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Abstract

In recent years there has been growing interest within Statistics in topolog-
ical aspects of random objects, one important direction being Topological
Data Analysis (TDA) and the associated concept of Persistent Homology.
This research aims to investigate both theoretical and computational aspects
of TDA. In the first strand of this research the aim is to generalize the cen-
tral limit theorem (CLT) given by Kahle and Meckes (2013, 2015) for Betti
numbers in Erdős-Rényi random graphs, to a CLT for Betti numbers in the
stochastic block model. In addressing this problem, we have provided re-
sults on the spectral structure of the adjacency matrix and the normalized
graph Laplacian in stochastic block models which appear to be new. The
second strand of the research is to investigate numerically the relationship
between the topological summaries computed under the full sample and un-
der subsamples. Subsampling often needs to be considered because existing
computational algorithms for TDA tend to break down for larger sample
sizes as computational demands grow rapidly with sample size. One im-
portant finding is that subsampling which exploits existing structure in the
data is likely to do much better than purely random subsampling. In this
PhD thesis, numerical results are given for various types of simulated data
through to real datasets.
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1
I N T R O D U C T I O N

This thesis is concerned with aspects of the exciting new approach known
as Topological Data Analysis (TDA). In Section 1.1, some background to
TDA is given, while in Section 1.2 the aims of the thesis are outlined. In
Section 1.3 the contents of the thesis are indicated.

1.1 topological data analysis : background

TDA is a new approach to data analysis with roots in the area of Pure Math-
ematics known as Topology. Topology is concerned with concepts such
continuity, connectedness and shape and focuses on properties of an object
which remain invariant under continuous transformations. This subject has
evolved since the early 1900s. The basic object of study in Topology, topo-
logical spaces, have certain precisely defined properties which are described
later. Topology has two main branches: point-set Topology which has close
connections to analysis; and Algebraic Topology, which uses Algebra, espe-
cially Group Theory, to study the structure of topological spaces. We will
have more to say about relevant aspects of Algebraic Topology in Section
1.2.

Topology, especially Algebraic Topology, has a reputation for being one of
the most abstract and difficult subjects in Pure Mathematics. Nevertheless,
in recent years Computational Topology, especially TDA, has developed
rapidly as a field and has aroused a high level of interest among mathemati-
cians, statisticians and computational scientists. These developments have
been made possible due to the rapid advances in computer technology in
recent decades, plus the fact that it is feasible to implement some of the key
tools in Algebraic Topology, such as the calculation of Betti numbers (see
Section 1.2) in algorithmic form.
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1.2 aims of the thesis

A central concept in TDA is Persistent Homology. It is difficult to explain
this concept in non-technical terms; a precise mathematical definition of
this concept is given in Chapter 2. Persistent Homology allows one to distin-
guish between “topological signal” and “topological noise”, where typically
our interest lies in identifying topological signal. There is a close analogy
with distinguishing between signal and noise in statistical settings. Two key
outputs from Persistent Homology are barcodes and persistence diagrams;
these outputs are defined in Chapter 2.

There are some excellent books and papers on TDA. One of the books
we have found most useful and accessible is by Edelsbrunner and Harer
(2010). Although much of the book is quite mathematical in its presentation
it is aimed at a general mathematical audience and therefore is not too spe-
cialised. Interesting applications are given in the book to Gene Expression
Data, Protein Docking, Image Segmentation and Root Architectures.

The paper by Ghrist (2008) also gives a valuable summary of TDA with
a focus on barcodes. Carlsson (2009) is another important contribution to
the TDA literature which lays out key ideas with a focus on image anal-
ysis. Another useful source of information about TDA, especially useful
for a probability and statistics audience, are the four short papers by Adler
(2014a,b,c, 2015). These papers present TDA in a broad context and high-
light barcodes as mathematical objects worth further study in the future.

There are several computing packages available for performing the cal-
culations required for TDA. These packages have played a crucial role in
making TDA accessible to a broad range of researchers in different fields
and in popularising TDA. The packages include R package TDA written by
Fasy et al. (2019) at https://CRAN.R-project.org/package=TDA; MATLAB
package JavaPlex written by Tausz et al. (2014) at http://appliedtopology.
github.io/javaplex/. These packages can take point clouds as input data
while Javaplex can also take graph as a raw data. Moreover, all packages
generate persistent diagrams and barcodes as the basic output. At the
present time, TDA package in R can also provide persistent landscape as
an additional output results.

1.2 aims of the thesis

This thesis has the following goals. The first is to explore the possibility of
extending the Kahle and Meckes (2013, 2015) Central Limit Theorem (CLT)
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1.2 aims of the thesis

for Betti numbers in Erdős-Rényi random graphs to stochastic block model,
where several types of vertex exist. Roughly speaking, Betti numbers count
topological features of different types. Specifically, β0, the first Betti number,
counts the number of connected components in a topological space X. The
second Betti number, β1, counts the number of “1-dimensional holes” in
X. The third Betti number, β2, counts the number of “2-dimensional holes”
in X, and so on. A formal definition of of the Betti numbers in terms of
dimensions of Homology Groups is given in Chapter 2.

In the Kahle and Meckes (2013, 2015) CLT, the relevant asymptotic regime
is such that the number of vertices, N, goes to infinity, the probability of two
typical vertices being connected by an edge goes to 0 at a suitable rate as N
goes to infinity. Further details are given in Chapters 2, 3 and 4.

Our work on the problem of extending Kahle and Meckes (2013, 2015),
CLT for Erdős-Rényi graphs to stochastic block models indicates that, at
best, there are serious difficulties in extending the proof to stochastic block
models. At worst, the CLT may only extend in rather restricted circum-
stances. An important part of the Kahle and Meckes (2013, 2015) proof is an
application of the so-called spectral gap theorem. The spectral gap theorem,
in the form used by Kahle and Meckes (2013, 2015), states that the differ-
ence between the most extreme eigenvalue and the second most extreme
eigenvalue of a certain matrix (the normalised graph Laplacian, defined in
Chapter 2) becomes large in a suitable sense as N goes to infinity. It turns
out that the spectral gap theorem does typically hold in a suitable form
with stochastic block models. This is shown in Chapter 3, where we present
results on the asymptotic spectral structure of the so-called adjacency ma-
trix and normalised graph Laplacian. So far as we are aware, the results in
Chapter 3 are new.

In Chapter 4, the focus is on proving as many of the results as possible
that generalize from the Erdős-Rényi model to the stochastic block model.
Most of the results for the Erdős-Rényi model, with the exception of the
spectral gap theorem, go through to the stochastic block model.

Chapters 3 and 4 have quite a theoretical focus, though we believe that
the problems addressed are of considerable interest as there is still a short-
age of theoretical results relating to TDA. In Chapter 5, our focus is very
different and much more computational. We have found in numerical ex-
amples that we have used TDA software on, the sample size does not need
to be very large for the TDA algorithms to break down, in the sense that
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1.3 contents of the thesis

the programmes do not finish in reasonable time and memory limits are
exceeded. This raised the need for some kind of subsampling. However,
subsampling can lead to problems because there is no guarantee that sub-
samples have the same topological and statistical structure as the original
samples. In some situations, however, e.g. with the Brain Artery Tree Data
considered in Chapter 5, there is already a long of structure in the data.
The main purpose of this chapter is to investigate the usefulness of subsam-
pling with using TDA with larger sample sizes. A key idea in this chapter
is, when possible, to subsample from some kind of skeleton of the origi-
nal data so that to some extent at least some of the structure is retained
in subsamples. The numerical results in this chapter indicate that, when it
can be applied, structured subsampling does a much better job than purely
random subsampling.

1.3 contents of the thesis

In this section we describe the contents of the thesis.
Chapter 2 focuses primarily on definitions and results from various areas

of mathematics, probability and statistics which are used later in the the-
sis. The material selected does not form a coherent whole. The aim is to
make the thesis as self-contained as possible, from a statistics and probabil-
ity point of view. Results from statistics and probability include definitions
of the Kolmogorov-Smirnov and Cramer-von Mises goodness-of-fit statis-
tics, along with permutation tests, which all appear in Chapter 5 although
the settings in which they are used are somewhat non-standard. Results and
concepts from probability include Chernoff bounds, Bernstein’s inequality
and uniform integrability. In Chapter 3 we make use of a dominated con-
vergence type result, based on uniform integrability and convergence in
probability that is given in e.g. Williams (1991). Basic material on linear
algebra and vector spaces is also included in Chapter 2, as is elementary
material on Erdős-Rényi random graphs. Most of the remainder of Chapter
2 aims to provide an elementary and, as far as possible self-contained, ac-
count of Persistent Homology. Chapter 2 concludes with brief introductions
to results in a few papers that have played an important role in motivating
the work of this thesis, especially in Chapter 3 and Chapter 4, including
Kahle and Meckes (2013, 2015) and some of the papers they reference.
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1.3 contents of the thesis

In Chapter 3 the asymptotic spectral structure (i.e. the eigenvalues and
eigenvectors) of the adjacency matrix and the normalised graph Laplacian,
defined in Chapter 2, are derived. The results in this chapter appear to be
new.

Chapter 4 extends many of the auxiliary results derived by Kahle and
Meckes (2013, 2015) in the Erdős-Rényi model case, to the stochastic block
model case, an important omission being the extension of the spectral gap
theorem.

In Chapter 5, we investigate and compare purely random subsampling
with structured subsampling. In the latter approach, the idea is that one
should try to exploit structure in the dataset when designing the subsam-
pling algorithm. In the Brain Artery Tree Data considered in Chapter 5, the
structured subsampling approach worked well and proved to be far supe-
rior to purely random subsampling.

Finally, in Chapter 6, conclusions and possibilities of future work are
described.

5



2
B A C K G R O U N D K N O W L E D G E

2.1 introduction

In this chapter, we present technical background which is relevant to later
chapters in this thesis. In Section 2.2, some important topics in probability
and statistics are covered. A review of linear algebra is given in Section
2.3. In Section 2.4, random graph models are reviewed. Section 2.5 covers
the Persistent Homology. In Section 2.6, some key results from different
papers are covered. Finally, a review of some more advanced literature on
the Persistent Homology is given in Section 2.7.

2.2 background on probability and statistics

In this section, some relevant probability and statistics results are listed.

2.2.1 Some Test Statistics

kolmogorov–smirnov test

The Kolmogorov–Smirnov (KS) test was introduced by Kolmogorov (1933)
and Smirnov (1948) for testing goodness-of-fit. Let {x1,...,xn} be independent
identically distributed (iid) random variables from F, then the empirical cu-
mulative distribution function (cdf) is defined as

Fn (x) =
card {i : xi ≤ t}

n
=

1
n

n

∑
i=1

I {xi ≤ t} , (2.2.1)

where I is the indicator function.

6



2.2 background on probability and statistics

The KS statistic for testing H0 : F = F0 where F0 is a given continuous cdf
F (x) is

dn = sup
−∞≤x≤∞

|Fn (x)− F0 (x)| .

If {xi} comes from the distribution with cdf F0 (x), then dn → 0 as n→ ∞.
The KS test may also be extended to test whether two independent sam-

ples are from the same or different distributions. In this case, let {xi : i = 1, . . . , n}
be iid random variables from F and let {yi : i = 1, ..., m} be iid random vari-
ables from G, then the KS statistic is defined as

dnm = sup
−∞≤x≤∞

|Fn (x)− Gm (x)| ,

where Fn and Gm are the empirical cdf for two independent samples respec-
tively and the null hypothesis is H0 : F = G.

The null hypothesis test that H0 : F = G is rejected at level α if

dnm > c (α)

√
n + m

nm
,

where c (α) =
√
−1

2 ln
((

α
2

))
is given by Knuth (1997).

cramer-von mises test

The Cramer-von Mises (CvM) test was presented by Cramér (1928) and
Von Mises (1928). Let x(1) ≤ x(2) ≤ ... ≤ x(n) be iid random variables from
F arranged in an increasing order. Then the one-sample CvM test statistic
for testing H0 : F = F0, where F0 is specified is defined as

T = n
∫ ∞

−∞
[Fn (x)− F0 (x)]2 dF0 (x) =

1
12n

+
n

∑
i=1

[
2i− 1

2n
− F0

(
x(i)
)]2

,

where Fn is the empirical cdf for the x(i) and F0 is the theoretical distribution.
If T is larger than the critical value, then the null hypothesis H0 : F = F0

is rejected.
Similarly to the KS test, the CvM test can also be extended to a two-

sample CvM test.

7



2.2 background on probability and statistics

If there is a second sample with order statistics y(1) ≤ y(2) ≤ ... ≤ y(m),
then let Gm denote the empirical cdf for y(j), and let Hn+m be the empirical
cdf of combined sample

{z1, ..., zn, zn+1, ..., zn+m} = {x1, ..., xn, y1, ..., ym} .

By arranging the zi in increasing order, write z(ri)
= x(i) and z(sj)

= y(j)

where i = 1, ..., n and j = 1, ..., m, where ri is the rank of x(i) and sj is the
rank of y(j) in the pooled sample. Then the test statistic for two-sample
CvM is defined as

T =
nm

n + m

∫ ∞

−∞
[Fn (x)− Gm (x)]2 dHn+m (x) =

U
nm (n + m)

− 4nm− 1
6 (n + m)

,

where

U = n
n

∑
i=1

(ri − i)2 + m
m

∑
j=1

(
sj − j

)2 .

If T is larger than the critical value, then the null hypothesis that H0 : F = G
is rejected (Anderson, 1962).

permutation test

The permutation test was suggested by Fisher (1936). Assume there are
two samples {x1, ..., xn} and {y1, ..., ym} with cdf’s Fn and Gm respectively.
If there is a suitable test statistic T0 calculated jointly from {xi} and

{
yj
}

,
then combine the two samples as follows:

{z1, ..., zn, zn+1, ..., zn+m} = {x1, ..., xn, y1, ..., ym} .

The combined group is randomly allocated into two groups
{

r(l)1 , ..., r(l)n

}
and

{
s(l)1 , ..., s(l)m

}
, where l = 1, ..., M and M is the number of permutation

considered. Then for l = 1, ..., M, the new test statistic Tl is calculated using
the same method as T0. The resulting p-value for permutation test is defined
as

p =
1
M

M

∑
l=1

I {Tl > T0} ,

where I is the indicator function.
The KS, CvM and permutation test statistics are used in Chapter 5. How-

ever, as pointed out in Chapter 5, these statistics are used in a non-standard
way because the relevant sample are non-iid.
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2.2 background on probability and statistics

2.2.2 Probability Approximation

Some important results from probability theory that are used later are now
presented.

chernoff bound (Chernoff et al . , 1952)

Suppose Xi
indep∼ Bernoulli (pi) and write X =

n
∑

i=1
Xi and µ =

n
∑

i=1
pi. Then,

P [X ≥ (1 + δ) µ] ≤ exp
{
− µδ2

2+δ

}
δ > 0

P [X ≤ (1− δ) µ] ≤ exp
{
−µδ2

2

}
0 < δ < 1.

Then for δ ∈ (0, 1) ,

P (|X− µ| > δµ) ≤ 2 exp
{
−µδ2

3

}
. (2.2.2)

bernstein’s inequality (Bernstein , 1924)
Suppose Xi are independent, zero-mean random variables such that |Xi| ≤

M almost surely (a.s.) for all 1 ≤ i ≤ n. Then for any t ≥ 0,

P

(
n

∑
i=1

Xi > t

)
≤ exp

−
t2

2
n
∑

i=1
E
(
X2

i
)
+ 2

3 Mt

 . (2.2.3)

The term a.s. is defined as follows. An event E is said to occur almost
surely (a.s.) if P(E) = 1.

2.2.3 Uniformly Integrability

Definition 2.2.1. (Definition 6.7 by Williams (1991)) For 1 ≤ t < ∞, X ∈ L t

if
E
(
|X|t

)
≤ ∞.

Definition 2.2.2. (Definition 13.2 by Williams (1991)) A class H of random
variables is called uniformly integrable (UI) if given ε > 0, there exists
C ∈ [0, ∞) such that

E (|X| ; |X| > C) =
∫
{x:|x|>C}

|X| dX < ε

9



2.3 background on linear algebra

for all X.

Proposition 2.2.3. (Proposition 13.3(a) by Williams (1991)) Suppose that H is a
class of random variables which is bounded in L t for some t > 1; thus, for some
C ∈ [0, ∞) ,

sup
X∈H

E
(
|X|t

)
< C.

Then H is a uniformly integrable class of random variables.

Theorem 2.2.4. (Theorem 13.7 by Williams (1991)) Let (Xn)n≥1 be a sequence in
L 1 and let X ∈ L 1. Then E (|Xn − X|) → 0 if and only if the following two
conditions hold

1. Xn → X in probability
2. the sequence (Xn)n≥1 is uniformly integrable.

2.3 background on linear algebra

Define P =
{

vi ∈ Rd : i = 1, . . . , N
}

. A point x =
N
∑

i=1
λivi is an affine combi-

nation of the vi if
N
∑

i=1
λi = 1. If in addition λi is non-negative for all i, then

x =
N
∑

i=1
λivi is a convex combination. The convex hull is the set of all such

convex combinations. Moreover, k points v1, v2, ..., vk are said to be affinely
independent if and only if vi − v1, 2 ≤ i ≤ k, are linearly independent.

Let T : V → W be a linear map where V and W are two vector spaces.
Then the kernel and image are defined as Ker (T) = {v ∈ V|T (v) = 0}
and Im (T) = {T (v) |v ∈ V}. The dimension of a vector space V is the
maximum number of linearly independent vectors in V. We write dim (V)

for the dimension of V.
Then rank–nullity theorem states that

dim (Im (T)) + dim (Ker (T)) = dim (V) (2.3.1)

where rank (T) = dim (Im (T)) .

10



2.4 background on the random graph model

An n×m matrix A is defined as being in Smith normal form if and only
if

A =



a11 0 . . . . . . . . . 0

0 . . . 0 . . . . . . 0
... 0 akk 0 · · · 0
0 . . . 0 . . . . . . 0
... . . .

... . . . . . . 0
0 · · · 0 . . . . . . 0


=

[
diag {a11, ..., akk} 0k,m−k

0n−k,k 0n−k,m−k

]

i.e. the only potentially non-zero elements are the diagonal elements aii, i =
1, ..., k.

2.4 background on the random graph model

A graph G (V , E) is a mathematical structure consisting of two sets, V and
E . V is a non-empty set, whose elements are called the vertices or nodes,
and E is the edge set, where E is a subset of V × V . The elements of E are
called edges. If e = (u, v) ∈ E where u, v ∈ V , then u and v are said to be
adjacent. The graph is said to be undirected when (v, u) ∈ E if and only if
(u, v) ∈ E , for all u, v ∈ V .

An edge which connects a vertex to itself is called a loop. If there is
potentially more than one edge connecting two different vertices, the graph
is said to be a multi-edge graph. A graph without loops or parallel edges
is called a simple graph. In this thesis, we only consider simple undirected
graphs.

Throughout this thesis, the number of elements of V , card (V), is denoted
by N.

The degree of a vertex,

deg (v) = card {u : (u, v) ∈ E} ,

is the number of edges with an end-point in that vertex.
A graph is said to be connected if and only if there are no isolated vertices,

i.e. there is no vertices with degree 0.
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Two graphs G1 (V1, E1) and G2 (V2, E2) are said to be isomorphic if there
is a one-one relationship between V1 and V2

f : V1 → V2

such that
(u1, v1) ∈ E1 ⇔ ( f (u1) , f (v1)) ∈ E2.

For a graph, G (V , E), with block structure, there exists a partition of V
into vertices of different types, i.e. there are blocks, V1, ...,Vζ where

ζ⋃
i=1
Vi = V

Vi
⋂ Vj = ∅

where i 6= j and ∅ is the empty set. We called this a block model graph.
In graph theory, there are several different ways to represent a graph

mathematically. Three of these representations are introduced here. Con-
sider a simple undirected graph with N vertices and each vertex is labeled
as v1, ..., vN.

The adjacency matrix, denoted A =
{

aij
}

1≤i≤j≤N where aij is an indicator
for edge (i, j)

aij =

1 if there is an edge between i and j

0 otherwise.

For a simple undirected graph, the adjacency matrix is symmetric with aij =

aji for all i 6= j and aii = 0 for all i.
Another matrix of interest is what is called the normalized graph Lapla-

cian.
To define this, let A be the adjacency matrix and D =

{
dij
}

be the degree
matrix of a random graph G, where

dij =

deg (vi) if i = j

0 otherwise.

Then define
Anorm = D−

1
2 AD−

1
2 .

12



2.4 background on the random graph model

Then the normalized graph Laplacian is defined as

L = L (G) = IN −Anorm

where

lij =


1 if i = j and deg (vi) 6= 0

− 1√
deg(vi)deg(vj)

if i 6= j and
(
vi, vj

)
∈ E

0 otherwise,

and IN is the N × N identity matrix (Kahle, 2014).
In Chapter 3 and Chapter 4 of this thesis, random block models are sub-

jects of primary interest. The most extensively studied one is called the
Erdős-Rényi model, in which there is just one type of vertex.

The Erdős-Rényi model (ERM) was introduced by Erdős and Rényi (1959,
1960, 1961) and Gilbert (1959). The ERM, denoted as G (N, p), is an undi-
rected graph with N vertices and each edge included independently of the
others with probability 0 < p < 1.

Stochastic block model (SBM) were discussed by Kolaczyk (2009). SBM,
denoted as G ((Nr) , (prs) , ζ) is an undirected graph with N vertices and ζ

blocks. Define

N =
ζ

∑
r=1

Nr

where Nr = card (Vr) and

prs = P [(u, v) ∈ E ]

where u ∈ Vr and v ∈ Vs.
Without lost of generality, in this thesis, we often assume N1 ≤ N2 ≤ ... ≤

Nζ .
In this thesis, the main results focus on the SBM with G ((Nr) , (prs) , ζ).

However, there are some parts of the thesis where the focus is on the ERM,
G (N, p) especially when discussing the CLT results of Kahle and Meckes
(2013, 2015).
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2.5 persistent homology

2.5 persistent homology

2.5.1 Introduction

In this section, we discuss relevant background and concepts of Persistent
Homology. These concepts and ideas are applied later in the thesis. This
section follows the book by Edelsbrunner and Harer (2010).

In general, Persistent Homology is composed of the following parts, of
which a more detailed description will be given in the following discussions:

1. A set of points P =
{

vi ∈ Rd : i = 1, . . . , N
}

, sometimes called a point
cloud;

2. A sequence of mathematical objects, (Ks)s>0 with a natural ordering
is known as a filtration (see Section 2.5.2.2);

3. Each object Ks has topological features. As s increases, topological
features are born and then die (see Section 2.5.2.2);

4. This collection of birth-and-death processes can be represented in terms
of persistence diagrams and barcodes both of which are closely related
to Betti numbers (see Section 2.5.4).

This section is organised as follows. In Section 2.5.2, we discuss some key
concepts of Persistent Homology. Section 2.5.3 applies this theory to the
simplicial complex, graphs and point cloud. In Section 2.5.4, we review
different summaries of Persistent Homology.

2.5.2 Key Concepts

In this section, we first give the definitions for topological space and topol-
ogy. Then we consider two different types of dataset: a point cloud dataset
(Example A) and a dataset of points with no coordinate information, i.e.
data points from a simple graph (Example B). These two examples are used
to illustrate all definitions in Section 2.5.

Sutherland (2009) provides the definition for topological space and topol-
ogy as follow.

A topological space T = (X, T ) consists of a non-empty set X together
with a fixed family subsets of X satisfying

14



2.5 persistent homology

1. X, ∅ ∈ T , where ∅ is the empty set;

2. if U1, U2 ∈ T , then U1
⋂

U2 ∈ T ;

3. if Ui ∈ T , then
⋃

Ui ∈ T where i is an index set which can be un-
countable infinite.

X is defined as the topology of the family T and Ui is called the open sets of
T. Therefore, ’U ∈ T ’ is equivalent to ’U is open in T’. However, in practise,
as the topological space. In this thesis, we use X as the topological space in
Chapter 1.

example a (part 1)
Four points are generated randomly from Uni f orm

(
[0, 10]2

)
as shown in

Figure 2.5.1. Then,
P =

{
vi ∈ R2 : i = 1, ..., 4

}
is a set of data points. P is a simple example of a point cloud.

example b (part 1)
In another case, there are 4 isolated points, or vertices, which we mark as

1 to 4. In this example, points can also be written as P = {v1, v2,v3, v4} .

Figure 2.5.1: Example A (Part 1) (left) and Example B (Part 1) (right).

2.5.2.1 Simplices, Simplicial Complexes and Chains

The fundamental element of Persistent Homology is based on the idea of a
simplex, σ.
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A k-simplex σk is the convex hull of k + 1 affinely independent points

σk = conv {vi : i = 1, . . . , k + 1}

which is defined in Section 2.3. Its dimension is dim (σk) = k. We use
special names for the first few dimensions, i.e. a vertex is a 0-simplex σ0,
an edge is a 1-simplex σ1, a triangle is a 2-simplex σ2 and a tetrahedron is
a 3-simplex σ3, etc. A face of σk is the convex hull of a non-empty proper
subset of {v1, v2, ..., vk+1} . Here a proper subset is a subset not equal to the
whole set. Figure 2.5.2 illustrates examples for the first 4 simplices, σ0, ..., σ3.

Figure 2.5.2: Simplices in R3: 0-simplex (vertex), 1-simplex (edge), 2-
simplex (triangle) and 3-simplex (tetrahedron).

Definition 2.5.1. A simplicial complex, K, is a finite collection of simplices,
σ, τ, ... such that σ ∈ K and τ ≤ σ implies that τ ∈ K, and σ, τ ∈ K implies
σ
⋂

τ is either empty or a face of both.

There are three types of subset of a complex which are called link, star
and skeleton. For a simplicial complex, K, and a face σ1 of K, the link,
lkK (σ1), is the set of faces σi such that faces σ1 ∩ σi = ∅ and σ1 ∪ σi = K.
In addition, the star, st (v) , is the subcomplex of all faces in K containing v
where v is a vertex of K.

Definition 2.5.2. The k-skeleton of a simplicial complex K, denoted skelk,
is the collection of all faces of all simplicies in K which have dimension at
most k, i.e.

skelk = {σ ∈ K : dim (σ) ≤ k} .

The three most commonly used complexes are the clique complex, Čech
complex and Rips complex which are discussed later in Section 2.5.3. A
clique complex is often used with abstract points whereas Čech and Rips
complex are defined with point clouds.
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A k-chain for k-simplices in a complex K is defined as

ck = ∑
i

ak,iσk,i

where ak,i = 0 or 1 indicates the exclusion or inclusion of the i-th k-simplex.
There is a k-chain for each integer 0 ≤ k ≤ dim (K).

Definition 2.5.3. For a k-chain, ck, the support supp (ck) is the union of k-
faces in ck with non-zero coefficients. Similarly the vertex support vsupp (ck)

is the underlying vertex set of supp (ck).

The group of k-chains, Ck, is the k-chain with normal addition operation
under modulo 2. To relate these groups of chains to each other, the bound-
ary of a k-simplex is defined as the sum of the k-simplex’s (k− 1)-simplices
faces, which is

∂kσk,i = ∑
i

ak−1,iσk−1,i

where ak−1,i = 1, if σk−1,i is a face of σk,i and ak−1,i = 0 if σk−1,i is not a face
of σk,i.

Therefore, the boundary maps may be written in a sequence as

. . .
∂k+2−→ Ck+1

∂k+1−→ Ck
∂k−→ Ck−1

∂k−1−→ . . .
∂1−→ C0

∂0−→ 0

(C−1 = 0) .
Recall from the discussion as (2.3.1) that Ker denotes the kernel of a map

(the set of elements mapped to the zero elements) and Im denotes the image
of a map.

By letting Zk = Ker (∂k) and Bk = Im (∂k+1), we also define Zk as the
group of k−cycle and Bk as the group of the p−boundaries both with nor-
mal addition operation under modulo 2 . Since C−1 = 0, Z0 = Ker (∂0) = C0.
The group of k−chains are illustrated in both Example B (Part 2) and B (Part
3).

example b (part 2)
Following the setting from Example B (Part 1), Example B (Part 2) gives a

basic example of chains, simplices and boundary.
As shown in Figure 2.5.3, we can connect the vertices and the yellow

triangle indicates the presence of 2−simplex.
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The 0-simplices set is

σ0 = {v1, v2, v3, v4} = {σ0,1, σ0,2, σ0,3, σ0,4} ,

and c1 =
6
∑

i=1
aiσ1,i where ai = 1 for i = 1, ..., 5 and a6 = 0, since there should

be a total number of

(
4
2

)
= 6 edges in the complete graph. Also,

∂2σ2,1 = ∑ a1,iσ1,i = σ1,1 + σ1,2 + σ1,3.

Figure 2.5.3: Example B (Part 2) and B (Part 3) illustrates how to calculate
the different Betti numbers from matrix operations. See (2.5.4).

The fundamental property that makes homology work is that the bound-
ary of a boundary is necessarily zero .

fundamental lemma of homology

∂k · ∂k+1 = 0nk+1,nk−1 (2.5.1)

for all integers k and 0nk+1,nk−1 is a zero matrix.
An example is given in Example B (Part 3).

18



2.5 persistent homology

2.5.2.2 Betti Numbers and Filtrations

Definition 2.5.4. The k-th homology group, Hk, is the quotient group Hk =

Zk/Bk, where Zk and Bk are defined in the description of group of k-chains.
The k-th Betti number is defined as

βk = rank (Hk)

= rank (Zk)− rank (Bk)

= rank {Ker (∂k)} − rank {Im (∂k+1)} .

Therefore, if we rewrite zk = rank (Zk), bk = rank (Bk), then

βk = zk − bk. (2.5.2)

Moreover, we also define nk = rank (Ck) , then by rank–nullity theorem

nk = zk + bk−1. (2.5.3)

An example of a Betti number is given below in Example B (Part 3).

We have direct interpretations of Betti numbers for the first few dimen-
sions, i.e. β0 is the number of connected components, β1 is the number of
one-dimensional holes, β2 is the number of two-dimensional voids.

matrix operations

We can re-write the boundary map in matrix form
σk,1

σk,2
...

σk,m

 =


a1

k−1,1 a1
k−1,2 . . . a1

k−1,m
a2

k−1,1 a2
k−1,2 . . . a2

k−1,m
...

... . . . ...
am

k−1,1 am
k−1,2 . . . am

k−1,m

 ·


σk−1,1

σk−1,2
...

σk−1,m

 (2.5.4)

which can be simplified as σk = Ak,k−1σk−1, where Ak,k−1 is a matrix con-
sisting of 0’s and 1’s with modulo 2 operations.
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By doing both row and column operations, we can reduce Ak,k−1 to Smith
normal form. Therefore, we can present the information as

← nk−1 →
← bk−1 →

↑ 1 0 . . . . . . . . . 0

0 . . . 0 . . . . . . 0

nk
... 0 1 0 · · · 0

↑ 0 . . . 0 . . . . . . 0

zk
... . . .

... . . . . . . 0
↓ ↓ 0 · · · 0 . . . . . . 0

The matrix operations are presented in Example B (Part 3).

example b (part 3)
Following the setting from Example B (Part 2), since

σ2,1 = σ1,1 + σ1,2 + σ1,3 = σ1,1 + σ1,2 + σ1,3 + 0 · σ1,4 + 0 · σ1,5,

the boundary matrix is the 1× 1 matrix

(σ2,1) =
(

1 1 1 0 0
)


σ1,1

σ1,2

σ1,3

σ1,4

σ1,5

 .

Therefore, A2,1 =
(

1 1 1 0 0
)

. By applying column operations to A2,1,

it can be reduced to A2,1 →
(

1 0 0 0 0
)

. As a result, n2 = 1, z2 = 0,
b1 = 1 and n1 = 5.

Similarly, the boundary matrix for σ1 is
σ1,1

σ1,2

σ1,3

σ1,4

σ1,5

 =


1 1 0 0
1 0 1 0
0 1 1 0
0 1 0 1
0 0 1 1




σ0,1

σ0,2

σ0,3

σ0,4

 = A1,0σ0.
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By applying row operations to A1,0, it can be reduced to

A1,0 →


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 0
0 0 0 0

 . (2.5.5)

After applying column operations to the last column of (2.5.5) , it is reduced
to

A1,0 →


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

Consequently, n1 = 5, z1 = 2, b0 = 3 and n0 = 4.
Since Z0 = C0, z0 = rank (Z0)=rank (C0) = n0 = 4, n3 = rank (C3) = 0 =

z3 = b2

β0 = z0 − b0 = 4− 3 = 1
β1 = z1 − b1 = 2− 1 = 1
β2 = z2 − b2 = 0− 0 = 0.

As a result, β0 = 1, β1 = 1 and β2 = 0 for Figure 2.5.3.
Furthermore,

A2,1A1,0 =
(

1 1 1 0 0
)


1 1 0 0
1 0 1 0
0 1 1 0
0 1 0 1
0 0 1 1

 =
(

0 0 0 0
)
= 0n2,n0

which satisfies the Fundamental Lemma of Homology stated in (2.5.1).

euler-poincare theorem

For simplicial complexes, the Euler characteristic, χ, is defined as the
alternating sum of the number of k-simplices. Moreover, using (2.5.3)
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χ = ∑ (−1)k nk

= ∑ (−1)k (zk + bk+1) ,

where nk, zk and bk are defined in Section 2.5.2.2.
The Euler characteristic can also be defined as the alternating sum of the

Betti numbers, combined with (2.5.2):

χ = ∑ (−1)k βk

= ∑ (−1)k (zk − bk) ,

which implies

χ = ∑ (−1)k nk

= ∑ (−1)k (zk + bk+1)

= ∑ (−1)k (zk − bk)

= ∑ (−1)k βk.

An example of Euler characteristic is given in Example B (Part 4).

example b (part 4)
Following the settings from B (Part 3), the alternating sum of the number

of k−simplices
χ = ∑ (−1)k nk

= (−1)0 n0 + (−1)1 n1 + (−1)2 n2

= 4− 5 + 1 = 0,

.

while the alternating sum of the βk numbers is

χ = ∑ (−1)k βk

= (−1)0 β0 + (−1)1 β1 + (−1)2 β2

= 1− 1 + 0 = 0,

which satisfies the results of the Euler-Poincare Theorem for the Euler char-
acteristic.
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filtration

Let K be a simplicial complex with m simplices, then there are n ≤ m
different sub-complexes, which can be arranged as an increasing sequence,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K. (2.5.6)

This nested sequence of complexes is called the filtration of K.
We then define a function g : K → R, where g is monotonic increasing

along the increasing chains of the faces, i.e. if σ is a face of τ, then g (σ) ≤
g (τ). Monotonicity implies that the sublevel set, Ks = g−1 (−∞, as] , is a
sub-complex of K for a0 ≤ a1 ≤ ... ≤ am.

The sequence of inclusion maps from (2.5.6) induces maps on homology
for each dimension k,

0 = Hk (K0)
f 0,1
k−→ Hk (K1)

f 1,2
k−→ . . .

f k−1,k
k−→ Hk (Km) = Hk (K) . (2.5.7)

In order to understand the changing space, we focus on where homology
classes appear (are born) and disappear (i.e. die) in this sequence.

Let f i,j
k : Hk (Ki) → Hk

(
Kj
)

be the map from (2.5.7). Then the k-th Persis-

tent Homology group is defined as Hi,j
k = Im

(
f i,j
k

)
for 0 ≤ i ≤ j ≤ m. The

corresponding k-th Betti number is defined as β
i,j
k = rank

(
Hi,j

k

)
.

Let γ be an element in Hk (Ki), we define that γ is born at Ki if γ /∈ Hi−1,i
k .

Furthermore, the death time of γ is defined as Kj if f i,j−1
k (γ) /∈ Hi−1,j−1

k but
f i,j−1
k (γ) ∈ Hi−1,j

k , as shown in Figure 2.5.4.

Figure 2.5.4: The class γ is born at Ki as it is not in the image of the Hi−1,i−1
k .

It dies at Kj because it merges with the image of H j−1,j−1
k .
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If γ is born at Ki and dies at Kj, the difference in the function values is
defined as the persistence, pers (γ) = aj − ai. If γ is born at Ki but never
dies then we set its persistence to be pers (γ) = ∞.

In TDA, we often refer the birth time as b and death time as d, i.e. we
write b = ai and d = aj. This process is viewed as the birth-and-death
process.

Figure 2.5.5 and 2.5.6 give examples of filtrations in the discrete case and
the Čech complex, which is going to be defined in Section 2.5.3.

Figure 2.5.5: Filtration of
a simplicial
complex (tetra-
hedron) and
its topological
characterization.
At each stage, a
vertex, a line or
a face which is
newly added is
presented in red.

Figure 2.5.6: Filtration of
a point cloud
under Čech
complex.

2.5.3 Simplicial Complexes

As mentioned in Section 2.5.2, the three most commonly used complexes
are the clique complex, Čech complex and Rips complex.
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clique complex

The clique complex X (H) is a simplical complex of a general graph H
with N vertices, and it has a simplex σ = {v1, . . . , vl} if and only if all edges(

vi, vj
)
∈ X (H) for 1 ≤ i ≤ j ≤ l ≤ n.

We also call the clique complex a random clique if the graph H is a ran-
dom graph. The most commonly used random graph is the Erdős-Rényi
model (ERM) which is defined in Section 2.4.

An ERM G (4, 0.4) is illustrated in Figure 2.5.7 in which only vertices
labelled (1, 3) , (1, 4) and (3, 4) are connected.

example b (part 5)
Following the setting from Example B (Part 4), for random clique complex

in Figure 2.5.7,

σ0 = {v1, v2, v3, v4} = {σ0,1, σ0,2, σ0,3, σ0,4} ,

σ1 = {σ1,1, σ1,2, σ1,3} and σ2 = {v1, v3, v4} since all edges
(
vi, vj

)
are present.

Figure 2.5.7: Example B (Part 5): Erdős-Rényi random graph G (4, 0.4). Only
edges between vertices labelled (1, 3) , (1, 4) and (3, 4) are con-
nected.

Therefore, the β values are β0 = 2, β1 = β2 = 0.
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čech complex

Consider a point cloud P =
{

vi ∈ Rd : i = 1, . . . , n
}

. By placing a set of
balls centered at the data points with common radius r, the Čech complex
C (r) is defined as follows. A simplex σ =

{
vi1 , . . . , vil

}
lies in C (r) if and

only if
l⋂

j=0
Br(vij) 6= ∅ where Br

(
vij

)
=
{

vij ∈ σ|d
(

vij , viz

)
≤ r, j 6= z

}
;

r > 0 is the radius of the ball and 1 ≤ j ≤ l ≤ n.
A example of a Čech complex is given in Example A (Part 2).

example a (part 2)
Following the setting from Example A (Part 1), as can be seen in Figure

2.5.8, each vertex is placing a circle with common radius from 2 to 4. The
top line of Figure 2.5.8 illustrates the increase of the circle radius while
the bottom line indicates the corresponding existence of the simplices. For
r = 2, since no balls intersect, there is no edge present. For r = 3, only 2

balls intersect, as shown in the area marked as darker blue. Therefore, only
edges are added. The empty triangle indicates that the three balls do not
intersect with each other. For r = 4, the area where three balls intersect are
marked as purple. This implies that two 2-simplices are presented which are
marked as yellow in bottom line. In conclusion, for r = 0, r = 1 and r = 2,
β0 = 4, β1 = β2 = 0; for r = 3, β0 = 1, β1 = 1, β2 = 0; for r = 4, β0 = 1,
β1 = β2 = 0. As a result, for persistent diagrams which are discussed
in Section 2.5.4, Dgm0 and Dgm1 are Dgm0 = {(0, 3) , (0, 3) , (0, 3) , (0, ∞)},
Dgm1 = {(3, 4)} and Dgm2 is null.

In general, from the computational point of view, Čech complexes are
very expensive. In Example A (Part 2), establishing the existence of a 2-
simplex involves searching all subsets of points of size 3. If we want to know
whether or not there is a 8-simplex, we need to consider all the combinations
of points of size 9.

Therefore, from a practical point of view, a computationally simpler type
of complex is needed to replace the Čech complex.

rips complex

Consider the point cloud P =
{

vi ∈ Rd : i = 1, . . . , N
}

. By placing a set
of balls centered at the data points with common radius r, the Vietoris-
Rips complex, shortened to Rips complex and denoted R (r), is defined as
follows. A simplex σ = {v1, . . . , vl} ∈ R (r) if and only if d

(
vi, vj

)
≤ 2r
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2.5 persistent homology

where d (·, ·) is the Euclidean distance between two points, r > 0 is the
radius of the ball and 1 ≤ i < j ≤ l ≤ n.

example a (part 3)
Following the setting from Example A (Part 1), the top line of Figure 2.5.9

is the same as Example A (Part 2). However, the difference between Rips
complex and Čech complex occurs when r = 3. For r = 3, since all 3 edges
are included in the Rips complex, the triangle is also included in the Rips
complex.

In summary, Dgm0 = {(0, 3) , (0, 3) , (0, 3) , (0, ∞)} and there are no Dgm1

and Dgm2.
The Rips complex is much easier to compute as it is only determined by

the combinations of vertices and edges. This means that Rips complex is
also a clique complex.

Furthermore, the Example A (Part 2 and 3) show that the Čech complex
and Rips complex do not always have the same topological features, i.e.
when r = 3, β1 > 0 for the Čech but β1 = 0 for the Rips complex as there
is an empty hole formed by the triangle for Čech complex but not for the
Rips complex. However, there is an inclusion relationship between Čech
and Rips complex, which is

C (r) ⊆ R (r) ⊆ C
(√

2r
)
⊆ R

(√
2r
)

for any r > 0 (De Silva and Ghrist, 2007).

2.5.4 Summaries of Persistent Homology

persistence diagram

In order to visualize the changing homology along a f , H notation, we
draw persistence diagrams, denoted as Dgmk for each dimension k. A per-
sistence diagram is a set of points in the upper half plane

{
(b, d) ∈ R2 | d ≥ b

}
along with all the points on the diagonal

{
(b, b) ∈ R2} where b is the birth

time and d is the death time. Let µ
i,j
k be the number of k-dimensional classes

born at Ki and dying at Kj. Then for each class γ that is born at Ki and dies
at Kj, we draw point (bγ, dγ) with multiplicity µ

i,j
k .

A point that is far away from the diagonal has a longer lifetime while the
one close to diagonal indicates a shorter lifetime. In general, long persis-
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2.5 persistent homology

tence is likely to indicate the true signal and true topological feature while
the topological features with short persistence are usually considered to be
noise.

barcode

If we rewrite the coordinates (bγ, dγ) as intervals [bγ, dγ) then a barcode is
the collection of these intervals as horizontal line segments. Barcodes were
introduced by Ghrist (2008).

Figure 2.5.10 gives an example for both persistence diagram (left) and
barcode (right), where black ones indicate β0 and red one means β1. In this
example, we take

Dgm0 = {(0, 3) , (0, 3) , (2, 4) , (1, 5) , (1, 2)}

and
Dgm1 = {(4.01, 4.03)} .

For persistence diagram, the x-axis is the birth time and the y−axis is the
death time of the topological features. For the barcode, the x−axis is the
parameter of the filtration, i.e. the s value which is defined in the description
of filtration in Section 2.5.2. If this is a barcode for a Čech or Rips complex
which will be defined in Section 2.5.3, the x-axis in barcode is going to be
r, the radius of the ball. Assume this barcode is for the general case, i.e. at
Ks , then the Betti number at s, which is written as β0(s), is the number of
line segments that intersect with the vertical line x = s. As shown in Figure
2.5.10 (right), β0(2.5) = 4. Moreover, each of the symbols in the persistence
diagram on the left is corresponding to at least one line segment with the
same colour on the right in Figure 2.5.10. Taking (0, 3) as an example, there
are 2 line segments, however, only one black dot is shown on the persistence
diagram. Since the red triangle, which is corresponding to β1, is very close
to the diagonal line, it is going to be considered as topological noise. In the
persistence diagram, this noise can be easily visualised. However, for the
barcode, the red line segment indicating β1 is negligible and may be missed.
As a result, a wrong conclusion that β1 is zero may be made.

other summaries

Apart from persistence diagrams and barcodes, other summaries have
been introduced for Persistent Homology in recent years. One is due to
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2.5 persistent homology

Figure 2.5.10: Persistent diagram (left) and barcode (right) corresponding
to Dgm0 = {(0, 3) , (0, 3) , (2, 4) , (1, 5) , (1, 2)} and Dgm1 =
{(4.01, 4.03)} where black corresponds to β0 and red corre-
sponds to β1.

Bubenik (2015), who has introduced persistent landscapes. An example of
a persistent landscape is shown in Figure 2.5.11.
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2.5 persistent homology

Figure 2.5.11: The top left is a standard persistent diagram for β1 and the
top right is the rescaled persistent diagram. Below the top
right graph is the corresponding barcode. The bottom left is
the corresponding persistence landscape and the bottom right
is its 3-dimensional version.

A persistent landscape transforms the persistence diagram into a sequence
of continuous functions. To define the landscape, we first introduce the tri-
angle function

Λ (t) =


t−m + h t ∈ [m− h, m]

m + h− t t ∈ (m, m + h]

0 otherwise

=


t− b t ∈

[
b, b+d

2

]
d− t t ∈

(
b+d

2 , d
]

0 otherwise

where m = b+d
2 is the mean lifetime of a topological feature and h = d−b

2

is the half lifetime of a topological feature. By overlaying the graphs of
the functions Λ (t), we would construct an arrangement of curves which
is shown in Figure 2.5.12. The persistence landscape is a summary of this
arrangement. More precisely, persistence landscape is defined as the collec-
tion of the functions

λi (t) = imaxΛ (t)

where imax is the i-th largest value in the set, especially, 1max is the usual
maximum function. One advantage of persistent landscapes is that one can
make calculations directly on βk ≥ i. For example, λ1 is the function for
βk ≥ 1 and λ2 is the function for βk ≥ 2, etc.
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2.5 persistent homology

Figure 2.5.12: The pink circles are the points in a persistence diagram. The
cyan curve is the persistence landscape λ1.

Biscio and Møller (2019) have also recently introduced a new type of sum-
mary for TDA which is called the accumulative persistence function (APF) .
The APF is defined, for topological features of dimension k, as

APFk (m) = ∑ ciliI (mi ≤ m) , m ≥ 0

where m = b+d
2 is the mean lifetime of a topological feature and ci is the

multiplicity. The β0 and β1 information from brain artery trees which were
reviewed in Biscio and Møller (2019) are used to illustrate the APF which is
shown in Figure 2.5.13.

Figure 2.5.13: A brain artery tree (left), its corresponding APF0 (middle) ob-
tained from the sublevel set of the height function, and its
corresponding APF1 (right) obtained from the Rips complex.
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2.6 key papers

In this section, some of the relevant results from the literature are presented.

family of bachmann-landau notations

For Family of Bachmann-Landau notations, for non-negative functions g
and h,

• g (n) = o (h (n)) means for any ε > 0, there exists an n0 such that for
n > n0, g (n) < εh (n) i.e. lim

n→∞
g(n)
h(n) = 0. (small-o)

• g (n) = O (h (n)) means for at least one ε > 0, there exists an n0 such
that for n > n0, g (n) ≤ εh (n) i.e. lim sup

n→∞

g(n)
h(n) < ∞. (big-O)

• g (n) = ω (h (n)) means for any ε > 0, there exists an n0 such that for
n > n0, g (n) ≥ εh (n) i.e. lim inf

n→∞
g(n)
h(n) → ∞. (small-ω)

2.6.1 Relevant Paper on CLT for Betti Numbers

In Kahle and Meckes (2013, 2015), several limit theorems for Betti number
have been proved for ERM. In particular, they prove that if the number of
vertices N in the ERM tends to infinity, then the Betti number of the clique
complex of an ERM tends to the normal distribution. To extend CLT result
to a SBM, we need to extend results satisfied by the ERM to the SBM. Below,
we state the results which are independent of the structure of the ERM.
These results are from four different papers: Kahle and Meckes (2015); Feige
and Ofek (2005); Kahle (2009); Hoffman et al. (2019).

Definition 2.6.1. (Kahle, 2009)
1. Let γ be a non-trivial k-cycle in a simiplicial complex K with minimal

vsupp where vsupp is given in Definition 2.5.3, and write it as a linear
combination of faces

γk = ∑
fk∈supp(γ)

λ f fk

with λ f ∈ Z.
2. Suppose X is the full induced subcomplex on vsupp (γ). For v ∈

vsupp (γ) define the k-chain

γ
⋂

st (v) = ∑
f∈st(v)

λ f fk
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2.6 key papers

and the (k− 1)-chain

γ
⋂

lk (v) = ∑
f∈st(v)

λ f ( fk − {v}) .

Order the vertices with v last and let this induce an orientation on every
face. Then

γ
⋂

lk (v) = ∂k

(
γ
⋂

st (v)
)

and ∂k−1 · ∂k = 0 by (2.5.1) this gives that γ
⋂

lk (v) is a (k− 1)-cycle.

Definition 2.6.1 is required for Lemma 2.6.2.

Lemma 2.6.2. (Lemma 5.2 in Kahle (2009)) If γ is a non-trivial k−cycle and
v ∈ vsupp (γ), then γ

⋂
lk (v) is a non-trivial (k− 1)-cycle in lk (v) .

Definition 2.6.3. (Kahle, 2009)
1. A simiplicial complex X is said to be pure k−dimensional if every face

of X is contained in a k-dimensional face.
2. A pure k-dimensional subcomplex X is said to be strongly connected

if every pair of k−faces σ, τ ∈ X can be connected by a sequence of facets
which is (k− 1)-faces σ = {σ0, ..., σn} = τ such that dim (σi

⋂
σi+1) = d− 1.

for 0 ≤ i ≤ n− 1.
3. Every k-cycle is a Z−linear combination of k-cycle with strongly con-

nected support.

Lemma 2.6.4. (Lemma 5.3 in Kahle (2009))Let G be a graph and X (G) be its
Clique complex. If γ is a non-trivial k-cycle in X (G), then |vsupp (γ)| ≥ 2k + 2.

Lemma 2.6.2 and 2.6.4 are going to be applied in Section 4.6.

Lemma 2.6.5. (Lemma 4.1 in Hoffman et al. 2019) Let G be a graph with N
vertices. For some positive constants C1, C2, C3 and M, assume that G satisfies the
following conditions:

1. b.d.c.: every vertex has degree at most C1d;
2.

sup
‖x‖ = 1

xT1N = 0
‖y‖ = 1

∣∣∣xTAy
∣∣∣ ≤ C2

√
d

where A is the adjacency matrix of G and 1N is a vector whose elements are 1;
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3. there are no edges between vertices of ηM, |ηM| < N
2 and

max
u∈ηc

M

E (u, ηM) ≤ 1

where ηM =
{

v : deg (v) ≤ d
M

}
is a set of vertices of small degree and d ≥ 1 is a

function of N. E (u, ηM) is the number of edges between point u and set ηM;
4.

sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ C3

√
N

d
;

Then there is a constant C = C (C1, C2, C3, M) such that 0 = λ1 ≤ λ2 ≤ ... ≤
λn ≤ 2 from normalized graph Laplacian defined in Section 2.4 satisfies

max
λi 6=0
|1− λi| <

C√
d

.

Lemma 2.6.5 is going to be used in the proof of spectral gap theorem in
Chapter 4.

Lemma 2.6.6. (Lemma 2.3 in Feige and Ofek (2005)) Let

S =

{
∑

i
vi = 0 : ‖v‖ ≤ 1, v = (v1, ..., vn)

}
,

and define a grid which approximates S as

T =

{
x ∈

(
ε√
n

Z

)n
: ∑

i
xi = 0, ‖x‖ ≤ 1

}

where Z denotes the set of the integer values, 0 < ε < 1 and ε can be considered as
the constant 1

2 . Then every vector v ∈ S whose norm is less than 1− ε is a convex
combination of vertices from T.

Lemma 2.6.7. (Lemma 2.4 in Feige and Ofek (2005)) Let c ∈ R be an arbitrary
constant. If for every x, y ∈ T,

∣∣xTAy
∣∣ ≤ c, then for every x ∈ S,

∣∣xTAx
∣∣ ≤ c

(1−ε)2

where T and S are defined in Lemma 2.6.6 and A is an adjacency matrix.

Claim 2.6.8. (Claim 2.9 in Feige and Ofek (2005)) If a set T is defined as

T =

{
x ∈

(
1

2
√

N
Z

)N
: ∑

i
xi = 0, ‖x‖ ≤ 1

}
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where N is the vertices number in a graph G and Z is the integer set, then

card (T) ≤ exp {N log (18)} .

Claim 2.6.8, Lemma 2.6.6 and 2.6.7 are going to be used in the proof of
condition 2 in Lemma 2.6.5.

Theorem 2.6.9. (Theorem 2.5 in Ballmann and Światkowski (1997)) Let 0 < k <

n = dim (K) where K is a simplicial complex. Assume that Kτ is connected and
that there is an ε > 0 such that

κτ ≥
k (N − k)

k + 1
+ ε

for all (k− 1)-simplices τ of K where κτ is the smallest positive eigenvalue of A1,0

which is defined in Section 2.5.2.2. Then Hk (K, Q) = 0.

Theorem 2.6.10. (Cohomology Vanishing Theorem in Kahle (2014))Let K be a pure
k−dimensional finite simplicial complex such that for every (k− 2)-dimensional
face σ, the link lkK (σ) is connected and has spectral gap

λ2 [lkK (σ)] > 1− 1
k

.

Then Hk−1 (K, Q) = 0.

Theorem 2.6.11. (Theorem 1 in Barbour et al. (1989)) Let
{

Xj : j = (j1, ..., jr) ∈ J
}

be a dissociated set of random variables, such that E
(
Xj
)

= 0 for all j. Let
W = ∑

j∈J
Xj and suppose that the Xj are normalized such that E

(
W2) = 1. Then

d1 (W, Z) ≤ K

(
∑
j∈J

) ∑
k,l∈Lj

 E
[∣∣XjXkXl

∣∣]+ E
[∣∣XjXk

∣∣] E [|Xl|] (2.6.1)

where Z is a standard normal random variables, d1 (·, ·) is the 1-norm distance and

Lj =
{

k ∈ J : {k1, ..., kr}
⋂
{j1, ..., jr} 6= ∅

}
.

In Theorem 2.6.11, the term dissociated is defined as follows. Let J =

{j = (j1, ..., jr)} be a set of ordered list of elements. We define the set{
Xj : j = (j1, ..., jr) ∈ J

}
for J to be a dissociated set if two sub-collections of
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the random variables
{

Xj : j ∈ K
}

and
{

Xj : j ∈ L
}

are independent when-

ever

( ⋃
j∈K
{j1, ..., jr}

)⋂( ⋃
j∈L
{j1, ..., jr}

)
= ∅.

Theorem 2.6.11 is going to be employed in the proof of CLT for Betti
number for SBM in Chapter 4.

Theorem 2.6.12. (Theorem 1.1 in Kahle and Meckes (2015)) Consider Clique com-
plex X (G) with Erdős-Rényi model G (N, p). Assume that N−

1
k < p < N−

1
k+1 ,

then
βk (X )− E {βk (X )} → Normal (0, Var {βk (X )}) (2.6.2)

for each k.

Theorem 2.6.12 is the CLT for Betti numbers for ERM. In Chapter 4, we
are going to extend Theorem 2.6.12 to Theorem 4.7.2 which is the CLT for
Betti numbers for SBM.

Remark 2.6.13. In these four papers, there are two terminologies which have
very similar definitions. They are asymptotic almost surely (a.a.s) and with
high probability (w.h.p.). For a.a.s., an event E depending on x is said to
occur a.a.s. if P(Ex) → 1 as x → ∞. Meanwhile for w.h.p., if there exist
a graph G and a graph property P , it is be said that G ∈ P w.h.p. if
P (G ∈ P)→ 1 as the number of vertices n→ ∞.

Since a.a.s. and w.h.p. have nearly identical definitions, throughout this
thesis, we are going to use only the terminology a.a.s.

Currently, Theorem 2.6.12 has not been widely used in practise. The
only relevant paper is given by Carstens and Horadam (2013), who have
used Theorem 2.6.12 to to study four weighted collaboration networks. In
Carstens and Horadam (2013), β0 and β1 formed by Theorem 2.6.12 are
used to determine the difference between a collaboration network and a
random network. Moreover, the weights do not make any contribution
when identifying the difference between the two models using the first two
Betti numbers.

2.6.2 Relevant Paper for Analysis of Brain Tree Data

In Bendich et al. (2016), Persistent Homology has been introduced to study
the human brain. The dataset has been constructed by using images from
a 3-dimensional Magnetic Resonance Angiography (MRA). A tube-tracking
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vessel segmentation algorithm was applied to the data collected and this
information was combined into trees by a combination of automatic and
manual techniques. In this way, each of the 98 such trees, taken from people
between 18 and 72 years old, represents the tree of arteries in a person’s
brain.

While applying Persistent Homology, β0 and β1 are formed using differ-
ent methods. By using mean-difference as test statistic, a two-sample per-
mutation test has been performed. The resulting p-value is 0.03 for β1 which
suggests a sex effect is associated with the loops. They first used a sub-level
set function for β0. The sub-level set function is illustrated in Figure 2.6.1,
the graph on the left is named as K and let f (a) be the height of vertex a
measured in the vertical direction. Extend f to a function on the edge set by
setting f (a, b) = max ( f (a) , f (b)) for each edge (a, b) of K. The persistence
diagram Dgm0 ( f ) takes K and f as input and outputs a multi-scale sum-
mary of the component evolution of the threshold sets of K. Each person’s
data then implies a persistent diagram, Dgm0. For each of the 98 Dgm0, the
persistence of each dot is computed, which is the death time minus birth
time, i.e. d− b. Then these lengths of barcodes are sorted in the descending
order and picked the first 100 to produce a vector (p1, p2, ..., p100) for each
brain in 0-dimension.

Figure 2.6.1: (left) graph K; (right) persistence diagram Dgm0( f ) with func-
tion f measuring the height in the vertical direction. The co-
ordinates of the dots are ( f (A), ∞), ( f (B), f (G)), ( f (C), f (F))
and ( f (D), f (E)) respectively from left to right.
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Secondly, the standard Rips complex is used for calculating β1. The same
procedure on the Dgm1 leads to the vector (q1, q2, ..., q100), in which the
number qj represents the size of the j-th most persistent loop in the brain.

Furthermore, they also have studied the sex effect by considering the
arithmetic mean of the vector (p1, p2, ..., p100) for both male and female sub-
jects. The Euclidean distance between the two means are computed in R100

for β0 , by a simple permutation test on the mean-difference statistic, which
randomly assigns the 98 vectors into two groups of equal size, computes
the difference between the means of two groups, and repeats this proce-
dure 1000 times. In the test, 98 of the reassignments leads to a larger mean-
difference than the original men-female split, giving an p-value of 0.1. How-
ever, by repeating the permutation test procedure for β1, (q1, q2, ..., q100)

gives a lower p-value 0.03.

2.7 further topics in persistent homology

In Cohen-Steiner et al. (2007, 2010), they have discussed the stability theo-
rem of persistence diagram. According this theorem, if Y′ is a subsample of
Y, then

Wk
(

Dgm1 (Y) , Dgm1
(
Y′
))
≤ K · dH

(
Y, Y′

)
where

Wk
(

D, D′
)
= inf

f :D→D′

(
∑

d∈D
‖d− f (d)‖k

)1/k

is the k-th Wasserstein distance ; D and D′ is short for Dgm1 (Y) , Dgm1 (Y′)
respectively; f is an arbitrary bijection function; dH (Y, Y′) is the Hausdorff
distance between Y and Y′ (Edelsbrunner and Harer, 2010; Bendich et al.,
2016). In the present setting, the Hausdorff distance between two sets A ⊂
Rp and B ⊂ Rp is defined as

dH (A, B) = max

{
sup inf
a∈A b∈B

d (a, b) , sup inf
b∈B a∈A

d (a, b)

}
(2.7.1)

where d (·, ·) is the Euclidean distance between two points. This ensures that
Dgm1 (Y) is well approximated by Dgm1 (Y′) if Y and Y′ are close under the
Hausdorff metric.

Otter et al. (2017) provided an overview paper for computational TDA.
They have introduced 7 different packages written in Java or C++, which
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are JavaPlex, JHoles, Perseus, Dionysus, PHAT, DIPHA, Gudhi SimpPers,
Ripser. 5 different simplicial complexes including Rips and Čech complex
have been computed using these 7 packages. Otter et al. (2017) suggested
that the best suited library for the Rips complex is Gudhi while Dionysus is
the most suitable packages for the Čech complex. Besides, Otter et al. (2017)
summarised various fast algorithms to simplify the boundary matrix which
is the most time-consuming part for working out the barcodes for different
packages.

Most of the approaches to reducing sample size in Persistent Homology
are based on reselecting subsamples from the original dataset. Then one
or more test statistics can be produced from the calculated persistence dia-
grams, such as the mean of the lifetime which is presented in Bendich et al.
(2016). However, Adler et al. (2017) have introduced a new approach which
is first generating a persistence diagram from one sample of data. Secondly,
by fitting a parametric model on this persistence diagram, a sequence of per-
sistence diagrams can be generated by a Monte Carlo Markov chain method
from this parametric model. This method has very distinct advantages and
disadvantages. As the most time consuming process in Persistent Homol-
ogy is getting the persistence diagram from the original dataset, therefore,
this method only needs one persistence diagram to generate the rest of the
diagrams. However, the drawback of this approach is that in general, as the
first persistence diagram can only be generated using a portion of the full
data. Therefore, generating the other persistence diagrams based on this
one may cause loss of original information.

Other simplical complexes such as the alpha complex of Edelsbrunner
and Harer (2010) have also been introduced by different researchers in other
areas.

van de Weygaert et al. (2010); Van de Weygaert et al. (2011); van de Wey-
gaert et al. (2011) have applied Persistent Homology to study the universe
which shows a weblike network called the Cosmic Web. The Betti numbers
and Euler characteristic formed by the alpha complex have been used to
identify different models of the Cosmic Web.

Kovacev-Nikolic et al. (2016) apply Persistent Homology on the maltose-
binding protein which is found in Escherichia coli where its primary func-
tion is to bind and transport sugar molecules across cell membranes. The
protein can be either open or closed conformation. The closed confirma-
tion occurs when ligand attaches to the protein molecule. The aim of this
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paper is to distinguish between the state of a protein. By computing β0

and using integrated distance between persistent landscape Bubenik (2015)
as a test statistic, a two-sample permutation test has been performed. The
resulting p-value is 5.83× 10−4 which suggests a difference between open
and closed conformation. In addition, they also suggest that the active sites
are associated with loops i.e. β1 in the protein.

Other research works have been done using Persistent Homology includ-
ing sensor coverage area Ghrist and Muhammad (2005), image compression
and segmentation Carlsson et al. (2008), shape classification Richardson and
Werman (2014), and more.
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3
S P E C T R A L P R O P E RT I E S O F S T O C H A S T I C B L O C K
M O D E L S

3.1 introduction

In this section, the main focus is on Stochastic Block Models (SBM) with a
finite number of blocks, ζ. The aim is to determine, as far as possible, the
spectral structure of the adjacency matrix and the normalized graph Lapla-
cian defined in Section 2.1. As will be seen later, in Section 4.3, these results
on spectral structure are relevant to the proof of CLT for Betti numbers in
the SBM. Specifically, these results show that the method of proof of the
CLT used in the Erdős-Rényi case breaks down in the SBM setting. The
breakdown occurs due to the lack of separation of the larger eigenvalues.

The outline of this chapter is as follows. In Section 3.2, the spectral struc-
ture of the adjacency matrix in the 2-block model is determined under the
asymptotic limit considered in (3.2.8). See in particular Proposition 3.2.3
and Proposition 3.2.7. It turns out that in this setting there are two eigen-
values which dominate in magnitude, with associated eigenvectors given
by (3.2.9). In Section 3.3, the results are extended to the spectral structure
of the adjacency matrix of the ζ-block model. The key results are Proposi-
tion 3.3.1 and Proposition 3.3.2. In this case, there are ζ eigenvalues which
dominate in magnitude with associated eigenvectors as specified in (3.3.3)
and (3.3.4). The derivation of the spectral structure of the normalised graph
Laplacian in the ζ-block model is considered in Section 3.4. In the case of
the normalised graph Laplacian, the situation is more complex than it is in
the case of the adjacency matrix due to the dependencies which are intro-

duced by the factor
(
didj

)− 1
2 in (3.4.4). In this case, Proposition 3.4.1 is the

relevant analogue of Proposition 3.3.1, where the latter result applies to the
adjacency matrix. However, we do not yet have an analogue of Proposition

43



3.2 adjacency matrix : the 2−block model

3.3.2, due to the added complexity which arises due to the dependencies
mentioned above, but we believe that a result similar to Proposition 3.3.2
does hold. In Section 3.5, the relevance of the results in Chapter 3 to the
CLT for Betti numbers in the SBM is explained; more details are given in
Chapter 4.

In Table 3.1.1, some notations for this chapter are stated for convenience.

Vr set of vertices of type r
V ⋃

r=1
Vr

Nr
card (Vr) Without lost of generality, let
N1 ≤ N2 ≤ ... ≤ Nζ

N
ζ

∑
r=1

Nr =Total number of vertices in the graph

r, s letter used for vertex type 1 ≤ r, s ≤ ζ
i, j letter used for vertex label 1 ≤ i, j ≤ N

prs
probability u ∈ Vr and v ∈ Vs are connected by an
edge

pmin min (prs : 1 ≤ r, s ≤ ζ)
pmax max (prs : 1 ≤ r, s ≤ ζ)
G ((Nr) , (prs) , ζ) SBM with ζ blocks, and Nr, prs are defined as above
1N N × 1 vector of ones
IN N × N identity matrix
f (N, d; p) (N

d )pd (1− p)N−d binomial probability

Table 3.1.1: Some notations defined for Chapter 3.

3.2 adjacency matrix : the 2−block model

In this section, the standard 2−block model is considered where N1 =

card (V1), N2 = card (V2), N = N1 + N2 and V = V1
⋃ V2. Define the

adjacency matrix A =
(
aij
)N

i,j=1 where aii = 0 for i ∈ V and

aij =

0 no edge between i and j

1 edge present between i and j.
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3.2 adjacency matrix : the 2−block model

In the stochastic 2−block model, the aij are independent random variables
and for i 6= j,

P
(
aij = 1

)
=



p11 1 ≤ i, j ≤ N1

p22 N1 ≤ i, j ≤ N

p12 1 ≤ i ≤ N1 < j ≤ N

p12 1 ≤ j ≤ N1 < i ≤ N.

(3.2.1)

The main goal in Section 3.2 is to determine the spectral structure of A as
far as possible, where

N → ∞
N1

N2
→ ω ∈ (0, ∞) .

(3.2.2)

It is also be assumed that prs → 0 as N → ∞, where r, s ∈ {1, 2} .
Define Ā = E (A) where the expectation is taken under the 2−block

model with probabilities given by (3.2.1). Let x denote an N × 1 unit vector,
i.e. ‖x‖2 = xTx = 1. Write

P2 = {p11, p22, p12} (3.2.3)

and define
p∗2 = arg min

p∈P2

∣∣∣∣p− 1
2

∣∣∣∣ . (3.2.4)

Proposition 3.2.1. For any given N × 1 unit vector x,

Var
[
xT (A− Ā) x

]
≤ 2p∗2 (1− p∗2). (3.2.5)

Proof. Since A is the adjacency matrix for a 2−block model, the final sum
below,

xT (A− Ā) x =
N

∑
i=1

N

∑
j=1

xixj
(
aij − āij

)
= 2 ∑

1≤i<j≤N
xixj

(
aij − āij

)
consists of a double sum of independent random variables.

Consequently, as Var (X + Y) = Var (X) + Var (Y) for independent ran-
dom variables, it follows that

Var
[
xT (A− Ā) x

]
= 4 ∑

1≤i<j≤N
x2

i x2
j Var

(
aij
)

. (3.2.6)
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3.2 adjacency matrix : the 2−block model

The function f (p) = p (1− p) has a maximum at p = 0.5, is monotonic
increasing for p < 0.5, is monotonic decreasing for p > 0.5 and is symmetric
about p = 0.5. Therefore,

max
i,j=1,...,N

Var
(
aij
)
≤ max

p∈P2
p (1− p) = p∗2 (1− p∗2) , (3.2.7)

where P2 is defined in (3.2.3) and p∗2 is defined in (3.2.4). Continuing from
the RHS of (3.2.6), it is found that

4 ∑
1≤i<j≤N

x2
i x2

j Var
(
aij
)
= 2

N

∑
i=1

N

∑
j=1

x2
i x2

j Var
(
aij
)

≤ 2
N

∑
i=1

N

∑
j=1

x2
i x2

j p∗2 (1− p∗2)

= 2p∗2 (1− p∗2)

(
N

∑
i=1

x2
i

)(
N

∑
j=1

x2
j

)
= 2p∗2 (1− p∗2) ,

as x is a unit vector, so ∑N
i=1 x2

i = 1.

Before moving on, the general version of Proposition 3.2.1 is given which
applies to a general ζ−block model.

For r, s = 1, ..., ζ, let prs denote the probability of an edge being present
between a vertex in Vr and a vertex in Vs. Following (3.2.3) and (3.2.4),
define

Pζ = {prs : 1 ≤ r ≤ s ≤ ζ}

and
p∗ζ = arg min

p∈Pζ

∣∣∣∣p− 1
2

∣∣∣∣ .

The general version of Proposition 3.2.1 is as follows.

Proposition 3.2.2. For any given N × 1 unit vector x,

Var
[
xT (A− Ā) x

]
≤2p∗ζ

(
1− p∗ζ

)
.

Proof. The proof is almost identical to that of Proposition 3.2.1. All that
changes is that P2 is replaced by Pζ and p∗2 is replaced by p∗ζ .

A full description of the spectral structure of Ā = E (A) is now given
where the expectation is taken under model (3.2.1).
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3.2 adjacency matrix : the 2−block model

Proposition 3.2.3. The N × N matrix Ā has the following spectral structure.

1. Any vector of the form
(

vT
N1

, 0T
N2

)T
where vN1 is an N1 × 1 vector with

1T
N1

vN1 = 0, is an eigenvector of Ā with corresponding eigenvalue λ = −p11.

2. Any vector of the form
(

0T
N1

, vT
N2

)T
where vN2 is an N2 × 1 vector with

1T
N2

vN2 = 0, is an eigenvector of Ā with corresponding eigenvalue λ = −p22.
3. Suppose that the 2× 2 matrix

B2 =

[
(N1 − 1) p11 N2p12

N1p12 (N2 − 1) p22

]
(3.2.8)

has eigenvalues λ1 and λ2 with corresponding eigenvectors (γ11, γ12)
T and (γ21, γ22)

T

respectively. Then Ā has eigenvalues λ1 and λ2 with corresponding unit eigenvec-
tors

1
δ1

(
γ111N1

γ121N2

)
and

1
δ2

(
γ211N1

γ221N2

)
(3.2.9)

where

δr =
(

γ2
r1N1 + γ2

r2N2

) 1
2 , r = 1, 2. (3.2.10)

Before proving Proposition 3.2.3, some remarks are presented.

Remark 3.2.4. In part 1 of Proposition 3.2.3, the relevant eigenspace has di-
mension N1 − 1; the ′1′ is subtracted because of the constraint 1T

N1
vN1 = 0.

Similarly, in part 2 of Proposition 3.2.3, the relevant eigenspace has dimen-
sion N2 − 1; the ′1′ is subtracted because of the constraint 1T

N2
vN1 = 0. Fi-

nally, two eigenvalue/eigenvector combinations are identified in part 3 of
Proposition 3.2.3 which are different to those identified in parts 1 and 2.
Therefore, the total dimension of all the eigenspaces is

N1 − 1 + N2 − 1 + 1 + 1 = N1 + N2 = N

which establishes that all eigenvalue/eigenvector combinations have been
identified.

Remark 3.2.5. From the eigenvalue equation

det (B2 − λI2) = 0

it is found that the eigenvalues in part 3 of Proposition 3.2.3 satisfy

[(N1 − 1) p11 − λ] [(N2 − 1) p22 − λ]− N1N2p2
12 = 0
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3.2 adjacency matrix : the 2−block model

or, equivalently,

λ2−λ [(N1 − 1) p11 + (N2 − 1) p22]+ (N1 − 1) (N2 − 1) p11p22−N1N2p2
12 = 0.

This implies that

λ =
[(N1 − 1) p11 + (N2 − 1) p22]±

√
[(N1 − 1) p11 − (N2 − 1) p22]

2 + 4N1N2p2
12

2
.

(3.2.11)
Now write λ1 and λ2 for the eigenvalues with positive and negative

square root terms respectively. Then, using standared arguments, eigen-
vectors corresponding to the eigenvalues λ1 and λ2 are given by(

N2p12

λ1 − (N1 − 1) p11

)
and

(
λ2 − (N2 − 1) p22

N1p12

)
(3.2.12)

respectively.

Remark 3.2.6. A specific and convenient choice for a set of orthonormal eigen-
vectors in parts 1 and 2 of Proposition 3.2.3 is given by the columns of
the transpose Helment submatrix of appropriate dimension by Dryden and
Mardia (2016).

Proof of Proposition 3.2.3. For a 2−block model arranged as indicated by (3.2.1),
Ā, the expectation of A under model (3.2.1), may be written in block form
as

Ā =

 p11

(
1N11T

N1
− IN1

)
p121N11T

N2

p121N21T
N1

p22

(
1N21T

N2
− IN2

)  , (3.2.13)

where 1N is the N × 1 vector of ones and IN is the N × N identity matrix.

Proof of Part 1 of Proposition 3.2.3. Using (3.2.13), it is seen that

Ā

(
v1

0N2

)
=

(
p111N1

(
1T

N1
vN1

)
− p11vN1

p121N21T
N1

vN1

)
.

For
(

vT
N1

, 0T
N2

)T
to be an eigenvector of Ā, it must have for some scalar λ,

 p111N1

(
1T

N1
vN1

)
− p11vN1

p121N2

(
1T

N1
vN1

)  = λ

(
vN1

0N2

)
,
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3.2 adjacency matrix : the 2−block model

or, equivalently,

p111N1

(
1T

N1
vN1

)
− p11vN1 = λvN1 , (3.2.14)

and
p121N2

(
1T

N1
vN1

)
= 0N2 . (3.2.15)

Since p12 6= 0, (3.2.15) can only be satisfied if 1T
N1

vN1 = 0. Moreover, if
1T

N1
vN1 = 0 then (3.2.14) is satisfied if λ = −p11. Therefore, for any vN1

such that 1T
N1

vN1 = 0,
(

vT
N1

, 0T
N2

)T
will be an eigenvector of Ā with

corresponding eigenvalue λ = −p11 as required. Note that the
corresponding eigenspace has dimension N1 − 1.

Proof of Part 2 of Proposition 3.2.3. The proof of part 2 is very similar to that

of part 1. In this case, any vector of the form
(

0T
N1

, vT
N2

)T
is an eigenvector

of Ā provided that 1T
N2

vN2 = 0, with corresponding eigenvalue λ = −p22,
and associated eigenspace of dimension N2 − 1.

Proof of Part 3 of Proposition 3.2.3. It will be checked directly that, with

suitable choice of γ1 and γ2,
(

γ11T
N1

, γ21T
N2

)T
is an eigenvector of Ā. In

particular, using the block structure of Ā in (3.2.13),

Ā

(
γ11N1

γ21N2

)
=

 p11

(
1N11T

N1
− IN1

)
p121N11T

N2

p121N21T
N1

p22

(
1N21T

N2
− IN2

) ( γ11N1

γ21N2

)

=

(
[p11 (N1 − 1) γ1 + p12N2γ2] 1N1

[p12N1γ1 + p22 (N2 − 1) γ2] 1N2

)
.

(3.2.16)

So for
(

γ11T
N1

, γ21T
N2

)T
to be an eigenvector of Ā, (3.2.16) must be a scalar

multiple of
(

γ11T
N1

, γ21T
N2

)T
, in which case

p11 (N1 − 1) γ1 + p12N2γ2 = λγ1

p12N1γ1 + p22 (N2 − 1) γ2 = λγ2

for some scalar λ, which in turn is equivalent to

B2

(
γ1

γ2

)
=

[
(N1 − 1) p11 N2p12

N1p12 (N2 − 1) p22

](
γ1

γ2

)
= λ

(
γ1

γ2

)
,

49



3.2 adjacency matrix : the 2−block model

where B2 is defined in (3.2.8). Therefore λ1 and λ2, the required
eigenvalues of Ā, are also eigenvalues of the 2× 2 matrix B2. The
corresponding eigenvectors of Ā may be written as(

γ111N1

γ121N2

)
and

(
γ211N1

γ221N2

)
,

where (
γ11

γ12

)
and

(
γ21

γ22

)
are the eigenvectors of B2 corresponding to λ1 and λ2. The corresponding
unit eigenvectors of Ā are given by

1
δ1

(
γ111N1

γ121N2

)
and

1
δ2

(
γ211N1

γ221N2

)
,

where

δr =

∥∥∥∥∥
(

γr11N1

γr21N2

)∥∥∥∥∥ =
(

γ2
r1N1 + γr2N2

) 1
2 , r = 1, 2

The next step is to identify a class of cases in which the largest eigenvalues
in absolute value of A are determined by the largest eigenvalues of Ā. Here,
the largest eigenvalues are the eigenvalues λ1 and λ2 obtained in part 3 of
Proposition 3.2.3. The following asymptotic regime is considered. Write
p = p11 + p22 + p12. Since N = N1 + N2 and suppose that p → 0, N → ∞
and Np→ ∞;

p11 (N1 − 1)
Np

→ ψ11;
p22 (N2 − 1)

Np
→ ψ22;

p12N1

Np
→ ψ21;

p12N2

Np
→ ψ12;

ψ11, ψ12, ψ21, ψ22 ∈ (0, ∞) .

(3.2.17)

Note that (3.2.17) implies that

1
Np

B2 → Ψ̄2 = (ψrs)r,s=1,2 .
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3.3 adjacency matrix : the ζ−block model

Proposition 3.2.7. Suppose that Ψ̄2 has full rank. Then

1
δ2

r

(
γr11T

N1
, γr21T

N2

)
A

(
γr11N1

γr21N2

)
∼ λr = Npλ̄r

in probability, whereλ̄1 = ψ11+ψ22+
√

(ψ11−ψ22)
2+4ψ12ψ21

2

λ̄2 = ψ11+ψ22−
√

(ψ11−ψ22)
2+4ψ12ψ21

2 6= 0
(3.2.18)

are the eigenvalues of Ψ̄2.

Proof. The assumption that Ψ̄2 has full rank implies that λ̄1 and λ̄2 are non-
zero (this is immediate for λ̄1). Write

xr =
1
δr

(
γr11N1

γr21N2

)
, r = 1, 2.

Then
xT

r Axr = xT
r Āxr + xT

r (A− Ā)xr.

Note that xT
r Āxr = λr = Npλ̄r as N → ∞, where λ̄1 and λ̄2 are defined

in (3.2.18). For xT
r (A− Ā)xr, combining Proposition 3.2.1 with Chebychev’s

inequality,

P
[∣∣∣xT

i (A− Ā)xi

∣∣∣ > (p∗2)
1
4
]
≤

Var
{

xT
i (A− Ā)xi

}
(

p∗2
) 2

4

≤ 2p∗2 (1− p∗2)(
p∗2
) 1

2

≤ 2 (p∗2)
1
2 → 0

as N → ∞, since p∗2 , defined in (3.2.4) converges to 0 in the asymptotic
regime considered here.

3.3 adjacency matrix : the ζ−block model

The purpose of this section is to generalize Proposition 3.2.3 and 3.2.7 from
the 2-block case to the ζ−block case. In the ζ-block case, there are ζ types
of vertex as opposed to just 2. It is supposed that there are Nr vertices of
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3.3 adjacency matrix : the ζ−block model

type r (r = 1, ..., ζ) and that the vertices have been labelled so that vertex i
is of type r ifi ≤ N1 r = 1

N1 + ... + Nr−1 < i ≤ N1 + ... + Nr r = 2, ..., ζ.

It is assumed also that the probability of a link between a type r vertex and
type s vertex is given by prs (r, s = 1, ..., ζ) . As before define A to be the
adjacency matrix and let Ā be the expectation of A under the ζ-block model

with probabilities (prs)
ζ
r,s=1 . The N× N matrix Ā, where N =

ζ

∑
t=1

Nt may be

written in block form as Ā = (Ārs)
ζ
r,s=1 where

Ārs =

prr

(
1Nr 1

T
Nr
− INr

)
r = s

prs1Nr 1
T
Ns

r 6= s.
(3.3.1)

The ζ-block analogue of Proposition 3.2.3 is now stated.

Proposition 3.3.1. The N × N matrix Ā has the following spectral structure.
1. Any vector of the form

(
vT

N1
, 0T

N2
, ..., 0T

Nζ

)T
,
(

0T
N1

, ..., 0T
Nr−1

, vT
Nr

, 0T
Nr+1

, ..., 0T
Nζ

)T
or
(

0T
N1

, ..., 0T
Nζ−1

, vT
Nζ

)T

where vNr is an Nr × 1 vector with 1T
Nr

vNr = 0, is an eigenvector of Ā with
corresponding eigenvalue λ = −prr.

2. Define Bζ = (brs)
ζ
r,s=1 where

brs =

prr (Nr − 1) r = s

prsNs r 6= s,
(3.3.2)

and suppose that Bζ has eigenvalues λ1, ..., λζ with corresponding eigenvectors
γ11

...
γ1ζ

 ...


γζ1

...
γζζ

 . (3.3.3)
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3.3 adjacency matrix : the ζ−block model

Then Ā has eigenvalues λ1, ..., λζ with corresponding eigenvectors
γ111N1

...
γ1ζ1Nζ

 ...


γζ11N1

...
γζζ1Nζ

 (3.3.4)

Proof of Part 1 of Theorem 3.3.1. Using the block structure of Ā indicated in
(3.3.1), it is seen that

Ā



0N1
...

0Nr−1

vNr

0Nr+1
...

0Nζ


=


Ā11 Ā12 · · · Ā1ζ

Ā21 Ā22 · · · Ā2ζ
...

... · · · ...
Āζ1 Āζ2 · · · Āζζ





0N1
...

0Nr−1

vNr

0Nr+1
...

0Nζ



=


Ā1rvNr

Ā2rvNr
...

ĀζrvNr

 . (3.3.5)

The vector (
0T

N1
, ..., 0T

Nr−1
, vT

Nr
, 0T

Nr+1
, ..., 0T

Nζ

)T

is an eigenvector of Ā if and only if it has (3.3.5) as a scalar multiple. A
necessary and sufficient condition for this vector to have (3.3.5) as a scalar
multiple is that 1T

Nr
vNr = 0, in which case the corresponding eigenvalue is

λ = −prr.
Similarly, (

vT
N1

, 0T
N2

, ..., 0T
Nζ

)T

is an eigenvector of Ā if and only if 1N1vN1 = 0, in which case the corre-
sponding eigenvalue is λ = −p11; and

(
0T

N1
, ..., 0T

Nζ−1
, vT

Nζ

)T

is an eigenvector of Ā if and only if 1T
Nζ

vNζ
= 0, in which case the corre-

sponding eigenvalue is λ = −pζζ .
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3.3 adjacency matrix : the ζ−block model

Proof of Part 2 of Proposition 3.3.1. Since for r, s = 1, ..., ζ, using (3.3.1) and
(3.3.2),

Ārs1Ns =

prr (Nr − 1) 1Nr r = s

prsNs1Nr r 6= s.

It follows that, for r = 1, ..., ζ,

ζ

∑
s=1

Ārs1Ns =

{
prr (Nr − 1) γr + ∑

s 6=r
prsNsγs

}
1Nr . (3.3.6)

Therefore, for general γ1, ..., γζ , and using (3.3.6),

Ā


γ11N1

...
γζ1Nζ

 =


ζ

∑
s=1

Ā1sγs1Ns

...
ζ

∑
s=1

Āζsγs1Ns



=



{
p11 (N1 − 1) γ1+

ζ

∑
s=2

p1sNsγs

}
1N1

...{
pζζ

(
Nζ − 1

)
γζ+

ζ−1
∑

s=1
pζsNsγs

}
1Nζ


. (3.3.7)

It follows from (3.3.7) that the condition for(
γr11T

N1
, ..., γrζ1T

Nζ

)T

is an eigenvector of Ā if and only if for some scalar λ,
p11 (N1 − 1) γ1+

ζ

∑
s=2

p1sNsγs = λγ1

...

pζζ

(
Nζ − 1

)
γζ+

ζ−1
∑

s=1
pζsNsγs = λγ1
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3.3 adjacency matrix : the ζ−block model

which in turn is equivalent to

Bζ



γ1

γ2

γ3
...

γζ


= λ



γ1

γ2

γ3
...

γζ


, (3.3.8)

where

Bζ = (brs)
ζ
r,s=1

=



(N1 − 1) p11 N2p12 N3p13 ... Nζ p1ζ

N1p12 (N2 − 1) p22 N3p23 . . . Nζ p2ζ

N3p13 N3p23 (N3 − 1) p33 . . . Nζ p3ζ
...

...
... . . . ...

N1p1ζ Nζ p2ζ Nζ p3ζ . . .
(

Nζ − 1
)

pζζ


is defined in (3.3.2). Consequently, from (3.3.8), and writing λ1, ..., λζ for the
eigenvalues of Bζ with corresponding eigenvectors

γ11
...

γ1ζ

 ...


γζ1

...
γζζ


respectively, it follows from (3.3.7) that the vector

(
γr11T

N1
, ..., γrζ1T

Nζ

)T

is an eigenvector of Ā with corresponding eigenvalue λr, for r = 1, ..., ζ.

Now, a generalization of Proposition 3.2.7 is considered to the case of a
ζ-block model. Assume the same notation and setup as was considered in

Proposition 3.3.1. Define N =
ζ

∑
r=1

Nr and p = ∑
1≤r≤s≤ζ

prs. As previously, it

is assumed that N → ∞, p → 0 and Np → ∞ and that the following limits
exist: for r = 1, ..., ζ,

prr (Nr − 1)
Np

→ ψrr (3.3.9)
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3.4 the normalized graph laplacian for ζ−block models

and for 1 ≤ r 6= s ≤ ζ,

psrNr

Np
→ ψsr,

prsNs

Np
→ ψrs (3.3.10)

where ψrs ∈ (0, ∞) for all 1 ≤ r, s ≤ ζ.
Write

Ψ̄ζ = (ψrs)r,s=1,...,ζ .

The next result is a generalization of Proposition 3.2.7 to the ζ−block model.

Proposition 3.3.2. Suppose that Ψ̄ζ has full rank. Then for r = 1, .., ζ,

1
δ2

r

(
γr11T

N1
, ..., γrζ1T

Nζ

)
A


γr11N1

...
γrζ1Nζ

 ∼ λr = Npλ̄r

where δr =

(
ζ

∑
s=1

γ2
rsNs

) 1
2

and λ̄1, ..., λ̄ζ are the non-zero eigenvalues of Ψ̄ζ .

Proof. The proof is the same as that for Proposition 3.2.7.

3.4 the normalized graph laplacian for ζ−block models

The goal of this section is to determine the asymptotic spectral structure
of the expectation of the normalized graph Laplacian under the ζ−block
model.

Define for any vertex i, 1 ≤ i ≤ N,

d̃i = card
{

j ∈ {1, .., N} : aij = 1
}

, (3.4.1)

where aij = 1 if there is an edge between vertex i and vertex j, and aij = 0
otherwise. Then define

di = max
{

d̃i, 1
}

. (3.4.2)

Note that d̃i is the degree of vertex i and di = d̃i unless d̃i = 0, i.e. unless i is
an isolated vertex. In the asymptotic framework which we consider, it will
be seen later that the graph will be connected with probability approaching
to 1 as N → ∞, so that the difference between and d̃i and di does not concern
us.
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3.4 the normalized graph laplacian for ζ−block models

The normalized graph Laplacian is defined here by

L = IN −D−
1
2

N AD−
1
2

N (3.4.3)

where DN = diag {d1, ..., dN} and di is defined in (3.4.2). The focus of in-
terest is the spectral structure (i.e. eigenvalues and eigenvectors) of L in

(3.4.3). However, it is slightly easier to work with J = D−
1
2

N AD−
1
2

N . Then λ is
an eigenvalue of J if and only if 1− λ is an eigenvalue of L. Moreover, the
eigenvectors of J and L are the same.

Our main goal now is to find an asymptotic expression for J̄ = E (J) ,
where the expectation is taken under the ζ−block model. Note that J̄ has
the same type of block structure as Ā written in (3.3.1):

J̄ = (J̄rs)r,s=1,...,ζ =

qrr

(
1Nr 1

T
Nr
− INr

)
r = s

qrs1Nr 1
T
Ns

r 6= s

where

qrs = E

 aij√
didj

 , i 6= j, (3.4.4)

with i and j vertices of type r and type s, respectively. In Proposition 3.4.1
below, we find an asymptotic expression for the qrs in (3.4.4).

As before we define N = N1 + ... + Nζ where N1 ≤ ... ≤ Nζ and p =

∑
1≤r≤s≤ζ

prs, and assume N → ∞, p → 0 and Np → ∞. The asymptotic

regime indicated in (3.3.9) and (3.3.10) in Section 3.3 is also assumed.

Proposition 3.4.1. Suppose that for some constants C > 0 and ε > 0,

N1pmin ≥ CNε (3.4.5)

where pmin = min (prs : 1 ≤ r, s ≤ ζ). Then as N → ∞, for r, s = 1, ..., ζ,

Nsqrs →
ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψsγ

)
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3.4 the normalized graph laplacian for ζ−block models

or, equivalently, we can rewrite as

qrs ∼
1

Ns
· ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψsγ

) .

Proof. Let ρis denote the number of edges between vertex i (i = 1, .., N) and
vertices of type s (s = 1, ..., ζ). Write

ρi =
(
ρi1, ..., ρiζ

)T .

Note that ρis ∼ Binomial (Nis, prs) where vertex i is of type r and

d̃i =
ζ

∑
s=1

ρis,

where d̃i is defined in 3.4.1. The quantity

qrs = E

 aij√
didj

 ,

where i is of type r and j is of type s, is difficult to calculate directly. The
plan here is to perform an asypmtotic calculation in the following steps.

Step 1 Calculate the conditional expectation

E
[

aij|ρi, ρj

]
.

Step 2 Find an asymptotic expression for the expectation over ρi and ρj of

1√
didj

E
[

aij|ρi, ρj

]
.

Define the binomial probability

f (N, d; p) =
(

N
d

)
pd (1− p)N−d .
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3.4 the normalized graph laplacian for ζ−block models

Also for r = 1, ..., ζ, write

Njr =

Nr − 1 if j is of type r = s

Nr if j is of type r 6= s.

Step 1 Using Bayes Theorem we write the conditional expectation as

E
[

aij|ρi, ρj

]
= P

[
aij = 1|ρi, ρj

]
=

P
[

aij = 1, ρi, ρj

]
P
[

aij = 1, ρi, ρj

]
+ P

[
aij = 0, ρi, ρj

]
=

1
1 + Tij

(3.4.6)

where

Tij =
P
[

aij = 0, ρi, ρj

]
P
[

aij = 1, ρi, ρj

] . (3.4.7)

From elementary considerations,

P
[

aij = 1, ρi, ρj

]
=prs · f (Nis − 1, ρis − 1; prs) f

(
Njr − 1, ρjr − 1; prs

)
×
[
∏
t 6=s

f (Nit, ρit; prt)

] [
∏
t 6=r

f
(

Njt, ρjt; pts
)] (3.4.8)

and

P
[

aij = 0, ρi, ρj

]
= (1− prs) f (Nis − 1, ρis; prs) f

(
Njr − 1, ρjr; prs

)
×
[
∏
t 6=s

f (Nit, ρit; prt)

] [
∏
t 6=r

f
(

Njt, ρjt; pts
)]

.
(3.4.9)

The most important points here are that the product over t 6= s on the
RHS of (3.4.8) is the same as the product over t 6= s on the RHS of (3.4.9),
and the product over t 6= r on the RHS of (3.4.8) is the same as the product
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3.4 the normalized graph laplacian for ζ−block models

over t 6= r on the RHS of (3.4.9). Therefore, substituting (3.4.8) and (3.4.9)
into (3.4.7) and cancelling, it is seen that

Tij =
(1− prs)

prs
·

f (Nis − 1, ρis; prs) f
(

Njr − 1, ρjr; prs
)

f (Nis − 1, ρis − 1; prs) f
(

Njr − 1, ρjr − 1; prs
)

=
(1− prs)

prs
·
(Nis−1

ρis
)pρis

rs (1− prs)
(Nis−1)−ρis · (Njr−1

ρjr
)p

ρjr
rs (1− prs)

(Njr−1)−ρjr

(Nis−1
ρis−1)pρis−1

rs (1− prs)
Nis−ρis · (Njr−1

ρjr−1)p
ρjr−1
rs (1− prs)

Njr−ρjr

=
p2

rs (1− prs)

prs (1− prs)
2 ·

(Nis−1)!
ρis!(Nis−1−ρis)!

· (Njr−1)!

ρjr !(Njr−1−ρjr)!

(Nis−1)!
(ρis−1)!(Nis−ρis)!

· (Njr−1)!

(ρjr−1)!(Njr−ρjr)!

=
prs

1− prs
·
(Nis − ρis)

(
Njr − ρjr

)
ρisρjr

=
prs

1− prs
·

(
1− ρis

Nis

) (
1− ρjr

Njr

)
ρis
Nis
· ρjr

Njr

. (3.4.10)

Therefore, substituting (3.4.10) into (3.4.6) and rearranging,

E
[

aij|ρi, ρj

]
=

1
1 + Tij

=
(1− prs)

ρis
Nis
· ρjr

Njr

(1− prs)
ρis
Nis
· ρjr

Njr
+ prs

(
1− ρis

Nis

) (
1− ρjr

Njr

) .

This completes Step 1 of the proof.

Step 2 Define

ẽ(N)
ij = ẽij

=
1√
didj

E
[

aij|ρi, ρj

]

=
1√
didj

·
(1− prs)

ρis
Nis
· ρjr

Njr

(1− prs)
ρis
Nis
· ρjr

Njr
+ prs

(
1− ρis

Nis

) (
1− ρjr

Njr

) (3.4.11)

and write
e(N)

ij = eij = Nis ẽij.
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3.4 the normalized graph laplacian for ζ−block models

Recall that the definition of di in (3.4.2), and the fact that

0 ≤ E
[

aij|ρi, ρj

]
≤ 1,

it follows that 0 ≤ ẽij ≤ 1 and so 0 ≤ eij ≤ N. For δ ∈
(

1
2 , 1
)

define the
event

DN,s,δ,r =
{
|ρis − Nis prs| ≤ (Nis prs)

δ
}

,

where vertex i is of type r.

Now define

DN,δ,r =
ζ⋂

s=1

DN,s,δ,r.

Under the assumptions of Proposition 3.4.1, on the event DN,δ,r as N → ∞,

|ρis − Nis prs| =
∣∣∣∣ ρis

Nis prs
− 1
∣∣∣∣

≤ (Nis prs)
δ

Nis prs

≤ (Nis prs)
−(1−δ) → 0,

(3.4.12)

where vertex i is of type r. Similarly,∣∣∣∣∣ ρjr

Njr prs
− 1

∣∣∣∣∣ ≤ (Njr prs
)−(1−δ) → 0, (3.4.13)
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3.4 the normalized graph laplacian for ζ−block models

where vertex j is of type s, and

∣∣∣∣∣ di

Np
−

ζ

∑
s=1

ψrs

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

ζ

∑
s=1

ρis

Np
−

ζ

∑
s=1

ψrs

∣∣∣∣∣∣∣∣∣
≤

ζ

∑
s=1

∣∣∣∣ ρis

Np
− ψrs

∣∣∣∣
=

ζ

∑
s=1

∣∣∣∣ ρis

Np
· 1

ψrs
− 1
∣∣∣∣

=
ζ

∑
s=1

∣∣∣∣ ρis

Np
· Np

prsNs
− 1
∣∣∣∣

≤
ζ

∑
s=1

(Nis prs)
−(1−δ)

≤ CN−(1−δ) → 0.

(3.4.14)

It follows that on DN,δ,r, when N is sufficiently large, for any τ > 0, (3.4.11)
implies that

eij =Ns ·
1√
didj

·
(1− prs)

ρis
Nis
· ρjr

Njr

(1− prs)
ρis
Nis
· ρjr

Njr
+ prs

(
1− ρis

Nis

) (
1− ρjr

Njr

)
=Ns ·

Np√
didj

·
1

Np ·
1

prs
· (1− prs) · ρis

Nis
· ρjr

Njr

1
prs
· (1− prs)

ρis
Nis
· ρjr

Njr
+
(

1− ρis
Nis

) (
1− ρjr

Njr

)
=Ns ·

1√
di

Np ·
dj

Np

·
ρis
Np ·

ρjr
Njr prs

· 1
Nis

(1− prs)

(1− prs)
ρis

Nis prs
· ρjr

Njr
+
(

1− ρis
Nis

) (
1− ρjr

Njr

)
→ 1√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

) · ψrs · 1 · 1
1 · 1 · prs + 1 · 1

=
ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)

≤ (1 + τ)
ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)
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3.4 the normalized graph laplacian for ζ−block models

in probability.
From Bernstein’s inequality and using (3.4.5),

P
(

Dc
N,δ,r

)
= P

( ζ⋂
s=1

DN,s,δ,r

)c
= P

(
ζ⋃

s=1

Dc
N,s,δ,r

)

≤
ζ

∑
s=1

P
(

Dc
N,s,δ,r

)
=

ζ

∑
s=1

P
[∣∣∣∣ ρis

Nis prs
− 1
∣∣∣∣ ≥ (Nis prs)

−(1−δ)
]

≤ C0 exp
{
−C1 (Nis prs)

−2(1−δ)
}

≤ C0 exp {−C1Nε} ,

for some C0 > 0, C1 > 0 and ε > 0. Therefore, using

E
(
|X|α

)
≤ P (A)max

x∈A
|x|α + P (Ac)max

x∈Ac
|x|α ,

for α > 1 and τ > 0 and N sufficiently large,

E
(

eα
ij

)
≤ P

(
Dc

N,δ,r
)
· Nα + P (DN,δ,r) · (1 + τ)α ψα

rs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)α

≤ C0 exp {−C1Nε}Nα

+ (1− C0 exp {−C1Nε}) · (1 + τ)α ψα
rs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)α

→ 0 + (1 + τ)α ψα
rs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)α .

Therefore, using Proposition 2.2.3, it follows that the family of random vari-
ables {

eij = e(N)
ij : N ≥ 1

}
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3.5 discussion

is uniformly integrable. Moreover, (3.4.12), (3.4.13) and (3.4.14) imply that

eij
P→ ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

) .

Consequently, we may use Theorem 2.2.4 to conclude that

E
(
eij
)
→ ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)

as N → ∞. Therefore,

Nsqrs →
ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)

which is equivalent to

qrs ∼
1

Ns
· ψrs√√√√( ζ

∑
γ=1

ψrγ

)(
ζ

∑
γ=1

ψγs

)

as required.

3.5 discussion

The relevance of the results in this chapter to the CLT for Betti numbers in
the SBM is now explained. For simplicity we focus on the following cases
in the 2-block model:

p11 = p22 = p0; p12 = p21 = θp0; N1 = N2 = N0, (3.5.1)

where θ > 0 is fixed. Note that if θ 6= 1 then the model is SBM but not an
ERM.
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3.5 discussion

From (3.2.11), and using (3.5.1),

λ =
(N0 − 1)p0 + (N0 − 1)p0 ± 2N0θp0

2
=N0p0λ̄,

where
λ̄ = 1− 1

N0
± θ.

Consequently, the eigenvalues on this scale are given by

λ̄1 = 1− 1
N0

+ θ, λ̄2 = 1− 1
N0
− θ. (3.5.2)

By choosing the constant θ sufficiently close to 0 we can make the ratio
λ̄2
λ̄1

arbitrarily close to 1. Therefore the two largest eigenvalues of Ā, the
expectation of the adjacency matrix, are arbitrarily close together on the
scale for which λ̄1 and λ̄2 are bounded away from 0 and bounded above.

The conclusion to be drawn is that the SGT fails to hold in this case when
θ is small. The SGT and its role in the proof of the CLT for Betti numbers in
the ERM is explained in Chapter 4.

The above comments apply to the adjacency matrix. We believe the same
conclusions hold for the normalized graph Laplacian but our results in this
direction are still incomplete. Specifically, we do not yet have an analogue of
Proposition 3.3.2 for the normalized graph Laplacian. These findings lead
to the following questions.

1. In those cases of the SBM where there is sufficiently large separation
between the largest and second largest eigenvalue, can the CLT for Betti
numbers be proved using the same method of proof as in the ERM case, as
given in Kahle and Meckes (2013, 2015)?

2. Does the CLT for Betti numbers in the SBM still hold in general, even
though the method of proof breaks down in a broad range of cases? Or,
alternatively, does the proof break down because the CLT does not hold in
general in the SBM? In Chapter 4 it is proved that the answer to Question 1

is affirmative; see Theorem 4.7.2. Question 2 is an open question and we do
not know the answer.
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4
T O WA R D S T H E C LT F O R B E T T I N U M B E R S I N T H E
S T O C H A S T I C B L O C K M O D E L

4.1 introduction

In this chapter, the aim is to go as far as possible in proving the CLT for Betti
numbers in the stochastic block model (SBM). This CLT has been proved by
Kahle and Meckes (2013, 2015) in the special case of the Erdős-Rényi model
(ERM).

The outline of this chapter is as follows. Since the structure of the proof
is rather complex even in the ERM case, our first goal is to study the struc-
ture of the proof given by Kahle and Meckes (2013, 2015) in detail. This is
done in Section 4.2. It turns out that some parts of the proof extend to the
SBM case without difficulty while in other parts of the proof there are seri-
ous difficulties in extending the proof. The most serious difficulties arise in
proving a suitable form of the spectral gap theorem (SGT) for SBM. Our re-
sults in Chapter 3 show that suitable versions of the SGT do not hold for the
SBM in wide generality. These difficulties are discussed in detail in Section
4.3. We also discuss and where possible prove component results which do
generalise to the SBM case including the lower vanishing threshold (Section
4.5) and the upper vanishing threshold (Section 4.6). In Section 4.7, it is
proved that the CLT for the SBM does hold for the subclass of SBMs which
satisfy a sufficiently strong version of the spectral gap theorem. In Section
4.8, some simulation results for CLT for the SBM are presented.

An important question is the following: is the failure to extend the method
of proof of the CLT due to Kahle and Meckes (2013, 2015) to the SBM a ques-
tion of the method of proof breaking down but the CLT still holding; or does
the CLT in fact fail to hold in generality in the SBM? We do not know the
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4.1 introduction

answer to this question. It will be interesting to see if it can be resolved in
future work.

In Table 4.1.1, some notations for this chapter are stated for convenience.

Vr vertices set for type r
V ⋃

i=1
Vr

Nr
card (Vr) Without lost of generality, let
N1 ≤ N2 ≤ ... ≤ Nζ

N
ζ

∑
r=1

Nr =Total number of vertices in the graph

prs
probability u ∈ Vr and v ∈ Vs are connected by an
edge

pmin min
(
{prs}1≤r≤s≤ζ

)
pmax max

(
{prs}1≤r≤s≤ζ

)
G ((Nr) , (prs) , ζ) SBM with ζ blocks, and Nr, prs are defined as above
X X ∼ X (G) where G ∼G ((Nr) , (prs) , ζ)
1N N × 1 vector of ones
IN N × N identity matrix
ξR simplices formed by |nR| numbers of vertices
ξS simplices formed by |nS| numbers of vertices

ξT
simplices formed by |nT| numbers of vertices
(Without lost of generality, |nR| ≥ |nS| ≥ |nT|)

ai; αi; γi card ({i : i ∈ ξR}); card ({i : i ∈ ξS}); card ({i : i ∈ ξT})
η card {i : i ∈ ξR

⋃
ξS
⋃

ξT}
ηi card {i : i ∈ {ξR

⋂
ξS}

⋂ Vi}
ηS∩T\R,i card {i : i ∈ {ξS

⋂
ξT\ξR}

⋂ Vi}
ηR∩S∩T,i card {i : i ∈ {ξS

⋂
ξT
⋂

ξR}
⋂ Vi}

T (n, a) n!
a!(n−a)! Binomial coefficient

τ (a, b) T (a + b, 2)− T (a, 2)− T (b, 2)

f (ar, k + 1, ζ)
k+1
∑

a1=0

k+1
∑

a2=0
...

k+1
∑

aζ=0
ζ

∑
r=1

ar=k+1

IR
the vector that is 1 in every coordinate corresponding
to set R and 0 elsewhere

Table 4.1.1: Some notation defined for Chapter 4.
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4.2 structure of proof of clt in erm

4.2 structure of proof of clt in erm

[1] Kahle and Meckes (2013)
[2] Kahle and Meckes (2015)
[3] Kahle (2014)
[4] Hoffman et al. (2019)
[5] Kahle (2009)
[6] Ballmann and Światkowski (1997)

[A]
‖

CLT
↑

Thm. 4.7.2
(Thm 1.1 in [2])

↗ ↖
Cor. 4.7.1 + Thm. 2.6.11

(Cor 1.3 (i) in [3]) (Thm 1.2 in [2])
↗ ↖
[B] + [C]

Figure 4.2.1: Proof structure of statement A, the Central Limit Theorem for
Betti Numbers.

[B]
‖

Upper Vanishing Threshold
↑

Thm. 4.6.2
(Thm. 3.6 in [5])

↗ ↖
Lemma 4.6.1 + Lemma 2.6.4

(Lemma 5.1 in [5]) (Lemma 5.3 in [5])
↑

Lemma 2.6.2
(Lemma 5.2 in [5])

Figure 4.2.2: Proof structure of statement B, the Upper Vanishing Threshold
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[C]
‖

Lower Vanishing Threshold
↑

Thm. 4.5.4
(Thm. 1.1(i) in [3])

↑
Lemma 4.5.3 + Thm. 2.6.10

(Lemma 3.2 in [3]) (Thm. 2.1 in [6])
↗ ↖

Lemma 4.5.2 + [D]
(Lemma 3.1 in [3])

↑
Lemma 4.5.1

(Lemma 2.1 in [3])

Figure 4.2.3: Proof of statement C, the Lower Vanishing Threshold.

[D]
‖

SGT
↑

Lemma 2.6.5
(Lemma 4.1 in [4])

↑
Prop. 4.3.7

(Prop. 5.5 in [4])
↗ ↖

Prop. 4.3.6 + Prop 4.3.5
(Prop. 5.4 in [4]) (Prop. 5.3 in [4])

↑ ↑
Prop. 4.3.3 ← Lemma 4.3.4

(Prop. 5.2 in [4]) (Lemma 5.1 in [4])

Figure 4.2.4: Proof structure of statement D, the Spectral Gap Theorem
(SGT)
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Thm./Lemma/Prop. Origin Result
Cor. 4.7.1 Cor 1.3 (i) in [3] Solved under assumption

Thm. 2.6.11 Thm 1.2 in [2] Unchanged
Thm. 4.7.2 Thm 1.1 in [2] Solved under assumption

Table 4.2.1: Table of proof structure of statement A, the Central Limit Theo-
rem for Betti Numbers.

Thm./Lemma/Prop. Origin Result
Lemma 4.6.1 Lemma 5.1 in [5] Solved
Lemma 2.6.2 Lemma 5.2 in [5] Unchanged
Lemma 2.6.4 Lemma 5.3 in [5] Unchanged
Thm. 4.6.2 Thm. 3.6 in [5] Solved

Table 4.2.2: Table of proof structure of statement B, the Upper Vanishing
Threshold.

Thm./Lemma/Prop. Origin Result
Lemma 4.5.1 Lemma 2.1 in [3] Solved
Lemma 4.5.2 Lemma 3.1 in [3] Solved
Lemma 4.5.3 Lemma 3.2 in [3] Proof under assumption
Thm. 4.5.3 Thm 2.1 in [6] Unchanged
Thm. 4.5.4 Thm. 1.1(i) in [3] Proof under assumption

Table 4.2.3: Table of proof of statement C, the Lower Vanishing Threshold.

Thm./Lemma/Prop. Origin Results
Lemma 4.3.4 Lemma 5.1 in [4] Solved
Prop. 4.3.3 Prop. 5.2 in [4] Unsolved
Prop 4.3.5 Prop. 5.3 in [4] Solved
Prop. 4.3.6 Prop. 5.4 in [4] Solved
Prop. 4.3.7 Prop. 5.5 in [4] Unsolved

Lemma 2.6.5 Lemma 4.1 in [4] Unsolved

Table 4.2.4: Table of proof structure of statement D, the Spectral Gap Theo-
rem (SGT)

To extend CLT from ERM to SBM, a similar pattern of proof is followed as
for SBM. The main theorem CLT for ζ-block model G ((Nr) , (prs) , ζ) is given
as Theorem 4.7.2. Theorem 4.7.2 states that for each k and certain range of
P = {pmin ≤ prs ≤ pmax : 1 ≤ r ≤ s ≤ ζ}, βk ≥ 0 a.a.s and in this regime βk

follows a normal distribution with mean E(βk) and variance Var(βk). The
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4.3 spectral gap theorem for sbms

range of P for βk is presented in Corollary 4.7.1 where the proof is given by
induction for both i < k and i > k.

The next step is to prove the upper vanishing threshold for the range of
P, which is given in Theorem 4.6.2. Theorem 4.6.2 states that for each k,
with pmax ≤ p, βk = 0 a.a.s. Theorem 4.6.2 is proved by 3 lemmas where
Lemma 2.6.4 and 2.6.2 are counting the non-trivial k-cycles in the sample
graph which are irrelevant to ERM. Lemma 4.6.1 for Theorem 4.6.2 proves
that there is no k-complex for subgraph with size M + k + 1 where M is
a function of k for pmax ≤ p. As a result, Theorem 4.6.2 proves that G is
formed by the subgraph with zero k-cycle, i.e. βk = 0.

For the lower vanishing threshold for the CLT regime, the SGT is intro-
duced, which we have not been able to prove for the SBM in this thesis.
In Section 4.3, we show that SGT breaks down in 4 different places. How-
ever, for CLT for SBM, the full force of the SGT is not required. The only
requirement is that λ2 > 1− 1

k+1 as N tends to infinity. This implies that as
k increases, more edges are required for βk. We proved in Section 3.5 that
for a 2-block model, λ2 is close to 1. The simulation results in Section 4.4
suggest that the λ2 for SBM is always bounded by the λ2 value from ERM.
As a result, we assume SGT is true for the lower vanishing threshold for
SBM.

For the rest of the lower vanishing threshold, we first prove Lemma 4.5.1
and 4.5.2 which are not related to SGT. Lemma 4.5.1 states that there are
no (k + 1)-simplices in any graph if probability pmin ≥ p. Whereas Lemma
4.5.2 indicates that a subgraph with k + 1 vertices of the ζ-block model is
not a (k + 1)-simplex with probability pmin ≥ p. Lemma 4.5.2 is proved
by Lemma 4.5.1. Furthermore, Lemma 4.5.3 proves that the conditions for
using SGT on a subgraph with k + 1 vertices are satisfied. Finally, the main
theorem, Theorem 4.5.4 states that for each k, with pmin ≥ p, βk = 0 a.a.s.
We prove Theorem 4.5.4 by checking every subgraph with size k + 1 in
G ((Nr) , (prs) , ζ) satisfies the conditions on SGT, if SGT holds, then The-
orem 4.5.3 suggests that βk = 0.

4.3 spectral gap theorem for sbms

In this section, we are going to show how Lemma 2.6.5 breaks down in four
different places when it is applied to the general SBM.

First, two addition lemmas are proved below.
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4.3 spectral gap theorem for sbms

Lemma 4.3.1. Let Xi
indep∼ Bernoulli (pi) where i = 1, ..., N and X = ∑

i
Xi,

µ = ∑
i

pi. Then for any t < µ

P (X ≤ t) ≤ exp
{
−µ + t

(
1 + log

µ

t

)}
.

Proof. For any λ ∈ R, the MGF for Xi
indep∼ Bernoulli (pi) can be bounded by

E
(

eλX
)
=E

(
eλ ∑ Xi

)
=∏ E

(
eλXi

)
=∏

[
1 + pi

(
eλ − 1

)]
≤∏ exp

{
pi

(
eλ − 1

)}
(1 + x ≤ ex, x > 0)

= exp
{
∑ pi

(
eλ − 1

)}
= exp

{
µ
(

eλ − 1
)}

.

If λ < 0, then by Markov’s inequality,

P (X ≤ t) = P
(

eλX ≥ eλt
)

≤
E
(
eλX)
eλt

≤ exp
{

µ
(

eλ − 1
)
− λt

}
.

Assuming that t < µ, let λ = log
(

t
µ

)
, which gives

P (X ≤ t) ≤ exp
{

µ

(
elog

(
t
µ

)
− 1
)
− t log

(
t
µ

)}
= exp

{
−µ + t

(
1 + log

µ

t

)}
.

Lemma 4.3.2. Let Xi
indep∼ Bernoulli (pi) where i = 1, ..., N and X = ∑

i
Xi and

µ = ∑
i

pi . Then for any t > 4

P (X ≥ tµ) ≤ exp
{
− tµ log t

3

}
.
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Proof. For any λ ∈ R, the MGF for Xi
indep∼ Bernoulli (pi) can be bounded by

E
(

eλX
)
=E

(
eλ ∑ Xi

)
=∏ E

(
eλXi

)
=∏

[
1 + pi

(
eλ − 1

)]
≤∏ exp

{
pi

(
eλ − 1

)}
(1 + x ≤ ex, x > 0)

= exp
{
∑ pi

(
eλ − 1

)}
= exp

{
µ
(

eλ − 1
)}

.

If λ > 0, then by Markov’s inequality,

P (X ≥ tµ) = P
(

eλX ≥ eλtµ
)

≤
E
(
eλX)

eλtµ

≤ exp
{

µ
(

eλ − 1
)
− λtµ

}
.

For t > 1, let λ = log (t), which gives

P (X ≥ tµ) ≤ exp
{

µ
(

elog(t) − 1
)
− tµ log (t)

}
= exp {µ (t− t log t− 1)} .

As µ (t− 1)− µt log t ≤ − tµ log t
3

is required, we need to show (t− 1) ≤
2
3 t log t for t > 4. Since t

t−1 log t is a increasing function for t > 1, 4
3 log 4 ≥

3
2 log 3 ≥ 3

2 . This implies 3 ≤ 2
3 · 4 log 4. Therefore,

P (X ≥ tµ) ≤ exp
{

µ

(
2
3

t log t− t log t
)}

= exp
{
−µt log t

3

}
.

4.3.1 Difficulty 1 of Proof of SGT

Lemma 4.3.3 below, which is condition 2 of Lemma 2.6.5 is the first place
where the proof of the SBM fails.
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4.3 spectral gap theorem for sbms

In the proof of SGT, since only the upper bound is required, the ideal
scenario is that d = (N − 1) p for ERM in Lemma 2.6.5 can be replaced
directly by dmax = (N − 1) pmax. However, this is not true for Proposition
4.3.3. The original updated version of Condition 2 of Lemma 2.6.5 is given
as Lemma 4.3.3.

Lemma 4.3.3. For each δ > 0 and m ≥ 0, there is a constant C = C (δ, m)

sufficiently large so that if pmin ≥ δ log N
N then

sup
‖x‖ = 1

xT1N = 0
‖y‖ = 1

∣∣∣xTAy
∣∣∣ ≤ C

√
dmax

with probability at least 1− C exp
{
−md2

max
}

Proof. Define

T =

{
x ∈

(
1

2
√

N
Z

)N
: ‖x‖ ≤ 1

}
and U =

{
x ∈ T : ∑

i
xi = 0

}
.

By Lemma 2.6.6, U =
{

x : ‖x‖ = 1, xT1 = 0
}

is in the convex hull of T. Let
Q = {x : ‖x‖ ≤ 1}. For any vector x ∈ Q, we can find a hypercube C with
length of side ε√

N
as described below.

Fix any weight vector α where ∑
i

αi = 1 and αi ≥ 0. Choose x ∈ Q such

that ∑ αixi attains its maximum value. Therefore, if i1, ..., il are the indices
of non-integer coordinates, choose a non-integer coordinates ij by adding γ

to xij , objective function ∑ αixi changes by γαij . If the sign of γ is chosen
to be the sign of αij , the objective function does not decrease. Increase
|γ| > 0 until xij becomes integer. Repeat this process for each ij until xij is
an integral value.

By Lemma 2.6.7, let zx = 1
2 x where x ∈ S and zy = 1

2 y where y ∈ Q.
Then zx = ∑

i
αivi, vi ∈ T and zy = ∑

j
αjvj, vj ∈ U. The result of Lemma 2.6.7

follows and 1
(1−ε)2 =

(
1
2

)−2
= 4. Thus,
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4.3 spectral gap theorem for sbms

sup
‖x‖ = 1

xT1N = 0
‖y‖ = 1

∣∣∣xTAy
∣∣∣ ≤ 4 sup

x ∈ U
y ∈ T

∣∣∣xTAy
∣∣∣ .

For a fixed pair of vectors (x, y) ∈ U × T, define the light couples L =

L (x, y) to be all ordered pairs (u, v) ∈ N × N such that |xuyv| ≤
√

dmax
N and

let heavy couples H = H (x, y) be all those pairs that are not light. The
notation which will be used is the following

Y = l (x, y) = ∑
(u,v)∈L

xu Auvyv (4.3.1)

h (x, y) = ∑
(u,v)∈H

xu Auvyv . (4.3.2)

For the light couples l (x, y), let

Xi = xu AuvyvI {(u, v) ∈ L}+ xv AuvyuI {(v, u) ∈ L} ,

where i = 1, ..., (N
2 ) is corresponding to (u, v) and assume M is the number

of the light couples i.e. M = card (L).
Then

Xi = xuyv + xvyu (A is adjency matrix)

which implies that

|Xi| ≤ 2
√

dmax

N
.

Moreover,

X2
i ≤

(xuyv + xvyu)
2 sgn (xuyv) = sgn (xvyu)

(xuyv)
2 + (xvyu)

2 sgn (xuyv) 6= sgn (xvyu)

≤
[
(xuyv)

2 + 2 |xuyvxvyu|+ (xvyu)
2
]

.
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Thus,

M

∑
i=1

X2
i ≤

1
2

 ∑
(u,v)

(xuyv)
2 + 2 ∑

(u,v)
|xuyvxvyu|+ ∑

(u,v)
(xvyu)

2


≤ 1

2

[
∑
u

x2
u ∑

v
y2

v + 2 〈x, y〉+ ∑
v

x2
v ∑

u
y2

u

]
(〈x, y〉 is dot product)

≤ 2 ‖x‖ · ‖y‖
≤ 2.

This implies that
N
∑

i=1
E
(
X2

i
)
≤ 2pmax.

Moreover, to control the expectation

E [l (x, y)] + E [h (x, y)]

=E

 ∑
(u,v)∈L

xu Auvyv

+ E

 ∑
(u,v)∈H

xu Auvyv


=E

(
xTAy

)
=xTE (A) y

≤xT pmax


1 . . . 1
... . . . ...
1 · · · 1

 y
(

xT−→1 = 0
)

6=0.

Unlike Proposition 5.2 in Hoffman et al. (2019), the condition that

E [l (x, y)] + E [h (x, y)] = 0

fails in block model. This is because x and y are unit vectors, but the sign
of each component in the unit vectors is unkonwn. So it is impossible to get

the conclusion that pmaxxT


1 . . . 1
... . . . ...
1 · · · 1

 y = 0.

Apply Proposition 3.4.1, instead of
∣∣xTAy

∣∣ ≤ C
√

dmax, the new upper
bound is now assumed to be

∣∣xTAy
∣∣ ≤ C

√
d2

max.
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4.3.2 Difficulty 2 of Proof of SGT

However, since the conditions in Lemma 2.6.5 are connected to each other,
by changing one of the conditions of the lemma 2.6.5 from d to d2

max, all 4

conditions of the Lemma 2.6.5 also need to be modified in the same manner.
Moreover, an additional condition is added for the original setup of the
lemma which is ηM =

{
v ∈ V : deg (v) ≤ d2

max
M

}
as M = d2

max. In this case,
the condition 1 and 3 of Lemma 2.6.5 are still held as below.

Lemma 4.3.4. For δ > 0 and m ≥ 0, there is a constant C = C (δ, m) such that ev-
ery vertex has degree at most Cd2

max with probability at least 1−C exp
{
−md2

max
}

.
This is called the bounded degree condition (b.d.c.).

Proof. In SBM, for any vertex vi, dmin ≤ E [deg (vi)] ≤ dmax < d2
max. Since

pmin ≥ δ log N
N , dmin > δ log N for large N.

By Lemma 4.3.2, P (X ≥ tµ) ≤ exp
{
− tµ log t

3

}
, assume α = E [deg (vi)],

P
[
deg (vi) > c0d2

max · α
]
≤ exp

{
− c0d2

max · α · log c0d3

3

}
≤ exp

{
− c0d3 · dmin · log c0d3

3

}
,

where c0 > 4. Using the fact that log N < d2
max
δ ,

P (b.d.c. fails) =P (b.d.c does not hold for at least one vi)

=P

[
N⋃

i=1

deg (vi) > c0d2
max · α

]

≤
N

∑
i=1

P
[
deg (vi) > c0d2

max · α
]

≤
N

∑
i=1

exp
{
− c0d2

max · dmin · log c0d2
max

3

}
≤N exp

{
− c0d3 · dmin · log c0d2

max
3

}
≤ exp

{
d3

[
1
δ
− 1

3
dminc0 log c0d2

max

]}
.

By choosing c0 large enough, we may take

1
δ
− 1

3
dminc0 log c0d2

max ≤ −m.
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Thus
P (b.d.c. fails) = O

(
exp

{
−md2

max

})
.

Proposition 4.3.5. For each δ > 0 and each ε > 0, if pmin ≥ δ log N
N there is an

M = M (δ, ε) > 1, such that
a). |ηM| < N

100d2
max

where ηM =
{

v ∈ V : deg (v) ≤ d2
max
M

}
b). max

u∈ηc
M

Edge (u, ηm) ≤ 1

with probability at least 1− CN exp
{
− (2− ε) d2

max
}
− C exp {−cN} .

Proof. 1): Let s = N
100d2

max
, since in this case only upper bound is required

P (|ηM| ≥ s) ≤
(

N
s

)
P
[

deg (ui) ≤
d2

max
M

, 1 ≤ i ≤ s
]

.

Let U = ηc
M = {u1, .., us} and S = ηM = Uc = {us+1, ..., uN}

P
[

deg (ui) ≤
d2

max
M

, 1 ≤ i ≤ s
]

≤P
[

Edge (ui, S) ≤ d2
max
M

, 1 ≤ i ≤ s
]

.

Since Edge (u, ηM) are independent Bernoulli r.v., by Lemma 4.3.1,

P
[

Edge (ui, S) ≤ d2
max
M

]
≤ exp

{
− (N − s) pmin +

d2
max
M

(
1 + log

(N − s) pmax
d2

max
M

)}
.

Thus,

78



4.3 spectral gap theorem for sbms

log P (|ηM| ≥ s)

≤ log
(

N
s

)
+ s

{
− (N − s) pmin +

d2
max
M

(
1 + log

M (N − s) pmax

d2
max

)}
(4.3.3)

≤ log
(

esNs

ss

)
+ s

{
− (dmin − spmin) +

d2
max
M

[
(1 + log M) + log

(N − k)
(N − 1)

· 1
d2

max

]}
≤s + s log

(
N
s

)
+ s

{
− (dmin − spmin) +

d2
max
M

(1 + log M)

}
(4.3.4)

≤s
{

1 + log
(

N
s

)
− (dmin − spmin) +

d2
max
M

(1 + log M)

}
≤s · f (M) .

For (4.3.3),

− (N − s) pmin = −Npmin + spmin

≤ −Npmin + pmin + spmin

= −dmin + spmin.

As s = N
100d2

max
and let M = d2

max, using the fact that dmin
100d2

max
< 1,

f (M) ≤1 + log
(

N
s

)
− (dmin − spmin) +

d2
max
M

(1 + log M)

≤1 + log

 N
N

100d2
max

− (dmin − spmin) +
d2

max
M

+ C

≤1 + log
(

100d2
max

)
−
(

dmin −
dmin

100d2
max

)
+

d2
max
M

+ C

≤− dmin + log
(

100d2
max

)
+ 2 +

d2
max
M

+ C

≤− dmin + log
(

100d2
max

)
+ C,

(4.3.5)
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where C is a positive constant. As a result,

log P (|ηM| ≥ s)

≤s · f (M)

≤ N
100d2

max

{
−dmin + log

(
100d2

max

)
+ C

}
≤− 1

100
· N

(N − 1)2 ·
(N − 1) pmin

p2
max

+ C

≤− 1
100
· pmin

p2
max

+ C.

As a result, if pmin
p2

max
→ ∞, then P (|ηM| ≥ s)→ C exp {−CN} .

Hence we have that |ηM| < N
100d2

max
with probability at least

1−O (exp {−CN})

for C > 0.
2): We try to bound the probability that there are at least two edges

between ηM and ηc
M. And we require that the degree of ηc

M is bounded by
Cdmax given by Lemma 4.3.4 1).

P
[
∃u ∈ ηc

M : E (u, ηM) ≥ 2
⋂

b.d.c
]

≤N3P
(

u ∈ ηc
M, v ∈ ηM, w ∈ ηM, u↔ v, u↔ w

⋂
b.d.c.

)
,

where b.d.c. is the bounded degree condition from Lemma 4.3.4, Edge (u, ηM)

is the edge number between vertex u and set ηM and u ↔ v indicates an
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edge is connected between vertices u and v. By conditioning on deg (u) =
du, deg (v) = dv, deg (w) = dw and

P (u↔ v, u↔ w|du, dv, dw)

≤ P (u↔ v, u↔ w|du, dv, dw)

P (u = v, v = w, u = w|du, dv, dw)

≤ p2
max (1− pmin) · T (N − 3, du − 2) pdu−2

max (1− pmin)
(N−3)−(du−2)

(1− pmax)
3 T (N − 3, du) pdu

max (1− pmin)
(N−3)−du

× T (N − 3, dv − 1) pdv−1
max (1− pmin)

(N−3)−(dv−1)

T (N − 3, dv) pdv
max (1− pmin)

(N−3)−dv

× T (N − 3, dw − 1) pdw−1
max (1− pmin)

(N−3)−(dw−1)

T (N − 3, dw) pdw
max (1− pmin)

(N−3)−dw

+
p3

max · T (N − 3, d1 − 2) pdu−2
max (1− pmin)

(N−3)−(du−2)

(1− pmin)
3 T (N − 3, d1) pdu

max (1− pmin)
(N−3)−du

× T (N − 3, d2 − 2) pdv−2
max (1− pmin)

(N−3)−(dv−2)

T (N − 3, d2) pdv
max (1− pmin)

(N−3)−dv

× T (N − 3, d3 − 2) pdw−2
max (1− pmin)

(N−3)−(dw−2)

T (N − 3, d3) pdw
max (1− pmin)

(n−3)−dw

≤ (1− pmin)
2

p2
max

· T (N − 3, du − 2) T (N − 3, dv − 1) T (N − 3, dw − 1)
T (N − 3, du) T (N − 3, dv) T (N − 3, dw)

+
(1− pmin)

3

p3
max

· T (N − 3, du − 2) T (N − 3, dv − 2) T (N − 3, dw − 2)
T (N − 3, du) T (N − 3, dv) T (N − 3, dw)

.

≤ (1− pmin)
2

p2
max

· Ndu+dv+dw−4

Ndu+dv+dw
+

(1− pmin)
3

p3
max

· Ndu+dv+dw−6

Ndu+dv+dw

≤ (1− pmin)
2

p2
max

· 1
N4 +

(1− pmin)
3

p3
max

· 1
N6

≤ (1− pmin)
2

d2
max

· 1
N2 + o (1)

≤C
d4

max
N2 .

Then it remains to estimate the probability for both v, w ∈ ηM,

P
[

deg (v) ≤ d2
max
M

, deg (w) ≤ d2
max
M

]
=

[
P
(

X ≤ d2
max
M

)]2

.
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By (4.3.4), putting s = 2

[
P
(

X ≤ d2
max
M

)]2

≤ exp
{

2
[
− (dmin − 2pmin) +

d2
max
M

(1 + log M)

]}
≤ exp

{
−2dmin + 4 +

2d2
max
M

+ C
}

≤ exp {−2dmin + C}
(

M = d2
max

)
= O

(
exp

{
−d2

max

(
2− ε

2

)})
,

using the fact that

dmin =
1
2

d2
max

([
2− ε

2

])
.

Thus,

P

[
max
u∈ηc

M

E (u, ηm) > 1

]
≤C · N3 · (1− pmin)

2

d2
max

· 1
N2 · exp

{
−d2

max

(
2− ε

2

)}
=O

(
N exp

{
−d2

max (2− ε)
})

.

Proposition 4.3.5 is the condition 3 in Lemma 2.6.5.

Proposition 4.3.6. For fixed δ > 0 and m ≥ 0, there is a constant C = C (δ, m)

sufficiently large so that if pmin ≥ δ log N
N then

∑
v∈V

[
deg (v)− d2

max

]2
≤ CNd2

max

with probability at least 1− C exp
{
−md2

max
}

.

Proof. Note that

∑
v∈V

[
deg (v)− d2

max

]2
=
∥∥∥(A− d2

maxIN

)−→
1 N

∥∥∥2

where A is the adjacency matrix of G, IN is the identity matrix and 1N is the
vector whose elements are all 1. Thus,∥∥∥A− d2

max1N

∥∥∥ = sup
‖x‖=1

∣∣∣xT
(

A− d2
maxIN

)
1N

∣∣∣ .
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For a fixed vector x, by orthogonal decomposition,

x̃ =
x · 1N

‖1N‖2 · 1N

≤ ‖x‖ · ‖1N‖
‖1N‖2 · 1N (|x · 1N| ≤ ‖x‖ · ‖1N‖)

=
1
‖1N‖

· 1N (‖x‖ = 1)

≤ 1√
N
· 1N.

Thus x = y + c · 1N where c ≤ 1√
N

. This implies that

∣∣∣xT
(

A− d2
max IN

)
1N

∣∣∣ = ∣∣∣(y + c1N)
T
(

A− d2
maxIN

)
1N

∣∣∣
≤
∣∣∣yT

(
A− d2

maxIN

)
1N

∣∣∣+ ∣∣∣c1T
N

(
A− d2

maxIN

)
1N

∣∣∣ .

For
∣∣yT (A− d2

maxIN
)

1N
∣∣,

yT
(

A− d2
maxIN

)
1N = yTA1N

as yT1N = 0. From Proposition 4.3.3,

sup
‖x‖ = 1

xT1N = 0
‖y‖ = 1

∣∣∣xTAy
∣∣∣ ≤ C

√
d2

max.

Therefore,

sup
‖y‖ = 1

yT1N = 0

∣∣∣yTA1N

∣∣∣ = sup
∣∣∣∣yTA

1N

‖1N‖

∣∣∣∣ · ‖1N‖

≤C
√

d2
max ·

√
N

with probability 1−O
(
exp

{
−md2

max
})

.
Note that

1T
N

(
A− d2

maxIN

)
1N = ∑

v∈V
deg (v)− Nd2

max.
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4.3 spectral gap theorem for sbms

Since ∑
v∈V

deg (v) = 2∑
i

Xi where Xi are independent but not identically dis-

tributed Bernoulli random variables, by Chernoff Bounds which is given in
(2.2.2),

P (|X− µ| > δµ) ≤ 2 exp
{
−µδ2

3

}
.

Write X = ∑
v∈V

deg (v), let µ = E (X) then

µ ≤ ∑
v∈V

(N − 1) pmax

⇒µ ≤ Ndmax

⇒µ < Nd2
max

⇒ exp
{
− 1

µ

}
< exp

{
− 1

Nd2
max

}
.

Let t = mN
√

d2
max, then δ =

mN
√

d2
max

µ . This implies that by Chernoff Bound,

P (|X− µ| > t) ≤2 exp
{
−m2N2d2

max
3µ

}
≤2 exp

{
− t2

3µ

} (
t2 = m2Nd2

max

)
≤C exp

{
− t2

CNd2
max

}
.

Moreover,

P
[∣∣∣1T

N

(
A− d2

maxIN

)
1N

∣∣∣ ≤ t
]
≥ 1− C exp

{
− t2

CNd2
max

}
⇒
∣∣∣c1T

N

(
A− d2

maxIN

)
1N

∣∣∣ ≤ 1√
N
·mN

√
d2

max

⇒
∥∥∥A− d2

max1N

∥∥∥ ≤ C
√

Nd2
max + m

√
Nd2

max

⇒ ∑
v∈V

[
deg (v)− d2

max

]2
=
∥∥∥A− d2

max1N

∥∥∥2
≤ CNd2

max.

Proposition 4.3.6 is not a condition for lemma 2.6.5, however, it is required
for the proof of the condition 4 of the lemma 2.6.5 which is the next propo-
sition, Proposition 4.3.7.
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4.3 spectral gap theorem for sbms

4.3.3 Difficulty 3 of Proof of SGT

For condition 4 of Lemma 2.6.5, it is unclear that the conditions for the size
of the |ηM| if |ηM| = 0 is acceptable, then condition 4 holds. Otherwise,
condition 4 fails completely.

Proposition 4.3.7. Let W = {v ∈ V : deg (v) > 0} and let ηm be defined in
Proposition 4.3.5. For each δ > 0 and m ≥ 0, there is a constant C = C (δ, m)

sufficiently large so that if pmin ≥ δ log N
N then

sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ C
√

N
d2

max

with probability at least 1−C exp
{
−md2

max
}

where D is the degree matrix defined
in Section 2.4.

Proof. Since |ηM| < N
100d2

max
from Proposition 4.3.5 1), therefore,

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ ‖x‖ · ∥∥∥D
1
2 IηM

∥∥∥
as ‖x‖ = 1. Moreover, ηM =

{
v : deg (v) ≤ d2

max
M

}
, this implies

∥∥∥D
1
2 IηM

∥∥∥
has value if and only if at deg (v) ≤ d2

max
M . Thus,

∥∥∥D
1
2 IηM

∥∥∥ ≤
|ηM|

∑
i=1

(√
d2

max
M
− εi

)2
 1

2

(εi ≥ 0)

≤
(|ηM|

∑
i=1

d2
max
M

) 1
2

≤
(|ηM|

∑
i=1

d2
max

) 1
2

≤
√

d2
max · |ηM|

<

√
d2

max ·
N

100d2
max

=O
(√

N
)

.
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Furthermore, we need to show that xTD
1
2

(
IηM + Iηc

M

)
= 0. We can write D

as

D =

[
DW 0

0 DWc

]
=

(
DW 0

0 0

)
as W = {v ∈ V : deg (v) > 0} and

DW = diag
{

d
M

+ δ1, ...,
d
M

+ δi,
d
M
− εi+1, ...,

d
M
− εj

}
(δi > 0) .

Thus,

xTD
1
2 IW = 0

⇒xTD
1
2
WIW = 0

⇒xTD
1
2 1N = 0 (IW + IWc = 0)

where IW is the indicator vector. As a result,(
IηM + Iηc

M

)
= 1N

⇒xTD
1
2

(
IηM + Iηc

M

)
= 0

⇒xTD
1
2 IηM = −xTD

1
2 Iηc

M
.

This implies that

sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M
+ O

(√
N
)∣∣∣

≤ sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣∣∣xTD−
1
2 Iηc

M
+ xT D

1
2

d2
max

IηM

∣∣∣∣∣

≤ sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣∣∣xTD−
1
2 Iηc

M
− xT D

1
2

d2
max

Iηc
M

∣∣∣∣∣ .

Taking norms,∣∣∣∣∣xT

(
D−

1
2 − D

1
2

d2
max

)
Iηc

M

∣∣∣∣∣ ≤
∥∥∥∥∥
(

D−
1
2 − D

1
2

d2
max

)
Iηc

M

∥∥∥∥∥ .
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Squaring this norm,∥∥∥∥∥
(

D−
1
2 − D

1
2

d2
max

)
Iηc

M

∥∥∥∥∥
2

≤ ∑
v∈ηc

M

[
1√

deg (v)
−
√

deg (v)
d2

max

]2

≤ ∑
v∈ηc

M

1
deg (v)

[
1− deg (v)

d2
max

]2

≤ ∑
v∈ηc

M

1
d4

max deg (v)

[
d2

max − deg (v)
]2

≤ ∑
v∈ηc

M

M
d6

max

[
d2

max − deg (v)
]2

(
deg (v) ≥ d2

max
M

)
≤ ∑

v∈V

M
d6

max

[
d2

max − deg (v)
]2

(Lemma 4.3.6)

≤CNM
d4

max
.

Therefore, by letting C = C (C, M) ,

sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ √ CN
d4

max
≤ C
√

N
d2

max
.

Although the proof of the Proposition 4.3.7 does not contain any proba-
bility calculations, we have expanded it and given the details on the calcu-
lation.

Theorem 4.3.8. Fix δ > 0 and let pmin ≥
( 1

2+δ) log N
N . Let dmax = (N − 1) pmax

denote the expected degree of vertex. Let G be the random graph with block struc-
ture. For every fixed ε > 0, there is a constant C = C (δ, ε), so that

max
i 6=1
|1− λi| <

C√
d2

max

with probability at least 1− CN exp
{
− (2− ε) d2

max
}
− C exp

{
−d

1
2
max log N

}
where λn is the eigenvalue from normalized graph Laplacian which is defined in
Section 2.4.

Proof. Proof follows by an extension of Lemma 2.6.5,
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1.Lemma 4.3.4 satisfies condition 1 which is every vertex has degree at
most C1d2

max;
2.Proposition 4.3.3 satisfies condition 2 which is

sup
‖x‖ = 1

xT1N = 0
‖y‖ = 1

∣∣∣xTAy
∣∣∣ ≤ C2

√
d2

max

where A is the adjacency matrix and 1N is a vector whose components are
all 1;

3.Proposition 4.3.5 satisfies condition 3 which is max
u∈ηc

M

E (u, ηm) ≤ 1

4.Lemma 4.3.7 satisfies condition 4 which is

sup
‖x‖ = 1

xTD
1
2 IW = 0

∣∣∣xTD−
1
2 Iηc

M

∣∣∣ ≤ C3

√
N

d2
max

As a result, Lemma 2.6.5 concludes that

max
λi 6=0
|1− λi| <

C√
d2

max

where C = C (C1, C2, C3, M).

4.3.4 Difficulty 4 of Proof of SGT

Although the original proof of Lemma 2.6.5 is deterministic, given the addi-
tional conditions that M = d2

max, it break at 2 different parts.
As in the original proof in ERM,

|1− λi| ≤ f1 (x) + f2 (x) + f3 (x) + f4 (x)

where fi (x) ≤ C
d ≤

C√
d

for all i = 1, ..., 4.
However, two of the fi (x) have upper bounds which contain the M value

in general, which are

f2 (x) ≤ CM√
d
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and

f4 (x) ≤
√

M√
d

.

As a result, by setting M = d2
max,

f2 (x) ≤ Cd2
max√

d2
max

= C
√

d2
max

and

f4 (x) ≤
√

d2
max√

d2
max

= 1.

This implies that the original upper bound C√
d

given in Lemma 2.6.5 for the
SGT does not hold.

4.4 new simulation evidence for sgt

From Section 4.3, the original SGT fails in 4 different ways when extended
from ERM to SBM. However, when we prove the CLT for Betti numbers for
SBM, the full force of SGT is not needed. From Theorem 2.6.10, the only
requirement for βk is

P
[

λ2 > 1− 1
k + 1

]
= 1− o

(
N−α

)
as N → ∞ where α ≥ 0, k is βk the degree of the Betti number.

Furthermore, in ERM, the regime for βk for CLT is

N−
1
k < N−x < N−

1
k+1 .

As a result, the corresponding theoretical results are shown below.

k 1
k

1
k+1 λ2

1 1 0.5 0.5
2 0.5 0.333... 0.666...
3 0.333... 0.25 0.75
4 0.25 0.2 0.8
5 0.2 0.166... 0.833...
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We choose N from 500 to 3000 and x from 0.2 to 1.0 to check whether or
not λ2 satisfies the results that whether or not p is outside the range then
λ2 is no longer greater than 1− 1

k+1 .
For each N and x, the sample size ns = 100. One of the scatter plot

for λN for N = 2000 and x = 0.6 is shown in Figure 4.4.1. In this case,
λ1 = 2.77× 10−15 and λ2 = 0.5778 which satisfied the condition of SGT.

Figure 4.4.1: The λ values for SGT by setting N = 2000, x = 0.6. The sim-
ulation results show that λ1 = 2.77× 10−15, λ2 = 0.5778 and
other λ values are gradually increase as required.

For a fixed N = 2000, the λ2 values for x between 0.2 and 0.7 are given
in Figure 4.4.2. As can be seen, for x = 0.2 to 0.6, λ2 is greater than 0.5 as
required.

Figure 4.4.2: 100 λ2 values for N = 2000 and x = 0.2 to 0.7
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Moreover, in Figure 4.4.3, the graph displays values of λ2 for different
x values as N increases. In general, λ2 increases as N increases for each
x values which is results that required for Theorem 2.6.10. Although for
x = 0.7, 0.8, the λ2 are small, the trends are increasing. It suggests that
for x = 0.7, 0.8 and 0.9, N needs to be far larger than 5000 to achieve the
limiting results. While for x = 1.0 as it is outside the maximum range for x
so 0 is expected.

Figure 4.4.3: N = 500 to 5000 and x = 0.2 to 1.0 for p = N−x

In Figure 4.4.3, the line chats show the values for different x values for
ERM. Since CVM is a unique theorem for both ERM and SBM, the corre-
sponding theoretical results for k and λ2 are remains unchanged. However,
the regime for βk for SBM for CLT becomes

N
− 1

k
1 = N−φ < N−x < N−

1
k+1 .
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4.5 lower vanishing threshold for betti numbers in sbms

Figure 4.4.4: λ2 values for N = 500 to 5000 for SBM and ERM. The number
above lines indicate (x1, x2, x3) where pmin < N−xi < pmax
where i = 1, ..., 3.

As can be seen in Figure 4.4.4, the λ2 for G (N, ζ) with pmin, pmax is
always between λ2 for G (N, pmin) and G (N, pmax) . Since the limiting be-
haviour forλ2 for ERM is always true, we make the assumption that the λ2

for G (N, ζ) with pmin, pmax is also true.
In conclusion, we assume that the SGT for SBM is true and the following

result is stated.

Conjecture 4.4.1. Consider a clique complex X (G) . Assume that for each k,

N
− 1

k
1 < pmin ≤ pmax < N−

1
k+1 . Then λ2 from Normalized graph Laplacian

satisfies that

P
(

λ2 > 1− 1
k + 1

)
→ 1

as N → ∞.

4.5 lower vanishing threshold for betti numbers in sbms

In this section, we are going to prove the lower vanishing threshold for CLT
for Betti numbers

92



4.5 lower vanishing threshold for betti numbers in sbms

Lemma 4.5.1. For ζ blocks defined as before, if

pmin ≥


[

k
2 + 1

]
log N +

[
k
2

]
log log N + ω (1)

N


1

k+1

then asymptotic almost surely (a.a.s.) Mk+1 = ∑
i∈( n

k+1)

Yi = 0 where Yi is the

indicator function for ξR with |nR| = k + 1.

Proof. For a particular Yi, there are ar vertices chosen from Vr, then

E (Yi|ar) =
ζ

∏
i=1

pT(ar,2)
rr ∏

1≤r<s<ζ

pτ(ar,as)
rs

ζ

∏
r=1

(
1− ∏

1≤r≤s≤ζ

pas
rs

)Nr−ar

,

and

E (Mk+1) = f (ar, k + 1, ζ)

[
ζ

∏
r=1

T (Nr, ar) E (Yi|ar)

]
.

Since we want to prove E (Mk+1)→ 0, we need to prove the upper bound
of E (Mk+1) tends to zero. Therefore,

E (Yi|a) ≤ pT(k+1,2)
max

(
1− pk+1

min

)N1−k−1

and
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E (Mk+1) ≤
(

N
k + 1

)
p(

k+1
2 )

max

(
1− pk+1

min

)N1−k−1

≤ Nk+1

(k + 1)!
p(

k+1
2 )

max

(
1−

N1pk+1
min

N1

)N1−k−1

≤ Nk+1

(k + 1)!
p(

k+1
2 )

max e−N1 pk+1
min

=
Nk+1

(k + 1)!

{(
1
N

) 1
k+1
} (k+1)k

2

× exp

−N1


[

k
2 + 1

]
log N +

[
k
2

]
log log N + (c− c1)

N


=

Nk+1

(k + 1)!
N−

k
2 · exp

{
N1

N

}
× exp

{
−
[

k
2
+ 1
]

log N −
[

k
2

]
log log N − c + c1

}
=

Nk+1

(k + 1)!
N−

k
2 · exp

{
N1

N

}
· N− k

2−1 (log N)−
k
2 e−c+c1

=
1

(k + 1)!
(log N)−

k
2 e

N1
N e−c+c1

=
e−c+c1

(k + 1)!
e

N1
N

[
1

log N

] k
2

.

As N1 → ∞, N1 − k− 1 → ∞, N → ∞, 1
log N → 0. As c → ∞, c1 is a fixed

constant, e−c+c1 → 0. then E (Mk+1)→ 0. Since

N = N1 +
ζ

∑
s=2

Ns = N1+
ζ

∑
s=2

θ1sN1

where θ1s =
Ns
N1
≥ 1. Then N1

N = N1

N1

(
1+

ζ

∑
s=2

θ1s

) = 1(
1+

ζ

∑
s=2

θ1s

) , then exp

{
−1−

ζ

∑
s=2

θ1s

}

is either a constant or tends to e0.
Since upper bound of E (Mk+1) → 0, the resulting E (Mk+1) tends to

zero.
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Moreover, we need to use CVT introduced at Theorem 2.6.10 to prove
Theorem 4.5.4. We state Lemma 4.5.2 and 4.5.3 to show that the requirement
for CVM is satisfied.

Lemma 4.5.2. Set

p̄ =


[

k
2 + 1

]
log N + Ck

√
log N log log N

N


1

k+1

where Ck is a constant depending on k. If pmin ≥ p̄, then a.a.s. the skelk+1 (G)
where skelk+1 is defined in Definition 2.5.2 and G is the graph with ζ-blocks is pure
(k + 1)-dimensional; in other words, every face is contained in the boundary of a
(k + 1)−face.

Proof. Since a k-face which is not in a (k + 1)-face would correspond to a
maximal (k + 1)-clique. As

p̄ ≥


[

k
2 + 1

]
log N +

[
k
2

]
log log N + ω (1)

N


1

k+1

by Lemma 4.5.1, P (Mk+1) → 0 as N → ∞, where Mk+1 is the number of
maximal (k + 1)-cliques in G as defined before.

For 0 ≤ i < k, let pi =

(
( i−1

2 +1) log N+[ i−1
2 ] log log N+ω(1)

N

) 1
i
. Since p̄ ≥(

[ k
2+1] log N+[ k

2 ] log log N+ω(1)
N

) 1
k+1

> pi for all 0 ≤ i < k. Therefore, by Lemma

4.5.1, P (Mi)→ 0 as N → ∞.

The proof of Lemma 4.5.2 is nearly identical to the proof given in (Kahle,
2014). We only replace the notation small n with big N and replace the p
value to the pmin.

Lemma 4.5.3. Let X ∼ X (G). Set

p̄ =


[

k
2 + 1

]
log N + Ck log log N

N


1

k+1
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4.5 lower vanishing threshold for betti numbers in sbms

where Ck is a constant depending on k. If pmin ≥ p̄ then a.a.s.

pmin ≥
(α + 1) log Nσ + Cα

√
log Nσ log log Nσ

Nσ

for every (k− 1)-dimensional face σ ∈ X , where Mσ is the number of vertices in
lkX (σ), α = k(k+3)

2 and Cα is a constant depending only on α.

Proof. Assume there are ar vertices chosen from Vr for σ then

E (Mσ) = f (ar, k, ζ)

{
ζ

∏
r=1

(Nr − ar) par
rr ∏

1≤r<s≤ζ

par
rs

}

Set

g (x) =
(α + 1) log x + Cα

√
log x log log x

x
then the first derivative g′ (x) is

g′ (x) = g1 (x) + g2 (x)

where 
g1 (x) = (α + 1)

[
1
x2 −

log x
x2

]
g2 (x) = Cα

[
2+log log x
2x2
√

log x
− 2 log x log log x

2x2
√

log x

]
.

Since g1 (x) < 0 for x ≥ 4 and g2 (x) < 0 for x > 16, so g (x) is a decreasing
function for x > 16. Note: log [log (16)] > 1 and x need to be an integer.

As g (x) is a decreasing function, we want to get the lower bound of Mσ.
Then

E (Mσ) ≥ (N1 − k) pk
min ≈ N1pk

min.

Let µ = N1pk
min, and δ = µ−

2
5 , by Chernoff bound which is defined as

(2.2.2),
P (|X− µ| > δµ) =P

(
|Mσ − µ| > µ

3
5

)
≤2 exp

{
−µ

1
5

3

}
.

96



4.5 lower vanishing threshold for betti numbers in sbms

Since for pmin ≥ N
− 1

k+1
1 , N1pk

min = N1 ·N
− k

k+1
1 = N

1
k+1

1 . Therefore, 2 exp
{
−µ

1
5

3

}
=

2 exp
{
−1

3 N
1

k+1
1

}
→ 0 as N1 → ∞. Therefore,

P
(
|Mσ − µ| ≤ µ

3
5

)
=1− P

(
|Mσ − µ| > µ

3
5

)
→1.

Chernoff Bound defined as (2.2.2) can be updated as

µ− µ
3
5 ≤ Mσ ≤ µ + µ

3
5

Thus, let N′ = µ− µ
3
5 and if a.a.s.

pmin ≥
(α + 1) log N′ + Cα

√
log N′ log log N′

N′
= g

(
N′
)

then pmin ≥ g (N′) ≥ g (Mσ) as N′ ≤ Mσ and g (x) is a decreasing function.
Write

f (pmin) = N′pmin − (α + 1) log N′ + Cα

√
log N′ log log N′. (4.5.1)

Then we can prove that f (pmin) > 0 for pmin ≥ p̄.

In Lemma 4.5.3, the updated proof of Chernoff bound which is not given
in the original paper is included. Moreover, since the original proof of
Lemma 4.5.3 is split into two parts by (4.5.1), the second part of the proof
is only based on simple calculation which does not include any probability.
Thus, it is a general results for SBM.

Combining Lemma 4.5.2, 4.5.3 and with the assumption of SGT, Conjec-
ture 4.4.1 is true, Theorem 4.5.4 is now ready to be proved.

Theorem 4.5.4. Let k ≥ 1 and ε > 0 be fixed and let graph G be a SBM. If

pmin ≥


[

k
2 + 1 + ε

]
log N

N


1
k

then a.a.s.
Hk (X , Q) = 0.
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4.5 lower vanishing threshold for betti numbers in sbms

Proof. Suppose p ≥
(
[ k

2+1] log n+Ck log log n
n

) 1
k+1

, X ∼ X (G) and fk−1 is the

number of (k− 1)-dimensional faces of X . From Section 4.7.1,

E ( fk−1) ≤ T (N, k) pT(k,2)
max

Var ( fk−1) ≤ ckN2(k−1)p2T(k,2)−1
max .

Then with standard Chebyshev’s inequality,

P [|X− E (X)| ≥ a] =P [| fk−1 − µ| ≥ o (1) µ]

≤ ckN2(k−1)p2T(k,2)−1
max

εµ2

≈ ckN2(k−1)p2T(k,2)−1
max

εN2k pT(k,2)
max

=
ck

εN2pmax
,

where ck is a constant depending on k and ε is a small constant.

For pmax ≥ pmin > N
− 1

k+1
1 > N−

1
k+1 , N2pmin = N2N

− 1
k+1

1 > N2N−
1

k+1 =

N
2k+1

2(k+1) → ∞ as N → ∞. So

P [| fk−1 − µ| ≤ o (1) µ] ≥1− ck
εN2pmax

→1.

Lemma 4.5.3 shows that a.a.s.

pmin ≥
(α + 1) log Nσ + Cα

√
log Nσ log log Nσ

Nσ

for every (k− 1)-dimensional face σ where α = k(k+3)
2 .
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4.6 upper vanishing threshold for betti numbers in sbms

Let A = { fk−1 ≤ γ} where γ = (1 + o (1)) T (N, k) pT(k,2). By SGT, since
|1− λ2| ≤ max

i 6=1
|1− λn|, λ2 > 1 − 1

k . Let Rσ = λ2 [G] < 1
k−1 and Pσ =

P (Rσ) = o (N−α
σ ) then

Pf =P

(⋃
σ

Rσ

)

=P

(⋃
σ

Rσ|A
)

P (A) + P

(⋃
σ

Rσ|AC

)
P
(

AC
)

=P

[⋃
σ

(
Rσ

⋂
A
)]

+ o (1)

=E

[
∑
σ

IRσ · IA

]
+ o (1)

≤
γ

∑
i=1

E [IRσ · IA] + o (1)

=γP (Rσ) + o (1)

≤γo
(

M−α
σ

)
+ o (1)

≤γo
(
µ−α

)
+ o (1)

(
µ
[
1− µ−

2
5

]
≤ Mσ

)
=o

{
T (N, k) pT(k,2)

min

(
Npk

min

)− k(k+3)
2

}

=o

{
N

2k−k(k+3)
2 p

k(k−1)−k2(k+3)
2

min

}

=o

{[
Npk+1

min

]− k(k+1)
2

}
=o (1) ,

since Npk+1
min → ∞ as N → ∞ for pmin ≥ N−

1
k+1 .

4.6 upper vanishing threshold for betti numbers in sbms

In this section, the extension to the SBM of Theorem 4.6.2 is proved for CLT
for Betti numbers. This section follows the paper by Hoffman et al. (2019).
Firstly, we need to introduce the following Lemma in SBM.
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4.6 upper vanishing threshold for betti numbers in sbms

Lemma 4.6.1. Let N−x < N−
1
k and 0 < M−1 < −1

k − x. Then a.a.s. there are no
strongly connected pure k-dimensional subcomplexes of X (G) with vsupp of more
than M + k + 1 vertices where vsupp is defined in Definition 2.5.3.

Proof. The vertices in the support of a strongly connected subcomplex can
be ordered v1, v2, ..., vn such that {v1, ..., vk+1} spans a k-face and vi is con-
nected to at least k vertices vj with j < i. One way to see this is to order the
k-faces f1, f2, ... so that each has (k− 1)-dimensional intersection with the
union of the previous faces. That this is possible is guaranteed by the as-
sumption of strongly connected. Then let this ordering induce an ordering
on vertices, since at most one vertex gets added at a time in the sequence
f1, f1

⋃
f2, f1

⋃
f2
⋃

f3, ...
Suppose complex X has M + k + 1 vertices, as f1 has (k+1

2 ) edges, X has
at least (k+1

2 ) + Mk edges. If the underlying graph of X is not a subgraph of
G then X is not a subcomplex. Choose ε and M such that M−1 < ε < x− 1

k ,
assume pmax = N−x < N−

1
k−ε and k < εMk, thus

P (∃subcomplex X )

=P (∃subcomplex X |X is a subgraph) P (X is a subgraph)

+ P (∃subcomplex X |X is not a subgraph) P (X is not a subgraph)

≤P (∃subcomplex X |X is a subgraph)

≤ (M + k + 1)! · T (N, M + k + 1) pT(k+1,2)+Mk
max

≤NM+k+1N−
1
k [T(k+1,2)+Mk]N−ε[T(k+1,2)+Mk]

=NM+k+1− k+1
2 −M−εT(k+1,2)−εMk

=N1− k+1
2 −εT(k+1,2)

=O
(

N−ε
)

.

The proof of Lemma 4.6.1 is separated into two parts, the first part is
based only on TDA, which is identical for both ERM and SBM. The second
part is a modified version of the proof in Hoffman et al. (2019), obtained by
replacing n with N and p with pmax.

Moreover, since Lemma 2.6.2 and 2.6.4 stated in Section 2.6 are indepen-
dent to the structure of ERM, these two lemmas are assumed to be true for
SBM. The results from Lemma 4.6.1, 2.6.2 and 2.6.4 are applied to prove
Theorem 4.6.2.
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4.7 clt for betti numbers and vanishing thresholds

Theorem 4.6.2. If k ≥ 1 and ε > 0 are fixed and suppose graph G with N vertices
has clique complex X (G). If

pmax ≤
1

N
1
k+ε

then a.a.s. Hk (X , Q) = 0 where Hk (X , Q) is defined in Section 2.5.

Proof. Any non-trivial k-cycle with minimal vsupp must have minimum ver-
tex degree at least 2k in its supporting subgraph. Since by Lemma 2.6.2, each
vertex link is a non-trivial (k− 1)-cycle, hence by Lemma 2.6.4 it contains at
least 2 (k− 1) + 2 = 2k vertices.

Let H be any fixed graph with minimal vertex degree 2k. Let m =number
of vertices in H and E (H) ≥ m·2k

2 as the edges get double counting. Then if
−x < −1

k and pmax = N−x, H is almost always not a subgraph of G. This is
because by Lemma 4.6.1,

m!T (N, m) pmk
max

≤NmN−xmk

=o (1) . (−xk < −1)

There are only finite many isomorphism types of graphs of minimal degree
2k on m = N + k vertices. Each has at least km edges. Applying this
argument to each of them, it can be concluded that X a.s has no vertex
minimal non-trivial k−cycles, so a.s H̃k (X , Z) = 0.

4.7 clt for betti numbers and vanishing thresholds

In this section, we are going to extend CLT for clique complex of ERM
results by Kahle and Meckes (2015) to SBM.

4.7.1 Moments and Simplices

Since Theorem 2.6.11 does not include any probability, it can be assumed
to be true and use it directly when proving Theorem 4.7.2. However, we
are going to include the proof of Conjecture 4.4.1, as it is not given in any
paper.
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4.7 clt for betti numbers and vanishing thresholds

Proof of Theorem 2.6.11. Under present setup, let

XR =
1
σ
(−1)card(R)+k+1 [ξR − E (ξR)]

therefore,

E {|XRXSXT|}

=
1
σ3 E {[ξR − E (ξR)] [ξS − E (ξS)] [ξT − E (ξT)]}

=
1
σ3 E {|ξRξSξT − ξRE (ξS) ξT − E (ξR) ξSξT

+ E (ξR) E (ξS) ξT − ξRξSE (ξT)− ξRE (ξS) E (ξT)

−E (ξR) ξSE (ξT) + E (ξR) E (ξS) E (ξT)|}

=
1
σ3 {E (ξRξSξT) + E (ξRξT) E (ξS) + E (ξR) E (ξSξT)

+ E (ξR) E (ξS) E (ξT) + E (ξRξS) E (ξT) + E (ξR) E (ξS) E (ξT)

+E (ξR) E (ξS) E (ξT) + E (ξR) E (ξS) E (ξT)}

≤ 8
σ3 E (ξRξSξT) ,

(4.7.1)
and

E {|XRXS|} E {|XT|}

=
1
σ3 E {|[ξR − E (ξR)] [ξS − E (ξS)]|} E {|[ξT − E (ξT)]|}

=
1
σ3 {E [|ξRξS − ξRE (ξS)− E (ξR) ξS + E (ξR) E (ξS)|]× 2E (ξT)}

=
1
σ3 {2 [E (ξRξS) + E (ξR) E (ξS)]× 2E (ξT)}

≤ 8
σ3 E (ξRξSξT) .

(4.7.2)

Since E (ξR) is counting the number of edges that exist in the graph, the
mean value should be the sum of non-negative number times the probability,
i.e. E (|ξ|) = E (ξ). From the results above, for both ERM and SBM, the
power of probability is determined by the number of intersection points ,η,
between the simplices.

For both
E (ξRξS) E (ξT) ≤ E (ξRξSξT)
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4.7 clt for betti numbers and vanishing thresholds

and
E (ξR) E (ξS) E (ξT) ≤ E (ξRξSξT) ,

the LHS of the inequality can not have the case when three simplices are
intersect together, i.e. take triangle as an example, the extreme case for
E (ξRξSξT) is that all three simplices are sharing 3 vertices then the power for
the probability is p3. While for E (ξRξS) E (ξT), the extreme case can only be
ξR and ξS are sharing the same vertices, therefore, the least possible power is
p6. Similarly, E (ξR) E (ξS) E (ξT) can not have any points of intersection, the
only possible power is p9. Since 0 < p < 1, p3 > p6 > p9, E (ξRξS) E (ξT) ≤
E (ξRξSξT) and E (ξR) E (ξS) E (ξT) ≤ E (ξRξSξT).

As a result, from Theorem 2.6.11,

d1 (W, Z) ≤ 16
σ3

(
∑

R⊆V

)(
∑

S,T∈LR

)
E (ξRξSξT) (4.7.3)

where V is the collection of the vertices set and for R ⊆ V , LR is the col-
lection of subsets of V where at least two vertices is chosen from simplicies
ξR.

Therefore, if we want to extend this proof for SBM, we need to calculate
the first three moments.

For the first moment, we can consider a1 vertices first chosen from V1.
There are T (N1, a1) possibilities and in V1 each edge has probability pT(N1,a1)

11 .
Then a2 vertices are chosen from V2. There are T (N2, a2) such choices and
the edge probabilities are T (N2, a2) combinations with probability pT(a2,2)

22 ,
etc. If an edge is connected between block r and s, the probability of this
edge is

pT(ar+as,2)−T(ar,2)−T(as,2)
rs ,

and

E ( fk) = f (ar, k + 1, ζ)

[
ζ

∏
r=1

T (Nr, ar) pT(ar,2)
rr ∏

1≤r<s<ζ

pτ(ar,as)
rs

]
. (4.7.4)
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For the second moment, suppose two simplices both contain k+ 1 vertices.
The first simplicies same way as first moment, then the common vertices are
chosen from each block r from 1 to ζ,

E
(

f 2
k

)
= f (ar, k + 1, ζ)

ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (ar, k + 1− η, ζ)
ζ

∏
r=1

T (Nr − ar, αr − ηr)

×
ζ

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
rr ∏

1≤r<s<ζ

pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)
ij .

(4.7.5)
For the second moment, assume two simpilicies have diffident sizes. Then

without loss of generality, assume the first simplex is the one with larger the
one with larger number of vertices. So

E
(

fk fk+j
)
= f (ar, k + j + 1, ζ)

ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η, ζ)
ζ

∏
r=1

T (Nr − ar, αr − ηr)

×
ζ

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
rr ∏

1≤r<s≤ζ

pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)
rs

where j ≥ 0.
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For SBM, by induction from first and second moment, the third moment
is

E (ξRξSξT) = f (ar, nR, ζ) f (αr, nS, ζ) f (γr, nT, ζ)

×
(

nS

∑
ηR∩S=0

)
f (ηR∩S,r, ηR∩S, ζ)

(
min(nT ,ηR∩S)

∑
ηR∩S∩T=0

) nT

∑
ηR∩T\S

 nT

∑
ηS∩T\R


× f (ηR∩S∩T,r, ηR∩S∩T, ζ) f

(
ηR∩T\S,r, ηR∩T\S, ζ

)
× f

(
ηS∩T\R,i, ηS∩T\R, ζ

)
ζ

∏
r=1

T (Nr, ar) T (ar, ηR∩S,r) T (Nr − ar, αr − ηR∩S,r)

× T (ηR∩S,rηR∩S∩T,r) T
(

ar − ηR∩S,r, ηR∩T\S,r

)
× T

(
ar − ηR∩S,r, ηS∩T\R,r

)
× T

(
Nr − ar − αr + ηR∩S,r, γr − ηR∩T\S,r − ηS∩T\R,r − ηR∩S∩T,r

)
ζ

∏
r=1

prrgrr ∏
1≤r<s≤ζ

prsgrs,

(4.7.6)
where

grr =T (ar, 2) + T (αr, 2)− T (ηR∩S,r, 2)

+ T (γr, 2)− T
(

ηR∩T\S,r + ηR∩S∩T,r, 2
)

− T
(

ηS∩T\R,r + ηR∩S∩T,r, 2
)
+ T (ηR∩S∩T,r, 2) ,

and

grs =τ (ar, as) + τ (αr, αs)− τ (ηR∩S,r, ηR∩S,s)

+ τ (γr, γs)− τ
(

ηR∩T\S,r + ηR∩S∩T,r, ηR∩T\S,s + ηR∩S∩T,s

)
− τ

(
ηS∩T\R,r + ηR∩S∩T,r, ηS∩T\R,s + ηR∩S∩T,s

)
+ τ (ηR∩S∩T,r, ηR∩S∩T,s) .

The main calculation for getting these moments has been put in Section
4.9. In this section, we only give the final results for each moment.
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4.7.2 CLT for Betti Numbers in SBMs

In this section, we are going to prove the CLT for Betti numbers in SBM.

Corollary 4.7.1. Let k ≥ 1 and ε > 0 be fixed. If


[

k
2 + 1 + ε

]
log N

N


1
k

≤ pmin ≤ pmax ≤
1

N
1

k+1+ε

then a.a.s.
H̃i (X , Q) = 0.

Proof. Under the present setup, we need to prove for both i < k and i > k
by induction.

For i = k + 1, let pmax = N−
1

k+1−ε.
From Theorem 4.6.2, if pk+1 ≤ 1

N
1

k+1+ε
, then Hk+1 (X , Q) = 0. Since

pmax = N−
1

k+1−ε ≤ pk+1 is the upper bound in Corollary 4.7.1, then the
lower upper bound is less than pk+1.

For i = k + 2, pk+2 ≤ 1

n
1

k+2+ε

pmax ≤ pk+1 < pk+2

⇒Hk+2 (X , Q) = 0

By induction,
pk+1 < pk+j ∀j > 1

⇒Hk+j (X , Q) = 0 ∀j > 1

⇒Hi (X , Q) = 0 ∀i > k

For i = k− 1, let pmin =

(
[ k

2+1+ε] log N
N

) 1
k
.

From Theorem 4.5.4, if pk−1 ≥
(
[ k−1

2 +1+ε] log N
N

) 1
k
, as N → ∞, k−1

2 ≈ k
2 ,

then pmin =

(
[ k

2+1+ε] log N
N

) 1
k
≥ pk−1, therefore, Hk−1 (X , Q) = 0. Since

pmin is the lower bound in Corollary 4.7.1, then the upper bound is greater
than pk−1.
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For i = k− 2, pk−2 =

(
[ k−2

2 +1+ε] log n
n

) 1
k−1

. Similarly, as n → ∞, k−2
2 ≈

k
2 ,

pk−2 ≈
(
[ k

2+1+ε] log n
n

) 1
k−1

pmin≥pk−1 > pk−2

⇒Hk−2 (X, Q) = 0

By induction,
pk−1 > pk−j ∀j > 1

⇒Hk−j (X, Q) = 0 ∀j > 1

⇒Hi (X, Q) = 0 ∀i < k

We now going to prove the CLT for Betti numbers in SBM. However, we
need to note that the SGT has not yet been proved to hold for all values of
the range of the p values. We only make the assumption that SGT is true
for the CLT in SBM which is given as Conjecture 4.4.1. But this proof may
not be true for all p values.

Theorem 4.7.2. Consider Clique complex X (G) with ζ-blocks G ((Nr) , (prs) , ζ).

Assume that N
− 1

k
1 < pmin ≤ pmax < N−

1
k+1 , then

βk (X )− E {βk (X )} → N (0, Var {βk (X )}) (4.7.7)

for each k.

If some of pii, pij = 0, then if the complete graph can degenerate into two
or more SBM, then each lower degree graph follows normal criterion, and
since sum of normal is normal, the complete graph satisfies Theorem 4.7.2.

Moreover, from Corollary 4.7.1, for pij in the given regime, all the Betti
numbers are zero expect for βk a.a.s. Therefore, using

∑ (−1)i βi =∑ (−1)i fi,

which is the Euler characteristic defined in 2.5.2.2, it follows that

β̃k = fk − fk+1 − fk−1 + fk+2 + fk−2 − ...
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To prove Theorem 4.7.2, we need to prove that the result which satisfies
ERM also satisfies the SBM under the assumption that SGT is true.

Proof. Since in ERM,

N
− 1

k
i < pii < N

− 1
k+1

i ,(
Ni + Nj

)− 1
k < pij <

(
Ni + Nj

)− 1
k+1

and as N1 ≤ Ni < N for i 6= 1 we can get that

N−
1
k < ... ≤ N

− 1
k

1 < pmin ≤ pmax < N−
1

k+1 < ... ≤ N
− 1

k+1
1

Thus we want to show that if

N
− 1

k
1 < pmin ≤ pmax < N−

1
k+1

then βk (X ) tends to Normal as N → ∞.
Let σ2 = Var

(
β̃k
)
, and define

W =
β̃k − E

(
β̃k
)√

Var
(

β̃k
) =

1
σ ∑

R⊆V
(−1)card(R)+k+1 [ξR − E (ξR)] ;

where V is the collection of the vertices. Then from Section 4.7.1, we define

XR = (−1)card(R)+k+1 [ξR − E (ξR)] .

Since only the upper bound is required for Theorem 2.6.11, all Ni can be
replaced by N. This implies that from (4.7.6)

E (ξRξSξT) = f2 (ck, N)× pgm
max

where
f2 (ck, N) ≤ ckNa+α+γ−ηR∩S−ηR∩T\S−ηS∩T\R+ηR∩T∩S

with ck is a constant depending only on k and

ζ

∏
r=1

pgrr
rr ∏

1≤r<s≤ζ

pgrs
rs ≤ p

ζ

∑
r=1

grr+ ∑
1≤r<s≤ζ

grs

max .
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4.7 clt for betti numbers and vanishing thresholds

Therefore,

gm =
ζ

∑
r=1

grr + ∑
1≤r<s≤ζ

grs

=T (nR, 2) + T (nS, 2) + T (nT, 2)− T (ηR∩S, 2)

− T
(

ηR∩T\S + ηR∩S∩T, 2
)
− T

(
ηS∩T\R + ηR∩S∩T, 2

)
+ T (ηR∩S∩T, 2)

Then following the similar steps as Kahle and Meckes (2015), if we fix nR,
nS, ηR∩S and ignore the factors which depend on these parameters, factors
corresponding to nT are left to sum up which is

1
σ3 NnT−ηR∩T\S−ηS∩T\R−ηR∩S∩T

× p
T(nT ,2)−T(ηR∩T\S+ηR∩S∩T ,2)−T(ηS∩T\R+ηR∩S∩T ,2)+T(ηR∩S∩T ,2)
max

(4.7.8)

If nT increased by one and the new element of T is in R ∩ T\S, then the
power of N in (4.7.8) does not change as (nT + 1) −

(
ηR∩T\S + 1

)
but the

power of pmax does; the ratio of the new term to the old is

p
T(nT+1,2)−T(ηR∩T\S+1+ηR∩S∩T ,2)−T(ηS∩T\R+ηR∩S∩T ,2)+T(ηR∩S∩T ,2)
max

p
T(nT ,2)−T(ηR∩T\S+ηR∩S∩T ,2)−T(ηS∩T\R+ηR∩S∩T ,2)+T(ηR∩S∩T ,2)
max

=p

[
(nT+1)nT

2 − nT(nT−1)
2

]
max

× p
−
[
(ηR∩T\S+ηR∩S∩T+1)(ηR∩T\S+ηR∩S∩T)

2 −(
ηR∩T\S+ηR∩S∩T)(ηR∩T\S+ηR∩S∩T−1)

2

]
max

=p
nT−ηR∩T\S−ηR∩S∩T
max

Similarly, if nT increased by one and the new element of T is in R ∩ S ∩ T,
then the ratio of the new term to the old is

p
nT−ηR∩T\S−ηS∩T\R−ηR∩S∩T
max

Since in both cases, the power on pmax is non-negative, adding a new vertex
to T which is already in R ∪ S can only make the summand smaller. On the
other hand, if the new element is not in R or S, then the ratio of the new term
to the old is NpnT

max. In the regime that given in Theorem 4.7.2, this tends
to infinity for nT < k and tends to zero for nT > k + 1. Thus, the largest
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4.7 clt for betti numbers and vanishing thresholds

possible order for 4.7.8 is achieved when nT = k + 1, ηR∩T\S + ηR∩S∩T = 2
and ηS∩T\R = 0. Using these values in 4.7.8

1
σ3 Nk−1pT(k+1,2)−1

max (4.7.9)

If only nR is fixed, then similarly, the only sums over nS is

1
σ3 NnS−ηR∩S+k−1pT(nS,2)−T(ηR∩S,2)+T(k+1,2)−1

max (4.7.10)

Then once again, the largest possible order is nS = k + 1 and ηR∩S = 2.
Using these values in 4.7.10

1
σ3 N2k−2p2T(k+1,2)−2

max (4.7.11)

Finally, considering the full term, the upper bound is

1
σ3 NnR+2k−2pT(nR,2)+2T(k+1,2)−2

max (4.7.12)

by the same argument, 4.7.12 is maximized when nR = k + 1. Then using

1
σ3 N3k−1p3T(k+1,2)−2

max

Thus, Theorem 2.6.11 implies that

d1 (W, Z) ≤ C
σ3 N3k−1p3T(k+1,2)−2

max

where W =
β̃k−E(β̃k)√

Var(β̃k)
.

Furthermore, using the fact that σ2 ≤ ckN2k p2T(k+1,2)−1
max ,

d1 (W, Z) ≤C
N3k−1p3T(k+1,2)−2

max

N3k p3T(k+1,2)− 3
2

max

≤ C
N
√

pmax
,

which tends to 0 as N tends to infinity.
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4.8 simulation results for clt for sbm

4.8 simulation results for clt for sbm

In this section, some simulation results for CLT for SBM are implemented
for both β1 and β2 using MATLAB package ’JavaPlex’. Consider the stan-
dard 2-block model where N1 = card (V1), N2 = card (V2), N = N1 + N2

and V = V1
⋃ V2. The regime for βk for CLT for SBM is

N
− 1

k
1 = N−φ < N−x < N−

1
k+1 .

For simplicity, set the probabilities as (p1, p2,p12) where

pgap = 1
4

(
N−

1
k+1 − N

− 1
k

1

)
p1 = pgap + N

− 1
k

1

p2 = 2pgap + N
− 1

k
1

p12 = 3pgap + N
− 1

k
1 .

(4.8.1)

By choosing sample size ns = 10 to 500 and 1000 for β1, set N = 1000, the
resulting qqplots are shown in Figure 4.8.1 and 4.8.2. It can be seen that for
N = 1000, qqplots with ns ≥ 50 follow normal distribution while qqplots
with ns < 50 seem to have a heavy tail.

Figure 4.8.2: β1for ns = 100 to 500 and 1000 with N = 1000 and probability
(p1, p2, p12)
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4.8 simulation results for clt for sbm

Moreover, the line chart for sample mean E (β1) for ns = 10 to 1000 is
displayed in Figure 4.8.3. As can be seen, E (β1) is slowly steady to around
7660. Therefore, Figure 4.8.2 suggest that ns = 500 is a good candidate for
the rest of the example for β1.

Figure 4.8.3: Sample mean E (β1) for ns = 10 to 1000 with N = 1000 and
probability (p1, p2, p12)

By setting ns = 500, we choose N = 10 to 1000 for β1 with probability
(p1, p2,p3) given as (4.8.1). The resulting qqplots are given in Figure 4.8.4
and 4.8.5. It can be seen that for the small number N ≤ 50, there are
horizontal line segments on qqplots represent the repeated value for β1.
Take N = 10 as an example, β1 only have values between 0 and 6, therefore,
there are 5 horizontal lines in the qqplot represent the values between 0 and
5. Moreover, for N ≥ 70, β1 is normally distributed whereas for N = 60
qqplot shows a heavy tail.
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4.8 simulation results for clt for sbm

Figure 4.8.4: β1 for N = 10 to 90 with ns = 500 and probability (p1, p2, p12)

Figure 4.8.5: β1 for N = 100 to 900 with ns = 500 and probability
(p1, p2, p12)

Moreover, we have also implemented β2 for SBM with N = 50 to 100

and ns = 100. We used smaller values because tetrahedrons are required
for calculating β2 which is very time consuming. As can be seen, in Figure
4.8.6 the qqplots indicate that β2 generally follows a normal distribution
although there are some outliers in the qqplots for N ≤ 70.
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4.8 simulation results for clt for sbm

Figure 4.8.6: β2 for N = 50 to 100 with ns = 100 and probability (p1, p2, p12)

In addition, we have also recorded the processing time in seconds for
both β1 for β2 with different N and the number of edges, triangles and
tetrahedrons in Table 4.8.1. Besides, a comparison between including tetra-
hedrons or not is given for β1 in row 5 (without tetrahedrons) and 6 (with
tetrahedrons). This allows a direct insight into the computing time for the
tetrahedrons.

As can be seen in Table 4.8.1, if only β1 is considered, the number of edges
and triangles increase as the numbers of vertices increase. The regime of β1

ensures there are very few tetrahedron in the graph for β1, i.e. 4 for 50

vertices and 8 for 100 vertices. Moreover, working with tetrahedron is very
time-consuming as seen by row 6 being greater than row 5. Take N = 300 as
an example, the processing time for including tetrahedrons is 22mins which
is approximately 160 times larger than not including tetrahedrons for β1. In
addition, the number of simplexes is generally larger for β2 than β1, and
the processing time for β2 is about twice longer than β1. Unfortunately, we
are not able to work out anything for N ≥ 500 for tetrahedrons.

In conclusion , one of the most time-consuming steps in calculating βk for
random graphs is working out the (k + 1)-simplex, i.e. triangles for β1, tetra-
hedrons for β2, etc. Since this is not directly spotted by the MATLAB pack-
age ’JavaPlex’, instead, we need to manually work out every simplex and
add every simplex separately from the 0−simplex to the (k + 1)-simplex.
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N 10 30 50 100 300 500 1000

edge 13 62 153 377 1794 3651 9924

triangle 2 9 42 65 311 507 1351

tetrahedron 0 0 4 0 8 N/A N/A
β1 w/o tet (seconds) 6.58 1.26 0.89 1.72 8.12 26.26 434.77

β1 with tet (seconds) 6.91 1.66 3.80 33.08 1315.09

N/A N/A
edge 21 128 340 1081 6170

triangle 11 94 411 1612 11662

tetrahedron 0 23 198 605 4642

β2 (seconds) 6.32 3.90 7.68 98.44 4534.42

Table 4.8.1: Table of time in seconds needed for calculation of β1 and β2 for
2-block model using MATALB package ’JavaPlex’.

4.9 appendix

In this appendix, the details are given of the derivation of how to get the
first three moment of the simiplices for ζ blocks, obtained by generalising
from 2 blocks to ζ blocks. See Table 4.1.1 for notations. However, in this
part, two blocks is applied as an illustrative example to show how the ζ

blocks results are obtained from two to ζ.
For ERM model, the mean, variance and covariance can be rewritten from

Kahle and Meckes (2013), where p = prs for all 1 ≤ r ≤ s ≤ ζ. We have

E ( fk) = T

(
ζ

∑
r=1

Nr, k + 1

)
pT(k+1,2), (4.9.1)

E
(

f 2
k

)
=T

(
ζ

∑
r=1

Nr, k + 1

)
k+1

∑
η=0

T (k + 1, η) T

(
ζ

∑
r=1

Nr − (k + 1) , k + 1− η

)
× pT(k+1,2)pT(k+1,2)−T(η,2)

(4.9.2)
and

E
(

fk fk+j
)
=T

(
ζ

∑
r=1

Nr, k + j + 1

)
k+1

∑
η=0

T (k + j + 1, r)

× T

(
ζ

∑
r=1

Nr − (k + j + 1), k + 1− η

)
pT(k+j+1,2)pT(k+1,2)−T(η,2)

(4.9.3)
where without loss of generality j > 0.
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e ( f2) for a 2-block model

Figure 4.9.1: Take triangle as an example, E ( f2) can have above 4 possibili-
ties where a vertex marked blue indicates it belongs to V1 while
the red one belongs to V2. An edge marked blue indicates it
has probability p11 as two vertices are both in V1, and similar
for V2. Meanwhile an edge is marked green if it is connected
between V1 and V2, i.e. one node is V1 and the other one is
from V2.

Take the triangle as an example, for E ( f2) in 2-blocks model, there are
four possibilities as shown in Figure 4.9.1

E ( f2) =T (N1, 3) T (N2, 0) p3
11

+ T (N2, 2) T (N2, 1) p2
11p12

+ T (N1, 1) T (N2, 2) p12p2
22

+ T (N1, 0) T (N2, 3) p3
22.

(4.9.4)

By letting p11 = p12 = p12 = p, (4.9.1) for f2 should equal to (4.9.4), i.e.

T (N1 + N2, 3) =T (N1, 3) T (N2, 0) + T (N1, 2) T (N2, 1)

+ T (N1, 1) T (N2, 2) + T (N1, 0) T (N2, 3) .

Then

6× LHS =N3
1 − 3N2

1 + 2N1

+ 3N2
1 N2 + 3N1N2

2

− 6N1N2

+ N3
2 − 3N2

2 + 2N2,

and
6× RHS =N3

1 − 3N2
1 + 2N1

+ 3N2
1 N2 − 3N1N2

+ 3N1N2
2 − 3N1N2

+ N3
2 − 3N2

2 + 2N2.

Therefore, LHS = RHS.
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Moreover, (4.9.4) can be summarized as

E ( f2) =
3

∑
a1=0

3

∑
a2=0

2
∑

r=1
ar=3

T (N1, a1) T (N2, a2)

× pT(a1,2)
1 pT(a2,2)

2 pT(3,2)−T(a1,2)−T(a2,2)
12 ,

which implies the general formula for the k-simplex is

E ( fk) =T (N1, a1) T (N2, a2)

× pT(a1,2)
11 pT(a2,2)

22 pT(k+1,2)−T(a1,2)−T(a2,2)
12

=
k+1

∑
a1=0

k+1

∑
a2=0

2
∑

r=1
ar=k+1

2

∏
r=1

T (Nr, ar) pT(ar,2)
rr ∏

1≤r<s≤2
pτ(a1,a2)

rs ,

where T (N, a) = N!
a!(N−a)! and τ (a1, a2) = T (a1 + a2, 2)− T (a1, 2)− T (a2, 2).

Therefore, if we extend from 2-blocks to ζ-blocks then

E ( fk) =
k+1

∑
a1=0

k+1

∑
a2=0

...
k+1

∑
aζ=0

ζ

∑
r=1

ar=k+1

ζ

∏
r=1

T (Nr, ar) pT(ar,2)
rr ∏

1≤r<s≤ζ

pτ(ar,as)
rs

= f (ark + 1, ζ)
ζ

∏
r=1

T (Nr, ar) pT(ar,2)
r ∏

1≤r<s≤ζ

pτ(ar,as)
rs

where f (ar, k + 1, ζ) = ∑k+1
a1=0 ∑k+1

a2=0 ... ∑k+1
aζ=0

ζ

∑
r=1

ar=k+1

.

e
(

f 2
2
)

for a 2-block model
For variance, as shown as first moment, we start with the 2-block model

for triangles. Then two triangles can have the following possibilities as
shown in the table.

118



4.9 appendix

(N1, N2) (3, 0) (2, 1) (1, 2) (0, 3)

(3, 0)

η = 0
η = 1
η = 2
η = 3

η = 0
η = 1
η = 2

η = 0
η = 1 η = 0

(2, 1)
η = 0
η = 1
η = 2

r = 0
r = 1
r = 2
r = 3

η = 0
η = 1
η = 2

η = 0
η = 1

(1, 2)
η = 0
η = 1

r = 0
r = 1
r = 2

η = 0
η = 1
η = 2
η = 3

η = 0
η = 1
η = 2

(0, 3) η = 0 η = 0
η = 1

η = 0
η = 1
η = 2

η = 0
η = 1
η = 2
η = 3

Table 4.9.1: Possibilities for two triangles, where η =number of intersection
points between two triangles. (N1, N2) =number of vertices cho-
sen from each block.

We are going to perform some of the calculations in Table 4.9.1 as exam-
ples in this thesis. First of all, (3, 0) → (3, 0) or (0, 3) → (0, 3) as these two
only contain V1 and V2, therefore, it will have a similar behaviour as the
(4.9.2) which is the general case.

E
(

f 2
2 |V1

)
= T (N1, 3)

3

∑
η=0

T (3, η) T (N1 − 3, 3− η) p3
11 · p

3−T(η,2)
11

= T (N1, 3) T (3, 0) T (N1 − 3, 3− 0) p6
11 (η = 0)

+ T (N1, 3) T (3, 1) T (N1 − 3, 3− 1) p6
11 (η = 1)

+ T (N1, 3) T (3, 2) T (N1 − 3, 3− 2) p5
11 (η = 2)

+ T (N1, 3) T (3, 3) T (N1 − 3, 3− 3) p3
11. (η = 3)

(4.9.5)

(4.9.5) is the 2nd column and 2nd row of the Table 4.9.1. If we change N1 to
N2 in equation (4.9.5), then we will get the second moment results for 5th
row and 5th column for vertices only in V2.

119



4.9 appendix

Secondly, we want to get the results for vertices only in V1 to only in V2

vice versa, which is the 5th row, 2nd column and 2nd row, 5th column in
Table 4.9.1. In this case, it only have η = 0,

E
(

f 2
2 |V1,V2

)
=T (N1, 3) T (N2, 0) T (N1 − 3, 0) T (N2, 3) p3

11p3
22

+ T (N1, 0) T (N2, 3) T (N1, 3) T (N2 − 3, 0) p3
22p3

11.

(4.9.6)

Thirdly, we considered the case the first triangle contains vertices only in
V1 or V2, the second triangle has vertices both from V1 and V2. This is the
2nd row with 3rd and 4th column and 5th row with 3rd and 4th column.

For η = 0,

E
(

f 2
2 |V1,V1V2

)
+ E

(
f 2
2 |V2,V1V2

)
=T (N1, 3) T (N2, 0) T (N1 − 3, 2) T (N2, 1) p3

11p11p2
12

+ T (N1, 3) T (N2, 0) T (N1 − 3, 1) T (N2, 2) p3
11p11p2

12

+ T (N1, 0) T (N2, 3) T (N1, 2) T (N2 − 3, 1) p3
11p11p2

12

+ T (N1, 0) T (N2, 3) T (N1, 1) T (N2 − 3, 2) p3
11p11p2

12.

For η = 1,

E
(

f 2
2 |V1,V1V2

)
+ E

(
f 2
2 |V2,V1V2

)
=T (N1, 3) T (3, 1) T (N1 − 3, 2− 1) T (N2, 1) p3

11p11p2
12

+ T (N1, 3) T (3, 1, ) T (N1 − 3, 1− 1) T (N2, 2) p3
11p2

12p22

+ T (N2, 3) T (3, 1) T (N1, 2) T (N2 − 3, 1− 1) p3
22p11p2

12

+ T (N2, 3) T (3, 1) T (N1, ) T (N2 − 3, 2− 1) p3
2p2

12p22.

For η = 2,

E
(

f 2
2 |V1,V1V2

)
+ E

(
f 2
2 |V2,V1V2

)
=T (N1, 3) T (3, 2, ) T (N1 − 3, 2− 2) T (N2, 1) p3

11p2
12

+ T (N2, 3) T (3, 2) T (N1, 1) T (N2 − 3, 2− 2) p3
22p2

12.

We omit the proof for the case that first triangle has vertices both from V1

and V2, second triangle contains vertices only in V1 or V2, which is the 3rd
and 4th rows with 2nd and 5th columns, since this is the opposite to the
third case.
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Lastly, we considered the case that both triangles contain vertices from
block 1 and 2. This is the 3rd and 4th rows with 3rd and 4th columns in the
table.

For η = 0,

E
(

f 2
2 |V1V2

)
=T (N1, 2) T (N2, 1) T (N1 − 2, 2) T (N2 − 1, 1) p11p2

12p11p2
12

+ T (N1, 2) T (N2, 1) T (N1 − 2, 1) T (N2 − 1, 2) p11p2
12p2

12p22

+ T (N1, 1) T (N2, 2) T (N1 − 1, 2) T (N2 − 2, 1) p22p2
12p11p2

12

+ T (N1, 1) T (N2, 2) T (N1 − 1, 1) T (N2 − 2, 2) p22p2
12p22p2

12.

For η = 1,

E
(

f 2
2 |V1V2

)
=T (N1, 2) T (N2, 1) T (2, 1) T (1, 0) T (N1 − 2, 1) T (N2 − 1, 1) p11p2

12p11p2
12

+ T (N1, 2) T (N2, 1) T (2, 0) T (1, 1) T (N1 − 2, 2) T (N2 − 1, 0) p11p2
12p11p2

12

+ T (N1, 2) T (N2, 1) T (2, 1) T (1, 0) T (N1 − 2, 0) T (N2 − 1, 2) p11p2
12p22p2

12

+ T (N1, 2) T (N2, 1) T (2, 0) T (1, 1) T (N1 − 2, 1) T (N2 − 1, 1) p11p2
12p22p2

12

+ T (N1, 2) T (N2, 1) T (1, 1) T (2, 0) T (N1 − 1, 1) T (N2 − 2, 1) p22p2
12p11p2

12

+ T (N1, 2) T (N2, 1) T (1, 0) T (2, 1) T (N1 − 1, 2) T (N2 − 2, 0) p22p2
12p11p2

12

+ T (N1, 2) T (N2, 1) T (1, 1) T (2, 0) T (N1 − 1, 0) T (N2 − 2, 2) p22p2
12p22p2

12

+ T (N1, 2) T (N2, 1) T (1, 0) T (2, 1) T (N1 − 1, 1) T (N2 − 2, 1) p22p2
12p22p2

12.

For η = 2,

E
(

f 2
2 |V1V2

)
=T (N1, 2) T (N2, 1) T (2, 2) T (1, 0) T (N2 − 1, 1) p11p2

12p2
12

+ T (N1, 2) T (N2, 1) T (2, 1) T (1, 1) T (N1 − 2, 1) p11p2
12p1p12

+ T (N1, 2) T (N2, 1) T (2, 1) T (1, 1) T (N2 − 1, 1) p11p2
12p22p12

+ T (N1, 1) T (N2, 2) T (1, 1) T (2, 1) T (N1 − 1, 1) p22p2
12p11p12

+ T (N1, 1) T (N2, 2) T (1, 0) T (2, 2) T (N1 − 1, 1) p22p2
12p2

12

+ T (N1, 1) T (N2, 2) T (1, 1) T (2, 1) T (N2 − 2, 1) p22p2
12p22p12.
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For η = 3,

E
(

f 2
2 |V1V2

)
=T (N1, 2) T (N2, 1) p11p2

12

+ T (N1, 1) T (N2, 2) p22p2
12.

From these 5 steps, we can conclude that

E
(

f 2
2

)
=

3

∑
a1=0

3

∑
a2=0

2
∑

r=1
ar=k+1

T (N1, a1) T (N2, a2)
3

∑
η=0

η

∑
η1=0

η

∑
η2=0

2
∑

r=1
ηr=η

T (a1, η1) T (a2, η2)

×
3−η

∑
α1=0

3−η

∑
α2=0

2
∑

r=1
αr=3−η

T (N1 − a1, α1 − η1) T (N2 − a2, α2 − η2)

× pT(a1,2)
11 pT(a2,2)

22 pT(3,2)−T(a1,2)−T(a2,2)
12

× pT(α1,2)−T(η1,2)
11 pT(α2,2)−T(η2,2)

22

× p[T(3,2)−T(α1,2)−T(α2,2)]−[T(η,2)−T(η1,2)−T(η2,2)]
12

= f (ar, 3, 2)
2

∏
r=1

T (Nr, ar)
3

∑
η=0

f (ηr, η, 2)
ζ

∏
r=1

T (ar, ζr)

× f (αr, 3− η, 2)
2

∏
r=1

T (Nr − ar, αr − ηr)

×
2

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
r ∏

1≤r<s≤2
pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)

rs .

(4.9.7)
Furthermore, if we rewrite f2 as fk, the general second moment for fk is

shown as the following,

E
(

f 2
k

)
= f (ar, k + 1, 2)

2

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, 2)
2

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η, 2)
2

∏
r=1

T (Nr − ar, αr − ηr)

×
2

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
rr ∏

1≤r<s≤2
pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)

ij .
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Thus for the fk in ζ-block model, by changing 2 to ζ we can conclude that

E
(

f 2
k

)
= f (ar, k + 1, ζ)

ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η)
ζ

∏
r=1

T (Nr − ar, αr − ηr)

×
ζ

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
rr ∏

1≤r<s≤ζ

pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)
ij .

e ( f1 f2 ) for a 2-block model
For covariance, we take edge and triangle as an illustrative example, it is

going to follow the same steps as the second moment for triangle.
Firstly, for all vertices that are in either V1 or V2.

E ( f1 f2|V1) = T (N1, 3)
2

∑
η=0

T (3, η) T (N1 − 3, 2− η) p3
11 · p11

= T (N1, 3) T (3, 0) T (N1 − 3, 2− 0) p4
11 (η = 0)

+ T (N1, 3) T (3, 1) T (N1 − 3, 2− 1) p4
11 (η = 1)

+ T (N1, 3) T (3, 2) T (N1 − 3, 2− 2) p3
11. (η = 2)

Secondly, vertices for triangle are all in V1 and vertices for edges are all
in V2 or vice versa. In this case, only case η = 0 exists.

E ( f1 f2|V1,V2) = T (N1, 3) T (N2, 2) p3
11p22

+ T (N2, 3) T (N1, 2) p3
22p11.

Thirdly, vertices for triangle are all in either V1 or V2, while vertices for
edges are in both V1 and V2. We can have two possibilities for the intersec-
tion points which are η = 0 and η = 1.

For η = 0,

E ( f1 f2|V1,V1V2) + E ( f1 f2|V2,V1V2)

=T (N1, 3) T (N1 − 3, 1) T (N2, 1) p3
11p12

+ T (N2, 3) T (N1, 1) T (N2 − 3, 1) p3
22p12.
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For η = 1,
E ( f1 f2|V1,V1V2) + E ( f1 f2|V2,V1V2)

=T (N1, 3) T (3, 1) T (N2, 1) p3
1p12

+ T (N2, 3) T (3, 1) T (N1, 1) p3
2p12.

Again, we omit the proof for the case that the triangle has vertices both
from V1 and V2, and the edge contains vertices only in V1 or V2, which is
the third case.

Lastly, we considered the case when both triangle and edge have vertices
in both V1 and V2. In this situation, there are three possibilities for intersec-
tion points which are η = 0, 1, 2.

For η = 0,

E ( f1 f2|V1V2)

=T (N1, 2) T (N2, 1) T (N1 − 2, 1) T (N2 − 1, 1) p11p2
12p12

+ T (N1, 1) T (N2, 2) T (N1 − 1, 1) T (N2 − 2, 1) p22p2
12p12.

For η = 1,

E ( f1 f2|V1V2)

=T (N1, 2) T (N2, 1) T (2, 1) T (N1 − 2, 1) p11p2
12p12

+ T (N1, 2) T (N2, 1) T (1, 1) T (N1 − 2, 1) p11p2
12p12

+ T (N1, 1) T (N2, 2) T (1, 1) T (N2 − 2, 1) p22p2
12p12

+ T (N1, 1) T (N2, 2) T (2, 1) T (N1 − 1, 1) p22p2
12p12.

For η = 2,

E ( f1 f2|V1V2)

=T (N1, 2) T (N2, 1) T (2, 1) T (1, 1) p11p2
12

+ T (N1, 1) T (N2, 2) T (1, 1) T (2, 1) p22p2
12
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From these five steps, we can conclude that

E ( f1 f2) =
3

∑
a1=0

3

∑
a2=0

2
∑

r=1
ar=k+1

T (N1, a1) T (N2, a2)
3

∑
η=0

η

∑
η1=0

η

∑
η2=0

2
∑

r=1
ηr=η

T (a1, η1) T (a2, η2)

×
2−η

∑
α1=0

2−η

∑
α2=0

2
∑

r=1
αr=2−η

T (N1 − a1, α1 − η1) T (N2 − a2, α2 − η2)

× pT(a1,2)
11 pT(a2,2)

22 pT(3,2)−T(a1,2)−T(a2,2)
12

× pT(α1,2)−T(η1,2)
11 pT(α2,2)−T(η2,2)

22

× p[T(3,2)−T(α1,2)−T(α2,2)]−[T(η,2)−T(η1,2)−T(η2,2)]
12

= f (ar, 3, 2)
2

∏
r=1

T (Nr, ar)
3

∑
η=0

f (ηr, η, 2)
ζ

∏
r=1

T (ar, ζr)

× f (αr, 2− η, 2)
2

∏
r=1

T (Nr − ar, αr − ηr)

×
2

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
r ∏

1≤r<s<2
pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)

rs .

(4.9.8)
Similar to E

(
f 2
k
)
, if we change 2 blocks to ζ blocks and f1, f2 to fk, fk+j

where j ≥ 0, we can conclude the general formula for E
(

fk fk+j
)

as

E
(

fk fk+j
)
= f (ar, k + j + 1, ζ)

ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η)
ζ

∏
r=1

T (Nr − ar, αr − ηr)

×
ζ

∏
r=1

pT(ar,2)+T(αr,2)−T(ηr,2)
rr ∏

1≤r<s≤ζ

pτ(ar,as)+τ(αr,αs)−τ(ηr,ηs)
ij .

binomial identity

From the derivation of the each moment, if η is fixed, we can conclude
the following binomial identity by setting p = pii = pij for all i, j.
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For the first moment, E ( fk)

T

(
ζ

∑
r=1

Nr, k + 1

)
= f (ar, k + 1, ζ)

ζ

∏
r=1

T (Nr, ar) ,

where T (n, a) = n!
a!(n−a)! = binomial coefficient, τ (a, b) = T (a + b, 2) −

T (a, 2)− T (b, 2) and f (ar, k + 1, ζ) =
k+1
∑

a1=0

k+1
∑

a2=0
...

k+1
∑

aζ=0
ζ

∑
r=1

ar=k+1

.

For the second moment E
(

f 2
k
)

T

(
ζ

∑
r=1

Nr, k + 1

)
T (k + 1, η) T

(
ζ

∑
r=1

Nr − (k + 1) , k + 1− η

)

= f (ar, k + 1, ζ)
ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η, ζ)
ζ

∏
r=1

T (Nr − ar, αr − ηr) .

For the second moment E ( fk fk+1)

T

(
ζ

∑
r=1

Nr, k + j + 1

)
T (k + j + 1, η) T

(
ζ

∑
r=1

Nr − (k + 1) , k + 1− η

)

= f (ar, k + 1, ζ)
ζ

∏
r=1

T (Nr, ar)
k+1

∑
η=0

f (ηr, η, ζ)
ζ

∏
r=1

T (ar, ηr)

× f (αr, k + 1− η, ζ)
ζ

∏
r=1

T (Nr − ar, αr − ηr) .
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5
T D A W I T H S U B S A M P L I N G F O R P O I N T C L O U D S

5.1 introduction

As mentioned earlier, one of the most important difficulties with compu-
tational Persistent Homology is that it is often not possible to use the full
dataset when calculating Betti numbers. In this case, it is important to find
out the relationship between the topological summary of the full sample
and subsamples. In addition, the data points obtained by the specific meth-
ods should represent the topological information of the whole dataset as far
as possible.

The aim of this chapter is to investigate numerically the relationship be-
tween the topological summaries computed under the full sample and sub-
samples via barcodes using different test statistics and sampling methods.
The tests we consider are Kolmogorov–Smirnov (KS) test, Cramer-von Mises
(CvM) test test and permutation test which are defined in Section 2.2. The
selection methods for subsamples from the full sample which we consider
in this chapter are: (i) completely random resampling without replacement
(RC); and (ii) structured random resampling (explained later) without re-
placement (RS). RC is defined at the beginning of Section 5.2 and RS is
explained in Section 5.3.

The outline of this chapter is as follows. In Section 5.2, we present simu-
lation results for unit square which compare TDA for the full sample with
TDA from subsamples selected according to RC. In Section 5.3, we analyze
the human brains data considered by Bendich et al. (2016). Here, we com-
pare structured subsampling, method RS, and purely random subsampling,
method RC.
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5.2 simulated data

5.2 simulated data

In this section, we consider the set P =
{

vi ∈ Rd : i = 1, ..., N
}

of data
points, where each vi is generated iid from F. We refer to P as the full
sample. A subsample Ps of size M < N selected from P according to
subsampling method RC is defined as follows: Ps = {vi1 , . . . , viM} where
i1, . . . , iM are M distinct indices selected randomly with replacement from
{1, . . . , N}. As discussed in Section 2.5.4, (b, d) is the birth and death time
for topological feature and l = d− b is defined as the length of persistence
and λ1 is the landscape function for βk ≥ 1.

5.2.1 Empirical Distribution

As mentioned in Section 1, one of the most important challenges with Per-
sistent Homology is that a dataset with a large number of data points may
exceed the capability of the computational program at higher dimensional
homology such as β1, β2, etc. Therefore, a small experiment that shows
the relationship between time consumed and the size of the dataset is first
given in the Table 5.2.1.

We choose the size of the full sample between N = 50 to 5000. Rips
complex is considered as the filtration on v1, ..., vN to ensure that the num-
ber of edges, card (E) , is tracked when maximum filtration value, Rmax is
changed between the maximum pairwise distance, Rpair and

Rpair
2 . Moreover,

vi
iid∼ Uni f orm

(
[0, 1]2

)
, the unit square is chosen as the example. Therefore,

Rpair =
√

2. In this test, MATLAB package ’TDATools’ is used for calculat-
ing β1.

One of the most important factors for the sample size is the RAM of the
computer. A better RAM directly implies a larger dataset. Unfortunately,
my personal laptop has a much lower RAM than the university desktop.
As a result, the sample size limitations for my own laptop is approximately
3000 data points for β1. When the program broke down, MATLAB displays
the error message: “ Java exception occurred java.lang. OutOfMemoryError:
Requested array size exceeds VM limit.”
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5.2 simulated data

card (E ) Rmax
2 (seconds) card (E ) Rmax (seconds)

50 794 2.81 1225 5.27

100 3251 4.30 4950 8.29

250 22454 11.13 31125 12.14

500 86996 16.48 124750 15.37

1000 356104 46.76 499500 68.61

2000 1448405 1028.81 1999000 574.25

3000 3269338 3757.49 4498500 error
4000 5863984 error 7998000 error

Table 5.2.1: Table of time in seconds needed for calculation of β1 for vi
iid∼

Uni f orm
(
[0, 1]2

)
using MATALB package ’TDATools’ where

card (E ) is tracking the number of edges for different maximum
filtration values.

In general, the sample size limitations of a computational program for
a dataset is approximately 5000 data points for β1, even though the full
dataset may contain a far large number of data points. Therefore, we try to
estimate Persistent Homology via the emprical cdf.

We define

GM (x) =
1

ηM

ηM

∑
j=1

I
{

lj ≤ x
}

(5.2.1)

as the empirical cdf defined in (2.2.1) of the full sample, P, where lj =

dj − bj is the length of the barcode, and ηM is the total number of bars. The
theoretical cdf of lj from the full sample is defined as

G0 = E [GM] . (5.2.2)

We then randomly select points without replacement from the full sample
P and construct empirical cdf for subsamples as

Fm (x) =
1

ηm

ηm

∑
j=1

I
{

lm,j ≤ x
}

(5.2.3)

where m is the m-th subsample, ηm is the total number of barcodes for the m-
th subsample and m = 1, ..., m0. Similarly, the theoretical cdf for subsamples
is defined as

F0 = E [Fm] (5.2.4)

for each m = 1, ..., m0.
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However, it is worth noting that the lj are not independent since each lj is
from the persistence diagram where the persistence diagram is a summary
of the filtration of the complex. Moreover, lj may not be identically dis-
tributed. However, the empirical cdf can still be defined and we try to exact
some useful information from the ecdf of the full sample and subsamples.

Additionally, as mentioned earlier, in TDA, only long-lived topological
features are considered as part of topological signals. Those which only
appear for a short period are considered as topological noise.

In this section, full sample P are simulated data, therefore, when calculat-
ing GM and Fm, all barcodes lj and lm,j that are not zero have been included
in the calculation. However, when the real dataset is analyzed, such as brain
tree data which is used in Section 5.3, only 100 largest lj are chosen to rep-
resent the entire persistence diagram. In another case, lj and lm,j may be
chosen at a same proportional rate, such as the top 25% of the barcodes.
The examples for both 20 largest barcodes and top 25% are given later in
this section.

We now consider the mean ecdf from m subsamples

F̄m (x) =
1

m0

m0

∑
m=1

Fm (x) (5.2.5)

and the theoretical function

F̄0 = EF̄M
[F̄M] (5.2.6)

which has the same definition as above. Then in the present setup, we can
consider the KS statistic for the full sample and subsamples as follows,

dm = sup
−∞<x<∞

|GM − Fm| (5.2.7)

where m = 1, ..., m0.
It should be noted that it is very unlikely to find the underlying distribu-

tions for (5.2.2), (5.2.4) and (5.2.6).
Similarly, the standard two-sample KS test conditions defined in Section

2.2 are not satisfied here. The samples are not iid However, we still try to
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construct KS statistic to access if there is anything we can learn from the
result. Let

H0 : F0 = F̄0 VS H1 : F0 6= F̄0 (5.2.8)

using the KS test statistic

dmm = sup
−∞<x<∞

|Fm − F̄m| .

We also define a second hypothesis test, for each M

H0 : G0 = F0 VS H1 : G0 6= F0. (5.2.9)

where the corresponding KS test statistic is (5.2.7).
As mentioned before, the numerical results for the empirical cdf and KS

test given in this section are implemented using MATLAB package TDA-
Tools. With the earlier results in Table 5.2.1, we choose the size of the full
sample as N = 1000, i.e. P =

{
vi ∈ Rd : i = 1, ..., 1000

}
. We use again

the unit square, vi
iid∼ Uni f orm

(
[0, 1]2

)
as the example, and the Rips com-

plex as the filtration to ensure that the maximum pairwise distance,
√

2
is included as the maximum filtration value, Rmax. This means that all(

1000
2

)
edges are included in the filtration process and each topological

feature corresponding to β1 is going to be captured. After computing GM

from the full sample, we then randomly select 200 points from P without
replacement and computing Fm and dm respectively. We also repeat sub-
sampling for 1000 times i.e. F1, ..., F1000 and construct the corresponding
statistics d1, ..., d1000.

Persistence diagrams which are defined in Section 2.5.4 for β1 for the full

sample and 1 subsample are presented for vi
iid∼ Uni f orm

(
[0, 1]2

)
in Figure

5.2.1. One thing we notice from Figure 5.2.1 is that in subsamples, there is
relatively less topological noise than in the full sample. The major reason is
that if there are fewer data points, there are going to form fewer numbers of
edges, triangles, tetrahedron, etc. In TDA, the birth-and-death of an object
indicates a β number, a β with a short lifetime indicates topological noise.
Therefore, a smaller dataset implies fewer objects have short lifetimes which
leads to less topological noise.
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Figure 5.2.1: Persistence diagram for β1 for full sample (left) and 1 subsam-
ple (right).

Moreover, in Figure 5.2.2, GM, 10 randomly selected Fm and F̄m are pre-

sented for vi
iid∼ Uni f orm

(
[0, 1]2

)
.

The histogram and qqplot are presented in Figure 5.2.3. Both seem to sug-
gest on the unit square, the KS statistic which is defined in 5.2.7 is normally
distributed. This is surprising since in general the KS statistic dm should not
follow a normal distribution but extreme value distribution.

Therefore, we now define µ = E (dm) and s2 = 1
m0−1Var (dm) which is the

sample mean and sample variance for dm. Moreover, we also introduce a
new hypotheses

H0 : dm ∼ N
(

µ, s2
)

(5.2.10)

For the first test H0 : F0 = F̄0 given in (5.2.8), we test for both 1% and 5%
significant (sig.) level for the unit square under two-sample KS test. At 5%
sig. level, 66 out of 1000 values are rejected by the null hypotheses, i.e. 66

Fm do not have the same distribution as F̄m. If we change the sig. level from
5% to 1%, the rejection rate decreases to 1.8%. The results from both sig.
level suggest that most of the subsamples are from the same distribution.

For the second test H0 : G0 = F0 given in (5.2.9), if one of the subsamples
is randomly selected, then the p−value for two-sample KS test is 0.0093.
Therefore, the null hypothesis is rejected under 1% sig. level, i.e. for this
chosen subsample, two-sample KS test suggests that full sample and the
subsample do not come from the same distribution.
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5.2 simulated data

Figure 5.2.3: (left) qqplot and (right) histogram for 1000 dm values for vi
iid∼

Uni f orm
(
[0, 1]2

)
. The p−values for both KS and CvM test are

pKS = 0.7283 and pCvM = 0.0929.

Moreover, if the two-sample KS test is repeated for all 1000 subsamples,
at 1% sig. level, 771 out of 1000 are rejected by the null hypotheses test.
Instead, if we test the hypotheses H0 : G0 = F̄0 given in (5.2.10), the resulting
p−value is 0. These two results suggest that in general, the full sample and
subsamples do not have the same distribution for the length of barcodes
where points are generated from Uni f orm

(
[0, 1]2

)
.

Alternatively, we also use two-sample Cramer-von Mises (CvM) test which
is defined in Section 2.2, where similar results are obtained for all three hy-
potheses tests for unit square. We accept the null hypotheses for (5.2.8) and
reject the null hypotheses for (5.2.9).

The permutation test which is defined in Section 2.2 is another possible
hypothesis test for (5.2.8) and (5.2.9). In this case, the KS statistic dm defined
in (5.2.7) is the test statistic T0 defined in Section 2.2. By setting the num-
ber of permutations to be 1000, the resulting p−value is 0.0110 for (5.2.8)
suggesting that we do not reject the null hypothesis at 1% sig. level.

The summary of the test statistic results for points generated from the
unit square is displayed in table 5.2.2.
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H0 : F0 = F̄0 (5.2.8) H0 : G0 = F0 (5.2.9)
single 2−sample KS test N/A 0.0093

1000 2−sample KS test 18 771

single 2−sample CvM test N/A 0.0067

1000 2−sample CvM test 12 869

single permutation test N/A 0.0110

Table 5.2.2: Table for the unit square with p−value and number of rejections
out of 1000 for H0 : G0 = F0 and H0 : F0 = F̄0 under RC where
G0, F0 and F̄0 are defined as Equation 5.2.2, 5.2.4 and 5.2.6.

However, we have been unable to prove that dm which is defined in (5.2.7)
itself is normally distributed.

Since simulation result suggest that the dm follows a normal distribution,
we continue the investigation for this unusual situation for dm. In the fol-
lowing calculation, we take dm calculated from the simulated sample from
the unit square as an example.

Let

xm = argmax |GM (x)− Fm (x)| (5.2.11)

and
x0 = argamax |GM (x)− F̄m (x)| . (5.2.12)

Figure 5.2.4: x0 & xm for vi
iid∼ Uni f orm

(
[0, 1]2

)
where x0 = 0.0124
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Figure 5.2.5: G− F̄m for full samples vi
iid∼ Uni f orm

(
[0, 1]2

)
It can been that in Figure 5.2.4 , xm only assumes values in the range

(0, 0.045) comparing to the overall range. Moreover, x0 is in the range where
most xm are i.e. (0.008, 0.013). Moreover, nearly each value of GM (xm)−
Fm (xm) is greater than 0 for points generated from the unit square, which
implies that the dm can be simplified as dm = max (GM − Fm) without the
absolute sign. Therefore, we can rewrite dm as follows

dm = max |GM (x)− Fm (x)|
≈ max (GM (x)− Fm (x))

≈ GM (xm)− Fm (xm) (xm = argmax |GM (x)− Fm (x)|)
≈ [GM (xm)− F̄m (xm)]− [Fm (xm)− F̄m (xm)] .

(5.2.13)

Since GM (xm)− F̄M (xm) is unique for each xm, the variation is only deter-
mined by the term Fm (xm)− F̄m (xm) . The simulation results are shown on
the bottom row in Figure 5.2.5, where Fm (xm) − F̄M (xm) is also normally
distributed as dm is normally distributed. Similarly, by replacing xm with
x0, Fm (x0)− F̄m (x0) presented on the top row in Figure 5.2.5 also appears
to be normally distributed. Since the value of xm ranges from 0 to 0.045, we
then work out the value range in which Fm− F̄m is normally distributed. By
constructing order statistics x(1) ≤ x(2) ≤ ... ≤ x(j) ≤ ... for all possible x
values, the resulting range is found out to be j = 9000 to j = 26000, which
is 44% of the total x values. Moreover, x0 = x16214 whereas x(9000) = 0.0059
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5.2 simulated data

and x(26000) = 0.0266, which again implies that x0 falls within the range
which normality appears to hold.

Figure 5.2.6: qqplot and histogram for Fm (x0)− F̄m (x0) on top row whereas
qqplot and histogram for Fm (xm)− F̄m (xm) on bottom row

However, in Persistent Homology, only features that last for a long period
are considered as the topological signal. Therefore, one possible modifica-
tion of empirical cdf is that only the top n longest barcodes are chosen as the
input data. Let {q1, ..., qn} =

{
l(1), ..., l(n)

}
where l(1) > l(2) > ... > l(n) i.e.

the order statistics of lengths lj. In this unit square example, the 20 longest
barcodes are taken as the first example. In this case, (5.2.1) and (5.2.3) are
modified as

GM (x) = 1
20

20
∑

j=1
I
{

qj ≤ x
}

Fm (x) = 1
20

20
∑

j=1
I
{

qm,j ≤ x
} (5.2.14)

where qj is the j-th longest barcode in the descending order for the full
sample and qm,j is the j-th longest barcode in the descending order for the
m-th subsample.

Another possibility is to retain the ratio of the barcodes between the full
sample and subsamples, i.e. instead of always chosen the ξ longest barcodes,
the a% · ξ longest barcodes are considered. For example, in Table 5.2.2 the
ratio is chosen to be 100%. However, the ratio is changed to the top 25%
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5.2 simulated data

of the longest barcodes as the input value. Then, (5.2.1) and (5.2.3) are
modified as

GM (x) = 1
0.25η

0.25η

∑
j=1

I
{

qj ≤ x
}

Fm (x) = 1
0.25ηm

0.25ηm

∑
j=1

I
{

qm,j ≤ x
} (5.2.15)

where qj is the j-th longest barcode in the descending order for the full
sample and qm,j is the j−th longest barcode in descending order for the
m-th subsample.

In Figure 5.2.7, the top graph present the empirical cdf for GM, 10 ran-
domly selected Fm for 20 longest barcodes while the bottom graph display

the empirical cdf for 25% longest barcodes for vi
iid∼ Uni f orm

(
[0, 1]2

)
. Com-

pare Figure 5.2.7 with Figure 5.2.2, there is not many difference between the
bottom graph and Figure 5.2.2 due to the ratio of barcodes between the full
sample and subsample stay unchanged. While between top graph of Figure
5.2.7 and Figure 5.2.2, as the size of the barcodes are fixed for the top graph,
the empirical cdf for GM is no longer dominating Fm.

Figure 5.2.7: The empirical cdf of barcodes from full sample GM (red) and
the empirical cdf of the barcodes from 10 subsamples Fm (blue)
for empirical cdf of 20 longest barcodes (top) and 25% longest
barcodes (bottom).

The resulting summary of the test statistics results for vi
iid∼ Uni f orm

(
[0, 1]2

)
is displayed in table 5.2.3 for both 20 longest barcodes and top 25% of the
barcodes.
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5.2 simulated data

20 longest barcodes 25% top barcodes
1000 2−sample KS test 297 985

1000 2−sample CvM test 111 995

p−value for dm 2.4260× 10−51 4.4274× 10−7

Table 5.2.3: Table for the unit square where both 20 longest barcodes and top
25% of the barcodes are included as input with null hypothesis
H0 : G0 = F0 and p−values for dm where G0 and F0 are defined
as Equation 5.2.2 and 5.2.4.

From Table 5.2.3, the dm is no longer normal distribution for neither 20

longest barcodes nor top 25% barcodes. This does not imply that the full
sample and subsamples are from the same distribution. The qqplots for
both dm are shown in Figure 5.2.8.

Figure 5.2.8: QQplots for unit square where 20 longest and top 25% of the
barcodes are chosen as the input values

5.2.2 Sum of Lengths

In this section, another possible summary for Persistent Homology arises if
we consider the barcode as a step function, then the integral of Betti number
at radius r is∫ r

0
β(t)dt = ∑

(
dj − bj

)
I
{

dj < r
}
+ ∑

(
r− bj

)
I
{(

bj < r < dj
)}

where
(
bj, dj

)
is the birth-and-death coordinate for the j-th topological fea-

ture.
Therefore
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GM =
ηM

∑
j=1

lj

is defined to be the sum of all line segments for full sample.
Then the total sum for the subsample is defined as

Fm =
ηm

∑
j=1

lm,j.

As a results, the test statistic is defined again as 5.2.7 dm = sup
−∞<x<∞

|GM − Fm|

for each m.
In this case, the test statistic dm = GM − Fm is again normally distributed

with p = 0.6268

5.3 brain artery tree data

The dataset analysed in this study are tree of arteries in the brain of each
of a number of human subjects which was introduced in Section 2.6.2, both
male and female. The full data base consists of 98 datasets, and each dataset
is called as BTN where N = 1, . . . , 98 with ages ranging from 18 to 72. More-
over, each dataset is presented as a MATLAB file that gives the (x, y, z)
coordinates of each vertex and the connection information of the vertices.
The data points in each dataset has an order of 105 and are spread among
approximately 200 tree branches. The original dataset included more infor-
mation, such as the branch thickness, people’s handedness and the relation-
ship between people, which are given as supplementary material. However,
the additional information was not used by Bendich et al. (2016).
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5.3 brain artery tree data

Figure 5.3.1: This is one of the brain tree datasets as a 3-dimensional plot.

Since it is not possible to compute the full tree dataset for β1, which im-
plies it is not possible to compute GM defined in Section 5.2. Therefore, we
can only analyses the data based on subsamples. However, the BT data is a
tree sturcture data which suggest BT have a strong structure effect. There-
fore, apart from the random selection without replacement (RC) , we intro-
duce two other methods, which are maximin selection using Hausdorff dis-
tance and random selection with a fixed skeleton (RS). Note that in Section
5.2, we only considered completely random subsampling without replace-
ment, referred to as method RC, while in this section, we consider both
method RC and also structured random sampling, referred to as method
RS. The latter involves random selection with a fixed skeleton. Additionally,
a third selection method which is maximin selection is introduced in this
section.

5.3.1 Methods of Selection

maximin selection

Maximin selection which is introduced by choosing points using Haus-
dorff distance, which is defined as (2.7.1), between sets of points by selecting
the first point randomly. Inductively, if Bi−1 is the set of the first i− 1 cho-
sen points, then the i-th point x ∈ A is selected to maximise the Hausdorff
distance dH (A, Bi−1) where A is the original given dataset.
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5.3 brain artery tree data

The advantage of the maximin selection is that if Y′ is the subset of Y, then
dH(Y, Y′) tends to 0 much faster than the random selection. From Matlab
package ’JavaPlex’, the resulting Hausdorff distance is 0.9736 at sample size
of 3000.

However, there are some disadvantages of the maximin selection. Firstly,
although the first point of maximin selection is chosen at random, the effect
of such random selection decreases as sample size increases. Take n = 50
points as an example, if the n = 50 points are selected 50 times from BT1,
the Hausdorff distance lies within (20, 22.5). Thus by selecting 10 to 50

data points from BT1 and repeating this process for 50 times, the maximum
difference for the Hausdorff distance for each sample size decreases from
9 to 2 by increasing the sample size from 10 to 50, as shown in Figure
5.3.2. Moreover, the time taken for choosing 3000 points is about 120 mins.
Comparatively, the random selection method takes less than 1 min. As a
result, the maximin selection is not a suitable sampling method for the data
analysed in this report as it tends to be a non-random selection and the
selection process is very time consuming.

Figure 5.3.2: The effect of the maximin selection as sample size increase

random selection

Two types of random selection methods are now considered: complete
random sampling without replacement of any point (RC) and randomly se-
lected points without replacement after including the basic skeleton of the
tree (RS). For tree data, RS firstly selects the start and end points of each
branch and then chooses the rest of the points randomly without replace-
ment.
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5.3 brain artery tree data

As mentioned before, (bi, di) is the birth and death time for i-th topologi-
cal feature, in this case, 1D hole and li = di− bi is defined as the length of the
persistence. Then let {q1, ..., qn} =

{
l(1), ..., l(n)

}
where l(1) > l(2) > ... > l(n),

which means that the length is sorted in descending order.
Take BT97 as an example, 3000 points are randomly selected using RC.

In Figure 5.3.3, it can be seen that qj < 1 from approximately j = 100.
Additionally, q1 > 20, so only the first 100 qj are regraded as topological
signals and written as q = (q1, q2, ..., q100) where qj is the j-th longest length
of persistent in Dgm1. Therefore qj is also known as the j-th most persistent
1D hole.

Figure 5.3.3: The sorted length of the persistence for BT97 by RS.

An example of the three methods RC, RS and maximin selection is shown
in Figure 5.3.4. There is no significant difference in the line graph when
sample size is 3000. On the other hand, 3000 points from one tree required
about 5 mins to compute the 1 dimensional Persistent Homology, decreas-
ing the sample points has been considered in the repeated process. In this
case 1000 data points from the BT97 are chosen instead. However, the dif-
ference between the two lines is not significant in the line plot. As a result,
instead of deciding which method to use at this point, both RS and RC are
going to be used in the next section.
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5.3 brain artery tree data

Figure 5.3.4: 3000 points seleted from RC, RS and maximin selection and the
resulting q vector.

5.3.2 Simulation Results for Brain Tree Data

In this section, we use the BT data to illustrate the results from Section
5.2.1. One subsample with 6500 data points is generated using RS from
the smallest dataset BT97 which has 64875 data points. We assume this
subsample GM is the replicated full sample for the BT97 data and conduct
the rest of the simulation results. In the rest of this section, we call this GM

as the full sample.

5.3.2.1 Summary of β1 and β2

In this section, we present the summary of the β1 and β2 for BT97. For full
sample GM, only β1 is calculated from MATLAB package ’TDATools’ while
β2 is generated from R package ’TDA’ which can only perform the dataset
with size N ≤ 1000. Consequently, 1000 subsamples FRC,1, ..., FRC,1000 and
FRS,1, ..., FRS,1000 are generated from GM with N = 1000 using RC and RS
respectively.

Firstly, we consider both persistence diagram and persistence landscape
which are defined in Section 2.5.4. Noted that persistence landscape is also
calculated by R package ’TDA’.
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5.3 brain artery tree data

The persistence diagram and persistence landscape for β1 for BT97 are
given in Figure 5.3.5.

Figure 5.3.5: Persistence diagram for β1 for GM from BT97.

In Figure 5.3.6, persistence diagrams are given for FRC,1 (left) and FRS,1

(right). In both graphs, the red triangles indicate β1 and blue diamonds
indicate β2. Note that Figure 5.3.6 is plotted using R package ’TDA’ as β2

is included. In both graphs, they seem to suggest that the blue diamonds
which represent β2 are topological noise as they are very close to the diag-
onal line while some of the red triangles can be considered as topological
signal as they are far away from the diagonal line.

Figure 5.3.6: Persistence diagrams for β1 and β2 under RC (left) and RS
(right).
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Moreover, in Figure 5.3.7, persistence landscapes are given for RC (left)
and RS (right). In both graphs, the black line indicates the λ1 function for
β1 and the red line indicates the λ1 function for β2 where λ1 is defined in
Section 2.5.4. For β2, λ1 are very close to the x-axis, i.e. they point out again
that the lifetime of the β2 is very limited.

Figure 5.3.7: Persistence landscape for β1 under RC (left) and RS (right).

Furthermore, Table 5.3.1 displays the number of β1 for full sample, FRC,1

and FRS,1 which are 266, 152 and 140 in the second row. The mean and
variance of 1000 subsamples of β1 for RC and RS are given in the third and
fourth row. While in the fourth row, β2 are 17 and 10 for FRC,1 and FRS,1

respectively. The last two rows are mean and variance of 100 subsamples of
β2 for RC and RS.

βk full RC RS

β1

number for 1 subsample 266 152 140

mean of 1000 subsamples N\A 149.13 144.25

variance of 1000 subsamples N\A 48.68 50.50

β2

number for 1 subsample N\A 17 10

mean of 100 subsamples N\A 14.15 13.71

variance of 100 subsamples N\A 9.93 8.19

Table 5.3.1: Table for BT97 for β1 and β2 for full sample and 1000 subsamples
generated under both RC and RS.

In Table 5.3.1, RC has a larger mean value than RS. This may imply that
RC generates more topological noise than RS. Whereas, RC has a smaller
variance than RS.
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As can be seen in Figure 5.3.6, Figure 5.3.7 and Table 5.3.1, β2 ≤ 20 for
BT97 for both RC and RS. In addition, the lifetime for β2 is very short that
can be considered as topological noise. Therefore, in the rest of this chapter,
we are not going to consider β2 for BT data.

5.3.2.2 Empirical Distribution

Recall that the for each M, the null hypothesis is

H0 : G0 = F0 VS H1 : G0 6= F0

where the corresponding KS test statistic is

dm = sup
−∞<x<∞

|GM − Fm|

where m = 1, ..., m0.
In Figure 5.3.8, GM, 10 randomly selected Fm are presented for BT97 under

RC while in Figure 5.3.9, GM, 10 randomly selected Fm are presented for
BT97 under RS.

It can be seen that in Figure 5.3.8, GM first dominate the each of the
subsamples then merge into the subsample while in Figure 5.3.9, there are
no clear gap between GM and Fm.

Figure 5.3.8: The empirical cdf of barcodes from full sample GM (red) and
the empirical cdf of the barcodes from 10 subsamples Fm (blue)
for BT97 under RC method.
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Figure 5.3.9: The empirical cdf of barcodes from full sample GM (red) and
the empirical cdf of the barcodes from 10 subsamples Fm (blue)
for BT97 under RS methods.

Moreover, histograms and qqplots under RC (top row) and RS (bottom
row) are presented in Figure 5.3.10. All seem to suggest that the Fm gen-
erated from GM using RC and RS are normally distributed with heavy tail.
However, the range of dm from histogram suggest that dm have a lower
range for RS which is between 0.05 to 0.25 while the range for RC is 0.1 to
0.3. This seems to suggest that the empirical cdf for RS is closer to the full
sample than RC which may imply that RS is a better simulation method
than RC.

148



5.3 brain artery tree data

Figure 5.3.10: QQplot (top left) and histogram (top right) for 1000 dm values
for Fm under RC for BT97. QQplot (bottom left) and histogram
(bottom right) for 1000 dm values for Fm under RS for BT97.
The p−values for RC for both KS and CvM test are pKS =
0.8550 and pCvM = 0.8456 while pKS = 0.9262 and pCvM =
0.9512 for RS.

We now try to replicate the other two methods in Section 5.2.1 for RC
and RS which are 20 longest barcodes and 25% longest barcodes. However,
this time we choose 100 longest barcodes instead of 20 while keeping 25%
longest barcode unchanged. Therefore, (5.2.14) is modified as

GM (x) = 1
100

100
∑

j=1
I
{

qj ≤ x
}

Fm (x) = 1
100

100
∑

j=1
I
{

qm,j ≤ x
} (5.3.1)

where qj is the j-th longest barcode in the descending order for the full
sample and qm,j is the j-th longest barcode in the descending order for the
m-th subsample.

Summaries of the test statistics for Fm using both methods are displayed
in Table 5.3.2. The top five rows are results for subsample generated under
RC while the fifth to tenth rows are results under RS method. The three
columns are full barcodes, i.e. all barcodes are considered, 100 longest bar-
codes and 25% top barcodes. The first and sixth row, third and ninth row
indicate a single two-sample KS test or a single two-sample CvM test. The
second and seventh row, fourth and ninth row indicate the number of sub-
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samples out of 1000 that reject the null hypothesis H0 : G0 = F0 which was
define at (5.2.9) under two-sample KS test and two-sample CvM test respec-
tively. The fifth and column of Table 5.3.2 is the p-values from one-sample
KS test for

dm = sup
−∞<x<∞

|GM − Fm|

where null hypothesis H0 : dm ∼ N
(
µ, s2) as defined as (5.2.10).

As can be seen, two-sample KS tests and two-sample CvM tests suggest
opposite conclusion for all three different cases for both RC and RS. Two-
sample KS tests show that the subsamples and full sample are from same
distribution while two-sample CvM tests displays an opposite result. How-
ever, dm is normally distributed for both full barcodes and 100 longest bar-
codes for both RC and RS but dm follows normal distribution only under
RS for 25% top barcodes.

5.3.3 Improved Results

In this section we try to replicate and improve the result by Bendich et al.
(2016) for sex effect. Apart from using mean-difference as test statistics, we
also introduce the sum of length method to be the test statistics for the sex
effect.

mean-difference

Recall that BTN, N = 1, . . . , 98, is the sample of brain trees. Let mi be
the i-th male person with vector q where qi = (q1,i, q2,i, ..., q100,i) defined
in Section 5.2.1, and similarly, define fj to be the j-th female person with
persistent vector qj. We use T =

∥∥m̄− f̄
∥∥ as the test statistics where

m̄ = (q̄1, q̄2, ..., q̄100)

and q̄i =
1

100

100
∑

j=1
qj,i is the mean vector for 100 longest persistent for male

and similarly f̄ is the mean vector for female. The permutation test ran-
domly splits the 98 q vectors into two groups of equal size and computes
the difference of the mean values of the two groups as µperm and repeats
this process for 1000 times. The empirical p-value of the permutation test is
defined as

p =
I
{

µperm > T
}

1000
.
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5.3 brain artery tree data

The algorithm for repeating the mean-difference is given below as Algo-
rithm 1.

algorithm 1

1. Set r = 1

2. Compute the 98 q vectors where q = (q1, q2, , ..., q100) is the 100 longest
persistences for β1as above

3. Let mi be the i-th q vector for male and f j be the j-th q vector for female

4. Calculate m̄ and f̄

5. Compute TMD =
∥∥m̄− f̄

∥∥, and pr =
I{µperm>T}

1000

6. If r < 100, set r = r + 1, Goto step 2; else r = 100 stop.

Taking {BT1 , ..., BT20} as an example, resample 1000 times, and the TMD

statistics based on Algorithm 1, TMD for both RC and RS are shown in
Figure 5.3.11. It uses a red histogram to represent the data points sam-
pled under RS method, and a blue histogram to represent the data points
sampled under RC method. The vertical lines indicate the quantiles of the
TMD−values. This implies that the TMD−values from RS is less variable
than RC.

To conclude the results between RC and RS, all 98 datasets are considered,
and instead of 1000 times of resampling, only 100 resamples were now taken.
The resulting TMD−values are shown in Figure 5.3.12. Compared to Figure
5.3.13, instead of towards to the right, the histogram of RS is more on the left
hand side of the diagram. However, it can still be seen that the TMD−values
from RS selection is less variable than the one with RC.
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Figure 5.3.11: 1000 resampled TMD−values for both RC and RS subsam-
pling method. The histogram indicates that the RS is less
variable than RC for the {BT1 , ..., BT20}.

Figure 5.3.12: 100 resampled for TMD−values for both RC and RS subsam-
pling method. The histogram indicates that the RS is less
variable than RC for the {BT1 , ..., BT98}.
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Figure 5.3.13: 100 resampled for p-values for both RC and RS subsampling
method corresponding to the TMD−values in Figure 5.3.12

The corresponding p-values for RC and RS for all 98 datasets are shown
in Figure 5.3.13. The p-values are all less than 0.025 during this 100 resam-
pling meaning the sex difference is statistically significant, on the basis of
the mean difference method. This implies that we have shown a stronger
significant difference result than those given by Bendich et al. (2016) which
have a p−value as 0.031.

As the T-values show that the RS method is less variable than RC and
includes the basic skeleton of the tree structure, it may be also considered
that RS is a better method as it keeps the basic structure of the tree.

sum of lengths

Instead of mean-difference statistics used by Bendich et al. (2016), we also
considered the sum of lengths introduced in Section 5.2.2. We define Lmi be
the sum of all line segments on i-th male’s barcode. Similarly, L f j is defined
as the sum of all line segments on j-th female’s barcode. The test statistic,
TSL−value, in this case is defined as TSL =

∥∥L̄m − L̄ f
∥∥ where L̄m is the mean

of the sum of male line segments and L̄ f is the mean of the sum of female
line segments.

Resampling 98 datasets for 100 times using RS as the selection method
and sum of lengths as the test statistic, the p−values shows a significant sex
difference which also agrees with the results from previous method.
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5.3.4 Summary of Brain Tree Data

In this section, we try to present the summary of β1 for BT data under sex
effect. Since Section 5.3.2 and Section 5.3.3 both suggest that RS is a better
selected method than RC, we are going to present the results only for RS
method.

Recall that BTN, N = 1, . . . , 98, is the sample of brain trees. As in original
data, BT1 is from female and BT2 is from male. Therefore, these 2 datasets
are used as examples in this section.

Let mi be the i-th male person with vector βi
1 =

(
βi

1,1, βi
1,2, ..., βi

1,100

)
,

and similarly, define fj to be the j-th female person with vector fj. We use
Tsummary = |µm − µf| as test statistics for permutation test where µm is the

mean value for vector m̄ where m̄i = 1
100

100
∑

j=1
βi

1,j and similarly µf is the

mean value for female. The p-value of permutation test which defined in
Section 2.2 is p = 0.0040 which suggest a significant sex difference for β1

directly as well.
As can be seen, Table 5.3.3 displays the number of β1 for female and male

respectively.

Female Male
β1

1,1 243 196

E
(

βi
1

)
228.06 205.38

Var
(

βi
1

)
81.99 102.32

µ 218.83 201.96

Table 5.3.3: Table for BT for β1for female and male.

In addition, we consider both persistence diagram and persistence land-
scape which are defined in Section 2.5.4.

Persistence landscape for β1 for the two sexes is given in Figure 5.3.14.
The black line and the blue line indicate λ1 for BT1 and BT2 respectively,
whereas the red and green line indicate the mean landscape for female and
male respectively. In Figure 5.3.14, it can be seen directly that β1 has a
longer lifetime for female than male.
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5.3 brain artery tree data

Figure 5.3.14: Persistence landscape for β1 for BT data where black line and
blue line indicate the persistence landscape for a female and
a male, while red line and green line indicate the mean of the
persistent landscape for female and male respectively.

Moreover, in Figure 5.3.15, persistence diagram are given for BT1 (left)
and BT2 (right). Figure 5.3.15 may suggest that BT2 has more topological
data than BT1 as there are more points away from the red line for BT2 than
BT1.

Figure 5.3.15: Persistence diagram for β1 for BT1(left) and BT2 (right).
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5.4 summary

5.4 summary

When TDA is applied to point clouds in Rd it is often the case that it is
not possible to use the full dataset due to problems with insufficient com-
putational capacity and insufficient storage requirements. For this reason
there is strong motivation for considering subsampling methods. In this
chapter we have focused on two main methods of subsampling: completely
random subsampling without replacement, referred to as method RC; and
structured subsampling without replacement, referred to as method RS. We
implemented RS by resampling a fixed skeleton of points combined with
completely random resampling of other points. Our main finding in Section
5.3 is that when implemented appropriately, method RS has the potential to
do much better than method RC.
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6
C O N C L U S I O N A N D F U T U R E W O R K

In this chapter, we first summarize the main results of the thesis. Then we
discuss possible directions for the future work.

6.1 summary of the thesis

The new material in this thesis is contained in Chapter 3-5.
In Chapter 3, the key findings are Proposition 3.3.1 and Proposition 3.3.2.

These results give the asymptotic spectral structure of the adjacency matrix
under the asymptotic limit for the stochastic block model (SBM) with ζ

blocks. Moreover, we have extended Proposition 3.3.1 from the adjacency
matrix to the normalized graph Laplacian which is given as Proposition
3.4.1. The significance of these results is that they demonstrate that the
strong form of the spectral gap theorem (SGT) will often fail to hold in the
SBM. The implication of this finding is discussed further in Chapter 4.

In Chapter 4, we have first shown the difficulties of extending the SGT
to SBM in Section 4.3. However, the full force of the SGT is not needed
in the proof of central limit theorem (CLT) for Betti numbers in the SBM.
Moreover, simulation evidence for the SGT which is included in Section 4.4,
seem to suggest that λ2, the second most dominant eigenvalue, converges
to a value greater than the critical value 0.5 in the case of the second Betti
number β1 in the asymptotic regime for SBM. Therefore, by assuming that
the SGT is true, we try to prove the rest of the CLT for Betti numbers in SBM.
The lower and upper vanishing thresholds for Betti numbers for SBM are
given as Theorem 4.5.4 and Theorem 4.6.2 respectively. Nevertheless, the
lower vanishing threshold, Theorem 4.5.4 is proved under the assumption
that SGT is true. Theorem 4.7.2, which is the main theorem in Chapter 4, is
proved using Theorem 4.5.4 and Theorem 4.6.2. This implies that Theorem
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6.2 discussion and future work

4.7.2 is proved also under the assumption that SGT holds. However, the
questions of whether the CLT holds for the SBM in broad generality, and if
so how to prove this, remain open.

In Chapter 5, we have first shown the relationship between the topolog-
ical summary of the full sample and subsamples in a unit square. If all
barcodes are considered as the input values for the empirical cumulative
distribution function (cdf), 2-sample Kolmogorov-Smirnov (KS) test and 2-
sample Cramer-von Mises (CvM) tests both suggest that the full sample
and subsamples are not from the same distribution. Moreover, dm, the max-
imum distance between empirical cdf of the full sample and the empirical
cdf of subsamples, appears empirically to be normally distributed. If only
the 20 longest barcodes or only the top 25% of the barcodes are considered
as topological signal, the results for the relationship between the topologi-
cal summary of full sample and subsamples do not appear close. However,
in these two cases, dm no longer appears to follow a normal distribution.
In Section 5.3, for the brain artery tree data, we have found out that the
samples which include the basic skeleton performs better than the purely
random sampling. We suspect that, in general, structured resampling of this
kind has the potential to do much better than purely random resampling.

6.2 discussion and future work

We now briefly discuss several directions for future research.
The asymptotic spectral structure of the adjacency matrix for the ζ-block

model has been derived in Proposition 3.3.1 and Proposition 3.3.2. We have
partially extended the results for the normalized graph Laplacian in Section
3.4, in that we have proved Proposition 3.4.1, which is an analogue of Propo-
sition 3.3.1 . However, due to the introduction of the complex dependencies
in the normalized graph Laplacian, we have not yet completed the proof of
the analogue of Proposition 3.3.2 for the normalized graph Laplacian. This
is an immediate goal of future research and we believe that the proof can be
completed without fundamental difficulty though the calculations involved
are quite substantial.

Preliminary study has shown that by assuming SGT is true, we are able
to prove the CLT for Betti numbers in SBM. However, from the results in
Chapter 3, we know that the strong form of the SGT used by Kahle and
Meckes (2013, 2015) does not hold in general with the SBM. A key question
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6.2 discussion and future work

of interest is whether the failure to extend the CLT to the general SBM is
only due to the breakdown of the method of proof; or is it because the CLT
in fact fails to hold in generality in the SBM. This remains an open question.
It would be very interesting to know if an answer can be found in future
work.

We have found empirically that dm, the maximum distance between the
empirical cdf of the full sample and subsamples, is approximately normally
distributed in our numerical examples. This is a rather surprising result
since in general dm should follow the distribution of a maximum-type statis-
tic. It would be interesting to investigate this finding in future research and
to see whether or not the approximately normality holds more broadly.

One more direction for future work will now be discussed. We have
mentioned that the most commonly used simplicial complex in TDA pro-
gramming is the Rips complex. However, De Silva and Carlsson (2004)
have suggested another complex which is called the Witness complex. It
would be interesting to figure out the difference and similarity between the
Witness complex and the Rips complex. Moreover, a related question of
interest is whether the Witness complex has the potential to be cheaper in
computing time compared to the Rips complex, while still retaining impor-
tant topological information. If so then it may provide a useful alternative
to subsampling.
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