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Abstract 

Poly(A) tails affect multiple aspects of gene regulation: they help identify mRNAs for 

nuclear export, enhance translation efficiency, and are essential to regulating mRNA 

degradation rate. A poly(A) tail of 200-250 residues is thought to be uniformly added 

to newly synthesised mRNA and later gradually removed in the cytoplasm, allowing 

degradation of the mRNA itself. 

Previous work in the lab showed that poly(A) tail addition is not uniform; soon after 

serum induction, transiently expressed mRNAs are exported with long poly(A) tails, 

but towards the end of the transcription pulse the tails of new transcripts are much 

shorter. In contrast, housekeeping mRNAs consistently receive only 30-70 

adenosines both before and throughout the serum response and do not appear to 

be gradually deadenylated. 

Given these controversial findings, the work presented here began by assessing the 

suitability of the PCR-based PAT assay for detecting differences in poly(A) tail length. 

This was achieved by comparing poly(A) length measurements obtained using the 

PAT assay with those using RNase H northern blots, which detected RNA directly. 

PAT assays of chromatin-associated, nucleoplasmic and cytoplasmic fractions then 

revealed that in NIH 3T3 cells, the poly(A) tail lengths of most mRNAs tested were 

determined before release from the chromatin. For the remainder of mRNAs, 

poly(A) tail lengths were determined in the nucleoplasm. Genome-wide analysis of 

poly(A) tails using adapted RNA-Seq (PQ-Seq) showed that in NIH 3T3 cells, nuclear 

regulation of polyadenylation was widespread and was not limited to the mRNAs 

previously selected for PAT. Short poly(A) tails were associated with reduced 

stability of transiently expressed transcripts, and it logically follows that nascent 

poly(A) regulation resulting in production of short-tailed transcripts at the end of the 

response may enhance the precision with which gene expression is controlled. 

Specifically, production of unstable transcripts at the end of the serum response 

would sharpen the peak in mature mRNA levels, limiting the time during which 

translation can occur. 

Knockdown of the mRNA encoding the CCR4-NOT deadenylase subunit, CNOT1, 

increased chromatin and/or nucleoplasmic poly(A) tail size for all mRNAs tested, 

indicating it was involved in nuclear poly(A) tail regulation. Furthermore, the 

magnitudes of these changes were gene-specific. Preliminary data suggested that 

CCR4-NOT-dependent initial poly(A) regulation may also occur in human cells. As 

well as increasing initial poly(A) length (and therefore presumably enhancing 

transcript stability), Cnot1 knockdown caused decreases in pre-mRNA levels of all 
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mRNAs tested. Together, these data suggested that the CCR4-NOT complex may 

mediate mRNA homeostasis in mammalian cells.  

Several lines of enquiry were followed to explore the mechanism through which 

CNOT1 both limited initial poly(A) length and seemingly promoted mRNA 

production. Although the exact mechanism remained elusive, differential effects of 

RNAi-mediated depletion versus pharmacological inhibition of the complex’s CAF1 

subunit suggested that the documented involvement of CCR4-NOT in both 

deadenylation and transcription elongation may have been significant. 

The above findings complement work from other groups showing changes to  

CCR4-NOT subunit levels in different physiological conditions (e.g. nutrient 

deprivation, B cell activation). Specifically, levels of CCR4-NOT may be adjusted to 

simultaneously affect both mRNA production (through promoting transcription 

elongation) and nuclear determination of cytoplasmic mRNA stability (through 

promoting nuclear deadenylation). In this way, the mammalian CCR4-NOT complex 

may mediate high and low mRNA turnover states according to the state of the cell.  
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1 Introduction 

Correct gene expression relies on the orchestrated synthesis and degradation of 

mRNA, and on its successful translation. The eukaryotic messenger RNA poly(A) tail, 

present at the 3’ end of the molecule, has roles in both mRNA stability and 

translation efficiency as well as permitting export of mRNA from the nucleus (1, 2). 

At the other end of the mRNA is a modified nucleotide, the 7-methylguanosine cap, 

which also serves a protective function, identifies the molecule as ‘self’ and interacts 

with nuclear export adapters (3–5). Changes in polyadenylation are crucial to several 

dynamic cell- and development–specific processes (6–14), and dysregulation of 

poly(A) site choice or deadenylation is well documented in different disease states 

(15–18). The highly variable phenotypes achieved by adjusting such a widespread 

modification indicate extensive regulation of a system which begs investigation.  

The 3’ poly(A) tail and 5’ cap bind to cytoplasmic poly(A) binding proteins (PABPC) 

and the eIF4F complex respectively, which can interact via the eIF4G subunit and 

may take on a closed loop conformation (19, 20). This closed loop structure has 

been proposed to protect the mRNA from exonuclease activity and enhance 

translation efficiency (20–22). The poly(A) tail is gradually shortened by cytoplasmic 

deadenylases, dislodging PABPC and leaving the mRNA vulnerable to exonucleic 

degradation (23–28).  

One such deadenylase, CCR4-NOT, boasts two catalytic subunits (exhibiting distinct 

kinetics) alongside several additional functional modules which mediate both 

message specific targeting of the complex, and its involvement in a number of other 

processes (28–51). The best-studied of these additional roles is in transcription, 

however various other putative functions seem to be emerging (34, 36–39, 41–44, 

46). This coupling of deadenylation with other processes may indicate a central role 

for CCR4-NOT in mediating cross talk between different elements which contribute 

to correct gene expression. 

Regulated length of the poly(A) tail, which accompanies the mRNA from the 

beginning of its lifetime and provides a temporary roadblock to degradation, is thus 

a prime candidate for connecting mRNA stability with transcription (52–58). Poly(A) 

tails are added by poly(A) polymerases and removed by deadenylases, both 
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machineries which can be regulated by environmental or internal stimuli to tune 

gene expression according to the cellular program (58–70). In this way the poly(A) 

tail can be considered a signal, the precise encoding and decoding of which remains 

to be elucidated. 

 Overview of messenger RNA synthesis and turnover 

Messenger RNAs are synthesised in the nuclei of cells by RNA polymerase II  

(RNAP II/Pol II) which is first recruited into the pre-initiation complex (PIC). The PIC 

includes a set of general transcription factors (TFIIB, TFIID, TFIIE, TFIIF, TFIIH) (71, 72) 

as well as the multiprotein complex, Mediator, which recruits Pol II (73). Changes in 

Pol II phosphorylation state and consequent recruitment of elongation factors 

enables escape from the promoter, immediately followed by promoter-proximal 

pausing, which is likely required to facilitate capping of the nascent transcript (74). 

The elongation complex (EC) then proceeds along the template DNA strand. Upon 

reaching the poly(A) signal (PAS) at the 3’ end of the gene, the nascent mRNA is 

cleaved and Pol II continues along the DNA until transcription is terminated in a 

linked but distinct process (75–77). An overview of this process is outlined in figure 

1.1. 

Before these newly synthesised mRNAs undergo translation they must be properly 

processed and exported from the nucleus. The main processing steps in mRNA 

biogenesis include 5’ capping, splicing of introns and 3’ cleavage and 

polyadenylation, all of which must be completed correctly to produce a stable and 

translatable mature mRNA. Splicing and 3’ processing are triggered by the 

recognition of sequence elements. Both will be detailed further in due course, but it 

is appropriate to introduce the poly(A) signal (PAS) here as the extensive crosstalk 

between processes makes it almost impossible to discuss other elements of mRNA 

metabolism without describing it first. The PAS is a well conserved hexamer, the 

canonical form of which is AAUAAA. It sits 10-30 nt upstream of the cleavage site 

and is recognised by components of the cleavage and polyadenylation (CPA) 

complex (75, 78–80).  
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Errors in pre-mRNA processing can lead to nuclear retention and degradation by 

either XRN2 (a 5’ exonuclease), or the nuclear RNA exosome (a complex containing 

3’ exonuclease activity) (81–87). Protein-coding transcripts which are not identified 

by nuclear surveillance are exported to the cytoplasm where they undergo a further 

stage of quality control during the first round of translation, failure of which leads to 

decay of the mRNA, and thereby its removal from the pool of translatable 

transcripts (88–91). It has been suggested that the balance between nuclear and 

cytoplasmic mRNA quality control could differ between yeast and higher eukaryotes, 

and cytoplasmic quality control should not be inferred as a back-up system (92). In 

any case, correct processing of nascent transcripts is essential to efficient and tightly 

controlled gene expression. 

The following section gives an overview of the various processes contributing to 

mRNA biogenesis, headed by an introduction the RNA polymerase II C terminal 

domain (Pol II CTD) which seems to play a central role in their coordination, and 

appended by a brief summary of the pathways available for mRNA decay. 

1.1.1 RNA polymerase II C terminal domain 

Eukaryotic cells contain three DNA-dependent RNA polymerases. While all protein-

coding RNAs are transcribed by RNA polymerase II, Pol I is responsible for 

transcribing rRNA and Pol III for tRNA and 5S rRNA (93). Many non-coding RNAs are 

also transcribed by Pol II, but Pol I and III also contribute (94). Pol II is made up of 12 

subunits, the largest of which is RBP1 (95). In addition to providing the polymerase’s 

catalytic activity, RBP1 possesses a notable C-terminal domain (CTD) which has been 

and continues to be the subject of much curiosity. This interest stems from the 

changing modifications of the CTD over the course of transcription which help 

coordinate mRNA processing with transcriptional progress (96–99). This is outlined 

in figure 1.1.  

The CTD is characterised by tandem repeats of the consensus sequence YSPTSPS. 

Although the sequence is consistent across eukaryotes, the number of these heptad 

repeats varies between organisms with 52 in mammals and 26 in yeast (73). 

Mammalian Pol II CTDs contain a mixture of consensus and non-consensus 

sequences. While the N terminal 26 repeats are similar to that of the yeast CTD and 

deviate only minimally from the consensus, the distal C terminal half is highly 
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enriched for non-consensus sequences (100). The ‘CTD code’ arises from its ability 

to be phosphorylated on five of the seven residues in each repeat, facilitating 

interactions of Pol II with factors required at each stage of the mRNA synthesis 

journey: from transcription initiation, through elongation to cleavage, and onto 

every major RNA processing step (73, 74, 96–99, 101–106). While this function may 

be mediated through direct interactions with other machinery (107), the CTD is 

intrinsically disordered and as such can participate in phase-separated nuclear 

condensates. These membraneless structures are formed through liquid-liquid 

phase separation and often include low complexity regions of proteins (108). 

Incorporation of the Pol II CTD into condensates may allow for co-localisation with 

the transcription initiation or RNA processing machinery to enhance efficiency (99, 

109, 110).  

Prior to incorporation into the transcription pre-initiation complex (PIC), the Pol II 

CTD is hypophosphorylated; indeed in yeast experiments, premature 

phosphorylation could inhibit its recruitment to the promoter (111). Upon 

incorporation, the CTD is phosphorylated on Ser5 and Ser7 by CDK7 which is a 

component of the multiprotein general transcription factor, TFIIH (112, 113). 

Inhibition of CDK7 caused a reduction in promoter-proximal pausing - an important 

step for coordination of elongation with capping of the nascent transcript in 

metazoans - for a majority of genes (74, 114).  

In order for the polymerase to begin transcription elongation, CDK9 (and CDK12 in 

metazoans) phosphorylates the CTD on Ser2, a mark which it carries throughout 

elongation (73, 115, 116). During elongation, Ser5 is gradually dephosphorylated by 

specific phosphatases, while Ser7 phosphorylation dynamics are less clear (73, 117, 

118). By the time Pol II approaches the 3’ end, Ser5p phosphorylation is low, Ser7 

may have been dephosphorylated and re-phosphorylated and Ser2p levels remain 

elevated, facilitating interaction with 3’ processing and termination machinery 

(119). 

Although Ser5 phosphorylation is considered a promotor-proximal feature, more 

recent work utilising mNET-Seq, in which Pol II-protected RNA fragments are 

sequenced, also observed Ser5p enrichment at 5’ splice sites in HeLa cells, possibly 

indicating differences in phosphorylation pattern between yeast and mammals 
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(120). The authors suggest Pol II may pause here to allow the spliceosome to 

perform the first catalytic step, however this is in contrast to direct RNA 

measurements by Nanopore that indicate the majority of splicing in human cells 

occurs when the polymerase is at least 4 kb downstream of the 3’ splice site (121). It 

is perhaps the case that the limited co-transcriptional splicing that does take place in 

human cells is aided by pausing of Ser5p Pol II, or that Ser5p may pause long enough 

to facilitate recruitment of the spliceosome, but that splicing is not completed until 

Pol II is much further downstream. It is of course also possible that the process 

differs between cell types, or that the experimental techniques gave rise to artefacts 

which were not accounted for. In particular, across many studies of this type it is 

assumed that the antibodies used to precipitate particular phosphorylation states of 

the CTD are accurate, however the binding specificity likely varies between 

antibodies and may also be influenced by the surrounding context of the 

modification.  

Though the limelight has largely fallen on the serine residues, both Tyr1 and Thr4 

are also available for phosphorylation. Like Ser2, Thr4 is phosphorylated by CDK9 

(118). This phosphorylation has a documented role in recruitment of histone  

3’ processing machinery and in snoRNA transcription, as well as post-transcriptional 

mRNA splicing in yeast, though more T4p dependent processes may be revealed by 

further investigation (122–124). While substitution of Thr4 with valine is lethal in 

higher eukaryotes, yeast viability is not affected, though slower growth is observed 

(122, 123, 125). This difference may relate to yeast histone mRNAs being 

polyadenylated, unlike their higher eukaryotic counterparts where distinct  

3’ processing pathways are employed (126). Tyr1 phosphorylation seems to be 

important for RPB1 stability and promoter directionality and in yeast can also 

prevent premature transcription termination (127–129).  

The Pol II CTD thereby acts as a platform through which correctly timed recruitment 

of processing factors to the nascent mRNA is orchestrated, and is instrumental in 

determining RNA production and fate.  

1.1.2 Transcription initiation and elongation 

Transcription is preceded by formation of the pre-initiation complex (PIC). This 

involves binding of the multisubunit complex, Mediator, to transcriptional activators 
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at upstream enhancer sequences and the concomitant assembly of general 

transcription factors on the core promoter. Mediator can then associate with the 

general transcription factors, uniting the PIC components and causing the chromatin 

to loop around (130). As part of this process, Mediator delivers unphosphorylated 

Pol II to the promoter, where its CTD is phosphorylated on Ser5 and Ser7 by the 

CDK7/CyclinH subunit of the general transcription factor TFIIH. Binding of Mediator 

to this subunit stimulates CDK7 activity, generating the Ser5,7p form of Pol II which 

can no longer be bound by Mediator and is therefore free to escape the promoter 

(73, 105). 

In metazoans, 20-50 nt after clearing the promoter, Pol II undergoes promoter-

proximal pausing, an important step for the protection of the emerging mRNA which 

is capped both to avoid degradation and to enhance pre-mRNA processing (3–5, 74, 

98, 102, 131–133). Here, the Ser5p CTD, along with the elongation factor Spt5, are 

recognised and bound by RNA guanylyltransferase, an enzyme integral to 5’ cap 

formation (74, 98). 

Following release from the promoter-proximal pause into the elongation phase,  

Pol II can still encounter sites which induce backtracking, pausing or deceleration, 

for example at DNA lesions, splice sites, polyadenylation signals, or other regulatory 

sequences (58, 134–142). Pauses may in some cases lead to premature transcription 

termination (134, 136), and backtracking caused by DNA lesions can either be 

rescued, or result in ubiquitination of Pol II and presumably its degradation by the 

proteasome (138, 143–146). Rescue is mainly thought to involve the elongation 

factor, TFIIS, however the CCR4-NOT complex has also been implicated in yeast, 

suggesting another facet to its role in transcription (39, 143, 144, 147, 148). 

Elongation rate has been linked to mRNA stability in mammalian cells by affecting 

m6A deposition, high levels of which may elicit recruitment of CCR4-NOT via the m6A 

readers YTHDF1-3 and consequently, deadenylation (58). This points to a possible 

role for the CCR4-NOT complex in regulating both entry and exit of mRNAs from the 

system.  

1.1.3 Capping 

The 5’ cap on Pol II-transcribed RNA is important for protecting the mRNA and 

marking it as ‘self’, as well as for promoting pre-mRNA processing and then export 
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(3–5, 133). The cap is connected to the first transcribed nucleotide by a 5’-5’ 

triphosphate bridge (4). Function is initially mediated through interaction of the cap 

with the cap binding complex (CBC) a heterodimer of CBP80 and CBP20, which in 

general seems to be exchanged for the multiprotein translation initiation factor, 

eIF4F, in the cytoplasm after the first round of translation (149). In the case of 

mRNA, the methylation states of the first and second transcribed nucleotides also 

contribute to stability by affecting how readily the molecule is decapped (4).  

Capping of nascent 5’ ends of mammalian RNAs occurs immediately after 

transcription of the end, and is complete by the time 50 nt of nascent RNA have 

been transcribed (150, 151). The cap is added in stages (4). RNGTT (RNA 

guanylyltransferase and 5’ phosphatase), possessing both triphosphatase and 

guanylyltransferase activities, first removes the terminal phosphate, creating a 5’ 

terminal disphosphate to which guanosine is then added through hydrolysis of GTP 

to GMP + pp. Methylation of the resulting G(5’)ppp(5’)X is carried out by RNMT 

(RNA guanine-7 methyltransferase) which transfers a methyl group from the methyl 

donor, s-adenosyl methionine to the N-7 position of the terminal guanosine. In 

vertebrates, the miniprotein RAM (RNMT-activating miniprotein) stabilises RNMT 

and enhances binding of SAM to its active site.  

1.1.4 Splicing 

Introns are removed from the pre-mRNA by splicing in order to produce a 

continuous transcript from which to translate the correct protein product. Selective 

inclusion of some introns to generate different mRNA isoforms – known as 

alternative splicing - allows the production of multiple protein variants from the 

same gene.  

Splicing relies on activity of the spliceosome which assembles on the RNA in a 

stepwise fashion. The location of assembly is defined by the 5’ (donor, /GU) and  

3’ (acceptor, AG/) splice sites (SS), a branch point sequence (BPS, YUNAY) ~18-40 nt 

upstream of the 3’ SS and in metazoans, a 12-17 nt polypyrimidine tract between 

the BPS and 3’ SS (152). Donor and acceptor sites usually sit within wider consensus 

sequences, mutations in which can lead to a variety of abnormal transcripts, such as 

those missing all or part of an exon, or aberrantly including portions of introns 

through the use of normally unencountered cryptic splice sites (153). Splice site 
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usage can also vary in a more regulated manner to produce multiple isoforms of a 

gene with varying exon inclusion, a phenomenon termed alternative splicing (154). 

Splicing is initiated through recognition of the donor site by U1 snRNP and the 

binding of SF1 (splicing factor 1) and U2AF65 to the BPS and polypyrimidine tract 

respectively (155). A series of steps follow, including recruitment of the U4, U5, U6 

snRNP trimer and two ATP-dependent reactions (152). In brief, an A residue 

protruding from the branch point:U2 snRNA duplex carries out a nucleophilic attack 

on the 5’ SS, forming a covalent attachment with the 5’ end of the intron; this 

results in the lasso-shaped intron lariat. The now free 3’ end of the 5’ exon then 

attacks the 3’ SS, connecting the two exons via a phosphodiester bond and releasing 

the intron lariat which is thought to usually be rapidly degraded (152, 156, 157). 

Whether the 3’ and 5’ splice sites used reside on the same intron depends on 

organism complexity. The comparatively short introns native to yeast and lower 

complexity metazoa are removed by spliceosomes forming on splice sites of the 

same intron. Longer introns however, which contribute significantly to the increased 

overall gene lengths observed in humans (compared to yeast), are thought to be too 

long for intron definition and instead require interaction of the 3’ and 5’ splice sites 

at either end of the same exon (121, 152, 158–160). Consequently, in mammalian 

cells the 5’ and 3’ terminal introns require interaction with the capping and  

3’ processing machinery respectively in order to define the 3’ and 5’ splice sites 

respectively, thus linking the three major pre-mRNA processing steps (132, 133, 

161–164).  

1.1.5 3’ processing and termination  

The 3’ ends of mRNAs -transcribed by highly Ser2 phosphorylated Pol II - are usually 

denoted by the poly(A) signal (PAS), which is located ~10-30 nt upstream of the 

cleavage site (119, 165, 166). The PAS and cleavage sites are nestled between 

several upstream and downstream sequence elements which are recognised, along 

with the PAS, by well-characterised multimeric complexes (78, 167–176). The 

components of these complexes vary slightly between yeast and higher eukaryotes. 

Of particular importance in mammals is the CPSF complex which contains two 

subunits able to recognise the PAS (CPSF4 and WDR33), the enzyme responsible for 

nascent mRNA cleavage (CPSF3), and another subunit (FIP1) which can both 
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recognise upstream sequences and recruit poly(A) polymerase (PAP) which catalyses 

addition of the poly(A) tail (55, 78, 175, 177–180). A more in-depth appraisal of 

cleavage and polyadenylation can be found in section 1.2.  

1.1.5.1 Transcription termination 

Tightly linked to cleavage of the nascent mRNA is termination of the transcription 

elongation complex (TEC) itself. Following cleavage, the TEC (containing Ser2 

phosphorylated Pol II) continues transcribing along the DNA template until the 

unprotected RNA is degraded by XRN2 and the complex disengages (181). The order 

of these events has been described by two opposing putative models: allosteric and 

torpedo, both of which depend - either directly or indirectly - on the presence of a 

poly(A) signal. In the allosteric model, transcription termination signals cause a 

conformational change in the TEC which leads to dissociation (182). In the torpedo 

model, cleavage of the nascent mRNA exposes the 5’ end of the remaining RNA, 

providing a substrate for the 5’-3’ exonuclease XRN2 (Rat1 in yeast) which degrades 

the remaining uncapped RNA and dislodges the TEC (76).  

Evidence for both models exists in the literature in yeast as well as higher 

eukaryotes. In favour of the allosteric model, Rat1 (yeast XRN2 homologue) was 

insufficient to terminate Pol II in vitro, and in Xenopus oocyte nuclei, terminating 

complexes were observed by electron microscopy (EM) on uncleaved transcription 

products of a plasmid vector (183, 184). In the latter study, terminating complexes 

were also observed on cleaved transcripts if a strong PAS was present, suggesting 

that the torpedo model may be relevant for efficiently cleaved transcripts (184). This 

is consistent with subsequent work by the same group showing that the majority – 

but not all – of over 100 Pol II transcribed Drosophila genes were terminated prior 

to cleavage (185). 

Supporting the torpedo model, or at least a variant thereof, work in HeLa cells found 

that XRN2 activity was sufficient to terminate transcription of the human β-globin 

gene; however, the nuclease was found to be loaded onto the RNA downstream of 

the cleavage site, following autocatalysis of the RNA at its co-transcriptional 

cleavage (CoTC) site (186). A key principal of the torpedo model is the ability of 

XRN2 to catch up with elongating Pol II in order to dislodge it. In addition to 

checking the effects of human XRN2 nuclease inactivation, Fong et al therefore also 
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examined the impact of Pol II elongation rate on distance of termination site from 

the PAS (187). In the case of the dominant negative XRN2 mutant, termination was 

delayed substantially and the use of a slow or fast Pol II mutant resulted in more 

proximal or distal termination sites respectively. While both findings are consistent 

with the torpedo model, one could posit that allosteric inhibition may also be more 

efficient on an already slowly elongating polymerase. This pleasantly intuitive 

relationship between Pol II elongation rate and termination efficiency has been 

suggested elsewhere, this time induced by changes to CTD phosphorylation (114). 

Further exemplifying this relationship is the finding that CDK9, which phosphorylates 

the Pol II CTD to enable release of paused Pol II into the elongation phase, also 

phosphorylates XRN2 to enhance its enzymatic activity and recruitment to 

chromatin (188). 

Further supporting a dependence of termination on cleavage are the observations 

of readthrough transcripts following CPSF3 depletion (and rescue with a catalytically 

inactive form) or infection with Influenza A virus (IAV), whose NS1 protein binds 

CPSF4 to prevent recognition of the PAS (77, 189). Of course, IAV can interfere will 

cellular processes at many levels, and given its notoriety for cap-snatching at the 5’ 

end, additional effects on Pol II elongation do not seem implausible (190). Indeed, 

an IAV strain which could not bind CPSF4 also caused a moderate termination 

defect, and expression of the CPSF4-binding NS1 protein alone only seemed able to 

impair termination of a subset of genes; taken together – and assuming that CPSF4 

is essential to cleavage - these findings suggest that cleavage-dependent 

termination (i.e. the torpedo model) is likely important for some genes, but may not 

universally applicable to polyadenylated Pol II transcripts (191). These conflicting 

findings may of course also indicate a difference in dominant mechanism between 

species, tissues or cellular states. Despite their differences, these studies agree on 

the necessity of the poly(A) signal for 3’ end transcription termination. 

Models unifying the two theories have recently been presented, based on 

experiments in human cell lines, in which encountering the poly(A) signal triggers 

dephosphorylation of the elongation factor Spt5 by PNUTS/PP1, reducing its 

stimulation of Pol II. This reduced stimulation of Pol II is thought to slow down the 

TEC sufficiently for XRN2 to catch up with and dislodge it (77, 142). The exact 
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mechanism though which encountering the PAS triggers Spt5 dephosphorylation has 

not been elucidated, but expression of IAV NS1 prevented the PAS-triggered 

slowdown of Pol II observed in untreated cells, confirming requirement of CPSF4 in 

triggering Spt5 dephosphorylation (142). Since PNUTS/PP1 can associate with the  

3’ processing machinery, it is proposed that its phosphatase activity is influenced by 

conformational changes occurring upon binding of CPSF to the PAS (142, 192). 

Another potentially important contributor to mRNA transcription termination is the 

cleavage factor II (CFIIm, mammals)/cleavage factor CFIA (yeast) component, PCF11, 

which preferentially binds Ser2 phosphorylated Pol II (193, 194). The remit of PCF11 

seems to be in control of the TEC-RNA interaction, with studies in yeast and 

mammals returning slightly different models (106, 195). In vitro, the yeast Pcf11 CID 

(CTD-interacting domain) is sufficient to dismantle the TEC by dissociating from the 

template DNA whilst bound to both the nascent mRNA and the Pol II CTD (106). 

Indeed, work by the same group in Drosophila found that depletion of dPcf11 

caused increased readthrough transcription and that it again acts to terminate 

transcription through some undetermined mechanism involving formation of a 

bridge between the CTD and the RNA (196).  

In vertebrates, phosphorylation of PCF11 by the serine-threonine kinase, WNK1 is 

required for its dissociation from Pol II and reduction in this phosphorylation caused 

retention of MYC mRNA on the chromatin (195). In this way, PCF11 is integral in 

linking transcription termination with export. More recent work indicates that 

dependence on PCF11 for transcription termination is variable across the 

transcriptome and seems to be more important for closely spaced genes (197).  

1.1.6 Export 

Export of mRNAs to the cytoplasm requires transit through the nuclear pore 

complex (NPC), which forms a channel across the nuclear envelope enabling passage 

of macromolecules. The NPC is composed of 3 main regions: the nuclear basket, 

cytoplasmic fibrils, and a central channel lined with nucleoporins (198). Since RNAs 

are unable to directly interact with the NPC, transit through it requires packaging 

into RNPs with adapter proteins, a requirement which in theory comprises an 

additional layer of regulation and quality control. Three main pathways exist for 

transit of RNAs out of the nucleus: NXF1/NXT1, CRM1 (Exportin) and Exportin-5. In 
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higher eukaryotes, miRNAs, rRNA and snRNA are preferentially exported by 

Exportin-5 and CRM1, whereas NXF1/NXT1 is thought to be the major pathway for 

export of mRNA (199). A subset of mRNPs are too large to fit through the channel 

and instead exit the nucleus via budding of the nuclear envelope (200).  

An elegant solution to efficiently transporting newly made mRNA to the pore while 

filtering out those which are improperly processed is the dependence of export 

factor recruitment on conserved indicators of competent mRNAs such as the cap, 

poly(A) tail, and splice junctions (2, 5, 201–203). These indicators are interpreted 

through the various protein complexes which bind them, most prominently the cap 

binding complex (CBC), and exon junction complexes (EJCs), which are deposited 

after splicing 20-24 nt upstream of exon-exon junctions (5, 201, 204).  

1.1.6.1 Nxf1/Nxt1  

The prevailing model for NXF1/NXT1 – mediated export of mRNA is that the RNA is 

bound co-transcriptionally by components of the TREX (transcription and export) 

complex. TREX then interacts with NXF1 – which usually exists in a closed 

conformation with its RBD hidden to avoid non-selective RNA export – and elicits a 

change in conformation that allows binding of NXF1 to the RNA (199, 205). Once 

RNA is bound, NXF1 interacts with nucleoporins to mediate transport though the 

NPC (206).  

Mammalian TREX includes the hexameric THO subcomplex along with additional 

proteins including the helicase UAP56 (DDX39B) and adapters and co-adapters 

which mediate interaction with NXF1, a role for which Aly/REF (yeast Yra1) has been 

best studied (207–212). These can lead to different variations of TREX (207). Two 

adapter proteins, UIF and LUZP4 have been identified as able to at least partially 

compensate for Aly/REF depletion and to interact with both NXF1 and the essential 

TREX component, UAP56 whose ATPase activity seems important for the complex’s 

assembly (203, 211–215). While knockdown of UIF did not affect bulk poly(A)+ 

localisation, combined knockdown with REF caused substantially greater nuclear 

accumulation than REF knockdown alone (211). Interestingly, although binding of 

NXF1 by REF and UIF was mutually exclusive, the two proteins could interact in an 

RNA – dependent manner, suggesting that multiple TREX complexes can be loaded 

onto a single transcript. LUZP4 is normally only expressed in the testes but can be 



14 
 

upregulated in cancers, perhaps to enhance the export of a subset of transcripts or 

to compensate for reduced Aly/REF expression (212). 

The mammalian THO subcomplex comprises six subunits: THOC 1-3 and THOC5-7, 

with THOC2 proposed to act as a scaffold (207). Although theoretically essential, 

depletion of THO complex subunits does not uniformly affect all transcripts and cell 

types in higher eukaryotes. Depletion of THOC1 for example causes apoptosis in 

cancer cells, but is permissible for growth of normal fibroblasts (216). Similarly, 

THOC5 seems to be required during embryogenesis and differentiation, but its 

depletion has little effect in differentiated cells (217). These inconsistent effects may 

be due to the particular transcripts which are reliant on THO for their export; 

indeed, while THO was required for export of heat shock mRNAs, it was not required 

- unlike ALY and TAP (NXF1) – for bulk mRNA export (218, 219). Interestingly, the 

reliance of Hsp70 mRNA on THOC5 for export in a mouse embryo fibroblast cell line 

is temperature dependent, with export succeeding in the absence of THOC5 at 37 °C 

but not 42 °C (220). The same group also identified a requirement for THOC5 in the 

expression and export of differentiation- and migration-related mRNAs (221). In 

keeping with a role for THO in dynamically changing systems, missense variants in 

THOC2 have been implicated in neurocognitive and growth disorders and 

intellectual disability (222, 223).  

The THO subcomplex is recruited early in mRNA synthesis to mediate packaging of 

the nascent mRNA into an mRNP and thereby avoid generation of R-loops (through 

wayward interaction with the unwound DNA), which threaten genome integrity 

(224, 225). Whereas THO recruitment is directly linked to transcription in yeast, in 

human cells it relies on splicing; this is perhaps due to varying genomic complexity 

and architecture requiring different systems to sort their transcripts (226, 227). One 

key link between TREX assembly and splicing is common involvement of UAP56 

which is required for early spliceosome formation as well as being an integral TREX 

component (209, 213, 215, 227–230). Direct interaction of ALY with the CBC has also 

been well documented, though for mRNAs which are spliced, this appears to be a 

transient step prior to EJC binding (2, 5). Inhibition of polyadenylation does not 

affect distribution of ALY along the mRNA and TREX recruitment is therefore 

considered to be co-transcriptional; however, ALY can interact with PABPN1 and has 
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been proposed to compete with ZFC3H1 for PABPN1 binding, resulting in rescue of 

the mRNA from nuclear degradation and successful export (2, 231). Another poly(A) 

binding protein, ZC3H14 - which despite its ubiquitous expression is particularly 

important for higher order brain function – interacts with THO, coupling processing 

and export for specific mRNAs (232). As well as recognising features of processed 

mRNA, some TREX complexes associate specifically with m6A-modified transcripts to 

mediate their export (233, 234).  

Interestingly, export factors can themselves affect mRNA processing. Aly/REF for 

example can influence splicing outcomes on poorly spliced introns (5). The same 

study found that deposition of the co-adapter, CHTOP is enriched towards the 3’ 

ends of mRNAs and promotes use of distal poly(A) signals, resulting in mRNAs with 

longer 3’UTRs. THOC5 can also affect choice of 3’UTR isoform by interacting with the 

CFIm68 subunit of mammalian cleavage factor I, with THOC5 depletion specifically 

reducing the level of mRNAs polyadenylated at the distal PAS (235). 

While a stepwise pathway involving TREX and then NXF1 seems rational, recent 

work suggests that although there is considerable overlap, not all TREX substrates 

may depend on NXF1 for their export (236). In particular, transcripts with few exons 

which are long or have a high A/U content showed greater dependence on NXF1. 

Depletion of TREX components disproportionately reduced export of spliced and 

G/C rich mRNAs, and both single and multi-exon transcripts were affected (236). 

Furthermore, in addition to recruitment by TREX in the canonical pathway, NXF1 can 

interact with certain SR proteins, a family initially characterised as splicing factors 

(237, 238). SRSF3 and SRFS7 can bind to NXF1 as well as the last exon of mRNA, and 

have opposite effects on 3’UTR length, thereby coupling alternative polyadenylation 

with export (237). The constitutive transport element (CTE) of type D retroviral RNA 

also directly interacts with NFX1 to circumvent splicing and allow export of its 

unspliced mRNA, avoiding other host machinery (239). 

1.1.6.2 Crm1 (Exportin) 

While NXF1 is important for bulk mRNA export, another NPC-interacting protein, 

CRM1 may provide an alternative pathway for mRNAs which are engaged with 

specific proteins through sequence and structural elements in their 3’ UTRs (240–

244). 3’UTR AREs for example can by bound by HuR (ELAV1), which as well as 
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stabilising transcripts, can mediate export of the bound mRNA through interactions 

with CRM1-interacting proteins (245–247). CRM1-dependent export of these 

mRNAs is thought to depend on stress conditions, with HuR and CRM1 only 

coimmunoprecipitating after heat shock (248). AREs are not the only element to 

promote export via CRM1; the eIF4E sensitivity element (4E-SE) is a structural 

element in the 3’UTR of Cyclin D and other cell cycle progression mRNAs which also 

promotes export via CRM1 (243, 244). This reliance on CRM1 is mediated by eIF4E 

and depends on its binding of both the 4E-SE and the cap. Notably, those mRNAs 

whose nuclear export is promoted by eIF4E are distinct from the mRNAs whose 

translation is eIF4E-dependent, indicating differing nuclear and cytoplasmic roles 

and targets (244).  

1.1.7 Degradation 

1.1.7.1 Cytoplasmic mRNA degradation 

To maintain dynamic and agile cellular control, mRNA cannot persist indefinitely and 

must therefore be degraded. The average lifetime of an mRNA varies from minutes 

to days (249, 250), and stability depends on a variety of factors, including the cap 

and poly(A) tail, sequence elements and bound proteins, secondary structure, base 

modifications, and presence of coding defects which may be detected during 

translation and lead to premature decay (3, 19, 32, 45, 58, 90, 91, 251–271). 

Translation-coupled mRNA decay can occur via three pathways, depending on the 

nature of the defect. Presence of a premature stop codon results in nonsense-

mediated decay (NMD), while absence of a stop codon or stalling of the ribosome 

(eg. at highly structured regions) cause degradation by non-stop decay or no-go 

decay respectively (90, 91, 266–268). Should the mRNA survive translation, it 

persists until it undergoes canonical degradation, which can be targeted or  

non-specific (25, 26, 45, 254–256, 258, 269). Degradation may not always be 

immediate, with some transcripts being stored in the cytoplasm whilst maintaining 

translational silence (8, 272–274). 
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Based on synergistic translation activation by the cap and poly(A) tail, and later on 

interactions between PABPC and the eIF4F complex, mature mRNAs are thought to 

exist in a closed loop conformation which enhances their stability and translatability 

(19–21). More recent work has challenged the prevalence of closed loop formation 

in vivo (22, 275). In canonical degradation, the PABPC-coated poly(A) tail is degraded 

by cytoplasmic deadenylases in a process suggested to involve two sequential 

phases (i.e. PAN2-PAN3 then CCR4-NOT) (26, 50). Once the tail is too short to bind a 

single PABPC (< ~27 nt), the interaction between the 5’ and 3’ ends is interrupted, 

leaving the 3’ end vulnerable to decay, and the 5’ end to decapping by DCP1-DCP2 

(26, 28, 50, 276–279). A schematic of deadenylation-dependent decay is provided in 

figure 1.2.  

Although the 3’ end theoretically becomes available to the cytoplasmic RNA 

exosome, the 5’-3’ exonuclease XRN1 is thought to contribute more to cytoplasmic 

mRNA degradation, with 3’ decay by the exosome being implicated for a few 

individual mRNAs (90, 253, 280, 281). This bias is initially surprising, since by this 

model the 3’ end is exposed before the 5’ end. It seems however, that the 

deadenylation machinery may promote recruitment of the capping machinery and 

its activators such that there is a minimal lag in cap removal once the 3’ end is 

exposed (256, 282–286). Degradation by XRN1 is in turn coupled with cap removal 

via interactions with components of the decapping complex (282, 287). 5’ à 3’ 

degradation is likely dominant because the alternative option - degradation from 

the 3’ end of the mRNA - could still allow translation from the 5’ end and lead to the 

consequent generation of incomplete proteins.   

Messenger RNAs can be specifically targeted for deadenylation-dependent 

degradation in the cytoplasm by several means; in particular through recognition of 

sequence elements by certain proteins or miRNAs (32, 45, 254–256, 258, 288, 289). 

Of particular note is the recognition of AU-rich elements (AREs) in 3’ UTRs by 

Tristetraprolin (TTP) which then recruits CCR4-NOT to promote transcript 

degradation (51, 290–292). This is best characterised in inflammatory mRNAs, 

however targeting of AREs in the mRNAs of other tightly controlled genes is also 

well-documented (288, 293–296). TTP can shuttle between the nucleus and 

cytoplasm (297). Given the importance of mRNA stability in determining the timing 



19 
 

of the inflammatory - and perhaps other - response(s) (298, 299), it is interesting to 

consider the possibility that TTP – and even CCR4-NOT – could be recruited in the 

nucleus and behave as a timer in the cytoplasm to safeguard against sustained gene 

expression.  

A relationship between translation efficiency and mRNA stability (outside the 

detection of aberrant transcripts) has been reported on several occasions (28, 44, 

300–303). More recently, the mechanisms underlying these links have begun to be 

revealed, predominantly through studies in yeast (28, 44, 301). For an overview of 

various steps in translation, see review by Andreev et al (304). Transcripts with low 

codon optimality exhibit accelerated degradation which is Dhh1-dependent (Dhh1 

being the yeast orthologue of DDX6) (301). Since DDX6 can bind both the ribosome 

and the deadenylation and decapping machinery (256, 283, 305), it was suggested 

that tRNAs compete with DDX6 for ribosome binding and that less frequent 

displacement of DDX6 by tRNAs leaves enough time for the degradation machinery 

to associate with the translationally-engaged transcript (306). Such a model is 

supported by the findings that Ccr4-Not can associate with polysomes and that 

association of DDX6 with CCR4-NOT enhances activity of the human CNOT7 (CAF1) 

nuclease subunit (305, 307). Furthermore, the same subunit was recently suggested 

to preferentially deadenylate poorly translated mRNAs (28). Recently, the model for 

this relationship was updated in yeast to involve direct association of Ccr4-Not with 

the ribosome when the A site lacks a tRNA (44). This is not due to direct competition 

between Ccr4-Not and tRNA but rather between Ccr4-Not and eIF5A (which rescues 

translation in the case of slow peptidyl transfer). While Not5 and eIF5A can both 

bind to the ribosome E site if it does not contain a tRNA, eIF5A is only able to 

interact with the E site if the A site is occupied (since this elicits a permissive 

conformational change in the ribosome). In the case of codon non-optimal 

transcripts, there is a higher likelihood of simultaneously vacant A and E sites, 

allowing Ccr4-Not (but not eIF5A) binding, and promoting transcript degradation 

(44). Importantly, many of the documented direct links between yeast Ccr4-Not and 

the ribosome rely on portions of Ccr4-Not which are less well conserved between 

yeast and mammals (44, 307, 308). 
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Cytoplasmic mRNA stability can also vary according to additional factors such as 

base modifications and structural features, but the wider significance of these is still 

being evaluated (47, 58, 260–265). 

Deadenylation is covered in more depth in section 1.4 and the relationship between 

the poly(A) tail and mRNA stability in section 1.3.5. 

1.1.7.2 Nuclear RNA turnover 

RNA degradation is not a phenomenon isolated to the cytoplasm; indeed, nuclear 

mRNA decay is central to transcription termination and more recently has been 

shown to tune gene expression and counteract pervasive transcription (85, 92, 181, 

186, 188, 189, 309–315). Decay of nuclear RNA can be performed by the  

5’ – 3’ exonuclease, XRN2 – known for its role in transcription termination, or by the 

nuclear RNA exosome which in mammals includes the 3’ – 5’ nucleases EXOSC10 

and DIS3, the latter of which also possesses endonuclease activity (92, 181, 186, 

310, 316, 317). While some nuclear decay is directed towards noncoding transcripts, 

widespread degradation of transcripts from protein-coding promoters also occurs, 

largely mediated by the nuclear exosome (85, 92, 309–311, 318, 319). Exosome 

targets originating from protein-coding promoters include premature cleavage and 

polyadenylation (PCPA) products, PROMPTs (promoter upstream transcripts), 

whereas XRN2 was shown to contribute to transcriptional repression of H3K27me3-

marked genes (92, 311, 320).  

Factors determining susceptibility to nuclear decay, and the mechanisms that 

underlie targeting have only been partially uncovered (86, 231, 313, 319, 321–323). 

At present, nuclear residence time seems to be important, with apparent 

competition between factors which promote export and those which target 

transcripts for degradation (86, 231, 323). 

 Cleavage and Polyadenylation 

With the exception of replication dependent histone mRNAs, all nascent metazoan 

mRNAs receive a non-templated 3’ poly(A) tail which is usually removed prior to 

degradation (23, 269, 324–328). In certain cell types/developmental phases, poly(A) 

tails may be extended in the cytoplasm in order to switch the attached mRNA from 

dormant to translationally active (9, 329–331).  
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1.2.1 Cleavage and nuclear polyadenylation 

Nuclear poly(A) tail synthesis is initiated in concert with 3’ cleavage and utilises 

some of the same machinery. Sequences in the 3’UTR are recognised in mammalian 

cells by cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation 

factor (CstF) and cleavage factor 1 (CFIm) and joined by other factors including 

cleavage factor 2 (CFIIm) and Symplekin to form the cleavage machinery (78, 80, 

168, 173–175, 177, 332–335). Poly(A) polymerase (PAP) is recruited by the FIP1 

subunit of CPSF (175) and catalyses poly(A) tail synthesis following cleavage (55, 

178–180). An overview of the process is depicted in figure 1.3. Cleavage of 

replication-dependent histone mRNAs - which are not polyadenylated and instead 

are stabilised by a 3’ UTR stem loop - also involves some CPSF subunits but these are 

active in a different complex (327, 328, 336).  

The poly(A) signal (AAUAAA), located 10-30nt upstream of the cleavage site, is 

recognised by WDR33 and CPSF4 in the CPSF complex (78–80). Single base deviation 

from the canonical poly(A) signal (PAS) - commonly AUUAAA - has been widely 

recorded, and AAUAAA may be present in <60 % human protein-coding genes (166, 

337, 338). Analysis of the CPSF-PAS interaction by cryo-EM showed that the 

hexamer bends to form a Hoogsteen base pair between U3 and A6 and that CPSF1 

pre-arranges WDR33 and CPSF4 for binding of the PAS (80). Around 30 nucleotides 

downstream of the cleavage site is the G/U or U-rich downstream sequence 

element (DSE) which is present in the majority of transcripts and is bound by the 

CstF complex (167, 169, 170, 173, 174). Located upstream of the poly(A) signal is the 

auxiliary upstream sequence element (USE) (334). The USE – often ‘UGUA’ or a 

similarly U-rich motif - is bound by the NUDT21 subunit of Cleavage Factor I (CFIm) 

and its presence is thought to enhance cleavage and polyadenylation efficiency, 

particularly of intronless mRNAs (334, 339–341). 

Cleavage and polyadenylation are linked to transcription through interactions with 

the Pol II body and CTD (96, 101, 342). While CPSF, or at least some of its subunits, 

seem to be recruited at the promoter and travel with Pol II along the gene, complete 

assembly of the cleavage and polyadenylation (CPA) machinery does not occur until 

the poly(A) signal has been transcribed (101, 103, 104, 342). Arrival at the PAS  
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A) CPSFm, CstF, CFIm and 
CFIIm assemble around the 
cleavage site. CPSF subunits 
WDR33 and CPSF4 recognise 

the PAS, while FIP1 can 
recognise U-rich upstream 

sequences. FIP1 also mediates 
interaction with poly(A) 

polymerase (PAP). CstF binds 
the DSE through its CSTF2 

subunit, and CFIm binds the 
USE. CPSF3 catalyses cleavage 

at the CA dinucleotide.  
B) Cleavage allows nascent 

mRNA to dissociate and 
leaves an exposed 5’ 

phosphate on the remaining 
RNA. C) Poly(A) addition is 
initially slow. D) Binding of 
the poly(A) tail by PABPN1 
stimulates enhanced PAP 

activity. 

Figure 1.3   Overview of cleavage and polyadenylation. 
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coincides with increased phosphorylation of Ser2 in the Pol II CTD, a process which 

seems interdependent with CPA recruitment (103, 104, 343, 344). Blockage of PAS 

recognition using the Influenza A NS1 protein (which binds CPSF4) prevented 3’ end 

Ser2p enrichment; meanwhile, pausing of Pol II itself seems sufficient to elicit a 

Ser2p peak (104, 345, 346). In addition, recruitment of other CPA factors relies on, 

or is enhanced by, Ser2p (103, 104). Taken together, these indicate an integrated, 

stepwise process in which recognition of the PAS by Pol II-bound CPSF4 causes 

deceleration of Pol II and increased Ser2 phosphorylation of the CTD, which then 

facilitates assembly of the remaining CPA machinery. The PNUTS-PP1 phosphatase, 

which has been found in CPA complexes, was recently shown to reduce Pol II speed 

by dephosphorylating the transcription elongation factor Spt5 after reaching the 

PAS (77, 142, 192). It is not yet clear exactly how transcription of the PAS triggers  

Pol II deceleration, but dephosphorylation of Spt5 coincides with increase 

phosphorylation of Ser2, and both events depend on inhibition of CDK9 activity 

(344). 

Following assembly of the CPA complex, cleavage is carried out by the CPSF3 subunit 

of CPSF (177). While PAP does not seem to be tightly associated with the cleavage 

machinery (192), its presence seems to be required for the mammalian cleavage 

reaction (347–349). PAP catalyses addition of the poly(A) tail in a reaction which is 

initially slow, but is then greatly enhanced by binding of PABPN1 once the tail is ~10-

12 nt (55, 56, 178, 179, 350, 351).  

A process composed of so many factors, yet so central to competent RNA 

production, is unsurprisingly targeted by pathogens and can be affected in disease 

(345, 352–355). As previously mentioned, CPSF4 is targeted by the influenza A NS1 

protein to block PAS recognition and nascent mRNA cleavage, resulting in 

readthrough transcripts which cannot fulfil their original function but whose exact 

fates have not been well characterised (345, 353). CPSF4 is upregulated in lung 

adenocarcinoma cell lines and patient tumours, and its knockdown in lung cancer 

cells results in reduction in phosphorylation of PI3K, AKT, ERK1/2 and JNK (355). 

These changes in phosphorylation state indicate either an interplay between  

3’ processing and signal transduction – possibly as part of some wider cellular 

control scheme – or additional roles for CPSF4 itself. Interestingly, CPSF4 was not 
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detected in normal human tissues, suggesting either that is was present in very 

small quantities, or that it is not required in more modest growth conditions or can 

be compensated, perhaps by CPSF4L. CPSF4 is known to be a core component of the 

3’ processing machinery (78, 80) and its apparent absence from normal human 

tissues highlights the potential effect that choice of experimental system can have 

upon conclusion. Both CPSF4 and the other PAS recognition subunit, WDR33 seem 

to be regulated in their localisation; induction of the inflammatory response with 

LPS caused a shift of the two subunits from mostly cytoplasmic to both nuclear and 

cytoplasmic in RAW 264.7 macrophages (354). 

1.2.1.1 Poly(A) polymerase 

Three canonical poly(A) polymerases (PAPs) have been identified: PAPα (PAPOLA), 

PAPβ (PAPOLB) and PAPγ (PAPOLG) (178, 349, 356–359). PAP expression varies 

between tissues; according to the Bgee database (www.bgee.org), PAPα is highly 

expressed throughout the body in humans, and PAPγ similarly so, though with a 

considerably more variation in expression level. PAPβ is only highly expressed in the 

testes and is expressed to a lower level in several other tissues (356, 360). 

Consequently, much investigation of canonical PAPs has focused on PAPα and the 

specific paralog is often not disclosed in publications.  

PAP can be recruited to the mRNA by CPSF1 and FIP1 (175, 361) and also, in the 

absence of the canonical PAS, by CFIm (via FIP1) (334, 362). Canonical PAP is 

stimulated by interaction with PABPN1 once the tail is long enough (~10-12 nt) to be 

bound bind it (55, 56, 179, 350, 351). This interaction may also function to maintain 

association with CPSF (56). The PAP-PABPN1 interaction causes PAP to switch from 

distributive activity (detaching and reattaching) to processive (continuous) activity 

(52, 56, 179, 363). It is thought that once a certain number of PABPNs are bound, 

the interaction with CPSF cannot be maintained, explaining a sudden decline in 

activity above 200-250 adenosines (56, 363, 364).  

There is some limited evidence of regulated PAP activity. Hyperphosphorylation of 

PAPα occurs during M phase - coincident with translational repression of cell cycle 

transcripts - and was shown to inhibit its activity in vitro (59, 62, 63, 365). This is 

unlikely to be the only factor contributing to impaired translation since bulk poly(A) 

lengths showed little difference between phases (62); of course, the necessarily 
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short half-lives of cell cycle transcripts would make them more susceptible to a 

temporary reduction in PAP activity, but deadenylation could also contribute. So far, 

CDK1 and ERK have been shown to phosphorylate PAP, enabling control in response 

to both intra- and extracellular signals (59, 63, 64). PAPγ does not seem to be 

phosphorylated despite possessing multiple suitable residues, perhaps due to 

selection of experimental conditions towards PAPα regulation (349). 

Early work recorded a difference in kinetics between chromatin-associated and 

soluble PAP, with the soluble enzyme exhibiting greater efficiency (366). Though this 

is a common feature of enzymes, it is interesting to consider its biological relevance 

here, particularly since the two forms were seemingly stimulated by different ions 

(Mg2+ for chromatin-associated and Mn2+ for soluble). Both forms of the polymerase 

were isolated from HeLa nuclear extracts and could be inhibited by the same 

antibody, suggesting both activities belonged to the same enzyme; this of course 

depends on the antibody binding site meaning it is theoretically possible that two 

different canonical PAP paralogs were detected (366). While the presence of PAP in 

the nucleoplasm could be due to nuclear import after translation, another possibility 

is that the soluble form is responsible for the hyperadenylation of non-coding 

nuclear RNAs which is thought in some cases to precede their degradation (319, 

321, 322, 348, 367). The poly(A) tails produced by nucleoplasmic PAP were longer 

than those from its chromatin-associated counterpart (400-800 vs 200-250) (348, 

366). The idea that chromatin association inherently imparts some limit on tail 

length through slower enzymatic activity is one possibility, however this difference 

could also have arisen from differences in the enzyme’s modifications or 

surrounding complex. As noted above, although both PAPs could be bound by the 

same antibody, they may not have been the same enzyme.  

While canonical PAPs are thought to enact the bulk of nuclear pre-mRNA 

polyadenylation, they are not the only mammalian enzymes capable of 3’ non-

templated nucleotide addition. Another group exists – terminal 

nucleotidyltransferases (TENTs) – which can catalyse the 3’ tailing of both 

messenger and non-coding RNAs with adenosine as well as other ribonucleotides 

(368–370). TUT4 and TUT7 for example, add oligo(U) tails to various RNA species 

which in the context of mRNA, seem to be markers for degradation (368, 369, 371, 
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372). Of the 11 TENTs encoded by the mammalian genome, only one - TUT1 - has a 

documented role in nuclear mRNA polyadenylation (65, 370, 373, 374). 

TUT1 (TENT1/Star-PAP) is mainly considered a terminal uridyl transferase before a 

poly(A) polymerase and its primary role is in maturation of the spliceosome 

component, U6 snRNA (375, 376). Although it has a preference for uridine, TUT1 can 

polyadenylate a subset of (pre-)mRNAs in the nucleus, with the best studied target 

being the oxidative stress response gene, HO1 (65, 373, 374). The substrates of 

canonical PAP and TUT1 appear to have little overlap, and the choice of polymerase 

is thought to be dictated by the presence and quality of the DSE; suboptimal DSEs 

are not bound by CstF64 and therefore do not recruit canonical PAP well (65, 377). 

In addition to being regulated differently to PAPα, TUT1 is thought to be more 

heavily involved in the cleavage reaction than its canonical counterpart, being 

required for CPSF3 and CPSF1 recruitment to the mRNA (65). 

FAM46A (TENT5A) is an evolutionary conserved protein essential to several dynamic 

processes including bone formation and embryonic development (67, 378, 379). It 

has putative signalling function and was thought to be mainly cytosolic, however it 

too has recently been recognised to have poly(A) polymerase activity (67). In its 

unphosphorylated state, FAM46A localises to the nucleus where it is enriched 

mainly in unwound chromatin regions and in the nuclear matrix and lamina, 

consistent with a transcription-coupled role (67). This preliminary work also showed 

regulation of its protein levels over the cell cycle and found indications that its 

poly(A) polymerase activity was important for erythroid differentiation (67). Further 

study is required to clarify the extent and biological significance of its nuclear role.  

1.2.2 Alternative polyadenylation (APA) 

Around a third of all mouse, and half of all human protein coding genes contain 

multiple poly(A) signals which result in mRNAs of varying 3’UTR length (166). 

Though this does not affect amino acid sequence of the encoded protein, longer 

3’UTRs confer increased opportunity for regulation of transcript stability (45, 288, 

380), and may also facilitate interactions with factors during translation which affect 

protein localisation and interaction partners (381, 382). Intra-gene 3’UTR diversity is 

thought to contribute to organism complexity, likely tailoring control of gene 

expression in different tissues with those genes expressed in greater numbers of 
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tissues also exhibiting more 3’ UTR isoforms (383). In addition, APA is employed in 

many dynamic cellular processes such as differentiation, autophagy, induction of 

pluripotency and immune cell activation, and short 3’UTR oncogene isoforms are 

frequently favoured in cancer cell lines (380, 381, 384–386).  

These poly(A) signals are of varying ‘strengths’ depending on the combination of 

surrounding auxiliary elements and fidelity to consensus sequences, and the choice 

of PAS seems to be at least partially dependent on availability of CPA subunits (381, 

387, 388). The effect of different CPA components on poly(A) site choice can largely 

be categorised into promoting either proximal or distal site usage, with FIP1 (CPSF 

subunit) and PCF11 (CFIIm subunit) promoting proximal PAS usage and CFIm25/68, 

PABPN1 and PABPC promoting distal site use (388–390). Shorter 3’UTRs as a result 

of PABPN1 knockdown abrogated miRNA regulation of the Cyclin D1 mRNA in U2OS 

cells, and this 3’UTR shortening seemed to be mediated through a lack of repressive 

binding of proximal PAS sites by PABPN1 (389).  

An early study found that CstF had a higher affinity for the distal PAS of the IgM 

heavy chain mRNA, and use of this PAS produced the membrane-bound form of the 

protein (381). The 64 kDa subunit of CstF was found to be the limiting factor in its 

assembly and during B cell differentiation CstF-64 is specifically repressed to reduce 

CstF formation; this thereby promotes use of the proximal PAS which results in 

secreted IgM (381, 391). This may not be indicative of a general preference of CstF 

for distal poly(A) signals; instead it is possible this site had better quality flanking 

sequences since CstF-64 recognises the GU-rich downstream element (173). Indeed, 

CstF-64 was specifically upregulated following LPS stimulation of RAW macrophages, 

leading to an increase in proximal PAS selection in a reporter mini-gene (392). 

Not only can the abundance of 3’ processing factors affect poly(A) site choice, but so 

it seems, can their post translational modifications. CFIm regulates poly(A) site 

choice depending on presence of the USE and interacts with the CPSF subunit, FIP1 

through arginine-serine repeat domains in CFIm68 and CFIm59 (334, 362). 

Hyperphosphorylation of CFIm68/59 disrupts this interaction, presumably negating 

the pro-cleavage effect of USE presence, though this does not seem to have been 

tested (362). Upon repression of TORC1 activity in Drosophila, CPSF6 (CFIm68) is 

phosphorylated, promoting its nuclear translocation and consequent 3’ UTR 
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lengthening of a certain transcripts involved in autophagy (386). APA can be further 

regulated by factors outside the canonical 3’ processing machinery. The U1 snRNP 

can prevent premature cleavage within the gene body and also promote use of 

distal poly(A) sites by blocking cleavage ~1 kb downstream of itself in a process 

known as telescripting (393, 394). This may be achieved by U1 binding to the CPA 

machinery and preventing its interaction with the CFIm68 subunit (395).  

1.2.3 Cytoplasmic polyadenylation 

The canonical role for cytoplasmic polyadenylation is in translational activation of 

dormant mRNAs during oogenesis and early development by extending short 

poly(A) tails to a length sufficient for translation (9, 13, 396–400). This is thought to 

be the main setting in metazoans in which poly(A) tail length correlates with 

translation efficiency, whereas the current consensus is that this correlation does 

not generally exist in somatic cells (11, 13, 62, 325, 326, 401). This absence of a 

correlation may be confounded by an abundance of highly expressed mRNAs 

possessing only medium length tails which could mask any trends in less stable 

transcripts (11, 326). Among this group of mRNAs are the ribosomal protein 

transcripts which interestingly also experience only minimal changes in poly(A) 

length during egg activation (13). Outside of development, cytoplasmic 

polyadenylation has been described in neuronal cells and the liver, as well as in 

mitotically dividing HeLa cells, with functions in long-term memory, circadian control 

and entry to M-phase respectively (66, 330, 331, 402). These dynamic processes 

perhaps benefit from cytoplasmic polyadenylation as a means to respond rapidly to 

signals without needing to wait for transcription and export; this is particularly 

relevant in the case of neurons where the site of translation may be far from the 

nucleus (403). Similar rapid-response systems have been observed, such as nuclear 

storage of polyadenylated pre-mRNAs which are spliced upon neuronal activation 

(404).  

Cytoplasmic polyadenylation relies on the presence of both the canonical PAS 

hexamer and a cytoplasmic polyadenylation element which are bound by CPSF and 

one of four CPE-binding proteins (CPEBs 1-4), the latter of which interact via 

Symplekin (329, 331, 396, 397, 405, 406). Polyadenylation is itself carried out by 

either canonical PAP or the specific cytoplasmic PAP, GLD2 (PAPD4) (9, 399, 400). 



29 
 

Additional cytoplasmic-acting non-canonical PAPs have been identified. PAPD5 

(TENT4A) and PAPD7 (TENT4B) confer additional stability to target mRNAs by 

incorporating occasional guanosine residues to generate a mixed tail (407). These  

G residues cause the major deadenylases to stall, perhaps through disruption of the 

stacked formation that can be observed in adenosine-only tails which is thought to 

be important for recognition by these complexes (407, 408). The increased stability 

conferred by a mixed tail is exploited by hepatitis B and human cytomegalovirus; 

these incorporate sequences in their transcripts which form pentaloop structures 

that are recognised by ZCCHC14, leading to recruitment of TENT4 (PAPD5/7) (409). 

FAM46C (TENT5C) was recently identified to possess PAP activity, affecting the 

stability of a subset of mRNAs which pass through the ER/Golgi apparatus and 

promote cell death (410). 

1.2.4 Control of poly(A) tail length 

1.2.4.1 Inconsistencies in poly(A) length studies 

It was originally thought that a poly(A) tail of 150-250 nucleotides was uniformly 

added to all higher eukaryotic transcripts, save those coding for histones (56, 179, 

269, 324, 327, 363, 411). This figure was initially obtained by radiolabelling 

experiments in HeLa cells, ranging from 12 minute to 48 hour labelling periods (269, 

324, 411). These measurements were corroborated by in vitro experiments showing 

that PAP could perform rapid processive polyadenylation up to around 250 nt 

through co-stimulation by PABPN1 and CPSF; above this length the co-stimulation 

ceased (55, 56, 179, 363, 412). More recent endeavours to study poly(A) tail length 

on a global scale have found that the majority of poly(A) tails present in cells are 

significantly shorter than earlier measurements (median ~60 nt) and that 

considerable heterogeneity exists, however only total RNA (i.e. a mixture of nascent 

and partially deadenylated transcripts) has been studied, and information about the 

poly(A) lengths of newly made mRNAs (i.e. initial poly(A) tail length) is lacking (11, 

325, 326). Thus, partial deadenylation presents an obvious argument to explain 

differences in observed poly(A) tail lengths. Additional study of nascent poly(A) 

length control has been very limited (250, 413). 

Although deadenylation could feasibly contribute substantially to the differences 

observed, some inconsistencies remain. In particular, a 48 hour labelling experiment 
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– which should have approximately captured steady state - still showed a substantial 

population of cytoplasmic (or at least polysome-associated) RNAs to possess ~200 nt 

tails (324). This was accompanied by a shorter and broader peak below 80 nt, more 

akin to the results obtained by global deep-sequencing experiments. Though it 

would be tempting to speculate that the longer-tailed population comprises some 

different RNA species, this seems unlikely since the only peaks in the nuclear 

fraction are a similarly long peak and another shorter and broader peak which has a 

much lower modal length that its cytoplasmic counterpart. This either suggests that 

more modern experiments have failed to capture the long tails originally detected, 

or that the original measurements were flawed in some way. For example, size 

determination may have been inaccurate, or the long labelling period may have 

affected cell behaviour. Crucially, the position of the longer-tailed peak is similar in 

the nuclear and polysomal fractions, suggesting that cytoplasmic deadenylation may 

not lead to radically different poly(A) distributions between fractions (324). This 

raises the possibility that recent measures may be more reflective of nuclear poly(A) 

dynamics than is often assumed. 

One factor compounding the idea that all mRNAs are made with long tails is the 

frequent use of reporter constructs incorporating exogenous PAS /3’UTR constructs 

eg SV40, which are assumed to represent endogenous mRNAs (179, 337). Although 

these transcripts may normally undergo polyadenylation by the host machinery, it 

may be incorrect to assume that the process fastidiously reflects treatment of 

cellular transcripts. Illustrative of this: when incubated with HeLa nuclear extract, 

substrates containing the PAS of CFIm68 had considerably shorter poly(A) tails that 

were more heterogeneously distributed compared to those containing SV40 late or 

bovine growth hormone poly(A) signals (415, figure 1B). 

1.2.4.2 Initial poly(A) length regulation 

It is widely accepted that the metazoan nuclear poly(A) binding protein PABPN1 

stimulates polyadenylation and limits mRNA poly(A) tail length to ~250 nucleotides, 

however it has also been recorded to promote hyperadenylation and nuclear decay 

of viral and noncoding RNA (56, 321, 363, 364). On the other hand, nuclear 

accumulation of PABPC following expression of a viral nuclease which promotes 

cytoplasmic mRNA degradation is associated with hyperadenylation, however there 
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are conflicting results as to the direction of this relationship (271, 415–417). While it 

is possible that nuclear accumulation of PABPC is the driving force which promotes 

mRNA hyperadenylation and nuclear retention, one group found evidence that 

PABPC is reliant on association with mRNA for export and therefore that mRNA 

hyperadenylation causes nuclear accumulation of PABPC (417). The yeast 

homologue to PABPC, Pab1 instead seems to limit poly(A) length in a reconstituted 

reaction (418).  

In yeast, the predominantly nuclear poly(A) binding protein, Nab2 stimulates 

polyadenylation and provides protection against hyperadenylation, but does not 

behave with any specificity (419). Interestingly, the nuclear Pab1:Nab2 ratio may be 

important for determining poly(A) length since the exosome subunit, Rrp6 can 

displace Nab2 but not Pab1 and elicit degradation of the newly exposed stretch of 

tail (420). The mammalian orthologue to Nab2, ZC3H14, also binds the poly(A) tract 

with high affinity and prevents hyperadenylation of bulk mRNA in N2A cells (421).  

Another general factor involved in poly(A) length control is nucleophosmin which 

associates with the majority of poly(A)+ mRNAs upstream of the PAS to limit tail 

length, its depletion leading to hyperadenylation (414, 422). Reports exist both of 

NPM1 association requiring active polyadenylation (pre-cleaved and pre-

polyadenylated transcript failed to associate with NPM1 in vitro) and of a 

requirement for correct termination of PAP activity (premature termination of PAP 

activity by cordycepin abrogated NPM1 recruitment) (414, 422). Taken together, 

these findings suggest that NPM1 may be recruited during and contribute to normal 

termination of polyadenylation.  

As introduced earlier, PAP activity itself can also be attenuated via 

hyperphosphorylation, documented so far to occur during M phase in the somatic 

cell cycle (59, 62, 63). 

1.2.4.3 mRNA-specific poly(A) regulation 

While the control of bulk mRNA poly(A) tail length has been relatively well 

documented, the few studies indicating that poly(A) tails may be regulated in 

somatic cells in a more targeted manner have been considered interesting 

exceptions (423–428). Early experiments found mouse globin mRNAs possess ~50 nt 
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tails at steady state (18 hour incubation with radioisotopes), a result consistent with 

widespread reports of prevalent medium length tails, particularly on highly 

expressed mRNAs (325, 326, 423). Even shorter tails (12-30 nt) were discovered on a 

subset of mRNAs enriched for translation, mitochondrial and growth functions at 

steady state in human liver tissue (428). The mRNAs in this subset contained both 

the nuclear PAS and the cytoplasmic polyadenylation element (CPE), suggesting that 

production of stable mRNAs with short tails is not a phenomenon limited to early 

development. Although these are not themselves evidence for message-specific 

control of initial poly(A) length, they indicate that the story is likely not as simple as 

a blanket 200-250 nt tail acting as timer across all mRNAs as previously laid out.  

Studies of poly(A) regulation of nascent mRNA have mainly focused on the poly(A) 

limiting element (PLE), a 23 nt sequence present in the terminal exon of affected 

mRNAs which limits poly(A) tails to 17 nt (425, 427). The PLE was discovered in 

Xenopus albumin mRNA and its tail length limiting effects are evident on the pre-

mRNA, a result recapitulated using transferrin mRNA and pre-mRNA (424, 426). This 

suggests either impaired tail synthesis or early targeted rapid deadenylation is at 

play. Plasmids encoding PLE-containing transcripts also yielded mRNAs with short 

poly(A) tails in mammalian cells, indicating that the mechanism is conserved across 

species (426). The exact mechanism by which presence of the PLE in the terminal 

exon restricts poly(A) tail length is not clear, but it seems to be bound by the 

auxiliary splicing factor, U2AF which has been implicated in crosstalk between 

polyadenylation and splicing (162, 427, 429).  

Outside of work on the PLE, the main example of regulated nuclear poly(A) length is 

on the eNOS mRNA. In this case, increases in laminar flow stress on endothelial cells 

cause a switch from <25 nt to long poly(A) tails, simultaneously with increased 

transcription (413). As with cytoplasmic polyadenylation this led to an increase in 

translational efficiency, but crucially the changes to poly(A) tails on eNOS transcripts 

were nuclear in origin and occurred in somatic cells. 

Recently detected widespread deviation from the purported 200 nt length has been 

suggested to occur via targeted cytoplasmic pruning by deadenylases (326). This is 

not a new idea; yeast Saccharomyces cerevisiae 3’ end processing extracts lacking 

poly(A) nuclease (PAN) produced transcripts with 200 nt poly(A) tails instead of the 
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wild type 60-80 nt, indicating an additional role for deadenylation in 3’ processing 

(430). While targeted trimming by deadenylases unifies otherwise contradictory 

early and recent poly(A) length measurements, it does not sit comfortably as a 

universal rule. Trimming represents a straightforward system for tailoring the tails of 

unstable mRNAs which may already be bound in their 3’UTRs by deadenylase-

interacting factors, however, it seems a wasteful solution for constitutively highly 

expressed mRNAs which are destined to possess much shorter poly(A) tails for the 

majority of their lifetimes. However, it cannot be ruled out that a 250 nt tail fulfils 

some brief but essential function, perhaps in escaping immediate degradation.  

Previous work showed differences in poly(A) tail length between reporters 

containing poly(A) signals of different origins (415, figure 1B). Although this implies 

that 3’ end sequences have the capacity to influence poly(A) tail length at the point 

of synthesis, investigation of such a relationship has been minimal (431–433). More 

recently, a weak positive correlation between 3’UTR length and poly(A) length was 

observed when investigated with the poly(A) deep sequencing technique,  

FLAM-Seq. FLAM-Seq uses the PacBio platform to measure the tail lengths of full 

length cDNAs (and can thus distinguish between 3’UTR isoforms) (433). Though this 

correlation is weak, it may indicate existence of subsets of mRNAs with stronger 

and/or different relationships. Any potential specificity need not be limited to 

poly(A) signals and their surrounding elements but could depend on other 

sequences in the 3’UTR; nuclear recruitment of Tristetraprolin (TTP) to AU-rich 

elements for example, inhibits polyadenylation of the containing mRNA (431). This is 

purportedly though simultaneous binding of both PABPN1 and PAP by TTP. This 

finding is complicated by the known role of TTP in recruiting the CCR4-NOT 

deadenylase complex for cytoplasmic deadenylation, however, in vitro binding 

assays do lend some credibility to a model of direct PAP inhibition (255, 431).  

 Roles of polyadenylation 

The eukaryotic mRNA poly(A) tail has established roles in stability, export and 

translation efficiency (1, 2, 10, 11, 13, 19, 23, 26, 62, 269–271, 274, 325, 398, 434). 

Current understanding is that the relationship between each of these properties and 

poly(A) length is however, not universal and instead varies depending on the mRNA, 

subcellular location, and cell state (8, 13, 62, 250, 272, 274, 326, 417, 435).   
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1.3.1 Poly(A) binding proteins 

The presence and lengths of poly(A) tails are detected through binding of poly(A) 

binding proteins (PABPs), which can mediate interactions with other cellular 

machinery, such as that involved in nuclear export, deadenylation and translation (2, 

20, 24, 28, 50, 321, 436–441). Importantly, the canonical PABPs have been 

documented to bind the poly(A) tail in multiple copies, causing signature surges and 

pauses in deadenylation, affecting recognition by deadenylases, and behaving as a 

measuring stick during poly(A) synthesis (28, 50, 364, 412, 442). At least one report 

suggests that multiple PABP binding is not homogenous, and that PABPN1 and 

PABPC1 may bind the poly(A) tail simultaneously, with both proteins able to 

immunoprecipitate a number of pre-mRNA transcripts, but not histone mRNAs 

(443).  An early study also suggested that PABP II (PABPN1) and PABP I (PABPC1) 

have opposing effects on PAP activity, though a role for PABPC in limiting poly(A) 

length is incongruous with reports that increased nuclear localisation of PABPC is 

associated with nuclear retention of hyperadenylated transcripts (350, 415, 417). 

One study found that depletion of PABPN1 in human cell lines did not affect β-actin 

poly(A) length, but resulted in compensatory upregulation and nuclear localisation 

of PABPC isoforms, suggesting that the two proteins have some functional 

redundancy (444). 

1.3.1.1 PABPN1 

As its name suggests, nuclear poly(A) binding protein (PABPN1) is a predominantly 

nuclear poly(A) binding protein that is conserved across metazoans and has a known 

homologue in fission (but not budding) yeast (54, 445). It is thought to transiently 

locate to the cytoplasm while attached to newly exported mRNAs, before being 

dislodged by the ribosome during the pioneer round of translation (54, 363, 420, 

446–448). Examination by cryoimmunoelectron microscopy found little evidence of 

cytoplasmic PABPN1, but did find that it was associated with RNA Pol II (54).   

The most well-known function of PABPN1 is its stimulation of poly(A) polymerase 

(PAP) during nuclear polyadenylation. In the absence of PABPN1, PAP activity is 

minimal, meaning that the first ~10-11 nucleotides – the number required for 

PABPN1 to bind – is very slow before accelerating, resulting in two observed phases 

of tail addition (55, 56, 179, 350, 351, 363, 412). In vitro experiments using pre-
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cleaved RNA substrates found that PAP activity was stimulated significantly upon 

binding of the first PABPN1, up to a maximum tail length of 200-250 nt, above which 

PAP activity returned to being minimal (56, 412). Maximum PAP stimulation was 

also reliant on CPSF (56, 412). The ability of PABPN1 to stimulate PAP up to a 

maximum length gave rise to the idea that PABPN1 could act as a molecular ruler, 

with multiple copies binding until PAP is mechanically unable to maintain 

association with CPSF (364, 412). Consistent with a role for PABPN1 in stimulating 

PAP, depletion of PABPN1 caused shorter poly(A) tails in mouse myoblasts (436).  

In addition to promoting polyadenylation, PABPN1 has been reported both to 

mediate the export of mature mRNAs through interaction with Aly/REF, and to 

target hyperadenylated RNAs to the nuclear exosome for degradation (2, 231, 322, 

367). The necessity of the PABPN1 interaction for mRNA export is unclear, as 

Aly/REF also has documented interactions with both the cap binding complex (CBC) 

and exon junction complexes (EJCs) (2, 5); however, it may be that the Aly/REF – 

PABPN1 interaction is important for redirecting mature mRNAs from a nuclear 

degradation pathway (231). More rigorous binding assays between PABPN1 and 

export components are required in order to isolate any direct effects on export from 

those attributable to the established role of PABPN1 in promoting poly(A) tail 

synthesis.  

Despite its apparent ubiquity and - by current understanding - universal role in 

poly(A) tail formation and length control, additional alanine residues in the  

N-terminal region of PABPN1 specifically affect a specific subset of muscles, causing 

oculopharyngeal muscular dystrophy (OPMD) (449). Recent work showed that 

Pabpn1 mRNA is unstable and exists at particularly low steady state mRNA and 

protein levels in the muscles affected in OPMD (450). The instability of the Pabpn1 

mRNA apparently derives from an AU-rich element (ARE) within its 3’UTR which is 

bound by the ARE-binding protein HuR (451). Although HuR binding is usually 

considered to stabilise transcripts, this may not be by preventing deadenylation; 

indeed, HuR itself can also recruit deadenylases (452–454).  

PABPN1 also exhibits autoregulation, achieved through binding to an A-rich stretch 

in its 3’UTR (312). Binding to this sequence inhibits splicing of the 3’ terminal intron, 

promoting nuclear retention and degradation by the nuclear RNA exosome. In 
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conditions of low PABPN1 protein, the 3’ terminal intron is efficiently spliced and 

the mRNA successfully exported and translated.  

1.3.1.2 PABPC 

Unlike PABPN1, many isoforms of PABPC exist, with PABPC1 the best studied, likely 

due to its more widespread expression (455). Additional cytoplasmic poly(A) binding 

proteins have been described, including PABPCs 3-5, PABPC1L and PABPC4L but 

these rarely feature in the literature (455–457). PABPC1 and PABPC4 contain 4 RNA 

recognition motifs (RRMs) which each bind 8 nt of RNA (28, 458). When multiple 

Pab1s (PABPC1s) are bound, RRM4 can interact with RRMs 1 and 2 of the adjacent 

PABP, forming repeated arch structures which are recognised by the PAN2-PAN3 

deadenylase (442).  

The conventional roles for PABPC1 centre around its interaction with the eIF4G 

subunit of eIF4F, the complex which replaces CBC in binding the 5’ cap after the 

pioneer round of translation (19–21, 438, 447). This has been formalised as the 

‘closed loop’ model, in which the PABPC-eIF4G interaction serves the dual purpose 

of protecting both ends of the mRNA from degradation by blocking exonuclease 

access, and of enhancing translation efficiency by reducing the need for repeated 

ribosome recruitment and assembly (19–21). Of note is the correlation between 

poly(A) tail length and translation efficiency of the Pabpc1 mRNA in the adult heart 

(434). In response to stress and hypertrophic stimuli, the poly(A) tail of Pabpc1 

mRNA is lengthened, increasing the amount of PABPC1 available for loop formation 

and thereby enhancing global protein synthesis within the cell. 

Contrary to its aforementioned role in protecting mRNA, PABPC1 has also long been 

recognised to stimulate activity of some deadenylases (24, 28, 50, 459). PABPC1 was 

initially thought only to stimulate the PAN2-PAN3 deadenylase - which has limited 

activity in its absence - and was thought to inhibit both nuclease subunits of the 

other major mammalian deadenylase, CCR4-NOT (24, 460, 461). More recent in vitro 

investigations of CCR4-NOT kinetics have found that PABPC1 can directly interact 

with and stimulate CCR4, and that CAF1 can also be stimulated indirectly via an 

interaction with BTG/Tob family proteins (28, 50, 462, 463). There have also been 

suggestions that, rather than protecting mRNAs from deadenylation, PABPC1 may 
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be more critical for preventing premature terminal uridylation, an emerging signal 

for mRNA decay (50, 369).  

Exactly what delineates the protective and de-protective roles of PABPC1 in the 

cytoplasm is unclear. It seems likely that, as with PABPN1, at least some element of 

control is through choice of PABPC1 binding partner, and that binding of the poly(A) 

tail by PABPC1 may not itself commit the mRNA to a particular fate. Binding density 

of PABPC1 is not consistent across mRNAs (464, 465) and one could speculate that 

this is important for determining interactions. Alternatively, post translational 

modifications of PABPC1 could influence its function (466).  

In addition to its cytoplasmic roles in mRNA [de-]stabilisation, PABPC shuttles to the 

nucleus (271, 415–417, 467–470). This is particularly evident in viral infection and 

under other stress conditions (271, 415–417, 468–470). Nuclear PABPC 

accumulation is accompanied by accumulation of hyperadenylated transcripts in the 

nucleus and a reduction in gene expression (415, 470, 471). This co-accumulation 

led to the hypothesis that PABPC induces hyperadenylation (415). The dependency 

of viral-induced nuclear accumulation of hyperadenylated transcripts on PABPC was 

confirmed by combined knockdown of PABPC1 and 4. PABPC1/4 knockdown 

prevented nuclear enrichment of poly(A)+ RNA which normally occurs in response 

to expression of the viral SOX endonuclease (415). Given the many levels of PABPC 

involvement and long duration of RNAi-mediated depletion, it is hard to conclude a 

direct effect on nuclear hyperadenylation. The sufficiency of PABPC1 translocation 

in causing mRNA hyperadenylation and nuclear retention was however confirmed 

by expressing a nuclear localization signal (NLS) – tagged PABPC1. Forced nuclear 

localisation of PABPC1 recapitulated viral protein-induced observations of nuclear 

retention (measured by in situ hybridization) and hyperadenylation (northern 

blotting of a reporter mRNA) (415). The effect on hyperadenylation was reliant on 

the first two (of four) RNA recognition motifs (RRMs) of PABPC1, suggesting that the 

effect on hyperadenylation may via direct interaction with the RNA, though these 

RRMs also interact with eIF4G (415, 472). A more recent study involving expression 

of the same viral endonuclease found that siRNA knockdown of PABPC1/4 also 

prevented endonuclease-induced depletion of Pol II from promoters (470). 
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Additional work by the same group showed that PABPC1 is routinely shuttled to the 

nucleus and is mainly exported via association with mRNAs, leading to - or at least 

contributing to - its nuclear accumulation when mRNA export is impaired (416). In 

this model, PABPC1 is transported to the nucleus by default via importin α, through 

an interaction involving regions of its RRMs. Messenger RNA competes for binding 

of these RRMs such that when cytoplasmic mRNA/poly(A) levels are high, PABPC1 is 

not transported to the nucleus (416).  

This model is largely in keeping with observations made in the context of UV stress. 

Here, PABPC1 and 4 were enriched in nuclei 15 hours after UV exposure, and this 

was accompanied by a nuclear accumulation of poly(A)+ RNA which appeared to 

occur faster than PABPC redistribution (417). Unlike in viral infection, PABPC1/4 

knockdown did not affect the ability of stress to cause redistribution of mRNA and 

instead, blockage of mRNA export caused nuclear accumulation of PABPC (417).  

How this co-accumulation of PABPC and hyperadenylated mRNA can be reconciled 

with earlier reports that PABP I (PABPC) in nuclear extracts inhibits polyadenylation 

is not clear, though it is perhaps possible that PABPC inhibits both PAP and some 

nuclear deadenylase activity, leading to a net increase in poly(A) tail length (350).  

1.3.1.3 Non-canonical PABPs 

Binding of the poly(A) tail is not only the remit of the canonical PABPs. Several novel 

PABPs have been identified, though only ZC3H14 has been well characterised (455, 

473, 474). The mammalian zinc finger protein ZC3H14 is a recently identified poly(A) 

binding protein orthologous to Nab2 in yeast and Drosophila (421, 473). Nab2 also 

exhibits functional similarity to mammalian PABPN1 by stimulating PAP and 

protecting against hyperadenylation (419).  

Four isoforms of ZC3H14 have been recorded, three of which are ubiquitously 

expressed and nuclear, and the fourth of which is expressed predominantly in the 

testes and brain and is cytoplasmic (475). ZC3H14 is particularly important for 

neuronal function; mutations in ZC3H14 affecting isoforms 1-3 have been identified 

in intellectual disability and deletion of exon 13 (affecting all four isoforms) in mice 

leads to memory impairment (16, 476). The effect of exon 13 deletion on poly(A) 

length was compared between different areas of the brain, and the liver where 



39 
 

ZC3H14 is also highly expressed; curiously, there was little difference in bulk poly(A) 

length distribution in the liver or cortex samples, in contrast to a modest increase in 

bulk poly(A) length in the hippocampus (16). This is consistent with the observation 

that mutant Nab2 led to an increase in bulk poly(A) length in Drosophila heads, 

whereas overexpression of WT Nab2 caused shorter poly(A) tails, a phenotype 

which could be rescued by overexpression of the PABPN1 orthologue Pabp2 (476). 

These data suggest that in neuronal cells at least, PABPN1 and ZC3H14 may act 

antagonistically to achieve correct bulk poly(A) length. It is worth mentioning that 

the increases in poly(A) length observed in Nab2 and Zc3h14 mutations, rather than 

exhibiting a clear shift to longer tails, have a characteristic increase in abundance of 

long tails without a concomitant depletion of short tails (16, 476). This may be due 

either to an abrogation of regulation leading to more ‘fuzzy’ poly(A) dynamics, or to 

only a subset of mRNAs being affected. Importance of ZC3H14 for the poly(A) 

lengths of only a subset of mRNAs is consistent with the finding that depletion of 

ZC3H14 only affected the levels of 1 % of expressed transcripts compared to 17_% in 

PABPN1 depleted cells (477). 
 

The non-canonical cytoplasmic PABPs, LARP4 and hnRNP-Q1 have also been 

identified (455). LARP4 can bind PABPC directly, in an interaction stabilised b y RNA 

binding (455, 474). Its main poly(A) binding-mediated effect seems to be to stabilise 

a subset of transcripts. Since LARP4 associates with the 40S ribosome subunit and 

with translating polysomes, it has been suggested that LARP4 binding predominantly 

affects translating mRNAs (455, 474). More recently, LARP4 was shown to 

specifically stabilise mRNAs with poly(A) tails between 30 and 75 nucleotides (478). 

hnRNP-Q1 is ubiquitously expressed and is involved in multiple post-transcriptional 

processes. hnRNP-Q1 possesses specific poly(A) binding activity which enable it to 

translationally repress target mRNAs by blocking PABPC binding (455).  
 

1.3.2 Polyadenylation and mRNA biogenesis 

Based solely on textbook descriptions, and indeed those presented earlier, it seems 

intuitive to visualise mRNA synthesis as a linear production line. Although some 

modifications precede others by necessity – a transcript lacking a 5’ cap is unlikely to 

survive long enough to be polyadenylated – the actual timeline is less clear for 

others.  
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Of particular note is the mutually effectual relationship between polyadenylation 

and splicing (107, 161, 162, 429, 479–482). In higher eukaryotes where introns tend 

to be long, exon definition rather than intron definition is thought be the prevailing 

mode of splicing (159, 161, 479, 483). In this case, rather than the splice sites either 

end of a given intron interacting, splice sites (SS) interact across exons, such that the 

3’ SS of the upstream intron contacts the 5’ SS of the downstream one. Because of 

this reliance on an adjacent intron, removal of the terminal introns become 

problematic, since for example the 3’ SS of the 3’- most intron would have no 5’ SS 

to interact with, short of looping round to interact with that of the first intron. 

Removal of these introns may instead rely on cooperation of the spliceosome with 

either the CBC or 3’ processing machinery (161–163, 429, 479, 481, 484).  

Indeed, metabolic labelling and chromatin fractionation followed by nanopore 

sequencing showed that in human cells, only around 60 % of cleaved transcripts and 

<10 % of uncleaved transcripts have a spliced terminal intron, suggesting that 

splicing of this intron occurs alongside or after 3’ processing (121). The study also 

showed that in human K562 cells, very little splicing occurred until Pol II had 

transcribed at least 4 kb beyond the 3’ splice site (SS), whereas in Drosophila S2 cells 

most splicing was completed while Pol II was 1-2 kb downstream of the 3’ SS (121). 

Consistent with this, RNA-Seq of chromatin and nucleoplasmic fractions during the 

lipid A response in mouse macrophages showed that 3’ end processing occurs 

quickly after transcription, whereas splicing of within some genes is much slower 

(485). This delayed splicing is caused by slow ligation between certain exon pairs, 

and leads to retention on the chromatin of incompletely spliced, but cleaved and 

polyadenylated transcripts. In yeast on the other hand, splicing was shown to be  

50 % complete by the time Pol II had transcribed only 45 nt past introns, perhaps 

due to shorter introns allowing more efficient removal (486).  

The C-terminal domain of PAP stimulates splicing via U2AF65 and in turn, 

recognition of the final intron stimulates 3’ processing (107, 162, 480). Stimulation 

of 3’ processing may also involve interaction of U2AF65 with CFIm (429). In yeast, 

the poly(A) binding protein Nab2 is also required for splicing of a subset of mRNAs, 

particularly those encoding ribosomal proteins or containing large introns (482).   
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As well as acting synergistically, splicing machinery can inhibit polyadenylation. 

Binding of the U1 snRNP prevents premature cleavage and polyadenylation, and can 

influence alternative polyadenylation by a process known as telescripting (393–395). 

This may be achieved by U1 binding to the CPA machinery and preventing its 

interaction with the 68 kDa subunit of CFIm (395). Early work also suggested that U1 

can interact with and inhibit PAP directly (487). Further linking splicing with 

polyadenylation, the splicing factors SRSF3 and 7 promote distal and proximal PAS 

use respectively and this may relate to their ability to interact with CFIm68 (237, 

488).  

3’ end processing may be also be linked to presence of a cap. Depletion of the CBC 

from HeLa cell nuclear extract greatly reduced cleavage of labelled pre-mRNA, but 

only slightly inhibited polyadenylation of a pre-cleaved transcript (489). This is 

thought to be due to the CBC stabilising complexes containing both CPSF and CstF 

(cleavage reaction), but not those lacking CstF (polyadenylation reaction). 

1.3.3 Polyadenylation and mRNA export 

Along with a 5’ cap and exon junction complexes (EJCs), a poly(A) tail is indicative of 

mRNA maturity and signals suitability of the mRNA for export (2, 5, 490). As touched 

on in discussion of PABPCs however, too long a poly(A) tail is associated with nuclear 

retention (415). In yeast the poly(A) binding protein Nab2 is required for poly(A)+ 

RNA export (491). 

It is not clear exactly how the poly(A) tail signals for export since PABPN1 has no 

known interactions with the export machinery that are not shared by the CBC or 

EJCs (2, 490). It is possible that the process of polyadenylation rather than the tail 

itself is accountable, though no clear mechanism has been characterised. 

Nucleophosmin (NPM1) is deposited on the 3’UTRs of mRNAs unless 

polyadenylation is prematurely terminated by cordycepin (414, 422). Reduction in 

NPM1 leads to hyperadenylation and nuclear retention of poly(A)+ RNA and may 

therefore be an appropriate candidate for coupling the two processes (414). It has 

also been suggested that dissociating PAP may signal for nuclear export (490). 

Several elements of the cleavage machinery also have reported links to export. In 

yeast a cleavage factor component, Pcf11, is required for recruitment of the export 
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factor Yra1 (492). In mammalian cells, CFIm68 shuttles between the nucleus and 

cytoplasm and promotes export through direct interactions with NXF1 (202). The 

TREX component THOC5 can interact with CPSF2 following serum stimulation of 

mouse cells and this may be required for recruitment of CPSF2 to a subset of 

immediate early genes (493).  

1.3.4 Poly(A) tail and translation efficiency 

Translation efficiency (TE) is often recited as one of the three main functions of the 

poly(A) tail, however the relationship appears to be less straightforward than 

originally thought. While a positive correlation exists during early development, a 

similar rule does not seem to hold true in somatic cells, with a few exceptions (11, 

13, 62, 325, 326, 396, 397, 433, 434). Two high-throughput studies identified a 

moderate positive correlation during early development in vertebrates and 

Drosophila but found no correlation following onset of zygotic transcription (11, 13). 

Although these setups provide huge amounts of information, it is important to 

consider factors which may influence detection of a trend. For example, in one study 

the range of mean poly(A) tail lengths is much larger prior to zygotic transcription 

than afterwards, and this range importantly includes tails which would be too short 

to host a single PABPC (and may therefore not be highly translated) (11). That said, 

another study which drew the same conclusion in Drosophila found similar ranges 

and minimum values in immature and mature oocytes (13). Since PABPC is thought 

to enable formation of a closed loop which enhances translation, it is not surprising 

that mRNAs with tails too short to bind PABPC experience poor translation 

efficiency; indeed, other work has suggested that a correlation exists for tails below 

20 nt in somatic cells (20, 21, 62).  

Outside of early development, correlation between poly(A) length and translation 

efficiency has been identified in a number of dynamic processes in which 

transcriptional changes may present too great a delay in responding to signals (62, 

66, 330, 434). These systems include examples both of up and down-regulation of 

TE through cytoplasmic polyadenylation and targeted deadenylation respectively.  

In the context of unperturbed somatic cells, numerous studies have refuted the idea 

that TE is correlated with poly(A) tail length (11, 13, 325, 326, 433). In these systems 

however, a large proportion of the mRNA population is comprised of stable, highly 
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expressed mRNAs with medium length tails (326). Since these mRNAs already 

possess unexpectedly short tails for their stability, it is reasonable to consider that 

the mechanism conferring this stability may also enhance their translation efficiency 

in a tail length-independent manner. The PABPC-interacting protein LARP1 for 

example, affects translation of 5’ TOP mRNAs. In one study LARP1 also promoted 

association with polysomes, however, the opposite effect on translation efficiency 

was observed by other groups (494–497). Even if this is not the case, these mRNAs 

appear to be a somewhat ‘special case’ when it comes to tail length and it would be 

prudent to examine the remaining pool in their absence.  

High throughput studies often compare summary statistics such as the mean of 

medians of distributions, which may mask any trends at the level of individual 

genes. It would therefore be interesting to compare poly(A) tail length with TE over 

multiple transcripts from the same gene to see if there is any correlation. 

Furthermore, some groups, while focusing on accurate high throughput poly(A) 

measures, often re-use existing translation efficiency data or use codon optimality 

as a proxy rather than performing both measurements on the same biological 

samples (326, 433).  

1.3.5 Poly(A) tail and mRNA stability 

Since canonical mRNA turnover requires that deadenylation occurs prior to 

degradation, poly(A) tail length has long been considered an indicator of mRNA 

stability (269, 270). While long cytoplasmic poly(A) tails are protective, oligo(A) tails 

are an excellent substrate for 3’ -5’ degradation by the RNA exosome (498). 

Recent work across several species has shown that many highly stable mRNAs only 

possess medium length rather than long tails, suggesting that a universal tail length-

stability relationship may not be applicable (325, 326). More recently it was shown 

that once poly(A) tails are short, decay rates are still extremely variable (1000-fold 

variation in decay constants) (250). Decay rate and polyadenylation were not 

completely uncoupled though, since mRNAs which undergo rapid deadenylation are 

degraded faster than slowly deadenylated transcripts once their tails are short. Of 

perhaps more consequence for mRNA stability is the density of PABPC binding on 

the tail (465), though correlation was weak and additional factors may be involved. 
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For example, in addition to its effect on translation LARP1 specifically stabilises  

5’ TOP mRNAs and was also shown to bind poly(A) tails (494, 496, 499). 

While presence of a poly(A) tail is generally associated with cytoplasmic mRNA 

stability, eukaryotic poly(A) tails are not universally protective. Polyadenylation of 

some RNAs (eg. spliced transcripts from snoRNA host genes, some lncRNAs and 

premature termination products) in the nucleus instead promotes their degradation 

by the nuclear RNA exosome (319, 321, 322). Exosome-mediated degradation of 

mRNA can also occur in the cytoplasm and may be enhanced by the presence of 

oligo(A) tails (500).  

 Deadenylation 

In the canonical model for bulk mRNA turnover, the first step is deadenylation in 

which poly(A) tails are removed (26, 269, 460). Below ~20 nt, cytoplasmic poly(A) 

binding protein (PABPC) is thought to no longer bind (28, 62, 501, 502). This disrupts 

the PABPC-eIF4G interaction and releases the mRNA from the closed loop 

formation, leaving the 5’ end vulnerable to decapping (19, 20). The cap is removed 

by DCP1-DCP2, which is activated by PAT1, DDX6 and the LSM1-7 complex, and the 

exposed mRNA is then degraded in the 5’-3’ direction by XRN1 (26, 280, 281, 283, 

285).  

Deadenylation can be performed by several different complexes within the 

eukaryotic cell. Although many confirmed and putative deadenylases have been 

identified, two complexes – PAN2-PAN3 and CCR4-NOT are thought to be 

responsible for bulk mRNA deadenylation (26, 50, 503). Other deadenylases affect 

subsets of transcripts, and at least one of these is specifically regulated according to 

internal and external stimuli (68, 504–506). Of the two major deadenylases,  

CCR4-NOT is considered dominant, though deletion of any single nuclease is not 

lethal in yeast (50, 503). PAN2-PAN3 is thought to operate early in deadenylation on 

long poly(A) tails since it requires stimulation by PABPC, and removal of the 

remaining tail by CCR4-NOT is suggested to follow (26). Recent cryo-EM of a 

reconstituted system corroborates this model since adjacent PABPCs interacted to 

fold the tail into a conformation recognisable by PAN2-PAN3 (442). Knockdown of 

PAN2-PAN3 had no effect on bulk mean poly(A) length in mammalian cells, 

suggesting that its action is easily compensated (50). CCR4-NOT contains two 
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nucleases (CCR4 and CAF1) which are differently affected by PABPC, and the 

complex is able to fully deadenylate synthetic constructs in the presence or absence 

of PABPC in vitro (28, 50). Depletion of CCR4-NOT components in mammalian cells 

caused bulk poly(A) lengthening (50).   

Deadenylases fall into two superfamilies: DEDD (from conserved Asp and Glu 

residues) and EEP, exonuclease-endonuclease-phosphatase (507). CAF1, PAN2 and 

PARN are all members of the DEDD family, while CCR4 belongs to the EEP family.  

1.4.1 CCR4-NOT 

The CCR4-NOT complex is a eukaryotic-conserved ~600-730 kDa complex (observed 

mass of 659±4 kDa in humans) (31, 308, 508) thought to be responsible for most 

mRNA deadenylation. It is made up of 8 subunits, 6 of which (CNOT1, CAF1, CCR4, 

CNOT2, CNOT3 (Not5 in yeast) and CNOT9) are common between mammals and 

yeast (308, 509). Figure_1.4 gives an overview of CCR4-NOT subunits and their 

functions. It is not clear how stringently all 9 subunits are incorporated at any given 

time. In addition to its deadenylase activity, CCR4-NOT possesses an ever-growing 

list of additional functions (33–36, 39, 41–44, 143, 147, 307, 510, 511). This broad 

repertoire of functions may be mediated by the diversity of its constituents, which 

comprise two kinetically distinct nucleases (CCR4 and CAF1), and a number of other 

subunits organised into 3 non-nuclease modules: NOT, CNOT9 and CNOT10/11, 

which can contact a wide range of binding partners (31, 36, 42, 44, 46, 51, 256, 305, 

511–516). These subunits are held together by the scaffold subunit, CNOT1 (27, 31, 

517). In yeast the E3 ring ubiquitin ligase, Not4, is also incorporated whereas in 

Drosophila and mammals CNOT4 is not constitutively associated (308, 515). Human 

CNOT4 could partially compensate for not4 deletion in yeast so it is thought that the 

function is conserved (518). In addition, the mammalian CNOT3 function seems to 

be provided by two subunits in yeast: Not3 and Not5, of which Not5 seems to be the 

most similar to CNOT3 (308). As well as small differences in the complex’s 

composition between yeast and humans, the conserved subunits also display some 

variation in function. For example, unlike its yeast counterpart, the human NOT 

module (CNOT2, CNOT3 and the C-terminal domain of CNOT1) is unable to directly 

bind RNA and has been suggested to serve more in a stabilisation capacity (31, 514). 

Although the work presented here is predominantly mammalian-focused, much 
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research on the activities of CCR4-NOT has been carried out in yeast due to the 

comparative ease of genetic manipulation; it is therefore prudent to hold these 

differences in mind while examining the literature. 

In mammalian cells, the NOT module comprises the C-terminal domain of CNOT1 

along with CNOT2 and CNOT3, and in yeast it also includes Not5 (31, 46, 514). The 

NOT module has mainly been implicated in transcription initiation but its presence 

also seems important for deadenylation. Indeed, CNOT3 is required for the mRNA 

deadenylation necessary to maintain the pluripotent state of mouse epiblast cells 

(12). Interestingly, CNOT3 levels are further reduced in nutrient deprivation and this 

may occur as a result of reduced mTORC1 activity (60, 519). CNOT2 is 

downregulated in highly metastatic cells and it is therefore thought to have an  

Mammalian subunits shown. Figure 1.4   Schematic of the CCR4-NOT complex. 



47 
 

antiproliferative role (520). Furthermore, in yeast, Not3 and Not5 promote The 

catalytic module comprises two nucleases: CCR4 and CAF1. In mammals, two 

isoforms of each subunit exist: with CNOT6 and CNOT6L encoding CCR4a and CCR4b 

respectively, and CNOT7 and CNOT8 encoding CAF1 (521). The prevalence and 

relevance of each isoform/combination of isoforms in vivo does not seem to have 

been widely studied. Unless otherwise specified, CAF1 and CCR4 will be used here to 

refer to CNOT7/8 and CNOT6/6L respectively. CCR4 does not directly interact with 

CNOT1 and its interaction is mediated by CAF1 (516, 522–524). CNOT7 (CAF1) 

promotes metastasis in a manner which is dependent on both its deadenylase 

activity and interactions with CNOT1 and TOB1 (15). In another study, CNOT6 

(CCR4a) and CNOT6L (CCR4b) were both required for cell proliferation and CNOT6L 

knockdown also decreased cell viability (525). 

While the human NOT module promotes deadenylation by stabilising the complex, 

promotion of deadenylation by CNOT9 and CNOT10/11 in vitro involves direct 

binding of the RNA (31). CNOT9 also mediates interaction of CNOT4 with the rest of 

the complex in mammals (515). In yeast at least, Not4 or Not5 deletion causes 

hypoacetylation of histones H3 and H4 as well as reduced H3K4 tri-methylation 

(526, 527). Ubiquitylation of the eS7 ribosome subunit by Not4 is also required for 

downstream interaction of the Ccr4-Not complex with the ribosome in yeast (44). In 

addition, yeast Not4 indirectly promotes DNA damage-induced ubiquitylation of the 

Rbp1 subunit of Pol II following transcription arrest (43). Deletions of NOT module 

subunits in yeast produce more severe phenotypes than nuclease subunit deletions 

(308). Deletion of multiple subunits within either the NOT or nuclease modules is no 

worse than a single deletion, but combined deletion of components from both 

modules is lethal (308).  

1.4.1.1 Deadenylase activity of CCR4-NOT 

The deadenylase activity of both CCR4-NOT nuclease subunits was reported in yeast 

in 2001, though the importance of Pop2 (CAF1) in vivo is undetermined (460, 528–

530). The importance of the rest of the CCR4-NOT complex for its deadenylase 

activity - outside of mediating specific targeting - was not made clear until recently. 

Raisch et al reconstituted the human CCR4-NOT complex and examined the 

contribution of each different module to deadenylase activity (31). Activity of the 

whole complex was greater than that of the exonuclease heterodimer alone, with 
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the minimum requirement for full activity being presence of the NOT module. Not 

only was deadenylase activity enhanced, but the specificity of the nucleases for the 

poly(A) tail was also increased when they were incorporated into the complex (31). 

In the context of the nuclease heterodimer (i.e. outside the whole complex) 

inactivating mutations showed that CCR4 is both more efficient and more specific 

for the poly(A) tail than CAF1. This at first seems to be in contrast to Yi et al. who 

showed that CAF1 was more active in the heterodimer than CCR4 (50), however this 

could be down to choice of CCR4 isoform since Raisch et al worked with CCR4a but 

Yi et al used CCR4b. In contrast to work showing that deadenylation could continue 

– albeit in some cases inefficiently – with only one active nuclease, an in vitro study 

of a human BTG2-CAF1-CCR4b trimeric nuclease showed that amino acid 

substitutions in either nuclease subunit completely inhibited deadenylation (531). 

While this result contradicts the two aforementioned studies, differences in 

substrate length and reaction conditions – such as pH and ratio of protein:RNA may 

be responsible. Cooperative action of the two nucleases was also suggested by a 

recent structural study of a recombinant human CCR4-CAF1 heterodimer (532), 

compatible with the observation that both nucleases are required for deadenylation 

(531). In this study, however, active site mutations in either nuclease in a CCR4-CAF1 

heterodimer led only to slower deadenylation (at a 1:1 protein:RNA molar ratio) 

rather than complete loss of activity (532).  

There is growing evidence of distinct differences in kinetics and substrate specificity 

between the two nucleases (28, 31, 50, 460, 530, 532). That said, moderate 

functional overlap seems to exist since both subunits are able to compensate to 

some degree for mutation in the other in yeast and cell culture, as measured by 

effect on bulk poly(A) length (28, 50). Notably, although median poly(A) length was 

unchanged in cultured cells with a single mutated nuclease, knockdown of CCR4, but 

not CAF1 produced a phasing pattern which the authors attribute slow removal of 

bound PABPCs (50). Recent work suggests that both nucleases can interact with 

PABPC, but where CCR4 is stimulated directly, CAF1 relies on bridging by TOB family 

proteins (28, 50, 440, 533). Assays with reconstituted S. pombe Ccr4-Not show 

conserved inhibition of Caf1 activity by Pab1 (PABPC orthologue) (28). Furthermore, 

isolated Caf1 nuclease - but not Ccr4 - was active in the absence of Pab1. 

Interestingly, Yi et al found by using immunopurified human subcomplexes, that at a 
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certain concentration of PABPC, CAF1 was not inhibited but CCR4 was still 

stimulated (50).  
 

It was also shown that S. pombe Pab1, which includes 4 RNA recognition motifs 

(RRMs) can be dislodged from the tail one RRM at a time by Ccr4 (28). The authors 

suggest a model in which Ccr4 either forces Pab1 to peel away from the tail one 

RRM at a time, or pushes it along the tail, resulting in release of the 5’-most Pab1 

first. The sliding model fits with an early observation that a single domain of  

S. cerevisiae Pab1 was sufficient for binding, with the authors suggesting this could 

allow Pab1 to ‘transfer between poly(A) strands’ (502). Yi et al propose a 

complimentary model in which CCR4 trims the PABPC-bound poly(A) segments and 

CAF1 degrades the stretches in between (50).  

These differing reactions to PABPC may be important for determining the extent of 

deadenylation experienced by mRNAs since PABPC density varies between 

transcripts and exhibits weak positive correlation with mRNA stability and 

translation efficiency (28, 464). Indeed, Caf1 was more important for deadenylating 

mRNAs with low codon optimality, whereas Ccr4 was more general and showed no 

preference (28). Furthermore, Caf1 activity was undetectable if translation initiation 

was inhibited, whereas Ccr4 was unaffected. This is consistent with the observation 

that CNOT7 (CAF1) activity is stimulated by the DEAD-box helicase, DDX6 which has 

been shown to measure ribosome speed and thereby link translation rate with 

decay (301, 305). The above findings seem to naturally point to a model in which all 

transcripts are subject to deadenylation by CCR4, and inefficiently translated mRNAs 

are vulnerable to additional deadenylation by CAF1. The dependence of this 

additional deadenylation on translation may more easily allow for the storage of 

translationally dormant mRNAs without additional need for protection. As well as 

showing stimulation of CNOT7 (CAF1) by interaction of DDX6 with CNOT1, Meijer et 

al found that when eIF4A2 bound CNOT1 instead, CNOT7 activity was inhibited 

(305). Association of eIF4A2 with the CCR4-NOT complex may therefore be relevant 

to the storage of translationally dormant mRNAs. 

There remains the question of whether CCR4 is itself constrained by additional 

regulation in vivo since many of its presumed substrates exhibit high stability 
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despite short tails (28, 326). One possibility is the presence of additional PABPs 

which prevent deadenylation.  

1.4.1.2 Specific recruitment of CCR4-NOT 

Specific recruitment of CCR4-NOT to mRNAs is well documented, including in miRNA 

mediated decay and nonsense mediated decay (30, 40, 45, 48, 51, 254, 256, 289, 

292). Examples of specific CCR4-NOT recruitment to translation-competent mRNAs 

are depicted in figure 1.2. Of relevance to the serum response is targeting of the 

complex to mRNAs containing AU-rich elements (AREs) in their 3’UTRs via 

interaction of CNOT1 and CNOT9 with Tristetraprolin (TTP, encoded by ZFP36) (51, 

292). HuR on the other hand, is thought to stabilise ARE-containing mRNAs by 

inhibiting degradation but not deadenylation (452). AREs can also be bound by 

KSRP, but the containing mRNAs are degraded by PARN and the exosome rather 

that via a CCR4-NOT mediated pathway (253, 534). CCR4-NOT can be targeted to a 

group of ~50 mRNAs enriched for developmental and inflammatory genes via 

recognition of a stem-loop constitutive decay element in their 3’UTRs by Roquin 

(45). In Drosophila at least, Roquin interacts via the Cnot9 subunit (535). In addition, 

the human Pumilio proteins can recruit CCR4-NOT, via CAF1, to a conserved 

UGUANAUA element in the 3’UTR of target mRNAs, including those involved in 

developmental signalling, fatty acid metabolism and transcription regulation (254, 

536). The RNA binding protein TDP-43, which has roles in splicing, also recruits 

CCR4-NOT via the CAF1 subunit to destabilise mRNAs containing UG repeats in their 

3’UTRs (537, 538). In vertebrates, Nanos recruits CCR4-NOT to Pumilio-bound 

mRNAs through a direct interaction with CNOT1, whereas in Drosophila the  

C-terminal domains of Not1-3 are involved (48, 539). The human NOT module also 

interacts in vitro with the HELZ helicase which may target a subset of mRNAs 

involved in nervous system development for translation repression or decay (30). 
 

As well as being recruited to conserved sequence elements, the CCR4-NOT complex 

can be targeted to transcripts by miRNAs, which form ~6 bp matches with their 

target mRNAs. Translational repression and destabilisation by miRNAs relies on the 

incorporation of the mature miRNA into the RISC complex through association with 

the Argonaute (AGO) endonuclease subunit (258, 273, 274, 540, 541). Another RISC 
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subunit, GW182 recruits CCR4-NOT via an interaction with CNOT9 to promote 

deadenylation (542, 543).  

In addition, presence of m6A in the mRNA body can promote CCR4-NOT association 

and transcript degradation via interactions between CNOT1 and the m6A reader 

YTHDF2 (47).  

Although CCR4-NOT recruitment is often synonymous with mRNA degradation, it 

can in some cases lead only to translational silencing. The eIF4E-binding protein,  

4E-T is enriched in P bodies (cytoplasmic decay hubs) and recruits CCR4-NOT to 

deadenylate ARE-containing mRNAs or miRNA targets (274, 544). 4E-T then redirects 

these mRNAs from decay to storage (274).  

1.4.1.3 CCR4-NOT in other processes 

CCR4-NOT has been historically implicated in both positive and negative 

transcriptional regulation (35, 36, 42, 147, 510, 526, 527, 545–551). It acts both at 

transcription initiation, either by direct binding of the promoter, interaction with 

transcription factors or influencing histone modifications, and in transcription 

elongation by rescuing backtracked Pol II. ChIP-Seq revealed that Pop2 (CAF1 

homologue) was enriched across promoters, while Ccr4, Not5 and particularly Not3, 

were detectable in gene bodies but their effects were not investigated (552).  

Ccr4-Not was also suggested – under control of the Ras/cAMP pathway - to 

specifically repress Msn2/4p-dependent transcription of STRE (stress response 

element)-containing genes in yeast (510, 547). In human cells, CNOT2 and CNOT9 

could both repress a Pol II promoter when fused to the Gal4 DBD (35). CNOT2 also 

repressed de novo transcription of MHC class II genes when tethered to a regulatory 

region (42). CNOT9 interacted with MYB to repress transcription of its target genes 

(546). CNOT1 meanwhile, could repress ligand-dependent transcriptional activation 

by oestrogen receptor (ER) α via a direct interaction in the presence of estrogen, as 

well as retinoic acid receptor (RXR)-mediated transcription (36).  

As well as affecting specific promoters, CCR4-NOT affects recruitment of general 

transcription factors (547, 548). Deletion of not5 in yeast caused enhanced presence 

of general transcription factor complex, TFIID components on heat shock promoters 

and a reduction on ribosomal protein promoters in unstimulated conditions (547). 
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Following heat shock, TFIID presence on ribosomal protein promoters was equal in 

WT and Δnot5 cells, but was enhanced on heat shock promoters in the Δnot5 strain. 

A mutation in the not1 gene caused transcriptional activation which was associated 

with increased promoter binding by TFIID and SAGA (transcriptional coactivator) 

(548). In addition, some transcription factors/regulators are subject to the ubiquitin 

ligase activity of Not4 (308). Furthermore, both H3 and H4 acetylation as well as 

H3K4 tri-methylation are reduced in Δnot4 or Δnot5 yeast cells (527). This is thought 

to be due to interactions with the histone acetyltransferase, Gcn5 and the 

demethylase, Jhd2. In particular, Jhd2 is a target of Not4 ubiquitin ligase activity and 

its inhibited degradation in Δnot4 cells presumably leads to continued 

demethylation of histone H3 (308, 526, 553). Overall, this suggests a general 

repressive effect of CCR4-NOT on transcription initiation.  

In contrast, CCR4-NOT is thought to stimulate transcription elongation by rescuing 

backtracked Pol II in a mechanism distinct from that used by the elongation factor, 

TFIIS. Backtracked Pol II can occur for several reasons, including encountering 

roadblocks such as bound proteins, or incorrect nucleotide incorporation (144). 

Elongation by Pol II in vitro using yeast Pol II and a synthetic template was enhanced 

1.5 – 2 fold by Ccr4-Not (147). Notably, transcriptional arrest by addition of a chain 

terminator could not be resolved by presence of Ccr4-Not, suggesting that rescue is 

not mediated by stimulating the intrinsic nuclease activity of Pol II as does TFIIS 

(147). Ccr4-Not interacts with the Rpb4/7 subunit of Pol II, possibly via Not5 since 

this subunit was separately found to bind Rpb4 (308, 554, 555). In a perhaps 

unrelated pathway, Ccr4-Not can also promote ubiquitylation of Pol II which has 

been stalled for too long and needs removing. Rather than using the ubiquitin ligase 

activity of Not4, the complex instead promotes recruitment of the E3 ubiquitin 

ligase Rsp5 (43). As well as aiding in transcription, interaction of Ccr4-Not with the 

transcription elongation complex may be important for mediating transcription-

coupled DNA repair (39). 

In addition, a growing number of links between CCR4-NOT and translation are being 

established (44, 307, 554, 556). Most recently, yeast Ccr4-Not was found to monitor 

the ribosome for codon optimality, eliciting degradation of the mRNA if the acceptor 

site is vacant for too long (44). Interaction with the ribosome is mediated by Not5, 
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but the complex’s initial recruitment depends on Not4, which ubiquitylates the 

small subunit protein eS7. An earlier observation was that Not5 promotes 

translation of certain mRNAs, particularly those encoding ribosomal proteins (554, 

557). Despite involvement of a common subunit, there is no immediately obvious 

mechanism which could link the two findings.  

1.4.1.4 Regulation of CCR4-NOT 

Given its involvement in so many aspects of gene expression, CCR4-NOT is -perhaps 

uniquely – poised to elicit widespread changes within the cell. Indeed, the complex 

has previously been implicated in nutrient sensing in yeast (510, 558–560); in 

conditions of low energy levels of Ccr4-Not can theoretically be reduced in order to 

elicit both slower transcription and slower degradation. Evidence of such a system is 

beginning to come to light in mice, where CNOT3 protein (but not mRNA) levels are 

downregulated in the liver and white adipose tissue after 24 hours of fasting (60). 

mTORC1 inhibition using rapamycin also caused a reduction in CNOT1 and CNOT3 

protein levels in primary mouse cells, along with an increase in CNOT6L but not 

CNOT6 protein (519). Unlike in the fasted mice, this was accompanied by a 

reduction in Cnot1 and Cnot3 mRNA (as well as reduced Cnot6L but not Cnot6 

mRNA). 

Regulation of CCR4-NOT levels does not seem to be limited to nutrient sensing; the 

complex may also be leveraged to effect global changes to mRNA turnover in 

dynamic processes such as in development and B cell activation (12, 46, 58). This 

involvement in dynamic processes which require tight regulation and thus involve 

unstable transcripts is in keeping with the previous observation that STRE-containing 

mRNAs in yeast are more likely to be transcriptionally affected by Ccr4-Not subunits 

(547). 

CCR4-NOT may also be regulated by changes to its localisation and post-

translational modifications. Human CAF1 for example is nuclear during G0 and G1, 

but is mostly cytoplasmic in S phase (561). The yeast orthologue to CAF1, Pop2, is 

phosphorylated at Ser39 in glucose-rich conditions, causing repression of mRNAs 

encoding the small heat shock proteins Hsp12 and Hsp26 (560). In contrast, 

phosphorylation of Pop2 at Thr97 occurred within 2 minutes of glucose removal, 
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and substitution of Thr97 with alanine caused a failure of the cells to stop at G1 

following glucose deprivation (558).  

1.4.2 PAN2-PAN3 

PAN2-PAN3, which is thought to trim long cytoplasmic poly(A) tails before  

CCR4-NOT takes over, is heterotrimeric, containing a single catalytic PAN2 along 

with an asymmetric PAN3 dimer (24, 562). It is thought to be mainly cytoplasmic but 

can cycle into the nucleus (26). PAN3 mediates interaction with PABPC, which 

stimulates PAN2 deadenylase activity (24, 563–565). As well as enhancing activity, 

interaction with PAN3 may improve the nuclease’s poly(A) specificity (24).  

PAN2-PAN3 has a preference for long poly(A) tails since these in theory bind 

multiple PABPCs (26). Adjacent PABPC binding was suggested to coerce the poly(A) 

tail into forming multiple arches which are required for recognition of the substrate 

by PAN2-PAN3, since the complex itself has no nucleotide specificity (442). 

Alternatively, PAN2-PAN3 may recognise a helical structure with 9 nucleotides per 

turn which is formed uniquely by extended poly(A) tracts in solution (408, 566). 

Consistent with a requirement for PABPC binding, PAN (PAN2-PAN3) in yeast 

extracts did not efficiently remove the final 10-25 adenosines of an exogenous RNA 

substrate (567). 

It is difficult to identify specific mRNA targets of PAN2-PAN3 since much of its 

activity can apparently be compensated - presumably by CCR4-NOT. Indeed, 

knockdown of PAN2/3 in human cells had no detectable effect on bulk poly(A) 

length as measured by TAIL-Seq (50). In yeast, pan2 deletion results in increased 

bulk poly(A) length but does not impact viability (459). Although usually distributive, 

PAN2-PAN3 can act processively on the tails of specific transcripts and one could 

speculate that this could be due to differences in PABPC density (561, figure 4). Like 

CCR4-NOT, PAN2-PAN3 can be recruited by GW182 during miRNA-mediated 

degradation (568). Recruitment to mRNAs may also depend on PAN3 

phosphorylation status which affect its interaction with PABPC (569).  

1.4.3 PARN 

PARN exists as a homodimer (570). Its main function is in maturation of the 

telomerase RNA component, with mutations in the PARN gene leading to the 

telomere diseases idiopathic pulmonary fibrosis and dyskeratosis congenita (571). 
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PARN targets are more limited than either PAN2-PAN3 or CCR4-NOT and is also able 

to bind the 5’ cap, an interaction which enhances its deadenylase activity (572). 

Exemplifying this limited pool of mRNA targets, knockdown of Parn in mouse 

myoblasts led to a stabilisation of only 40 mRNAs in a high throughput study (504). 

During Xenopus oocyte maturation, PARN is also thought to contribute to 

deadenylation-mediated translational silencing of maternal mRNAs (6). PARN can be 

targeted to ARE-containing mRNAs by KSRP and elicit degradation by either XRN1 or 

the RNA exosome (253, 534). Outside of mRNA deadenylation, PARN also functions 

as a nuclear deadenylase in maturation of small non-coding RNA species (573, 574). 

Included in its nuclear RNA targets are human telomerase RNAs (hTR), whose 

maturation require deadenylation by PARN (575). In addition, PARN is required for 

stabilisation of several mature and precursor miRNAs (576).  

 Crosstalk and mRNA homeostasis 

Cells are exposed to frequently changing environments and must, for organisms to 

thrive, be able to respond effectively with minimal energy cost. Response to the 

environment and avoidance of disease requires tight regulation of gene expression, 

which is achieved by controlling synthesis and degradation of both mRNA and 

protein. Growing evidence is emerging of crosstalk between these processes (58, 

148, 271, 415, 416, 470, 471, 577–586) and a summary of suggested crosstalk 

mechanisms is depicted in figure 1.5. This crosstalk may provide safeguards against 

inappropriate or excessive protein production or enable large and rapid gene 

expression changes through concerted regulation at multiple levels.  

In order to execute a short-lived response to stimuli, some mRNAs are rapidly 

transcribed, but are unstable to avoid their inappropriate persistence (577, 584, 

587). While some of these transcripts contain destabilising elements in their 3’UTRs 

(such as the ARE), there is also evidence that the promoter can influence mRNA 

stability (58, 251, 255, 256, 260, 261, 577, 578). Since the promoter sequence does 

not accompany the mRNA to the cytoplasm, it has been suggested that crosstalk is 

mediated by proteins being recruited to the promoter, enhancing transcription, 

then accompanying the mRNA to the cytoplasm and promoting degradation (577). 

The mitotic exit network protein Dbf2 is recruited co-transcriptionally to some cell 

cycle mRNAs and promotes their rapid decay during mitosis (578).  
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In mammalian cells, links between the promoter and mRNA stability were also 

established, however, in this case ‘stronger’ promoters were correlated with more 

stable transcripts (58). While this may reflect differences between species, it is also 

possible that the effect is not consistent across all genes, cell types or physiological 

conditions. In the mammalian study, the proposed mechanism did not depend on 

continued association with a co-transcriptionally recruited protein, but instead on 

variation in m6A deposition. It was suggested that slow transcription leads to 

increased m6A deposition and consequent increased susceptibility to deadenylation 

by CCR4-NOT (58). As well as being affected by the promoter, Pol II speed was 

reduced as it transcribed through IRES elements and this was sufficient to enhance 

m6A deposition in the adjacent region, as well as cause shorter poly(A) tails. In an 

earlier publication from the same group, higher m6A deposition caused by slower or 

paused Pol II also resulted in reduced translation efficiency (588).  

Another factor which was recently suggested to couple transcription rate with 

mRNA stability in human cells is PHF3 (589). PHF3 knockout cells, or those where 

PHF3 lacked its main Pol II-interacting domain, led to a bulk increase in mRNA level 

(via stabilisation) along with increased transcription of neuronal transcripts. In these 

cells the CCR4-NOT complex exhibited reduced association with Pol II, indicating 

that the usual destabilising effects of PHF3 may be mediated through CCR4-NOT. 

Increased transcription of neuronal transcripts was suggested to be due to reduced 

inhibition of TFIIS-mediated rescue of backtracked Pol II, since PHF3 could displace 

TFIIS in in vitro binding assays (589).  

Crosstalk is not limited to gene-specific coupling of transcription and mRNA stability: 

inhibition of mRNA synthesis by multiple approaches in yeast resulted in widespread 

mRNA stabilisation (579, 583). Similarly, deletion of nrg1, which encodes a 

transcriptional repressor, resulted in global increases in both synthesis and decay 

rates (579). It has also been suggested that the Pol II subunits Rbp4 and Rbp7 

remain attached to nascent transcripts and promote translation by interacting with 

eIF3 (590). Similarly, the Ccr4-Not complex may be recruited to a subset of mRNAs 

during transcription via its Not5 subunit, then remain attached in the cytoplasm and 

promote translation (557). Notably, transcriptional stress led to Not5-dependent 

enhanced translation. Since the Ccr4-Not complex associates with Pol II via its  
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Rpb4/7 subunits to promote elongation it seems possible that their ‘imprinting’ of 

mRNAs is linked, at least in yeast (555). 

In mammalian cells, prolonged impediment of Pol II elongation led to mass mRNA 

stabilisation despite the presence of short poly(A) tails and enhanced m6A 

deposition (58). This general stabilisation was accompanied by a reduction in mRNAs 

encoding the degradation machinery, but it is not clear whether this reduction was a 

specific or a more widespread phenomenon as only one other mRNA was assayed. 

In addition to ‘forwards’ communication, cells can alter transcription in response to 

changes in mRNA degradation and translation, and translation dynamics themselves 

can also influence mRNA stability (28, 44, 148, 269, 301, 579–581). In yeast, 

individual deletions of various decay machinery were accompanied by decreases in 

mRNA synthesis rate such that only minimal increases in global mRNA level were 

observed (579). The authors suggest that downregulation of degradation causes 

stabilisation of the mRNA encoding the transcription repressor Nrg1, which then 

enacts global repression of mRNA synthesis. The ability of cells to buffer transcript 

levels was abrogated following deletion of xrn1, which caused a 3.2-fold increase in 

global mRNA level, due to both a decreased decay rate and an increased synthesis 

rate. Though Xrn1 could therefore be suggested to directly repress transcription, in 

vitro transcription assays suggest this is not the case since addition of purified Xrn1 

did not affect transcription activity (579).  

A different group found that deletion of xrn1, like other decay factors, did result in 

decreased mRNA synthesis (580). Intriguingly, the same study found association of 

Xrn1 (and Lsm1 and Dcp2) with chromatin just upstream of TSSs, suggesting that 

Xrn1 could in some cases have a direct transcriptional role (580). A subsequent 

study by the same group showed that disruption of Xrn1 activity disproportionately 

affected the synthesis and decay rates of highly transcribed mRNAs such as those 

encoding ribosomal proteins, leading to an overall reduction in their mRNA levels 

(581). A direct nuclear role for Xrn1 is appealing since it allows easy detection of 

cytoplasmic degradation rate/mRNA levels: in the case of low Xrn1 engagement, 

excess Xrn1 is cycled back to the nucleus and promotes transcription. More recent 

work has suggested that both Xrn1 and Ccr4-Not promote elongation by Pol II, and 

notably only ccr4 deletion inhibited transcription of ribosomal protein mRNAs (148).  
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In mammals, the extent of transcript buffering is less clear. While levels of  

CCR4-NOT may be altered by the cell to effect global changes in mRNA stability, 

knockout of Cnot1 in mouse livers was not accompanied by obvious widespread 

transcript buffering (58, 60, 591). Although synthesis of mRNAs encoding metabolic 

enzymes were reduced, pre-mRNA levels of apoptosis-related and inflammatory 

genes increased (591). In addition, levels of other transiently expressed mRNAs were 

increased, suggesting that no concomitant decrease in synthesis occurred. It is 

difficult to draw a firm conclusion given that deletion of Cnot1 in the liver may also 

have caused changes to cell composition.  

While the effects of inhibited mRNA degradation have been thoroughly investigated 

in yeast, some studies of crosstalk in mammals have instead focused on promoting 

cytoplasmic mRNA degradation. This work largely originates from the Glaunsinger 

lab and involves expression of the gamma-herpesvirus SOX endonuclease (271, 415, 

416, 470, 471). SOX cleaves host mRNAs, providing access points for degradation by 

XRN1, and this increased degradation is accompanied by a reduction in Pol II 

transcription as well as the accumulation of hyperadenylated transcripts and PABPC 

in the nucleus (415, 470, 471). Reduced Pol II recruitment in the presence of SOX 

was dependent on XRN1 catalytic activity, but immunofluorescent detection showed 

no change in XRN1 localisation, and XRN1 could also not be detected by chromatin 

immunoprecipitation at the affected promoters (471). Subsequent work showed 

that enhanced degradation instead released PABPC from poly(A) tails, and that high 

nuclear PABPC concentrations inhibited recruitment of Pol II and TATA binding 

proteins to promoters (470). UV irradiation also causes PABPC nuclear relocalisation 

and reduced mRNA synthesis, though in this case transcriptional effects are caused 

by phosphorylation and ubiquitination of Pol II (417, 592).   

It is difficult to determine whether the apparent difference in endgame between 

yeast and mammalian cells represents a lack of conservation across species, or 

simply differences in experimental set up. It is possible that increased and decreased 

mRNA degradation are indicative of distinct stresses which both require 

downregulated transcription. Reduced degradation arising due to nutrient 

deprivation and downregulated CCR4-NOT should quite intuitively be accompanied 

by reduced transcription in order to minimise energy usage. On the other hand, in 
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the case of viral infection or DNA damage, it seems logical for cells to restrict 

available host machinery/limit growth for the benefit of the wider organism or 

colony.  

A further example of crosstalk in yeast is the accelerated deadenylation and decay 

observed for inefficiently translated mRNAs (28, 44, 301). This link seems to be 

communicated by interaction of the ribosome with degradation machinery, in 

particular CCR4-NOT and DDX6 (Dhh1 in yeast). Deletion of caf1 preferentially 

increased stability of mRNAs with low codon optimality, suggesting that Caf1 

normally acts on poorly translated mRNAs (28). Importantly, the difference in  

half-life between codon optimal and non-optimal transcripts was abrogated upon 

translation inhibition, suggesting that Caf1 deadenylase activity is translation 

dependent. The decapping activator Dhh1 (DDX6 in mammals) also acts in a 

translation dependent manner to promote degradation of poorly translated mRNAs 

(301). Although DDX6 was recently shown to enhance CNOT7 activity, presence of 

Dhh1 was not required for the differences in deadenylation observed between 

codon optimal, and non-optimal mRNAs (28, 305). Indeed, Ccr4-Not may be 

recruited to inefficiently translated mRNAs independently of Dhh1 via interaction of 

Not5 with the empty ribosome E site (44). 

Overall, this extensive crosstalk seems well placed both to enact mRNA homeostasis 

during reduced nutrition and on the flipside, to efficiently amplify transcriptional 

responses to stimuli by concurrent optimisation of downstream mRNA stability and 

translatability (58, 60, 510, 558–560, 588, 591, 593). Furthermore, the link between 

transcription rate and stability may serve as a further backstop to limit expression of 

mRNAs derived from ‘leaky’ transcription. Varied reports regarding feedback to the 

nucleus about cytoplasmic degradation rates suggest that several distinct 

mechanisms may be in play depending on the species and/or experimental 

conditions (148, 271, 415, 470, 471, 579–581). Near-central nodes in this cross talk 

seem to be CCR4-NOT and the poly(A) tail (28, 44, 58, 60, 148, 415, 510, 557–560, 

591).  

 Aims of study 

Given the abundant evidence of sub-200 nt length poly(A) tails and of extensive 

interactions between mRNA synthesis and degradation, this study aims to 
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investigate the existence of regulated nuclear polyadenylation, and the relationships 

this may have with mRNA turnover.  

• First, using the well-characterised NIH 3T3 serum response, a method for 

precise tail length measurement (the poly(A) tail test, PAT) is validated and 

used to determine poly(A) tail lengths of mRNAs in different cellular 

compartments. Using the PAT assay, poly(A) tail lengths of certain mRNAs 

are shown to change throughout the serum response, with corresponding 

changes in mRNA stability. 

• The potential of different deadenylases to affect early poly(A) length is then 

investigated, and the CCR4-NOT scaffold subunit, CNOT1 emerges as a 

regulator of early poly(A) tail length. 

• Given the link between poly(A) length and stability, the effect of Cnot1 

knockdown on mRNA abundance is investigated, and CNOT1 is found to also 

influence pre-mRNA level. 

• The mechanism by which CNOT1 exerts control over both early poly(A) tail 

length and pre-mRNA level is probed further by additional siRNA 

knockdowns and small molecule inhibition of the CAF1 subunit.  

• Finally, a new method for global poly(A) tail length measurement, PAT-

Quant-Seq (PQ-Seq) is presented and is used to identify tail length regulation 

in the nuclear and cytoplasmic fractions of NIH 3T3 cells early and late in the 

serum response.   
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2  Materials and methods 

  Cell culture and treatment 

2.1.1 Cell culture  

NIH 3T3 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma, 

6429) supplemented with 10 % Newborn Calf Serum (NCS) (mainly HyClone, 

SH30401.01, Batch: DXJ0439, but also Gibco, 26010-074, Batch:1167012). HEK293 

cells were cultured in DMEM (Sigma, 6429) supplemented with 10 % Foetal Bovine 

Serum (FBS) (Gibco, 10500-064). Cells were passed upon reaching 80 % confluency 

at ratios between 1:4 and 1:10. Cells were released from the growth surface using 

1X Trypsin EDTA in PBS and gentle rocking by hand at 25 °C for 2-5 minutes. Two 

starting cultures of NIH 3T3 cells were used and serum response behaviour in the 

newer cells (purchased from the European Collection of Authenticated Cell Cultures) 

validated against the existing culture. NIH 3T3 experiments were performed 

between passages 5 and 30, numbering from receipt of the cells by our lab. HEK293 

experiments were performed on passage 12-15 cells, continuing numbering from 

the p10 cells gifted to us by the Bushell lab (540). All cultures were maintained at  

37 °C and 5_% CO2.  

2.1.2 Cryostorage 

Cells were trypsinised and collected in 10 % serum DMEM, then centrifuged at 350 g 

for 5 minutes to pellet cells. Supernatant was removed, and the pellet resuspended 

in pre-chilled serum (NCS or FBS depending on cell line) containing 10 % DMSO. 

Suspended cells were aliquoted into cryovials and placed immediately on ice, then 

transferred quickly to a -80 °C freezer. After 1 day but within 7 days, vials were 

transferred to liquid nitrogen. Passage number on the tube was recorded as current 

passage + 1.  

Cells were thawed in T75 flasks. 10 % serum DMEM was pre-warmed, and 9 mL 

transferred in advance to a 15 mL falcon tube. Vials were thawed quickly using 

either a 37 °C water bath or gloved hands and then transferred to the warm media 

in the falcon tube. Cells were centrifuged at 350 g for 5 minutes and the pellet 

resuspended in warm 10 % serum DMEM. Cells were checked the following day and 

media was changed if there were many dead/floating cells.  
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2.1.3 Serum stimulation 

NIH 3T3 cells were seeded to reach ~80 % confluency (~40,000 cells/cm2) 24 hours 

prior to serum stimulation. Seeding was carried out 24 (or a multiple of 24) hours 

prior to starvation to avoid potential unintended effects relating to circadian 

rhythm. The exact starting density varied slightly depending on culture vessel as 

doubling time did not seem to be completely consistent across all well/dish sizes. In 

particular, seeding density for immunofluorescence had to be optimised separately 

and is detailed in section 1.7.1. Cells then underwent serum starvation by removing 

the 10 % NCS media, washing once (gently) with PBS, then replacing with DMEM 

supplemented with 0.5 % NCS. The serum response was induced 24 hours later by 

adding pre-warmed NCS to 10 %. Depending on the culture dish set up and duration 

of downstream sample processing, serum stimulation was sometimes staggered by 

up to 100 minutes (in the case of plates containing both 20’ and 120’ serum 

stimulated samples). Stimulation was terminated by placing cells on ice and 

immediately removing media, followed by washing briefly with ice-cold PBS. 

2.1.4 siRNA knockdown 

NIH 3T3 cells were seeded at a density of between 0.61 and 0.85 x104 cells/cm2 in  

10 % NCS DMEM. This varied a little depending on a combination of dish/well size, 

anticipated time between seeding and transfection. There were also small 

differences in doubling time between batches of cells – perhaps due to passage 

number or possibly to serum batch number (though neither was investigated).  

24 and 48 hours after seeding, siRNA (Dharmacon, ONTARGETplus SMARTPOOL) 

was transfected into cells to 10 nM final concentration using Lipofectamine 

RNAiMax (Invitrogen, 13778075) and complexed in Opti-MEM (Gibco, 31985062). 

Sequences of siRNAs are provided in table 2.1. Just before transfection, 10 % NCS 

DMEM was refreshed as this seemed to enhance transfection efficiency. Cells were 

starved as in the serum stimulation protocol 24 hours after the second transfection.  

HEK293 cells underwent the same siRNA treatment (but with siRNAs directed 

against human mRNAs), however they were seeded at a density of  

1.63 x 104 cells/cm2 in 10 % FBS DMEM and were analysed at steady state without 

serum starvation or stimulation. 10 % FBS media was similarly refreshed directly 

before each transfection. 
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Table 2.1 siRNA sequences  

Dharmacon code Target mRNA  Target sequence 
D-001810-01 

Non-targeting 

  Not disclosed 
D-001810-02  Not disclosed 
D-001810-03  Not disclosed 
D-001810-04   Not disclosed 
J-167425-05 

Cnot1 (mouse) 

 CAAUAAGGUUCUCGGUAUA 
J-167425-06  UGUUAGAGGCUUACGUUAA 
J-167425-07  CCUACCAAGCCGAGCGGAU 
J-167425-08   CUAUAUGGCCGUGGCGUUU 
J-059073-05 

Cnot7 (mouse) 

 GAUCAUAGCCAAAGAAUUU 
J-059073-06  CUAUAGAGCUACUAACAAC 
J-059073-07  GGACUGACCUUUAUGAAUG 
J-059073-08  CAAAUACUGUGGUCACUUA 
J-063124-05 

Cnot8 (mouse) 

  UUUCGAAGCUCCAUAGAUU 
J-063124-06  GGAGGAAGGGAUCGAUACA 
J-063124-07  GUUCCCAGGUGUUGUUGUA 
J-063124-08   GAUAUGUACUCCCAGGAUU 
J-062986-09 

Nxf1 (mouse) 

 GAUCAUGAGCAAACGAUAU 
J-062986-10  AUGAAUUAUUUGUGCGGAA 
J-062986-11  CUUCAAUCCCAUCGAGUUU 
J-062986-12  UUGAAGACUGAGCGGGAAU 
J-041138-05 

Pan2 (mouse) 

  CAUCAAAUAUUCCAAGCUA 
J-041138-06  GUGGAGGGCUCAUUAUAUU 
J-041138-07  GUGCAUCUCUGGACUGAUU 
J-041138-08   CGAAUGAUUUCCCUACGAU 
J-040664-09 

Parn (mouse) 

 UGAGAGAGCAAUUCGAUGA 
J-040664-10  AAGUACAAAUUGCCGUUAA 
J-040664-11  GUAGACACUUAACCAGAUA 
J-040664-12  GCAAGUACGCUGAAAGUUA 
J-041045-05 

Zfp36 (mouse) 

  CCGAAGCUGUGGCUGGGUA 
J-041045-06  UGUCGGACCUACUCAGAAA 
J-041045-07  CGGAGGACUUUGGAACAUA 
J-041045-08   AAACGGAACUCUGCCACAA 
J-041703-05 

Zfp36L1 (mouse) 

 UCAGCAGCCUUAAGGGUGA 
J-041703-06  UCAAGACGCCUGCCCAUUU 
J-041703-07  GGAGCUGGCGAGCCUCUUU 
J-041703-08  CGAAUCCCCUCACAUGUUU 
J-043119-05 

Zfp36L2 (mouse) 

  UAACAACGCCUUCGCUUUC 
J-043119-06  UGGCAAACCUCAAUCUGAA 
J-043119-07  GCAAGUACGGCGAGAAGUG 
J-043119-08   GAUAUCGACUUCUUGUGCA 
J-015369-09  

CNOT1 (human) 

  CUAUAAAGAGGGAACGAGA 
J-015369-10   GGCCAAAUUGUCUCGAAUA 
J-015369-11   CCAGAAACUUUGGCGACAA 
J-015369-12  CAAGUUAGCACUAUGGUAA 
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2.1.5 Caf1 inhibitor treatment 

Cells were seeded to reach ~80 % confluency 24 hours prior to serum stimulation 

and then underwent starvation in 0.5 % NCS DMEM for 24 hours. Two hours before 

serum stimulation, Caf1 inhibitor 108 or 247 at a stock concentration of 10 mM in 

DMSO was added to the cells to a final concentration of 100 µM. An equal volume of 

DMSO was added to control wells. Other concentrations and incubation times were 

tested as indicated in the pilot experiment. Cells were stimulated with 10 % NCS for 

60 minutes, since the poly(A) tails of mRNAs of interest are short at this time under 

control conditions. Inhibitor 108 has been characterised in vitro by Jadhav et al 

(2015) and Airhihen et al (2019) as compound 8j (594)/5 (595).  

 Subcellular fractionation 

2.2.1 Nuclear/cytoplasmic fractionation 

Buffer A: 10 mM Hepes pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1mM EGTA, 1 mM DTT, 

0.5 mM PMSF. 

Cells were placed on ice and washed twice briefly in ice-cold PBS. Cells were scraped 

and collected in PBS, then centrifuged at 700 g for 5 minutes. The pellet was 

resuspended in a smaller volume, moved to a 1.5 mL tube and spun for a further  

5 minutes at 700 g. This pellet was suspended in 600 µL Buffer A per 15_cm dish and 

incubated on ice for 15 minutes. 37.5 µL/dish 10 % NP-40 was added and the tube 

vortexed then incubated for a further 3-5 minutes on ice to break the cell 

membrane. Centrifugation at 16,000 g was performed to pellet the nuclei. Around 

50 % of the supernatant was removed and mixed with an equal volume of 

isopropanol and 1 µL GlycoBlue (Invitrogen, AM9515) to precipitate RNA from the 

cytoplasmic fraction. The nuclei were washed three times with 400_µL Buffer A then 

both the nuclei and the pelleted cytoplasmic RNA were mixed with BL+TG buffer 

(500 µL per 15 cm dish for nuclear fraction, 250 µL/dish for cytoplasmic) from the 

ReliaPrep RNA Cell Miniprep system (Promega, Z6012). Where required, nuclear 

suspensions were passed through a 21-gauge needle to break up the chromatin. The 

ReliaPrep kit was used both to isolate and DNase-treat the RNA. For protein 

isolation, supernatant was removed after nuclei were pelleted and used as the 

cytoplasmic fraction. Nuclei were resuspended in Buffer A following the three wash 

steps and used as the nuclear fraction. A small (and equal) volume of these samples 
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were used in Bradford assays and compared against BSA standards diluted 

containing an equal concentration of Buffer A. The remainder of each sample was 

diluted with 3X SDS loading buffer and stored at -20 °C. Despite efforts to 

thoroughly mix all lysates, subsequent western blots indicated that protein 

concentration of the nuclear fractions were often underestimated compared to 

cytoplasmic fractions, resulting in uneven gel loading. Additional western blots were 

therefore performed with loading volumes adjusted according to the original signal.  

Since HEK293 cells do not spread out to the same extent as NIH 3T3 cells and 

therefore a larger number of cells grow on each plate, Buffer A and NP-40 volumes 

were increased to 1600 µL and 100 µL per 15 cm plate respectively. 

2.2.2 Chromatin/nucleo-/cytoplasmic fractionation 

Nuclei Resuspension buffer: 20 mM Tris pH 7.9, 75 mM NaCl, 0.5 mM EDTA,  

0.85 mM DTT, 0.125 mM PMSF, 50 % Glycerol, 0.5 % GlycoBlue. 

NUN buffer: 20 mM Hepes pH 7.6, 1_mM DTT, 7.5 mM MgCl2, 0.2 mM EDTA,  

0.3_M NaCl, 1M Urea, 1 % NP-40, 0.5 % GlycoBlue. 

Where a chromatin-associated fraction was also required, nuclei and a cytoplasmic 

fraction were isolated as above. Nuclei were resuspended in 40 µL Nuclei 

Resuspension buffer per 15 cm plate then fractionated further by adding 360 µL 

NUN buffer, vortexing, and incubating on ice for 5 minutes. Samples were 

centrifuged at 16,000 g for 3 minutes to collect the chromatin. 50 % of the 

supernatant was removed to form the nucleoplasmic fraction and RNA was 

precipitated by adding an equal volume of isopropanol and 1 µL GlycoBlue. The 

chromatin was washed three times in 500 µL 80 % ethanol. All 3 fractions were 

passed through the ReliaPrep RNA Cell Miniprep system following direct addition of 

BL+TG buffer to the washed chromatin pellet (500 µL BL+TG per 15 cm plate) and 

RNA pellets respectively (250 µL BL+TG per plate).  

As in the nuclear/cytoplasmic fractionation for HEK293 cells, buffer volumes were 

increased 4-fold meaning that 160 µL Nuclei Resuspension Buffer and 1440_µL NUN 

buffer per 15 cm plate were used.  
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 RNA isolation and treatments 

2.3.1 RNA isolation from whole cells or cellular fractions 

RNA was isolated from cells using the ReliaPrep RNA Cell Miniprep system 

(Promega, Z6012) according to the manufacturer’s instructions, but with an 

extended DNase treatment step of 1 hour rather than 15 minutes. RNA was eluted 

in water into manufacturer-provided non-stick RNase-free tubes, quantified by 

nanodrop, where 260/280 ratios of 2.00-2.20 were considered good. Samples were 

not eliminated based on their 260/230 ratio, but the ratio was recorded in case of 

downstream problems. RNA was kept at -20 °C in the short term and moved to  

-80 °C for longer term storage.  

2.3.2 RNA isolation after enzymatic treatments 

A 25:24:1 phenol:chloroform:isoamyl (P:C:I) alcohol mixture was prepared using pH 

4.5 citrate buffered phenol (Sigma-Aldrich, P4682), mixed well and allowed to 

separate overnight. After enzymatic treatment of RNA, an equal volume of P:C:I 

(25:24:1) was added to separate protein and RNA. RNA was isolated from the 

aqueous phase by ethanol precipitation (2.5 volumes ethanol, 0.1 volumes 3M 

sodium acetate pH 5.2, 1 µL GlycoBlue (Invitrogen, AM9515) if required). Depending 

on the downstream application, an additional chloroform wash of the aqueous 

phase was added prior to ethanol precipitation to remove any excess phenol that 

may inhibit reverse transcription.  

2.3.3 DNase treatment 

10X DNase I buffer: 10mM Tris HCl pH 7.5, 2.5mM MgCl2, 0.5mM CaCl2. 

For applications in which trace genomic DNA was problematic, the standard on-

column DNase treatment included in the ReliaPrep RNA isolation process was 

insufficient, even when increased to 1 hour. For these RNA samples, the on-column 

DNase treatment was carried out using twice the recommended volume of DNase 

mixture. For on-column DNase treatment of northern blot RNA, lyophilized DNase I 

(from the isolation kit, individual code Z358A-C) was reconstituted at 2X 

concentration but used at the recommended volume.  

Eluted RNA underwent an additional DNase treatment step with Turbo DNase 

(Invitrogen, AM2238). For each 10 µg RNA, a 50 µL reaction was carried out using  
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1 µL DNase and homemade DNase I buffer. The reaction was incubated for  

30 minutes at 37° C after which another 1 µL/10 µg RNA was added and the 

reactions incubated for a further 30 minutes (as recommended by the manufacturer 

for substantial DNA contamination). DNase was inactivated and the RNA isolated 

using Phenol:Chloroform extraction followed by ethanol precipitation.  

2.3.4 RNase H treatment 

RNA was mixed with specific oligo (table 2.2) and/or oligo dT (12) at a ratio of 5_µg 

RNA:4 µg oligo and heated to 90 °C for 5 minutes, then placed on ice. RNase_H  

(5 U/5 µg RNA, NEB M0297 and Thermo Scientific EN0201), RNase H buffer and DTT 

where required were then added and incubated at 37 °C for 1 hour. Reaction was 

terminated by Phenol:Chloroform:Isoamyl (P:C:I) addition and RNA retrieved by 

ethanol precipitation as above. In order to remove any trace phenol, an additional 

chloroform wash (aqueous phase mixed with one volume chloroform) was 

sometimes performed prior to ethanol precipitation. For small volume RNase H 

reactions, water was added to increase volume prior to P:C:I addition and allow 

easier recovery of the aqueous phase. 

Oligo name 
Target 
mRNA Sequence 

Resulting 
fragment length 

Egr1 168 Egr1 CCACAACACTCCAACTCCTG 168/193* 
Rpl28 198 Rpl28 CATTCTTGTTGATGGT 198 

Table 2.2 RNase H cleavage oligo sequences 

Table 2.2 RNase H cleavage oligonucleotide sequences. 

RNase H/Oligo(dT) treated RNA was also used to provide deadenylated controls for 

the RL2-PAT assay. Following poly(A) removal for 1 hour at 37 °C, an equal volume 

P:C:I was added and the RNA ethanol precipitated then fed into the PAT ligation and 

cDNA synthesis pipeline.  

 RNA detection 

2.4.1 Agarose gel electrophoresis for RNA quality control 

To check RNA integrity, RNA was separated by agarose gel electrophoresis. The 

highly abundant 28S and 18S ribosomal RNA bands were used to determine RNA 

integrity, with optimum quality appearing as a 28S band twice the intensity of 18S, 

and low background (representing little degradation). Gel tray and tanks were 

cleaned with a mild solution of Distel and rinsed thoroughly to remove any RNases, 
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then wiped with 70 % methylated spirits. 2 µL RNA samples were heated at 70 °C for 

3 minutes with 10 µL deionised formamide loading dye containing bromophenol 

blue, xylene cyanol and 10 mM Tris pH 7.5. Samples were run at 80 V on a 1 % 

agarose TBE gel containing 1.5X SYBR safe (Invitrogen, S33102) for 1-2 hours and 

imaged using UV.  

2.4.2 Glyoxal denaturing agarose gel 

Glyoxal reaction mixture (to make 9.8 mL): 6 mL high grade DMSO, 2 mL molecular 

biology grade glyoxal solution (Sigma-Aldrich, 50649), 1.2 mL 10X BPTE buffer,  

0.6 mL 80 % glycerol (in RNase-free water). 

10 X BPTE buffer: 100 mM Piperazine-N,Nʹ- bis(2-ethanesulfonic Acid) (PIPES),  

300 mM Bis-Tris, 10mM EDTA pH 8.0. Incubated overnight with 0.1 % DEPC (Sigma-

Aldrich, D5758) and autoclaved to remove RNases.  

In order to directly and accurately measure poly(A) tail lengths of RNA, samples 

were treated with the denaturing agent glyoxal which forms adducts with RNA that 

are stable at pH <7. Up to 15 µg RNA in 4 µL H20 was mixed with 20 µL glyoxal 

reaction mixture and incubated at 55 °C for 1 hour. Reactions were chilled on ice 

water for 10 minutes then mixed with 4 µL RNA gel loading buffer and run on a  

20 cm long 1.8 – 2 % agarose BPTE gel at 120 V (~3.6 V/cm). Buffer was recirculated 

to avoid accumulation of buffer at pH >7 and consequent reforming of RNA 

secondary structure. This recirculation was originally performed manually every  

30 minutes with a 60 mL syringe, but in later experiments was recirculated 

constantly using a peristaltic pump (Watson Marlow) to achieve a rate of 1.98 L/hr 

in a total volume of ~ 2.5 litres). Sample RNA was run alongside two different ssRNA 

markers (Low Range ssRNA Ladder - NEB, N0364S and RiboRuler Low Range RNA 

Ladder - Thermo Scientific, SM1831) which were precipitated and glyoxylated as 

above.  

2.4.3 Northern blotting 

dCTP labelling mix: 100 µm each dATP, dGTP, dTTP, 10 mM Tris pH 7.5.  

Pre-hybridisation buffer: 0.5 M disodium phosphate pH 7.2, 1mM EDTA, 7 % (w/v) 

SDS, 1 % (w/v) BSA.  

Phosphate wash buffer: 40 mM disodium phosphate pH 7.2, 1 % (w/v) SDS. 
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RNA was transferred from agarose gel to Hybond N neutral nylon membrane (GE 

Healthcare, RPN2020N) overnight via upward capillary transfer in 20X SSC then 

cross-linked using UV at 120 mJ/cm2. To check transfer and visualise marker bands, 

membrane was stained with 0.02 % (w/v) methylene blue in 0.3 M sodium acetate 

pH 5.5 for around 5 minutes and excess dye washed off with nuclease-free water. 

Membranes were imaged with visible light, or photos taken with a phone camera  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1   RNase H northern blot schematic. Continued overleaf. 
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Figure 2.1   RNase H northern blot schematic. A) RNA was cleaved at sites of oligo 

binding by RNase H, targeting the 3’ UTR of a specific mRNA and in a matched sample, 

the poly(A) tail as well. B) Glyoxal reacts with guanine (and to a lesser extent, adenine 

and cytidine), forming a cyclic structure and preventing base-pairing. Reaction 

summarised from (596). C) Glyoxylated RNA underwent agarose gel electrophoresis at 

pH < 7.0 alongside two ssRNA markers. D) RNA was transferred to Hybond N neutral 

nylon membrane via upwards capillary transfer with 20X SSC. E) Schematic of primer 

sites for probe template amplification and binding of the RNase H cleavage oligo for the 

two RNAs assayed.   

 

then marker bands were traced with pencil for size determination later. The 

membrane was de-stained in nuclease-free water (though it was difficult to 

completely remove the dye) then heat sealed in plastic and stored at -20 °C until the 

hybridisation stage.  

Probe template DNA was generated by PCR amplification of cDNA from a previous 

NIH 3T3 cell experiment using the primers detailed in table 2.3 and sequenced to 
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confirm the correct product. Where necessary, gel-isolated DNA underwent a 

second round of PCR to give a pure product of high enough yield.  

Target 
mRNA Name Sequence Tm (°C) Fragment 

length 

Egr1 
  Egr1 probe F  TATACATCTATTCAGGAGTTGGAGTG 57.82 

200 
  Egr1 probe R  GAAGGATACACACCACATATCCC 58.36 

Rpl28 
  Rpl28 Probe F  TGCTCGGGCTACCCTCAG 60.76 

200 
  Rpl28 Probe R  GGAAGTCAGTGGACTCTTTATTGC 59.61 

Table 2.3 Northern blot probe primer sequences. 

Table 2.3 Northern blot probe primer sequences. 
 

Probes were labelled using the DNA polymerase I Klenow fragment (NEB, M0210L) 

with 32P dCTP 3000Ci/mmol, 10 µCi/µL (Perkin Elmer, BLU013H250UC). 50 ng 

template DNA was mixed with 10 µL 1 mg/mL random hexamers in a 27 µL reaction 

and heated at 90 °C for 10 minutes. After placing on ice, 10 µL 5X dCTP labelling mix, 

5 µL 10X Klenow buffer, 0.5 µL Klenow fragment (NEB, M0210S) and 7.5 µL  

α-32P-dCTP was added and reactions incubated at 37 °C for 5 minutes. To separate 

labelled probe from free nucleic acids, reactions were separated by centrifugation 

using homemade 1 mL G50M spin columns. To assemble spin columns, plungers 

were removed from 1 mL syringes and rested in 15 mL falcon tubes. Autoclaved 

glass wool was added to the syringe and compressed using the plunger to a 

thickness of 3-5 mm. Autoclaved Sephadex beads in water were added, avoiding 

bubble formation, and centrifuged twice at 1500 rpm for 5 and then 10 minutes to 

remove excess water. Completed probe reaction was added to the prepared 

columns, followed by 50 µL nuclease-free water, and centrifuged at 1500 rpm for  

10 minutes, resulting in elution of the probe, with any free label remaining in the 

column. Specific activity of probes was determined by measuring 1 µL (suspended in 

10 mL EcoScint – Scientific Laboratory Supplies, NAT1392) in a scintillation counter. 

Prior to hybridisation, membranes were incubated with 10-15 mL pre-hybridisation 

buffer and 200-300 µL freshly denatured salmon sperm DNA (UltraPure Salmon 

Sperm DNA Solution – Invitrogen, 15632011) for at least one hour at 65_°C to block 

non-specific binding. Probes were denatured at 90 °C for 10 minutes then added to 

between 0.5 and 2 million cpm/mL and incubated with the membranes at 65 °C 
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overnight in a hybridisation oven. The following morning, membranes were washed 

three times for 15 minutes at 65 °C in pre-heated phosphate wash buffer.  

Washed blots were aligned next to paper strips on a clingfilm-covered cardboard 

backing board and lightly held in place using drops of wash buffer. Marker bands 

were indicated on the paper strips with marker pen soaked in hybridisation buffer or 

probe mix, taking care to avoid bleeding due to excess wash buffer. Blot and strips 

were covered in clingfilm and placed in a cassette to expose a (pre-erased) phosphor 

screen. For blots which required overnight exposure, the cassette was placed at  

-80 °C to reduce background excitation. Exposed screens were imaged using a Storm 

825 system (GE Healthcare). In the event of high background, blots were washed 

twice more with phosphate wash buffer, placed on a clean backing-board and  

re-exposed. 

 cDNA synthesis and PCR 

2.5.1 Quantitative real time (q-RT) PCR 

Between 150 and 500 ng RNA was used for cDNA synthesis and the reaction scaled 

accordingly. For a 500 ng reaction, RNA was incubated for 5 minutes at 70_°C with  

2 µL random primers (0.2 µg/µL, Invitrogen, 48190011) and 1 µL dNTPs (10 mM), 

and topped up to 14.5 µL with nuclease-free water. Mixtures were placed on ice for 

one minute, then 4 µL 5x First Strand Buffer, 1µL DTT (100 mM) and 0.5 µL 

SuperScript_III (Invitrogen, 18080085) were added and the reactions incubated at  

50 °C for one hour. The reaction was stopped by incubating at 70 °C for 15 minutes. 

The resulting cDNA was diluted 1 in 10 for use in qPCR unless RNA was of 

particularly low quality or abundance, in which case a lower dilution was used.  

For each qPCR reaction, 0.5 µL each forward and reverse 20 µM primer, 2_µL H20 

and 5 µL 2X GoTaq qPCR Master Mix (Promega, A6002) were mixed with 2 µL diluted 

cDNA. Primer sequences can be found in table 2.4. Standard curves were performed 

for all new primer pairs (figure A.1). Reactions were carried out in a Qiagen Rotor-

Gene Q , starting with an initial denaturation at 95_°C for 5 minutes, followed by  

40 cycles of 10 sec 95 °C, 20 sec 60 °C, 20 sec 72_°C. Melt curves were generated 

between 72 and 95 °C. Three reactions were performed per sample. 
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Relative RNA abundance was calculated using the ΔΔCt method (597) using Gapdh 

as the reference gene unless otherwise stated. In knockdown time course 

experiments, all samples of a given biological replicate were normalised to the 

maximum value of the control set (usually 20’ or 60’) such that the effect of 

knockdown could best be compared between experiments. Unpaired t-tests were 

performed for each time point.  

Mouse 
Target 
RNA Name Sequence Tm (°C) Fragment 

length 
Actb 

(mature) 
Actb F CTGTCGAGTCGCGTCCACCC 65.19 

128 
Actb R ACATGCCGGAGCCGTTGTCG 65.79 

Actb 
(unspliced) 

un Actb2 Fw AAGATCTGGCACCACACCTT 59.23 
155 

un Actb2 Rv TGAGAAGCTGGCCAAAGAGA 58.94 

Arl6ip5 
(mature) 

Arl6ip5 F GGTTGTTGGGTTTCTGAGCCC 61.7 
191 

Arl6ip5 R TGACACCCCCGAACATGGAT 61.2 

Cnot1 
(both) 

Cnot1_all F AGCATAGCAGCATGTCTTCC 58.04 147 
Cnot1_all R GCAGAACCCCCTGGTCTATC 59.53 

Cnot7 
(mature) 

Cnot7 F AATTTGACGGAGGACATGTATGC 59.37 
158 

Cnot7 R AGCCATTTGACCCCTTCACAA 60.13 

Cnot8 
(mature) 

Cnot8 F TGGAGGCCTAAGGAATGATTGGAT 61.45 
164 

Cnot8 R CTGGCCCACACCTCACAGAT 61.85 

Cnot8 
(mature) 

Cnot8_KW F CCGCCAGCCAGGATTGGA 62.11 
172 

Cnot8_KW R TTCCTCAAGATTGCTGGCCC 60.32 

Dld 
(mature) 

Dld F CGATGGCAGCACTCAGGTTA 60.11 
193 

Dld R AACTGAACCCAGTTCCACACC 60.41 

Egr1 
(mature) 

Egr1 F AGTGATGAACGCAAGAGGCA 59.96 
121 

Egr1 R TAGCCACTGGGGATGGGTAA 59.95 

Egr1 
(unspliced) 

un Egr1 F GGGTCTCATCGTCCAGTGAT 58.88 166 
un Egr1 R GAAGCGGCCAGTATAGGTGA 59.25 

Egr2 
(mature) 

Egr2 F GTAGCGAGGGAGTTGGGTCT 60.97 
219 

Egr2 R ATCATGCCATCTCCCGCCAC 62.69 

Fos 
(mature) 

cFos Fw GGGACAGCCTTTCCTACTACC 59.51 
87 

cFos Rv GATCTGCGCAAAAGTCCTGT 58.84 

Fos 
(unspliced) 

cFos intron Fw TGACCGGAATGCTTCTCTCT 58.44 
165 

cFos intron Rv TGTCACCGTGGGGATAAAGT 58.65 

Fosb 
(mature) 

Fosb F ACCCTCCGCCGAGTCTCAGT 64.94 
128 

Fosb R TTGCGGTGACCGTTGGCACG 66.51 

Fosb 
(unsplcied) 

Fosb unspliced 
Fw GGGGTCGGTGTGTGTTATGT 59.96 

164 
Fosb unspliced 
Rv GATCCTGGCTGGTTGTGATT 57.87 

Gapdh 
(mature) 

Gapdh F AAGAAGGTGGTGAAGCAGGC 60.54 114 
Gapdh R ATCGAAGGTGGAAGAGTGGG 59.09 



75 
 

Itga1 
(mature) 

Itga1 F TGGCCAACCCAAAGCAAGAA 60.69 
189 

Itga1 R GGCCCACATGCCAGAAATCC 61.68 

Malat1 
Malat1 F GTGGGTGGGGGTGTTAGGTA 60.84 

176 
Malat1 R CAACCTTCCTTAGCTGCCCG 61.03 

Nxf1 
(mature) 

Nxf1 F AAACGAATTGAAGACTGAGCGGG 61.66 167 
Nxf1 R CCTCCCAGGGGTGAATGTCC 61.93 

Pan2 
(mature) 

Pan2 F TCAACCTCATGGTGCCCAAGG 62.63 156 
Pan2 R CTGTGCGGGCATCCTCAATG 61.72 

Parn 
(mature) 

PARN F CTGCTTTTGCTGCGGAACTC 60.39 
181 

PARN R TGCTGATTCCTGAAAACTCCCC 60.56 

Ppia 
(mature) 

Ppia F GCCGATGACGAGCCCTTG 60.89 
169 

Ppia R TAAAGTCACCACCCTGGCACAT 61.89 

Rpl28 
(mature) 

Rpl28 F TACAGCACGGAGCCAAATAA 57.23 
74 

Rpl28 R ACGGTCTTGCGGTGAATTAG 58.28 
Rpl28 

(unspliced) 
Rpl28 Fw2 CATCGTGTACACCTATTCCC 55.36 

88 
Rpl28 R ACGGTCTTGCGGTGAATTAG 58.28 

Sqstm1 
(mature) 

Sqstm1 F ACTACCGCGATGAGGATGG 58.96 
142 

Sqstm1 R CATGGTGGGCGATGTTCCC 61.12 

Sqstm1 
(unspliced) 

Sqstm1 us F GAAAAGGCAACCAAGTCCCCA 61.03 137 
Sqstm1 us R GCCTCTGCTGCATTTTAGCCT 61.29 

Zfp36 
(mature) 

Zfp36 F TCTCTGCCATCTACGAGAGCC 61.09 111 
Zfp36 R ACGGGATGGAGTCCGAGTTT 60.9 

Zfp36L1 
(mature) 

Zfp36L1 F AGATCCTAGTCCTTGCCCCG 60.76 109 
Zfp36L1 R GTTGAGCATCTTGTTACCCTTGC 60.37 

Zfp36L2 
(mature) 

Zfp36L2 F GCCCTCGCCCGTTATTCATC 61.23 
165 

Zfp36L2 R CCAGGGATTTCTCCGTCTTGC 61.01 
Egr1 3' 

end 
Egr1 probe F TATACATCTATTCAGGAGTTGGAGTG 57.82 

200 
Egr1 probe R GAAGGATACACACCACATATCCC 58.36 

Rpl28 3' 
end 

Rpl28 probe F TGCTCGGGCTACCCTCAG 60.76 
200 

Rpl28 probe R GGAAGTCAGTGGACTCTTTATTGC 59.61 
Human 

Target 
RNA Name Sequence Tm (°C) Fragment 

length 

CNOT1 
(mature) 

CNOT1 F CAGCAGACGGACTTGTCTCA 59.68 
121 

CNOT1 R ACATGGTTGGATGTGGTGGAT 59.64 

RPL10A 
(mature) 

RPL10A F TCTCTCGCGACACCCTGT 60.28 
220 

RPL10A R TTAGCCTCGTCACAGTGCTG 60.04 

RPL10A 
(unspliced) 

unspliced 
RPL10A F AATGTGAACGCTCCGGGTAA 59.68 

184 unspliced 
RPL10A R CTTAGCCTCGTCACAGTGCT 59.76 

Table 2.4 qPCR primer sequences. 

Table 2.4 qPCR primer sequences. 
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2.5.2 Poly(A) tail tests (RL2-PAT) 

In order to measure the poly(A) tail, poly(A) tail tests (PATs) were performed (figure 

3.1 A). To confirm that changes observed were due to tail length rather than 

alternative polyadenylation, some RNA was first treated with RNase H and oligo(dT) 

to remove poly(A) tails and thereby serve as a deadenylated control. RNase H tail 

removal is described in section 1.3.4.  

A 5’ pre-adenylated DNA anchor was added to the 3’ ends of mRNAs in the sample 

using T4 RNA Ligase truncated K227Q. This ligase does not possess the complete 

activity of wild type T4 RNA ligase and as such can only catalyse the second step of 

ligation which requires an adenylated 5’ end. Its use in the PAT assay meant that 

only the anchor could be added to the 3’ ends of mRNAs and that endogenous RNA 

fragments should not have been ligated together. The 3’ end of the anchor oligo had 

a dideoxy modification to prevent self-ligation. 500_ng RNA was mixed with 1 µL PAT 

anchor (20 µM), 6 µL PEG 8000, 2 µL 10X T4 RNA ligase buffer and 1 µL T4 RNA 

ligase 2, tr K227Q (NEB, M0373L) in a 20 µL reaction and incubated overnight at  

16 °C. 

Reverse transcription was performed using the PAT-R1 primer, which was 

complementary to the anchor, but contained an additional five thymine residues to 

select only for polyadenylated 3’ ends of RNAs. 23 µL H20, 5 µL PAT-R1 (20 µM) and 

2_µL dNTPs (10 mM) were added to the completed ligation reaction and incubated 

for 5 minutes at 65 °C. Samples were placed on ice for one minute and a further 

23_µL H20, 20 µL 5x First Strand Buffer, 5 µL DTT (0.1M) and 2 µL SuperScript III 

added. Reactions were incubated at 55 °C for one hour and the reaction stopped by 

heating to 70 °C for 15 minutes.  

PCR was carried out using the PAT-R1 primer and a gene-specific forward primer. 

Each 50 µL reaction contained 1X GoTaq Flexi Buffer, 1.5 mM MgCl2 (Promega, part 

A351B), 0.2 mM dNTPs, 0.5 µM PAT-R1, 0.5 µM Forward Primer, 1.25 units (0.25 µL) 

GoTaq G2 Flexi (Promega, M7805) and 1 µL PAT cDNA. Initial denaturation was 

carried out at 95 °C for 5 minutes, followed by 40 cycles of 1 min 95 °C, 1 min 58 °C, 

2 mins 72 °C, then a final 10 minute extension at 72 °C. Primer details provided in 

table 2.5. 
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Mouse 

Target RNA Name Sequence Tm 
(°C) 

Predicted 
deadenylated 

length 

Actb Actb 3F1 AAACTTTCCGCCTTAATACTTC 56.4 219 
Actb Actb 3F2 GGAGGATGGTCGCGTCCAT 61.6 308 
Egr1 Egr1 PAT AGCTGAGCTTTCGGTCTCCA 60.5 339 
Egr2 Egr2 PAT GTGCTTCAATGTCACTGCCG 60.5 174 

Fos Fos 3F2/ 
Fos PAT CTGACATTAACAGTTTTCCATG 56.4 221 

Fosb Fosb PAT ATTGACTCCATAGCCCTCAC 58.4 184 
Rpl28 Rpl28 3F1 GCCACTTCTTATGTGAGGAC 58.4 254 
Sqstm1 Sqstm1 3F1 AAGAGGGGACTGTCCATAGT 58.4 255 

     

Human 

Target RNA Name Sequence Tm 
(°C) 

Predicted 
deadenylated 

length 

ACTB ACTB PAT GTCCTCTCCCAAGTCCACAC 62.5 288 
GAPDH GAPDH 1st CCCCACCACACTGAATCTCC 62.5 137 

RPL10A RPL10A TCACCTGGCTGTCAACTTCT 58.4 155 

    
 

Worm 

Target RNA Name Sequence Tm 
(°C) 

Predicted 
deadenylated 

length 

daf-21 
daf-21 Fw1 AATCTCACGCTTCCCGCATC 60.5 292 
daf-21 Fw2 GACTGCTCTTCTCGCTTCCG 62.5 333 

hsp-1 
hsp-1 Fw1 ACCGCAGAGAAGGAGGAGTT 60.5 329 

hsp-1 FW2 AAGCAGACCATTGAGGACGAG 61.2 437 

hsp-16.1 hsp-16 Fw1 ACCCGAAGATGTTGATGTTGGT 60.1 244 
hsp-16 Fw2 GTCTCGCAGTTCAAGCCAGA 60.5 372 

hsp-
70(C12C8.1) 

hsp-70 
C12C8.1 Fw1 TGAAGATACCCTTCGTTGGATGG 62.9 320 

hsp-70 
C12C8.1 Fw2 ATCAGCAGAAGATGCAAAACGTG 60.9 356 

hsp-
70(F44E5.4) 

hsp-70 
F44E5.4 Fw1 TGGATTCCAACTCATTGGCTGAA 60.9 321 

hsp-70 
F44E5.4 Fw2 CGTGCAAAAGAAGCTGTTGATGA 60.9 358 

Y45F10D.4 

Y45F10D.4 
Inner AAGGGTCGCAGTGGAGAATG 60.5 154 

Y45F10D.4 
Outer CCACGTCAGCAATTGGATTCG 61.2 252 
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RL2-PAT 

Oligo Name Sequence 
Tm 
(°C) 

 

PAT anchor rApp/GGTCACCTTGATCTGAAG/ddC -  

PAT-R1 GCTTCAGATCAAGGTGACCTTTTT 62  

Dach 
anchor 

rApp/GGT CAC CTT GAT CTG AAG CCA GCT GTA 
GCT ATG C/ddC  - 

 

Dach1R GGCATAGCTACAGCTGGC 58.4  
Table 2.5 Primers and oligos used in the RL2-PAT assay. 

Table 2.5 Primers and oligonucleotides used in the RL2=-PAT assay. 

PCR products were run alongside 100bp ladder (NEB, N3231L) on a 1.2 – 1.5 % 

agarose TBE gel containing 1.5X SYBR Safe (Invitrogen, S33102) at 4 V/cm for  

2.5-3 hours.  

To determine exact lengths, sample and marker lanes, along with a minimum of one 

blank lane per gel image, were scanned using the Quantity One software. Quantity 

One denotes vertical position on the gel by rf (relative front) value, with 0 at the top 

of the selected frame and 1 at the bottom. For a vertical line down the centre of 

each lane, the intensity at each rf value was outputted into a .csv file. The intensity 

of the blank lane was subtracted from each sample lane, and all intensities scaled to 

the maximum value of that lane. Each sample lane at this stage had a maximum 

intensity value of 1, representing the point of greatest signal intensity. In order to 

convert gel position to fragment length, a relationship between rf value and 

fragment length was established using the 100 bp marker lanes. Rf value at the peak 

of each marker band was plotted on the x_axis against log2 (fragment length) on the 

y axis, as the speed at which fragments migrate is inversely proportional to log2 of 

their length. A quartic polynomial equation was produced for each marker lane and 

used to calibrate the nearby sample lanes. Since SYBR safe intercalates with the DNA 

and staining is therefore proportional to fragment length, signal intensity for each 

sample lane was divided by estimated fragment length to give length-normalised 

signal intensity. Predicted deadenylated length was subtracted from estimated 

fragment length to give estimated poly(A) tail length, and peak length-normalised 

signal intensity value(s) for each sample lane were taken as the modal poly(A) 

length(s). Negative values were occasionally returned, likely resulting from slight 

differences in gel migration between lanes (especially if the ladder lane was not 
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nearby) or from deviation from the annotated 3’ UTR. If significant differences arose 

(eg. in the case of Egr1), DNA was isolated from gel bands and sent for sequencing.  

2.5.3 Sequencing of PCR products  

To check identity of PCR amplicons and gel bands, DNA was isolated using either the 

Wizard SV Gel and PCR Clean-Up System (Promega, A9281) or the Monarch DNA Gel 

Extraction Kit (NEB, T1020S) according to the manufacturer’s instructions. After 

imaging gels, bands were visualised with either a UV transilluminator or later with 

blue light, and the bands removed with a clean scalpel and forceps. In both systems, 

excess agarose was trimmed away before the remaining gel slice was melted in the 

relevant kit-specific solution. Isolated DNA was sent along with the appropriate 

primer for sanger sequencing with Source Bioscience. In the case of PAT PCR 

products, the gene specific forward primer was used for sequencing to avoid 

problems both of sequencing through a homopolymer and of entering the 3’ UTR at 

different positions.  

 Protein work 

2.6.1 Making lysates 

RIPA buffer: 10 mM Tris HCl pH 8.0, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA,  

1_% NP-40, 0.1 % SDS, 0.1 % sodium deoxycholate, 1 mM PMSF (PMSF added 

directly before use). 

3X SDS loading buffer: 195 mM Tris HCl pH 6.8, 9 % SDS, 30 % glycerol, 15 % beta-

mercaptoethanol, 0.125 mg/mL bromophenol blue.  

For western blotting of whole-cell protein, cells were lysed using RIPA buffer. A 

small amount of lysate was reserved for Bradford assay and 3X SDS buffer was 

added to the remainder. Generation of protein lysates from nuclear and cytoplasmic 

fractions was described previously in section 1.2.1. 

2.6.2 Bradford assay 

To determine protein concentration, samples were suspended in either RIPA buffer 

or Buffer A depending on the preceding experiment. Samples were diluted either  

1 in 2 or 1 in 5 with water, depending on anticipated protein abundance. Standards 

of BSA ranging from 0.1-5 mg/mL, as well as a 0 mg control, were suspended in the 

same buffer and diluted either 1 in 4 or 1 in 10 as required with either water or a 
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water/buffer mixture such that the buffer concentration equalled that of the test 

samples. 5 µL diluted standard or sample was mixed with 200 µL Pierce Coomassie 

reagent (Thermo Scientific, 1856209) in triplicate in a 96 well plate, avoiding 

formation of bubbles. Absorbance at 595_nm was measured, and the absorbance 

from the 0 mg/mL sample subtracted from all other wells. Protein concentration in 

the samples were calculated using the calibration line, taking into account 

differences in dilution. Bradford-derived concentrations were multiplied by 0.667 to 

give concentration in the electrophoresis samples.  

2.6.3 Western blotting 

2.6.3.1 Gel casting 

Running gel (10.5 mL): X mL 30 % acrylamide 37.5:1, 6.75 – X mL water, 3.45 mL  

1.5 M Tris HCl pH 8.8, 105 µL 10 % SDS, 105 µL 10 % APS, 13.5 µL TEMED. 

Stacking gel (3 mL): 2.1 mL water, 495 µL 30 % acrylamide 37.5:1, 375 µL  

1 M Tris HCl pH 6.8, 37.5 µL 10 % SDS, 37.5 µL 10 % APS, 6 µL TEMED.  

SDS polyacrylamide gel electrophoresis was performed using 30 % acrylamide/bis-

acrylamide 37.5:1 solution (Sigma-Aldrich, A3699) at final acrylamide concentrations 

ranging from 6-12 %. Running gel was made up according to the recipe below and 

used to cast 1.5 mm thick mini-gels (measuring 8.3 x 7.3 cm, including wells). The 

surface of the running gel was levelled using ~ 1 mL water or isopropanol which was 

poured off once the gel was set, prior to addition of the stacking gel.  

2.6.3.2 Sample preparation and electrophoresis 

Western blot running buffer (10 X): 1.92 M glycine, 0.25 M Tris Base, 1 % SDS. 

Western blot transfer buffer: 48 mM Tris Base, 39 mM glycine, 0.037 % SDS,  

20_% (v/v) methanol.  

Between 15 and 25 mg protein were loaded per lane - with the mass consistent 

across all lanes of any given gel – alongside a protein marker for the relevant 

molecular weight range (NEB, P7719S or Thermo Scientific, 26625). To achieve more 

uniform bands, the protein markers and all but the lowest concentration sample 

were diluted with 1X SDS such that an equal volume was loaded in each lane. 

Following dilution, samples (but not markers) were boiled at 90 °C for 10 minutes 

then placed on ice. Electrophoresis was carried out at a constant current  
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(20 – 25 mA for one gel, 40 – 50 mA for two) until the marker bands had reached the 

desired separation. 

2.6.3.3 Transfer 

TBST: 150 mM NaCl, 10 mM Tris HCl pH 8.0, 0.05 % Tween 20.  

Protein was transferred to PVDF membrane (Thermo Scientific, 88518) by semi-dry 

transfer. PVDF membrane was wet first in methanol for at least 45 seconds, then in 

blotting buffer and assembled beneath the gel between two 3-layer thick stacks of 

buffer-soaked Whatman 3MM paper (GE Healthcare, 3030-917). Transfer was 

carried out at constant current of 0.8 mA/cm2 for between 2 and 4 hours, depending 

on the size of the protein(s) of interest.  

2.6.3.4 Protein detection 

Membranes were blocked with 5 % milk for one hour at room temperature. Blots 

were incubated with primary antibody overnight at 4 °C then washed three times for 

5 minutes in TBST before incubating with the relevant HRP-conjugated secondary 

antibody for 1 hour at room temperature. Details of antibodies and their dilutions 

are provided in table 2.6. Membranes were washed three to five times for 5 minutes 

in TBST before proceeding to chemiluminescent detection. ECL reagent (Amersham 

ECL Prime Western Blotting Detection Reagent, GE Healthcare, RPN2232) was 

removed from the fridge 15 minutes before use and the two components mixed 

immediately before application. Around 1.5 mL ECL solution was used per blot. Blots 

were imaged first under white light using a LAS-4000 (FujiFilm) at high resolution for 

1/15th second to record position of the marker bands. The setting was then changed  

 

 

PROTEIN 
OF 

INTEREST 
kDA HOST DILUTION SUPPLIER PRODUCT 

CODE 

α-TUBULIN 50 Mouse 1:1500-2000 Invitrogen A11126 
β-ACTIN 42 Mouse 1:1000 Cell Signalling 3700P 
CNOT1 267 Rabbit 1:800 Proteintech 14276-1-AP 
CNOT1 267 Rabbit 1:174-363 Novus biologicals NBP2-31892 
LAMIN A/C 74,63 Mouse 1:1000-1800 Cell signalling 4777T 

      
Mouse IgG  Goat 1:1000-3000 Dako P0447 
Rabbit IgG  Swine 1:1000-3000 Dako P0217 

Table 2.6 Antibodies used for western blot. 
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to chemiluminescence and exposure time varied according to signal. The high-

resolution setting was used where possible, however for low abundance proteins, 

either ‘standard’ or ‘high’ sensitivity were used if exposure time was otherwise in 

excess of 15 minutes. Signal was not quantified. 

2.6.3.5 Re-use of membranes 

Stripping buffer: 62.5 mM Tris HCl pH 6.8, 2 % SDS, 0.8 % β-mercaptoethanol.  

Where necessary, membranes were stripped and re-probed. If this was planned 

rather than opportunistic, the less abundant protein was detected prior to stripping. 

The membrane to be stripped was placed in a 50 mL falcon tube, protein side facing 

in, and stripping buffer added such that it did not touch the membrane when the 

tube was upright (to avoid uneven stripping). As it was not possible to roll the tube 

at 50 °C, the tube was placed in a 55 °C water bath and rolled frequently by hand for 

30 – 45 minutes. Stripping buffer was discarded and washed in TBST for 30 – 60 

minutes, changing every 5 minutes, until β-ME was no longer detectable. 

Membranes were re-blocked then washed and imaged with ECL detection reagent 

to ensure removal of the previous antibodies.  

 Immunoflluorescence 

2.7.1 Slide preparation 

Cells were seeded in µ-Slide 8 well chambers (Ibidi, 80826) at densities of 0.7-

2.0_x_104 cells/mL (depending on duration of experiment) with two wells assigned to 

each condition. Notably, cells grew more slowly than in larger culture dishes, and 

preferred to grow at the edges of the well. At the end of the relevant experiment, 

media was removed and cells were washed twice with cold PBS. Cells were fixed in  

4 % paraformaldehyde (PFA) for 12 minutes then washed a further three times for  

5 minutes with PBS. At this point, slides were stored for up to 14 days at 4 °C. Cells 

were next permeabilised in 0.1 % Triton X100 in PBS for 10 minutes, followed by 

three x 1 minute PBS washes. Blocking was carried out using 4 % BSA in PBS for one 

hour at room temperature. The primary antibody was then added in 4 % BSA and 

incubated overnight at 4 °C. Secondary only control wells remained in 4 % BSA. 

Following three x 1 minute PBS washes, slides were incubated with Alexa 

Fluorophore-conjugated secondary antibody for 1 hour at room temperature and 

washed again. Antibody details and dilutions are described in table 2.7. Where 
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Phalloidin (Cell Signalling, 8878) was used, stain was diluted 1:200 in PBS and slides 

incubated for 30 minutes. Nuclei were stained by incubating with Draq5 (Cell 

Signalling, 4084) diluted 1:4000 in PBS for 5 minutes. Prior to imaging, cells were 

washed three more times for 1 minute with PBS, then covered with 150 µL PBS to 

prevent drying. Following addition of fluorophores, slides were stored in foil. 

2.7.2 Microscopy  

Slides were imaged using a Zeiss LSM510 confocal microscope with 488 nm argon, 

543 nm He-Ne and 633 nm He-Ne Lasers, under conditions of minimal ambient 

lighting. A drop of immersion oil was used to coat the 40x objective, and the slide 

placed on the platform above. One fluorescence colour (emitted colour) was chosen 

and used to find cells and focus the microscope through the eyepiece, using the 

microscope light rather than the lasers. Once cells were in focus, the microscope 

light was switched off, the 633 nm channel enabled and focus fine-tuned in the 

scanning window using the Draq5 staining. For each channel, the gain and offset 

adjusted were to ensure the images were neither over- nor underexposed, and to 

make sure any signal outside the cells was minimised. Where channels were 

detecting antibody staining, the relevant secondary-only well was imaged early on 

to check the level of background staining. Once settings were optimised, they were 

maintained across all images of that experiment, and immersion oil on the objective 

was refreshed regularly. Images were taken of at least two fields of view (covering 

225 x 225 µm) per well, in some cases with an additional zoomed-in image taken 

(covering 83.33 x 83.33 µm). 

 

 

 

Table 2.7 Antibodies used for immunofluorescence. 

Table 2.7 Antibodies used for immunofluorescence. 

PROTEIN 
OF 

INTEREST 
HOST DILUTION (IN 4 

% BSA) SUPPLIER PRODUCT 
CODE Fluorophore 

CPSF4 Rabbit 1:200 Proteintech 15023-1-AP - 
PABPN1 Rabbit 1:200 Abcam ab75855 - 
WDR33 Mouse 1:200 Santa Cruz sc-374466 - 

      
Rabbit IgG Goat 1:400 Invitrogen A11034 Alexa 488 
Mouse IgG Goat 1:400 Invitrogen A11004 Alexa 568 
Mouse IgG Goat 1:400 Invitrogen A11003 Alexa 546 
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2.7.3 Image analysis 

2.7.3.1 Nuclear/cytoplasmic quantification 

Images were analysed using Image J to determine relative fluorescence of 

nuclear:cytoplasmic staining (process illustrated in figure 2.2). First, nuclei were 

identified using the ‘3D objects counter’ and ‘threshold’ functions on the Draq5  

                                                                                                                                   A) The 3D 
objects counter tool was used on the Draq5 channel of the image to select bodies with 

an area >500 and an intensity > 15. ‘Object’ was set as the output. A selection was 
created then inverted to select nuclei rather than negative space, and added to the 

manager. B) The selection was expanded by 5 pixels and this selection also added to 
the manager, along with another for the nuclear/cytoplasmic boundary minus 2 pixels. 

C) The view was switched to the antibody stain channel and the fluorescence intensity 
and area measured for all three selections. To obtain mean fluorescence for the 
cytoplasmic regions, the total fluorescence and area of the nuclei (boundary, not -2) 

were first subtracted from the +5 selection. 

Figure 2.2   Schematic of nuclear and cytoplasmic signal quantification. 
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channel of the image, using ‘15’ as the fluorescence threshold and ‘500’ as the 

minimum area. Three selections were then made: one along this nuclear/ 

cytoplasmic boundary (‘B’), one increased in radius by 5 pixels to incorporate the 

cytoplasm (‘+5’), and one reduced by 2 pixels (‘-2’) to ensure only nuclear stain was 

included. Each ‘selection’ was the sum across all nuclei in the image. The channel 

was changed to show antibody staining rather than Draq5, and measurements for 

total area and fluorescence were obtained for each selection in order to calculate 

mean fluorescence/area (‘fluorescence intensity’). Figures for the cytoplasmic 

fraction were obtained by subtracting the boundary measurements from those of 

the +5 selection. A ratio of mean nuclear fluorescence/mean cytoplasmic 

fluorescence was calculated for each image. Zoomed in images were excluded from 

this analysis. Violin plots of the data from two replicates were generated using 

GraphPad Prism 8, and a t-test performed between control and Cnot1 knockdown at 

each time point.  

 Deep Sequencing 

2.8.1 PQ-Seq Library preparation 

RNA was isolated using the ReliaPrep RNA Cell Miniprep system (Promega, Z6012) 

according to the manufacturer’s instructions, except for an extended DNase-

treatment step of 60 rather than 15 minutes. 1 µg total RNA as determined by 

nanodrop was used as a starting point for each sample. RNA for the steady state 

experiment had undergone additional DNase treatment with Turbo DNase 

(Invitrogen, AM2238) and homemade DNase I buffer but this step was removed 

from the serum stimulation experiment as it was suspected this treatment may be 

causing RNA degradation. Anchor addition and library preparation were carried out 

by Sunir Malla (then at DeepSeq, University of Nottingham - both experiments), and 

Hilary Collins (GRRB, University of Nottingham - serum stimulation experiment).  

PQ-Seq is discussed in detail in chapter 7 (PAT-Quant Seq: Poly(A) tail deep 

sequencing) and is outlined in figure 7.1. In brief, an anchor was added to the 3’ end 

of polyadenylated mRNAs using a biotinylated anchor template. RNA was then 

fragmented using RNase T1 (cleaves ssRNA after G) in order to enrich the sample for 

3’ end fragments which were a compatible length for Illumina short read 

sequencing. This step avoided removal of long RNAs during subsequent size 
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selection. The RNA:anchor template duplexes were pulled out of the solution using 

streptavidin beads and the RNA then eluted by disrupting the duplex with heat and 

formamide. The eluted RNA then entered the QuantSeq Flex pipeline in which 

Illumina-compatible libraries were synthesised. Fluorescence files were obtained 

from the sequencer and processed by tailseeker to give reliable poly(A) length calls.  

2.8.1.1 Anchor addition 

Klenow reaction mix (5 µL): 4 µL 5X First Strand buffer (Invitrogen, supplied with 

18080093), 1 µL 0.1 M DTT, 1 µL 10 mM dNTPs, 1 µL Murine RNase Inhibitior (NEB, 

M0314). 

Streptavidin beads (Dynabeads MyOne C1 - Invitrogen, 65001) were removed from 

the fridge 30 minutes prior to use then resuspended by vortexing for 30 seconds. 

For each sample, 50 µL beads were transferred to a 1.5 mL Eppendorf tube and the 

tube placed on a magnetic rack for one minute. Supernatant was removed, and the 

beads were washed first in 100 µL nuclease-free water at room temperature, then 

with 100 µL 1X RNase T1 digest buffer (Ambion, supplied with AM2283) which had 

been pre-warmed to 55 °C. The supernatant was removed and replaced with a fresh 

100 µL digest buffer in which the beads were kept at room temperature until use.  

In order to anneal the anchor template, RNA and 1 µL RA3-PAT-biotin primer  

(100 µM) were mixed in a total volume of 12 µL, heated to 80 °C for 5 minutes then 

cooled to 4 °C at a rate of 2 °C/min. 7 µL Klenow reaction mixture was added and 

mixed by pipetting, then warmed to 37 °C. 1 µL Klenow polymerase exo- (NEB, 

M0212L) was added and the reaction was incubated at 37 °C for 30 minutes.  

2.8.1.2 Fragmentation 

Prior to fragmentation, RNA was incubated at 80 °C to disrupt secondary structure. 

Incubation was for a total of 15 minutes, after 5 of which 80 µL digest buffer was 

added. The mixture was cooled to 22 °C in a PCR machine and 2 µL RNase T1 

(Ambion, AM2283) was immediately added, mixing by pipetting. The reaction was 

incubated for 5 minutes at 22 °C, then vortexed for 15 seconds in a LoBind 

centrifuge tube with 200 µL 50:50 acid-phenol/chloroform and a further 100 µL 

digest buffer. After spinning at top speed for 5 minutes at room temperature, an 

additional chloroform wash was performed. The sample was spun again for  



87 
 

5 minutes at room temperature, and the aqueous phase transferred to a tube 

containing the prepared streptavidin beads. 

2.8.1.3 Streptavidin purification 

The DNA:RNA duplex was incubated with the beads for 15 minutes with shaking at 

37 °C. Beads were concentrated on a magnetic rack for 2 minutes, after which the 

supernatant was removed and discarded. Care was taken to stabilise the tubes while 

opening the lids to avoid disruption of the beads. Beads were resuspended in 200 µL 

0.2X SSC and incubated for 5 minutes at 65 °C, concentrated on the rack again for  

2 minutes the supernatant removed, and the wash repeated. After removal of the 

second wash supernatant, beads were resuspended in 50 µL nuclease-free water 

and vortexed.  

Resuspended beads were heated at 80 °C for 2 minutes, beads concentrated on a 

magnetic rack, and the supernatant moved to a fresh tube on ice. The beads were 

resuspended in 50 µL deionized formamide by vortexing and heated at 80_°C for a 

further 2 minutes. Beads were again concentrated for 2 minutes and the 

supernatant combined with the previous. One final elution was carried out using 

100 µL nuclease-free water at 80 °C for 2 minutes, and the supernatant was again 

combined with that of the first and second elution steps.  

RNA was precipitated from the eluate using 1 µL glycogen, 23 µL 3M sodium acetate 

pH 5.5, and 700 µL ethanol pre-cooled to -20 °C. The mixture was vortexed and the 

RNA precipitated at -80 °C for at least one hour. RNA was collected by spinning at 

16,000 g at 4 °C for 30 minutes. The pellet was washed with 800 µL freshly prepared 

80 % ethanol and spun again in a cold centrifuge at 16,000 g for 10 minutes. 

Supernatant was removed and the pellet allowed to air dry for 5 minutes before it 

was resuspended in 20 µL 1X RNA loading buffer in preparation for size selection. 

The RNA (still on the beads) along with 50 bp RNA ladder in a separate tube, were 

incubated at 95 °C for 2 minutes. The RNA was placed on a magnetic rack for  

1 minute and the supernatant then transferred to a clean tube on ice. RNA was run 

alongside the marker on a Novex 6 % TBE-Urea gel (Invitrogen, EC6265BOX) that had 

been washed thoroughly with nuclease-free water. RNA was run half way to avoid 

dilution with too much gel. Gels were stained with SYBR Gold for 5 minutes then 

visualised on a clean blue light transilluminator. RNA fragments between 200 bp and 



88 
 

the top of the gel were excised (in a single strip) and transferred to a LoBind 

centrifuge tube. Gel slices were crushed with disposable RNase-free pestles and 

soaked in 300 µL TE buffer. 2 µL RNase inhibitor was added and the slurry rotated 

overnight at 4 °C. Gel solution was passed through a filtration column by 

centrifuging at 13,200 rpm for 2 minutes. Eluate then underwent ethanol 

precipitation, and the resulting pellet was resuspended in 55_µL nuclease-free 

water. 

Before proceeding to library preparation, RNA was purified using 99 µL RNA Clean 

XP beads (Beckman Coulter, A63987). Cleanup was carried out loosely according to 

the manufacturer’s instructions, though initial mixing was by vortexing rather than 

pipetting, and two rather than three 70 % ethanol washes were carried out. In 

addition, no evaporation step was expressly noted though the manufacturer 

suggests 10 minutes. Beads were incubated in 12 µL nuclease-free water at room 

temperature for 2 minutes to elute the RNA. After concentrating the beads on a 

magnetic rack for 2 minutes, 10 µL supernatant was transferred to a PCR tube to 

commence QuantSeq Flex library preparation.  

2.8.1.4 QuantSeq Flex library preparation 

Library preparation begins with cDNA synthesis using a primer complementary to 

the beginning of the anchor sequence. RNA is then degraded and a second DNA 

strand synthesised using random priming. These primers also contain Illumina linker 

sequences which enable later amplification. The resulting cDNA is purified then 

amplified by PCR, through which sample-specific index sequences are introduced via 

the reverse primer. After a final purification step, libraries are suitable for 

sequencing on an Illumina MiSeq or HiSeq. For PQ-Seq, second strand synthesis and 

PCR reagents are provided in the 3’ mRNA-Seq FWD kit (Lexogen, 015.24), while the 

first strand synthesis reagents (which allow use of a custom primer) are supplied in 

an additional module (QuantSeq-Flex First Strand – Lexogen, 026). Primers are 

detailed in table 2.8.  

The 10 µL purified RNA was mixed with 5 µL QuantSeq-Flex FS cDNA synthesis Mix1 

(FS1x), 5 µL RTP (20 µM) and 5 µL nuclease-free water by gentle vortexing, then 

heated to 85 °C for 3 minutes. RTP matches the 5’ end of the anchor template and 
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Table 2.8 PQ-Seq sequences 
Name Sequence 

Anchor extension and cDNA synthesis 
RA3_PAT_biotin (anchor 
template) 

(Bio)GCCTTGGCACCCGAGAATTCCANNNNNNNNNNNNGTCAGTTTT
TTTTTTTTTTTTTT 

RNA RT Primer (RTP) - 
serves as P5 adapter 

GCCTTGGCACCCGAGAATTCCA 

P7 adapter - added 
during random priming 
of 2nd strand 

CACGACGCTCTTCCGATCT 

  

Library amplification 
QuantSeq-Flex PCR 
primer (for libraries - 
included in PCR mix) 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

RNA PCR Primer (RP1) - 
for spike ins 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCC
GA 

RNA PCR Primer, Index 1 
(RPI1) 

CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA 

RPI12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCCTTG
GCACCCGAGAATTCCA  

RPI19 CAAGCAGAAGACGGCATACGAGATTTTCACGTGACTGGAGTTCCTTGG
CACCCGAGAATTCCA    

Spike in templates 
Poly A Spike N (0) TCAGAGTTCTACAGTCCGACGATCNNNNNNNNNNNNNNNNNNNNN

NNCTGACGAGCTACTGTTGGAATTCTCGGGTGCCA 

Poly A Spike_16 TCAGAGTTCTACAGTCCGACGATCNNNNNNNNNNNNNNBAAAAAAA
AAAAAAAAACTGACGAGCTACTGTTGGAATTCTCGGGTGCCA 

Poly A Spike_32 TCAGAGTTCTACAGTCCGACGATCNNNNNNNNNNNNNNBAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAACTGACGAGCTACTGTTGGAATT
CTCGGGTGCCA  
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Poly A Spike_64 TCAGAGTTCTACAGTCCGACGATCNNNNNNNNNNNNNNBAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAACTGACGAGCTACTGTTGGAATTCTCGGGTGCCA 

Poly A Spike_128 TCAGAGTTCTACAGTCCGACGATCNNNNNNNNNNNNNNBAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAACTGACGAGCTACTGTTGG
AATTCTCGGGTGCCA  

 

Table 2.8 PQ-Seq sequences. Index sequences indicated in purple.  

was used in first strand synthesis to prime reverse transcription from the 3’ end, 

through the rest of the anchor and the poly(A) tail and into the gene body. After 

incubation, the RNA-primer mixture was cooled to 50 °C and 4.5 µL QuantSeq-Flex 

FS cDNA synthesis Mix2 (FS2x) was added along with 0.5 µL Enzyme mix. The 

reaction was mixed by pipetting and incubated at 50 °C for one hour.  

RNA was degraded as per the QuantSeq manual. Random-primed second strand 

synthesis was then carried out according to the manufacturer’s instructions, but 

with an extended incubation at 25 °C of 1 hour rather than 15 minutes. Library cDNA 

was purified using the magnetic bead-based purification module (Lexogen, 022.96). 

This was again performed according to the user manual, however a larger elution 

volume of 25 µL rather than 20 µL was used, and beads were only air dried for 3-5 

rather than 5-10 minutes. 

Samples from distinct cellular fractions have different starting compositions, and the 

extensive processing in the PQ-Seq protocol provided ample opportunity to 

introduce further variation. In addition, differences in primer efficiency may have 

existed. Use of a consistent cycle number for library amplification across samples 

may therefore have resulted in different library sizes and consequent unequal 

sequencing depth. Test amplifications were therefore carried out with a small 

volume of library cDNA before proceeding to library amplification. For each library,  

5 µL cDNA was amplified in a 15 µL reaction under the following cycling conditions: 

Initial denaturation 98 °C 30 seconds, then 21 cycles of 98 °C 10 seconds, 65 °C  

20 seconds, 72 °C 300 seconds. After 15 and 18 cycles 3 µL was removed from the 

reaction and stored. For each sample, PCR product from 15, 18 and 21 cycles was 

run on a bioanalyzer using the High Sensitivity DNA assay kit and chip (Agilent,  
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5067-4627, 5067-4626). Traces were compared to work out when products in the 

200-700 bp size range started to appear, and this sample-specific cycle number was 

taken forwards for final library amplification.  

Library amplification was carried out as in the QuantSeq manual, but with a  

300 rather than 30 second extension at 72 °C. In addition, custom index primers 

which contained the RTP sequence (table 2.8) were used in place of the provided i7 

indices, at a final concentration of 0.5 µM. The index used for each sample is 

indicated in table 2.9. Following amplification, libraries were purified once again 

using the purification module. After the 80 % ethanol wash, beads were again only 

air dried for 3-5 rather than the 5-10 minutes suggested by the QuantSeq manual. 

Quality of the purified libraries was verified by resolving 1 µL on the Bioanalyzer 

using the High Sensitivity DNA assay kit and chip (Agilent, 5067-4627, 5067-4626).  

 

Table 2.9 Sample-index relationships for the steady state and serum-stimulated PQ-Seq 

experiments. 

2.8.1.5 Spike in preparation 

To ensure that tailseeker was generating reliable poly(A) length calls for endogenous 

mRNAs, synthetic spike-ins of known poly(A) length (0, 16, 32, 64 and 128 – table 

2.8) were amplified and added to the libraries to be sequenced. The P5 adapter 

sequence of the spike ins differed from those introduced by the random primers 

during QuantSeq second strand synthesis and as such, amplification was not 

Table 2.9 Sample-index relationships for the steady state and serum-stimulated PQ-Seq experiments. 

       
Steady state  Serum stimulated 

Sample 
Index 
no. Index Seq  Sample 

Index 
no. 

Index 
Seq 

Nuc 6 GCCAAT  0' Nuc 1 ATCACG 
Cyto 5 ACAGTG  15' Nuc 5 ACAGTG 
Spike_N 2 CGATGT  60' Nuc 6 GCCAAT 
Spike_16 4 TGACCA  0' Cyto 19 GTGAAA 
Spike_32 7 CAGATC  15' Cyto 12 CTTGTA 
Spike_64 8 ACTTGA  60' Cyto 10 TAGCTT 
Spike_128 9 GATCAG  Spike_N 2 CGATGT 

    Spike_16 4 TGACCA 

   Spike_32 7 CAGATC 

    Spike_64 8 ACTTGA 

    Spike_128 9 GATCAG 
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performed with the QuantSeq reagents. Rather, 5 pmol spike in oligo were amplified 

using KAPA HiFi Master Mix (Roche, KK2103) with 0.4 µM RPI primer (table 2.8) and 

0.4 µM index primer in a 25 µL reaction with the following program: 98 °C  

3 minutes, then 10 cycles 98 °C 30 seconds, 62 °C 20 seconds, 71 °C 60 seconds, 

followed by a final extension at 71 °C for 2 minutes. Quality of the spike ins was 

assessed similarly to libraries using the Bioanalyzer. The index primers used for each 

spike in are given in table 2.9.  

2.8.2 PQ-Seq bioinformatics analysis – tailseeker 

Following sequencing on an Illumina MiSeq (using a MiSeq v2 500 cycle kit), the 

entire output (including fluorescence intensity .cif files) were fed into the tailseeker 

pipeline. tailseeker is a challenging software to set up and required much work by 

Daniel Zadik (DeepSeq, University of Nottingham) to get running. Reads were 

mapped against the GRCm38 mouse assembly. A pre-built package for tailseeker 

including genome indices, annotation and association databases is available at: 

https://zenodo.org/record/203939#.XzMB-ShKiUk (last accessed 08/01/2021). 

tailseeker produces two metric summaries: single and multi. Data from the single 

mapping summary spreadsheet was used for analysis. The spreadsheet contained 

summary statistics (mean, median, high and low confidence intervals) rather than 

values for individual transcripts. To avoid inclusion of mRNAs with few reads and 

possibly distorted summary statistics, results were filtered for those mRNAs with a 

minimum value for poly(A) tag counts. In general, 30 tag counts were considered to 

give a reliable tail length call, however other values were also used as indicated in 

the relevant figures. 

2.8.3 Analysis of a publicly available CNOT1 knockdown RNA-Seq dataset 

Fastq.gz files generated by Roger Grand’s lab (598) were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141496 . Experiments 

were carried out in HeLa cells 72 hours after transfection with control or CNOT1 

siRNA. Two replicates each were available for untreated control or knockdown cells, 

and an additional one replicate for each condition was treated with the transcription 

elongation inhibitor DRB for 4 hours. The study also involved TAB182 knockdowns 

and treatments with DNA damage-inducing drugs but these samples were not 

included in this analysis. So far, these data do not seem to have been published. 
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Quality control for each read was assessed using FastQC (599). In this instance the 

FastQC v0.11.7 was run on command line using the provided script. Binaries were 

downloaded from www.bioinformatics.babraham.ac.uk/projects/fastqc/ . 

2.8.3.1 Alignment with STAR 

Mapping was performed using STAR version 2.7.4a (600). Genome indices were 

compiled to incorporate splice junctions using the Gencode GRCh38 primary 

assembly with the chromosomal comprehensive genome annotation (601). The 

sjdbOverhang option was set to 149 such that up to 149 nucleotides of a 150 nt read 

could be on one side of an exon junction. Reads successfully aligned using these 

indices should therefore comprise both spliced and unspliced transcripts and any 

DNA contamination should be evident by the extent of intergenic reads. During the 

mapping step, 8 nt adapter sequences (as indicated in the fastq.gz file names) were 

removed but no additional clipping was carried out. The libraries were reverse 

stranded, but strandedness options were absent from this STAR release so no 

strandedness information was defined. Duplicated fragments are not automatically 

flagged by STAR so were initially included in the analysis, however the 

‘bamRemoveDuplicatesType’ option was later set to ‘UniqueIdenticaNotMulti’ 

(marks duplicate unique mappers, but not multimappers) or ‘UniqueIdentical’ 

(marks both duplicate unique mappers and multimappers) to assess the impact of 

duplicate removal. Using this option, all copies of a duplicated fragment (and 

multimappers if specified) are flagged and therefore ignored by featureCounts in 

downstream raw count determination.   

The following script executes index assembly followed by mapping and adapter 

clipping.  

# Maps paired end reverse stranded reads in a directory 
using STAR 
source /users/stxkw5/stxkw5/TailSeq-
Build/tailseeker_sourcefile 
 
# Unzip and make list of fastq files 
cd /users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Fastq 
gunzip *.gz 
ls ./*.fastq > run_list.txt # make list of fastq files 
 
# For each pair, extract adapter sequences 
n=1  
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N="$(grep -c ".fastq" run_list.txt)" # count entries in 
run_list.txt 
echo $N 
 
while [ $n -le $(($N+1)) ]; do 
cd /users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Fastq 
awk '{print substr($n, 20, 7)}' run_list.txt > adapt_1.txt 
# make list adapter 1 seqs 
awk '{print substr($n, 29, 7)}' run_list.txt > adapt_2.txt 
# make list adapter 2 seqs 
awk '{print substr($n, 3, 16)}' run_list.txt > outname.txt 
# make list outfile sample names 
adapt_1n="$(cat adapt_1.txt | head -$n | tail -1)" 
adapt_2n="$(cat adapt_2.txt | head -$n | tail -1)" 
echo $adapt_1n 
echo $adapt_2n 
 
# For each pair, define input file paths and names 
read1="/users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Fastq/$(cat 
run_list.txt | head -$n | tail -1)" 
read2="/users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Fastq/$(cat 
run_list.txt | head -$(($n+1)) | tail -1)" 
 
echo "read1: $read1" 
echo "read2: $read2" 
 
# For each pair, define output file path and name 
outname="/users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Mapped2/$(cat 
outname.txt | head -$n | tail -1)" 
 
cd /users/stxkw5/stxkw5/RNA/STAR/STAR-
2.7.4a/bin/Linux_x86_64_static 
 
#generate genome indices 
./STAR --runThreadN 6 --runMode genomeGenerate --genomeDir 
/users/stxkw5/stxkw5/RNA/Genome/Human/Human_indices_v2.7.4a 
--genomeFastaFiles 
/users/stxkw5/stxkw5/RNA/Genome/Human/GRCh38.primary_assemb
ly.genome.fa --sjdbGTFfile 
/users/stxkw5/stxkw5/RNA/Genome/Human/gencode.v34.primary_a
ssembly.annotation.gtf --sjdbOverhang 149 
 
# Run STAR spliced with adapter clipping 
./STAR --runThreadN 4 --genomeDir 
/users/stxkw5/stxkw5/RNA/Genome/Human/Human_indices_v2.7.4a 
--readFilesIn $read1 $read2 --outFileNamePrefix $outname --
outSAMtype BAM SortedByCoordinate --clip3pAdapterSeq 
$adapt_1n $adapt_2n  
echo "completed spliced mapping for $(cat outname.txt | 
head -$n | tail -1)" 
echo "outfile: $outname" 
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2.8.3.2 Generating ‘unspliced’ alignments 

Intron-containing reads were used as a proxy for unspliced RNA level. To select for 

these, the BEDtools (602) intersect function was used with an exon-only BED file to 

filter out reads which overlapped more than 95 % with exons. BED files were 

generated for the GRCh38 genome using the Table Browser program in UCSC 

genome browser and selecting exons as feature outputs. Removal of exons was 

used rather than selecting for intronic overlap in order to retain intergenic reads. 

The resulting ‘unspliced’ filtered alignments were used for downstream differential 

expression analysis and also to generate metaplots to assess bulk changes in mRNA 

level between samples.  

Below is an example code for filtering out non-intron reads. 

./intersectBed -abam 
/users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Mapped2/BAMstore/Contro
l-repeat_1Aligned.sortedByCoord.out.bam -b 
/users/stxkw5/stxkw5/RNA/Genome/Human/hg38_exons.bed -f 
0.95 -v > 
/users/stxkw5/stxkw5/RNA/HeLa_Cnot1/Mapped2/BAMstore/total_
Ctrl-rep1_minusE.bam 

2.8.3.3 Creation of metaplots 

To generate metaplots, the bamCoverage, computeMatrix and plotProfile tools from 

the deepTools suite were used (603). bamCoverage converts .bam files to .bw. 

During .bw file generation, one can elect to perform normalisation. Here, BPM 

(BEDtools TPM equivalent) was used to normalise both for total number of mapped 

reads and for gene length. The .bw files were used as input for the scaleRegions 

function of computeMatrix which scales all protein-coding regions to a set length 

(2000 nucleotides chosen here), divides the gene into bins of length n (10 nt chosen 

here) and counts the number of reads which map to each bin. The generated matrix 

was used to create metaplots using plotProfile. Additional options at the 

computeMatrix step allow inclusion of regions upstream of the TSS (transcription 

start site) and downstream of the TES (transcription end site). Here, plots were 

made to include regions both 2.0 and 10.0 kb upstream and downstream. 

Sample code for matrix generation is below. 

computeMatrix scale-regions -S Control-rep1_bpm.bw Control-
rep2_bpm.bw NOT1_KD-rep1_bpm.bw NOT1_KD-rep2_bpm.bw -R 
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/users/stxkw5/stxkw5/RNA/Genome/Human/gencode.v34.primary_a
ssembly.annotation.gtf -o control_NOT1_bpm_bothreps_matrix 
--outFileSortedRegions control_NOT1_bpm_bothreps_names --
skipZeros -m 2000 -b 500 -a 5000  
--samplesLabel Ctrl_1 Ctrl_2 NOT1_1 NOT1_2 -p 6 

2.8.3.4 Obtaining raw counts 

Differential analysis to quantify changes in gene expression between control and 

knockdown conditions were performed using DeSeq2 with the two available 

replicates (604). Raw counts required by DeSeq2 as input were generated from bam 

files using the featureCounts tool from the Subread package (605). FeatureCounts 

can be used either at feature (continuous range of positions e.g. exon or gene) or 

meta-feature (set of features which belong to some entity of interest e.g. set of 

exons belonging to a gene) level. In both modes, featureCounts counts fragments 

per feature, but can then sum these counts for all features within a meta-feature.  

By counting at meta-feature level using exons, reads originating mainly from introns 

will be ignored, whereas they would be included using feature level counting with 

the feature set to ‘gene’. At feature level, a fragment will always be discarded if it 

overlaps two features however, at meta-feature level fragments are included if the 

features it overlaps belong to the same meta-feature eg. fragments crossing exon 

junctions. Feature level counting using genes, and meta-feature level counting using 

exons were performed separately, using the same annotation file as at the mapping 

step (chromosomal region comprehensive gene annotation for the GRCh38 

assembly in GTF format).  

The following featureCounts options were employed for counting at feature level by 

gene: -p (denotes paired end reads), -B (requires both ends of a fragment to be 

successfully aligned), -Q 10 (only counts fragments where at least one end has a 

mapping quality exceeding 10 so that only uniquely mapping fragments are used),  

-s 2 (reverse stranded) --ignoreDup (ignores fragments where either read is flagged 

as duplicated in the BAM file), -f (counts at feature level) -t gene (‘gene’ is the type 

of feature to count).  

Since GTF files do not contain introns as features (and introns therefore cannot be 

counted this way), unspliced counts were again obtained from the exon-removed 

BAM files using featureCounts to count the number of fragments overlapping each 
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feature marked as ‘gene’ in the annotation file. Settings were identical to those 

detailed above.   

2.8.3.5 Differential expression analysis 

Online code for processing featureCounts output using DeSeq2 was used as a guide 

(606). In brief, featureCounts output of raw counts is first loaded into R as a 

dataframe, trimmed to exclude surplus information and converted to a matrix 

where each column corresponds to a sample and each row to a feature or meta-

feature. An accompanying vector is also created to describe the condition (i.e. 

control or treated) associated with each column in the count matrix. Once this has 

been loaded into R, the DESeqDataSetFromMatrix function performs differential 

expression analysis, the results of which can be exported to a table and summarised 

graphically. Heatmaps were produced to display sample similarity, MA plots to show 

changes in expression vs average expression, and volcano plots to visualise extent of 

statistically significant fold changes.  

The following script encodes the above. 

R # opens R 

raw_counts <- read.table("Ctrl_r1_r2_NOT1_r1_r2.txt", 
header=TRUE, row.names=1) # imports txt file into R 
dataframe and sets the row names of this data frame (row 
names are an inherent and necessary feature of a data 
frame) to the values of the 1st column in the imported file 
i.e. the gene id in this case.  

# This means in the data frame, column 1 is the chromosome, 
2 is start position etc, so you only want the row names and 
then columns 6 onwards (raw count data). 

raw_counts <- raw_counts[ ,6:ncol(raw_counts)] # rewrites 
raw_counts as only the 6th-to max column (i.e. ncol counts 
number of columns) 

# Currently the column titles still have .bam in them and 
also the whole file path. These need removing. 

colnames(raw_counts) <- c("Ctrl rep1", "Ctrl rep2", "NOT1 
rep1", "NOT1 rep2") 

# next convert data frame to a matrix  

raw_counts <- as.matrix(raw_counts) 

# create vector to describe conditions – i.e. control or 
knockdown – of each sample so that DeSeq2 knows how to 
compare them.  

(sample_type <- factor(c(rep("ctrl", 2), rep("kd", 2)))) 
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# Data now in suitable format to stick together.  

library(DESeq2) # Preparing to organise data ready for 
analysis (i.e. arranging the correctly formatted columns 
into the right layout for DeSeq2 analysis) 

# Set the following: countData = counts, colData = sample 
names+associated condition and design = sample type 

(coldata <- data.frame(row.names=colnames(raw_counts), 
sample_type))   # this effectively transposes column names 
and putting it next to sample names in a new dataframe 

dds <- DESeqDataSetFromMatrix(countData=raw_counts, 
colData=coldata, design=~sample_type) # creates the dataset 

dds # prints info about number of entries etc. 

dds <- DESeq(dds) # THIS IS THE DIFFERENTIAL EXPRESSION 
ANALYSIS. ‘dds’ has been overwritten with the analysis. 

res <- results(dds) # Outputs results of the analysis 

resdata <- merge(as.data.frame(res), 
as.data.frame(counts(dds, normalized=TRUE)), 
by=”row.names”, sort=FALSE) # merges DE analysis results 
with the normalised count data from the dds output 

names(resdata)[1] <- "Gene" # names column 1 

write.csv(resdata, file="diffexpr-results-
qualityAndStranded.csv") # writes out to csv format 

# PLOTS # 

# First, log transform data to make it easier to look at in 
graphs. This uses the regularized log transformation 
function of DESeq2 which transforms the count data to the 
log2 scale. 

RLT_dds <- rlogTransformation(dds) 

head(assay(RLT_dds)) 

hist(assay(RLT_dds)) # creates histogram but I am not sure 
where it goes.  

library(RColorBrewer) 

(mycols <- brewer.pal(8, 
"Dark2")[1:length(unique(sample_type))]) # chooses some 
nice colours from the RColorBrewer set, assigns colours 
based on sample type 

sampleDists <- as.matrix(dist(t(assay(RLT_dds)))) # makes 
matrix of distances between log transformed counts for each 
sample 

library(gplots) 

png("qc-heatmap-samples-qualityAndStranded.png", w=500, 
h=500, pointsize=20) # makes empty plot ready for heatmap – 
saving to a file which can be accessed later 

heatmap.2(as.matrix(sampleDists), key=F, trace="none", 
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 col=colorpanel(100, "black", "white"), 

 ColSideColors=mycols[sample_type], 
RowSideColors=mycols[sample_type], 

 margin=c(10, 10), main="Sample Distance Matrix") 

dev.off() # finished creating 

# create MA plot to look at how expression changes compared 
to average expression (over all samples??) I inbuilt DESeq2 
one. 

png("MAplot_qualityAndStranded.png", 600, 500, 
pointsize=20) 

plotMA(dds, alpha = 0.05, main="MA Plot") # sets adjusted p 
value limit to 0.05 

dev.off()  

# create volcano plot. For this I need to make the adjusted 
p sorted results. 

table(res$padj<0.05) # creates a table of results which are 
significant based on adjusted p value 

res <- res[order(res$padj), ] # orders by adjusted p value  

resdata_padj <- merge(as.data.frame(res), 
as.data.frame(counts(dds, normalized=TRUE)), 
by="row.names", sort=FALSE) 

names(resdata_padj)[1] <- "Gene" 

head(resdata_padj) 

# Preparing volcano plot 

volcanoplot <- function (res, lfcthresh=2, sigthresh=0.05, 
main="Volcano Plot", legendpos="topleft", labelsig=TRUE, 
textcx=1, ...) { 

  with(res, plot(log2FoldChange, -log10(pvalue), pch=20, 
main=main, ...)) 

  with(subset(res, padj<sigthresh ), points(log2FoldChange, 
-log10(pvalue), pch=20, col="red", ...)) 

  with(subset(res, abs(log2FoldChange)>lfcthresh), 
points(log2FoldChange, -log10(pvalue), pch=20, 
col="orange", ...)) 

  with(subset(res, padj<sigthresh & 
abs(log2FoldChange)>lfcthresh), points(log2FoldChange, -
log10(pvalue), pch=20, col="green", ...)) 

  legend(legendpos, xjust=-2.3, yjust=1, 
legend=c(paste("FDR<",sigthresh,sep=""), 
paste("|LogFC|>",lfcthresh,sep=""), "both"), pch=20, 
col=c("red","orange","green")) 

} 

# Creating plot 
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png("volcanoplot-
qualityAndStranded_legendMove_ydefined_points.png", 600, 
500, pointsize=20) 

volcanoplot(resdata_padj, lfcthresh=1, sigthresh=0.05, 
textcx=.8, xlim=c(-2.3, 2.3), ylim=c(0, 30)) 

dev.off() 

To explore whether significantly up- or downregulated genes were enriched for 

gene ontology (GO) terms, the tabular output of the DeSeq2 analysis was used. An 

adjusted p-value of 0.05 was used to select for significance, and a log2(fold change) 

of ± 1 to detect changes in mRNA level. For some conditions, the thresholds for 

adjusted p-value and log2(fold change) were decreased and increased respectively 

to avoid exceeding the 500 gene maximum for GO enrichment analysis (607–609). 

When graphically presenting GO terms, highly similar terms were pruned and the 

term with the highest fold enrichment was retained. 

2.8.3.6 Manual calculation of TPM from raw counts 

To look specifically at expression of genes which were of interest in NIH 3T3 cells, 

TPM (Transcripts Per Million) was calculated ‘manually’ using the raw count data 

produced by featureCounts. For total RNA, reads were counted per exon and 

transcript length was used to compute TPM, whereas for ‘unspliced’ RNA, reads 

were counted per gene and gene length was used to compute TPM. While the sum 

of intronic regions may have been a more appropriate length to normalise to, this 

information is not readily available as alternative splicing precludes annotation of 

introns. For each gene, relative expression was calculated by normalising to the 

mean expression of the two control replicates. TPM was simple to calculate for total 

fragments, but for the ‘unspliced’ fragments it was not clear whether it was more 

appropriate to normalise to total sequencing depth or to the total number of 

fragments remaining after filtering out exons. Both approaches seemed informative 

by different reasoning so a figure was created for each. 
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3 The poly(A) tail is regulated in multiple responses and 

subcellular locations 

 Introduction 

The poly(A) tail is an important feature of eukaryotic mRNAs, mediating export, 

stability and in some cases translation efficiency, of the mRNA (1, 2, 10, 11, 13, 19, 

23, 26, 62, 269–271, 274, 325, 398, 434). The poly(A) tail thereby provides another 

opportunity to modulate gene expression, through control of its length (13, 58, 60, 

62, 269, 434, 587). Early experiments following the discovery of poly(A) tails 

concluded by radioactive labelling that bulk mammalian poly(A) tail length was 

heterogenous but peaked at around 150 – 200 nt (324, 610). The notion of a 

universal 200-250 nt tail was later compounded by in vitro experiments showing 

that poly(A) polymerase (PAP) loses processivity after adding 200-250 nt (52, 179, 

363). More recent genome-wide studies based on reverse transcription and PCR 

have found that bulk poly(A) tail length is indeed very heterogenous, but that most 

tails are considerably shorter than the 200 nt, consistent with widespread 

cytoplasmic deadenylation (11, 325, 326). On top of the contribution from 

deadenylation, the pool of transcripts captured by these genome-wide studies 

differs from those of early work, measuring total cellular mRNA rather than labelling 

for between 12 minutes and 48 hours and isolating either nuclear or polysome-

associated RNA. In particular, the 12 minute pulse labelling experiment will have 

favoured rapidly synthesised RNAs which may disproportionately possess longer 

tails. As well as these pools being unequally affected by deadenylation, the  

12 minute pulse labelling experiment in particular will have favoured rapidly 

synthesised RNAs which may disproportionately possess longer tails.  

In addition, previous work in our lab mathematically modelling poly(A) tail length in 

the serum response suggested that a consistent input of 200 nt poly(A) tails 

throughout the transcription pulse could not generate the poly(A) tail length 

distributions observed experimentally unless deadenylation/decay rates changed 

throughout the time course (611). Though a change in decay rate is also a 

possibility, the assumption that all mRNAs are created with 200 nt tails was tested 

first using nuclear/cytoplasmic fractionation and also by labelling of newly 

synthesised mRNA with 4-thiouridine. Surprisingly, tails of induced mRNAs produced 
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late in the serum response are short in the nuclear/4SU-labelled fractions as well as 

in the cytoplasmic/unlabelled fractions, indicating that poly(A) tails of these mRNAs 

are either synthesised short or are rapidly removed in the nucleus. Furthermore, 

housekeeping mRNAs possess a consistent medium length tail throughout their 

lifetime which is unexpected given their high stability (611).  

Here, these results are recapitulated and the length of the poly(A) tail probed earlier 

in the mRNA lifetime to attempt to determine whether these short tails are a result 

of reduced synthesis or rapid deadenylation. In addition, the impact of poly(A) tail 

length on stability of transiently expressed mRNAs is confirmed and preliminary data 

in other organisms suggest that regulation of poly(A) tail length is widespread.  

 The poly(A) tail test (PAT) 

To investigate poly(A) tail length in the chosen systems, poly(A) tail tests (PATs) 

were used. Following ligation of an anchor to the 3’ end of the mRNA, cDNA was 

generated, forming the template for PCR which used a gene specific forward primer 

and reverse primer complementary to the 3’ anchor. Using sequence data from 

NCBI and intensity scanning of agarose gel lanes by the Quantity One 1-D analysis 

software (Bio-Rad), highly specific, repeatable tail lengths for individual genes could 

be determined. An overview of the process is described in figure 3.1 A. For the 

detection of less abundant mRNAs, or those which share high sequence homology 

with other genes, nested PATs can be performed. Nested pats involve the ligation of 

a longer anchor such that two subsequent PCRs can be carried out with an outer and 

inner primer pair. Specificity is enhanced by using two gene-specific primers, and 

the extra round of PCR enables increased amplification for low abundance mRNAs.  

One recurring problem of PAT gels is the appearance of larger than expected 

products which appear to track the changes of lower bands. The appearance of 

these bands was minimised by running in the cold room. A previous lab member 

demonstrated these to be artefacts of the PAT test caused by misalignment of 

poly(A):poly(T) stretches in the double stranded PCR products. Misalignment 

through repeated melting and re-annealing steps during PCR results in loops of 

unpaired A or T bases, which can pair with unpaired T or A stretches in other 

fragments, creating multimers (figure 3.1 C). Multimer bands were therefore 

excluded from size analysis to avoid falsely long poly(A) tail estimates. The chance of  
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                                                            A) Schematic describing specific addition of a DNA 

anchor to the 3’ ends of sample RNA, followed by a reverse transcription step which 

selects for ends with at least 5 adenosine residues to minimise contamination with 
internal regions of RNA. Reverse transcription is followed by PCR with a gene specific 

forward primer in the 3’UTR, which only differ through differences in polyadenylation, 

or rarely through 3’UTR variation. B) Comparison of tail lengths derived from image 

analysis of conventional PAT gels and fluorescent PAT PCR products subject to 
denaturing capillary gel electrophoresis. Data shown for Rpl28 mRNA in the 

nucleoplasmic fractions of control and Cnot1 knockdown cells. C) Schematic of 

multimer formation following repeated melting and re-annealing of fragments during 

PCR. 

Figure 3.1   The poly(A) tail test. 
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this hybridisation occurring could in theory increase with tail size, which may result 

in disproportionate multimerization of long-tailed mRNAs, however this has not 

previously been tested. If it were the case, multimerization could cause a 

concomitant removal of long-tailed species from the monomeric population. Since 

the PAT assay was routinely carried out use a native rather than denaturing gel, 

multimerisation could perhaps have led to an underestimate of tail length. To 

investigate this, PAT PCR was performed using a fluorescent reverse primer and the 

generated products were run on denaturing capillary gels (capillary gel 

electrophoresis performed by Matthew Carlisle at DeepSeq, University of 

Nottingham). Contrary to expectation, PAT PCR products separated by the 

denaturing gel resulted in a measurement of peak tail length that was 

approximately 20 nt shorter than when run on a native agarose gel (figure 3.1 B). 

Normalisation of signal to account for the linear relationship between SYBR Safe 

staining and fragment length was already performed during analysis of native 

agarose gels, so a bias in staining could not explain this discrepancy. This confirmed 

that exclusion of multimers did not remove long-tailed products from native PAT 

analysis. The difference in derived length between native and denaturing PAT gels 

may instead have stemmed from the use of a different size marker, or from the 

abrogation of any slight differences in migration efficiency between size marker and 

PCR product that may normally exist in native gels. Regardless, differences in 

estimated tail length between samples were consistent between electrophoresis 

methods, suggesting that formation of multimers did not qualitatively affect the 

conclusions drawn (figure 3.1 B).  

Concerns have been raised about the reliability of PCR-based methods in 

determining the size of homopolymeric regions due to repeated dissociation and 

inaccurate re-joining of the polymerase. Although the likelihood of re-joining the tail 

sequence before and after the correct position are equally likely, the chance of 

these events occurring increase with region size. Longer tails would therefore be 

affected with higher frequency and shorter tails more likely to remain short, 

potentially leading to a bias towards short tails.  

To test the validity of the RL2-PAT assay, RNase H northern blots were performed 

for representative mRNAs. As RNase H degrades RNA at DNA:RNA hybrids, gene 
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specific antisense oligos were used to cleave the RNA at a certain position in the 

3’UTR, generating transcripts short enough to visualise differences in poly(A) length 

at sufficient resolution. Oligo(dT) was additionally added to some samples to 

produce deadenylated controls. RNA was denatured by glyoxylation and separated 

by agarose gel electrophoresis. Initial attempts using RNase H resulted in 

unintended degradation of poly(A) tails in reactions containing only gene-specific 

antisense oligo, with no oligo(dT) (data not shown). This problem was narrowed 

down to genomic DNA contamination in the sample and was rectified by extended 

DNA treatments, or by isolation of the cytoplasmic fraction which should have 

contained less DNA.  

In the meantime, full length Rpl28 mRNA was assayed since the gene body is short 

enough (496 nt) that changes in poly(A) length should still have been visible at 

sufficient resolution. Comparison between methods applied to the same sample 

suggested that native PATs may indeed underestimate poly(A) tail length (figure 

3.2). While there was only a small difference in peak length (47.4 PAT, 63.4 

northern), the northern blot also appeared to contain a heterogenous population of 

longer tails. Comparison of the medians (63.5 PAT, 97.3 northern) and means (82.7 

PAT, 107.1 northern) of the two distributions was perhaps more descriptive for this 

difference than comparing modal values, as the difference between mean and 

median was greater for the PAT, indicating a greater skew. Inconsistency between 

distributions suggested that some long tails may have been missed in the Rpl28 PAT. 

It is possible however, that overloading or incomplete denaturation caused 

inaccurate size determination in the northern blot; in particular, the buffer of the 

glyoxal gel system must be constantly recirculated to avoid localised occurrence of 

pH>7.0 and consequent loss of denaturation. Furthermore, the size markers 

themselves advised they were not suitable for size determination, however no 

alternatives were available.  

Upon solving the DNA contamination problem, samples from 0, 20 and 60 minute 

serum stimulation time courses were cleaved with an antisense oligo for either 

Rpl28 or Egr1. For each timepoint, RNase H cleavage was carried out in the presence 

or absence of oligo(dT) to provide deadenylated controls. To avoid DNA 

contamination, the RNA assayed for Rpl28 poly(A) length was derived from 
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cytoplasmic fractions and the RNA for Egr1 tail length was DNase treated for 1_hour 

with Turbo DNase. In both cases, resistance of the poly(A) tail to degradation by 

RNase H alone was tested by PAT prior to carrying out the larger reactions for the 

northern blots (figures 3.3 A, 3.4 A). Although PAT primers were obtained which 

amplified within the region remaining after RNase H treatment, in practice these 

                                                                  A) Northern blot of full-length Rpl28 mRNA 

(deadenylated length 496 nt) using 32P probe. Samples with or without RNase H 

treatment with oligo dT are compared. B) Poly(A)+ sample from A, subjected to 

RL2-PAT using agarose gel stained with SYBR safe. C) Comparison of tail length 
distributions derived from scanning PAT or northern blot images of the same 

untreated sample. 

Figure 3.2   The PAT assay and northern blot give different estimated poly(A) 

lengths for full length Rpl28 mRNA. 
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only worked on untreated RNA; thus, these PATs also provided the closest data 

which could be obtained for comparing lengths estimated by each method.  

Using RNase H with an oligo designed to bind 199 nt upstream of the cleavage site, 

modal estimated poly(A) tail length of cytoplasmic Rpl28 mRNA was remarkably 

similar between the PAT and northern blot methods for all three time points (figure 

3.3 D). Since the northern gel experienced some frowning (figure 3.3 B), poly(A) 

length at each time was derived by subtracting the length value at the peak of the 

paired deadenylated sample, rather than an exact 198_nt. There were additional 

bands below the expected fragment sizes which were particularly evident in the 

RNA which underwent RNase H treatment with the specific oligo but not oligo(dT) 

(figure 3.3 C). These were likely to be off-target cleavage products which could 

perhaps have been minimised by shorter incubation with RNase H, or the use of less 

enzyme. Although the modal poly(A) lengths were similar between methods, this 

figure did not capture differences in the distributions. As with full length Rpl28, the 

northern blot indicated a less homogenous population than the PAT, with evidence 

of slightly longer tails in the northern blot, however this was diminished compared 

to the full length Rpl28 blot. This again suggested that some longer poly(A) tails 

could be missed in the Rpl28 PATs. Additional comparison of the means and 

medians was not possible due to the presence of additional RNase H digestion 

products at shorter lengths in the northern blots. 

To validate the PAT for longer poly(A) tails, DNase-treated RNA was cleaved with 

RNase H and a specific antisense oligo for Egr1, which binds 169 nt upstream of the 

annotated cleavage site. Prior to treatment with the specific oligo, a test reaction 

was carried out with RNase H alone and showed that no DNA endogenous to the 

sample was causing unintended cleavage (figure 3.4 A). Methylene blue staining of 

the membrane revealed very slight frowning of the gel (figure 3.4 B). Unexpectedly, 

hybridization with a 200 nt probe for the 3’ end of the Egr1 mRNA returned two 

bands which were particularly clear in the oligo(dT) treated lanes (figure 3.4 C). The 

two bands may have represented different 3’ UTRs, or could have been caused by 

non-specific binding of oligo(dT) to A-rich regions in the 3’ UTR. Since the bands 

were either side of the predicted 168 nt deadenylated length, the two measurement 

methods were compared using both the long and the short band as the  
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Figure 3.3   Comparison between PAT and RNase H northern blot measurements for 
Rpl28.              A) RL2-PAT assay, using agarose gel and stained with SYBR safe, for RNA isolated 
from the cytoplasmic fraction of cells stimulated with serum for 0, 20 or 60 minutes, then 

treated with RNase H alone, or RNase H and oligo(dT). The untreated and RNase H only 
bands are similar, indicating no DNA contamination. B) Methylene blue staining of a section 

of the nitrocellulose membrane, showing slight frowning of the gel (compare position of 
bands indicated by red arrows). C) Blot incubated with a 32P labelled probe for the 3’-

terminal 200nt of the Rpl28 mRNA. All samples were cleaved with the same gene-specific 
oligo, and half of the samples were also deadenylated using oligo(dT). D) Poly(A) tail length 
distributions of the two methods for each time point. 
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  Figure 3.4   Comparison between PAT and RNase H northern blot measurements for Egr1 
(continued overleaf).  A) RL2-PAT assay, using agarose gel stained with SYBR safe, 
confirming the presence of long poly(A) tails on Egr1 mRNA following incubation with 

RNase H. Note: no oligos were included in treatment as this adversely affected the PAT 
assay. B) Methylene blue staining of northern blot showing slight gel frowning. C) Northern 

blot with probe against the 3’-most 200 nt of the Egr1 mRNA. D, E) Comparison of 
estimated poly(A) distributions between the PAT assay and northern blot using either the 

higher (D) or lower (E) band in the oligo(dT)+ lane as the deadenylated length. F) IGV 
viewer tracks for PQ-Seq 50 nt forward read alignments of 15 or 60 minute serum 
stimulated cytoplasmic fractions along the Egr1 gene. G) Sequencing results of the Egr1 

PAT product confirming the same longer than expected 3’ UTR as in PQ-Seq data.  
H) Comparison of estimated poly(A) distribution from the PAT and northern blot methods, 

assuming a 3’UTR which is 25 nt longer than annotated for the PAT, and using the longer 
band in the oligo(dT) lanes as the deadenylated lengths for the northern. 
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Figure 3.4 continued. 
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deadenylated lengths for the northern. While the shapes of poly(A) distributions 

were remarkably similar between methods, the PAT either under or over-estimated 

poly(A) length compared to the northern, depending on which of the +oligo(dT) 

bands was used as the deadenylated length (figure 3.4 D, E). 

To see whether alternative 3’UTR isoforms were likely, forward read alignments for 

cytoplasmic fractions of 15 and 60 minute serum stimulated NIH 3T3 cells were 

visualised against the mouse GRCm38 genome in the IGV web viewer (612). This 

revealed reads extending approximately 25 nucleotides further than the annotated 

cleavage site (figure 3.4 F). This longer UTR was confirmed by sequencing of the PAT 

product (figure 3.4 G). Using the longer value for the deadenylated PAT product, 

estimated poly(A) distributions for the northern blot and the PAT assay much more 

closely resembled each other (figure 3.4 H). Weak signal from the northern blot and 

the consequent ‘lumpy’ distribution made it difficult to establish an accurate figure 

with which to calculate the differences in modal values between methods. The 

longer deadenylated length was taken forwards for subsequent analyses of Egr1 

PATs, though frequent conversion of  

G à A at the final G residue suggested that the exact cleavage site may in some 

cases have been 4 bases earlier (figure 3.4 F). Since the additional section of 3’_UTR 

was very A rich, it was possible that the two bands in the oligo(dT) treated lanes 

were caused by inconsistent removal of this section.  

Overall, PAT assays using agarose gels appear to detect differences in poly(A) length 

reliably in comparison with denaturing gel PATs and northern blotting, though there 

are subtle differences in distributions and absolute lengths obtained (figures 3.3 D, 

3.4 H). Given their reproducibility and additional convenience compared with other 

methods, native agarose gel PATs were used to measure poly(A) tails for the rest of 

the study. 

 Poly(A) tail length is regulated in the nucleoplasm and on the 

chromatin 

In the NIH 3T3 serum response, long poly(A) tails (~150-200 nt) are detectable on 

transcriptionally induced immediate early gene transcripts within 15-20 minutes of 

serum addition (587, 611). By about an hour after induction, transcription is much 
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reduced and poly(A) tails are short (<30 nt). In contrast, constitutively expressed 

mRNAs possess only medium length (~30 – 70 nt) poly(A) tails which do not change 

in response to serum addition (11, 325, 326, 423, 611). The observation that most 

mRNAs have tails shorter than the 200 nt which is thought to be added during 

synthesis is usually attributed to cytoplasmic deadenylation. Previous mathematical 

modelling work however, indicates that the poly(A) tail distributions observed late 

in the serum response cannot arise without either a change in deadenylation or 

degradation rate, or a change in initial poly(A) length (611). Examination of nuclear 

and 4SU-labelled mRNA confirmed that initial poly(A) tail is indeed regulated prior 

to export into the cytoplasm. 

To probe the discovery of nuclear poly(A) tail regulation further, chromatin fractions 

were isolated. Fractionation efficiency was checked by comparing enrichment of 

unspliced over spliced mRNA in each fraction, and normalising to the value for the 

cytoplasm. DNA contamination was also tested by performing qPCR for the 

unspliced Rpl28 transcript on cDNA and no-reverse transcription controls. For both 

replicates, unspliced enrichment was around 100-fold greater in the nucleoplasmic 

fraction and at least 1000-fold greater in the chromatin-associated fraction when 

compared to that of the cytoplasm, indicating good separation (figure 3.5 B, E). 

Some DNA contamination was evident, mainly in the chromatin fractions (figure 3.5 

C, F), however this should not have affected results of the PAT assay since the RNA 

ligase used can only ligate to the 3’ end of RNA (though it can use the pre-

adenylated 5’ end of either RNA or DNA).  

For the majority of mRNAs, tail length was defined before the RNA was released 

from the chromatin (figure 3.5 A,D). The exception seemed to be the Sqstm1 mRNA 

which possessed a long chromatin associated tail but medium length nucleoplasmic 

and cytoplasmic tails at all time points. This strongly indicated a case for 

nucleoplasmic deadenylation of a subset of mRNAs. There also seemed to be some 

evidence of this for Actb in the first replicate, but a mid-length tail was present on 

the chromatin also (figure 3.5 A). This could have been due to differences in 

fractionation purity between replicates, or could have been caused by slight 

differences in the time of harvest or quality of induction. Likewise, in the second 

replicate there appeared to be some long poly(A) tails in the 50 minute chromatin  
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                                                                                                    Results shown for two biological 
replicates. A, D) Chromatin associated, nucleoplasmic and cytoplasmic poly(A) tails 

measured by RL2-PAT, using agarose gel and staining with SYBR safe, at the time points 

indicated. Arrows point to maximum and minimum modal poly(A) tail sizes as 
determined using quantitative gel scanning . Notably, most tail length control seems to 

occur while the mRNA is chromatin associated, except in the case of Sqstm1 whose tail 

is trimmed in the nucleoplasm. B, E) qPCR of unspliced Rpl28 mRNA shows evidence of 

DNA contamination in the chromatin fractions, which is not detectable by the PAT 
assay. C, F) qPCR of mature and unspliced mRNA show enrichment of unspliced over 

spliced transcripts in the nucleoplasmic and chromatin fractions. 

Figure 3.5   Poly(A) tail is regulated at multiple stages.  
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fraction for Fosb, suggestive either of the synthesis of both long and short tails, or 

the complete chromatin-associated deadenylation of some transcripts (figure 3.5 D). 

Rpl28 was the only transcript examined for which a long poly(A) tail was never 

observed. 

 Long poly(A) tails are associated with increased stability of 

unstable mRNAs 

The poly(A) tail is thought to affect stability of the associated mRNA, however 

studies of endogenous transcripts in mammalian somatic cells are limited and 

suggest this relationship may not be universal (326, 587). To investigate the 

relationship between tail length and mRNA stability, transcription was inhibited 

either early or late in the serum response using 40_µg/mL Actinomycin_D (AcD).  

20 and 50 minutes were chosen since at these times, all induced mRNAs of interest 

tended to have either long or short poly(A) tails respectively. Samples were 

harvested at 10 minute intervals following AcD addition and mRNA levels measured 

by qPCR to assess degradation rate. Cessation of transcription was checked by 

measuring unspliced mRNA levels (figure 8.2). Unexpectedly, unspliced levels of 

Fosb did not decrease rapidly upon AcD treatment, even upon increasing the dose 

from 5 to 40 µg/mL. This could either have resulted from a failure to inhibit 

transcription or from delayed splicing. Since it was not clear which of these was the 

case, Fosb was excluded from the analysis. 

If a relationship between tail length and stability existed, degradation should have 

been faster when AcD was added at 50 minutes than at 20. Such a pattern was clear 

for all three induced mRNAs tested, with very slow degradation of the long-tailed 

transcripts and rapid decay of the short-tailed transcripts (figure 3.6). As the poly(A) 

tail of constitutively expressed mRNAs did not change by any measurable degree, it 

was not possible to determine a relationship by this method, however the 

demonstrably stable Rpl28 mRNA was included as a control.  

In dealing with endogenous mRNA populations rather than carefully controlled 

levels of some synthetic species, this method could not rule out a model in which 

the much higher amount of RNA present at 20 minutes saturated some specificity  
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factor responsible for targeting degradation machinery to the mRNA, thereby 

eliciting a proportionally slower degradation rate independently of poly(A) tail size.  

 

Figure 3.6   Long poly(A) tails are associated with greater stability of unstable mRNAs. 
Transcription was stopped by adding Actinomycin D after 20 (red dot) or 50 (blue cross) 

minutes, when poly(A) tails of induced mRNAs are long or short respectively. mRNA 
abundance at 10 minute intervals following transcription cessation was measured using 

qRT-PCR, analysed using the ΔΔCt method, with Gapdh as the reference gene. mRNA 

level was normalised to the level at either 20 or 50 minutes to give fold change, and this 
fold change transformed by the natural log, since decay kinetics are exponential. A line 

at x=0 would indicate no decay. 3 biological replicates are shown for the induced 

mRNAs, and 2 for Rpl28. Representative RL2-PAT gels (agarose, stained with SYBR safe) 

are shown below for each gene, where the number below indicates minutes after serum 
stimulation. 
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 HEK293 cells also exhibit chromatin-associated poly(A) tail 

regulation 

To determine whether the early poly(A) tail length regulation observed was an 

isolated feature of NIH 3T3 cells, chromatin fractionations were also performed on 

the HEK293 human kidney cell line. As there is no well characterised serum response 

in these cells, experiments were performed at steady state. Separation of fractions 

was again validated using unspliced mRNA enrichment, this time for RPL10A. The 

magnitude of enrichment was lower than in NIH 3T3 cells, but clear differences 

between fractions were visible in the PAT assay (figure 3.7). Although only two 

mRNAs were tested, both nucleoplasmic and chromatin associated poly(A) control 

were evident (figure 3.7 A). While ACTB mRNA had a medium length tail across all 

fractions, a mixed population of long and medium length tails was evident on 

chromatin-associated RPL10A mRNAs. This is different to NIH 3T3 cells where mixed 

long and medium tails were detected for Actb, while only medium length tails were 

observed on the ribosomal protein mRNA, Rpl28 (figure 3.5 A, D).  

 

 

 

 

 

 

 

 

 

Figure 3.7   Preliminary data suggest varied locations of poly(A) length control in human 
cells.           A) RL2-PAT assays using agarose gel stained with SYBR safe were carried out on RNA 

isolated from chromatin-associated, nucleoplasmic and cytoplasmic fractions of HEK293 
cells. Arrows point to maximum and minimum modal poly(A) tail sizes determined using 

quantitative gel scanning. B) qPCR of mature and unspliced RPL10A mRNA shows 
enrichment of unspliced over spliced transcripts in the nucleoplasmic and chromatin-
associated fractions. 
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 Discussion 

Despite possible inaccuracies in absolute tail length determination, PATs are able to 

quickly and easily detect small changes in poly(A) tail length between different 

conditions. Additionally, the tail lengths estimated by these PAT assays are in 

agreement with those observed by numerous other groups for cytoplasmic length 

(11, 325, 326), suggesting that these measurements are suitable for interpretation 

by the scientific community. On the other hand, most high throughput measures of 

poly(A) tail length also involve a PCR step and as such may be subject to similar 

biases. When compared to northern blots, the PAT assay underestimated the modal 

value of the Rpl28 poly(A) tail by 3-16 nucleotides (figures 3.2 B, 3.3 D). The PAT and 

northern distributions appeared more similar for the long and short tails present on 

Egr1 mRNA (figure 3.4 H), though the hybridization step should be repeated in order 

to obtain smoother curves.   

Analyses with the PAT assay show that the poly(A) tail is regulated in both mouse 

and human cells (figures 3.5, 3.7). Furthermore, in both cell lines the poly(A) tails of 

some mRNAs were determined before their release from the chromatin. As the 

poly(A) tail enhances stability of some induced transcripts (figure 3.6), early control 

of tail length could enable tighter regulation of protein synthesis, i.e. by causing 

those transcripts produced at the end of the transcription pulse to be degraded 

more rapidly than those at the beginning.  

Strikingly the poly(A) tail of Rpl28 exhibited only a medium length tail at all time 

points and in all fractions of NIH 3T3 cells (figure 3.5). This does not seem to be a 

conserved feature of ribosomal protein mRNAs across organisms since the RPL10A 

mRNA had a long poly(A) tail in the chromatin associated fraction of HEK293 cells. 

Common among housekeeping mRNAs of both organisms were their medium length 

nucleoplasmic and cytoplasmic poly(A) tails, which were shorter than what might be 

expected given their high stability. One possibility is that stability is conferred by 

some other factor; such a factor may not necessarily be poly(A)-independent, but 

may only require tails of a certain length. One possibility is that these mRNAs are 

protected by a higher density of PABPC binding, while another is that proteins other 

than PABPC also bind their tails and inhibit deadenylation either directly or by 

promoting closed loop formation (465, 494, 499). 
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The existence of dynamic chromatin-associated and nucleoplasmic poly(A) tail 

length regulation (figure 3.5) highlights the importance of the poly(A) tail for gene 

expression. While the decreases which occurred between fractions of a given time 

point are likely explained by nucleoplasmic and cytoplasmic deadenylase activity, it 

is not clear how poly(A) tail length of nascent mRNA is controlled. 

For several mRNAs mixed long and short-tailed populations existed in the chromatin 

fraction. Such a pattern could have arisen either through rapid processive 

deadenylation of initially long poly(A) tails, or through delayed polyadenylation of 

successfully cleaved transcripts. Both scenarios are in some sense unprecedented 

since deadenylation is documented to occur much more slowly than would be 

required here, and the nuclear polyadenylation reaction is coupled to cleavage so 

would have to be inhibited in some way – perhaps through slow recruitment of PAP 

itself or PABPN1 (28, 31, 179, 347, 363, 613). A recent publication found evidence of 

chromatin-associated deadenylation by the Ccr4-Not complex in the Drosophila 

germline, though this was closely linked to decay of the target transcripts (33). In 

theory, simultaneous synthesis of long and short-tailed species would also produce 

a dual population, though this seems functionally irrelevant if poly(A) tail length 

ultimately converges in the nucleoplasm. While such an event could perhaps be 

considered at some transient switch, this pattern occurred at multiple time points. 

Although two bands were visible in several lanes of the Egr1 PAT, we propose that 

the deadenylated band present across all fractions represented a constitutively 

produced deadenylated form of the mRNA since it was also detectable prior to 

serum stimulation.  

Whether nascent poly(A) length control is elicited through rapid deadenylation or 

control of tail synthesis is not yet clear. Given the variation in patterns between 

genes, it seems possible that the mode of regulation too is gene-specific.   
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4 CNOT1 is a key regulator of early poly(A) length in NIH 3T3 

cells 

 Introduction 

Two complexes are responsible for the majority of bulk mRNA deadenylation in 

mammalian cells: CCR4-NOT and PAN2-PAN3 (26, 503). The individual contributions 

of the complexes under normal conditions has not yet been delineated since they 

seem able to partially compensate for each other’s depletion (529). While PABPC is 

required for PAN2-PAN3 deadenylase activity, earlier work suggested that it 

inhibited the CCR4-NOT complex (24, 459, 460). This, along with the observation of 

biphasic deadenylation dynamics, led to the prevailing model in which PAN2-PAN3 

performs an initial trimming of long tails -  presumably bound by multiple PABPCs - 

followed by CCR4-NOT mediated deadenylation resulting in complete tail removal 

(26). Recent work has confirmed selectivity of PAN2-PAN3 for long tails, but 

stimulation of the CCR4 nuclease by PABPC at permissible concentrations has also 

been observed (28, 50). 

4.1.1 CCR4-NOT 

CCR4-NOT is a large complex which was originally identified as a transcription factor 

and has been implicated in many processes besides deadenylation (35, 38, 39, 41, 

42, 44, 147, 550). In addition to contributing to bulk mRNA deadenylation, CCR4-

NOT can be targeted to subsets of mRNAs through interactions with proteins such as 

Tristetraprolin and Roquin which recognise 3’UTR AU-rich elements (AREs) and 

stem-loops respectively (45, 255). The complex is also involved in miRNA-induced 

silencing and some nonsense mediated decay pathways (256, 258, 266, 268).  

Integral to the CCR4-NOT complex are two catalytic subunits, each having two 

isoforms encoded by two genes: CCR4 (CNOT6/CNOT6L) and CAF1 (CNOT7/ CNOT8). 

CCR4 is of the EEP (exonuclease-endonuclease-phosphatase) family, and CAF1 the 

DEDD type (named due to conserved Asp and Glu residues) (522, 614–616). In vitro 

experiments using reconstituted complexes/components, as well as knockdown and 

rescue experiments in HeLa cells, have shown that the two nucleases differ in 

several characteristics, summarised in table 4.1 (28, 31, 50).  
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Importantly, CCR4 was recently shown to be stimulated by PABPC, whereas CAF1 

was inhibited (28, 50). This has implications for their substrate preferences and 

indeed, deletion of ccr4 in yeast stabilised the majority of transcripts (to different 

degrees), whereas deletion of caf1 only affected low codon optimality mRNAs which 

are thought to be poorly translated and to exhibit relatively sparse Pab1 (PABPC) 

binding on their tails (28). Although this is an appealing model, CAF1 bridges the 

interaction of CCR4 with the rest of the complex, so it is surprising that caf1 deletion 

had a more specific effect than deletion of ccr4 (28, 523). CNOT7 (CAF1) activity can 

be further modulated depending on incorporation of other proteins into the 

complex (305). In addition, interaction of CAF1 with PABPC via BTG2 was found to 

stimulate rather than inhibit its activity in vitro (463).  

4.1.2 Approach 

Poly(A) tails observed late in the serum response - as well as those on constitutively 

expressed mRNAs - are much shorter than the canonical 200-250_nt initially 

discovered by pulse labelling (figure 3.5 A, D) (324). The simplest model to resolve 

this disparity is one in which mRNA is produced with long tails which are then 

CCR4 CAF1 Reference(s) 

No1/low2 activity of 
isolated nuclease Isolated nuclease active 

1Webster (28)  
(recombinant S. pombe 

protein, in vitro assay), 2Chen 
(532) (recombinant human 
subcomplex, in vitro assay) 

Higher activity in 
heterodimer and full 
complex. 

Lower activity in 
heterodimer and full 
complex. 

Raisch (31) (reconstituted 
human [sub]complex, in vitro 

assay) 

Stimulated by PABPC Inhibited by PABPC 

Webster (28) (recombinant S. 
pombe protein, in vitro 
assays), Yi (50) (purified 

human subcomplex, in vitro 
assay) 

More specific for poly(A) Less specific for poly(A) 

Raisch (31) (reconstituted 
human subcomplex, in vitro 

assay), Chen (532) 
(recombinant human 

subcomplex, in vitro assay) 

Translation independent Translation-dependent Webster (28)  
(S. cerevisiae, in vivo assay) 

Interacts with complex 
via Caf1 

Directly interacts with 
complex (binds CNOT1) 

Basquin (523), Petit (524), 
Raisch (31), Chen (532) 

Table 4.1 Comparison of CCR4-NOT nuclease activities. 
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pruned in the nucleus by a deadenylase to some proper length. Repeated casual 

observation was that tail length and unspliced level of serum response mRNAs peak 

soon after induction (~15-20 minutes) and are greatly reduced after one hour,  

  

Figure 4.1   Cnot1 knockdown increases total poly(A) tail length in the serum response 

and this corresponds with slower decay of unstable mRNAs.                                                                                                                NIH 3T3 cells treated with 

control or Cnot1 siRNA and stimulated with serum as indicated previously. Total RNA was 
isolated. A) RNA was subjected to RL2-PAT using agarose gel stained with SYBR safe. 
Arrows indicate maximum and minimum modal poly(A) tail sizes as determined using 

quantitative gel scanning. C and KD denote control and Cnot1 knockdowns respectively. 
Results shown for one biological replicate. Times indicate minutes of serum stimulation.  

B) Validation of Cnot1 knockdown at the mRNA level for the time course shown in A).  
C) Validation of knockdown technique at the protein level. 
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suggesting that tail length may be coordinated with transcription rate for these 

genes. Since the CCR4-NOT complex has known roles in transcription, it was 

investigated first (147, 550). In order to reduce the complex’s activity, mRNA  

encoding the scaffold subunit CNOT1 was depleted using siRNA. The efficacy of the 

method was validated by western blot and routinely monitored by q-RT PCR. Effect 

on poly(A) tail length was measured at different points following serum stimulation 

or in different cell fractions. 

 Cnot1 knockdown results in slower deadenylation   

Consistent with observations that not1 deletion is lethal (517), Cnot1 proved slightly 

resistant to knockdown at the mRNA level, however the same knockdown protocol 

resulted in a large reduction in CNOT1 protein levels (figure 4.1 B, C). As expected, 

reduced CNOT1 level was concordant with slower reduction in poly(A) tail length of 

induced mRNAs following serum induction (figure 4.1 A). In addition, a modest 

increase in tail length of constitutively expressed mRNAs was observed which 

remained consistent throughout the response (figure 4.1 A). Despite this increase, 

tails of these abundant mRNAs still fell far short of the 200 nt figure first identified.  

 Cnot1 knockdown increases nuclear poly(A) tail length 

Although deadenylases are thought to act in the cytoplasm, the CCR4-NOT complex 

has several documented nuclear functions (147, 617–619). One study subsequent to 

this work discovered chromatin-localised Ccr4-Not deadenylase activity, mediating 

Piwi-directed degradation of telomere and transposon-derived transcripts in the 

Drosophila germline (33).  

To determine whether the dependence of poly(A) tail length on CNOT1 extended to 

earlier in the mRNA’s lifespan, nuclear and cytoplasmic fractions of knockdown cells 

were examined. Cells were serum stimulated for 60 minutes as this is when the 

difference in tail length is largest for total RNA. Knockdown of Cnot1 at the mRNA 

level was confirmed by relative qRT-PCR for each replicate (figure 4.2 D). Validation 

of fractionation by unspliced Rpl28 mRNA enrichment is shown for each replicate in 

figure 4.2 E. Separation was confirmed by nuclear enrichment of the noncoding RNA 

Malat1 (620), and the method validated by western blotting for Lamin A/C and  

α-tubulin (figure 4.2 F, G). Analysis of RNA from these fractions by RL2-PAT showed  
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                                                                                                                               (continued overleaf). 
NIH 3T3 cells were treated with control or Cnot1 siRNA and serum stimulated for  

60 minutes. Nuclear (N) and cytoplasmic (C) RNA was isolated and subjected to RL2-PAT 
using agarose gel stained with SYBR safe. Arrows indicate maximum and minimum modal 

poly(A) tail sizes as determined using quantitative gel scanning. 3 biological replicates (A-C) 
shown. D) Validation of knockdown at the mRNA level by qPCR for each replicate, using the 
ΔΔCt method with Gapdh as the reference gene. E) Validation of nuclear/cytoplasmic 

separation of each biological replicate through comparison of unspliced:spliced mRNA 
ratios. F, G) Further validation of fractionation method by F) nuclear enrichment of Malat1 

RNA (qPCR, 4 biological replicates) and G) western blotting for Lamin A/C (nuclear) and  
α-tubulin (cytoplasmic). 

Figure 4.2   Nuclear poly(A) tail size is increased in Cnot1 knockdown 
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Figure 4.2. contd.  
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that the increases in tail length observed following depletion of CNOT1 were 

primarily nuclear rather than being a consequence of reduced cytoplasmic 

deadenylation (figure 4.2 A-C). Notably, the increase in tail length induced by Cnot1 

knockdown was greater in serum-induced mRNAs than in housekeeping mRNAs, and 

the longer tails observed on serum-induced mRNAs following knockdown were 

shorter than those observed after 20 minutes in control cells (figure 4.1 A). 

Together, these results suggest that CCR4-NOT normally deadenylates transcripts in 

the nucleus and that incomplete depletion of CNOT1 allowed some nuclear tail 

shortening to still take place.  

One might expect that reduction in available deadenylase machinery would lead to 

full deadenylation of some tails while others remain untouched (in the case of 

processive activity) or result in a range of partially digested tails of different lengths 

(in the case of distributive activity). Neither scenario appeared to arise here (figure 

4.2 A-C); the bands themselves were relatively sharp rather than smeared, 

suggesting that trimming to a defined length was still occurring, but that this length 

was altered by Cnot1 knockdown. In addition, the longer tails seen for housekeeping 

mRNAs were particularly striking, since these were longer than the those observed 

at any point for the same genes in control cells (figure 4.2 A-C, figure 4.1 A).  

 Cnot1 knockdown affects Chromatin associated mRNA 

To investigate how early CNOT1 acts to limit poly(A) tail length, chromatin 

fractionations were performed on Cnot1 knockdown cells. Cells were harvested 

after 50 rather than 60 minutes to try and increase the yield from the chromatin 

fraction, while maintaining short tails in the control cells. Separation of fractions was 

again confirmed by determining unspliced Rpl28 mRNA enrichment via qRT-PCR, 

and DNA contamination was measured using primers for Rpl28 or Egr1 pre-mRNA to 

compare amplification of cDNA with no-reverse transcription controls. Separation of 

fractions was good for both replicates (figure 4.3 C) and only minimal DNA 

contamination could be observed which was more pronounced in the first replicate, 

particularly in the knockdown samples (figure 4.3 D). Knockdown of Cnot1 at the 

mRNA level was successful in both replicates, with slightly greater efficiency in the 

second (figure 4.3 E).  
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Figure 4.3   Cnot1 regulates poly(A) tail length at different stages                                                                                                                         (continued  

overleaf). 
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Figure 4.3 Cnot1 regulates poly(A) tail length at different stages. NIH 3T3 cells were 

treated with control or Cnot1 siRNA and serum stimulated for 50 minutes. 

Chromatin associates, nuclear and cytoplasmic RNA was isolated and subjected to 
RL2-PAT, using agarose gel stained with SYBR safe. Arrows indicate maximum and 

minimum modal poly(A) tail sizes as determined using quantitative gel scanning.  

2 biological replicates (A, B) shown. C, F) Validation of nuclear/cytoplasmic 

separation of each biological replicate through comparison of unspliced:spliced 
mRNA ratios. D, G) qPCR data showing low level of DNA contamination in some 

fractions of each replicate. E, H) Validation of knockdown at the mRNA level by qPCR 

for each replicate, using the ΔΔCt method with Gapdh as the reference gene.  



128 
 

The increased poly(A) length observed in Cnot1 knockdown varied between genes 

as to whether it was first observed on the chromatin or in the nucleoplasm (figure 

4.3 A, B). Interestingly, at the earlier time point of 50 minutes rather than 60, two 

distinct bands appeared in the chromatin fraction for Egr1 and Egr2, suggesting that 

there may have been a switch from long to short chromatin associated tails for 

these mRNAs. Based on the gradual decrease in tail length across fractions in the 

knockdown cells, it seems likely that the mid-length tails observed previously for 

serum-induced mRNAs in nuclear fractions (figure 4.2 A-C) were a result of 

incomplete nuclear or chromatin-associated deadenylation. It is not clear how the 

residual deadenylase activity resulted in such a narrow range of tail lengths. 

When chromatin associated lengths were considered, further divergence was 

observed within the housekeeping group of mRNAs. Rpl28 alone exhibited slightly 

longer poly(A) tails in all fractions (figure 4.3 A, B), despite showing no sign of similar 

lengths under any condition studied in control cells. This suggested either that the 

‘trimmed’ form is usually so abundant that signals from long-tailed transcripts were 

undetectable, or that a distinct form of regulation exists in which tail synthesis itself 

is limited by some CNOT1-dependent mechanism. Actb and Sqstm1 on the other 

hand, had similar length long tails in the chromatin fractions in both conditions, but 

seemed to experience slower nuclear deadenylation in Cnot1 knockdown (figure 4.3 

A, B).  

Strangely, two bands were visible in the nuclear and cytoplasmic fractions for Actb 

in the control cells of both replicates. This distinct double band pattern was not 

visible in the 60’ stimulated nuclear/cytoplasmic fractionations (figure 4.2 A – C) or 

in earlier serum time course chromatin fractionation experiments, though there was 

greater smearing in the nuclear and cytoplasmic fractions at the late time point than 

at 0 or 20 minutes (figure 3.5 A, D). The single band for the knockdown counterpart 

sat between the control bands rather than showing an enrichment for one or the 

other, suggesting that it may have corresponded to an incompletely deadenylated 

form of the shorter control band (figure 4.3 A, B).  

 CNOT1 knockdown also affects poly(A) tail length in HEK293 cells  

To determine whether the early poly(A) tail-limiting effects of CNOT1 were 

conserved in other organisms, CNOT1 was knocked down in the HEK293 human 
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kidney cell line and RNA isolated from nuclear and cytoplasmic fractions. As a serum 

response has not been well characterised in these cells, the experiment was carried 

out using cells growing at steady state. Knockdown and separation of fractions were 

again validated using qRT-PCR data, with RPL10A being used for the latter. Modest 

knockdown was achieved at the mRNA level, with a much greater reduction in the 

cytoplasm (figure 4.4 B). Nuclear enrichment of unspliced mRNA was lower than in 

NIH 3T3 cells (figure 4.4 C, 4.2 E), possibly due to differences in turnover rates of the 

mRNAs assayed or variation in primer efficiency. It was equally possible that the 

fractionation method was less efficient for these cells.  

Figure 4.4   Preliminary data suggest nuclear poly(A) tail size is also regulated by 

CNOT1 in human cells.                                            HEK293 cells were treated with control or CNOT1 siRNA. 

Nuclear and cytoplasmic RNA was isolated from cells at steady state and subjected to 

RL2-PAT, using agarose gel stained with SYBR safe, and qRT-PCR A) PAT gel. Arrows 
indicate maximum and minimum modal poly(A) tail sizes as determined using 

quantitative gel scanning. B) Validation of knockdown at the mRNA level by qPCR, 

using the ΔΔCt method with GAPDH as the reference gene. C) Validation of 

nuclear/cytoplasmic separation through comparison of unspliced:spliced RPL10A 
mRNA ratios. 
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Although only one replicate was performed, these preliminary data showed that 

CNOT1 knockdown also caused longer nuclear tails in HEK293 cells (figure 4.4 A), 

suggesting that this was not a phenomenon limited to mouse cells. In addition, the 

housekeeping mRNAs assayed here possessed medium-length tails similar to those 

in NIH 3T3 cells, and these appeared similar in the nucleus and cytoplasm.   

  
Figure 4.5    Pan2 knockdown causes a minor increase in poly(A) length of induced 
mRNAs early in the serum response.                                                                     NIH 3T3 cells treated with control or Pan2 siRNA 

and stimulated with serum as indicated previously. Total RNA was isolated.  

A) RNA was subjected to RL2-PAT using agarose gel stained with SYBR safe. Arrows 
indicate maximum and minimum modal poly(A) tail sizes as determined using 

quantitative gel scanning. C and KD denote control and Pan2 knockdowns respectively. 

Results shown for one representative biological replicate. Time indicates minutes of 

serum stimulation. B) Validation of Pan2 knockdown at the mRNA level for the time 
course shown in A). 
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 Pan2 knockdown and deadenylation 

CCR4-NOT is not the only contributor to deadenylation in mammals; PAN2-PAN3 is 

also thought to play a role in bulk turnover, primarily acting early in deadenylation 

on long PABPC-bound tails (26, 529). Furthermore, yeast PAN was previously 

suggested to mediate message-specific poly(A) trimming in the nucleus (430). To see 

whether effects on early poly(A) tail length were unique to the CCR4-NOT complex, 

or a general feature of reduced deadenylation capacity, the catalytic subunit of 

PAN2-PAN3 was depleted by RNAi. Knockdown was checked at the mRNA level by 

qPCR and showed a modest depletion (figure 4.5 C). There was little effect on total 

poly(A) length, except for Egr1 and perhaps Fosb at the 20 minute time point (figure 

4.5 A). This was consistent with a preference of PAN2-PAN3 for long poly(A) tails but 

could also have resulted from incomplete Pan2 knockdown. 

To determine whether these small differences extended to nuclear tail length 

control, Pan2 was knocked down and the poly(A) tail lengths in nuclear and 

cytoplasmic fractions examined after 50 or 20 minutes’ serum stimulation. 

Validation of knockdown and nuclear/cytoplasmic separation was again validated at 

the mRNA level using qRT-PCR. Knockdown was much more efficient in the 

cytoplasm, and separation of fractions was similar in both control and knockdown 

cells (figure 4.6 D, E). 

PAN2 did not seem to be required to limit tail lengths late in the serum response 

(figure 4.6 A), suggesting that reduced trimming of long tails could be compensated 

for by other deadenylases. Actb was the exception to this, showing a slight increase 

in nuclear poly(A) length in the Pan2 knockdown. This increase was also detectable 

in one of the two 20 minute experiments (figure 4.6 B, C) however, given such small 

differences it was hard to separate these conclusively from variation during gel 

running. An increase in poly(A) tail length could also be observed for Egr1 in the 

Pan2 knockdown cells, but in this case the difference seemed to be between the  

cytoplasmic fractions, in line with predominantly cytoplasmic localisation of  

PAN2-PAN3 (24, 26). Neither Rpl28 nor Sqstm1 seemed to be affected in either the 

total RNA time course or fractionation experiments (figures 4.5 A, 4.6 A-C).  
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(continued overleaf). NIH 3T3 cells were treated with control or Pan2 siRNA and serum 
stimulated for 50 (A) or 20 (B,C) minutes. Nuclear and cytoplasmic RNA was isolated and 

subjected to RL2-PAT using agarose gel stained with SYBR safe. Arrows indicate 

maximum and minimum modal poly(A) tail sizes as determined using quantitative gel 

scanning. 3 biological replicates (A-C) shown. D) Validation of knockdown at the mRNA 
level by qPCR for each replicate, using the ΔΔCt method with Gapdh as the reference 

gene. E) Validation of nuclear/cytoplasmic separation of each biological replicate through 

comparison of unspliced:spliced mRNA ratios. 

Figure 4.6   Nuclear poly(A) tail size is not markedly affected by Pan2 knockdown. 
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 Discussion 

Cnot1 depletion caused an increase in nuclear and in some cases, chromatin-

associated tail length late in the serum response, implicating involvement of the 

CCR4-NOT complex in defining initial tail length (figures 4.2 A-C, 4.3 A,B). Preliminary 

data suggest this may be consistent in human cells (figure 4.4). Though nuclear 

poly(A) tail trimming by CCR4-NOT may seem intuitive, the kinetics implicated here 

would be far different to those previously established; deadenylation would need to 

occur substantially faster than previously recorded in order to remove ~150 

nucleotides before dissociation of the nascent mRNA from the chromatin. Data 

presented earlier in this work showed that when transcription was stopped, removal 

of around 100-150 adenosines took 40 minutes (figure 3.6) – a much longer period 

than would be possible between transcription and export. While other reports of 

Figure 4.6 continued. 
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nuclear and chromatin-associated deadenylation exist, these are limited to stem 

cells and germline cells respectively, and seem to be linked with targeted 

degradation/destabilization (33, 259). Nevertheless, nuclear deadenylation by the 

CCR4-NOT complex seems the simplest model to explain the observations presented 

here.  

The control of early poly(A) tail length does not seem to be a property of 

deadenylases in general since Pan2 knockdown had only minor effects (figures 4.5, 

4.6), though this may have been due to insufficient knockdown. This is consistent 

with recent TAIL-Seq data showing that PAN2/3 depletion had no effect on mean 

poly(A) length (50). As CCR4-NOT has functions outside deadenylation, it is not 

certain that the increases in initial poly(A) length observed following Cnot1 

knockdown were due solely to inhibited deadenylation. Comparison of Pan2 

knockdown with combined depletion of the CCR4-NOT nucleases (rather than 

CNOT1) may therefore be more appropriate for considering the relative roles of the 

two complexes. 

Although all mRNAs tested had longer poly(A) tails an hour after serum stimulation 

in Cnot1 knockdown, the size of the increase and main location of control varied 

between genes. Serum induced mRNAs showed a greater increase in tail length than 

housekeeping genes, and this increase was elicited mainly in the chromatin fraction 

(except for Fosb). The longer nuclear tails observed were not as long as those 

produced after 20 minutes’ serum stimulation in control cells, but this could have 

been due to remaining deadenylase activity (from incomplete knockdown, or 

perhaps PAN2-PAN3) trimming the tail in the nucleus (figure 4.3). Similar processes 

seemed to be at play on Sqstm1 and Actb mRNAs, however, these appeared to 

normally undergo nuclear rather than chromatin-associated deadenylation since 

differences in the knockdown cells were predominantly nuclear. Rpl28 alone did not 

ever seem to receive a long (~200 nt) tail, even in the chromatin fraction of Cnot1 

knockdown cells, suggesting that synthesis of the tail itself may be regulated.  

It is interesting that for all mRNAs, the increase in tail length observed in response 

to Cnot1 knockdown appeared as a discrete band rather than a smear. In a model 

where CCR4-NOT acts directly on nuclear poly(A) tails, insufficient deadenylase 

would be expected to result either in some untouched and some fully deadenylated 
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tails (in the case of processive activity), or in a range of partially digested poly(A) 

tails (in the case of distributive activity). This model is summarised in figure 4.7. 

Neither appeared to be the case here; tight bands were visible at intermediate 

poly(A) lengths, suggesting that trimming was still being controlled, but to a 

different length. This, along with the different ‘final’ poly(A) tail lengths observed for 

different genes in control cells, suggests that CCR4-NOT complex activity is both 

targeted and titratable. Gene-specificity could be explained by the numerous known 

examples of CCR4-NOT targeting (30, 45, 255), while the titratable effect may arise 

either from modulation of CCR4-NOT nuclease activity, or through binding of the tail 

by multiple copies of a protein such as PABPN1 or PABPC which could affect 

deadenylation. 

 

 

 

 

                     In conditions of low CCR4-NOT, processive activity would lead to two bands: 

fully deadenylated mRNA, and mRNAs which are still fully polyadenylated. Low levels of 

CCR4-NOT with distributive activity would instead lead to stochastic poly(A) shortening 
and a smeared gel band. 

 

Figure 4.7   Schematic of expected PAT distributions with different CCR4-NOT activity 
and levels. 
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5 CNOT1 is required for normal induction of the serum 

response 

 Introduction 

Following stimulation, transcription of responsive genes is rapidly upregulated, then 

tails off (587, 611). Our earlier data show that poly(A) tail length of induced mRNAs 

seems to track with these changes to transcription, with long nuclear tails early in 

the serum response when transcription is rapid, and short nuclear tails later on 

when transcription is reduced (figure 3.5 A, D), (611).  

Several groups have found evidence of crosstalk between mRNA degradation and 

synthesis, giving rise to models of transcript buffering and transcriptional imprinting 

(58, 148, 470, 471, 578–580, 585). In several yeast studies, depletion of various 

degradation machinery led to a reduction in synthesis in order to maintain mRNA 

homeostasis (579, 580, 582). The mammalian system is less well studied, but in 

addition to limited reports of homeostasis, there is evidence that crosstalk can 

instead enhance a particular state (58, 470, 471). For example, if enhanced 

cytoplasmic degradation is triggered by expression of the gamma-herpesvirus SOX 

nuclease, mammalian cells experience transcriptional repression rather than 

upregulated synthesis (470, 471). 

The CCR4-NOT deadenylase complex was first identified as a transcription factor and 

has roles in Pol II transcription elongation, making it well placed to link synthesis 

with degradation (35, 38, 39, 42, 147, 148, 550). We were therefore curious as to 

whether the longer nuclear and chromatin-associated poly(A) tails observed 

previously in Cnot1 knockdown (figures 4.2 A-C, 4.3 A,B) were accompanied by 

changes to mRNA abundance.  

 Cnot1 knockdown dampens the transcriptional response to 

serum 

To investigate whether the longer tails caused by Cnot1 knockdown were 

accompanied by changes to mRNA abundance, q-RT PCR of serum stimulation time 

courses was performed. Two siRNA transfections were carried out 24 hours  
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Figure 5.1   Cnot1 knockdown reduced mRNA abundance at the mature and unspliced 

level early in the serum response.                                                                A, B) qRT-PCR data showing mRNA abundance 

following serum stimulation at the mature (A) and unspliced (B) levels. Expression relative 
to Gapdh and normalised to the maximum value within the control set. Data collected 
from three biological replicates. T tests were carried out between control and knockdown 

values for each time point. * indicates false discovery rate adjusted p-value < 0.01.   
C) Validation of knockdown at the mRNA level for three biological replicates.  

D) Validation of siRNA knockdown procedure at the protein level by western blot. 
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Figure 5.2   Normalisation to Rpl28 minimises differences between control and knockdown. 
Cnot1 knockdown has a smaller apparent effect when mRNA levels are normalised to Rpl28 

instead of Gapdh. Presented are qPCR data from 3 biological replicates normalised using the 
ΔΔCt method. Rpl28 was used as a reference gene and in A-C, all data points are normalised 
to the maximum value within the control set. t-tests were carried out between control and 

knockdown values for each time point. * indicates false discovery rate adjusted p-value  
< 0.01. A) Mature mRNAs. B) Unspliced mRNAs. C) Levels of Cnot1 mRNA normalised to the 

control for each time point. 
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apart, resulting in cells which had been treated at 72 and 48 hours prior to the 

serum time course. Knockdown of Cnot1 was validated for all replicates at the 

mRNA level by qPCR (figure 5.1 C) and the method validated by western blot (figure 

5.1 D).  

Surprisingly, instead of sustained normal levels of serum response mRNAs, a 

reduction in mature mRNA levels of was observed in Cnot1 knockdown cells at all 

time points (figure 5.1 A). Given the role of deadenylation as a gatekeeper to decay 

and the early identification of CCR4-NOT as a regulator of transcription, it seemed 

more likely that this reduction was due to changes in mRNA synthesis rather than 

increased decay. Primers amplifying unspliced transcripts showed that pre-mRNA 

levels of these mRNAs were also reduced in the Cnot1 knockdown cells (figure  

5.1 B). This suggested that reduction in CNOT1 both dampened the transcriptional 

response and theoretically extended the lifetime of the mRNAs produced through 

increased poly(A) length (figures 4.1, 4.2 A-C, 4.3 A,B). Hints of an extended 

response can be seen for the serum-induced mRNAs at the 2 hour time point.  

In addition to changes in induced mRNA abundance, the relative levels of several 

housekeeping pre-mRNAs were reduced in Cnot1 knockdown. This reduction was 

also evident for mature Rpl28 mRNA, which caused a temporary complication as 

Rpl28 was routinely used as a control to validate the reference gene. In fact, based 

on raw Ct value, Rpl28 expression was more consistent than Gapdh across samples. 

Switching to Rpl28 as a reference gene showed much reduced effects of knockdown 

on pre-mRNA levels and showed a clearer persistence of transcripts at the end of 

the response (figures 5.2 A, C). Housekeeping mRNA transcripts were also elevated 

at the mature level. While this in many ways represents a more expected outcome, 

normalisation to Rpl28 showed very poor knockdown at the mRNA level, which is 

inconsistent with the western blot validating the knockdown method (figures 5.2 C, 

5.1 D). Expression of most other ‘housekeeping’ mRNAs tested (derived from the 

literature and past nCounter experiments) did not vary significantly between control 

and knockdown conditions when normalised to Gapdh, suggesting it remains a 

suitable reference gene (figure 5.3).  

To get a better idea whether the decrease in unspliced mRNA was a result of 

reduced transcription or increased degradation, qPCR was performed on the 
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chromatin fractionation experiments introduced previously (section 4.4). Chromatin 

fractionations were performed after 50 minutes of serum stimulation as this was 

where the most significant difference in poly(A) tail length was observed.  

No-reverse transcription controls were performed to ensure that genomic DNA 

contamination did not contribute significantly to the chromatin fraction reactions, 

and that any contamination was consistent between the control and knockdown 

samples (figure 4.3 D, G). Results of two biological replicates indicated that 

downregulation of induced mRNA levels occurred post-transcriptionally, with 

reduced abundance in nucleoplasmic and cytoplasmic fractions but not in the 

chromatin-associated fraction (figure 5.4). A reduction in both spliced and mature 

Rpl28 mRNA occurred in all fractions. In some cases, relative mRNA level was higher 

in the cytoplasmic fraction than the nucleoplasmic one; this may have been 

measurement error but could also have resulted from cytoplasmic stabilisation 

caused by longer poly(A) tails.  

 

  

Figure 5.3   Other housekeeping mRNAs suggest Gapdh is a suitable reference gene. 
qPCR data from 3 biological replicates (or 2 for Itga1 and Ppia) normalised using the 
ΔΔCt method. Gapdh was used as a reference gene and all data points are normalised to 

the maximum value within the control set. t-tests were carried out between control and 
knockdown values for each time point. * indicates false discovery rate adjusted  

p-value < 0.01.  
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Minimal change in chromatin-associated mRNA abundance could indicate that 

transcription of induced mRNAs was unaffected by Cnot1 knockdown, but that there 

was an increased rate of nuclear decay. Alternatively, release of mRNA from the 

Figure 5.4   Reduction in mRNA abundance in Cnot1 knockdown occurs between the 

chromatin-associated and nucleoplasmic fractions for induced mRNAs.                                                                                                                                    qPCR data for 2 

biological replicates using the ΔΔCt method with Gapdh as a reference gene, and 
normalised to the control in each fraction.  
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chromatin may have been slowed down, perhaps accompanied by slower 

transcription. Mature and unspliced profiles of each mRNA were similar, making 

altered splicing an unlikely explanation for the observed pattern (figure 5.4). More 

genes and replicates are required before this can be considered further.  

 CNOT1 knockdown in HeLa cells affects expression of genes 

involved in proliferation 

To see whether Cnot1 knockdown had similar effects on mRNA abundance in 

another species, and to identify additional affected transcripts, a publicly available 

but unpublished CNOT1 knockdown RNA-Seq dataset was analysed (621). This 

dataset comprised two replicates of control and CNOT1 knockdowns in HeLa cells as 

well as an additional single replicate for each condition treated with the RNA 

Polymerase II (Pol II) transcription elongation inhibitor, DRB for 4 hours. Data for 

samples treated with inducers of DNA damage and with TAB182 siRNA were also 

available but were not deemed relevant to this study. Unlike the NIH_3T3 

experiments presented previously, cells were captured at steady state rather than 

following stimulation. Sequencing samples were prepared from ribodepleted total 

RNA and libraries generated using the NEBNext Ultra Directional RNA library 

preparation kit, which involves RNA fragmentation followed by random primed first 

strand synthesis. dUTP is incorporated during second strand synthesis and following 

adapter ligation these are excised to cause effective degradation of the second 

strand, resulting in a reverse stranded library. Libraries are then amplified by PCR. 

Quality of each fastq file was assessed using FastQC (599). All samples showed good 

per base sequencing quality throughout both reads, indicative of very reliable base 

calling (data not shown). All samples were also flagged as containing up to 10 % 

duplicated reads which were duplicated at least 10 times, and a lower percentage 

which were duplicated to a greater level (data not shown). This amount of 

duplication at first seemed cause for concern, but the consensus among the 

bioinformatic community is that reads registering as duplicates may actually 

represent increased abundance; since more abundant transcripts generate more 

reads there is greater likelihood of exact matches, particularly at high sequencing 

depths. This of course cannot rule out the possibility of PCR-generated duplicates, 

but in removing duplicates one also risks loss of information. 
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FastQC also returns a list of overrepresented sequences defined are those 

comprising > 0.1 % of total reads. Unexpectedly, all samples contained 

overrepresented sequences. A greater number of overrepresented sequences were 

detected in read 1 than read 2 in all samples, with read 2 of some samples not 

containing any significant overrepresentation. Furthermore, a greater number of 

sequences were identified in the DRB-treated samples, consistent with reduced  

Pol II transcription and therefore a lower overall mRNA abundance which would 

otherwise create diversity and dilute Pol I/Pol III transcripts or residual DNA. These 

overrepresented sequences seemed to originate predominantly from 7SL and 7SK 

RNAs. 

Reads were mapped against the Gencode GRCh38 genome assembly using the 

splice-aware STAR (Spliced Transcripts Alignment to a Reference) alignment tool 

(600). A Gencode primary annotation file was provided during generation of 

genome indices in order to assemble a database of splice junctions to which reads 

could be mapped.  

To gain a crude indication of whether there was a general change in mRNA 

abundance, metaplots were created using the deepTools package for the gene body 

and regions 10,000 bp upstream and downstream of transcription start sites (TSS) 

and transcription end sites (TES) respectively (603). Reads were normalised for 

sequencing depth and gene length. Unless there were changes to transcription 

termination or promoter upstream transcription (which could result in elevated 

levels of RNA outside the gene body), global changes in mRNA level should have 

been visible as an altered ratio of gene body to flanking reads.  

For total RNA, there was some small variation in levels of RNA spanning the gene 

body between samples, however this was not associated with control or knockdown 

samples in particular (figure 5.5 A, left panel). A small peak in reads was present 

immediately upstream of the TSS in the majority of samples, which may have been 

due to upstream antisense transcription (622, 623). This peak was much more 

prominent in the DRB treated samples, perhaps through less total mRNA causing a 

greater effective sequencing depth (figure 5.5, left panel). Higher gene body reads in 

the DRB-treated cells would suggest that overall mRNA abundance was not lower 

than in the other samples; however, since the computeMatrix function (deepTools)  
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counts normalised read counts per x nt section of each gene (where x is the user-

inputted bin size), it is possible that some pool of stable mRNAs received a higher 

normalised count due to less dilution by new transcription.   

Both control and knockdown DRB treated samples exhibited a milder 3’ bias than 

their untreated counterparts. The reason for this reduced bias was unclear since 

these reads must have originated from mRNAs which existed prior to DRB treatment 

– mRNAs which should not have differed substantially from those which continued 

to be synthesised, unless a large number were undergoing 3’-5’ degradation. The 

appearance of peaks at the 3’ and 5’ ends was in itself surprising given the library 

synthesis method and was the opposite pattern to that shown on the NEB website 

(624).  

To further understand differences observed in the DRB-treated samples, and to see 

whether CNOT1 knockdown affected transcription in general, information about 

unspliced mRNA level was required. As it was not possible to determine the exact 

molecule a read originated from, introns were used as a proxy for unspliced mRNA. 

This was a valid approximation since introns are thought to be rapidly degraded 

following excision (625). Though it was possible to filter for reads which only 

mapped to introns, this would also remove reads mapping to intergenic regions 

which served as a useful control. Instead, reads which overlapped more than 95 % 

with an exon were removed using the BEDTools intersect function (602). Alignments 

were spot checked in IGV viewer (612) to confirm removal of exons (figure 5.6). 

Metaplots of the ‘unspliced’ mRNA showed reduced read density in all samples 

(figure 5.5 B). At this level, gene body reads for DRB-treated cells fell back in line 

with the other samples, and were accompanied by higher signal in the flanking 

regions, suggesting the DRB treatment was at least partially effective. In addition, 

both CNOT1 knockdown replicates exhibited lower unspliced signal in the gene body 

than their control counterparts, consistent with a role for CCR4-NOT in stimulating 

transcription elongation (147, 148). 

Count data was obtained from each alignment using featureCounts and counting by 

either exon (for total fragments) or gene (for exon-depleted fragments) (605). 

Differential expression analysis was then performed using DESeq2, which tests for 

differential expression based on a negative binomial distribution model (604). 
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Consistent with metaplot profiles, heatmaps showed higher similarity in gene 

expression between the control replicates than between the knockdown replicates, 

though this similarity was still lower than expected (figure 5.7 A, left panel). In fact, 

the second CNOT1 knockdown sample was as similar to the first control replicate as 

it was to the other knockdown. The lack of similarity between knockdown replicates  

                                                                                                 BAM alignment files viewed with the 

GRCh38 reference genome before and after exon removal for A) EGR1 and B) GAPDH. 

Figure 5.6   Verification of exon removal in IGV viewer. 
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                                                                                                                          Total (A, B) or exon-
depleted (C) reads from bam alignment files (in which duplicates had been flagged) were 
counted using the featureCounts program from the Subread package. FeatureCounts can 

filter out reads flagged as duplicates (right hand side) and can also count by reads per gene 
(B, C) or per exon (A). Black = most similarity, white = least similarity. 

Figure 5.7   Alterations in counting options affects sample similarity. 
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was even greater in exon-depleted reads, which was consistent with the different 

profiles observed in the metaplots (figures 5.7 C, 5.5 B, left panel). To see if sample 

similarity between replicates could be improved, duplicates were filtered out. In 

addition, mode of counting was changed from ‘exon’ to ‘gene’ for total reads such 

that unspliced and total reads were treated consistently. Deduplication made a 

substantial improvement to sample similarity in the exon-depleted alignments 

(figure 5.7 C), but did not have an appreciable effect at the level of total reads 

(figure 5.7 A, B). Interestingly, similarity of the knockdown samples at the total reads 

level was worsened by counting by gene, while control samples were unaffected 

(figure 5.7 A vs B). This could perhaps have been suggestive of differences in 

unspliced level, since reads in introns would also have contributed to gene level 

counts. 

For downstream analysis, duplicates were filtered out for both total and exon-

depleted fragments. Since sample similarity was greater when counting by exons 

but counting by gene seemed more appropriate, both methods were taken forwards 

for total reads since differences could be informative. 

When total reads were counted per gene, few mRNAs change expression 

significantly in CNOT1 knockdown, with more changes occurring in a positive 

direction (figure 5.8 A, B). This was consistent with increased stability due to less 

deadenylation. Upregulated genes were enriched for a variety of gene ontology 

(GO) terms including growth factor signalling, cell adhesion and response to various 

stimuli (figure 5.8 C). 

Counting by exons resulted in a higher number of significant changes to expression 

in CNOT1 knockdown, again with more upregulation than downregulation (figure 

5.9 A, B). Downregulation was more common in highly expressed mRNAs, whereas 

upregulation was relatively consistent across all mean expression levels (figure 5.9 

A). In general, upregulation also seemed to be of a greater magnitude (figure 5.9 B). 

Two genes whose expression change was significant stood out as being more 

downregulated than the others; one of these was CNOT1 as expected, and the other 

was a little studied lncRNA, AC004148.1 which is antisense to the protein coding 

gene RPAIN. Gene lists for significant (FDR < 0.05), greater than 2 fold up- or 

downregulation were assayed for gene ontology enrichment. Upregulated RNAs 
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were overrepresented in a varied group of terms including several concerning cell 

adhesion and secretion, as well as signalling pathways involved in proliferation 

(figure 5.9 C). Downregulated RNAs were almost exclusively enriched for terms 

relating to mitosis (figure 5.9 D).  

                                                                                                                                      Raw counts 
were generated per gene and duplicates were filtered out. Count data were subjected to 

differential expression analysis with DESeq2. A) Fold change in CNOT1 knockdown compared 
with average expression across all samples. Red denotes adjusted p-value < 0.05. B) Volcano 

plot showing significant up and downregulated genes. C) GO term (+ve) enrichment for genes 
with a significant (padj < 0.05) log2 fold change >1 in the CNOT1 knockdown condition. Terms 

with fold enrichment > 3 and FDR < 0.05 are displayed.  

Figure 5.8   Differential expression analysis for total reads counted by gene. 



150 
 

  

Figure 5.9   Differential expression analysis for total reads indicates roles for CNOT1 in 
proliferation and cell migration.                                                          Raw counts were generated per exon then grouped into 
genes, and duplicates were removed. Count data were subjected to differential expression 
analysis with DESeq2. A) Fold change in CNOT1 knockdown compared with average 
expression across all samples. Red denotes adjusted p-value < 0.05. B) Volcano plot showing 
significant up and downregulated genes. C) GO term (+ve) enrichment for genes with a 
significant (padj < 0.05) log2 fold change >1 in the CNOT1 knockdown condition. Top 15 most 

enriched terms with FDR < 0.01 are displayed. D) As in C, but for log2 fold change <-1 in the 

knockdown condition. 
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Since changes to unspliced mRNA levels were previously observed (figure 5.1 B), 

differential expression analysis was also performed on exon-depleted reads. A high 

proportion of genes displayed significant changes in expression, though it is not 

clear how genuine these were (figure 5.10 A, B). A more stringent cut-off for false 

discovery rate (FDR) had to be used than for total reads (<0.005 instead of <0.05) 

and only genes with a fold change > 3 were assayed for GO term enrichment. Genes 

Figure 5.10   Differential expression analysis for exon-depleted reads indicates roles for 
CNOT1 in proliferation.                                              Raw counts were generated per exon then grouped into genes, and 
duplicates were removed. Count data were subjected to differential expression analysis with 
DESeq2. A) Fold change in CNOT1 knockdown compared with average expression across all 

samples. Red denotes adjusted p-value < 0.05. B) Volcano plot showing significant up and 
downregulated genes. C) GO term (+ve) enrichment for genes with a significant (padj < 0.005) 

log2 fold change > 3 in the CNOT1 knockdown condition. Top 15 most enriched terms with 

FDR < 0.01 are displayed.  
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upregulated at the ‘unspliced’ level were enriched for terms involving ribosomes/ 

translation and [protein targeting to] intracellular membranes, as well as for 

nonsense-mediated decay and DNA damage recognition (figure 5.10 C). A list of 

downregulated genes returned no significant GO term enrichment, but this could 

have been due to contamination with large numbers of what may be falsely 

significant points (figure 5.10 A).  

GO term analysis seemed to indicate downregulation of genes involved in 

proliferation at the mature level, but this could not be confirmed for exon-depleted 

reads. Cursory appraisal of the significantly up- or downregulated genes did not 

obviously corroborate the earlier observation of reduced serum induction in Cnot1 

knockdown NIH_3T3 cells (figure 5.1 B). Given the high level of variation between 

knockdown replicates (figure 5.7), it was possible that these differences were 

present but were not detected as significant by the DESeq2 model. Subtle changes 

in culture conditions or overlooked differences in experimental procedure or timings 

could also have introduced variation.  

TPM (Transcripts Per Million - a normalised count measurement which takes into 

account sequencing depth and transcript length) was therefore calculated for the 

genes assayed previously using the raw count files generated by featureCounts. For 

total RNA, reads were counted by exon and TPM was calculated using transcript 

rather than gene length. Since pre-mRNA exists at a range of lengths depending on 

extent of splicing, TPM for exon-depleted reads was calculated using the theoretical 

maximum of gene length (and reads were counted per gene).  

As in the sample similarity heatmap (figure 5.7 A, B) the two control replicates 

showed similar expression of all genes, whereas the CNOT1 knockdown samples 

were more disparate (figure 5.10). Rather than being overall more variable, the 

differences seemed to be consistent within replicates, with the second replicate 

exhibiting a reduction in serum response mRNAs at the mature and ‘unspliced’ 

(exon-depleted) levels (figure 5.10). This suggested a difference in serum exposure, 

for example due to passing cells or replacing medium at different times. Unspliced 

TPM was calculated using both the sum of total aligned fragments (i.e. normalising 

to sequencing depth, figure 5.10 B) or to the sum of exon-depleted aligned 

fragments (i.e. normalising to total pool of ‘unspliced’ mRNA, figure 5.10 C). Both  
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Figure 5.11   Housekeeping mRNAs are increased at the unspliced level in CNOT1 

knockdown.                         RNA-Seq data normalised by TPM and made relative to the mean of the 
control counts. Duplicated fragments removed. A) Total RNA – aligned against genome and 

splice junction database. B) ‘Unspliced RNA’ / introns only - aligned against genome then 
fragments which overlap >95% with exons removed. TPM calculated using sum of raw counts 
for all aligned fragments in the sample. C) As in B, but TPM calculated using sum of aligned 

fragments following exon removal.  
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Figure 5.12   Pan2 knockdown caused a moderate increase in serum induced gene 
expression at the mature and unspliced levels.                                                                                    qPCR data for 3 biological replicates 
showing A) mature and B) unspliced mRNA abundance relative to Gapdh and normalised 

to the maximum value within the control time course. t-tests were carried out between 
control and knockdown values for each time point. * indicates false discovery rate adjusted 
p-value < 0.01. C) Validation of Pan2 knockdown at the mRNA level, relative to Gapdh and 

normalised to the control level for each time point. 
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choices resulted in a similar overall pattern. Notably, TPM values for previously used 

housekeeping mRNAs increased substantially at the ‘unspliced’ level, which is in 

contrast to observations by qPCR in NIH_3T3 cells (figure 5.1 B). A consistent 

reduction in serum response mRNAs was not observed across both knockdown 

replicates at either level, though this may in part be due to analysis at steady state 

rather than following serum induction. Overall the analysis of this dataset did not 

seem to allow clear conclusions.  

 Pan2 knockdown increases mRNA levels early on, but does not 

prolong gene expression 

To explore whether reduction in mRNA abundance is a conserved response to 

deadenylase depletion in NIH 3T3 cells, the catalytic subunit of PAN2-PAN3, Pan2, 

was knocked down. PAN2-PAN3 is theorised to act on long tails which appear early 

in the serum response for the mRNAs studied here (26); indeed the poly(A) length 

measurements presented in chapter 4 showed that Pan2 knockdown caused a small 

increase in tail length at 20 minutes but not at any later time points (figure 4.5 A). 

Hence, Pan2 knockdown serum stimulation time courses were carried out over a 

slightly shorter period than the Cnot1 equivalents. Moderate knockdown was 

achieved at the mRNA level for all 3 replicates (figure 5.12 C). 

Pan2 knockdown caused an increase in induced mRNA levels, consistent with a 

decreased degradation rate (figure 5.12 A). These decreased to near-control levels 

by 90 minutes, likely indicating compensation by other deadenylases such as  

CCR4-NOT. Unexpectedly, Pan2 knockdown also caused an increase in unspliced 

mRNA level for induced genes (figure 5.12 B). These data were much more variable 

than their Cnot1 counterparts (figure 5.1 A, B) and were largely not statistically 

significant, possibly due to modest and variable knockdown efficiencies. There was 

very little difference in housekeeping gene expression (figure 5.12 A). 

 Discussion 

Quantitative real time PCR data showed that in addition to increasing early poly(A) 

tail length, Cnot1 knockdown dampened the transcriptional response to  
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serum induction (figure 5.1 A, B). This dampening of the response seemed to be 

unique to the CCR4-NOT complex, since knockdown of the PAN2-PAN3 nuclease had 

a smaller and opposite effect (figure 5.12 A, B).  

Reduction in mRNA levels appeared to be at the level of unspliced mRNA, but 

preliminary data showed that chromatin associated pre-mRNA levels did not change 

(figure 5.4). This suggests that reduced expression was not occurring at the 

transcriptional level, though in the absence of metabolic labelling this conclusion is 

somewhat speculative. It is possible that newly made mRNA was more vulnerable to 

nuclear degradation in Cnot1 knockdown, perhaps due to the generation of 

aberrantly long poly(A) tails which could destabilise transcripts - though nuclear 

retention of hyperadenylated transcripts has also been recorded in mammalian cells 

(321, 415). Since both mature and unspliced levels decreased in the nucleoplasmic 

fractions, any degradation would have had to occur prior to splicing of the relevant 

introns, but subsequent to addition and detection of a long tail. This may have been 

possible, since it was recently shown by Oxford Nanopore sequencing that splicing 

of the 3’ terminal exon primarily occurs after cleavage in mammalian cells (121). 

Given the role of CCR4-NOT in promoting Pol_II elongation (147, 148), it is equally 

possible that transcription initiation was slower in the knockdown, but that 

concomitant slowing of elongation resulted in no detectable change in chromatin-

associated mRNA abundance.  

Analysis of a publicly available but not yet published CNOT1 knockdown dataset for 

HeLa cells found no obvious transcriptional downregulation of serum-induced 

transcripts (figure 5.11), however this may have been due to differences in 

experimental design since RNA was isolated from cells growing at steady state, or to 

variation between species. Equally, only a handful of genes were considered in 

NIH_3T3 cells and these may not be reflective of the wider transcriptome. At the 

level of total RNA (i.e. mainly mature transcripts), CNOT1 knockdown led to 

upregulation of transcripts involved in cell migration, secretion, and lipid synthesis 

and downregulation of genes related to mitosis (figure 5.9 C, D). This points to a role 

for CNOT1 in proper control of proliferation, which is consistent with observation of 

reduced proto-oncogene expression in NIH_3T3 cells. Indeed, a previous study 

showed that knockdown of CNOT1 or CNOT3 caused reduced proliferation of MCF7 
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cells but did not affect viability (525). It is not clear whether genes involved in cell 

growth and proliferation are the main targets of CNOT1 regulation or whether 

regulation occurs more widely on short-lived mRNAs of many processes; it is 

possible that the particular effects seen here resulted from the use of a cancer cell 

line where expression of oncogenes is higher and therefore more susceptible to 

downregulation.  

Crosstalk between mRNA synthesis and decay has been relatively well explored in 

yeast, but less is known about the situation in higher eukaryotes (58, 148, 470, 471, 

578–580, 582, 585). In yeast, crosstalk promotes mRNA homeostasis (with high 

reliance on both Ccr4-Not and Xrn1), however mammalian studies are sparse. Data 

presented here for NIH_3T3 cells indicate that disruption of mRNA decay through 

knockdown of a CCR4-NOT subunit may cause a decrease in mRNA production in 

order to maintain mRNA homeostasis. This at first seems incongruous with findings 

in mammalian cells that increased degradation caused by expression of the viral 

nuclease, SOX also led to reduced transcription (470, 471) but the two scenarios 

may represent distinct biological situations for which the same response may not be 

appropriate. A recent paper found links between transcription rate and poly(A) tail 

length in mammalian cells and also observed changes in expression of CCR4-NOT 

subunit mRNAs during B cell activation and glucose starvation, highlighting the 

importance of the complex in maintaining correct transcript levels in dynamic 

processes (58). This may simply be through its deadenylase activity, however, 

another study which knocked out Cnot1 in mouse livers found that as well as broad 

transcript stabilisation, different groups of genes (which did not include 

transcription factors) were affected at the pre-mRNA level (591).   

The extent of crosstalk between mRNA birth and decay is as yet unknown, and the 

end goal of such may vary between both species and scenarios. The majority of 

investigations have used knockout and knockdown experiments which make it 

difficult to assess how soon information is conveyed, and therefore hard to pinpoint 

the most likely mode of communication. Despite the extensive mechanistic 

exploration that remains, a central role for the CCR4-NOT complex seems certain.  

  



158 
 

6 Probing mechanism of CNOT1-mediated early poly(A) and 

pre-mRNA control 

 Introduction 

The previous chapters showed that Cnot1 knockdown caused unusually long poly(A) 

tails on induced mRNAs late in the NIH_3T3 serum response, along with reduced 

induction of gene expression (figures 4.2, 4.3, 5.1). Constitutively expressed mRNAs 

also exhibited modestly increased poly(A) length in knockdown cells, and in some 

cases also reduced expression. It was not clear how Cnot1 knockdown reduced 

mRNA abundance while presumably increasing mRNA stability. 

CNOT1 is an essential component of the CCR4-NOT complex, behaving as a scaffold 

for its several modules (513, 516, 517). CCR4-NOT structure and function is 

discussed in considerable depth in section 1.4.1. Some transcriptional effects of the 

complex are mediated by the Not module, whereas the specific subunits required 

for stimulation of Pol II elongation seem to include components of both the Not and 

deadenylase modules (147, 148, 512, 516). Deadenylation is mediated by the 

deadenylase module. While the former is a widely accepted nuclear function, 

deadenylation by CCR4-NOT is usually regarded as cytoplasmic. 

The following work aimed to uncover – via several lines of investigation – whether 

the coupling observed between initial poly(A) tail length and mRNA production 

occurred through dual nuclear functions of CCR4-NOT (i.e. both transcription and 

nuclear deadenylation), or through a wider feedback mechanism sensing changes to 

cytoplasmic deadenylation/degradation (e.g. through cycling of some 

poly(A)/mRNA-bound factors back into the nucleus). It was also hoped these 

experiments would provide some insight into the varied magnitude of effect Cnot1 

knockdown had on the poly(A) tails of different gene classes. Taking into account 

the differences in tail length observed on transiently expressed mRNAs across the 

serum time course and the differences observed between genes, one could envisage 

a model in which nuclear deadenylation is modulated both in time and gene-

specifically by nuclear availability of some specific factor which either protects the 

poly(A) tail or targets it for degradation. An analogous system could be envisaged 

for regulation of PAP activity, but this would not require CCR4-NOT to exhibit 
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nuclear deadenylase activity. Possible mechanisms are summarised in figure 6.1.  

A handful of these possibilities are considered in the following chapter, prefaced 

where relevant by a short introduction to concepts which have not been discussed 

thus far.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                          in A) nuclear 
poly(A) tail length control and B) pre-mRNA level. Nuclear CCR4-NOT could either directly 
remove poly(A) tails or perhaps inhibit their addition. CCR4-NOT could couple transcription 
elongation with 3’ processing, or could be recruited by increased m6A deposition in the case 
of slow elongation as proposed by Slobodin et al (58). Note: this was originally proposed as a 
cytoplasmic phenomenon, but the m6A reader YTHDF2 with which CCR4-NOT interacts is 
also present in the nucleus. Cytoplasmic CCR4-NOT levels could affect release of factors 
from the mRNA which cycle back to the nucleus to influence poly(A) length/transcription.  

Figure 6.1   Schematics of possible mechanisms for CNOT1 involvement 
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 CNOT1 is present in the nucleus at all stages of the serum 

response 

Critical to understanding the mechanism through which Cnot1 knockdown elicited 

more extensive polyadenylation was the question of whether CNOT1 was present in 

the nucleus in the NIH_3T3 cells used, and therefore whether a model in which 

CCR4-NOT rapidly trims the tails of chromatin-associated mRNA was plausible. Study 

of this was first attempted using immunofluorescence, however, no CNOT1 antibody 

was specific enough (as judged by a failure to reduce signal in knockdown cells, data 

not shown). Instead, western blots were performed on nuclear/cytoplasmic 

fractionations at three time points of interest (0’, 20’, 60’) and fractionation 

efficiency tested by probing for Lamin A/C (nuclear) and α-Tubulin (cytoplasmic). 

Both replicates showed good separation (figure 6.2 C, D). Preliminary data 

suggested that CNOT1 protein was not present in the nuclei of our NIH_3T3 cells 

(data not shown), but in subsequent experiments nuclear CNOT1 was easily 

detectable (figure 6.2 B-D).  

The first anti-CNOT1 antibody used (from Proteintech) bound several proteins in the 

vicinity of the 250 kDa marker, none of which gave an obviously lower signal in the 

knockdown lanes (figure 6.2 A). To see if any of these were CNOT1, the blot was 

stripped and probed with an alternative anti-CNOT1 antibody (Novus). This gave a 

much cleaner signal, showing two main bands in both fractions of the control which 

were depleted in the knockdown, with a slightly greater reduction in the 

cytoplasmic fraction (figure 6.2 B). The higher band seemed more likely to be CNOT1 

on the basis that its predicted molecular weight is 267 kDa, but staining was much 

stronger for the lower band, suggesting that perhaps CNOT1 did not run to its exact 

predicted size. Alternatively, since multiple CNOT1 isoforms exist around the same 

molecular weight (as well as others which are lower), it seemed possible that both 

bands were CNOT1. Having established efficacy of the newer antibody, western 

blots for serum stimulation fractionations were stripped of the original CNOT1 

antibody and re-probed. In both replicates, CNOT1 was present in the nucleus at all 

time points (figure 6.2 C, D) and therefore direct nuclear regulation of poly(A) tails 

by CCR4-NOT cannot be ruled out. While the ratio of nuclear:cytoplasmic (N:C) 

CNOT1 protein seemed consistent across all time points of the second replicate, in  
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Figure 6.2   CNOT1 is present in the nucleus at all time points studied in the serum 
response.                     A) Fractionation of Cnot1 knockdown and control cells stimulated for 60 
minutes, incubated with Proteintech anti-CNOT1 antibody. B) The same blot, stripped and 

re-probed with Novus biologicals anti-CNOT1 antibody which is more specific.  
C) and D) Two biological replicates showing CNOT1 protein localisation in cells fractionated 

at 0, 20 and 60 minutes following serum stimulation. In all cases, Lamin and Tubulin were 
used to both validate separation of nuclear and cytoplasmic fractions, and to confirm 
equal loading.  
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the first replicate the N:C ratio of the lower, darker band seemed to be reduced at 

the 20 minute time point compared with 0’ or 60’. Although this compliments the 

observation that nuclear poly(A) tails of induced mRNAs are long after 20 minutes 

stimulation, this was only a moderate effect in one replicate and western blots are 

not a reliable source of exact quantification. It therefore seems more likely that any 

nuclear deadenylation of these mRNAs is modulated by some specificity factor 

which itself changes localisation or activity, in order to achieve serum-induced 

temporal changes in poly(A) length. 

 Probing simple models of nuclear deadenylation 

As CNOT1 was present in the nucleus at all time points tested, by far the simplest 

model to marry its effect on nuclear poly(A) tail length with the observations of  

shorter than expected nuclear tails in control cells was one of direct nuclear 

deadenylation by CCR4-NOT. In such a model, mRNAs would still be synthesised 

with 200 nucleotide tails which are then trimmed in the nucleus by the CCR4-NOT 

complex to some gene or time-specific proper length. Similar message-specific 

deadenylation by PAN (PAN2-PAN3) in yeast was suggested previously, and more 

recently a model was put forwards in which CCR4-NOT prunes the poly(A) tails of 

highly expressed mRNAs upon their entry to the cytoplasm (326, 430). While a 

tailored nuclear, or indeed chromatin-associated, trimming model could have been 

valid for the majority of mRNAs tested (where long tails were detectable in the 

chromatin fraction), it seemed inconsistent with the absence of long poly(A) tails in 

any location or condition for Rpl28 (figures 3.5 A,D, 4.3) unless this absence was 

caused by extremely rapid deadenylation. There were several possibilities for how 

the gene and time – specific control of deadenylation could have been mediated. 

Given that poly(A) tails on induced mRNAs tend to be longer early in the serum 

response, when transcription is rapid, it seemed possible that some factor(s) which 

targets CCR4-NOT to specific mRNAs was present either in a limiting quantity, or had 

yet to translocate to the nucleus. Conversely, some protective factor(s) with variable 

affinities for different mRNAs may have protected the tail initially but then be 

exported from the nucleus. Alternatively, nuclear deadenylation by CCR4-NOT could 

simply have been a function of nuclear dwell time, with those RNAs resident in the 

nucleus for longer allowing more time for their tails to be degraded.  
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Figure 6.3   TTP knockdown has minimal effect on serum response mRNA poly(A) tail 
length.                A) RL2-PAT, using agarose gel stained with SYBR safe, showing changes in poly(A) 
tail lengths over a serum time course in combined Zfp36,L1&L2 knockdown cells. Arrows 

indicate maximum and minimum modal poly(A) tail sizes as determined using quantitative 
gel scanning. Times shown indicate duration of serum stimulation in minutes. B) qPCR 

data relative to Gapdh showing mature and unspliced mRNA abundance across the serum 
response. Single biological (3 technical) replicate shown. C) qPCR data relative to Gapdh 
showing knockdown efficiency at the mRNA level. Single biological replicate. 
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6.3.1 TTP knockdown only minimally affects poly(A) tail lengths of serum response 

mRNAs 

One factor known to specifically target a subset of mRNAs for deadenylation is the 

zinc finger protein, Tristetraprolin (TTP, Zfp36). TTP binds to AU-rich elements (AREs) 

in the 3’ UTRs of target mRNAs - including those involved in the serum response - 

and interacts with the CNOT1 and CNOT9 subunits of CCR4-NOT to elicit their 

deadenylation (51, 290, 292, 626, 627). Though this is thought mainly to be a 

cytoplasmic phenomenon, TTP is also present in the nucleus and could therefore 

direct CCR4-NOT to specific mRNAs in the nucleus and thereby mediate their 

trimming (297, 431). Previous work also implicated TTP in limiting poly(A) tail 

synthesis on ARE-containing mRNAs in the nucleus via interaction with PABPN1 and 

PAP (431). mRNAs encoding TTP and its paralogues ZFP36L1 and ZFP36L2 were 

knocked down using RNAi, and effects on transcription and poly(A) length were 

measured.  

As assessed by relative qPCR, the knockdown of TTP and its paralogues at the mRNA 

level was modest (figure 6.3 C). A minimal increase in poly(A) tail length was visible 

after 20 minutes of stimulation for Fos and after 20 and 60 minutes’ stimulation for 

Fosb, likely due to slower cytoplasmic deadenylation (figure 6.3 A). There was no 

discernible change for the other genes. The effect was much smaller than in Cnot1 

knockdown, suggesting either that TTP levels were not sufficiently depleted or that 

TTP had only a limited role in poly(A) control for these mRNAs. In addition, there 

were no clear changes in mRNA level at the mature or unspliced levels, though only 

one biological replicate was performed so a definitive conclusion cannot be drawn 

(figure 6.3 B). Based on observations of only minimal changes, it seemed unlikely 

that TTP was involved in the regulation of nuclear poly(A) length and its coupling 

with mRNA production for the mRNAs tested.  

6.3.2 Nxf1 knockdown – does nuclear dwell time determine poly(A) length? 

Failure to detect changes in localisation of CNOT1 at different time points left the 

mystery of temporal nuclear poly(A) regulation in the serum response unanswered. 

Since Cnot1 knockdown caused increased nuclear and chromatin associated poly(A) 

tail lengths at late time points (figures 4.2 A-C, 4.3 A,B) , a logical hypothesis could 

have been that these tails are normally subjected to deadenylation by CCR4-NOT for  
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Figure 6.4   Inhibition of mRNA export through knockdown of Nxf1 results in longer poly(A) 
tails on induced mRNAs                                              (continued overleaf). A, B) RL2-PAT, using agarose gel stained with 

SYBR safe, showing changes in poly(A) tail lengths across serum time courses in Nxf1 
knockdown cells for two biological replicates. Arrows indicate maximum and minimum modal 

poly(A) tail sizes as determined using quantitative gel scanning. Times shown indicate 
duration of serum stimulation in minutes. C) qPCR data showing mRNA abundance 

throughout serum induction in Nxf1 knockdown, relative to Gapdh. 3 biological replicates are 
shown for most time points, except 30 minutes, which only has 2 due to its initial omission 
from the experiment. In addition, only two replicates were included for Actb. t-tests were 

carried out between control and knockdown values for each time point. * indicates false 
discovery rate adjusted p-value < 0.05, ** indicates FDR adjusted p <0.01. D) Validation of 

Nxf1 knockdown at the mRNA level.  
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Figure 6.4 contd. 
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longer due to extended nuclear dwell times. In such a model, some of those mRNAs 

synthesised at the beginning of the serum response would be rapidly exported and 

so escape substantial deadenylation, whereas others may not be commandeered for 

export so early, and therefore be trimmed more extensively in the nucleus. To this 

end, Nxf1, a gene thought to be essential for bulk mRNA export, was knocked down 

to abrogate export (628, 629). If longer nuclear dwell time enabled more substantial 

trimming of poly(A) tails by CCR4-NOT, knocking down Nxf1 should have caused 

shorter tails earlier in the time course, though the magnitude of such an effect 

would have depended on the speed of CCR4-NOT deadenylation.  

In all experiments, treatment with Nxf1 siRNA led to significant cell death on day 4 

so the method was adjusted to perform serum starvation and the second siRNA 

transfection on the same day for the final replicate. Knockdown at the mRNA level in 

the surviving cells was poor but sufficient to elicit clear effects on tail length (figure 

6.4 A, B, D). Knockdown of Nxf1 led to longer poly(A) tails, though the bands were 

considerably more diffuse than those observed in the Cnot1 knockdown. In addition, 

only unstable mRNAs seemed to experience an increase in poly(A) length (figure 6.4 

A, B). Consistent with increased stability conferred by longer poly(A) tails, higher 

levels of mature serum response mRNAs were detectable in the knockdown cells 

late in the time course, despite no changes to unspliced levels (figure 6.4 C). 

Housekeeping mRNAs were not affected.  Since only whole cell lysate was assayed, 

it is not clear whether the longer tailed transcripts were successfully exported or 

nuclear-retained.   

 Inhibition of CAF1 activity and knockdown of the encoding 

mRNAs have distinct effects  

The CCR4-NOT complex has been implicated in several additional molecular 

functions, including transcription elongation, and depletion of the scaffold 

component CNOT1 likely disrupts the entire complex (39, 42, 44, 147, 516, 517). It 

was therefore important to determine whether the effects of Cnot1 knockdown on 

pre-mRNA level were due to loss of deadenylase function, or to loss of the 

complex’s other activities – though of course integrity of the whole complex in the 

absence of the deadenylase module cannot be guaranteed. Two approaches were 

employed to investigate this: combined RNAi-mediated depletion of the Cnot7 and 
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Cnot8 mRNAs (two isoforms which encode the CAF1 nuclease subunit), and small 

molecule inhibition of CAF1 activity. Since CAF1 bridges the connection between 

CCR4 and the rest of the complex, and nuclease activity of isolated CCR4 is minimal 

– at least in vitro - depletion of CAF1 subunits should in theory have abrogated all 

activity of the affected complexes (28, 513, 523). Inhibition of CAF1 meanwhile, may 

have had less of an effect on CCR4 activity, and given the far shorter treatment time, 

should also have allowed less opportunity for buffering by the cell (531, 594).  

6.4.1 Cnot7/8 depletion reproduces extended tails and reduced induction observed 

in Cnot1 knockdown 

Combined knockdown of Cnot7 and Cnot8 was very efficient at the mRNA level 

(figure 6.5 C) and as expected, caused an increase in total poly(A) tail length after 60 

and 120 minutes of serum stimulation on all mRNAs tested (figure 6.5 A). These 

increases were practically identical to those observed in Cnot1 knockdown (figure 

4.1 A), consistent with Cnot1 and Cnot7/8 knockdowns having similar efficacy in 

restricting the complex’s deadenylase activity. Furthermore, pre-mRNA levels of the 

four genes tested were again reduced to a remarkably similar level as in Cnot1 

knockdown (figures 6.5 B, 5.1 B). This suggested either that the effects observed in 

Cnot1 knockdown were due predominantly to a loss in deadenylase activity, or that 

absence of the CAF1 subunit was sufficient to disrupt the whole complex, or to 

prevent its usual recruitment. It could have been suggested that transcription was 

unaffected, and that these patterns instead resulted from stabilisation of the 

reference gene mRNA, however earlier qPCRs of other housekeeping mRNAs 

following Cnot1 knockdown suggested this was not the case (figure 5.3). 

Alongside one of the Cnot7/8 experiments, a Parn (separate deadenylase) 

knockdown time course was also performed which achieved a reasonable 

knockdown but had no effect on the poly(A) tails of the mRNAs assayed (figure  

6.5 A, D).  

6.4.2 CAF1 inhibition uncouples poly(A) length from mRNA production 

To avoid possible adaptation of the cell, a CAF1 (CNOT7/8) inhibitor was used 

instead. Two compounds were available which, prior to these experiments, had not 

been used in mammalian cells (594, 595). Pilot experiments were therefore carried 

out to compare the two candidates and to optimise treatment time and dosage.  
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Figure 6.5   Effects of Caf1 subunit (Cnot7/8) knockdown closely resemble that of Cnot1 
knockdown.                         A) RL2-PAT, using agarose gel stained with SYBR safe, showing changes in 
poly(A) tail lengths over a serum time course in Cnot7/8 and Parn knockdown cells. Arrows 

indicate maximum and minimum modal poly(A) tail sizes as determined using quantitative 
gel scanning. Times shown indicate duration of serum stimulation in minutes. B) qPCR data 

showing mRNA abundance throughout serum induction in combined Cnot7/Cnot8 
knockdown, relative to Gapdh and normalised to the maximum value in the control set. Data 
for 2 biological replicates included. t-tests were carried out between control and knockdown 

values for each time point. * indicates false discovery rate adjusted p-value < 0.05,  
** indicates FDR adjusted p <0.01. C) Validation of knockdowns by qPCR at the mRNA level, 

relative to Gapdh. Cnot7/8: 2 biological replicates, Parn: 1 biological replicate. 
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Figure 6.6   Inhibition of CAF1 activity in NIH 3T3 cells by two small molecule inhibitors. 
A) Two inhibitors, compounds 108 and 247 are compared in their ability to inhibit 
deadenylation of serum response mRNAs. Extent of deadenylation measured using RL2-PAT 
with agarose gel stained with SYBR safe. Different concentrations (µM) and pre-serum 
treatment times are indicated. B, C) qRT-PCR data showing mRNA abundance at the mature 
(B) and unspliced (C) levels after inhibitor treatment and 60 minute serum stimulation. Gapdh 
was used as a reference gene and all levels were normalised to 3 hour DMSO treatment. Error 
bars indicate standard deviation of 3 technical replicates. 
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In order to test inhibition efficiency, cells were serum stimulated for 60 minutes and 

PATs performed for serum response genes; if inhibition of deadenylation was 

successful – and if CAF1 made a significant contribution to deadenylase activity - 

long tails rather than short tails should have been present at this time point. Both 

compounds severely inhibited deadenylation and were able to enter the cell 

relatively quickly, with no discernible difference between incubating for 1.5 and 3 

hours pre-serum stimulation (figure 6.6 A). Although compound 247 had superior 

activity – both leading to markedly longer tails than 108 and acting at a lower dose – 

compound 108 was taken forwards as it has been better characterised and 

published.  

Serum stimulation time courses were then carried out following 2 hours of 

treatment with 100 µM compound 108. Predictably, total poly(A) tail length was 

longer for induced mRNAs at all time points tested (figure 6.7 A, B). Interestingly, 

the tails observed here seemed slightly longer than those resulting from Cnot1 or 

Cnot7/8 knockdown. This perhaps resulted from the inhibitor affecting a larger 

proportion of complexes or could also have related in some way to the shorter 

treatment time. There was no apparent effect of inhibitor treatment on the 

housekeeping mRNAs, likely due to the majority of these stable mRNAs existing 

before treatment (figure 6.7 A, B).  

The patterns in mRNA abundance observed in CAF1 inhibition were very different to 

those in Cnot1 or Cnot7/8 knockdown (figure 6.7 C, D – compare with 5.1 A,B,  

6.5 B). In particular, the mature Egr1 mRNA was more abundant in the treated cells 

than the control at all time points, and in general the peak of expression seemed to 

be obviously delayed for all serum-induced mRNAs. Though these mRNAs appeared 

at first glance to be stabilised, their unspliced levels were also increased, perhaps to 

a greater degree than their spliced counterparts, though differences in primer 

efficiency could contribute to the seeming disparity. Highlighting this difference 

further, mature levels of Fosb mRNA were lower when CAF1 was inhibited, despite 

unspliced levels increasing. Housekeeping mRNAs seemed largely unaffected by 

CAF1 inhibition at the mature level - likely due to their high stability – whereas 

unspliced levels were increased following CAF1 inhibition (figure 6.7 C, D). The data 

surprisingly therefore indicated that CAF1 (CNOT7/8) inhibition appeared to  
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Figure 6.7   Effect of CAF1 inhibition on poly(A) tail length and mRNA abundance 
throughout the serum response                                                          (continued overleaf). A, B) Two biological replicates of RL2- 
PAT, using agarose gel stained with SYBR safe, showing poly(A) lengths in DMSO or inhibitor 

treated cells. Arrows indicate maximum and minimum modal poly(A) tail sizes as determined 
using quantitative gel scanning. Times shown indicate duration of serum stimulation in 

minutes. C, D) qRT-PCR data showing mRNA abundance at the mature (C) and unspliced (D) 
levels after inhibitor treatment and stimulation with serum for the times indicated. Gapdh 
was used as a reference gene and all levels were normalised to the maximum value within 

the control set for each replicate. 3 biological replicates are shown for all time points except 
180’ which only comprises two. t-tests were carried out between control and knockdown 

values for each time point. * indicates false discovery rate adjusted p-value < 0.05,  
** indicates FDR adjusted p <0.01. 
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increase transcription, perhaps in combination with delaying splicing. This is in 

contrast to Caf1 (Cnot7/8) knockdown which reduced transcription.  

To check whether this was a true effect of CAF1 inhibition or merely an artefact of 

the specific inhibitor, compound 108, RNA from the pilot experiment was 

repurposed. mRNA level after 60 minutes serum stimulation was compared 

between compounds 108 and 247, using 100 and 20 µM concentrations, and 3 and 

1.5 hours treatment pre-stimulation. Strikingly, both inhibitors reproduced the 

varied effects on mature and pre-mRNA level seen at the 60 minute measurement in 

the time course (figure 6.6 B, C). Though it was possible that both compounds had 

Figure 6.7 contd. 
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the same off-target effect, these data suggested that inhibition of CAF1 was the 

more likely explanation. There was no consistent difference in magnitude of effect 

between the two inhibitors which is surprising given the more pronounced effect of 

compound 247 on poly(A) tail length (figure 6.6 A). Interestingly, lower inhibitor 

concentration seemed to be associated with markedly smaller effect size in 

unspliced but not mature mRNA. The data clearly indicate that the effects on 

unspliced mRNA resulting from knocking down CCR4-NOT subunits or chemical 

inhibition of CAF1 are due to distinct effects on the intended targets rather than off-

target effects.  

 Nuclear PABPN1 levels increase in Cnot1 knockdown 

Cnot1 knockdown causes an increase in early poly(A) tail length and one possibility, 

aside from decreased deadenylation, is that poly(A) tail synthesis is enhanced. This 

may be particularly relevant for Rpl28 which never seemed to exhibit a long tail of 

which deadenylation could be inhibited. Changes to poly(A) synthesis – both in 

Cnot1 knockdown and normally over the serum response - could occur as a result of 

altered PAP activity; this could be achieved either through modification of PAP or 

through availability of PABPN1 or CPSF which are required for efficient poly(A) 

addition (52, 56, 179, 363). Polyadenylation factors were previously shown to 

become more nuclear following LPS stimulation and it seemed possible that a 

similar pattern could exist for stimulation with serum (354).  

Nuclear poly(A) binding protein (PABPN1) promotes initial poly(A) tail synthesis by 

poly(A) polymerase (PAP) through its PAP-stimulating domain (55, 56, 321). PABPN1 

stimulation of PAP is also required for targeting of certain transcripts for 

degradation by the nuclear RNA exosome (231, 321, 322). Given that Cnot1 

knockdown is accompanied by longer poly(A) tails and lower levels of pre-mRNA 

(figures 4.2, 4.3, 5.1), changes to PABPN1 localisation could be well-placed to 

explain these effects. Localisation of PABPN1 was therefore investigated in Cnot1 

knockdown using immunofluorescence with confocal microscopy. Knockdown and 

control cells were fixed at 0, 20 and 60 minutes following serum induction to also 

investigate the temporal changes in poly(A) tail length observed under normal 

circumstances. Nuclear enrichment of PABPN1 was enhanced in Cnot1 knockdown 

and appeared to form small granules (figure 6.8 A-D, F). It is not clear whether this  
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Figure 6.8   PABPN1 becomes more nuclear in Cnot1 knockdown but its localisation does 

not change over the serum response (continued overleaf). 
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was a direct effect of Cnot1 knockdown or whether PABPN1 may have been 

retained in the nucleus by hyperadenylated transcripts resulting from impaired 

deadenylation. Although specificity of the PABPN1 antibody was not validated by 

knockdown here, it has been used for immunofluorescence in several reputable 

publications (231, 431, 444, 630, 631). 

 Discussion 

Initial poly(A) tails of induced mRNAs are regulated throughout the serum response 

in NIH_3T3 cells, while those of housekeeping mRNAs remain consistent. For most 

Figure 6.8 PABPN1 becomes more nuclear in Cnot1 knockdown but its localisation does not 

change over the serum response. A) Representative lower magnification confocal images of 
cells from the same biological replicate, stained with anti-PABPN1 and Draq5 (nuclei).  
B) Representative higher magnification image from the replicate shown in A. C) Secondary 

only controls for both replicates. D) Analysis of nuclear:cytoplasmic PABPN1 ratio based on 
fluorescence for two biological replicates. All lower magnification images were used. Stars 

indicate significance level of t-tests. ** P < 0.005, *** p < 0.001, **** p < 0.0001 
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genes, long poly(A) tails (> ~150 nt) are present in at least one cellular fraction under 

control conditions, loosely consistent with early reports of 200 nt tails, whereas long 

poly(A) tails could not be detected for Rpl28 (figure 3.5 A, D). Cnot1 knockdown 

caused increased nuclear or chromatin-associated mRNA poly(A) tails for all mRNAs 

tested, as well as reduced relative pre-mRNA level for many genes (figures 4.3 A, B, 

5.1 B) ; this was suggestive of a coupling between early poly(A) length control and 

mRNA production which could act to maintain mRNA homeostasis. A link between 

elongation rate and mRNA stability was recently suggested by Slobodin et al, 

proposed to be regulated through degree of m6A modification and poly(A) status 

(58). While this is an exciting idea, a more detailed appraisal of smaller gene groups 

is required, as well as greater precision in poly(A) measurement. In an attempt to 

understand this coupling, along with normal gene-specific and temporal regulation, 

several lines of enquiry were pursued.  

Given the existence of both long and short chromatin-associated poly(A) tails, it was 

not possible to distinguish between populations of mRNAs which had yet to receive 

a poly(A) tail and those whose tails had been completely removed. Rapid chromatin-

associated deadenylation by CCR4-NOT and inhibition of synthesis by PAP therefore 

both remained as possibilities.  

Western blotting of nuclear and cytoplasmic fractions demonstrated presence of 

CNOT1 in both compartments, consistent with its roles in cytoplasmic deadenylation 

and stimulation of Pol II elongation. This also fits with the earlier observation of 

poly(A) shortening between the chromatin-associated and nuclear fractions for 

some mRNAs (figure 4.3 A, B). Localisation did not change throughout the serum 

response, indicating that nuclear availability of CNOT1 is unlikely to explain the 

usual temporal differences in poly(A) length (figure 6.1 C, D).  

CCR4-NOT can be targeted to specific transcripts, a property which could be 

relevant to the gene specific differences in normal poly(A) length and magnitude of 

response to Cnot1 knockdown (29, 30, 45, 254, 255). As the serum response mRNAs 

tested here contain AU-rich elements (AREs) in their 3’UTRs, mRNAs encoding the 

TTP family of RNA binding proteins (Zfp36, Zfp36L1, Zfp36L2) were knocked down, 

but only minimal effects on poly(A) length were observed (figure 6.3). This either 

suggests that targeting of CCR4-NOT to these mRNAs by TTP does not play a role in 
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early poly(A) length control, or that knockdown was insufficient to cause detectable 

effects.  

Another possibility was that tail length is determined by nuclear dwell time, and 

therefore the period of susceptibility to nuclear deadenylation by CCR4-NOT. 

Depletion of the main mRNA export factor, NXF1 had little effect on the poly(A) tails 

of constitutively expressed mRNAs and resulted in the appearance of longer poly(A) 

tails on serum induced mRNAs (figure 6.4 A, B), the opposite of what would have 

been expected if longer nuclear dwell time allowed more extensive nuclear 

deadenylation. In line with the longer poly(A) tails, qPCR data also seemed to show 

enhanced stability of the two serum-induced mRNAs assayed (figure 6.4 C).  

If Nxf1 knockdown was successful in restricting mRNA export, it is possible that 

rather than allowing more extensive trimming of the poly(A) tail, nuclear retention 

allowed PAP to add a longer tail. In such a model, the availability of export factors 

and consequent speed of export could determine how soon after cleavage an mRNA 

is exported, and therefore what length tail it has. Equally, since NXF1 acts late in the 

mRNA export pathway (5, 210), its knockdown could have allowed mRNAs to escape 

from early association with CCR4-NOT, while still preventing their export to the 

cytoplasm and consequent cytoplasmic deadenylation. Were the experiment 

repeated, it would perhaps be pertinent to intervene at an earlier stage of export – 

for example through knockdown of a TREX component – so that the RNA is not 

commandeered from the transcription complex and rescued from any chromatin-

associated deadenylation.  

Alternatively, NXF1 may not be essential for export of all mRNAs, perhaps explaining 

why poly(A) tails of serum-induced but not housekeeping mRNAs were affected 

(628, 629). In a recent study, those mRNAs which were AU-rich or contained few 

exons showed greater dependence on NXF1 for export, suggesting that the greater 

effects observed here on the serum response mRNAs - which contain fewer exons 

than average – may be due to their heightened dependence on this export pathway 

(236). If it is the case that housekeeping transcripts are less susceptible to 

cytoplasmic deadenylation however, the absence of effect on these mRNAs could 

also have been explained by the idea that retention in the nucleus only caused 

protection from negligible cytoplasmic deadenylation. Another possibility is that 
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slower export led to a higher ratio of RNA to some factor which normally limits tail 

length of induced mRNAs (for example by promoting deadenylation), saturating this 

factor and resulting in longer poly(A) tails. Similarly, if long poly(A) tails are usually 

attained through protection by some factor which blocks deadenylation, inhibition 

of export could have allowed continued presence of this factor in the nucleus and 

consequent emergence of abnormally long poly(A) tails. 

CNOT1 is the central scaffold of the CCR4-NOT complex and its depletion likely 

resulted in concomitant loss of the whole complex. To establish whether coupling of 

early poly(A) length and pre-mRNA level are achieved through the multifunctionality 

of CCR4-NOT, or through a more general sensing of poly(A) status or deadenylation 

rate, effects of knocking down and inhibiting the CAF1 (CNOT7/CNOT8) subunit 

were compared. While both treatments caused longer poly(A) tails on serum-

induced mRNAs, only the knockdown affected those of housekeeping mRNAs 

(figures 6.5 A, 6.7 A, B). Cnot7/8 knockdown had a similar dampening effect to 

Cnot1 depletion on pre-mRNA level, whereas CAF1 inhibition resulted in large 

increases (figures 6.5 B, 6.7 D). These increases in unspliced mRNA level were 

accompanied by delayed peaks in mature mRNA levels for serum-induced mRNAs, 

which varied in height compared to the control (figure 6.7 C). Unaffected 

transcription in combination with delayed splicing and enhanced stability could 

perhaps cause such effects, though longer time courses would be required for some 

genes, and reports of CCR4-NOT involvement with splicing are not widespread (616). 

Interestingly, increases in unspliced level of housekeeping mRNAs were also 

observed, though these seemed to only minimally affect mature mRNA level, if at all 

(figure 6.7 C, D). This may be partially have been due to the very high ratio of 

mature:nascent mRNA for these genes making short term changes undetectable, or 

could have resulted from nuclear degradation aided by possession of longer tails or 

slowed splicing. 

In keeping with its lack of stimulation (and inhibition at higher concentrations) by 

Pab1 (PABPC), a recent report suggested that the Caf1(Cnot7/8) nuclease has a 

preference for poorly translated mRNAs whereas Ccr4 is not selective (28, 50). Since 

CCR4 attaches to the complex via CAF1, knockdown of Cnot7 and Cnot8 should in 

theory remove both CAF1 and CCR4 activity whereas small molecule inhibition 
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selectively inactivates CAF1 (516, 523, 594). Hence, differences in effect on 

housekeeping mRNA poly(A) tails by the two treatments could have resulted from 

the continued presence of CCR4 nuclease activity in inhibitor treated cells (though 

both activities may be required for successful deadenylation (531)). It seems equally 

likely however, that changes taking place over 2 rather than 72 hours did not 

manifest as detectable differences for such stable transcripts. It is of course not 

possible to compare treatment times with any precision since the inhibitor works 

directly on the assembled complex, whereas siRNA treatment requires changes at 

the mRNA level to filter through. 

Considering pre-mRNA level, three explanations seem possible for the differences 

between treatments. One is that CCR4 but not CAF1 could have a role in promoting 

transcription elongation and its presence enabled normal rates of transcription 

which were not balanced by CAF1 mediated deadenylation in the presence of the 

inhibitor. The second is that loss of CAF1 (CNOT7/8), but not its inhibition, 

destabilises the whole complex resulting in reduction of both deadenylase and 

transcription-stimulatory activities (which may be mediated by other CCR4-NOT 

modules). A third explanation is that differences in treatment time play a major role, 

with some feedback loop not yet in play after 2 hours of inhibitor treatment. Such a 

feedback loop could involve initial upregulation of transcription – perhaps through 

stabilisation of transcripts encoding transcription factors – followed by a 

compensatory decrease (eg. through consequent production of a transcriptional 

repressor). On the other hand, transcriptome-wide longer poly(A) tails could result 

in upregulation of CCR4-NOT at the protein level through enhanced mRNA stability – 

a similar idea to that suggested by Slobodin et. al (58), but this would in theory 

increase transcription further. Extended treatments with the inhibitor could perhaps 

shed further light on this point.  

Data from the pilot experiment showed that pre-mRNA levels after 60 minutes of 

serum stimulation were affected to a much greater magnitude when a higher 

concentration of either inhibitor was used (figure 6.6 B, C). This may suggest that 

the inhibitor preferentially binds cytoplasmic CAF1 - affecting mature mRNA levels - 

and that higher concentrations are required to cause binding of nuclear CAF1 which 
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could mediate effects on pre-mRNA. If true, the use of different concentrations 

could prove a valuable investigative tool.  

One curious feature is the appearance of long tails on Actb late in the serum 

response in the control cells, but not in those treated with the inhibitor (figure 6.7 A, 

B). These dual bands were also present in control sets of the knockdown 

experiments, but in the knockdowns themselves, either a long or an intermediate 

length tail is visible (figures 6.5 A, 4.3 A, B). Since Actb is transcriptionally induced by 

serum (figure 5.1 B), the longer band in the control cells likely resulted from new 

transcription, which may have been inhibited in Cnot1/Cnot7/8 knockdown and 

CAF1 (CNOT7/8) inhibition. Following this line of reasoning, the single band in the 

treated cells probably represented the constitutively expressed medium-tailed 

product. Variation in length between knockdown and inhibition could have resulted 

from the differing treatment times, meaning that different proportions of the mRNA 

pool had been produced since deadenylation was inhibited.  

Taken together, these varied lines of enquiry indicate a global shift in the molecular 

landscape of the cell following Cnot1 knockdown, but do not clearly reveal the 

driving mechanism. More immediate depletion of individual subunits, for example 

via the Auxin inducible degron (AID) system, may help shed light on the early effects 

of deadenylase depletion. In addition, metabolic labelling and/or Pol II RNA 

immunoprecipitation, perhaps combined with depletion of nuclear RNA turnover 

machinery, would be important in delineating changes in transcription from altered 

splicing or nuclear degradation rate. In light of the seemingly pro-homeostasis 

effects of CCR4-NOT subunit knockdowns, the opposing transcriptional effects of 

CAF1 inhibition which indicate disruption of homeostasis may provide clues as to 

the underlying mechanism. Experiments to determine the abundance, localisation 

and composition of CCR4-NOT complexes following each treatment could be 

informative. Overall, these data point towards a role for CCR4-NOT as a downstream 

effector of mRNA metabolism which, according to the literature, may be titrated 

according to upstream signals as part of a wider cellular agenda (58, 60, 61). 
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7 PAT-Quant Seq: Poly(A) tail deep sequencing 

 Introduction 

Recent increases in the availability of next generation sequencing technologies have 

paved the way for development of countless specialised methodologies, with more 

continuing to emerge. These techniques typically involve isolation of the genetic 

material of interest via a selection technique such as immunoprecipitation or 

metabolic labelling, followed by reverse transcription, where relevant, and 

sequencing on an established platform (11, 13, 120, 325, 326, 432, 433, 632–636). 

These platforms vary in their sample requirements and outputs for RNA sequencing, 

with some requiring reverse transcription and library amplification by PCR (Illumina, 

PacBio) and others able to sequence RNA directly (Oxford Nanopore) (637–639). 

Technologies also differ in their ability to capture long reads and their base-calling 

reliability, with Oxford Nanopore also able to detect base modifications (433, 636, 

640–645). In general, Illumina short read sequencing offers superior sequencing 

quality (< 0.5 % overall error rate, dropping to < 0.1 % for quality scores > 30) than 

either PacBio or Oxford Nanopore (642–645). 

Optimal sequencing reliability and quality is not always possible within financial 

constraints and sample abundance/purity. While financial limits are hard to 

mitigate, innovative approaches can address the problem of low sample yield. 

SLAM-Seq for example, uses an elegant orthogonal chemistry approach to 

communicate 4-thiouridine labelling of nascent RNA. Rather than cross linking 

thiouridine with biotin and losing material to inefficient streptavidin bead 

purification, the addition of a thiol-reactive compound results in alkylation of the 

thiol groups on the labelled RNA. These thiol groups cause T > C conversions upon 

reverse transcription which can then be detected bioinformatically (635).  

Several groups have developed poly(A) deep-sequencing methods, largely around 

the Illumina sequencing by synthesis platform (11, 325, 432, 433, 435, 582, 632, 633, 

636, 646, 647). Most methods use the poly(A) tail as selection criteria for generating 

3’-enriched libraries (11, 433, 582, 632, 633, 636); while this circumvents some 

inefficient purification steps, it does restrict the investigation to transcripts with a 

minimum number of terminal adenosines. TAIL-Seq on the other hand, is able to 

detect non-poly(A) termini but requires a much greater RNA input (325). While 
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FLAM-Seq only captures poly(A) – terminal transcripts, its use of single molecule 

long read sequencing offered by PacBio enables the non-ambiguous linking of 

poly(A) lengths with individual messages (433). This enables higher resolution 

analysis, for example by looking at different mRNA isoforms which may be 

challenging to crystallize out of short read data, but sequencing at a depth sufficient 

to construct poly(A) profiles of rarer mRNAs is currently very expensive. Oxford 

Nanopore also allows for sequencing of full length mRNAs, meaning that no 

technical limit determines maximum detectable poly(A) length and that transcripts 

can be cap-selected, enabling retrieval of mRNAs while avoiding biases caused by 

poly(A) selection or inefficient ribodepletion techniques (636, 646, 647). Although 

Oxford Nanopore is able to directly sequence RNA - and thus avoids potential PCR-

based artefacts - it requires a large amount of starting material (~100 µg) which is 

not easily attainable for some experiments (636).  

Conventional base calling approaches are inaccurate for long homopolymers such as 

the poly(A) tail due to the merging of multiple identical fluorescence signals.  

PAL-Seq overcomes this by incorporating biotin-dUTP during sequencing (which 

should label sequencing clusters proportionally to poly(A) tail length), then adding 

fluorescent streptavidin after sequencing the poly(A)-proximal region (11). Although 

this removes the need to base call the tail, PAL-Seq requires modifications to the 

Illumina sequencer in a non-approved manner which leads to a loss of factory 

guarantees. TED-Seq also avoids direct base calling of the poly(A) region and instead 

calculates poly(A) tail lengths by subtracting sequenced 3’UTR and adapter length 

from the total (432). The tailseeker program developed by Hyeshik Chang remedies 

inaccurate calling of homopolymers with a machine learning approach, taking the 

raw fluorescence files from the sequencer as input (325). In FLAM-Seq on the other 

hand, repeated cycling of the polymerase over a single molecule during sequencing 

in theory gives higher confidence in base calling – including over long 

homopolymers. This means that the algorithm employed by FLAM-Seq for 

identifying poly(A) tails (and determining their length) is based on the more simple 

matter of setting a threshold for the acceptable number of non-T nucleotides within 

the putative poly(A) sequence (648). Reliability of Oxford Nanopore base calling also 

suffers over homopolymeric stretches, so the tailfindr algorithm instead calculates 

poly(A) length based on identifying boundaries of possible poly(A) stretches and 
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using read-specific translocation times of nucleotides through the pore to normalise 

these (647).  

Most global poly(A) measures rely on cDNA synthesis and subsequent PCR which 

could in theory distort true poly(A) lengths through repeated dissociation and 

inaccurate re-joining of the polymerase during the homopolymeric stretch. The 

TAIL-Seq protocol includes synthetic spike ins of known poly(A) tail length which 

show minimal effect of repeated amplification, though due to limitations on 

synthesis, the longest spike in is 118 adenosines, half the purported tail length on 

mammalian mRNAs (325). The problem of repeat rounds of PCR can be negated by 

use of a direct RNA sequencing method such as Oxford Nanopore for which poly(A) 

length measurement software has already been developed (636, 647). Oxford 

Nanopore is only recently becoming widely accessible however, and poly(A) 

measurement has still only been tested with spike ins up to an input length of  

150 adenosines (A150). Notably, while measured modal poly(A) length matched the 

spike ins well between inputs of A30 and A60, modal tail length was overestimated by 

110 % for spike ins with 10 adenosines and underestimated by about 10 % for A100 

and A150.  

Here we present the TAIL-Seq-based poly(A) deep sequencing technique, Pat-Quant-

Seq (PQ-Seq). PQ-Seq generates a similar library to mTAIL-Seq (13), but the  

3’ anchor through which polyadenylated transcripts are tagged and selected for is 

added by extension rather than ligation, as in several other existing poly(A) 

sequencing protocols (11, 325, 633, 636). Although PAT-Seq also uses Klenow 

extension to add the anchor and requires only 1 µg starting RNA, it cannot detect 

tails above 80 adenosines which make it unsuitable for use on the mammalian 

transcriptome (582). The PQ-Seq biotinylated anchor enables subsequent isolation 

of polyadenylated transcripts and removes the need for ribodepletion.  

Captured RNA is then fed into the Lexogen QuantSeq pipeline for Illumina-

compatible library generation. Rather than adding the 5’ sequencing adapter by 

ligation which is generally inefficient, QuantSeq introduces it during the random-

primed second strand synthesis step. The higher efficiency steps included here 

permit acquisition of global mammalian poly(A) length information from expensive  
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or low yield experiments, requiring only ~1 µg RNA rather than 80 µg as in TAIL-Seq 

or 100 µg in Nanopore (325). 

 

Figure 7.1   Schematic of PAT-Quant-Seq (PQ-Seq). Legend overleaf. 
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 PQ-Seq workflow/pipeline 

PQ-Seq used as little as 1 µg DNase-treated starting RNA, and an overview of the 

process is outlined in figure 7.1. In this, the fourth optimisation of the protocol, a 

biotinylated anchor template was added which contained 18 T residues in order to 

specifically isolate polyadenylated 3’ ends, but not introduce a bias towards long 

tails. The anchor itself was then added by Klenow extension which could proceed 

only along the anchor template and not into the gene body since the 3’ end of the 

template was blocked. The Klenow fragment used was negative for 3’ - 5’ 

exonuclease activity (exo-) to avoid inadvertent degradation of the RNA. To 

generate 3’ end fragments of a suitable size for RNA-Seq, RNA was fragmented by 

RNase T1 digestion after anchor extension then incubated with streptavidin beads 

to capture biotinylated fragments (i.e. polyadenylated 3’ ends). RNA was eluted 

from the beads using formamide and heat to denature the 3’ duplex, then separated 

by a denaturing acrylamide gel electrophoresis. Fragments of over 200_nt were 

isolated.  

Library preparation was carried out using the QuantSeq Flex kit. At the reverse 

transcription (RT) step, a small amount of Klenow (exo-) was added to the reaction 

as it was not known whether the QuantSeq reverse transcriptase could efficiently 

use the DNA in the anchor region as a template. After RT, the RNA was degraded, 

and a second DNA strand synthesised using random primers with attached Illumina 

linker sequences. These linker sequences enabled introduction of Illumina adapter 

sequences, and optional sample-specific 5’ indexes (not used in PQ-Seq) during PCR. 

During PCR amplification of the PQ-Seq library cDNA, index sequences were instead 

added to the 3’ end, between the anchor and Illumina adapter sequences, by use of  

 

Figure 7.1 (previous page) Schematic of PAT-Quant-Seq (PQ-Seq). A) Polyadenylated 
transcripts are selected by an 18 nt oligo(dT) stretch of the biotinylated anchor template. 
Klenow (exo-) fragment synthesises the anchor. The template is blocked at its 3’ end to 

prevent extension in the other direction. Transcripts bound by the anchor template are 
isolated using streptavidin beads, and the RNA eluted by melting in the presence of 

formamide. B) Anchor-tagged RNA is used as a template for Quant-Seq library synthesis. 
Sample specific index sequences are added at the 3’ end during library amplification.  
C) Illumina sequences at 3’ and 5’ ends mediate annealing to flow cell and subsequent 

cluster generation, as well as providing priming sites for sequencing by synthesis. Random 
sequence in anchor allows detection of duplicates by Tailseeker software. 
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sample-specific reverse primers. 3’ index sequences were also added via PCR to DNA 

spike ins containing poly(A) tails of different lengths (0, 16, 32, 64, 128). The 

resulting libraries underwent quality control on a Bioanalyzer (to check fragment 

size distribution and ensure minimal contamination with adapter dimers) and qPCR 

(to ensure adequate inclusion of Illumina priming sites within the sample). The 

resulting libraries were sequenced using an Illumina MiSeq. 

Tail length was ascertained using the tailseeker software (649) which uses the 

fluorescence images outputted by the sequencer as a set of .cif files, rather than the 

fastq files also generated by inbuilt base-calling software. At the time of processing 

there were no other known pipelines for processing Illumina generated reads, and 

tailseeker had been successfully employed by other groups (13, 325, 326). From 

these, images 1-51 comprised read 1 and were used to map the fragment to the 

genome. Images 52-57 recorded the read 2 index sequence which was added during 

the PCR step of the library preparation and identified which sample the fragment 

originated from. Image 58 onwards (to 308) began with the 12 degenerate bases 

(which aided deduplication) followed by a 5 nt delimiter sequence which heralded 

entry to the poly(A) tail (read as poly(T)). This gave a theoretical detection limit of 

234 adenosines.  

Analysis using tailseeker is described in the supplementary material of the original 

TAIL-Seq paper (325). In brief, optional base-calling with the third-party software 

AYB was first carried out, which according to the tailseeker documentation, gives 

improved alignment of read 1 (5’ end of fragment) to the genome. Read 1 was then 

filtered for common contaminants, and these clusters were removed from further 

analysis. Duplicates were then identified by checking for identical sequences in a 

representative section of read 1, and in the read 2 degenerate sequence, resulting in 

removal of all but the highest quality cluster. Degenerate sequences with low 

diversity were also removed at this point since this diversity is required to calibrate 

signal normalisation in the TAIL-Seq algorithm. Read 2 was then clipped of the 

degenerate sequence and 5 nt delimiter, leaving read 2 in theory beginning with 

poly(T).  
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Several strategies for determining poly(A) length are presented in Figure S1 of the 

TAIL-Seq supplementary data (325). The simplest and most restrictive technique 

(‘Strategy I’) is to count the number of residues called as ‘T’ in a row, however this 

would only account for perfect A stretches, which may not be the norm (433, 632). 

Strategy II allows up to around 10 % non-A bases and does not require a 3’ terminal 

A. It does this by scoring possible start and end pairs, using the sum of the weighted 

value for each base in the interval (T = 1, N = -5 and A, C and G = -10). This Strategy II 

length call is fed into the TAIL-Seq algorithm where it is either accepted if it is ≤_8 or 

undergoes further processing if it is > 8. In the current spot (i.e. location on the flow 

cell), a normalisation factor is calculated for each channel (i.e. A, C, G or T) based on 

signal throughout the degenerate region. The original signal for each base is divided 

by the normalisation factor for the spot to give normalised signal intensity for each 

position in the read 2 sequence. The relative T signal in each position is then 

calculated by dividing normalised T signal by the sum of normalised signal for the 

other bases. Relative T signal is assessed from the poly(A) start (obtained using 

Strategy II) until the end of read 2. A machine learning algorithm is trained on the 

expected distribution of relative T signal using poly(A) spike ins of different lengths. 

Finally, poly(A) length is called as the sum of the regions defined as ‘poly(A) body’ or 

‘poly(A) transitive’ (rather then 3’UTR transitive or 3’ UTR body) (325).  

 Preliminary results 

Two NIH_3T3 datasets were trialled with the iteration of the PQ-Seq protocol 

described above. The first experiment compared nuclear and cytoplasmic fractions 

of cells at steady state, and the other at 3 time points (0, 20 and 60 minutes)  

following serum stimulation. For both datasets, tailseeker output was generated by  

Daniel Zadik (DeepSeq, University of Nottingham). Quality control data are detailed 

in table 7.1. For both experiments, more reads were obtained for the cytoplasmic 

fraction, though this varied between 1.38-fold greater in the steady state 

experiment, and 6-10 fold greater in the serum stimulation experiment. Between 61 

and 90 % of the reads were mappable. Of those mapped, up to 59 % were non-

mRNA species (0’ stimulated nuclear fraction), though for the cytoplasmic fractions 

and steady state nuclear fraction, non-mRNA reads comprised only 36 % of those 

which were successfully mapped. 
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7.3.1 Poly(A) tails of nuclear/cytoplasmic RNA from cells at steady state 

The earliest test of PQ-Seq was using RNA isolated from the nuclear and cytoplasmic 

fractions of NIH_3T3 cells at steady state rather than following serum stimulation. 

RNA was harvested and DNase treated, and quality control was carried out to test 

RNA integrity and fractionation efficiency. qPCR data showed good unspliced 

enrichment in the nuclear fraction (figure 7.2 G) but the RNA gel suggested possible 

degradation of the nuclear fraction (figure 7.2 F). It was difficult to judge integrity of 

the nuclear RNA with any certainty since using intensity of ribosomal RNA bands 

may not be appropriate.  

Anchor addition and library preparation were performed by Sunir Malla, part of 

DeepSeq (University of Nottingham) at the time. Distribution of read 1 5’ ends 

confirmed enrichment of the library towards the 3’ ends of annotated transcripts 

(figure 7.2, C). Summary data returned from the tailseeker software included – for 

each gene -  the mean and median poly(A) length with upper and lower confidence 

intervals, the number of poly(A)+ and non-poly(A) tag counts, as well as information 

on proportion of other residues in different regions of the tail. To generate an 

overview of poly(A) dynamics at steady state, median and mean poly(A) lengths 

were compared between the cytoplasmic and nuclear fractions for genes with at 

least 30 poly(A)+ tag counts in each fraction.  

Median and mean poly(A) tail lengths were similar between the two fractions (figure 

7.2 A), suggesting that the poly(A) tails of most mRNAs with sufficient counts were  

Table 7.1 Quality control data for steady state and serum-stimulated PQ-Seq 
experiments. 
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Figure 7.2   Poly(A) tail length determination in the nuclei and cytoplasm of steady state 
NIH 3T3 cells.                            Legend overleaf. 
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controlled in the nucleus. Good enrichment of unspliced over spliced Rpl28 in the 

nuclear fraction suggested that this was not due to poor separation of nuclear and 

cytoplasmic RNA (figure 7.2 G).  Surprisingly, both the mean and median metrics 

showed slightly longer cytoplasmic than nuclear poly(A) tail lengths. This 

contradicted the view that poly(A) tails are made long in the nucleus and then 

shortened in the cytoplasm. Taking all poly(A) tags (filtered of common 

contaminants, but not aligned) into account, the poly(A) length distributions of 

individual tags for the two fractions were starkly different; the cytoplasmic fraction 

contained a single broad peak, whereas the nuclear fraction contained additional 

sharper peaks at very short and long poly(A) lengths (figure 7.2 B). As these plots 

were generated prior to the mapping step, it was not clear whether the very short 

or very long nuclear tails were present in the subpopulation of mRNAs considered 

above (i.e. those which were required to have at least 30 poly(A) tags per fraction). 

Since the smaller median length in the nuclear fraction appeared to be a small but 

global effect (i.e. rather than large differences on known targets of cytoplasmic 

polyadenylation), other comparisons were carried out to try and resolve whether 

this was a true biological phenomenon or a methodological artefact. Individual 

mRNAs measured by PAT also displayed subtly longer peak tail lengths in the 

cytoplasm compared with the nucleus, suggesting that the shorter average poly(A) 

tails observed in the nucleus were genuine, though slight differences in ladder  

migration could have accounted for this (figure 7.2 D, E). Since both methods had a 

number of steps in common (addition of a 3’ anchor, albeit by different means, 

reverse transcription and PCR) it was also possible that some artefact common to 

both techniques could have resulted in a shorter nuclear poly(A) tail readout.  

  

Figure 7.2 (previous page). Poly(A) tail length determination in the nuclei and cytoplasm 
of steady state NIH 3T3 cells. A) Median and mean poly(A) tail lengths measured by PQ-
Seq for genes with at least 30 poly(A) counts in both fractions. Dotted line indicates x=y. 
B) Tail length distribution of all poly(A) tags after removal of common contaminants but 
before alignment. C) Distribution of read 1 5’ ends showing enrichment of PQ-Seq 
fragments at the 3’ ends of annotated transcripts. D) RL2-PAT, using agarose gel stained 
with SYBR safe, for Egr1 (E), Sqstm1 (S) and Rpl28 (R) using the same RNA samples. E) 
Poly(A) distributions for the gel in D. F) Agarose gel electrophoresis to determine integrity 
of these RNA samples. G) qPCR data for spliced and unspliced Rpl28 mRNA confirming 
good separation of nuclear and cytoplasmic fractions. 
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It was possible that some RNAs displaying unexpected poly(A) tail dynamics could be 

noncoding RNAs. To see if these made a significant contribution, RNAs were filtered 

such than only protein-coding or only noncoding RNAs were plotted. Both groups  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3   Poly(A) tail lengths in NIH 3T3 cells at steady state measured by PQ-Seq and 

analysed using tailseeker.                                                  A) Median poly(A) tail lengths for protein-coding and non 
protein-coding genes with at least 30 poly(A) counts in both fractions. B) Median vs mean 
for genes with at least 30 or 50 poly(A) counts in the nuclear or cytoplasmic fractions 

respectively. C) Range between min and max confidence interval plotted against median 
tail length in each fraction for genes with at least 30 poly(A) counts both fractions. 
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showed longer tails in the cytoplasm (figure 7.3 A). The mean and median do not 

take into account spread and therefore when used alone cannot describe the shape 

of the underlying data. This was relevant because the nuclear fraction will have 

contained a mix of RNAs at different stages of synthesis, likely including RNAs 

possessing incompletely synthesised poly(A) tails and perhaps some committed to a 

nuclear decay pathway. Since export from the nucleus is thought to be quick, the 

nucleus could have contained a lower proportion of mRNAs with full length tails, 

particularly in the case of stable mRNAs which can accumulate in the cytoplasm. 

Under steady state conditions, this may have had a particularly noticeable effect 

since at any given moment the number of inducible mRNAs would have been low 

compared to those involved in housekeeping.  

The mean and median were compared for all genes with a poly(A) tag count greater 

than 30 (nuclear) or 50 (cytoplasmic) to get an idea of skew in the different 

fractions. Mean and median were approximately equal in both fractions, suggesting 

little skew to the data (figure 7.3 B). In the cytoplasm, the mean appeared slightly 

higher than the median for mRNAs with poly(A) tails <_50_nt, and slightly lower for 

mRNAs with longer tails. This suggested that a slight majority of poly(A) tails were 

shorter than the mean length for mRNAs with mostly short poly(A) tails – i.e. most 

poly(A) tails on these mRNAs were short, but there could have been a few longer 

tails which increased the mean. In theory this could have been caused by trimming 

of poly(A) tails to some short set length, with the few longer tails yet to be 

deadenylated. Since the opposite was true in mRNAs with mostly long tails, this 

perhaps suggested existence of a few almost fully deadenylated transcripts. It is 

important to note that in both cases, the effect size was small.   

To investigate whether incomplete polyadenylation/processing was detectable as 

greater length variation in the nuclear fraction, the range between upper and lower 

confidence interval was plotted against median poly(A) length for genes with poly(A) 

tag count >30 in both fractions. While spread did not vary with median length for  

the cytoplasmic RNA, there appeared to be a slight increase in spread with tail 

length in the nuclear fraction (figure 7.3 C). Both the median vs mean and median vs 

CI range plots showed a large number of short poly(A) tails in the nuclear but not 

the cytoplasmic fraction (figure 7.3 B, C). While the presence of these shorter tails  
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Figure 7.4   PQ-Seq nuclear/cytoplasmic serum stimulation preliminary experiment 
(legend overleaf). 



195 
 

may have been biologically significant, they could also have been caused by possible 

degradation in the nuclear fraction.  

7.3.2 Poly(A) tails of nuclear/cytoplasmic fractions in the serum response 

To see whether changes in polyadenylation that occur during the serum response 

were detectable by PQ-Seq, NIH_3T3 cells were stimulated with serum for 0, 15 or 

60 minutes and separated into nuclear and cytoplasmic fractions. All time points 

exhibited good separation as measured by nuclear enrichment of unspliced mRNA 

(figure 7.4 D) and there was some low-level contamination with genomic DNA 

(figure 7.4 E). PQ-Seq libraries were prepared by Hilary Collins (GRRB, University of 

Nottingham) and Sunir Malla (DeepSeq, University of Nottingham), and poly(A) tail 

length data was generated by Daniel Zadik (DeepSeq, University of Nottingham) 

using the tailseeker pipeline (325, 649). Although PCR cycle number was optimised 

for each sample during library preparation and thus equal concentrations of each 

library were loaded onto the MiSeq chip, sequencing depth was superior in the 

cytoplasmic fractions. This may have been due to lower relative proportion of 

polyadenylated RNA in the nuclear fraction – perhaps due to unintended capture of 

DNA or lower purity starting material. As a consequence, poly(A) tail lengths could 

be determined for more genes with greater confidence in the cytoplasmic fractions 

compared with their nuclear counterparts.  

As with the steady state experiment, median poly(A) length was similar between the 

two fractions after both 15 and 60 minutes of serum stimulation (figure_7.4_B). This 

time, points emerged showing long nuclear but medium length cytoplasmic poly(A) 

tails, consistent with cytoplasmic deadenylation of serum-induced mRNAs occurring. 

These differences suggested that the observation of highly similar nuclear and 

Figure 7.4 (previous page) PQ-Seq nuclear/cytoplasmic serum stimulation preliminary 

experiment. A) Comparison of median poly(A) tail lengths in the cytoplasmic fraction of 
15 and 60 minute stimulated cells. Dashed line indicates x=y. B) Comparison of nuclear 

and cytoplasmic median poly(A) tail lengths after 15 or 60 minutes of serum 

stimulation. Dashed line indicates x=y. C) Distributions of median poly(A) tail lengths in 

the nuclear fractions after 15 or 60 minutes of serum stimulation. Different thresholds 
for poly(A) tag count were compared. D) Ratio of unspliced:spliced mRNA in the nuclear 

fraction divided by that in the cytoplasmic fraction. E) qPCR data showing DNA 

enrichment in cDNA vs no RT control for nuclear fractions. 
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cytoplasmic poly(A) tails at steady state was not due to a technical glitch. It is 

possible, however, that the appearance of these points could also have resulted 

from the use of a different poly(A) count threshold (10 vs 30) to account for the 

lower sequencing depth of the serum response experiment. Median cytoplasmic 

poly(A) length was higher early in the serum response compared with the late time 

point for most mRNAs, consistent either with changes in synthesised poly(A) length 

or gradual cytoplasmic deadenylation (figure 7.4 A). At nuclear tail lengths below 

about 50_nt, cytoplasmic poly(A) tails tended to be longer, whereas the opposite was 

true of nuclear tails > 100 nt. The cluster of genes after 15 minutes stimulation 

which had median cytoplasmic tails >100 nt but median nuclear tails <100 nt did not 

show any GO term enrichment. Again, the shorter median tails in the nuclear 

fractions compared with their cytoplasmic counterparts may have been due to 

contributions from not yet polyadenylated transcripts compared with large numbers 

of stable polyadenylated transcripts in the cytoplasm. Long nuclear but not 

cytoplasmic tails on the other hand, may have represented transcripts which 

underwent rapid cytoplasmic deadenylation.  

When results were restricted to those genes with at least 30 poly(A) counts, neither 

fraction contained 200-250 nt median poly(A) tails at any time point (figure 7.4 A – 

C, 0’ data not shown), though this could have been partially due to the PQ-Seq 

detection limit of 234 adenosines. Although tails slightly shorter than 200 nt were 

expected for the mRNAs studied by PAT, the absence of any long median tail lengths 

at all was initially puzzling. Of course, longer individual poly(A) tails may have been 

detected but not faithfully conveyed by use of the median value for the gene. If the 

threshold for the number of poly(A) counts per gene was reduced from 30 to 10, 

there was a considerable increase in the range of median tail lengths observed 

(figure 7.4 C). 200-250 nt median tails only appeared when fewer than 10 counts 

were required, but so few counts may not have been sufficient for a reliable 

median. In agreement with the trends observed by PAT in serum response mRNAs, 

the distribution of nuclear poly(A) tail lengths was more enriched for shorter tails in 

the 60 than the 15 minute time point (figure 7.4 C).  

Aside from the possibility that long poly(A) tails were not present in these samples, 

there are several routes via which long tails could become depleted in the analysis. 
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One possibility, alluded to in the tailseeker documentation is the increased risk that 

long-tailed transcripts have of their forward read also being poly(A), and 

consequently being unmappable. As mentioned previously, anchor design combined 

with choice of sequencing platform limit detection to a maximum of 234 nt. 

Furthermore, since the above analyses only take into account the mean/median 

poly(A) tail length provided by the tailseeker output summary, it may be that some 

long tails are present and detectable but at the edges of a distribution so may not be 

well conveyed by summary statistics.  

 Optimisation for future libraries 

Given the earlier observation that poly(A) tail length seems to be regulated before 

dissociation from the chromatin for a number of mRNAs (figure 3.5 A,D), the 

prospect of global chromatin-associated poly(A) measurements was enticing. To try 

and improve the PQ-Seq pipeline such that RNA from the even lower-yield 

chromatin fraction could be used – and to address the problem of low poly(A) 

sequencing depth in the nuclear fraction, the library preparation protocol was 

dissected to identify and optimise less efficient steps. At each stage, quick 

measurements were employed, with the aim of compiling a set of standards against 

which future libraries could be compared at regular stages in their synthesis.  

There was speculation as to whether excess concentration of the anchor template 

could be competing with the RTP primer during first strand synthesis. Using nuclear 

and cytoplasmic RNA from 15 minute serum stimulated cells, four different stock 

concentrations of anchor template were trialled. The PQ-Seq protocol was followed 

from anchor extension, through streptavidin bead pull down to RNA cleanup using 

RNA Clean XP beads, but the T1 digestion and gel separation were omitted due to 

concerns over efficiency. Rather than proceeding to QuantSeq library preparation, 

RNA samples underwent reverse transcription with the RTP primer followed by 

quantitative PCR using primers designed for the 3’ ends (since in the full protocol, 

this end of the mRNA should be enriched following pull-down with the anchor 

template). For the Egr1 transcript, 5 µM and 10 µM stock concentrations of anchor 

template both allowed for a moderately more efficient reverse transcription than 

the original 100 µM concentration for the nuclear fraction (figure 7.5 A). For Rpl28,  

  



198 
 

  

Figure 7.5   Optimisation of PQ-Seq anchor addition  (continued overleaf). 
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10 µM was clearly the best tested concentration, and 10 µM anchor template stock 

concentration was therefore taken forwards for the remaining optimisation steps.  

It was also possible that the improvement seen using 10 µM (figure 7.5 A) meant 

that less unbound anchor associated with the streptavidin and allowed better 

recovery of mRNA. Although associated documentation for the beads indicated a 

much higher binding capacity than required, previous experience using a number of 

different streptavidin beads was that similar yields could be obtained by incubating 

a fresh set of beads with the original flow-through; this suggested that poor 

recovery via the biotin-streptavidin interaction could be responsible. The initial part 

of the PQ-Seq protocol (without the T1 digest and size separation) was carried out 

on new, 25 minute stimulated nuclear and cytoplasmic RNA using the amended  

10 µM anchor concentration. RNA was recovered from each flow through and wash 

step. Strikingly, only a tiny proportion of the input RNA (i.e. RNA before anchor 

Figure 7.5 Optimisation of PQ-Seq anchor addition. A) qPCR data following reverse 

transcription with RTP primer to assess optimum RA3 anchor template concentration. 

CTs normalised to 100µM value for each fraction. B, C) RNA integrity following B) 
incubation with manufacturer-supplied Klenow buffer or C) incubation with different 

enzymes/ buffers. D) Relative mRNA level of 3’ most 200nt determined by qPCR after 

anchor addition by different enzymes. Value given to 3 significant figures.  
E) Comparison of 3’ end recovery following anchor extension using either klenow exo- 

fragment or SuperScript III compared with no extension (input). mRNA level normalised 

to that of the input reverse transcribed using random hexamers. 25’ Cytoplasmic RNA 

was used. F) Same data as in E), but RTP data is normalised to input reverse transcribed 
with RTP rather than RH (i.e both input values = 1) in order to compare enrichment over 

input for each reverse transcription primer choice. G) Comparison of RNA integrity 

using homemade vs manufacturer Klenow buffer. 
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addition) was recovered in the eluted fraction, while 10-50 % was present in the 

combined flow-through/first wash (W1) fraction, leaving between 50 and 90 % of 

the input RNA unaccounted for (figure 7.6 A). Interestingly, the proportion in the 

wash seemed to be higher in the cytoplasmic fraction, possibly reflecting a higher 

starting amount of RNA, a greater proportion of which may therefore fail to be 

captured by the beads or anchor template.   

A number of hypotheses could explain the missing RNA/cDNA. One obvious 

possibility is that the RTP primer used for reverse transcription of the wash and 

eluted fractions was significantly less efficient than the random hexamers used for 

the input RNA. Subsequent experiments comparing reverse transcription primers 

showed a variable magnitude of effect with a maximum 2-fold reduction (figure 7.5 

E). If there was a 2-fold reduction in RT efficiency using RTP compared with RH, the 

previous data for cDNA in each purification fraction suggested that up to ~35 % of 

the nuclear RNA, and almost all of the cytoplasmic RNA may have failed to be 

captured by the streptavidin beads and instead been lost in the flow-through and 

first wash. Another possibility was that some reagent introduced during the elution 

or RNA isolation steps (eg. Formamide or traces of Phenol) could have inhibited the 

reverse transcription or PCR, leading to a falsely low readout of mRNA abundance in 

this fraction, but this was not formally tested. A more recent consideration is that 

non-stick Eppendorf tubes were not used for the streptavidin purification step and 

could also have accounted for some loss which would not have been detected in the 

flow-through. 

Another explanation may have been RNA degradation. Since all reagents in the pull 

down were RNase-free, the most likely point of degradation was during anchor 

addition. Some degradation was identified following incubation with manufacturer 

supplied Klenow buffer (figure 7.5 B). As exo(-) Klenow was used, it seemed unlikely 

that the enzyme’s proofreading activity was responsible. To see whether the 

degradation could be circumvented using another enzyme, RNA quality was tested 

by agarose gel electrophoresis after incubation with the anchor template along with 

GoTaq G2 Flexi or Q5 DNA polymerases, or SuperScript III (SS III) reverse 

transcriptase, as well as different combinations of Klenow enzyme and buffer. All 

three alternative enzymes were less detrimental to RNA integrity than Klenow and 
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the manufacturer-supplied buffer (figure 7.5 C). The same RNA samples were 

reverse transcribed with random hexamers, and abundance of 3’ ends of Rpl28 and 

Egr1 measured by qPCR. Despite the RNA degradation observed in the Klenow + 

buffer reaction, this treatment, along with SS III gave the highest levels of mRNA  

3’ ends (figure 7.5 D). Notably, all treatments showed an increase in cDNA level 

relative to input which is surprising since reverse transcription was carried out with 

random hexamers and should not have favoured RNA with anchor attached. One 

possibility is that all enzymes enhanced cDNA production during the reverse 

transcription stage. To test whether SS III could also use the DNA anchor template, 

Klenow and SS III samples were reverse transcribed using the RTP primer, and 3’ end 

abundance was again tested by qPCR. Original incubation with SSIII was slightly 

superior to Klenow when comparing both random and RTP-primed reverse 

transcription reactions (figure 7.5 E, F) indicating its capability in using a DNA 

template. The superior performance of SS III–mediated anchor addition could have 

been due to reduced RNA degradation but may also have resulted from a higher 

concentration of reverse transcriptase causing more efficient reverse transcription. 

Since there was only minimal difference between the two enzymes, and Klenow was 

used successfully in previous iterations, use of Klenow was continued but a 

homemade Klenow buffer was trialled which elicited marginally less RNA 

degradation (figure 7.5 G). 

A final avenue of exploration was efficiency of elution from the streptavidin beads. 

The original protocol entailed a series of short melt steps at 80° (water, formamide, 

then water again) which should disrupt base pairing between the anchor template 

and the captured RNA fragment. Two other strategies were tested to see whether 

RNA recovery in the eluted fraction could be improved: elution using BL+TG lysis 

buffer from the Promega ReliaPrep RNA isolation kit (which contained guanidine 

thiocyanate and so should have denatured the duplex) and treatment with 1 % SDS, 

which should have disrupted the biotin-streptavidin interaction and caused release 

of the whole duplex from the beads. Eluate from the SDS-treated beads was further 

divided into ‘melt’ or ‘no-melt’ treatments with the rationale that continued 

presence of anchor template may competitively inhibit downstream reverse 

transcription and PCR steps. In the ‘melt’ pathway, the eluted fraction was heated 

and passed over a fresh set of streptavidin beads to bind the biotinylated anchor  
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                                                                                                               qPCR performed to assess 
abundance of the 3’ ends of two mRNAs in different fractions of the streptavidin bead 
purification compared with original RNA. W1 indicates combined flow-through and washing 
of streptavidin beads. W2 represents flow through and wash during purification with 
RNAClean XP beads. Error bars indicate standard deviation. A) Original elution protocol. 
Reverse transcription performed using the RTP primer for W1, W2 and Eluted, and with 
random hexamers for input. mRNA level was normalised by ΔCt to the input RNA. B) As in A, 
but BL+TG lysis buffer used to ensure full elution of RNA, and reverse transcription was 
performed with random hexamers. Elute 1 is from streptavidin beads, Elute 2 is following 
subsequent cleanup with RNACLean XP beads. C) As in A,B but high SDS concentration used 
to disrupt the biotin-streptavidin interaction and only a single mRNA assayed. Eluted RNA 
representing the biotinylated template:mRNA duplex was melted to separate the strands 
and passed over another set of beads to remove the biotinylated template. Reverse 
transcription using random hexamers (RH) and the RTP primer are compared. 

Figure 7.6   PQ-Seq optimisation: streptavidin bead binding. 
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template but not the RNA. Neither the BL+TG nor the SDS elution methods 

noticeably improved RNA recovery (figure 7.6 B, C) suggesting that poor binding to 

the beads or poor binding of the anchor template to the RNA was responsible. 

Strangely, less cDNA was detected in the wash steps of these experiments, despite 

using the same batch of 25’ serum-stimulated nuclear and cytoplasmic RNA as in the 

original protocol. This could have been due to variability in RT efficiency, RNA 

degradation and adherence of RNA to the Eppendorf tube. While it was not 

determined exactly where the RNA was lost, failure to bind the beads or RNA 

sticking to the microcentrifuge tube seemed the most likely explanations, and non-

stick tubes should be employed for future rounds.  

 Discussion 

In an ever-expanding landscape of sequencing techniques, PAT-Quant-Seq is able to 

measure poly(A) tail lengths at the global level from low input (1 µg) RNA. In 

combination with subcellular fractionation, PQ-Seq showed that median poly(A) 

lengths were much more similar in the nucleus and cytoplasm than would be 

expected if all poly(A) tails exited the nucleus with long poly(A) tails and were then 

deadenylated in the cytoplasm (figures 7.2 A, 7.4 B). This is suggestive of widespread 

nuclear poly(A) length regulation in NIH_3T3 cells. In agreement with other poly(A) 

deep-sequencing studies, PQ-Seq also confirmed the existence of a majority of 

mammalian RNAs with poly(A) tails which were significantly shorter than the widely 

recognised 200-250 nt figure (11, 13, 325, 326, 432, 433, 633, 636). Under steady 

state conditions, median poly(A) length was slightly higher in the cytoplasm than the 

nucleus (figure 7.2 A), which may have come about through the presence of 

transcripts in the nucleus which were not fully polyadenylated, or through 

cytoplasmic polyadenylation. Since the confidence intervals were approximately the 

same in each fraction, it seemed unlikely that a large proportion of nuclear 

polyadenylated RNA had long poly(A) tails. This is consistent with a model in which 

most poly(A) tails are rapidly deadenylated to their ‘proper’ lengths while still 

attached to the chromatin.  

Although PQ-Seq is demonstrably accurate when compared with PAT 

measurements, the question remains as to why so few long tails were observed in 

the nuclear fraction when early pulse labelling experiments showed an abundance 
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of long poly(A) tails with a peak centred around 210 nt in the nucleus and 190 nt in 

the cytoplasm (324, 610). While the PAT assay has detected long tails in a minority 

of cases, this was often on low abundance mRNAs -some of which did not have 

enough nuclear counts to get a reliable read by PQ-Seq (eg. Fos) - or in the 

chromatin fraction which only comprises a minority of the nuclear RNA. Indeed, long 

median poly(A) lengths were reported in the nuclear fraction of both the 15’ and 60’ 

time points if genes with low tag counts were included (figure 7.4 C). Summary 

statistics reported by tailseeker will also have failed to convey information about 

lengths at the edges of the distribution for any given gene, meaning that long tails 

may still have existed on individual transcripts. This seemed to be the case in the 

original TAIL-Seq paper where distribution of poly(A) lengths extended to 230 nt for 

NIH_3T3 cells, but median poly(A) length was only between 0 and 120 nt (325). Long 

poly(A) tails may also have been disproportionately lost during the mapping step 

since there would be a higher chance of read 1 also containing poly(A) tail and 

therefore mapping poorly or failing to map. Another possibility could in theory have 

been the presence of non-adenosine 3’ termini on long tails inhibiting anchor 

addition, however there is no basis for this in the literature, and uridylation for 

example is more common on short poly(A) tails (325).  

The number of poly(A) counts were lower in general for the nuclear fractions, 

perhaps due to lower starting concentrations of RNA (due to contribution of DNA to 

the nanodrop read) or interference by other non-polyadenylated RNAs or DNA. 

Since the intention was to apply PQ-Seq to fractions of potentially even lower 

quality (i.e. chromatin-associated), the anchor addition and purification portion of 

the protocol underwent optimisation. It was determined that the anchor template 

concentration should be reduced tenfold, and that a homemade rather than 

manufacturer-supplied Klenow buffer should be used during anchor extension to 

minimise RNA degradation (figures 7.5 A – C, G). The streptavidin bead purification 

step also seemed to be a significant point of RNA loss, though RNA degradation and 

inefficiencies in reverse transcription could also have contributed to loss compared 

with the input (figure 7.6 A). Poor binding of beads by the duplex or loss of RNA 

through erroneous use of ‘sticky’ Eppendorf tubes are likely contributors.  
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8 Conclusions and discussion 

This project investigated the existence of nuclear poly(A) length control during the 

NIH_3T3 serum response, and its relationship with mRNA production. The poly(A) 

tail test (PAT) was validated as a convenient and reproducible assay for identifying 

differences in poly(A) tail sizes and was the primary mode of tail length 

measurement used. Nuclear poly(A) tails of serum-induced mRNAs were long  

(120-180 nt) 20 minutes after serum induction, but were short by one hour post-

stimulation, whereas housekeeping mRNAs had a consistent medium length  

(30-70 nt) tail throughout (figure 3.5), and the location of poly(A) regulation varied 

between the nucleoplasm and the chromatin. This contradicts early reports of a 

universal 200-250 nt poly(A) tail on newly made mRNA (179, 269, 324, 363, 411). 

Knockdown of mRNA encoding the CCR4-NOT scaffold subunit, CNOT1, in NIH_3T3 

cells caused gene-specific increases in nuclear poly(A) tail length on all transcripts 

tested (figures 4.2, 4.3), suggesting that widespread regulated nuclear 

deadenylation by CCR4-NOT may normally take place. It was not possible to 

distinguish between rapid chromatin-associated deadenylation and limited initial 

poly(A) synthesis using the PAT assay, however, since short-term pharmacological 

inhibition of the CAF1 nuclease subunit caused long poly(A) tails on transiently 

expressed mRNAs late in the serum response (figure 6.7 A, B), deadenylation by 

CCR4-NOT seems the simplest model.  

As well as increasing early poly(A) tail length, Cnot1 knockdown caused a reduction 

in pre- and mature serum response mRNA levels and in housekeeping pre-mRNA 

levels (figure 5.1), which is consistent with the CCR4-NOT complex’s role as an 

elongation factor (39, 147, 148). This coupling of longer poly(A) tails with reduced 

mRNA production suggests a drive towards mRNA homeostasis when degradation is 

impaired. Finally, application of our global poly(A) length measurement technique, 

PQ-Seq, to nuclear and cytoplasmic NIH_3T3 fractions showed that for most mRNAs, 

median poly(A) length in the nucleus and cytoplasm were similar. This suggests that 

nuclear poly(A) length control is a major contributor to poly(A) tail regulation for 

most mRNAs. 
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 Appraisal of the poly(A) tail test (PAT) 

PAT analysis using native agarose gel electrophoresis gave clear bands at 

reproducible lengths throughout the project. Additional longer bands were regularly 

also visible and these were demonstrated by a previous lab member to be 

multimers, formed by the hybridisation of poorly aligned A and T stretches of 

different fragments. As such, these longer bands were excluded from length 

determination. It was unclear however, whether multimer formation was more 

likely to involve fragments with longer tails and therefore whether this would 

introduce a bias towards shorter poly(A) tails in the lower (‘monomeric’) band. To 

address this, PAT PCR products were separated by denaturing capillary gel 

electrophoresis since this should dismantle any multimers. Denaturing PATs 

produced a similar shape poly(A) distribution to native PATs, but with a slightly 

shorter peak length (figure 3.1 B), suggesting that multimer formation in the native 

PAT does not cause a loss of detection of long tails. It seems unlikely that shorter 

poly(A) tails are enriched in multimers since there is a lower chance of poor 

alignment between strands, and therefore less opportunity for hybridisation with 

other fragments. Thus, this small difference in peak length may have arisen from the 

use of different markers between systems, or from slight differences in how the 

marker ran compared with the samples in the non-denaturing gel. 

While PCR-based techniques are more sensitive - and therefore enable higher 

resolution - than direct measurement of RNA, it has been suggested that the PCR 

step could introduce a bias towards short poly(A) tails. This is based on the 

propensity of the polymerase to repeatedly dissociate and re-join the template, and 

in homopolymeric regions, this re-joining may not occur at the same place it fell off. 

Although there is an equal probability of extending or reducing a poly(A) tract by 

this means, the chance of incorrect re-joining occurring is reduced in shorter tails, 

which could lead to an overall bias towards short poly(A) tails. Such an artefact 

would affect the majority of global poly(A) surveys published in the last 7 years. This 

deviation from 200 nt in whole cell mRNA has been thought to be explained by 

cytoplasmic deadenylation (325, 432, 433, 582, 632, 633). To check whether the PAT 

assay suffered from artificial poly(A) shortening, RNase H northern blots were 

performed on identical biological samples. As RNase H treatment generally yielded 
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poor PAT signal - even with primers that should bind the remaining fragment - PAT 

assays were performed on the original RNA (or DNase-treated RNA where relevant).  

For Egr1 mRNA which usually has a long poly(A) tail after 20 minutes and a short tail 

after 60, the PAT and northern blot measures gave similar peak lengths distributions 

(figure 3.4 H). As the northern blot signal was too low to give a smooth curve it was 

not possible to compare exact figures for modal poly(A) length. Derivation of poly(A) 

lengths in the northern blot was initially complicated by the presence of a second 

band in 3 out of 4 lanes which was particularly prominent in oligo(dT) treated 

samples (figure 3.4 C), suggesting it was caused or enriched by additional 

degradation at some A-rich segment. Surprisingly, there was no A-rich region within 

the annotated 3’UTR which would generate shorter fragments that would still be 

detected by the labelled probe. Upon closer inspection of deep sequencing data 

from our NIH_3T3 cells, there appeared to be a 25 nt A-rich extension to the Egr1 

3’UTR which was confirmed by Sanger sequencing of the Egr1 PAT product (figure 

3.4 F, G). Oligo(dT) treatment likely caused occasional degradation of this additional 

section of 3’UTR, resulting in two different lengths for the deadenylated bands. Both 

UTRs may have been expressed in our cells, explaining the presence of additional 

faint bands in the no-oligo(dT) lanes.  

For Rpl28 mRNA which has a consistent medium length poly(A) tail throughout the 

serum response, the PAT and northern blot measures gave similar modal tail length 

values, but had different distributions (figures 4.2 C, 4.3 D). Tail length profiles were 

more similar when the northern blot was carried out using the RNase H cleaved RNA 

than when full length RNA was used, though this cleavage also caused the 

appearance of additional shorter than expected bands. Although the modal tail 

length values were similar, the northern blots seemed to detect a greater number of 

longer tails than the PAT. While this could have been due to theoretical poly(A) 

shortening by PCR, the additional smearing in the northern blots could equally have 

resulted from sample over-loading or from less accurate size determination. Despite 

this, PAT assays and northern blots were in good general agreement in terms of 

detecting size differences, and the benefit of additional convenience and sensitivity 

with the PAT assay outweighed any concerns regarding absolute tail length 

determination.  
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 Poly(A) tail length is regulated in different responses and 

locations 

Eukaryotic mRNA poly(A) tails have been recorded to change length in a number of 

processes (13, 62, 66, 330, 331, 396, 397, 402, 413, 577, 584, 587). These changes 

affect gene expression by altering mRNA stability and/or translation efficiency (396, 

397, 584, 587). While much of this control is thought to be mediated by cytoplasmic 

polyadenylation or deadenylation, message-specific nuclear poly(A) regulation has 

also been suggested (413). 

PAT assays confirmed that following serum stimulation in NIH_3T3 cells, poly(A) tails 

of induced mRNAs are long early on (20 minutes) and short towards the end  

(60 minutes) of the transcriptional response (figure 3.5). The shorter poly(A) tails 

present at the end of the response corresponded to reduced mRNA stability (figure 

3.6). Rather than being caused by cytoplasmic deadenylation, the short poly(A) tails 

late in the response appear to already be decided either in the nucleoplasm or while 

the mRNA is still attached to the chromatin (figure 3.5). Even early in the response, 

the longer poly(A) tails observed fell short - to varying degrees - of the classical 200-

250 nt figure, though it cannot be ruled out that this length did transiently occur but 

was not detectable at the chosen time points.  

Poly(A) tails of representative housekeeping mRNAs do not change throughout the 

serum response and are considerably shorter than expected for their stability, 

measuring between 30 and 70 adenosines which is consistent with observations in 

the literature (325, 326, 423). These tails too, seem to be controlled in the 

nucleoplasm or on the chromatin (figure 3.5). Long chromatin-associated tails could 

be observed for all the mRNAs tested apart from Rpl28, perhaps indicating separate 

control of ribosomal protein or 5’ TOP mRNAs. 

Deep sequencing of poly(A) tails using PQ-Seq revealed that in both steady state and 

serum stimulated NIH 3T3 cells, median nuclear and cytoplasmic poly(A) tail lengths 

were highly similar (figures 7.2 A, 7.4 B). This suggests that nuclear and perhaps 

chromatin-associated poly(A) regulation may be a transcriptome-wide phenomenon 

in these cells. In addition, very few genes had median poly(A) tail lengths 
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approaching 200-250 nt. It is unclear what caused the disparity between the PQ-Seq 

measured nuclear poly(A) tail lengths and those first obtained by pulse labelling.  

One possibility is that the methods used to determine length in early experiments 

lacked accuracy and therefore that the 200 nt figure was incorrect. In one paper,  
3H-adenosine labelled poly(A) tails were separated by electrophoresis, alongside two 

size markers: 4S and 5S RNA, representing 80 and 122 nucleotides respectively 

(324). In both 12 minute and 48 hour labelled RNA, a large portion of signal for both 

nuclear and cytoplasmic RNA was apparently around 200 nt, with the nuclear 

population peaking at slightly longer poly(A) lengths than the cytoplasmic one. 

Although the absolute tail length is different, this pattern is in general agreement 

with the small differences in length across fractions in the PAT assays, and with the 

similarity in nuclear and cytoplasmic length as measured by PQ-Seq (figures 3.5, 7.2, 

7.4). While the use of two markers may not be sufficient for reliable size 

determination, it is interesting to note that in the 12 minute labelled cytoplasmic 

RNA, there was an additional peak beginning just below the 80 nt marker (324). If 

this size determination were correct, this peak could perhaps represent highly 

expressed mRNAs which have been shown to possess only medium length tails (325, 

326). An equivalent peak was not present in the nuclear fraction, however this 

fraction generated a peak of a similar size but at even lower poly(A) lengths. The 

magnitude of difference is too great to relate to the observation by PQ-Seq that 

median poly(A) tail length was greater in the cytoplasmic than the nuclear fraction 

at steady state (figure 7.2 A).  

The other possibility for the difference in poly(A) length measurement is that PQ-

Seq underestimates poly(A) length, and this could occur by several means. First, the 

apparent failure to detect long poly(A) tails could simply be a symptom of using 

summary statistics such as the median instead of considering distributions for each 

gene. Second, PQ-Seq may have suffered from tail shortening due to the PCR 

amplification step; however, comparison of PAT assays and northern blots suggest 

that any biases introduced by PCR would not be sufficient to explain such a large 

disparity. For example, comparing median poly(A) length between PAT assays and 

northern blot for full length Rpl28 (for which the PAT and northern distributions 

varied most) gave a 33.8 nt difference, which although substantial, is a long way 
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from the ~140 nt difference between a 200 nt tail and the ~60 nt tail usually 

measured for Rpl28 by PAT . Another possibility is that long poly(A) tails may be 

disproportionately lost during alignment as their forward read is more likely to also 

contain poly(A) tail and therefore not be mappable. Furthermore, since the PQ-Seq 

protocol relies on the presence of 3’ terminal oligo(A) to hybridise with the anchor 

template, some tails could in theory be missed by both PQ-Seq and the PAT assay if 

they possessed non-adenosine termini. This seems an unlikely explanation for bulk 

tail differences, however, since a genome-wide study found that alternative termini 

were more common adjacent to otherwise very short poly(A) tails (325). 

Evidence of chromatin-associated and nucleoplasmic poly(A) control was also 

present in HEK293 cells and interestingly, the ribosomal protein mRNA in this case 

did have a long chromatin-associated tail which was shortened in the nucleoplasm 

(figure 3.7 A).  

 Cnot1 knockdown causes increased poly(A) length alongside 

decreased pre-mRNA level 

Most cytoplasmic deadenylation in mammals is carried out by the CCR4-NOT and 

PAN2-PAN3 complexes, with the former thought to play a dominant role (26, 50, 

503). As well as catalysing poly(A) tail removal in the cytoplasm, CCR4-NOT can 

enter the nucleus and influence transcription both at the promoter (often 

repressive) and by promoting Pol II elongation (35, 36, 39, 42, 147, 148, 510, 526, 

527, 545–551). As such, CCR4-NOT presented a good candidate for a nuclear 

effector of shorter than expected poly(A) tails.  

Knockdown of the Cnot1 scaffold subunit of the CCR4-NOT deadenylase complex in 

NIH 3T3 cells led to increased nuclear poly(A) tail length late in the serum response 

on all mRNAs tested, and in some cases to increased chromatin-associated poly(A) 

tail length (figures 4.2 A-C, 4.3 A, B). The location in which CNOT1 seemed to affect 

length corresponded to the location where the first short poly(A) tails are usually 

seen for a given mRNA, suggesting that it has a role in shortening initially long tails 

within the nucleus. The increases in poly(A) tail length were larger for induced than 

housekeeping mRNAs (increases of between 60 and 100 nt compared to between 20 

and 40 nt). A similar pattern was observed following ccr4 deletion in yeast (582). 
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                                                         showing instances of second bands in the PAT assay late in 
the serum response, as well as qPCR data showing transcriptional induction of Actb. A) RL2-
PAT, using agarose gel stained with SYBR safe, of serum stimulated chromatin fractionation. 
Times indicate duration of serum stimulation (minutes). Black arrow indicates modal poly(A) 
length value and red arrows indicate increased smearing which may correspond to a second 
poorly resolved band. B) As in A, but for total RNA from control (C) and Cnot1 knockdown 
(KD) timecourses. C) qPCR data showing relative level of mature and unspliced Actb mRNA in 
3 replicates of control and knockdown cells, of which the replicate shown in B was one. 
Relative expression was calculated using the ΔΔCt method with Gapdh as the reference 
gene, and normalising to the maximum value in the control set. D) As in A, but for control (C) 
and Cnot1 knockdown (KD) chromatin fractionation of cells serum stimulated for 50 
minutes. Second bands here are more clearly resolved. Note: bands in the KD lanes are 
between those in the control lanes. E) As in A, but for total RNA from DMSO or CAF1 inhibitor 
treated cells.  Again, the second band is more clearly resolved. F) As in C, but for 3 biological 
replicates of DMSO or CAF1 inhibitor treated cells, of which the replicate shown in E was 
one. Note: bands in the Inhib 108 lanes are in line with the lower bands in the control lanes. 

Figure 8.1   Collated Actb data 
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Strikingly, in all cases the increases in tail length occurred as single discrete bands 

which were neither fully deadenylated nor untouched, and were too crisp to be the 

result of a reduced level of distributive activity (see figure 4.7 for illustration). This 

suggests either that CCR4-NOT could still perform some residual activity but was 

limited by some additional factor, or that PAN2-PAN3, which prefers long poly(A) 

tails, could also enter the nucleus and partially compensate for depletion of  

CCR4-NOT. Although PAN2-PAN3 is predominantly cytoplasmic, it was also shown to 

be capable of shuttling to the nucleus in NIH_3T3 cells (24, 26). 

One unexpected phenomenon was the appearance of two bands in the PAT gel for 

nucleoplasmic and cytoplasmic Actb mRNA in control but not knockdown cells 

(figure 4.3). When chromatin fractionations were performed on control cells at 

different points after serum induction, Actb did not show two distinct bands in the 

nucleoplasm or cytoplasm at any point but did show much greater smearing in these 

fractions after 60 minutes. Two Actb bands were also visible using whole cell mRNA 

at 60 and 120 minutes post-serum stimulation (figure 6.3 A). Although mature Actb 

mRNA levels change only slightly following serum stimulation, Actb is 

transcriptionally induced (figure 5.1 A, B) and as such, the additional band could 

represent synthesis of a different 3’UTR or differently polyadenylated transcript. 

Alternatively, some switch in Actb poly(A) length control may take place at late time 

points. A summary of the relevant Actb data has been collated in figure 8.1.  

CNOT1 knockdown in HEK293 cells yielded similar increases in nuclear poly(A) 

lengths at steady state (figures 4.4 A).  

In addition to causing long poly(A) tails in NIH 3T3 cells, Cnot1 knockdown led to 

decreases in mature and pre-mRNA levels for serum induced genes as well as for 

Rpl28 (figure 5.1). Unspliced levels of Sqstm1 and Actb were also reduced but their 

mature mRNA levels were unaffected. The more substantial downregulation of 

Rpl28 compared to other housekeeping mRNAs is consistent with the observation 

that ccr4 deletion in yeast caused a specific increase in the ratio of TFIIS to the Pol II 

subunit, Rpb3 (thought to indicate Pol II backtracking) along ribosomal protein 

genes (148).  
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A publicly available, unpublished CNOT1 knockdown RNA-Seq dataset from HeLa 

cells (621) was also examined but showed different effects on serum response 

mRNAs in different replicates, perhaps due to inconsistencies in growth conditions 

which may have seemed inconsequential to the original purposes of the study. 

CNOT1 knockdown caused more mature mRNAs to increase significantly in level 

than to decrease (figures 5.8 A, B, 5.9 A, B), consistent with its major role in mRNA 

decay. GO term analysis showed that these upregulated genes were enriched for a 

variety of processes including various signalling pathways, responses to stimuli and 

cellular adhesion (figure 5.8 C). By a slightly different method for generating raw 

count data, which ignored contributions from introns, the upregulated genes were 

again enriched for a variety of processes whereas the downregulated genes were 

enriched for involvement in mitosis (figure 5.9 C, D). Although analysis of this 

dataset highlighted the vast extent of the CCR4-NOT complex’s influence, it was 

otherwise inconclusive. 

The NIH 3T3 data indicate a coupling between poly(A) tail length and mRNA level 

such that mRNA homeostasis can be maintained, i.e. if the cell is unable to degrade 

the RNA as fast, not as much is produced to begin with. Other groups have shown, 

by deletion of degradation machinery, that yeast cells exhibit a similar buffering 

capacity (148, 579–581). Coupling of induction with poly(A) tail length in mammalian 

cells has been described in the literature, however, in that case, greater 

transcription rate was accompanied by long poly(A) tails (58).  

To see whether this coupling was CCR4-NOT-specific or a general feature of 

depleting deadenylase activity, PAN2-PAN3 was also investigated. Only minimal 

effects on poly(A) length were observed following Pan2 depletion, though this could 

have been due to poor knockdown efficiency (figures 4.5, 4.6). In contrast to Cnot1 

knockdown, both pre- and mature mRNA levels for serum response mRNAs were 

transiently increased in Pan2 knockdown, while levels of mature housekeeping 

mRNAs were unchanged (figure 5.12 A, B). Since knockdown was sufficient to cause 

detectable effects on mRNA level, it seems possible that differences in poly(A) 

length could have occurred, but were missed by the chosen time points. Return of 

serum response mRNAs to normal mature levels by 90 minutes post-stimulation 

suggests that PAN2-PAN3 depletion may have been compensated at later stages by 
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CCR4-NOT, and is in keeping with the idea that PAN2-PAN3 acts earlier in the 

cytoplasmic deadenylation pathway (26). How increases in pre-mRNA levels were 

elicited is unclear since we are unaware of any role for PAN2-PAN3 in transcription 

or splicing.  

There are several mechanisms through which CCR4-NOT could mediate the 

connection between poly(A) length and pre-mRNA level. These mechanisms include 

direct nuclear effects as well as feedback loops caused by impaired cytoplasmic 

deadenylation which could, for example, result in reduced recycling of some mRNA-

bound factor back to the nucleus, or in increased translation of some transcriptional 

effector. When considering possible mechanisms, it is useful to also hold in mind the 

temporal differences in polyadenylation and transcription rate of induced mRNAs 

that occur naturally during the serum response.  

Western blots of fractionated NIH_3T3 cells showed that CNOT1 protein was present 

in both the nucleus and cytoplasm prior to serum stimulation, as well as at early and 

late time points after induction (figure 6.2 C, D). This suggests that nuclear 

deadenylation by CCR4-NOT as well as direct transcriptional effects are both realistic 

possibilities.  

A simple model which incorporated CCR4-NOT involvement and could explain 

shorter poly(A) tails at the end of the serum response was that many of the mRNAs 

produced in the large initial burst of transcription are rapidly exported before 

extensive deadenylation by CCR4-NOT can occur; those exported later on may 

spend longer in the nucleus, allowing CCR4-NOT to remove more of the tail. To test 

this, siRNA knockdowns were performed for Nxf1, a factor thought to be required 

for bulk mRNA export (628, 629). If longer nuclear dwell time allowed more 

opportunity for deadenylation by CCR4-NOT then inhibiting nuclear export should 

have resulted in shorter poly(A) tails. Consistent with a central role in mRNA export, 

Nxf1 knockdown caused significant cell death and knockdown in the remaining cells 

was poor (figure 6.4 D). Nevertheless, this mild depletion had an obvious effect on 

poly(A) length of serum response mRNAs (figure 6.4 A, B). However, rather than 

having shorter poly(A) tails, serum response transcripts from the Nxf1 knockdown 

cells had longer tails with a more heterogenous distribution than those from the 

controls. Poly(A) tails of housekeeping mRNAs seemed unaffected (figure 6.4 A, B). 
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One explanation for this is that rather than causing extended nuclear deadenylation, 

nuclear retention protected these mRNAs from cytoplasmic deadenylation. It is 

difficult to fully dismiss a model of deadenylation-export competition since Nxf1 is 

involved relatively late in the export process (5, 210) and it is therefore possible that 

transcripts were still released from early association with CCR4-NOT but were then 

retained in the nucleus. Export may commandeer mRNAs from nuclear degradation 

pathways (231, 321). If nuclear retention was occurring, it would therefore be 

interesting to investigate how these transcripts escaped decay as only minimal 

changes in mRNA level were detected (figure 6.4 C). 

The expectation was that depletion of Cnot1 would abrogate activity of the whole 

complex, and therefore that its knockdown may mimic conditions of low turnover, 

such during fasting or glucose starvation, when some CCR4-NOT subunits are 

downregulated (58, 60). Surprisingly, Cnot7/8 (Caf1) knockdown (which should 

remove both deadenylase activities from the complex since CAF1 also bridges the 

CCR4 interaction with the complex (516, 522–524)) yielded identical effects to Cnot1 

knockdown on both total poly(A) length and on pre-mRNA level of serum response 

and Rpl28 mRNAs (figure 6.5 A, B). This suggested either that Cnot7/8 knockdown 

also led to disruption of the whole complex, or that loss of CCR4-NOT deadenylase 

activity was sufficient to drive a reduction in mRNA production. Given the long 

duration required for siRNA knockdown, it is also possible that reduction in 

transcription rate could have been caused indirectly by changes to the stability of 

mRNAs with transcriptional or signalling functions.  

Treatment with a CAF1 (CNOT7/8) inhibitor for 2 hours caused an increase in poly(A) 

length for all of the serum-induced mRNAs tested, which unlike in the knockdowns 

was also visible after 20 minutes (figure 6.7 A, B). This suggests that the ~ 100 nt 

tails after 60 minutes in Cnot1 knockdown may have been mediated by residual 

CCR4-NOT activity rather than by some nuclear form of PAN2-PAN3; however, it is 

also possible that the long knockdown period led to upregulation of PAN2-PAN3, or 

that PAN2-PAN3 was also affected by the inhibitor in this experiment. Poly(A) tails of 

Rpl28 were unaffected by inhibitor treatment (figure 6.7 A, B), possibly due to the 

short treatment time and high stability of the mature mRNA meaning that newly 

made transcripts did not contribute markedly to the PAT signal. Intriguingly, Sqstm1 
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seemed to display slightly longer smeared bands in the untreated cells and Actb 

again exhibited a second band only in untreated cells (figure 6.7 A, B). The latter is 

incorporated into a summary of Actb data in figure 8.1. This time, the band in the 

deadenylation-inhibited lane of the Actb PAT was at the same length as the lower 

band in the control cells (rather than in between the two as in Cnot1 knockdown). It 

therefore seems likely that the lower band in the control lane represented a form of 

Actb which, like Rpl28, may have been stable enough that inhibition of 

deadenylation on transcripts made within the 2 hours of inhibitor treatment were 

not noticeable on the PAT. The additional band in the control cells was longest when 

it first appeared at 60 minutes and then gradually decreased (figure 8.1 E), 

suggesting it may have corresponded to some serum-induced form of Actb mRNA 

which was more extensively polyadenylated. The absence of this second band from 

both the Cnot1 knockdown and CAF1 inhibition experiments suggested that either 

its induction was impaired or that it was no longer polyadenylated distinctly from 

the other form.  

Strikingly, CAF1 inhibition caused an increase in pre-mRNA level for all genes tested, 

whereas its effect on mature transcripts was variable (figure 6.7 C, D). It is not clear 

whether this represented an increase in transcription, a reduction in splicing or a 

combination of the two. For Fos and Fosb, delayed splicing (to varying degrees) 

seems most likely since there was a comparative lag in reaching the mature mRNA 

peak in the inhibitor set compared with the control. This explanation seems 

insufficient for Egr1, since both mature and unspliced levels increased. Reduced 

cytoplasmic degradation of mature transcripts due to CAF1 inhibition could have 

contributed to increased mature levels, however, it is unclear whether this reduced 

degradation alone could have accounted for a tenfold increase in unspliced levels. 

Since the CCR4 subunit may be involved in promoting transcription elongation (147, 

148), one possibility is that inhibition of CAF1 (CNOT7/8) caused less CCR4-NOT to 

be engaged in deadenylase activity and to instead move to the nucleus and promote 

elongation. Excessive transcription could perhaps have saturated the splicing 

machinery and led to processing defects which may not have affected all mRNAs 

equally. Competition for splicing machinery may explain the extremely low levels of 

mature Fosb mRNA; following Actinomycin D addition in another experiment, 
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unspliced levels of Fosb decreased more slowly than for other transcripts (figure 

8.2), suggesting Fosb may be more slowly spliced in these cells in general.  

How differences in pre-mRNA level intersect with the shorter or missing bands in 

the inhibitor treated lanes of the Sqstm1 and Actb PATs is unclear. As the pre-mRNA 

                      qPCR data from 2 biological replicates (or one for Egr1) showing relative pre-
mRNA levels following Actinomycin D treatment. Gapdh was used as a reference gene, 
and data were either A) normalised to the value at time of actinomycin treatment (i.e. 

after 20 or 50 minutes serum stimulation), or B) normalised to the value at the 20 minute 
time point. 

Figure 8.2   Pre-mRNA levels for most mRNAs decrease rapidly after actinomycin D 

treatment. 
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level was increased for both genes following CAF1 inhibition (figure 6.7 D) but 

neither showed changes in mature level, it seems unlikely that failed induction at 

the level of transcription was responsible. Instead, it may be that slowed splicing 

caused a delay to polyadenylation for newly made mRNA. This cannot be a universal 

phenomenon, however, since serum-induced transcripts still received long tails.  

Two possible factors could have been responsible for the different effects that CAF1 

(CNOT7/8) inhibition had on mRNA level compared with Cnot1 or Cnot7/8 

knockdown: integrity of the deadenylase module, and treatment time. Since CAF1 

(CNOT7/8) bridges the interaction between CCR4 and the rest of the complex (516, 

522–524), in the Cnot1 or Cnot7/8 knockdowns neither CAF1 nor CCR4 could 

theoretically have been present in the complex. That said, deletion of ccr4 in yeast 

had a greater impact on bulk poly(A) tail length than deletion of caf1 (28), 

suggesting that reliance of CCR4 on CAF1 for incorporation may not be absolute, or 

that CCR4 still has activity outside the CCR4-NOT complex, at least in yeast. 

Alternatively, deletion of ccr4 alone could perhaps have allowed Ccr4-Not to still 

interact with poly(A) tails via Caf1, but to block access by Pan2-Pan3, potentially 

leading to effective protection of Pab1 (PABPC)-bound tails. During CAF1 inhibition, 

CCR4 activity should not have been significantly affected, though both subunits may 

be required for deadenylase activity (531, 594). It cannot be ruled out therefore that 

continued presence of CCR4 in the CCR4-NOT complex when CAF1 is inhibited may 

be significant for reasons unrelated to its deadenylase activity; for example, 

promotion of transcription elongation, which could be direct or could occur through 

stabilisation of the complex (147, 148). If presence of the CCR4 subunit was 

responsible for the differences observed between Cnot1/Cnot7/8 knockdown and 

CAF1 inhibition, it would point to the model mentioned earlier in which CCR4-NOT 

mediates crosstalk through its dual involvement in transcription and deadenylation. 

In conditions of reduced CCR4-NOT, both processes would be downregulated in a 

balanced manner, whereas, if deadenylation is inhibited but the complex is still 

intact, transcription may still be stimulated, uncoupling the two processes (figure 

8.3). Furthermore, since the CAF1 inhibitor likely blocks RNA from entering the 

active site (594), this could have led to an increased cytoplasmic pool of unengaged 

CCR4-NOT. As in models of cytoplasmic mRNA sensing and transcript buffering (148, 

580, 581), some of this free CCR4-NOT could cycle back to the nucleus to elicit  
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additional stimulation of transcription elongation, resulting in the abnormally high 

levels of unspliced transcripts observed. 

Timings could also have played a role, in that the 72 hour treatment required by 

siRNA knockdown presents greater opportunity for adaptation/feedback 

mechanisms than the 2 hour inhibitor treatment. If different treatment times 

caused the different effects on transcript levels, this could point to a model in which 

CAF1 inhibition or depletion leads initially to stabilisation of transcripts which may 

encode transcriptional activators. These initially higher levels of transcription could 

perhaps induce a feedback loop to limit transcription which may become apparent 

within the timeframe of the knockdown experiments.   

 Concluding remarks 

Gene expression was initially thought mainly to be enacted by transcriptional 

changes; however, it transpires that mRNA stability and translational efficiency also 

contribute substantially (298, 299, 584, 587). For example, while transcription is 

important for determining the level of the inflammatory response, mRNA stability is 

important for determining its duration (298). The presence and length of a poly(A) 

tail is often an integral determinant of these properties, and polyadenylation is 

therefore a useful subject of regulation for tuning gene expression. Furthermore, 

since polyadenylation of most mRNAs is connected with their synthesis, the poly(A) 

tail is perfectly placed to connect transcription with mRNA fate (52–55). Control of 

poly(A) length via deadenylation is therefore – unsurprisingly – also regulated, and 

examples exist both of gene-specific targeting, and of global shifts in mRNA turnover 

mediated by changes in deadenylase level (30, 45, 48, 58, 60, 62, 254, 289, 293, 

430). Eukaryotic mRNA deadenylation was previously thought to be a cytoplasmic 

phenomenon, with recent examples of nuclear deadenylation eliciting imminent 

degradation (24–27, 33, 259). The work presented here in NIH_3T3 cells suggests 

that regulated nuclear deadenylation by the CCR4-NOT complex may be a 

widespread phenomenon (figures 3.5, 4.2, 4.3, 7.2, 7.4). In transient responses to 

stimuli, regulated nuclear deadenylation may benefit the cell by further sharpening 

the peak in mRNA levels produced by the transcriptional response. Specifically, in 

the serum response, induced transcripts produced early on receive longer poly(A) 

tails and are more stable than those produced late in the response (figures 3.5,  
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7.4 A). This could theoretically lead to a steeper drop in levels of translatable mRNA 

after transcription has peaked.  

Although Cnot1 knockdown caused an increase in nuclear poly(A) length of all 

mRNAs tested after 60 minutes of serum stimulation (figure 4.2), some genes were 

affected with a greater magnitude than others, and this in general tracked with the 

maximum length usually observed during the serum response – that is, 

housekeeping mRNAs with consistently medium length nuclear tails were 

moderately affected by Cnot1 knockdown, whereas serum induced mRNAs 

experienced a much greater increase in poly(A) length. A similar pattern was 

observed in Δccr4 yeast (582). When chromatin associated mRNA was assayed, 

Cnot1 knockdown caused a reversion to long (>~150 nt) poly(A) tails for all genes 

except Rpl28 (figure 4.3). A remaining question is what causes the gene-specific 

differences in poly(A) tail regulation, both in response to serum stimulation and 

following Cnot1 knockdown. Since evidence of specific targeting of CCR4-NOT exists 

in the cytoplasm (30, 45, 48, 254, 292), the possibility of a similar system for nuclear 

deadenylation was considered. The only potential specificity factor tested was TTP, 

which binds 3’ UTR AREs to promote deadenylation and destabilisation of the 

containing transcript – often transcripts involved in the inflammatory or serum 

responses (51, 288, 290–296). Although a nuclear fraction was not isolated, PATs on 

total RNA showed only a minimal increase in poly(A) length of serum induced 

mRNAs following combined knockdown of TTP and its paralogues (figure 6.3 A) and 

this was after 20 rather than 60 minutes of stimulation. This could suggest that TTP 

is an unlikely candidate for delivering CCR4-NOT to these particular mRNAs in the 

nucleus, but it may also be that the knockdown was insufficient or could be 

compensated. A linked but alternative model for targeting may be that CCR4-NOT is 

recruited as default, but that in the case of long poly(A) tails, some other factor 

prevents its recruitment or inhibits its activity. Such a factor could be initially 

present in the nucleus but may become depleted by association with mRNAs 

exported early in the serum response. The reduced mRNA level which also occurs in 

Cnot1 knockdown could mean that, as well as less deadenylase activity being 

present, this protective factor may be depleted from the nucleus more slowly. Since 

initial poly(A) tail length seems to be scalable rather than simply long or short, one 

idea is that ratio of poly(A) binding proteins could be involved – indeed, relative 
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quantities of PABPs were suggested to be important for controlling poly(A) length in 

yeast (420). Following stimulation of cytoplasmic mRNA cleavage by the gamma-

herpesvirus SOX nuclease, nuclear relocalisation of PABPC is accompanied by 

hyperadenylation and reduced transcription (415, 470, 471). It is easy to imagine 

that high nuclear concentrations of PABPC might inhibit early deadenylation by 

CCR4-NOT since high PABPC concentrations inhibited both Ccr4-Not nucleases  

in vitro (460). High concentrations of PABPC could perhaps protect mRNAs from 

nuclear deadenylation early in the serum response but fail to do so later on, after 

much PABPC has exited the nucleus bound to mRNA. Another possibility is that 

differences in transcription rate early and late in the response lead to differences in 

m6A deposition as suggested by Slobodin et al (58) but that this affects nuclear 

rather than cytoplasmic deadenylation by CCR4-NOT. 

Apparent exemption of Rpl28 from ever receiving a long chromatin associated tail, 

even in Cnot1 knockdown, may be suggestive of distinct regulation of a ribosomal 

protein or 5’ TOP mRNAs. These mRNAs have been shown by others to possess 

unexpectedly short poly(A) tails and be disproportionately affected at the 

transcriptional and translational levels by CCR4-NOT (148, 325, 326, 557).  

As well as mediating nuclear and chromatin-associated control of poly(A) length, the 

CCR4-NOT complex seems to couple poly(A) length with mRNA level to maintain 

mRNA homeostasis (figure 5.1). This is in keeping with evidence of transcript 

buffering in yeast and more recently in mammalian systems (58, 60, 148, 579–581, 

591). How this crosstalk is mediated is unclear, however the simplest model is that 

the multifunctional nature of CCR4-NOT allows simultaneous control of mRNA 

synthesis and degradation. Further investigation of Pol II elongation in Cnot1 

knockdown cells would be required to confirm this. Alternatively, new mRNA 

production may not be affected. Since Cnot1 knockdown caused an apparent 

increase in nuclear PABPN1 (figure 6.8 A, B), and PABPN1 was shown to be involved 

in nuclear degradation of polyadenylated RNAs (231, 321, 322) it may be that 

increased nuclear turnover rather than decreased transcription occurred in the 

knockdowns. This is consistent with the observation that most reductions in mRNA 

level resulting from Cnot1 knockdown occurred in the nucleoplasm and cytoplasm 

rather than on the chromatin (figure 5.4).  
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An attractive model, and a view that seems to be shared with others, is that  

CCR4-NOT acts to scale gene expression according to the physiological state of the 

cell (58, 60, 510). Changes in CCR4-NOT level have been shown to take place during 

B cell activation, following UVC irradiation, and according to nutrient availability (58, 

60). It would be interesting to find out what other responses have this effect, and 

what determines an mRNA’s susceptibility to this regulation. Liver-specific Cnot1 

knockout in mice showed diverse responses at the mRNA level which varied 

according to gene group, indicating that not all transcripts are equally affected, and 

that there may be variation in the mRNA substrates of the complex between tissues 

(591).  

Given evidence of a role for Ccr4-Not in monitoring translation in yeast (44), it is 

tempting to consider the possibility of even greater coordination between levels of 

gene expression. Suggestive of such coordination is that inhibition of translation was 

previously shown to upregulate transcription of certain genes, while another group 

found that cycloheximide treatment caused a widespread reduction in mRNA 

synthesis (579, 650, 651). CCR4-NOT is directly involved in different levels of gene 

expression which largely occur in separate locations (26, 35, 36, 39, 42, 44, 147, 148, 

460, 510, 526, 527, 547, 549, 550, 557), and varies in its interaction partners 

(including its CNOT4 subunit in mammals) (30, 40, 45, 48, 51, 254, 256, 289, 292, 

515, 546). It may therefore be informative to investigate the localisation and 

composition of the CCR4-NOT complex under different conditions. 

Overall this work has demonstrated the early and gene-specific definition of poly(A) 

tail length which could add even more finesse to the regulation of gene expression. 

The CCR4-NOT complex was identified as central to delivering this novel regulation. 

In addition, evidence is provided of transcript buffering, a phenomenon which had 

previously been described almost exclusively in yeast. This work has thereby 

uncovered another link in the vast interconnectedness of the mammalian cell.  
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9 Appendix 

 qPCR primer validation 

Figure A.1   Validation of qPCR primer pairs. Continued overleaf.  
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  Figure A.1   continued.  
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 Poly(A) tails are regulated in the C. elegans heat shock response 

Related to the observations of dynamic poly(A) regulation in NIH 3T3 and HEK293 

cells in chapter 3, the opportunity arose to also examine poly(A) tail lengths of 

mRNA from heat shocked C. elegans worms through a collaboration with Olivia 

Casanueva’s group at the Babraham Institute. Two strains of worm were used, gon-2 

and glp-1; while both worms lacked gonads (to avoid contamination of somatic 

tissues with material known to experience large changes during aging), glp -1 worms 

were completely devoid of a proliferating germline. This additional absence of a 

germline prevents production of signals which promote C. elegans ageing; glp-1 

worms therefore exhibit extended lifespans and may retain a more agile heat shock 

response (652–654).  

Heat shock experiments and RNA isolation were performed by Olivia Casanueva’s 

group. Young (1 day old ) or old (2 day) worms were transferred from 25 to 34 °C for 

30 minutes, with samples taken before (nHs) and during (-15) heat shock as well as 

at a number of points following return to normal growth conditions. Nested PAT 

assays showed an increase in poly(A) tail length in response to heat shock for most 

transcripts in both worm strains, with a return to pre-stimulation poly(A) lengths 

after around 2 hours (figure A.2 A. B). Y45F10D.4 is not transcriptionally induced by 

heat shock and showed little variation across the heath shock response in either 

strain. Return to short poly(A) tails was slower in 2 day old worms in both strains. 

Since longer tails of induced mRNAs may confer greater stability (figure 3.6), this 

was indicative of a less tightly controlled heat shock response. These data suggest 

that the poly(A) tail is regulated in other organisms and during other transcriptional 

responses, and point to a role for polyadenylation control in maintaining the agility 

of such responses.  

 

Figure A.2 (overleaf) Poly(A) tail length is regulated in the C. elegans response to heat 

shock. Nested PAT assays using agarose gel stained with SYBR safe were carried out on 

RNA isolated following heat shock of A) gon-2 worms which were sterile but retained a 

germline and B) glp-1 worms which did not contain a proliferating germline and were 
long-lived. Young (1 day) or old (2 day) old worms were treated, with the young worm 

samples on the left for each time point.   
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Figure A.2   Poly(A) tail length is regulated in the C. elegans response to heat shock. 
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In chapter 4, Cnot1 knockdown was shown to increase initial mRNA poly(A) length in 

NIH 3T3 cells. To see whether this extended to other metazoans, the effect of 

knocking down the Cnot1 orthologue, ntl-1, on poly(A) tail lengths in C.elegans 

worms was investigated. glp-1 worms, which lacked proliferating germline cells and 

were consequently resistant to ageing, were subject to ntl-1 knockdown or a control 

transfection. They later underwent heat shock at 34 °C for 30 minutes (from growth 

at 25 °C), and RNA was isolated either immediately or at n hours after the end of this 

heat shock. While slower deadenylation was detectable, it was hard to draw a 

conclusion on whether poly(A) tail length immediately after heat shock differed 

between control and knockdown worms (figure A.3). In contrast to findings in  

NIH 3T3 cells (figure 4.1), early poly(A) length appeared shorter in the ntl-1 

knockdown worms for both hsp-1 and daf-21, and to a lesser extent in hsp-16. 

Interestingly, two of the genes thought not to be transcriptionally induced by heat 

shock still responded to heat shock with increases in polyadenylation (figure A.3). 

 

  

 

  

                                                                                                                 C. elegans worms were 
grown in E. Coli expressing an empty vector control (L4440) or ntl-1 RNAi (ntl-1), heat 

shocked for 30 minutes then returned to standard growth conditions. Worms were 
harvested at the times indicated (hours), where +0 indicates harvesting immediately after 

heat shock. RNA was prepared by Juan Rodriguez and subjected to the PAT assay using 
agarose gel stained with SYBR safe. Arrows indicate maximum and minimum modal poly(A) 

tail sizes as determined using quantitative gel scanning.  

 

Figure A.3   Preliminary data suggest that the C. elegans CNOT1 orthologue, ntl-1, may 
regulate initial poly(A) tail length in the heat shock response. 
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 PIPS reflective statement 

Note to examiners: 

This statement is included as an appendix to the thesis in order that the thesis 

accurately captures the PhD training experienced by the candidate as a BBSRC Doctoral 

Training Partnership student. 

The Professional Internship for PhD Students is a compulsory 3-month placement which 

must be undertaken by DTP students. It is usually centred on a specific project and must 

not be related to the PhD project. This reflective statement is designed to capture the 

skills development which has taken place during the student’s placement and the 

impact on their career plans it has had. 

 

PIPS Reflective Statement 

During my placement I worked on Cupriavidus necator and metallidurans, with the aim 

of producing a monomer of interest to Biome Bioplastics. Although the placement was 

with Biome, the majority of the placement was undertaken in the Centre for 

Biomolecular Sciences (University of Nottingham) under the supervision of Dr Samantha 

Bryan.  

The project involved using heterologous recombination to knock out two enzymes (‘G’ 

and ‘H’) that allowed the precursor to enter central metabolism, and heterologously 

expressing an enzyme (‘X’) that converts the precursor to the monomer of interest. I 

created plasmids for expression of X behind two different promoters, as well as 

producing one for knockout of G and H in C.necator using the tetA-sacB selection 

system. TetA confers tetracycline resistance after the first crossover event and SacB 

produces a toxic compound in the presence of sucrose, stimulating a second crossover 

event. I also attempted to use a previously constructed plasmid to knock out G and H in 

C.metallidurans using the pyrF selection system. PyrF is required for synthesis of uracil if 

cells are grown on minimal media, but also produces a toxic compound when presented 

with FOA. This plasmid also contained a chloramphenicol resistance gene.   

I successfully expressed the enzyme X in two different C.necator strains and was able to 

produce the desired monomer in very small quantities (~1 mg/mL).  

When trying to knock out G and H in C.necator, I managed to confirm a single cross, but 

was not able to force the second crossover event in any of the colonies screened before 

my placement finished. For C.metallidurans the ΔpyrF strain was too resistant to 
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chloramphenicol to force the second crossover, and when I tried to grow it on minimal 

media to force use of the pyrF gene, no cells survived.  

Towards the end of my placement I also visited the facility in Southampton where 

Biome create and test new bioplastic formulations. I learnt about product development, 

testing procedures and some of the challenges faced when trying to create a product 

that meets the customer’s needs, is not too expensive, and passes composting 

regulations.   

Through my placement I added cloning to my molecular biology skillset and worked with 

organisms I was previously unfamiliar with. I faced new challenges and frustrations 

associated with trying to create a particular product, but enjoyed the experience of 

aiming to create something rather than trying to find something out. It was also 

interesting to experience working in a different research lab. 

In terms of effects on my career direction, it has made me consider staying in a different 

area of academic research when I was previously considering abandoning research 

altogether. It also made me aware of the ability to change research area after the PhD, 

and it was encouraging to hear of the different routes people had taken into roles at 

Biome. 

  

 

 

 

 

 


