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Abstract

This thesis considers the problem of high-frequency wave energy scattering and
propagation in composite structures. In particular, structures made of the two-
dimensional plate- or shell-like elements with composite laminate material are
of interest. We propose an extension of the Dynamical Energy Analysis (DEA)
method for such structures. For this purpose, we develop a semi-analytical and
a hybrid Finite Element (FE) and Wave and Finite Element (WFE) methods to
compute wave energy reflection/transmission at junctions of arbitrarily layered
composite plates.

In the first part of the thesis, a brief review of high-frequency numerical
methodologies is presented. Advantages and limitations of each method are
discussed. Furthermore, a review of analytical and numerical methods for cal-
culating wave propagation characteristics such as dispersion relations, group
velocity and scattering coefficients is presented.

In the second part of the thesis, the main theoretical basics of the DEA method,
Classical Laminated Plate theory and the WFE method are demonstrated.

In the third part of the thesis, semi-analytical method for computing the en-
ergy scattering coefficients of structural junctions made up of thin composite
laminated plates is developed. Expressions quantifying transmission and re-
flection coefficients as a function of the frequency and the angle of incidence
are derived. An effective scattering matrix for a plate with multiple finite
stiffeners attached to it is obtained.

In the fourth part of the thesis, a hybrid FE/WFE model that predicts the scat-
tering properties for different junctions of two-dimensional anisotropic com-
posite plates is developed. The influence of the angle of incidence and the
frequency on the distribution of the power flow of incident bending, shear
and longitudinal type waves is investigated. A detailed comparison with semi-
analytical evaluations of scattering coefficients derived in the third part of the
thesis is presented. The method gives for the first time a detailed recipe for
computing scattering coefficients for the generic case of an arbitrary number
of composite plates connected at a junction without restrictions on the angles
at which the plate meet or the orientation of the principal axis of individual
plates.

In the last part of the thesis, the theoretical base of the DEA method for
composite structures is developed and discussed. The findings of the third and
fourth parts of the thesis are used to derive the stationary wave energy density
arising in the composite structure due to a harmonic point and edge sources.
Numerical results for the cases of a polygonally shaped plate, an L-shaped
composite plate and an electric vehicle gearbox are presented.
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Chapter 1

Introduction

In this introduction, we describe the problem of interest and provide motivation

for the work presented in this thesis. Further on, we present a review of existing

literature and discuss relevant mathematical methods. Finally, we outline the

structure of the thesis, summarising key ideas and results from each chapter.

1.1 Motivation and literature review

Composites are nowadays widely used within many transport sectors such as

aerospace, automotive and naval architecture industries [1, 2]. In compari-

son to isotropic materials such as aluminium and stainless steel, composites

provide comparable stiffness and strength whilst being significantly lighter [3].

Furthermore, the mechanical characteristics of fibre-reinforced composites can

be tailored to suit particular purposes [1, 4]. Over the past several decades,

such advantages of composites have led to growing usage of them to construct

primary structural components in the aerospace and automotive industries.

However, despite their superior structural characteristics, composites exhibit

reduced vibro-acoustic performance levels due to the large variety of waves

propagating in them. Modelling noise and vibration in composite structures

play an essential role in the various stages of their life cycle. For example, at

the design phase of a vehicle, vibro-acoustic analysis can help figure out zones

potentially prone to excessive noise. At the post-built stage, non-destructive

testing techniques help monitor and assess structures’ performance to avoid

1
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sudden failure. Therefore, there is a need for quick and accurate methods of

evaluating the vibrational response of composite structures.

1.1.1 Review of high-frequency methods

Structural vibrations of a complex structure are in general modelled using

deterministic schemes such the Finite Element (FE) [5–7], Finite Difference

(FD) [8, 9] or Boundary Element (BE) methods [10–12]. These methods are

particularly useful in providing the full phase and amplitude information of

the wave field in the low-frequency regime. However, at higher frequencies,

these methods become inefficient and computationally expensive. This is be-

cause wavelengths are much smaller than the characteristic dimensions of the

structure in the high-frequency range. Many degrees of freedom are required

to accurately represent the wave field on the wavelength scale.

At higher frequencies, statistical approaches, energy and ray-tracing methods

are favoured. The main statistical approach used extensively in the industry

today is Statistical Energy Analysis (SEA) [13–16]. This method is based on

several assumptions that are often hard or not possible to validate a priori

[17, 18]. The structure is divided into subsystems, in which wave fields are

assumed to be diffuse. SEA computes the steady-state averaged energy levels

in subsystems. Since wave fields in anisotropic media are non-diffuse [19–22],

the application of SEA to composite structures might be significantly error-

prone [23].

To account for non-diffuse vibration fields and to represent the energy distri-

bution locally in subsystems, several energy methods such as Wave Intensity

Analysis (WIA) [24, 25], Energy Finite Element Analysis (EFEA) [26–30] and

radiosity method [31–34] have been developed over the past several decades.

The WIA and EFEA methods both rely on the reverberant wave field as-

sumption; that is, the vibrational response of the structure is assumed to be

a superposition of plane waves. Therefore, in the presence of strong sources

and heavy damping condition, both methods underestimate wave energy lev-
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els around the excitation points and overestimate the energy levels in the far

field [35–37], since the direct field is dominant over the reverberant part in such

cases. In EFEA, energy flow is required to be equally probable in all directions,

and the reflection of energy at boundaries follows Lambert’s law [35, 37, 38].

In other words, coupling between subsystems is represented by angle-averaged

energy scattering coefficients - these are called coupling loss factors in SEA.

Another limitation of the EFEA method concerns the vibrational response of

two-dimensional systems such as plates and membranes. The far field solution

is proportional to 1/
√
r, where r is the distance between source and receiver,

whereas it must be proportional to 1/r in such systems. Other limitations

and the validity region of the EFEA method have been presented in several

works [35–40]. Nevertheless, the EFEA method has been applied to calculate

the vibrational response of composite structures [41]. The radiosity method

is technically a ray-tracing technique, and it is a special case of the radiative

transfer method in vibro-acoustics [33]. However, this method also employs

Lambert’s law to represent the directivity of energy reflection at boundaries.

The ray-tracing methods include ray- and beam-tracing techniques [42–47], the

radiative transfer method [33, 47–49] and Dynamical Energy Analysis (DEA)

[50–53]. Unlike diffusive methods, ray-tracing methods do not employ the sta-

tistical law of energy reflection distribution at boundaries. Instead, waves are

treated as uncorrelated rays that carry energy along the structure and reflect

according to Snell’s law. Full ray paths can be computed once an initial source

point and a ray direction are provided. Furthermore, one can retain full ampli-

tude and phase information in the ray- and beam-tracing techniques, whereas

no phase information is included in SEA and diffusive methods. This is im-

portant when considering transient time-dependent sources [43, 54]. However,

proper ray- and beam-tracing techniques often are much more computation-

ally expensive than SEA and diffusive methods [43, 45, 55]. In fact, the wave

energy density at a certain point r is computed by summing over contributions

from all rays that reach the point r starting from the source points. Therefore,
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to guarantee the sufficient density of rays at the point r, one would need to

increase the number of rays to a value that is not determined a priori or by

any analytical methods, but rather empirically [50, 56].

The radiative transfer and DEA methods are based on the integral equation for

the density of propagated rays. The phase information is no longer retained as

in SEA and diffusive methods, and only spatial- and (or) frequency-averaged

energy amplitudes are computed. Nevertheless, the deterministic law of reflec-

tion is retained as in the pure ray-tracing method. In other words, detailed

information about waves’ reflection and transmission behaviour at structural

discontinuities is required and routinely used.

The radiative transfer method is based on the Huygens principle [32]: the

vibrational field is assumed to be a superposition of the direct field arising

from actual sources and the reverberant field emerging from fictive sources

placed at the boundary. Consequently, by expressing the energy density and

intensity as a sum of the direct and fictive source contributions, a Fredholm

integral equation of the second kind is postulated for the fictive sources [33].

Diffuse and specular types of energy reflection for the determination of fictive

sources have been considered in [32, 39, 57] and [33, 49], respectively. The

former case reduces the radiative transfer method to the radiosity method and

subsequently to the SEA method. The resulting equation for the fictive sources

is solved numerically by the BE method for a limited number of cases. The

correspondent software is called “CeReS” [39]. It is mentioned by Le Bot in [39]

that only the case of diffuse energy reflection is implemented in the software,

thus limiting its practical application to homogeneous isotropic structures.

Moreover, the specular reflection case yields the functional equation, which

depends on the contributions from a possibly infinite number of ray paths,

thus increasing the practical complexity of the method [49].

Finally, the DEA method is a recently developed technique to evaluate the

mean vibrational response of complex structures in high-frequency regimes.

This method is implemented directly on the FE meshes [58, 59], thus avoiding
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time-consuming remodelling. The main idea is similar to the Huygens principle

considered in the radiative transfer method. Namely, the wave energy density is

represented as a sum of direct and reverberant field contributions. In contrast

to the radiative transfer method, the reverberant part is a solution of the

Liouville equation [51] and is expressed in terms of an integral transfer operator

T relating densities of rays between mesh cell boundaries as

ρ∞(r,p) =
∞∑
n=1

T nρ0(r,p) = (1− T )−1 ρ0(r,p) . (1.1)

Infinite ray reflection events are naturally obtained by the above sum, and

in dissipative systems, this yields a linear system of equations relating the

initial stationary ray densities on the union of all mesh cell boundaries ρ0(r,p)

and ρ∞(r,p), respectively. Note that the ray densities are expressed in phase

space; that is, the position r and the momentum vectors p are considered as

independent variables.

The DEA method has been successfully applied to model the mean vibrational

response of a stiffened double-hull structure and a shock tower of a vehicle [59],

the floor structure of caravan cars [60, 61], an agricultural tractor [53, 62] and

a vehicle cavity [63]. Still, as the radiative transfer method, the DEA method

has been developed and applied only for isotropic structures. This motivates

the development of an extension of the DEA method for composite structures,

and it is one of the primary concerns of this thesis.

1.1.2 Review of methods for evaluation of wave propa-
gation characteristics

To accomplish this goal, one would need to compute wave propagation charac-

teristics such as dispersion relations, the group velocity vector and scattering

coefficients at discontinuities of composite structures.

Dispersion relations

Dispersion relations play an important role in many parts of the mathematical

modelling of the wave propagation problem. They can be computed by solv-
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ing governing equations of harmonic motion for composite laminates obtained

using analytical approaches such as the Equivalent Single Layer (ESL) [64–68]

and the layerwise theories [69–73] or numerical methods such as the spectral

element (SE) [74–78] and the wave finite element (WFE) [79–85] methods.

Extensive literature reviews of different analytical and numerical methods for

composite laminated plates can also be found in [86–88].

The ESL theories include the Classical Laminated Plate (CLP) theory, First-

order Shear Deformation Laminated (FSDL) and Higher-order Shear Defor-

mation Laminated (HSDL) theories. In these theories, three-dimensional elas-

ticity equations of a laminated plate are reduced to a two-dimensional problem

using the Kirchhoff-Love or shear deformation hypotheses.

The CLP theory neglects the transverse shear strain, which can lead to sub-

stantial estimation errors for thick laminates and sandwich plates [89–92]. Nev-

ertheless, for thin plates, this theory is quick and simple in providing reason-

able approximate solutions of elastic problems and dispersion curves of thin

laminates [64, 65, 93, 94].

The FSDL theory is an improved version of the CLP theory for thick laminated

and sandwich plates. The main difference is that the transverse shear strain

takes a non-null constant value in the thickness direction. However, to account

for correct representation of the transverse shear stress, the shear correction

factors that vary for different laminates are included in this method, [95–97].

Ghinet and Atalla [68] computed dispersion relations of waves propagating

in sandwich composite plates using the FSDL theory. The sandwich plate

considered in this work were made of transversely isotropic skins and isotropic

rigid foam core, thus making the plate to be effectively isotropic. Dispersion

relations for heading directions of 0◦, 45◦ and 90◦ were presented in [98] for a

symmetrically laminated composite made up of seven layers. Mejdi and Atalla

[99] extended this approach to laminate panels stiffened by composite stiffeners

and computed their vibration and acoustic responses.

The HSDL theories are based on the non-linear variation of transverse strain
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and stress in the thickness direction. They include several different formula-

tions of the mid-plane displacement field as a function of the thickness direction

variable. The Third-order Shear Deformation Laminated (TSDL) theory has

been developed by Reddy [67, 100]. It was applied for computing the deflec-

tion, the buckling load and natural frequencies of composite laminated plates

in [67, 101, 102].

In contrast to ESL methods, all layers of a laminate are treated individually

in the layerwise theories. Consequently, the number of unknown variables de-

pends on the number of layers, which can yield large complex models, thus

increasing the computational cost. In [71, 98], the Discrete Laminate (DL)

theory was applied to obtain dispersion curves of a curved sandwich compos-

ite panel, and the results were compared with the FSDL theory estimations.

Ghinet and Atalla [103] utilised the DL method to calculate the vibration re-

sponse of a multi-layer construction consisting of composite and viscoelastic

layers.

The SE method relies on constructing the exact dynamic stiffness matrix from

the general solution of governing differential equations in the frequency domain.

The response is assumed to be the superposition of wave modes at different

frequencies based on Discrete Fourier Transformation theory. The Fast Fourier

Transform can be applied to get the solution in the time domain. An excellent

review of the method and its applications can be found in [74, 104]. Most of

the literature on the SE method concerned one-dimensional waveguides such

as beams and rods. These waveguides are assumed to be homogeneous and

extended to infinity in one direction with arbitrary cross-sections. The dis-

persion curves of composite beams were obtained and analysed using spectral

finite elements in [105–107]. Two-dimensional waveguides such as plates were

considered as well; however, several assumptions either on boundary condi-

tions (simply supported or cantilever) or on the material of plates were put

so that one could reduce the two-dimensional waveguide problem to a one-

dimensional beam-type problem. Datta et al. [75] considered composite plates
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with transversely isotropic laminas having the symmetry axis aligned with ei-

ther one of the plane dimensions, thus allowing to separate the problem into

two one-dimensional beam waveguide problems. Dispersion relations for a

composite plate consisting of four layers were computed. A similar approach

was employed by Mukdadi et al. [77, 108], in which the dispersion relations of

a layered plate with rectangular cross-section were obtained. Moreover, the SE

method was also applied to an infinite composite plate for the first time, and

dispersion curves with directional dependence over the plane dimensions were

obtained. Recent works considered the wavelet spectral finite element method

to account for short waveguides, where the effect of boundaries was included

in the model [109–112].

The WFE method is a technique to study wave motion in periodic structures.

For such structures, the dynamic vibro-acoustic behaviour of the whole struc-

ture can be described through the analysis of a single period [113]. A periodic

cell is modelled using conventional FE methods. Mass, damping and stiffness

matrices thus obtained are used to construct the dynamic stiffness matrix.

Periodic structure theory is then applied, and the eigenvalue problem is pos-

tulated which eigenvalues and eigenvectors can be used to calculate dispersion

relations and wave modes, respectively. Moreover, wave modes can be used to

compute the reflection/transmission coefficients of joints in coupled structures.

One of the main advantages of this method is that since only one periodic seg-

ment is used, the size of the WFE model does not depend on the dimensions of

the waveguide, and the computational cost of the method is low. In addition,

since a single periodic cell is discretised using conventional FE matrices, the full

potential of existing conventional FE tools can be exploited. The WFE method

was originally proposed by Mead in [114], where he studied the harmonic wave

propagation in one-dimensional periodic systems. A huge contribution to the

analysis of wave propagation in various periodic structures using a FE model of

a single periodic section has been made by Abdel-Rahman [115]. The free wave

propagation in one-dimensional isotropic and composite waveguides was anal-
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ysed by Mace et al. in [80] and Duhamel et al. in [116]. Dispersion relations of

waves were computed using one-dimensional WFE method for structures such

as stiffened cylinders [117], car tyre [118], thin-walled structures [119, 120], in-

homogeneous cylindrical [121] and fluid-filled pipes [122, 123], sandwich beams

and panels [124, 125] and laminated cylinders [126]. Numerous applications of

the one-dimensional WFE method can be found in the PhD work of Waki [84].

Also, Waki [127] outlined several numerical issues of the WFE method and

how to alleviate errors associated with these issues. It is worth mentioning a

work of Mencik and Ichchou [128], where they suggested a substructuring tech-

nique to address the problem of numerical issues for the case of multi-layered

structures.

The basics of the WFE method for two-dimensional periodic systems was also

presented in the work of Mead [114]. Later, Mead and Parthan [79] showed how

the problem of defining the dispersion relations in the general direction over the

plate’s plane dimensions could be reduced to an array of one-dimensional WFE

problems with varying periodic distances. This approach has been recently

used by Chronopoulos [129] to compute the wave slowness and group velocity

curves of an orthotropic graphite-epoxy monolithic plate. Rigour mathemat-

ical models of the WFE method for two-dimensional periodic isotropic and

composite systems have been developed by Manconi and Mace [82, 83, 130].

Several forms of the eigenvalue problem that lead to the computation of dis-

persion relations were postulated. Alimonti et al. [131] extended these works

by presenting a contour integral method to compute the non-linear eigenvalue

problem arising from governing equations of motion upon fixing frequency and

propagation direction. Dispersion relations were computed for two-dimensional

arbitrarily thick layered panels in [132, 133] and periodic textile composites in

[134].
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Group velocity

Calculation of the group velocity vector is essential for determining the direc-

tions of rays carrying the wave energy. Many authors calculated the group

velocity for one- and two-dimensional systems using various FE-based ap-

proaches. For example, Mace et al. [80], and later Ichchou et al. [135] con-

sidered energy velocity, the ratio between time-averaged energy flow and total

energy density, utilising the fact that energy velocity is equal to group veloc-

ity in undamped systems. They expressed energy velocity in terms of wave

modes, stiffness and mass matrices and the length of a periodic unit cell of

one-dimensional systems. Ichchou et al. [135] also computed group velocity

by applying a finite central difference scheme to the definition ∂ω
∂k

. It is required

that dispersion curves are categorised into distinct propagating branches. This

drawback was outlined as well by Finnveden [136]. In his work, the group veloc-

ity is expressed in terms of the derivatives of the spectral form of the equations

of motion. A similar approach has been recently proposed by Cicirello et al.

[137]. They have analysed the first and second-order sensitivity of the gen-

eral eigenvalue problems, including ones as in Equations (4.6) and (4.8), thus

expressing group velocity in terms of wave number sensitivities. However, all

referenced works considered one-dimensional systems, and the group velocity

scalars are only obtained along the x or y directions, which is not sufficient

to define the group velocity field in two-dimensional systems. Langley [138],

and later Wang et al. [139] derived the same expressions for group velocity

vector components for two-dimensional curved shells and laminated plates, re-

spectively. The energy skew angle, that is, the angular divergence between

group and phase velocities, was calculated using geometric considerations of

wave vector curves and sensitivity analysis of governing equations of motion in

[129]. Chronopoulos et al. [140] studied the sensitivity of propagating waves

in two-dimensional composite plates and computed ∂ω
∂k

for a given set of wave

number component (kx, ky). However, the component ∂ω
∂k

is only the projec-
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tion of the group velocity vector on the wave vector [19, 21, 138]. Zhao et

al. [141] computed group velocity vectors of Lamb waves in unidirectional and

angle-ply composite plates using the 3D elasticity theory.

Scattering coefficients

Most of the research on the calculation of scattering coefficients focused on

isotropic plates so far, such as early work done by Cremer et al. [142] con-

sidering the structure-borne sound transmission of a flexural wave for right-

angled joints of thin plates. Later, Craven and Gibbs [143, 144] and Wöhle et

al. [145, 146] included the in-plane wave modes in their analyses together with

considering up to four plates joined together. Langley and Heron [147] com-

puted scattering coefficients for structural junctions connecting an arbitrary

number of thin, isotropic plates along a rigid beam. A simplified treatment

using a line-junction approximation is also described in [147]; that is, bound-

ary conditions and force-balance equations are considered along a 1D line at

the centre of the junction only. Mace [148] demonstrated important properties

of the scattering coefficients such as reciprocity and conservation of energy on

the example of several rods attached to a junction member. Mees and Ver-

meir [149] analysed the bending wave transmission loss in the system of plates

connected by a hinge or by an elastic interlayer. McCollum and Cuschieri [150]

studied the flexural behaviour of right-angled thick finite plates using a mobil-

ity power flow approach. They also considered both in-plane and out-of-plane

wave scattering in right-angled thick semi-infinite plates [151]. Langley inves-

tigated wave reflection and transmission coefficients for structural junctions

between curved panels and beams [138]. The occurrence of the negative group

velocity phenomenon in cylindrical structures has been outlined in this work.

Skeen and Kessissoglou [152] computed transmission coefficients for finite and

semi-infinite coupled plate structures. Mencik and Ichchou introduced the hy-

brid FE/WFE method for calculating reflection and transmission coefficients

for one-dimensional waveguides coupled longitudinally [81]. In recent years,
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this method has been developed and extended to other types of junctions

[153–158] and to two-dimensional waveguides [159, 160] However, structures

considered in those works mainly were isotropic or were consisting of layers of

isotropic materials.

Beyond the case of wave propagation in isotropic materials, Bosmans et al. [93]

studied the scattering properties of orthotropic plate junctions with principal

material axes aligned with the plate coordinates, that is, so-called specially

orthotropic plates. However, no details on the derivation are given, and re-

sults are presented only for the particular case of bending wave transmission

loss in right-angled plates, so-called L-junctions. It is not clear whether the

approach derived in [93] is limited to specially orthotropic plates or can be

extended to an arbitrary number of plates meeting at the junction with differ-

ent orientation of the principal material axes. Moreover, detailed information

on the reflection/transmission behaviour of all propagating modes at complex

junctions is needed for a DEA treatment. This includes information about the

angle-of-incidence dependence of scattering coefficients and mode conversion.

Karunasena and Shah [161] studied reflection of guided waves at the region

of bonding material between two composite plates using the hybrid FE and

semi-analytical FE method. Lee et al. [162] have presented the scattering coef-

ficients of coupled composite plates with joint compliance and damping using

the First-Order laminated plate theory [67]. Again, the principal material axes

of laminates considered in these works are aligned with the plate coordinates,

effectively reducing the complexity of underlying governing equations. Further-

more, in [162], the shear correction factor is introduced to correct transverse

shear stiffness in the laminate, which must be defined for each laminate sep-

arately. Chronopoulos [163] computed scattering coefficients at the damaged

junction between two composite beams. Later, Apolowo and Chronopoulos

[164] computed the scattering coefficients of two multi-layer composite plates

coupled longitudinally to localise the structural damage in the context of Struc-

tural Health Monitoring. An attempt of extending the work of Mitrou et al.
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in [153] to composite plates has been made by Mitrou and Renno in [165]. The

results were not reliable as the energy scattering coefficients did not sum to

unity as expected in lossless systems [153, 160].

Therefore, there is a need for a detailed derivation of reflection and transmis-

sion matrices for waves travelling in structural junctions connecting composite

plates at arbitrary angles and without any restrictions on the orientation of

principal material axes both with respect to the orientation of the junction and

with respect to the orientation in different plates. This is done following two

approaches. The first one is extending the work of Langley and Heron [147]

to composite laminated plates utilising the CLP theory. The second one is ex-

tending the work of Mitrou et al. [160] to arbitrarily layered composite plates.

It is important to note that in both approaches, the scattering coefficients are

obtained by working in the infinite junction approximation, i.e., solving the

wave problem for an incident plane wave assuming that the plates extend to in-

finity along the junction. This approximation is justified in the high-frequency

range by the locality principle, that is, local vibrational behaviour depends on

local properties such as geometry and material properties [39].

1.2 Aims and objectives

This thesis aims to develop an extension of the DEA method for composite

structures that can be represented by two-dimensional finite shell elements.

The following specific goals are put in place to achieve this aim, namely:

• to develop a semi-analytical method for calculating scattering coefficients

at line junctions between composite laminated plates.

• to form a hybrid FE and WFE method for computing reflection and

transmission matrices of general junctions of composite laminated plates.

• to analyse and compare the effectiveness and applicability of the two

methods above.
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• to extend the DEA method for composite structures and compare results

with FE method simulations.

1.3 Thesis outline

Chapter 2 aims to present the main theoretical basics of the DEA method for

two-dimensional isotropic structures. The solution of Helmholtz and bihar-

monic wave equations are presented. Furthermore, we identify and discuss the

main modifications needed to allow for DEA application on composite struc-

tures. Also, we describe the CLP theory for thin laminated plates, which is

used in Chapter 3 to set up the governing equations of motion for composite

plates. Finally, we review the main equations of the WFE method for com-

posite plates. These are used further in Chapter 4 to derive expressions for

scattering coefficients using the hybrid FE/WFE method.

Chapter 3 describes in all generality how to compute energy scattering co-

efficients of structural junctions made up of thin composite laminated plates

in the line junction approximation. Expressions quantifying transmission and

reflection coefficients as a function of the frequency and the wave number com-

ponent kx are derived. Interesting phenomena such as negative refraction and

negative group velocity are observed and analysed. Furthermore, an effective

scattering matrix for a plate with multiple finite stiffeners attached to it is

computed. The scattering coefficients are computed explicitly for examples of

two and three composite plates joined together in an L and T geometry.

A hybrid FE/WFE model that predicts the scattering properties for differ-

ent junctions of two-dimensional anisotropic composite plates is developed in

Chapter 4. The influence of the angle of incidence and the frequency on the

distribution of the power flow of incident bending, shear and longitudinal type

waves is investigated. A detailed comparison with semi-analytical evaluations

of scattering coefficients derived in Chapter 3 is presented. The method gives

for the first time a detailed recipe for computing scattering coefficients for the

generic case of an arbitrary number of composite plates connected at a junction
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without restrictions on the angles at which the plate meet or the orientation

of the principal axis of individual plates.

In Chapter 5, we present the modified theoretical base of DEA for composite

structures. The findings of Chapters 3 and 4 are used to derive the stationary

wave energy density arising in the structure due to a point or an edge sources.

Numerical results for the cases of a polygonally shaped plate, an electric vehicle

gearbox and an L-shaped composite plate are presented.

Finally, Chapter 6 presents concluding remarks with revision of contributions

of the work and suggests further potential research.



Chapter 2

Background

In this chapter, we present the background theory needed to proceed with an

understanding of the main findings of this thesis presented in Chapters 3, 4 and 5.

Section 2.1 describes the basics of the DEA method for two-dimensional isotropic

structures. Also, the wave problems that are considered throughout this thesis

are reviewed. Furthermore, the main parts of the DEA method that need to

be modified to allow for its application to composite structures are identified

and discussed. In Section 2.2, we describe the CLP theory for thin laminated

plates. It is used in Chapter 3 to set up the governing equations of motion

for composite plates, which eventually lead to the computation of the scatter-

ing coefficients of various junctions. Finally, Section 2.3 considers the main

principles and equations in the WFE method for composite plates modelled

using two-dimensional and three-dimensional finite elements. The equations

presented in this section will be used further in Chapter 4 to derive expressions

for scattering coefficients using the hybrid FE/WFE method.

2.1 Dynamical Energy Analysis for isotropic

structures

In this section, we derive the main equations in relation to the DEA method.

First, we consider general linear wave equations and show how they can be

solved using a sum of the free-space Green functions and the solution of the

homogeneous equations in subsection 2.1.1. In subsection 2.1.2, the free-space

Green’s functions for the Helmholtz and biharmonic wave equations are com-

16
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puted. In subsection 2.1.3, the solution of the homogeneous wave equation is

obtained in terms of ray trajectories via high-frequency or so-called Eikonal

approximation. Subsection 2.1.4 shows that the resulting mean wave energy

density can be approximated by the Liouville equation, which is rewritten in

terms of the boundary integral operator. The general algorithm of the DEA

method is discussed at the end of the section.

2.1.1 Wave equation

We consider stationary problems with continuous monochromatic energy sources.

In other words, we assume that linear wave equations in question are not ex-

plicitly time-dependent, and driving terms are time-harmonic with a fixed

angular frequency ω. This allows us to operate in the frequency domain rather

than in the time domain. The general problem of determining the response of

a two-dimensional system to a time-harmonic force with the amplitude F0 at

a source point r0 ∈ Ω can be written as

(
Ĥ + ω2

)
G(r, r0, ω) = −F0 δ(r− r0) , r ∈ Ω ⊂ R2 , (2.1)

where Ĥ is the linear combination of partial-differential operators with con-

stant coefficients, G is the Green function, and δ is the Dirac delta function

[50, 51]. We seek solutions G(r, r0, ω) in the domain Ω with the boundary Γ.

If the linear wave operator Ĥ is equal to c2∆ with Laplacian operator ∆

and positive c denoting the wave velocity, also called the phase velocity, then

Equation (2.1) is the inhomogeneous Helmholtz equation. With the appro-

priate form of the wave velocity c, this equation models vibrations of thin

membranes with clamped edges and in-plane deformations of plates due to

point source [142, 166, 167]. In such cases, Equation (2.1) can be rewritten as

(
∆ + k2

)
G(r, r0, ω) = f0 δ(r− r0) , r ∈ Ω , (2.2)

where k = ω
c

denotes the wave number, and f0 = −F0

c2
is the corresponding

forcing term.
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Another important application of Equation (2.1) is the bending motion of a

thin isotropic plate in the Kirchhoff-Love plate theory context. The corre-

sponding linear wave operator Ĥ is equal to − D
ρh

∆2, and the equation takes

the following form

(
∆2 − k4

)
G(r, r0, ω) = f0 δ(r− r0) , r ∈ Ω , (2.3)

where the Green function G now denotes the out-of-plane displacement am-

plitude, k4 = ρh
D
ω2 and f0 = F0ρh

D
. Here, ρ is the density of the plate, h is

the plate thickness, and D = Eh3

12(1−ν2)
is the bending stiffness with Young’s

modulus E and Poisson ratio ν [1, 142].

Equations (2.2) and (2.3) are supplied with boundary conditions at Γ. These

can be Dirichlet, Neumann or mixed Robin conditions for the former case and

clamped, free and simply supported boundary conditions for the latter case.

The solution of these problems can be found by splitting G into a homogeneous

and an inhomogeneous part as

G(r, r0, ω) = G0(r, r0, ω) +Gh(r, r0, ω) , (2.4)

where G0 is the free-space Green function, and Gh is a function which satisfies

the homogeneous equation

(
Ĥ − ω2

)
Gh(r, r0, ω) = 0 , r ∈ Ω , (2.5)

and its amplitude is determined by the boundary conditions [51, 168]. The

function G0 describes contributions arising directly from the source, whereas

Gh represents the scattering at the boundary Γ. In the next section, we will

compute the free-space Green functions for the Helmholtz and biharmonic

wave equations.

2.1.2 The free-space Green function

The free-space Green function is defined within an unbounded domain, and

it can be obtained by the application of Fourier transform techniques [168,
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169]. Since we consider isotropic structures made of two-dimensional elements,

Helmholtz and biharmonic wave equations (2.2) and (2.3) hold for r in the

whole two-dimensional space R2. Without loss of generality, we assume that

the input forcing term f0 is equal to unity. By imposing the Sommerfeld

radiation condition to ensure that only outgoing waves are present at infinity

[170], one can express the free-space Green function of the Helmholtz equation

G0(r, r0, ω) as

GH(r, r0, ω) = − i

4
H

(1)
0 (k|r− r0|) , H

(1)
0 (z) =

1

πi

∫ ∞
−∞

eiz coshudu , (2.6)

where i is the imaginary unit, and H
(1)
0 is the Hankel function of the first kind

and zero order. The asymptotic behaviour for ω →∞ is then given by

GH(r, r0, ω) ∼ −

√
2

πk|r− r0|
ei(k|r−r0|−π4 ) . (2.7)

For the case of the biharmonic wave equation, the free-space Green function

satisfies

(
∆2 − k4

)
GB(r, r0, ω) =

(
∆− k2

)(
∆ + k2

)
GB(r, r0, ω) = δ(r− r0) , r ∈ R2 .

(2.8)

Now, the Green function GB can be written as GB = − 1
2k2

(GH −GM) [167,

171], where GM is the Green function of the modified Helmholtz equation

(
∆− k2

)
GM(r, r0, ω) = δ(r− r0) , r ∈ R2 . (2.9)

Its solution can be readily obtained from Equation (2.6) by replacing k with

ik yielding

GM(r, r0, ω) = − i

4
H

(1)
0 (ik|r− r0|) =

1

2π
K0(k|r− r0|) , (2.10)

with K0 being the modified Bessel function of the second kind.

Finally, the free-space Green function of the biharmonic wave equation can be
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written as

GB(r, r0, ω) =
1

2k2

(
i

4
H

(1)
0 (k|r− r0|)−

1

2π
K0(k|r− r0|)

)
, (2.11)

and the corresponding high-frequency asymptotic form reads

GB(r, r0, ω) ∼ 1

8k2

√
2

πk|r− r0|
(
ei(k|r−r0|−π4 ) − e−k|r−r0|

)
. (2.12)

2.1.3 Eikonal approximation and ray tracing

Having computed the free-space Green functions, we can concentrate on the

homogeneous part Gh. For the sake of simplicity, we operate with the homo-

geneous Helmholtz equation

(
∆ + k2

)
Gh(r, ω) = 0 , r ∈ Ω

Gh(rs, ω) = −G0(rs, ω) , rs ∈ Γ

, (2.13)

where we assume Dirichlet boundary conditions G(rs, ω) = 0. Generalising

the approach to the biharmonic and other wave equations is straightforward

[50]. In the high frequency approximation, one can represent Gh in terms of

slow varying amplitude A and general phase function φ as

Gh(r, ω) = A(r)eiωφ(r) , r ∈ Ω . (2.14)

Substituting this expression into Equation (2.5) and separating the real from

the imaginary part yields the following two equations

|∇φ|2 =
1

c2
+

1

ω2

∆A

A

A∆φ+ 2∇A∇φ = ∇ ·
(
A2∇φ

)
= 0

. (2.15)

Now, assuming that ∆A
A
� k2, which is consistent with the slow variation of

the amplitude, we can drop the ω−2 term in the first equation in (2.15) as

ω →∞ and get the eikonal equation for the phase function alone

|∇φ| = 1

c
=
k

ω
(2.16)
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Now, defining p ≡ ∇φ as the momentum vector and setting the Hamilton

function H(r,p) = c|p| yields the Hamilton-Jacobi equation

H(r,p) = 1 . (2.17)

This equation can be solved by the method of characteristics [45, 172, 173].

First, we define ray trajectories r = r(τ) by the following ODEs

dr

dτ
= ∇pH . (2.18)

The system of equations in (2.18) is under-determined, therefore we need equa-

tions for p = p(r(τ)). To accomplish that, we differentiate (2.17) with respect

to r as

∇rH(r,p) +∇pH(r,p)∇p = 0 , (2.19)

and p — with respect to τ as

dp

dτ
= ∇p

dr

dτ
. (2.20)

Now, combining Equations (2.18), (2.19) and (2.20) gives Hamilton’s equations

for ray-trajectories (r(τ),p(τ))

dr

dτ
= ∇pH = c

p

|p|
,

dp

dτ
= −∇rH .

(2.21)

Note that if the phase velocity c is constant in the domain Ω, then dp
dτ

is zero,

and consequently, the ray trajectories are straight lines. Now, if we write the

boundary conditions Gh(rs, ω) in the form

Gh(rs, ω) = A0(rs)e
iωφ0(rs) for rs ∈ Γ , (2.22)

then initial conditions for the system of ODEs in (2.21) can be stated as

r(0) = rs

p(0) = ∇φ(r(0)) = ∇φ0(rs)

for rs ∈ Γ (2.23)
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The solution of Equation (2.21) with the mentioned initial conditions are

bicharacteristics (r,p) which are curves in the 4-dimensional (4D) phase space

R2×2. Now, in order to find a solution Gh(r
′, ω) at a point r′, we need to find

all bicharacteristic curves (r,p) that pass through the point r′ starting on the

boundary points rs ∈ Γ. In general, there can be infinitely many such bichar-

acteristic curves, and we can compute the phase function φj(r
′) obtained from

the ray trajectory starting at the boundary point rs,j in the following way

dφ

dτ
= ∇φdr

dτ
=p

dr

dτ
→ φ(r′, τ) = φ(r, 0) +

∫ τ

0

p
dr

dτ
→

φj(r
′) = φ0(rs,j) +

∫ r′

rs,j

p dr .

(2.24)

Once the phase function φj is known, the amplitude Aj is the solution of the

transport equation

Aj ∆φ+ 2∇Aj∇φj = ∇ ·
(
A2
j(r)∇φj(r)

)
= 0, r ∈ Ω ,

J0(rs,j) = A2
0(rs,j)

∂φ0(rs,j)

∂n
, rs,j ∈ Γ ,

(2.25)

where J0 is the incoming flux normal to the boundary Γ [51, 174]. Finally, the

solution Gh(r, ω) to the problem (2.13) can be approximated as

Gh(r, ω) =
∑
j

|Aj(r)|eiωφj(r)−iπ
2
mj , r ∈ Ω , (2.26)

where mj are the Maslow indices [172, 173]. Since the phase information is

not of interest in the DEA method, the details about the Maslow indices are

omitted. In what follows, we will be interested in the wave energy density

ε(r, ω) arising from the reflections off the boundary. It can be approximated

as

ε(r, ω) ∝ |Gh(r, ω)|2 =
∑
j , j′

|AjAj′|eiω(φj−φj′ )−iπ
2

(mj−mj′ ) =

=
∑
j

|Aj|2 +
∑
j 6= j′

|AjAj′ |eiω(φj−φj′ )−iπ
2

(mj−mj′ ) .

(2.27)

Here, the first term represents a smooth part of the wave energy density, while

the second term is associated with oscillations on the scale of the wavelength.
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The latter can be made negligibly small after averaging over a frequency band

centred on ω. Therefore, the total mean wave energy density can be approxi-

mated as

εtot(r, ω) ∝ |G0(r, r0, ω)|2 + ρ(r, ω) , ρ(r, ω) =
∑
j

|Āj|2 . (2.28)

In the next section, we present the connection between the smooth part of the

wave energy density ρ(r, ω) and the boundary integral representation of the

phase space density.

2.1.4 Liouville equation and boundary mapping

The mean wave energy density ρ(r, ω) can be well approximated by the phase

space density ρ(r,p, ω) passing through a point r as

ρ(r, ω) =

∫
R2

ρ(r,p, ω)dp . (2.29)

The phase space density ρ(r,p, ω) represents the density of non-interacting

particles following trajectories governed by Hamilton equations (2.21) [50]. It

satisfies the stationary Liouville equation [45, 51] that has the following form

{H, ρ} = 0 , (2.30)

where {·, ·} are the Poisson brackets which have the following definition

{f(r,p), g(r,p)} = ∇rf ∇pg −∇pf ∇rg . (2.31)

The solution of Equation (2.30) can be written as

ρ(r,p, ω) =
∑
j

|Aj(r, ω)|2δ(p−∇φj(r, ω)) , (2.32)

where Aj(r, ω) and φj(r, ω) are solutions of the eikonal and transport equations

(2.16) and (2.25), respectively [45, 174]. It is clear that the phase space density

ρ(r,p, ω) given by Equation (2.32) satisfies Equation (2.29). This is also called

the Wigner measure [45, 175], which represents the weak limit of the Wigner

distribution as ω →∞.
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Since the summation in (2.28) and (2.32) often consists of infinitely many

terms especially when considering long-term dynamics, the formulation can be

cumbersome and prone to poor convergence [167]. Instead, we will construct

the stationary or long-time limit phase space density ρ(r,p, ω) using a bound-

ary mapping technique. First, we map the initial energy density ρ0(r, r0, ω)

from the point source at r0 to the boundary Γ using the ray-tracing formula

(2.17) and (2.21). The initial energy density at a point source can be written

as

ρ0(r, ω) =
R

2πcg

e−µ|r−r0|

|r− r0|
, r ∈ Ω ⊂ R2 , (2.33)

where R is the source power, cg is the group velocity and µ is the attenuation

factor [53, 176]. The attenuation factor µ is related to the damping loss factor

η and the group velocity cg by µ = η ω
cg

. For instance, the attenuation factor µ

is equal to ηk for in-plane waves and 0.5 ηk for bending waves in thin isotropic

plates. This is because the group velocity cg is equal to the phase velocity c in

the former case and twice the phase velocity 2c in the latter case [13, 142].

Now, the initial phase space density ρ0(r,p, ω) can be represented as

ρ0(r,p, ω) =
R

2πcg

e−µ|r−r0|

|r− r0|
δ(p− p0), p0 = |p| r− r0

|r− r0|
, (2.34)

where p0 is the momentum vector of the ray connecting points r0 and r. Note

that the ray travels along the gradient of the Hamilton function∇pH according

to Equation (2.21), and in isotropic structures, the ray trajectory is aligned

with the momentum vector direction, thus yielding the form of the p0 as in

(2.34). However, as we will see in Section 3.3, Section 4.3 and Chapter 5, in

composite structures, the ray trajectories are not parallel to the momentum

vector p, but to the group velocity vector cg, hence, the delta function in

Equation (2.34) will have a different form.

It is worth noting that the phase space densities can describe much more

general driving sources than just monochromatic point sources. For instance,

in the electromagnetic context, phase space densities in the form of Wigner
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Figure 2.1: The set up of the local coordinate system at the boundary X = (s, pq).
A ray emitting from the point r0 reach the point rs, which has the local position s
on the boundary Γ. The momentum vector p has normal and tangential components
p⊥ and pq at the point s, and θ denotes the angle between the ray connecting r0 and
s and the normal to Γ.

distributions can represent partially coherent near-homogeneous finite sources

[177–181].

Rays emitted isotropically from the point source reach the boundary Γ and

produce the phase space density on the boundary ρ(rs,p), rs ∈ Γ. To proceed

with the boundary mapping, we need to introduce a coordinate system X =

(s, pq) on the boundary, where s parametrizes Γ, and pq is the component of

the momentum vector p tangential to Γ at the position s, see Figure 2.1. The

component p⊥ of the momentum vector p is normal to the boundary Γ at

the position s. Also, we introduce the two-dimensional (2D) boundary phase

space density ρΓ(s, pq), which will be used to construct the stationary phase

space density ρ∞(r,p, ω). It is important to distinguish between the 2D phase

space density ρΓ(s, pq) and the density on the full 4D phase space ρ(rs,p).

The former yields the energy flux through the boundary Γ at position s when

integrated over the momentum variables, while the latter produces the energy

density at the point rs [182]. They can be related as follows

ρ(rs,p) = ρΓ(s, pq)δ
(
H̃(rs,p)

)
, (2.35)
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where H̃(r,p) is the general Hamilton function [50, 51]. In the case of the

Helmholtz equation (2.13), H̃(r,p) is equal to c|p| − 1 according to Equa-

tion (2.17). Now, we apply the delta function substitution rule to the following

product of delta functions

cp⊥
|p|

δ(c|p| − 1)δ(pq − pq,0) = δ(p− p0) , (2.36)

where we combine δ(pq − pq,0)δ(p⊥ − p⊥,0) as δ(p− p0). Inserting the expres-

sion (2.34) for the 4D phase space density into Equation (2.35) and using the

relation (2.36) yield the initial 2D phase space density on the boundary as

ρΓ,0(s, pq) =
cR

2πcg

e−µ|rs−r0|

|rs − r0|
cos (θ(rs, r0)) δ(pq − pq,0) , (2.37)

where θ(rs, r0) is the angle between the ray connecting points r0 and rs and

the normal to Γ, see Figure 2.1. Rays starting with phase space coordinates

X = (s, pq) reach the boundary Γ again with phase space coordinates X ′ =

(s′, p′q), see Figure 2.1.

Now, the idea is to relate the 2D phase space density ρΓ(X) with the new

phase space density ρ′Γ(X ′), which is produced after one scattering event of

the rays leaving the boundary Γ. This can be achieved by introducing the

boundary integral operator T as

ρ′Γ(X ′) = {TρΓ}(X ′) =

∫
λ(X ′)e−µD(X,X′)δ (X ′ − Φ(X)) ρΓ(X)dX . (2.38)

Here, the function Φ(X) maps the phase space coordinates X = (s, pq) to

X ′ = (s′, p′q) according to the ray-tracing formula given in (2.21). The term

λ(X ′) represents the energy scattering coefficients, that is, the ratios of in-

coming and outgoing energy fluxes, whereas D(X,X ′) is the length of the ray

trajectory connecting the phase space coordinates X and X ′. Equation (2.38)

means that the new phase space density ρ′Γ at the phase space point X ′ is

composed of the ray-particles starting at the phase space points X that reach

X ′ whilst being damped along the way with attenuation factor µ and scattered

upon hitting the boundary Γ. Note that in undamped systems with perfect
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reflection/transmission, that is, when µ = 0 and λ(X ′) = 1, the phase space

density ρ′Γ(X ′) is equal to ρΓ(Φ(X)), which is consistent with phase space vol-

ume conservation [45, 172, 173]. The correspondent integral operator is known

as the Perron-Frobenius operator [50, 53, 172].

Finally, we compute the stationary or long-time limit 2D phase space density

ρΓ,∞(X) as

ρΓ,∞(X) =
∞∑
n=1

T nρΓ,0(X) = (I− T )−1 ρΓ,0(X) , (2.39)

where ρΓ,0 is the initial 2D phase space density on the boundary given by

Equation (2.37). Note that for non-vanishing attenuation, the series converges

as n→∞ [50]. The resulting stationary 4D phase space density ρ∞(rs,p), rs ∈

Γ can be recovered using Equation (2.35) as

ρ∞(rs,p) = ρΓ,∞(s, pq)δ(H̃(rs,p)) = ρΓ,∞(s, pq)δ(c|p| − 1) . (2.40)

Now, one can express the solution of the Liouville equation (2.30) as

ρ(r,p, ω) = e−µ|r−rs|ρ∞(rs(r,p),p) , (2.41)

where rs is the point of boundary intersection of the ray emanating from the

point r in the direction −p [53]. Consequently, the mean wave energy density

ρ(r, ω) at the point r can be obtained using Equation (2.29).

Having defined the main steps of the DEA method, we still need to address the

problem of defining the solution of Equation (2.39). One needs to express the

boundary integral operator T in a finite set of basis functions, thus constructing

its discrete version. Several basis function sets have been used in the literature.

In particular, Tanner [50, 52] used Fourier basis functions both in position and

momentum space to represent the operator T . Due to several difficulties such

as non-periodic boundary conditions and slow convergence of the associated

quadrature rules, Chebyshev polynomial functions with the Gauss-Chebyshev

quadrature rule were suggested as an alternative in [183]. It was found in [51,

184] that utilising a basis of functions that is orthogonal in the L2 space inner
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product is useful when considering multi-component fine-meshed systems. The

Legendre polynomial functions were used instead of Chebyshev polynomials

due to better computational efficiency whilst maintaining fairly good solution

approximations.

In this thesis, the Legendre polynomial functions are used to discretise the

boundary operator T . However, the implementation of this process and gen-

erally of the DEA method will be presented directly for composite structures

in Chapter 5. To summarise, the algorithm on how to proceed with the DEA

method can be put as

1. Define the Hamilton function (2.17) and the ray-tracing equations (2.21).

2. Compute the initial 2D phase space density using Equation (2.37).

3. Construct the discrete version of the operator T defined in (2.38).

4. Solve Equation (2.39) to obtain the stationary phase space density ρΓ,∞.

5. Compute the stationary energy density using Equation (2.29).

(2.42)

To extend the applicability of the DEA method for composite structures, sev-

eral major steps in this algorithm must be redefined accordingly. For instance,

the Hamilton function and ray-tracing formula that define the boundary map-

ping Φ : X → X ′ in the definition of the operator T will take more sophis-

ticated forms in the case of composite structures as we shall see throughout

this thesis. The scattering coefficients λ(X ′) in (2.38) play a significant role in

defining the long-term dynamics of the phase space densities. As outlined in

the introduction, Chapters 3 and 4 are devoted to calculating these coefficients

for the various junctions of composite laminated plates. Finally, the numeri-

cal implementation algorithm, whilst being based on the works of Chappell et

al. [51] and Hartmann et al.[53], needs to be changed significantly to suit the

case of composite structures. In the following section, the background theory

needed for Chapter 3 is presented.
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2.2 Classical Laminated Plate theory

In this section, we describe the Classical Laminated Plate theory for composite

laminated plates. It is used in Chapter 3 to set up governing equations of

motion of composite plates, which eventually leads to the computation of the

scattering coefficients of various composite plate junctions.

The CLP theory is one of the Equivalent Single Layer (ESL) theory types, i.e.

we model a composite laminated plate with an equivalent single layer [1, 67].

It is an extension of the Kirchhoff-Love plate theory to laminated plates. The

following assumptions are made

1. The plate is thin, e.g. thickness is much smaller than length and width

dimensions.

2. The plate is made of n linear elastic orthotropic laminas that are perfectly

bonded together (see Figure 2.2).

3. Transverse shear strains εxz, εyz and transverse normal strain εzz are

negligible.

4. Rotary inertia terms are negligible.

5. The effect of in-plane forces on bending is negligible.

Note that in infinite plates, a plate can be considered thin as long as

λmin
B ≥ 6h or kmax

B h < 1 (2.43)

where h, kmax
B and λmin

B = 2π
kmax
B

are the laminate thickness, the maximum wave

number and the minimum wave length of the bending mode, respectively [142].

According to the assumptions made, the displacement field can be described
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Figure 2.2: The lay-up configuration of a composite laminate.

as

u(x, y, z, t) = u0(x, y, t)− z∂w0

∂x

v(x, y, z, t) = v0(x, y, t)− z∂w0

∂y

w(x, y, z, t) = w0(x, y, t)

(2.44)

where u0, v0 and w0 are the displacements along the correspondent axes of a

point (x, y, 0) on the mid-plane. Therefore, the infinitesimal strain tensor can

be written as 
εxx

εyy

εxy

 =


∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

− z


∂2w0

∂x2

∂2w0

∂y2

2∂
2w0

∂x∂y

 . (2.45)

Stress components of the kth lamina can be found from the following consti-

tutive relations: 
σxx

σyy

σxy



k

=


Q11 Q12 Q16

Q12 Q22 Q26

Q26 Q26 Q66


k

εxx

εyy

εxy

 (2.46)

where the Qij’s are plane-stress reduced stiffnesses of an orthotropic lamina.

If the principle material axes of the kth lamina are not aligned with the nat-

ural coordinates of the plate, then all Qk
ij 6= 0, and the lamina is generally
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orthotropic [1]. If they are aligned, then Qk
16 = Qk

26 = 0, and the lamina is spe-

cially orthotropic. Details about the relations between the Qij’s and the more

familiar coefficients for specially orthotropic plates as, for example, found in

[185], together with the relations to material constants can be found in Ap-

pendix B. In-plane stress and moment resultants can be computed via an

integration of stresses along the thickness direction as follows
Nxx

Nyy

Nxy

 =

h
2∫

−h
2


σxx

σyy

σxy

 dz =
n∑
k=1

zk+1∫
zk


σxx

σyy

σxy



k

dz


Mxx

Myy

Mxy

 = −

h
2∫

−h
2


σxx

σyy

σxy

 zdz = −
n∑
k=1

zk+1∫
zk


σxx

σyy

σxy



k

zdz

(2.47)

Now, we can use relations (2.45) and (2.46) to represent the in-plane stress

and moment resultants in terms of the displacement field as
Nxx

Nyy

Nxy

 =


A11 A12 A16

A12 A22 A26

A26 A22 A66




∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

−

B11 B12 B16

B12 B22 B26

B26 B22 B66




∂2w0

∂x2

∂2w0

∂y2

2∂
2w0

∂x∂y


Mxx

Myy

Mxy

 =


D11 D12 D16

D12 D22 D26

D26 D22 D66




∂2w0

∂x2

∂2w0

∂y2

2∂
2w0

∂x∂y

−

B11 B12 B16

B12 B22 B26

B26 B22 B66




∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x



,

(2.48)

where Aij, Bij and Dij are called extensional, bending-extensional coupling

and bending stiffnesses, defined as follows

(Aij, Bij, Dij) =

h
2∫

−h
2

Qij

(
1, z, z2

)
dz =

n∑
k=1

zk+1∫
zk

Qk
ij

(
1, z, z2

)
dz . (2.49)

If individual layers are homogeneous, the integrations in Equation 2.49 can be
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replaced by summations in the following way:

Aij =
n∑
k=1

Qk
ij (zk+1 − zk)

Bij =
1

2

n∑
k=1

Qk
ij

(
z2
k+1 − z2

k

)
Dij =

1

3

n∑
k=1

Qk
ij

(
z3
k+1 − z3

k

)
. (2.50)

Finally, the governing equations of free motion can be written in terms of

in-plane stress and moment resultants as follows

∂Nxx

∂x
+
∂Nxy

∂y
= I0

∂2u0

∂t2
− I1

∂2

∂2t

(
∂w0

∂x

)
∂Nxy

∂x
+
∂Nyy

∂y
= I0

∂2v0

∂t2
− I1

∂2

∂2t

(
∂w0

∂y

)
∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
= −I0

∂2w0

∂t2
+ I1

∂2

∂2t

(
∂u0

∂y
+
∂v0

∂x

) , (2.51)

where [I0 , I1] =
∫ h

2

−h
2

ρ0 [1 , z] dz - the mass moments of inertia with ρ0 being the

material density. Transversal tractions Qx and Qy which do not appear in the

equations of motion are important when formulating the boundary conditions.

They can be expressed in terms of moments as follows

Qx = −∂Mxx

∂x
− ∂Mxy

∂y

Qy = −∂Myy

∂y
− ∂Nxy

∂x
.

(2.52)

These tractions together with the twisting moment contributions −∂Mxy

∂x
and

−∂Mxy

∂y
define the effective shear forces Vx, Vy as follows:

Vx = Qx −
∂Mxy

∂y

Vy = Qy −
∂Mxy

∂x
.

(2.53)

Note that for laminates that consist of an odd number of laminas and are sym-

metric, that is, when the ply stacking sequence, material, and ply thicknesses

are symmetric around the mid-plane, all bending-extension stiffnesses Bij = 0,

and the mass moment of inertia I1 = 0. Therefore, for such laminates, the

equations of motion (2.51) become uncoupled, i.e. the first two equations gov-
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(a) with SOLID185 elements

(b) with SHELL181 elements

Figure 2.3: A periodic segment of a composite plate with two different alternat-
ing plies modelled with SOLID185 (a) and SHELL181 elements (b) in Ansys. The
degrees of freedom are grouped into internal qI , edge qL, qR, qB, qT and corner
qLB, qRB, qLT , qRT degrees of freedom.

ern the in-plane motion of the laminate, whereas the last equation describes

the out-of-plane motion of the laminate. This concludes the review of the CLP

theory for thin composite laminates. In the next section, the WFE method

for composite two-dimensional waveguides is reviewed.

2.3 The Wave Finite Element method for com-

posite plates

2.3.1 Statement of the problem

We consider a unit cell of a composite plate with arbitrary lay-up through

the thickness direction and plane dimensions dx and dy. It can be mod-

elled using two-dimensional shell elements with a composite lay-up or three-
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dimensional solid elements stacked up one on top of the other, representing

different composite layers. For instance, in ANSYS, the former can be rep-

resented by the linear element type SHELL181, and the latter by the linear

element type SOLID185. Figure 2.3 presents a unit cell of a five-layer plate

meshed with SOLID185 and SHELL181 elements and a nodal displacements

vector labelling convention. A SOLID185 element consists of eight nodes with

three translational degrees of freedom per node, whereas a SHELL181 ele-

ment consists of four nodes with three translational and three rotational de-

grees of freedom per node. The nodal degrees of freedom are grouped into

internal qI , edge qL, qR, qB, qT and corner qLB, qRB, qLT , qRT degrees of

freedom. Accordingly, the nodal displacements vector q can be organised as

q =

{
qLB qRB qB qL qR qI qLT qRT qT

}T

. The nodal forces vector f

is arranged in the same manner. The number of degrees of freedom must be

the same for each pair of edges on opposite faces. The number of mesh cells in

the x, y and z direction are labelled by nx, ny and nz. The number of degrees

of freedom per edge is labelled as m; for plates modelled with SOLID185 ele-

ments m = 3(nz + 1), whereas SHELL181 elements based plates have m = 6

since there is only one node in the z direction. Consequently, the sizes of nodal

displacement sub-vectors can be represented as

|qL(R)B(T )| = m, |qL(R)| = m(nx − 1) ,

|qB(T )| = m(ny − 1) , |qI | = m(nx − 1)(ny − 1) .

(2.54)

The governing equation of motion of the unit cell can be written as

Mq̈(t) + Cq̇(t) + Kq(t) = f , (2.55)

where M, C and K are mass, damping and stiffness matrices, respectively.

Note that these matrices are symmetric. The dimension of Equation (2.55) is

m(nx+1)(ny+1). We assume that the structure undergoes a harmonic motion

at angular frequency ω, therefore, q̈ = −ω2q and q̇ = iωq. Introducing this



Chapter 2. The Wave Finite Element method for composite plates 35

expression into Equation (2.55) yields

[
K + iωC− ω2M

]
q = f . (2.56)

The matrix C can be composed of different components including layer- and

material-wise viscous and structural damping matrices, but in this work, we

assume that C = η
ω
K, where η is a uniform structural damping coefficient.

Therefore, Equation (2.56) can be written as

[
K (1 + iη)− ω2M

]
q = f . (2.57)

2.3.2 Periodic structure theory and eigenvalue problem

We consider a plane wave travelling across the plate to be of the form e−ikxx−ikyy+iωt,

where kx and ky are x and y components of the wave vector k. Periodic struc-

ture theory [186, 187] requires that the displacement vector between adjacent

nodes and opposite sides differs only by a propagation factor λ. For the nodes

placed along the x direction (see Figure 2.3), we obtain
qLT

qRT

qB

 = λx


qLB

qRB

qT

 , (2.58)

where λx = e−ikxdx is the propagation factor in the x direction. Now, we denote

as qjX , X = L,R, I displacement sub-vectors of nodes placed at xj = dxj/nx,

j = 1, 2, . . . , nx−1. Consequently, as in Equation (2.58), one can relate internal

and edge degrees of freedom to bottom ones as
qjL

qjR

qjI

 = e−ikxdxj/nx


qLB

qRB

qB

 = λj/nxx


qLB

qRB

qB

 . (2.59)

Using Equations (2.58) and (2.59), we can express the nodal displacements vec-

tor q in terms of displacement sub-vectors of nodes qred =

{
qLB qRB qB

}T
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as

q = Tqred , T =



I1 0 0

0 I1 0

0 0 I2
...

λ
j/nx
x I1 0 0

0 λ
j/nx
x I1 0

0 0 λ
j/nx
x I2

...

λx I1 0 0

0 λx I1 0

0 0 λx I2



, j = 1, 2, . . . , nx − 1 ,

(2.60)

where I1 and I2 are identity matrices with dimensions m and m(ny − 1). The

dimension of the matrix T is (m(nx + 1)(ny + 1),m(ny + 1)), and hence, Equa-

tion (2.60) can be used to reduce the dimension of Equation (2.57). In fact,

premultiplying both sides of Equation (2.57) by conjugate transpose TH yields

TH [K (1 + iη)− ω2M]T qred = fred , (2.61)

and

fred =


f̃L

f̃R

f̃O

 = TH f =



fLB +
nx−1∑
j=1

λ−j/nxx f jL + λ−1
x fLT

fRB +
nx−1∑
j=1

λ−j/nxx f jR + λ−1
x fRT

fB +
nx−1∑
j=1

λ−j/nxx f jI + λ−1
x fT


, (2.62)

where f jX , X = L,R, I denote force sub-vectors of nodes placed at xj =

dxj/nx, j = 1, 2, . . . , nx − 1. Internal nodal forces fI = 0 in the absence of ex-

ternal forces, and force equilibrium between opposite sides yields λxfB+fT = 0.

Therefore, the reduced nodal forces vector f̃O = 0. Relabelling qred in Equa-
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tion (2.61) as

{
q̃L q̃R q̃O

}T

yields the following equations of motion:


DLL DLR DLO

DRL DRR DRO

DOL DOR DOO




q̃L

q̃R

q̃O

 =


f̃L

f̃R

0

 , (2.63)

where D = TH [K (1 + iη) − ω2M]T is the reduced dynamic stiffness matrix.

The dimension of the square matrix D is m(ny + 1). Now, we can reduce

further the dimension of Equation (2.63) via dynamic condensation of internal

degrees of freedom q̃O and obtain the following equationD̃LL D̃LR

D̃RL D̃RR


q̃L

q̃R

 =

f̃L

f̃R

 , (2.64)

where

D̃LL = DLL −DLOD−1
OODOL

D̃LR = DLR −DROD−1
OODOR

D̃RL = DRL −DLOD−1
OODOL

D̃RR = DRR −DROD−1
OODOR

. (2.65)

The term D−1
OO is computed for each frequency of interest, thus increasing the

computational cost. To reduce it, one can approximate D−1
OO by expanding in

a power series in ω2 [127] as

D−1
OO =

(
I +

ω2

1 + iη
K̃−1
OOM̃OO +O

(
(
ω2

1 + iη
K̃−1
OOM̃OO)2

))
K̃−1
OO

1

1 + iη
≈

≈
(

I +
ω2

1 + iη
K̃−1
OOM̃OO

)
K̃−1
OO

1

1 + iη

(2.66)



Chapter 2. Conclusion 38

Now, substituting this expression into Equations (2.65) gives

D̃=


K̃LL K̃LR

K̃RL K̃RR

−
K̃LO

K̃RO

K̃−1
OO

K̃OL

K̃OR


(1 + iη)−ω2


M̃LL M̃LR

M̃RL M̃RR

 −
−

K̃LO

K̃RO

K̃−1
OO

M̃OL

M̃OR

−
M̃LO

M̃RO

K̃−1
OO

K̃OL

K̃OR

+

K̃LO

K̃RO

K̃−1
OOM̃OOK̃−1

OO

K̃OL

K̃OR



,

(2.67)

where K̃XY = T∗KXY T and M̃XY = T∗MXY T for X, Y = L,R,O. The

component K̃−1
OO can be precomputed for the range of frequencies considered,

thus decreasing the computational cost. Finally, by applying the periodic

structure theory and force equilibrium in the y direction, which can be written

as

q̃R = λy q̃L , f̃R = −λy f̃L , λy = e−ikydy , (2.68)

one can get from Equation (2.64) the following eigenvalue problem for the

propagation factor λy

S

q̃L

f̃L

 = λy

q̃L

f̃L

 with S =

 −D̃−1
LR D̃LL D̃−1

LR

−D̃RL + D̃RR D̃−1
LR D̃LL −D̃RR D̃−1

LR

 .

(2.69)

Solving Equation (2.69) yields the propagation factors λy and, eventually, the

wave number components ky.

This concludes the review of the WFE method for composite plates.

2.4 Conclusion

This chapter aimed to review the background theory needed to understand the

main findings of this thesis presented in the following chapters. In Section 2.1,

we have described the basics of the DEA method for two-dimensional isotropic

structures. Furthermore, we have reviewed the wave problems that are consid-

ered throughout this thesis. Finally, we have identified and discussed the main
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parts of the DEA method that need to be modified to allow for its application

to composite structures.

One of the main parts to be changed is the calculation of scattering coefficients

for composite plates. These coefficients are obtained via two approaches -

the semi-analytical approach based on the CLP theory for thin laminated

plates and the hybrid FE/WFE approach for general composite plates. In

Section 2.2, we have described the CLP theory for thin laminated plates. It

will be used in Chapter 3 to set up the governing equations of motion for

composite plates, which eventually lead to the computation of the scattering

coefficients of various junctions. Finally, in Section 2.3, we have considered

the main principles and equations in the WFE method for composite plates

modelled using two-dimensional and three-dimensional finite elements. The

equations presented in this section will be used further in Chapter 4 to derive

expressions for scattering coefficients using the hybrid FE/WFE method.



Chapter 3

Energy scattering properties of
line joints connecting composite
plates

3.1 Introduction

In this chapter, the semi-analytical method for computing scattering coeffi-

cients of line joints connecting composite laminated plates is derived. Com-

posite laminates are modelled in the context of the CLP theory introduced

in Section 2.2. We restrict our study to symmetric laminates; that is, the

laminas are symmetrically placed around the mid-plane of the laminate. As

shown in Section 2.2, in such a case, the governing equations of motion (2.51)

become uncoupled, thus reducing the computational complexity of the model.

There are two specific cases which we will have a look at that are described in

Appendix A, namely, regular cross- and angle-ply laminates with alternating

ply direction angles (0◦/90◦) and (−α/α), 0◦ < α < 90◦, respectively. The

method presented here will be used to validate a wave finite element approach

of extracting reflection and transmission coefficients in Chapter 4.

This chapter is organised as follows. In Section 3.2, the governing equations of

motion for composite symmetric laminated plates are presented. Then, disper-

sion relations and group velocities for in-plane and out-of-plane waves are given

in Section 3.3. The importance of modifications to Snell’s law for composite

plates is discussed using an example configuration. In Section 3.4, the wave

dynamic stiffness matrix is then introduced, which relates displacements and

40
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Figure 3.1: The set up of N plates joined together at a common interface along
the xg axis.

forces at the junction. In Section 3.5, the individual dynamic stiffness matrices

for plates are then assembled into a global equation via the application of con-

tinuity and equilibrium conditions at the junction. Consequently, we obtain

the scattering matrix formulation for a junction of several semi-infinite plates.

As a final step, in Section 3.6, we derive an effective scattering matrix for a

plate with multiple finite stiffeners attached to it. In Section 3.7, numerical

case studies for two and three coupled composite plates are presented.

3.2 Statement of the problem

In this section, we outline the mathematical basis of the wave scattering prob-

lem. We consider N semi-infinite thin laminated plates connected along a

lossless junction as shown in Figure 3.1. The plates consist of n generally or-

thotropic laminas. The shared edge of the plates is aligned with the xg axis

of the global coordinate system (xg, yg, zg). All plates are semi-infinite in the

positive direction of their local yj axis. The rotation angle ψj describes the

position of the jth plate relative to the yg axis. The position, displacements

and tractions on the jth plate are defined with respect to the local coordi-

nate system (xj, yj, zj), where the local and global x axis are identical, see

Figure 3.2. Note that the positive direction of the yj axis always points away
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from the junction.

3.2.1 Governing equations of motion

As outlined in Section 3.1, we consider symmetric laminated plates, and there-

fore, all bending-extension coefficients Bij are equal to zero. Substituting

(2.48) into (2.51) yields the governing equations of motion for the jth plate in

terms of displacements uj, vj, wj as

A11

∂2u

∂x2
+2A16

∂2u

∂x∂y
+A66

∂2u

∂y2
+A16

∂2v

∂x2
+(A12+A66)

∂2v

∂x∂y
+A26

∂2v

∂y2
= ρh

∂2u

∂t2
,

A22

∂2v

∂y2
+2A26

∂2v

∂x∂y
+A66

∂2v

∂x2
+A16

∂2u

∂x2
+(A12+A66)

∂2u

∂x∂y
+A26

∂2u

∂y2
= ρh

∂2v

∂t2
,

D11

∂4w

∂x4
+4D16

∂3w

∂x3∂y
+2(D12+2D66)

∂4w

∂x2∂y2
+4D26

∂3w

∂x∂y3
+D22

∂4w

∂y4
= −ρh∂

2w

∂t2
.

(3.1)

Recall that coefficients Aij and Dij are computed using Equation (2.49), and

for special cases of cross- and angle-ply laminates these coefficients are obtained

by formula given in Appendices (A.1) and (A.2). We omit the plate index j in

Equations (3.1) and whenever we talk about a specific plate for ease of nota-

tion; we emphasise here that all quantities, including the material parameters,

are plate dependent. The equations of motion for in-plane and out-of-plane

motion in the plate are uncoupled and so are the relations between in-plane

displacements ue , ve to in-plane tractions Nxy , Nyy and out-of-plane displace-

Figure 3.2: Local coordinate system, displacements and tractions on the common
edge “e” of the jth plate.
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ment we and rotation θe to effective shear force Vy and bending moment Myy

at a junction or edge “e” of that plate j, see Figure 3.2. In what follows, we

will use the sub-index “e”, whenever we want to stress that a quantity is taken

at the edge of a plate j, that is, at yj = 0, following the notation in [147]. By

expanding Equation (2.48), the elastic tractions and moments can be written

in the following way

Nyy = A22

∂v

∂y
+ A12

∂u

∂x
+ A26

(
∂u

∂y
+
∂v

∂x

)
Nxy = A16

∂u

∂x
+ A26

∂v

∂y
+ A66

(
∂u

∂y
+
∂v

∂x

)
Vy = −D22

∂3w

∂y3
− 4D26

∂3w

∂x∂y2
− (D12 + 4D66)

∂3w

∂x2∂y
− 2D16

∂3w

∂x3

Myy = D22
∂2w

∂y2
+D12

∂2w

∂x2
+ 2D26

∂2w

∂x∂y
.

(3.2)

In what follows, the twisting moment Mxy will be important in calculating the

energy flow of a bending mode. It is expressed in terms of displacements as

Mxy = D16
∂2w

∂x2
+D26

∂2w

∂y2
+ 2D66

∂2w

∂x∂y
. (3.3)

The angle of rotation γ is approximated as ∂w
∂y

(see Equation (2.44)). Finally,

it is noted that Equations (3.1) and (3.2) with appropriate extensional and

bending coefficients Aij and Dij describe the structural behaviour of a gen-

erally orthotropic plate, that is, an orthotropic plate with principal material

axes not necessarily aligned with its local coordinate system. Therefore, we

can also analyse the vibrational motion of individual orthotropic lamina of a

composite plate and, consequently, the scattering properties of the junctions

of orthotropic plates.

3.3 Dispersion relations, the group velocity and

Snell’s law

Before discussing reflection and transmission coefficients for incoming waves

at a specific angle of incidence, it is worth considering the relations between

the angle of incoming and outgoing waves at an interface, that is, the relation
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equivalent of Snell’s law for composite plates.

3.3.1 Relations between incoming and outgoing waves
at junctions for composite plates

Since the directions of the group and phase velocities do not necessarily coin-

cide in non-isotropic media [166], formulating the relations between the angles

of incoming and outgoing waves at interfaces between plates with different

material properties and thus the generalisation of Snell’s law is less straight-

forward. The connection between group and phase velocities is provided by

the dispersion relation, which needs to be studied in detail. Given that energy

is transported along the group velocity vectors, the relation between incoming

and outgoing group velocity directions is essential for calculating ray trajecto-

ries in the context of DEA.

We consider a plane wave of the form e−ikxx−ikyy+iωt travelling across the plate,

where kx and ky are the x and y components of the wave vector k, and ω is

the angular frequency. Substituting this plane wave solution into the 4th order

bending equation (3.1) yields the characteristic equation for bending waves

D11 k
4
x + 4D16 k

3
x ky + 2(D12 + 2D66) k

2
x k

2
y + 4D26 kx k

3
y +D22 k

4
y − ρhω2 = 0.

(3.4)

Following the same procedure using the first two equations in (3.1), the char-

acteristic equation for in-plane waves can be expressed as

(
A11 k

2
x + 2A16 kxky + A66 k

2
y − ρhω2

) (
A66 k

2
x + 2A26 kxky + A22 k

2
y − ρhω2

)
−

−
(
A16 k

2
x + (A12 + A66) kxky + A26 k

2
y

)2
= 0.

(3.5)

For fixed ω, the solutions to Equations (3.4) and (3.5) give rise to a closed

curve in (kx, ky) space describing the wave vector curves for bending, shear

and longitudinal waves. We note that only real solutions (kx, ky) describe

propagating waves.

We are interested in the dynamic response of a plate j to an incident plane wave
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of the form e−ikxx+ikyy+iωt travelling towards the junction on plate j′. Compat-

ibility conditions at the junction yield the response of the plate j in the form

e−ikxx−iµy+iωt, that is, kx and ω are common to all plates on the edge “e”. The y

component of the wave vector, here denoted µ, is then computed from the dis-

persion relations (3.4) and (3.5). For the out-of-plane motion, one obtains four

solutions of Equation (3.4) which come in pairs of roots µ±. One pair is either

real or complex, corresponding to propagating or evanescent bending waves,

respectively. We denote this pair as µ±B1
where the superscripts ” + ” and ”−”

represent outgoing and incoming waves. The other pair of roots denoted µ±B2

is always complex; thus, the corresponding bending waves are always evanes-

cent. Evanescent waves are usually characterised with purely imaginary values

of µ±, so that the correspondent displacements increase or decay exponentially

along its direction without oscillation [142, 147, 166]. In such waves, energy

can only be carried through the interaction of a pair of waves [188, 189]. One

might argue that for complex µ± with Re(µ±) 6= 0, the solution would oscil-

late while decaying or increasing exponentially. Therefore, the correspondent

waves must be attenuating and carrying energy flux. However, in the absence

of damping, such waves are still evanescent with the inclined angle of the decay

with respect to the y axis - more on this in subsection 3.4.1.

Similarly, the dispersion relations (3.5) can be solved for the unknown µ yield-

ing a characteristic equation with four roots µ±
L,S

that represent real or complex

incoming and outgoing quasi-longitudinal and quasi-shear waves, here denoted

as L and S, respectively. Valid plate responses, that is, outgoing waves with

µ+
X

, X = B1, B2, L and S either oscillate with a positive energy flux along

the y axis or decay exponentially with increasing y; again, we will discuss this

in more detail in subsection 3.4.1. In the example to follow below, we will

only consider the propagating branches and explain the relation between the

directions of incoming and outgoing waves, which follows from the continuity

condition kx = const.

For this, we also need the group velocity vector cg, which gives the direction
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of the wave energy flow [190]. The standard definition cg = ∂ω/∂k is not

convenient for our purposes here, since the dependence of the angular frequency

ω on the wave vector k is only implicitly given through the dispersion relations

(3.4) and (3.5). Instead, one can use

(cgx, cgy) = −

(
∂H̃

∂kx
,
∂H̃

∂ky

)
÷ ∂H̃

∂ω
(3.6)

to find the components of the group velocities cgx and cgy [139, 190] for dif-

ferent modes. Here, H̃ = H̃ (kx, ky, ω) = 0 represents the dispersion rela-

tions (3.4) or (3.5), respectively, and it is the general Hamilton function that

defines the ray trajectories in composite plates; we have seen a form of it for

isotropic plates in Equation (2.35).

It is important to note that after introducing the polar coordinate system as

kx = k sin θ, ky = k cos θ, the dispersion relations can be recast as

Hl(k, θ) = βl(θ)k
l = ω , l = 1, 2 , (3.7)

where l = 1, 2 represents the cases of in-plane and out-of-plane waves, accord-

ingly. Furthermore, the coefficients β(θ) are given as follows:

βL,S1 (θ) =

√
2(C1C2 − C2

3)

ρh(C1 + C2 ∓
√

(C1 − C2)2 + 4C2
3

, β2(θ) =

√
D

ρh
(3.8)

with

C1 = A11 sin2 θ + 2A16 sin θ cos θ + A66 cos2 θ

C2 = A66 sin2 θ + 2A26 sin θ cos θ + A22 cos2 θ

C3 = A16 sin2 θ + (A12 + A66) sin θ cos θ + A26 cos2 θ

D = D11 sin4 θ + 4D16 sin3 θ cos θ + 2 (D12 + 2D66) sin2 θ+

+ cos2 θ + 4D26 sin θ cos3 θ +D22 cos4 θ

(3.9)

While this form of the dispersion relations is simpler than ones in (3.4) and (3.5),

one can only extract the propagating modes out of them. The evanescent

modes are essential in the calculation of the scattering coefficients as we shall
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Figure 3.3: Schematic of an L-junction of two orthotropic plates. The angle ψ2

here is set to 90◦. Red and blue lines represent the fiber direction of the plates. The
local angles of orientations φ1 and φ2 are both set to 45◦.

E1 (N/m2) E2 (N/m2) E3 (N/m2) G12 (N/m2) G23 (N/m2) G13 (N/m2)

121× 109 8.6× 109 8.6× 109 4.7× 109 3.1× 109 4.7× 109

ν12 ν23 ν13 ρ (kg/m3)

0.27 0.4 0.27 1490

Table 3.1: Engineering constants of Epoxy Carbon UD (230 GPa) material used for
individual laminas of a composite plate.

see in the following sections; hence, Equations (3.4) and (3.5) will be used

throughout this chapter. Still, as we will see in Chapter 5, Equation (3.7) is

useful for relating the boundary and spatial phase space densities.

3.3.2 Snell’s law for composite plates - an example

We will discuss some of the peculiarities of the interplay between incoming and

outgoing wave directions at interfaces between composite plates by looking at

a specific example. For the sake of clarity, we will consider first generally

orthotropic plates meeting at an angle ψ2 as shown in Figure 3.3. These plates

can be viewed as composite laminates that have only one lamina with local

ply direction angles φ1 and φ2. The actual value of ψ2 is not essential for the
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Figure 3.4: Bending wave vector curve in a 45◦ rotated orthotropic plate at a
frequency 3000 Hz (left) and a schematic representation of incoming/outgoing waves
at the junction of two identical plates (right). Blue dots represent wave numbers
related to outgoing waves while red squares correspond to incoming waves. Wave
number components kmax

x and k∗x equal to 62.96 m−1 and 29.34 m−1, respectively.

discussion in this section; it is set to ψ2 = 90◦ in Figure 3.3.

The material characteristics of the plates are given in Table 3.1. The thick-

nesses of plates are both equal to 5 mm. Appendix B describes the rela-

tions connecting these material parameters to the stiffness coefficients in Equa-

tions (3.1). The orientation of the principal material axes of the two plates

with respect to the interface and with respect to each other is important; here,

we define the local angles of rotation of the material axes as φ1 = φ2 = 45◦

as shown in Figure 3.3. We work at a frequency of 3000 Hz here, a frequency

value consistent with the thin plate assumptions described by condition (2.43)

- at the chosen frequency kmax
B h = 0.31 < 1. The left hand side of Figure 3.4

shows the bending wave vector curve at a frequency 3000 Hz obtained from

Equation (3.4) in the local coordinate system displaying the 45◦ rotation. Note

that the wave vector curve is the same for both plates in their local coordinate

system. The range of kx values which allow for propagating bending waves at

3000 Hz is between (−kmax
x , kmax

x ). It is emphasised again that the angle ψ2

between the two plates can take arbitrary values here; for the sake of clarity,

the local coordinates of the plates, (x, yi) with i = 1 or 2, are drawn in the
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same plane on the right-hand side of Figure 3.4 and in Figure 3.5 below.

As we are interested in the energy flow across interfaces, the relevant angles

of incidence, reflection and transmission are those obtained from the group

velocity vectors, Equation (3.6); they point along the gradient vectors to the

wave vector curves (denoted by the angles α±j in Figure 3.4). Here, blue

symbols correspond to velocity vectors with a positive y component describing

waves transporting energy away from the junction, and red symbols describe

incoming energy fluxes. The continuity condition kx = const now connects

incoming with outgoing group velocity directions on the wave vector curve: red

squares (incoming) with blue dots (outgoing). This leads to a peculiar effect

here: in the range k∗x < |kx| < kmax
x , propagating waves, for example with

angles of incidence α−1,3, are transmitted or reflected keeping their direction of

travel in the x direction, see the right side of Figure 3.4. This is what one

usually finds at refracting interfaces. However, for −k∗x < kx < k∗x, a wave,

for example with incident angle α−2 , is scattered reversing its direction in the

x-direction, see α+
2 in Figure 3.4. This gives rise to negative refraction for

these values of kx. The phenomenon is displayed in more detail in Figure 3.5

representing group velocity rays transmitting from one plate to another; the

region in blue shows the negative refraction phenomenon.

Furthermore, note that at specific values of kx < −k∗x, the group velocity vector

points in the opposite y direction compared to the corresponding wave vector,

see Figure 3.4. This implies that the individual wavefronts travel away from the

junction, whereas the wave energy travels towards it. Similar behaviour can

be encountered for wave vectors in the right part of the wave vector curve; for

specific values of kx > k∗x the outgoing wavefronts travel towards the junction

whereas the wave energy propagates away from it.

Interesting features can also be seen for in-plane wave vector curves, as shown

in Figure 3.6. The shape of the longitudinal wave vector curve is similar to

that of the bending wave. Therefore, it also exhibits negative refraction and

opposition of phase and group velocity vector directions for specific fixed values
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Figure 3.5: Group velocity ray picture for bending waves at junction of two identical
45◦ rotated orthotropic plates at a frequency 3000 Hz. Blue lines highlight the region
of incoming rays, which represents the negative refractive index phenomenon.
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Figure 3.6: Longitudinal and shear wave vector curves in a 45◦ rotated orthotropic
plate at a frequency 3000 Hz. Dots represent wave numbers related to outgoing
waves while squares - incoming waves. Wave number components k∗L and k∗S equal
to 6 m−1 and 9.3 m−1, respectively - the critical values for longitudinal and shear
waves

of kx. The shear wave vector curve shows additional features: there exists a

set of values of kx (labelled k∗S2
), for which there are two pairs of incoming

and outgoing shear waves for each kx. The second pair of shear waves exhibit

behaviour similar to what has been described for bending waves. In fact,

individual wavefronts at kx ∈ k∗S2
travel away from the junction, whereas the

wave energy is travelling towards it. Conversely, the wave energy is travelling

away from the junction with individual wavefronts travelling towards it at kx ∈

−k∗S2
. Furthermore, the two pairs of shear waves can couple with each other

so that an incoming wave can convert into two distinct shear waves. Finally,
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Figure 3.7: Bending wave vector curve in a 45◦/− 45◦/45◦/− 45◦/45◦ composite
plate at a frequency 3000 Hz (left) and a group velocity ray picture for bending waves
at the junction of two identical plates (right). Blue dots represent wave numbers
related to outgoing waves while red squares correspond to incoming waves. Wave
number components kmax

x and k∗x equal to 53 m−1 and 10.43 m−1, respectively. Blue
lines highlight the region of incoming rays, which represents the negative refractive
index phenomenon.

propagating longitudinal and shear waves can only exist for kx values in the

range (−kmax
L , kmax

L ) and (−kmax
S , kmax

S ), respectively. Beyond these intervals,

the corresponding propagating waves become attenuating.
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Figure 3.8: Longitudinal and shear wave vector curves in a 45◦/ − 45◦/45◦/ −
45◦/45◦ composite plate at a frequency 3000 Hz. Dots represent wave numbers re-
lated to outgoing waves while squares - incoming waves. Wave number components
k∗L and k∗S equal to 3.71 m−1 and 7.8 m−1, respectively - the critical values for longi-
tudinal and shear waves

Now, we consider two identical angle-ply laminates with 5 orthotropic laminas

of total thicknesses of 5 mm and with the correspondent lamination schemes
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45◦/− 45◦/45◦/− 45◦/45◦. The material of individual laminas is given in

Table 3.1, and Section A.2 describes how to compute extensional and bending

stiffness coefficients Aij and Dij for governing equations of motion (3.1). The

bending wave vector curve is shown on the left-hand side of Figure 3.7. We

note that negative refraction occurs in a smaller range [−k∗x, k∗x] than in the

previous case. This can also be seen on the right-hand side of Figure 3.7.

Regarding the in-plane wave vector curves, the shape of the shear wave vector

curve changes drastically, see Figure 3.8. Two pairs of incoming and outgoing

shear waves are present for larger ranges kx ∈ −k∗S2
and kx ∈ k∗S2

than in

the generally orthotropic plate case. We will come back to this example in

subsection 3.7.2.

3.4 Derivation of the dynamic stiffness matrix

Next, we are interested in the local dynamic stiffness matrix for the plate j.

This matrix relates boundary forces to boundary displacements produced by

the waves emerging from a junction in the form e−ikxx−iµy+iωt. As discussed in

subsection 3.3.1, kx and ω are common to all plates meeting at an edge “e”

and the y components of the wave vectors, µ, are obtained from the dispersion

relations (3.4) and (3.5) with solutions forming real or complex pairs µ±
X

with

X = B1, B2, L or S.

3.4.1 Energy flow and the response of the plate

The bending wave time-averaged energy flow in the y direction can be written

as [191]

JB =
1

2
Re

(
iω

[
w γ ∂w

∂x

]∗

Qy

Myy

Mxy


)
, (3.10)
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Figure 3.9: Decay direction angles of various evanescent waves as a function of a
ply direction angle in an orthotropic plate with material parameters from Table 3.1.

where ∗ denotes complex conjugation and γ = ∂w
∂y

as mentioned in subsec-

tion 3.2.1. Now, introducing w = e−ikxx−iµBy+iωt into Equation (3.10) yields

J±
B1,2

=
1

2
Re

(
iω

[
1 −iµ±

B1,2
−ikx

]∗

Q±y1,2

M±
yy1,2

M±
xy1,2


)
. (3.11)

Furthermore, Q±y1,2 , M
±
yy1,2 and M±

xy1,2 are given by Equations (3.2) and (3.3)

with ∂
∂x

and ∂
∂y

replaced by −ikx and −iµ±
B1,2

, respectively.

As stated in subsection 3.3.1, propagating incoming or outgoing waves are

those with real wave number components µ±
B1

giving rise to an energy flux to

or away from the junction, that is, J±
B1
< 0 or J±

B1
> 0, respectively. If the

µ±
B1,2

are complex, then the out-of-plane displacements of outgoing or incoming

waves are of the form

w± = e−ikxx∓i Re(µ±)y∓Im(µ±)y+iωt , (3.12)

and hence, they appear to be oscillating while decaying away or increasing

exponentially towards the junction. This seems to cause energy transport as

well, since the corresponding energy flux J±
B1,2
6= 0. However, as we mentioned

in subsection 3.3.1, these waves are still evanescent and can only exponentially
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Figure 3.10: Contour plot of the real part of the out-of-plane displacement produced
by the outgoing evanescent bending wave in a 45◦-rotated orthotropic plate plotted
in the (x, y) plane. Brighter colours represent positive z values, whilst darker ones
denote negative z values.

decay away or increase towards the junction with the decay/increase direction

axis being not aligned with the y axis, in general [192, 193]. The angle of

decay/increase of evanescent waves depends on the angle of orientation of

principal material axes of plies of the plate, i.e. on the ply direction angle. It

can be computed as arctan(Re(µ±)/kx). Figure 3.9 presents the decay direction

angles of longitudinal, shear and bending evanescent waves with respect to

the y axis as a function of the ply direction angle of an orthotropic plate

with material parameters from Table 3.1. It can be noted that the decay of

evanescent waves can be inclined with respect to the y axis with angles up

to 60◦; for example, the line corresponding to the evanescent shear wave in

Figure 3.9. We can see that the decay angles are zero for ply direction of

angles 0◦ and ±90◦, that is, the evanescent waves decay/increase along the y

axis, and the correspondent J±
B1,2

= 0, as expected. In such cases, the plate is

specially orthotropic if it consists of only one layer (see Section A.1 for details)

or balanced if it consists of multiple layers [1].

Figure 3.10 presents the contour plot of the real part of the out-of-plane dis-

placement field created by the outgoing bending evanescent wave in a 45◦-

rotated orthotropic plate. The displacement at y = 0 along the x axis is



Chapter 3. Derivation of the dynamic stiffness matrix 55

oscillating, as expected. In contrast, at y > 0 it decays away along the in-

clined null-lines, i.e., lines at which displacement is zero (black straight lines

in Figure 3.10). This leads to the oscillating displacement shape projection

along the y axis, which is why the energy flux along the y axis J±
B

appears to

be non-zero.

Once the appropriate bending wave number roots µ+
B1,2

are defined, the out-

of-plane response of the plate can be expressed as

w+ = α+
B1
e−ikxx−iµ+B1

y+iωt + α+
B2
e−ikxx−iµ+B2

y+iωt , (3.13)

where the constants α+
B1

and α+
B2

are amplitudes of the outgoing bending waves.

For the in-plane motion, the response of the plate takes the form

v = Φve
−ikxx−iµy+iωt

u = Φue
−ikxx−iµy+iωt .

(3.14)

Equation (3.5) can be solved for the unknown µ yielding a characteristic

equation with four roots µ±
L,S

that represent incoming and outgoing quasi-

longitudinal and quasi-shear waves, here denoted again as L and S, respec-

tively. Similar to the out-of-plane case, a valid outgoing solution produces a

positive energy flow in the y direction if the correspondent wave is propagat-

ing, or it is associated with complex-valued µ+
L,S

with Im(µ+
L,S

) < 0; that is, the

correspondent wave is exponentially decaying as y → ∞. Note that purely

imaginary solutions of Equation (3.5) µ+
L,S

, which are present in specially or-

thotropic plates, produce no energy flow in the y direction. On the other hand,

complex-valued solutions can appear to produce energy flow along the y axis,

as discussed previously in the out-of-plane case.

The time-averaged energy flow in the y direction of in-plane waves can be

generally written as

J =
1

2
Re

(
iω

[
v u

]∗ Nyy

Nxy

). (3.15)
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Introducing Equations (3.14) into Equation (3.15) yields the energy flow ex-

pressions for the longitudinal and shear wave modes, that is,

J±L =
1

2
Re

(
iω

[
1 Φ±L

]∗ N±yyL
N±xyL

) , J±S =
1

2
Re

(
iω

[
Φ±S 1

]∗ N±yyS
N±xyS

)

(3.16)

with

Φ±L = −
A26 µ

±2

L + kx µ
±
L (A12 + A66) + A16k

2
x

A66 µ
±2

L + 2A16 kx µ
±
L + A11k

2
x − ρhω2

Φ±S = −
A26 µ

±2

S + kx µ
±
S (A12 + A66) + A16k

2
x

A22 µ
±2

S + 2A26 kx µ
±
S + A66k

2
x − ρhω2

,

(3.17)

where

[
1 Φ±L

]T
and

[
Φ±S 1

]T
are the eigenvectors in the Φv,Φu basis corre-

sponding to the wave numbers µ±L and µ±S for incoming and outgoing modes.

N±yyL,S and N±xyL,S are given by substituting ∂
∂x

and ∂
∂y

by −ikx and −iµ±L,S in

Equations (3.2), respectively.

The in-plane response of the plate can be written asv+

u+

 = α+
L

 1

Φ+
L

 e−ikxx−iµ+Ly+iωt + α+
S

Φ+
S

1

 e−ikxx−iµ+S y+iωt , (3.18)

where α+
L

and α+
S

are the amplitudes of outgoing quasi-longitudinal and quasi-

shear waves. This particular choice of eigenvectors ensures the correct repre-

sentation of the displacement field in the case of kx = 0 and A16 = A26 = 0,

that is, when the incident plane wave vector is directed normal to the junction

and the plate is quasi -specially orthotropic. Then Φ+
L = Φ+

S = 0, and the

response of the plate can be expressed as

v+ = α+
L
e−iµ̃+Ly+iωt

u+ = α+
S
e−iµ̃+S y+iωt .

(3.19)

The values µ̃+
L =

√
ρω2/Q22 and µ̃+

S =
√
ρω2/Q66 agree then with the wave

numbers of purely longitudinal and shear waves, respectively, and the in-plane
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response of the plate consists of purely longitudinal and shear displacements

in the y and x directions.

3.4.2 The dynamic stiffness matrix

Using Equation (3.13), one can define the out-of-plane displacement w+ and

rotation γ + at the common intersection “e” at y = 0 in terms of the amplitudes

α+
B1

and α+
B2

, that is,w+
e

γ +
e

 =

 1 1

−iµ+
B1
−iµ+

B2


α+

B1

α+
B2

 e−ikxx+iωt. (3.20)

The elastic tractions involving the out-of-plane displacement can be written in

terms of the same amplitudes α+
B1

and α+
B2

by inserting (3.13) in (3.2), that is,

V +
y e

=
2∑

m=1

(
D22 iµ+3

Bm
− 4D26 µ

+2
Bm

ikx − (D12 + 4D66) iµ+
Bm
k2
x − 2D16 ik3

x

)
α+
Bm
e−ikxx+iωt

M+
yy e

= −
2∑

m=1

(
D22 µ

+2
Bm

+D12 k
2
x + 2D26 µ

+
Bm
kx
)
α+
Bm
e−ikxx+iωt.

(3.21)

Finally, combining Equations (3.20) with Equations (3.21) yields a relation

between the elastic tractions V +
y e

, M+
yy e

and the edge displacement w+
e and

rotation γ +
e at y = 0, that is, V +

y e

M+
yy e

=K+
wγ

w+
e

γ +
e

 (3.22)

with

K+
wγ(1, 1) = −D22 iµ+

B1
µ+
B2

(
µ+
B1

+µ+
B2

)
+ 4D26 µ

+
B1
µ+
B2

ikx − 2D26 ik3
x

K+
wγ(1, 2) = −D22

(
µ+2
B1

+µ+2
B2

+µ+
B1
µ+
B2

)
+ 4D26

(
µ+
B1

+µ+
B2

)
kx + (D12+4D66) k

2
x

K+
wγ(2, 1) = D22 µ

+
B1
µ+
B2
−D12k

2
x

K+
wγ(2, 2) = −D22i

(
µ+
B1

+µ+
B2

)
− 2D26ikx

.

(3.23)
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K+
wγ is a block part of the dynamic stiffness matrix for out-of-plane displace-

ment w+
e and rotation γ +

e .

Next, we consider the corresponding part for in-plane motion. The in-plane

displacements v+
e and u+

e at the shared edge are given asv+
e

u+
e

 =

 1 Φ+
S

Φ+
L

1


α+

L

α+
S

 e−ikxx+iωt . (3.24)

Now, inserting (3.18) into (3.2) as

N+
yy e

= −i
(
A22µ

+
L

+ A12Φ
+
L
kx + A26(Φ

+
L
µ+
L

+ kx)
)
α+
L
e−ikxx+iωt

− i
(
A22Φ

+
S
µ+
S

+ A12kx + A26(µ
+
S

+ Φ+
S
kx)
)
α+
S
e−ikxx+iωt

N+
xy e

= −i
(
A26µ

+
L

+ A16Φ
+
L
kx + A66(Φ

+
L
µ+
L

+ kx)
)
α+
L
e−ikxx+iωt

− i
(
A26Φ

+
S
µ+
S

+ A16kx + A66(µ
+
S

+ Φ+
S
kx)
)
α+
S
e−ikxx+iωt

(3.25)

and using (3.24) yield a relation between the in-plane tractions and the dis-

placements of the outgoing in-plane waves, that is,N+
yy e

N+
xy e

 = K+
vu

v+
e

u+
e

 (3.26)

with

K+
vu(1, 1) = cA22

(
µ+
L
−Φ+

L
Φ+

S
µ+
S

)
+A26

(
cΦ+

L

(
µ+
L
−µ+

S

)
+kx

)
K+
vu(1, 2) = cA26

(
µ+
S
−Φ+

L
Φ+

S
µ+
L

)
+cA22Φ

+
S

(
µ+
S
−µ+

L

)
+A12kx

K+
vu(2, 1) = cA26

(
µ+
L
−Φ+

L
Φ+

S
µ+
S

)
+A66

(
cΦ+

L

(
µ+
L
−µ+

S

)
+kx

)
K+
vu(2, 2) = cA66

(
µ+
S
−Φ+

L
Φ+

S
µ+
L

)
+cA26Φ

+
S

(
µ+
S
−µ+

L

)
+A16kx

, (3.27)

where c =
1

i(1− Φ+
L Φ+

S )
. The matrix K+

vu is the part of the dynamic stiffness

matrix related to in-plane motion.

We now define the elastic tractions and displacements at the junction edge as

F = (Nyy e , Nxy e , Vy e ,Myy e)
T and U = (ve, ue, we, γe)

T and write

F+
j = K+

j U
+
j (3.28)
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for the relation between the displacements of an outgoing wave at the edge of

plate j and the associate forces, where the 4×4 dynamic stiffness matrixK+
j is a

block matrix defined through (3.22) and (3.26). An associated stiffness matrix

K−j relating displacements of the incoming waves U−j with forces F−j can be

obtained from K+
j by changing the corresponding wave number components

µ+ by µ− in the sub-matrices related to in-plane and out-of-plane motion.

In what follows, it will also be important to consider the relation between

displacements and mode amplitudes. We denote A± =
(
α±
L
, α±

S
, α±

B1
, α±

B2

)T
as

the vector of amplitudes of incoming or outgoing modes, and write

U±j = H±j A
±
j (3.29)

on the edge of plate j, where H±j is the block-diagonal matrix obtained from

(3.20) and (3.24). Here, H−j is obtained from H+
j by changing the wave number

components µ+ by µ−. In the next step, we will derive the global dynamic

stiffness matrices of each plate junction and associated scattering matrices

using force equilibrium conditions and continuity conditions at the junction.

3.5 Reflection and transmission at plate junc-

tions

Assuming no external forces are applied at the junction, one can write the force

equilibrium and continuity conditions at an edge shared between N plates as

N∑
j=1

Rj Fj = 0, (3.30)

Uj = RT
j U for all j = 1, . . . , N, (3.31)

where Fj = F+
j + F−j and Uj = U+

j + U−j is the total force and displacement

at the edge of plate j. U denotes the displacement common to all plates

(continuity) and Rj is the rotation matrix from the local coordinate system
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(xj, yj, zj) to the global coordinate system (xg, yg, zg), that is,

Rj =



cosψj 0 − sinψj 0

0 1 0 0

sinψj 0 cosψj 0

0 0 0 1


. (3.32)

Rewriting (3.30) using (3.28), we obtain

N∑
j=1

RjK
+
j U

+
j = −

N∑
j=1

RjK
−
j U

−
j (3.33)

⇒
N∑
j=1

RjK
+
j Uj =

N∑
j=1

Rj

(
K+
j −K−j

)
U−j . (3.34)

Using (3.31), we can now deduce the common displacement vector U as a

function of the incoming waves, that is,

U =

(
N∑
j=1

RjK
+
j R

T
j

)−1 N∑
n=1

Rn

(
K+
n −K−n

)
U−n . (3.35)

Inserting (3.35) into the N matrix equations (3.31), one obtains for m =

1, . . . N

U+
m = RT

m

(
N∑
j=1

RjK
+
j R

T
j

)−1( N∑
n=1

Rn

(
K+
n −K−n

)
U−n

)
− U−m, (3.36)

and writing this in terms of the mode amplitudes using (3.29), we obtain

A+
m=

(
H+
m

)−1
RT
m

(
N∑
j=1

RjK
+
j R

T
j

)−1( N∑
n=1

Rn

(
K+
n−K−n

)
H−n A

−
n

)
−
(
H+
m

)−1
H−mA

−
m.

(3.37)

Equation (3.37) gives relations between incoming and outgoing wave mode

amplitudes and can be interpreted as defining the matrix elements of a 4N×4N

scattering matrix S. We note that by setting N = 1 in Equation (3.37), we

can compute wave reflection coefficients of different modes at the free edge of

a composite plate. In fact, the elastic tractions Fj = F+
j + F−j are equal to

zero at the free edge of the jth plate. Using Equations (3.28) and (3.29), we
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can write

K+
j H

+
j A

+
j +K−j H

−
j A
−
j = 0

A+
j = −

(
K+
j H

+
j

)−1
K−j H

−
j A
−
j .

(3.38)

From the other side, setting N = 1 in Equation (3.37) yields

A+
j =

(
H+
j

)−1 (
K+
j

)−1 (
K+
j −K−j

)
H−j A

−
j −

(
H+
j

)−1
H−j A

−
j

A+
j = −

(
H+
j

)−1 (
K+
j

)−1
K−j H

−
j A
−
j

, (3.39)

which is exactly the same expression as in Equation (3.38).

Finally, we compute the energy scattering coefficients, that is, the ratio be-

tween outgoing and incident energy fluxes. Writing the matrix elements of S

in the form snmij (ω, kx) for an incoming wave of type i in plate n and a reflected

or transmitted wave of type j in plate m (at angular frequency ω and wave

number component kx), we obtain for the associated energy fluxes

tnmij (ω, kx) =


J+
j,m

J−i,n
|snmij |2 if wave j is propagating.

0 otherwise.

(3.40)

Here, J−i,n (J+
j,m) is the incoming (outgoing) energy flux of type i (j) on plate n

(m) given by either (3.16) for in-plane modes or (3.11) for out-of-plane motion.

It is noted here that the sum of energy scattering coefficients over the outgoing

modes equals one, that is,

N∑
m=1

∑
j

tnmij = 1 (3.41)

due to energy conservation. We will use this relation as a check when consid-

ering numerical applications of the method developed.

3.6 Stiffened plate

This section considers several composite plates finite in their respective y co-

ordinate directions mounted onto a ground composite plate from one or both

sides. Figure 3.11 describes the configuration of a plate with m stiffeners at-
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Figure 3.11: A ground composite plate with m stiffener plates attached onto it. The
ground plate is considered infinite in both directions, whereas stiffeners are infinite
only in their local x coordinate directions.

Figure 3.12: The schematic of incoming (shown in red) and outgoing (shown in
blue) waves travelling in the stiffened plate. A−1 and A−N are the incoming waves
from infinity.

tached to the ground plate from its top side, thus forming T-shaped junctions

locally. The lengths of stiffener plates are hk, k = 1, . . . ,m, and distances be-

tween stiffeners are lk, k = 1, . . . ,m−1. For the case of stiffeners attached from

both sides of a ground plate, we assume that they are symmetrically placed

around the ground plate and made of the same material - minor changes in the

method’s development would be needed to remove this assumption. We are

interested in the scattering coefficients of incoming waves travelling from in-

finity towards the plate with stiffeners taking into account that the excitation

can also enter into stiffeners and get reflected at their respective free ends as

shown with red and blue arrows in Figure 3.12. This leads to resonance phe-

nomena, that is, at certain wave number component and angular frequency

values kx and ω, a perfect transmission or reflection of incoming wave energy

can occur. These effects were previously presented and analysed for beams

with the symmetric constraint [194], for beams with periodic stiffeners [195]
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and for plates with periodic stiffeners [196]. We discuss the conditions at which

resonances are attained in the last parts of subsections 3.6.1, 3.6.2 and 3.6.3.

As previously stated, we want to compute an effective scattering matrix Seff

of the following form A+
1

A+
N

 = Seff

A−1
A−N

 , (3.42)

where A±1,N are the amplitudes of incoming/outgoing waves travelling from in-

finity towards the first junctions of the stiffened plate that the waves meet.

Note that this particular setup is based on the short wavelength assumption.

Specifically, the longest wavelengths of various modes that can propagate in

the plate need to be smaller than the stiffener spacings and lengths. This

assumption allows to neglect an always attenuating bending wave B2 in the

derivation of the effective scattering matrix since it rapidly decays along stiff-

ener lengths and distances between them, thus carrying no wave energy - it

is still used for the calculation of junction scattering coefficients as per Equa-

tion (3.37). We denote the propagating bending waves as B (instead of B1)

for simplicity.

In order to compute Seff, we first derive an effective scattering matrix for a plate

with one or a pair of stiffeners mounted on it in subsections 3.6.1 and 3.6.2.

Using calculated effective scattering matrices, we derive an effective scatter-

ing matrix for a plate with two stiffeners or two pairs of stiffeners in sub-

section 3.6.3. Recursively, we compute an effective scattering matrix for a

composite plate with several stiffeners. Finally, the effective energy scattering

coefficients tnmij, eff can be computed as

tnmij, eff (ω, kx) =


J+
j,m

J−i,n
|snmij, eff|2 if wave j is propagating.

0 otherwise.

n,m = 1, N

(3.43)
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Figure 3.13: A schematic view of a stiffened plate in the yz plane. Here, a−ij
represent the amplitudes of incoming waves, and a+

ij, the amplitudes of outgoing
waves.

3.6.1 A composite plate with one stiffener

We give here the details for computing the scattering coefficients for a plate

with a stiffener k attached. The stiffener plate has a finite length of hk. We

are interested in the reflection and transmission coefficients between points 1

and 2 in Figure 3.13 considering that the excitation can also enter the stiffener

at point 4 and being reflected at the free end at point 3. In order to compute

the energy scattering coefficients (3.40) relating plate one and two, one needs

to compute the associate scattering matrix seff from the scattering matrix at

junction 4, but including waves travelling into the stiffener and being reflected

at the end of the stiffener at 3.

Following the treatment in [197] extended to the elastodynamic case in [198],

we now introduce the amplitudes of incoming and outgoing waves at each of

the plate segments shown in Figure 3.13, that is,

a±ij =


a±L

a±S

a±B


ij

i, j ∈ (1, 2, 3, 4) , (3.44)

where the subscript ij is related to a wave travelling from i to j. Following
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this notation, we write the desired effective scattering matrix seff asa+
41

a+
42

 = seff

a−14

a−24

 . (3.45)

From Equations (3.37) and (3.38), we can write the two scattering matrices at

the junction 4 and free edge 3 as
a+

41

a+
42

a+
43

 = S(4)


a−14

a−24

a−34

 =


ρ11 τ21 τ31

τ12 ρ22 τ32

τ13 τ23 ρ33



a−14

a−24

a−34

 (3.46)

and

a+
34 = S(3)a−43 = ρ̃33a

−
43 . (3.47)

The sub-matrices in (3.46) contain the scattering coefficients snmij from plate n

to m of mode type i to j in the form

ρnn =


s nn
LL

s nn
LS

s nn
BL

s nn
LS

s nn
SS

s nn
BS

s nn
LB

s nn
SB

s nn
BB

 , τnm =


s nm
LL

s nm
LS

s nm
BL

s nm
LS

s nm
SS

s nm
BS

s nm
LB

s nm
SB

s nm
BB

 . (3.48)

Note that ρ̃33 in Equation (3.47) denotes the reflection matrix at node 3 and

is different from ρ33 corresponding to reflection of waves on node 4 incoming

from plate 3.

The first two rows of matrix equation in (3.46) can render the effective scat-

tering matrix seff if amplitudes a−34 are expressed in terms of amplitudes

a−14 and a−24. To accomplish that, we first note that the amplitudes a+
43 of

outgoing waves are related to the amplitudes a−43 of the incoming waves as

a−43 = P a+
43 , P = diag

(
exp

(
−iµ+hk

))
, (3.49)

where µ+ =

[
µ+
L µ+

S µ+
B

]T
and diag

(
exp (−iµ+hk)

)
represents the diagonal

matrix with exp(−iµ+hk) on its diagonal (see [197], [198]). The same applies
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Figure 3.14: A schematic view of a stiffener plate in the xy plane. Blue lines
represent the direction of the ith ply of the plate.

for the pair of amplitudes of outgoing and incoming waves a+
34 and a−34, that is,

a−34 = P̃ a+
34 , P̃ = diag

(
exp

(
−iµ̃+hk

))
. (3.50)

We note that µ̃+ are computed in the local coordinate system of the semi-

infinite plate with the free edge. If we label the local ply direction angles

of the semi-infinite plate at point 4 as φ43
1 /φ

43
2 / . . . /φ

43
n , then the local ply

direction angles of the semi-infinite plate at point 3 must satisfy

φ34
i = −φ43

i , i = 1, . . . , n (3.51)

to ensure that the stiffener plate is uniform and that waves with amplitudes

a−43(34) and a+
43(34) have the same angles of propagation, see Figure 3.14. This

entails

µ̃+ 6= µ+ ⇒ P̃ 6= P if φ
43(34)
i 6= 0◦, 90◦ , i = 1, . . . , n . (3.52)

Now, to eliminate a−34 in the matrix equation (3.46), we consider its third row,
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that is,

a+
43 = τ13a

−
14 + τ23a

−
24 + ρ33a

−
34. (3.53)

By using (3.49), (3.50) and (3.47), one obtains

a−34 = P̃ ρ̃33P a+
43, (3.54)

which combined with (3.53) yields the following matrix equation for a−34:

(
I− P̃ ρ̃33P ρ33

)
a−34 = P̃ ρ̃33P

(
τ13a

−
14 + τ23a

−
24

)
, (3.55)

where I is a 3-by-3 identity matrix. Finally, by introducing the solution of

Equation (3.55) into Equation (3.46), we can define the effective scattering

matrix seff as a+
41

a+
42

 = seff

a−14

a−24

 =

ρ∗11 τ ∗21

τ ∗12 ρ∗22


a−14

a−24

 (3.56)

with

ρ∗11 = ρ11 + τ31

(
I− P̃ ρ̃33P ρ33

)−1

P̃ ρ̃33P τ13

τ ∗21 = τ21 + τ31

(
I− P̃ ρ̃33P ρ33

)−1

P̃ ρ̃33P τ23

τ ∗12 = τ12 + τ32

(
I− P̃ ρ̃33P ρ33

)−1

P̃ ρ̃33P τ13

ρ∗22 = ρ22 + τ32

(
I− P̃ ρ̃33P ρ33

)−1

P̃ ρ̃33P τ23

. (3.57)

The effective energy scattering coefficients tnmij,eff , n,m ∈ {1, 2} can be com-

puted from seff using (3.43). Note that P̃ ρ̃33P ρ33 is sub-unitary due to the

sub-unitarity of ρ33, and seff is thus not singular.

A resonance condition can be formulated, that is, resonances are attained at

wave numbers kx and frequencies ω values giving rise to local minima of∣∣∣det
(

I− P̃ ρ̃33P ρ33

)∣∣∣ . (3.58)
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Figure 3.15: A schematic view of a plate with a pair of finite stiffener plates in
the yz plane. Here, a−ij represent the amplitudes of incoming waves, and a+

ij, the
amplitudes of outgoing waves.

3.6.2 A composite plate with a pair of stiffeners

In this subsection, we consider a composite ground plate stiffened with two

stiffener plates symmetrically attached from both sides, forming a cross-shaped

junction. This particular system prevents the generation of outgoing in-plane

waves from an incoming bending wave [196], and therefore, the corresponding

effective scattering matrix has null entries s11
BL,eff and s12

BS,eff. Figure 3.15 de-

scribes the configuration of plates in the yz plane. As in the previous case,

waves with amplitudes a−15 impinging on the junction point 5 can be transmit-

ted into plate 2 with amplitudes a+
52, can be reflected with amplitudes a−15 and

can be transmitted to the stiffener plates with amplitudes a+
53 and a+

54. At the

free ends of the stiffeners, waves reflect and become incoming on the junction

point 5 again, thus creating further scattering. Accordingly, we are interested

in the reflection and transmission coefficients between points 1 and 2, that is,a+
51

a+
52

 = seff

a−15

a−25

 . (3.59)
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Following the approach described for the case of one stiffener plate in the

previous subsection, we express the scattering matrices at the junction point

5 and free ends 3 and 4 as

a+
51

a+
52

a+
53

a+
54


= S(5)



a−15

a−25

a−35

a−45


=



ρ11 τ21 τ31 τ41

τ12 ρ22 τ32 τ42

τ13 τ23 ρ33 τ43

τ14 τ24 τ34 ρ44





a−15

a−25

a−35

a−45


,

a+
35 = S(3)a−53 = ρ̃33a

−
53

a+
45 = S(4)a−54 = ρ̃44a

−
54

.

(3.60)

Expressing amplitudes a−35 and a−45 in terms of amplitudes a−15 and a−25 would

yield the scattering matrix seff from the first matrix equation in (3.60). To

accomplish that, we first note that similarly as in Equations (3.49) and (3.50),

we can relate the amplitudes a−53(35) and a−54(45) with a+
53(35) and a+

54(45) as follows

a−53 = Pa+
53

a−35 = P̃a+
35

a−54 = P̃a+
54

a−45 = Pa+
45

, with

P = diag

(
exp

(
−iµ+hk

))
P̃ = diag

(
exp

(
−iµ̃+hk

)) . (3.61)

The matrix P is used for the relations between pairs of amplitudes a−53, a+
53 and

pairs a−45, a+
45. This is because the stiffener plates are similar in material and

geometrical parameters. The coordinate systems of the semi-infinite stiffener

plates used to compute scattering matrices at the junction point 5 and the free

end 4 are equivalent. Accordingly, the matrix P̃ relate amplitudes of outgoing

waves a+
35 and a+

45 with amplitudes of incoming waves a−35 and a−45, respectively.

By combining (3.61) with the second and third matrix equations in (3.60), one

obtains

a−35 = P̃ρ̃33P a+
53

a−45 = Pρ̃44P̃ a+
54

. (3.62)
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Substituting these expressions to the third and fourth rows of the first equation

in (3.60) yields the matrix equation for

[
a−35 a−45

]T

as

I− P̃ρ̃33P ρ33 −P̃ρ̃33P τ43

−Pρ̃44P̃ τ34 I− Pρ̃44P̃ ρ44


a−35

a−45

 =

P̃ρ̃33P τ13 P̃ρ̃33P τ23

Pρ̃44P̃ τ14 Pρ̃44P̃ τ24


a−15

a−25

 . (3.63)

Finally, we can insert the solution of Equation (3.63) into (3.60) thus comput-

ing the effective scattering matrix seff as follows

seff =

ρ11 τ21

τ12 ρ22

+

τ31 τ41

τ32 τ42


I− P̃ρ̃33P ρ33 −P̃ρ̃33P τ43

−Pρ̃44P̃ τ34 I− Pρ̃44P̃ ρ44


−1P̃ρ̃33P τ13 P̃ρ̃33P τ23

Pρ̃44P̃ τ14 Pρ̃44P̃ τ24


(3.64)

The resonance conditions for which a perfect transmission or reflection of in-

coming waves can occur are defined by the wave number and angular frequency

values kx and ω at which local minima of∣∣∣∣∣∣∣det


I− P̃ρ̃33P ρ33 −P̃ρ̃33P τ43

−Pρ̃44P̃ τ34 I− Pρ̃44P̃ ρ44



∣∣∣∣∣∣∣ (3.65)

are obtained.

3.6.3 A composite plate with multiple stiffeners

Now, having computed the scattering coefficients for a plate with one or a

pair of stiffener plates attached to it, we can formulate the scattering matrix

for a plate with two stiffener plates and, eventually, with m stiffeners using

recursion. First, we consider a plate with two stiffeners k and k + 1 replaced

by the correspondent effective matrices skeff and sk+1
eff as shown in Figure 3.16.

The distance between points 2 and 3 is lk. Following the same approach as in

the previous subsection, we write the two effective scattering matrices asa+
21

a+
23

 =

ρ11 τ31

τ13 ρ33


a−12

a−32

 ,

a+
32

a+
34

 =

ρ22 τ42

τ24 ρ44


a−23

a−43

 . (3.66)

The amplitudes a−23(32) are related to a+
23(32) in the similar way as in (3.49) and (3.50),
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Figure 3.16: A schematic view of a stiffened plate with two stiffeners represented
by effective scattering matrices skeff and sk+1

eff in the yz plane. Here, a−ij represent the

amplitudes of incoming waves, and a+
ij, the amplitudes of outgoing waves.

that is, 
a−23 = Pa+

23 , P = diag(e−µ
+lk)

a−32 = P̃a+
32 , P̃ = diag(e−µ̃

+lk)

. (3.67)

As highlighted in subsection 3.6.1, P is not equal to P̃ in general. Combining

the second row of matrix equations (3.66) with (3.67), we find

a−23 = Pτ13 a
−
12 + Pρ33 a

−
32

a−32 = P̃ρ22 a
−
23 + P̃τ42 a

−
43

. (3.68)

Now, solving (3.68) in terms of a−12 and a−43 yields the following:

a−23 =
(

I− Pρ33P̃ρ22

)−1 (
Pτ13 a

−
12 + Pρ33P̃τ42 a

−
43

)
a−32 =

(
I− P̃ρ22Pρ33

)−1 (
P̃ρ22Pτ13 a

−
12 + P̃τ42 a

−
43

) . (3.69)

Finally, we substitute these equations into equations (3.66) and obtain the

effective scattering matrix for a plate with two stiffeners attached asa+
21

a+
34

 = s∗eff

a−12

a−43

 =

ρ∗11 τ ∗41

τ ∗14 ρ∗44


a−12

a−43

 (3.70)

with

ρ∗11 = ρ11 + τ31

(
I− P̃ρ22Pρ33

)−1

P̃ρ22Pτ13

τ ∗41 = τ31

(
I− P̃ρ22Pρ33

)−1

P̃τ42

τ ∗14 = τ24

(
I− Pρ33P̃ρ22

)−1

Pτ13

ρ∗44 = ρ44 + τ24

(
I− Pρ33P̃ρ22

)−1

Pρ33P̃τ42

. (3.71)
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We note that the values of wave numbers kx and frequencies ω at which the

resonances occur can be found by calculating local minima of∣∣∣det
(

I− P̃ρ22Pρ33

)∣∣∣ and
∣∣∣det

(
I− Pρ33P̃ρ22

)∣∣∣ . (3.72)

Finally, we can compute the total effective scattering matrix Seff in Equa-

tion (3.42) via the following algorithm:

1. Compute local effective scattering matrices skeff , k = 1, . . . ,m

of T-type junctions using Equations (3.57) and (3.64).

2. Compute s∗eff that replaces the local effective scattering matrices

s1
eff and s2

eff using Equation (3.71).

3. Repeat step 2 for effective scattering matrices s∗eff and skeff , k = 3, . . . ,m.

4. Compute effective energy scattering coefficients using Equation (3.43).

(3.73)

3.7 Computational results

In this section, several numerical applications of the method discussed ear-

lier are presented. We first consider the reflection of various incoming waves’

power at the free edge of a composite plate, then we turn to the reflection

and transmission coefficients of composite plates joined together in the form

of L and T junctions. Finally, the effective energy scattering coefficients of a

stiffened composite plate with one and multiple stiffeners are shown in the last

example. Only the scattering coefficients for the propagating waves are shown.

The attenuating contributions are, of course, considered in full in the actual

computations.

3.7.1 Reflection at the free edge of a composite plate

We consider a semi-infinite regular symmetric laminated plate with the free

edge along the x axis. The plate has five layers, and two lamination schemes are

considered. Namely, the first one is 0◦/90◦/0◦/90◦/0◦, that is, a cross-ply lami-
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Figure 3.17: Wave vector (left) and dispersion (right) curves for a cross-ply com-
posite plate. The wave vector curves are plotted for a fixed frequency f = 3000 Hz,
whereas the dispersion curves are plotted for a fixed wave number component kx =
5m−1. Squares and circles denote wave numbers of incoming and outgoing waves,
respectively. The bending wave and dispersion curves are scaled with a factor of 1/3
for the sake of clarity.
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Figure 3.18: Energy reflection coefficients of a regular cross-ply symmetric lam-
inate at the free edge for various incident waves as a function of wave number
component kx at a frequency 3000 Hz. The lamination scheme is 0◦/90◦/0◦/90◦/0◦.

nated plate, and the second one is 45◦/−45◦/45◦/−45◦/45◦, that is, an angle-ply

laminated plate. The material of the orthotropic lamina used in the laminate

is given in Table 3.1. The total thickness of the laminate is 5 mm. The energy

reflection coefficients can be computed using Equations (3.38) and (3.40). Fig-

ure 3.17 presents wave vector and dispersion curves of the cross-ply laminated

plate for a fixed frequency f = 3000 Hz on the left side and a fixed wave

number component kx = 5 m−1 on the right side, respectively. Since the plate

consists of laminas with ply direction angles of 0◦ and 90◦, the extensional

coefficients A16, A26 and bending coefficients D16, D26 are equal to zero (see

Section A.1 for details). Therefore, according to Equations (3.4) and (3.5), the

incoming and outgoing wave number components are equal in magnitude, i.e.
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Figure 3.19: Energy reflection coefficients of a regular cross-ply symmetric lami-
nate at the free edge for various incident waves as a function of frequency at a wave
number component kx = 5m−1. The lamination scheme is 0◦/90◦/0◦/90◦/0◦.

k+
y = −k−y .

We note that the longitudinal waves can propagate for |kx| ≤ 2.6 m−1 at a

fixed frequency f = 3000 Hz and for f ≥ 5701 Hz at a fixed wave number

component kx = 5 m−1. Regarding the shear waves, they can propagate for

|kx| ≤ 10.6 m−1 at a fixed frequency f = 3000 Hz and for f ≥ 1416 Hz at a

fixed wave number component kx = 5 m−1.

Figure 3.18 presents the energy reflection coefficients of the cross-ply lami-

nated plate for incoming shear and longitudinal waves as a function of the

wave number component kx at a fixed frequency f = 3000 Hz. An incoming

longitudinal wave is fully reflected without mode conversion for |kx| ≤ 1 m−1,

see Figure 3.18b. The corresponding energy reflection coefficient has the form

t11
LL. For 1 m−1 < |kx| ≤ 2.6 m−1, mode conversion to the reflected shear wave

takes place with the energy reflection coefficient t11
LS. Vice-versa, for the same

range of kx, an incoming shear wave is reflected with mode conversion to the

longitudinal wave in Figure 3.18a - the corresponding energy reflection coeffi-

cients is labelled as t11
SL. Pure reflection of shear waves occurs for |kx| ≤ 1 m−1

and 2.6 m−1 < |kx| ≤ 10.6 m−1 with the energy reflection coefficient t11
SS.

Figure 3.19 presents the energy reflection coefficients of the cross-ply laminated

plate for incoming shear and longitudinal waves as a function of frequency

at a fixed wave number component kx = 5 m−1. An incoming shear wave

is reflected without mode conversion at frequencies where no energy can be

reflected by longitudinal waves, that is, at frequencies 1416 Hz ≤ f < 5701 Hz,
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(c) Incoming shear wave S2

Figure 3.20: Energy reflection coefficients of a regular angle-ply symmetric lami-
nate at the free edge for various incident waves as a function of wave number compo-
nent kx at a frequency 3000 Hz. The lamination scheme is 45◦/−45◦/45◦/−45◦/45◦.

see Figure 3.19a. At frequencies f ≥ 5701 Hz, the energy reflection coefficients

of incoming shear and longitudinal waves share similar shapes, that is, t11
SL =

t11
LS and t11

SS = t11
LL.

Figure 3.20 presents the energy reflection coefficients of the angle-ply lami-

nated plate for incoming shear and longitudinal waves at a fixed frequency

f = 3000 Hz. Pure reflection of longitudinal and shear waves without mode

conversion occurs only in the vicinity of kx = 0, see Figure 3.20a and Fig-

ure 3.20b. The phenomenon of mode conversion is observed again only be-

tween specific critical values: for an incoming shear mode, the reflected longi-

tudinal wave is present for the kx values between ±3.7 m−1. Furthermore, for

4.3 m−1 ≤ |kx| ≤ 7.6 m−1, mode conversion to the second shear wave (labelled

S2) can occur. We encountered two pairs of incoming/outgoing shear wave

numbers whilst considering shear wave vector curves in Figure 3.8. Vice-versa,

the incoming second shear wave can couple to both types of shear waves, see
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(c) Incoming shear wave S2

Figure 3.21: Energy reflection coefficients of a regular angle-ply symmetric lami-
nate at the free edge for various incident waves as a function of frequency at a wave
number component kx = 5 m−1. The lamination scheme is 45◦/−45◦/45◦/−45◦/45◦

Figure 3.20c.

If the wave number component kx is fixed and the frequency is varied, one can

find critical frequencies at which mode conversion phenomena start to occur.

For example, in the case of an incident shear wave with kx = 5 m−1, almost all

energy is carried back by a longitudinal wave for f ≥ 4000 Hz, see Figure 3.21.

Accordingly, in the same range of frequencies, an incoming longitudinal wave

is almost fully reflected as a shear wave in Figure 3.21b. Mode conversion from

incident shear wave to the second shear wave S2 occurs in the frequency range

f ∈ [1941, 3609] Hz, and the energy reflection coefficients t11
SS2

, t11
SS and t11

S2S
,

t11
S2S2

are equal, respectively.

The bending wave power is fully reflected at the free edge without mode con-

version at all frequencies and wave number components kx, that is, the energy
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Figure 3.22: Energy scattering coefficients of an L-joint of regular cross-ply sym-
metric laminates with the lamination scheme 0◦/90◦/0◦/90◦/0◦ for various incident
waves as a function of wave number component kx at a frequency 3000 Hz.

reflection coefficient t11
BB = 1. Therefore, it is not presented in this subsection.

Note that the energy reflection coefficients sum up to one according to Equa-

tion (3.41) which is used here as a check of consistency of the results (dashed

blue lines in Figures 3.18, 3.19, 3.20, 3.21).

3.7.2 Two composite plates joined at a right angle

In this example, we consider two joined identical regular angle- and cross-ply

laminated plates with the correspondent lamination schemes 45◦/−45◦/45◦/−

45◦/45◦ and 0◦/90◦/0◦/90◦/0◦, respectively.

We fix the inter-plate angle to ψ = 90◦, that is, the plate configuration has

the form of an L-junction, similar to one in Figure 3.3. First, we consider a

junction of two cross-ply laminated plates.

Figure 3.22 presents the energy scattering coefficients of the L-junction of
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Figure 3.23: Energy scattering coefficients of an L-joint of regular cross-ply sym-
metric laminates with the lamination scheme 0◦/90◦/0◦/90◦/0◦ for bending and lon-
gitudinal incident waves as a function of frequency for a wave number component
kx = 0 m−1.
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Figure 3.24: Energy scattering coefficients of an L-joint of regular cross-ply sym-
metric laminates with the lamination scheme 0◦/90◦/0◦/90◦/0◦ for various incident
waves as a function of frequency for a wave number component kx = 5 m−1.

cross-ply laminated plates for incident bending, shear and longitudinal modes

as a function of the wave number component kx at a frequency f = 3000 Hz.

Since the wave number solutions of Equations (3.4) and (3.5) µ−L,S,B = µ+
L,S,B ,

all energy scattering coefficients are symmetrical around kx = 0 m−1. Longi-

tudinal and shear modes are propagating for the same range of wave number



Chapter 3. Computational results 79

-52 -20 -7.6 -4.3          -3.7 -1 0 1 3.7         4.3 7.6 20 52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Incoming bending wave B

-7.6 -4.3      -3.7 -2 -1 0 1 2 3.7      4.3 7.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Incoming shear wave S

-3.7 -3 -2 -1 0 1 2 3 3.7

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) Incoming longitudinal wave L

Figure 3.25: Energy scattering coefficients of an L-joint of regular angle-ply sym-
metric laminates with the lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ for various
incident waves as a function of wave number component kx at a frequency 3000 Hz.

components kx as in Figure 3.18, as expected. Consequently, outgoing lon-

gitudinal and shear waves can only occur in the narrow vicinity of normal

incidence for an incoming bending wave. The phase angles of outgoing prop-

agating longitudinal waves are limited by ∼ 3◦ and ∼ 11.5◦ with respect to

the y axis. Furthermore, the energy scattering coefficients t
11(12)
BL and t

11(12)
BS are

bounded by a value of 0.2 almost everywhere in the correspondent propagating

ranges of kx. On the other hand, the bending energy reflected and transmit-

ted coefficients are equal to each other in these ranges of kx. As can be seen

in Figure 3.22a, curves corresponding to the longitudinal mode are smoothly

transformed to ones corresponding to the shear mode, thus indicating the sim-

ilar nature of coupling to both in-plane modes. In Figure 3.22b, an incoming

shear wave energy is almost fully transmitted in the range |kx| <= 2.6 m−1,

and the curve is similar to one corresponding to the shear wave reflection at
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Figure 3.26: Energy scattering coefficients of an L-joint of regular angle-ply sym-
metric laminates with the lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ for various
incident waves as a function of frequency for a wave number component kx = 0 m−1.

the free edge in Figure 3.18a. Incoming longitudinal wave energy is mainly

reflected at the shared edge between plates, see Figure 3.22c.

If we consider only normal incidence of incoming waves and vary frequency,

we can note that coupling can only occur between longitudinal and bending

waves, see Figures 3.23a and 3.23b. Furthermore, the shear wave energy is

fully transmitted at all frequencies, that is, t12
SS = 1, and hence, it is not

shown in Figure 3.23. At kx = 5 m−1, coupling to all modes is present and

occurred at the correspondent critical frequencies. For instance, at frequencies

f >= 1416 Hz, an incoming bending wave power P is equally distributed

between reflected and transmitted bending waves with 0.4P and is converted

to shear waves and longitudinal waves (at f >= 5701 Hz) both with ∼ 0.2P .

Figure 3.25 shows the energy scattering coefficients of the L-junction of angle-

ply laminated plates for incident bending, shear or longitudinal modes as a
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Figure 3.27: Energy scattering coefficients of an L-joint of regular angle-ply sym-
metric laminates with the lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ for various
incident waves as a function of frequency for a wave number component kx = 5 m−1.

function of the wave number component kx at 3000 Hz. Note that reflection

and transmission coefficients of bending, shear and longitudinal waves without

mode conversion (having the form tijXX with X = B,L, S and i, j = 1, 2) are

symmetric around kx = 0 whereas coefficients describing scattering between

different modes, that is, tijXX′ with X 6= X ′ are non-symmetric. Again, the

mode conversion can only occur between certain critical values: for an in-

coming bending mode, these are the kx values between ±7.8 m−1 for reflected

or transmitted shear waves, ±3.7 m−1 for longitudinal waves and 4.3 m−1 ≤

|kx| ≤ 7.6 m−1 for second shear waves. For example, an incoming bending

wave power P with kx ∼ −7.2 m−1 is reflected and transmitted, both with

0.35P , converted to the shear transmitted wave with 0.2P and the second

shear transmitted wave with 0.1P , see Figure 3.25a.

If the frequency is varied with a fixed wave number component kx, one can
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Figure 3.28: Schematic representation of a T-junction connecting three orthotropic
plates. The angles ψ2 and ψ3 here are set to 180◦ and 90◦, respectively. Red, blue and
green lines represent the ply direction of the plates. The local angles of orientations
φ1 and φ3 are both set to 45◦, whereas φ2 is equal to −45◦.

note several things. For a normally incident waves, that is, at a fixed wave

number component kx = 0 m−1, all modes are propagating for all frequencies,

see Figure 3.26. An incoming bending wave energy flux is equally divided

between reflected and transmitted bending wave energy fluxes for frequencies

100 Hz ≤ f ≤ 6000 Hz. Mode conversion to the longitudinal wave becomes

more significant as frequency increases, although all coupled energy scattering

coefficients having the form tijXY , with X 6= Y and i, j = 1, 2 do not exceed 0.2.

In Figure 3.26b, the incoming shear wave energy is mostly reflected with a con-

stant value of 0.6 over the range of frequencies considered, whereas the energy

scattering coefficient t11
LL decreases with increasing frequency, see Figure 3.26c.

If the wave number component kx = 5 m−1, one can find critical frequencies

at which mode conversion phenomena start to occur, see Figure 3.27. As in

subsection 3.7.1, outgoing shear waves become propagating at f ≥ 1941 Hz,

whereas outgoing longitudinal waves become propagating for f ≥ 4000 Hz, see

Figure 3.27. Mode conversion from incident bending and shear waves to the

second shear wave S2 occurs in the frequency range f ∈ [1941, 3609] Hz.
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Figure 3.29: Energy scattering coefficients of an T-joint of regular angle-ply sym-
metric laminates with the lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ for various
incident waves as a function of wave number component kx at a frequency 3000 Hz.

3.7.3 Three composite plates joined in a T-junction

In this example, we consider three composite plates joined in the form of a

T-junction with angles ψ1 = 0◦, ψ2 = 180◦ and ψ3 = 90◦. The composites

considered are the same as in the case of the L-junction. Figure 3.28 shows

an illustrative example of such a configuration of composite plates with only

one ply per thickness. In Figure 3.28, the local ply direction angles are φ1 =

φ3 = 45◦ and φ2 = −45◦, and φ2 is given a value of −45◦ to ensure that plates

1 and 2 form a uniform ground plate. In the similar manner, the local ply

direction angles of laminated plates considered are φ1
1/ . . . /φ

5
1 = φ1

3/ . . . /φ
5
3 =

45◦/ − 45◦/45◦/ − 45◦/45◦, and φ1
2/ . . . /φ

5
2 = −45◦/45◦/ − 45◦/45◦/ − 45◦.

The case of cross-ply and laminated plates is omitted here for the sake of
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Figure 3.30: Energy scattering coefficients of an T-joint of regular angle-ply sym-
metric laminates with the lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ for various
incident waves as a function of frequency at a wave number component kx = 5 m−1.

brevity. However, the energy scattering coefficients for junctions of cross-ply

and general-ply plates are computed for comparison with the hybrid FE/WFE

method based results in Chapter 4.

Figure 3.29 presents the energy scattering coefficients of the T-junction for

incoming bending, shear and longitudinal waves as a function of wave number

component kx at a frequency 3000 Hz. We note that for varying wave number

component kx, most of the incoming shear and longitudinal incoming power

is transmitted to the second plate with ψ2 = 180◦, which can be explained by

the fact that the first and second plates constitute a uniform ground plate, see

Figure 3.29b and Figure 3.29c. However, the incoming bending wave power

is mostly reflected back at the junction with minor deviations at critical wave

number components |kx| = 3.7 m−1, 4.3 m−1, 7.6 m−1, 7.8 m−1, corresponding

to longitudinal, second shear and shear modes, see Figure 3.29a. We note that
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as opposed to the case of the L-junction, symmetry of wave energy reflection

and transmission coefficients without mode conversion is no longer present.

In Figure 3.30, the dependence of the energy scattering coefficients on the

frequency at a fixed wave number component kx = 5 m−1 is regarded. As

in the fixed frequency case, most of the incoming bending wave energy is re-

flected at the shared edge except for frequencies 1941 Hz and 3609 Hz at which

coupling to shear waves occurs. Incoming shear and longitudinal wave ener-

gies are mainly transmitted to the ground plate, see Figures 3.30b and 3.30c.

Moreover, mode coupling occurs mainly between in-plane modes with energy

scattering coefficients having the form tijXY with X = L, S, S2 and i, j = 1, 2, 3.

Finally, the blue dash lines in Figures 3.29 and 3.30 represent sums of en-

ergy scattering coefficients for different incoming modes. As expected in the

undamped systems, the energy scattering coefficients sum up to unity.

3.7.4 Stiffened composite plates

In the final example, we consider a composite plate with several compos-

ite plates of finite length mounted onto and/or under it at 90◦, see Figures

3.11 and 3.15. All material properties of the plates are the same as in the case

of the L-junction.

In the case of stiffeners put only on one side of the ground plate, the inter-

sections (or common edge) between each stiffener and a ground plate have

thus the form of a T-junction with angles ψ1 = 0◦, ψ2 = 180◦ and ψ3 = 90◦

similar to the configuration shown in Figure 3.28. In the case of angle-ply

laminated plates, the local ply direction angles are φ1
1/ . . . /φ

5
1 = φ1

3/ . . . /φ
5
3 =

45◦/−45◦/45◦/−45◦/45◦, and φ1
2/ . . . /φ

5
2 = −45◦/45◦/−45◦/45◦/−45◦ - this

is to ensure that plates 1 and 2 form a uniform ground plate.

In the case of stiffeners put on both sides of the ground plate, the intersections

form a “+” shape with angles ψ1 = 0◦, ψ2 = 180◦, ψ3 = 90◦ and ψ4 = 270◦ as

in Figure 3.15.

In this case, the local ply direction angles are φ1
1/ . . . /φ

5
1 = φ1

3/ . . . /φ
5
3 = 45◦/−
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45◦/45◦/−45◦/45◦, and φ1
2/ . . . /φ

5
2 = φ1

4/ . . . /φ
5
4 = −45◦/45◦/−45◦/45◦/−45◦

thus ensuring that plates 1 and 2 form a uniform ground plate and that plates 3

and 4 - a uniform stiffener plate. We will also consider the cross-ply laminated

plates; in this case, all local ply direction angles are 0◦/90◦/0◦/90◦/0◦, since

changing signs of ply direction angles from 90◦ to −90◦ do not change the wave

number solutions and correspondent wave shape modes.

We are interested, how the energy flux generated by an incident wave in the

ground plate is partitioned between reflected and transmitted outgoing energy

fluxes again in the ground plate, see Equation (3.43). To achieve this, one can

follow the algorithm proposed in (3.73). The scattering coefficients computed

in subsections 3.7.1 and 3.7.3 are used to produce effective scattering coeffi-

cients in the stiffened plate. In fact, S(3) and S(4) in Equation (3.46) denote

scattering coefficients of a free edge and of a T-junction of composite plates.

First, we consider a composite plate with one stiffener plate mounted onto it.

Figure 3.31 shows the energy scattering coefficients and the absolute value of

the determinant in Equation (3.58) as a function of the wave number com-

ponent kx for a stiffener of length l = 30 cm with an incident bending wave

at frequency 3000 Hz. The longest bending wavelength at this frequency is

equal to 15.7 cm; thus, the short-wavelength approximation discussed in Sec-

tion 3.6 is validated. Critical wave number components kx for longitudinal

and shear waves remain the same as discussed before, and only bending waves

can propagate for |kx| > 7.8 m−1. Note that the effective bending energy scat-

tering coefficients are symmetric around kx = 0, whilst in-plane mode related

coefficients are slightly asymmetric in |kx| ≤ 7.8 m−1. Furthermore, one can

observe a resonant behaviour of the reflected and transmitted energy flux co-

efficients t11
BB and t12

BB at specific kx values, which related to the resonance

condition (3.58). At most of the values of kx, which satisfy this condition,

see Figure 3.31b, an incoming wave is either totally transmitted or reflected,

see Figure 3.31a. Critical wave number component values |kx| = 3.7 yield lo-

cal minima of | det
(

I− P̃ρ̃33Pρ33

)
|, however, the effective bending reflection
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(a) Energy scattering coefficients.
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(b) The absolute value of the determinant as in Equation (3.58) and resonances.

Figure 3.31: Energy scattering coefficients and resonance conditions of a stiffened
plate for an incident bending wave as a function of wave number component kx at
a frequency 3000 Hz. The length of the stiffener plate is 30 cm. The lamination
scheme of plates is 45◦/− 45◦/45◦/− 45◦/45◦.

and transmission coefficients do not exhibit resonant behaviour. A similar

phenomenon can be observed for the case of fixed wave number component

kx and varying frequency. Figure 3.32 presents effective bending energy scat-

tering coefficients and resonances of Equation (3.58) for the frequency range

1000 Hz ≤ f ≤ 6000 Hz at kx = 0. A short-wavelength approximation still

holds for this frequency range, since the maximum bending wavelength at the

lowest frequency f = 1000 Hz is ∼ 27 cm < 30 cm - the length of the stiffener

plate. Mode conversion to shear and longitudinal waves is present only in the

vicinity of the resonant frequencies, becoming more significant as frequency

increases. Bending reflection and transmission coefficients behave similarly as



Chapter 3. Computational results 88

1502 2505 3766 5283

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Energy scattering coefficients.

1502 2505 3766 5283

0

0.4

0.8

1.2

1.6

2

2.4

2.8

(b) The absolute value of the determinant as in Equation (3.58) and resonances.

Figure 3.32: Energy scattering coefficients and resonance conditions of a stiffened
plate for an incident bending wave as a function of frequency at a wave number
component kx = 0 m−1. The length of the stiffener plate is 30 cm. The lamination
scheme of plates is 45◦/− 45◦/45◦/− 45◦/45◦.

in the case of varying kx, that is, waves are mainly reflected or transmitted

except for small coupling to in-plane modes. When kx = 5 m−1, total trans-

mission or reflection of the bending energy occurs at the resonant frequency

f = 1537 Hz. Starting at f = 1915 Hz, an incoming bending wave energy can

be reflected and transmitted as both shear modes and longitudinal mode at

f >= 4000 , see Figure 3.33.

Now, we consider the effective bending energy scattering coefficients of a sym-

metrically stiffened cross-ply plate as in Figure 3.16. The lamination scheme is

the same as before - 0◦/90◦/0◦/90◦/0◦. As mentioned in subsection 3.6.2, this

configuration prohibits the generation of the outgoing in-plane modes when
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Figure 3.33: Energy scattering coefficients and resonance conditions of a stiffened
plate for an incident bending wave as a function of frequency at a wave number
component kx = 5 m−1. The length of the stiffener plate is 30 cm. The lamination
scheme of plates is 45◦/− 45◦/45◦/− 45◦/45◦.

a bending wave is incident upon this structure. In Figure 3.34, the effective

scattering coefficients are plotted with respect to the wave number component

kx at a frequency f = 3000 Hz. It is clear that there only occurs reflec-

tion or transmission of the bending wave without mode conversion. Since

the plates considered are specially orthotropic, and scattering coefficients are

symmetric around kx = 0 m−1, only the right side of the kx axis is considered.

We can note that most of the incoming bending energy is reflected, whilst

at the resonant values of kx, perfect transmission occurs. In Figure 3.35,

the effective bending energy scattering coefficients are plotted for the range

of frequencies 1000 Hz ≤ f ≤ 6000 Hz at fixed wave number components
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Figure 3.34: Energy scattering coefficients and resonance conditions of a symmet-
rically stiffened plate for an incident bending wave as a function of wave number
component kx at a frequency 3000 Hz. The lengths of the stiffener plates are 30 cm.
The lamination scheme of plates is 0◦/90◦/0◦/90◦/0◦.

kx = 0 m−1 and kx = 5 m−1. As opposed to the previous cases, figures for

kx = 0 m−1 and kx = 5 m−1 are similar. Namely, the number of resonant fre-

quencies is the same for both cases, and they are shifted along the frequency

axis with increasing kx. Furthermore, it appears that the scattering coeffi-

cients behave in the similar manner at frequencies f > 1416 Hz, a frequency

at which shear waves start to propagate in non-stiffened plate cases, see Fig-

ures 3.19 and 3.24. The energy scattering coefficients sum up to one in the

absence of damping, as expected.

In the final example, we consider a symmetrically stiffened plate with four

pairs of stiffener plates attached to it. The lamination scheme of all plates is
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Figure 3.35: Energy scattering coefficients of a symmetrically stiffened plate for
an incident bending wave as a function of frequency at a wave number components
kx = 0 m−1 and kx = 5 m−1. The lengths of the stiffener plates are 30 cm. The
lamination scheme of plates is 0◦/90◦/0◦/90◦/0◦.

the same as in the previous example. The spacing between pairs of stiffeners

is equal to the stiffener lengths 30 cm. In Figure 3.36, the energy scattering

coefficients are shown in the form of a contour plot as a function of both the

wave number component kx and frequency f . The wave number component kx

varies between 0 m−1 and 57 m−1, whereas frequency is varied from 1000 Hz to

6000 Hz. Resonance conditions are satisfied along the frequency and kx axes,

as before in a stiffened plate with only one or a pair of stiffeners. However,

since there are several pairs of stiffeners attached to the ground plate, instead

of distinct resonant frequencies and values of kx, we get so-called pass and stop

bands of frequencies and wave number components kx, at which total transmis-

sion or reflection of an incoming bending wave energy is observed. These bands

are represented by blue colours in Figures 3.36a and 3.36b. Several things can
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(a) Frequencies and wave numbers kx at which total energy reflection occurs (coloured in
blue). Partial energy transmission are presented in yellow colour.
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(b) Frequencies and wave numbers kx at which total energy transmission occurs (coloured
in blue).

Figure 3.36: Contour plots of energy scattering coefficients of a symmetrically
stiffened plate with four pairs of stiffeners for an incident bending wave as a func-
tion of frequency and wave number component kx. The spacings between stiffen-
ers and lengths of the stiffeners are 30 cm. The lamination scheme of plates is
0◦/90◦/0◦/90◦/0◦.

be noted from these figures. Firstly, bending waves can propagate within a

bounded surface of possible values of frequency and wave number component

kx defined by Equations (3.4) and (3.5). Secondly, there is no single pass or

stop bands at particular frequencies, which is the case in one-dimensional sys-

tems like stiffened beams or periodically supported beams. This feature was

highlighted for isotropic stiffened plates by Tso and Hansen [196]. However,

in that work, stiffeners are assumed to be periodically attached to the ground

plate, and using periodic structure theory [113, 186], propagation factors are

computed to derive pass and stop bands of the stiffened plate. The method

presented in this chapter is suitable for any configuration of the stiffened plate
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(a) Frequencies and phase angles θ = arctan(kx/ky) at which total energy reflection occurs
(coloured in blue). Partial energy transmission are presented in yellow colour.
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Figure 3.37: Contour plots of energy scattering coefficients of a symmetrically
stiffened plate with four pairs of stiffeners for an incident bending wave as a func-
tion of frequency and phase angle θ = arctan(ky/kx). The spacings between stiff-
eners and lengths of the stiffeners are 30 cm. The lamination scheme of plates is
0◦/90◦/0◦/90◦/0◦.

with arbitrary material and geometrical parameters. Thirdly, perfect trans-

mission zones presented in blue colour in Figure 3.36b are narrower and more

discrete than the yellow zones in Figure 3.36a. This is because yellow zones

represent not only total transmission of bending wave energy but also partial

transmission, that is, the effective scattering coefficients 0 < t12
BB,eff < 1. Fi-

nally, we can express the effective energy coefficients with respect to the phase

angle θ = arctan(kx/ky), which is varied from 0◦ to 90◦ in the cross-ply lami-

nated stiffened plate, see Figure 3.37. This allows to represent pass and stop

bands over a fixed (f, θ) plane.
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3.8 Conclusion

In this chapter, we have derived the semi-analytical method for computing

scattering coefficients of structural junctions made up of composite laminated

plates in the line junction approximation. Composite laminates have been

modelled in the context of the CLP theory introduced in Section 2.2.

By analysing dispersion relations, we have observed and discussed interesting

phenomena such as negative refraction, negative group velocity and evanescent

waves decaying along a direction axis inclined to the coordinate axis. Fur-

thermore, we have derived expressions quantifying transmission and reflection

coefficients as a function of the frequency and the wave number component

kx. Also, we have computed an effective scattering matrix for a plate with

multiple finite stiffeners attached to it. Conditions at which resonances are

achieved have been discussed.

Finally, in the numerical case studies, we have computed the scattering coeffi-

cients for examples of two and three composite plates joined together in an L

and T geometry and effective scattering coefficients for a plate with one and

four stiffeners attached to it. The method discussed in this chapter will be used

for comparison with a wave finite element approach of extracting reflection and

transmission coefficients in Chapter 4.



Chapter 4

Wave and Finite Element
Analysis of wave propagation in
composite plates

4.1 Introduction

In this chapter, the wave and finite element method based approach for cal-

culation of energy scattering coefficients for arbitrary junctions of composite

plates is derived. The wave and finite element method is based on modelling

only a periodic segment of a plate using an FE software and applying peri-

odic structure theory to extract wave propagation characteristics such as wave

numbers, wave mode shapes and group velocities. Once these are determined

for each plate considered, the displacement continuity and force equilibrium

conditions at the junction between plates are used to express amplitudes of

outgoing waves in terms of amplitudes of incoming waves, thus producing the

scattering matrix. The plates considered are modelled using two different finite

element types, two-dimensional shell and three-dimensional solid elements. We

consider the implication and influence of each element type on the scattering

coefficients.

In contrast to the semi-analytical approach presented in Chapter 3, we only

require that individual laminas of the plates are homogeneous. Numerical

results on selected examples of junctions of composite plates are compared

with semi-analytical results from Chapter 3.

This chapter is organised as follows. In Section 4.2, the WFE method for mod-

95
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elling composite plates is briefly reviewed summarising key moments discussed

in Section 2.3. An eigenvalue problem whose solutions yield wave numbers

and mode shapes is set up. Then, the classification of wave numbers and the

wave basis setting are given in Section 4.3. Having established a wave basis

representation of displacement and force vectors in individual plates, we com-

bine these solutions with the equations of motion of the joint via application of

continuity of displacements and force equilibrium at the joint boundaries, thus

producing scattering coefficients in Section 4.4. Finally, Section 4.5 presents

numerical case studies for two and three coupled composite plates. The energy

scattering coefficients of L junctions of regular cross-ply and angle-ply compos-

ite plates are computed and compared with semi-analytical results presented

in Section 3.7.

4.2 Summary of the WFE method for com-

posite plates

As presented in Section 2.3, a unit cell of a composite plate with plane di-

mensions dx and dy is modelled using two-dimensional shell elements with a

composite lay-up or three-dimensional solid elements stacked up one on top of

the other, representing different composite layers. Assuming that the struc-

ture undergoes a harmonic vibration with angular frequency ω and no external

forces is applied, we can write the governing equation of motion of the unit

cell as

Dq = f , D = K (1 + iη)− ω2M , (4.1)

where D is the dynamic stiffness matrix with M and K being mass and stiffness

matrices, respectively. η denotes a uniform structural damping coefficient.

This equation relates the displacement and force vectors q and f . Now, we

can use the periodic structure theory [186, 187] to relate displacement and
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force sub-vectors along the x axis of the plate as

qT = λx qB , fT = −λx fB , λx = e−ikxdx (4.2)

and reduce Equation (4.1) to the form equivalent to Equation (2.64) asD̃LL D̃LR

D̃RL D̃RR


q̃L

q̃R

 =

f̃L

f̃R

 , (4.3)

where the matrix D̃ is a dynamically-condensed version of the modified dy-

namic stiffness matrix T∗DT, see subsection 2.3.2. The transformation matrix

T is given by Equation (2.60). The vectors q̃L and q̃R represent the nodal dis-

placement sub-vectors qLB and qRB in Figure 2.3, whereas the vectors f̃L and f̃R

can be computed as

f̃L

f̃R

 = TH f =


fLB +

nx−1∑
j=1

λ−j/nxx f jL + λ−1
x fLT

fRB +
nx−1∑
j=1

λ−j/nxx f jR + λ−1
x fRT

 (4.4)

with nx denoting the number of mesh cells in the x direction of the periodic

cell.

Finally, by applying the periodic structure theory and force equilibrium in the

y direction, which can be written as

q̃R = λy q̃L , f̃R = −λy f̃L , λy = e−ikydy , (4.5)

one can get from Equation (4.3) the following eigenvalue problem for the prop-

agation factor λy

S

q̃L

f̃L

 = λy

q̃L

f̃L

 with S =

 −D̃−1
LR D̃LL D̃−1

LR

−D̃RL + D̃RR D̃−1
LR D̃LL −D̃RR D̃−1

LR

 .

(4.6)

The dimension of the matrices D̃ and S is 2m, where m is the dimension

of the displacement and force vectors q̃L and f̃L. Therefore, the solution of
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the eigenvalue problem (4.6) consists of 2m propagation factors λy,i and the

correspondent eigenvectors

{
φq,i φf,i

}T
provided that the circular frequency

ω and the wave number component kx are fixed. The wave number components

ky,i can be computed as

ky,i = ln

(
λy,i
−idy

)
, i = 1, . . . , 2m. (4.7)

Consequently, by varying the wave number component kx, one can extract

wave vector curves (kx, ky) for a fixed value of ω. It is worth noting that

obtained wave number components ky,i can be real, imaginary or complex,

making the correspondent plane waves propagating, evanescent or attenuating

in the y direction - more on that in subsection 4.3.1.

4.3 Calculation of wave numbers and group

velocity

The solution of the eigenvalue problem (4.6) might be prone to ill-conditioning

of the matrix S, since the formulation of this matrix involves calculation of

D̃−1
LR [127]. The equivalent form of the eigenvalue problem can be formulated

by eliminating f̃L and f̃R in Equation (4.3) as suggested in [199]:

N

q̃L

q̃R

 = λyL

q̃L

q̃R

 , N =

 0 I

−D̃RL −D̃RR

 , L =

I 0

D̃LL D̃LR

 ,

(4.8)

with I being the m-by-m identity matrix. The matrices N and L consist of

block parts of the reduced dynamic stiffness matrix D̃ with no matrix inversion

as in Equation (4.6), thus reducing numerical ill-conditioning of the method

to some extent. However, there might be a difference of several orders of

magnitude between I and −D̃RL(RR) and D̃LL(LR); therefore, the condition

numbers of the matrices N and L can still be large, causing numerical errors

in the evaluation of eigenvalues and eigenvectors.

We use the following form of the eigenvalue problem (4.8) proposed by Fan et
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al. [157, 158]

Ñ

q̃L

q̃R

 = λyL̃

q̃L

q̃R

 , Ñ =

 0 σI

−D̃RL −D̃RR

 , L̃ =

σI 0

D̃LL D̃LR

 ,

(4.9)

where σ =
‖D̃RR‖2

m2
, ‖ ‖2 representing the largest singular value of a matrix.

This formulation is an improved version of the eigenvalue problem (4.8), and

the factor σ is introduced here to reduce the condition number of the matrices

N and L. However, the formulations are still equivalent, and the eigenvalue

solutions are the same. In fact, writing the characteristic equation of the

eigenvalue problem (4.9) yields

0 = det(Ñ− λyL̃) = σm det(N− λyL) = det(N− λyL) = 0 , (4.10)

where we have applied a property of the determinant which tells that if a row of

a matrix is multiplied by a non-zero constant, the determinant of that matrix

is multiplied by the same constant. Note that eigenvectors in Equation (4.9)

consist of left and right nodal displacements sub-vectors. To compute the

nodal force sub-vectors f̃L, one can apply the following transformationq̃L

f̃L

 =

 I 0

D̃LL D̃LR


q̃L

q̃R

 . (4.11)

4.3.1 Incoming, outgoing waves and wave basis

Eigensolutions of Equation (4.8) can be separated into m pairs of roots, λ±y,j;

these correspond to negative or incoming waves (with superscripts “− ”) and

positive or outgoing waves (with superscripts “ + ”). Furthermore, the waves

can be categorised as propagating, evanescent or attenuating. The standard

wave classification [80, 160, 200] consists of checking whether |λy,j| ≤ 1 to

identify outgoing or incoming waves, respectively. The transfer matrix S in

Equation (4.6) is assumed to be symplectic, hence the eigenvalues of Equa-
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Figure 4.1: Bending wave vector curve in a 45◦/− 45◦/45◦/− 45◦/45◦ composite
plate at a frequency 3000 Hz. Blue dots represent wave numbers related to outgo-
ing waves while red squares correspond to incoming waves. Angles α1(2) and θ1(2)

represent group and wave vector or phase angles, respectively. The wave number
component kmax

x is equal to 53 m−1.

tions (4.6) and (4.8) must appear in pairs (λy,j, 1/λy,j). It follows that k+
y,j

must equal to −k−y,j, and this is true for isotropic and some special types of

composite plates, e.g. cross-ply laminates, which consist of layers with ply

direction angles 0◦ or 90◦. However, in general, the transfer matrix S is not

symplectic because it depends on the wave number component kx via the

transformation matrix T, and k+
y,j 6= −k−y,j. Figure 4.1 shows an example of a

bending wave vector curve, where one can see the inequality between incoming

and outgoing wave number components ky represented by red squares and blue

dots, respectively. This inequality was demonstrated for a similar wave vector

curve by Taupin et al. [201] using the Semi-Analytical Finite Element method.

Furthermore, one can note the difference between phase and group angles in

composite plates shown with θ±1,2 and α±1,2, respectively. This property was

highlighted and discussed previously using the semi-analytical approach in

Section 3.3.

To correctly categorise incoming/outgoing propagating/attenuating waves, we
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establish the following algorithm for the jth wave

if Re(ky,j) > c Im(ky,j)⇒ the wave j is propagating

if Re(iωφ∗q,j φf,j) > 0⇒ the wave j is outgoing

else⇒ the wave j is incoming

else⇒ the wave j is attenuating

if Im(ky,j) < 0⇒ the wave j is outgoing

else⇒ the wave j is incoming ,

(4.12)

where Re(iωφ∗q,j φf,j) is the energy flux of the jth wave in the positive y di-

rection, and c is a real parameter defined empirically and used to separate

propagating from attenuating waves; in this work, it is equal to 10.

Categorising correctly whether a wave is incoming/outgoing and propagat-

ing/evanescent/attenuating is not enough to further proceed with the calcu-

lation of scattering coefficients. In fact, for a range of frequencies and wave

number components kx, we obtain a set of unclassified branches of propa-

gating, evanescent and attenuating waves. To identify the eigensolutions of

Equation (4.9) corresponding to the same wave type, we apply the so-called

MAC criterion [132, 202, 203]. For an eigenvector solution Φi =

{
φ±q,i φ±f,i

}T
defined at frequency ω for a fixed wave number component kx, we find an

eigenvector solution Φj =

{
φ±q,i φ±f,i

}T
at frequency ω + dω with sufficiently

small dω such that

M±(ω) =

(
ΦT
i (ω)Φ∗j(ω + dω)

) (
ΦT
j (ω)Φ∗i (ω + dω)

)
(ΦT

i (ω)Φ∗i (ω + dω))
(
ΦT
j (ω)Φ∗j(ω + dω)

) (4.13)

is maximised. The same criterion can be utilised to classify wave types for a

range of wave number components kx and a fixed frequency with corresponding

step size dkx being sufficiently small.

Once the appropriate pairs of wave number components k±y,j and wave mode

shapes

{
φ±q,j φ±f,j

}T
are determined, we can express nodal displacements and
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forces in the basis of wave mode shapes as followsq̃L

f̃L

 =
m∑
j=1

a+
j

φ
+
q,j

φ+
f,j

+ a−j

φ
−
q,j

φ−f,j


 =

Φ+
q a+ + Φ−q a−

Φ+
f a+ + Φ−f a−

 , (4.14)

where a+
j and a−j are the amplitudes of the jth outgoing and incoming waves.

Using the expression of nodal displacements and forces in terms of wave mode

shapes, we are now able to compute the energy scattering matrix at the junc-

tion of several plates which will be done in the next section.

4.3.2 Group velocity estimation

Calculation of the group velocity vector is essential for determining directions

of rays carrying the wave energy. It is also used to relate the energy density

to the velocity field in Chapter 2. Furthermore, it is present in the calculation

of spatial density integrals for composite structures in Chapter 5.

As noted in subsection 3.3.1, the group velocity vector cg is defined as

cg =

{
cg,x cg,y

}T
=

{
∂ω
∂kx

∂ω
∂ky

}T
. (4.15)

Since kx = k cos θ and ky = k sin θ, where θ is the wave vector polar angle, the

partial derivatives ∂ω
∂k

and ∂ω
∂θ

can be expressed in the form

∂ω

∂k
=

∂ω

∂kx

∂kx
∂k

+
∂ω

∂ky

∂ky
∂k

=
∂ω

∂kx
cos θ +

∂ω

∂ky
sin θ

∂ω

∂θ
=

∂ω

∂kx

∂kx
∂θ

+
∂ω

∂ky

∂ky
∂θ

= − ∂ω
∂kx

k sin θ +
∂ω

∂ky
k cos θ

. (4.16)

It then follows that x and y components of the group velocity vector cg may

be written as cg,xcg,y

 =

cos θ − sin θ

sin θ cos θ




∂ω
∂k

∂ω
k∂θ

 . (4.17)

Considering the wave vector curve in the form ω(k, θ) = ω0 with a fixed value

ω0, we can express ∂ω
∂θ

in terms of ∂ω
∂k

and ∂k
∂θ

using a chain rule as follows

0 = dω =
∂ω

∂k

∂k

∂θ
+
∂ω

∂θ
⇒ ∂ω

∂θ
= −∂ω

∂k

∂k

∂θ
. (4.18)
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Now, introducing Equation (4.18) into Equation (4.17) yields the final expres-

sions for the group velocity vector componentscg,xcg,y

 =

cos θ − sin θ

sin θ cos θ




∂ω
∂k

− ∂ω
k∂k

∂k
∂θ

 . (4.19)

Now, ∂ω
∂k

and ∂k
∂θ

need be computed for a polar angle θ = arctan(ky/kx), hence

for a wave number component kx, and there are several methods to accomplish

that.

Firstly, one can approximate these partial derivatives by finite differences as

∂ω

∂k
(kx) |ω=ω1

u
∆ω

k |ω1+∆ω − k |ω1

∂k

∂θ
(kx) |θ=θ1 u

k |θ1+∆θ − k |θ1
∆θ

, (4.20)

where ∆ω and ∆ω are sufficiently small increment values of frequency and

polar angle. The second equation in (4.20) can be easily utilised in the context

of the presented wave finite element method, since wave vector curves are

computed at the fixed frequency - an example of a bending wave vector curve

is shown in Figure 4.1. However, the first equation in (4.20) requires wave

vector solutions at two very close frequencies, ω1 and ω1 +∆ω, which increases

the computational cost of the approach.

Lastly, one can approximate these derivatives by performing sensitivity anal-

ysis on the eigenvalue problem (4.9) in a similar way as in [140] and [137].

Nonetheless, this is beyond the scope of this thesis; therefore, the finite differ-

ence method is used to approximate partial derivatives.

Finally, one can calculate the direction angle of the energy flow as

α = arctan

(
cg,y
cg,x

)
. (4.21)
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4.4 Computation of scattering coefficients at

junctions of composite plates

In this section, the energy scattering coefficients of the junction of several

composite plates are derived. There are three cases considered. Firstly, a

wave energy reflection occurring at the free edge of the composite plate is de-

scribed. Secondly, we compute the wave energy reflection and transmission at

the shared edge between plates modelled with SHELL181 elements. Finally,

a case of a solid joint connecting several plates modelled with SOLID185 ele-

ments is regarded. In all cases, boundary conditions at the junction, such as

continuity of displacement vectors and force equilibrium, are postulated.

4.4.1 Reflection matrix for a single plate system

This subsection presents the case of wave energy scattering at the boundary of

a composite plate. The boundary can be an edge placed along the x axis for

shell elements and a face lying on the (x, z) plane for solid elements. Since we

consider a single plate, an incoming wave is fully reflected at the boundary with

no transmission, although coupling to different modes can occur. Any bound-

ary condition of a plate can be represented in terms of nodal displacements

and forces as follows [153]

Cqq̃L + Cf f̃L = 0 . (4.22)

For instance, if free boundary conditions are considered, i.e. all tractions at the

boundary are equal to zero, then Cq = 0 and Cf = I. Furthermore, the same

formulation with appropriate matrices Cq and Cf can describe the case of the

fixed edge shared between plates modelled with SHELL181 elements, more

on this in subsection 4.4.2. Introducing Equation (4.14) into Equation (4.22)

yields

a+ = s a− , with s = −(CqΦ
+
q + CfΦ

+
f )−1 (CqΦ

−
q + CfΦ

−
f ) . (4.23)
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The expression for s defines a m×m scattering matrix relating the amplitudes

a− and a+ of incoming and outgoing waves, respectively. Specifically, we

write the scattering matrix elements in the form snmij (ω, kx), which relates an

incoming wave i in the plate n and a reflected or transmitted wave j in the

plate m at angular frequency ω and wave number component kx. To compute

the energy scattering coefficients, one needs to compute the outgoing wave

energy flux ratio over incoming wave energy flux. For the associated energy

fluxes, we obtain the energy scattering coefficients as

tnmij (ω, kx) =


J+
j,m

J−i,n
|snmij |2 if wave j is propagating.

0 otherwise.

, (4.24)

where 
J−i,n =

∣∣Re
(
iωφ−

∗

q,i,n φ
−
f,i,n

) ∣∣ .
J+
j,m =

∣∣Re
(
iωφ+∗

q,j,m φ
+
f,j,m

) ∣∣ . (4.25)

In the absence of damping, total energy must be conserved, hence the sum of

energy scattering coefficients over the outgoing modes equals one, that is,

N∑
m=1

∑
j

tnmij = 1 . (4.26)

Note that since in this subsection we consider only one plate, the energy scat-

tering coefficients have the form t11
ij (ω, kx), that is, only wave energy reflection

can occur with or without coupling to other wave types.

4.4.2 Scattering at the shared edge between shell plates

In this subsection, we consider N composite plates modelled using SHELL181

elements connected via a shared edge, see Figure 4.2. The local y axes of all

plates are directed away from the shared edge. The local x axes of all plates are

all coinciding. The displacement continuity and force equilibrium conditions

must be fulfilled at the shared edge. Taking the first plate as a reference plate,
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Figure 4.2: A schematic representation of N plates connected via the shared edge.
The plates are modelled using two-dimensional SHELL181 elements. The x axis of
all plates is the same.

we write

q̃L,1 = R2q̃L,2 = . . . = RN q̃L,N , (4.27)

where q̃L,k denotes the nodal displacement vector of the kth plates, and Rk, k =

2, . . . , N is a matrix that transforms the local coordinate system of the kth

plate to the coordinate system of the first plate. Since the local xk axis is

aligned with the x1 axis, the transformation matrix Rk can be written as

Rk =



1 0 0 0 0 0

0 cos(ψk) − sin(ψk) 0 0 0

0 sin(ψk) cos(ψk) 0 0 0

0 0 0 1 0 0

0 0 0 0 cos(ψk) − sin(ψk)

0 0 0 0 sin(ψk) cos(ψk)


(4.28)

where ψk denotes the angle of rotation between yk and y1. The matrices Rk

are 6-by-6 since there are 6 degrees of freedom in qL,k for plate modelled with

SHELL181 elements. The sum of of forces at the shared edge must be zero,
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therefore, it follows that

f̃L,1 +
N∑
k=2

Rk f̃L,k = 0 . (4.29)

Now, expressing the nodal displacement and force vectors in the basis of wave

mode shapes in each plate using Equation (4.14), we can write

C+A+ + C−A− = 0 , (4.30)

where

C± =



Φ±f,1 R2Φ
±
f,2 R3Φ

±
f,3 · · · RNΦ±f,N

Φ±q,1 −R2Φ
±
q,2 0 · · · 0

Φ±q,1 0 −R3Φ
±
q,3 · · · 0

...
...

...
. . .

...

Φ±q,1 · · · · · · · · · −RNΦ±q,N


, A± =


a±1
...

a±N

 .

(4.31)

The vectors A± consist of amplitudes of incoming and outgoing waves a±k of

the kth plate, k = 1, . . . , N . Finally, it follows from Equation (4.30)

A+ = sA− , s = −
(
C+
)−1

C− , (4.32)

where s defines a 6N × 6N scattering matrix. Accordingly, we can compute

the energy scattering coefficients using Equation (4.24).

4.4.3 Hybrid FE/WFE method of computation of scat-
tering coefficients in three-dimensional solid plates

This subsection considers N composite plates modelled with SOLID185 ele-

ments that are connected together via a solid joint element, see Figure 4.3.

The local y axes of all plates are directed away from the joint, whereas the x

axes are aligned with the xJ axis of the joint. The joint is assumed to be pe-

riodic in the xJ axis. According to Figure 4.4, the nodal displacements vector
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Figure 4.3: A schematic representation of the joint connecting N plates. The x
axis of all plates are aligned with the xJ axis of the joint.

of the joint qJ is organised in the following way

qJ =

{
qE qO

}T

,

qE =

{
qLB,1 qL,1 qLT,1 . . . qLB,N qL,N qLT,N

}
qO =

{
qB qI qT

} .

(4.33)

The nodal displacement vector qO consists of degrees of freedom of internal

nodes. It is required that the node arrangement on the face containing qLB,k,

qL,k and qLT,k, k = 1, . . . , N is coherent with one on the left face of the kth

plate. We recall that mk and nx,k are the number of degrees of freedom per

edge of the kth plate and the number of mesh cells in the x direction of the

kth plate, accordingly. Therefore, we enforce that |qLB,k| = |qL,k| = |qLT,k| =

|q̃L,k| = mk and nJ,k = nx,k, where nJ,k is the number of mesh cells in the joint

element along the x direction of the face containing qLB,k, qL,k and qLT,k. The

nodal forces vector fJ is arranged in the same way.

The governing equations of motion of the joint are of the same form as in

Equation (4.1)

DJqJ = fJ , DJ = KJ(1 + iη)− ω2MJ , (4.34)
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Figure 4.4: A finite element model of the joint connecting N plates. The de-
grees of freedom are grouped into internal qI , edge qB,qT ,qL,1, . . . ,qL,N and corner
qLB,1, . . . ,qLB,N ,qLT,1, . . . ,qLT,N degrees of freedom.

where KJ and MJ are the stiffness and mass matrices of the joint. When no

external forces are applied on the internal nodes of the joint, Equation (4.34)

can be written as DEE DEI

DIE DII


qE

qO

 =

fE

0

 , (4.35)

where fO = 0. Consequently, one can remove internal degrees of freedom using

dynamic condensation as

DJ,cond qE = fE , DJ,cond = DEE −DEID
−1
II DIE . (4.36)

Now, following the similar approach as in subsection 2.3.2, we apply periodic

structure theory on the nodal displacement sub-vectors along the xJ axis as
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follows

qJ,red = TJqE , qJ,red =

{
qLB,1 · · · qLB,N

}T

TJ =



I1 0 · · · 0

...
...

...
...

λ
j1/nJ,1
x I1 0 · · · 0

...
...

...
...

λx I1 0 · · · 0

0 I2 · · · 0

...
...

...
...

0 λ
j2/nJ,2
x I2 · · · 0

...
...

...
...

0 λx I2 · · · 0

...
...

. . .
...

0 0 · · · IN
...

...
...

...

0 0 · · · λ
jN/nJ,N
x IN

...
...

...
...

0 0 · · · λx IN



, (4.37)

where Ik is the mk-by-mk identity matrix and jk = 1, . . . , nJ,k−1 , k = 1, . . . , N .

Using Equation (4.37), we can reduce the dimension of Equation (4.36) as

D̃JqJ,red = fJ,red , D̃J = TH
J DJ,condTJ (4.38)

with

fJ,red =


f̃LB,1

...

f̃LB,N

 = TH
J fJ =



fLB,1 +

nJ,1−1∑
j1=1

λ−j1/nJ,1x f j1L,1 + λ−1
x fLT,1

...

fLB,N +

nJ,N−1∑
jN=1

λ−jN/nJ,Nx f jNL,N + λ−1
x fLT,N


,

(4.39)
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where f jiL,i denote force sub-vectors of nodes placed at xji = dxji/nL,i, ji =

1, 2, . . . , nL,i − 1 and i = 1, . . . , N . Equation (4.38) considers only interface

nodes, that is, nodes shared between the plates and the joint. The force

equilibrium and displacement continuity conditions must be satisfied at these

nodes. Specifically, qLB,k and f̃LB,k, k = 1, . . . , N denote nodal displacements

and forces at nodes shared between the kth plate and the joint. Therefore, one

can represent qLB,k and f̃LB,k in the wave mode shapes basis of the kth plate

using Equation (4.14) as follows

qLB,k = Rk

(
Φ+

q,ka
+
k + Φ−q,ka

−
k

)
f̃LB,k = Rk

(
Φ+

f ,ka
+
k + Φ−f ,ka

−
k

) , (4.40)

where Rk is the matrix that transforms the local coordinate system of the kth

plate to the global coordinate system. Since the local xk axis is aligned with

the global xJ axis, the transformation matrix Rk can be written as

Rk =



Rnode 0 · · · 0

0 Rnode · · · 0

...
...

. . .
...

0 0 · · · Rnode


mk×mk

, Rnode =


1 0 0

0 cos(ψk) − sin(ψk)

0 sin(ψk) cos(ψk)


(4.41)

where ψk denotes the angle of rotation between yk and yJ . Now, we can con-

catenate individual expressions (4.40) for qLB,k and fLB,k to express qJ,red and fJ,red

in Equation (4.38)

qJ,red = R

(
Φ+
QA+ + Φ−QA−

)
fJ,red = R

(
Φ+
FA+ + Φ−FA−

) (4.42)
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with

R=


R1 · · · 0

...
. . .

...

0 · · · RN

 , Φ±Q=


Φ±q,1 · · · 0

...
. . .

...

0 · · · Φ±q,N

 , Φ±F =


Φ±f ,1 · · · 0

...
. . .

...

0 · · · Φ±f ,N

 .

(4.43)

Substituting Equation (4.42) in Equation (4.38), we obtain

A+ = s A− , with s = −
(
D̃JRΦ+

Q −RΦ+
F

)−1 (
D̃JRΦ−Q −RΦ−F

)
.

(4.44)

As in subsection 4.4.2, the expression for s defines a scattering matrix relating

the amplitudes A− and A+ of incoming and outgoing waves, respectively. The

dimension of the scattering matrix s is
∑N

k=1mk, and scattering coefficients

have the form snmij (ω, kx), relating an incoming wave i in the plate n and a

reflected or transmitted wave j in the plate m at angular frequency ω and wave

number component kx. Consequently, the energy scattering coefficients are

defined as tnmij (ω, kx) according to Equation (4.24). It is reminded that in the

absence of damping, total energy must be conserved; hence, the sum of energy

scattering coefficients over the outgoing modes equals one, see Equation (4.26).

4.5 Numerical results

In this section, several numerical case examples are presented to demonstrate

the applicability of the developed method. We compute energy scattering co-

efficients of an L-junction of regular symmetric cross- and angle-ply laminated

plates for various incoming waves. These results are compared with ones ob-

tained using the semi-analytical approach presented in Chapter 3. In all cases,

the energy scattering coefficients are computed with respect to the frequency f

and the wave number component kx. We assume that the system is undamped;

however, to facilitate the wave tracking process described in subsection 4.3.1,

a small damping coefficient η = 0.00001 is added.
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Figure 4.5: Wave vector (left) and dispersion (right) curves for a cross-ply com-
posite plate. The wave vector curves are plotted for a fixed frequency f = 3000 Hz,
whereas the dispersion curves are plotted for a fixed wave number component kx =
5m−1. Squares and circles denote wave numbers of incoming and outgoing waves,
respectively.

4.5.1 Cross-ply laminated plates

A five-layer symmetric cross-ply laminated plate of the total thickness of h =

0.005 m is considered. The material characteristics of all layers are the same

and given in Table 3.1. The lamination scheme is 0◦/90◦/0◦/90◦/0◦.

A periodic cell of length dx = 0.001 m and width dy = 0.001 m is modelled

in Ansys with 1 SHELL181 element and 3 SOLID185 elements per ply, i.e.

15 finite solid elements in total. The usage of only one element in the cross-

section is justified since the laminates considered are homogeneous in their

plane dimensions. However, there must be at least 6-10 FE elements per

wavelength to obtain accurate results. In other words, the wave numbers

k ≤ 2π
10max(dx,dy)

can be computed accurately. One can use more elements in

the cross-section to alleviate round-off errors due to truncation of inertia terms

in the dynamic stiffness matrix if needed [127].

As presented in Section 4.3, solving Equations (4.6) or (4.8) yields propagating

wave vector pairs (kx, ky) for a fixed frequency ω∗ or dispersion curves ky =

ky(ω, k
∗
x) for a fixed wave number component k∗x. Figure 4.5 presents bending,

shear and longitudinal wave vector curves for a fixed frequency f = 3000 Hz on

the left side and the correspondent dispersion curves for a fixed wave number

component kx = 5m−1 on the right side. These numerical dispersion relations
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(a) Incoming bending wave B
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(b) Incoming shear wave S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Incoming longitudinal wave L

Figure 4.6: Energy scattering coefficients of an L-junction of two SHELL181-based
cross-ply laminated plates for various incident waves plotted with respect to the wave
number component kx at a frequency f = 3000 Hz. t̂nmij denote semi-analytical
scattering coefficients obtained using the method presented in Chapter 3.

can be used to calculate the group velocity vectors and, therefore, propaga-

tion angles of transmitted wave energies via application of (4.19) and (4.21),

respectively.

Now, we consider two identical cross-ply composite plates connected at 90◦ if

modelled by SHELL181 elements and through an L-joint modelled as in Fig-

ure 4.4 - if modelled by SOLID185 elements. The FE model of the joint consists

of 55 SOLID185 elements; thus, the dimensions of the joint stiffness and mass

matrices are 164-by-164. The energy scattering coefficients for SHELL181-

based plates are computed using Equation (4.32), whereas for SOLID185-based

plates - using Equation (4.44). Furthermore, numerical results are compared

with semi-analytical energy scattering coefficients obtained in Section 3.7.

Figure 4.6 presents a comparison of energy scattering coefficients obtained
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 4.7: Energy scattering coefficients of an L-junction of two SOLID185-based
cross-ply laminated plates for various incident waves plotted with respect to the wave
number component kx at a frequency f = 3000 Hz. t̂nmij denote semi-analytical
scattering coefficients obtained using the method presented in Chapter 3.

from the SHELL181-based wave finite element approach presented in subsec-

tion 4.4.2 and from the theoretical approach developed in Chapter 3 for various

incident modes as a function of wave number component kx at the frequency

f = 3000 Hz. All solid and dashed lines represent numerical results, whereas

circles and squares - semi-analytical results. A slight deviation between numer-

ical and theoretical energy scattering coefficients can be noted for an incoming

bending wave results in Figure 4.6a. Overall, however, one can observe an

excellent agreement between numerical and analytical results for all cases of

incoming modes. This is an expected result since SHELL181 elements are mod-

elled in ANSYS using the FSDL theory [67, 204]. The CLP theory presented

in Section 2.2 and used in Chapter 3 and the FSDL theories are expected to

give identical results [204].



Chapter 4. Numerical results 116

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Incoming longitudinal wave L
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(b) Incoming bending wave B

Figure 4.8: Energy scattering coefficients of an L-junction of two SHELL181-
based cross-ply laminated plates for various incident waves plotted with respect to
the frequency at the fixed wave number component kx = 0 m−1. t̂nmij denote semi-
analytical scattering coefficients obtained using the method presented in Chapter 3.
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(a) Incoming longitudinal wave L
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(b) Incoming bending wave B

Figure 4.9: Energy scattering coefficients of an L-junction of two SOLID185-based
cross-ply laminated plates for various incident waves plotted with respect to the fre-
quency at the fixed wave number component kx = 0 m−1. t̂nmij denote semi-analytical
scattering coefficients obtained using the method presented in Chapter 3.

If we consider SOLID185-based plates and a solid L-joint, then discrepan-

cies between numerical and theoretical results appear. For instance, from

Figure 4.7a it can be noted that theoretical results seem to underestimate en-

ergy reflection and hence, overestimate energy transmission of an L-junction of

plates. In fact, the maximum difference observed between bending numerical

and theoretical results is ∼ 20 − 22%. This can be referred to the fact that

we used the analytical model based on the assumption that the joint can be

represented as a shared line between plates. This assumption breaks down at

higher frequencies since the influence of the joint size becomes more signifi-

cant. Notably, the shear strain becomes more critical in the dynamic response
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 4.10: Energy scattering coefficients of an L-junction of two SHELL181-
based cross-ply laminated plates for various incident waves plotted with respect to
the frequency at the fixed wave number component kx = 5 m−1. t̂nmij denote semi-
analytical scattering coefficients obtained using the method presented in Chapter 3.

of the joint and this effect is not considered in the analytical model [160, 205].

The energy scattering coefficients for incoming in-plane modes are in excellent

agreement. Hence, modelling thin plates and junctions of thin plates using

SHELL181 elements or semi-analytically is sufficient for accurate estimation

of in-plane wave energy scattering coefficients.

If the wave number component kx is fixed, then one can compare energy scat-

tering coefficients for a range of frequencies. Figures 4.8 and 4.9 represent

energy scattering coefficients obtained from the SHELL181- and SOLID185-

based approaches for incident longitudinal and bending modes as a function

of frequency at the wave number component kx = 0 m−1. An incident shear

wave is fully reflected without mode conversion for the wave number component

kx = 0, that is, t11
SS = 1. A great agreement of semi-analytical and numerical
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 4.11: Energy scattering coefficients of an L-junction of two SOLID185-
based cross-ply laminated plates for various incident waves plotted with respect to
the frequency at the fixed wave number component kx = 5 m−1. t̂nmij denote semi-
analytical scattering coefficients obtained using the method presented in Chapter 3.

results for longitudinal energy scattering coefficients can be noted. The longi-

tudinal mode is propagating at all frequencies at the wave number component

kx = 0. Regarding the incident bending mode, the semi-analytical approach

predicts that the bending energy reflection and transmission coefficients are

nearly same in magnitude across the range of frequencies f ∈ [0.1, 12] kHz, see

Figures 4.8b and 4.9b. However, the bending energy reflection coefficient ob-

tained from the hybrid FE/WFE approach is larger than the transmission co-

efficient, and the magnitude difference increases with the frequency, becoming

0.3 at f = 12 kHz. Nevertheless, the maximum difference between numerical

and semi-analytical scattering coefficients is ∼ 0.2.

A mode coupling phenomenon can be observed when considering the depen-

dence of energy scattering coefficients on the frequency at the wave number
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component kx 6= 0 m−1. For instance, in Figures 4.10 and 4.11, energy scatter-

ing coefficients are computed for a fixed wave number component kx = 5 m−1

and obtained from SHELL181- and SOLID185-based hybrid FE/WFE ap-

proach, respectively. An incident bending wave generates outgoing shear and

longitudinal waves at frequencies 1416 Hz ≤ f < 5701 Hz and f ≥ 5701 Hz,

respectively, see Figures 4.10a and 4.11a. The energy scattering coefficients

of coupled shear-bending waves are equal, that is, t
11(12)
SB = t

11(12)
BS . The same

applies for shear-longitudinal wave coupling, that is, t
11(12)
SL = t

11(12)
LS . Overall,

a great agreement between numerical and semi-analytical results can be noted

with small deviations for incident bending wave energy scattering coefficients.

The summation to unity of the energy reflection and transmission coefficients

validates the numerical results obtained.

4.5.2 Angle-ply composite plates

A five-layer angle-ply laminated plate of the total thickness of h = 0.005 m is

considered. The material characteristics of the individual layers are the same as

in the previous example. The lamination scheme is 45◦/− 45◦/45◦/− 45◦/45◦.

A periodic cell of length dx = 0.001 m and width dy = 0.001 m is again

modelled in Ansys with 1 SHELL181 element and 15 SOLID185 elements.

Figure 4.12 presents bending, shear and longitudinal wave vector curves of an

angle-ply laminated plate for a fixed frequency f = 3000 Hz on the left side and

the correspondent dispersion curves for a fixed wave number component kx =

5m−1 on the right side. Note that there are two shear wave dispersion curves

present on the right side of Figure 4.12. The second shear waves (denoted as

S2 and plotted in green) exhibit a negative group velocity phenomenon as in

wave vector curves at a fixed frequency.

A comparison of energy scattering coefficients obtained from the SHELL181-

based numerical and theoretical methods is given in Figure 4.13 for various

incident modes as a function of wave number component kx at a frequency

f = 3000 Hz. Again, numerical and theoretical energy scattering coefficients
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Figure 4.12: Wave vector (left) and dispersion (right) curves for an angle-
ply composite plate. The wave vector curves are plotted for a fixed frequency
f = 3000 Hz, whereas the dispersion curves are plotted for a fixed wave number
component kx = 5m−1. Squares and circles denote wave numbers of incoming and
outgoing waves, respectively.

agree well for all incoming modes with slight deviation for an incoming bending

mode.

A drastic change in the shape of energy reflection and transmission coefficients

can be seen for an incoming bending wave in the case of SOLID185-based nu-

merical results, see Figure 4.14. For instance, at the range of wave number

component 10 m−1 < |kx| < 20 m−1, numerical energy transmission is around

0.6 whereas semi-analytical method estimates energy transmission at only 0.4.

Vice-versa, numerical reflection coefficient has value of 0.4, whereas theoret-

ical reflection - 0.6, see Figure 4.14a. The same discrepancy can be noted

between numerical results obtained from SOLID185- and SHELL181-based

approaches. This phenomenon can be explained by the fact that the ESL-

theories behind the semi-analytical and SHELL181-based approaches produce

effective one-layer plates joined along the shared edge, thus losing complexity

of the connection between individual layers of plates at the junction.

Numerical energy scattering coefficients for in-plane modes are in excellent

agreement with semi-analytical results. As in the case of cross-ply laminated

plates, curves for shear and bending coupled waves vary identically for a range

of wave number components |kx| < 7.6 m−1 - the correspondent scattering

coefficients are t
11(12)
SB = t

11(12)
BS . Similarly, the scattering coefficients of longitu-
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 4.13: Energy scattering coefficients of an L-junction of two SHELL181-
based angle-ply laminated plates for various incident waves plotted with respect to the
wave number component ky at a frequency f = 3000 Hz. t̂nmij denote semi-analytical
scattering coefficients obtained using the method presented in Chapter 3.

dinal and bending coupled waves t
11(12)
LB and t

11(12)
BL are equal for |kx| < 3.7 m−1.

Furthermore, energy scattering coefficients of longitudinal and shear coupled

waves are symmetric around kx = 0 m−1, that is, t
11(12)
SL (kx) = t

11(12)
LS (−kx).

Figures 4.15 and 4.16 represent energy scattering coefficients as a function of

frequency at the fixed wave number components kx = 0 m−1 and kx = 5 m−1,

respectively. It can be noted that numerical scattering coefficients based on the

SHELL181 finite elements agree well with semi-analytical ones for all incident

waves. This is an expected result, since the semi-analytical and SHELL181-

based numerical approaches use approximately equal formulations of the thin

laminated plate at the frequencies considered, see Figures 4.15a, 4.15c and

4.15e for kx = 0 m−1 and Figures 4.16a, 4.16c and 4.16e for kx = 5 m−1.
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(a) Incoming bending wave B
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(b) Incoming shear wave S
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(c) Incoming longitudinal wave L

Figure 4.14: Energy scattering coefficients of an L-junction of two SOLID185-
based angle-ply laminated plates for various incident waves plotted with respect to the
wave number component ky at a frequency f = 3000 Hz. t̂nmij denote semi-analytical
scattering coefficients obtained using the method presented in Chapter 3.

On the other hand, in Figures 4.15b and 4.16b, numerical results based on the

SOLID185 finite elements predict higher bending wave energy reflection across

all frequencies considered for both values of the wave number component kx.

4.6 Conclusion

This chapter aimed to derive the hybrid FE/WFE method to calculate of en-

ergy scattering coefficients for arbitrary junctions of composite plates. The

approach is based on modelling joints with finite elements with boundary con-

ditions given by the solutions of the WFE method for the composite plates

in the infinite half-spaces connected to the joint. The displacement and force

nodal vectors are expressed in the basis of positive and negative waves, and
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satisfying boundary conditions at the connection between the plates and the

joint yields the scattering matrix. The method gives for the first time a de-

tailed recipe for computing scattering coefficients for the generic case of an

arbitrary number of composite plates connected at a junction without restric-

tions on the angles at which the plate meet or the orientation of the principal

axis of individual plates.

The plates considered have been modelled using two different finite element

types, two-dimensional SHELL181 and three-dimensional SOLID185 elements,

and we have considered the implication and influence of each element type on

the scattering coefficients. Also, numerical results on selected examples of

junctions of composite plates have been compared with semi-analytical re-

sults obtained from Chapter 3. It has been found that modelling thin plates

and their junctions using SHELL181 elements or semi-analytically using the

method from Chapter 3 is sufficient for accurate estimation of in-plane wave en-

ergy scattering coefficients. However, the SOLID185-based approach provides

more accurate energy scattering coefficients of the incident bending wave at

higher frequencies since the influence of the shear strain becomes significant,

which is neglected in the semi-analytical method and approximated by shear

correction factors in the SHELL181-based approach. Nevertheless, in the se-

lected examples, the maximum difference observed between bending numerical

and theoretical results is ∼ 20− 22%. The results of this chapter can be used

for the computation of wave energy distribution in the SEA method in the

form of coupling loss factors and as well as for angle-of-incidence dependent

scattering coefficients entering the DEA method in Chapter 5.
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(a) Bending wave B - SHELL181
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(b) Bending wave B - SOLID185
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(c) Shear wave S - SHELL181
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(d) Shear wave S - SOLID185
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(e) Longitudinal wave L - SHELL181
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(f) Longitudinal wave L - SOLID185

Figure 4.15: Energy scattering coefficients of an L-junction of two SHELL181-
and SOLID185-based angle-ply laminated plates for various incident waves plotted
with respect to the frequency at the fixed wave number component kx = 0 m−1. t̂nmij
denote semi-analytical scattering coefficients obtained using the method presented in
Chapter 3.
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(a) Bending wave B - SHELL181
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(b) Bending wave B - SOLID185
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(c) Shear wave S - SHELL181
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(d) Shear wave S - SOLID185
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(e) Longitudinal wave L - SHELL181
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(f) Longitudinal wave L - SOLID185

Figure 4.16: Energy scattering coefficients of an L-junction of two SHELL181-
and SOLID185-based angle-ply laminated plates for various incident waves plotted
with respect to the frequency at the fixed wave number component kx = 5 m−1. t̂nmij
denote semi-analytical scattering coefficients obtained using the method presented in
Chapter 3.



Chapter 5

Dynamical Energy Analysis for
composite structures

5.1 Introduction

Having computed and validated the scattering coefficients for the composite

laminated plate junctions in Chapters 3 and 4, respectively, we will next con-

sider the implementation of the DEA method for composite structures. The

main ideas of this method were presented in Chapter 2, and the general algo-

rithm was given in (2.42). The actual implementation of the method will be

performed on two-dimensional FE triangular meshes.

This chapter is organised as follows. In Section 5.2, we first discuss how the

domain Ω is meshed using two-dimensional triangular cells. In subsection 5.2.1,

we consider how the ray tracing formula presented in Equation (2.21) are

changed in the case of composite laminated plates. Furthermore, they define

the linear transformation between the boundary (2D) and full (4D) phase space

densities described in subsection 5.2.2. In Section 5.3, we introduce a finite

basis of functions onto which we project the phase space densities and the

boundary operator T , which is given by Equation (2.38). The discretisation

of the boundary integral operator T on the triangular meshes is discussed in

subsection 5.3.1. The initial boundary phase space density due to a point

or an edge source is also expressed in terms of the finite basis functions in

subsection 5.3.2. The stationary energy density and the intensity vector field

are computed in subsection 5.3.3. Finally, Section 5.4 considers numerical case

126
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Figure 5.1: An example of an electric vehicle gearbox being meshed using two-
dimensional shell elements. Colours represent elements with different thicknesses.

studies for single and two coupled composite plates. Also, it presents part of

the work performed during the industrial placement at Romax Technology.

5.2 Ray tracing for composite structures

From here on, we assume that the whole domain Ω is subdivided into subdo-

mains Ωi, i = 1, . . . , N , with N being the total number of subsystems. For

instance, this can be naturally achieved by meshing the domain using two-

dimensional finite shell elements in triangular form. It is also assumed that all

material and geometrical parameters remain constant within the mesh cells.

For instance, a shell-element based mesh cell must be homogeneous in mate-

rial parameters and of uniform thickness. Figure 5.1 presents an example of

a two-dimensional finite element mesh for an electric vehicle gearbox, where

different colours represent different thicknesses of the shell elements.

5.2.1 Hamilton function and boundary mapping

The wave energy travels between neighbouring mesh cells through edges. Now,

the trajectories of the ray-particles carrying the wave energy are governed

by the ray-tracing map defined by Equation (2.21). This was outlined in

subsection 2.1.3 for isotropic structures with the Hamilton function H(r,p) =

c|p| = 1. As was seen in subsection 3.3.1, the Hamilton function for composite
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plates can be written in the similar manner as

H(r,p) = βl

(
arctan

(
pq
p⊥

))
|p|l = ω , l = 1, 2 . (5.1)

Here, the momentum vector p is equal to the wave vector k with its ampli-

tude |p| being the wave number k, and consequently, from here on, we will

denote the wave number components kx and ky as pq and p⊥, respectively. The

function βl(θ) is given by Equation (3.8). The parameter l = 1, 2 represents

propagating in-plane and bending modes, respectively.

The Hamilton function in (5.1) represents only in-plane and out-of-plane modes

in the context of the CLP theory presented in Chapter 3. The more general

Hamilton function for arbitrary composite plates can be obtained numerically

using the WFE method described in Chapter 4. It then can describe not

only classical longitudinal, shear and bending modes but also higher-order

Lamb modes. For the sake of clarity, the Hamilton function (5.1) will be

used throughout this chapter; however, all calculations can be applied to the

numerical Hamilton function obtained from the WFE method.

As per Equation (2.21), we can write the equations of motion of the ray-

particles as 

dx
dτ

dy
dτ

dpq
dτ

dp⊥
dτ


=



∂H
∂pq

∂H
∂p⊥

−∂H
∂x

−∂H
∂y


=



(
lpq + ∂βl

βl∂θ
p⊥

)
ω
k2(

lp⊥ − ∂βl
βl∂θ

pq

)
ω
k2

0

0


, l = 1, 2 . (5.2)

Here, (x, y, pq, p⊥) are the 4D coordinates in the full phase space domain. Since

H(r, p) = ω, then ∂H
∂pq

and ∂H
∂p⊥

are the components of the group velocity vector

cg. Therefore, ray-particles travel along the direction of the group velocity

vector. As in the case of isotropic structures considered in subsection 2.1.3,

the ray-particle trajectories are straight lines, since dp
dτ

= 0.

The boundary mapping procedure described in subsection 2.1.4 is based on
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Figure 5.2: A schematic representation of the boundary mapping procedure in the
triangular mesh element. Green ovals depict wave vector curves. The orientation of
the principal material axes is defined in the element’s coordinate system (xg, yg, zg).
A ray starting at the position s of edge a points in the direction of the outgoing group
velocity vector c+

g . The group velocity vector is defined by the momentum component
pq. The ray hits edge a′ at the position s′ with the new momentum component p′q
defined in the coordinate system (e′x, e

′
y). However, momentum vectors p and p′ are

equal.

the integral operator T :

ρ′Γ(X ′) = {TρΓ}(X ′) =

∫
λ(X ′)e−µD(X,X′)δ (X ′ − Φ(X)) ρΓ(X)dX , (5.3)

where ρΓ(X) is the 2D phase space density on the boundary Γ. The mapping

function Φ : X → X ′ is now described by the ray-tracing equations (5.2).

Figure 5.2 shows the schematic representation of this mapping between the

boundary phase space coordinates X = (s, pq) and X ′ = (s′, p′q) at edges

a and a′ of a single mesh cell, respectively. Here, the green ovals represent

the wave vector curves of a particular mode, and they are the same for both

edges because the material parameters are constant in the mesh cell. The

momentum component pq is used to compute the outgoing group velocity vector

c+
g (depicted in red) and the direction angle of the trajectory α+ measured

with respect to the local ey axis. Note that |pq| ≤ pq,a, and the maximum
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value pq,a can be found from the dispersion relations. Furthermore, the value

of pq,a changes for different propagating modes. The red line connecting points

s and s′ represents the trajectory of the ray-particle. Now, since the momentum

vector p is conserved, the vector p′ is equal to p in the global coordinate

system (xg, yg) of the mesh cell. However, at the local edge coordinate system

(e′x, e
′
y) the components p′q and p′⊥ will be different from pq and p⊥. Also, the

maximum values pq,a and p′q,a′ are also different. The component p′q is further

used to compute the scattering coefficients λ(p′q). These coefficients have been

previously obtained in the context of the classical thin laminated plate in

Equation (3.43) and using the WFE method in Equation (4.24).

5.2.2 Transformation between 2D and 4D phase space
densities

Equation (5.2) defines the linear transformation Π between (s, τ, pq, ω) and the

full phase space coordinates (x, y, pq, p⊥) [53]:

Π :



s

τ

pq

ω


7→



x

y

pq

p⊥


+
ωτ

k2



lpq + ∂βl
βl∂θ

p⊥

lp⊥ − ∂βl
βl∂θ

pq

0

0


. (5.4)

The Jacobian matrix DΠ can be written as

DΠ =
∂ (x, y, pq, p⊥)

∂ (s, τ, pq, ω)
=



1 ∂H
∂pq

0 0

0 ∂H
∂p⊥

0 0

0 0 1 0

0 0 ∂p⊥
∂pq

∂p⊥
∂ω


. (5.5)

Now, at a fixed angular frequency ω = ω0, one can compute ∂p⊥
∂pq

using Equa-

tion (5.1) in the following way

0 = dω =
∂H

∂pq
dpq +

∂H

∂p⊥
dp⊥ →

∂p⊥
∂pq

= −cg,x
cg,y

, l = 1, 2 . (5.6)
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This relation will also be important in the computation of the stationary energy

and intensity densities in subsection 5.3.3. Finally, the determinant of the

Jacobian matrix det(DΠ) = ∂H
∂p⊥

∂p⊥
∂ω

= 1, therefore, the transformation Π is

phase space volume preserving, and the full phase space density can be related

to the 2D phase space density as

ρ(x, y, pq, p⊥) = ρΓ(x, pq)δ(ω(pq, p⊥)− ω0) . (5.7)

Recall that the 2D phase space density represents the directional energy flux

through the boundary Γ at the position x and momentum component pq. The

relation (5.7) will be used to define the initial 2D phase space density ρΓ,0(s, pq)

and the stationary energy density ρ∞(r) in further subsections.

5.3 Basis set expansion of the problem

To proceed further with the DEA method, we need to introduce a finite ba-

sis set of functions onto which the 2D phase space densities and the boundary

integral operator T will be projected. As outlined in Chapter 2, Legendre poly-

nomials will be used for this purpose because of their orthogonality property

in the L2 space. They can be defined by Bonnet’s recursion formula as

P0(x) = 1 , P1(x) = x , x ∈ [−1, 1] .

(m+ 1)Pm+1(x) = (2m+ 1)xPm(x)−mPm−1(x) , m ≥ 2 .

(5.8)

Legendre polynomials are orthogonal with respect to the L2-norm on the in-

terval −1 ≤ x ≤ 1:

1∫
−1

Pn(x)Pm(x)dx =
2

2m+ 1
δnm , (5.9)

where δmn denotes the Kronecker delta. Since the boundary operator T and

phase space densities ρΓ(s, pq) operate on the 2D phase space (s, pq), the basis

functions must be defined accordingly both for position and momentum spaces.
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We define the basis functions in a similar way as in [53]:

Fn=(a,m,l)(s, pq) =
1√

La, pq,a,l
1a(s)Pm

(
pq
pq,a,l

)
, 1a(s) =


1 for s on edge a.

0 otherwise

,

(5.10)

where 1a is the characteristic function of edge a, and La is the length of edge a.

The multi-index n = (a,m, l) combines the index of the edge a, the degree m of

the Legendre polynomial and the index l of the propagating mode, where l =

L, S,B represents longitudinal, shear and bending modes propagating in thin

plates, see subsection 3.3.1. As outlined earlier, the higher-order Lamb modes

can be taken into account by computing the Hamilton function numerically in

the WFE method context, thus enlarging the dimension of the index l.

The Legendre polynomials are written for the transformed argument |x| ≤

1→ |pq| ≤ pq,a,l. By defining the inner product as

(u, v) =

∫
u(X)v(X)dX , (5.11)

we get the orthogonality property of the basis functions:

(Fn, Fn′) =
2

2m+ 1
δa,a′ δm,m′ δl,l′ . (5.12)

5.3.1 Boundary integral operator

After introducing the finite basis set of functions, we can now express the phase

space densities and the operator T in this basis. The 2D phase space densities

ρΓ(s, pq) and ρ′Γ(s′, p′q) can be approximated as

ρΓ(s, pq) ≈
∑
n

ρnFn(s, pq) , ρ′Γ(s′, p′q) ≈
∑
n′

ρ′n′Fn′(s
′, p′q) , (5.13)

where ρ′Γ(s′, p′q) is the 2D phase space density on edge a′ obtained after a

single application of the boundary integral operator T , that is, ρ′Γ = {TρΓ}.

The coefficients ρn and ρ′n′ are given as

ρn =
(ρΓ, Fn)

(Fn, Fn)
, ρ′n′ =

(ρ′Γ, Fn′)

(Fn′ , Fn′)
. (5.14)
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Consequently, the coefficients ρ′n are connected with ρn through the following

relation

ρ′n′ =
∑
n

Tn′nρn , Tn′n =
(Fn′ , TFn)

(Fn′ , Fn′)
, (5.15)

where Tn′n is the matrix representation of the boundary integral operator T .

After substituting Equation (5.3) into the matrix Tn′n, we obtain the following

integral form:

Tn′n =
2m′ + 1

2

∫∫
Fn′(X

′)λ(X ′)e−µD(X,X′)δ (X ′ − Φ(X))Fn(X)dXdX ′ =

=
2m′ + 1

2

∫
λ(Φ(X))e−µD(X,Φ(X))Fn′(Φ(X))Fn(X)dX .

(5.16)

Finally, in the chosen finite set of basis functions, the matrix elements Tn′n

can be written as

Tn′n =
2m′ + 1

2
√
LaLa′pq,a,l p

′
q,a′,l′

La∫
0

pq,a,l∫
−pq,a,l

λ(p′q)e
−µD(s,s′)1a′(s

′)1a(s)Pm

(
pq
pq,a,l

)
Pm′

(
p′q

p′q,a′,l′

)
dpqds .

(5.17)

The double integral can be reduced to a single integral with respect to the

momentum component pq as follows:

Tn′n =
2m′ + 1

2
√
LaLa′pq,a,l p

′
q,a′,l′

pq,a,l∫
−pq,a,l

λ(p′q)h(µ, pq)Pm

(
pq
pq,a,l

)
Pm′

(
p′q

p′q,a′,l′

)
dpq

(5.18)

with

h(µ, pq) =

La∫
0

e−µD(s,s′)1a′(s
′)1a(s)ds =

smax∫
smin

e−µD(s,s′)ds . (5.19)

The function h(µ, pq) can be computed analytically. In fact, D(s, s′) is the

distance between points s and s′ in Figure 5.3, and it can be computed using
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Figure 5.3: A representation of the geometrical relations used for computation of
the position integral in Equation (5.19). A ray emitting from edge a can only hit
edge a′ if its direction angle α+ > ξ−. D(s, s′) is the ray length. smin(max) is the
minimum (maximum) value of the position s in the local coordinate system (ex, ey)
such that a ray with the direction angle α+ reach edge a′ at some position s′.

the sine rule in the triangle connecting points s, s′ and smax as

D(s, s′) =
smax − s

sinα′
sinφ =

smax − s
cos(φ− α+)

sinφ , (5.20)

where the angle α+ is defined by the momentum component pq through the

dispersion relations. After substituting Equation (5.20) into Equation (5.19),

one obtains

h(µ, pq) =
1− e−µ̃(smax−smin)

µ̃
, µ̃ =

µ sinφ

cos(φ− α+)
, µ 6= 0 . (5.21)

Now, we need to compute smax − smin, which is equal to h(0, pq), according to

Equation (5.19). For α+ ∈ [−π
2
, ξ−], h(0, pq) is equal to zero, since no rays with

such direction angles α+ can reach the edge a′ from the edge a, see Figure 5.3.

On the other hand, for α+ ∈ [ξ+,
π
2
], h(0, pq) is equal to La, that is, the length

of the edge a, because all points on the edge a can be mapped to the edge a′

by the rays with such direction angles α+. Finally, for α+ ∈ (ξ−, ξ+), using the

sine rule in the triangle connecting points smin, smax and the top vertex of the

mesh cell, one gets h(0, pq) = La′
cos(φ−α+)

cosα+ . We can summarise the definition of
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h(0, pq) as follows

h(0, pq) =


0 for pq : α+(pq) ∈ [−π

2
, ξ−]

La′
cos(φ−α+)

cosα+ for pq : α+(pq) ∈ (ξ−, ξ+)

La for pq : α+(pq) ∈ [ξ+,
π
2
]

. (5.22)

Recall that if the material of the structure is isotropic, then all ray direction

angles α+ are equal to the wave vector angles θ+, thus simplifying calculation

of the function h(µ, pq). Furthermore, since wave number k is constant for any

direction angle θ, the variable of integration in Equation (5.18) can be changed

from the momentum component pq to the wave vector angle θ as follows

dpq = k cos θdθ , (5.23)

thus removing the need of wave vector curves and rendering the integrand to

be defined by the direction angle θ alone [53]. It is worth noting that if the

number of Legendre polynomials used in the basis set is equal to one, then the

formulation in Equation (5.18) is equivalent to the SEA approximation of the

system [50, 51].

5.3.2 Initial phase space densities

In this subsection, we define and discretise the initial boundary phase space

density ρΓ,0(s, pq) arising due to a point or an edge source. First, we consider

the case of a point source at a position r0, which is in the interior of the mesh

cell. The full phase space density at a point r is written in the similar way as

in Equation (2.34):

ρ0(r,p) =
R

|cg,0|
e−µ|r−r0|

2π|r− r0|
δ(p− p0) , p0 : cg,0 = |cg,0|

r− r0

|r− r0|
, (5.24)

where the momentum vector p0 is such that the group velocity vector cg,0(p0)

points in the direction of r − r0. Note that the attenuation factor µ depends

on the direction of the energy flow, since µ = η ω
|cg,0| by definition.

Now, one needs to determine the 2D phase space density ρa,0(s, pq) on edge a
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of the mesh cell that surrounds the interior source point r0. To accomplish

this, we use the following equation relating delta functions similarly as in

Equation (2.36):

∂ω

∂p⊥
δ(ω(pq, p⊥)− ω0)δ(pq − pq,0) = δ(p− p0) . (5.25)

Applying this substitution rule to Equation (5.7), we obtain

ρa,0(s, pq) =
R

2π

e−µD(s,r0)

D(s, r0)
cosα−(s, r0)δ(pq − pq,0(s, r0)) , (5.26)

where cosα− = ∂ω
∂p⊥

1
|c−g,0|

is the direction cosine of the incoming group velocity

vector c−g,0. Projecting the phase space density ρa,0(s, pq) onto the finite basis

as in (5.13) yields the coefficients ρn,0 as follows:

ρn,0 =
R

4π

2m+ 1√
Lapq,a,l

La∫
0

λ(pq,0(s, r0))e−µD(s,r0)Pm

(
pq,0(s, r0)

pq,a,l

)
cosα−

D(s, r0)
ds .

(5.27)

Here, the additional term λ(pq,0) is included in the formulation to amount for

possible scattering at the edge a.

Computing numerically the integral in Equation (5.27) is not straightforward,

since there is an additional step in defining the momentum component pq,0 =

pq,0(s, r0), which is used later to compute the scattering coefficients λ(pq,0). As

mentioned earlier, since the wave number is constant in isotropic structures,

the momentum component pq,0 is not needed in such cases, and determining

the polar angle α− = θ− for a given position s is sufficient to define all terms of

the integrand in Equation (5.27). While this task can be accomplished using

simple geometrical relations in isotropic structures [53], it is not the case for

composite structures. One needs to change the variable of integration from s to

pq in Equation (5.27), which will be shown next. As can be seen in Figure 5.4,

the following relation between differentials ds and dφ can be established:

dφ =
cosα−

D(s, r0)
ds , (5.28)
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Figure 5.4: Geometrical relations between differentials dφ and dα−. Rays emitting
from the point source at r0 intersect edge a at the incoming angles α−. Similarly
as in the case considered in Figure 5.3, rays can only reach edge a if their direction
angles α− ∈ [ξ−, ξ+].

thus allowing us to rewrite the integral in Equation (5.27) in terms of the angle

φ. The differential dφ can be connected with dpq as follows:

dφ = d arctan

(
cg,y
cg,x

)
=

1

1 +

(
cg,y
cg,x

)2

∂
(
cg,y
cg,x

)
∂pq

+

∂

(
cg,y
cg,x

)
∂p⊥

∂p⊥
∂pq

 dpq =

=
1

|cg|2

(
cg,x

∂cg,y
∂pq
− cg,y

∂cg,x
∂pq
−
c2
g,x

cg,y

∂cg,y
∂p⊥

+ cg,x
∂cg,x
∂p⊥

)
dpq ,

(5.29)

where ∂p⊥
∂pq

is substituted according to Equation (5.6). The group velocity

components cg,x and cg,y and their partial derivatives present in the formulation

above can be computed from the Hamilton function in (5.1). Finally, after

inserting the relations (5.28) and (5.29) into Equation (5.27), one obtains

ρn,0 =
R

4π

2m+ 1√
Lapq,a,l

pq,max∫
pq,min

λ(pq)e
−µD(s,r0)Pm

(
pq
pq,a,l

)
f(pq)dpq ,

f(pq) =
1

|cg|2

(
cg,x

∂cg,y
∂pq
− cg,y

∂cg,x
∂pq
−
c2
g,x

cg,y

∂cg,y
∂p⊥

+ cg,x
∂cg,x
∂p⊥

)
.

(5.30)
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The limits of the integral pq,min and pq,max are such that the corresponding

incoming ray angles α−min and α−max are equal to ξ− and ξ+, respectively, see

Figure 5.4. This is to ensure that rays incoming from the source point r0

intersect edge a. Furthermore, the distance D(s0, r0) is equal to h⊥/ cosα−,

where h⊥ is the height of the triangle connecting the point r0 and edge a. The

described procedure is applied accordingly for other edges of the mesh cell.

The case of a source along edge a can be modelled by the following phase space

density

ρa,0(s, pq) = R̃ cosα+1a(s)δ(pq − pq,0) , (5.31)

where R̃ is the intensity of the energy flow in the direction angle α+ [53]. The

angle α+ is defined by the momentum component pq,0, as was discussed in

subsection 5.2.1. The coefficients ρn,0 after discretisation are then given as

ρn,0 =
2m+ 1

2
√
Lapq,a,l

R̃ cosα+ Pm

(
pq,0
pq,a,l

) La∫
0

1a(s)ds =

=
2m+ 1

2

√
La
pq,a,l

R̃ cosα+ Pm

(
pq,0
pq,a,l

)
.

(5.32)

Having discretised the initial 2D phase space density ρΓ,0 and the boundary

integral operator T , we can compute the stationary or long-time limit 2D phase

space density ρΓ,∞. Writing the coefficients ρn,∞ and ρn,0 as arrays %∞ and %0

allows to establish the discrete version of Equation (2.39) as

%∞ =
∞∑
k=0

Tk%0 → %∞ = (I−T)−1 %0 (5.33)

where T is the matrix form of the boundary operator T and I is the identity

matrix. The size of matrices T and I is nanmnl, where na is the number

of edges in the meshed structure, nm is the number of Legendre polynomials

used for discretisation of the momentum component pq, and nl is the number of

propagating modes in the structure. In thin composite plates, nl is equal to 3

- longitudinal, shear and bending modes. For thick composite plates modelled

by the WFE method, nl increases with frequency.
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Figure 5.5: Partitioning of the typical wave vector curve (depicted by green ovals)
between edges of the mesh element. Red dashed arcs represent ω−1

a (ω0) in Equa-
tion (5.36). They are defined by imposing the outgoing group velocity vector angle
α+ to be in range [ξ−, ξ+], so that outgoing rays from edge a can reach the point r.

5.3.3 Stationary energy and intensity

As a final step, we need to compute the stationary energy density ρ∞(r) defined

by the following relation:

ρ∞(r) =

∫
ρ∞(r,p)dp . (5.34)

The integrand can be developed further using Equations (5.7) and (2.41) as

ρ∞(r,p) = e−µD(s(r,p),r)ρΓ,∞(s(r,p), pq)δ (ω(pq, p⊥)− ω0) . (5.35)

Substituting this relation into Equation (5.34) and using the coarea formula

for delta functions [169] yields

ρ∞(r) =

∫
ω−1(ω0)

ρΓ,∞(s, pq)e
−µD(s,r) dσ

|cg|
. (5.36)

Here, ω−1(ω0) is all solution pairs (pq, p⊥) such that ω(pq, p⊥) = ω0, and dσ

is the measure on the curve ω−1(ω0). After expanding the 2D phase space
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Figure 5.6: Partitioning of the shear wave vector curve (depicted in green) between
edges of the mesh element. Red dashed arcs represent ω−1

a (ω0) in Equation (5.36).
They are defined by imposing the outgoing group velocity vector angle α+ to be in
range [ξ−, ξ+], so that outgoing rays from edge a can reach the point r.

density ρΓ,∞ as in Equation (5.13), we obtain

ρ∞(r) =
∑
n

ρn,∞√
Lapq,a,l

∫
ω−1(ω0)

e−µD(s,r)

|cg|
1a(s)Pm

(
pq
pq,a,l

)
dσ =

=
∑
n

ρn,∞√
Lapq,a,l

∫
ω−1
a (ω0)

e−µD(s,r)

|cg|
Pm

(
pq
pq,a,l

)
dσ

, (5.37)

where n = (a,m, l) includes indices of edges forming the mesh cell containing

the point r. The domain of integration ω−1
a (ω0) is the part of the wave vector

curve at a fixed frequency ω0 that produces rays connecting the point r and

some point s on the edge a. Figure 5.5 presents an illustration of how the wave

vector curve (depicted by green ovals) is partitioned as ω−1
a (ω0) (depicted by

red dashed arcs) between edges a, a′ and a′′. It is clear that only rays with

angles of the outgoing group velocity vectors α+ ∈ [ξ−, ξ+] can reach the point

r starting from the edge a. The same applies for edges a′ and a′′. The wave

vector curve considered in Figure 5.5 is divided smoothly into three parts,

each corresponding for one edge. However, this is not always the case. In
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fact, for the propagating shear mode of a composite laminate considered in

subsection 3.3.2, the partition is not smooth, see Figure 5.6. Note that in the

local coordinate systems of edges a′ and a′′, there exist values of pq for which

there are two outgoing shear waves. This feature was previously highlighted

in Figures 3.6 and 3.8.

Once the partitioned parts of the wave vector curve are determined, we can

change the variable of integration from dσ to dpq via the following relation:

dσ =
√

dp2
q + dp2

⊥ =

√
1 +

(
∂p⊥
∂pq

)2

dpq =

√
1 +

(
cg,x
cg,y

)2

dpq =
dpq

cosα
, (5.38)

where ∂p⊥
∂pq

is defined by Equation (5.6). The clockwise orientation of the curve

ω−1(ω0) in the coordinate system of the mesh cell xg, yg is consistent with the

variation of the momentum component pq in the respective local coordinate

systems of edges. After changing the variable of integration in Equation (5.36),

we obtain:

ρ∞(r) =
∑
n

ρn,∞√
Lapq,a,l

∫
Ωa,pq

e−µD(s,r)

|cg| cosα+
Pm

(
pq
pq,a,l

)
dpq , (5.39)

where Ωa,pq covers all momentum components pq such that the momentum

vectors p produce outgoing waves in the local coordinate system ex, ey of the

edge a and ωa(pq, p⊥) = ω0. In the case of an oval-shaped wave vector curve

considered in Figure 5.5, Ωa,pq is equal to [pq,min, pq,max] with pq,min(max) being the

momentum component pq such that the outgoing angle α+ = ξ−(+). Finally,

to compute the total energy density at a point r in the interior of the same

polygon as the source point r0, we need to include the contribution of the

initial energy density at that point. Technically, the total energy density ε(r)

can be written as

ε(r) = ρ∞(r) + 1r0(r)
R

|cg,0|
e−µ|r−r0|

2π|r− r0|
, (5.40)

where 1r0(r) = 1 if the points r and r0 are in the interior of the same mesh

cell, and 0 otherwise.
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One can also compute the intensity vector field I(r) which is defined as

I(r) =

∫
ρ∞(r,p)cgdp . (5.41)

After proceeding similarly to the case of the stationary energy density, one

obtains:

I(r) =
∑
n

ρn,∞√
Lapq,a,l

∫
Ωa,pq

tanα+

1

 e−µD(s,r)Pm

(
pq
pq,a,l

)
dpq . (5.42)

The intensity vector field I(r) allows estimating the direction of mean energy

flow at the point r, which can be helpful to determine energy transfer paths.

5.4 Numerical results

In this section, we consider several numerical case examples to demonstrate

the application of the DEA method, both the classical method for isotropic

structures and the modified version presented in this chapter for composite

structures. In all examples we compute the mean acceleration, which can be

estimated as

ā(r) =

√
ε(r)

ω2

ρvol(r)h(r)
, (5.43)

where ε(r) is the total mean energy density given by Equation (5.40), ρvol(r)

and h(r) are the volumetric mass density and the thickness of the polygon

containing the point r, respectively.

This section is organised as follows. In subsection 5.4.1, we compute the mean

response of the polygonally shaped plate due to a point and an edge sources.

Isotropic and composite materials are considered to demonstrate how the wave

energy is transported and scattered in each of these cases. Also, the influence

of the number of Legendre polynomials on the results is investigated. Then,

in subsection 5.4.2, we compute and compare the DEA and FEM frequency-

averaged responses of an L-shaped angle-ply laminated plate subjected to a

harmonic point excitation force.
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Figure 5.7: A polygonally shaped semi-infinite plate meshed with two-dimensional
triangular shell elements. An edge and a point sources are assumed to be applied
on the plate on the vertical and horizontal edges, respectively. The diagonal edge is
free, and rays hitting this edge reflect back into the plate. Reflection of rays at other
edges is prohibited thus imitating “infinity” of the plate through these edges.

Finally, in subsection 5.4.3, we turn to the case of an electric vehicle gearbox,

where we compare the results from the classical DEA and the full FEM simu-

lation. We present a limitation of the classical DEA approach on this example

and demonstrate how the composite DEA can provide more accurate results.

The work presented in this subsection was performed during the industrial

placement at “Romax Technology” company.

5.4.1 Test case for validation

We consider a semi-infinite plate with one free edge as shown in Figure 5.7.

The mesh consists of 1216 points and 2300 triangular shell elements. The plate

thickness is equal to 5 mm. The horizontal edges of the plate are 20 and 80 cm

in length, the same applies for the vertical edges. The diagonal edge of the

plate is inclined at 45◦ to the vertical axis and equal to 84.85 cm in length. The

“infinity” condition at the straight edges is achieved by prohibiting reflection
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(a) Isotropic material (b) Composite material

Figure 5.8: A geometrical illustration of the ray paths (shown in red) starting from
the edge source at the vertical edge. Wave vector curves (shown in green) are a circle
for the isotropic material case (a) and an oval for the composite material case (b).

Aluminium Stainless Steel

Young’s Modulus (N/m2) 71× 109 210× 109

Poisson’s ratio 0.33 0.3

Density (kg/m3) 2740 7800

Table 5.1: Engineering constants of aluminium and stainless steel materials.

of rays hitting these edges. The correspondent elements of the matrix T in

(5.33) are equal to zero. This setup allows us to work with a small geometrical

mesh model and consider local energy scattering events without diffusive type

mixing of infinite number of reflections that would occur in a finite model.

First, we assume an edge source of strength R = 1 at the vertical edge con-

necting points with coordinates (0, 48), (0, 50). Other parameters of the initial

energy density given by Equation (5.31) are l = B, η = 0, ω = 3000 Hz and

pq,0 = 0, that is, the bending mode is excited at the edge of the undamped

plate, and the momentum vector p points in the direction normal to the edge.

It is important to emphasise that the stationary energy density solution given

by the infinite sum
∞∑
k=0

T kρΓ,0 is still converging in the absence of damping

because of artificial “infinity” condition at the vertical and horizontal edges.

We consider two plate materials: the first one is isotropic stainless steel, and
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(a) Nm = 1 (b) Nm = 4

(c) Nm = 10 (d) Nm = 25

Figure 5.9: The mean acceleration response levels of the polygonally shaped semi-
infinite isotropic plate due to an edge source as a function of the number of Legendre
polynomials Nm. The acceleration is given in m/s2.

the second one is a composite regular cross-ply laminate with the lamination

scheme 0◦/90◦/0◦/90◦/0◦, considered in-depth in Sections 3.7 and 4.5. The

material parameters of stainless steel and the composite laminae are given in

Tables 5.1 and 3.1, respectively.

The schematic illustrations presented in Figure 5.8 can give an idea of how

initial energy might distribute over the structure in isotropic and composite

material cases.

In the case of isotropic material, the Hamilton function fixes the amplitude of

the momentum vector |p|; therefore, the curve of possible momentum values

has the form of a circle, see Figure 5.8a. Furthermore, the wave energy travels

along the momentum vector since the group velocity and momentum vectors
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are collinear and co-directed. Rays emitting from the vertical edge reflect from

the free diagonal edge at the right angle and travel until hitting and leaving the

horizontal edge due to the “infinity” condition imposed. Reflection at the right

angle happens because the momentum components pq and p′q must be equal

due to continuity condition, see subsection 3.3.1. In isotropic structures, this

condition yields Snell’s law stating that the angles of incidence and reflection

must be equal.

In the case of composite material, the Hamilton function does not fix the

amplitude of the momentum vector, and the wave energy travels along the

direction of the group velocity vector. The bending wave vector curve has the

form of an oval, see Figure 5.8b. Upon reaching the diagonal edge, rays reflect

in the direction of the outgoing group velocity vector c+
g and which is derived

from the continuity condition pq = p′q. The angles of incidence and reflection

are not equal in this case.

Figures 5.9 and 5.10 present the mean acceleration response amplitudes of the

isotropic and composite plate due to an edge source as a function of the number

of Legendre polynomials used in discretisation of the momentum component

pq. As mentioned at the end of subsection 5.3.1, when only the first Legendre

polynomial P0(x) = 1 is used, the DEA method works just like the SEA

method. The wave energy field is diffusive and consists of a superposition

of rays travelling uniformly in all directions, see Figures 5.9a and 5.10a for

the isotropic and composite material cases, respectively. As the number of

Legendre polynomials used in the basis set increases, the vibrational response

of the structure changes so that the initial energy density at the source edge

propagates in a less diffusive way through the structure. At Nm = 25, one

can notice a specular type of reflection of the energy density at the free edge,

following the geometrical ray paths described in Figure 5.8. Therefore, as the

number of Legendre polynomials increases, the DEA method works like a full

ray-tracing method [50, 51].

One can compute the intensity vector field I(r) using Equation (5.42). Fig-
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(a) Nm = 1 (b) Nm = 4

(c) Nm = 10 (d) Nm = 25

Figure 5.10: The mean acceleration response levels of the polygonally shaped semi-
infinite composite plate due to an edge source as a function of the number of Legendre
polynomials Nm.

ure 5.11 presents the intensity vector field in the isotropic and composite mate-

rial cases and how this field varies as a function of the number of Legendre poly-

nomials. In the diffuse field case, that is, when Nm = 1, one can clearly see that

the wave energy is transported in all directions, see Figures 5.11a and 5.11b for

the isotropic and composite material cases. Nevertheless, in the lower part of

the plate, the intensity vectors are nearly normal to the horizontal edge in the

isotropic material case and directed towards the left corner in the composite

material case, visually representing that the group velocity vector field governs

the wave energy paths. In the full ray-tracing approximation, that is, when

Nm = 25, the intensity vector field is consistent with the mean acceleration

distribution over the structure, see Figures 5.11c and 5.11d.
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Figure 5.11: The intensity vector field of the isotropic (a,c) and composite (b,d)
plate cases arising due to an edge source at the vertical edge as a function of the
number of Legendre polynomials used in the basis set.

Now, we consider a point source of strength R = 1 at the point (0.4, 0) on the

horizontal edge, and the bending mode is excited at this point. In experimental

setups, this is usually achieved by using the shaker excitation method. Even

though one might argue that the shaker cannot be physically applied on the

edge of the structure, it is reminded that the structure is assumed to be infinite

through the vertical and horizontal edges by imposing no reflection of the wave

energy on them.

Figures 5.12 and 5.13 represent the mean acceleration response levels arising

due to the point source at the horizontal edge in the isotropic and composite



Chapter 5. Numerical results 149

(a) Nm = 1
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Accel.

(b) Nm = 4

(c) Nm = 10 (d) Nm = 25

Figure 5.12: The mean acceleration response levels of the polygonally shaped semi-
infinite isotropic plate due to an edge source as a function of the number of Legendre
polynomials Nm. The acceleration is given in m/s2.

material cases, respectively. As the number of Legendre polynomials used to

represent the momentum space increases, the vibrational response of the plate

becomes more diffusive; however, one can still see individual ray stripes re-

flecting from the free edge in Figures 5.12c and 5.13c. Nevertheless, it appears

that using four Legendre polynomials in the basis set is sufficient to adequately

predict the vibrational response of the structure to a point source. Finally, as

discussed in subsection 3.7.1, the bending wave energy is fully reflected at the

free edge without mode coupling at the frequency considered; therefore, the

wave energy is not stored in in-plane modes.
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(a) Nm = 1
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(b) Nm = 4
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Figure 5.13: The mean acceleration response levels of the polygonally shaped semi-
infinite isotropic plate due to an edge source as a function of the number of Legendre
polynomials Nm. The acceleration is given in m/s2.

5.4.2 Two composite plates joined at a right angle

In this subsection, we compute the mean acceleration response levels of an L-

shaped composite plate due to a harmonic point excitation force at the middle

of the ground plate. The geometrical configuration of the model is shown in

Figure 5.14. The constitutive plates are regular angle-ply laminates with the

lamination scheme 45◦/− 45◦/45◦/− 45◦/45◦ and the total thickness of 5 mm.

Hysteretic damping of 5% is assumed.

Figure 5.15 shows a comparison of mean acceleration levels obtained from DEA

and frequency-averaged FEM simulations at the frequency f = 3150 Hz. Four

Legendre polynomials were used in the basis set to discretise the momentum

space. DEA acceleration amplitudes are averaged between three propagat-

ing modes in the structure: bending, shear, and longitudinal modes. In Fig-
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Figure 5.14: An L-shaped composite plate meshed with two-dimensional triangular
shell elements. A point source is assumed to be applied on the middle of the ground
plate.

ures 5.15c and 5.15d, lines representing high acceleration levels (coloured in

red and yellow) are inclined at 45◦ and −45◦ with respect to the global x axis.

This is because the wave vector curves are 45◦ rotated with respect to the

global x axis, see Figures 3.7 and 3.8. The wave energy scatters from corners

of the ground plate and propagates into the L-plate. The overall DEA and

FEM acceleration distributions agree well, despite the presence of phase shifts

at the wavelength scale in the FEM result, see Figures 5.15a and 5.15b.

The direction of energy flow can be found out by computing the intensity vector

field. In contrast to the polygonally shaped plate case, mode coupling occurs

at the junction between plates; therefore, we can visualise the energy flow

of all modes. Figure 5.16a presents the intensity vector field of the bending

mode. Note that energy is transported in all directions as expected. How-

ever, the highest intensity values in the ground plate occur along directions

of 45◦ and −45◦ with respect to the global x axis. The intensity field of the
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(a) DEA, front view
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(c) DEA, top view (d) FEM, top view

Figure 5.15: The mean DEA and FEM acceleration response levels of an L-shaped
composite plate due to a harmonic point excitation force of 1 N at the frequency
f = 3150 Hz. FEM results are frequency-averaged over one-third octave band with
the centre frequency f = 3150 Hz. The acceleration is given in m/s2.

bending mode is in accordance with the mean acceleration distribution in the

L-plate since the bending mode mainly governs the energy transport, whereas

the contribution from in-plane modes is small. Nevertheless, one can note how

the energy stored in the longitudinal mode propagates through the structure,

see Figure 5.16b. The most significant intensity values arise at the corner area

of the junction between plates. This is consistent with the intensity distri-

bution of the bending mode, having the highest values at the correspondent

corner area at the ground plate.
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Figure 5.16: The intensity vector field of an L-shaped composite plate arising due
to a point source at the middle of the ground plate. Vector colouring represents
intensity amplitudes.

(a) with stiffeners (b) without stiffeners

Figure 5.17: The FE meshes of the full gearbox housing (a) and the gearbox housing
without stiffeners along the longitudinal axis of the cylindrical part (b).

5.4.3 Electric Vehicle Gearbox

This subsection presents part of the work performed during an industrial place-

ment at Romax Technology. A gearbox housing of the electric vehicle pow-

ertrain is considered - its geometrical mesh model is shown in Figure 5.17a.

The structure consists of a lower stiffened cylindrical part and an upper non-

stiffened part. The FE model contains 96672 nodes and 48713 triangular

shell elements of size ∼ 3 mm. The structure is made of isotropic aluminium

with material parameters given in Table 5.1. The volume of the structure is

6176.3 cm3, and its mass is 17 kg. The goal of the work was to perform a

modal frequency response analysis of the structure subjected to a harmonic
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Figure 5.18: The mean DEA and FEM acceleration response levels of the gearbox
housing of an electric vehicle powertrain due to a harmonic point excitation force of
1 N at the frequency f = 8000 Hz. The acceleration is given in mm/s2.

point excitation force and compare results obtained from the FEM and DEA

methods for frequencies between 5 kHz and 12.5 kHz. However, for the sake of

brevity, results will be shown only for the frequency f = 8000 Hz. The FEM

results are frequency-averaged over one third octave bands, whereas DEA re-

sults are computed at the centre frequencies of these bands. The structure is

meshed in the FEM software “Hypermesh”, and the FEM simulations were

performed using the software “Optistruct”. A harmonic point excitation force

of 1 N is applied at the front side of the structure in the positive Z direction,

and hysteretic damping of 0.5% is assumed.

Figure 5.18 presents DEA and FEM acceleration response amplitudes of the

gearbox housing at the centre frequency f = 8000 Hz. It is noted that the

DEA results agree reasonably well with the FEM results across the upper non-
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(a) with stiffeners (b) without stiffeners

Figure 5.19: The intensity vector field of the gearbox housing with stiffeners (a) and
without stiffeners (b) arising due to a point source at its front side. The structure
colouring represents the mean acceleration levels of the bending mode.

cylindrical part of the structure. However, it appears that the DEA accelera-

tion levels decrease faster than the correspondent FEM levels in the stiffened

part of the structure. During the project, it was found that this discrepancy

is connected to the limited applicability of the DEA method at frequencies,

where the correspondent wavelengths are of the same order as characteristic

lengths of the structure. In fact, the average length between stiffeners along

cylinder’s longitudinal axis is only 10 mm, and the bending wavelength is

∼ 104 mm at the frequency f = 8000 Hz. Consequently, the individual stiff-

eners are not resolved on the wavelength scale. In contrast, in DEA, rays are

assumed to interact with each stiffener via scattering events, thus enormously

increasing their overall path lengths D(X,X ′). Therefore, the overall damping

term exp(−µD(X,X ′)) in Equation (5.3) is overestimated, thus decreasing the

acceleration levels at higher rate compared to the FEM results. Figure 5.19a

presents the intensity vector field obtained from the DEA method at the fre-

quency f = 8000 Hz, and one can see that the wave energy scatters at stiffeners

of the cylindrical part.

The following steps were performed to resolve this problem:

Firstly, stiffeners along the longitudinal axis of the cylindrical part were re-
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(a) effective density

(b) effective thickness

Figure 5.20: Two modification methods of the FE model of the non-stiffened struc-
ture to obtain the same structural mass as the full structure. The first one (a) is
to compute and assign an effective value of material density to the cylindrical part
2, which is different from 1, where the structure is made of aluminium. The second
one (b) is to compute and assign effective thickness of values of shell elements in
parts 1 and 2 by calculating the total volume of removed stiffeners and keeping the
same material density.

moved from the model, and new FEM and DEA simulations were performed

on the non-stiffened gearbox housing. Figure 5.17b presents its FE model, and

Figure 5.19b shows the intensity vector field produced by the point source.

Secondly, since DEA results of the non-stiffened structure cannot be compared

with the FEM results of the initial structure due to the mass difference of

2.9 kg, further modifications of the model were performed. Namely, to obtain

the same structural mass, an effective value of material density was computed

and assigned to the non-stiffened cylindrical part, see Figure 5.20a. In this
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Figure 5.21: The nodes of the FE mesh, where the acceleration response amplitudes
were computed. Input node and nodes 1, 2 and 3 are located on the non-stiffened
part, whereas nodes 4 and 5 are on the stiffened part of the structure.

figure, finite elements on the part labelled 1 are made of aluminium as before.

On the other hand, elements on the part labelled 2 have a new value of material

density 4032.55 kg/m3.

The same mass was also achieved by a different method. Namely, effective

thickness values were assigned to elements on the non-stiffened cylindrical

part by calculating the total volume of removed stiffeners and keeping the

same material density, see Figure 5.20b. In this figure, shell elements on the

part, labelled 1, have thickness value 8.86 mm - before removing stiffeners,

and 15.51 mm - after. Elements on the part, labelled 2, have thickness value

10.04 mm - before removing stiffeners, and 15.76 mm - after.

Finally, another method to resolve the issue of artificially damped acceleration

levels is to compute and assign the effective orthotropic material parameters to

the cylindrical part based on its geometry. These parameters can be computed

using the formula presented, for example, in [206] and in Figure 3.28 of [142].

Following this approach, one can obtain results using a composite DEA method

presented in this chapter. However, this task was not accomplished due to time

restrictions and is regarded as further work to be done outside of the scope of

the current thesis.
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Figure 5.22: Comparison of mean acceleration amplitudes (given in dB), calcu-
lated with different methods on the node positions, described in Figure 5.21, at the
frequency f = 8000 Hz.

Several nodes on the structure are chosen for the point-by-point data com-

parison, and they are described in Figure 5.21. Note that the input and first

three nodes are located on the non-cylindrical part of the structure, whereas

nodes 4 and 5 are on the cylindrical part. A point-by-point comparison of

different DEA results with the FEM ones at the frequency f = 8000 Hz can be

found in Figure 5.22. The accelerations are given in the dB scale. We can note

that the acceleration levels at the input and first three nodes agree well for

all different cases. This is because these nodes are located on the unchanged

non-cylindrical part of the structure. The acceleration levels obtained from

DEA on the complete structure (denoted in dark blue) are much lower than in

other cases at node 5. This discrepancy was discussed earlier, and it was also

seen in Figure 5.18c. The mass smearing approaches do not appear to change

much in acceleration levels at nodes 4 and 5.

5.5 Conclusion

This chapter has considered the extension and implementation of the DEA

method for composite structures that can be meshed by two-dimensional shell

elements. This has been accomplished for the first time in this work, and we
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have used the findings of Chapters 3 and 4 to derive the stationary wave energy

density arising in the structure due to a point or an edge source. To achieve

this, first, we have discussed how the ray tracing formula that governs the

trajectories of energy rays is modified in the case of composite laminated plates.

The boundary integral operator T has been discretised on the triangular FE

meshes, using Legendre polynomials. We have shown how the expressions for

initial 2D phase space densities need to be changed in composite structures.

Solving the linear system consisting of the initial 2D phase space density and

the boundary integral operator yields the stationary 2D phase space density,

which is used to compute the stationary wave energy density at any point of

the structure.

Finally, we have considered several numerical case studies such as a polygonally

shaped plate, an L-shaped composite plate and an electric vehicle gearbox. In

the first case, we have computed the mean response of the polygonally shaped

plate due to a point and an edge sources. Isotropic and composite materials

have been considered to demonstrate how the wave energy is transported and

scattered in each of these cases. Also, the influence of the number of Legendre

polynomials on the results has been investigated.

In the second case, we have computed and compared the DEA and FEM

frequency-averaged responses of an L-shaped angle-ply laminated plate sub-

jected to a harmonic point excitation force. Also, we have computed the

intensity vector field of the bending and longitudinal modes.

In the last case, we have computed and compared the results from the classical

DEA and the full FEM simulation for an electric gearbox housing. We have

presented a limitation of the classical DEA approach on this example and

demonstrated how the composite DEA could provide more accurate results.

This work has been performed during the industrial placement at “Romax

Technology” company.
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Conclusion

In this chapter, a brief overview of the main findings of the thesis is provided.

Furthermore, we discuss further research that could serve as a basis for the

extension of the work.

6.1 Main Contributions

In this section, we briefly review the main goals and contributions of the thesis.

We have been interested in the problem of high-frequency wave energy scatter-

ing and propagation in composite structures. In particular, structures made

of the two-dimensional plate- or shell-like elements with composite laminate

material were considered. We wanted to provide an extension of the DEA

method to such structures.

Chapter 2 aimed to present the main theoretical basics of the DEA method for

two-dimensional isotropic structures. Furthermore, the solution of Helmholtz

and biharmonic wave equations have been presented. Finally, we have identi-

fied and discussed the main modifications needed to allow for DEA application

on composite structures.

Chapter 3 has described in all generality how to compute energy scattering

coefficients of structural junctions made up of thin composite laminated plates

in the line junction approximation. Expressions quantifying transmission and

reflection coefficients as a function of the frequency and the wave number

component kx have been derived. Interesting phenomena such as negative re-

160
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fraction and negative group velocity have been observed and analysed. As a

final step, an effective scattering matrix for a plate with multiple finite stiff-

eners attached to it has been derived and computed for the cases of one and

four stiffeners. The scattering coefficients have been computed explicitly for

examples of two and three composite plates joined together in an L and T

geometry.

A hybrid FE/WFE model that predicts the scattering properties for different

junctions of two-dimensional anisotropic composite plates has been developed

in Chapter 4. The influence of the angle of incidence and the frequency on

the distribution of the power flow of incident bending, shear and longitudinal

type waves has been investigated. A detailed comparison with semi-analytical

evaluations of scattering coefficients derived in Chapter 3 has been presented.

The method gives for the first time a detailed recipe for computing scattering

coefficients for the generic case of an arbitrary number of composite plates

connected at a junction without restrictions on the angles at which the plate

meet or the orientation of the principal axis of individual plates.

Finally, in Chapter 5, we have presented the modified theoretical base of DEA

for composite structures. The findings of Chapters 3 and 4 have been used

to derive the stationary wave energy density arising in the structure due to

a point or an edge sources. Numerical results for the cases of a polygonally

shaped plate, an electric vehicle gearbox and an L-shaped composite plate has

been presented.

6.2 Further work

The current thesis has provided a solid ground for further research regard-

ing wave energy scattering and propagation in composite structures. Several

possible continuation works have been identified. These include

• The thin plate assumption used in theory presented in Chapter 3 can

be relaxed, and the correspondent governing equations can be derived
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from the First- or Third-Order laminated theories [67]. This would allow

us to consider relatively thick composite plates in the derivation of en-

ergy scattering coefficients and to validate the WFE method results for

such structures. Also, one can extend the curved shell theory presented,

for example, in [98, 138] and compute energy scattering coefficients of

composite shell-plate junctions.

• The work presented in Section 3.6 has considered the case of the stiff-

ened plate. Following the approach presented in [194, 195, 207], one can

extend this work to the case of periodic grillages consisting of composite

beams and plates. This would allow us to compute effective wave vector

curves of such metamaterials for the whole frequency domain, not only

for high frequencies. In structures consisting of such metamaterials, one

can compute effective scattering coefficients at their junction parts.

• The WFE method presented in Chapter 4 can be extended for curved

composite structures and their junctions with composite plates. This

can be easily done by following the approach presented in [208, 209].

• The extension of the DEA method for composite structures presented

in Chapter 5 is based on the same assumptions as of the classical DEA

method. In particular, the wavelengths of propagating modes must be

shorter than the characteristic dimensions of the structure. We have

seen the implication of breaking this assumption in the case of an elec-

tric vehicle gearbox considered in subsection 5.4.3. In the low-frequency

regime, stiffened plates can be regarded as orthotropic plates, allowing

application of the presented composite DEA method.

• The other limitation of the DEA method is that the curved parts of the

structure are considered as the set of plate-like elements connected in the

mesh. Energy rays follow not straight, but rather geodesic lines on curved

structures [175, 210]. This limitation can be circumvented by allowing
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the momentum vector p to be dependent on the curved geometry, thus

complexifying the Hamilton equations (5.2).

• Finally, it is assumed that energy rays scatter in a specular manner at

discontinuities of a structure. This restriction can be relaxed by rep-

resenting the kernel of the phase-space density propagating operator T

as a sum of specular and diffusive components [211]. This would allow

accounting for irregular or random surfaces.
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Appendix A

Special laminated plate stiffness
coefficients derivation

In this appendix, we describe how extensional, bending-extension coupling
and bending stiffness coefficients of regular cross- and angle-ply symmetric
laminates with alternating material angle of orientation between layers are
related to plane-stress reduced stiffnesses of an orthotropic lamina (see [1,
212]).

A.1 Cross-ply symmetric laminates

We consider a cross-ply symmetric laminate consisting of n specially orthotropic
layers of the same material with principal material directions alternating be-
tween 0◦ and 90◦. The number of layers n must be odd for the laminate to
be symmetric. The odd-numbered layers are reinforced in the x axis of the
laminate. The principal direction of the even-numbered layers coincides with
the y axis of the laminate. Furthermore, the thicknesses of the odd-numbered
layers are all equal. The same applies for the even-numbered layers, however,
this thickness can be different from that of the odd-numbered layers. We de-
note as m the ratio of total thickness of the odd-numbered layers to that of the
even-numbered layers. Further, F is defined as the ratio of principal stiffnesses
of a layer, i.e. F = Q22/Q11 = E2/E1. The extensional and bending stiffnesses
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of the laminate can be expressed as

A11 = h
m+ F

1 +m
Q11

A22 = h
1 +mF

1 +m
Q11

A12 = hQ12

A66 = hQ66

D11 =
h3

12
[(F − 1)P + 1] Q11

D22 =
h3

12
[(1− F )P + F ] Q11

D12 =
h3

12
Q12

D66 =
h3

12
Q66

with

P =
1

(1 +m)3
+
m(n− 3) [m(n− 1) + 2(n+ 1)]

(n2 − 1)(1 +m)3

.

(A.1)

A.2 Angle-ply symmetric laminates

We consider an angle-ply symmetric laminate consisting of n generally or-
thotropic layers of the same material with principal material directions alter-
nating between −α and α, α ∈ (0◦, 90◦). The number of layers n must be odd
for the laminate to be symmetric. The odd-numbered layers are oriented at
−α, the even-numbered layers are oriented atα with respect to the x axis of the
laminate. All layers are assumed to have the same thickness. The extensional
and bending stiffnesses of the laminate can be expressed as

A11 = hQ11

A22 = hQ22

A12 = hQ12

A66 = hQ66

A16 =
h

n
Q16

A26 =
h

n
Q26

D11 =
h3

12
Q11

D22 =
h3

12
Q22

D12 =
h3

12
Q12

D66 =
h3

12
Q66

D16 =
h3

12

[
3n2 − 2

n3

]
Q16

D26 =
h3

12

[
3n2 − 2

n3

]
Q26

(A.2)



Appendix B

Plane stress-reduced stiffnesses

The plane stress-reduced stiffnesses Qij of a generally orthotropic lamina in
(2.46) can be related to the stiffness coefficients Q̄ij of the same lamina de-
scribed in a local coordinate system aligned with the principal material coor-
dinate axes as follows:

Q11 = Q̄11 cos4φ+ 2
(
Q̄12 + 2Q̄66

)
sin2φ cos2φ+ Q̄22 sin4φ,

Q12 =
(
Q̄11 + Q̄22 − 4Q̄66

)
sin2φ cos2φ+ Q̄12

(
sin4φ+ cos4φ

)
,

Q22 = Q̄11 sin4φ+ 2
(
Q̄12 + 2Q̄66

)
sin2φ cos2φ+ Q̄22 sin4φ,

Q16 =
(
Q̄11 − Q̄12 − 2Q̄66

)
sinφ cos3φ+

(
Q̄12 − Q̄22 + 2Q̄66

)
sin3φ cosφ,

Q26 =
(
Q̄11 − Q̄12 − 2Q̄66

)
sin3φ cosφ+

(
Q̄12 − Q̄22 + 2Q̄66

)
sinφ cos3φ,

Q66 =
(
Q̄11 + Q̄22 − 2Q̄12 − 2Q̄66

)
sin2φ cos2φ+ Q̄66

(
sin4φ+ cos4φ

)
.

(B.1)

Here, φ is the angle of rotation of the principal material coordinate system
with respect to the local coordinate system of the lamina. Furthermore, Q̄ij

can be expressed in terms of the material constants as follows:

Q̄11 =
Ex

1− νxyνyx
, Q̄22 =

Ey
1− νxyνyx

,

Q̄12 = νxyQ̄22, Q̄66 = Gxy, νyx = νxy
Ey
Ex
.

(B.2)

Note, that for φ = πn/2, n ∈ Z, the plane stress-reduced stiffnesses Q16 and Q26

are equal to zero, the corresponding laminas are called specially orthotropic.
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Appendix C

List of Abbreviations

FE Finite Element
FD Finite Difference
BE Boundary Element
SEA Statistical Energy Analysis
WIA Wave Intensity Analysis
EFEA Energy Finite Element Analysis
DEA Dynamical Energy Analysis
ESL Equivalent Single Layer
SE Spectral Element
WFE Wave Finite Element
CLP Classical Laminated Plate
FSDL First-order Shear Deformation Laminated
HSDL Higher-order Shear Deformation Laminated
TSDL Third-order Shear Deformation Laminated
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