  Furthermore, if well-designed, an autonomous large scale reactor 

combined with in-line monitoring could respond quickly to variation in process conditions 

or precursors, in order to maintain good production or minimise disturbances. 
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Chapter 8: Conclusions and Further Work 
8.0 Conclusions and Further Work 

8.1 Overview 
The primary objective of this PhD has been to develop an autonomous, continuous-flow 

hydrothermal reactor, capable of self-optimising nanomaterial synthesis; with a focus 

towards industrial scale-up and manufacture.   

A background literature review of the applications and synthesis methods was presented 

in Chapter 1, with an emphasis on continuous-flow hydrothermal synthesis.  Self-

optimisation in flow-chemistry is a relatively recent but advancing area of research.  The 

review gives a timeline of reported examples, algorithms employed and an overview of 

their methodologies and limitations. 

8.2 Chapter 4: Evolutionary Optimisation of HKUST-1 
In Chapter 4, HKUST-1 metal-organic framework (MOF) synthesis was optimised using the 

autonomous reactor system and the SyCo Finder web application published by Moosavi et 

al. [139].  The optimisation of HKUST-1 synthesis was structured around the genetic 

(evolutionary) algorithm used in the SyCo Finder application; three generations of 

experiments were produced, whilst also ‘training’ a machine learning model to predict 

experiment outcome.  This approach was based around work by Moosavi et al. in their 

optimisation of HKUST-1 using a robotic microwave batch reactor, which achieved the 

highest reported surface area to date, at 2045 m2g-1 [138]. 

Samples were optimised to achieve the highest crystallinity from powder X-ray diffraction 

(PXRD) analysis, as determined from the average full-width half maximum (FWHM) values 

of the three most intense reflections.  Samples showing the highest crystallinity from each 

generation were further analysed by N2 adsorption to determine the surface area by BET 

method; with 1837 m2g-1 being the highest surface area achieved.  Whilst this is lower 

than the reported value by Moosavi et al., this is an excellent result for a scalable synthesis 

process. 
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This approach demonstrated that high-throughput experimentation could be successfully 

combined with machine learning and optimisation algorithms for MOF flow synthesis, 

however, a significant limitation exists in the need to collect, process and analyse all 

samples within a generation before any information could be gained.  A possible solution 

could be to automate the processing and analysis stages, which would reduce the time 

and resource required of the user.  Furthermore, this approach would be more efficient if 

unsuccessful experiments could be identified immediately following synthesis, which would 

minimise the necessary processing throughput of collected samples. 

8.3 Chapter 5 
Chapter 5 introduces autonomous, self-optimisation for the synthesis of hematite (α-

Fe2O3), using online dynamic light scattering (DLS) to maximise particle size.  In contrast 

to Chapter 4, experiments were self-guided and executed by a custom supervised machine 

learning (SML) algorithm, which uses Bayesian optimisation to build a surrogate model.   

The availability of particle size information in real time facilitated far faster and more 

efficient exploration of the design space.  This self-optimised approach required 

significantly less time, requiring just 7 hours to run and analyse 30 experiments, compared 

to the several days required to process and analyse the samples in Chapter 4.   

Optimisation of hematite considered three variables; temperature, flow rate and the ratio 

of Upflow to Downflow within the reactor; online DLS indicated that larger particle sizes 

could be obtained at increased temperature and residence time, and lower Upflow ratios.   

Offline analysis via PXRD, UV-Vis spectroscopy and transmission electron microscopy 

(TEM) showed the DLS measurements significantly overestimated the particle size in each 

case.  This could be attributable to DLS measuring the hydrodynamic diameter of particles, 

or particle agglomerates.  Notwithstanding, the autonomous reactor platform was able to 

self-optimise using an online process analytical technology (PAT) and is the first known 

example of self-optimisation in a continuous-flow hydrothermal reactor.   
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While the reactor itself worked well, immediate improvements in accuracy could be 

achieved in selection of the PAT.  Given the significant variation between DLS and size 

analysis by TEM imaging, a potentially better-suited alternative could be nanoparticle 

tracking analysis (NTA), which is less prone to measurement bias where large particles or 

agglomerates exist in the sample, however, this method also represents significant 

additional cost.   

8.4 Chapter 6 
In Chapter 6, the autonomous platform was further demonstrated by self-optimising the 

synthesis of Al-Fumarate MOF; a custom objective function was used, employing online-

FTIR spectroscopy for reaction evaluation.   

The same SML algorithm used in Chapter 5 was applied in Al-Fumarate self-optimisation, 

however, exploration parameters were set to prioritise regions of predicted high 

performance, in order to improve experiment efficiency.  30 experiments were run in 

approximately 7 hours, varying the Downflow temperature and the concentration of NaOH 

and Al2(SO4)3.  The system converged upon an optimum region at elevated temperature, 

reduced NaOH concentration and a slight excess of Al2(SO4)3 (ca. 200 °C, 0.45 MNaOH and 

0.12 MAl2(SO4)3).   

Offline PXRD showed good crystallinity in multiple samples produced within the optimum 

region, while N2 adsorption showed surface areas in excess of 1100 m2g-1 by BET method, 

suggesting a high quality of product.  This result far exceeds the highest reported value 

for Al-Fumarate by continuous-flow synthesis, at 1084 m2g-1 by Rubio-Martinez et al. 

[300].  Product yield for high quality samples varied between 41.0-59.5%, although the 

reason for this variation is unclear.   

The self-optimisation methodology was developed to maximise conversion of organic linker 

precursor to the MOF product, however, it is difficult to distinguish between pre-nucleation 

building units (PNBUs), colloidal MOF or the crystalline final product from the methods 

used.  Combining inline FTIR spectroscopy with additional PATs, such as Raman 
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spectroscopy or turbidity measurements could further develop the autonomous platform 

for self-optimising the synthesis of MOFs [321, 322, 323]. 

8.5 Chapter 7 
Chapter 7 directly follows on from the self-optimisation work described in Chapter 6.  The 

optimum synthesis conditions determined at bench scale were applied at pilot and 

industrial scale manufacture, resulting in a final surface area of 1155 m2g-1 for the 

industrial scale product.   

The effect of reactor flowrate was studied at pilot scale through two productions, at 26.4 

and 51.0 L.h-1 respectively.  The investigation showed a 16.7% decrease in product yield 

at the higher flowrate, which is likely attributable to a lower residence time at elevated 

temperature within the reactor.   

The industrial scale synthesis resulted in the highest surface area of all Al-Fumarate 

syntheses within this work, and an estimated yield of 93.3% from initial sampling.  The 

significant increase in yield and surface area is most likely due to the changes in the reactor 

flow regime, from laminar at bench and pilot scale to turbulent at industrial scale, which 

improves mixing within the reactor. 

Prior to synthesis at increased scale, the washing and activation methods were 

investigated.  It was shown that using only water (instead of either methanol or ethanol) 

for the washing stages did not adversely affect the measured surface area or sample 

crystallinity; this is a very impactful and promising discovery for the industrial scale 

synthesis of Al-Fumarate.  The separation of solids from the mixture was also investigated, 

comparing centrifugation, filtration and gravity settling.  Filtration using a plate-and-frame 

filter press was effective at both washing and separating the solids from the as-synthesised 

mixture, although the capacity of equipment available meant that a combination of gravity 

settling and filtration was necessary at industrial scale.  
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8.6 General Comments & Further Work 
This work represents the first reported self-optimising continuous-flow hydrothermal 

synthesis reactor.  The final reactor design and auxiliary platform has shown excellent 

applicability to the synthesis of nanomaterials, with a robust design that was used to 

optimise the synthesis of MOFs and metal oxides.  However, the experimental case studies 

highlighted several areas of improvement in the methods and equipment used for this 

work.  

8.6.1 Materials 
The autonomous platform described in this work is intended for use with multiple material 

groups and case studies.  The autonomous bench scale reactor was developed to achieve 

a Downflow temperature range of ambient to 400 °C, with a maximum reactor flowrate of 

50 ml.min-1.  Using multiple pumps and dilution in flow ensures that a range of precursor 

concentrations and flowrates can be rapidly investigated. 

The continuous-flow hydrothermal synthesis reactor design, from which this platform is 

based, has previously been demonstrated for the synthesis of several nanomaterials, as 

discussed in Chapter 1.  As there are no significant alterations to the reactor geometry or 

working principle, there is no reason this system cannot easily be applied to the synthesis 

and optimisation of these materials.  To further demonstrate the applicability of 

automation, machine learning and optimisation to nanomaterial synthesis, the range of 

case study materials should be expanded to include examples such as metals, phosphates, 

sulphides and other inorganic nanomaterials, which were not attempted during this PhD.   

The system is designed so that the process can be rapidly self-optimised if a suitable PAT 

is available; however, for more complex materials, high-throughput experimentation, 

sampling and offline analysis may prove to be more effective, similar to the process 

described in Chapter 4 for HKUST-1 synthesis.  
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8.6.2 Process Analytical Technologies 
Two online PATs were applied in this work: DLS and FTIR spectroscopy.  These methods 

were effective at demonstrating the potential of self-optimisation with the reactor system 

but were limited in the information they could provide.   

DLS measurements were shown to significantly overestimate the particle size of hematite 

in Chapter 5, when compared to offline PXRD and TEM imaging.  DLS measurements are 

sensitive to the presence of large particles, agglomeration or polydisperse samples, 

meaning that useful information is only available in regions of close proximity to the 

desired product.  Regions of the design space which are far from the optimum were shown 

to give invalid responses, which can easily confuse a machine learning algorithm if not 

correctly identified.  In this work, this was overcome through the use of Design of 

Experiments (DoE) for the initial experiments to identify a feasible region for self-

optimisation; while this approach was effective, it detracts from the autonomous purpose 

of the self-optimising platform.   

Inline FTIR spectroscopy was able to effectively guide the self-optimising platform to 

synthesise high-quality Al-Fumarate.  However, the measurement method was not able to 

distinguish between colloidal and crystalline MOF; while this did not demonstrate any 

significant hindrance in this work, more complex MOF products or syntheses may be more 

limited. 

Depending on the material and application, an idea ideal system would employ a more 

advanced analysis method, such as PXRD.  However, this represents significant additional 

cost and complexity, and is perhaps poorly suited to an industrial environment for which 

this system is intended. 

 

8.6.3 Machine Learning and Optimisation Algorithms 
A significant portion of the success in this work can be assigned to the machine learning 

and optimisation (MLO) algorithms which were employed.  Several MLO methods were 

applied, including DoE, genetic (evolutionary) optimisation, SNOBFIT and Bayesian 
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optimisation in combination with a surrogate Gaussian process model.  In each case, these 

methods were able to perform at least as well as would be expected from a trained 

chemist; while training the machine learning models meant that the weighted importance 

of variables could be identified. 

Development and testing of these MLO methods through parameter selection (e.g. 

exploration vs. exploitation) was not a main objective of this work, and so it is likely that 

the performance of these algorithms could be further improved and each method 

compared more effectively. 

Throughout this work, only single-objective optimisation was considered, because of time 

limitations.  Given that this work is intended for industrial application, it is therefore 

imperative to consider holistic optimisation of the process.  It is often the case in real-

world examples that multiple conflicting objectives exist, such as the cost of production 

versus product quality.  Scalarisation of multiple objectives offers an immediate solution, 

but requires in-depth prior knowledge of the system to ensure variables are correctly 

weighted.  The need to simultaneously optimise multiple environmental and economic 

factors means that a more suitable alternative would be the multi-objective optimisation 

of key or competing parameters, which could be used to identify the optimum region or 

Pareto front, whereby a gain in one variable inherently results in the loss of another [144, 

324, 325]. 

Furthermore, this work focused on the synthesis stage of the product, whereas in reality, 

the post-synthesis processing, washing and formulation stages are just as significant.  

Optimising each stage individually simplifies the task but is analogous to the “one-variable-

at-a-time” synthesis approach, of which this work has aimed to avoid. 

The choice of algorithm depends heavily on features such as the experiment cost, time 

available and primary objective (i.e. fast and efficient optimisation or to generate an 

accurate model).  As research in this area continues, more advanced and efficient 
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algorithms are continually being developed, which could easily be applied to this 

autonomous platform, with only minor modifications. 

 

8.6.4 Reactor Design 
The autonomous self-optimising platform worked well for the case study materials in this 

PhD and, in the case of Al-Fumarate, the optimum conditions were shown to scale very 

well at pilot and industrial scale manufacture.  However, it was evident in Chapter 6 that 

each reactor exhibits different flow regimes and residence times, dependent on the reactor 

geometry and process equipment employed.  Through rigorous investigation across 

multiple materials and process conditions, it is possible to model and predict the effect of 

moving from one reactor to another.  However, this approach limits applicability to well-

known materials.   

An alternative approach would be to develop the same integrated cyber-physical system 

demonstrated at bench scale, to the existing pilot and industrial scale facilities.  If well-

designed, such a system could explore and self-optimise within an optimum region 

previously identified at bench scale, meaning that the optimum conditions for a given 

reactor and environment could be rapidly identified.  Autonomous process control would 

also enable these reactors to respond quickly to disturbances, such as a drop in catalyst 

activity or the presence of poor quality precursors.   

Integrating online analysis and automation into reactors of increased scale represents a 

significant additional cost, which must be justified against the cost and sensitivity to 

process disturbances in the product.  However, these challenges could be overcome with 

appropriate and existing engineering solutions, meaning that autonomous chemical plants 

could be a viable future direction in industrial scale manufacture. 
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Appendix A: Chapter 5 – Detailed DLS Reports 

Figure 160: DLS Size & Distribution Reports for Sample A (top) and B (bottom) 
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Figure 161: DLS Size & Distribution Reports for Sample C (top) and D (bottom) 
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Figure 162: DLS Size & Distribution Reports for Sample E (top) and F (bottom) 
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Appendix B: Chapter 5 – TEM Images  
  

Figure 164: TEM Image for Sample A, Scale bar at 200 nm (top) and 20 nm (bottom) 

Figure 164: TEM Images for Sample B.  Scale bar at 200 nm (top) and 20 nm (bottom) 
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Figure 166: TEM Images for Sample C.  Scale bars at 200 nm (top) and 100, 20 and 10 nm 
respectively (bottom, left to right) 

Figure 166: TEM Images for Sample D.  Scale bar at 200 nm (top) and 20 nm (bottom) 
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Figure 168: TEM Images for Sample E.  Scale bar at 200 nm 

Figure 168: TEM Images for Sample F.  Scale bar at 200 nm (top) and 20 nm (bottom) 
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Appendix C: Chapter 6 – In situ FTIR Spectra during self-optimisation 
  

Figure 169: In-Situ FTIR Spectroscopy for Self-Optimised Experiments 1-6.  Individual spectra were first baseline-subtracted (Deionised water) and then 
filtered, prior to analysis and collation.   
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Figure 170: In-Situ FTIR Spectroscopy for Self-Optimised Experiments 7-14.  Individual spectra were first baseline-subtracted (Deionised water) and 
then filtered, prior to analysis and collation.   
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Figure 171: In-Situ FTIR Spectroscopy for Self-Optimised Experiments 15-22.  Individual spectra were first baseline-subtracted (Deionised water) and 
then filtered, prior to analysis and collation.   
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Figure 172: In-Situ FTIR Spectroscopy for Self-Optimised Experiments 23-30.  Individual spectra were first baseline-subtracted (Deionised water) and 
then filtered, prior to analysis and collation.   
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Appendix D: Chapter 7 – Al-Fumarate TEM Images 
 

Figure 173: TEM Images for Lab Scale Synthesis of Al-Fumarate 

Figure 174: TEM Images for Pilot Scale Synthesis of Al-Fumarate 
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Figure 175: TEM Images for Plant Scale Synthesis of Al-Fumarate 
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