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Abstract

The green revolution led to a drastic increase in crop yields through chemical

fertilisers, dwarf varieties and introduction of new methods of cultivation. We

now face challenges such as climate change and soil degradation that require the

development of crops resilient to adverse conditions in order to maintain an ad-

equate food supply for the still growing world population. In order to maintain

crop yields in soils with low nutrient availability or drought conditions we need

to get a better understanding of the interactions between root system traits, soil

environment and plant development. Compared to shoots, roots are hard to

study because they are hidden from view by the soil. This makes mathematical

models of roots a powerful tool to help us study root systems. We use Open-

SimRoot, a functional-structural plant model to study the effects of various root

system architectures on plant development in challenging environments, adding

new functionality to expand the capabilities of OpenSimRoot. Our simulations

showed that the effect of root loss on plant development depends on nutrient

availability, plant species and root system phenotype, varying from very detri-

mental to slightly beneficial. Simulations of plants under drought implied that

parsimonious and deeper rooting phenotypes perform better because of a large

reduction in root carbon costs, increasing water uptake efficiency. We also show

that machine learning techniques are a useful tool for root trait optimisation

over a very large space of possible root system architectures. Our findings show

that root system architecture has a large impact on plant development, especially

in challenging environments and if we want to breed crops which are suited to

deal with the challenges ahead of us we need to think about roots just as much

as shoots. Our work also shows the benefits of interdisciplinary approaches by

combining mathematical modelling with statistical machine learning in order to

increase our understanding of biological systems. We hope our work will lead to

increased collaborations across disciplines so that we may gain a better under-

standing of the hidden half of plants.

1



Acknowledgements

I am deeply grateful to Professor Markus Owen for his invaluable supervision,

guidance in times of need and detailed feedback on all aspects my studies. I

could not have wished for a better supervisor. I would also like to thank Doctor

Leah Band for her digilent supervision and helping me work through difficult

problems. I am grateful to Doctor Etienne Farcot for his patience in supervising

me and for his invaluable advice. My gratitude extends to Professor Malcolm

Bennett for supervising me and infecting me with his enthusiasm for science. I

would like to express my sincere gratitude to Professor Jonathan Lynch for his

guidance and supervision, for providing me with a new framework for thinking

about biology and for pointing me towards interesting questions. I am also grate-

ful to Doctor Nathan Mellor for helping me get started with OpenSimRoot. I

would like to thank Doctor Johannes Postma, Christian Kuppe and Doctor Chris

Black for helping to refine my understanding of OpenSimRoot. I would like to

thank Doctor Ishan Ajmera for working with me on implementing and testing

drought related models. I am also grateful to Doctor Ian Vernon for sharing his

statistical expertise and guiding me through complicated mathematics. I would

like to thank my friends and colleagues from the Modelling and Analytics for a

Sustainable Society programme for the good times we shared both in and outside

the office. My appreciation goes out to my family, and especially my parents for

their support and encouragement during all of my studies. Special thanks go out
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Chapter 1

Introduction

Plants form the basis of the terrestrial ecosystem. Energy, in the form of sunlight,

enters the ecosystem through the process of photosynthesis, which fixes carbon

into energy carrier molecules. Through herbivory, these molecules enter the an-

imal kingdom and allow the existence of other forms of life. Humanity realised

the importance of plants for nutrition thousands of years ago and when some

hunter gatherers transitioned to a sedentary agricultural lifestyle our way of life

was about to fundamentally change. While the genetic mechanisms would no be

uncovered for thousands of years, early farmers understood how to increase yields

through selective breeding and the resulting food surpluses meant that it was no

longer a necessity for everyone to spend their time producing food. This lead

to the emergence of new occupations and technologies and set the stage for our

modern civilisation. Through the ages agricultural yields have increased because

of improvements in irrigation, soil management practices, selective breeding and

better tools. The most recent agricultural revolution happened between the 1940s

and the 1960s, the so-called Green Revolution which led to massive increases

in crop productivity and preceded a population boom. The Green Revolution

drastically changed agriculture around the world, making extensive fertilizer and

pesticide use a common practice in most parts of the world.

Because of unsustainable farming practices, soil quality is degrading in many

parts of the world. Fertiliser and irrigation use can partially address this, but

these are expensive, energy intensive, pollute the surrounding environment and

are not feasible for many farmers, especially in Africa and South-East Asia. Cli-

mate change is expected to exacerbate the deterioration of soil quality as well
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as lead to more floods and droughts. This threatens food security, especially

because the human population is predicted to increase to 9.6 billion by 2050.

Thus the challenge we face is to ensure food security despite the deterioration

of soil and the shift in environmental conditions that climate change is expected

to bring. Because the environmental changes will strongly impact nutrient and

water availability, it seems clear that we should increase our understanding of

how plants acquire water and nutrients in a variety of environments. Evidently

the place to start our investigation is with the organs responsible for the uptake

of water and nutrients, the roots.

Since roots are (mostly) underground, they are more difficult to study than other

parts of the plant. Until recently, one had to dig up the roots to study them, irre-

vocably altering their environment and often destroying the more delicate parts

of the root system in the process. With the advent of computers and modern

imaging techniques, new avenues to study roots have been opened up. In this

thesis, we will use a computer simulation model, OpenSimRoot [156], to study

the relation between root traits, water and nutrient uptake and crop productivity.

We do this with the aim of increasing crop productivity in environments with low

nutrient and water availability.
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1.1 Thesis overview

Chapter 1 is this introduction. Chapter 2 provides an overview of relevant plant

science research and concepts. It describes soils, nutrient and water uptake, pho-

tosynthesis, functions of roots, root system architecture and methods of studying

roots. Finally, it provides a general overview of root system architecture mod-

elling and a brief description of OpenSimRoot and some important models in

OpenSimRoot. Chapter 3 is a draft paper describing an OpenSimRoot study on

the effect of root loss on barley, bean and maize in a number of different envi-

ronments. A root loss module was developed for OpenSimRoot for this purpose.

Chapter 4 describes a number of models related to photosynthesis and plant wa-

ter status that we added to OpenSimRoot. These models enable modelling of

C3 and C4 photosynthesis and stomatal responses to drought in OpenSimRoot,

which was not possible before. The results of an OpenSimRoot study with these

models comparing two different phenotypes under well-watered and drought con-

ditions are laid out. Chapter 5 lays out an emulation-based approach that was

used to determine the root architectural parameters associated with the highest

maize shoot dry weight for plants grown in a soil low in nitrogen, phosphorus and

potassium. It highlights how statistical machine learning techniques can be used

to get a grip on high-dimensional parameter spaces for models with long running

times such as OpenSimRoot. Appendix A contains supplementary material relat-

ing to Chapter 3. Appendix B contains tables of symbols, constants and variables

related to the drought model of Chapter 4 and various tables related to Chapter

5. Appendix C contains a descriptions of a useful numerical optimisation used in

Chapter 5. Appendix D contains a comprehensive guide to getting started with

running OpenSimRoot and developing new functionality.
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Chapter 2

Literature Review

Plants are vital for life on earth. Plants take up carbon from the air in the form

of CO2 and use photosynthesis to produce the carbohydrates that are important

energy carrier molecules in most biological organisms. These carbohydrates are

used for growth, respiration and reproduction or stored for later use. All animals

depend, directly or indirectly, on these carbohydrates to survive and reproduce.

But it is not just because of these carbohydrates that plants are essential for

terrestrial life on earth. Plants also contain the mineral nutrients that organisms

need to function. Most plants acquire these mineral nutrients, along with wa-

ter needed for photosynthesis and transpiration, from the soil through their root

system. Apart from this essential task, roots fulfill other tasks, such as providing

anchorage for the plant or storing water and/or nutrients. In light of this, it is not

surprising that most plants invest considerable resources in their root systems.

This is evidenced by the fact that the dry weight (the weight after removing all

water by drying) of the roots can be larger than the dry weight of the shoot

for a range of species, including trees, which have a considerable aboveground

presence [32, 64, 105]. It is not just the relative size of the root system that

highlights its importance, considerable resources are invested in maintaing roots

as well. More than a fifth of the carbon plants produce by photosynthesis can be

spent on root respiration [8, 150]. Plants subjected to nutrient stress often shift

their biomass allocation in favour of roots and under these conditions they can

spend as much as 50% of their daily assimilated carbon on respiration [138, 101].

Plants can also spend a significant fraction (8-17%) of the carbon they produce

[81] on root secretions. These secretions, called root exudates, serve a multitude

of purposes, such as providing a lubricant that helps the roots penetrate the soil
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[127], enhancing the acquisition of immobile nutrients such as phosphate [124,

143], helping the plant defend against pathogens [10, 206] and altering the pH

value [15] and microbiome of the rhizosphere [11].

Roots are also an integral component of the soil carbon cycle. Plants take up

carbon in the form of CO2 from the air and use this to produce carbohydrates

(sugars). This is then used for respiration, growth, reproduction, or stored for

later use. Plants, as well as animals, return the carbon to the atmosphere when

they combine the carbohydrates with oxygen to release the chemical energy con-

tained in it. There are of course many more components in the carbon cycle, as

it involves all life on land, in the seas and in the soil. The soil is estimated to

contain three times more organic carbon than the vegetation that grows on it,

making it the largest reservoir of organic carbon in terrestrial ecosystems [153].

Many organisms in the soil rely on this supply of organic carbon. This is es-

pecially true for the organisms in the rhizosphere, which is the region of soil

directly influenced by root secretions. Plant detritus is another major source of

soil carbon, with roots contributing more than shoots, especially in deeper soil

layers [65, 165]. Cereals, for example, are estimated to sequester about 1500 kg C

ha−1 yr−1 into the soil [99]. It is important to note that changes in agricultural

practices and rooting patterns could potentially increase the amount of carbon

sequestered in the soil by about 300 to 800 kg C ha−1 yr−1 increasing the total

amount of C stored permanently in the soil by 50 tonnes C ha−1 [94]. This could

form a significant component of the efforts to mitigate the severity of climate

change.

2.1 Photosynthesis

Photosynthesis is the process by which plants fix energy from sunlight into carbo-

hydrates. In the process, carbon dioxide (CO2) is fixed from the atmosphere and

oxygen (O2) is often (but not always) released as a waste product. For a more

comprehensive overview, see [14, 141]. We will give an overview of the processes

most relevant to this thesis.

Photosynthesis in plants requires light, carbon dioxide and water, as well as the

11



proteins involved in the process, most notably chlorophyll, and nutrients required

to replenish those. Light is provided by the sun and absorbed by chlorophyll pig-

ments in the leaves. Since chlorophyll does not absorb green light, leaves appear

green to us. Absorbed light excites electrons which starts a flow of electrons

down an electron transport chain, a series of reactions that transfers electrons

from donor to acceptor molecules. In these light-dependent reactions, ATP and

NADPH, energy carrying molecules, are produced some of which are later used in

the light-independent reactions. Relevant for our purposes is the fact that light

is needed at two steps in the electron transport chain, and is absorbed by protein

complexes called photosystem 1 and 2 (PSI and PSII).

Carbon dioxide enters leaves through stomata, pores in the epidermis (the outer

layer of tissue) of leaves through which gas exchange happens. A pair of spe-

cialised cells called guard cells are situated at each stomata, which allows the

plant to control the rate of gas exchange. Through the stomata, carbon dioxide

enters substomatal chambers from which it can diffuse into what are called meso-

phyll cells. In C3 plants, which fix carbon through the Calvin cycle, this is where

carbon is fixed by the enzyme RuBisCO (Ribulose-1,5-bisphosphate carboxylase-

oxygenase). This enzyme catalyses the carboxylation (a reaction which produces

a carboxylic acid from a substrate and carbon dioxide) or RuBP (ribulose-1,5-

bisphosphate). RuBisCO has the unfortunate property that it also catalyses the

oxygenation of RuBP, which is called photorespiration. Photorespiration is a

wasteful process that creates toxic waste products that need to be detoxified,

which costs valuable energy. Because of this, photosynthesis is most efficient

when there is a high CO2 concentration at the site of carboxylation. In C3 plants

this requires a high stomatal aperture which allows CO2 to enter the mesophyll

cells easily. This comes at a cost, since it also means that water diffuses out of the

stomata easily. While some water is needed in the photosynthesis reaction, this is

negligible in comparison to the amount of water lost to transpiration. The water

loss due to transpiration creates a low hydraulic potential which allows the plant

to transport water and nutrients from the roots up to the shoot. Transpiration

also lowers leaf temperature, this can help prevent heat stress from damaging

leaf tissues. If water is in short supply, plants reduce stomatal aperture to limit

water loss, but this also reduces photosynthesis rates because mesophyll CO2
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concentrations will decrease.

While the majority of plant species on earth use C3 photosynthesis, there are

other pathways used by a small number of species. One of these is the C4 path-

way, used by, for example, maize, sugarcane and millet. The C4 pathway is an

example of convergent evolution, having evolved up to 61 times in different plant

families. Plants that use this pathway temporarily fix carbon in mesophyll cells to

PEP (phosphoenolpyruvate), which is then transported to what are called bundle

sheath cells. Here carbon is fixed into sugars by RuBisCO. This allows C4 plants

to fix more CO2 with the same amount of transpiration, their water use efficiency

is higher. At high temperatures, the oxygen affinity for RuBisCo increases, which

increases the advantages of C4 over C3 photosynthesis as temperatures increase.

However, because of the extra steps involved, C4 plants are less efficient when

water is plentiful since they need to spend energy carboxylating and regenerating

PEP. C4 plants are also more nitrogen efficient because PEP carboxylase requires

less nitrogen than RuBisCO. C4 plants have an advantage when water and nitro-

gen are limiting but light is plentiful and temperatures are high, while C3 plants

have an advantage when light is limiting, water and nitrogen are readily available

and temperatures are low.

2.2 Soils

We provide a brief overview of relevant soil science here, for a more comprehen-

sive introduction, see [79]. Soil is generally divided into three layers, the topsoil,

subsoil and parent material. The parent material generally is bedrock that the

other soil layers rest on. Plants grow in the topsoil and subsoil layers. Soils

consist of mineral particles, organic matter and contains gaps (pore spaces) that

are filled with water and air. The relative amounts of these components deter-

mine the physical properties of the soil, as well as its suitability for plant growth.

The mineral component of soil consists of rock particles of varying sizes, called

sand, silt and clay. These terms refer to particles of different size and the relative

amounts of these determine the texture of the soil. Sand particles are the largest,

ranging from 0.05 to 2.0 mm. Silt particles range from 0.002 to 0.05 mm while

particles smaller than 0.002 mm are the smallest and make up the clay particles.
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Clay particles consist of different minerals than sand and silt and has a platelike

structure, as opposed to the more spherical shapes of sand and silt particles. The

relative proportions of these three types of particles determine the soil type, as

shown in Figure 2.1.

Figure 2.1: A soil texture diagram of soil types according to their clay, silt and
sand fractions [168].

As a soil particle decreases in size, the ratio between surface area and volume

increases. This means that soils consisting of smaller particles have a larger spe-

cific surface area (surface area per gram). Soils with a large specific surface area

can hold more water and nutrients and often contain higher amounts of organic

matter. Sandy soils are unable to retain water or nutrients for long and are hence

difficult to cultivate. Clay soils present other difficulties in that they are very hard

when dry and very sticky when wet. Soils with high specific surface area have

a high buffer power for certain nutrients, which prevents nutrient concentrations
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from declining rapidly.

The pore structure of a soil also affects the ability to retain water. Pores are

grouped into three categories, macro (large), meso (medium) and micro (small)

pores. Macropores drain rapidly because the adhesion and cohesion forces are

not sufficient to overcome the gravitational pull exerted on the water. Soil com-

paction decreases the amount of pores and the pore sizes and detrimentally affect

a soil’s capacity to retain water. It also prevents water from being absorbed by

the soil, leading to drainage problems. Apart from soil compaction, there are

other processes that threaten soil quality and fertility. Topsoil erosion occurs

naturally and is usually a slow process but certain land management practices

can increase the rate of erosion. Rain can cause soil erosion, especially when

reduced filtration leads to surface water runoff. Wind erodes soils by blowing

soil particles away. Tillage leads to erosion, by exposing soil to water and wind

erosion and causing soil particles to move downslope. Worldwide, many topsoils

are subject to erosion, decreasing fertility, as can be seen in Figure 2.2. Vegeta-

tion can protect soils from erosion, by shielding the soil from the direct impact

of rain, providing cover from wind and increasing the capacity of soils to take up

water. Cover crops are often used to shield soils outside the growing season.

Most soils contain organic matter, which is composed of deceased plants and ani-

mals. It contains many different soil organisms such as bacteria, fungi and insects,

which consume the organic matter and/or plant roots for sustenance. These or-

ganisms break down the organic matter and release CO2, which increases the

acidity of the soil. The CO2 reacts with soil minerals and releases nutrients in

forms that can be taken up by plants. The amount of organic matter in a soil

depends on the amount of precipitation, the temperature and the drainage rate

of the soil, amongst other factors. Soils that drain quickly, have a large pore frac-

tion or are tilled frequently tend to contain more air which increases the organic

matter decomposition rate. Soils with poor drainage have a low oxygen content

which limits the decomposition of organic materials.
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Figure 2.2: Soil degradation around the world [166].

As described above, the pores in a soil are important in determining the water

retention capacity of a soil. There are typically three forces acting on water

molecules in the soil: gravity, cohesion forces and adhesion forces. Gravity pulls

water downwards through the soil and causes soils to drain over time. Cohesion

forces between water molecules, are stronger than the cohesion forces between

most other substances because water molecules form hydrogen bonds. The strong

cohesion of water molecules creates a surface tension. Adhesion is the attraction

between water molecules and solid surfaces, such as soil particles. Water also ex-

hibits capillary action, which allows it to move up narrow tubes. Capillary action

happens when the adhesion forces of a fluid to a solid tube exceeds the cohesion

forces within the fluid. A concave meniscus forms and the surface tension pulls

the fluid upwards. Capillary action allows the soil to retain water and move it

upwards or horizontally. Finer textured soils have smaller pore sizes and thus

have stronger capillary action.
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2.3 Nutrients

We summarise the basics of plant nutrition here, for a more comprehensive

overview see [12]. There are three criteria that determine if a nutrient is es-

sential:

• The plant is unable to complete a regular life cycle in the absence of this

element.

• No other element is able to completely substitute for the element.

• The element is part of an essential plant constituent or metabolite or the

element is required for the activity of an essential enxyme.

Following these criteria, there are 18 elements that are essential for plants. They

are generally divided into macronutrients and micronutrients. Macronutrients

are present in large quantities in plants and make up the bulk of the dry weight

of plants while micronutrients make up less than 0.02% of plant dry weight and

the presence of micronutrients in plant tissues is typically measured in parts

per million. Macronutrients are further subdivided into structural, primary and

secondary nutrients. The structural macronutrients are carbon, hydrogen and

oxygen. The primary macronutrients are nitrogen, phosphorus and potassium.

The secondary macronutrients are calcium, sulfur and magnesium. The micronu-

trients are iron, boron, chlorine, manganese, zinc, copper, molybdenum, nickel

and cobalt. Hydrogen, oxygen and carbon are obtained from air and water while

the other macro and micronutrients are acquired from the soil by most plant

species. The Sprengel-Liebig law of the minimum states that crop growth is lim-

ited by the scarcest resource [148]. Because of this, maximum crop yield will

only be attained if all essential elements are sufficiently available, in the right

proportions.

Of the macronutrients acquired from the soil, nitrogen is needed in the largest

quantities and often limits crop productivity in the absence of fertilizers. While

dinitrogen (N2) forms about 78% of the earth’s atmosphere, only a few species

have evolved the ability to fix nitrogen from the air. Nitrogen exists in many

different forms but most plants can only take up inorganic nitrogen, ammonium

(NH+
4 ) and/or nitrate (NO−

3 ), directly. This makes understanding the nitrogen
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cycle an important component of understanding plant functioning in different en-

vironments. The most important transformations of nitrogen are fixation, miner-

alisation, immobilisation, nitrification, denitrification, volatilisation and leaching.

We will discuss each of them briefly.

• Fixation is the process that converts atmospheric nitrogen (N2) to ammo-

nium (NH+
4 ). Some bacteria can convert atmospheric nitrogen to ammo-

nium and several plant species, such as legumes and rice, are able to form

a symbiotic relationship with nitrogen-fixing organisms. The Haber-Bosch

technique is a chemical process that fixes nitrogen from the atmosphere,

however, this requires large amounts of fossil fuels. Nitrogen also enters

the soil through abiotic processes such as acid rain and lightning (light-

ning breaks the strong molecular bonds between nitrogen atoms in N2 after

which these nitrogen atoms react with oxygen and water, forming NOx,

HNO3 and NO−
3 ).

• Mineralisation is the conversion of organic forms of nitrogen into ammonium

by microbes. The rate of conversion depends on the amount of organic mat-

ter in the soil, the temperature, the oxygen content, soil moisture content

and the amount of carbon in the soil.

• Immobilisation is the conversion of inorganic nitrogen, ammonium (NH+
4 )

and/or nitrate (NO−
3 ), into organic nitrogen, the reverse of mineralisation.

This often happens if soil organic matter is high in carbon but low in ni-

trogen.

• Nitrification is the conversion of ammonium (NH+
4 ) to nitrate (NO−

3 ) by

soil organisms. Ammonium is first converted to nitrite (NO−
2 ), which is

poisonous to plants, and then to nitrate.

• Denitrification is the conversion of soil nitrate (NO−
3 ) to atmospheric dini-

trogen (N2) by soil organisms. This only occurs when carbon is present and

oxygen is absent.

• Volatilisation is the loss of ammonium (NH+
4 ) through conversion to ammo-

nia gas (NH3) which is released to the atmosphere. Volatisation can lead to

considerable nitrogen losses when soil pH rises above 7.5 and temperatures

are high enough.
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• Leaching is the process by which substances drain out of soil with the water.

While ammonium is retained well by the soil and thus mostly immobile,

nitrate is highly mobile and can leach out of the soil easily. Apart from

drastically lowering the nitrate content of the soil, this can cause damage

to the environment.

The second important primary nutrient is phosphorus. It is needed in smaller

quantities than nitrate but often a limiting resource, especially in the tropics.

Phosphorus is usually taken up as H2PO
−
4 or HPO2−

4 but some organic forms

of phosphorus can also be taken up by plants. Like the nitrate cycle, the phos-

phorus cycle is complex and consists of many different processes. Unlike many

other cycles, the atmosphere is not a significant component of the phosphorus

cycle. Phosphorus tends to bind tightly to soil particles, through a process called

sorption. This means that in many soils, a significant fraction of the phosphorus

is not found in the soil solution but in unavailable, bound forms. Because of this,

phosphorus is called ”buffered”. The processes of precipitation, when phosphorus

forms a solid mineral in reaction with other substances, and dissolution, when

phosphate minerals dissolve and release phosphorus, are both important for the

phosporus cycle, though they are both very slow processes. Like nitrate, phospho-

rus is subject to mineralisation and immobilisation. Because phosphorus tends

to bind tightly to soil particles, it is less mobile and less likely to leach out of the

soil. This also means it is often concentrated in the topsoil. Most plants, includ-

ing maize, barley, wheat and rice, form symbiotic relationships with mycorrhizal

fungi that form long and thin hyphae and enhance phosphorus uptake.

2.4 Root functioning

See [132] for a more comprehensive overview of the mechamisms behind plant

uptake of water and nutrients. Water is vital for plants, just as it is vital for any

living organism. Plants take up water by generating a water potential (which is

the potential energy of water at a reference pressure, temperature and elevation)

in their roots that is lower than the water potential in the surrounding soil. They

have to overcome the capillary and adhesive forces that bind water to the soil.

The primary process by which plants do this is by evaporating water in the shoot.

The shoot is hydraulically connected to the roots through the xylem vessels that
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run through the plant tissue and this creates a low water pressure potential in

the roots. Furthermore the osmotic potential of root cells is generally lower than

the osmotic potential of the soil solution and this difference in osmotic potential

causes water to move into the roots. There are also active processes that help

absorb water from the soil. Once water has entered the root it is transported in-

wards to the xylem vessels which carry it upwards to the shoot. The most widely

accepted explanation of how plants are able to transport water to canopies that

can be up to 100 metres above the soil surface is the cohesion-tension mechanism:

menisci at the air-water interface in leaves are exposed to evaporation; the sur-

face tension pulls water molecules into the locations occupied by molecules that

have evaporated; because of the strong cohesion in the xylem sap, this pull is

transmitted along the continuous water column all the way down to the roots.

Plants have developed a wide variety of strategies that increase their ability to

take up nutrients from the soil. As mentioned before, nutrients are often found

in the form of charged particles and are often electrostatically bound to the soil.

To displace them from the soil, many plants exude protons (H+). This is es-

pecially important for immobile nutrients such as phosphorus, most of which is

often bound to the soil. Roots also contain transport proteins that aid in nutrient

uptake. Passive transporters act as channels that allow substances that typically

cannot pass through the cell wall and membrane to enter the roots. Active trans-

porters are able to move solutes against concentration gradients, but consume

energy in the process.

Plants have developed several strategies that increase the surface area of their

root-soil interface. Root hairs are long and thin outgrowths formed by cells in

the root epidermis above the elongation zone. Root hairs have a high surface to

volume ratio because of their long and thin structure and they allow plants to

explore a much larger fraction of the soil, this makes them very useful for the up-

take of immobile nutrients such as phosphorus. Another strategy that increases

the fraction of soil that a plant can explore is the formation of a symbiotic rela-

tionship with mycorrhizal fungi. Over 80% of all plant families form mycorrhizae

and some plants depend on them for development [23]. The plant supplies the

fungus with carbohydrates and in return the fungus provides the plant with water
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and nutrients. The fungus does this by forming hyphae, long root-like filaments,

that are able to explore large parts of the soil that the plant would not reach by

itself. Some fungi also have the ability to mobilize mineral nutrients from the soil

through releasing chemicals.

A different form of symbiosis allows plants to fix nitrogen from the air. Only

a limited number of species, including legumes, can form this symbiotic rela-

tionship with nitrogen-fixing bacteria, called rhizobia. The symbiosis is initiated

when the plant releases a chemical, which signals that it is looking for rhizobia

[206]. Rhizobia respond by releasing nodulation factors, which prompts the plant

to form a specialised type of root hairs that allow the rhizobia to enter the root

tissue. Cells start dividing to form a root nodule containing the rhizobia, that fix

atmospheric nitrogen for the plant, in exchange for carbohydrates. Plants that

can form this symbiotic relationship can be used to increase the soil nitrogen

levels.

We mentioned root exudation, the secretion of various molecules by roots, be-

fore. Root exudates do not only serve to make nutrients better available for

uptake, they fullfill a variety of other functions. The region of soil that is directly

influenced by root exudates is called the rhizosphere. In the rhizosphere root ex-

udates change soil pH to facilitate nutrient uptake, neutralise toxic compounds,

regulate soil microbiota, encourage beneficial symbioses, inhibit growth of com-

peting plant species and release toxins against pathogens [198, 206]. There is still

much we do not understand about the interactions between root exudates and

soil micro-organisms. A recent study found that gases emitted by roots can influ-

ence soil microbia several centimetres away from the roots [151]. For the purposes

of this thesis, we are mostly interested in exudates as a process with a carbon cost.

Waterlogged plants commonly develop (root cortical) aerenchyma (RCA), en-

larged gas spaces in root tissue [57, 213]. They allow for the transport of oxygen

to the roots which would otherwise suffer from anoxic conditions and transport

gases from the soil to the atmosphere. Carbon dioxide produced by roots and soil

organisms is one of the gases transported up by aerenchyma, as is methane, an im-

portant greenhouse gas. It is estimated that more than 80% of methane emitted
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from waterlogged soils reaches the atmosphere via aerenchyma [28]. Aerenchyma

can also form in dryland species such as barley, maize and wheat as a result of

normal development or stress. Aerenchyma can reduce radial nutrient transport

into roots because nutrients can not travel across the air-filled cavities [84] but

also decreases root respiration carbon requirements, providing an advantage in

certain environments [36, 159].

2.5 Root System Architecture and its Im-

portance

Architecture plays an important part in root functioning [111, 113]. Root archi-

tecture, while mostly determined by genotype, is known to change in response

to environmental factors [108, 154]. This indicates that different architectural

adaptations are needed for differing environments. One major environmental

constraint that plants have to adapt to is spatial and temporal inhomogeneity

that soils often exhibit. This includes variation in soil type and structure as

well as nutrient and water content [90]. This inhomogeneity is due to the nat-

ural processes of soil morphogenesis, natural processes like wetting, drying and

temperature changes, the activity of organisms like earthworms and the roots

themselves. A consequence of this inhomogeneity is that a plant can potentially

save a lot of resources by growing roots where they will be most efficient and

avoiding nutrient-poor or dry patches of soil.

Indeed, plants have developed adaptations to heterogeneous conditions. An often

observed response to nutrient-rich patches is a local increase in root proliferation

[170, 171]. Another example is the observation that low phosphorous availability

leads common bean plants to grow a more shallow root system, while a deeper

root system is grown in response to water stress [80]. As the previous exam-

ple illustrates, different environmental stresses can lead to opposite responses,

indicating that plants have to find a balance between extremes. A better un-

derstanding of the stresses and external conditions a plant experiences and the

costs and benefits of architectural adaptations to these will allow us to find yield-

improving phenotypes adapted to different environments more efficiently.

Having considered the importance of roots and root architecture we shall now
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provide some key definitions:

• Morphology: The shape or surface features of roots as organs. This in-

cludes features like root hairs, the root diameter, the root length, the distri-

bution of lateral roots amongst others. The morphology can be determined

by inspection of the root in question.

• Topology: The way in which roots are connected to each other, ignoring

the precise spatial configuration (modulo deformations and rotations). This

definition coincides with the mathematical one and as such only tells us

which roots subtend from each other. The topology can be determined

through any method of measuring which keeps roots intact.

• Distribution: The average spatial distribution of roots in the soil. Knowl-

edge of the distribution provides you with the expected values for root

length density or root biomass per volume. The distribution can be mea-

sured by taking soil samples and measuring the amount of root length or

root biomass.

• Architecture: The precise spatial configuration of the root system; how

roots are connected and their locations in the soil. Usually, root hairs and

other fine details are not taken into account when studying root architec-

ture. Measuring architecture requires careful measurement the position of

each root, as well as its connections to other roots, either through nonde-

structive imaging or careful excavation of the root system.

It is clear that knowledge of root system architecture implies knowledge of the

topology and distribution. Topology and distribution are generally good proxies

for architecture but can not fully capture it [111]. The following terms are often

used to characterise root systems [9]:

• Embryonic root: Roots derived from the embryo (seed). Primary and

seminal roots (see below) make up the embryonic roots. Roots which form

after germination are referred to as postembryonic roots.

• Primary root: The first root to appear from the seed as it germinates is

called the primary root or tap root (see below). The primary root is also

referred to as radicle.
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• Tap root: A large primary root from which all the other roots emerge

laterally is called a tap root. Tap roots can develop into storage organs

such as is the case for carrots.

• Seminal root: The embryonic roots, excluding the primary root, are called

seminal roots. Sometimes the primary root is also counted among the

seminal roots.

• Adventitious root: Any postembryonic root which does not develop from

root tissue is called an adventitious root.

• Hypocotyl: The stem of a germinating plant. It connects the roots to the

rest of the plant.

• Nodal root: The shoot consists of nodes, which hold leaves and buds that

can grow into branches, and internodes, that separate the nodes. Roots

that emerge on shoot nodes are called nodal roots.

• Crown root: Nodal roots that emerge on belowground shoot nodes are

called crown roots.

• Brace root: Nodal roots that emerge on aboveground shoot nodes are

called brace roots. They are also called stilt or prop roots.

• Basal root: Roots that emerge along the base of the hypocotyl are called

basal roots.

• Order: The order of a root is equal to the order of the root it branched

from plus one. Roots emerging directly from the seed or from non-root

tissue have order one.

• Lateral root: This can refer to any root that branches off another root.

They can also be called branch root, secondary root, tertiary root, depend-

ing on the order.

• Axial root: We use axial root to refer to any non-lateral root. This

includes primary, tap, seminal, adventitious, nodal, crown and basal roots.

• Root hair: A tubular outgrowth of an epidermis cell, only found near the

tips of roots. Root hairs take up water and nutrients from the soil.

• Terminal root: A root from which no other roots have branched.
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It is important to note that there are no universally accepted naming conventions

and that conventions tend to vary depending on the plant under consideration.

We have chosen nomenclatures that are often used when discussing barley, bean

and maize, the species relevant to this thesis.

In this thesis we will refer to the totality of a plant’s observable characteristics as

the phenotype of that plant [218, 217]. Every phenotype is composed of phenes

and the value a phene has in a given phenotype is the phene state. So a phene is

to a phenotype, what a gene is to a genotype, that is, it is a distinct element of

a phenotype. Different genotypes may result in the same phenotype. Examples

of phenes are the number of nodal roots, the angle at which certain roots emerge

and the lateral branching density. Phenes can be synergistic or not and many

architectural phenes will contribute to the overall phenotype of a root system.

A clear example of the importance of root system architecture is provided by the

need for a plant to obtain immobile resources that are concentrated in the top

soil (phosphorus, potassium) while also obtaining mobile resources that tend to

leach down into the soil (water, nitrate). The optimal phenotypes for address-

ing these two challenges are very different: Shallow and dense root systems are

better at collecting immobile resources from the top soil, while deep and sparse

root systems are better suited to collecting mobile resources or those in deep soil.

Thus a plant is faced with a trade-off and has to find a balance between these

extremes that allows it to perform both functions in heterogeneous and often

uncertain environments. For example, the optimal lateral branching density de-

pends on nitrogen and phosphorus concentrations, with low branching densities

being better when nitrogen is limiting and high branching densities being better

when phosphorus is limiting [154].

Competition between plants also has implications for the optimal root system

architecture. If a nutrient is scarce, the plant which can take it up the fastest

will outperform others and by doing this can even impede the development of

neighboring plants. It was shown that shallow-rooted bean root systems offered

a competitive advantage if phosphorus was concentrated in the topsoil [172]. In a

sense, this is analogous to how competition for sunlight results in plants growing
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taller, all in an effort to escape the shadow of their competitors. Because of the

dynamics between environment and the competition with neighbouring plants,

the optimal strategy can be difficult to determine.

Many plant root systems show plasticity in reaction to environmental cues. The

most obvious plastic response observed in plants is the variability of the shoot/-

root ratio. It has been observed that nutrient and water stress tends to decrease

the shoot/root ratio, while soils with ample supply of both tend to increase the

shoot/root ratio [5, 18, 13, 212]. This is a form of negative feedback that allows

a plant to adapt its strategy to increase the production or uptake of the most

limiting resource.

Other forms of plasticity follow the same pattern; a plant tries to adapt such that

limiting resources are acquired with as little investment of carbon and nutrients

as possible. Localized root proliferation in response to nutrient-rich patches is

an example of a mechanism that allows plants to efficiently allocate resources

[170, 171]. Plants also exhibit hydrotropism, which means they respond to water

gradients, allowing their roots to grow towards water [52]. These adaptive growth

patterns allow plants to function in a wider range of environments and their

existence proves that they are at least somewhat beneficial.

2.6 Root Loss

Plants are constantly under threat of herbivory, disease and nutrient deficiency.

Their root systems are not exempt from these threats and root loss is prevalent

in many species. Total root production in sugar beet, winter barley and winter

wheat was observed to exceed standing root system size by a factor two to four,

which means that 50 to 75 percent of produced root length was lost [184, 188, 185].

Root loss research has mostly been focused on trees or was done in the context

of ecology and there has been relatively little research into the effects of root

loss on plant fitness and crop productivity. Studying roots is more challenging

than studying shoots, by virtue of roots being underground. The effect of root

loss on plants is difficult to discern from field experiments because it can not be
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controlled directly. The effects of environmental factors on root loss has been

studied and the most prominent factors that affect root loss are:

• Herbivores and pathogens. There are many organisms in the soil, some

of which feed on roots. Examples include root-knot nematodes, moulds and

root mealybugs [93, 142, 209]. Applying pesticides to roots increases their

lifespan considerably [208]. This seems to indicate that while root longevity

is, to some extent, under control of the plant, herbivores or pathogens are

often a direct cause for the loss of roots.

• Soil moisture. There is limited information on the effect of drought on

root loss [16]. Tomato root length density in a saline soil was up to 40%

lower [180] and the effect of drought on the mortality of fine roots and

roots of species without an endodermis is substantial [75]. On the other

hand, citrus roots restrict the allocation of carbon to the root and slow

root respiration under drought. This slows the metabolism of the cells in

the roots, leading to severely restricted nutrient uptake, because the active

transporters involved in uptake require energy to function [24]. Once the

drought is over, the roots essentially recover completely in a short amount

of time [54].

• Soil temperature. Temperature affects root production, but its effects

are not always well characterised. King et al. found that lowering the soil

temperature has no clear effect on the root longevity of trembling aspen [96].

On the other hand, increasing soil temperature has been found to increase

root mortality in grasses [63], white clover [207] and sugar maple [77]. The

mean annual temperature was the most important variable explaining fine-

root turnover in the global data set on root turnover of Gill and Jackson

[71], and it suggests a mean annual temperature increase of 10°C leads to a

40-90% decrease in root lifespan. There are of course a lot of variables that

vary with temperature and this makes it difficult to ascertain if the effect

on root longevity is a direct consequence of the temperature difference or

indirectly through pathogen activity or soil quality. It should also be noted

that some studies found that increasing the temperature had no clear effect

on root mortality [87, 183].

• Soil nutrients. The availability of soil nutrients seems to influence root
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lifespan but there are conflicting results: some studies found that high

nutrient availability coincides with low root longevity [123, 161, 162, 184],

while others have found the opposite [1, 26, 160].

• Mycorrhizal fungi. Mycorrhizal associations seem to protect roots from

a variety of factors, enhancing their longevity [56, 67, 137].

The uptake rates, of both water and nutrients, of a root generally decline over

time. This is because

1. As a root takes up nutrients, the surrounding soil is depleted of water and

nutrients.

2. In many species, root maturation coincides with a decrease in radial hy-

draulic conductivity, lowering the uptake capacity.

This reduction in uptake rates then lowers the amount of water and nutrients

gained per amount of energy (in the form of carbohydrates) invested in root main-

tenance. Plants that spend the carbon (energy) they produce more effectively,

will of course be more successful so it is clear that plants will try to maximise

the efficiency of their root system. The carbon cost of the respiration necessary

to maintain a root can outgrow the carbon cost of growing the root in as little

as 20 days [55]. It follows from the above facts, that there are situations where

maintaining the existing roots is less effective than investing in new roots. Some

plants have indeed adopted a strategy of shedding fine roots under drought and

regrowing them when rains arrive, thus avoiding the costs of maintaining a root

system when it is not needed [140].

However, respiration rates generally decline with increasing root age as well (after

secondary growth has subsided) because cells stop growing and dividing, the cells

are generally bigger in a mature root (so there are less cells per root volume)

and aerenchyma formation and root cortical senescence can lower the number of

cells. This means that even when uptake rates decline, roots might become more

efficient over time. One expects yield to be optimised by plants that maximise

the cumulative uptake efficiency of their roots. Under the condition that the root

respiration rates decline at a sufficiently low rate and assuming the soil is depleted

of nutrients, it can be shown there is some finite time at which the cumulative
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uptake efficiency of the roots is maximized [21, 214]. Based on this, one would

expect programmed root senescence to be common, but evidence for this is lacking

[61]. Root length does generally decrease during and after flowering, but this can

simply be because plants stop investing in new roots during this stage of their

development [55].

2.7 Experimental approaches to studying plant

roots and root loss

Studying roots is much more difficult than studying shoots or leaves, because

they are obscured by the soil. We will discuss a number of different techniques

for studying roots which can be categorised into: excavation methods, in-situ

monitoring methods and labeling methods. Excavation methods, like field coring

and shovelomics, involve the removal of all, or parts of, the root system from

the soil. This means only one measurement can be taken, making these methods

suboptimal to study root loss. Non destructive monitoring techniques leave the

root system intact and try to minimise disruption, though, as we will see, some

deviation from normal growth conditions is inevitable. Labelling methods are

based on the placement of certain isotopes (for example 15N) of nutrients in spe-

cific locations in the soil. Information about the root system can then be deduced

from the concentrations of these isotopes that are detected in the shoot. A good

overview of most of the methods discussed here can be found in [17] and [149].

• Excavation methods.

– Root system excavation. A trench is dug at an appropriate distance

from the root system. Then, layer by layer, the soil is removed carefully

so as not to damage any roots [17]. During the excavation, the position

and size of roots can be documented using cameras. A lot of different

parameters can be determined using this method though biomass is

often underestimated because of the sometimes considerable root losses

during excavation.

– Shovelomics. Probably the most straightforward way to obtain in-

formation about root systems is by doing shovelomics, which works as
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follows: Using a shovel, a certain soil volume around the base of the

shoot is dug up. Then the soil is washed off the root system in soapy

water after which analysis on the roots is possible [193]. While several

traits such as the number and angle of crown and brace roots can be

measured, the method is only applicable to small root systems. Both

very fine roots and the relative positions of roots can be lost in the

process.

– Soil coring. Soil coring is a useful method to determine the root

length density in a given soil volume. A metal pipe lined with a plastic

tube is pounded into the soil. It is then taken out and the plastic

tube is removed. The cylinder of soil in this plastic tube is taken

out and the root segments in this cylinder are separated from the

soil by dissolving it in soapy water and using a sieve to gather the

root segments [199]. This method is useful to compare measures like

the root length density, the biomass density or the root tip density

between plants. Care must be taken to choose representative samples

at consistent locations relative to the plants sampled.

• Non destructive monitoring methods.

– Root window or rhizotron. A glass or plexiglass window is pressed

against the soil profile, this allows one to study the roots in their

‘natural’ environment [53]. Many root system traits can be studied

using this technique, subject to some caveats. The window should be

installed in a representative place, so some prior knowledge of the root

distribution is necessary. Obviously, each window only allows one to

study one single slice of the soil. The window will of course impede

root growth and might alter the growth pattern.

– Minirhizotron. This technique is useful to assess the production and

turnover of roots. A transparent tube is inserted into a hole drilled

in the soil. A camera or mirror is lowered into the tube and images

spanning the tube are recorded. Repeating this will give insight into

the growth and turnover rates of the root system [35]. See [61] for

results obtained with a minirhizotron and [122] for a discussion of the

technique and a comparison with the soil coring and ingrowth core

technique.
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– Non destructive imaging. Using MRI or CT scanning equipment,

one can get three-dimensional images of root systems grown in columns,

see Figure 2.3. The only constraints here are the size of the columns,

which necessarily are too small to fully contain most root systems,

and the resolution of the scanner. Depending on this, fine laterals will

or will not be visible. Significant progress has been made since 2011,

when it was demonstrated this technique could be of use [135]. Im-

age analysis software is required to distinguish between soil and root,

which, considering the host of different soil particles that can usually

be found in the soil, can be quite a challenge [121]. While this method

can not always be applied to plants grown in natural conditions, it has

the potential to give the most extensive and accurate information.

It should be clear that each of these methods has severe limitations and either

requires extensive preparations, a lot of effort or expensive, specialised equipment.

This highlights the importance of modelling as an important tool to study roots,

both as an explanatory tool as well as a provider of interesting research directions

for experiments.

2.8 Root System Architecture Models

Mathematical models are simplified representations of reality that aim to ac-

curately reproduce processes or dynamics. They can be used to predict the

effect of changing parameters or environmental variables, provide insight into

the mechanisms that lead to observed behaviour and point the way towards new

questions. In an agronomical context, mathematical models are an important

scientific tool. Molecular and cellular models are used to gain insight into the

(regulation of) mechanisms driving important processes such as photosynthesis,

germination, root branching and responding to environmental changes. Climate

models are used to predict the effects of possible climate change scenarios on

local weather conditions, while soil models simulate the often highly heteroge-

neous below-ground environment that plants need to extract nutrients and water

from. Crop models such as APSIM and CropSyst aim to integrate information

about the weather, soil, crop management and the crop properties into yield pre-

dictions, in order to help improve management and breeding practices [83, 189].
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Figure 2.3: A wheat root system imaged at the Hounsfield CT facility as part
of research conducted at University of Nottingham’s Centre for Plant Integrative
Biology (CPIB). The distance on the axes are in centimeters.

These models do not simulate individual roots in detail, instead modelling fields

at timescales up to several years.

At the most simplified end of the scale are models representing roots as density

distributions in the soil [70, 100]. These models are relatively easy to parametrise

and provide a good simple reprentation of root systems. The simplified descrip-

tion means that the model model outcomes depend only on aggregate state vari-

ables and any heterogeneity within the soil is averaged out over a representative

volume. The relatively new framework of continuous models provides a more de-

tailed description of roots in soil without explicitly representing individual roots

[19, 51]. These models represent roots using root length density and root branch-
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ing density, whose behaviour is governed by differential equations, much like one

simulates water flow through the soil. Such models can simulate soil heterogeneity

at a smaller scale than root length density distributions, though the assumptions

underlying them are not valid for scales below a certain representative volume,

while still requiring relatively few parameters and being analytically and compu-

tationally tractable. The most detailed models contain explicit representations

of roots, these are called root system architectural (RSA) models. These models

typically require many parameters and are computationally expensive since each

root or individual root segment is explicitly represented.

The earliest computer simulation model that explicitly represented individual

roots contained a two-dimensional representation of roots and was able to cal-

culate root length density in different soil layers based on root elongation and

lateral branching rules and included the option to include root growth responses

to fertilizer [110]. The first three dimensional RSA model represented tree root

systems and considered the effect of wind on tree development [42]. Later models

used similar growth rules to generate root systems and calculating outputs such

as root length density [43, 145, 181]. Another model simulated wheat with root

growth rates depending on temperature [152]. These early models were useful for

providing a way to generate estimates of root system properties such as total root

length and root length density distributions in the soil from simple branching and

growth rules and allowed us to visualise root systems in a way not seen before.

One RSA model was used to model soil exploitation efficiency of different root

architectures using depletion zones around roots and their overlap [62].

The inclusion of biological mechanisms regulating the growth of roots in RSA

models were a major advance. These models, termed functional-structural plant

models (FSPM) combine a three-dimensional explicit representation of plant ge-

ometry with models for physiological plant functions [72, 203]. These models are

based on the paradigm that plants respond to their environment in both adjust-

ing physiological functions (e.g. photosynthesis, respiration) as well as structure

(e.g. root elongation, branching rates) and that the structure determines in what

environments plant organs operate while the functioning of plant organs has im-

plications for the growth and thus the plant structure. It provides a modelling
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framework that allows for local as well as global interactions between plant or-

gans. Similarly, the coupling of RSA models to models simulating the flow of

water and nutrients in soil opened up new avenues of research and allowed more

questions to be addressed.

The model presented in [38] simulated root growth based on soil temperature and

impedance while also simulating water flow in the soil, root water uptake and car-

bon assimilation and allocation. The first version of SimRoot, the predecessor

of OpenSimRoot, also included carbon allocation in the form of respiration, exu-

dation and biomass [119]. Over time, RSA models incorporated more and more

features, such as root plasticity and growth responses to the environment [33,

46, 78, 211], more detailed water and nutrient flows in the soil [179], uptake of

water and nutrients and growth limitations under deficencies [47, 91, 102, 159,

176, 211], carbohydrate allocation models [139, 205, 211], rhizosphere processes

[46, 155, 177, 211], root anchorage [50] and root traits such as root cortical

aerenchyma [159]. For an overview of recent developments see [48] and [157].

2.9 OpenSimRoot

OpenSimRoot implements the simulation of models that capture the geometry,

growth and nutrient uptake of root systems [119, 156]. Multiple plants can be

simulated and because a simulated plant is specified through parameterized root

classes OpenSimRoot can simulate many different root systems such as maize,

bean, barley and rice [155, 154, 175, 74]. See figure 2.4 for visualisations of

different root systems simulated using OpenSimRoot. OpenSimRoot predic-

tions have been verified in the field. OpenSimRoot predicted that root cortical

aerenchyma (RCA) improve growth under suboptimal nitrogen (N), phosphorus

(P) and potassium (K) supply [159], which has been verified in field trials in

South Africa and the USA [66, 174]. The advantage of RCA extends to drought-

stressed plants as well [36]. OpenSimRoot also allows us to evaluate why traits

have utility by looking at individual effects associated with those traits, which is

not possible in real plants. For example, it was found that nutrient reallocation

due to root cortical senescence (RCS) has a greater effect on plant growth than

the associated reduction in respiration or nutrient uptake in barley under low N,
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P and K availability [175]. OpenSimRoot is a useful tool to make predictions

about the utility of phenes in specific environments, can provide more insight in

exactly why phenes are beneficial or detrimental and allows us to study processes

and environments which are difficult or impossible to study in the field. In this

thesis, we will see the utility of OpenSimRoot in these three contexts.

(a) Barley simulated for 80
days.

(b) Bean simulated for 42
days.

(c) Maize simulated for 42
days.

Figure 2.4: Barley, bean and maize root systems as simulated by OpenSimRoot.
The different colours indicate the root segment age, with blue colours being the
oldest roots and red the youngest. The root systems are all 150 centimeters tall.

New functionality can be added to OpenSimRoot with relative ease because of

the flexible structure of the code, which means that different submodels commu-

nicate through a common application user interface (API) and submodels can be

added without needing knowledge of the internal coding of existing submodels.

While there are some dependencies between modules, the user is mostly free to

choose which are included in the simulation by specification in the input files.

In OpenSimRoot each root is simulated as a number of vertices connected by

edges. The tip of each root is simulated by a vertex with time-dependent coordi-

nates called the growthpoint. The speed of the growthpoint is defined by the base

growth rate specified in the XML input file and possibly modifiers related to nu-

trient and carbon constraints and local soil conditions. The direction in which the

growth point moves is determined according to rules relating to gravitropism, the

emergence angle of roots and a stochastic contribution. The non-growthpoint ver-

tices of a root, representing root segments, have fixed locations and are placed in
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the path of the growthpoint as the root grows. The root length is the distance the

growthpoint travelled, not the sum of the distances between root vertices. This is

because these two quantities can differ slightly if the path the growthpoint takes

is winding on length scales smaller than the distance between root vertices (like

how the length of a coast line depends on the size of the ruler used to measure it).

New roots are created according to branching rules which specify the distance

or time between subsequent branchings. Branches emerge from what are called

xylem poles and the specified number of xylem poles determines the radial angles

at which new branches can emerge. The XML input file specifies both the axial

branching angle as well as the types of roots that can branch from a certain root

class. Each root class has their own parameters, such as growth rates, branching

rates, etc.

OpenSimRoot contains a simple, abstract canopy model in which the shoot is rep-

resented by a number of variables such as leaf area, shoot biomass, photosynthesis

rate. A simple photosynthesis model determines the rate of carbon production

based on the leaf area and the carbon fixation rate. The carbon requirements

are based on the growth and respiration rates of the roots, costs associated to

root exudates and nitrate uptake and the requirements of the shoot. The carbon

needed for respiration, exudation, nitrogen fixation and nutrient uptake are first

substracted from the total, with the rest being available for growth. If the re-

maining carbon is greater than the amount required for potential growth, leftover

carbon is stored in a labile pool for later use. In the case of carbon availabil-

ity being lower than potential growth rates require, growth rates decline, with

shoot growth being prioritised, leading to a decrease in root-shoot ratio. Like-

wise, major root axes are given priority over laterals in carbon allocation to roots.

Water dynamics in OpenSimRoot are simulated with three models. One is a

simplified implementation of the SWMS model in C++ which simulates water

transport through the soil by solving the Richards’ equation using the finite ele-

ment method in combination with a finite differences method [179]. The Richards’

equation is:

∂θ

∂t
= ∇ [K(θ)∇(h(θ) + z)]− S. (2.9.1)
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Here θ is the volumetric water content, t is time, K(θ) is the hydraulic conductiv-

ity tensor, h(θ) is the matrix head, z is the elevation above some reference point

and S is a sink term that represents the water uptake by roots. Evapotranspi-

ration, which is a term that includes the evaporation of water from the soil and

transpiration by the plants, is simulated by the Penman-Monteith equation [3,

133, 134, 147].

The transport of water through the xylem is simulated by the hydraulic network

model [4, 45]. The model assumes steady state flow, meaning that the capacity of

the roots to hold water is negligible compared to the amount of water transpired,

and assumes that the influence of solutes on the flow is negligible. The flow of

water into the roots Jr(z) and the flow inside the root, Jh(z) are modelled as

Jr(z) = Lr(z)S(z) [ψs(z)− ψr(z)] , (2.9.2)

Jh(z) = −Kh(z)
∂ψr(z)

∂z
, (2.9.3)

where z is the direction along the root, Lr is the radial hydraulic conductivity,

S the root surface area, ψs the soil water potential, ψr the root water potential

and Kh the axial hydraulic conductivity. By enforcing that the sum of fluxes at

every root node is equal to zero (with the collar node, where the shoot meets the

root system being the exception) we calculate the root water uptake for a given

hydraulic potential at the collar by solving a matrix-vector equation. Using that

this is ultimately a linear set of equations, OpenSimRoot calculates the required

collar potential for a given potential transpiration rate.

The transport of nutrients in the soil is simulated with convection-diffusion equa-

tions for which there are currently two implementations in OpenSimRoot. One is

the one-dimensional Barber-Cushman model that is used to simulate phosphorus

uptake and to simulate depletion zones around root segments [89]. The second

is an implementation of the solute model in SWMS3D that couples to the wa-

ter transport model [179]. The uptake of mobile nutrients by the root system

is modelled with Michaelis-Menten kinetics. The nutrient uptake rate of a root
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segment, I, is equal to

I =


Imax(C−Cmin)
Km+C−Cmin

if C ≥ Cmin,

0 if C < Cmin.

(2.9.4)

Here Imax is the maximal uptake rate of the root segment, C is the nutrient

concentration at the root surface, Cmin is the minimal nutrient concentration at

which the root segment can take up nutrients and Km is the concentration at

which I = Imax
2 . By comparing the total nutrient uptake with specified min-

imum and optimal nutrient concentrations for each plant organ, OpenSimRoot

calculates a stress factor for each nutrient. This stress factor impacts root elonga-

tion rates, branching rates, photosynthesis rates, respiration rates and leaf growth

rates through transfer functions specified in the input files. By scaling back shoot

growth first under nutrient stress, the increase in root-shoot ratio under nutrient

stress observed in many species becomes an emergent feature of the model. Ni-

trogen fixation such as happens in legumes can also be modelled. Mineralisation

is modelled by the Yang-Janssen model [215].

Various root morphological features such as root hairs, root cortical senescence

and root cortical aerenchyma can be simulated in OpenSimRoot. These impact

water and nutrient uptake, root maintenance costs and the carbon and nutrient

content of roots. Roots can also respond to local nutrient concentrations by alter-

ing their elongation and branching rates or adjusting their gravitropic response

through transfer functions specified in the input file.

OpenSimRoot is written in C++, an object-oriented programming language. The

object-oriented programming paradigm is well suited to the simulation of root sys-

tems; root segments are represented by instantiations of the same object, added

during growth. In OpenSimRoot, every root segment object will be coupled to

various objects encoding relevant state variables corresponding to that root seg-

ment, such as its diameter, volume, dry weight and nutrient uptake rate. So every

minimodel in OpenSimRoot, which represents a single state variable, corresponds

to a C++ class which inherits from a common base class called SimulaBase. This

inheritance provides each minimodel with a common set of methods which allow

the engine to handle any new minimodel and are used to pass information be-
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tween minimodels. Helper functions facilitate the correct behaviour of models

within the simulation and facilitate the passing around of information. These

helper functions provide caching to avoid repeating calculations if not necessary

and allow for interpolation of values, as well as integration of values through

integration functions. Through this separation of minimodels and certain func-

tionality, developers don’t need detailed knowledge of the OpenSimRoot engine

to add new models; knowing how to request the values of relevant variables and

the appropriate helper functions to associate with each minimodel is all that is

required.

Internal dependencies between models and the order in which calculations are ex-

ecuted are determined at runtime. OpenSimRoot simulations are driven by the

outputs which are specified and models are only activated when values are, pos-

sibly indirectly, requested by the output module. When a minimodel depends on

another minimodel, it requests information through the application user interface

(API), which prompts the other minimodel to make the necessary calculations

and return the requested value. This structure allows for a complete specifica-

tion of the parts included in the simulation through the XML input files without

requiring any modification to the source code.

OpenSimRoot allows for integrating values forward in time using a variety of

different integration functions such as forward Euler and Heuns. The default

integration function is fourth order Runge-Kutta (RK4). For an initial value

problem of the form

dy

dt
= f(t, y), y(t0) = y0, (2.9.5)

this method works as follows. For a step of size h > 0,

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4), (2.9.6)

tn+1 = tn + h. (2.9.7)

Here yn is the approximation of y(tn) by the RK4 method. k1, k2, k3, k4 are
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defined as

k1 = f(tn, yn), (2.9.8)

k2 = f

(
tn +

h

2
, yn + h

k1
2

)
, (2.9.9)

k3 = f

(
tn +

h

2
, yn + h

k2
2

)
, (2.9.10)

k4 = f(tn + h, yn + hk3). (2.9.11)

Since the RK4 method is of fourth order, the error is on the order of O(h4). So

while each RK4 step takes more computation than, say, a step of forward Eu-

ler, because it is more accurate we can take bigger timesteps. For most models,

the default timestep (which can be specified in the input file) is sufficient but

OpenSimRoot allows for different timesteps between models, which is relevant if

a certain precision is required or if one wants to simulate processes at different

timescales. If there is a mismatch between timesteps, then values are interpolated

if needed. Quantities being integrated forward in time can indirectly depend on

themselves, for example the leaf elongation rate depends on carbon availability,

which depends on photosynthesis rate which depends on leaf area and hence leaf

elongation rate. To integrate forward in time when this happens OpenSimRoot

uses a predictor-corrector method. This means that integration is done once,

the result is saved as a prediction and once all dependencies are resolved, the

integration is redone for all predicted values to arrive at the result. The Open-

SimRoot engine tracks dependencies between different minimodels and uses this

to determine if values are final or still part of a prediction (for example if a value

is calculated as intermediate value in an integration step).

OpenSimRoot is available under the https://www.gnu.org/licenses/gpl-3.

0.en.htmlGPLv3 License. This is an open-source copyleft license. This means

that anyone can freely download and modify OpenSimRoot as they wish, and

any code which includes the OpenSimRoot source code has to be published un-

der the same license. This ensures the model will remain accessible to scientists.

The source code can be downloaded from https://gitlab.com/rootmodels/

OpenSimRoot, where issues can be created as well. OpenSimRoot is under active

development and the code is updated whenever improvements are made or bugs
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are addressed. Any new features will be implemented in a backwards-compatible

fashion if possible. This means that old input files will produce the same result

with the newest version of the code as with the version that was originally used.

Note that this is not always possible with major updates to the OpenSimRoot

engine.

For more details on OSR, see [119, 118, 156] or appendix D, which also provides

a quick start guide for potential users.
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Chapter 3

Root Loss and Nutrient

Uptake

Here follows an article which was sent in to Plant Physiology. The article is

currently in revision after a submission which lead to useful feedback. The text

is reproduced here in slightly edited form. The non-supplemental figures have

been put in the text and the bibliography was integrated with that of the entire

thesis. The supplemental figures can be found in Appendix A.

3.1 Abstract

Despite the widespread prevalence of root loss in plants, its effects on crop pro-

ductivity are not well understood. While root loss reduces the capacity of plants

to take up water and nutrients from the soil, it may provide benefits by decreas-

ing the resources required to maintain the root system. Using the open-source,

functional-structural root system simulation model OpenSimRoot, a range of

root phenotypes were simulated in different soils and root loss scenarios for bar-

ley, common bean and maize. The simulations predicted root loss is detrimental

for phosphorus uptake in all tested scenarios and reduces nitrogen uptake in

most tested scenarios. Loss of main root axes reduced predicted fitness for all

phenotypes in all species and soils, whereas lateral root loss had smaller or no

detrimental effects. In low-nitrogen, high-phosphorus soils, some maize pheno-

types even showed a small increase in shoot biomass after lateral root loss. The

best predictor of shoot biomass reduction due to root loss was the maximum

cumulative root loss a plant endured, as fraction of total root length, rather than
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the absolute or relative amount of root loss. Bean was much more resilient to

axial root loss than barley and maize and resilience to axial root loss correlated

with the amount of axial roots formed early in development. We conclude that

root loss is an important factor in the evolution of root architectural phenotypes,

the effects of which depends on species, phenotype, nutrient availability and the

type and intensity of root loss.

3.2 Introduction

Roots are vital plant organs that forage for nutrients and water, provide an-

chorage, and provide storage in selected species. Because of inadequate use of

soil fertility inputs, soil degradation and adverse effects of global climate change,

crops in many locations face challenges accessing adequate nutrients. Added to

this, plants are in constant competition for the resources that are available, both

below and above ground and are constantly under threat from herbivory, root

rots, disease and nutrient deficiency, as well as environmental stresses such as

heat, cold and drought. Their root systems are not exempt from these threats

and root loss is prevalent in many species. A meta-analysis of 85 studies into the

effects of 36 species of root feeding insect herbivores on 75 plant species found

that belowground herbivory led to an average reduction in root biomass of 36.3%

[222]. Understanding root growth and functioning under such adverse conditions

is vital for understanding a fundamental dimension of plant fitness, and has agri-

cultural relevance in guiding the development of the more resilient, sustainable

crops urgently needed in global agriculture [115]. Understanding the effects of

root loss in this context is important because root phenotypes that are associated

with high yields in controlled or high-input environments with minimal root loss

might perform poorly in conditions where root loss is prevalent.

There is evidence root loss is not programmed, in contrast to leaves [61]. Root

length does generally decrease during and after flowering, this could be because

plants reduce investment in new roots during this stage of their development [55].

Several external factors affect the prevalence of root loss. Drought increases root

turnover and topsoil drying leads to rapid root dieback [75]. Although reducing

soil temperature appears to have no clear effect on root longevity of trembling
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aspen [96], increasing soil temperature has been found to increase root mortality

in grasses [63], white clover [207] and sugar maple [77]. The mean annual tem-

perature was the most important variable explaining fine-root turnover in the

global data set on root turnover of Gill and Jackson [71], and it suggests a mean

annual temperature increase of 10°C leads to a 40-90% decrease in root lifespan.

There are many variables that vary with temperature and this makes it difficult

to ascertain if the effect on root longevity is a direct consequence of temperature

or something else such as pathogen activity or soil quality. It should also be

noted that some studies found increasing temperature had no clear effect [87,

183]. Similarly, the availability of soil nutrients appears to influence root lifespan

but there are conflicting results. Some studies found that high nutrient availabil-

ity coincides with short root lifespan [123, 161, 162, 185], while others found the

opposite [1, 26, 160]. Mycorrhizal associations seem to protect roots from a vari-

ety of factors, enhancing their longevity [56, 67, 137]. There are many organisms

in the soil, some of which feed on roots [209], explaining why applying pesticides

increases root lifespan considerably [208]. Hence root longevity depends on the

plant, herbivores and pathogens.

Even if “programmed” root loss (referred to as root senescence) does occur, many

of the resources invested in a root are lost when the organ senesces, as are its

capacity for water and nutrient uptake and that of any roots that subtend from

it. Losing roots of certain types may also affect plant anchorage and stability. In

this paper we will explore the effects of lost resources and reductions in uptake

capacity, due to root loss, on plant fitness.

Nevertheless, root loss may also have benefits. The amount of resources invested

in the production and maintenance of root systems is considerable, as evidenced

by the fact that the dry weight of root systems can be larger than the dry weight

of the shoots [32, 64, 105]. Out of all the carbohydrates produced by photosynthe-

sis, more than a fifth can be spent on root respiration [8, 150], under phosphorus

stress this can increase to more than 40% [117, 138], while more than 15% of the

carbohydrates can be spent on root exudates [81]. Roots that are lost do not

have to be maintained and it is in this way that root loss can lead to a very large

reduction in resource expenditure. What further illustrates this is that the car-
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bon cost of respiration necessary to maintain a root can exceed the carbon cost of

growing the root in as little as 20 days [55]. Thus, it is reasonable to suggest that

root loss may be beneficial in some situations. It has been suggested that par-

simonious, or sparse, root systems perform better in drought conditions because

they can reach deeper soil strata by virtue of being less costly to maintain [112,

114]. Since nitrogen leaches down into the soil, parsimonious root phenotypes,

such as root systems subjected to moderate to high rates of root loss, could be

beneficial in conditions of suboptimal nitrogen availability [115].

There have been suggestions that root loss can be beneficial in low-nutrient envi-

ronments. Low soil phosphorus concentrations were observed to lead to increased

root turnover [185]. A previous root-system model predicted that root turnover

increases the explored soil volume and therefore phosphorus and potassium up-

take, although this model did not assign any cost to root turnover [184, 185, 187,

186].

Root phenotypes can differ greatly among plant species. Dicot root systems,

such as common bean, start from a primary root which develops into a taproot

which develops through lateral root formation, and in some cases basal roots as

in common bean. In contrast, the lack of secondary growth in monocots makes it

necessary to continually produce nodal roots of increasing diameter from shoot

tissue. Many grass species, including principal cereal crops like wheat, rice, and

barley, form tillers, which grow root systems themselves in turn. As a result

of crop breeding, modern maize lines rarely tiller. There are also interspecific

and intraspecific differences in lateral branching rates, the number of lateral root

orders and the number of adventitious roots that plants grow. It has been hypoth-

esised that these differences in root architectural phenotypes, and the resulting

differences in root system topology, lead to differences in susceptibility to root

loss among species and phenotypes [113].

One of the reasons why experimental research on root loss is limited in the liter-

ature is that it is difficult to study in the field. Studying roots in their natural

environment is much harder than studying shoots, due to the difficulty of vi-

sualising roots in situ within the soil, and studying dynamic processes such as
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root loss is particularly challenging. Invasive methods such as rhizotrons alter

the local soil environment and allow one to study only a small part of the root

system. To detect root loss one needs to identify roots across multiple images.

But it can also be difficult to determine if a given root has been lost or not, since

roots and soil might shift around and determining the status of a root from visual

inspection alone can prove difficult. Soil coring or excavating root systems only

provide snapshots of root system development and even if recently deceased roots

can be identified it is difficult to determine overall root loss rates.

The significant challenges associated with experimental studies of root loss make

modelling very useful. Not only does modelling permit precise control over root

loss rates, which is all but impossible in field conditions, but it also allows ac-

cess to information that would be very hard to obtain in field experiments, such

as root development over time, nutrient uptake rates as well as the complete

structure of the root system. Simulations also allow us to study a much larger

array of phenotypes and environmental scenarios than would be possible in field

experiments, without any factors such as the weather being out of our control.

Currently a number of different root system architecture models exist that sim-

ulate root growth and functioning [43, 91, 103, 146, 156, 211]. We have used

OpenSimRoot [156], the open-source successor of SimRoot [119, 118], because it

allows us to simulate resource acquisition and allocation as well as the effects of

shortages. This makes it an ideal simulation model to study the impact of root

loss. (Open)SimRoot has been used to simulate barley, bean, lupin, maize and

squash in a variety of settings [34, 68, 158, 155, 154, 164, 175, 190, 205]. Open-

SimRoot simulates the geometry, growth and nutrient uptake of root systems, as

well as water and nutrient flows in the soil [119, 156]. Because OpenSimRoot

simulates the development of root systems through the application of growth and

branching rules for each root class, it can simulate a wide variety of different root

architectures. New functionality can be added with relative ease because of the

modular structure. While there are some dependencies between modules, users

are free to choose which modules are included in the simulation.

With this study, we are extending functional-structural plant models by adding

a root loss module to OpenSimRoot. We present results from root system sim-
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ulations of common bean (a dicot), barley (a tillering grass), and maize (a non-

tillering grass) subjected to various levels and types of root loss in different soil

environments in order to study the effects of root loss on plant productivity in

different environments.

3.3 Materials and methods

3.3.1 Root Loss Module

Root loss is simulated by deactivation of root segments. The time of root loss

can be determined in a number of different ways, see below, and once this time

has passed, the root segments in question are considered lost. These root seg-

ments do not take up any more nutrients or water, do not count towards total

root length, root mass, etc, do not respire or need any other resources. Any root

subtending from a deactivated root will be deactivated as well. If a root segment

is lost, the deactivation is propagated downwards towards the apex. Needless to

say, deactivated apices stop moving.

The root-loss module keeps track of the root length that has been lost during the

simulation and the amount of carbon that has been lost, based on the carbon

content of the lost roots. It also simulates the loss of nutrients such as N, P and

K in the tissues of the lost roots by subtracting this from the nutrient pool. The

amount of nutrients lost is calculated by assuming that nutrients are distributed

homogeneously in the plant tissue, weighed by the minimal and optimal nutrient

contents in each tissue, depending on nutrient stress levels, as quantified by the

nutrient stress factor. The stress factor S is calculated as follows:

S =


0 if U ≤ Pm

U−Pm
Po−Pm

if Pm ≤ U ≤ Po

1 if U ≥ Po

(3.3.1)

Here S is the stress factor for the nutrient under consideration, U the amount of

that nutrient currently in the plant (initial seed content plus uptake up to now

minus nutrients lost up to now) in µmol, Pm the minimal nutrient content of the

plant in µmol and Po the optimal nutrient content of the plant in µmol. The
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amount of nutrients lost by the plant, Lσ when a segment σ is lost is equal to:

Lσ =


(1− S)σm + Sσo if 0 ≤ S ≤ 1

U ·σo
Po

if S = 1

(3.3.2)

Here Lσ(S) is the amount of nutrients lost when segment σ is lost in µmol,

S is the stress factor as defined above, σm is the minimal nutrient content of

segment σ in µmol and σo is the optimal nutrient content of segment σ in µmol.

Partial nutrient remobilisation can be simulated by adding a parameter set to

the appropriate remobilisation value R. Then the amount of nutrients lost per

segment, L′
σ will be calculated according to the expression:

L′
σ = (Lσ − σm) · (1−R) + σm (3.3.3)

Here Lσ is defined as above. With maximum remobilisation (R = 1), the plant

will lose σm per segment, the minimal nutrient content needed for the tissue to

function normally.

The time of root loss can be determined for each segment individually or for entire

roots at once, and each root class can be assigned different root loss probabilities

or lifetimes by specifying this in the input files. The time a root (segment) is

lost is determined based on a distribution of root lifetimes, such as a uniform

or normal distribution, or a daily probability of root loss. If a daily probability

for root loss is chosen, the probability can be modified based on depth in the

soil. Because of the modular structure of OpenSimRoot it is straightforward for

anyone familiar with C++ to add new plugins that determine the probability of

root loss based on local soil conditions, the water or nutrient status of the plant

or root characteristics such as root diameter or age.

3.3.2 Simulated Scenarios

Three crop species, barley, bean and maize, were simulated in a variety of scenar-

ios. The parameters used in our simulations either come from previous (Open)SimRoot

publications or were estimated from the literature. Parameters used in previous

publications mostly come from field or greenhouse experiments and results from

many of these publications have been verified in experiments. As summarised in
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Table 3.1, for each species, we had root cortical senescence (RCS)(barley) or root

cortical aerenchyma (RCA)(bean and maize) either present or absent and varied

the lateral root branching density (LRBD) and the axial root number, each with

3 different values.

Barley Bean Maize

RCA/RCS No RCS/RCS No RCA/RCA No RCA/RCA

LRBD 1.6/2.5/5 branches
cm 2/4/6 branches

cm 2/5/20 branches
cm

Axial root 2/3/4 tillers 4/12/16 basal roots 11/18/36 nodal roots

number 10/25/40 hypocotyl 12/34/34 brace roots

born roots

Table 3.1: An overview of the three phenes that were varied for all three species
and the values used in the simulations. A factorial design was used, which means
that every combination of values for these three phenes was simulated.

All of these phenotypes, 18 for each species, were simulated in a variety of envi-

ronments. They were placed in 4 different nutrient environments, high and low

availability for both nitrogen and phosphorus. Each phenotype was subjected to

three different types of root loss: lateral root loss, axial root loss and a combina-

tion of both types of root loss. Root loss was simulated by assigning to each root

of the relevant root type a daily probability of that root being lost. All three of

these types of root loss were simulated at three different levels of severity, with

roots having a 1%, 2.5% or 5% daily probability of being lost. A root loss rate an

order of magnitude lower than 1% per day was deemed unlikely to affect plant

development significantly over the 40 or 80 simulated days while a root loss rate

of 10% per day was expected to be too detrimental for plants to develop under.

With these numbers we hope to have a range of values covering most scenarios

where plant growth is reduced but the plant is able to survive. A control sim-

ulation without any root loss was also done. Each simulation was repeated 5

times with different seeds of the random number generator. This is because root

loss, root branching and root growth direction all include a stochastic component.

Instructions on how to recreate the XML input files and the OpenSimRoot exe-

cutable used to generate the data for this paper can be found at:

https://gitlab.com/rootmodels/OpenSimRootPapers/-/tree/
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master/ErnstDSchafer-2020-RootLossAndNutrientUptake.

The version of the code used for the simulation in this paper corresponds to the

code with git commit hash 5863e3e6f14927d21e4dcd903d75c4d4edb8d111 in the

OpenSimRoot repository. It can be downloaded from

https://gitlab.com/rootmodels/OpenSimRoot/-/

tree/5863e3e6f14927d21e4dcd903d75c4d4edb8d111.

OpenSimRoot is currently only able to simulate vegetative growth and species

are only parametrised for a certain number of days. Because of this, we cannot

simulate flowering and grain filling and hence yield. Even though the empirical

relationship between shoot biomass and yield, called harvest index, varies de-

pending on a number of factors including environment, field management and

plant water status [194], shoot biomass is the best proxy we have available.

3.4 Results

Root loss impact on root system architecture is stage and order de-

pendent

The root systems of barley, bean and maize are very different, in size as well as

distribution of roots (Figure 3.1). Applying root loss at different intensities led to

large differences in their root systems at 40 days (Figure 3.2). The root systems

of plants growing under low intensity root loss conditions still looked very similar

to those growing without any root loss, while at higher intensities very little of

the root system remained. The differences, arising from stochasticity in the sim-

ulation, between root systems of the same phenotype subjected to the same root

loss intensity was quite large, depending on the amount of root loss occurring

early in development (Figure 3.3). Plants that lost a lot of axial roots early were

not able to recover and ended up with small root systems, while those losing axial

roots later in development were able to still grow and maintain a sizeable root

system.

Shoot biomass decreases under most types of root loss in most envi-

ronments
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A B C

Figure 3.1: Root systems of (A) barley, (B) bean and (C) maize 40, 80 and
40 days after germination, respectively. The scales are the same and different
colours indicate different root classes. For barley, the primary root is green,
seminal roots are yellow, tiller roots are cyan and lateral roots are blue. For
bean, the hypocotyl is light orange, the primary root is dark orange, seminal
roots are yellow, hypocotyl borne roots are green, first order laterals are cyan
and second order laterals are dark blue. For maize, the primary root is orange,
seminal roots are green, nodal roots are cyan, basal roots are yellow, first order
laterals are blue and second order laterals are dark blue. Soil column size is set
to an area a plant typically has in the field. Roots are reflected when they reach
the edges of the soil column to simulate the overlap between root systems of
neighbouring plants in field conditions.

The sensitivity of simulated shoot dry weight to root loss depended on species,

soil nitrogen and phosphorus availability and root loss type (Figures 3.4, 3.5,

3.6). Axial and general root loss led to large reductions in simulated shoot dry

weight in all species and soils, with average decreases of 85% to 96% (barley),

37% to 56% (bean) and 80% to 89% (maize) compared with no root loss, depend-

ing on soil. In the low nitrogen, low phosphorus soil, lateral root loss reduced

simulated shoot dry weight by 15-41% in barley and by 4-30% in bean compared

with the scenario without root loss, depending on phenotype. In maize, the phe-

notypes with high lateral root branching density (LRBD) increased simulated

shoot biomass under lateral root loss by 7-14% compared with the case without
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Figure 3.2: (A) A maize root system after 40 days in the high nitrogen, low
phosphorus soil, without any root loss. The different colours indicate different
root classes and red roots have been lost. Panels (B), (C) and (D) show similar
root systems but grown under general root loss at low, medium and high intensity
respectively. (E) Shoot and root dry weights in grams for all 5 repetitions with
the same parameters as the simulation displayed in panel (A), with the red bar
indicating the specific repetition shown in (A). The purple bar indicates the mean
of these 5 repetitions. Panels (F), (G) and (H) are the same as panel (E) but
corresponding to the root systems shown in (B), (C) and (D), respectively.

root loss, while the other phenotypes showed a decrease of 18-41%. In the high

nitrogen, low phosphorus soil, lateral root loss reduced simulated shoot biomass

for all species, with 26-57% for barley, 36-52% for bean and 3-41% for maize. In

the low nitrogen, high phosphorus soil, changes in simulated shoot biomass were

-11 to +8% (barley), -10 to +3% (bean) and -16 to +15% (maize) under lateral

root loss, as compared to without root loss.

The results of the reference simulations, those without root loss, were largely in

line with those of earlier studies. Root cortical senescence (RCS) in barley was

associated with a large increase in shoot dry weight in all soils. Averaged over

all other phenes in the low-nitrogen, low-phosphorus soil, the increase associated

with RCS was almost 75%, in accord with the results from [175]. Root cortical

aerenchyma (RCA) increased root dry weight in all soils with a few percent in
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Figure 3.3: Panels (A) and (B) show the same maize root system subjected
to axial root loss at 20 and 40 days, respectively. The different colours indicate
different root classes and red roots have been lost. (E) Shoot and root dry weights
for all 5 repetitions with the same parameters as the simulation displayed in panels
(A) and (B), with the red bar indicating the specific repetition shown in panels
(A) and (B). The purple bar indicates the mean of these 5 repetitions. Panels (C)
and (D) show a different repetition from this set at 20 and 40 days, respectively.
Panel (F) is the same as panel (E) but for the repetition shown in panels (C) and
(D). The root system shown in panels (A) and (B) has lost a lot more roots early
during development than the root system shown in panels (C) and (D), this let
to large differences in root and shoot biomass at day 40, as shown in panels (E)
and (F).

bean and up to 20% in maize, again averaged over all other phenes, smaller ben-

efits than were observed in [158] and [159]. In the low-nitrogen, high-phosphorus

soil, lower branching densities were associated with greater shoot dry weight in

barley and especially in maize, where there was a factor 3 difference in averaged

shoot dry weight between the low and high branching phenotypes, in line with

previous in silico [154] and field [219] studies. In bean, the high branching phe-

notypes outperformed the low branching phenotypes by about 5%.on average. In

the high-nitrogen, low-phosphorus soil, high branching densities increased shoot

dry weight, averaged over all other phenes, by more than 100% in all three species,

in line with previous in silico [154] and field [92] studies. Across all soils, low tiller

numbers and low nodal root numbers increased shoot dry weight in barley and
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Figure 3.4: Mean shoot dry weights at 80 days of the 18 barley phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top left shows which
colour corresponds to which phenotype.
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Figure 3.5: Mean shoot dry weights at 40 days of the 18 bean phenotypes under
consideration, each in a different colour. The bars indicate minimum and maxi-
mum values. The figure is divided in 4 sections, each of which shows the results
for one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top left shows which colour
corresponds to which phenotype.

maize respectively, while in bean, greater basal root numbers were associated

with greater shoot dry weight.
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Figure 3.6: Mean shoot dry weights at 40 days of the 18 maize phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top left shows which
colour corresponds to which phenotype.

The shoot dry weights of different phenotypes were mostly affected in the same

way by root loss, with the increase or decrease depending largely on root loss type

and intensity and soil conditions. The only exceptions were maize phenotypes

with high LRBD, which increased shoot dry weight under high levels of lateral

root loss in every soil except the high-nitrogen, low-phosphorus soil, contrary to

the trend that other phenotypes followed (Figure 3.6). There was a strong neg-

ative correlation between the maximum root loss fraction (the maximum taken

over the daily outputs in the simulations) and the change in shoot dry weight

due to root loss in all three species (Figures 3.7, 3.8, 3.9). The greatest reduc-

tions in shoot dry weight as compared to the case without root loss occurred at

high maximum root loss fractions, irrespective of nutrient availability or root loss

type. The maximum root loss fractions were greater under axial and general root

loss, greater than 0.9 for all three species, than under lateral root loss, where the

largest values were 0.71 for barley, 0.50 for bean and 0.45 for maize. Averaged

over all simulations with root loss, the maximum root loss fraction was 0.64 for

barley, 0.42 for bean and 0.51 for maize.

Lateral root loss has little effect on nitrogen uptake, axial root loss

leads to sharp decreases in nitrate uptake
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Figure 3.7: Shoot dry weight relative to the reference case without root loss versus
the maximum root length lost, as fraction of total root length lost produced at
that time, that was observed during the 80 days of simulation for barley. Each
point represents the mean of 5 repetitions, the shape of the point indicates the
type of root loss and the colour of the point indicates the soil nutrient availability.
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Figure 3.8: Shoot dry weight relative to the reference case without root loss versus
the maximum root length lost, as fraction of total root length lost produced at
that time, that was observed during the 40 days of simulation for bean. Each
point represents the mean of 5 repetitions, the shape of the point indicates the
type of root loss and the colour of the point indicates the soil nutrient availability.

In barley, lateral root loss had little effect on nitrogen uptake, but axial and

general root loss led to a decrease in nitrogen uptake of up to 90% (Figure A.1).

Differences in uptake rates between different phenotypes were small but high

branching densities were associated with slightly higher nitrogen uptake and the

56



0.0 0.2 0.4 0.6 0.8 1.0

Maximum root loss fraction
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e 

sh
oo

t d
ry

 w
ei

gh
t

No root loss
Lateral root loss
Axial root loss
General root loss
Low N, low P
Low N, high P
High N, low P
High N, high P

Figure 3.9: Shoot dry weight relative to the reference case without root loss versus
the maximum root length lost, as fraction of total root length lost produced at
that time, that was observed during the 40 days of simulation for maize. Each
point represents the mean of 5 repetitions, the shape of the point indicates the
type of root loss and the colour of the point indicates the soil nutrient availability.

presence of RCS reduced nitrogen uptake, regardless of the presence, type or in-

tensity of root loss. In bean, lateral root loss was associated with a decrease in

nitrogen uptake of up to 20% for most phenotypes, although in the low nitrogen

soils some saw an increase in nitrogen uptake (Figure A.2). Axial and general

root loss were associated with decreased nitrogen uptake of around 50% for most

phenotypes, with some exceeding this. Bean phenotypes with medium or high

basal root numbers had up to 30% greater nitrogen uptake than those with low

basal root numbers and higher branching densities were associated with greater

nitrogen uptake as well, irrespective of the presence of root loss. RCA had almost

no influence on nitrogen uptake. In maize, lateral root loss led to an improvement

in nitrogen uptake for the high branching phenotypes, (more than 30% for one

phenotype), and a reduction or no effect for the other phenotypes (Figure A.3).

Axial and general root loss led to large decreases in nitrogen uptake. Nitrogen

uptake was strongly dependent on lateral root branching density: high branching

density led to a 70% reduction of nitrogen uptake in the low nitrogen soils, as

compared to low or medium branching densities, if no root loss was present but

under high levels of axial or general root loss the difference disappeared almost

completely. The presence of RCA and low nodal root numbers both improved

nitrogen uptake, irrespective of root loss.
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Phosphorus uptake is reduced by all types of root loss

In barley and bean phosphorus uptake decreased sharply under all types of root

loss, though the effect of lateral root loss was slightly less pronounced than the

effect of axial or general root loss (Figures A.4, A.5). In maize, this pattern was

present in all soils except the high nitrogen, low phosphorus soil, although the

decrease in phosphorus uptake under lateral root loss was slightly smaller (Figure

A.6). In the high nitrogen, low phosphorus soil, the high branching phenotypes

did not see their nitrogen uptake amount altered by much under lateral root

loss. In all three species greater lateral root branching densities were associated

with greater phosphorus uptake, similar to the results from earlier studies [92,

154, 221] and the differences between the uptake amounts of different phenotypes

were very large, a difference that was robust under different root loss intensities.

In barley, the presence of RCS reduced phosphorus uptake, as found in [175], and

phenotypes with greater tiller numbers had greater uptake, both of these findings

were true independent of root loss type and intensity. In bean, the presence of

RCA had almost no effect on phosphorus uptake and high nodal root numbers

were associated with greater phosphorus uptake, again these relationships were

independent of root loss. For maize grown in the high-nitrogen, low-phosphorus

soil subjected to lateral root loss, phosphorus uptake increased slightly for some

of the high branching phenotypes, while it declined for medium or low branching

phenotypes.

Nutrient uptake efficiency increases under root loss

We define nutrient uptake efficiency as µmol nutrient taken up from the soil per

cm of root surface per day. Nitrogen uptake efficiency increased for almost all

phenotypes of all three species in every soil under every type of root loss compared

with no root loss (Figures A.7, A.8, A.9). In barley, nitrogen uptake efficiency

increased much more under axial or general root loss than under lateral root

loss, while in bean and maize the increases were similar for each type of root

loss. The effect of root loss on phosphorus uptake efficiency depended on species,

phenotype and soil phosphorus content (Figures A.10, A.11, A.12). In barley

and maize, phosphorus uptake efficiency increased under axial and general root
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loss, while the picture was more mixed in bean, with many phenotypes showing

no improvement. In barley, the phosphorus uptake efficiencies of many pheno-

types were not affected by lateral root loss, only the low and medium branching

phenotypes without RCS showed a decline in all soils. The high branching bar-

ley phenotypes with RCS saw their uptake efficiency increase under lateral root

loss, although other than that there was little change. In bean, lateral root loss

reduced phosphorus uptake efficiency for all phenotypes and soil conditions. In

maize, the high branching phenotypes increased uptake efficiency under lateral

root loss while the other phenotypes showed small decreases or no effect.

Root length decreases under root loss, even at low intensities

Root length decreased under all types of root loss for all three species, with

axial and general root loss associated with larger declines (Figures A.13, A.14,

A.15). For barley and bean, root length increased with lateral branching density

and axial root number in all soils, irrespective of root loss, while this was not

the case for maize. While the presence of RCS increased root length slightly

in barley and RCA increased root length in maize, this was not true for bean.

In barley and bean the effect of root loss on root length was very similar for all

phenotypes, while for maize there were some that showed slightly different trends.

For plants subjected to lateral root loss, the amount of root length lost increased

with increasing root loss intensity (Figures A.16, A.17, A.18). When plants were

subjected to axial or general root loss this relation was less clear and the amount

of root length lost in many cases peaked at either the low or medium intensity.

The phenotypes that had the greatest root length generally also had the greatest

amount of lost root length.

3.5 Discussion

The effect of root loss on simulated plant development depends not only on the

type and intensity of root loss, but also on the species, root phenotype and soil

nutrient availability. The results from our simulations suggested that root loss is

especially detrimental to the uptake of immobile nutrients like phosphorus while

lateral root loss has little effect on nitrogen uptake.
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Timing and localisation of root loss is more important for plant devel-

opment than the amount of roots lost

Our results show that the amount of root length lost is not a good predictor of

plant performance, relative to the performance without root loss (Figures A.19,

A.20, A.21). This makes sense because plants with larger root systems have

more roots to lose and therefore will be less affected by the loss of a single root.

In a typical root system, there are many roots from which laterals emerge so

if laterals are lost they are generally replaced rapidly, which means that plants

with large root systems can lose a relatively large amount of root length every

day without corresponding reductions in plant function. Many of the simulated

phenotypes did not suffer reduced shoot growth even after losing up to 5% of

their lateral roots every day, provided phosphorus is not limiting, and some even

see an increase in shoot biomass after the loss of lateral roots. Therefore the

amount of root length lost as a fraction of the total root length (henceforth re-

ferred to as root loss fraction) may be a better predictor of the impact of root

loss on shoot dry weight than the absolute amount of roots lost. While there was

some correlation between the root loss fraction at the end of the simulation and

the reduction in shoot dry weight for bean, this relationship was much weaker for

barley and maize (Figures A.22, A.23, A.24). One reason for this is that if a plant

loses a large fraction of its root system early during development this can have a

big impact on development (Figure 3.10) but the amount of root length lost can

be a small fraction of the total root length produced during the whole simulation.

We observed a strong correlation between maximum root loss fraction (the max-

imum fraction of root system length lost during any of the simulated days) and

reduction in shoot dry weight, as compared to the scenario without root loss

(Figures 3.7, 3.8, 3.9). This relationship was true for all combinations of soil

nutrient availability and root loss types, except for lateral root loss in the high-

phosphorus soils, where it was absent in barley and maize and less clear in bean.

A high maximum root loss fraction not only means that a plant lost a large frac-

tion of the resources invested in roots at one point during development, but also

that the development of its root system was set back several days, if not more,

60



5 10 15 20 25 30 35 40

 First Time Plant Lost More Than 40% of Roots in a Day

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

sh
oo

t d
ry

 w
ei

gh
t

Maize, axial root loss
Low N, Low P
Low N, High P

High N, Low P
High N, High P

Figure 3.10: Shoot dry weight ratios of plants affected by axial root loss with
respect to their shoot dry weight when root loss is absent plotted versus the first
day at which these plants lost more than 40% of their root systems in a 24-hour
period. The colors indicate soil type. When a plant does not lose more than
40% of their root system during a 24-hour period during the simulation, they are
assigned the value 41.

lowering nutrient uptake capacity. This leads to a reduction in shoot growth,

leading to lower photosynthesis rates which means less resources are available to

grow more roots. Our results show that the impact of such a setback on devel-

opment is so severe that shoot biomass can be reduced by more than 80%. This

explains why axial root loss is so much more detrimental to plant development

than lateral root loss; under axial root loss, it is much more likely for a plant to

lose a large fraction of its root system, since a single axial root and its lateral

roots can represent a large fraction of the root system length. With even a 5%

daily loss of lateral roots, this represents a much more constant rate of root loss

that is unlikely to lead to large root loss fractions.

The number of axial roots formed early in development determine re-

silience to axial root loss

Our results suggest that bean is much more resilient to axial root loss than both

barley and maize (Figures 3.4, 3.5, 3.6, 3.7, 3.8, 3.9). As we discussed in the pre-

vious section, the maximum root loss fraction is a good predictor of the reduction

in shoot dry weight due to root loss. Under axial root loss, the maximum root
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loss fraction, averaged over all simulations, was 0.76 for barley, 0.46 for bean and

0.63 for maize. Under general root loss these values were 0.76 for barley, 0.53 for

bean and 0.67 for maize. This offers an explanation why bean is less susceptible

to axial (and general) root loss in our simulations; under randomised root loss,

the larger number of axial roots means it is less likely for bean plants to lose a

large proportion of their root system in a short period of time.

One might expect large root loss fractions to occur early during development

rather than later, since the root system is smaller at that stage and a small num-

ber of axial roots and their laterals can represent a large fraction of the root

system. While there is some (negative) correlation between maximum root loss

fraction and the time at which this maximum root loss fraction occurs for barley

and maize, the opposite seems to be true for bean (Figures A.25, A.26, A.27).

None of the phenotype-environment combinations we considered for bean had a

mean maximum root loss fraction greater than 50% occur before day 15, so we

conclude that it is unlikely for bean to lose a large fraction of its root system

early, while this is not true for barley and maize. This is because of differences in

the number of axial roots that these plants have during the early stages of devel-

opment: On average, barley had grown 5.0 axial roots at day 10, bean 21.3 and

maize 8.7. Differences in early axial root number correspond to differences in how

barley, bean and maize root systems develop. First, unlike barley and maize, our

bean model includes hypocotyl born roots that emerge regularly during the early

stages of development. Second, the basal root whorls in bean have all emerged

by day 10 while neither nodal roots nor tiller roots have emerged by this point

in barley and only the first whorl of nodal roots has emerged in maize. This

means bean has a much larger number of axial roots early in development, mak-

ing it much more resilient to losing a few axial roots. Finally, in OpenSimRoot,

seminal roots emerge as lateral roots from the primary root which means that

loss of the primary root implies loss of the entire seminal root system. For the

barley and maize phenotypes we considered, the primary root together with the

seminal roots are the main axial roots during the first 10 days of development,

which makes them vulnerable to root loss.

Differences in axial root numbers between different phenotypes led to differences
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in resilience to axial root loss if the differences in axial root numbers occurred

early in development. For barley, the phenotypes with 4, rather than 2 or 3

tillers, had extra axial roots, but since the tillers emerged sequentially, this dif-

ference in axial roots occurred later in development. The decrease in shoot dry

weight due to axial root loss for phenotypes with 2, 3 or 4 tillers, averaged over

the other phenes, all environments and all root loss intensities was 56%, irre-

spective of the number of tillers. For bean and maize, there were differences

in axial root numbers earlier in development between different phenotypes. For

maize, the different axial root numbers corresponded to different numbers in each

root whorl, the first of which emerged 9 days after germination. The maize phe-

notypes with high axial root number saw a 51% decrease in shoot dry weight,

on average, due to axial root loss, versus 55% for the maize phenotypes with

low axial root number. For bean, the differences in axial root numbers early in

development between phenotypes were the biggest. The bean phenotypes with

high axial root number saw a 22% decrease in shoot dry weight, on average, due

to axial root loss, versus 29% for the bean phenotypes with low axial root number.

Lateral root loss has little effect on nitrogen uptake but axial root loss

does

Since nitrogen in the form of nitrate (the predominate form of available nitrogen

in most agricultural soils) is highly mobile, competition among roots for nitrogen

capture occurs even at low branching densities. Because of this, we expect the

amount of nitrogen gathered from the soil per amount of resources invested to

be greater at reduced branching densities, as was confirmed in previous in silico

[154, 164] and field [219] studies. This was borne out very clearly for barley and

maize, where the densely branching phenotypes performed the worst in the low

nitrogen, high phosphorus soil and low numbers of axial roots were associated

with greater shoot biomass. For bean, the opposite was true and densely branch-

ing phenotypes with medium or high basal root numbers performed the best.

This is likely due to the fact that bean roots can fix nitrogen so even if they are

competing very strongly for mineral nitrogen in the soil, they are still acquiring

nitrogen through fixation. The total nitrogen uptake over the course of the simu-

lation correlates well with the simulated shoot biomass in the low nitrogen, high
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phosphorus soil for bean and maize but not for barley. The difference in nitrogen

uptake between different phenotypes was very small for barley, perhaps because

the longer simulated period of time (80 days instead of 40) means that all the

phenotypes deplete most of the soil nitrogen. The nitrogen uptake efficiencies

also show that parsimonious phenotypes are a better strategy to obtain nitrogen;

phenotypes with low lateral branching densities and low axial root numbers had

the greatest uptake efficiencies, in all three species. This is congruent with the

proposal that parsimonius root phenotypes are better for N capture [112, 115],

and by extension for water capture, since water is also a mobile resource [114].

Nitrogen uptake efficiencies increased under root loss, which is in line with the

finding that parsimonious root systems are better adapted for nitrogen uptake.

Of course the total nitrogen uptake is also an important factor in plant devel-

opment and when main axes were lost, nitrogen uptake declined significantly, to

the point where plants were not able to develop any significant shoot biomass.

So while plants that lose a lot of roots might be able to take up more nitrogen

per day per root surface area, they are not able to explore enough soil volume to

gather all the nutrients they need for development. Root loss was also associated

with more shallow root systems, which are not able to access nitrogen that has

leached into deeper soil domains. Since lateral root loss did not affect the sim-

ulated shoot biomass of nitrogen-stressed plants, the costs and benefits of this

balanced out. The resources invested in these laterals, nutrients and carbon, were

lost but the carbon spent on root system maintenance decreased and the nitrogen

uptake efficiency increased. This was true for all phenotypes we considered.

In barley, the simulated shoot biomass correlated more strongly with the nitro-

gen uptake efficiency than with the total nitrogen uptake, indicating that carbon

limitations are more important for these plants than nitrogen stress (Figures 3.4,

A.1, A.7). For bean, the opposite is true and shoot biomass correlates more with

total nitrogen uptake than nitrogen uptake efficiency, which means nitrogen lim-

itations take precedence (Figures 3.5, A.2, A.8). For maize, all three measures

correlate, which means the optimal phenotypes are optimising on multiple mea-

sures (Figures 3.6, A.3, A.9). These differences might be due to differences in

root architecture or due to differences in shoot-root ratio.
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Phosphorus stress is compounded by root loss

Due to the immobile nature of phosphorus in the soil, phosphorus uptake is linked

strongly to soil exploration, especially in the topsoil where phosphorus availability

is greatest [116]. For the same reason, competition between roots is small, which

explains why the phenotypes with high lateral branching densities are the best

performers in the low phosphorus, high nitrogen soil, again confirming previous

in silico [155, 154] and field [221, 92] studies. In barley, the phenotypes with the

greatest phosphorus uptake were not the best performers in this soil however; the

high branching phenotypes without RCS took up more phosphorus from the soil

than those with RCS but had 30% lower shoot biomass. This indicates that the

trade-off between less uptake and nutrient remobilisation, as well as reduced root

respiration costs, is beneficial in low phosphorus environments, in other words,

RCS makes the root system more efficient [175]. In maize and bean, the simulated

shoot biomass and total phosphorus uptake in the high nitrogen, low phosphorus

soil correlate strongly, while the uptake efficiency is less important. This implies

that phosphorus supply is the main factor determining growth, although in the

case of bean the phenotypes with the greatest uptake efficiency also acquired the

most phosphorus, which explains why the differences in shoot biomass are larger

in bean than in the other species.

All types of root loss were associated with significant decreases in phosphorus up-

take, in all soils. This contradicts the hypothesis put forward in [184], that root

turnover (root loss followed by regrowth) allows for the exploration of greater soil

volumes. The trade-off is that while root turnover means losing uptake capacity

in certain parts of the soil, it also allows the plant to explore new parts of the

soil. However, the model utilised to support this hypothesis [184] did not take

into account the carbon costs associated with growing and maintaining roots.

In contrast, our results do not show any benefit to root loss in low phosphorus

soils, suggesting that the trade-off between giving up existing root length and

exploring new soil is not favourable. The carbon costs of maintenance could be

low enough relative to the cost of growing new roots so that only a very small

amount of new root length can be grown when older roots are lost. Also, the
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nutrients invested in a root segment are lost upon root death so if a root does not

take up more than the nutrients invested in it before being lost, it is a net loss

to the plant. Finally, if the buffer power of a soil is high enough, the soil might

not be meaningfully depleted of phosphorus during the simulated timeframe and

the benefits of exploring new soil are thus too small.

Optimal root phenotypes are similar with and without root loss

An important question is what our results imply for crop management and breed-

ing. In low-phosphorus soils, root loss should be prevented if possible, considering

the significant decline in predicted shoot biomass we observed. Axial root loss

is detrimental, regardless of the environment, especially for barley and maize.

The effect of lateral root loss depends on species as well as environment. For

barley plants grown without phosphorus limitations, lateral root loss does not

reduce predicted shoot biomass, so preventing lateral root loss is not beneficial.

This is also true for bean and maize in environments where nitrogen is limiting

but phosphorus is not. In environments where nutrients are not limiting, lateral

root loss should always be prevented in bean, the same is true for most maize

phenotypes.

Given the large number of environmental factors influencing root loss, it is rarely

possible to prevent it entirely. A relevant question then is which root phenotypes

should be selected in order to maximize shoot biomass. Phenotypes with higher

lateral branching densities are more resilient to lateral root loss, however this

does not mean they are also the phenotypes with the highest shoot biomass in all

environments (Figures 3.4, 3.5, 3.6). In most environments the top performers

are very similar across the different root loss intensities. Even when different phe-

notypes respond differently to an increase in lateral root loss intensity, as is true

for the high-branching maize phenotypes, this is generally not enough to make

them a top performer, since the difference in shoot biomass without any root

loss was very large to begin with. Resilience to axial root loss was linked to the

number of axial roots during the first 10 days after germination. This was both

apparent in differences between species and in differences between phenotypes.

The bean phenotypes we simulated have far higher axial root numbers at day 10
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and show significantly higher resilience to axial root loss. We conclude that in en-

vironments where axial root loss is prevalent, selecting for phenotypes with higher

axial root number early during development improves performance. The utility

of selecting for higher lateral branching densities in environments with lateral

root loss depends on the availability of nitrogen and phosphorus, the difference

in resilience is generally smaller than the difference in performance without any

root loss. Our results, like previous studies indicate that selection for appropriate

root architectural phenotypes can substantially improve crop development [115].

3.6 Further research

While the use of OpenSimRoot enabled us to explore a large range of scenarios,

its limitations should be acknowledged. Root growth, respiration, exudation and

other parameters have only been measured for the first 80 days for barley and for

approximately 40 days for bean and maize. Additionally, OpenSimRoot is not

yet capable of simulating the processes relevant for flowering and seed setting,

meaning we could not directly predict yields and had to rely on shoot biomass

as a proxy for fitness. Longer simulations would be interesting to verify if our

findings hold up when simulations are run from germination through to harvest.

It would be interesting to study the interactions between root loss and a wider

selection of phenes and environments. However, with just 3 types of root loss at

3 intensities, 4 different soils and 3 phenes that were varied, this study represents

results from 10800 simulations, each requiring between 2 and 48 hours to com-

plete and each using up to 20 GB of computer memory. Considerable computing

resources are needed for more extensive simulation studies.

In order to focus on the influence of root loss on plant nutrient uptake and growth,

we assumed that root loss was equally likely for every root of the affected root

classes. Modelling more realistic scenarios, such as models where a disease spreads

through the root system or predation affects localised regions of the soil, would

be an interesting extension of these results. Scenarios where root loss depends on

local soil conditions are also possible fruitful future avenues of research. There

was also no assumption of physiological mitigation strategies by the plant. Older,

thicker and more suberised roots are less vulnerable to a range of stresses that
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might lead to root loss. Modelling different root loss rates based on root diameter

would introduce an interesting trade-off, where thinner roots are more efficient

at taking up nutrients, due to their increased surface to volume ratio, but also

more susceptible to root loss. We also did not explore the effects of root loss on

plant stability and anchorage.

3.7 Conclusions

We used the functional structural plant model OpenSimRoot to simulate the

effects of root loss on the development of barley, common bean and maize. Even

though we used a simple model for root loss, assuming randomized root loss

with equal probabilities for all roots, and looked at a relatively small number

of environments, phenotypes, species, root loss types and root loss intensities,

our simulations revealed a complex picture that invites further studies. Our

simulations showed that the effect of root loss on plant development depends on

environment, root loss type and the root system architecture. Root loss was much

more detrimental for plants that were subjected to phosphorus stress than plants

that were subjected to nitrogen stress, which makes sense because competition

between roots is much greater for mobile resources like nitrogen. Axial root loss

was much more detrimental than lateral root loss, which had little or even a

positive effect on plants that were not phosphorus stressed. There was a clear

relationship between the largest cumulative root loss, as fraction of total root

production, a plant had to endure and the associated reduction in shoot dry

weight. Common bean was more resilient to axial root loss than barley and

maize, which was likely because the common bean root system has more axial

roots during the early phases of development. We hope that, outlining the far-

reaching consequences root loss can have on plant development, we will motivate

additional studies on root loss in the field, which are currently scarce. Apart

from the normal difficulties associated with studying roots in the field, studying

root loss brings additional challenges because roots need to be tracked over time,

and it is challenging to impose specific root loss scenarios, which highlights the

importance of modelling studies. By shedding light on this difficult to study

process we show how modelling can not only verify our understanding of various

processes but also how it points the way to new avenues of research.
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Chapter 4

Photosynthesis and Drought

The work described in this chapter was done in collaboration with Ishan Ajmera

(Penn State University) who dug into the literature to help decide which models

would be appropriate and provided most of the relevant parameters. He also

helped test the implemented models and our discussions on the assumptions and

early results proved invaluable. We are grateful for his contributions.

One of the most important constraints to growth that plants face is the avail-

ability of water. Not only does water make up a large part of a plant’s total

mass, significant amounts of water are lost through the transpiration associated

with photosynthesis. If water is in short supply, plants will respond by closing

their stomata, reducing water loss through the leaves as well as photosynthesis

rates because this also reduces the supply of carbon dioxide. This is a crucial

component of plant behaviour that was not yet implemented in OpenSimRoot.

In order to better simulate the effects of drought on plant development, we added

a number of models to OpenSimRoot, which we describe in this document. Note

that a list of all symbols and constants with references to relevant equations or

literature can be found in Appendix B.1.

Currently, the photosynthesis model of OpenSimRoot depends solely on the

amount of incoming radiation and the leaf area, as a result the development

of simulated plants is not affected by drought. To properly model a drought

response, we first need to quantify water stress. Then we need to integrate a

stomatal conductance model that makes the simulated plant responsive to water

stress. The most important effects of drought-induced stomatal conductance are
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a reduction in transpiration and photosynthesis rates, so we need a photosynthe-

sis model that takes into account available CO2 as well as available light. In order

to keep individual models simple, we model mesophyll (and for C4 photosynthesis

also bundle sheath) CO2 and O2 concentrations. Since the reactions involved in

photosynthesis are temperature dependent, we also implement a leaf temperature

model. Finally, we implement a diurnal radiation model so that carbon and light

limitations happen at different times of the day and there are appropriate leaf

temperature variations during the day.

Section 2.1 gives an overview of important concepts relating to photosynthesis,

explaining some crucial differences between the C3 and C4 photosynthesis path-

ways. Section 4.1 details the relevant equations in the C3 photosynthesis model,

which includes a model for stomatal conductance and models for leaf gas concen-

trations. In Section 4.2 we explain some of the constraints that OpenSimRoot

put on implementing the models relating to the API and timestepping used. In

Section 4.3 we explain the numerical root finder we implemented to deal with the

constraints in the previous section. In Section 4.4 we solve the C3 model equa-

tions (making a few assumptions) analytically and show it matches the solution

found by the numerical root finder. In Section 4.5 we write out the equations for

C4 photosynthesis. Section 4.6 contains the model for leaf temperature as well

as the temperature dependence of parameters in the C3 and C4 photosynthesis

models. Section 4.7 describes a model for calculating the solar radiation based on

latitude, date and time. Section 4.8 lists some final implementation issues that

had to be resolved. Section 4.10 describes the results of plant simulations under

drought using the new models described in this chapter. An overview of all the

symbols, constants, variables and a list of all important equations can be found

in Tables B.1, B.3 and B.4.

4.1 Modelling C3 photosynthesis

In order to model plant responses to drought we need to have an idea of how

plants sense drought. Since the plant hormone abscisic acid (ABA) is produced

in drying plant tissues [109] and ABA causes stomata to close [97], it was thought

that ABA produced in roots and transported to the leaves was the main path-
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way regulating stomatal drought responses. This hypothesis was supported by

several experiments [73, 95] but more recent experimental work calls into ques-

tion whether root-produced ABA is the primary driver of stomatal closure under

drought. If leaf turgor is maintained, stomatal closure does not happen even if

roots are exposed to low water potentials [37]. Isolating roots and leaves and

subjecting both to water stress causes ABA concentrations to increase sharply in

leaves but not in roots in Arabidopsis [86]. A large fraction of the ABA found in

roots may be produced in leaves [31, 86] or require precursors produced in leaves

[125, 167]. There is evidence that ABA produced in leaves is important for the

regulation of stomatal conductance. Arabidopsis leaf ABA levels increased and

decreased when huminidy was decreased or increased [86, 144] and ABA produc-

tion increased in leaves that were forcibly dehytrated using pressure chambers

[126, 191]. This suggests that leaf ABA concentration increases whenever leaf

water content, and hence leaf water potential, decreases [173].

Note that we still do not have a complete mechanistic understanding of stomatal

responses to factors that influence plant water status even though evidence sug-

gests stomata respond to leaf water potential [25]. The xylem water flow model

described in [45] assumes steady-state flow to calculate the quantity and distri-

bution of water uptake by the roots for a given hydraulic potential at the collar

(which is where the hypocotyl and shoot meet). In OpenSimRoot, the collar hy-

draulic potential is set to the value for which the root water uptake matches the

transpiration rates provided by the shoot model (provided the collar potential is

between 0 and −15000 hPa). Until the geometry of the shoot system is simulated

fully in OpenSimRoot, the collar water potential is the best proxy for leaf water

potential available. So we quantify drought stress by mapping the collar water

potential to a stress factor, a number between 0 (maximum stress) and 1 (no

stress), in line with how nutrient stresses are simulated in OpenSimRoot. We do

this by specifying a drought response curve, Sw(Ψc), where Sw is the water stress

factor and Ψc is the collar water potential. This drought response curve is not

hard coded but specified in the input file. This allows users to specify different

drought responses and sensitivities. The drought response curve we will use is
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piecewise linear and defined as follows:

Sw(Ψc) =


1 if Ψc > −4000hPa,

Ψc+14000
10000 if − 4000 > Ψc > −14000hPa,

0 if Ψc < −14000hPa.

(4.1.1)

A field potential of −15000 hPa is commonly taken as the wilting point [141],

beyond which plants are not able to recover. So we take this as the lowest

possible collar hydraulic potential. The numbers above were chosen so that we

reach a maximum stress response a bit earlier than the wilting point and the

stress response is somewhat gradual. Note that these numbers are not based on

measurements or literature values. We will use this stress factor in the model

for stomatal conductance, see below. It is also used to reduce shoot growth

rates through a stress response curve defined in input files, just like for nutrient

stresses. Currently, OpenSimRoot calculates photosynthesis rates through the

LINTUL model [182, 158]. The energy cointained in the sunlight intercepted by

the leaves, L is calculated as

L = a · Is · fPAR(1− e−k·LAI), (4.1.2)

where a is the area in m2 each plant has available, Is is the solar irradiance in

Wm2, fPAR the fraction of radiation that is photosynthetically active, k the so-

called extinction coefficient and LAI the leaf area index, which is the leaf area

divided by the area available to each plant [158, 195]. The final term calculates

how much of the potentially available light is actually intercepted by the leaves,

taking into account self-shading effects from the canopy. The carbon assimilation

rate, P in g
s , is then given by

P = LϵLU , (4.1.3)

where ϵLU in g
J is the light use efficiency of the plant in question. This simple

model is good enough for many purposes but does not include any dependence on

plant water status. Seeing as under drought conditions, plants close their stom-

ata, which reduces gas exchange between leaves and the atmosphere, we require

a photosynthesis model that takes leaf CO2 concentrations into account, as well
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as light interception. We will implement the Farquhar-Von Caemmerer-Berry

model for C3 photosynthesis [58, 59, 200], as described in detail in [201]. This

steady-state model is so influential that it is known as “the canonical model” and

most published steady-state photosynthesis models are based on or derived from

it [136]. This model combines biochemical and irradiation dependent constraints

and has been applied in a wide range of contexts [202]. The photosynthetic

assimilation rate A in µmol
m2 s

is equal to

A = min{Ac, Aj , Ap}, (4.1.4)

where Ac in µmol
m2 s

is the rubisco-limited rate, Aj in µmol
m2 s

the electron transport-

limited rate and Ap in µmol
m2 s

the phosphate-limited rate of carbon assimilation.

We will assume that phosphate is not limiting so ignore Ap from here onward.

Ac and Aj are defined as

Ac =
Vcmax(Cm − Γ∗)

Cm +KC(1 +
Om
KO

)
, (4.1.5)

Aj =
(Cm − Γ∗)J

4 · Cm + 8Γ∗ . (4.1.6)

Here Vcmax in µmol
m2 s

is the maximum rubisco carboxylation rate, KC and KO in

µmol/mol are the rubisco Michaelis constants for CO2 and O2 and Γ∗ in µmol
mol is

the CO2 compensation point without dark respiration (the leaf respiration that

happens independently of photosynthesis). Cm and Om in µmol
mol are the internal

CO2 and O2 concentrations, which depend on the stomatal conductance to wa-

ter, gw in mol
m2 s

. J in µmol
m2 s

is the potential electron transport rate, which depends

on the amount of radiation intercepted by the leaves and is defined below. If

Cm ≤ Γ∗ then Ac = Aj = 0.

We model the internal leaf CO2 and O2 concentrations, Cm and Om, using the

following differential equations, containing one term for the diffusion of CO2/O2

into/out of leaves through stomata, and one term for the depletion/production

of CO2/O2 because of photosynthesis and one term for the production/depletion

of CO2/O2 due to respiration. Assuming that diffusion of these gases is governed

by Fick’s law [60], for the diffusion term we get the fluxes

JC =
gw
1.6

(CA − Cm) , (4.1.7)
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JO =
gw
1.25

(OA −Om) . (4.1.8)

The ratios of the diffusivities in air of water, carbon dioxide and oxygen mean

that gw
1.6 is the stomatal conductance to carbon dioxide and gw

1.25 is the stomatal

conductance to oxygen [76]. The unit of the flux JC is µmol
m2 s

. In order to write

down a differential equation of the form ∂Cm
∂t = f(Cm), where the left side has

units µmol
mol s we need to include a conversion factor with units m2

mol . Using the ideal

gas law and the fact that the change in concentration due to a diffusion flux

depends on the size of the container diffusion is going into or out of, we multiply

the fluxes by RTA
PdL

, which has units m3 PaK
KmolPam= m2

mol , where R in J
Kmol is the ideal

gas constant, TA in K the air temperature, P in Pa the air pressure and dL in m

the thickness of the mesophyll cells. As we will later see, this conversion factor

will disappear from the equations so for now we will set dL = 100 µm, slightly

lower than leaf thickness after 5 days [98].

Including terms for the photosynthetic assimilation rate A and the dark respira-

tion rate Rd, both in µmol
m2 s

we get

∂Cm

∂t
=
R · TA
P · dL

( gw
1.6

(CA − Cm)−A+Rd

)
, (4.1.9)

∂Om

∂t
=
R · TA
P · dL

( gw
1.25

(OA −Om) +A−Rd

)
. (4.1.10)

Here A is given by equation 4.1.4. Since the gas concentrations in leaves reach

equilibrium conditions in a few seconds at most, as we will show in Section 4.2,

and the relevant timescale for OpenSimRoot is measured in days, we will assume

the system is at steady-state. At steady-state, ∂Cm
∂t = ∂Om

∂t = 0 and

Cm = CA − 1.6

gw
(A−Rd), (4.1.11)

Om = OA +
1.25

gw
(A−Rd). (4.1.12)

For the stomatal conductance to water gw, we use a slightly adapted version of

the Ball-Berry-Leuning model, described in [104], which states that

gw =
m · Sw(Ψc)(A−Rd)

CA − Γ

(
1 +

V PD

V PDr

)−1

+ gw0. (4.1.13)

Herem is an empirical constant, Sw(Ψc) is the water stress factor defined in 4.1.1,
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Γ in µmol
mol is the CO2 compensation point with dark respiration, defined below,

see equation 4.1.18, V PD in kPa the vapour pressure deficit, V PDr in kPa a

reference vapour pressure deficit and gw0 in mol
m2 s

the residual conductance. The

vapour pressure deficit, V PD is given by

V PD = V Ps − V Pa, (4.1.14)

where V Ps in kPa is the saturated vapour pressure and V Pa in kPa is the actual

vapour pressure. This is related to the relative humidity Hr through

Hr =
V Pa

V Ps
. (4.1.15)

The potential electron transport rate, J , which appears in equation 4.1.6, is

defined as:

J =
I2 + Jmax −

√
(I2 + Jmax)2 − 4θI2Jmax

2θ
, (4.1.16)

where I2 in µmol
m2 s

is the energy in the light absorbed by photosystem 2, Jmax

in µmol
m2 s

is the maximum electron transport rate and θ is an empirical curvature

factor. I2 is given by

I2 =
βIsα(1− f)

2
, (4.1.17)

where β in µmol
J is a conversion factor, Is in

W
m2 is the solar irradiation, α the leaf

absorbtance and f a factor to correct for the spectral quality of the light.

Finally, equation 4.1.13 contains Γ, the CO2 compensation point with dark res-

piration included, at which photosynthesis and respiration rates are equal. Γ is

given by

Γ =
Γ∗ + KCRd

Vcmax

(
1 + Om

KO

)
1− Rd

Vcmax

. (4.1.18)

In summary, the C3 photosynthesis rate is given by equation 4.1.4, which states

that the assimilation rate is the minimum of the carbon-limited (equation 4.1.5)

and light-limited (equation 4.1.6) rates. The assimilation rates depend on the

mesophyll carbon dioxide and oxygen concentrations (equations 4.1.11 and 4.1.12)
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as well as the solar irradiation. The leaf gas concentrations depend on respiration

and photosynthesis rates as well as the stomatal conductance (4.1.13). Stom-

atal conductance depends on atmospheric parameters, photosynthetic assimila-

tion rates and the water status of the plant, as quantified by the water stress

factor (equation 4.1.1). This is a nonlinear system of equations, the solution to

which will give us the photosynthesis rate, our primary variable of interest.

4.2 OpenSimRoot Implementation

When implementing new models in OpenSimRoot, we should remain within the

OpenSimRoot design framework where possible and should try to work with

what is present in the application programming interface (API). This means that

anything implemented should be backwards compatible, models should be im-

plemented in a modular way such that each individual model can be swapped

out for a different one and information should generally travel in one direction

(this means information is passed between models by request). As we shall see,

this caused some difficulties for implementation which were overcome through

the addition of new functionality to the OpenSimRoot engine.

Models, or plugins, in OpenSimRoot fall in two broad categories. The first

are variables defined by algebraic relationships. That is, at any given time t,

y(t) = F (x1(t), x2(t), ..., xn(t)) for some function F and other variables x1, ..., xn.

These variables are added to the simulation by including appropriate Simu-

laDerivative XML tags in the input file. The second category is of variables that

are defined by differential equations, these are calculated by integrating rates over

time, using a Runge-Kutta predictor-corrector method. To add variables of this

type, the SimulaVariable XML tag is usually used.

In a typical simulation there will be a number of cyclical dependencies between

variables. For example, growth rates depend on the photosynthesis rate, which

depends on leaf area, which depends on growth rates. If SimulaDerivatives depend

on each other cyclically, they will get stuck in a perpetual loop of requesting a

value from each other, resulting in a segmentation fault. If there is a SimulaVari-

able in a cyclical chain of dependencies, the SimulaVariable will be predicted
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forward in time, then the other variables in the chain will be calculated with this

predicted variable, after which the predicted value is updated.

To determine photosynthesis rates in the new C3 model described in Section 4.1,

we need to find the steady state solutions or equations 4.1.9 and 4.1.10. This is

equivalent to finding the solution to the system of equations consisting of equa-

tions 4.1.4, 4.1.5, 4.1.6, 4.1.11, 4.1.12, 4.1.13 and 4.1.1. Since there are cyclical

dependencies between these equations, e.g. the photosynthesis rate and leaf in-

ternal CO2 concentration depend on each other, we have to represent one of the

variables with a SimulaVariable to avoid the simulation getting stuck in an end-

less loop. The internal CO2 concentration is an obvious candidate to represent

as a SimulaVariable. The rate of change would be given by differential equation

4.1.9. However, the timescale implied by this equation does match the timescale

relevant to OpenSimRoot. Time in OpenSimRoot is expressed in units of days,

with a timestep typically being 0.1 days, while the CO2 concentration in leaves

converges to the steady-state in just a few seconds, as can be seen from Figure

4.1. This figure shows the result of numerically integrating equation 4.1.9 using

the forward Euler method.
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Figure 4.1: Evolution of the mesophyll CO2 concentration numerically integrated
using the forward Euler method.

In an early implementation, this mismatch in timescales caused the gas concentra-
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tions to overshoot massively in the first timestep. Then in the following timestep,

the value overshot the other way. This continued until they eventually diverged to

infinity. Because the system converges to the steady state solution in a fraction of

a typical OpenSimRoot timestep, we assume the system is always in steady state.

After writing down the solution to the system of of equations 4.1.4, 4.1.5, 4.1.6,

4.1.11, 4.1.12, 4.1.13 and 4.1.1 analytically we found that implementing this in

OpenSimRoot leads to a number of issues. It would require different OpenSim-

Root submodels to have the same underlying equations, in contradiction to the

modular design of OpenSimRoot and it does not allow for temperature models

to be included. Because of this, we updated the OpenSimRoot engine so that the

solution to the system of equations 4.1.4, 4.1.5, 4.1.6, 4.1.11, 4.1.12, 4.1.13 and

4.1.1 is calculated numerically.

4.3 Numerical root finder

To explain the numerical root finder we implemented, we will first explain some

parts of the OpenSimRoot API in detail. In OpenSimRoot, the methods that

calculate the values of state variables are generally not given any input values in

their function call besides the (simulated) time at which the variable is requested.

These functions in turn request the values of the state variables they depend on

at the same (simulated) time in their code. In addition, when the value of a

state variable is requested, the method corresponding to that state variable is

not called directly. Instead, the get method of the parent class (in our case Sim-

ulaDerivative) is called. This allows OpenSimRoot to cut down on calculations

by saving values in a cache and allows for OpenSimRoot to interpolate or know

when to integrate forward in time (used by SimulaTables and SimulaVariables).

This get method is what we will alter to implement our Newton solver. The

(simplified) pseudocode for the SimulaDerivative::get method was as follows:

1 get ( t , x ) {

2 i f time t i s c l o s e to cached time

3 re turn cached value

4 x = ca l c u l a t e ( t )

5 s e t cached value to x and cached time to t

6 }
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Here “calculate(t)” means that the calculate method of the class responsible for

the state variable in question is called. For example, for the state variable “root

segment dry weight”, this will (usually) be the class called “RootSegmentDry-

Weight” in “RootSegmentDryWeight.cpp”. The “calculate(t)” method requests

the volume and density at time t and multiplies them to get the dry weight.

If SimulaDerivatives depend on each other, possibly indirectly, they will get stuck

in an infinite loop, perpetually calling each others calculate methods (through

their get methods). We want instead to pick a ‘reasonable’ starting value for

one of them and then to iterate using the Newton-Rhapson method until we

have found a solution to the system of equations 4.1.4, 4.1.5, 4.1.6, 4.1.11, 4.1.12,

4.1.13 and 4.1.1 (the steady state). In the one-dimensional case, where we have

an equation x = F (x) and we are trying to find a solution x∗ such that x∗ =

F (x∗), we can turn the fixed point equation x = F (x) into the following form

F (x)−x = 0. In other words, we will use the Newton-Raphson method to find a

root of the expression F (x)− x. This means that, for a given xn, xn+1, the next

iteration is defined as

xn+1 = xn − F (xn)− xn
F ′(xn)− 1

. (4.3.1)

The pseudocode looks like this:

1 get ( t , x ) {

2 i f time t i s c l o s e to cached time

3 re turn cached value

4 i f method was ( i n d i r e c t l y ) c a l l e d by i t s e l f

5 i f a c a l l b a ck cache was s e t

6 re turn cached ca l l ba ck value

7 e l s e

8 s e t c a l l b a ck cache to d e f au l t va lue

9 re turn d e f au l t va lue

10 x = ca l c u l a t e ( t )

11 i f c a l c u l a t e l ed to a ca l l ba ck loop

12 whi le | x − cached ca l l ba ck value | > t o l e r an c e

13 s e t c a l l b a ck cache to x

14 y1 = ca l c u l a t e ( t )

15 s e t c a l l b a ck cache to x + dx f o r some smal l va lue o f dx
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16 y2 = ca l c u l a t e ( t )

17 ys lope = dy/dx = ( y2 − y1 ) /dx

18 x = x − ( y1 − x ) /( ys l ope − 1)

19 s e t cached value to x and cached time to t

20 }

Let us walk through what would happen for a SimulaDerivative whose value

(indirectly) depends on itself through a function x = F (x). When it’s value is

requested for a new time t, the condition at line 2 is not satisfied and neither is

the condition at line 4 (yet). So it will proceed to line 10, where the relevant

calculate method will be called. Through the dependencies in the calculate

method it will (indirectly) call itself and then will satisfy the condition in line

4. Since no callback cache has been set yet, it will set the callback cache to a

default value and return. Then, returning to the first frame, it will execute lines

11 and 12 and satisfy the condition in line 13. Now, while the difference between

the value in the callback cache and x0, the value returned by the calculate,

method is larger than the tolerance, it will run through the following steps: The

callback cache will be set to x0, which is the value returned by the calculate

method. Then calculate will be called to calculate F (x0). Then the callback

cache will be set to x0 + δ for δ = 10−4 and then calculate will be called to

calculate F (x0 + δ). With this we can calculate x1 = x0 − F (x0)−x0

F ′(x0)−1 . These steps

will be repeated until xn+1 = xn, which is the solution we are looking for.

It often happens that there is a situation where we have two variables x and y

that are related through the set of equations

x = F (x, y), (4.3.2)

y = G(x, y). (4.3.3)

What will the pseudocode described above do? In OpenSimRoot, one of these

variables, x, will call back to itself first in an “outer loop”. It will set a callback

cache value, x0. Then when “unwinding” the outer loop, x0 will be returned to

the method that calculates y. Since y also depends on itself, it will call back

to itself (possibly indirectly), and form an “inner loop”. After setting a cached

value y0 and returning to the first frame where the calculation of y was called,
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the Newton-Raphson method will be used to find the value y∗0 that satisfies

y∗0 = G(x0, y
∗
0). (4.3.4)

This y∗0 will then be returned to the code that calculates x. The Newton-Raphson

method will then be started for x, but for every step, the code will run through

an entire loop to find an y∗n that satisfies

y∗n = G(xn, y
∗
n). (4.3.5)

Here xn+1 is given by

xn+1 = xn − F (xn, y
∗
n)− xn

∂xF ′(xn, y∗n)− 1
. (4.3.6)

Note that if we use the pseudocode as written above, the intermediate values

y∗0, ..., y
∗
n would be saved in the cache, which we do not want to do until x has

converged to its fixed-point value. So we add a static variable (a static variable is

shared among all objects belonging to the same class and all derived classes) to

keep track of which variable is the first to call back to itself and a static variable

that we use to detect if we are in a callback loop or not. This allows us to only

write to the cache once we have completely unwound all callback loops and found

the fixed point of all equations involved. Bounds on the final values returned by

individual models prevent unphysical solutions, for example those with negative

concentrations, from being selected.

If the system does not converge to a solution in 40 iterations, it is unlikely that

any further iterations will lead to convergence. It is possible that xn = xn−i for

some i > 0, for example if the sequence keeps alternating between two values

without converging to the fixed point. So after 40 iterations, we try multiplying

xn by a number between 0 and 2 every 41 iterations. In some cases, this can

move it to the basin of attraction of the fixed point. If after 240 iterations there

still is no convergence, we estimate the value as either the value at the previous

time or as the default value (if specified). The final pseudocode is

1 get ( t , x ) {

2 i f time t i s c l o s e to cached time

3 re turn cached value

81



4 i f method was ( i n d i r e c t l y ) c a l l e d by i t s e l f

5 i f the s t a r t e r o f the ca l l ba ck loop has not been s e t yet

6 s e t t h i s ob j e c t as the ca l l b a ck loop s t a r t e r

7 i f a c a l l b a ck cache was s e t

8 re turn cached ca l l ba ck value

9 e l s e

10 s e t c a l l b a ck cache to d e f au l t va lue

11 re turn d e f au l t va lue

12 x = ca l c u l a t e ( t )

13 i f c a l c u l a t e l ed to a ca l l ba ck loop

14 whi le | x − cached ca l l ba ck value | > t o l e r an c e

15 i f needing more than 40 i t e r a t i o n s

16 t ry pe r turbat i on every 41 i t e r a t i o n s

17 i f needing more than 240 i t e r a t i o n s

18 es t imate x

19 s e t c a l l b a ck cache to x

20 y1 = ca l c u l a t e ( t )

21 s e t c a l l b a ck cache to x + dx f o r some smal l va lue o f dx

22 y2 = ca l c u l a t e ( t )

23 ys lope = dy/dx = ( y2 − y1 ) /dx

24 x = x − ( y1 − x ) /( ys l ope − 1)

25 i f we are not in a ca l l b a ck loop anymore and t h i s ob j e c t i s

the ca l l ba ck loop s t a r t e r

26 s e t cached value to x and cached time to t

27 }

The actual code can be found in the OpenSimRoot repository in the file name

SimulaDerivative.hpp, located in OpenSimRoot/src/engine. Note that at the

time of reading, this new code might not have been merged into the public Open-

SimRoot repository yet, because it will only made public once an article utilising

this new functionality is ready for publication.

Using this numerical solver, OpenSimRoot calculates the simultaneous solution

to equations 4.1.4, 4.1.5, 4.1.6, 4.1.11, 4.1.12, 4.1.13 and 4.1.1, which comprise

our new photosynthesis and drought model. It is automatically backwards com-

patible, which is important to guarantee that old input files produce the same

result as with older OpenSimRoot versions, because this new code is only active

in cases that would have caused older versions of OpenSimRoot to crash.
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In the following section we analytically calculate a close approximation to the

solution to the C3 model equations and show that our numerical root finder

converges to the same solution for a range of different solar irradiation values.

4.4 Analytically solving C3 model equations

Recall the equation describing mesophyll oxygen concentration:

Om = OA +
1.25

gw
(A+Rd) (4.4.1)

The atmospheric oxygen concentration, OA, is generally around 210 mmol
mol . Be-

cause the maximum rubisco carboxylation rate of maize at 25 °C is 49 µmol
m2 s

[216], the photosynthetic assimilation rate is usually below A = 50 µmol
m2 s

= 0.05

mmol
m2 s

during the day. The dark respiration of maize at 25 °C is approximately

Rd = 1.95 µmol
m2 s

= 0.00195 mmol
m2 s

[216] . With stomatal conductances typically

around gw = 0.1 mol
m2 s

, this means that OA is at least 50 times larger than

1.25
gw

(A+Rd). So we make the approximation

Om ≈ OA. (4.4.2)

Now we recall the relevant model equations:

Ac =
Vcmax(Cm − Γ∗)

Cm +KC(1 +
Om
KO

)
(4.4.3)

Aj =
(Cm − Γ∗)J

4 · Cm + 8Γ∗ (4.4.4)

A = min{Ac, Aj} (4.4.5)

Cm = CA − 1.6

gw
(A−Rd) (4.4.6)

gw =
m · Sw · (A−Rd)

CA − Γ

(
1 +

V PD

V PDr

)−1

+ gw0 (4.4.7)

Assuming for the moment that carbon is limiting, so A = Ac, and leaf tempera-

ture is equal to the air temperature (so not dependent on stomatal conductance),
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we find the steady-state solution by writing:

0 =
gw
1.6

(CA − Cm)− (A−Rd)

=

(
m · Sw (CA − Cm)

CA − Γ

[
1 +

V PD

V PDr

]−1

− 1.6

)(
Vcmax(Cm − Γ∗)

Cm +KC(1 +
Om
KO

)
−Rd

)

+ gw0(CA − Cm). (4.4.8)

Now using our approximation that Om = OA and substituting

f(V PD) =

[
1 +

V PD

V PDr

]−1

, (4.4.9)

κ = KC

(
1 +

Om

KO

)
≈ KC

(
1 +

OA

KO

)
, (4.4.10)

we get

0 =

(
m · Sw (CA − Cm)

CA − Γ
f(V PD)− 1.6

)(
Vcmax(Cm − Γ∗)

Cm + κ
−Rd

)
+ gw0(CA − Cm)

= aC2
m + bCm + c, (4.4.11)

with

a =
m · Sw(Rd − Vcmax)

Ca − Γ
f(V PD)− gw0 , (4.4.12)

b = gw0 (CA − κ)− 1.6(Vcmax −Rd)

+
m · Sw
Ca − Γ

f(V PD) (Vcmax(CA + Γ∗) +Rd [κ− CA]) , (4.4.13)

c = gw0 · CA · κ−
(
m · Sw · CA

CA − Γ
f(V PD)− 1.6

)
(Vcmax · Γ∗ +Rd · κ) . (4.4.14)

This is a quadratic equation so the the two solutions can be written as

Cm =
−b±

√
b2 − 4ac

2a
. (4.4.15)

If, on the other hand, we assume that light is limiting, so A = Aj , we get

0 =

(
m · Sw (CA − Cm)

CA − Γ
f(V PD)− 1.6

)(
(Cm − Γ∗)J

4Cm + 8Γ∗ −Rd

)
+ gw0(CA − Cm)

= aC2
m + bCm + c, (4.4.16)
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which is again a quadratic equation with

a =
m · Sw
CA − Γ

f(V PD) (4Rd − J)− 4gw0, (4.4.17)

b =
m · Sw
CA − Γ

f(V PD)

(
CA(J − 4Rd) + Γ∗(J + 8Rd)

)
+ 1.6(4Rd − J) + gw0(4CA − 8Γ∗), (4.4.18)

c = 1.6Γ∗(J + 8Rd)−
m · Sw · CA

CA − Γ
f(V PD)Γ∗

(
J + 8Rd

)
+ 8gw0CAΓ

∗. (4.4.19)

We of course want to make sure that our numerical solver described in Section

4.3 finds a solution that is consistent with the approximate analytic solution de-

rived here. Figure 4.2 show that the numerical solution to equations 4.1.4, 4.1.5,

4.1.6, 4.1.11, 4.1.12, 4.1.13 and 4.1.1 as computed by the numerical root finder

described in Section 4.3 is equal to the largest of the four analytic solutions de-

scribed in this section, across a range of different irradiation values. This makes

sense because larger photosynthesis rates correspond to smaller mesophyll carbon

concentrations.
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Figure 4.2: Comparing the mesophyll concentrations predicted by the numerical
root finder with the four roots derived analytically in this section for a range of
different irradiation values.
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If we do not make the assumption Om = OA, but instead have Om = OA +

1.25
gw

(A+Rd), the two solutions differ slightly, 319.69733 versus 319.69624 µmol
mol .

4.5 Modelling C4 Photosynthesis

In Section 2.1 we explained some of the important differences between C3 and C4

photosynthesis and why C4 photosynthesis has a higher water use and nitrogen

efficiency and photorespiration is less of a problem. This makes C4 photosynthe-

sis better when water availability is low and temperatures are high. The extra

steps involved in C4 photosynthesis make it less efficient than C3 photosynthesis

when water is plentiful and temperatures are low. Approximately 95% of plant

biomass on earth comes from plants that fix carbon through C3 photosynthesis.

This includes food crops such as rice, wheat, soybeans and barley. Food crops

that use C4 photosynthesis include species such as maize, sugar cane and sorghum.

As explained in Section 2.1, in C4 photosynthesis, carbon dioxide is fixed in a

two-step process. First, carbon dioxide is fixed by PEP carboxylase in mesophyll

cells near the stomata in the form of malate or aspartate. These molecules are

then transported to bundle sheath cells where they are decarboxylated. This

leads to an environment rich in carbon dioxide, which allows RuBisCO to fix the

CO2 while keeping photorespiration rates low. So for C4 photosynthesis we will

add equations for the bundle sheath CO2 and O2 concentrations.

We use the following expressions for C4 light-limited and carbon-limited photo-

synthesis rates [201]:

Ac =
(Cs − 1

2Sc/o
Os)Vcmax

Cs +KC(1 +
Os
KO

)
, (4.5.1)

AJ =

(
Cs − 1

2Sc/o
Os

)
(1− x)J

3Cs + 7 1
2Sc/o

Os
, (4.5.2)

A = min{Ac, Aj}. (4.5.3)

These are similar to equations 4.1.5 and 4.1.6, but Γ∗, the CO2 compensation

point without dark respiration (e.g. the CO2 concentration at which photo-
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synthesis and the respiration associated with it are in equilibrium), has been

rewritten as 1
2Sc/o

Os, with Sc/o the RuBisCo specificity for CO2 (relative to that

for O2). Also, instead of total electron transport rate J , we use the electron

transport rate in bundle sheath cells (1− x)J where x is the fraction of electron

transport happening in the mesophyll cells and the constants in the numerators

of equations 4.1.6 and 4.5.2 differ slightly because of differences in the energy

requirement for whole chain electron transport. We also use the bundle sheath

CO2 and O2 concentrations, Cs and Os in µmol
mol , rather than mesophyll concen-

trations, since assimilation happens in the bundle sheath. Using equations 4.5.1,

4.5.2 and making some simplifying assumptions, Von Caemmerer derived equa-

tions for the carbon-limited and light-limited assimilation rates that only require

the mesophyll CO2 and O2 concentrations [201]. The derivation is similar to the

derivation we did for C3 photosynthesis in Section 4.4, but the mesophyll gas

concentrations take the place of the atmospheric gas concentrations. Instead of

using these equations, we opt for a more modular, easy to understand approach

that requires fewer simplifying assumptions. We will simulate both the bundle

sheath and mesophyll CO2 and O2 concentrations. We start by writing down our

differential equations governing their evolution:

∂Cm

∂t
=
R · TA
P · dL

( gw
1.6

(CA − Cm) + gs(Cs − Cm)− VP +Rm

)
, (4.5.4)

∂Cs

∂t
=
R · TA
P · dL

(VP −Ar − gs(Cs − Cm) +Rs) , (4.5.5)

∂Om

∂t
=
R · TA
P · dL

( gw
1.25

(OA −Om) + 0.047gs(Os −Om)−Rm

)
, (4.5.6)

∂Os

∂t
=
R · TA
P · dL

(Ar −Rs − 0.047gs(Os −Om)) , (4.5.7)

where Rm and Rs in µmol
m2 s

are the respiration rates in mesophyll and bundle

sheath cells, respectively, gs in mol
m2 s

is the bundle sheath conductance to CO2,

0.047gs is the bundle sheath conductance to O2 [201], VP in µmol
m2 s

is the PEP

carboxylation rate and Ar in µmol
m2 s

is the assimilation rate which does not include

dark respiration. Rm and Rs are given by

Rm = rmRd, (4.5.8)

Rs = (1− rm)Rd, (4.5.9)
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where rm is the fraction of dark respiration happening in the mesophyll cells. The

equations concerning mesophyll concentrations have terms for gas exchange with

the atmosphere and bundle sheath cells and a respiration term, while the equa-

tions concerning bundle sheath concentrations have a term for the gas exchange

with the mesophyll cells, a term for respiration and a term for photosynthesis.

PEP carboxylation rates are given by

Vp = min

{
CmVpmax

Cm +KP
, Vpr

}
. (4.5.10)

Here Vpmax in µmol
m2 s

is the maximum PEP carboxylation rate, KP in µmol
mol the

Michaelis constant for PEP carboxylation and Vpr in µmol
m2 s

the PEP regeneration

rate. Just as in the case of C3 photosynthesis, we note that gas concentrations

reach equilibrium values very quickly as compared to the timescale relevant to

OpenSimRoot and relative to changes in environmental conditions as can be seen

from figure 4.3.
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Figure 4.3: Evolution of the mesophyll and bundle sheath CO2 concentrations
numerically integrated using the forward Euler method.

Once again, because the convergence of leaf gas concentrations happens very

quickly, relatively to the major processes in OpenSimRoot, we assume the leaf

gas concentrations are in steady-state, so we get:

Cm =
gw
1.6CA + gsCs − VP +Rm

gw
1.6 + gs

, (4.5.11)
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Cs =
VP −Ar +Rs

gs
+ Cm, (4.5.12)

Om =
gw
1.25OA + 0.047gsOs −Rm

gw
1.25 + 0.047gs

, (4.5.13)

Os =
Ar −Rs

0.047gs
+Om. (4.5.14)

We use the same expression for stomatal conductance as in the case of C3 pho-

tosynthesis (equation 4.1.13) but need to use a different expression for the CO2

compensation point with dark respiration, Γ, since carbon fixation is not hap-

pening in the mesophyll cells but in the bundle sheath cells. From [201] we get

the C4 expression, which is

Γ =
Kp

Vpmax
(gsΓs −Rm). (4.5.15)

Here Γs in µmol
mol is the bundle sheath CO2 concentration at the compensation

point, which is given by

Γs =

1
2Sc/o

Om + KCRd
Vcmax

(
1 + Om

KO

)
1 + Rd

Vcmax

. (4.5.16)

After implementing these equations in OpenSimRoot, the numerical root finder

will find the set {Cm, Cs, Om, Os, Vp, Ac, Aj , A, gw} that satisfies equations 4.5.11,

4.5.12, 4.5.13, 4.5.14, 4.5.10, 4.5.1, 4.5.2, 4.5.3 and 4.1.13.

4.6 Leaf temperature model

Like many other aspects of plant development and functioning, such as root elon-

gation and respiration rates, photosynthetic assimilation rates are temperature

dependent [49, 106]. In order to make accurate predictions in the context of

climate change it is important that we can model the effects of elevated temper-

ature and increasing atmospheric CO2 concentrations. This requires us to model

the temperature dependence of the kinetic parameters that our models rely on

[22, 107, 128, 204]. For most parameters, we follow [201] and use an Arrhenius

function of the form

P (TL) = P25e
E(TL−Tref )

TrefRTL , (4.6.1)
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where TL is the leaf temperature in K, Tref the reference temperature, 25 °C or

298.15 K, P (TL) is the value of the parameter at TL, P25 is the parameter value

at 25 degreeCelsius (298.15 K), E in J
mol is the activation energy and R is the

universal gas constant. We model the temperature dependence of the following

parameters with this equation:

Γ∗ = Γ∗
25e

EΓ∗ (TL−Tref )

Tref ·R·TL , (4.6.2)

KC = KC25e

EKC
(TL−Tref )

Tref ·R·TL , (4.6.3)

KO = KO25e

EKO
(TL−Tref )

Tref ·R·TL , (4.6.4)

Rd = Rd25e

ERd
(TL−Tref )

Tref ·R·TL , (4.6.5)

Vcmax = Vc25 · e
EVc

(TL−Tref )

Tref ·R·TL , (4.6.6)

KP = KP25e

EKP
(TL−Tref )

TrefRTL , (4.6.7)

1

2Sc/o
=

1

2Sc/o25
e

ESc/o
(TL−Tref )

TrefRTL . (4.6.8)

For other parameters, the peaked Arrhenius function of the form

P (TL) = P25e
E(TL−Tref )

TrefRTL
1 + e

TrefS−D

TrefR

1 + e
TLS−D

RTL

(4.6.9)

is used because it better represents the temperature dependence of that parame-

ter. Here D in J
mol is the deactivation energy and S in J

Kmol is called the entropy

factor. The following parameters follow this temperature dependence relation:

Jmax = Jmax25e
EJmax

(TL−Tref )

TrefR·TL
1 + e

TrefSJmax
−H

TrefR

1 + e
SJmax

·TL−DJmax
R·TL

, (4.6.10)

Vp25 = Vpmaxrefe

EVpmax
(TL−Tref )

RTLTref
1 + e

SVpmax
Tref−DVpmax
TrefR

1 + e
SVpmax

TL−DVpmax
TLR

, (4.6.11)

gs = gs25e
Egs (TL−Tref )

RTLTref
1 + e

SgsTref−Dgs
TrefR

1 + e
SgsTL−Dgs

TLR

. (4.6.12)

Figure 4.4 shows an example of the temperature-dependent scaling applied to pa-

rameters by these Arrhenius functions. Of course the exact slope and, in the case
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of the peaked Arrhenius function, location of the peak, depends on the relevant

temperature scaling parameters (activation and deactivation energy and entropy

term).
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Figure 4.4: The temperature scaling applied to parameters according to the Ar-
rhenius and peaked Arrhenius functions.

Now that we have written down how biochemical model parameters vary with leaf

temperature, we need to determine leaf temperature. To model leaf temperature,

we use the leaf energy balance as described in [141]. The terms that are described

there as contributing to the leaf energy balance are:

• Absorption of solar irradiation

• Absorption of infrared radiation from the surroundings

• Emission of infrared radiation

• Heat conduction and convection

• Heat loss due to evaporation

• Photosynthesis

• Metabolic processes

• Changes in leaf temperature
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The contribution of photosynthesis and metabolic processes is typically on the

order of a few Watts, while other terms such as the solar irradiation are several

hundreds of Watts. So to simplify the model and reduce the number of dependen-

cies between variables we are leaving the photosynthesis and metabolic processes

out of the energy balance. Because of the low specific mass of leaves (somewhere

in the ballpark of 0.2 kg
m2 ), their specific heat is low and a net energy balance of a

few Watts is enough to increase the temperature by a degree Celsius in less than

5 minutes. Because of this, we assume the leaf is in steady-state and the energy

balance is zero. This will allow us to calculate the leaf temperature.

The absorption of solar irradiation AS in W
m2 is equal to

AS = a(1 + r)I, (4.6.13)

where a is the absorptance of the leaf over the whole solar spectrum, r is the

fraction of solar irradiation reflected by the surroundings and I in W
m2 is the solar

irradiation. Assuming there are no nearby objects that reflect a lot of sunlight

towards the field in which we are modelling crops and using a symmetry argument

(for each photon reflected from another leaf, we can assume the leaf reflects a

photon itself), we can set r = 0. This yields

AS = aI. (4.6.14)

Using the Stefan-Boltzmann law, the absorption of infrared radiation from the

environment AIR is equal to

AIR = aIRσ
(
T 4
surr + T 4

sky

)
. (4.6.15)

Here aIR in W
m2 is the infrared radiation absorptance of the leaves, σ in W

m2 K4 is

the Stefan-Boltzmann constant, Tsurr in K is the temperature of the surroundings

and Tsky in K is the effective temperature of the sky. Here we assume that the

underside of the leaves absorb infrared radiation coming from the surroundings

while the upper side absorbs infrared radiation coming from the sky. Note that

Tsky is not the actual temperature of the sky, but the temperature a blackbody
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that emitted as much radiation as the sky would have. We assume that

Tsurr = Ta, (4.6.16)

Tsky = Ta − 40. (4.6.17)

A blackbody with absorptance a will also have emissivity a so the emission of

infrared radiation by the leaves, eIR in W
m2 , is equal to

eIR = 2aIRσT
4
L. (4.6.18)

The factor 2 in this equation comes from the fact that the leaves emit infrared

radiation from both sides. The heat loss due to conduction into the air boundary

layer around leaves and then convection away from the leaves, Hc in
W
m2 , is equal

to

Hc = 2Kair(Ta)
TL − Ta
δbl

, (4.6.19)

δbl =
1

0.97

√
dν(Ta)

v
. (4.6.20)

Here Kair(Ta) in
W
mK is the thermal conductivity of the air, δbl in m the thickness

of the boundary layer, d in m the characteristic length of the leaf, ν(Ta) in m2

s

the kinematic viscosity of the air and v in m
s the wind speed. Again, the factor

2 is because heat is conducted away from both sides of the leaf. For the range of

air temperatures we are concerned with, 273.15 to 323.15 °C, we use, from [141],

the following approximations

Kair(Ta) = 0.0243 + 0.00007(Ta − 273.15), (4.6.21)

ν(Ta) = (1.415 + 0.09(Ta − 273.15)) · 10−5. (4.6.22)

The heat loss due to transpiration, Ht in
W
m2 , is equal to

Ht = JvHvap(Ta), (4.6.23)

where Jv in mol
m2 s

is the transpiration rate and Hvap(Ta) in J
mol is the heat of
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vaporisation of water, which is equal to

Hvap(Ta) = 45060− 425(Ta − 273.15). (4.6.24)

Putting this all together, the total energy balance E is equal to

E =aI + aIRσ
(
T 4
surr + T 4

sky

)
− 2aIRσT

4
L

− 2Kair(Ta)
TL − Ta
δbl

− JvHvap(Ta) = 0. (4.6.25)

This is a quartic equation in TL but rather than solving it analytically, which will

require us to choose a root, we solve it numerically using the Newton-Raphson

method. As our initial guess we take Ta, which should be relatively close to TL.

4.7 Solar radiation model

To make the simulation more accurate, a solar irradiation model, as described in

[130], was implemented. We briefly describe the most important equations here

for completeness. All the angles in this section are in degrees, rather than radians.

The solar irradiance at the surface of the earth I(t) in W
m2 at a given time t is

given by

I(t) = cos(Θ′(t))
I0

R2(t)
, (4.7.1)

where Θ′(t) is the zenith angle of the sun, corrected for the slope of the field,

which is the angle between a line pointing straight up and the sun, I0 is the solar

irradiance at the surface of the earth in W
m2 at 1 astronomical unit (AU) and R(t)

is the distance between the earth and the sun expressed in AU. R(t) is given by

the empirical formula

R = 1.00014− 0.01671 cos(g(t))− 0.00014 cos(2g(t)), (4.7.2)

where g(t) is the mean anomaly, which is a measure of where in its orbit earth

is. g(t) is given by

g(t) = 357.528 + 0.9856003n(t), (4.7.3)
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where n(t) is the difference between the current Julian date and the Julian date

at 12:00 on the 1st of January 2000. n(t) is equal to

n(t) = 2432916.5 + 365(y − 1949) + ⌊y − 1949⌋+ d(t)− 2451545, (4.7.4)

where y is the year in which we started the simulation and d(t) is the current day

(equal to the start day of the simulation + t), including the fractional part of the

day. cos(Θ′(t)), the zenith angle corrected for the slope of the field is given by

cos(Θ′) = cos(Θ(t)) cos(s) + sin(Θ(t)) sin(s) cos(α(t)− saz), (4.7.5)

where Θ(t) is the zenith angle (for a flat field), α(t) is the right ascension of the

sun (the celestial equivalent of longitude), s is the slope of the field and saz is

the surface azimuth relative to north. α(t) is given by

tan(α(t)) = cos(ep(t))
sin(l(t))

cos(l(t))
, (4.7.6)

where ep(t) is the obliquity of the ecliptic, the angle between the rotational and

orbital axis of earth and l(t) is the ecliptic longitude, the angular distance of the

sun along the ecliptic. These two quantities are given by

ep(t) = 23.439− 0.0000004n(t), (4.7.7)

l(t) = 280.460 + 0.9856474n(t) + 1.915 sin(g(t)) + 0.20 sin(2g(t)). (4.7.8)

Θ(t) is given by

cos(Θ(t)) = sin(δ(t)) sin(lat) + cos(δ(t)) cos(lat) cos(h(t)). (4.7.9)

where δ(t) is the declination, the celestial equivalent of latitude, of the sun, lat

is the latitude and h(t) is the hour angle. These quantities are given by

sin(δ(t)) = sin(ep(t)) sin(l(t)), (4.7.10)

h(t) = 6.697375 + 0.0657098242n(t) + 24(t− ⌊t⌋), (4.7.11)

where t− ⌊t⌋ is the fractional part of t, the local time.
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4.8 Final Implementation Details

After implementing all these models, a number of issues still had to be resolved.

Some of these are code optimisations needed to cut down computational time

and memory requirements, which were increased greatly by the numerical root

finder and some differences in model assumptions.

First of all, the implementation of the Penman-Monteith equations that govern

soil evaporation and crop transpiration was not performing as expected: When

testing the C3 photosynthesis model in rice, the simulated evaporation values

differed from field measurements by more than one order of magnitude. Upon

reviewing the code, there were a number of assumptions which required review.

We will quickly detail the changes made here.

For the crop evaporation rate, Jv in mol
m2 s

, we use equation 13 on page 210 of [134],

which states that

Jv =
∆Is + ρC V PD

ra

λ(∆ + γ(1 + rs
ra
))

(4.8.1)

where ∆ in hPa
K is the vapour pressure slope, Is in W

m2 the solar irradiation rate,

ρ in kg
m3 the density of air, C in J

kgK the specific heat capacity of air, V PD

in hPa the vapour pressure deficit, ra in s
m the aerodynamic resistance, λ in

J
mol the latent heat of water vaporisation, γ = CP

λMWratio
in hPa

K the psychrometric

constant, P in hPa is the air pressure,MWratio is the ratio between the molecular

weights of water vapour and air and rs in s
m is the stomatal resistance. For the

soil evaporation Es in mol
m2 s

we use equation 8 on page 208 of [134], which states

that

Es =
∆Isoil + ρC V PD

ra

λ(∆ + γ)
(4.8.2)

where Isoil in
W
m2 is the solar irradiation rate on the soil surface. Previously, these

values were then modified as follows:

Jactual
v = sJv (4.8.3)

Eactual
s = (1− s)Es (4.8.4)
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with s = 1− e−k·LAI , as in equation 4.1.2, the same scaling as used by the Lintul

photosynthesis model [158, 195]. However, the terms depending on the vapour

pressure deficit in equations 4.8.1 and 4.8.2 model the transpiration/evaporation

due to the difference in hydraulic potential between the leaves/soil and the air

and is independent on the amount of irradiation hitting the soil (otherwise the

radiation would be included as a factor). Instead, Isoil should take into account

the interception of solar radiation by the leaves, which we did by introducing a

multiplier based on the leaf area index. The soil radiation is then calculated by

the same model that calculates the radiation intensity hitting the leaves, scaled

appropriately by this multiplier. Furthermore, since we are not using the Lintul

model, we set s = LAI, the leaf area index because this is the scaling we use for

the light-limited photosynthesis rate and the leaf temperature. In order to ensure

backwards compatibility we add a switch to choose between this scaling or the

previous behaviour with the default being the previous behaviour.

Another difference in model assumptions concerns water flow out of roots. If

solving the equation governing xylem pressure led to water flowing out of the

roots, the water that moved out of the roots was not added to the soil because

outflow was not modeled. This was because outflow only happens when the soil

is (locally) drier than the roots, which was not relevant until the drought-related

models and the day-night cycle irradiation model described in this chapter were

added. We altered the soil water model to accept water efflux from roots, which

means OpenSimRoot can now simulate hydraulic lift, a process that is important

for the daily changes in soil water content [30, 169].

Test simulations with very dry soils saw frequent crashes because the water model

generated ”NaN” (not a number) values. This was traced back to very low hy-

draulic conductivity values generating positive water hydraulic potentials. Posi-

tive hydraulic potentials correspond to higher soil water content than are possible

at full saturation and generate NaN values when entered into the Van Genuchten

equations [69], which OpenSimRoot uses to calculate soil water retention curves

and hydraulic conductivity. These equations have asymptotic behaviour near the

residual and saturated hydraulic potentials, where they are not seen as suitable

[120]. Updating the OpenSimRoot implementation of the Van Genuchten equa-
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tions to better model soil water flows at very high or low hydraulic potentials

is desirable but beyond the scope of this chapter. For now, in order to prevent

crashes in a backwards compatible manner, we added an option to set a minimum

soil hydraulic conductivity value, any values lower than this will be set to this

minimum value. This prevents numerical issues if needed, but if it is not set or

the threshold is not reached, the model functions just as previously. This change

greatly improved the stability of the soil water simulation, which was the cause

of a majority of crashes before this.

After initial testing we noted that the water uptake values as calculated by the

Doussan model did not match the transpiration prescribed by the shoot, which

should be the case. One source of inaccuracy was that the Doussan model was

used to calculate the water uptake rates for each root segment, which were inte-

grated. Instead of this, we added an option for the Doussan model to calculate

the total water uptake (so not the rate, but the integration of this over time) of

root segments and write them to appropriate tables directly. This, in combina-

tion with a fixed global timestep greatly improved the accuracy.

The numerical root finder caused memory use and computation time needed for

simulations to increase dramatically, especially when simulating C4 photosynthe-

sis. Because there is a large number of interrelated equations for C4 photosynthe-

sis (equations 4.5.11, 4.5.12, 4.5.13, 4.5.14, 4.5.10, 4.5.1, 4.5.2, 4.5.3 and 4.1.13,

4.8.1, 4.6.5), the numerical root finder typically has to iterate hundreds or even

thousands of times to converge to a simultaneous solution. This in itself is not

computationally expensive but interactions with other parts of the OpenSimRoot

engine increased the computational load beyond reasonable limits. First of all,

it is often the case that multiple variables that depend on each other have to

be integrated forward in time (e.g. leaf area and photosynthesis rate). Open-

SimRoot tracks these internally and marks them as ‘predicted’ values, with the

integration repeated for all ‘predicted’ values. However, when the root finder is

iterating it can generate upwards of millions of ‘predicted’ values by repeatedly

requesting, for example, leaf area. This caused a small simulation which should

only use about 400MB of memory to use more than 4GB of memory. This issue

was addressed by adding a cache for values which is used when the root finder

98



is iterating, cutting down on both memory use and computation time. A second

cause for increased computational load was that the code for several state vari-

ables (solar irradiation, leaf temperature, anything with variables varying by leaf

temperature) was relatively computationally expensive to evaluate and because

this code was evaluated hundreds of times per timestep, it added to the compu-

tational load disproportionately. Since the solar irradiation depends only on time

and input variables, this code was optimised by creating an internal cache where

values for each time could be saved. Likewise, the code for any state variable with

temperature-dependent parameters was optimised by saving the leaf temperature

and the corresponding parameters in a cache so that they only have to be recal-

culated if the leaf temperature changes. With some other small optimisations,

the code slowdown due to the numerical root finder and C4 models was reduced

to about a factor 2.

4.9 Simulation results

With everything implemented and working properly, we are now able to gener-

ate outputs with OpenSimRoot. Simulating a maize plant in well-watered and

drought conditions for 42 days we can see the effect of water availability on key

model state variables. Figures 4.5a and 4.5b show the CO2 and O2 concentra-

tions in the mesophyll and bundle sheath cells under well-watered and drought

conditions during the final 5 days of the simulation. Note that the unit for the

mesophyll CO2 concentration differs from the units for the other concentrations

in order to improve readability. During the day the bundle sheath and mesophyll

CO2 concentrations reduce because CO2 gets fixed by photosynthesis, while the

O2 concentration increases, being a byproduct of photosynthesis. The variation

in mesophyll O2 concentration is too small to see in this figure because it rapidly

equilibriates with the atmospheric concentration. The reason this does not hap-

pen for the bundle sheath O2 concentration is that the bundle sheath conductance

is many orders of magnitude smaller than the stomatal conductance. Note also

that the bundle sheath CO2 and O2 concentrations are far lower in the drought-

stressed plant than in the well-watered plant, because the stomatal aperture is

lower.
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(a) Internal gas concentrations under well-
watered conditions.
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(b) Internal gas concentrations under
drought conditions.

Figure 4.5: Simulated internal gas concentrations during the last 5 days of 42-day
OpenSimRoot simulated maize plants under well-watered and drought conditions.
Note that the unit for the mesophyll CO2 concentration is µmol

mol , the unit for the

bundle sheath CO2 concentration is 100 µmol
mol while for the two O2 concentrations

it is mmol
mol .

Figures 4.6a and 4.6b show the carbon-and light-limited assimilation rates during

the final 5 days of the simulation for well-watered and drought conditions respec-

tively. The light-limited rates mirror the daily variation in solar radiation, as

expected, while the carbon-limited rates vary as well but remain nonzero during

the night. Under well-watered conditions we see the carbon-limited rate increas-

ing during the day because of stomatal opening while under drought conditions

the carbon-limited rates decrease during the day. This is because photosynthesis

is carbon-limited so most of the carbon coming into the leaves is assimilated,

leading to low equilibrium concentrations.

Figures 4.7a and 4.7b show the stomatal conductances during the final 5 days

of the simulation under well-watered and drought conditions. The first thing to

note is that under drought, stomatal conductances are more than 10 times lower

during the day as compared to well-watered conditions. There is also quite a bit

of daily variation in both cases. In the well-watered case this is due to differences

in leaf temperature and atmospheric condictions as well as slight differences in

water stress levels (the plant is experiencing very minor water stress levels during

the day even in these well-watered conditions). For the drought conditions this

is also the case but the water stress level explains a larger part of the variation

and is increasing over time.
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(a) Assimilation rates under well-watered
conditions.
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(b) Assimilation rates under drought con-
ditions.

Figure 4.6: Simulated carbon-limited and light-limited photosynthetic assimila-
tion rates during the last 5 days of 42-day OpenSimRoot simulated maize plants
under well-watered and drought conditions. The actual assimilation rate at any
given time is the minimum of these two rates.
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(a) Stomatal conductance under well-
watered conditions.
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(b) Stomatal conductance under drought
conditions.

Figure 4.7: Simulated stomatal conductances during the last 5 days of 42-day
OpenSimRoot simulated maize plants under well-watered and drought conditions.

Figures 4.8a and 4.8b show the air and leaf temperature during the final 5 days of

the simulation. We clearly see the daily variation in temperature and note that

the difference between the well-watered and drought cases is very small.

Finally, figures 4.9a and 4.9b show the collar water potentials during the final 5

days of the simulation. Since transpiration rates are very low during the night,

the collar potentials are a lot higher then. For the well-watered case, the collar

potential hovers around −3000 hPa during the night, spiking down to −5000 hPa

during the day. For the drought-stressed plant on the other hand, we see a steady

decline evening out around −11200 hPa.
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(a) Air and leaf temperatures under well-
watered conditions.
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(b) Air and leaf temperatures under
drought conditions.

Figure 4.8: Simulated air and leaf temperatures during the last 5 days of 42-day
OpenSimRoot simulated maize plants under well-watered and drought conditions.
The actual assimilation rate at any given time is the minimum of these two rates.
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(a) Collar potentials under well-watered
conditions.
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(b) Collar potentials under drought condi-
tions.

Figure 4.9: Simulated hydraulic water collar potentials during the last 5 days
of 42-day OpenSimRoot simulated maize plants under well-watered and drought
conditions. The actual assimilation rate at any given time is the minimum of
these two rates.

4.10 Application of the new capabilities

We use the C4 photosynthesis and drought response model described in this chap-

ter to test the hypothesis put forward in [112] that a steep, cheap and deep, or

parsimonious, phenotype performs well under drought. To do this, we simulate

two different maize phenotypes for 52 days at three different planting densities

in three different scenarios: well-watered, drought and topsoil drought. The dif-

ferences between the two phenotypes are summarised in Table 4.1. An Iowa soil

was simulated, more specifically the Iowa BOOI4 site with latitude 42.02094 and

longitude -93.7743. The weather data for this site was also used and plants were

simulated from the 1st of May 2015. Figure 4.10 shows the initial distribution
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of water in the soil for the three different environments. There was precipitation

in the well-watered scenario but not in the two drought scenarios. The plants

were simulated at planting densities of 5, 7.4 and 10 plants
m2 . For each of these 18

different scenarios we do 10 repetitions.

Phene Reference phenotype Parsimonious phenotype Unit

Seminal root
number

6 3 -

Nodal root
number

54 27 -

Branching
density

4 2 branches
cm

Axial branching
angle

45 15 degrees

Table 4.1: The phene values for the reference and steep, cheap and deep phe-
notypes. For branching density and axial branching angle different root classes
have different values, a representative value was chosen. The branching angle is
with respect to the down direction.
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Figure 4.10: Initial soil water distribution for the three different environments.
The sharp breaks are due to the sharp borders between different soil bands.

We test the hypothesis that the steep, cheap and deep phenotype will perform

better under drought conditions, by which we mean that it will correspond to

higher yield. Because we can not simulate yields in OpenSimRoot (maize is

not parametrised up to flowering, let alone grain filling), we will use vegetative

growth, in other words, shoot biomass as a proxy for yield. Figures 4.11 and 4.12
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show the relative and absolute root length distributions in the soil for medium

planting densities. We see that the steep, cheap and deep phenotype does indeed

have far less root length overall, while it is concentrated more in the deep soil.
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Figure 4.11: Distributions of root length depth at medium planting density.
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Figure 4.12: Distributions of relative root length depth at medium planting den-
sity. For each repetition, the root length within each interval is normalised with
respect to the total root length and then these normalised distributions are av-
eraged.
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Figure 4.13 shows that while both phenotypes have similar shoot dry weight

in the well-watered scenario at the lower 2 planting densities, the steep, cheap

and deep, or parsimonious, phenotype has an 8g greater shoot dry weight com-

pared to the reference phenotype at a planting density of 10 plants
m2 , and increase

of about 20%. In the topsoil drought scenario, the steep, cheap and deep phe-

notype has a 5 g to almost 9 g greater shoot dry weight, which represents an

increase of 20 to 25%. In the complete drought scenario, the difference is 2.3 g

to almost 4 g or about 20%. This suggests that a more parsimonious phenotype

does perform better when water (and therefore carbon) is limiting, which also

happens at the greatest planting density in the well-watered scenario. This last

point is important because maize in the USA is planted at increasingly greater

densities, increasing with about 0.07 plants
m2.y

[7]. The greatest planting density in

these simulations is in line with current commercial planting densities in the USA.

5 6 7 8 9 10
Planting density (plants/m2)

15

20

25

30

35

40

45

50

Sh
oo

t d
ry

 w
ei

gh
t (

g)

Well watered, reference phenotype
Topsoil drought, reference phenotype
Drought, reference phenotype

Well watered, parsimonious phenotype
Topsoil drought, parsimonious phenotype
Drought, parsimonious phenotype

Figure 4.13: Mean shoot dry weight for al 18 scenarios.
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However we see from Figure 4.14 that the parsimonious phenotype takes up less

water from the soil than the reference phenotype in all three scenarios, though

the difference is relatively small. Total carbon assimilation is similar, with the

reference phenotype having greater carbon assimilation in most cases, as shown

by Figure 4.15. This means that the parsimonious phenotype is not necessary

able to access more water than the reference phenotype.
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Figure 4.14: Total water uptake for all 18 scenarios.

One of the advantages of simulations is that we have access to information that

would be very difficult to obtain for real plants, such as the carbon budgets and

the total costs of root maintenance. We see from Figure 4.16 that the parsi-

monious phenotype spends significantly less carbon on root maintenance (this

includes respiration and exudation) than the reference phenotype. Figure 4.17

shows that this is also true in terms relative to the total carbon assimilation. Of

course, this is not surprising, since we already saw in Figure 4.11 that the parsi-

monious phenotype has a much smaller root system than the reference phenotype.
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Figure 4.15: Total photosynthetic carbon assimilation for all 18 scenarios.

We conclude that a more parsimonious root system phenotype does indeed pro-

vide advantages under drought. In the scenario where initial water content was

reduced in all soil layers, this was due to the fact that the parsimonious pheno-

type saw a significant reduction in carbon costs for root respiration and exudation

while total water uptake and carbon assimilation were only slightly smaller. In

other words, the parsimonious phenotype was more carbon efficient than the ref-

erence phenotype, investing less carbon in roots and thus being able to grow a

bigger shoot. Because we have complete information, we can quantify this. As it

turns out, the parsimonious phenotype is able to take up more water per gram of

carbon invested in the root system (this includes both biomass as well as main-

tenance costs in the form of respiration and exudation), as shown in Figure 4.18.

The parsimonious phenotype is about twice as efficient in taking up water, taking

up more than 0.4 L
g in the drought scenarios where the reference phenotype takes

up around 0.2 L
g . In the well-watered scenario the difference is a factor 2.5 to 3,

depending on planting density, in favour of the parsimonious phenotype. On the

other side of the equation, as we see in Figure 4.19 the amount of total biomass

produced per litre water taken up is greater for the parsimonious phenotype as
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Figure 4.16: Root maintenance costs. This is the root respiration plus the carbon
costs of root exudation.

well, though by a smaller margin.

Figure 4.20 shows that the amount of shoot biomass produced per litre of water

taken up is greater for the parsimonous phenotype across planting densities and

environments. This is partly due to the fact that the parsimonious phenotype

produces a lot less root biomass and a lot more shoot biomass. However, we also

see that the amount of shoot biomass produced is greater in the drought scenar-

ios as compared to the well-watered scenario. This implies that plants increase

their water use efficiency under drought by reducing stomatal conductance, which

makes sense since adjusting stomatal conductance is an evolutionary adaptation

to drought. This provides an explanation for what we saw in Figure 4.19: the par-

simonious phenotype is more efficient in producing biomass because it is slightly

more drought stressed during the simulation (data not shown). Because of the

increased drought stress, the steep, cheap and deep phenotype reduces transpira-

tion and increases its water use efficiency.
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Figure 4.17: Root carbon maintenance costs relative to gross total carbon assim-
ilation.

We conclude that a steep, cheap and deep phenotype is better suited to conditions

of limited water availability in large part because of the ‘cheap’ part. Total

water uptake and photosynthetic assimilation are slightly greater for the reference

phenotype but because the steep, cheap and deep phenotype spends less carbon on

root biomass, respiration and exudation, it is able to spend limited resources more

efficiently. This means it is able to grow a bigger shoot. Of course, a bigger shoot

also means higher potential transpiration rates so in the case that the drought

continues for very long, this could mean that the parsimonious phenotype reaches

wilting point sooner than the reference phenotype. Another possible scenario is

that water availability through precipitation is very intermittent. In a sandy

soil where water drains away quickly, a larger root system would be able to take

up more water than a parsimonious phenotype before it drains away. When

the root phenotypes of neighbouring plants differ, we expect the advantage of a

parsimonious root phenotype to diminish, since a neighbour with a more extensive

root system could potentially take up the limited supply of water faster. More

research, both through simulations and in the field, is needed to get a better
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Figure 4.18: The amount of water taken up per gram of carbon invested in
the root system. This includes the carbon invested in biomass as well as the
maintenance costs of respiration and exudation.

understanding of the interaction between specific drought scenarios, soil type

and root system phenotype.
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Figure 4.19: The amount of total biomass produced per litre of water taken up.
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Figure 4.20: The amount of shoot biomass produced per litre of water taken up.
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Chapter 5

Optimising Root System

Architecture using Emulation

The research in this chapter was done in collaboration with doctor Ian Vernon

(Department of Mathematical Sciences, Durham University) to whom we are very

grateful. Without his guidance and knowledge this would not have been possible.

OpenSimRoot, by virtue of incorporating a wide range of different models, is

relatively computationally expensive, with simulations typically running for 2 to

20 hours on modern processors (e.g. Intel Xeon Gold 6138 20C 2.0GHz CPU).

Since OpenSimRoot is not able to take advantage of parallel processing, run-

ning OpenSimRoot on a high-end system does not decrease the time needed by

much, though a high performance computing cluster is typically able to run many

OpenSimRoot simulations in parallel. For root systems that have large numbers

of roots, such as rice, runtime can even be as long as several days. Memory usage

is usually between 500MB and 12GB but can, again, be larger than this.

Typically, OpenSimRoot is used to explore the interactions between several root

properties and a number of different environmental factors such as soil nutrient

availability in a factorial design where each combination of possible inputs is

used. In such a setup, the number of simulations required grows rapidly as more

parameters are varied. Suppose for example that there are two different values

for each parameter. With just 10 different parameters this would already yield

1024 different combinations of inputs. Because there is a random component to

root elongation rates, root branching and root growth direction, we usually want
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to repeat a simulation a number of times with different random number genera-

tor seeds, increasing the number of simulations needed. For root properties such

as lateral branching density, simulating a range of values is usually preferable to

simulating two extremes in order to get a better idea of the effects on plant devel-

opment. The large number of parameters OpenSimRoot requires in combination

with the computational costs of a simulation mean that the scope of simulation

studies with OpenSimRoot is limited, unless we use mathematical techniques to

decrease the amount of computational resources needed. In this chapter we will

lay out an approach to overcome these limitations.

We will seek to maximise the shoot dry weight of maize subjected to nitrogen,

phosphorus and potassium stress over a large number of root traits. Because phe-

notypes with high root length density in the top soil perform well under phospho-

rus limitations, while parsimonious (frugal, sparse) phenotypes with high rooting

depth perform well under nitrogen limitations, if both nutrients are limiting a

plant will probably need elements of both these contrasting architectures in or-

der to perform well. Since there are many ways to combine these contrasting

phenotypes, it is possible there are a number of distinct combinations that per-

form well under these two stresses. Since we are not just interested in the best

performing root architectures, but also in synergies between phenes and different

phene combinations that lead to high shoot biomass, we don’t simply want to

find the set of inputs that leads to the highest shoot biomass but want to know

about the phenotypes whose biomass is in the top 5%.

Doing this naively would take hundreds of thousands or even millions of hours of

computing time, which would take several years without access to high perfor-

mance computing facilities and would exceed the computing budget available to

us. To reduce computing time, we will use emulation techniques to rapidly search

parameter space. Concretely, this means we will construct a simplified model that

can approximate OpenSimRoot outputs at a fraction of the computational cost

and use this to determine which regions of parameter space are most likely to

yield good results. As an example of an emulator, after running an initial set of

OpenSimRoot simulations we could fit a linear regression model which maps the

relevant inputs to outputs. Then instead of running OpenSimRoot for several
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hours to see how inputs translate to outputs, we would only need to multiply a

vector with a matrix. This would probably not yield very good predictions, since

it’s unlikely OpenSimRoot maps inputs to outputs linearly, which is why we need

to put a little more thought in the construction of our emulator.

In order to find the root parameters that maximise shoot biomass in a given

environment, we adapt a technique known as Bayesian history matching. This

technique originated in the oil industry, where it is used to calibrate oil reser-

voir models so that their predictions match up with historical records (hence

the name) [40]. Since then it has been applied in a variety of contexts such as

galaxy formation [196] to disease modelling [6], Arabidopsis hormonal crosstalk

modelling [197], climate modelling [210] and traffic simulation [20]. Note that in

the examples mentioned, this technique was used to find parameters that make

models match observations, which means minimising an error measure or max-

imising a likelihood. Instead of minimising an error function though, we want to

maximise a model output.

In short, the idea behind Bayesian history matching is to rule out regions of

parameter space which are ‘implausible’ to satisfy our demands, in our case we

will rule out the regions of parameter space that are unlikely to have high shoot

biomass. This is done with the help of an emulator, which in our case not only

provides an expected value for any given inputs, but also provides information

on the uncertainty associated with this prediction. With this information we

can estimate the probability that an output falls in a given range, which will be

used to determine if we include a point or not. By running successive ‘waves’ of

OpenSimRoot simulations and constructing different emulators based on each of

these, we can zoom in on regions of interest in parameter space with increasing

accuracy and ever higher shoot biomasses.

The emulators we will use consist of three parts: A regression in low-order poly-

nomials, a Gaussian process and a noise term. The regression in low-order poly-

nomials is meant to capture the large-scale behaviour of OpenSimRoot in param-

eter space. The Gaussian process aims to capture fluctuations and interactions

on smaller scales and adds an uncertainty estimate to every prediction. The noise
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term is there because our emulator is an imperfect approximation of OpenSim-

Root (which is an imperfect model of reality). The noise term also accounts for

the fact that OpenSimRoot is not strictly deterministic but has stochastic ele-

ments. This includes root growth directions, branching rates and root elongation

rates, all of which have stochastic components. We will do 10 repetitions for each

set of parameters to account for this but this still leaves us with an imperfect

estimate of the sample mean, which the noise term accounts for.

5.1 Illustrative example

To illustrate some important features of Gaussian processes, we apply the proce-

dure described in general terms above to a 1-dimensional function. All the steps

will be explained briefly, more thorough explanations of all the steps as well as

a number of important definitions will be provided in sections 5.2 and 5.3. The

function we use for the purpose of this example is:

y = f(x) = sin(20x) + 5ex − 20(x− 0.5)2 + 2. (5.1.1)

Suppose we want to find the maximum value of this function on the interval [0, 1]

without having access to the analytic form above and further suppose that every

evaluation is very computationally expensive. The function is shown in Figure

5.1a. As described above, we first obtain some ‘measurements’, which in this

case are function evaluations (assuming no noise). We use these to fit a regres-

sion term consisting of low-order polynomials. The order of the polynomial is

bounded from above by the number of measurements and the number of input

parameters. In Figure 5.1b the measurements are shown as well as the second

order polynomial fitted to these measurements using least mean squares.

The next step is to construct a Gaussian process and train it on these mea-

surements. A Gaussian process, once trained, will predict a both a mean and a

variance for each input, unlike a regression model, which predicts a single value.

The output of a Gaussian process, given a single input, is a distribution reflecting

what we expect the quantity we are approximating to be, as well as how certain

we are of this prediction. We train our Gaussian process by taking the residuals

of our regression model (the ‘measurements’ minus the value predicted by the re-
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(a) The function from equation 5.1.1 which
aim to emulate.
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(b) The function from equation 5.1.1 in
black, with ‘measurements’ shown by the
blue dots and the regression model trained
on these measurements shown by the red
dotted line.

Figure 5.1: The function from equation 5.1.1 and the regression model trained
on some measurements taken from this function.

gression model) and using these to parametrize a Gaussian process with mean 0.

By then adding the predictions of the regression model and the Gaussian process,

we get our final predicted mean. The standard deviation predicted by the Gaus-

sian process tells us how sure we are of each prediction. In advance of a formal

definition of a Gaussian process, which will be given in Section 5.2.2, think of a

Gaussian process as follows: In the context of this example, a Gaussian process

is a distribution over real-valued functions on [0, 1], where each sample drawn

from this distribution is a function that satisfies certain properties which depend

on the covariance function we choose. In this case we choose a Gaussian (nor-

mal) distribution as covariance function, which means that the functions drawn

from the Gaussian process are all smooth (infinitely differentiable). We work in

a Bayesian framework so we specify a prior distribution for our Gaussian process

and after adding in measurements we get a posterior distribution taking these

into account. Figure 5.2a illustrates the prior distribution of a Gaussian pro-

cess with a Gaussian correlation function with variance (which determines how

far away from the regression model we expect values to be) of 1 and a correla-

tion length (determines how strongly nearby function values correlate) of 0.05,

as well as three sample functions. Sample functions are drawn by calculating the

covariance matrix Σ for all x-coordinates and then calculating y⃗ = Lz⃗ + µ(x)

where LLT = Σ (L can be obtained by Cholesky decomposition), z⃗ is a vector of

values pulled from independently identically distributed Gaussian distributions
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and µ(x) is the mean predicted by the Gaussian process. Since this is the prior

distribution and we specified a uniform prior, the Gaussian process predicts a

standard deviation of 1 everywhere. After using the measurements to constrain

the Gaussian process, we get a different distribution, as shown in Figure 5.2b.

The predicted mean passes through each of the measurements and the predicted

standard deviation is smaller for points closer to measurements since the nearby

points constrain the possible range of values. The sample functions drawn from

the Gaussian process pass through the measurements as well.
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(a) The ‘measurements’ are shown in blue,
the mean, in this case the regression model
prediction, shown by the red dashed line.
The shaded area is the 3σ interval around
the mean. Three samples drawn from the
Gaussian process are shown in blue, green
and orange. Note that this is our prior dis-
tribution, so the measurement have not been
taken into account by the Gaussian process
yet.
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(b) The measurements are shown in blue, the
predicted mean is shown by the red dashed
line. The shaded area is the 3σ interval
around the mean. Three samples drawn
from the Gaussian process are shown in blue,
green and orange. Since this is the poste-
rior distribution and we assumed there is no
noise in our measurements, all samples pass
through the measurements.

Figure 5.2: The prior and posterior distributions of an example Gaussian process
added to the regression shown in Figure 5.1b, which aims to emulate the function
from equation 5.1.1.

In the final step, we restrict parameter space by omitting all the points where

we can be reasonably sure that the function value is below some threshold value

T . By reasonably sure, we mean that µ(x) + 3σ(x) < T , where µ(x) is the pre-

dicted mean at x and σ(x) is the predicted standard deviation at x. Choosing

11 as threshold value, Figure 5.3 shows which parts of parameter space would be

deemed ‘interesting’, further measurements would be restricted to these parts of

parameter space. Note that both the original function and the predicted mean

can be quite far below the threshold even in parts of parameter space that are

deemed ‘interesting’. This is because the predicted variance is high for these
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points, so even though we think the mean is low in these areas, we are not cer-

tain that we should exclude them from consideration.
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Figure 5.3: The original function, given by equation 5.1.1 is shown in black, the
predicted mean is the red dashed line and the predicted mean plus 3σ is shown in
green. Measurements are shown in blue and the shaded areas indicate the parts
of parameter space where µ+ 3σ ≥ 11.

The above illustrates how a first wave of simulations followed by constructing

and using a wave-1 emulator looks in one dimension. After this, we can repeat

the procedure on the reduced parameter space in successive waves to zoom in on

the areas of parameter space where we expect the highest function values to be.

When parameter space is high-dimensional, we need to make some adjustments

to the procedure described above. Whereas in low dimensions it is possible to

get a good initial set of datapoints with a regular grid, this is not possible in

high-dimensional spaces. We will explain how we address this in section 5.3. As

the number of inputs grows, the probability that some inputs have a very small

effect on the output increases. To keep model complexity down, we will use only

the inputs with the highest explanatory power to construct our regression model

and Gaussian process, as explained in section 5.2.1.
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5.2 Emulator Construction

We have a model M⃗ , OpenSimRoot, which maps a vector of inputs x⃗ to a vector

of outputs M⃗(x⃗). In this case, we want to maximise the shoot biomass so we

will define y(x⃗) as the shoot biomass after 42 days for a vector of inputs x⃗. We

pick 42 days because the OpenSimRoot maize root growth parameters have been

measured up to 42 days. We construct an emulator of the form

f(x⃗) =
∑
i

βigi(x⃗) + u(x⃗) + w(x⃗). (5.2.1)

Here βi are constants determined by regression, gi are basis functions (low-order

polynomials), u is a Gaussian process over x and w is a nugget that is a white

noise process uncorrelated to βi.

5.2.1 Regression

The first term in our emulator,
∑

i βigi(x⃗), is a regression model over low-order

polynomials fitted using least squares. This is used to capture the global parame-

ter dependence of our model. We expect polynomials to adequately approximate

the large-scale structure of the OpenSimRoot response surface, in addition to

having the following nice properties. Polynomials fitted using least squares are

“non-local”, which means that the predicted value at x can depend strongly on

values far away from x. This property means we can build a global approxima-

tion for OpenSimRoot outputs but also that we should be cautious when making

predictions far away from the training data. By spreading our initial measure-

ments out over parameter space in such a way that no point is very far away

from training data we aim to minimise extrapolation inaccuracies. Polynomials

are easily interpretable, helping us interpret results. If a parameter explains a

lot of the variation in the output variable, we should see it in the linear and

quadratic terms for that parameter. Likewise, important interactions between

parameters can be seen in the crossterms. We expect certain inputs to be more

important for plant development than others and expect this to be reflected in

the regression parameters.

Of course, there are other methods to approximate a multidimensional function
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that could be used here, such as splines or radial basis functions. Splines and

radial basis functions are both “local”, which means they are less well suited

for extrapolation to new parts of parameter space. We are also already taking

into account local variations, namely through the second term of our emulator,

the Gaussian process. In some cases, prior knowledge about the model being

approximated can inform the choice for a particular method. In our case, the in-

terpretability of polynomial regression, along with the absence of strong reasons

for choosing a different method, make this our method of choice.

We need to specify a maximum degree for the polynomial regression we construct.

If we choose a higher degree then we will also have more degrees of freedom, which

should be lower than the amount of training data we have, ideally by a comfort-

able margin. As we will see in section 5.6, we will have 17 input parameters and

200 training data points. This means that we can at most fit a second degree

polynomial, which has 1 + 17 + 17 + 17·16
2 = 171 degrees of freedom.

A second important consideration is which of the possible terms for a given set of

inputs and degree to include. We decide the maximum degree we want to use in

our regression polynomial and then use all the polynomial terms we can construct

up to this degree. For 2 inputs x1, x2 and degree 2, we would have the terms:

1, x1, x2, x
2
1, x1x2, x

2
2. However, in general, we might not want to use all these

terms in our regression. While using more terms can only improve the accuracy,

this also makes the model more complicated in that it introduces more parameters

to be fitted. If a model has a lot of parameters there is a risk of “overfitting”,

which means the model is able to reproduce the training data very accurately but

does not provide accurate predictions on new inputs. To account for more than

just the accuracy, but also the simplicity of the model, a commonly used metric

is the Bayes information criterion (BIC) [178]. It is designed as follows:

BIC = −2 ln(L̂) + p · ln(k), (5.2.2)

where p is the number of parameters included in the analysis, k is the number

of data points and L̂ is the maximised likelihood function. By minimising this

expression we find a balance between prediction accuracy and model complexity.

This is because an additional parameter needs to increase the log of the maximised
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likelihood function by at least ln(k)
2 . In order to take the maximum likelihood

approach to regression, we assume that

y = h(x⃗) + ϵ, (5.2.3)

where h(x⃗) =
∑

i βigi(x⃗) is a sum of polynomials in x⃗ and ϵ is a random variable

which captures the variation not explained by h(x⃗), which we model as random

noise. Different choice of noise are possible for ϵ but a Gaussian distribution with

a mean of zero is a natural choice. Using this, the likelihood function for a single

prediction h(x⃗), is

L(h(x⃗)) =
1√
2πσ2

e−
(h(x⃗)−y)2

2σ2 , (5.2.4)

where h(x⃗) is our prediction, y is the ‘true’ or measured value and σ is the

standard deviation. To get the likelihood function for the entire data set, we

assume that the noise terms ϵ for different inputs are independent and identically

distributed, which means that the likelihood given multiple data points is the

product of the individual likelihood functions. So we multiply the individual

likelihood functions:

L(h) =
∏
i

 1√
2πσ2i

e
− (h(x⃗i)−yi)

2

2σ2
i

 =
∏
i

 1√
2πσ2i

 e−∑
i
(h(x⃗i)−yi)

2

2σ2
i . (5.2.5)

Note that adjusting h(x⃗) to maximise this likelihood function is the same as using

least squares, since in both cases
∑

i(h(x⃗i)− yi)2 is minimised. Since we use BIC

to compare different regressions on the same dataset, we can ignore the constant

terms when we take the log of the maximised likelihood, so we get

BIC =
∑
i

(h(x⃗i)− yi)
2

σ2i
+ p · ln(k). (5.2.6)

In cases where we have, say, 10 input parameters and want to include terms up to

degree 2, we would have 1+10+10+45 = 66 (1 constant term c, 10 linear terms

xi, 10 quadratic terms x2i , 45 quadratic terms xixj with i ̸= j) different terms,

including the constant term. Assuming the constant term is always included,

we would have to calculate the BIC for 265 ≈ 3.7 · 1019 different combinations

of included input parameters to find the optimal combination. Even if we could

121



evaluate 1012 combinations of inputs every second, this would still take more

than a year. So instead of going through every combination, we will either start

without any terms and add the one that improves the BIC the most, one at

a time, or start with all terms, and remove terms one by one, until we cannot

improve our metric anymore by removing or adding a single term. In this way, we

would have to test at most
∑65

i=0 65− i =
65·66
2 = 2145 cases, which is much more

computationally tractable. Note that we might get a different set of terms that

maximises the BIC depending on whether we add terms one by one or substract

them one by one. In any case, human judgment factors in the final choice of

active inputs.

5.2.2 Gaussian Process

The second term in our emulator, ui(x⃗Ai), is a Gaussian process. We will first

give some definitions and then describe the construction of the Gaussian process

from the data. Roughly, a Gaussian process is a way to choose, given some

test data points, a distribution over all functions that is consistent with the test

data points and provide a normal distribution for the possible outputs at every

input point. It’s the infinite-dimensional generalisation of multivariate Gaussian

distributions. Let us first recall some definitions from probability theory.

Definition 5.1. Let X be a set and P(X) its power set. A subset S ⊂ P(X) is

a σ-algebra if

1. X ∈ S.

2. If A ∈ S then its complement X \A ∈ S. In other words, S is closed under

complementation.

3. If A1, A2, ... ∈ S then A = ∪∞
i=1Ai ∈ S. In other words, S is closed under

countable unions.

Definition 5.2. Let X be a set and S a σ-algebra over X. A function µ from S

to the extended real number line (R ∪ {−∞,+∞}) is a measure if it satisfies:

1. Non-negativity: ∀x ∈ S, µ(x) ≥ 0

2. Null empty set: µ(∅) = 0

3. Countable additivity: For all countable collections {xn}∞n=1 of pairwise dis-

joint sets in S it is true that µ(∪∞
n=1xn) =

∑∞
n=1 µ(xn).
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A measurable set is a tuple (X,S) for which there exists a measure.

Definition 5.3. A probability space is a triple (Ω,F , P ) where

• the sample space Ω is a non-empty set.

• F is a σ-algebra on Ω.

• P : F → [0, 1] is a measure on F for which it is true that P (Ω) = 1.

Definition 5.4. Given a probability space (Ω,F , P ) and a measurable space

(X,S), a stochastic process is a collection of X-valued random variables on

(Ω,F , P ), indexed by some set T . We write this as:

{X(t) : t ∈ T}. (5.2.7)

Definition 5.5. A random vector X =
(
X1 X2 . . . Xn

)T
has a multivariate

normal distribution if every linear combination Y = a1X1+ ...+anXn is normally

distributed.

In other words, a multivariate normal distribution is a vector of jointly normally

distributed random variables. The probability density of a multivariate normal

distribution X ∼= N (µ,Σ) is equal to

P (x;µ,Σ) =
e−

1
2
(x−µ)TΣ−1(x−µ)√
(2π)n|Σ|

. (5.2.8)

Here x is an n-dimensional vector, Σ is the covariance matrix and |Σ| is the

determinant of Σ.

Definition 5.6. A stochastic process {X(t) : t ∈ T} is Gaussian if and only if for

every finite set of indices, t1, ..., tn in the index set T , Xt1,...,tn = (X(t1), ..., X(tn))

is a multivariate Gaussian random variable.

A Gaussian process is the generalisation of a Gaussian random vector to an un-

countably infinite index set. Another way to view it is as a distribution over

functions, where each sample from the distribution is a function over the index

set (in our case this is Rn) that satisfies some conditions that derive from the

covariance we assign to pairs of points.
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Let X be some set that contains the possible values of the input parameters

to our model (e.g. X ⊂ Rn is a set of times/locations/growth rates/reaction

coefficients). We have some system M : X → R that we want to predict for

any x⃗ ∈ X given a set of observations {(x⃗1, y1), ..., (x⃗k, yk)}. Now we want to

predict M(x⃗∗) for some x⃗∗ ∈ X. Using the method of Gaussian processes, we

assume that our set of observations y⃗ =
(
y1 y2 . . . yk

)T
can be represented

as a sample from a multivariate Gaussian distribution, which means that

y⃗ ∼ N (µ⃗,Σ), (5.2.9)

where µ⃗ is the vector containing all the means µi for each observation and Σ is

a symmetric positive definite matrix which has the variances σi on the diagonal

and the covariances σij = σ(x⃗i, x⃗j) as off-diagonal elements. We need to choose

a covariance function, which we expect to help us model the system well. Since

the covariance function determines how values at nearby points are related, the

choice of covariance function puts constraints on the behaviour of the Gaussian

process. The ‘default’ kernel of choice is the squared exponential (or “exponen-

tiated quadratic” kernel), which has covariance function

σ(x⃗, z⃗) = σ2me
−

∑n
i=1

(xi−zi)
2

2l2
i , (5.2.10)

where σm is the maximum allowable covariance and li is the correlation length

for the i-th parameter, which will determine how fast the function can vary. This

covariance function has several properties which make it suitable for our purposes:

It is universal [129], which means that it can be used to approximate any contin-

uous target function uniformly on any compact subset of the input space. Using

this kernel, the samples drawn from the Gaussian process are smooth (infinitely

differentiable), which we think is a reasonable assumption for OpenSimRoot out-

puts to be. In some cases, a different kernel would be more suitable, such as if

the model to be approximated has a periodic behaviour. This is not the case

for us so the squared exponential kernel suits our purposes. To get a prediction

y∗ for some given x∗, we remember that

(
y⃗

y∗

)
is a sample from a multivariate
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Gaussian random variable (by definition), so

(
y⃗

y∗

)
∼ N

((
µ⃗

µ∗

)
,

(
Σ Σ∗

ΣT
∗ Σ∗∗

))
, (5.2.11)

where Σ∗ =
(
σ(x⃗∗, x⃗1) · · · σ(x⃗∗, x⃗n)

)T
and Σ∗∗ = σ(x⃗∗, x⃗∗). For the more

general case, we can write down the conditional density:

p(y⃗1|y⃗2) =
p(y⃗1, y⃗2;µ,Σ)∫

y⃗1
p(y⃗1, y⃗2;µ,Σ)dy⃗1

(5.2.12)

=
1∫

y⃗1
p(y⃗1, y⃗2;µ,Σ)dy⃗1

√
(2π)n|Σ|

exp

(
−1

2
(y⃗ − µ⃗)T Σ−1 (y⃗ − µ⃗)

)
(5.2.13)

=
1

Z1
exp

(
− 1

2

[
(y⃗1 − µ⃗1)

T V11 (y⃗1 − µ⃗1) + (y⃗1 − µ⃗1)
T V12 (y⃗2 − µ⃗2)

(5.2.14)

+ (y⃗2 − µ⃗2)
T V21 (y⃗1 − µ⃗1) + (y⃗2 − µ⃗2)

T V22 (y⃗2 − µ⃗2)
])

(5.2.15)

=
1

Z2
exp

(
−1

2

[
y⃗T1 V11y⃗1 − 2y⃗T1 V11µ⃗1 + 2y⃗T1 V12 (y⃗2 − µ⃗2)

])
(5.2.16)

=
1

Z3
exp

(
−1

2

[(
y⃗1 − µ⃗′

)T
V11
(
y⃗1 − µ⃗′

)])
. (5.2.17)

Here we used that V12 = V T
21 (which follows from the fact that Σ−1, being the

inverse of a covariance matrix, is symmetric), Z1, Z2 and Z3 are constants that

do not depend on y⃗1 and µ⃗′ = µ⃗1 − V −1
11 V12(y⃗2 − µ⃗2) and Σ−1 =

(
V11 V12

V21 V22

)
.

From this it follows that

y⃗1|y⃗2 ∼ N (µ⃗1 − V −1
11 V12(y⃗2 − µ⃗2), V

−1
11 ). (5.2.18)

Now we note that

(
Σ11 Σ12

Σ21 Σ22

)−1

(5.2.19)

=

(
(Σ11 − Σ12Σ

−1
22 Σ21)

−1 −(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

−Σ−1
22 Σ21(Σ11 − Σ12Σ

−1
22 Σ21)

−1 Σ−1
22 +Σ−1

22 Σ21(Σ11 − Σ12Σ
−1
22 Σ21)

−1Σ12Σ
−1
22

)

(5.2.20)

=

(
V11 V12

V21 V22

)
. (5.2.21)
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Inserting this into equation 5.2.18, we get

y⃗1|y⃗2 ∼N
(
µ⃗1 + (Σ11 − Σ12Σ

−1
22 Σ21)(Σ11 − Σ12Σ

−1
22 Σ21)

−1Σ12Σ
−1
22 (y⃗2 − µ⃗2),

(5.2.22)

(Σ11 − Σ12Σ
−1
22 Σ21)

)
(5.2.23)

=N (µ⃗1 +Σ12Σ
−1
22 (y⃗2 − µ⃗2), (Σ11 − Σ12Σ

−1
22 Σ21)). (5.2.24)

From this it follows that

y∗|y⃗ ∼ N (µ∗ +ΣT
∗ Σ

−1(y⃗ − µ⃗),Σ∗∗ − ΣT
∗ Σ

−1Σ∗). (5.2.25)

The above expression gives us the mean and standard deviation of our Gaussian

process for any x⃗. We can simplify the above equations by taking a distribution

with mean 0 as prior, so µ(x⃗) = 0 for all x⃗ ∈ X. This simplifies our equation to

(
y⃗

y∗

)
∼ N

(
0⃗,

(
Σ Σ∗

ΣT
∗ Σ∗∗

))
, (5.2.26)

y∗|y⃗ ∼ N (ΣT
∗ Σ

−1y⃗,Σ∗∗ − ΣT
∗ Σ

−1Σ∗). (5.2.27)

We use this expression by first ‘renormalising’ our vector of observations y⃗: De-

fine y′i = yi − h(x⃗i)∀i, where h(x⃗i) is the prediction of the regression polynomial

described in the previous section. To simplify notation, we will denote the renor-

malised observations by y⃗ from now on. For a given input x⃗, a Gaussian process

predicts the following mean µ and variance σ

µ(x⃗) = ΣT
∗ Σ

−1y⃗, (5.2.28)

σ2(x⃗) = Σ∗∗ − ΣT
∗ Σ

−1Σ∗. (5.2.29)

Observation noise

The final term in our emulator, wi(x⃗) is a noise term that accounts for the fact

that our observations may not be perfect (in our case, the system we are trying

to model, OpenSimRoot has a stochastic component) and we only consider some

inputs as “active inputs”, the others will contribute to this noise term. Usually
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this is done by modelling observations as

y = f(x) + ϵ, (5.2.30)

where ϵ is additive independent identically distributed Gaussian noise with vari-

ance θ2. In our case, we add a noise term

θ(x⃗i, x⃗j) = α2δx⃗i,x⃗j
, (5.2.31)

to our covariance function, where δx⃗i,x⃗j
is the kronecker delta function. In the

discretised case, we add α2I to our covariance matrix. In other words, our co-

variance is given by

cov(x⃗i, x⃗j) = σ(x⃗i, x⃗j) + α2δx⃗i,x⃗j
, (5.2.32)

or, in the discretised case

Σ′ = Σ+ α2I. (5.2.33)

Then the joint distribution of the observed target values and the test values is:

(
y⃗

y∗

)
∼ N

(
0⃗,

(
Σ+ α2I Σ∗

ΣT
∗ Σ∗∗

))
, (5.2.34)

y∗|y⃗ ∼ N (ΣT
∗ (Σ + α2I)−1y⃗,Σ∗∗ − ΣT

∗ (Σ + α2I)−1Σ∗). (5.2.35)

With this, equations 5.2.28 and 5.2.29 become

µ(x⃗) = ΣT
∗ (Σ + α2I)−1y⃗, (5.2.36)

σ2(x⃗) = Σ∗∗ − ΣT
∗ (Σ + α2I)−1Σ∗. (5.2.37)

We have now completed constructing the emulator as described in equation 5.2.1

with the polynomial regression accounting for the first term and the Gaussian

process accounting for the final two. Because the emulator not only predicts a

mean value but also provides a corresponding variance, we have an estimate of

how certain each prediction is. This is an important feature that we will use to

be very careful in how we evaluate the predictions supplied by the emulator.
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5.2.3 Choosing hyperparameters

Parameters which are used to control the learning process in machine learning

are called hyperparameters. In our case, the kernel functions determines how

the Gaussian process assimilates training data, so the kernel parameters are the

hyperparameters. When constructing a Gaussian process, choosing the hyper-

parameters is very important. If the correlation length is too low, the Gaussian

process will predict zero everywhere except very close to any training points and

if the correlation length is too high, results will influence regions of parameter

space that are not alike at all. Likewise, if the variance is too high, the mean

does not have to vary much for all measurements to fall within acceptable bounds,

which means the Gaussian process will not be responsive to the training data.

If the variance is too low, the mean will move to match every training point

very closely and overfit itself on the data, missing the larger picture. For a full

Bayesian approach here we would define prior distributions for our hyperparam-

eters and then use Bayes’ theorem to calculate the posterior distribution given

the data we have. Since we have multiple correlation lengths, this would likely

not be analytically tractable so we would have to use numerical methods to ap-

proximate the posterior distribution. However, since the Gaussian process only

explains part of the variation, we assume that any uncertainty on the exact value

of the hyperparameters will not be critical. So instead of doing a full Bayesian

analysis, we instead use maximum likelihood to determine the values of the hy-

perparameters. Note that this is equivalent to doing a Bayesian analysis with a

uniform prior and choosing the maximum a posteriori probability estimate. We

are trying to find the hyperparameters θ′ for which

θ′ = argmax
θ
L(θ|Y ). (5.2.38)

From [44], we have the following expression for the log likelihood of a Gaussian

process with noise:

L(θ|y⃗) = −1

2

[
(y⃗ − µ⃗)T (Σ + α2I)−1(y⃗ − µ⃗) + log |Σ+ α2I|+ n log(2π)

]
.

(5.2.39)
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Here µ⃗ is the mean of the Gaussian process, which in our case is the value pre-

dicted by the linear regression. By maximising this over θ we find the hyperpa-

rameters with the highest likelihood. In our case, we do this numerically using

the SciPy Python package.

5.3 Exploring Parameter Space

Now that we know how to construct our emulator, we can describe the procedure.

We start with a parameter space P ⊂ Rn and some model M : P → R. We want

to find the subset Q ⊂ P for which M(q) for q ∈ Q is minimised or maximised

with respect to some metric such as closeness of fit to observed data or, in our

case, maximising a specific output. We start with an initial set of simulations

{M(x⃗1), ...,M(x⃗k)} that we will use to construct our wave-1 emulator.

The choice of initial inputs I0 = {x⃗1, ..., x⃗k} ⊂ P is not entirely trivial. They

should provide good coverage of P , that is,

max
x⃗∈P

{min
x⃗i∈I0

{d(x⃗, x⃗i)}} (5.3.1)

should be ‘small enough’. Here, d(x⃗, y⃗) is the distance between x⃗ and y⃗. Choosing

an evenly spaced grid is a simple way to achieve this in low dimensions but in

higher dimensions this requires a very large number of samples. Even with just

2 different values per input parameter, we would need 210 = 1024 samples if we

have 10 input parameters. We could just randomly take as many sample as our

computing resources allow, but this might leave large areas of parameter space

unsampled. Instead of this, we sample parameter space according to a Latin

hypercube design. In a Latin hypercube design with k samples, each dimension

of parameter space is divided into k segments of equal length. The samples are

then chosen in such a way that when they are projected unto any single axis,

each of these k segments will have exactly one sample in them, but their location

within each segment is chosen randomly. To ensure good coverage, we create

some large number of Latin hypercubes and choose the hypercube H such that

the quantity

min
x⃗i,x⃗j |i ̸=j

{d(x⃗i, x⃗j)|x⃗i, x⃗j ∈ H} (5.3.2)
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is maximised. Note that, prior to creating these hypercubes, we rescale param-

eter space to [−1, 1]p, where p is the dimension of parameter space. For some

parameters, a linear scaling is most appropriate, while for others a logarithmic

scaling is more appropriate. Some parameters might be discrete, but enumer-

ated, e.g. they take values in some subset S ⊂ Z. In this case we would restrict

the possible values parameters can take in that dimension to a discrete number

of values. If a parameter can take discrete values that do not have a linear re-

lation (for example, a “plant species” parameter might have the possible values

{barley, bean, maize}), we can do either of two things, depending on the output

dependence on this parameter. If this parameter has a ‘small’ influence on the

output, we can add a term that depends on this parameter to our emulator. If the

difference is ‘large’, we have to construct different emulators for different values

of this parameter.

Once we have constructed our emulator, we can use it to make predictions of

our model response. If parameter space is low-dimensional, we can evaluate our

emulator on a fine grid spanning all of parameter space. For high-dimensional

parameter spaces this is usually not feasible, so we sample a large number of

points (±109) which can be chosen in a variety of ways (e.g. randomly, Latin

hybercubes, etc.). For each point x⃗ ∈ P , our emulator predicts a mean µ(x⃗) and

a variance σ(x⃗). This means we do not just get a prediction for our variable of

interest, but we can also quantify how certain we are about these predictions.

According to our emulator, the ‘true’ value at x⃗, M(x⃗), is a random variable X

following a distribution with mean µ(x⃗) and variance σ(x⃗). Since we do not know

the shape of this distribution, we have to make an assumption here. A common

choice is to assume that X follows a normal distribution, strictly following the

Gaussian process definition, but we make the weaker and more robust assumption

that X is distributed unimodally (the distribution has only one peak) [196, 197].

The Pukelsheim 3σ rule [163] tells us that, in this case,

P
(
|X − µ(x⃗)| ≥ 3σ(x⃗)

)
≤ 4

81
< 0.05. (5.3.3)
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Based on this we define the ‘interesting’ region of parameter space as

PI := {x⃗ ∈ P | (µ(x⃗)− 3σ(x⃗), µ(x⃗) + 3σ(x⃗)) ∩RI ̸= ∅}. (5.3.4)

Here RI ⊂ R is the set of outputs that we think are ‘good enough’. The points

in the interesting set are those for which the predicted output is close than 3σ

to RI . In our case, we want to find the set of parameters that result in a high

yield (shoot dry weight), so RI will be of the form [Rmin,∞) for some shoot dry

weight value Rmin. So PI is defined as

PI := {x⃗ ∈ P | µ(x⃗) + 3σ(x⃗) ≥ Rmin}. (5.3.5)

5.4 Emulator diagnostics

Diagnostics are used to make sure that our emulator is behaving the way we

expect. One way is to cross-validate by dividing the data in two parts; a training

set and a validation set. Then we construct an emulator with the training set and

check how well it can predict the validation set. By choosing different subsets

of the data as training and validation sets we can do multiple cross-validations

of our emulator construction. If the validation set is a single data point, this is

called leave-one-out cross-validation. This way our emulator is very similar to the

emulator using all the data and we can test if we are able to accurately predict

each data point1.

After training the emulator on all data except one point x⃗i, we calculate the

normalised variance

vn(x⃗i) =
|yi − µ(x⃗i)|
σ(x⃗i)

. (5.4.1)

By calculating the fractions of test points for which vn is larger than 1, 2 or 3,

denoted by v>1
n , v>2

n and v>3
n , we can evaluate our predictions. For values dis-

tributed around µ according to a Gaussian distribution, we expect v>1
n ≈ 0.3173,

1Recall equations 5.2.28 and 5.2.29. We need to invert the covariance matrix for the Gaussian
process to make predictions. Since we already have the inverse of the full covariance matrix, we
can use the Woodbury matrix identity (A+ UCV )−1 = A−1 − A−1U(C + V A−1U)−1V A−1 to
calculate the necessary inverses in O(n2) operations instead of O(n3). See Appendix C for more
details.
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v>2
n ≈ 0.0455 and v>3

n ≈ 0.0027. If we make the weaker assumption that the

distribution is unimodal, the Vysochanskij–Petunin inequality [163] tells us that

v>2
n ≤ 1

9 and v>3
n ≤ 4

81 .

One downside to this method is that points in our training set are far apart from

each other, by design. This provides good coverage of parameter space but also

means that our reduced emulators will have difficulty making these predictions.

We can also check our emulator for accuracy by having a training set used to

construct it and then check predictions against a separate validation set. The

downside to this is that we need to use computing resources for additional simu-

lations that are not optimised for use in constructing an emulator. This is because

this additional validation set would not part of the same Latin hypercube design

as our training set. Still, this gives us more data to train our emulator on, after

verifying that it is working as intended.

5.5 Integrating 20-day simulations into the

emulator

Since the time and memory needed for each timestep in OpenSimRoot increase

with root system size, a 20-day simulation takes considerable less time than a

42-day simulation2. We can use this to our advantage by running a ‘wave 1.5’; a

wave of 20-day simulation meant to refine our emulator before doing an expensive

second wave of 42-day simulations. With this as our aim, we want this in-between

wave to help us exclude as much parameter space as possible. This is why the

locations of these simulations will be those x⃗ where µ(x⃗) + 3σ(x⃗) is close to our

cutoff threshold and where σ(x⃗) is high. In other words, we want to do them in

locations where we are not very confident in our predictions and where we are

most unsure if we want to include or exclude it. To make this more quantitative,

to a point x⃗ in parameter space we assign the weight

ω(x⃗) = e
− (T−(µ(x⃗)+3σ(x⃗)))2

σ2(x⃗) . (5.5.1)

2After completing all OpenSimRoot simulations for this chapter we were able to quantify
this. 42-day simulations took about 16.3 hours on average, while 20-day simulations took about
1.37 hours on average, a difference of more than a factor 10!
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With T our cutoff value. This weight ensures that we care the most about

the variances of the points that are near our cutoff, in other words, the points

that we are least sure about. Now we define σz⃗(x⃗) as the variance a Gaussian

process would predict, if we added a measurement at z⃗ to our training set. This

is possible because as we see from equation 5.2.37, σ(x⃗) depends only on the

covariances between points, not the actual results at those points. We generate

and fix a large number of reference points X that cover parameter space. Then

we add inputs z⃗ to the set of wave 1.5 input locations P one by one by finding

the z⃗ which minimises

ν(z⃗) :=
∑
x⃗∈X

σ2P,z⃗(x⃗)ω(x⃗). (5.5.2)

Here σ2P,z⃗(x⃗) is the variance predicted by a Gaussian process that includes P and

z⃗ as training data (as well as the data we already had). Note that this is not

necessarily the set of points that minimises our weighted variance function the

most, since we are adding points one by one, but it would be too computationally

expensive to minimise over multiple points at the same time.

We will use the results from these 20-day simulations by fitting a polynomial

regression, refered to as the forward regression, to our first wave of 42-day sim-

ulations to train this regression model. We can do this because OpenSimRoot

provides outputs for relevant state variables at specified intervals, in our case

daily. We have chosen 25 state variables expected to be good early indicators

of plant performance, such as total root length, total nitrogen, phosphorus and

potassium uptake, shoot size, rooting depth, see Table B.7 for the complete list.

The relationship between these variables at day 20 and the shoot dry weight at

day 42 is shown in figure 5.4.

For a location x⃗ we estimate the shoot dry weight at day 42, y42(x⃗) as

y42(x⃗) = κ0 +

k∑
i=1

κiy
i
20(x⃗) +

k∑
i≥j

κijy
i
20(x⃗)y

j
20(x⃗), (5.5.3)

where κi, κij are constants that we fitted to our wave 1 simulations and yi20 the

selected state variables at 20 days. This regression has an adjusted coefficient of
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Figure 5.4: Relationship between maize shoot dry weight after 42 days and se-
lected outputs on day 20 for the wave 1 simulations. Y-axes are shared between
panels, the x-axes are not and are unlabeled to improve readability.

determination (r-squared) of 0.96575, but this predicted value is of course still less

accurate than running a full 42-day simulation. Figure 5.5 shows the relationship

between the 42-day shoot dry weight predicted from the outputs at day 20 and

the simulated 42-day shoot dry weight. We want to integrate this prediction into

our Gaussian process, taking this difference in accuracy into account. Denoting

the residual variation of the above regression model by η2, we do this as follows.

Since the value of the output variable predicted from a 20-day simulation is

strongly correlated with the output we would get from a full 42-day simulation,

we write

y42(x⃗) = y(x⃗) + ϵ(x⃗), (5.5.4)
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Figure 5.5: Relationship between maize shoot dry weight at 42 days as predicted
from the outputs at day 20 and simulated maize shoot dry weight at 42 days.

where y(x⃗) is the ‘real’ value, which we would obtain by simulating the full 42

days and ϵ is a noise term that is independent of x⃗ and y(x⃗) such that

var(ϵ(x⃗)) = η2, (5.5.5)

cov(ϵ(x⃗1), ϵ(x⃗2)) = 0, x1 ̸= x2, (5.5.6)

cov(ϵ(x⃗1), y(x⃗2)) = 0, (5.5.7)

where η2 is the unexplained variance of the regression model linking 20-day sim-

ulations to outputs at 42 days, given by equation 5.5.3. Recall that we use the

following covariance function

cov(y(x⃗1), y(x⃗2)) = σ2e
−

∑n
i=1

(xi1−xi2)
2

2l2
i + α2δx⃗1,x⃗2

. (5.5.8)
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With this we can calculate the covariances associated with 20-day simulations:

cov(y⃗(x1), y⃗42(x2)) = cov(y⃗(x1), y⃗(x2) + ϵ(x⃗2)) (5.5.9)

= σ2e
−

∑n
i=1

(xi1−xi2)
2

2l2
i + α2δx⃗1,x⃗2

. (5.5.10)

cov(y⃗42(x1), y⃗42(x2)) = cov(y⃗(x1) + ϵ(x1), y⃗(x2) + ϵ(x2)) (5.5.11)

= σ2e
−

∑n
i=1

(xi1−xi2)
2

2l2
i + α2δx⃗1,x⃗2

+ η2δx⃗1,x⃗2
. (5.5.12)

Now we use this to construct the wave 1.5 emulator. We define the vector of

wave 1.5 inputs y⃗1.5 as

y⃗1.5 =

(
y⃗

y⃗42

)
. (5.5.13)

Using the expressions above we can construct the wave 1.5 covariance matrix Σ1.5

and construct an emulator as before.

5.6 Optimising Shoot Dry Weight

We apply the methods described above to the problem of optimising a maize

root phenotype for shoot biomass while subjected to nitrogen, phosphorus and

potassium stress. From the literature we already know the optimal values for

some phenes for plants subjected to either nitrogen or phosphorus stress. For ex-

ample, in low nitrogen conditions, low lateral branching density is optimal, while

high lateral branching density is optimal under low phosphorus [154]. In general,

since phosphorus is immobile and concentrated in the topsoil, phenotypes with

high root density in the topsoil perform better than those with low root density

in the topsoil and competition between roots is not significant. Nitrate, on the

other hand, is highly mobile so competition between neighbouring roots reduces

uptake efficiency and, because it leaches down with water in the soil, plants need

deep roots in order to access enough nitrogen. Thus in many ways, the optimal

root system phenotypes in soils poor in these nutrients are opposites and when

subjected to both these stresses a plant needs to do very different things well in

order to access enough nutrients. This is the reason we subject plants to three

different nutrient stresses; it is not immediately clear what properties a good
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phenotype should have and it is more likely that there are several phenotypes

which all perform similarly well under these different stresses.

We set the levels of nutrient stress such that the ‘standard’ phenotype (which

is the default maize phenotype available in the OpenSimRoot repository) would

see a reduction of approximately 50% for each nutrient stress as compared to

the unstressed case. Figure 5.6 shows the shoot dry weight for different topsoil

concentrations of nitrogen, phosphorus and potassium. Based on this, we set the

soil nitrogen concentration to 15.5 kg
ha , the soil phosphorus concentration to 0.471

kg
ha and the soil potassium concentration to 2.04 kg

ha .
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Figure 5.6: Maize shoot dry weight versus topsoil nutrient concentration for
nitrogen, phosphrus and potassium. Note that we refer to the concentration of
the element in question, where sometimes the concentration of certain molecules
containing these elements are used in literature (for example nitrate instead of
nitrogen).

Where OpenSimRoot simulation studies usually take into account only a handful

of phenes in a factorial design (this means a number of values are specified for each

phene and all combinations of different phenes are simulated), we will optimise

over 17 different root properties. For context, even with just 2 different values

per phene, this would require 217 = 131072 simulations in a factorial design, not

counting repetitions. With 3 or 4 different values per phene, 317 ≈ 1.3 · 108 or

417 ≈ 1.7 · 1010 simulations would be needed. Multiply this with at least 4 hours

per simulation (usually more) and you would require a fairly sizable computing
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facility to work on this for several months, if not years. In other words, optimis-

ing over such a high-dimensional parameter space by brute force is not feasible.

We will not just optimise over a high-dimensional parameter space, but will also

allow values to vary continuously between the lower and upper bounds for each of

the phenes we include. As we will see later, we need less than 10000 simulations

(including 10 repetitions for each set of inputs) to find good inputs in this high-

dimensional parameter space. The root properties and their associated minimum

and maximum values, as well as the scaling are shown in Table 5.1. Note that

some these phenes correspond to multiple numerical values. For example, differ-

ent orders of nodal roots have slightly varying emergence angles. For phenes like

this, we vary them in the same way and list a representative value in the table.

Table B.6 lists some literature values on the basis of which these bounds were

chosen.

We do all the relevant calculations on parameter space by rescaling the ranges

to the interval [−1, 1]. This is both to make programming the necessary algo-

rithms easier and because it adds greater distinction to the dynamics of linear

and quadratic terms (which would be very similar if we chose the interval [0, 1]).

What we then mean by the scaling is how we transform the parameter range to

the interval [−1, 1]. More specifically, the value of a parameter p with a logarith-

mic scaling is given by

p = pmin

(
pmax

pmin

) v+1
2

(5.6.1)

where pmin is the minimum value for that parameter, pmax the maximum value

and v the value in the [−1, 1] we are transforming. For parameters like branching

density, that can vary over several orders of magnitude, this logarithmic scaling

makes more sense because the effects of changing the branching density from 5

to 10 branches
cm will be more like changing the branching density from 50 to 100

branches
cm than changing the branching density from 95 to 100 branches

cm would.

5.6.1 Wave 1

We created a hypercube with 200 points for our first wave of simulations. This

number was chosen based on the computational resources we had available. Each
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# Phene Abbreviation Min Max Unit Scaling

1 Seminal root
number

SRN 0 15 - Log

2 Nodal root
number

NRN 0 120 - Log

3 Primary root
branching density

PLBF 0.3 30 branches
cm Log

4 Seminal root
branching density

SLBF 0.4 40 branches
cm Log

5 Nodal root
branching density

NLBF 0.5 50 branches
cm Log

6 Brace root
branching density

BLBF 0.4 40 branches
cm Log

7 Crown lateral
root branching
density

CLBF 0.3 30 branches
cm Log

8 Lateral root
branching density

LLBF 0.3 30 branches
cm Log

9 Nodal root
emergence time

NRT 4 14 day Lin

10 Axial root angle ARA 0 70 degrees Lin

11 Lateral root
branching angle

LRA 60 120 degrees Lin

12 Fine lateral root
branching angle

FLRA 60 120 degrees Lin

13 Aerenchyma
formation

AF 0 0.4 % root volume Lin

14 Crown lateral
root length

CRL 9.2 23.6 cm Lin

15 Lateral root
length

LRL 3.4 7.6 cm Lin

16 Fine lateral root
length

FLRL 0.27 1.84 cm Lin

17 Major root
gravitropism

MAG 0.001 0.1 - Log

Table 5.1: The 17 root system phenes we include in our optimisation and the
abbreviation we will use, the minimum and maximum values (a representative
value is chosen for phenes corresponding to different values across different root
classes), unit and the scaling. The axial root angle is with respect to the down
direction while the lateral and fine lateral branching angles are with respect to
the parent root.

simulation was repeated 10 times with different seeds for the random number

generator (RNG). Not all simulations completed successfully, those that failed

139



were retried with different seeds for the random number generator a few times.

After this, there were still 83 (out of 2000) combinations of inputs and RNG seed

that had not completed successfully. This can happen for a variety of reasons,

the most common being a crash in the water model (the stability improvements

from Section 4.8 were not present in the code yet). There was only 1 set of inputs

that did not succeed for any RNG seed, this was assigned a value of 0, marking

it as ‘bad’. The mean shoot dry weight could be calculated for all other inputs,

though for some this was done with less than 10 repetitions. While not ideal, the

failed runs were spread over all input locations so in many cases the mean shoot

dry weight was calculated from 8 or 9 repetitions instead of 10.

Optimising the regression for BIC, the following inputs were selected: 1, x1, x2,

x3, x10, x16, x17, x1x1, x1x3, x1x4, x1x13, x1x17, x2x5, x2x8,

x2x9, x2x12, x2x16, x3x3, x4x4, x4x5, x5x5, x5x9, x10x10, x10x16,

x14x15, x17x17. Here x1 refers to the first phene in Table 5.1, that is, seminal

root number, and so on. As active inputs we choose only those which have suffi-

cient explanatory power by themselves. This means inputs which appear as linear

or quadratic terms in the above list, so we don’t include x9, since it only appears

in crossterms. This leaves us with x1, x2, x3, x4, x5, x10, x16, x17 as ac-

tive inputs, 8 out of the 17 initial inputs. Then we optimise a degree 2 polynomial

regression with respect to the BIC again, forcing all linear terms to be included,

which results in the following set of inputs:

1, x1, x2, x3, x4, x5, x10, x16, x17, x1x1, x1x3, x1x4, x1x17,

x2x2, x2x5, x2x16, x3x3, x4x4, x4x5, x5x5, x10x10, x10x16, x17x17.

After this, the hyperparameters of the Gaussian process, which are the variance,

the noise variance and a correlation length for each of the 8 active inputs, were

numerically optimised with respect to the log likelihood several times, starting

from a number of different values. We need to choose a set of hyperparameters

that accurately captures the features of our data. However, with a limited num-

ber of points it’s often difficult to tell whether a certain set is more appropriate

than another. The set we will use, with the highest log likelihood is listed in

Table 5.2.
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Hyperparameter Value

Standard deviation 2.03

Noise standard deviation 0.636

x1 correlation length 0.01

x2 correlation length 1.70

x3 correlation length 0.671

x4 correlation length 0.292

x5 correlation length 2.22

x10 correlation length 100

x16 correlation length 100

x17 correlation length 0.268

Table 5.2: Emulator standard deviation, noise standard deviation and correlation
lengths for the wave 1 emulator, optimised with respect to the Gaussian process
log likelihood.

We note that the first correlation length is the minimum value we allow it to be

and the 6th and 7th are the maximum value we have allowed. This indicates

that these inputs do not have a big influence on the behaviour of the Gaussian

process. This might be because the dependence of shoot dry weight on these

inputs already gets captured by the polynomial regression part of the emulator

or that the data makes it difficult to discern trends. For example, if the first

input is very similar for two data points with very different shoot dry weights,

the Gaussian process might conclude that the correlation length in input 1 is very

small, while this could also happen due to the fact that the noise is bigger than

we think. To check if these hyperparameters really makes sense we run a number

of different diagnostics before we continue with the second wave of simulations.

First we run leave-one-out diagnostics and see if the proportions of points more

than σ, 2σ and 3σ away from the predicted mean looks reasonable. The leave-

one-out diagnostics are listed in Table 5.3.

Now that we have picked hyperparameters, we can generate predictions. We will

generate predictions for ten million random points in input space. With these,

we can estimate for a given threshold T what the interesting fraction of space PI

is. Remember that, given T , it is defined as

PI := {x⃗ ∈ P |µ(x⃗) + 3σ(x⃗) ≥ T}. (5.6.2)
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Threshold Fraction outside threshold Expected fraction outside treshold

σ 0.33 0.31372

2σ 0.03 0.0455

3σ 0.01 0.0027

Table 5.3: Leave-one-out diagnostics for the wave 1 emulator showing the fraction
of wave 1 results that fall outside the given thresholds. See Section 5.4 for an
explanation of leave-one-out diagnostics.

The highest mean shoot dry weight in our training data is equal to 20.07 grams,

we set the threshold for cutoff at 95% of this, so equal to 19.06 grams. Now that

we set a threshold we will determine the best locations for 20-day simulations, as

described in Section 5.5. First we choose a set X of 1000 reference points that

we use to calculate

ν(z⃗) :=
∑
x⃗∈X

σ2z⃗(x⃗)ω(x⃗), (5.6.3)

for any prospective points z⃗. We choose these thousand points by calculating

ω(x⃗) = e
− (T−(µ(x⃗)+3σ(x⃗)))2

σ2(x⃗) , (5.6.4)

for every x⃗ in a set of ten million predictions. Then we choose the points with

the highest ω(x⃗). If these reference points are too close together, then the 20-

day simulations will be optimised to decrease the variance in a small region of

parameter space. So we impose a minimum distance between the reference points.

The minimum distance between reference points was calculated by generating 100

hypercubes consisting of 1000 points each and calculating the average minimum

distance between points, which was equal to 1.80. We multiplied this by 0.8 and

imposed this as minimum distance between the reference points.

5.6.2 Wave 1.5

With these reference points calculated, we choose 500 points as inputs for 20-day

simulations, with 10 repetitions each. As explained in Section 5.5, we choose

points that minimise the predicted variances for the points in the reference set,

weighted by ω(x⃗). The results of these 20-day simulations can be converted to

predictions for the shoot dry weight at 42 days by using our initial 1917 success-

fully completed 42-day simulations to fit a second order polynomial regression,
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the forward regression, over a selection of 25 OpenSimRoot outputs. These out-

puts include shoot dry weight, measures of the size of the root system such as the

root length of different root classes and measures of nutrient uptake, see Table

B.7 for the complete list. Figure 5.4 shows the relationship between the above

20-day values and the shoot dry weight at 42 days. With these we parametrised

a second order polynomial regression which has an adjusted coefficient of deter-

mination (r-squared) of 0.942.

4973 out of 5000 (500 inputs times 10 repetitions) 20-day simulations completed

successfully. These give us give 4973 predicted shoot biomasses at 42 days,

which are averaged for each set of inputs and then added to the 200 mean shoot

biomasses from the first wave. This gives us 700 datapoints which we use to fit

a wave 1.5 regression and Gaussian process. The hyperparameters for the wave

1.5 Gaussian process are listed in Table 5.4 and the corresponding leave-one-out

diagnostics are listed in Table 5.5.

Hyperparameter Value

Variance 2.42

Noise variance 1.91

x1 correlation length 0.439

x2 correlation length 0.0213

x3 correlation length 0.197

x4 correlation length 0.660

x5 correlation length 0.360

x10 correlation length 100

x16 correlation length 100

x17 correlation length 0.142

Table 5.4: Emulator standard deviation, noise standard deviation and correlation
lengths for the wave 1.5 emulator, optimised with respect to the Gaussian process
log likelihood.

The fraction outside 1σ is smaller than we would expect if errors were distributed

normally. It is also smaller than it was for wave 1 while the fractions outside 2

and 3 σ are similar to those of wave 1. This is likely due to the higher variance

and noise variance, which increases σ, making it more unlikely for values to fall

outside the [µ−σ, µ+σ] interval. To make sure that the Gaussian process works

well we ran some simulations to generate data to validate against. We created
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Threshold Fraction outside threshold Expected fraction outside treshold

σ 0.25 0.31372

2σ 0.034 0.0455

3σ 0.0071 0.0027

Table 5.5: Leave-one-out diagnostics for the wave 1.5 emulator showing the frac-
tion of results that fall outside the given thresholds. See Section 5.4 for an
explanation of leave-one-out diagnostics.

two sets of 50 inputs, each with 10 repetitions. The first set is a Latin hyper-

cube over all of parameter space. The second set is a selection of 50 points on the

boundary of the interesting region. More specifically, they are the points with the

highest weight ω(x⃗) as defined in equation 5.5.1, selected from the set of points

that was used to determine the optimal locations for the wave 1.5 simulations.

Figures 5.7a and 5.7b show the predicted means and standard deviations versus

the actual values for the wave 1 and wave 1.5 emulators. The mean error of the

wave 1 emulator is 1.97 grams for the first validation set and 2.84 grams for the

boundary validation set. For the wave 1.5 emulator these mean errors are 2.24

and 2.58 grams, respectively.
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Figure 5.7: Emulator predicted shoot biomass at 42 days versus shoot biomass
simulated by OpenSimRoot at 42 days for the wave 1 and wave 1.5 emulator.
The bars indicate the emulator standard deviation.

It is surprising that the wave 1.5 emulator actually performs worse (that is, the

mean errors are bigger) on the first validation set than the wave 1 emulator,
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considering it has more information. It did perform a little bit better on the

boundary validation set, but since the boundary validation points were taken

from the set of reference points that was used to decide where the wave 1.5 simu-

lations should be done, this improvement is quite small. This warranted further

investigation. Figures 5.8a and 5.8b show the 42-day shoot dry weight predicted

by the forward regression model versus the actual 42-day shoot dry weight.

15 10 5 0 5 10 15 20
Simulated shoot biomass at 42 days (g)

15

10

5

0

5

10

15

20

42
-d

ay
 sh

oo
t b

io
m

as
s p

re
di

ct
ed

 fr
om

 o
ut

pu
ts

 a
t d

ay
 2

0 
(g

)

(a) Validation points distributed across pa-
rameter space

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Simulated shoot biomass at 42 days (g)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

42
-d

ay
 sh

oo
t b

io
m

as
s p

re
di

ct
ed

 fr
om

 o
ut

pu
ts

 a
t d

ay
 2

0 
(g

)

(b) Validation points in boundary region

Figure 5.8: Shoot biomass at 42 days as predicted by the forward regression, a
polynomial regression of degree two on selected outputs at day 20, versus shoot
biomass simulated by OpenSimRoot at 42 days.

As we can see in Figure 5.8a, the forward regression model predicts negative

shoot dry weights in about 20 instances, which of course is not physically possi-

ble. Feeding these unphysical values into the Gaussian process will in turn make

it less accurate. A common way to ensure a regression model predicts positive

values is to make it predict the logarithm of the relevant value. This is done by

taking the logarithm of the training data y-values, training the regression model

on that and taking the exponent of the predicted values. However, because we are

using least squares to determine the regression coefficients, this will cause small

values to weigh more heavily. Because we are trying to optimise for shoot dry

weight, we care more about accuracy at high values than at low values; we will

discard the lowest values and even if the error there is relatively large, they are

unlikely to be among the highest shoot dry weights. So instead we will regard any

predicted 42-day shoot dry weight below 0 as 0 before using it to train a Gaussian
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process. This improves the wave 1.5 emulator average error from 2.24 to 1.79 on

the first validation set and from 2.58 to 1.93 on the boundary validation set.

The large bounds we put on correlation lengths mean that some of our inputs

are not doing much to inform the Gaussian process, which is unexpected because

we selected the inputs with the most explanatory power. So we try restricting

the correlation lengths to the interval [0.2, 5] instead of [0.01, 100] for both the

wave 1 and wave 1.5 emulator. With this and with restricting the 42-day shoot

dry weight as predicted by the forward regression to positive values, the mean

error of the wave 1 emulator is 2.16 g on the first validation set and 2.61 g on

the boundary validation set, for the wave 1.5 emulator these values were 1.78 g

and 1.95 g, respectively.

Finally we should note that we are using all 20-day outputs in the forward re-

gression model to predict forward to the shoot dry weight at 42 days. But since

we used the Bayes’ information criterion to select active inputs for the regression

term in our Gaussian process, it makes sense to also try to apply that to the

forward regression model. We first constructed a linear model and optimised for

BIC to select which inputs we include. This led to a selection of 17 out of the 25

inputs, see Table B.8. Then we constructed a regression of degree 2 and optimised

the active inputs using BIC. This reduced the mean error on the first validation

set from 1.86 g to 1.06 g and reduced the mean error on the second validation

set from 1.79 g to 1.52 g. Figure 5.9 shows that the forward regression model

is not only predicting the shoot dry weight at 42 days with higher accuracy but

also predicts fewer negative values as compared to the predictions in Figure 5.8.

This shows that, perhaps counterintuitively, reducing the amount of variables

considered can improve accuracy, and underscores that one should take care not

to overfit.

After this fine-tuning, we see in Figure 5.10 that the wave 1.5 emulator is an

improvement on the wave 1 emulator. Most of the wave 1.5 predictions are closer

to the real values than the wave 1 predictions. In particular, the wave 1.5 emula-

tor improves on the wave 1 emulator for the 3 points with the largest simulated

shoot biomasses in Figure 5.10a and the 4 points with the smallest simulated
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Figure 5.9: Shoot biomass at 42 days as predicted by the forward regression, a
polynomial regression of degree to on selected outputs at day 20, versus shoot
biomass simulated by OpenSimRoot at 42 days, after using the Bayes information
criterion to select which inputs to include in this regression.

shoot biomasses in Figure 5.10b, which are the points with the largest errors.
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Figure 5.10: Emulator predicted shoot biomass at 42 days versus shoot biomass
simulated by OpenSimRoot at 42 days for the wave 1 and wave 1.5 emulator after
improving the shoot dry weight predictions made based on the 20-day simulations
which the wave 1.5 emulator uses. The bars indicate the emulator standard
deviation.

Now we are satisfied that our methods are correct we construct our final wave 1.5

emulator by adding the validation data to the training data. By adding the two
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sets of validation data in one by one we verified that this improves, or at the very

least does not reduce, accuracy on the other validation set. With this final wave

1.5 emulator we will construct a set of inputs for the second wave of full 42-day

simulations. The maximum mean shoot dry weight in the data on which this final

wave 1.5 emulator is trained is 21.12 g so we set the wave 1.5 threshold, T1.5, at

which we consider a point ‘interesting’ equal to T1.5 = 0.95 ·21.12 = 20.06 g. Any

point x⃗ for which µ(x⃗)+3σ(x⃗) < T1.5 will be excluded from future consideration.

Under the assumption that our errors are distributed unimodally, the Pukelsheim

3σ rule [163] tells us that we will at most exclude 2.5% of parameter space from

consideration in error with this choice of 3σ. This is because for unimodal dis-

tributions less than 5% will fall outside 3σ and half of these will fall outside 3σ

on the low end of the distribution, which we do want to include. For a normal

distribution, only about 0.3% of samples falls outside 3σ so we would mark at

most 0.15% of parameter space uninteresting in error. Since we set our threshold

T1.5 = 20.06 g and not at the maximum observed value, we are even less likely to

exclude good inputs from consideration.

Since the parameter space we are working in is 17-dimensional, it is difficult to

visualise the predictions of the Gaussian processes. By projecting down onto

pairs of two dimensions we can get an idea of the shape of the interesting region

defined by our threshold and emulators and how this changes between the wave

1 and wave 1.5 emulator as visualised in figures 5.11 and 5.12. We see some

differences in the interesting regions, but the two emulators seem to agree on the

location of the bulk.

Instead of plotting the optical depth, which is the size of the hypervolume pro-

jected down onto the relevant 2 dimensions, and the average of the mean shoot

dry weights, we also plot the minimum and maximum predicted mean shoot dry

weights in Figure 5.13. This gives us an idea of the range of predictions and

where the emulator expects the highest values to be. We see that the minimum

values range from slightly less than 14 to 15.4 g. It is not surprising the range

does not extend further down because going any lower would mean a point falls

below the threshold, even with maximum variance. The highest minimum values

look like they are at the edges of the interesting set. This is likely due to the fact
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Figure 5.11: An overview of the predictions of the wave 1 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection
onto two inputs (dimensions) of the average of emulator predictions for points in
the interesting region, for panels below the diagonal, or the optical depth, which
is the number of points in the interesting region, for panels above the diagonal,
with each pixel representing a number of points for which the values in the two
dimensions in question match the x, y coordinates in the panel in question. Black
regions contain no points in the interesting region (or, in the case of the first two
inputs, which are discrete, are not part of parameter space). Only the 8 active
inputs are displayed.

that there are fewer points in the interesting set in the hyperslices of parameter

space represented by the relevant pixels. The plots with maximum mean shoot

dry weight seem to show a peak in the middle of the interesting set with values

decreasing towards the edges. For some parameters there is a clear preference

and parts of parameter space are completely excluded. For example, low seminal

root numbers (SRN) do not appear in the interesting set at all.

149



Figure 5.12: An overview of the predictions of the wave 1.5 emulator
of maize shoot dry weight after 42 days. Each panel shows the projection
onto two inputs (dimensions) of the average of emulator predictions for points in
the interesting region, for panels below the diagonal, or the optical depth, which
is the number of points in the interesting region, for panels above the diagonal,
with each pixel representing a number of points for which the values in the two
dimensions in question match the x, y coordinates in the panel in question. Black
regions contain no points in the interesting region (or, in the case of the first two
inputs, which are discrete, are not part of parameter space). Only the 8 active
inputs are displayed.

5.6.3 Wave 2

We constructed the first wave of simulations as a Latin hypercube in order to

have an even coverage of parameter space. For the wave 2 simulations we sim-

ilarly want to cover the interesting part of parameter space, as determined by

our wave 1.5 emulator, as uniformly as possible. To achieve this, we generate a

large number of Latin hypercubes on the entire parameter space and keep only

the points in the hypercube that fall in the interesting region. From the result-

ing reduced hypercubes that contain approximately the target amount of points

we pick the one that has the largest minimum distance between points because
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Figure 5.13: An overview of the predictions of the wave 1.5 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection onto
two inputs (dimensions) of the minimum of points in the interesting region (for
panels below the diagonal) or the maximum of points in the interesting region
(above the diagonal), with each pixel representing a number of points for which
the values in the two dimensions in question match the x, y coordinates in the
panel in question. Black regions contain no points in the interesting region (or,
in the case of the first two inputs, which are discrete, are not part of parameter
space). Only the 8 active inputs are displayed.

that one is most likely to evenly cover the interesting region of parameter space.

While it’s not guaranteed that the resulting set of points is evenly spaced and

provides good coverage of the interesting set, it will almost certainly be better

than a set of randomly chosen points. We also added the point for which the

wave 1.5 emulator predicted the highest mean shoot dry weight, which was 21.99

g to the wave 2 inputs.

The highest mean shoot dry weight in the wave 2 data was 23.03 g (this was not

the point the wave 1.5 emulator expected to be the highest), a clear improvement
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over the wave 1 and wave 1.5 mean shoot dry weights. Figure 5.14 shows the

shoot dry weight for the wave 2 inputs as predicted by the wave 1.5 emulator

versus the values as simulated by OpenSimRoot. It is clear that the emulator is

not very accurate but our main cause for concern is if it underestimated values by

more than 3σ because this would mean we could be excluding parts of parameter

space from consideration in error. This only is the case for a few points, the

majority falls within 3σ of the predicted value.
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Figure 5.14: Wave 2 results versus emulator wave 1.5 prediction.

When we construct a wave 2 emulator we can use just the wave 2 data alone or

add in the data from wave 1, wave 1.5 and the validation data. Since the wave

2 emulator will only be used to make predictions in a small region of parame-

ter space, the former approach makes sense because it only uses data from the

relevant region. However, the latter approach takes more data into account and

this can of course make for a better emulator. In addition, if we construct an
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emulator from just wave 2, this emulator might not see the effect an input has

because we are already ‘at the top of the mountain’ in that dimension. To find

out which approach works better we constructed both emulators and compared

them. The leave-one-out diagnostics of both emulators looked similar where we

expect them to be, so this does not tell us much. To get some more insight, we

made a large number of predictions in the interesting region (as classified by the

wave 1.5 emulator) and make a histogram of the predicted standard deviations,

as shown in Figure 5.15. All emulators showed a reasonably smooth distribution

except for the wave 2 emulator that is only trained on wave 2 data, which showed

a very sharp peak at the highest value of its distribution. This means that this

emulator is unsure about almost all of its predictions, because most points are

far away, relative to the correlation lengths, from the data it was trained on. In

this case it is because two of the correlation lengths are very small, which means

that unless a point is very close to a training point in either of the two dimen-

sions corresponding to these small correlation lengths, the emulator will make

predictions with high uncertainty.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Predicted standard deviation

0

5

10

15

20

25

30

Re
la

tiv
e 

in
cid

en
ce

Standard deviations of points in interesting region
Wave 1 emulator
Wave 1.5 emulator
Wave 2 only emulator
Wave 2 all data emulator

Figure 5.15: A histogram showing the distribution of predicted standard devia-
tions for the wave 1, wave 1.5 and 2 different wave 2 emulators for points in the
region of parameter space marked as interesting by the wave 1.5 emulator.

In order to improve the wave 2 emulators we first of all adjust the hyperparam-
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eters of these emulators, increasing the lower bounds of the correlation lengths

from 0.2 to 0.25. More importantly, we also reviewed which of the 17 root traits

that make up our parameter space we train these emulators on. Recall that

we used the Bayesian information criterion (BIC) to choose the inputs which ex-

plained the most variation and trained the emulators using only this selection of 8

inputs. If these 8 inputs determine the large scale behaviour, it makes sense that

once we select the values that maximise shoot dry weight in these 8 inputs, we

eventually reach a point where further increases in shoot dry weight can only be

achieved by looking at the other 9 inputs. We optimised the regression terms for

BIC for just the wave 2 dataset and the dataset containing every wave, and cal-

culate the P-value for all these terms. The P-value indicates the probability that

the variation that appears to be explained by a term is actually due to chance.

A P-value smaller than 0.05 is generally seen as a good indication that a term

should be included. Table B.9 lists the P-values for all relevant regression terms

for wave 1, wave 1.5 and the two wave 2 datasets. Based on the terms selected by

BIC optimisation and their corresponding P-values we decided to add inputs 8

(lateral root branching density), 9 (nodal root emergence time), 13 (aerenchyma

formation) and 15 (lateral root length) as active inputs, bringing the total to 12

out of 17. After retraining the wave 2 emulators and making predictions we again

plot the distribution of standard deviations in a histogram, see Figure 5.16. Not

only do we now see smooth distributions for all emulators, the wave 2 emulators

also have lower standard deviations than the wave 1 and wave 1.5 emulators,

which means that the expected accuracy of predictions has increased.

Now we are satisfied with the wave 2 emulator we use it to reasses the interesting

set. For the points which the wave 1.5 emulator expects to be above the wave 1.5

threshold of 20.06 g, we make predictions with the wave 2 emulator. Note that

we could use the wave 2 emulator to make predictions on the entire parameter

space but since all of the wave 2 simulations are in the wave 1.5 interesting set,

the wave 2 emulator does not have more information on most of parameter space

than the wave 1.5 emulator does. However, since we have observed higher shoot

biomasses in wave 2, we increase the threshold to 0.95 · 23.03 = 21.88 g. The

wave 2 emulator expects 1.66715% of parameter space to be interesting, down

from the 4.77827% for the wave 1.5 emulator. Figures 5.17 and 5.18 show the
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Figure 5.16: A histogram showing the distribution of predicted standard devia-
tions for the wave 1, wave 1.5 and 2 different wave 2 emulators for points in the
region of parameter space marked as interesting by the wave 1.5 emulator. This
figure is similar to Figure 5.15 except that the wave 2 emulators are now trained
on 12 of the 17 inputs instead of the 8 inputs we used before.

two-dimensional projections of the interesting part of parameter space. Because

we used more inputs to train the wave 2 emulator more are displayed in these

figures than before but they are otherwise very similar to those for wave 1.5. The

projections of the interesting set onto some pairs of inputs are smaller, which does

not necessarily have to happen even if the interesting region gets smaller, but the

overall shape is similar. The minimum and maximum predictions have increased,

which makes sense because the wave 2 simulations have higher shoot dry weight

on average and the threshold has increased while the emulator variance has gone

down.

Now we could repeat what we did for wave 1 and run a large number of 20-day

simulations, then predict the 42-day shoot dry weight from those using a forward

regression. However we won’t do this for two reasons. The first is that we have

already excluded 95% of parameter space from consideration so we are looking at

a much smaller space. This means that it is a lot easier to get good coverage of

the part of parameter space we have left. The second reason is that the procedure

becomes less and less useful the closer we get to the highest possible values of the
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Figure 5.17: An overview of the predictions of the wave 2 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection
onto two inputs (dimensions) of the average of emulator predictions for points in
the interesting region, for panels below the diagonal, or the optical depth, which
is the number of points in the interesting region, for panels above the diagonal,
with each pixel representing a number of points for which the values in the two
dimensions in question match the x, y coordinates in the panel in question. Black
regions contain no points in the interesting region (or, in the case of the first two
inputs, which are discrete, are not part of parameter space). Only the 12 active
inputs are displayed.

model output we are maximising. This is because phenotypes near the maximum

possible shoot dry weight at day 42 will look very similar in certain respects

at day 20. For example, they are unlikely to be nutrient stressed at day 20,

because this would mean their growth was already being limited, and their shoot

dry weights are likely to be very similar at day 20 because otherwise the positive

feedback loop of more carbon availability leading to more nutrient uptake leading

to even more shoot growth would translate to big differences in the final 22 days.

This was confirmed by the fact that the standard deviation of the residuals of the

forward regression was larger when this was applied to wave 2 data, compared to
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Figure 5.18: An overview of the predictions of the wave 2 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection onto
two inputs (dimensions) of the minimum of points in the interesting region (for
panels below the diagonal) or the maximum of points in the interesting region
(above the diagonal), with each pixel representing a number of points for which
the values in the two dimensions in question match the x, y coordinates in the
panel in question. Black regions contain no points in the interesting region (or,
in the case of the first two inputs, which are discrete, are not part of parameter
space). Only the 12 active inputs are displayed.

when it was applied to wave 1 data. This indicates the size of the errors increased.

For this reason we will not use 20-day simulations in any further waves.

5.6.4 Wave 3

For our third and final wave we create a restricted Latin hypercube with ap-

proximately 213 points using the wave 2 emulator (because there is randomness

involved in creating a Latin hypercube, we can not guarantee an exact number of

points will fall in the small fraction of space that is interesting according to the

wave 2 emulator so we accept a range of sizes). We add to this the 5 points which
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the emulator expects to have the highest mean shoot dry weight. Figure 5.19

shows the values predicted by the wave 2 emulator plotted against the simulated

values. As it turns out, 3 of the 5 points which the wave 2 emulator predicted

would have the highest mean shoot dry weights did have the 3 highest simulated

shoot dry weights, though they were slightly lower than the emulator predicted.

The other predictions were reasonably good, with most within 3 standard devia-

tions of the actual value. While the wave 2 emulator predicted some values above

25g, the highest wave 3 result was just slightly above 24 g.
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Figure 5.19: Wave 3 results versus wave 2 emulator predictions. The bars indicate
the emulator standard deviation. The 5 points with the highest shoot dry weight
as predicted by the wave 2 emulator are the 5 points the emulator thought would
have the highest shoot dry weight, and they do indeed have among the highest
shoot dry weights.

Training a wave 3 emulator, which uses all data so far and is valid on the inter-

esting set according to the wave 2 emulator, we determine another, even smaller
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region of interest. But first we make sure that the emulator is still behaving

properly. As Figure 5.20 shows, the distribution of predicted standard deviations

is smooth and the wave 3 emulator is more certain of its predictions than the

wave 2 emulator, as expected.
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Figure 5.20: A histogram showing the distribution of standard deviations for
the wave 1, wave 1.5, wave 2 and wave 3 emulators for points in the relevant
interesting regions of parameter space. Note that for the wave 3 emulator, the
interesting region is determined by the wave 2 emulator, which is more strict than
the wave 1.5 emulator, so this interesting region is smaller.

Figure 5.21 summarises the results of the three waves of simulations we have

done, showing the average nutrient uptake, normalised with respect to the nutri-

ent uptake of the reference plant grown in soil with high nutrient availability and

the simulated shoot dry weight for every wave as well as the performance of the

reference phenotype. Most phenotypes in wave 1 have lower shoot dry weights

than the reference phenotype in stressed conditions, the wave 2 phenotypes per-

form a lot better already while for wave 3 almost all phenotypes have higher

simulated shoot dry weights than the reference phenotype in stressed conditions.

The average shoot dry weight increases from 8.30 g in wave 1 through 17.38 g

in wave 2 to 19.63 g in wave 3. The highest shoot dry weight value in wave 3,

growing in stressed conditions, is 24.10 g, only 4.73 g below the reference plant
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growing in unstressed conditions.
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Figure 5.21: An overview of the results from all 3 waves of simulations. The
horizontal axis shows the average nutrient uptake, normalised with respect to the
nutrient uptake of the plants grown in soil with high nutrient availability. The
simulated shoot dry weight is on the vertical axis. Each wave is displayed in a
different colour, the reference unstressed shoot dry weight is shown by the black
line and the reference phenotype under stress is shown in red (around 0.5, 15).

Can we quantify how much faster this emulation approach is compared to other

methods? Not without actually arriving at a similar result using other methods,

and then repeating both procedures a number of times to get a statistically sound

answer. This is not feasible to do because it would cost us a lot of additional

computing time (and this would sort of defeat the purpose of this method, which

was to avoid doing a large number of simulations). We can however make some

rough estimates. The size of the interesting set according to the wave 3 emulator

is about 0.75% of parameter space. Assuming that this emulator has correctly

identified the part of parameter space most likely to contain (which we hope is a

safe assumption since we tried to be very careful at every step), each simulation

is now 1
0.0075 ≈ 133 times more efficient than before. So as a lower limit, we have

sped up exploration of parameter space by a factor 133.

Since the size of the interesting set, according to the wave 2 emulator is 1.66715%,

we know that we can expect one in 60 randomly chosen inputs to be in this set.

So we have 1 in 60 odds to find inputs which lead to a shoot dry weight of, on
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average 19.63 g. Only 2 out of the 213 inputs in wave 3 that were distributed

semi-randomly using a restricted Latin hypercube have a shoot dry weight above

23 g. This means that finding a root system architecture with a shoot dry weight

of more than 23 g by trying random inputs would take 1
0.0166715 2

213

= 6388 tries on

average. When using 10 repetitions, this would mean 63880 42-day simulations.

In contrast, we used about 7000 42-day simulations and 5000 20-day simulations.

The 20-day simulations were on average more than 10 times faster so this is ef-

fectively 7500 42-day simulations, which resulted in 2 values above 23 g. This is

a reduction of a factor 63880
3750 = 17, as compared to randomly searching. However,

from the 5 points which the wave 2 emulator predicted would have the highest

shoot dry weight, 4 had a shoot dry weight above 23 g and one was even above

24 g. These 5 points were selected by the wave 2 emulator as the best out of an

initial set of 10 million points randomly placed around parameter space. Letting

the emulator make predictions for this very large number of inputs took around

16 hours, about the same as a single OpenSimRoot simulation. Considering it

would on average take 6388 randomly chosen inputs to expect one to have a shoot

dry weight greater than 23 g, it is clear that this emulator-driven approach allows

us to explore parameter space a lot faster than before.

Finally, the above apprimations are rough estimates of how much faster we can

find inputs with a high shoot dry weight. But we do not just want to find the

highest shoot dry weight, we want to find the region of parameter space where

all the shoot dry weights within 5% of the maximum value reside. This is a

much harder problem and any method to find this would require some sort of

approximation of the model in question in order to map the relevant region of

parameter space. For example, a genetic algorithm might find a path which leads

to the top of a mountain, but getting a map of the mountaintop would still require

extra work.

5.7 Biological interpretation

Our goal was to find root system architectures which led to high (the highest 5%)

maize shoot dry weight in a challenging environment where plants are subjected

to three nutrient stresses. Given the different conditions a phenotype should sat-
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isfy in order to maximise uptake of different nutrients, we expected there to be a

range of phenotypes which each lead to a high shoot dry weight through different

combinations of phenes. So do we see such a variety in optimal phenotypes, are

there any phenes for which certain values are always important to maximise the

shoot dry weight and can we draw some conclusions about the optimal pheno-

types?

Figure 5.22 shows representatives of the six best performing phenotypes, each of

them having a mean shoot dry weight greater than 23 grams. While they do look

similar in many respects, there are visual differences in axial root angle, nodal

root number and branching densities.

Figure 5.23 shows the wave 3 shoot dry weights, projected onto each input dimen-

sion. For the seminal root number (SRN), nodal root number (NRN), seminal

lateral branching frequency (SLBF), axial root angle (ARA) and major axes

gravitropism (MAG), there is a clear preference for certain values. There are

no phenotypes with low SRN in wave 3 at all, and a high value appears to be

optimal. For NRN, there are no high values but the range of good values is a bit

wider. For SLBF there is a clear peak in the middle and low and high values are

both absent from wave 3. For ARA low values are absent, while for MAG high

values do not appear.

The 5 phenes with a clear range of optimal values have been mentioned in the lit-

erature as important. Low axial (primary, seminal, nodal and brace) root number

was hypothesized to be important in low nitrogen environments in [112], while

increasing the axial root number increases the root length in the topsoil, which

is good for phosphorus uptake. So it is not surprising that we see this in the

importance of SRN and NRN. It is interesting however that they seem to have

opposite optimal values, which is perhaps a consequence of the different pressures

on them and the total number of nodal root numbers is in a sweet spot in the

middle this way. Lateral branching frequency is a phene with opposite optimal

values under nitrogen and phosphorus limitations [154] and seeing SLBF clearly

prefer the middle could be a consequence of this being optimal under a combina-

tion of nitrogen and phosphorus deficiency. However, this raises the question why
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Figure 5.22: Representatives of the six maize phenotypes with the highest shoot
dry weight at 42 days under nitrogen, phosphorus and potassium stress. The
colours indicate root segment age with the youngest roots being blue and the
oldest roots red. The views are approximately 150 cm from top to bottom.

none of the other branching frequencies (PLBF, NLBF, BLBF, CLBF, LLBF)

show this same preference. The fact that three of these were marked as active

variables means it is unlikely that the effects of these phenes on shoot dry weight

is irrelevant and suggests there are different (combinations of) values which lead

to a high shoot dry weight. Axial root angle has long been considered an im-

portant phene because it determines whether the root system mainly explores

the topsoil, deeper soils or both [2, 41, 192]. The fact that we see high ARA

values, which corresponds to shallow root angles, and low MAG values appear
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Figure 5.23: Mean shoot dry weights and standard deviations for wave 3 Open-
SimRoot simulations, projected down onto each of the different inputs (phenes)
under consideration.

as the best in the wave 3 simulations indicates that shallow and intermediate

phenotypes are optimal and steep phenotypes are unlikely to correspond to high

shoot dry weight. Initially all nutrients are concentrated in the topsoil and the

immobility of phosphorus and, to a lesser extent, potassium mean that the largest

concentrations will remain there. Nitrate does move down into deeper soil layers

with water but the relationship we see implies that this does not create enough

of an incentive for a steep root system.

Figure 5.24 shows what happens if we change any of the five phenes above to

a value as far away from those of the best phenotype found so far. These 5

one-phene perturbations of the best phenotype found all performed significantly

worse than the original phenotype, with shoot dry weights being 0.7 g, 19.2 g,

4.8 g, 13.4 g and 6.5 g respectively. They are also visually very distinct from any

of the phenotypes in figure 5.22. The one-phene perturbation with higher nodal

root number performed the best out of the 5, with a shoot dry weight of 19.2 g.

This is likely due to the fact that the effect of this phene happens relatively late

in development. If we could simulate for longer, we would likely see this phene

have a greater effect on performance.

The importance of high SRN together with medium SLBF and low or medium

NRN suggests that establishing a large root system early with a steady but lower

increase in axial roots afterwards is a good strategy for maximising shoot dry
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(a) The optimal
phenotype but
with lower semi-
nal root number.

(b) The optimal
phenotype but
with higher
nodal root num-
ber.

(c) The optimal
phenotype but
with higher sem-
inal branching
frequency.

(d) The optimal
phenotype but
with steeper
axial root angle.

(e) The optimal
phenotype but
with a stronger
gravitropic re-
sponse.

Figure 5.24: Three representatives of one-phene perturbations of the best maize
phenotype we found so far. They are identical to this best phenotype except for
one phene. The colours indicate root segment age with the youngest roots being
blue and the oldest roots red. The views are approximately 150 cm from top to
bottom.

weight. Of course, since we are only simulating these root systems for 42 days,

this means that we can only see the short term effects of some of the later nodal

root whorls. Unfortunately the OpenSimRoot maize model has not yet been

parametrised up to grain filling (or even flowering) so we have to base these con-

clusions on incomplete information. Still, it makes sense to start off with as large

a root system as possible because this allows for greater nutrient extraction from

the soil and the earlier a root emerges, the more nutrients it can extract per

nutrient invested in the root. If carbon was limiting because the plants are also

suffering from drought, this might not be the case because a large root system

will require more carbon for maintenance. However, under just these nutrient

limitations, establishing a big root system early seems to be a good strategy.

The 5 phenes which were not marked as active variables because they did not

appear relevant when we optimised for BIC are brace root lateral branching

frequency (BLBF), crown lateral (the laterals of brace roots) root branching fre-

quency (CLBF), lateral root branching angle (LRA), fine lateral root branching

angle (FLRA) and crown lateral root length (CRL). We see in Figure 5.23 that

there is no obvious pattern indicating high or low values of these phenes are

better for maximising shoot dry weight. The fact that these phenes have less ex-

planatory power than the other phenes at this stage is somewhat expected. Since
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brace roots appear relatively late in the simulation, one whorl emerges between

day 20 and 30 and the other whorl between day 31 and 41, they have less time

to affect plant development than for example the seminal roots, which appear

together with the primary root. These roots also emerge in the topsoil, which

other roots have had thorough time to explore by the time they emerge. Were

we to simulate maize up to flowering, which happens approximately 70 days after

germination, BLBF, CLBF and CRL would likely explain more of the variation.

There is also a likely explanation why LRA and FLRA are not included as active

inputs. While a 90 degree lateral root angle maximises the soil exploration volume

and minimises competition between the parent root and the lateral, the effect of

this on nutrient uptake is irrelevant when the roots in question are surrounded

by many other roots of the same plant. This generally is the case for most laterals.

Out of the remaining phenes, primary lateral branching frequency (PLBF), nodal

lateral branching frequency (NLBF), lateral root branching frequency (LLBF),

nodal root timing (NRT), aerenchyma formation (AF), lateral root length (LRL)

and fine lateral root length (FLRL), PLBF, AF and LRL appear to show a slight

preference for either high or low values but we should be careful to draw any

conclusions from what could well be an effect of our sampling procedure or ran-

dom noise. Figures 5.25 and 5.26 show the two dimensional projections of the

wave 3 emulator predictions. There are no obvious ridges or structures visible in

these two dimensional projections. It is likely that the values of these 7 remaining

phenes have significant impact on the shoot dry weight, because then they would

not appear when optimising for BIC and the p-values associated with them would

have been larger.

Perhaps continuing our analysis and running more waves of simulations will re-

veal more distinct structures in parameter space, but at this point the absence of

a clear relationship between 7 of the phenes selected as active inputs and shoot

dry weight implies that a plant is able to develop a large shoot when 3 or more of

these phenes have synergistic values and that several different combinations exist

(because otherwise they would show up in the one or two-dimensional projec-

tions). These combinations, or integrated phenotypes, could represent different

local optima in the complex fitness landscape that evolution has optimised over.
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Figure 5.25: An overview of the predictions of the wave 3 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection
onto two inputs (dimensions) of the average of emulator predictions for points in
the interesting region, for panels below the diagonal, or the optical depth, which
is the number of points in the interesting region, for panels above the diagonal,
with each pixel representing a number of points for which the values in the two
dimensions in question match the x, y coordinates in the panel in question. Black
regions contain no points in the interesting region (or, in the case of the first two
inputs, which are discrete, are not part of parameter space). Only the 12 active
inputs are displayed.

As a simple example, consider the following: Root surface area in the topsoil is

important for phosphorus uptake, so we expect all the phenotypes in wave 3 to

have a reasonably large amount of roots in the top soil. But this can be achieved

through many different combinations of phenes. For example, the amount of

lateral root surface area subtending from seminal roots is proportional to the

number of seminal roots, multiplied by the average lateral root branching den-

sity, multiplied by the average lateral root length. Each of these can be varied

independently to obtain the same result. And we have multiple classes of axial

roots (primary, seminal, nodal, brace), each with different branching densities,
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Figure 5.26: An overview of the predictions of the wave 3 emulator of
maize shoot dry weight after 42 days. Each panel shows the projection onto
two inputs (dimensions) of the minimum of points in the interesting region (for
panels below the diagonal) or the maximum of points in the interesting region
(above the diagonal), with each pixel representing a number of points for which
the values in the two dimensions in question match the x, y coordinates in the
panel in question. Black regions contain no points in the interesting region (or,
in the case of the first two inputs, which are discrete, are not part of parameter
space). Only the 12 active inputs are displayed.

from the laterals even smaller fine lateral roots emerge and the lengths of laterals

and fine laterals can vary. This gives us many different phene combinations to

obtain the same lateral root surface area.

If we were maximising lateral root surface area this would make it easy to figure

out the optimal phene combinations, but since roots require nutrients and carbon

to grow and maintain, it is not so simple. A detailed statistical analysis of root

system outputs at 42 days will perhaps reveal if there are quantities, calculable

from phene values, which explain why certain integrated phenotypes lead to high
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shoot dry weight (or minimise/maximise some other output). Since this is the

holy grail of root system architecture and many researchers have spent entire

careers chipping away at this question we do not expect a definitive answer, but

undoubtedly this would increase our understanding of the relationships between

plant development and root system architectural traits.
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Chapter 6

Conclusion

OpenSimRoot is a collaborative and open source effort to produce a feature-rich

plant model with a focus on roots. We actively developed new capabilities in

order to capture more features of reality and increase the scope of questions that

can be addressed with it. In addition to the research we conducted ourselves, we

hope that these new capabilities will give future researchers more tools to address

their research questions.

The research described in this thesis lead to some collateral outputs which did

not fit into any of the chapters. While learning about OpenSimRoot, a guide,

included in the appendix, was written in order to help future OpenSimRoot de-

velopers and users get started. It includes a description of important models, how

the engine works, information about the application programming interface (API)

and other helpful information. A workshop was given to a small number of root

researchers while on a visit to Canberra, Australia, where participants managed

to get some basic models of species of interest up and running over the course

of a few days. A graphical user interface (GUI) was developed to make creating

OpenSimRoot input files easier for new users, as well as a number of tools for

quickly editing input files or generating the files for large simulation experiments.

These have been made public on GitLab 1. Finally, while working on OpenSim-

Root, a number of improvements were made to the code, in collaboration with

the other OpenSimRoot developers. One particularly important example was

that an update had the unforeseen effect of altering root angle changes due to

gravitropism. This was addressed and an automated test was added to make sure

1https://gitlab.com/rootmodels/opensimroottools
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that a similar situation will automatically be flagged in the future.

We implemented a root loss module so that OpenSimRoot can simulate root

loss going forward. With this new functionality we simulated a number of barley,

bean and maize phenotypes in soils with differing nutrient availabilities subjected

to different types and levels of root loss. Plants which were phosphorus stressed

had their development impaired significantly by root loss, where the effect on

nitrogen-stressed plants was less detrimental and for some maize phenotypes even

slightly beneficial if only lateral roots were subjected to root loss. Rather than

the absolute amount of root length lost, the timing and localisation of root loss

was important for determining the effect on plant development. It was especially

detrimental for plants to lose a large fraction of their total roots early during

development. Phenotypes with a high number of axial roots 10 days after germi-

nation were more resilient to axial root loss. This might also explain why maize

and bean were more resilient to axial root loss than barley. Finally, it was inter-

esting to see that the optimal root phenotypes without root loss were generally

also the optimal phenotypes with root loss.

We also implemented more sophisticated models for C3 and C4 photosynthesis

and stomatal responses to drought. Where previously drought had no effect on

plant development in OpenSimRoot, now it will lead to a lower stomatal conduc-

tance, lower carbon dioxide concentrations in the leaves and lower photosynthesis

rates. The implementation of the relevant models required some modifications to

the OpenSimRoot engine and the addition of a numerical root finder. We used

this new functionality to compare a reference phenotype with a more parsimo-

nious phenotype under well watered and drought conditions. The parsimonious

phenotype took up slightly less water but managed to grow a bigger shoot under

drought conditions. It achieved this through higher carbon efficiency, that is, for

every gram of carbon spent on roots, it took up more water from the soil than

the reference phenotype. It is only through modelling that we can keep track of

the carbon budget of plants over time and pin down exactly why one root system

outperforms another.

In the final chapter we used an emulator constructed with statistical machine
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learning techniques to maximise the shoot dry weight of maize plant system in a

low-nitrogent, low-phosphorus, low-potassium soil over 17 different root proper-

ties. By running successive sets of simulations, ‘waves’, training a new emulator

for each of these and then restricting our attention to specific parts of parameter

space based on the predictions of the emulator we slowly zero in on the optimal

root systems. This technique has been used to find model parameters that repro-

duce experimental data in a number of different contexts, including biological but

not for trait optimisation. We iterated on the technique by using the fact that

OpenSimRoot produces outputs at regular intervals, which are highly correlated.

This allowed us to use outputs at 20 days to predict outputs at 42 days and

further reduce the computational resources needed to make predictions. With

this emulator-driven approach, we found root system architectures which lead to

shoot dry weights under nutrient stress only about 20% less than the reference

phenotype achieved in soil with abundant nutrient availability. This was all done

with about 7000 full length simulations and 5000 20-day simulations, which in-

cludes 10 repetitions for each input. Considering the size of a 17 dimensional

space, the relatively small number of simulations shows the potential of this ap-

proach in biological contexts. For comparison, to even get a single root system

phenotype with a shoot dry weight within 5% of the best performer we found,

we estimate one would need around 63880 full length simulations on average

(including 10 repetitions) if one was searching parameter space randomly. This

does not even take into account the fact that the final emulator lets us generate

potentially good phenotypes with relative ease. The final results confirmed that

axial root number and angle and lateral branching density are important traits

while also implying that there are many different integrated phenotypes among

the best performers.

Bringing this all together, there are many connections that can be drawn between

the different subjects in this thesis, leading to new research questions. Drought

can increase root mortality and in turn root loss decreases the ability of plants

to access soil water. Perhaps the parsimonious phenotype we found to perform

better under drought is more vulnerable to root loss than a more expansive root

system and the optimal phenotype depends on the exact balance between these

stresses. Adding water requirements for plants to grow and maintain homeostasis
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would allow us to look at interesting questions concerning root loss because this

introduces new trade offs. Roots would not only require carbon but also wa-

ter for maintenance and growth and it would be interesting to see in what cases

it becomes better to lose roots and regrow them versus actively maintaining them.

We only studied a limited number of different root systems, varying only 3 prop-

erties in the root loss chapter. Because of the factorial design and the different

environments this already represented a large number of simulations. In the

drought chapter we considered only 2 different root systems. Using the emulator

approach, we could search for optimal root system architectures in root loss and

drought scenarios more efficiently. We could also find combinations of root traits

which maximise our objectives that we would never think of otherwise. The em-

ulation method can also be useful in parametrising OpenSimRoot models, since

it has already been used in other contexts to match models to data. The drought

module will be used together with a newly developed soil impedance module in

order to study plant development in the context of hardening soils as well as a

number of other simulation studies.

Our research highlights the potential of computational approaches in tackling the

complexity of root systems and the importance of continued research into this

hidden half of plants, especially in the context of a changing climate and the

agricultural challenges ahead of us.
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Root Loss Supplementary

Material
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Figure A.1: Mean plant nitrogen uptake at 80 days of the 18 barley phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top left shows which
colour corresponds to which phenotype.
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Figure A.2: Mean plant nitrogen uptake at 40 days of the 18 bean phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top left shows which
colour corresponds to which phenotype.
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Figure A.3: Mean plant nitrogen uptake at 40 days of the 18 maize phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top left shows which
colour corresponds to which phenotype.
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Figure A.4: Mean plant phosphorus uptake at 80 days of the 18 barley phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend at the top shows which
colour corresponds to which phenotype.
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Figure A.5: Mean plant phosphorus uptake at 40 days of the 18 bean phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend at the top shows which
colour corresponds to which phenotype.
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Figure A.6: Mean plant phosphorus uptake at 40 days of the 18 maize phenotypes
under consideration, each in a different colour. The bars indicate minimum and
maximum values. The figure is divided in 4 sections, each of which shows the
results for one of the 4 different soils we considered. For every soil, we show the
results for the three different types of root loss at 4 different intensities (which
includes the case without any root loss). The legend in the top shows which
colour corresponds to which phenotype.
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Figure A.7: Mean plant nitrogen uptake efficiency at 80 days of the 18 barley
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top left shows
which colour corresponds to which phenotype.
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Figure A.8: Mean plant nitrogen uptake efficiency at 40 days of the 18 bean
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top left shows
which colour corresponds to which phenotype.
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Figure A.9: Mean plant nitrogen uptake efficiency at 40 days of the 18 maize
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top left shows
which colour corresponds to which phenotype.

202



0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05 0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05 0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05 0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05 0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05 0
0.

01
0.

02
5

0.
05 0

0.
01

0.
02

5
0.

05

0.005

0.010

0.015

0.020

0.025

Ba
rle

y 
P 

up
ta

ke
 e

ffi
cie

nc
y 

(
M

ol
/c

m
2 d

ay
)

DailyRoot LossProbability
Root LossType Lateral Axial AllRoots Lateral Axial AllRoots Lateral Axial AllRoots Lateral Axial AllRoots

Low N Low P Low N High P High N Low P High N High P

Lateral Root Branching Density
Low Medium High

Without RCS
With RCS

Tiller Number
2 3 4 2 3 4 2 3 4

Figure A.10: Mean plant phosphorus uptake efficiency at 80 days of the 18 barley
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top left shows
which colour corresponds to which phenotype.
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Figure A.11: Mean plant phosphorus uptake efficiency at 40 days of the 18 bean
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top right shows
which colour corresponds to which phenotype.
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Figure A.12: Mean plant phosphorus uptake efficiency at 40 days of the 18 maize
phenotypes under consideration, each in a different colour. The bars indicate
minimum and maximum values. The figure is divided in 4 sections, each of which
shows the results for one of the 4 different soils we considered. For every soil, we
show the results for the three different types of root loss at 4 different intensities
(which includes the case without any root loss). The legend in the top right shows
which colour corresponds to which phenotype.
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Figure A.13: Mean root length at 80 days of the 18 barley phenotypes under
consideration, each in a different colour. The bars indicate minimum and maxi-
mum values. The figure is divided in 4 sections, each of which shows the results
for one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top right shows which colour
corresponds to which phenotype.
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Figure A.14: Mean root length at 40 days of the 18 bean phenotypes under con-
sideration, each in a different colour. The bars indicate minimum and maximum
values. The figure is divided in 4 sections, each of which shows the results for
one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top left shows which colour
corresponds to which phenotype.
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Figure A.15: Mean root length at 40 days of the 18 maize phenotypes under con-
sideration, each in a different colour. The bars indicate minimum and maximum
values. The figure is divided in 4 sections, each of which shows the results for
one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top left shows which colour
corresponds to which phenotype.
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Figure A.16: Mean root length lost at 80 days of the 18 barley phenotypes under
consideration, each in a different colour. The bars indicate minimum and maxi-
mum values. The figure is divided in 4 sections, each of which shows the results
for one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top left shows which colour
corresponds to which phenotype.
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Figure A.17: Mean root length lost at 40 days of the 18 bean phenotypes under
consideration, each in a different colour. The bars indicate minimum and maxi-
mum values. The figure is divided in 4 sections, each of which shows the results
for one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend at the top shows which colour corre-
sponds to which phenotype.
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Figure A.18: Mean root length lost at 40 days of the 18 maize phenotypes under
consideration, each in a different colour. The bars indicate minimum and maxi-
mum values. The figure is divided in 4 sections, each of which shows the results
for one of the 4 different soils we considered. For every soil, we show the results
for the three different types of root loss at 4 different intensities (which includes
the case without any root loss). The legend in the top left shows which colour
corresponds to which phenotype.
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Figure A.19: Barley shoot dry weight relative to the reference case without root
loss versus total root length lost after 80 days. Each point represents the mean
of 5 repetitions, the shape of the point indicates the type of root loss and the
colour of the point indicates the soil nutrient availability.
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Figure A.20: Bean shoot dry weight relative to the reference case without root
loss versus total root length lost after 40 days. Each point represents the mean
of 5 repetitions, the shape of the point indicates the type of root loss and the
colour of the point indicates the soil nutrient availability.

0 10000 20000 30000 40000 50000

Root length lost (cm)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e 

sh
oo

t d
ry

 w
ei

gh
t

No root loss
Lateral root loss
Axial root loss
General root loss
Low N, low P
Low N, high P
High N, low P
High N, high P

Figure A.21: Maize shoot dry weight relative to the reference case without root
loss versus total root length lost after 40 days. Each point represents the mean
of 5 repetitions, the shape of the point indicates the type of root loss and the
colour of the point indicates the soil nutrient availability.
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Figure A.22: Barley shoot dry weight relative to the reference case without root
loss versus the root length lost as fraction of total root length produced after
80 days. Each point represents the mean of 5 repetitions, the shape of the point
indicates the type of root loss and the colour of the point indicates the soil nutrient
availability.
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Figure A.23: Bean shoot dry weight relative to the reference case without root
loss versus the root length lost as fraction of total root length produced after
40 days. Each point represents the mean of 5 repetitions, the shape of the point
indicates the type of root loss and the colour of the point indicates the soil nutrient
availability.
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Figure A.24: Maize shoot dry weight relative to the reference case without root
loss versus the root length lost as fraction of total root length produced after
40 days. Each point represents the mean of 5 repetitions, the shape of the point
indicates the type of root loss and the colour of the point indicates the soil nutrient
availability.
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Figure A.25: The maximum root length lost, as fraction of total root length lost
produced at that time, that was observed during the 80 days of simulation for
barley, versus the time at which this maximum root loss fraction was observed.
Each point represents the mean of 5 repetitions, the shape of the point indicates
the type of root loss and the colour of the point indicates the soil nutrient avail-
ability.
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Figure A.26: The maximum root length lost, as fraction of total root length lost
produced at that time, that was observed during the 40 days of simulation for
bean, versus the time at which this maximum root loss fraction was observed.
Each point represents the mean of 5 repetitions, the shape of the point indicates
the type of root loss and the colour of the point indicates the soil nutrient avail-
ability.
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Figure A.27: The maximum root length lost, as fraction of total root length lost
produced at that time, that was observed during the 40 days of simulation for
maize, versus the time at which this maximum root loss fraction was observed.
Each point represents the mean of 5 repetitions, the shape of the point indicates
the type of root loss and the colour of the point indicates the soil nutrient avail-
ability.
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Appendix B

Tables

B.1 Drought

Symbol Variable Equation Unit

A Photosynthesis rate 4.1.4, 4.5.3 µmol
m2 s

Ac Carbon limited assimilation rate 4.1.5, 4.5.1 µmol
m2 s

Aj Light limited assimilation rate 4.1.6, 4.5.2 µmol
m2 s

AIR Infrared irradiation leaf absorption 4.6.15 W
m2 s

AS Solar irradiation leaf absorption 4.6.14 W
m2 s

Cm Mesophyll CO2 concentration 4.1.11, 4.5.11 µmol
mol

Cs Bundle sheath CO2 concentration 4.5.12 µmol
mol

E Leaf energy balance 4.6.25 W
m2

eIR Leaf infrared radiation emission 4.6.18 W
m2

gw Stomatal conductance 4.1.13 mol
m2 s

gs Bundle sheath conductance 4.6.12 mol
m2 s

Hc Conduction and convection heat loss 4.6.19 W
m2

Ht Transpiration heat loss 4.6.23 W
m2

Hvap Latent heat of vaporisation 4.6.24 J
mol

I2 Useful light absorbed by PS II 4.1.17 µmol
m2 s

Is Solar irradiation 4.7.1 W
m2

J Potential electron transport rate 4.1.16 µmol
m2 s

Jmax Maximum potential electron transport
rate

4.6.10 µmol
m2 s

Table B.1: Derived quantities
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Symbol Variable Equation Unit

Kair Air thermal conductivity 4.6.21 W
mK

KC CO2 Michaelis constant 4.6.3 µmol
mol

KO O2 Michaelis constant 4.6.4 µmol
mol

KP PEP Michaelis constant 4.6.7 µmol
mol

Om Mesophyll O2 concentration 4.1.12, 4.5.13 µmol
mol

Os Bundle sheath O2 concentration 4.5.14 µmol
mol

Rd Dark respiration 4.6.5 µmol
m2 s

Rm Mesophyll dark respiration 4.5.8 µmol
m2 s

Rs Bundle sheath dark respiration 4.5.9 µmol
m2 s

Sc/o Rubisco specificity 4.6.8 -

Sw Water stress factor 4.1.1 -

Vcmax Maximum rubisco carboxylation 4.6.6 µmol
m2 s

Vpmax Maximum PEP carboxylation rate 4.6.11 µmol
m2 s

TL Leaf temperature 4.6.25 K

Tsky Effective sky temperature 4.6.17 K

Tsurr Surroundings temperature 4.6.16 K

Γ CO2 compensation point with dark
respiration

4.1.18, 4.5.15 µmol
mol

Γ∗ CO2 compensation point without no dark
respiration

4.6.2 µmol
mol

Γs Bundle sheath compensation point 4.5.16 µmol
mol

δbl Leaf boundary layer thickness 4.6.20 m

ν Air kinematic viscosity 4.6.22 m2

s

Table B.2: Derived quantities (continued)
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Symbol Variable Unit

a Area per plant m2

CA Atmospheric CO2 concentration µmol
mol

dL Leaf thickness m

fPAR Photosynthetically active radiation fraction -

Jv Transpiration rate mol
m2 s

k Extinction coefficient -

LAI Leaf area index -

OA Atmospheric O2 concentration mmol
mol

P Atmospheric pressure Pa

t Time s

Ta Air temperature K

V PD Vapour pressure deficit kPa

V PDa Actual vapour pressure kPa

V PDs Saturated vapour pressure kPa

∆ Vapour pressure slope hPa
K

ϵLU Light use efficiency g
J

Ψc Collar water potential Pa

Table B.3: OpenSimRoot derived quantities and model inputs
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Symbol Variable V alue Unit Reference

aIR Infrared absorptance 0.96 - [141]

Dgs gs deactivation energy 264600 J
mol [216]

DJmax Jmax deactivation energy 220000 J
mol [201]

DVpmax Vpmax deactivation energy 214500 J
mol [216]

EΓ∗ Γ∗ activation energy 23400 J
mol [201]

Egs gs activation energy 116700 J
mol [216]

EJmax Jmax activation energy 37000 J
mol [201]

EKC
KC activation energy 35600 J

mol [216]

EKO
KO activation energy 15100 J

mol [216]

EKP
KP activation energy 68100 J

mol [216]

ERd
Rd activation energy 41850 J

mol [216]

ESc/o
Sc/o activation energy 27400 J

mol [216]

EVcmax Vcmax activation energy 53400 J
mol [216]

EVpmax Vpmax activation energy 37000 J
mol [216]

f Spectral light quality factor 0.15 - [201]

gw0 Residual conductance 0.017 mol
m2 s

[131]

gs25 Reference bundle sheath
conductance

0.00287 mol
m2 s

[216]

Jmax25 Ref maximum potential
electron transport rate

299.6 µmol
m2 s

[131]

KC25 Reference CO2 Michaelis
constant

485 µmol
mol [39]

KO25 Reference O2 Michaelis
constant

146 mmol
mol [39]

KP25 Reference PEP Michaelis
constant

40 µmol
mol [216]

m Ball-Berry-Leuning slope 4.53 - [131]

Table B.4: Constants (continued). Note that references are not provided for
constants related to physics.
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Symbol Variable V alue Unit Reference

R Universal gas constant 8.31446 m2 kg
s2 Kmol

-

Rd25 Reference dark respiration 1.95 µmol
m2 s

[216]

rm Mesophyll dark respiration
fraction

0.5 - [201]

Sc/o25 Reference rubisco specificity 2862 - [216]

SJmax Jmax entropy factor 710 J
Kmol [201]

Sgs gs entropy term 860 J
Kmol [216]

SVpmax Vpmax entropy term 663 J
Kmol [216]

V PDref Reference vapour pressure
deficit

10 kPa

Vcmax25 Reference maximum rubisco
carboxylation rate

49 µmol
m2 s

[216]

Vpmax25 Maximum PEP
carboxylation rate

119.2 µmol
m2 s

[216]

Vpr PEP regeneration rate 80 µmol
m2 s

[201]

Tref Reference temperature 298.15 K -

x Electron transport rate
partitioning factor

0.4 - [201]

α Absorptance 0.85 - [201]

β Conversion factor 2.1 µmol
J -

Γ∗
25 Reference CO2 compensation

point without dark
respiration

38.6 µmol
mol [201]

ϵA Carbon assimilation energy 4.79 · 105 J
mol [141]

θ Empirical curvature factor 0.7 - [201]

σ Stefan-Boltzmann constant 5.67 · 10−8 W
m2 K4 -

Table B.5: Constants. Note that references are not provided for constants related
to physics.
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B.2 Emulation

Phene Minimum Maximum References

Seminal root number 0 11 [27, 82, 112]

Nodal root number 1 50 [112]

Total axial root number 17.8 105.3 [29]

Brace root whorls 0 2 [112]

Primary root branching 0.7cm−1 160cm−1 [112, 88]

Seminal root branching 2.5cm−1 13cm−1 [219, 220]

Nodal root branching 0cm−1 41cm−1 [154]

Seminal angle from horizontal 22 90 [112]

Nodal angle from horizontal -5 90 [112, 193]

Brace angle from horizontal 0 90 [193]

Aerenchyma relative
crossectional area

0 37.8 [112]

Lateral root length 2.2cm 17.3cm [85]

Table B.6: Table with references
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Input Unit

shootDryWeight g

rootDryWeight g

”rootLength” cm

rootLength;majorAxes cm

rootLength;laterals cm

rootSurfaceArea cm2

leafArea cm2

plantRespiration g

rootCarbonCosts g

”D90” cm

nitrate plantNutrientUptake µmol

nitrate UptakeEfficiencyPlant µmol
cm2.day

nitrate rootNutrientUptake;majorAxes µmol

nitrate rootNutrientUptake;laterals µmol

phosphorus plantNutrientUptake µmol

phosphorus UptakeEfficiencyPlant µmol
cm2.day

phosphorus rootNutrientUptake;majorAxes µmol

phosphorus rootNutrientUptake;laterals µmol

potassium plantNutrientUptake µmol

potassium UptakeEfficiencyPlant µmol
cm2.day

potassium rootNutrientUptake;majorAxes µmol

potassium rootNutrientUptake;laterals µmol

nitrate nutrientStressFactor -

phosphorus nutrientStressFactor -

potassium nutrientStressFactor -

Table B.7: OpenSimRoot outputs at 20 days used to predict the shoot dry weight
at 42 days.
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Input Unit

shootDryWeight g

rootDryWeight g

”rootLength” cm

rootLength;majorAxes cm

rootLength;laterals cm

leafArea cm2

plantRespiration g

rootCarbonCosts g

nitrate UptakeEfficiencyPlant µmol
cm2.day

nitrate rootNutrientUptake;majorAxes µmol

nitrate rootNutrientUptake;laterals µmol

phosphorus plantNutrientUptake µmol

phosphorus rootNutrientUptake;laterals µmol

potassium plantNutrientUptake µmol

potassium UptakeEfficiencyPlant µmol
cm2.day

nitrate nutrientStressFactor -

potassium nutrientStressFactor -

Table B.8: BIC-optimised subset of OpenSimRoot outputs at 20 days used to
predict the shoot dry weight at 42 days.
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Term Wave 1 Wave 1.5 Wave 2 only Wave 2 all data

x1 3.7350 · 10−25 1.2913 · 10−74 0.029528 1.8975 · 10−100

x2 4.5452 · 10−13 7.1547 · 10−14 2.6702 · 10−12 9.3482 · 10−17

x3 1.2121 · 10−3 8.7050 · 10−6 − 2.3321 · 10−7

x4 0.32877 0.16531 0.60135 −
x5 0.48031 0.22635 − −
x8 − − 2.0087 · 10−9 2.9640 · 10−5

x9 − − 1.7317 · 10−3 2.6811 · 10−4

x10 5.2573 · 10−7 2.3779 · 10−33 − 1.0817 · 10−44

x12 − − 0.013537 −
x13 − − 5.2387 · 10−5 1.9257 · 10−3

x15 − − 1.9527 · 10−6 4.7558 · 10−6

x16 0.018049 0.084080 − −
x17 4.7496 · 10−12 1.4411 · 10−33 − 2.2315 · 10−36

x1x1 3.6433 · 10−6 6.7771 · 10−13 − 1.5710 · 10−17

x2x2 0.019609 1.1537 · 10−6 1.3983 · 10−12 1.4603 · 10−11

x3x3 1.5661 · 10−3 9.3582 · 10−5 − 2.4155 · 10−5

x4x4 6.1003 · 10−15 5.8763 · 10−28 3.2552 · 10−6 1.1494 · 10−44

x5x5 6.3773 · 10−3 3.1894 · 10−5 0.016446 1.0163 · 10−6

x8x8 − − 2.0267 · 10−4 1.4596 · 10−3

x10x10 1.0726 · 10−5 3.8922 · 10−16 8.7109 · 10−3 5.0624 · 10−25

x15x15 − − 3.5418 · 10−6 −
x17x17 5.6738 · 10−7 2.1391 · 10−22 − 6.8572 · 10−22

Table B.9: P values for linear and quadratic regression terms. Only terms selected
by optimising for the Bayesian information criterion are shown.
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Appendix C

Numerical Optimisations

C.1 Numerical optimisations

To calculate leave-one-out diagnostics, we take one datapoint out of the training

set and train a Gaussian process on this reduced training set. This involves in-

verting the covariance matrix. Since the covariance matrix corresponding to this

reduced training set differs from the original covariance matrix by just one row

and one column, we can use the fact that we already have inverted the original

covariance matrix to speed up calculations.

Let A be an n by n matrix, U an n by k matrix, C a k by k matrix and V a k

by n matrix. Then the Woodbury matrix identity is

(A− UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1. (C.1.1)

By setting

U =



0 1

a21 0

a31 0

...

an1 0


, (C.1.2)
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V =

1 0 0 . . . 0

0 a12 a13 a1n

 , (C.1.3)

C = −

1 0

0 1

 , (C.1.4)

we get

(A+ UCV )−1 =


A−



0 a12 . . . a1n

a21 0
...

...
. . .

an1 . . . 0





−1

(C.1.5)

=



a11 0 . . . 0

0 a22 a23
...

... a32
. . .

0 . . . ann



−1

(C.1.6)

=


1

a11
0

0 B−1

 , (C.1.7)

where B is equal to A without the first row and first column. So if we have

already calculated A−1, we can get the inverse of a reduced matrix by calculating

A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1, (C.1.8)

for U , C and V defined as above. Since C is a 2 by 2 matrix,
(
C−1 + V A−1U

)−1

is very easy to calculate. Note that if we want to remove columns and rows other

than the first, we first swap the rows and columns and swap them back after

calculating the inverse.
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To do the reverse, that is, add a single datapoint z⃗, assuming we already have

calculated the inverse of the correlation matrix A, we define

A′ =

A 0

0 cov(z⃗, z⃗)

 , (C.1.9)

U =



cov(x⃗1, z⃗) 0

cov(x⃗2, z⃗, 0) 0

...

cov(x⃗n, z⃗) 0

0 1


, (C.1.10)

V =

 0 0 . . . 0 1

cov(x⃗1, z⃗) cov(x⃗2, z⃗) cov(x⃗n, z⃗) 0

 , (C.1.11)

C =

1 0

0 1

 , (C.1.12)

so that

A′ + UCV =

A 0

0 cov(z⃗, z⃗)

+



0 . . . cov(x⃗1, z⃗)

...
. . .

...

0 cov(x⃗n, z⃗)

cov(x⃗1, z⃗) . . . cov(x⃗n, z⃗) 0


(C.1.13)
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=



a11 . . . a1n cov(x⃗1, z⃗)

...
. . .

...

an1 ann cov(x⃗n, z⃗)

cov(x⃗1, z⃗) . . . cov(x⃗n, z⃗) cov(z⃗, z⃗)


, (C.1.14)

which is the covariance matrix corresponding to our training set with a single

datapoint added to it.
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Appendix D

OpenSimRoot Guide

D.1 Foreword

This document is by no means complete and very much a work in progress. It

will, at some future time, include descriptions of all the core modules of OSR for

which templates are available. These descriptions will list the dependencies, if

any, the input parameters needed and the various options a module has. Based

on user needs and feedback, new sections will be added and existing ones will

be improved. Please contact the author at ernst.schafer@nottingham.ac.uk with

any requests or queries.

D.2 Introduction

It is obvious that a plant can increase its uptake of nutrients and water by growing

a more expansive root system. However, the costs associated with growing and

maintaining a root system mean that plants can not simply grow as many roots

as they would like. The size of the root system is constrained by, among other

things, the amount of available resources. This means that plants have to weigh

the costs of their root systems against the benefits they provide. OpenSimRoot

aims to model the three-dimensional structure of the root system, the water and

nutrient uptake by the roots, the water and nutrient flow in the soil and, perhaps

most importantly, the carbon costs associated with growing and maintaning a

root system and taking up the nutrients needed by the plant [156]. In this way,

OpenSimRoot is able to evaluate the fitness of different root architectures.
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For example, using OpenSimRoot, Postma et al. [154] found that the optimal

lateral root branching density depends on the availability of nitrogen and phos-

phorus. Inter-root competition for mobile resources such as nitrogen lead to

diminishing returns on investment in lateral roots. Since the amount of carbon

a plant can allocate is fixed by the shoot, higher lateral root branching density

implies that the laterals are shorter, thus decreasing the efficiency. In contrast,

for highly immobile nutrients such as phosphorus, there is far less competition

between roots so a higher lateral root density is the more efficient architecture.

Field trials show a median lateral branching density between these two extremes,

suggesting that plants are finding an optimum between them. This example high-

lights the power of simulation in not only explaning certain features seen in field

trials but also generating new questions for experimentalists.

D.3 The Structure of OpenSimRoot

OpenSimRoot is written in C++. It consists of different modules and allows the

user to choose which modules to include in the simulation (though the dependency

between modules imposes some restriction on the possible choices). This allows

the user to study only the aspects of interest without the computational effort of

running every module. The basis for OpenSimRoot is what is called the extensible

tree structure. This captures not only the topology of the root system, but also

provides a way to link properties to roots. Before we explain this in more detail,

we will first explain in broad strokes how the engine of OpenSimRoot works.

OpenSimRoot does not currently have a graphical user interface and must be

run through the command line (or terminal if you are a linux or mac user).

D.3.1 The Engine

Let us first fix some definitions:

• Minimodel. A minimodel is, simply put, a state variable, which often

depends on space and/or time. Minimodels derive from SimulaBase. The

value of a minimodel can be requested through the application programming

interface (API), which is described in more detail in section D.7.1.

• Plugin. A plugin is a class that computes the values of a minimodel.
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Plugins derive from DerivativeBase. Plugins obtain information through

the API and use this to compute new values.

• Module. We will refer a set of classes that, together, simulate a certain

aspect of reality, as a module. This will involve at least one plugin and one

minimodel.

As mentioned above, the information of the model is contained in the minimodels

while the plugins do the calculations necessary for updating them. Each plugin

is known by an unique name that the user refers to in the XML input files (see

section D.5), to specify what plugin (function) OpenSimRoot should use to cal-

culate the value of a minimodel. The minimodels (derive from SimulaBase)

can be thought of as the packaging, they determine what sort of information is

contained in them and what actions can be taken, while the plugins (derive from

DerivativeBase) are the contents, they determine how the information inside a

minimodel is calculated. This allows the user to run a simulation using different

plugins for the same state variable and compare results. The values of minimodels

are only calculated when requested through the API. The simulation is advanced

forward in time by virtue of the export modules which start requesting the data

needed for output when they are initiated.

All the minimodels derive from a class of the form SimulaX and these derive

from SimulaBase (except SimulaBase itself of course). The SimulaBase class

implements all general methods used to send and request information, making

up the API. The derived classes each implement some methods and/or members

needed when using that object type. The inheritance of the SimulaX classes is

summarized in figure 1.

For a brief explanation of each of these classes, see section D.5. All the minimodels

are linked together in what is called the extensible tree structure (ETS). This is

a structure that both reflects the physical structure of the root system as well

as the connections between different properties. In the most basic terms, it is

a set of objects, arranged in a hierarchy with pointers to certain other objects.

Each object has one parent and might have one or more children. Objects can

be added and removed dynamically as needed. The XML input files also follow

this structure.
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Database

SimulaGrid SimulaBase SimulaStochastic

SimulaConstant SimulaDynamic SimulaLink

SimulaDerivative SimulaTimeDriven SimulaTable

SimulaExternal SimulaPoint SimulaVariable

Figure D.1: Inheritance of the SimulaX classes. The arrow between Simula-
Base andDatabase signifies thatDatabase is privately owned by SimulaBase.
The other arrows indicate inheritance of classes.

D.3.2 The Modules

In this section we will briefly explain the workings of some important modules in

OpenSimRoot.

In OpenSimRoot each root is simulated as a number of vertices connected by

edges. One of these vertices has time-dependent coordinates, it is called the

growthpoint. The speed of the growthpoint is defined by the base growth rate

specified in the XML input file and some correction factors that might relate to

various stresses and conditions. The direction in which the growth point moves is

determined according to some rules relating to gravitropism, the emergence angle

of roots and a stochastic contribution. The other vertices have static locations

and are placed in the path of the growthpoint as it moves. The root length is

the distance the growthpoint travelled, not the sum of the distances between the

vertices.

New roots are created according to branching rules which specify the distance

or time between subsequent branchings. Branches emerge from what are called

xylem poles, the number of xylem poles determines the radial angles at which

new branches can emerge. The XML input file specifies both the axial branching

angle as well as the types of roots that can branch from a certain root class. Each

root class has their own parameters, such as growth rates, branching rates, etc.
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OpenSimRoot contains a simple, abstract shoot model in which the shoot is rep-

resented by a number of variables. A simple photosynthesis model determines

the rate of carbon production based on the leaf area and the carbon fixation rate.

The carbon requirements are based on the growth and respiration rates of the

roots, costs associated to root exudates and nitrate uptake and the requirements

of the shoot. If the amount of produced carbon is greater than the amount re-

quired, leftover carbon is stored in a labile pool for later use. If the amount of

produced carbon is smaller than the amount required, root growth rates decline.

The hydrology module in OpenSimRoot consists of three models that are linked

together. One is a simplified implementation of the SWMS model in C++ which

simulates water transport through the soil by numerically solving the Richards’

equation [179]. The Richards’ equation is:

∂θ

∂t
= ∇ [K(θ)∇(h(θ) + z)]− S

Here θ is the volumetric water content, t is time, K(θ) is the hydraulic conduc-

tivity tensor, h(θ) is the matrix head, z is the elevation above some reference

point and S is a sink term that represents the water uptake by roots. Evapotran-

spiration, which is a term that includes the evaporation of water from the soil

and transpiration by the plants, is simulated by the Penman-Monteith equation

[3, 134, 133, 147]. The transport of water through the xylem is simulated by the

hydraulic network model [4, 45].

The transport of nutrients in the soil is simulated with convection-diffusion equa-

tions for which there are currently two implementations in OpenSimRoot. One

is the one-dimensional Barber-Cushman model that is used to simulate depletion

zones around root segments [89]. The second is an implementation of the solute

model in SWMS3D that couples to the water transport model [179]. The uptake

of nutrients by the root system is modelled with Michaelis-Menten kinetics. The

nutrient uptake rate of a root segment, In, is equal to

In =


Imax(C−Cmin)
Km+C−Cmin

if C ≥ Cmin

0 if C < Cmin
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Here Imax is the maximal uptake rate of the root segment, C is the nutrient

concentration at the root surface, Cmin is the minimal nutrient concentration at

which the root segment can take up nutrients and Km is the concentration at

which I = Imax
2 . If the amount of nutrients taken up is smaller than what is

optimal, the plant undergoes a stress response. This can impact growth rates,

photosynthesis rates and respiration rates. Nutrients and water are, in the current

version, distributed instantly and uniformly around the plant, so every organ

experiences the same stress. Mineralisation is modelled by the Yang-Janssen

model [215].

D.4 Downloading and Running OpenSimRoot

We will describe how to download, install and run OpenSimRoot. This section

is aimed at developers, there will be a standalone executable at some point in

the future. The terminal commands in this section were run on a Linux machine

but should be the same on Mac and Windows systems, unless explicitly stated

otherwise. Example input files can be found in the OSR online repository. In the

next section we will describe the structure input files should have. First of all, if

you do not know what Git is, it’s advisable to check out a short introduction here.

We will make a local copy of the OpenSimRoot repository (this is called cloning)

and build it (we create an executable that we can run). First create an account

on gitlab.com and make sure you have access to the OpenSimRoot repository.

Then check if Git is installed. Do this by entering: git --version. Your out-

put should be of the form: git version 1.8.3.1. If Git is not installed, see:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Now we will add the user name and email. We do this by entering the commands:

1 g i t c on f i g −−g l oba l user . name USERNAME

2 g i t c on f i g −−g l oba l user . emai l EMAIL ADDRESS

You can check if they were entered correctly by entering:

git config --global --list. Now copy the HTTPS url of the online repos-

itory from the OSR Gitlab page. It can be found on the main page of the

repository, there is a text box near the top of the page with a drop-down menu
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beside it which is set to SSH by default. The SSH address is

git@gitlab.com:rootmodels/OpenSimRoot.git at the time of writing. Change

SSH to HTTPS and copy the link, which at the time of writing is

https://username@gitlab.com/rootmodels/OpenSimRoot.git. cd to the di-

rectory that you want your local repository to end up in, home/git for example,

and enter git clone followed by the HTTPS url. It will probably look like:

1 g i t c l one https : // username@gitlab . com/ rootmodels /OpenSimRoot . g i t

2 remote : Counting ob j e c t s : 1345 , done .

3 remote : Compressing ob j e c t s : 100% (418/418) , done .

4 remote : Total 1345 ( de l t a 863) , reused 1328 ( de l t a 855)

5 Rece iv ing ob j e c t s : 100% (1345/1345) , 2 .00 MiB | 2 .54 MiB/s , done

.

6 Reso lv ing d e l t a s : 100% (863/863) , done .

7 Checking out f i l e s : 100% (310/310) , done .

Now there should be a new directory called OpenSimRoot with all the files in

it. Next we will set up our remote repository. We do this by changing direc-

tory to the OpenSimRoot directory we just created and entering the command:

git remote add origin git@gitlab.com:rootmodels/OpenSimRoot.git

This tells git to add a remote, with the name origin and with as source the

SSH address of the OpenSimRoot repository. You can check the remotes you

added with their names with: git remote -v. Now whenever we want to get

the latest version we make sure we are in the OpenSimRoot directory and enter:

git pull origin. This tells git to fetch and then merge. The fetch com-

mand copies the latest changes from the repository and merge then merges these

changes with the local copy of the repository. In order to avoid conflicts it is a

good idea to pull before any local changes are made.

For more on remotes, see this webpage. For the difference between fetch and pull

see this page.

1 [ pmxeds@kazbek OpenSimRoot ] $ g i t remote add o r i g i n g i t@g i t l ab .

com : rootmodels /OpenSimRoot . g i t

2 [ pmxeds@kazbek OpenSimRoot ] $ g i t f e t ch o r i g i n

3 remote : Counting ob j e c t s : 3 , done .

4 remote : Compressing ob j e c t s : 100% (3/3) , done .
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5 remote : Total 3 ( de l t a 2) , reused 0 ( de l t a 0)

6 Unpacking ob j e c t s : 100% (3/3) , done .

7 From g i t l a b . com : rootmodels /OpenSimRoot

8 ∗ [ new branch ] master −> o r i g i n /master

9 ∗ [ new branch ] osx−r e d i r e c t −> o r i g i n /osx−r e d i r e c t

When you tell git to pull you might get the following error message:

1 [ pmxeds@kazbek OpenSimRoot ] $ g i t pu l l o r i g i n

2 You asked to pu l l from the remote ’ o r i g i n ’ , but did not s p e c i f y

3 a branch . Because t h i s i s not the d e f au l t con f i gu r ed remote

4 f o r your cur rent branch , you must s p e c i f y a branch on the

command l i n e .

This means you have not specified a default branch for your current branch (the

default branch is master). You can do this by entering:

git branch --set-upstream-to origin/master. This will set the master branch

of the remote repository (assuming you called it origin) as the default branch for

your current branch (which should be your master branch). Now you can use

git push and git pull without specifying the branch. To see what has been

changed, use: git diff master@{1} master (substituting a higher integer for

1 allows you to look further back in time). Now you should get:

1 [ pmxeds@kazbek OpenSimRoot ] $ g i t pu l l o r i g i n

2 Already up−to−date .

We will build OpenSimRoot with gcc, which is a compiler. To see if gcc is

installed, enter the commands stated below and see if the output is similar.

1 [ pmxeds@kazbek ˜ ] $ where i s gcc

2 gcc : / usr / bin / gcc / usr / l i b / gcc / usr / l i b e x e c / gcc / usr / share /man/

man1/ gcc . 1 . gz

3 [ pmxeds@kazbek ˜ ] $ which gcc

4 / usr / bin / gcc

5 [ pmxeds@kazbek ˜ ] $ gcc −−ve r s i on

6 gcc (GCC) 4 . 8 . 5 20150623 (Red Hat 4.8 .5 −4)

7 Copyright (C) 2015 Free Software Foundation , Inc .

8 This i s f r e e so f tware ; s e e the source f o r copying cond i t i on s .

There i s NO

9 warranty ; not even f o r MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

232



For more on gcc, see this webpage. Now change directory to OpenSimRoot/Open-

SimRoot/StaticBuild by using cd

1 [ pmxeds@kazbek ˜ ] $ cd OpenSimRoot

2 [ pmxeds@kazbek OpenSimRoot ] $ l s

3 bu i ld . sh executeBeforeCommitToTest . sh pub l i c

runTestsModules . sh

4 cleanup . sh LICENSE README.md

runTests . sh

5 OpenSimRoot runTestsEngine . sh warnings . txt

Now enter the command bash build.sh (Linux and Mac) or cd to

OpenSimRoot/StaticBuild and use make all (Windows). Gcc will now build

opensimroot. After a while you will see:

Finished building target: OpenSimRoot.

Execute: OpenSimRoot/StaticBuild/OpenSimRoot -h to check if everything is

correct. You will get the output:

1 [ pmxeds@kazbek S ta t i cBu i l d ] $ . / OpenSimRoot −h

2 Usage : OpenSimRoot [OPTIONS] [ FILE ]

3 OpenSimRoot s imu la t e s a model de f i ned in FILE

4

5 −f , −− f i l e s p e c i f y s imu la t i on f i l e , d e f au l t

l a s t argument

6 −h , −−help or /? p r in t t h i s he lp message

7 −v be verbose with warnings

8 −q be qu i t e with warnings

9 −l , −− l i s t p r i n t l i s t o f r e g i s t e r e d func t i on s

10 −V, −−v e r i f y Experimental f unc t i on f o r v e r i f y i n g

input f i l e s

11

12 Examples :

13 OpenSimRoot −h Pr in t s t h i s message

14 OpenSimRoot runModel . xml Runs the OpenSimRoot model

15

16 Support at j . postma@fz−j u e l i c h . de

17 Licensed to you under the GPLv3 l i c e n s e .

18

19 There are no warnings .
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20 Simulat ion took ( hours : minutes : seconds ) : 0 : 0 : 0

Now test the engine and modules with the command bash runTests.sh. You

should get the following output:

1 [ pmxeds@kazbek OpenSimRoot ] $ bash runTests . sh

2 Test ing engine

3 us ing . . / . . / S ta t i cBu i l d /OpenSimRoot as exe

4 Test SimulaConstant . xml passed

5 Test SimulaTable . xml passed

6 Test SimulaGrid . xml passed

7 Test SimulaVar iable . xml passed

8 Test SimulaPoint . xml passed

9 Test S imulaStochas t i c . xml passed

10 Done running t e s t s , comparing r e s u l t s

11 Done

12 f i n i s h e d t e s t i n g eng ine with e r r o r s t a tu s 0

13 Test ing modules

14 Test ing OneSimpleStraightRoot . xml

15 us ing . . / . . / S ta t i cBu i l d /OpenSimRoot as exe

16 Test OneSimpleStraightRoot . xml passed

17 Test Part ia l lyPrede f inedBranchedRoot . xml passed

18 Test Barber−Cushman . xml passed

19 Test SimpleCropModel . xml passed

20 Done running t e s t i n g modules , comparing r e s u l t s

21 Done

22 f i n i s h e d t e s t i n g eng ine with e r r o r s t a tu s 0

23 e x i t i n g with e r r o r s t a tu s 0

For a more comprehensive guide on some of the steps involved see this webpage.

We will describe how to run a simulation with OpenSimRoot. First it is impor-

tant to know how OpenSimRoot operates. OpenSimRoot takes as input an XML

file. This file contains the parameters for the simulation you want to run. This

includes parameters like: The duration of the simulation, the environmental pa-

rameters, the initial root structure, the properties of the different types of roots

etc. OpenSimRoot uses this data to run the simulation and then gives the output

that the user has requested. This output can consist of aggregated variables, like

the total root length, the amount of water/nitrogen depleted from the soil but
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OpenSimRoot can also put out files that, for example, contain the entire root

structure at each day. This can be viewed by ParaView. As a sidenote, it is pos-

sible to specify an entire root structure (with the appropriate time parameters)

which OpenSimRoot will then grow. This can be used to compare the simulated

results to a real result.

First we choose an output directory. It is strongly advised you make separate di-

rectories for OpenSimRoot, the XML files you will use as input and your output.

While this requires you to enter slightly longer file paths in the terminal, your

files will be much more organized. In the directory

OpenSimRoot/OpenSimRoot/InputFiles there are some example XML files which

we will try to run.

Use cd to move to the output directory, which we assume is

home/git/OpenSimRootOutputs. Since our OpenSimRoot directory is

home/git/OpenSimRoot, this would be:

1 cd . . / OpenSimRootOutputs

We make a folder where we will output our test results with mkdir Test and then

cd Test. Now we will tell OpenSimRoot to open the file runStraightRoot.xml by

executing (don’t copy the line break!):

1 . . / . . / OpenSimRoot/OpenSimRoot/ S ta t i cBu i l d /OpenSimRoot −f

2 . . / . . / OpenSimRoot/OpenSimRoot/ InputF i l e s / runStra ightRoot . xml

The first part is the path to the OpenSimRoot executable. -f tells OpenSimRoot

that we want to open a file. The last part is the path to the file we want to take as

input. After the simulation is complete, the Test directory contains (depending

on what was specified) files called: tabled output.tab, warnings.txt, some .vtu files

and some .pvd files. The tabled output.tab contains the values of variables like

the nitrogen depletion, the dry weight of the plant and the total root length on

each day (again depending on what output was specified). warnings.txt has an

obvious meaning. The .vtu and .pvd files contain spatial information on the soil

and root system and can be visualized with ParaView.

To do this, open ParaView (paraview) and open VisualizationRoots.pvd

(file→open), then click Apply in the Properties window on the left. You will
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probably not see anything because at time t=0 there is no root structure yet!

Click the Play button in the top bar and you will see the root structure as it is

growing. By default, the root structure is uniformly coloured so this only shows

us the topology of the root system. To see more relevant information, in the

properties window on the left, under the header Coloring, select something else

instead of Solid Color to see the property you selected coloured (in the example

below I chose rootClassID). By default the Color Space option (in the Color Map

Editor on the right) is set to Diverging, some other colour map will probably

suit you better. You can choose a different colour mapping and alter the sen-

sitivity by adjusting the circles and curve in the Mapping Data section on the

right. Double click on a circle in the bar at the bottom to choose a different colour.

It is also possible to see the depletion of nutrients in the soil, assuming OpenSim-

Root was told to output this, by also opening the fem.pvd file. See Figure D.2

for a sample visualization where the different colours indicate different types of

roots (primary, seminal, lateral).

Figure D.2: A sample root system. The different colours indicate different root
classes. The primary root is red, the seminal roots are purple, the hypocotyl is
green, the adventitious roots are dark purple and the laterals are blue.
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D.5 XML Input Files

Since OpenSimRoot aims to simulate many different aspects of root systems,

a lot of parameters have to be specified. This means quite extensive input is

needed. In this section we will describe the structure of input files and some of

the parameters needed to run a simulation. If knowledge of the structure of the

XML files is not needed, skip to section D.6 for instruction on how to create basic

input files with the graphical user interface (GUI).

As mentioned before, OpenSimRoot does not have a graphical user interface and

must be run through the command line (or terminal if you’re a linux or mac

user). When running OpenSimRoot an xml file with all the input parameters

must be specified. For those unfamiliar with xml, it is a markup language similar

to HTML. It can be used to store and describe data. In an xml file, information

is organized in nested tags, think of them as containers that can store data or

other tags. This leads to a hierarchy of tags and data which puts all minimodels

in context. For example, each root class will have a tag with subtags containing

the different properties of each root class.

Metadata can also be associated to each tag. In OpenSimRoot, the meta-

data should always at least include the name. Tags are contained in brackets:

<exampleTag>. They are closed by either adding a / in front of the closing

bracket or by repeating the tag with a / after the opening bracket. Like this:

• <exampleTag/>

• <exampleTag> nested data </exampleTag>

The outermost tag should be SimulationModel. The tags in the XML can be of

the following types:

• SimulaIncludeFile. Use this tag to include another XML file. This is

useful for keeping your input files (relatively) short and readable. The

included file should have <SimulationModelIncludeFile> as outer tag.

• SimulaDirective. Use this to add subtags to an already existing tag. If,

for example, one wants to add a property to the primary root in a file
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different from the one that the primary root is defined in, one would use

the tag:

1 <S imulaDi rec t ive path=”rootTypeParameters /min/primaryRoot”>

2 <SimulaBase name = ”newProperty”\>

3 <\SimulaDirect ive>

Here min is the plant type.

• SimulaBase. These are tags that contain other tags, such as primaryRoot,

branchList or simulationControls.

• SimulaConstant. This is used for any kind of fixed parameter in the

simulation. Examples are: The total time the simulation should run, the

density of roots or the optimal nutrient content of the roots.

• SimulaStochastic. This is used for any stochastic parameter. In the

current version, one can choose from the following distributions: Uniform

(both integers and real numbers), normal, lognormal and Weibull.

• SimulaTable. This tag is used for parameters that change over time, such

as the growth rate of the roots or the precipitation.

• SimulaVariable. Used for variables changing over time calculated using

numerical integration. Examples are the actual growth rate of the roots

or the water uptake rate. A plugin and an integration function need to be

specified.

• SimulaDerivative. This tag is used for a minimodel coupled to a plugin,

which needs to be specified.

• SimulaExternal. This tag is used for minimodels that are determined by

external models, such as the water model. This external model needs to be

specified.

• SimulaLink. This tag is used to link to other minimodels.

• SimulaPoint. This tag is used for points moving through space, i.e. the

growthpoints.

To give a feeling for the structure of an xml input file, here is a minimal example

xml file

238



1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” standa lone=”no”?>

2 <?xml−s t y l e s h e e t type=” text / x s l ” h r e f=”xml/ t reev i ew . x s l ”?>

3 <SimulationModel name=”minTestModel” date=”xxx” >

4 <S imu la Inc ludeF i l e f i leName=”minTestPlant . xml”/>

5 <S imu la Inc ludeF i l e f i leName=” s imulat ionContro lParameters . xml

”/>

6 <S imu la Inc ludeF i l e f i leName=” templates /plantTemplateMinModel

. xml”/>

7 <S imu la Inc ludeF i l e f i leName=”plantParameters /min . xml”/>

8 </SimulationModel>

As you can see, other files are referenced here so that it is easy to enable or

disable modules. The minTestPlant.xml file looks like:

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8” standa lone=”no”?>

2 <Simulat ionMode l Inc ludeFi l e>

3 <SimulaBase name=”minTestPlant” objectGenerator=” s e ed l i n g ”>

4 <SimulaConstant name=”plantType” type=” s t r i n g ”>

5 min

6 </SimulaConstant>

7 <SimulaConstant name=”plantingTime” un i t=”day” type=”

Time”>

8 0

9 </SimulaConstant>

10 <SimulaConstant name=” p l an tPos i t i on ” type=”Coordinate ”>

11 0 −2 0

12 </SimulaConstant>

13 </SimulaBase>

14 </ S imulat ionMode l Inc ludeFi l e>

The other files referenced have similar structure. Note that this example is the

absolute minimum that OpenSimRoot needs to run. If one wants to simulate

geometrical aspects of the roots, the dry weight, water, nutrients or respiration

one would need to add several XML files for each of these. To make OpenSim-

Root more accessible for new users, sample XML files have been created. These

contain the minimum number of parameters and tags needed to run certain mod-

ules. This has been done for the geometry, dry weight, water, nitrate, phosphorus

and carbon modules. See the directory OpenSimRoot/OpenSimRoot/Inputfiles.

Understanding the structure of these XML files is vital to undestanding the inner
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workings of OpenSimRoot and required knowledge for anyone who wishes to add

new functionality. As seen, the outermost tag is SimulationModel. Within these

we have SimulaBase tags such as minTestPlant, plantTemplate, shootTemplate,

dataPointTemplate and rootTypeParameters. The minTestPlant SimulaBase

tells OpenSimRoot to construct a seedling of type min at time 0 and position

(0,-2,0). If more plants have to be simulated, one would add other SimulaBase

tags with as objectGenerator seedling and specify the type, planting time and

planting position of these other plants.

The ”simulationControlParameters.xml” file contains the overall settings of the

simulation. Examples of these are the total number of days that have to be sim-

ulated, or the values that OpenSimRoot should provide as output.

The plantTemplateMinModel.xml file contains the containers that OpenSimRoot

will use. An example of this is the SimulaBase dataPoints where simroot will

store the location of the root segments. Many of these tags are empty to start

with, OpenSimRoot only requires them to exist so it can construct the object

tree. Another illustration of this is the SimulaBase branches where OpenSim-

Root will insert new lateral roots.

Finally, the plantParameters/min.xml file contains the numerical values of the

parameters OpenSimRoot needs to run. In this minimal example, some of these

parameters are the growth rates of the primary root and hypocotyl at different

times and the gravitropism of the primary root. Naturally, when more aspects

are simulated, more parameters are needed such as the distribution of nutrients

in the soil, the precipitation, the transpiration rates of the plant, the leaf area etc.

It is important to mention here that generally, there is some stochasticity in

certain aspects of the simulation like the branching and the growth direction of

the roots. If one wants to make simulations reproducible or see the effect of a

small change in the code, one has to define a random seed. This can be done

using the tag

<SimulaConstant name="randomNumberGeneratorSeed" type="int"> 1234

</SimulaConstant>
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which should be under the SimulaBase tag SimulationControls.

D.6 XML Generating GUI

A graphical user interface (GUI) was created that can be used to generate XML

input files for OpenSimRoot. It can be downloaded from [repository]. It requires

Python 3 and the TkInter and xml.etree packages, as well as some standard

python packages. It is platform-independent and has a minimal, yet functional

interface, see figure D.3. First select the desired templates to be included in the

template selection section on the left. The GUI will automatically take depen-

dencies between templates into account. After the right templates are selected,

set the root classes. The root classes ”primaryRoot” and ”hypocotyl” are in-

cluded by default. New root classes can be added by selecting the parent root

class, typing the name of the new root class into the box below the root class

selection box and clicking the ”Add” button. Root classes are identified by their

name, so to add a root class as a lateral to two different parent root classes,

simply repeat this procedure for both parent roots. To delete a root class and

all subroots from the tree, select it and press the ”Delete” button. Once all the

root classes are selected, the parameters can be set. Each root class has their

own set of parameters, including branching parameters for each subtending root

class. To set the parameters of a root class, select it in the root class selection

box on the bottom left and enter them in the parameter window on the right.

The general simulation settings and plant-specific parameters can be accessed by

selecting ”Origin” in the root class selection box. Once all parameters are set,

click the ”Save to XML”-button to export the simulation settings to an XML file.

The GUI works by loading the information needed from template descriptions.

Every template description contains the XML snippets corresponding to that

template. XML tags that contain parameters that the user might wish to alter

have extra tags and information added to them that allow the GUI to recognise

them. These extra tags are used to show or hide certain options depending on

the state of tick boxes, display everything in the right order or add headers for

readability. This structure allows developers that write new modules to add them

to the GUI without having to write any code. Some functionality is still missing
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Figure D.3: The XML generation GUI as it looks on Linux operating systems.

at this time but planned to be added in the near future. This includes:

• The ability to load existing xml files into the GUI.

• The ability to copy parameters between root classes.

• The ability to process optional and alternate parameters and entries.

D.7 Writing new modules for OpenSimRoot

Writing a new module for OpenSimRoot is relatively easy, as in principle no

other modules need to be changed, provided one knows C++. Being comfortable

with using pointers is especially important. Each module consists of one or more

minimodels and associated plugins, each of which has to have certain methods

and needs to be registered into the database in a specific way. The minimal

template for a new plugin is as follows:

1 #inc lude ”NewPlugin . hpp”

2 std : : s t r i n g NewPlugin : : getName ( ) const {

3 re turn ”NewPlugin” ;

4 }

5 NewPlugin : : NewPlugin ( SimulaDynamic∗ pSD) :

6 Der ivat iveBase (pSD) {

7 }

8 void NewPlugin : : c a l c u l a t e ( const Time &t , double &d) {

9 }

10 Der ivat iveBase ∗ newInstant iat ionNewPlugin ( SimulaDynamic∗ const

pSD) {
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11 re turn new NewPlugin (pSD) ;

12 }

13 c l a s s AutoReg i s t e rRootLoss Ins tant ia t ionFunct ions {

14 pub l i c :

15 AutoReg i s t e rRootLoss Ins tant ia t ionFunct ions ( ) {

16 // r e g i s t e r the maker with the f a c t o r y

17 BaseClassesMap : : g e tDer iva t i v eBaseC la s s e s ( ) [ ”newPlugin” ] =

newInstant iat ionNewPlugin ;

18 }

19 ;

20 } ;

21 s t a t i c AutoReg i s t e rRootLoss Ins tant ia t ionFunct ions p5236245 ;

The header corresponding to this should look like:

1 #i f n d e f NEWPLUGIN HPP

2 #de f i n e NEWPLUGIN HPP

3 #inc lude ” . . / . . / eng ine /BaseClasses . hpp”

4

5 c l a s s NewPlugin : pub l i c Der ivat iveBase {

6 pub l i c :

7 NewPlugin ( SimulaDynamic∗ pSD) ;

8 std : : s t r i n g getName ( ) const ;

9 protec ted :

10 void c a l c u l a t e ( const Time &t , double &var ) ;

11 } ;

12 #end i f

Each plugin should have a constructor with as argument a pointer to a Sim-

ulaDynamic, pSD. This is used as a starting point for navigating around the

extensible tree structure. It should also have the methods getName and cal-

culate. The getName method simply returns the name of the plugin. This

is used to identify the right classes and to navigate the extensible tree struc-

ture. The calculate method will calculate and return the value of the associated

minimodel. In the simulationControlParameters.xml file (or any other file that

contains the relevant parameters) one can specify how often values are written to

the output. The minimodels that record global variables will write these to the

tabled output.dat file as specified.
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D.7.1 The API

Note: When writing a module, one invariably needs to obtain values from other

modules and thus knowing how to navigate the extensible tree structure is es-

sential. We will now explain the most common methods used. Assume that all

these methods are called from a SimulaBase-object called current.

• SimulaBase* getParent()

This method returns a SimulaBase*, a pointer to the SimulaBase that is

the parent of “current”. The method is overloaded and can take a positive

integer as input. This will prompt the method to go up this number of

steps, so choosing 2 as input will prompt it to return the ‘grandparent’

instead of the parent, etc.

• SimulaBase* getChild(const std::string& childName)

This method returns a SimulaBase* pointing to the child of “current”

which is called “childName”. Of course, if “current” does not have a child

with that name, it will lead to an error message. This is why the following

method exists.

• SimulaBase* existingChild(const std::string& childName)

This method works similarly to the above one, except that if no child with

the given name exists, it returns a null pointer. If one wants to get a value

from an optional module, on the condition that it is being used, this method

is used instead of the previous one.

• SimulaBase* getSibling(const std::string& siblingName)

This method is equivalent to

getParent()->getChild(const std::string& siblingName)

but obviously preferable. The method

SimulaBase* existingSibling(const std::string& siblingName)

works just like one expects.
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• SimulaBase* getNextSibling()

This method returns a pointer to the next sibling in the lexicographical

ordering. This is useful for iterating over all the datapoints of a root in

order, as they are created in lexicographical order.

• SimulaBase* getPreviousSibling()

This method returns a pointer to the previous sibling in the alphabetical

ordering.

• SimulaBase* getFirstChild()

This method returns a pointer to the first child of “current” in the alpha-

betical ordering. Useful for the start of an iteration over all children.

• SimulaBase* getLastChild()

This method returns the last child in the alphabetical ordering.

• void getAllChildren(SimulaBase::List& childrenList)

A SimulaBase::List object is a vector of SimulaBase* objects, so a

vector of pointers. This method copies the list of all children of “current”

to childrenList. This is useful when iteration over elements is needed.

• std::string getName()

This method returns the name of the SimulaBase object from which it’s

called, in this case that would be “current”.

• std::string getPath()

This method returns a string that describes the path from the origin to

“current”. Can greatly improve the usefulness of error messages. For

example, the path to the first datapoint of the primary root could be:

origin/examplePlant/plantPosition/primaryRoot/

dataPoints/dataPoint00000

• SimulaBase* getPath(const std::string& path)

This method returns a pointer to the SimulaBase object specified by “path”.

If unsure if this object exists, one can use

SimulaBase* existingPath(const std::string& path)

245



To navigate the extensible tree structure (ETS), one obviously has to know its

topology. To get an overview of the structure of the ETS, turn on themodelDump-

option. This will write the ETS at the specified times to an XML file. It can be

viewed in any internet browser. One might have to delete the second line, which

is shown below, on some systems.

<?xml-stylesheet type="text/xsl" href="XML/outlineview.xsl" ?>

It is advisable to not do a model dump for simulations that have run for more

than a couple of days, the output file might turn out to be several hundreds of

MB in size.
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