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Abstract

In this work we explore the calcium signalling pathway mediating symbiotic

associations between legumes and Nitrogen-fixing bacteria. This symbiotic

process has been identified as a possible ’biological’ alternative to using en-

vironmentally damaging synthetic fertilisers in crop production. Therefore,

motivated by the challenge of ensuring worldwide food security whilst util-

ising increasingly degraded soils, we look to advance the knowledge of the

signalling pathway that facilitates nodulation in order to progress towards

the transfer of this favourable trait from legumes to cereal crops.

A mathematical model representing the flux and diffusion of calcium in the

plant cell nucleus was derived for up to 3-dimensions in both spherical and

prolate spheroidal coordinates. Our final model is the first 3-dimensional

representation of nuclear plant calcium signalling. It is also the first to repro-

duce the exact spiking dynamics reported in the literature, without the need

for any additional inputs such as refractory periods or buffers. In a novel

and exciting finding, we show that nuclear calcium oscillations can be gen-

erated autonomously provided that the channels which facilitate them form

clusters. The resulting calcium signatures are presented for clustered and

distributed channels and we examine the microdomains over which these

patterns occur. It is also found that the formation of these microdomains

is necessary for calcium concentrations to exceed the binding threshold of

downstream sensory protein CCaMK. This provides new insight into the

possible mechanism of generation of the nuclear calcium signature, suggest-

ing a potential multi-functional role for cluster formation.

The mathematical method through which this was achieved involved solv-

ing the heat equation semi-analytically in order to obtain a series of Green’s

functions. This provides us with a useful 3-dimensional framework which

allows us to perform simulations significantly faster than could be achieved
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through traditional finite-element methods.

An experimental methodology, using plant lines expressing GCAMP sus-

pended in a FlowCell device, was developed in order to successfully image

calcium signalling over longer times, with easier stimulus application. This

was used to compare the calcium response in Arabidopsis thaliana, hereby

Arabidopsis, with Nicotiana benthamiana highlighting the difference in cal-

cium signalling between species with and without nodulation abilities. Orig-

inal data on the geometry of the nucleus was collected for parameterisation

of our model. Analysis of this data revealed statistically significant differ-

ences in nuclear morphology between cortical and root hair cells and also

revealed a correlation between the nuclear morphology of cells in the elon-

gation zone and their distance from the root apex.
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1
I N T R O D U C T I O N

1.1 thesis overview

This work begins with a discussion of the motivation of the project with

respect to its wider context within sustainability. We explore the challenge

of ensuring worldwide food security whilst utilising the increasingly de-

graded soils available for crop production, with a view to developing more

sustainable ‘biological’ solutions. This is in contrast to the current prac-

tice of supplementing our soils with environmentally damaging synthetic

fertilisers, the manufacture of which produces emissions that contribute to-

wards climate change, contaminated water supplies and dead zones in our

oceans. We highlight long-standing proposals, first appearing in the lit-

erature in the 1917 paper "Is symbiosis possible between legume bacteria

and non-legume plants?" [19], to transfer to agriculturally important cereal

crops the ability of leguminous plants to fulfil their nutritional requirements

through mutually-beneficially relationships with ‘Nitrogen-fixing’ bacteria.

In order to achieve this, the calcium signalling pathway which mediates

these interactions at a cellular level must be unravelled, and it is this com-

ponent that is the focus of this thesis.

The details of the calcium signalling pathway known to date will be cov-

ered in a review of the literature in Chapter 2. This, predominately biolog-

ical, review will begin with a background description of calcium signalling
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1.1 thesis overview

including how these signals are generated through coordinated storage and

release between cellular compartments. We will then narrow our focus to

the nuclear compartment, where symbiosis signalling is generally accepted

to occur, and the current understanding in relation to our application. In

regards to mathematical modelling, the field remains comparatively unex-

plored. However, limited modelling attempts have been made and will also

be covered in this chapter.

The mathematical background will be explored in Chapter 3, where the

theory and derivation of Green’s functions in one and two dimensions will

be shown for varying boundary conditions. This will introduce the method

of solving the heat equation semi-analytically in order to obtain a Green’s

function. This methodology is key to our approach as it allows for increased

efficiency of numerical simulations. This occurs through modelling the dif-

fusion of calcium concentration through the plant cell nucleus by taking a

source concentration and applying a ready-made diffusion profile at each

time-step. We will also look here at the special functions required when

using this method as these will provide the basis of those necessary for the

full 3D model.

Chapter 4 then builds upon this theory to produce the full 3D representa-

tion of the two nuclear compartments, the nucleoplasm and its surrounding

perinuclear space, involved in signal-generation. This is applied to both

spherical and spheroidal coordinate systems, with the full details of the cal-

culations left to Appendices A and B, respectively. To complete the model,

we describe how this system of Green’s functions is coupled through the

fluxes between them. This requires the channels and pumps, found on the

adjoining membrane, to be modelled by equations describing the mecha-

nism of calcium release and sequestration and to be applied to our model

as non-constant boundary conditions. We show the dynamics of the pump

and channel system in the absence of diffusion, demonstrating the impor-
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1.1 thesis overview

tance of including the spatial component in our modelling.

The details behind how our Green’s functions work computationally are

given in Chapter 5. Here we look at how our functions are checked numer-

ically in order to ensure correct levels of convergence for a chosen trunca-

tion of the infinite sum, whilst providing graphs of our successful checks

and some test simulations in each dimension. It is also shown how the

method is limited by numerical difficulties in computing some of the more

complicated special functions, with examples of those encountered during

experimentation and supported by the literature.

Methodology and results of experimental work can be found in Chapter 6

where we describe the biological experiments undertaken to support our

modelling work through parameterisation and comparison of results. Firstly,

we look at how the real geometric data was generated to be input into the

model followed by an in-depth analysis of those findings as we quantify

the nuclear morphology within and between cell types. Secondly, details

of the experimental process developed for measuring the calcium response

are provided along with results of these experiments in two plant species,

comparing the calcium signature in N.benthamiana, which is able to undergo

nodulation, to Arabidopsis which does not. This section also includes a ta-

ble of parameter values collected from the literature which were used as

input into the mathematical models.

The simulation results generated from the numerical evaluation of the math-

ematical model can be seen in Chapter 7. The key objective of this chap-

ter was to explore varying influx distributions, in particular by creating

’clusters’ of channels. The resulting calcium signatures are presented for

clustered and distributed channels and we examine the microdomains over

which these patterns occur. This provides a new insight into the possible

mechanism of generation of the nuclear calcium signature.
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1.2 background motivation

Each non-introductory chapter will conclude with a summary of outcomes

from that body of work, whilst a more thorough discussion of the key find-

ings of this thesis can be found in Chapter 8. Here we also include sugges-

tions for future work which could be completed in order to bring us ever

closer to unravelling nuclear calcium signalling in plants and hence trans-

forming this knowledge into a viable tool for sustainable food production.

1.2 background motivation

1.2.1 The food security problem

World agricultural demand for soil nitrogen compounds is currently increas-

ing at a rate of 1.4% year on year [5], a problem accentuated by increasingly

infertile soils which are incapable of supporting plant growth due to their

undesirable physical, chemical or biological characteristics. To tackle this

problem, and meet food requirements, vast amounts of synthetically pro-

Figure 1.: The upwards trend in nitrogen production required to meet the demands of

an expanding population. Data from the IFA [52].
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1.2 background motivation

duced chemical fertilizers are applied to crops. As seen in Figure. 1, fer-

tilizer production increased more than 10 fold between 1961-2015, a trend

that is only bound to continue in an effort to feed the projected 2 billion

population increase by 2050 [52].

The International Fertilizer Association (IFA) estimates that nitrogen fertil-

izer application accounts for the sustenance of around 40% of the world’s

population, however they have also acknowledged that the resultant envi-

ronmental costs are no longer considered sustainable. This is due to fertil-

izer over-usage being “proven to cause a number of environmental and eco-

logical problems" [59], with nitrous oxide damage from fertilizer production

costing Europe £60−80 billion per year. In addition to the release of harmful

greenhouse gases into the atmosphere, production of nitrogen fertilizers is

costly and energy-expensive. Other problems include soil acidification and

degradation, water eutrophication and even crop yield reductions [59]. Fur-

thermore, runoff of fertilizers from crop fields into rivers means that 5% of

the European population are exposed to drinking water contaminated with

unsafe levels of nitrate. A well-known example of the effects of fertilizer

run-off is the Gulf of Mexico dead zone as seen in Figure. 2. The low oxy-

gen area, which reached a record 8,776 square miles in 2017 [3], is caused

by an increased nitrate load producing huge algal blooms which eventually

decompose, using up oxygen. Once levels become hypoxic (red areas in

Figure. 2) these zones are unsuitable habitats to support marine life.

1.2.2 Plant-microbe symbiosis

Alternative solutions are therefore being sought, most famously the replace-

ment of chemical fertilisers with naturally occurring biological systems. De-

spite the huge amounts of nitrogenous fertilisers applied to our crops, ni-

trogen actually makes up 78% of the surrounding atmosphere. This is not

however, in a form that can be used as a nutrient source by most plants.
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1.2 background motivation

Figure 2.: The Gulf of Mexico dead zone. Red areas indicate a dissolved oxygen con-

centration of less than 2mg/L - the level at which marine life becomes unsus-

tainable. Figure from the National Atmospheric and Oceanic Administration

website [3].

The exception is the Leguminosae family, which includes beans and peas,

who are able to ‘fix’ nitrogen symbiotically through a mutually beneficial

relationship with Rhizobial bacteria. This natural biological process has long

been postulated as a possible and highly desirable replacement for nitroge-

Figure 3.: Root nodules formed on the root of the runner bean Phaseoluscoccineus. Figure

from ’Beyond the Human Eye‘ blog by Phil Gates [1].
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1.2 background motivation

nous fertilisers. In these associations Rhizobia are housed in nodules on root

hairs of the plant, depicted in Figure. 3, which form on receipt of chemical

signals from the bacteria. Here the bacteria gain sugars from the legume,

and in return they convert the inert atmospheric di-nitrogen (N2) into forms

such as ammonia (NH3), which is required for growth and development of

vital plant tissues and structures. The Nitrogenase enzyme, possessed by

Rhizobia, is necessary for this nitrogen reduction although it is deactivated

by oxygen. Organogenesis is therefore a vital part of this process as the root

nodules shield this crucial enzyme from harmful oxygen exposure.

The intermediary signalling molecule, governing these plant-rhizobial inter-

actions, is calcium (Ca2+). There is therefore a need to unravel the calcium

signalling pathway if we are to transfer this special ability to cereal crops, by,

for example, establishing symbiotic association through synthetically gener-

ated root nodules on wheat. In the following literature review we will detail

our current understanding of this pathway, in terms of the signal from the

bacteria, the resultant spatio-temporal calcium profile and how this calcium

pattern (or signature) is sensed and decoded to lead to downstream gene

transcription. A model will then be formulated, focusing on discovering

the specific details of the mechanism behind calcium signal generation in

symbiosis.
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2
L I T E R AT U R E R E V I E W

In this section we will review the relevant literature, beginning with a more

general overview of plant calcium signalling before narrowing our focus

to nuclear plant calcium signalling and finally our specific application in

symbiosis. After covering the up-to-date knowledge of our topic, we will

go on to review the current progress made in the mathematical modelling

of nuclear plant calcium signal generation and, in particular, identify the

gaps in the literature and the necessary next steps.

2.1 calcium signalling in plants

In plants cells, many developmental and environmental factors are coor-

dinated through a calcium (Ca2+) signalling pathway. It has been shown

that dehydration, salt and oxidative stress induce stimulus-specific spatio-

temporal patterns of calcium in the cytosol [93] and it is also well docu-

mented in the literature that cytosolic calcium gradients drive growth of

root hairs [65, 20, 75, 8, 13] and pollen tubes [22, 49, 90, 9, 37]. Experimental

techniques use fluorescent markers bound to calcium which show varying

light intensities upon binding to a calcium buffer. These can be viewed and

measured using confocal microscopy and used as a proxy to reflect varia-

tions in calcium concentration. As demonstrated in Figure. 4, both pollen

tube elongation (4a) and root hair growth (4b) correspond to a maximal cal-
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2.1 calcium signalling in plants

cium concentration at the structures apex, with the absence of a gradient

synonymous with no growth or growth cessation.

(a) Pollen tubes. (b) Root hairs.

Figure 4.: (a) Spatial distribution of [Ca2+] in a growing pollen tube shown at three time

points: (1) minimal cytoplasmic Ca2+ throughout the cell, corresponding to no

growth, (2) initial establishment of the tip [Ca2+] gradient even while growth

remains minimal, (3) significant [Ca2+] gradient during growth, with the maxi-

mum concentration at the tip. Figure from Winship (2017) [90]. (b) The top row

shows the cytoplasmic free calcium concentration gradient established in initial

root hair branching. The third row is a time course showing the tip-focused cal-

cium gradient in an elongating root hair, and its disappearance when growth

ceases. Figure from Grierson (2014) [45].

Figure 5.: The calcium signalling pathway.
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2.1 calcium signalling in plants

2.1.1 The calcium signalling pathway

A general calcium signalling pathway is described by Berridge (2000) to be

made up of four functional units: the perception of an external biotic or abi-

otic stimulus; the generation of a specific calcium concentration profile; the

decoding of this signature by sensory proteins; and the resultant cellular re-

sponse [12]. In plants the signal often pertains to environmental conditions

such as osmotic stress, wind or the presence of pathogens. After this stage

the pathway is similar to that in animal cells, although we note that plants

possess a distinct toolkit with their own individual set of channels, messen-

gers and mechanisms [57]. The recognition of a stimulus leads to elevations

in calcium concentration of a unique amplitude, duration, frequency and

spatial distribution - together called the calcium signature - which encode

for the particular scenario detected. Importantly we note that specificity of

the calcium signature requires both spatial and temporal components, and

hence it is local changes in calcium concentration that facilitate the specific

response to a stimulus [83].

Along with the calcium signature, a further layer of specificity is obtained

through the presence, concentration, spatial localization and binding affini-

ties of sensory proteins. These molecules generally belong to one of two ma-

jor classes: sensor relays such as Calmodulin (CaM); and sensor responders

such as calcium dependent protein kinase (CDPK). Both types contain the

“EF hand" motif - a high-affinity Ca2+-binding domain [31] - which allows

them to form a complex with calcium. Mechanistically, complex formation

causes a conformational change in the structure of the sensory protein, al-

lowing binding with a promoter for gene transcription (CaM) or a change

in enzyme activity for protein phosphorylation (CDPK). Binding of calcium

by sensory proteins depends on their individual thresholds, or association

constants, which, once surpassed, triggers a signalling cascade of chemical

10



2.1 calcium signalling in plants

reactions ultimately translating the signal into a molecular or biochemical

response [54].

2.1.2 Compartmentalized signalling

Figure 6.: Cellular compartments in a plant cell, with typical calcium concentrations

given in each domain. Calcium moves between compartment’s against the con-

centration gradient by pumps (red arrows) and diffuses along the concentra-

tion gradient through channels (blue arrows). Figure from Vaz Martins (2013)

[60].

The sequestration of calcium, against the concentration gradient, into or-

ganelles such as the vacuole and the endoplasmic reticulum (ER) allows

these compartments to act as calcium stores. In these domains the cal-

cium concentrations are orders of magnitude higher than the rest of the cell.

This is demonstrated in Figure. 6 which shows concentrations in the cal-

cium stores to typically reside in the millimolar (mM) range as compared to

around only 100 nanomolar (nM) in the cytoplasm and nucleoplasm. Com-

partmentalisation provides a means of generating a calcium signature by

the opening or closing of the calcium channels on compartment boundaries,

11



2.1 calcium signalling in plants

shaping the specific concentration pattern through controlling the delicate

balance in influx and efflux between domains.

Influx into the cytoplasm is controlled by voltage-dependent and ligand-

dependent ion channels on both the plasma (PM) and vaculoar membranes

(VM). Voltage gated channels on the PM are split into depolarization- and

hyperpolarisation-activated Ca2+-permeable channels (DACC/HACCs) wh-

ich modulate transient and sustained influx respectively. Two important

ligand-gated examples are the glutamate receptors (GLRs), which have been

linked to electrical potential generation in the root, and the cyclic nucleotide-

gated channels (CNGCs) which are modulators of calcium-induced calcium

release (CICR). Importantly, CNGCs have also been found on the nuclear

membrane and are strongly linked to signal generation in symbiosis [27].

Re-balancing of cellular homeostasis by extrusion is equally as important in

Figure 7.: “Overview of Ca2+ Transport Systems in an Arabidopsis Cell. Shown are the

Ca2+ influx-efflux pathways that have been identified at the molecular level.

CNGC, cyclic nucleotide channel; GLR, glutamate receptor; TPC1, two pore

channel 1; CAS, Ca2+-sensing receptor; ACA, autoinhibited calcium ATPase;

ECA, ER type calcium ATPase; HMA1, heavy metal ATPase1; CAX, cation

exchanger". Figure from Kudla (2010) [57].
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2.2 the nucleus and calcium signalling

defining the Ca2+ signature and is regulated by a biphasic efflux through

anti-porters and ATPases. The Ca2+-proton anti-porter is a high-affinity,

low turnover channel which sequesters Ca2+ from the cytosol back into the

vacuole store to re-establish resting cytosolic concentration. The low rest-

ing state is then maintained over longer timescales by the low affinity, high

capacity, P-type Ca2+-ATPase. The expression of each type of channel and

pump provides the cell with the ability to generate a calcium signature for a

required physiological output and hence reflects the particular needs of the

specific cell or tissue type. A review of identified channels on plant cell and

organelle membranes is given by Kudla (2010) and a summary of which

is shown in Figure. 7 [57]. Following publication, channels on the nuclear

membrane have since been identified and will be described in the following

section.

Figure 8.: Two compartments of the nucleus consisting of the nucleoplasm and the nu-

clear envelope. Red arrows - calcium pumps; blue arrows - calcium channels;

purple arrows - potassium channels; grey arrows - nuclear pores. Figure from

Vaz Martins (2013) [60].
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2.2 the nucleus and calcium signalling

The basic structure of the nuclear domain can be seen in Figure. 8. The

central compartment is the nucleoplasm, which contains the DNA as well

as all the proteins involved in transcription and regulation of gene expres-

sion. This is surrounded by the nuclear envelope (NE) which is comprised

of the inner (INM) and outer nuclear membranes (ONM) enclosing the re-

gion called the peri-nuclear space (PNS). The nuclear envelope contains

numerous nuclear pore complexes (NPC’s) which provide a direct route for

transport of small molecules between the nucleoplasm and the cytoplasm -

bypassing the PNS. Initially it was debated whether calcium signatures de-

tected in the nucleoplasm had originated in the cytoplasm and extended to

the nucleus as a result of free diffusion through the NPC’s, however both

experimental and modelling results have confirmed that this is not the case

[83, 21], and it is now widely accepted that the nucleus is able to generate its

calcium signature autonomously [26, 51, 54]. The ability to make this asser-

tion was greatly aided by the development of fluorescent calcium reporters

such as the ‘nucleoplasmin-tagged yellow cameleon’ (NupYC) which fluo-

resce only due to [Ca2+] changes in the nucleus and hence allow us to make

quantitative measurements of the nuclear signal without interference from

cytoplasmic [Ca2+] fluctuations [78]. Characterization of calcium pumps

and channels on both the nuclear membranes further supports these find-

ings [27, 32] as does the existence of calcium transients in isolated nuclei

[91, 15] and the discovery of the localisation of numerous calcium sensory

proteins, such as CaM, to the nucleus along with the identification of a vari-

ety of transcription factors which it can directly or indirectly regulate [54].

The mechanism of calcium signature generation in the nucleus is somewhat

unclear, although it is thought that the PNS acts as the nucleus’ own cal-

cium store and it is the coordinated uptake/release of calcium to/from this

domain which creates the spatio-temporal calcium profile we observe in the
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2.2 the nucleus and calcium signalling

nucleoplasm. This appears sensible as the NE is continuous with another

cellular calcium store - the ER. Active transport of calcium across the INM

returns Ca2+ ions to the PNS against the electrochemical gradient through

a sarco/endoplasmic reticulum calcium ATPase (SERCA) type pump called

MCA8 (red arrows in Figure. 8). Inversely, flux out of the PNS into the

nucleoplasm/cytoplasm occurs through the CNGC15 Ca2+ channel (blue

arrows in Figure. 8) [27] - the recent (2016) discovery of which in Medicago

truncatula, as a plant nuclear-localized calcium channel, has been described

as “a major breakthrough" for the field [86]. To restore the electrical po-

tential across the membrane, potassium (K+) flux is thought to take place

simultaneously to calcium transport, in the opposite direction [44]. This oc-

curs by the movement of K+ into the PNS through the potassium-permeable

cation channel DMI1 (purple arrows in Figure. 8).

Physiological processes for which a nuclear calcium signal have been ob-

served include: abiotic factors such as cold shock and osmotic stress; hor-

mone signalling; and biotic interactions with pathogens or endosymbionts

[25]. Drought and salt stress have both been found to possess a biphasic

response, in which distinct cytosolic and nuclear signalling pathways work

simultaneously. In the salt stress pathway, saline soils cause an increase of

reactive oxygen species (ROS) which trigger independent Ca2+ oscillations

in the cytosol and nucleus. Cytosolic calcium, Ca2+
cyt, binds the sensory pro-

teins Salt Overly Sensitive (SOS)2/3 which activate the Na+/H+ antiporter

for extrusion of toxic sodium ions, whilst in the nucleus Ca2+
nuc promotes

transcription of the genes At3g for detoxification and SOS1 for homeosta-

sis [46]. In the drought nuclear transduction pathway, upon recognition of

soil drying, up-regulation of abscisic acid (ABA) levels propagates a signal

from root to shoot to induce closure of the stoma for water conservation. In

the short term, an increase in Ca2+
cyt above a threshold causes an increase in

turgor pressure of the specialised guard cells and hence stomatal closure,

whilst longer term Ca2+ oscillations in the nucleus activate gene expression
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2.3 signalling in symbiosis

to prevent reopening [89]. The described salt- and drought-stress responses

are two known pathways in which nuclear Ca2+ signalling possesses a dis-

tinct biological role. The most comprehensively studied case, perhaps due

to the potential major agricultural benefits, is symbiosis. However there is

still a way to go, with the next steps involving unravelling this signalling

pathway at single cell level.

2.3 signalling in symbiosis

2.3.1 Nuclear calcium signals in rhizobial symbiosis

An important example of a signalling pathway with autonomous nuclear

generation of the calcium signature is symbiosis - the formation of a mutu-

ally beneficial relationship between a host plant and a root colonizing mi-

crobe. As early as 1996 it was observed that, upon stimulus application, cal-

cium spiking in root hairs was localized predominantly to the nucleus [39].

Nuclear [Ca2+] oscillations in response to rhizobial chemical signals (nod

factors) in the legume Medicago sativa were measured by Ehrhardt (1996) to

have an amplitude of around 500 nm and a periodicity of about 60 seconds,

as shown in Figure. 9B. We note from these results that further away from

the nuclear region calcium activity remains low with no clear patterning,

supporting the theory of nuclear initiation. Sun (2007) reproduced similar

results [83], with application of 1 nm of nod factor to M.truncatula resulting

in a periodic Ca2+ trace in the root hair nucleus with very little activity in

the cytoplasm. Spike frequency corroborated the results of Ehrhardt, at 0.7

min−1, but concentrations were not specified.
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2.3 signalling in symbiosis

Figure 9.: A. Time series of images - showing changes in Ca2+ concentration 50 minutes

post Nod factor application. B. Calcium concentration trace given for 4 distinct

locations in the root hair cell, with the bottom-most trace giving an average

concentration profile corresponding to the region drawn over the entire hair

body. The bright-field image shows the location of the nucleus (n) and we

see the greatest response to be localized in the nuclear domain. Figure from

Ehrhardt (1996) [39].

2.3.2 The common symbiotic pathway

Although bacterial (Rhizobial) symbiosis is only present in legumes, sym-

biosis with phosphorus acquiring arbuscular mycorrhizal (AM) fungi is
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a widespread and ancestral characteristic with up to 90% of seed plants

thought to contain fungal structures (arbuscules) within the cortical cells of

their roots. Although the morphological results are different, with Rhizobia

perception initiating the development of root hair nodules while Mychorriza

promote rearrangement of plant cell components to allow intracellular inva-

sion, Rhizobial and AM symbioses are both established through a cascade

of signalling events which have numerous similarities, such that the gen-

eral framework, seen in Figure. 10, has been named the common symbiotic

pathway (CSP). The conservation of many parts of this pathway is extremely

important as it suggests that many land plants already possess much of the

signalling machinery required for bacterial symbiosis.

Figure 10.: The common symbiotic pathway, showing the mechanism of Ca2+ signal gen-

eration and resulting gene transcription to prepare the host cell for infection.
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The CSP begins with perception of the microorganism. This involves the

exchange of signalling molecules between the plant and microbe, where

chemical secretions from the plant induce a responsive secretion of lipochi-

tooligosacharides (LCOs) from the microbes. Nod-LCOs (Rhizobia) and Myc-

LCOs (mycorrhiza) are perceived by the lysM-type receptor kinases on the

root cell membrane. A subsequent set of cellular reactions triggers the re-

lease of Ca2+ from the PNS through the coordinated activity of the CNGC15

Ca2+ channel and the DMI1 K+ channel, allowing calcium influx into the

nucleoplasm whilst maintaining membrane polarity. Meanwhile signature

generation is completed by the MCA8 Ca2+ transporter, which pumps Ca2+

back into the NE to restore resting nuclear concentration [87, 28].

The resultant spiking of calcium in the nucleus is said to characterize sym-

biosis [95] and form a core component of the CSP [10]. There are some

inconsistencies in the description of these spikes in each type of symbioses,

which may be due to experimental conditions with possible variations in

plant type; concentration of stimulant applied; and the volume over which

the Ca2+ concentrations are measured. Charpentier (2013) describes cal-

cium oscillations in the root hair cell in response to Nod-factor to have an

asymmetric shape defined by a rapid Ca2+ release followed by a slower re-

uptake. After a lag of between 6 and 20 minutes there is an initial high fre-

quency burst of 3-6 spikes followed by regular sustained nuclear oscillations

with an approximate 100 s periodicity [26]. This gives a spike frequency of

0.6 min−1 as compared to the 0.7 min−1 discussed above to be found by Sun

(2007) [83] and 1 min−1 by Ehrhardt (1996) [39] and later confirmed again

by Sun (2015) [82] when comparing rhizobial spiking patterns with those of

AM origin.

Calcium spiking in response to Myc-factors is initially irregular and low

frequency, however, upon contact with the fungus, oscillations strongly re-

semble those in the rhizobial pathway in their shape and frequency [26]. As
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Figure 11.: Calcium oscillations in the nuclear region of the root hair in response to a)

Nod factors which signals for rhizobial symbiosis, b) R.irregularis a fungal

species which forms AM symbiosis, c) M-LCO - the specific chemical signal

of AM symbiosis. Figure from Sun (2015) [82].

shown in Figure. 11, measurements suggest that the Ca2+ signature may be

specific to the microorganism, and hence despite their common mechanism

of generation, may be the point of disparity in specification of symbioses

type. Figures. 11a) and 11c) show the cellular Ca2+ response to the purified

chemical signals of rhizobial and mycorrhizal symbioses, respectively, and

we see that the latter consists of comparatively higher frequency spiking. In

addition there is a further Ca2+ signature in Figure. 11b), the response to

a type of fungi, which appears to be of lower frequency and contain more

noise, possibly due to the lower purity of the stimulus. A more advanced

analysis was undertaken by Kosuta (2008) who found oscillation patterns

(shown in Figure. 12) similar to those of Sun. In agreement with Charpen-

tier (2013) the analysis seen in Figure. 12c) shows that Nod factor response

consisits of a sharp increase in [Ca2+ ], with a much slower reuptake, whilst

AM transients are much shorter. Some uncertainty remains however, and

it is currently unknown if the distinction between AM and rhizobial sym-

biosis is encoded within the Ca2+ oscillations, parallel signaling with plant

hormones [26], or if the differences are simply due to cell differentiation.
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Figure 12.: a) AM oscillations, b) nod-factor induced oscillations, c) analysis of individual

transients where the upward phase of the spike (in white) is compared with

the downward phase (in gray). Figure from Kosuta (2008) [56].

In both cases Ca2+ elevations are decoded by the sensory protein’s calcium/

calmodulin-dependent protein kinase (CCaMK) in association with CaM, to

result in the downstream expression of genes required to prepare the host

cell for symbiosis. This occurs via the CCaMK catalysed phosphorylation

of CYCLOPS and the subsequent activation of the nodulation-specific and

AM-specific GRAS transcription factors NSP1 and RAM1, which promote

the synthesis of proteins required for cell re-modelling [10]. The existence

of the CSP provides a means for the translocation of root-nodule symbio-

sis to non-legumes, for example by artificially inducing the Rhizobial Ca2+

signature, utilizing the pre-existing ‘symbiotic toolkit’ [34] present in all

AM-plants. The translocation of this key root trait to cereal crops requires

the elucidation of the signalling network to uncover the missing links in

the pathway, an endeavor which can be greatly aided through an interdis-

ciplinary cross-talk between mathematical modelling and biological experi-

mentation [66].
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2.4 current modelling approaches

2.4.1 Ordinary differential equation models

A ordinary differential equation (ODE) model of a closed nuclear system

was proposed by Briére (2006) to test the autonomous generation of the cal-

cium signature in isolated nuclei [15]. Although this model does not apply

the parameters for our particular application, and at time of publishing the

characterisation of both pumps and channels was unknown, the model is

extremely similar to that in Rhizobia-Legume symbiosis in both its compart-

mental set-up and flux dynamics as well as focusing on treating the nucleus

as a closed system with its own distinct Ca2+ signature. The simple model

consists of equations for the concentration of calcium, [Ca2+ ], in each of the

two nuclear compartments as a balance of the flux, J, between them, as well

as a conservation equation to ensure that the total calcium concentration, Q,

remains constant. The model is formulated as:

d[Ca2+]nuc

dt
= β(Jin − Jout),

d[Ca2+]store

dt
= −αρ(Jin − Jout),

[Ca2+]nuc

β
+

[Ca2+]store

αρ
= Q,

(1)

where β represents the ratio of free versus total calcium in the nucleoplasm,

α represents the ratio of free versus total calcium in the store and ρ is a

weighting of the volume ratio between the two compartments. The flux into

the nucleoplasm from the stores, Jin, was modelled as the sum of a constant

leaking effect and a transient channel opening effect, with both proportional

to the concentration difference between compartments. The re-uptake from

the nuceloplasm to the stores, Jout, was modelled as a simple Hill function,

as often used to model Ca2+ pumps in animal cells. Due to the conservation

of calcium the model can be reduced to one ODE for the calcium concen-

tration in the nucleus and steady state analysis can be easily performed to
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2.4 current modelling approaches

find the equilibrium level and its effectors. Results showed that the model

was able to reproduce calcium transients, where a single rapid influx was

followed by a slower re-uptake, however the model does not allow for sus-

tained oscillations and further influxes require repeated stimuli.

Oscillations were reproduced however, in a three component electro- physi-

ological model, shown in Figure. 13a, by Granqvist (2012). The model in this

case does not include concentrations in the store but focuses on the poten-

tials generated across the INM through the coordinated movement of both

calcium and potassium. As well as voltage-gated ion channels for Ca2+ flux

(now known to be CNGC15) and the active transporter MCA8 for the replen-

ishment of the Ca2+ store, we have DMI1 K+ pumps for hyper-polarisation

of the nuclear envelope [44]. It was found that these components alone were

enough to evoke a stable limit cycle solution, recreating some of the tempo-

ral calcium patterns observed experimentally in the nucleus. Additionally,

inclusion of Ca2+-binding proteins as buffers allowed the elucidation of key

additional features including the initial period of rapid spiking; spike shape;

variation in periodicity; and initiation and termination of the oscillations.

The model with N buffers consists of N + 2 coupled ordinary differential

equations:
dv
dt

=
1

Cm
(Ic + Ik), (2)

dc
dt

= Eps(αIc − µc) +
N

∑
i=1

Ri, (3)

dpi

dt
= −Ri, (4)

the first describing voltage changes across the INM; the second changes in

nucleoplasmic Ca2+ concentration; and one for the concentration of each

buffer present to bind Ca2+. The system is dependent on the Ca2+ and K+

currents through their respective channels, with the Ca2+ current a func-

tion, f , of the voltage such that Ic = f (v) and the K+ current a function,
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g, of both the voltage and calcium concentration, Ik = g(c, v). Parameters

include Cm the capacitance of the nuclear envelope, Eps a scaling factor re-

lating total Ca2+ changes to changes in free Ca2+, α a factor for conversion

(a)

(b) (c)

Figure 13.: a) Model schematic showing the 3 components and the polarization of the

nuclear lamina to be negatively charged on the nucleoplasmic side relative to

the perinuclear space. b) The simple 2 ODE model, (Ri = 0, ∀i), allows self-

sustained oscillations. c) The addition of a buffer explains signal variation.

The upper time-series show experimental data whilst the lower figures give

simulation results. Figure from Granqvist (2012) [44].
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of Ca2+ current to Ca2+ flux, µ the rate of transport into the nuclear enve-

lope and Ri dependent upon buffer association and dissociation constants.

Simulation results taken from Granqvist (2012) can be seen in Figure. 13. In

the absence of buffering (Ri = 0, ∀i) the resulting [Ca2+ ] time series shows

oscillations of a fixed period (13b) which would continue indefinitely. The

addition of 2 buffers (R1, R2 6= 0), on the other hand, perturbs the tempo-

ral calcium profile to produce oscillations with irregular frequencies and an

initial rapid spiking period (13c), replicating those experimentally observed

features which were previously described in Section 2.3.2.

Charpentier (2013) extended this model to elucidate the mechanism of com-

plex formation between DMI1 and the Ca2+ channel. It was found that there

exists a positive feedback loop necessary for spiking, in which DMI1 con-

ductivity is modulated by Ca2+, possibly through physical binding, whilst

flux through Ca2+ channels is increased by increased K+ current through

DMI1 [28].

2.4.2 Partial differential equation models

With previous models only considering the dynamics on, but not away

from, the nuclear membrane, in a single dimension, and with calcium con-

centrations only dependant upon time but not space, Vaz Martins (2016)

developed at 2-dimensional fire-diffuse-fire (FDF) model to couple signals

between the inner and outer surfaces of the INM. The partial differential

equation (PDE) model for the diffusion of Ca2+ across each surface with a

uniform uptake rate, ks is given as:

∂c(r, t)
∂t

= D∇2c(r, t)− ksc(r, t) +
N

∑
i=1

fi(t)δ(r− ri) +
np

∑
k=1

Ωk(t)δ(r− rk), (5)

with point sources representing N calcium channels at positions ri and np

nuclear pores at rk, the latter being the only term coupling the two surfaces.

Simulation results demonstrated that autonomous spatio-temporal patterns
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of Ca2+ could still exist in the presence of nuclear pores, and were able to

explain the differences in inter-compartment coupling seen experimentally

by varying pore permeability’s and channel refractory periods. The model

however only includes the spherical surface of each side of the NE and

hence does not allow for diffusion away from the membrane and cannot

explain the patterning seen in the nuclear body. Further, the model does

not allow for realistic Calcium-Induced Calcium Release (CICR) between

channels unless they are immediately adjacent to one another, as shown in

Figure. 14a [61].

(a) (b)

Figure 14.: a) Schematic of the model of Vaz Martins (2016), nuclear pores are in blue and

Ca2+ channels in green. Red arrows show a feasible route of CICR, with pink

arrows showing the diffusion pathway’s which are not possible due to the

model’s geometrical limitations. b) Ca2+ concentration profiles on two sur-

faces, coupled by nuclear pores, shown for two times where global calcium

concentrations are the same, yet local concentration profiles are very different

due to differences in spike phase. T=0.5 s: we see that micro-domains for-

mation on one side of the NE does not automatically infer one on the other

when Ca2+ flow does not trigger channel firing. T=1.3 s: Dcyt > Dnuc results

in micro-domain variations. Figure from Vaz Martins (2016) [61].
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Many available models generating calcium oscillations use ODE’s and do

not consider spatial concentration variations [44]. The minority that include

a spatial element do not retain 3-dimensional geometries, use inaccurate

nuclear morphology’s and do not explicitly include Ca2+ pumps [61]. It is

likely however, that this could have a profound affect on patterning [79]. As

shown in Figure. 15, Queisser (2011) demonstrated that nuclear morphology

in human hippocampal neurons could have a direct effect on the activity

of Ca2+-dependent transcription factors [70]. We will therefore go beyond

current work to introduce a 3–dimensional PDE model, whilst allowing for

more realistic calcium release currents, in an attempt to discover patterns of

calcium elevation in the nucleus. Distribution of ion channels on the nuclear

membrane will also be considered. These are known to vary among species

and may therefore represent a specificity which distinguishes between plant

types able to undergo fungal and bacterial symbiosis.

Figure 15.: The direct consequences of nuclear geometry changes include changes in as-

sociated transcriptional levels. Figure from Queisser (2011) [70].
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2.5 literature summary

• The calcium signalling pathway is made up of stimuli perception, cal-

cium signature generation, decoding by sensors and cellular response.

• The calcium signalling toolbox, comprising of channels, messengers

and transporters, contains the components of the calcium signalling

pathway.

• The calcium signature is a unique combination of changes in local cal-

cium concentration in space and time, and is defined by its stimulus-

specific amplitude, duration, frequency and spatial distribution.

• The localisation of sensory proteins adds a furthur layer to the path-

ways spatial specificity.

• A calcium signature is generated through concentration fluxes between

cellular compartments, either against the concentration gradient into

stores through pumps or along the gradient through channels.

• In compartmental terms the nucleus comprises of the nucleoplasm

and the PNS, separated by the INM and connected through CNGC

channels and MCA8 calcium pumps.

• It is widely accepted that in symbiosis, among other functions, the

nucleus is able generate its own calcium signatures autonomously.

• The majority of non-leguminous plants can form symbiotic relation-

ships with AM fungi, using a common symbiotic pathway whose

central features overlap with bacterial symbiosis, suggesting that the

transfer of traits is possible.

• Nuclear calcium spiking in response to Nod factors (as released by

Rhizoba) has been found to have a frequency of between 0.6-1 min−1.
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• A single calcium spike profile was reproduced by Briére (2006), through

a simple ODE Model of fluxes between the nucleoplasm and the cal-

cium store.

• An ODE model by Granqvist (2012), which was later extended by

Charpentier (2013), was able to reproduce sustained calcium oscilla-

tions, including initial fast spiking, through the addition of calcium

buffers.

• A fire-diffuse-fire PDE model on a 2D spherical surface was proposed

by Vaz Martins (2016) who demonstrated that autonomous calcium

signal generation could still take place in the presence of nuclear

pores.
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3
M AT H E M AT I C A L B A C K G R O U N D

In this section we will look at the background theory and derivation of the

Green’s function for the heat equation in one-dimensional Cartesian and

two-dimensional polar and elliptic coordinates for various boundary con-

ditions. A Green’s function is the impulse response of a linear differential

operator, and is chosen here for it’s capacity to apply a ready-made diffu-

sion profile during numerical simulation, and, due to the decreased com-

putational power required, increase the speed of computation. All of the

work in this section can be found in various forms and notations in text-

books such as Arfken, Weber and Harris’ Mathematical Methods for Physicists

[7] and Carslaw and Jaeger’s Conduction of Heat in Solids [24]. It is useful

however, to introduce the methodology of finding our Green’s functions in

order to help build up to the more complicated derivations in Section 4.

We shall also see later that many of the special functions introduced in this

section remain important when defining our full model.
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3.1 diffusion in 1-dimension

3.1.1 Deriving the Green’s function for Neumann boundary conditions

We begin by looking at the diffusion of a concentration, c(x, t), in time, t,

along a line, x ∈ [0, L], with homogeneous boundary conditions. We wish

to solve the 1D diffusion equation:

∂c
∂t

= D
∂2c
∂x2 , (6)

with diffusion coefficient D. Using a separation of variables technique we

let:

c(x, t) = X(x)T(t), (7)

to find the two ODE’s:

1. X′′(x) + k2X(x) = 0,

2. T′(t) + Dk2T(t) = 0,
(8)

with solutions:

1. X(x) = A sin(kx) + B cos(kx),

2. T(t) = T0e−Dk2t.
(9)

For Neumann boundary conditions:

∂c
∂x

∣∣∣∣
x=0,L

= 0, (10)

we find:

k(A cos(kx)− B sin(kx))|x=0,L = 0. (11)

As k 6= 0 by construction, we have:

x = 0 : A = 0,

x = L : B sin(kL) = 0.
(12)

As B = 0 would give the trivial solution we have the eigenvalue problem:

sin(knL) = 0, (13)
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and hence the eigenvalues: kn = nπ
L for n = 0, 1, 2, ..., and Eq. 1. of (9)

becomes:

X(x) =
∞

∑
n=0

Bn cos
(nπ

L
x
)

. (14)

By orthogonality we know that:

〈Xn, Xm〉 =
∫ L

0
cos

(nπ

L
x
)

cos
(mπ

L
x
)

dx =

0, n 6= m,

L
2 , n = m,

(15)

and hence, using our initial condition, c(x, 0) = C0, we can find our constant

Bn for n ∈ Z>0:

Bn =
〈C0, Xn〉
〈Xn, Xm〉

=
2
L

∫ L

0
C0(x′) cos

(nπ

L
x′
)

dx′, (16)

and for the zero eigenvalue at n = 0 we have B0 =
∫ L

0 C0(x)dx
L .

Combining solutions, and absorbing our constant T0 into C0(x), we find:

c(x, t) =
1
L

∫ L

0
C0(x′)

(
2

∞

∑
n=1

cos
(nπ

L
x′
)

cos
(nπ

L
x
)

e−D( nπ
L )2dt + 1

)
dx′,

(17)

where we have used the time-translation invariance of the propagator:

K(x, x′, t, t′) = K(x, x′, dt), dt = t− t′. (18)

Our solution is of the form:

c(x, t) =
∫ L

0
G(x, x′, dt)C0(x′)dx′, (19)

and hence we have the Green’s function:

G(x, x′, dt) =
2
L

∞

∑
n=1

cos
(nπ

L
x′
)

cos
(nπ

L
x
)

e−D( nπ
L )2dt +

1
L

. (20)

3.1.2 Deriving the Green’s function for Dirichlet boundary conditions

For Dirichlet boundary conditions:

c(0, t) = 0,

c(L, t) = 0,
(21)
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and we have:
x = 0 : B = 0,

x = L : A sin(kL) = 0.
(22)

As A = 0 would give the trivial solution we have the eigenvalue problem

from Eq. 13 and hence the eigenvalues kn = nπ
L for n = 0, 1, 2, ..., and Eq. 1.

of (9) now becomes:

X(x) = An sin
(nπ

L
x
)

. (23)

We find An, n = 1, 2, ... by orthogonality using:

〈Xn, Xm〉 =
∫ L

0
sin
(nπ

L
x
)

sin
(mπ

L
x
)

dx =

0, n 6= m

L
2 , n = m

(24)

to give:

An =
2
L

∫ L

0
C0(x′) sin

(nπ

L
x′
)

dx′. (25)

In this case for n = 0 we have xn = 0 and hence require no A0. Finally we

combine solutions to find:

c(x, t) =
2
L

∞

∑
n=1

∫ L

0
C0(x′) sin

(nπ

L
x′
)

sin
(nπ

L
x
)

e−D( nπ
L )2dtdx′, (26)

with Green’s function:

G(x, x′, dt) =
2
L

∞

∑
n=1

sin
(nπ

L
x′
)

sin
(nπ

L
x
)

e−D( nπ
L )2dt. (27)

3.1.3 Deriving the Green’s function for a domain which does not contain the ori-

gin

Here we change our domain to x ∈ [L, L + h] where h is the width of the

line. Solutions from the separation of variables are as previously derived in

Eq. (9). When considering flux between domains we use Neumann bound-

ary conditions to prescribes a zero flux everywhere on the adjoining points
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3.1 diffusion in 1-dimension

such that we can later prescribe fluxes at specific times as required. We

therefore apply the conditions:

∂c(x)
∂x

∣∣∣∣
x=L,L+h

= 0. (28)

We perform the change of variables, y = x− L, and for Eq. 1. of (9) write:

X(y) = A sin(ky) + B cos(ky), (29)

such that the boundary conditions become:

∂c
∂y

∣∣∣∣
y=0,h

= 0, (30)

and we find:
y = 0 : A = 0,

y = h : B sin(kh) = 0,
(31)

and therefore again retrieve the eigenvalue problem of Eq. 13, with k = nπ
h ,

for n = 0, 1, 2, ... Eq. 1. of (9) becomes:

X =
∞

∑
n=0

BnXn, (32)

where, returning back to our original variables:

Xn = cos
(nπ

h
(x− L)

)
. (33)

Again we use orthogonality to find:

Bn =
2
h

∫ L+h

L
C0(x− L) cos(

nπ

h
(x− L))dx, n > 0,

B0 =
1
h

∫ L+h

L
C0(x− L)dx,

(34)

Combining solutions gives:

c(x, t) =
1
h

∫ L+h

L
C0(x− L)

×
(

2
∞

∑
n=1

cos
(nπ

h
(x− L)

)
cos

(nπ

h
(x′ − L)

)
e−D( nπ

h )2dt + 1

)
dx′,

(35)

with Green’s function:

G(x, x′, dt) =
2
h

∞

∑
n=1

cos
(nπ

h
(x− L)

)
cos

(nπ

h
(x′ − L)

)
e−D( nπ

h )2dt +
1
h

. (36)
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3.2 diffusion in 2-dimensions : polar coordinate system

3.2 diffusion in 2-dimensions : polar coordinate system

3.2.1 Deriving the Green’s function for Neumann boundary conditions

We take the heat equation in 2-dimensional polar coordinates:

∂c
∂t

= D
[

∂2c
∂r2 +

1
r

∂c
∂r

+
1
r2

∂2c
∂θ2

]
, (37)

and solve for a disc with radius a such that, r ∈ (0, a), θ ∈ (0, 2π]. Using

the separation anzatz:

c(r, θ, t) = R(r)Θ(θ)T(t), (38)

we reduce the PDE to the set of ODE’S:

1. Θ′′(θ) + µ2Θ(θ) = 0,

2. T′(t) + Dk2T(t) = 0,

3. r2R′′(r) + rR′(r) + (k2r2 − µ2)R(r) = 0.

(39)

We use the change of variables s = kr to transform Equation.3 of (39) to the

Bessel equation:

s2R′′(s) + sR′(s) + (s2 − µ2)R(s) = 0, (40)

and hence we find the solutions:

1. Θ(θ) = A sin(µθ) + B cos(µθ),

2. T(t) = T0e−Dk2t,

3. R(s) = CJµ(s) + DYµ(s),

(41)

where Jµ(s) and Yµ(s) are the Bessel functions of order µ of the first and

second kind respectively, for which plots with µ = 0, 1, .., 4 are shown in

Figure. 16a and Figure. 16b. The corresponding boundary conditions are

written:

Radial :
∂c
∂r

∣∣∣∣
r=a

= 0, lim
r→0

(c) 6= ∞,

Angular : c(r, θ̃) = c(r, θ̃ + 2π),
∂c
∂θ

∣∣∣∣
θ̃

=
∂c
∂θ

∣∣∣∣
θ̃+2π

.
(42)
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3.2 diffusion in 2-dimensions : polar coordinate system

It is clear the angular boundary conditions are satisfied for µ = m ∈ Z+.

Applying the second radial boundary condition, we find D = 0, as the

Ym(s) are unbounded at the origin ∀m and hence, returning to the original

variables, Equation.3. of (41) becomes R(r) = CJm(kr). We can then apply

the Neumann boundary condition and, recalling that k 6= 0 by construction

and C 6= 0 as this would give the trivial solution, we obtain the eigenvalue

problem:

J′m(λmn) = 0, (43)

(a) (b)

Figure 16.: Examples of the Bessel functions of a) the first kind and b) the second kind.

where we have set λmn = ka to be the nth zero of the mth order Bessel func-

tion derivative.

Our combined solutions are:

c(r, θ, t) =
∞

∑
m=0

∞

∑
n=1

Jm(
λmn

a
r)(Amn sin(mθ) + Bmn cos(mθ))e−D( λmn

a )
2
t, (44)

where we have absorbed C and T0 into Amn and Bmn. We take this solution

at t = 0:

c(r, θ, 0) =

C0(r, θ) =

∑∞
n=1 J0(

λ0n
a r)B0n, m = 0,

∑∞
m=1 ∑∞

n=1 Jm(λmn
a r)(Amn sin(mθ) + Bmn cos(mθ)), m > 0,

(45)
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3.2 diffusion in 2-dimensions : polar coordinate system

and use the orthogonality of the Bessel functions:

〈Rn, Rm〉 =
∫ a

0
Jn(kr)Jm(kr)rdr =

0, n 6= m,

Nnm, n = m,
(46)

where

Nnm =
a2

2

[
1− m2

k2a2

]
(Jm(ka))2 +

a2

2
(

J′m(ka)
)2 , (47)

whose second term is equal to zero for the Neumman case, along with the

orthogonality of Θ(θ):

〈Θn, Θm〉 =

∫ 2π

0
(sin(mθ) + cos(mθ))(sin(nθ) + cos(nθ))dθ =

0, n 6= m,

2π, n = m,
(48)

to find our constants. We take the inner product of Eq. 45 for the case m = 0,

and Jm(kr) to find:

B0n =
〈C0, Rm〉
〈Rn, Rm〉

=

∫ 2π
0

∫ a
0 C0(r′, θ′)Jm(kr′)r′dr′dθ′

2πNmn
. (49)

To find Amn we take the inner product of Eq. 45 for m > 0 and Jm(kr) sin(mθ):

Amn =
〈C0, Rm sin(mθ)〉
〈RnΘn, Rm sin(mθ)〉 =

∫ 2π
0

∫ a
0 C0(r′, θ′)Jm(kr′) sin(mθ)r′dr′dθ′

πNmn
,

(50)

and similarly for Bmn we take the inner product of Eq. 45 for m > 0 and

Jm(kr) cos(mθ) to obtain:

Bmn =
〈C0, Rm cos(mθ)〉
〈RnΘn, Rm cos(mθ)〉 =

∫ 2π
0

∫ a
0 C0(r′, θ′)Jm(kr′) cos(mθ)r′dr′dθ′

πNmn
.

(51)

Using the identity:

cos(mθ) cos(mθ′) + sin(mθ) sin(mθ′) = cos(m(θ − θ′)), (52)
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our final solution is therefore:

c(r, θ, t) =

∞

∑
m=1

∞

∑
n=1

∫ a
0

∫ 2π
0 C0(r′, θ′)Jm(λmn

a r)Jm(λmn
a r′)(cos(m(θ − θ′)))r′dr′dθ′e−D( λmn

a )
2
dt

πNmn

+
∞

∑
n=1

∫ a
0

∫ 2π
0 C0(r′, θ′)J0(

λ0n
a r)J0(

λ0n
a r′)r′dr′dθ′e−D

(
λ0n

a

)2
dt

2πN0n
,

(53)

with Green’s function:

G(r, r′, θ, θ′, dt) =

∞

∑
m=0

∞

∑
n=1

Jm(λmn
a r)Jm(λmn

a r′) [2 cos(m(θ − θ′)) + 1] e−D( λmn
a )

2
dt

2πNmn
.

(54)

3.2.2 Deriving the Green’s function for Dirichlet boundary conditions

In the 2-dimensional Dirichlet case the Green’s function remains of the same

form as in that of the Neumann case given in Eq. (54). For the Dirichlet

condition on the outer radial boundary:

c(a, θ, t) = 0, (55)

we retrieve the eigenvalue problem:

Jm(ka) = 0, (56)

which are the Bessel function zeros, that is the points in which our function

plotted in Figure. 16a a) crosses the horizontal axis, with the eigenvalues

Ψmn = ka. This also means that the orthogonality constant Nmn is, in this

case, given by the second term of Equation (47) as the first term becomes

zero.
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3.2 diffusion in 2-dimensions : polar coordinate system

3.2.3 Deriving the Green’s function for an annulus

For an annular region our radial domain becomes r ∈ [a, b], that is we model

the area between two concentric circles of radii a and b, a < b. Separation

of variables produces solutions as previously given in Eq. (41). The second

radial boundary condition, given in Eq. 42, is automatically satisfied as our

domain does not contain r = 0, and hence in this case we cannot set D = 0.

We are therefore required to apply the no flux boundary condition to both

radial boundaries:
∂c
∂r

∣∣∣∣
r=a

=
∂c
∂r

∣∣∣∣
r=b

= 0, (57)

whilst the angular boundary conditions remain as previously. With fore-

sight, we set the coefficients of the radial solution (3) from Eq. (41) to be:

C = Y′m(ka),

D = −J′m(ka),
(58)

and hence the equation becomes:

R(r) ≡ Zm(kr) = Y′m(ka)Jm(kr)− J′m(ka)Ym(kr). (59)

The boundary condition at r = a is therefore satisfied by construction as:

R′(a) = kY′m(ka)J′m(ka)− kJ′m(ka)Y′m(ka) = 0. (60)

Applying the no flux condition at r = b gives us our second boundary

condition, satisfied by the eigenvalue problem:

Y′m(ka)J′m(kb)− J′m(ka)Y′m(kb) = 0, (61)

with eigenvalues k = kmn.

Combining solutions we have:

c(r, θ, t) = T0(A sin(mθ) + B cos(mθ))Zm(kr)e−Dk2t, (62)
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3.2 diffusion in 2-dimensions : polar coordinate system

whilst our orthogonality relationships are given by Eq. (48) and:

〈Rn, Rm〉 =
∫ b

a
Zn(kr)Zm(kr)rdr =

0, n 6= m,

Nmn, n = m.
(63)

The normalisation constant is now given by:

Nnm =
b2

2

[
1− m2

k2b2

]
(Zm(kb))2 +

b2

2
(
Z′m(kb)

)2− a2

2

[
1− m2

k2a2

]
(Zm(ka))2

− a2

2
(
Z′m(ka)

)2 ,
(64)

and here, because of our no flux condition on each boundary, the second

and fourth term are equal to zero. We take our solution at t = 0:

c(r, θ, 0) =

C0(r, θ) =

∑∞
n=1 Z0(k0nr)B0n, m = 0,

∑∞
m=1 ∑∞

n=1 Zm(kmnr) [Amn sin(mθ) + Bmn cos(mθ)] , m > 0,
(65)

and find our constants by firstly taking the inner product of C0(r, θ) for

m = 0 with Z0(kr) to find:

B0n =
〈C0, Rm〉
〈Rn, Rm〉

=

∫ 2π
0

∫ b
a C0(r′, θ′)Z0(kr′)r′dr′dθ′

Nmn
. (66)

Next, to find Amn, we take the inner product of C0(r, θ) for m > 0 with

Zm(kr) sin(mθ) so that:

Amn =
〈C0, Rm sin(mθ)〉
〈RnΘn, Rm sin(mθ)〉 =

∫ 2π
0

∫ b
a C0(r′, θ′)Zm(kr′) sin(mθ)r′dr′dθ′

2πNmn
,

(67)

and similarly for Bmn we take the inner product with Zm(kr) cos(mθ) and

obtain:

Bmn =
〈C0, Rm cos(mθ)〉
〈RnΘn, Rm cos(mθ)〉 =

∫ 2π
0

∫ b
a C0(r′, θ′)Zm(kr′) cos(mθ)r′dr′dθ′

2πNmn
.

(68)
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Our final solution is therefore:

c(r, θ, t) =

∞

∑
m=1

∞

∑
n=1

∫ b
a

∫ 2π
0 C0(r′, θ′)Zm(kmnr)Zm(kmnr′)(cos(m(θ − θ′)))r′dr′dθ′e−Dk2

mndt

πNmn

+
∞

∑
n=1

∫ b
a

∫ 2π
0 C0(r′, θ′)Z0(k0nr)Z0(k0nr′)r′dr′dθ′e−Dk2

0ndt

2πN0n
,

(69)

with Green’s function:

G(r, r′, θ, θ′, dt) =
∞

∑
m=0

∞

∑
n=1

Zm(kmnr)Zm(kmnr′) [2 cos(m(θ − θ′)) + 1] e−Dk2
mndt

2πNmn
.

(70)

3.3 diffusion in 2-dimensions : elliptic coordinate system

3.3.1 Deriving the Green’s function for Neumann boundary conditions

The elliptic coordinate system can be defined in algebraic form as:

x = cξν,

y = c
√
(ξ2 − 1)(1− ν2),

(71)

where, for an ellipse with semi-minor axis of length a and semi-major axis

of length b, (b > a):

ξ ∈ (1, ξ0], ν ∈ (−1, 1), (72)

with,

ξ0 =
b
c

, c =
√

b2 − a2. (73)

We wish to solve:
∂v
∂t

= D∇2v, (74)

where in elliptic coordinates:

∇2 =
∇̃

c2(ξ2 − ν2)
, (75)
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for,

∇̃ =
√
(ξ2 − 1)

∂

∂ξ

(√
(ξ2 − 1)

∂

∂ξ

)
+
√
(1− ν2)

∂

∂ν

(√
(1− ν2)

∂

∂ν

)
. (76)

Setting:

v(ξ, ν, t) = u(ξ, ν)T(t), (77)

we find:

dT(t)
dt

1
DT(t)

=
1

c2(ξ2 − ν2)u(ξ, ν)
∇̃u(ξ, ν) = −k2, (78)

and therefore separate the time dependent part to give our first ODE:

1. T′ + k2DT = 0, (79)

leaving:

∇̃u(ξ, ν) = −k2c2(ξ2 − ν2)u(ξ, ν). (80)

We let k2c2 = 4γ2, and write:

u(ξ, ν) = p(ξ)q(ν), (81)

to find:√
(ξ2 − 1)
p(ξ)

∂

∂ξ

(√
(ξ2 − 1)

∂p(ξ)
∂ξ

+

√
(1− ν2)

q(ν)
∂

∂ν

(√
(1− ν2)

∂q(ν)
∂ν

)
= −4γ2(ξ2 − ν2).

(82)

Separating the variables and, with foresight towards later using the trigono-

metric double angle formula, subtracting 2γ2 from both sides gives:√
(ξ2 − 1)
p(ξ)

∂

∂ξ

(√
(ξ2 − 1)

∂p(ξ)
∂ξ

)
+ 4γ2ξ2 − 2γ2

= −
√
(1− ν2)

q(ν)
∂

∂ν

(√
(1− ν2)

∂q(ν)
∂ν

)
+ 4γ2ν2 − 2γ2

= λ,

(83)

and hence we have our ODE’s in the ξ and ν variables:

2. (ξ2 − 1)
d2p
dξ2 + ξ

dp
dξ

+ (2γ2(2ξ2 − 1)− λ)p = 0, (84)
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3. (1− ν2)
d2q
dν2 − ν

dq
dν
− (2γ2(2ν2 − 1)− λ)q = 0. (85)

[As an aside, these can be transformed into the standard form modified

(radial) and ordinary (angular) Mathieu functions using:

ξ = cosh r, r ∈ (0, ξ̃0] ν = cos θ, θ ∈ (0, 2π], (86)

where,

ξ̃0 = tanh−1
( a

b

)
. (87)

Using the chain rule to find:

d
dr

= sinh r
d

dξ
,

d2

dr2 = sinh2 r
d

dξ2 + cosh r
d

dξ
,

d
dθ

= − sin θ
d

dν
,

d2

dθ2 = sin2 θ
d2

dν2 − cos θ
d

dν
,

(88)

and noting,

sinh r =
√
(ξ2 − 1), sin θ =

√
(1− ν2), (89)

we write Eq. 84 as:

sinh2 r
d2p
dν2 + cosh r

dp
dξ

+ (2γ2(2 cosh2 r− 1)− λ)p = 0, (90)

and hence, using the double angle formula and Eqs. 88, we retrieve:

d2p
dr2 + (2γ2 cosh 2r− λ)p = 0, (91)

which is the Modified Mathieu equation in standard form.

Similarly, we write Eq. 85 as:

sin2 θ
d2q
dν2 − cos θ

dq
dν
− (2γ2(2 cos2 θ − 1)− λ)q = 0, (92)

to find:
d2q
dθ2 − (2γ2 cos 2θ − λ)q = 0, (93)
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which is the Ordinary Mathieu equation in standard form.

Our solutions corresponding to Eqs. 79, 84 and 85 are given by:

1. T = T0e−k2Dt, k2 =
4γ2

c2

2. pm(ξ) =



Jom(ξ, γo)

Jem(ξ, γe)

Nom(ξ, γo)

Nem(ξ, γe)

3. qm(ν) =

sem(ν, γo) m = 1, 2, 3, ...

cem(ν, γe) m = 0, 1, 2, ...

(94)

respectively, where Jom and Jem are the odd and even radial Mathieu func-

tions of the first kind, Nom and Nem are the odd and even radial Mathieu

functions of the second kind, and sem and cem are the odd and even angular

Mathieu functions. All of these functions are plotted in Figure. 17 for small

values of m. As the odd and even functions are solutions to different equa-

tions, they require different values of the parameter γ and hence we denote

γo and γe as parameterising the odd and even functions respectively. The

values of these will be found separately using the boundary conditions in

the radial variable.

Boundary conditions

We require continuity and differentiability of solutions across the line seg-

ment at ξ = 1, and therefore we are required to write our solutions as even:

vem(ξ, ν, t) = A1(Jem(ξ, γe) + B1Nem(ξ, γe))cem(ν, γe)e−k2Dt, m ≥ 0,

(95)
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(a) (b)

(c) (d)

(e) (f)

Figure 17.: Examples of the Mathieu functions of integer order. a)/b) and c)/d) show the

even/odd radial Mathieu functions of the first kind and second kind respec-

tively whilst e)/f) show the even/odd angular functions.

and odd:

vom(ξ, ν, t) = A2(Jom(ξ, γo) + B2Nom(ξ, γo))sem(ν, γo)e−k2Dt, m ≥ 1,

(96)
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[7]. Due to the singularity at ξ = 1 we set B1 = B2 = 0 and solutions reduce

to:

vem(ξ, ν, t) = A1 Jem(ξ, γe)cem(ν, γe)e−k2Dt, m ≥ 0, (97)

and,

vom(ξ, ν, t) = A2 Jom(ξ, γo)sem(ν, γo)e−k2Dt, m ≥ 1. (98)

As we initially require the outer boundary to be impermeable, we require a

no flux condition across ξ0:

ve′m(ξ0, ν, t) = vo′m(ξ0, ν, t) = 0. (99)

This gives us two separate eigenvalue problems:

dJem(ξ, γe
mp)

dξ

∣∣∣∣
ξ=ξ0

= 0, (100)

and:
dJom(ξ, γo

mp)

dξ

∣∣∣∣
ξ=ξ0

= 0, (101)

for which the zeros are γe
mp and γo

mp respectively. Finally, solutions must

be of period 2π in ν. Both our odd and even solutions have period 2π for

order, m odd. Our solutions with m even have period π, however, as this is

an interval of 2π, these are also allowed and we have m ≥ 0 for our even

solutions, cem, and m ≥ 1 for our odd solutions sem.

Normalisation

Our angular Mathieu functions are normalised using the orthogonality re-

lations:

∫ 2π

0
semsendθ =

∫ 2π

0
cemcendθ =

0 m 6= n,

π m = n ≥ 1,
(102)

and: ∫ 2π

0
[ce0]

2dθ = 2π. (103)
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Following on from the analogous sine and cosine functions, we note orthog-

onality between the odd and even angular functions:∫ 2π

0
semcendθ = 0 ∀ m, n. (104)

Considering now all of our boundary conditions, we write our full solution

as:

Vm(ξ, ν, t) =
∞

∑
m=−∞

∞

∑
p=1

AmpMem(ξ, γmp)mem(ν, γmp)e−k2
mpDt, (105)

where:

Mem(ξ, γm) =

Jo−m(ξ, γo
−m), m < 0,

Jem(ξ, γe
m), m ≥ 0,

(106)

and,

mem(ξ, γm) =

se−m(ν, γo
−m), m < 0,

cem(ν, γe
m), m ≥ 0.

(107)

Assuming orthogonality of Me:

∫ ξ0

1
MemMen(ξ

2 − 1)−
1
2 dξ =

0 m 6= n,

Nmn m = n,
(108)

and recalling orthogonality of ce and se:

∫ 1

−1
memmen(1− ν2)−

1
2 dν =

0 m 6= n,

π m = n,
(109)

we multiply our initial condition:

Vm(ξ, ν, 0) = p0(ξ)q0(ν) =
∞

∑
m=−∞

∞

∑
p=1

AmpMem(ξ, γmp)mem(ν, γmp) (110)

by Men(ξ, γnp)men(ν, γnp) and integrate over our domain to find our coeffi-

cient:

Amp =

1
Nmnπ

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)Mem(ξ ′, γmp)mem(ν′, γmp)(ξ

2 − 1)−
1
2 dξ(1− ν2)−

1
2 dν.

(111)
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Our full solution is therefore:

Vm(ξ, ν, t) =
∞

∑
m=−∞

∞

∑
p=1

∫ 1

−1

∫ ξ0

1

Fdξdν√
(ξ2 − 1)(1− ν2)Nmpπ

× e−k2
mpDt,

F = p0(ξ)q0(ν)Mem(ξ, γmp)Mem(ξ ′, γmp)mem(ν, γmp)mem(ν′, γmp),

(112)

with Green’s function:

G(ξ, ξ ′, ν, ν′, t) =
∞

∑
m=−∞

∞

∑
p=1

1
Nmnπ

Mem(ξ, γmp)Mem(ξ ′, γmp)mem(ν, γmp)mem(ν′, γmp)

× e−k2
mpDt.

(113)

3.3.2 Deriving the Green’s function for Dirichlet boundary conditions

In the 2-dimensional Dirichlet case the Green’s function remains of the same

form as in that of the Neumann case given in Equation. (113). For the

Dirichlet condition on the outer radial boundary:

vem(ξ, ν, t)|ξ=ξ0 = vom(ξ, ν, t)|ξ=ξ0 = 0, (114)

we find the pair of eigenvalue problems:

Jem(ξ0, γe
mp) = 0, (115)

and:

Jom(ξ0, γo
mp) = 0, (116)

which are the zeros of the even and odd Matheiu functions with the eigen-

values γe
mp and γo

mp respectively.
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3.3 diffusion in 2-dimensions : elliptic coordinate system

3.3.3 Deriving the Green’s function for an elliptic annulus

Here we look at the elliptic coordinate system again, with the ’radial’ compo-

nent now between two membranes, ξ ∈ (ξ0, ξ1), where the outer membrane

has:

ξ1 =
b1

c1
(117)

for b1 = b + h, a1 = a + h and c1 =
√

b2
1 − a2

1. The separation of variables

and solutions are the same as given in the previous section up to 105. The

point that differs here is the boundary conditions, as we now require no

flux across our inner boundary as well as the outer boundary. Our no flux

condition therefore becomes:

ve′m(ξ0, ν, t) = ve′m(ξ1, ν, t) = vo′m(ξ0, ν, t) = vo′m(ξ1, ν, t) = 0. (118)

For our even solutions the Neumann boundary condition gives:

Je′m(ξ0, γe) + B1Ne′m(ξ0, γe) = Je′m(ξ1, γe) + B1Ne′m(ξ1, γe) = 0, (119)

which can be written as:Je′m(ξ0, γe) Ne′m(ξ0, γe)

Je′m(ξ1, γe) Ne′m(ξ1, γe)

 1

B1

 =

0

0

 , (120)

and hence we find our eigenvalue problem:

Je′m(ξ0, γe
mp)Ne′m(ξ1, γe

mp)− Je′m(ξ1, γe
mp)Ne′m(ξ0, γe

mp) = 0, (121)

to be solved numerically for γe
mp; the pth zero for the mth order even solu-

tion.

From this condition we can write:

Je′m(ξ0, γe
mp) =

Je′m(ξ1, γe
mp)

Ne′m(ξ1, γe
mp)

Ne′m(ξ0, γe
mp), (122)

and therefore, when compared to Eq. 119, we find our coefficient:

B1 = −
Je′m(ξ1, γe

mp)

Ne′m(ξ1, γe
mp)

. (123)
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3.3 diffusion in 2-dimensions : elliptic coordinate system

Similarly for our odd solutions we have the eigenvalue problem:

Jo′m(ξ0, γo
mp)No′m(ξ1, γo

mp)− Jo′m(ξ1, γo
mp)No′m(ξ0, γo

mp) = 0, (124)

for γo
mp; the pth zero for the mth order odd solution, and our coefficient:

B2 = −
Jo′m(ξ1, γo

mp)

No′m(xi1, γo
mp)

. (125)

Our full solution can also be written in the form of Eq. 105, as:

Vm(ξ, ν, t) =
∞

∑
m=−∞

∞

∑
p=1

AmpZem(ξ, γmp)mem(ν, γmp)e−k2
mpDt, (126)

where:

Zem(ξ, γm) = Me(1)m (ξ, γm) + BmMe(2)m (ξ, γm), (127)

for Me(1)m = Mem as given in Eq. 106, mem as given in Eq. 107 and:

BmMe(2)m (ξ, γm) =

B2No−m(ξ, γo
−m), m < 0,

B1Nem(ξ, γe
m), m ≥ 0.

(128)

Assuming orthogonality of Ze:

∫ ξ1

ξ0

ZemZen(ξ
2 − 1)−

1
2 dξ =

0 m 6= n,

Nmn m = n,
(129)

and, recalling the orthogonality relationship for mem given in Eq. 109, we

multiply our initial condition:

Vm(ξ, ν, 0) = p0(ξ)q0(ν) =
∞

∑
m=−∞

∞

∑
p=1

AmpZem(ξ, γmp)mem(ν, γmp), (130)

by Zen(ξ, γnp)men(ν, γnp) and integrate over our domain to find our second

coefficient:

Amp =

1
Nmnπ

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)Zem(ξ ′, γmp)mem(ν′, γmp)(ξ
2 − 1)−

1
2 dξ(1− ν2)−

1
2 dν.

(131)
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3.4 mathematical background summary

Our full solution is therefore:

Vm(ξ, ν, t) =
∞

∑
m=−∞

∞

∑
p=1

∫ 1

−1

∫ ξ1

ξ0

Fdξdν√
ξ2 − 1

√
1− ν2Nmpπ

e−k2
mpDt

F = p0(ξ)q0(ν)Zem(ξ, γmp)Zem(ξ ′, γmp)mem(ν, γmp)mem(ν′, γmp)

(132)

with Green’s function:

G(ξ, ξ ′, ν, ν′, t) =
∞

∑
m=−∞

∞

∑
p=1

1
Nmnπ

Zem(ξ, γmp)Zem(ξ ′, γmp)mem(ν, γmp)mem(ν′, γmp)e−k2
mpDt.

(133)

3.4 mathematical background summary

The mathematical method of semi-analytically solving a PDE using the sep-

aration of variables technique, in order to derive a Green’s function, was

demonstrated for:

• Two 1D domains with Neumann and Dirichlet boundary conditions,

• 2D polar coordinates on a disk and an annulus for both Neumann and

Dirichlet boundary conditions, making use of the Bessel functions,

• 2D elliptic coordinates on an elliptic disk and annulus for both Neu-

mann and Dirichlet boundary conditions, using the radial and angular

Mathieu functions.

This has provided the background mathematical material required to model

the diffusion of calcium through various compartments, which will be ex-

tended to the full 3D model before including the pump and channel dynam-

ics in the next chapter.
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4
M O D E L D E V E L O P M E N T

Here, we develop a novel 3-dimensional model for the generation of cal-

cium signals in the plant cell nucleus. We begin by deriving the Green’s

functions, following our methods in Section 3, to describe the diffusion of

calcium in both the nucleolus and the surrounding peri-nuclear space. This

is achieved for both spherical and spheroidal polar coordinates. Finally we

add coupling terms to our equations, representing the pumps and channels

which transport calcium across the adjoining membrane in order to obtain

a representative model of the mechanism of nuclear calcium signal genera-

tion.

4.1 diffusion of calcium in spherical compartments

We initially approximate the nuclear geometry to be spherical. We shall

see in Section 6 that this is acceptable in certain tissue types, however oth-

ers, such as root hair cells, ideally require a less generalised morphology

such as a spheroid or ellipsoid. Here, the nucleoplasm is modelled as a

closed ball of radius a which is to be determined from experimental mea-

surements. To model the PNS we require a spherical shell comprised of the

volume contained between two concentric 2-spheres, the INM and ONM,

with radii a and b where b = a + h for h > 0. For ease of calculation we

write b = λa for λ > 1. A schematic can be seen in Figure. 18a, where

the solid black lines depicts the INM enclosing the nucleoplasm, and the
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4.1 diffusion of calcium in spherical compartments

dashed lines represent the ONM which is a 2D-surface in 3D E-space. This

may be visualised more easily as the 3D generalisation of an annulus con-

fined by the two membranes, that is the rotation of the structure shown in

Figure. 18b through π. To describe the diffusion of calcium through this

system we require the Green’s function in each of the domains which we

initially treat as closed from one another and their environment. These will

later be coupled through flux across the compartment boundaries using the

equations describing the dynamics of the pumps and channels given at the

end of this section.

(a) (b)

Figure 18.: The domain to be modelled shown as a) the spherical shell b) the 2D repre-

sentation of the nucleus.
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4.1 diffusion of calcium in spherical compartments

4.1.1 Derivation of the Green’s function for a ball

We begin by considering the diffusion of calcium within a spherical nucleus

of radius a. Taking a typical spatio-temporal diffusion equation:

∂u(r, t)
∂t

= Dnuc∇2u(r, t), (134)

where u(r, t) is the calcium concentration at time t and position r = (r, θ, φ),

in the domain:

0 ≤ r ≤ a, 0 ≤ θ ≤ π, 0 ≤ φ < 2π, (135)

and Dnuc is the diffusion coefficient in the nucleoplasm. We write the gradi-

ent, ∇2, in spherical polar coordinates and expand Eq. (134) to find:

∂u
∂t

= Dnuc

[
∂2u
∂r2 +

2
r

∂u
∂r

+
1
r2

∂2u
∂θ2 +

cot θ

r2
∂u
∂θ

+
1

r2 sin2 θ

∂2u
∂φ2

]
. (136)

We normalise the equations such that we have a unit radius, by writing a

new radial variable as:

r̂ =
r
a

, (137)

with our new radial domain given by:

0 ≤ r̂ ≤ 1. (138)

Our diffusion equation becomes:

∂u
∂t

= D̂nuc

[
∂2u
∂r̂2 +

2
r̂

∂u
∂r̂

+
1
r̂2

∂2u
∂θ2 +

cot θ

r̂2
∂u
∂θ

+
1

r̂2 sin2 θ

∂2u
∂φ2

]
, (139)

where our normalisation has resulted in the scaling of our diffusion coeffi-

cient:

D̂nuc =
Dnuc

a2 . (140)

Initially neglecting the azimuthal angle, φ, by arguments of symmetry [79],

and dropping the ’hats’ for convenience, we reduce our equation to,

∂u
∂t

= Dnuc

[
∂2u
∂r2 +

2
r

∂u
∂r

+
1
r2

∂2u
∂θ2 +

cot θ

r2
∂u
∂θ

]
, (141)

54



4.1 diffusion of calcium in spherical compartments

and solve semi-analytically using the separation of variables technique. Writ-

ing:

u(r, θ, t) = p(r)q(θ)T(t), (142)

and setting p(r) =
z(r)

(kr)
1
2

and x = cos θ, we reduce the PDE to a system of

ODEs:
1. T′ + k2DnucT = 0,

2. r2z′′ + rz′ + (k2r2 − (l +
1
2
)2)z = 0,

3. (1− x2)q′′ − 2xq′ + µ2q = 0,

(143)

where −k2 and −µ2 = −l(l + 1), l ∈ Z≥0, are the separation constants.

Eq. 2 and Eq. 3 of (143) are the Bessel equation and the Legendre differential

equation respectively. These are each solved subject to the initial/boundary

conditions:
1. T(0) = T0, T(t) = t,

2. | lim
r→0

z(r)| < ∞, z′(kr)|r=a = 0,

3. | lim
x→±1

q(x)| < ∞,

(144)

to give:

1. T(t) = T0e−k2Dnuct,

2. z(kr) = Cjl(kr),

3. q(x) = APl(x).

(145)

where jl(
αlp
a r) is the spherical Bessel function of the first kind of order l,

plotted in Figure. 19a, and Pl(x) is the Legendre polynomial of the first

kind of degree l, plotted in Figure. 20. We can write the spherical Bessel

functions in terms of the standard Bessel functions, Jn(x), previously used

in Chapter 3 for the 2D case, by the relation:

jl(
αlp

a
r) =

√
π

2r
Jl+ 1

2
(

αlp

a
r). (146)

Solutions are then re-combined, as in Eq. (142), and we find:

u(r, θ, t) =
∞

∑
l=0

∞

∑
p=1

T0AlClp jl(
αlp

a
r)Pl(x)e

−
(αlp

a

)2

Dnuct
. (147)
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4.1 diffusion of calcium in spherical compartments

(a) (b)

Figure 19.: Examples of a) the Spherical Bessel functions of the first kind and b) their

derivatives.

The term αlp arises from the no flux radial boundary condition which gives

the eigenvalue problem:

j′l(αlp) = 0, (148)

Figure 20.: The Legendre functions of integer degree.

and hence αlp is the pth zero of the derivative of the lth order spherical

Bessel function, as illustrated for l = 0, 1, ...4 by the points crossing the

horizontal axis in Figure. 19b. The weighting coefficients Al and Clp are
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4.1 diffusion of calcium in spherical compartments

found using the orthogonality relations of the Legendre polynomials and

spherical Bessel functions respectively to give:

AlClp =

2l + 1
2

∫ π

0
q0(θ

′)Pl(cos θ′) sin θ′dθ′
2
∫ a

0 z0(r′)Jl+ 1
2
(

αlp

a
r′)r′2dr′

a2
√

r′
[

J2
l+ 1

2
(αlp)− Jl− 1

2
(αlp)Jl+ 3

2
(αlp)

] ,

(149)

for an initial source at q0(θ
′) amd z0(r′).

Finally we revisit the φ dependence and explicitly include this by con-

sidering a point on the sphere, P(r, θ, φ), in relation to the point source

P′(r′, θ′, φ′). Here the φ dependence depends only on the cosines of the an-

gles of these two points, and hence for each source the coordinate system

can be rotated, forcing one of the angles to be zero. The angle ψ between

the points is then given by the spherical law of cosines:

h(ψ) = cos(ψ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ− φ′), (150)

which, for initial condition h0(ψ
′), has normalization constant:

A0 =
1

2π

∫ 2π

0
h0(ψ

′)dψ′. (151)

Our complete solution is therefore:

u(r, θ, ψ, t) =
T0

2π

∫ 2π

0
h0(ψ

′)dψ′
∞

∑
l=0

(2l + 1)
∫ π

0
q0(θ

′)Pl(cos ψ) sin θ′dθ′

∞

∑
p=1

∫ a
0 z0(r′)Jl+ 1

2
(

αlp

a
r′)Jl+ 1

2
(

αlp

a
r)r′2dr′

a2
√

r
√

r′
[

J2
l+ 1

2
(αlp)− Jl− 1

2
(αlp)Jl+ 3

2
(αlp)

]e
−
(αlp

a

)2

Dnuct
,

(152)

which is in the form:

u(r, θ, ψ, t) =
∫

Ω
u(r′, θ′, ψ′, 0)G(r, θ, ψ, t, r′, θ′, ψ′, t′)dV, (153)

where:

u(r′, θ′, ψ′, 0) = z0(r′)q0(θ
′)h0(ψ

′)T0, (154)
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4.1 diffusion of calcium in spherical compartments

with Green’s function:

G(r, θ, ψ, t, r′, θ′, ψ′) =

∞

∑
l=0

(2l + 1)
2π

Pl(cos ψ)
∞

∑
p=1

Jl+ 1
2
(

αlp

a
r′)Jl+ 1

2
(

αlp

a
r)

a2
√

r
√

r′
[

J2
l+ 1

2
(αlp)− Jl− 1

2
(αlp)Jl+ 3

2
(αlp)

]

× e
−
(αlp

a

)2

Dnuct
.

(155)

4.1.2 Derivation of the Green’s function for a spherical shell

In the PNS we also write our diffusion equation as:

∂u(r, t)
∂t

= Dpns∇2u(r, t), (156)

however, we now have a radial domain of r ∈ (a, λa], and a diffusion co-

efficient, Dpns, which, as we shall see in Section 6.3, is different to that in

the nucleoplasm. The Green’s function is derived as in the previous case,

with the separated system of ODEs given in Eq. (143). Whilst the 1st and 3rd

boundary conditions, given in Eq. (144), remain the same, we now set a no

flux condition on both of the radial boundaries:

z′(kr)|r=a = 0, z′(kr)|r=λa = 0. (157)

This gives our radial solution to be a linear combination of the spherical

Bessel functions of the first and second kind:

z(kr) = Cjl(kr) + Dyl(kr). (158)

The plot in Figure. 21a highlights how the spherical Bessel functions of the

second kind diverge at the origin. As our domain for the PNS does not

include r = 0, we do not consider this region where yl(kr) becomes un-

bounded and hence are unable to set D = 0 as previously. Applying the

Neumann boundary conditions, ensuring C, D 6= 0, we obtain the eigen-

value problem:

j′l(αlp)y′l(λαlp)− y′l(αlp)j′l(λαlp) = 0, (159)
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4.1 diffusion of calcium in spherical compartments

(a)
(b)

Figure 21.: Examples of a) the Spherical Bessel functions of the second kind and b) the

cross product derivatives.

where we have set k =
αlp

a
, for αlp - the pth solution to the lth order problem.

This boundary condition is plotted in Figure. 21b, with the eigenvalues, α,

given by the points that cross product derivative, cpdl(α) crosses the hori-

zontal axis.

We also see from our boundary conditions that we can combine C and D

from Eq. (158), into a single constant, C̄, by writing:

z(kr) = C̄z̄(kr), (160)

where:

z̄(kr) = jl(kr)−
j′l(αlp)

y′l(αlp)
yl(kr), (161)

and by orthogonality of our solutions we find this constant to be:

C̄lp =
2
∫ λa

a z̄0(r′)z̄l(
αlp

a
r′)r′2dr′(

(λa)3 − λal
(l + 1)

α2
lp

) [
z̄l(λαlp)

]2 −(a3 − al
(l + 1)

α2
lp

) [
z̄l(αlp)

]2 .

(162)
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4.2 diffusion of calcium in spheroidal compartments

Combining this result with the temporal and angular solutions found in the

previous section, Eqs. 1. and 3. of Eq. (145), we have the overall solution:

u(r, θ, t) =
T0

2π

∫ 2π

0
h0(ψ

′)dψ′
∞

∑
l=0

(2l + 1)
∫ π

0
q0(θ

′)Pl(cos ψ) sin θ′dθ′

×
∞

∑
p=1

∫ λa
a z̄0(r′)z̄l(

αlp

a
r′)z̄l(

αlp

a
r)r′2dr′(

(λa)3 − λal
(l + 1)

α2
lp

) [
z̄l(λαlp)

]2 −(a3 − al
(l + 1)

α2
lp

) [
z̄l(αlp)

]2

× e
−
(αlp

a

)2

Dpnst
.

(163)

The solution is in the form of Eq. (153) where:

u(r′, θ′, ψ′, 0) = z̄0(r′)q0(θ
′)h0(ψ

′)T0, (164)

with Green’s function:

G(r, θ, φ, t, r′, θ′, φ′) =

∞

∑
l=0

(2l + 1)
2π

Pl(cos ψ)
∞

∑
p=1

z̄l(
αlp

a
r′)z̄l(

αlp

a
r)

Nlp
e
−
(αlp

a

)2

Dpnst
,

Nlp =

(
(λa)3 − λal

(l + 1)
α2

lp

) [
z̄l(λαlp)

]2 −(a3 − al
(l + 1)

α2
lp

) [
z̄l(αlp)

]2 .

(165)

Full details of all calculations from this section can be found in Appendix

A.

4.2 diffusion of calcium in spheroidal compartments

Here the Green’s function for the spheroidal case is obtained. It will be

demonstrated in Section 6, that the spheroid is a more realistic approxima-

tion for the nuclei of root hair cells. Furthermore, the importance of using
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4.2 diffusion of calcium in spheroidal compartments

the more generalised spheroidal geometry for a more realistic application

is noted in several papers including [6] and [18]. In this work, the nucle-

oplasm is modelled as prolate spheroid, which is obtained by rotating the

elliptic coordinates about the major axis such that, at z = 0, the surface on

the two principle axis gives a circle of radius a. The spheroidal coordinate

system is written in terms of the Cartesian coordinates, (x, y, z), as:

x = c
√
(ξ2 − 1)(1− ν2) cos φ,

y = c
√
(ξ2 − 1)(1− ν2) sin φ,

z = cξν,

(166)

where c is the focal point of the ellipse, given by:

c =
√

b2 − a2, (167)

for the prolate spheroid in which b > a as illustrated in Figure. 22. The

PNS is the volume contained within the two surfaces of the INM and ONM

which, in this case, are 2D prolate spheroidal surfaces at ξ0 and ξ1, where:

ξ0 =
b0

c0
. (168)

and

ξ1 =
b0 + h
c0 + h

=
b1

c1
. (169)

We have set the width of the PNS as h with foresight to ensure that ξ0 6= ξ1

and hence that the eigenvalue problem in Eq. 188 is nontrivial. This means

that, due to the nature of the coordinate system, the INM is ’less spherical’

than the ONM.

4.2.1 Derivation of the Green’s function for a prolate spheroid

We wish to solve the diffusion Eq. :

∂u(r, t)
∂t

= Dnuc∇2u(r, t), (170)
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4.2 diffusion of calcium in spheroidal compartments

(a) (b)

Figure 22.: Representation of the domain to be modelled as a) the spheroidal shell and

b) an extension of the 2D ellipse.

with the calcium concentration, u(r, t), denoted at time t and position r =

(ξ, ν, φ), in the domain:

1 ≤ ξ ≤ ξ0, −1 ≤ ν ≤ 1, 0 ≤ φ < 2π, (171)

with ξ0 = b
c , for focal point c =

√
b2 − a2. In prolate spheroidal coordinates

our Laplacian is

∇2 =

1
c2(ξ2 − ν2)

[
∂

∂ξ

(
(ξ2 − 1)

∂

∂ξ

)
+

∂

∂ν

(
(1− ν2)

∂

∂ν

)
+

(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2

∂φ2

]
.

(172)

We write:

v(ξ, ν, φ, t) = p(ξ)q(ν)s(φ)T(t), (173)
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4.2 diffusion of calcium in spheroidal compartments

and using separation of variables, we recover 4 ODEs:

1. T′(t) + k2DT(t) = 0,

2. s′′(φ) + µ2s(φ) = 0,

3.
∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
−
(

λ− γ2ξ2 +
µ2

(ξ2 − 1)

)
p(ξ) = 0,

4.
∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
+

(
λ− γ2ν2 − µ2

(1− ν2)

)
q(ν) = 0,

(174)

where k, µ and λ are separation constants, and γ2 = k2c2. The correspond-

ing solutions to the set of ODEs are:

1. T(t) = T0e−k2Dt,

2. s(φ) =

sin(µφ)

cos(µφ),

3. p(ξ) = R(1)
µl (γ, ξ) + BR(2)

µl (γ, ξ),

4. q(ν) = Sµl(γ, ν),

(175)

where R(i)
µl (γ, ξ) is the prolate radial wave function of the ith kind, plotted

in Figure. 23, and Sµl(γ, ν) is the prolate angular wave function, plotted in

Figure. 24, with both functions having order µ and degree l, along with a

shared eigenvalue λl
µ(γ). We have two sets of possible solutions in the φ

direction, which we keep separate for ease of normalisation, however, we

can linearly combine these two sets of solutions later for computation.

Boundary conditions

1. T(0) = T0,

2. s(0) = s(2π)

3. lim
ξ→1

p(ξ) < ∞, p′(ζ0, γ) = 0,

4. lim
ν→±1

q(ν) < ∞,

(176)

For our time component we have the initial condition given in Eq. 1. of

176 which is already reflected in our solution in Eq. 1. of 175. For s(φ)
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4.2 diffusion of calcium in spheroidal compartments

(a) (b)

Figure 23.: Examples of the radial prolate spheroidal wave-functions (PSWF’s) with m =

0 of the a) first and b) second kind.

we require the periodicity condition given in Eq. 2. of 176 which holds for

µ ∈ Z and so we have µ = m = 0, 1, 2, ..... In our ’radial’ coordinate we

have the inhomogeneous conditions stated in Eq. 3. of 176. We require that

the solution is bounded at the line segment ξ = 1 and hence, as R(2)(ξ, γ)

divergences at the origin, we set B = 0 and henceforth refer to R(1)(ξ, γ)

as R(ξ, γ). At the opposite end of the domain we demand there is no flux

across the outer boundary, that is, at ξ = ξ0:

dRml(ξ, γmlp)

dξ

∣∣∣∣
ξ=ξ0

= 0, (177)

which we solve for γmlp - the pth zero of the derivative of the radial spheroidal

wave function of order m and degree l. Finally the angular spheroidal wave

functions are bounded on (−1, 1) as specified in Eq. 176 (4). These solu-

tions exist only for the eigenvalues λml(γ
2
mlp) of the separation parameter λ

where l = m, m+ 1, m+ 2... and hence we restrict our degree to these values.
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4.2 diffusion of calcium in spheroidal compartments

Figure 24.: Example of the angular prolate spheroidal wave-functions with m = 0.

Normalisation

The functions in our spatial domain are normalised using the following

orthogonality relation:

∫ 2π

0

∫ 1

−1

∫ ξ0

1
uml(ξ, ν, φ)unk(ξ, ν, φ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ

=

0, m 6= n, l 6= k,

Nmn, m = n, l = k.
(178)

We can normalise the angular spheroidal wave functions by the scheme

utilised for the associated Legendre polynomials as given in Eq. 300 and

hence write Nlm =
2

2l + 1
.

Our combined solutions give:

v(ξ, ν, φ, t) = AmlpR(1)
ml (ξ, γmlp)Sml(ν, γmlp)

sin(mφ)

cos(mφ)
e−k2Dnuct, (179)

and to find the coefficient Amlp we take our initial condition:

v(ξ, ν, φ, 0) = p0(ξ)q0(ν)s0(φ) = AmlpR(1)
ml (ξ, γmlp)Sml(ν, γmlp)

sin(mφ)

cos(mφ)
,

(180)
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4.2 diffusion of calcium in spheroidal compartments

and multiply by R(1)
nk (ξ, γnkp)Snk(ν, γnkp)

sin(nφ)
cos(nφ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2− ν2)

and integrate over the whole domain to find:

Amlp =

1
Nml

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)s0(φ)R(1)

ml (ξ
′, γmlp)Sml(ν

′, γmlp)
sin(mφ′)

cos(mφ′)

×
√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ.

(181)

Our full solution is therefore given by:

v(ξ, ν, φ, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)s0(φ)R(1)

ml (ξ
′, γmlp)

× R(1)
ml (ξ, γmlp)Sml(ν, γmlp)Sml(ν

′, γmlp)
sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)

√
(ξ2 − 1)

×
√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dnuct +

∞

∑
l=0

∞

∑
p=1

1
2πN0l

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)

× q0(ν)s0(φ)R(1)
0l (ξ

′, γ0lp)R(1)
0l (ξ, γ0lp)S0l(ν, γ0lp)S0l(ν

′, γ0lp)
√
(ξ2 − 1)

×
√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dnuct,

(182)

This is in the form:∫
D

v(ξ, ν, φ, 0)G(ξ, ξ ′, ν, ν′, φ, φ′, t)dΩ, (183)

with Green’s function:

G(ξ, ξ ′, ν, ν′, φ, φ′, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

R(1)
ml (ξ

′, γmlp)R(1)
ml (ξ, γmlp)

× Sml(ν, γmlp)Sml(ν
′, γmlp)

sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)
e−k2Dnuct

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

R(1)
0l (ξ

′, γ0lp)R(1)
0l (ξ, γ0lp)S0l(ν, γ0lp)S0l(ν

′, γ0lp)e
−k2Dnuct

+
1
V

.
(184)
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4.2 diffusion of calcium in spheroidal compartments

4.2.2 Derivation of the Green’s function for a prolate spheroidal shell

For the PNS in the spheroidal case, we consider the diffusion of calcium in a

compartment contained within two confocal prolate spheroids, defined by:

ξ0 ≤ ξ ≤ ξ1, −1 ≤ ν ≤ 1, 0 ≤ φ < 2π, (185)

where ξ0 defines the spheroidal surface of the nucleoplasm given in the

previous section, and ξ1 = b1
c1

defines the surface of the outer nuclear mem-

brane. The governing PDE remains the same and hence so does the set of

separated ODE’s. Eq. 3. of 175 however, is now considered for the domain

ξ0 ≤ ξ ≤ ξ1 and hence, as the domain does not include ξ = 1, our solution

is now a linear combination of the radial wave functions of the first and sec-

ond kind so that B 6= 0. In this case we also require our Neumann condition

to hold on both radial boundaries:

p′(ξ)|ξ=ξ0 = 0, p′(ξ)|ξ=ξ1 = 0. (186)

which can be written as the system:R(1)
ml
′(ξ0, γ) R(2)

ml
′(ξ0, γ)

R(1)
ml
′(ξ1, γ) R(2)

ml
′(ξ1, γ)

1

B

 =

0

0

 , (187)

and hence we find our eigenvalue problem:

R(1)
ml
′(ξ0, γmlp)R(2)

ml
′(ξ1, γmlp)− R(1)

ml
′(ξ1, γmlp)R(2)

ml
′(ξ0, γmlp) = 0, (188)

to be solved numerically for γmlp; the pth zero for the mth order, lth degree

solution.

From this condition we can write:

R(1)
ml
′(ξ0, γmlp)−

R(1)
ml
′(ξ1, γmlp)

R(2)
ml
′(ξ1, γmlp)

R(2)
ml
′(ξ0, γmlp) = 0, (189)

and therefore, when compared to Eq. 187, we find our coefficient:

B = −
R(1)

ml
′(ξ1, γmlp)

R(2)
ml
′(ξ1, γmlp)

. (190)
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4.2 diffusion of calcium in spheroidal compartments

We write our solution to the radial equation as:

Zml(ξ, γmlp) = R(1)
ml (ξ, γmlp) + BR(2)

ml (ξ, γmlp), (191)

and therefore recombine our solutions to find:

v(ξ, ν, φ, t) = AmlpZml(ξ, γmlp)Sml(ν, γmlp)
sin(mφ)

cos(mφ)
e−k2Dnuct, (192)

and again find our coefficient Amlp by taking our initial condition:

v(ξ, ν, φ, 0) = p0(ξ)q0(ν)s0(φ) = AmlpZml(ξ, γmlp)Sml(ν, γmlp)
sin(mφ)

cos(mφ)
,

(193)

and multiplying by

Znk(ξ, γnkp)Snk(ν, γnkp)
sin(nφ)
cos(nφ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)

and integrating over the new domain to find:

Amlp =

1
Nml

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Zml(ξ
′, γmlp)Sml(ν

′, γmlp)
sin(mφ′)

cos(mφ′)

×
√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ.

(194)

Our full solution is therefore given by:

v(ξ, ν, φ, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Zml(ξ
′, γmlp)

× Zml(ξ, γmlp)Sml(ν, γmlp)Sml(ν
′, γmlp)

sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)

√
(ξ2 − 1)

×
√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dnuct

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Z0l(ξ
′, γ0lp)Z0l(ξ, γ0lp)

× S0l(ν, γ0lp)S0l(ν
′, γ0lp)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dnuct,

(195)

which is in the form:∫
D

v(ξ, ν, φ, 0)G(ξ, ξ ′, ν, ν′, φ, φ′, t)dΩ, (196)
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4.3 pump and channel dynamics

with Green’s function:

.

G(ξ, ξ ′, ν, ν′, φ, φ′, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

Zml(ξ
′, γmlp)Zml(ξ, γmlp)Sml(ν, γmlp)Sml(ν

′, γmlp)

× sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)
e−k2Dnuct

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

Z0l(ξ
′, γ0lp)Z0l(ξ, γ0lp)S0l(ν, γ0lp)S0l(ν

′, γ0lp)e
−k2Dnuct

+
1
V

.
(197)

Full details of spheroidal calculations can be found in Appendix. B.

4.3 pump and channel dynamics

4.3.1 Deriving the pump and channel equations

Introducing pumps and channels into our equations involves creating sites

at which there may be a flux, J, across the inner nuclear membrane. Taking

the spherical geometry, these fluxes are written as the derivative of the con-

centration normal to the membrane at r = a. This is split into flux out of

the PNS:

Jpns(θc, φc, τ) = Dpns
∂Cpns(r, θc, φc, τ)

∂r

∣∣∣∣
a+

, (198)

through a channel, c, on the luminal side of the membrane, r = a+, where

the calcium concentration is measured in the PNS as Cpns and flux out of

the nucleolus:

Jnuc(θp, φp, τ) = Dnuc
∂Cnuc(r, θp, φp, τ)

∂r

∣∣∣∣
a−

, (199)

for pump, p, on the cytosolic side of the membrane, r = a−, where the

calcium concentration is measured in the nucleolus as Cnuc. Each of these

requires an equal and opposite flux from the corresponding compartment
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4.3 pump and channel dynamics

due to continuity. That is, for the channel, an equal and opposite flux to

that leaving the PNS must enter the cytosol:

Jnuc(θc, φc, τ) = −Jpns(θc, φc, τ), (200)

and for the pumps the outward normal concentration from the cytosol must

be balanced with an inward flux into the PNS:

Jpns(θp, φp, τ) = −Jnuc(θp, φp, τ). (201)

For the calcium channels we assume that opening is achieved through

calcium-induced calcium release (CICR), that is, channel firing is triggered

depending upon the calcium concentration profile immediately adjacent to

the channel. This dependence can be represented in the form of a Hill

function:

α(C) =
Cn

(KA)n + Cn , (202)

where the fraction of channel conductance, α(C) ∈ [0, 1], is determined by

the concentration of calcium immediately adjacent to the channel and over

a small concentration window, centred around the half maximal effective

concentration, KA, the channel can allow partial conduction. KA is depen-

dent upon the equilibrium constant for calcium binding to the channel, Kd,

such that:

(KA)n = Kd =
kd

ka
, (203)

where kd and ka are the dissociation and association constants for the chem-

ical binding of Ca2+ to the channel. The steepness of the curve, and hence

the range of concentration values at which partial opening is possible, de-

pends upon the Hill coefficient, n ∈N, representing the number of coopera-

tive Ca2+ binding sites on the channel. Alternatively a step-function can be

used to determine α(C), in which case the channel is exclusively ’off’ or ’on’

depending on the surpassing of a set threshold concentration Cth. The step
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4.3 pump and channel dynamics

(a) (b)

Figure 25.: (a) Pump Hill-function and (b) channel step-function dynamics. (a) An KA

of 0.17 µM results in the pump operating when the concentration in nucle-

oplasm exceeds its resting level of 0.15 µM. (b) A threshold, cth, of 600 µM

results in maximal channel firing when calcium concentration in the PNS is

at or exceeds this value.

function is the limiting form of the Hill function for n → ∞ and is written

as:

α(C) =

0, C < Cth,

1, C ≥ Cth.
(204)

Plots of a Hill function for pump conductance and a step function for chan-

nel conductance are shown in Figures. 25 a) and b) respectively.

We model our channels to allow Fickian diffusion across the membrane,

which utilises the large concentration difference between the PNS and the

nucleoplasm. The transport time taken for calcium to cross the membrane

is represented by parameter "g". Using Eq. 202 or 204 for the fraction of

channel conductance, αc(C), the final equation to describe channel opening

is given as the flux from the PNS store:

Jpns(a, θc, φc, τ) =

− αc(Cpns(a+, θc, φc, τ))g(Cpns(a+, θc, φc, τ)− Cnuc(a−, θc, φc, τ)).
(205)

for a channel at position (a, θc, φc), at time τ. In mammalian ER, the preva-

lent view is that channel gating is controlled by the Ca2+ concentration in
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4.3 pump and channel dynamics

the cytosol, however, luminal binding sites have been discovered [23]. Cy-

tosolic gating would appear logical if the function of the channel was to

refill a compartment when concentrations fell too low, for example due to

buffering. In this case however, the upstream calcium signal is external and

for this reason we have chosen to use the concentration on the luminal side

of the INM as the determinant of channel opening. The concentration in

the cytosol is still considered a factor however, with the difference between

PNS and nucleoplasmic Ca2+ concentrations scaling the total flux into the

nucleus. Satisfying conservation laws, the corresponding flux into the nu-

cleus is given in Eq. 200, and, using Eq. 198, can also be written in terms of

the concentration gradient:

∂Cnuc(r, θc, φc, τ)

∂r

∣∣∣∣
a−

= −
Dpns

Dnuc

∂Cpns(r, θc, φc, τ)

∂r

∣∣∣∣
a+

. (206)

Unlike the channels, which work through standard Fickian diffusion, pumps

require energy to transport the calcium ions against the concentration gra-

dient. Flux through the pumps is therefore determined by pump currents,

I, which are taken from experimental measurements given in the literature.

They are converted to flux, using the formula:

J = IG, (207)

with conversion factor:

G =
1

zFA
, (208)

where z is the valency (always equal to 2 for calcium), F is the Faraday

constant and A is the pump area. We write the flux out of the nuceloplasm

as:

Jnuc(θp, φp, τ) = −αp(Cnuc(a−, θp, φp, τ))GImax
p , (209)

with a maximum pump conductance of Imax
p and the fraction of pump con-

ductance, αp(C), given by the Hill function in Eq. 202. In mammalian cells

a SERCA pump is commonly represented by this expression using a Hill co-

efficient of 2. Again to satisfy continuity across the membrane we have the
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4.3 pump and channel dynamics

equal and opposite flux in the PNS given in Eq. 201, which can be written

using Eq. 199, as:

∂Cpns(r, θp, φp, τ)

∂r

∣∣∣∣
a+

= −Dnuc

Dpns

∂Cnuc(r, θp, φp, τ)

∂r

∣∣∣∣
a−

. (210)

These equations are coupled with the semi-analytic solutions for the diffu-

sion of calcium in each compartment, which are in the form given in Eq. 153.

We initially set no flux conditions on the radial boundaries of both the nu-

cleoplasm and PNS so that time- and location-dependent fluxes could be

added later on. This is achieved by extending our solutions according to

the ’magic rule’ of Barton [11]:

C(x, t) =
∫

Ω
G(x, x′, t)C(x′, t)dV′

+D
∫

t

∫
ω

G(x, x′, t)
∂C(x′, t)

∂n
dS′dt.

(211)

where x ∈ Ω are our coordinates in the Volume, V, and ω denotes the

domain of our surface, S. Therefore our entire system can be described by

the following final set of equations:

Cnuc(r, θ, φ, t) =∫ a

0

∫ π

0

∫ 2π

0
Cnuc(r′, θ′, φ′, 0)Gnuc(r, θ, φ, r′, θ′, φ′, t)dφ′ sin θ′dθ′r′2dr′

+ Dnuc

∫ t

0

∫ π

0

∫ 2π

0

∂Cnuc(r′, θ′, φ′, t)
∂r′

∣∣∣∣
r′=a

Gnuc(r, θ, φ, r′, θ′, φ′, t)dφ′ sin θ′dθ′dt′,

(212)

Cpns(r, θ, φ, t) =∫ b

a

∫ π

0

∫ 2π

0
Cpns(r′, θ′, φ′, 0)Gpns(r, θ, φ, r′, θ′, φ′, t)dφ′ sin θ′dθ′r′2dr′

+ Dpns

∫ t

0

∫ π

0

∫ 2π

0

∂Cpns(r′, θ′, φ′, t)
∂r′

∣∣∣∣
r′=a

Gpns(r, θ, φ, r′, θ′, φ′, t)dφ′ sin θ′dθ′dt′,

(213)
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Jnuc(θ
′, φ′, t) =


−αp(Cnuc(a−, θ′, φ′, t))GImax

p , θ′ = θp, φ′ = φp, t = τ,

−Jpns(θ′, φ′, t), θ′ = θc, φ′ = φc, t = τ,

0, otherwise,
(214)

Jpns(θ
′, φ′, t) =

−αc(Cpns(a+, θ′, φ′, t))g

×(Cpns(a+, θ′, φ′, t)− Cnuc(a−, θ′, φ′, t)), θ′ = θc, φ′ = φc, t = τ,

−Jnuc(θp, φp, τ), θ′ = θp, φ′ = φp, t = τ,

0, otherwise,
(215)

where αp and αc denote the pump and channel conductance, and Gnuc and

Gpns are as given in Eqs. 152 and 163 respectively.

In prolate spheroidal coordinates these equations become:

Cnuc(ξ, ν, φ, t) =∫ ξ0

1

∫ 1

−1

∫ 2π

0
Cnuc(ξ

′, ν′, φ′, 0)Gnuc(ξ, ν, φ, ξ ′, ν′, φ′, t)dφ′
√

ξ2 − ν2dν′dξ ′

+ Dnuc

∫ t

0

∫ 1

−1

∫ 2π

0

∂Cnuc(ξ ′, ν′, φ′, t)
∂ξ ′

|ξ ′=ξ0 Gnuc(ξ, ν, φ, ξ ′, ν′, φ′, t)dφ′dν′dt′,

(216)

Cpns(ξ, ν, φ, t) =∫ ξ1

ξ0

∫ 1

−1

∫ 2π

0
Cpns(ξ

′, ν′, φ′, 0)Gpns(ξ, ν, φ, ξ ′, ν′, φ′, t)dφ′
√

ξ2 − ν2dν′dξ ′

+ Dpns

∫ t

0

∫ 1

−1

∫ 2π

0

∂Cpns(ξ ′, ν′, φ′, t)
∂ξ ′

|ξ ′=ξ0 Gpns(ξ, ν, φ, ξ ′, ν′, φ′, t)dφ′dν′dt′,

(217)
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Jnuc(ν
′, φ′, t) =


−α(Cnuc(ξ

−
0 , ν′, φ′, t))GImax

p , ν′ = νp, φ′ = φp, t = τ,

−Jpns(ν′, φ′, t), ν′ = νc, φ′ = φc, t = τ,

0, otherwise,
(218)

Jpns(ν
′, φ′, t) =

−α(Cpns(ξ
+
0 , ν′, φ′, t))g

x(Cpns(ξ
+
0 , ν′, φ′, t)− Cnuc(ξ

−
0 , ν′, φ′, t)), ν′ = νc, φ′ = φc, t = τ,

−Jnuc(νp, φp, τ), ν′ = νp, φ′ = φp, t = τ,

0, otherwise,
(219)

for the Green’s functions, Gnuc and Gpns, given in Eqs. 360 and 376.

4.3.2 Pumps and channels as a system of ODE’s

Here we look at the above flux equations in the absence of diffusion. In this

case we consider simply the movement of calcium between the two com-

partments through pump and channel dynamics alone. We have no spatial

component and hence remove the diffusion coefficients and formulate the

above expressions for Cnuc and Cpns as ordinary differential equations as

follows:

dCnuc

dt
= −VRαpGImax

p + VRαcg(Cpns − Cnuc), (220)

dCpns

dt
= −αcg(Cpns − Cnuc) + αpGImax

p (221)

with,

αc =
Cnc

pns

Cnc
pns + KAnc

c
, (222)
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αp =
Cnp

nuc

Cnp
nuc + KAnp

p
, (223)

and

G =
1

zF
, (224)

where we now have no dependence on area. This is accounted for in the

additional term:

VR =
Vpns

Vnuc
, (225)

which is the volume ratio between the two compartments, and necessarily

appears when reducing our system from three to one dimension in space.

Steady states

Setting
dCnuc

dt
= 0, (226)

and, due to the coupling of compartments,

dCpns

dt
= 0 (227)

also. We let
αp

αc
= αR, (228)

and find:

Cpns = Cnuc + GRαR. (229)

where we have set GR =
GImax

p
g . For αp, αc constant this gives us a straight-

forward relationship between the concentrations in the two compartments,

however as αp and αc depend upon Cnuc and Cpns respectively furthur anal-

ysis is required. Substituting in Eqs. 222 and 223 into Eq. 229 we find:

Cnp+1
nuc Cnc

pns + KAnc
c Cnp

nucGR + KAnp
p CnucCnc

pns + GRCnc
pnsCnp

nuc − Cnc+1
pns Cnp

nuc

−KAnp
p Cnc+1

pns = 0.
(230)
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This equation can be solved numerically, with the number of solutions de-

pendent upon the values of np and nc. The system will therefore approach

one of these solutions in accordance with the initial conditions.

Numerical evaluation

Figure 26.: Numerical solution of the pump and channel ODE’s showing a constant con-

centration is reached in both compartments. Parameter values used are: KAc

= 299.0, Imax
c = 4900e-11, nc = 120, np = 20, KAp = 0.15, Imax

p = 1400e-10, â =

4.5 and h = 0.45, with initial concentrations C0nuc = 0.15, C0pns =299.

Our pump and channel system of equations was integrated using Matlab’s

ode45. For the equivalent system without a spatial component we see in

Figure. 26 that the system reaches a steady state. The lack of a periodic

orbit is confirmed through the use of bifurcation software XPP. Figure. 27

shows the nullcline and phase-space for our system, and we see that the

concentration in each compartment will tend towards one of the infinite sta-

ble steady state’s dependent upon the initial conditions.
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4.3 pump and channel dynamics

Figure 27.: A phase space diagram for the pump/channel ODE system with the nullcline

in green and the bold black line representing the evolution of the system from

an initial condition of [300,0.15] µM.

Finally, a parameter space analysis was performed for the channel release

rate, g, the number of pumps, Np, and the half maximal effective concentra-

tion of the channels, KAc, with results given in Figure. 28. We see that for

a constant KAc, the channel release rate has very little effect on the steady

state concentrations reached, which are effected predominantly by the num-

ber of pumps. As the number of pumps increases from 4 to 26 we see that

the steady state concentration in the nucleoplasm increases from approx-

imately 0.5 µM to 3.5 µM whilst the concentration in the PNS decreases

from approximately 298 µM to 289 µM.

When the number of pumps is constant however we see that the increas-

ing of both g and KAc has the effect of increasing nucleoplasmic concen-

trations and hence decreasing those in the PNS. An interesting artefact is

that increasing g has a much greater influence on the steady states below

200 s−1µm3, after which furthur increases lead to a diminished return. In-

creasing g also has a greater effect when the KAc is larger, demonstrated in
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4.3 pump and channel dynamics

the figure by the larger gradient of the contours for a higher KAc.

(a)

(b)

Figure 28.: A parameter space evaluation showing the effect of g, Np, and KAc on the

resultant steady state concentration in a) the nucleoplasm and b) the PNS.

It is also interesting to note how all three parameters interact, as the final

row of our figures shows that the value of g determines the proportion

of effect that the KAc will have on steady state concentrations in compar-

ison to Np. At low channel release rates, an increase in KAc results in a

decrease/increase in the nucleoplasmic/PNS concentrations, whereas as g
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increases the KAc appears to have little to no effect. This is likely due to

the coincident effect of increasing the number of pumps when increasing

channel release rate, due to the higher requirement for these pumps to bal-

ance out the larger influxes through the channels. This is evidenced by the

fact that increasing channel release rates from 7 s−1µm−3 to 700 s−1µm−3

increases the range of concentrations modulated by the pumps from approx-

imately 0.1 µM to 1.2 µM in the nucleoplasm and from 0.3 µM to 4 µM in

the PNS.

The lack of calcium oscillations in this system, compared to what we will

see in the 3D system in Section. 7, shows that the spatial contribution is

critical to patterning and hence emphasises the importance of modelling

our domain in full.

4.4 model summary

• A 3D model was derived for the diffusion of calcium in the nucle-

oplasm and the PNS for spherical coordinates, using the spherical

Bessel functions and Legendre functions.

• A second 3D model was derived for the diffusion of calcium in the

nucleoplasm and the PNS for prolate spheroidal coordinates, using

the radial and angular prolate spheroidal wave-functions.

• The pump and channel dynamics were formulated as flux equations,

written as the normal derivative of the concentration at the membrane,

whilst ensuring conservation of concentration.

• The differences between the pumps and channels in terms of their

purpose and functionality were considered in order to model their

mechanisms as accurately as possible.
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4.4 model summary

• CICR by the channels is modelled by the product of a threshold com-

ponent for channel opening and Fickian diffusion which utilises the

concentration difference across the membrane.

• The pumps are modelled using the fraction of conductance and max-

imum flux which is converted from values for the cross-membrane

current.

• Pump and channel equations are coupled to the diffusion equations

through the ’magic rule’ of Barton (2005) [11].

• It is shown that, in the absence of diffusion, the system of pumps

and channels alone is unable to create oscillatory calcium dynamics,

highlighting the importance of a spatio-temporal model.

• A parameter space analysis of the ODE system showed that the num-

ber of pumps is a dominating factor in modulating the steady state

concentration in each compartment.
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5
N U M E R I C S

The Green’s functions calculated in Sections 3 and 4 are increasingly diffi-

cult to compute numerically, due to the increase in complexity of the special

functions used in higher dimensions. In addition, as our Green’s functions

are infinite sums, we must computationally approximate our Green’s func-

tions by choosing a truncation which allows for the properties of the Green’s

function to remain satisfied. In this section we will discuss these properties

and provide the results of our numerical checks to demonstrate that the

Green’s functions have been computed correctly. Some test simulation re-

sults for the flux and diffusion of calcium will also be given in one- and

two-dimensions in order to check the method of simulation. Finally, the

limitations of the method will be discussed, in particular the challenges ex-

perienced in coding the Green’s function in prolate spheroidal coordinates.

5.1 numerical checks

5.1.1 Checks for 1D

For a differential equation of the form:

Lc(x) = f (x), (231)
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5.1 numerical checks

where L is the differential operator D∇2, the corresponding Green’s func-

tion, G(x, x′) satisfies:

LG(x, x′) = δ(x− x′), (232)

where δ(x) is the Dirac delta distribution which can be defined, for any well

behaved function f (x), such that:

∫ x2

x1

f (x)δ(x− x′)dx =

 f (x′), x1 < x′ < x2

0, x′ /∈ (x1, x2).
(233)

Using this property of the delta function we multiply Equation. (232) by

f (x′) and integrate over our domain to find:∫
Ω
LG(x, x′) f (x′)dx′ =

∫
Ω

δ(x− x′) f (x′)dx′, (234)

where from Eq. (233) it is clear that the right hand side is equal to f (x), and

moving L outside the integral (as it only operates on x), we find the left

hand side equals Lc(x). Therefore we see that this returns the problem in

Eq. (231) and that c(x) has the integral form:

c(x, x′) =
∫

Ω
G(x, x′) f (x′)dx′ (235)

We use the above to check the numerical computation of our Green’s func-

tion. Firstly we set t = 0 to find the time-independent kernel G(x, x′, 0) =

K(x, x′) where K(x, x′) = δ(x− x′). We then choose an appropriate function

f (x′) and integrate over our spatial domain to find:∫
Ω

G(x, x′, 0) f (x′)dx′ =
∫

Ω
δ(x− x′) f (x′)dx′ = f (x). (236)

In the following numerical checks we have chosen a Gaussian distribution

with a mean µ and standard deviation σ, such that:

f (x′) = e
−(x′−µ)2

2σ2 . (237)

This convolution will return the Gaussian if the computed Green’s function

is indeed a delta function in x at t = 0. We are also required to truncate

83



5.1 numerical checks

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 29.: Checks for the validity of the computed Green’s function show that at each

point xi ∈ x′ for i = 1...N, where N is the numerical mesh size, we have a

delta function at t = 0. Here for illustrations sake we show this at the central

mesh point for a) the Neumann, d) the Dirichlet and g) the nonzero domain

problem. Truncation of the infinite sum at too high a number of eigenvalues

will result in incorrect convolution as seen for b) the Neumann, e) Dirichlet

and h) nonzero case where the original Gaussian (blue dotted line) and the

test function (black solid line) do not coincide. Optimal truncation for the

given mesh size results in the return of the Gaussian function f (x′), as illus-

trated by the perfect overlap of the blue dotted and black solid lines, when

convolved with the c) Neumann, f) Dirichlet or i) nonzero domain Green’s

function.

84



5.1 numerical checks

the infinite sum in order to compute our solution. These checks also allow

for the calibration of the mesh size aligning with the specific truncation by

ensuring the numerical approximation of the solution returns the correct

Gaussian function after convolution. If the number of eigenvalues used is

too high then the resulting Gaussian will have the correct shape but will

be stretched in the y direction. For the final model using the finest possi-

ble mesh for our computational capacity, the number of eigenvalues was

varied in order to determine the optimal combination. When a correct num-

ber of eigenvalues is used, the input and output functions will overlap and

the returned Gaussian will have a maximum of 1.0 at x = µ. The results

of these checks for the Neumann, Dirichlet and nonzero domain Green’s

functions, given in Eq. (20), Eq. (27) and Eq. (36) respectively, can be seen

in Figure. 29. For a lower number of eigenvalues there are more ‘wiggles’

around the point source, as demonstrated in Figure. 29 (g), where we have

N = 1000 mesh points, however these are small compared to the magnitude

of the peak, and will dampen even further with the inclusion of the expo-

nentially decaying time component.

A further general property of the δ-function is:∫ ∞

−∞
δ(x)dx = 1, (238)

and hence further checks can be performed by integrating our Green’s func-

tion at t = 0 over the entire domain, to obtain a value of 1 at each point

∈ x.

5.1.2 Checks for 2D polar coordinates

We extend the theory of section 5.1.1, to two dimensions to perform checks

on the numerical accuracy of our Green’s functions in 2D. For a differential

equation of the form:

Lc(x) = F(x), (239)
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5.1 numerical checks

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 30.: Checks for the validity of the computed Green’s function in two dimensions.

At each point (ri, θj) ∈ Σ for i = 1...N, j = 1...M, we expect a delta function

at t = 0. This is seen in a) for the disc and d) in one dimension for the

point ( a
2 , π). This accuracy of the point of truncation is demonstrated in

b) and compared to the original Gaussian given in c). By inspection these

look identical however we use one dimensional cuts through both Gaussian’s

so we can check the overlap at different points in 1D, which is shown at a

central point for r and θ in e) and f) respectively. Corresponding figures for

the annulus are seen in g-l.
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5.1 numerical checks

where L is the differential operator D∇2 and x is now the two dimensional

space (r, θ), the corresponding Green’s function, G(x, x′) satisfies:

LG(x, x′) = δ(x− x′). (240)

We multiply Equation. (240) by F(x′) and integrate over our domain, Σ, to

find: ∫
Σ
LG(x, x′)F(x′)dx′ =

∫
Σ

δ(x− x′)F(x′)dx′, (241)

where from the properties of the delta function, given previously in Equa-

tion. (233), it is clear that the right hand side is equal to F(x). Moving

L outside the integral (as it only operates on x), we find that this returns

the problem in Equation. (239) and the left hand side must equal Lc(x).

Therefore we see that c(x) has the integral form:

c(x, x′) =
∫

Σ
G(x, x′)F(x′)dx′. (242)

In this case at t = 0 we have the time-independent kernel G(r, r′, θ, θ′, 0) =

K(r, r′, θ, θ′) where K(r, r′, θ, θ′) = δ(r − r′)δ(θ − θ′). We then choose an

appropriate function F(r′, θ′) and integrate to find:∫
Σ

G(r, r′, θ, θ′, 0)F(r′, θ′)r′dr′dθ′ =
∫

Σ
δ(r− r′)δ(θ − θ′)F(r′, θ′)r′dr′dθ′

= F(r, θ).
(243)

In the following numerical checks we have chosen a Gaussian distribution

with a mean (µr, µθ) and standard deviation (σr, σθ), such that:

F(r′, θ′) = e
−
(

(r′−µr)2

2σ2
r

+
(θ′−µθ )

2

2σ2
θ

)
. (244)

This convolution will return the Gaussian if the computed Green’s function

is indeed a delta function at t = 0. The calibration of the mesh size with the

truncation of the infinite sum is slightly more difficult in this case as it must

be balanced with the number of mesh points in both the radial (N) and an-

gular directions (M). The results of these checks for the Neumann Green’s

function’s functions in both a disc (Eq. (54)) and an annulus (Eq. (70)) can
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5.1 numerical checks

be seen in Figure. 30. Here we show that the convolution and the Gaus-

sian closely coincide, providing evidence that K(ξ, ξ ′, ν, ν′) is indeed a delta

function in both cases.

5.1.3 Checks for 2D spheroidal coordinates

Continuing from, Eq. 242, we take the Green’s function in the ellipse from

Eq. 113 at t = 0 to be K(ξ, ξ ′, ν, ν′) = δ(ξ − ξ ′)δ(ν − ν′). Choosing the

Gaussian function:

F(ξ ′, ν′) = e
−
(

(ξ′−µξ )
2

2σ2
ξ

+
(ν′−µν)2

2σ2
ν

)
, (245)

with a mean (µξ , µν) and standard deviation (σξ , σν), we perform the test:∫
Σ

K(ξ, ξ ′, ν, ν′)F(ξ ′, ν′)(ξ ′2 − ν′2)dξ ′dν′ = F(ξ, ν), (246)

where we expect the convolution to return the original Gaussian F(ξ, ν) if

the Green’s function has been computed correctly. As before the truncation

of our sums in Eq. 242 at m = mmax and p = pmax must be correctly balanced

with our discrete values of dΣ used for the numerical evaluation of the

system. Checks for the Green’s functions on the ellipse and elliptic annulus

can be seen in Figure. 31. The overlap of the two functions shows a good

level of accuracy in our calculations. The apparent instabilities in the radial

part of Figure. 31 (c) are due to the limited number of eigenvalues available

for calculation and will be discussed later in this section.

5.1.4 Checks for 3D spherical coordinates

Extending our checks now to 3-dimensions, we take the Green’s function

for heat distribution in spherical coordinates, from Eq. 152, at t = 0 to

be K(r, r′, θ, θ′, φ, φ′) = δ(r − r′)δ(θ − θ′)δ(φ− φ′). Choosing the Gaussian

function:

F(r′, θ′, φ′) = e
−
(

(r′−µr)2

2σ2
r

+
(θ′−µθ )

2

2σ2
θ

+
(φ′−µφ)

2

2σ2
φ

)
, (247)
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5.1 numerical checks

(a) (b)

(c) (d)

Figure 31.: Checks for the Green’s function in the nucleoplasm in a) 1D and b) 2D, and

the corresponding checks Green’s function in the PNS.

with a mean (µr, µθ, µφ) and standard deviation (σr, σθ, σφ), we perform the

test: ∫
Σ

K(r, r′, θ, θ′, φ, φ′)F(r′, θ′, φ′)r2 sin(θ)dr′dθ′dφ′ = F(r, θ, φ). (248)

In the 3-dimensional case we now have a degree l in addition to m and p

over which we have a summation. We therefore require the truncation at

l = lmax, in addition to m = mmax and p = pmax. We are assured by the

overlap of the test and the original Gaussian in Figure. 32 that our kernel,

K(r, r′, θ, θ′, φ,′ ), is a δ-function in both compartments.
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5.1 numerical checks

5.1.5 Checks for 3D spheroidal coordinates

As above, we take our Green’s function from Eq. 376, at t = 0, to be

K(ξ, ξ ′, ν, ν′, φ, φ′) = δ(ξ − ξ ′)δ(ν− ν′)δ(φ− φ′). Using the Gaussian func-

tion:

F(ξ ′, ν′, φ′) = e
−
(

(ξ′−µξ )
2

2σ2
ξ

+
(ν′−µν)2

2σ2
ν

+
(φ′−µφ)

2

2σ2
φ

)
, (249)

with a mean (µξ , µν, µφ) and standard deviation (σξ , σν, σφ), we perform the

test:∫
Σ

K(ξ, ξ ′, ν, ν′, φ, φ′)F(ξ ′, ν′, φ′)(ξ ′2 − ν′2)dξ ′dν′dφ′ = F(ξ, ν, φ′), (250)

We again truncate our sum for the 3 sums at l = lmax, m = mmax and

(a)

(b)

Figure 32.: We see a very close recovery of the Gaussian by our test for the spherical

Neumann Green’s function in a) the nucleus and b) the annulus representing

the PNS.
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5.1 numerical checks

p = pmax in order to generate the function numerically. We see in Figure. 33

that this is achieved in both the nucleus and the PNS. As for the ellipse, we

do however observe some ’wiggles’ in the radial direction in the annular

compartment, due to the low number of eigenvalues we are able to obtain,

reasons for which are detailed in Section 5.6.2. These may be acceptable

due to the time-dependent component of of the Green’s function whose

exponential decay has the effect of smoothing out these tails to zero.

(a)

(b)

Figure 33.: We see a good replication of the Gaussian with our convolution for the

Green’s function in a) the nucleus and b) the annulus representing the PNS.
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5.2 simulations

5.2 simulations

5.2.1 Simulations in 1D

The diffusion of a concentration in space and time is evolved through solv-

ing the resulting integral for c(x, t) in Eq. (19) numerically. We have com-

puted and checked our Green’s function in advance and hence we use this

to iterate our solution for τ time-steps by computing the concentration at

each time ti+1 = ti + dt, for i = 0, 1...τ, such that:

c(x, ti+1) =
∫ L

0
G(x, x′, dt)c(x, ti)dx, (251)

from which c(x, ti+1) then becomes our new initial condition. We run these

simulations over τ = 1000 time-steps for both Neumann and Dirichlet

boundary conditions, the results of which are as expected and are shown in

figures 34 a) and b) respectively. For the Neumann case, as the simulation

is long enough for the system to reach a steady state, we can easily check

(a) (b)

Figure 34.: Diffusion of an initial point concentration source, c(x = 1.5, 0) = 10 µM, for

a) Neumann and b) Dirichlet boundary conditions, over τ =1000 time-steps

of duration dt = 0.1 s and with a diffusion coefficient of D = 0.1 µm2s−1.
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5.2 simulations

that the resulting profile is correct. As we have an initial condition given by:

c(x, 0) =

10 µMnm−1, x = 1.5,

0, otherwise,
(252)

we have a total of 0.1 µM given our mesh size dx = 0.01 nm. At steady state

we have a concentration of c(x, t) = 1
30 µMnm−1, ∀x ∈ (0, 3) nm, and hence

a total of 0.1 µM as expected. Therefore we can be sure that our boundary

conditions hold and there is no leak of flux in or out of our domain.

The same simulation result was found for the nonzero domain Neumann

Green’s function, however over the domain x = (3, 6) nm. We then use

the Neumann Green’s function in each of the domains and allow a single

channel between the two compartments to open at certain times. As this

is a 1D model this channel occurs at the single point of intersection, x = 3.

Figure. 35 shows a simulation result where the channel was open at time-

steps, τ ∈ (0, 200) s and τ ∈ (500, 700) s, to allow a constant flux of J =

12 µMnm−1ms−1 from the outer (b) to the inner (a) domain. We set initial

conditions of ca(x, t) = 0, ∀x ∈ a = (0, 3) and cb(x, t) = 80, ∀x ∈ b = (3, 6).

Figure. 35 (a) illustrates how each time the channel is opened concentration

moves from b into a and then equilibrates to a constant profile in each com-

partment when the channel is closed. Figures. 35 (b1) and (b2) show the flux

profiles into domain a and domain b respectively. The plotted fluxes were

calculated by differentiation at the boundaries to ensure that the resultant

flux was as expected. We also see that the total flux over the entire domain

is equal to zero and so concentration is conserved as required.

5.2.2 Simulations in 2D polar coordinates

Simulations are performed using an extension of the Eq. (252) seen in the

1D method. We evaluate our integral solution from Eq. (53) numerically,

having computed the Neumann Green’s function, Eq. (54), in advance for
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5.2 simulations

(a)

(b1)

(b2)

Figure 35.: A simulation of a channel between the two domains opening and closing

over τ =1000 time-steps of length dt = 0.1s with diffusion coefficient of D =

0.1 µm2s−1. In a) the concentration profile is plotted every 2 time-steps, whilst

the corresponding figures in b1) and b2) show checks for the flux and hence

the points of channel opening and closure.

fast simulations. The concentration at time ti+1 = ti + dt, for i = 0, 1...τ is

given by:

c(r, θ, ti+1) =
∫ 2π

0

∫ a

0
G(r, θ, r′, θ′, dt)c(r′, θ′, ti)r′dr′dθ′, (253)

where c(r, θ, ti+1) then becomes our new initial condition. The results of

these simulations for both Neumann and Dirichlet boundary conditions, as

well as the annulus - which is simply integrated over the domain x ∈ [a, b] -

can be seen in Figure. 36. To check that each compartment is in fact closed

by the no-flux boundary conditions we can integrate the concentration vec-

tor at each time-step over the whole domain to find the total number of

molecules of calcium. As expected for a closed system, we find that the

total concentration remains constant and hence can be confident that our

simulation is numerically correct and our system has no leaks.
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5.2 simulations

Figure 36.: Simulations in the nuceloplasm for Neumann (first row) and Dirichlet (second

row) boundary conditions as well as in the PNS (third row).

Next we wish to add a flux between the two compartments. This is done by

using the Neumann Green’s function in each of the domains and allowing

single channels to open at certain times. This is numerically computed

using the ‘magic rule’ of Barton [11]:

c(r, θ, ti+1) =
∫ 2π

0

∫ a

0
G(r, θ, r′, θ′, dt)c(r′, θ′, ti)r′dr′dθ′

+D
∫ dt

0

∫ 2π

0
G(r, θ, r′, θ′, dt)

∂ψ

∂n
dθ′ddt.

(254)

Here the flux is the derivative with respect to the normal of the disc and

hence, as this is independent of θ, we can take this outside of the integral

and calculate the Green’s function integrated over time analytically. This

allows us to also store the integrated Green’s function and, with no require-

ment to compute this at each time step, dramatically speeds up simulation

time. The integral has the same form for all of the discussed boundary

conditions and domains, and is given by:∫ dt

0
G(r, r′, θ, θ′, dt)ddt =

G(r, r′, θ, θ′, 0)− G(r, r′, θ, θ′, dt)
Dk2 , (255)

where k depends on the eigenvalues of the particular problem.
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5.3 numerical scheme

An illustration of a short simulation (τ = 10 time-steps) of flux through

a single channel, from the outer to inner compartment, is shown in Fig-

ure. 37. We begin with a constant concentration of 0.15 everywhere and a

channel is opened at time-step 3 and closes at time-step 6. The flux is set to:

∂ψ

∂n
=

20, r′ = a, θ′ = π
2 , t ∈ [t3, t6),

0, otherwise,
(256)

such that the flux out of the outer annular compartment is equal to the flux

into the inner disc. The system is otherwise closed and hence we check that

the total concentration remains the same throughout by integrating over the

entire domain at each time step to find the total number of molecules. We

also differentiate the concentration profile at the boundary of each compart-

ment to check that there is no flux anywhere other than that at the specific

channel opening times and locations perscribed.

5.3 numerical scheme

We time-step the system according to the ‘magic rule’ given in Eq. 211,

which in discretized form becomes:

ut+dt(r) =
∫

V
ut(r′)G(r, r′, dt)dV′ + Ddt

∫
S

∂ut(r′)
∂n′

∣∣∣∣
r′=s

G(r, r′, dt)dS′, (257)

where we have performed the integration:∫ dt

0
G(r, r’, s)ds ≈ dtG(r, r’, dt). (258)

in advance. The integrals were performed using the trapezium rule, over

the space r = (r, θ, φ) where the components r, θ and φ were discretized

into a mesh of N, M and P points respectively. This gives the expression:

ut+dt(r) = dr′dθ′dφ′G(r, r′, dt)ut(r′)Fv + Ddtdθ′dφ′
∂ut(r′)

∂n′

∣∣∣∣
r′=s

G(r, r′, dt)Fs,

(259)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 37.: a)-j) Simulation results over τ = 10 time-steps for initial condition C(r, θ, 0) =

0.15 , r ∈ (0, b]. Differentiating the concentration at r = a, θ = π
2 , either side

of the boundary at each time-step returns the applied flux at k) a− and l) a+

showing that this has been correctly applied.
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5.4 mapping

for the calcium concentration profile at the current time, ut+dt(r) given the

concentration at the previous time-step, ut(r) where we have used:

Fv =



r2
1 sin θ1

4
r2

1 sin θ2

2
. . .

r2
1 sin θM−1

2
r2

1 sin θM

4
r2

2 sin θ1

2
r2

2 sin θ2 . . . r2
2 sin θM−1

r2
2 sin θM

2
...

... . . . ...
...

r2
N−1 sin θ1

2
r2

N−1 sin θ2 . . . r2
N−1 sin θM−1

r2
N−1 sin θM

2
r2

N sin θ1

4
r2

N sin θ2

2
. . .

r2
N sin θM−1

2
r2

N sin θM

4


, (260)

and

Fs =

[
sin θ1

2
sin θ2 . . . sin θM−1

sin θM

2

]
. (261)

These simulations were performed using our own implementation of the

trapezium rule which was measured to take 0.0834 s per iteration, as com-

pared to the 3.7408 s to call the inbuilt ‘trapz’ rule in Matlab. Both alterna-

tives performed at the same accuracy, as would be expected for the same

method, and were found to have a 1.02% numerical error in concentration

after 1000 time-steps.

5.4 mapping

To decrease memory requirements and increase speed of simulation, a map-

ping was created to reduce the size of the Green’s function. Taking the

angular variables (θ, φ), along with the relation:

h(ψ) = cos(ψ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ− φ′), (262)

the unique values of cos(ψ), M, were stored along with the transition matri-

ces, Id and Iv such that:

H(ψ) = h(ψ)[Id], (263)

h(ψ) = H(ψ)[Iv]. (264)
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5.5 calibration

For a mesh size of M = 50 points in the θ variable and P = 40 points in the

φ variable the stored Green’s function is reduced significantly from 68.7GB

to 1.16GB.

5.5 calibration

Given that Green’s functions, are infinite sums, we must truncate these at

l = lmax and p = pmax in order to work with these numerically. To ensure

the discretized Green’s function is sufficiently convergent given the trunca-

tion of the infinite sum at l× p = lmax× pmax eigenvalues we must carefully

balance this with the number of mesh points (N, M, P) as described previ-

ously in Section 5.3. We determine these values through checks performed

at t = 0, where we expect our Green’s function to reduce to a delta function:

G(r, θ, φ, r′, θ′, φ′, 0) = δ(r− r′)δ(θ − θ′)δ(φ− φ′). (265)

A scan of a much larger section of the (N, M, P, l, p) parameter space was

performed to find the set which gives the absolute minimum error in our

Green’s function within computationally reasonable limits. In Figure. 38 we

show the result of fixing M, P and pmax whilst varying N and lmax, and

record the magnitude of error between the Green’s function at t = 0 and

the expected delta function. For visualisation purposes we have used the

log of the error to improve the sensitivity of the colormap. In Figure. (38)

(a) we see that above N = 60 mesh-points and for lmax ∈ [30, 170] the error is

very low, converging in a trough close to the diagonal. These local minima

can be see more clearly in the orientation shown in Figure. (38) (b), where

we see dips at optimal (N, l) combinations, with the global minimum error

of 1.6653× 10−16 occurring at (N, M, P, l, p) = [140, 100, 100, 90, 100].
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(a) (b)

Figure 38.: Parameter space evaluation of the error in the numerical approximation of

the Green’s function (155), for a fixed M, P and pmax = 100. We have a) the

top down-view and b) a surface plot showing dips at local minima.

5.6 limitations of the method

The functions involved in solving the diffusion equation in elliptical and

spheroidal geometries, namely the Mathieu functions and the Prolate Spheroidal

wavefunctions introduced in Sections 3.3 and 4.2, are notoriously difficult to

compute, lending a possible explanation for the limited usage of the more

representative geometry in the literature. Here we highlight some of the dif-

ficulties involved with these functions that have been experienced during

the simulation phase of this work.

5.6.1 Mathieu functions

As described in Cojocaru (2008), the solutions to diffusion problems in

spherical polar coordinates involve trigonometric and Bessel functions which

are well known and readily available. On the other hand, for an Elliptic

cylinder or spheroid, we require the Matheiu functions whose computation

remains controversial with algorithms that are largely incomplete [29]. Co-

jocaru proposes that the reason for this is likely the "complicated and various
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notation existent in the literature", a problem which was also highlighted by

Gutierrez (2003) who said:

"We believe that this lack of literature compared to that for other special functions is

because the behaviour of Mathieu functions is relatively rich and consequently more

difficult to understand. Moreover at least five different nomenclatures are in use,

and the computation of the Mathieu functions and their eigenvalues still presents

some numerical difficulties" [47].

These problems have persisted to the present day, with Daniel (2020) more

recently highlighting that, although Mathieu functions have a huge impor-

tance in representing more accurate and realistic geometries, these methods

are as yet unreliable. He states that:

"The numerical and mathematical difficulties associated with solving Mathieu’s

equation are tantamount to the intensive mathematical analysis and research ap-

plications that both physics and engineering demand. At best, key findings and

solutions to Mathieu’s equation tend to only exist in numerical tables as drawn

from infinite continued fraction methods or approximate expressions for eigenvalue

calculations, which at times are represented grossly by stability charts" [30].

In a similar statement Brimacombe (2021) describes how the use of Mathieu

functions is theoretically attractive, being analogous to the harmonic func-

tions, with the potential for efficient computation in comparison with direct

numerical solution of the PDE model. Brimacombe acknowledges that in

practice however, there are difficulties including; large values of the param-

eters; approximation properties of the expansion itself and the numerical

stability of the expansion. It is also considered how the rapid advancement

of computational abilities in comparison to its analytical counterpart may,

as a result, "risk concealing as yet unresolved analytical and computational issues

involved in the use of Mathieu functions". Finally Brimacombe calls for an ef-

101



5.6 limitations of the method

fort to be made in advancing the algorithms currently available stating that:

"The task of constructing fully general, bulletproof code for the Mathieu functions

is one that calls for dedicated effort and analysis... we know of no such code in

existence currently." [16].

In the attempt at using the more realistic geometry to represent the nu-

cleus, similar issues have been present. One solution is to use the prolate

spheroidal wave functions for the two-dimensional problem, however as an

extension to the 2d-elliptic geometry we face similar problems as described

in the next section.

5.6.2 Prolate spheroidal wave-functions

The sphere is, in fact, a generalisation of the spheroidal geometry, and hence

the idealisation of bodies as spheres does not adequately represent the real-

istic situation [6]. It is recognised that the spheroidal wavefunctions which

describe this geometry are difficult to compute and the small number of

current programmes available have limitations, most notably the failure of

the widely-used numerical schemes as the eigenvalue γ becomes large [41].

This has been addressed by some authors, however the alternative expres-

sions, whilst being accurate for large γ, are limited in other areas, such as

a solution by Van Buren which is accurate for ξ close to 1, and l −m small

[14]. It is likely that it is for these reasons, that applications requiring the

prolate spheroidal coordinates, are often modelling using simplifications

such as assuming symmetry around the φ axis and reducing the system to

2-dimensions [18] or modelling only the surface and hence requiring only

the associated Legendre functions [92].

Figure. 39 shows an example of the problems with the inbuilt prolate spheroidal

wave-function in Python. In this example we focus on the derivative of the
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5.6 limitations of the method

Figure 39.: An increasingly close view of the derivative of the radial prolate spheroidal

wave-function for a = 9, b = 10, m = 0 and l = 0, demonstrating the numeri-

cal instabilities that occur above γ ≈ 35.

103



5.6 limitations of the method

radial function, as it is the zeros of this which provide the eigenvalues satis-

fying the Neumann boundary condition, however the numerical instabilities

present in the regular function also. From Figure. 39 we can see that only

22 zeros of the function with m = 0 and l = 0 can be calculated before

the numerical scheme breaks down. This presents some issues with the

convergence of the Green’s function to a δ-function at t = 0, as the trunca-

tion, pmax, occurs at a much lower value than we would prefer. Despite a

large proportion of the instabilities being ’smoothed out’ for a nonzero dt,

these are large enough to be amplified over the multiple time-steps used in

simulation, and hence we are required to manually ensure that the tails are

zero before the Green’s function can be utilised. An example of pre and

post-manual editing of the tails is given in Figure. 40.

The above parameters represent a trade off between modelling a spheroidal

nucleus and ensuring that there are sufficient eigenvalues for convergence.

As we shall see in Section 6, experimental data proved the mean value of

ξ0 to be 1.185. The difference between this and our ’lowest acceptable value’

can be seen in Figure. 42 which shows the comparison between the geom-

etry and the number of possible zeros of the function which can be found

numerically for the limiting values of m = 0, l = 0. This makes it clear

that, for truly realistic geometries, it is not possible to compute an accurate

Green’s function given the limitations of current algorithms.

Furthur problems arise when we wish to compute a thin compartment in

modelling the PNS. The closer ζ0 and ζ1, the greater the periodicity of the

oscillations of the boundary condition, f (γ), given in Eq. 188. In this case

there are therefore only very few zeros that can be calculated before the nu-

merical instabilities at large γ become a factor. This problem is illustrated in

Figure. 41, where we observe that for ζ0 = 2.3 and ζ1 = 2.5 we are only able

to calculate 5 zeros before the numerical scheme becomes unstable. This

104



5.6 limitations of the method

(a)

(b)

(c) (d) (e)

Figure 40.: The Green’s functions plotted for (ζ ′, µ′, φ′) = ( ζ0−1
2 , 0, π) a) before any man-

ual intervention and b) after manually setting the tails to zero. This can be

seen for a single point, µ = 0, with c) t = 0, d) t = 0.002 and e) t = 0.002 and

the tails set to zero.
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Figure 41.: The Neumann boundary condition for a spheroidal compartment requires the

zeros of f (γ). We see that very few zeros are available for a thin section with

ζ0 = 2.3, ζ1 = 2.5 before the inbuilt function fails.

Figure 42.: The lower the sphericity, and hence the closer the value of ξ0 to 1, the lower

the frequency of oscillations. This means that there is a decreasing number of

zeros available before the python function becomes numerically unstable.
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problem therefore requires us to use a PNS slightly wider than we would

prefer.

5.7 numerics summary

• The general properties of the time-independent Green’s function as a

δ−function were explained.

• The properties of the δ−function were used to check the numerical

accuracy of our codes.

• Successful checks for each Green’s function derived in Sections 3 and

4 have been demonstrated.

• Test simulations confirmed that the numerics are accurate and the sys-

tem remains closed.

• The discretised system was described, along with our time-stepping

regime and calibration of the mesh with the number of eigenvalues in

order to achieve a minimal computational error.

• The limitations of the method for the spheroidal geometry were ex-

plained, with examples of the numerical problems faced using cur-

rently available algorithms.
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6
E X P E R I M E N TA L W O R K

This chapter presents a wide range of experimental work, used to inform

and motivate the geometrical considerations, which have not previously

been studied, and measure nuclear calcium signals to compare with the

computationally simulated results. Firstly we look at the morphology of

the nucleus, taking measurements to parameterise both the sphere and the

spheroid. We go on to quantify, for the first time, comparisons in the nuclear

geometry between cell types as well as along the elongation zone. Finally

we have created a new methodology, utilising a specialised Flow Cell [72],

in order to effectively apply stimuli to plant root cells, which we utilised

to record the nuclear plant calcium signatures that we are attempting to

replicate.

6.1 nuclear morphology

To ensure the highest possible accuracy of modelling results, it is important

to ensure the parameter values used are representative of the real-world

system. One such necessary biological input is the radius of the plant cell

nucleus, given by a in Eq. (135). However, information available in the liter-

ature appears extremely limited with the few reported radial measurements

varying by up to two orders of magnitude. For non-spherical objects the an-

gular alignment with the light field could also skew measurements if left un-

accounted for. Confocal images found in publications are 2-dimensional rep-
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6.1 nuclear morphology

resentations of a 3-dimensional object, and to obtain the radii of a spheroid,

we would require the image slice to belong on the (x, y) plane, i.e. at z = 0

for that particular object as seen in Figure. 18a. An example of a case where

the two dimensional slice could be misleading is illustrated in Figure. 43.

Here the top-down view in a) gives the impression that a sphere would be

an appropriate approximation, whereas b) shows that the nucleus is clearly

closer to ellipsoidal. In this section, the data collection methods will be ex-

plained and the resulting morphological parameters will be extracted to be

input into the mathematical model.

6.1.1 Data collection

Images were taken using a confocal microscope, along the roots of Ara-

bidopsis lines containing Green Fluorescent Protein (GFP) fused to low-

temperature induced 6A, LTi6A, protein in the PM as a proxy marker for the

cell wall and the nuclei marked with a red fluorescent protein (RFP) linked

(a) (b)

Figure 43.: A 3D image of a single nucleus, made up from a z-stack of confocal images.

The nucleus gives the appearance of a significantly different geometry when

viewed from different perspectives.
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6.1 nuclear morphology

to Histone 2B - a protein which wraps DNA in the nucleus. This allowed us

to detect each cell and its nucleus as seen in Figure. 44. For the root hair and

root cortex, 58 of each cell type were taken over 9 different plants, and the

nuclei were selected for analysis. These images were processed using the

NucleusJ software for Fiji [69, 76]. A z-stack was taken of each individual

nucleus and a segmentation algorithm was used to create a binary set of

images, discerning the nuclear boundary from any noise. The edges were

then smoothed and the 3D structure was recreated by extrapolation using

the known distance in between each consecutive 2D slice. Measurements

could then be taken and a set of two 2D and six 3D parameters describing

the nuclear morphology were extracted for each cell type.

6.1.2 Data analysis

Figure 45.: Results show that root hair cells are generally larger and flatter than cortical

cells in Arabidopsis. Statistically significant differences are found between

the two cell types for three key morphological parameters: a) Volume*, b)

Flatness***, c) Equivalent Spherical Radius** and d) Surface Area** where ***

P < 0.0001.
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6.1 nuclear morphology

A statistical analysis on the parameters showed significant differences in di-

mensionality of nuclei in root hair cells as compared to those in the root

cortex. Selected results of this analysis can be seen in 45. We found that

nuclear volume was larger in the root hair cell, with a mean of 366.2 µm3 as

compared to only 245.7 µm3 in the root cortex. There was also a statistically

significant difference in flatness between the cells, that is, the measure of

the ratio between the major (longest) and minor (shortest) axes. We see that

in the root hair this axis ratio is close to 2, and hence the spheroidal case

with radii of b ≈ 2a in the notation of Figure. 22, is likely to be the best ap-

proximation. In the root hair cortex however, the flatness parameter is close

to 1 and therefore modelling a spherical geometry for these cells would be

acceptable. Another interesting parameter is the equivalent spherical radius

which takes the measured nuclear volume and uses the rearrangement of

the equation: V =
4
3

πr3, to find the theoretical radius if this volume repre-

sented a perfect sphere. This gives us a key parameter value, the radius of

nucleus in the root hair cell, a = 4.397 µm to use in our model.

The major and minor axis values were also measured for parameterisation

of the spheroid. The measured axis ratio≈ 2, which would give, for a radius

a = 4.5 µm, a major axis value of b = 9 µm and our coordinate parameter

to be ξ0 = 1.155. In order to check these measurements, the nuclei were

measured manually using ImageJ at the widest point along the z-stack for

each axis. Results gave a mean value for the minor axis as a = 3.400 µm, the

major axis as b = 7.212 µm and hence an axis ratio of 2.274 and a coordinate

parameter of ξ0 = 1.185 agreeing closely with that of our previous results

using NucleusJ.

6.1.3 The evolution of nuclear geometry in the root elongation zone

As it was noted from images that nuclear geometry appears to become

less spherical as we move along the root elongation zone (EZ), 96 LTi6A
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6.1 nuclear morphology

Figure 46.: An illustration of cell number assignment, depicted by the white crosses and

yellow numbers, on an Arabidopsis cell file. Cell 1. is deemed to be the first

cell in the root elongation zone.

Arabidopsis randomly selected nuclei were measured using ImageJ and

the data collection and analysis methodology previously described in Sec-

tion 6.1.1. In addition to the four parameters described above, here we

also include two additional measures; (i) nuclear ’sphericity‘, calculated as

36π Volume2

Sur f aceArea3 , which results in a value of 1 for a perfect sphere and tends

towards zero as the shape becomes less regular; and (ii) elongation, which is

the length of the longest axis divided by the length of the intermediate axis

[4]. In addition to the measurements extracted from ImageJ we recorded

an additional factor that we will call the ’cell number’. The cell number

is the number assigned to the cell when counting along the cell file from

the transition zone (TSZ), the point where the root EZ begins and cells start

expanding rapidly [43]. An example of the cell number assignment can be

seen for the bottom row of cells in Figure. 46.

Figure. 46 clearly demonstrates a relationship between cell number and nu-

clear size and sphericity. However we wish to determine this quantitatively.

The data collected is plotted for cell number against the measured nuclear

parameters: sphericity, flatness, elongation, volume, surface area, and equiv-

alent spherical radius (esr) in Figure. 47. We see that as the cell elongates,
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6.1 nuclear morphology

(a) Sphericity (b) Flatness

(c) Elongation (d) Volume

(e) Surface Area (f) Equivalent spherical radius

Figure 47.: Graphs to show the change in nuclear geometry with distance from the root

apex, determined by cell number within a file. Nuclear geometry is described

by six parameters; a) sphericity; b) flatness; c) elongation; d) volume; e) sur-

face area; and f) equivalent spherical radius (esr).

the nucleus becomes both larger - with a greater esr/volume/surface area -

and flatter - with a higher degree of flatness/elongation and lower spheric-
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6.2 measuring the calcium response

ity. We see a negative correlation between sphericity and esr in Figure. 48,

for which a linear regression analysis gave a coefficient of -7.8699 with a sta-

tistically significant p-value of 0.000152. The residuals of this analysis show

no pattern and are included along with the linear regression summary in

Appendix. C, Figure. 87 for completeness.

Figure 48.: The relationship between nuclear size and geometry in the root EZ.

6.2 measuring the calcium response

6.2.1 Methodology

FRET

Transgenic Arabidopsis lines containing the Yellow Chameleon (YC3.6) cal-

cium indicator [67] were kindly provided by Simon Gilroy (University of

Wisconsin). The genetic modification allows seedlings to undergo fluores-
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6.2 measuring the calcium response

cence resonance energy transfer (FRET) in the presence of Ca2+. This oc-

curs through two connected molecules; CFP and a FRET-dependent YFP

which fluoresce under excitation by cyan and yellow wavelengths respec-

tively. Upon binding of Ca2+, the marker undergoes a conformational

change, bringing the two molecules closer together and allowing energy

transfer from the donor (CFP) to the acceptor (YFP). Hence cells excited

with an argon laser show an amplitude shift in the yellow channel in the

presence of Ca2+, with the FRET/CFP ratio providing a quantifiable mea-

sure of changes in calcium concentration.

Figure 49.: The experimental setup.

The seeds were germinated on 0.5% Murashige and Skoog media (MS) with

1% (w/v) agar and grown for 7 days in an incubator. The seedlings were

then mounted on a glass cover-slip and enclosed by a sealed 22mm x 40mm

x 0.25mm chamber containing two filling ports, as seen in Figure. 49. For

seedlings with larger cotyledons it was found beneficial to remove the green

tissue to prevent contact with the chamber roof, and thus preventing imag-

ing interference. The chamber was then partly filled with 0.16ml of 0.5%

MS solution, consistent with the conditions of growth to minimize osmotic

shock.
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6.2 measuring the calcium response

Figure 50.: Simulation results for the diffusion of the stimulus solution into the chamber

produced using the FreeFem++ finite element software [48].

In these experiments we use Mastoparan (Mas), a peptide toxin from wasp

venom, as a substitute for the Nod-factors released by Rhizobia, due to

ease of accessibility. It has been shown in the literature that Mas elicits an

effect analogous to Nod-factors [81] however Sun (2007) found that unlike

Nod-factor, the Mas-induced calcium response is not restricted to the region

associated with the nucleus.

A solution consisting of 0.02ml of mastoparan along with 0.02ml of rho-

damine dye was made-up for addition during imaging. The dye is included

here as a trace to determine the progress of the solution between the en-

try port and the root. The main challenge was to ensure that the root re-

mained stationary during addition of the stimulus, a factor addressed with

hindsight by the preparation of the slide. This is particularly important

for experiments performed at higher resolutions as small perturbations can

move the chosen cell out of the imaging frame. Another consideration was
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the time taken for the stimulus to reach the root and the actual concentra-

tion of mastoparan reaching the root when relying on diffusion alone. Both

of these parameters can be determined using modelling, which was per-

formed using the FreeFem++ finite element software [48]. Some results can

be seen in Figure. 50, which shows a time series representing the diffusion

of mastoparan into the chamber after being added to the entry port at t = 0.

These simulations allow us to measure the concentration of mastoparan at

the root apex (denoted by the black dot in the figures) at each time point,

allowing us to estimate the time in which the stimuli threshold will be sur-

passed and hence the time at which we can expect a calcium response. This

is particularly important in this type of imaging as prolonged exposure to

the laser will cause unwanted photo-bleaching to both the acceptor and

donor fluorophores of the FRET reporter. With confocal systems using mul-

tiple photo-multiplier tubes for image detection and several excitation lines,

degradation of our reporter and the difficulty of efficiency calculations are

important factors [17]. Managing this through using modelling to inform a

precise experimental setup is therefore an advantage.

It was noted from modelling and initial experiments that the transport of

the stimulus to the root was extremely slow when relying on diffusion alone.

A variety of methods for were therefore tested for decreasing the transport

time. These included forcing an advection using the pipette and using filter

paper as a medium for which the stimulus solution could travel along. The

delay between the stimulus being added to the system and reaching the root

could however be beneficial, as any disturbance of the system caused by the

stimuli addition had time to return to a steady state and any necessary re-

positioning of the frame could occur before any calcium response was to

take place.

The root was imaged using the confocal microscope and the CFP reporter

was excited with the 458 nm line of the argon laser. The CFP (473−505 nm),
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Figure 51.: Imaging of an Arabidopsis root over 4 channels: cyan, yellow, red, and bright-

field (columns left to right), with each row corresponding to a subsequent

time-step.

FRET-dependent venus (526−536 nm) and RFP (574−592 nm) emissions

were acquired simultaneously along with bright-field images, showing the

base activity, Ca2+ concentrations and the presence of rhodamine respec-

tively. A time-series of images was taken, and can be seen in Figure. 51,

during which the mastoparan/rhodamine solution was pipetted into the
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entry port closest to the root. Using our new experimental setup, it can be

seen that minimal movement of the root between frames was achieved. We

see changes in the RFP channel, third column from left in Figure. 51, as the

rhodamine dye arrives at, and is taken up by, the plant.

GCAMP

Genetically encoded calcium indicator (GECI) Arabidopsis lines, kindly pro-

vided by Simon Gilroy (University of Wisconsin) and Marc Knight (Uni-

versity of Durham), were used for these experiments after encountering

difficulties with signal strength using the Yellow Cameleon (YC3.7) indica-

tor. In the presence of Ca2+ YC3.7 undergoes fluorescence resonance en-

ergy transfer (FRET) between two connected molecules; CFP and a FRET-

dependent YFP. Upon binding of Ca2+, the marker undergoes a structural

change, bringing the two proteins closer together and allowing energy trans-

fer from the donor (CFP) to the acceptor (YFP). As a result cells excited with

an argon laser show an amplitude shift in the yellow channel [67]. GCaMP

on the other hand are highly sensitive single fluorophore sensors in which

the GFP is bound to Calmodulin and an M13 peptide. In the absence of

Ca2+, fluorescence is low however, upon the reversible binding of Ca2+ to

the CaM domain GCAMP undergoes a conformational change which al-

lows for rapid-deprotonation of the chromophore - the region responsible

for colour - and hence a change from a low to a high fluorescent state [88].

The binding of GCAMP and Ca2+ has a kd of around 330 nM, matching the

concentration ranges we are looking for within the plant cell [33]. GCaMP

also requires a less complicated microscope setup than FRET and provides

an easier, high quality acquisition with a lower signal to noise ratio.

Post propagation and collection, GCaMP seeds were sterilised in 70% ethanol

followed by 5% bleach and washed with deionised water 6 times before

sowing onto plates of 0.5% Murashige and Skoog (MS) media adjusted to

a pH of 5.7. They were stratified in 4
◦C for 2 days before being grown
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in a controlled environment of 21
◦C with a 16/8 hour day/night photope-

riod. To allow the application of liquid stimuli to the seedling with limited

mechanical disruption whilst maintaining favourable growth conditions, ex-

periments were performed with the plant held in a specialised 3D printed

’FlowCell‘ device consisting of a main imaging chamber attached to a mi-

crofluidics system [72]. These experiments were run alongside collaborator

Nicholas Redman (University of Nottingham) who designed the FlowCell.

In the system, fluid is supplied from the right by gravity fed-syringes and

output through an outlet to the left driven by a dual-flask vacuum pump.

This device gives the advantage of allowing imaging over longer time pe-

riods than would have been possible on a standard coverslip setup as it

allows for maintenance of the plants and prevents drying out. This is very

important due to the long time-scales over which a response to mastoparan

is sustained, requiring imaging to take place for up to an hour. Further-

more, it allows for more control over the chemical concentrations reaching

the plant ensuring they are evenly applied unlike the alternative of using

an agar block. The FlowCell design can be seen in Figure. 52a with a photo-

graph of the real-life setup given in Figure. 52b.

A standard coverslip was sealed to the bottom of the FlowCell insert us-

ing vacuum grease and clamped into the adjustable holder. A seedling was

mounted onto the flow cell with the upper part resting as depicted in Fig-

ure. 52a and the root placed on the coverslip in solution which was then

covered by the lid containing a coverslip viewing window. With the system

flowing at the desired rate, a time series of images was obtained using a

Leica SP8 confocal microscope with a 488 nm argon laser for the GFP along

with a bright-field image. A 5 minute period was recorded pre-stimulus

application from which the base-level fluorescence could be obtained. At 5

minutes the flow cell syringe for the water was closed and the tube contain-

ing 50 µM Mastoparan was opened. It is known, from previous tests using a

PM stain, that it takes approximately 1 minute for the new solution to reach
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(a) Graphical render of the FlowCell.

(b) FlowCell set up mounted on the Leica SP8 confocal microscope.

Figure 52.: The FlowCell setup used in performing the experiments. Pictures provided

by the designer/creator Nicolas Redman [72].

the imaging chamber. Once reached it is acknowledged that the maximum

concentration does not reach the seedling immediately due to mixing with

the water, however, due to the small chamber volume the concentration of

mastoparan within quickly tends to that added. Further mathematical mod-

elling could be performed to determine the exact concentration change in

the flow cell chamber over time.

As, at this time, we are interested in the patterning of the response rather

than quantitative values, changes in calcium concentration were determined

qualitatively using the changes in fluorescence as a proxy. These changes

were measured using the Fiji image analysis software [76]. In each nucleus

sample the mean fluorescence was measured at each time point over 4 re-
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Figure 53.: ROI’s used for measurements. (1) Whole Cell, (2) Root hair tip, (3) Nuclear

Area, (4) Nucleus.

gions of interest (ROI): the whole cell, the nuclear area (the entire area which

the nucleus moves between during the experiment), the root hair tip and the

nucleus itself as represented in Figure. 53. For the latter a ’registration’ tech-

nique was attempted in which the nucleus of interest would be moved to a

common position throughout the time-series by movement and rotation of

each full image. This would have allowed for bulk processing to calculate

the fluorescence however, due to natural shape changes of the nucleus, the

nuclear body could not be reliably located in each image by the software.

Therefore the ROI was manually adjusted at each step following the move-

ments of the nucleus between time-frames and cross-checking the nuclear

outline with the corresponding bright field image.

6.2.2 The Calcium response of Arabidopsis to Mastoparan in the root hair cell

We present the recorded time-series data of the fluorescence intensity, F(t),

of 5 different root hair cell nuclei along with the results of 2 controls. The

level of fluorescence between the different plants varies greatly due to di-

verse levels of expression of the genetically encoded sensor. The data must

therefore be normalised before any intra-plant comparisons can be made. It
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must be noted that these re-scaling methods come at a cost of reducing vari-

ability in the data, however as we require comparison between sequences

from different plants and cells it is impossible to do so with without some

normalisation. As we are interested in the perturbations from the steady

state of the system caused by the addition of mastoparan it is reasonable to

measure these values against the fluorescence levels before application. This

can be achieved by setting the initial value, F(0), to unity, but to improve

this estimate, and take into account the stochastic nature of the cell, we cal-

culate the baseline value, I0, from the average fluorescence achieved over

the pre-stimulus period which here is the first 5 minutes of the time-lapse

series. We therefore use the relative fluorescence variation:

∆F(t) =
F(t)− I0

I0
, (266)

as used as standard in the reporting of calcium signals [73]. The normalisa-

tion can be further improved by calculating the ’Z-scores‘:

Z(t) =
F(t)− I0

σ0
, (267)

which include a measure of the variability of the baseline fluorescence, σ0,

which is the standard deviation calculated, as for I0, over the first 5 minutes

recorded before stimuli addition. The advantage of this method of normal-

isation is a decrease in the sensitivity of the results to natural or stochastic

changes in calcium.

Upon addition of the Mas stimulus, we observe large transient elevations of

calcium concentration which are not present in controls. When compared

between repeats however, it appears this response is not tightly regulated

in Arabidopsis, with large variations in both spike intensity and frequency.

This is contrary to results found in M.truncatula in the literature, where

calcium oscillations in response to Mastoparan possess a relatively stable

periodicity [39][83]. In Figure. 54a we see that ’Nucleus.1’ has the closest to

a periodic response however the amplitude of this response is quite small.
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In Nuclei 2-5 there appears to be some evidence of two separate larger tran-

sients. To ascertain if this is the case, a moving average over 40 time-points

was performed on each of the time series, optimising the smoothing of any

(a) Normalised florescence representing the calcium concentration in the nucleus

of the root hair cell over time in response to Mastoparan.

(b) The nuclear calcium response to Mas shown using a moving average over 40

time-points. Regions containing the two possible peaks are enclosed in yellow.

Figure 54.: The calcium response to Mastoparan in 5 nuclei.
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noise and hence separating out any overall trends. These are shown in Fig-

ure. 54b, where the two distinct periods of calcium elevation in nuclei 2-5 are

highlighted in yellow. However the time between these two periods of activ-

ity is not uniform between instances and the pattern is also not present in

Nucleus 1. Using our data for the 4 different ROI’s we can also consider the

origin of the calcium signals. This comparison is illustrated in Figure. 55a

(a) Calcium response for Nucleus 5 measured over 4 ROI’s corresponding to those

described in Figure. 53.

(b) A selection of imaging taken place across the 3 largest calcium spikes. In each row

there is 11.61 seconds between each adjacent image.

Figure 55.: Results for nucleus 5 shown as time-series data, and selected images during

spiking.
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for nucleus 5, with analogous data for the other four instances, along with

two controls, left Appendix C. Clearly the magnitude of the response in the

nucleus/nuclear area is more significant than that averaged over the whole

cell and root-hair tip. In all regions the shape of the signal is very similar

although weaker outside of the nucleus suggesting the signal is generated

in the nucleus and dissipates out to the rest of the cell as found previously

in M.truncatula [81] and reproduced here in Figure. 9. Images taken over

the period of the three largest calcium spikes, occurring at approximately

12, 13 and 30 minutes, are shown in Figure. 55b. We see a spike in the root

hair at a similar time to that in the nucleus - although whether this is pre or

post nuclear spike is inconsistent.

As the nuclear area and whole cell contain within them other ROI’s, it is

of benefit to compare only the nucleus and the root hair tip as two distinct

regions of the root hair cell. Figure. 56a shows the calcium signals recorded

in these two cellular regions for 6 different nuclei, including a control. In

the control data we see that base level activity is very low in the nucleus but

higher in the root hair tip with some spiking occurring, possibly signalling

for elongation of the root hair. As discussed for nucleus 5, upon addition

of mastoparan a similar spike pattern is observed in both regions with the

nuclear case exhibiting a much greater change in amplitude and less noise.

This can be seen in the boxplot in Figure. 56b which shows the control to

have a similar levels of variability in both regions as compared to those with

the mastoparan stimulus which in general possess an interquartile range

(IQR) in the nucleus which is much greater than in the root hair tip. Al-

though in some cases the signal in the root hair tip is a weaker analogue to

that in the nucleus, nucleus 4 in particular, along with nucleus 3 to a lesser

extent, exhibits quite distinct signals between regions suggesting that these

two signals are, if not entirely independent due to diffusion through the nu-

clear pores, independent in their generation. The inconsistencies between

repeats however perhaps highlights the lack of a tightly regulated calcium
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(a) Calcium signals in the root hair tip often follow a similar lower amplitude

spiking pattern to that of the nucleus, but in other cases appear autonomous.

(b) [Ca2+ ] has a larger distribution in the nucleus than in the root hair tip.

Figure 56.: Comparison between calcium signals in the root hair cells vs those in the

nucleus upon addition of a mastoparan stimulus.

response to Mastoparan in Arabidopsis and so points towards a definite gap

in any potential signalling pathway.
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6.2.3 The Calcium response of N.benthamiana to Mastoparan in the root hair cell

In order to explore the difference in the nuclear calcium response between

Arabidopsis and known fungal-symbiont N.benthamiana, the experiment of

the previous section was repeated for this additional genus in order to

observe the differences between the nuclear calcium signatures given a

mastoparan stimulus. These GCaMP3 N.benthamiana seeds were kindly pro-

vided by Thomas DeFalco (University of Zurich) [33]. Our results show

clear calcium activity as compared to controls, however in multiple attempts,

12 of which are shown in Figure. 57 as compared to 12 controls in Figure. 58,

we were unable to consistently recreate the regular spiking described previ-

ously.

Figure 57.: Normalised fluorescence indicating the calcium concentration in 12

N.benthamiana seedlings in response to Mastoparan, added at t = 2.5mins

as indicated by the vertical blue lines.
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Figure 58.: Normalised control results showing the Ca2+ concentration in N.benthamiana

seedlings placed in the FlowCell flowing with water.

The lack of regularity in the response of N.benthamiana to Mastoparan may

be due to numerous factors such as it being a replacement for Nod-factors,

the Mastoparan having being made into solution too long before use or

disruption to the root when being placed in the chamber causing calcium

signalling in itself and hence additional noise in the signal. The latter ex-

planation may be furthur strengthened when noting that there appears to

be nuclear calcium spiking at the beginning of many of the experiments in

our controls. Control 2 in particular shows a high degree of spiking, with

spikes perhaps more pronounced than any case with Mas addition, suggest-

ing that nuclear spiking perhaps has a role in signalling mechanical stress. It

is known that nuclear calcium spiking occurs in root development [58], how-

ever if this were the case here we would expect that to continue through the

time-series, in contrast to controls 2,3,4,5,8 and 10 whose experiments begin

with spiking and after about 10minutes exhibit very low activity levels. An

exception to this is control 12, which shows two large spikes between 30
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and 40 minutes.

Figure 59.: Boxplots to show the mean and variance of the fluorescence in 12 nuclei in

response to Mastoparan and 20 controls.

We compare the variability of the signals in Figure. 59 in an attempt to quan-

tify the differences in the calcium levels that we observe visually between

results and controls. We find that our results give a mean fluorescence of

85.76 as compared to 71.19 in controls, while the standard deviation of the

fluorescence is 10.75 as compared to 8.40 in controls. Therefore we can infer

that the calcium concentration in the nucleus is around 20% higher in the

presence of Mastoparan, and around 28% more variable, provided there is

a linear relationship between calcium concentration and fluorescence. From

Figure. 59 it is also noticeable that the controls possess more anomalous

values than our results. This could possible be because stochasticity is the

predominant feature in the calcium profile without a stimulus, whereas,

when responding to the mastoparan, the more regular spiking dominates

over the random fluctuations.
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Figure 60.: A comparison between a control nuclear calcium signature with two from

both N.benthamiana and Arabidopsis in response to Mastoparan.
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In Figure. 60 we compare the nuclear calcium response of N.benthamiana to

that in Arabidopsis. In the previous section we ascertained that Arabidopsis

exhibits a nuclear calcium response to Mastoparan in the form of a low

number of large-period (of around 5-minutes) spikes, within the hour-long

experimental period. We see that in N.benthamiana however, the spikes are

of higher frequency with a lower periodicity. This spiking concurs with the

time frames reported in the literature of between 60 and 100 seconds, as

discussed in Section 2.3.2. Arabidopsis has been shown to belong to the

minority of plants that are unable to form even bacterial symbiosis due to

the evolutionary loss of essential genes in the its lineage [35]. However, with

gene transcription occurring downstream of the calcium signal, there must

exist a loss of furthur components of the CSP in order for the nucleus not

to generate the calcium signature as observed in N.benthamiana.
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6.3 parameter values

Parameter Symbol Value Reference

Diffusion Coefficient in the nucleoplasm Dnuc 100 µm2s−1 [68] (T-cells)

600 µm2s−1 [85] (Free diffusion)

530 µm2s−1 [38] (Free diffusion)

2-20 µm2s−1 [61]

36 µm2s−1 [71]

Diffusion Coefficient in the PNS Dpns 100 µm2s−1 [68] (ER)

Calcium channel current I 0.005-0.02pA [85]

2pA [55]

Nuclear Radius a 6.5 µm [15]

8.0 µm [61]

4.5 µm Experimental results

Nuclear semi-axial Radius c 7.5 µm [15]

(Spheroid only)

Nuclear Volume Vnuc 160 µm3 [15] [44]

170-2130 µm3 [21] (From SA)

385 µm3 Experimental Results

Width of PNS h 50 nm [15] [50]

30-50 nm [63]

Width of NPC l 29 nm [61]

9 nm [62]

5 nm [40]

105 nm [63]

Density of NPC SNPC 50 µm−2 [63]

Resting free Ca2+ concentration in nucleoplasm [Ca2+]nuc 100-150 nm [15]

170 nm [91]

100 nm [80]

Resting free Ca2+ concentration in PNS [Ca2+]pns 100-1000 µM [15]

10 µM [68]

50-500 µM [80] (Animal ER)

MCA8 pump rate ks 1 s−1 [61]

24.9 s−1 [44]

Channel refractory period τ 2-4 s [61]

Max conductance of Ca2+ channel Imax
c 2864 pS [44]

CAM binding threshold to Ca2+ Cth 200 nM [53]

500 nM [74]

CAM Kd KdCaM 1200 nM [53]

Table 1.: A record of all values found in the literature for our model parameters.
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6.4 experimental work summary

• The methodology, including the segmentation process, for measuring

the geometry of the nucleus is described.

• Comparison of nuclear morphology between cortical and root hair

cells showed statistically significant differences including that root hair

nuclei are larger and flatter than those in the root cortex.

• The parameter values for the nuclear radius, a, and our spheroidal

parameter, ξ0, were obtained.

• An investigation into the changes in geometry along a cell file in the

elongation zone showed that the larger the distance from the root apex

the less spherical the nucleus.

• The development of an experimental set-up to measure the effect of

various stimuli on the nuclear calcium concentration is described, in-

cluding the use of two calcium indicators FRET and GCAMP, and the

FlowCell.

• Arabidopsis showed a calcium response to Mastoparan which appears

to originate in the nucleus.

• The nuclear calcium signal in response to Mastoparan was recreated

in N.benthamiana.

• The remaining model parameters were collected from a search of the

literature.
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7
I N S I L I C O I N V E S T I G AT I O N S

Simulation results of our model are shown in this Chapter. In order to

eludicate the mechanism of nuclear calcium signal generation in plants, we

wish to use our model to replicate those signals measured experimentally.

Successful reproduction of the calcium signature in silico allows us to create

hypotheses on how the signal is formed, to then be tested experimentally.

Here we focus on the distribution of channels across the membrane, firstly

in two-dimensions where we show the effect of channel clustering on the

spatial calcium pattern, and secondly in the full three-dimensions where

we show that our model can reproduce the specific calcium spiking pattern,

provided the channels are clustered. Finally we perform a parameter space

analysis to determine the effect of each of the diffusion, geometric, pump

and channel parameters.

7.1 2d simulations

7.1.1 The effect of channel distribution

Simulations were run for two different channel distributions on the INM of

a nucleus modelled as a 2-dimensional disc. In each case 11 channels in

the half-disc were set to be open at t = 0, and a simulation was run over

120 time-steps. Figure. 61a shows the results for the channels at an equal

distribution on the membrane. Here the influx profiles merge to create Ca2+
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(a) Equally distributed channels.

(b) Clustered channels.

Figure 61.: A figure to show the difference in the spatial Ca2+ profile for two different

channel distributions. We see that, whilst the total calcium concentration

is the same, for (a) equally distributed channels, local Ca2+ concentration

remains low, however for (b) clustered channels, microdomains of high con-

centration can be formed.

waves moving towards the center of the nucleoplasm. In Figure. 61b, the

channels are arranged in two clusters of 5 and 6 channels. Here much higher

concentrations of calcium are achieved as a merging of the influx occurs
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within but not between clusters. We see that, even though the global calcium

concentrations are equal, the local profiles are very different between cases,

depending on channel proximity. This can have important implications on

activation of the downstream signalling pathway which depends on the

threshold and localisation of calcium sensory proteins. We let the black

circles in Figure. 61 denote the presence of a Ca2+ sensory molecule, S,

which binds calcium according to:

[Ca2+][S]
k1⇀↽
k2

[CaS]. (268)

The dissociation constant:

Kd =
k2

k1
, (269)

is the concentration of free Ca2+ at which 50% of the total sensory molecules

are associated with calcium. A high Kd represents a low affinity sensory

molecule as its dissociation reaction rate is relatively higher than its asso-

ciation rate and therefore requires a high calcium concentration for half-

maximal binding. For example, a sensor S with a Kd of 0.1 µM would have

its binding threshold surpassed in the case of clustered channels, however,

for equally distributed channels the downstream signalling pathway would

not be triggered.

7.2 3d simulations

7.2.1 The effect of channel distribution

We wish to explore the effect that channel configuration has on the genera-

tion of the nuclear calcium signature in the symbiosis signalling pathway. To

achieve this we create a set of two opposing channel distributions. In both

cases we wish for the pumps to be equally distributed across the surface

however, except for a few specific numbers - the five special cases/platonic

solids - this is not possible to achieve exactly [2]. Therefore, to determine
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pump positioning, we employ the ’Regular equidistribution’ method of De-

serno (2004). In this algorithm circles of latitude are drawn at constant

intervals on which equidistant points are chosen in a manner such that the

distance between the points on the circle, dφ, is approximately equal to the

distance between circles, dθ, giving an average area per point of dφdθ [36].

Figure. 62 shows the chosen mesh-points for our pumps and channels to be

used in the simulations. In the equally distributed case, channel distribu-

tion was also determined by the regular equidistribution method described,

whereas the clustered channels were determined manually ensuring that

they were not immediately adjacent to a pump.

(a) Equally distributed channels. (b) Clustered channels.

Figure 62.: Pump (blue) and channel (green) distributions used in the simulations, with

20 equally distributed pumps and 8 (a) equally distributed/ (b) clustered

channels.

Akin to the findings in two-dimensions, simulations showed small eleva-

tions in concentration at channel sites in the equally distributed case and

for clustered channels a domain of much greater concentration increase due

to the cumulative effect of merging the distinct fluxes. This can be seen

in Figure. 63 which shows the concentration profiles on the surface of the

nucleoplasm just below the INM, 7 minutes after stimulus application.

In three-dimensions we are also able to observe additional, more sophisti-

cated dynamics, and we find that oscillations in calcium concentration can
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(a) Equally distributed channels. (b) Clustered channels.

Figure 63.: The calcium concentration profile at the periphery of the nucleoplasm (r =

4.5 nm) at t = 7min for parameter values highlighted in Table 1

(a) Equally distributed channels. (b) Clustered channels.

Figure 64.: The time series of the calcium concentration (in µm) at the same point

(r, θ, φ) = (0.9153, 2.5777, 2.6928) inside the nucleoplasm for each of the chan-

nel configurations.

be reproduced only if channel clustering is present. This is a very impor-

tant finding as it not only reveals how channels must be positioned on the

INM but also gives suggestion of a method by which plant cells are able

to control signalling. It is possible that, on perception of a signal, channels

may be relocated to a particular site on the dynamic nuclear membrane. As

discussed in Section 2, experimental results have shown that the nuclear cal-

cium signature typically involves around six initial fast spikes followed by

slower oscillations of a magnitude of around 500 nm and a 0.7min−1 period-
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icity [39] [26]. This pattern is autonomously and accurately reproduced by

our model, with the only input being an initial signal designed to replicate

initiation from an upstream messenger. The resulting time-series of calcium

concentrations in both distributed and clustered channels can be seen in

Figure. 64.

As well as being necessary for the initiation and maintenance of oscillations,

clustering is also required if nuclear calcium concentration is to surpass the

dissociation constants (Kd’s) of two of the three EF hands of CCaMK. That

is, given the parameters measured experimentally, concentrations cannot el-

evate high enough to trigger the downstream signalling cascade unless the

aggregating effect of clustering is present (Figure. 65). At basal concentra-

tions in the nuceloplasm, EF3, which has a Kd of less than 20 nm, is always

Figure 65.: A comparison between calcium concentrations achieved in the nucleoplasm

and the binding affinities of CCaMK shows that channel clustering is neces-

sary to surpass the dissociation constant of the key binding domains.
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occupied, however the lower affinity EF1 and EF2 require increased calcium

levels. Dissociation constants for these domains have been measured by

Swainsbury (2012) to be in the region of 200 nm and hence are reasonably

well matched for the interpretation of calcium oscillations [84].

Another important observation is the formation of a micro-domain over

which spiking occurs. Figure. 65 shows that there exists a small area around

the channel cluster (rnuc ∈ [∼ 0.75, 1]) in which calcium levels are high,

whilst outside this region concentrations remain lower. This increase is seen

transiently during calcium oscillations, with Figure. 65 given at a time point

coinciding with the oscillation peak, whereas outside this domain concentra-

tions remain relatively constant. It is known that the nuclear interior is also

far from homogeneous and consists of sub-compartments which undergo

dramatic reorganisation in response to environmental cues. The finding

that signals are contained close to the nuclear periphery is therefore in ac-

cordance with the dynamic nature of the nucleus and the accepted role of

chromatin-NE association in animal cells as an important regulatory tool

of gene expression [77]. This is an relatively unexplored area in plants

however initial findings, such as the movement of the chlorophyll binding

protein from the interior of the nucleus in response to light [42] "shows

convincingly that ... gene re-positioning has biological significant in plants"

[64]. The phenomenon of micro-domain formation indicated by our results

also supports this theory, with our findings also highlighting that this can

occur by cluster formation on the INM to coincide with the site of sensory

molecule localisation.

Finally, it is important to note that the mathematical formulation of this

model give us insights into the channel and pump dynamics as well as their

positioning. Previous models have required an added feature, such as a re-

fractory period, in order to observe spiking [21]. We also saw in Section 4.3

that in one dimension the same model led to a steady state only. The mech-
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anism used here relies on CICR, where firing depends on the concentration

of calcium at the channel. Channel firing is able to cease automatically here

through ’termination by depletion’ where the channel does not fire due to

the micro-domain of low calcium concentration in the store immediately

adjacent to the channel, keeping the channel below its firing threshold. In

this scenario, the ’refractory period’ occurs naturally, and its length is de-

pendent upon parameters such as the diffusion coefficient and the channel

release rate as we shall see from our stability analysis in the next section.

7.2.2 Parameter space analysis

In this section we look at the effect of varying all of our model parameters

to gain an insight into the sensitivity of our model to parameter fluctua-

tions. For some parameters we have reliable measurements from the data

and hence we will look at these with a view to testing the stability of our so-

lutions. For others we have a general idea of their measurements but there

may, for example, exist large inconsistencies across published values. In this

case it is particularly interesting to observe if the calcium patterns remain

stable across the range of values indicated in the literature.

Diffusion parameters

Here we look at the nuclear radius, a, the diffusion coefficient in the nucleus,

Dnuc, and the diffusion coefficient in the peri-nuclear space, Dpns. These

appear in our equations within the normalised diffusion parameters due to

the way in which the system is normalised to a unit radius (see Section 4.1.1).

During this normalisation we set:

D̂nuc =
Dnuc

a2 ,

D̂pns =
Dpns

a2 ,
(270)

and hence a simply scales both diffusion coefficients by the true radius of
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the nucleus, whilst to change the ratio of the diffusion coefficients, Dnuc or

Dpns must be varied individually.

(a) (b)

Figure 66.: The effect of the nuclear radius a) seen for a single point in the micro-domain

and b) quantified by the oscillation amplitude and frequency.

Figure. 66 shows the effect of varying the nuclear radius, with spiking

present provided the radius is above 3.5 µm. Interestingly, this value is

very close to the lower bound of radius of the root hair cell nuclei measured

in Section 6, whilst cortical cell nuclei can be much smaller. We observe

that the frequency increases greatly for a radius over 7.5 µm, whilst the am-

plitude has a minimum at 7.0 µm. In this case, measures of frequency and

amplitude may not accurately describe the full picture of the spiking, as

the radius also appears to also have an effect on patterning. Rather than

generating spikes of a constant amplitude and frequency, which we will

observe throughout this section, more complex patterns of small and-large

amplitude spikes are produced in various combinations. It would there-

fore be interesting to compare the spike patterns with experimental data for

N.benthamiana nuclei at varying stages of development.
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(a) (b)

Figure 67.: The effect of the nuclear diffusion coefficient a) seen for a single point in

the micro-domain and b) quantified by the oscillation amplitude and fre-

quency. There is clearly a positive/negative correlation between Dnuc and

the frequency/amplitude.

In Figure. 67 we see a clear effect of varying the diffusion coefficient in the

nucleoplasm, with our model appearing to be quite sensitive to this param-

eter. An increase in Dnuc results in an increased frequency and decreased

amplitude of spiking. Upon spiking, in order for a channel to produce a

subsequent spike, enough calcium must be re-sequestered into the store to

surpass the firing threshold of the channel. When the diffusion coefficient

in the nucleoplasm is lower, it takes longer for the calcium to be dispersed

from the channel microdomain and hence to reach a pump and be returned

to the store. This explains why there is a longer period between spikes for

a lower nuclear diffusion coefficient.

For the diffusion coefficient in the PNS we again see a clear relationship

between the parameter value and the frequency/amplitude of spikes. Fig-

ure. 68 shows that, in general, as Dpns increases, the oscillation frequency

decreases whilst the amplitude increases. Initially this appears puzzling as

we may expect that a larger diffusion coefficient would mean an increase in

spike frequency due to the shorter time taken for the calcium to reach the
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(a) (b)

Figure 68.: The effect of the luminar diffusion coefficient a) seen for a single point in

the micro-domain and b) quantified by the oscillation amplitude and fre-

quency. We observe a negative/positive correlation between Dpns and the

frequency/amplitude.

channel, in the same way that increasing Dnuc increases frequency due to

the shorter time taken for calcium to reach the pump. However, if we recall

that the PNS is extremely thin, it is understood that the calcium diffuses

through the entire PNS much more quickly and therefore the calcium actu-

ally disperses away from the channel faster. This results in lower frequency

spiking as more calcium then needs to be pumped into the PNS to fill the

compartment sufficiently to surpass the channel concentration threshold.

This simulation was performed using a channel cluster as far away as possi-

ble from any pump. To confirm this hypothesis we would therefore expect

the effect of varying Dpns to be amplified if the channel was closer to a

pump.

Channel parameters

The parameters controlling the channel dynamics include the threshold of

the step function, KAc, the channel release rate, g, and the number of chan-

nels in the cluster, Nc. Figure. 69 shows the effect of varying the concen-

tration of calcium required for CICR of the channel. A key observation,
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unique to this parameter, is that a lower KAc results in a higher base cal-

cium concentration in the nucleoplasm. This is likely due to the fact that

less calcium will be required to be returned to the PNS in order for the

channel to fire again, and hence the channel fires with a higher calcium con-

centration remaining in the nucelolar compartment. As a result of this, we

see that a higher KAc correlates to a lower amplitude. The frequency on the

other hand peaks for KAc = 298 µM and the nuclear Ca2+ concentration

decreases towards a steady state once the channel threshold is sufficiently

above the PNS concentration, preventing channel activation. It is also inter-

esting to note that an KAc of 300 µM does not exhibit the characteristic fast

spikes at the beginning as in other cases.

Similarly to the effect we saw in the case of Dnuc, g shows a clear trend with

spiking amplitude increasing and frequency decreasing as g increases. In

Figure. 70b we see that there is a positive, linear relationship between spike

amplitude and g, whilst the frequency decays exponentially. As covered

(a) (b)

Figure 69.: The effect of the channel threshold a) seen for a single point in the micro-

domain and b) quantified by the oscillation amplitude and frequency. We

find there is negative correlation between the KAc and amplitude. The fre-

quency however increases with increasing KAc until it reaches a peak and

then decreases until no oscillations are observed.
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(a) (b)

Figure 70.: The effect of the channel release rate a) seen for a single point in the micro-

domain and b) quantified by the oscillation amplitude and frequency. We find

there is positive linear correlation between the release rate and amplitude and

an negative exponential correlation between g and frequency.

previously, the inverse relationship between amplitude and frequency is to

be expected as a larger spike will require a longer interval to refill the Ca2+

store. It also offers a straightforward explanation as a larger injection of

calcium from the channel directly results in a larger spike. The system is

highly robust to changes in release rate as, although the effects of variation

are clear, the parameter values explored a range over two orders of magni-

tude.

The number of channels presents unexpected results in that we may have

expected that more channels would have a similar effect to increasing the

channel release rate. This would however assume that the channels fire si-

multaneously. Observing the simulation in 3-dimensions shows us that this

is not the case for all channel configurations, and in fact it is often a sin-

gle channel in the cluster which fires at a single point time. In Appendix.

C, Figure. 86 illustrates how for 5 channels, the firing channel is different

each time, causing the non-uniformity we see in the spikes in Figure. 71a,

whereas for 7 channels the same channel is activated each time resulting
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(a) (b)

Figure 71.: The effect of the number of channels a) seen for a single point in the micro-

domain and b) quantified by the oscillation amplitude and frequency. We see

no clear trend between the oscillation characteristics and Nc except that the

resulting calcium pattern is similar in all cases except for Nc = 5 and Nc6.

in regular spiking. This leads us to pose questions about the intra-cluster

channel dynamics which are left as recommendations for further work. This

would ideally include imaging of the INM to observe the precise arrange-

ment of the channels within the cluster.

Pump parameters

Our pump parameters comprise of those responsible for the pump dynam-

ics consisting of; the calcium concentration required for 50% activation of

the pump, KAp; the maximal pump current, Imax
p ; the Hill coefficient, np;

and the number of pumps equally distributed over the nuclear envelope,

Np. We see firstly, in Figure. 72 (paying attention to the very small range

of the y-axes in Figure. 72b) that the KAp has no effect on the frequency

or amplitude of oscillations, and only a very small effect on the patterning.

This could be due to the pump being close enough to the channel cluster to

experience high Ca2+ concentrations within the micro-domain and hence is

always working to maximum capacity. It may be that the calcium concentra-

tions required for activation are higher than those used in our simulation.
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(a) (b)

Figure 72.: The effect of the pump 50% activation threshold a) seen for a single point

in the micro-domain and b) quantified by the oscillation amplitude and fre-

quency. There is little to no effect on spiking when varying the KAp.

However as it is dangerous to the cell for concentrations to greatly surpass

the basal concentration of 0.15 µM for extended periods of time, an KAp of

0.25 µM would seem a reasonable level for calcium to be pumped out at

50% capacity.

A more pronounced effect in exhibited in Figure. 73 however, where we

see that a low pump current leads to a steady state solution that is below

the binding threshold of calmodulin. This is likely due to too small of a

calcium concentration being pumped into the PNS near the micro-domain,

allowing time for the calcium to diffuse away from the micro-domain and

prevent the pump/channel cycle of spiking. As the pump current increases

we see that the amplitude of oscillations remains stable but the frequency

of these oscillations is increased, clearly due to a larger concentration of cal-

cium being returned to the store resulting in a shorter time taken to reach

the channel firing threshold. The pump parameter which shows the most

pronounced and consistent variation in its spike properties is the number

of pumps distributed over the INM. Figure. 74 shows that for a very low
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(a) (b)

Figure 73.: The effect of the maximum pump current a) seen for a single point in the

micro-domain and b) quantified by the oscillation amplitude and frequency.

We observe a positive correlation between Imax
p and frequency with negligible

effect on amplitude.

number of pumps the system reaches a steady state, possibly similarly to

the effect of a low pump current, due to the calcium having time to diffuse

through the nucleoplasm before reaching a pump, preventing the formation

of pump/channel cycle within a micro-domain. For increasing numbers of

pumps, the amplitude of spikes again remains constant for all values, but

the frequency increases quite dramatically. A possible explanation is that for

more pumps, the probability of both the pumps being closer to the channel

and of there being multiple pumps in close proximity to the channel in-

creases, and hence the calcium is returned to the store much more quickly

and spike frequency is increased.

Our final parameter, np, with the parameter space analysis results given

in Figure. 75, shows again negligible effects on frequency and amplitude of

oscillations for a wide variation of values. As this parameter relates closely

to the KAp we would expect that this follows the same explanation, i.e. that

the pump is at maximum capacity for all parameter values due to the high

concentrations in the micro-domain. Overall, we note that the pump param-
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(a) (b)

Figure 74.: The effect of the number of pumps a) seen for a single point in the micro-

domain and b) quantified by the oscillation amplitude and frequency. Np is

positively correlated with oscillation frequency whilst, as is the case for all

pump parameters, we see no effect of amplitude.

eters have no effect on the amplitude of oscillations. Whilst the parameters

from the Hill function, KAp and np, also have no effect on the frequency of

oscillations, Imax
p and Np on the other hand result in an increase in frequency

as their value is increased.

(a) (b)

Figure 75.: The effect of the pump Hill coefficient a) seen for a single point in the micro-

domain and b) quantified by the oscillation amplitude and frequency. There

is little to no effect on the spike properties observed through varying np.
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7.2 3d simulations

Parameter combinations

In the previous subsections we have analysed the effects of each param-

eter, categorised by its function into either pumps, channels or diffusion.

The parameter exhibiting the greatest effect was chosen from each category

and these were varied simultaneously in order to view the analysis over

a 3-dimensional space. Taking the diffusion coefficient in the nucleus, the

channel release rate and the number of pumps, we recorded the amplitude

and frequency of the calcium spikes generated in our simulations. Results

for Np = 15, are given in Figure. 76a, whilst results for Np=20, can be seen

in Figure. 76b. These two sets of heat-maps show an almost identical pic-

ture in that effect upon the frequency is dominated by the nuclear diffusion

coefficient with a larger Dnuc resulting in a decrease in spike frequency.

Amplitude on the other hand, appears to be equally influenced by both pa-

rameters with a lower channel release rate and a higher diffusion coefficient

correlating to a higher amplitude.

As mentioned in the previous section, this quantification of spike proper-

ties does not sufficiently describe the changes in patterning as the param-

eters are varied. The calcium signatures generated are therefore shown

for the maximal concentration point in the microdomain in Figure. 77 and

Figure. 78 from which we can gain further insight than is afforded to us

through our quantitative measures. An interesting feature of the calcium

signature is the short period of ’fast-spikes’ which occurs upon initial re-

ceipt of the signal. As discussed in Section 2, we know from experimental

evidence that this is a series of 5-7 spikes occurring at higher frequency than

the subsequent transients. We see that this pattern is replicated extremely

well for g = 700 s−1µm−3 whilst for increasingly low channel release rate,

the number of initial fast-spikes increases, with the relationship occurring

across all values of Dnuc. A furthur insight we gain from observing the

individual transients is that in the cases where there are more fast spikes,
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7.2 3d simulations

(a)

(b)

Figure 76.: 2-dimensional parameter space analysis results for varying diffusion coeffi-

cient and channel release rate with a) 15 pumps and b) 20 pumps.
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7.2 3d simulations

the concentration does not return to the ’base’ concentration in between but

rather returns to base level gradually over time. It is also useful to see the

results which we have quantified in Figure. 76, as we observe the spike fre-

quency increase from left to right as Dnuc increases, and decreases from top

to bottom as g increases. Finally we observe for a diffusion coefficient of 12

and below, when Np=15, the system returns to a steady state after the initial

Figure 77.: Parameter space analysis results, viewed as individual calcium signatures

within the micro-domain for Np = 15, Dnuc = [12, 20, 36, 52] µm2s−1 and

g = [7, 35, 70, 140, 420, 700] s−1µm−3.

155



7.2 3d simulations

fast-spiking period, which may help to lead us towards an understanding

of how the spiking is able to terminate as autonomously as it was initiated.

This is the main difference between the results for Np=15 and Np=20 which

results in high amplitude, low frequency spikes when Dnuc = 12.

Figure 78.: Parameter space analysis results, viewed as individual calcium signatures

within the micro-domain for Np = 20, Dnuc = [12, 20, 36, 52] µm2s−1 and

g = [7, 35, 70, 140, 420, 700] s−1µm−3.
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7.2 3d simulations

7.2.3 The effect of cluster positioning

(a) (b)

(c) (d)

Figure 79.: The effect of cluster positioning in relation to the pumps on channel spiking.

a) A cluster far from any pumps produces the higher frequency spiking in c).

b) A cluster close to a single pump results in low frequency spiking seen in

d).

Here we compare the effect of the positioning of a cluster of channels in

relation to the pumps which remain equally distributed over the spherical

surface. Figure. 79 shows two channel configurations: a) configuration 1

in which the cluster is situated as far from any pump as possible, and b)

configuration 2 where the cluster is positioned close to a single pump. We

see that cluster positioning has a slight effect on spiking frequency. Whilst

configuration 1 results in higher frequency spiking, after the initial char-

acteristic series of fast spikes, configuration 2 results in spikes of a lower
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frequency.

It may have been expected that the cluster which was close to the pumps

would exhibit higher frequency oscillations due to the decrease in distance,

and therefore time, for the calcium to be returned to the PNS. These results

however highlight the role of multiple pumps in sequestering the calcium

ions back into the store, as it is seen that a single pump alone cannot suf-

ficiently refill the PNS for a subsequent channel activation. We do note

however, that the pattern observed, with an alternating longer and shorter

period, is preserved for both configurations.

7.3 simulations summary

• 2D simulations, comparing the calcium profiles resulting from clus-

tered and equally distributed calcium channels, demonstrated the co-

operative effect of a cluster on the formation of microdomains of high

concentration.

• It was discovered that oscillations can be generated autonomously in

the nucleus provided there is channel clustering.

• Our model is able to reproduce the initial fast spiking followed by

slower regular spiking as reported in the literature [26].

• 3D simulations showed that clustering of channels is required in order

for the resulting microdomain concentrations to surpass the binding

threshold of CCaMK.

• A parameter space analysis showed that the frequency and amplitude

of oscillations has a clear relationship with the nuclear diffusion coef-

ficient, the channel release rate and the number of pumps.
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7.3 simulations summary

• Our model is most sensitive to changes in the nuclear diffusion coeffi-

cient, whilst being highly robust to others, particularly those parame-

terising the pump dynamics.

• Cluster localisation experiments revealed that it is likely that multiple

pumps are involved in establishing sustained oscillations.
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8
C O N C L U S I O N S A N D F U T U R E W O R K

In this work we have looked at the calcium signalling pathway which medi-

ates symbiotic associations between legumes and Nitrogen-fixing bacteria.

The motivation behind this work lies in the transfer of these symbiotic abil-

ities to cereal crops in order to facilitate a more sustainable biological solu-

tion to the problem of feeding an expanding population using increasingly

degraded soils whilst decreasing the use of environmentally harmful syn-

thetic fertilisers. Noting that many cereal crops possess many components

of the calcium signalling toolbox, and form similar bacterial associations us-

ing the common symbiotic pathway, a natural step towards the higher goal

is to unravel the details of this pathway in order to pinpoint the points of

divergence between them.

A mathematical model representing the flux and diffusion of calcium in

and between the two compartments of the plant cell nucleus was derived

for up to 3-dimensions in both spherical and prolate spheroidal coordinates.

Our final model is the first 3-dimensional representation of nuclear plant

calcium signalling. It is also the first to reproduce the exact spiking profile

reported in the literature without any additional inputs such as refractory

periods or buffers. A novel and exciting finding from this thesis is that nu-

clear calcium oscillations can be generated autonomously provided that the

channels which facilitate them form clusters. The importance of channel

clusters is furthur evidenced by the additional finding that microdomain
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formation is necessary for calcium concentrations to exceed the binding

threshold of downstream sensory protein CCaMK. When taken together we

see the potential multi-functional role that cluster formation plays in cal-

cium signal generation. This discovery is important because, if confirmed,

it provides us with a possible mechanism of signal generation which is

currently unknown. This not only adds to our fundamental knowledge of

plant cell biology, but also provides a direction in which to look for the

missing link in cereal crops prohibiting fungal-symbiont interactions. The

mathematical method through which this was achieved provides us with a

useful 3-dimensional framework for simulations of various applications re-

quiring spherical polar coordinates which is significantly faster than could

be achieved through traditional finite-element methods.

Alongside our in-silico investigations into the mechanism of generation of

calcium signals, we have also formulated an experimental set-up which al-

lowed us to observe these signals in-vivo. The evolution of our method us-

ing plant lines expressing GCAMP in a FlowCell device will provide a use-

ful framework for experimentation in the future. This method was used for

measuring the effect of a Mastoparan stimulus on Arabidopsis root cells as

compared to the effect in N.benthamiana. We saw that the calcium response

in Arabidopsis was present but inconsistent, whereas N.benthamiana nuceli

exhibited more regular spiking. This is interesting because it highlights the

difference in calcium signalling between species and in particular between

those with and without nodulation abilities, suggesting that an evolution-

ary loss of ’tools’ as well as changes in the genome has occurred. It would

be interesting in future work to tailor our nuclear calcium signalling model

to Arabidopsis in an attempt to identify the missing pieces. Experimental

investigations also involved collecting data on the geometry of the nucleus.

We have shown that there are statistically significant differences in nuclear

morphology between cortical and root hair cells, providing an avenue of

furthur experimentation into the effects and purpose behind this phenom-
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ena. We have also shown that nuclear geometry of cells in the elongation

zone is correlated to the distance from the root apex with nuceli becoming

less spherical with cell development. Useful data was also collected to deter-

mine the average nuclear radius of root hair cells along with the spheroidal

equivalent defining the spheroidal nuclear surface which were used to pa-

rameterise our model.

Evidence from our experiments indicates that it is important to model the

root hair cell nuclei as spheroids or ellipsoids as compared to the more gen-

eralised sphere. However, problems were encountered in the computational

application of the special functions required to compute the Green’s func-

tion in the more complex geometries. We have shown that, due to numeri-

cal instabilities of available algorithms for computing the prolate spheroidal

wavefunctions, it is not possible to model either a nucleoplasm with suffi-

cient flatness or a PNS compartment that is thin enough to be realistic. We

have also seen that this breakdown of the inbuilt function in the python

programming language only allows for the calculation of a very limited

number of eigenvalues, preventing full convergence of the function even

with the necessary truncation.

We tested a number of workarounds that may be useful to allow for com-

putation within the existing software limitations. These included manually

setting the tails of our function to zero in order to nullify the instabilities.

Another involved using a variable diffusion coefficient in the PNS in order

to contain the calcium within the inner portion of the membrane, with a

slower diffusion coefficient towards the periphery producing the effect of a

block and hence an artificially thinner calcium store. The optimal solution

of course would be for advancement in the algorithms available to compute

the necessary special functions, for which calls have been made in the liter-

ature with some having been discussed here. Given an accurate algorithm

for computing the PSWF’s up to large values of the spheroidal parameter,
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the same model framework used for the spherical representation could be

used with a more accurate geometry.

A key next step in this research, would be to test the main simulation out-

comes experimentally. Most importantly this would include confirming if

clusters of CNGC15 channels form on the INM in response to the percep-

tion of Nod-factors. Using M.truncatula lines with tagged nuclear channels

through immunogold or GFP labelling of CNGC15, a suggested approach

would be to freeze samples before and after stimulus application and imag-

ing using transmission electron microscopy (TEM) at low temperatures. We

have suggested that due to microdomain formation, re-positioning of genes

and/or transcription factors to the nuclear periphery may be an important

feature of the calcium signalling pathway. In a similar manner to the above,

future work could look at this re-positioning through the tagging of specific

genes or transcription factors and observing their movement in response to

a relevant stimulus.

Anomalous calcium spiking observed in our controls, along with the high

levels of "noise" in the nuclear calcium signature, remind us that there are

multiple functionalities of nuclear calcium signalling in root hair cells. We

believe it would therefore be useful to develop a processing method to ’un-

tangle’ these overlapping signals in order to ascertain how they interact and

determine how a single cell is able to respond to the multiple stimuli it per-

ceives in each single point in time. As well as providing valuable insight

into how signalling pathways are intertwined, this would allow for the ex-

traction of clean signals from imaging data which could be more confidently

attributed to the stimulus of interest.

Finally, our model provides us with a 3-dimensional framework that can

be furthur expanded to include additional aspects of calcium signalling in

both space and time. Temporal extensions could include the addition of
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up/downstream components such as the chemical cascade leading to gene

transcription. Spatial expansions could involve adding furthur compart-

ments to the model, for example connecting the nucleus to the cytoplasm

through nuclear pores. Challenges in adding the wider cellular compart-

ment’s would possibly arise due to the large vacuole present in plant cells

and the dynamic nature of the positioning of the nucleus within the cell,

as well as the computational space required for storing additional Green’s

functions. This reliable and realistic modelling framework, however, can

continue to be built upon and holds the potential to facilitate furthur eluci-

dation of the details of nuclear calcium signal generation. The model also

provides a useful tool for hypothesis testing in-silico in order to direct exper-

imental efforts and move us ever closer towards our ultimate goal of using

this knowledge to feed the world sustainably.

164



A
S E PA R AT I O N O F VA R I A B L E S I N S P H E R I C A L

C O O R D I N AT E S

The diffusion equation is given by:

∂u
∂t

= D
∂2u
∂x2 . (271)

We wish to derive and solve the 3D diffusion equation in three different

polar coordinate systems corresponding to the relevant nuclear geometries

which have been observed in plant root tissues.

a.1 nucleoplasm

Firstly the spherical coordinates (r, θ, φ) are introduced as in Figure. 18, such

that;

x = r sin θ cos φ,

y = r sin θ sin φ,

z = r cos θ,

0 ≤ r ≤ a, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. (272)

The chain rule gives the Laplacian to be:

∇2 =
∂2

∂r2 +
2
r

∂

∂r
+

1
r2

∂2

∂θ2 +
cot θ

r2
∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2 , (273)
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A.1 nucleoplasm

and hence we have the diffusion equation in spherical polar coordinates:

∂u
∂t

= Dnuc

[
∂2u
∂r2 +

2
r

∂u
∂r

+
1
r2

∂2u
∂θ2 +

cot θ

r2
∂u
∂θ

+
1

r2 sin2 θ

∂2u
∂φ2

]
, (274)

where, with foresight, we have denoted the diffusion coefficient Dnuc to in-

dicate the diffusion coefficient within the nucleoplasm.

We can first, by arguments of symmetry, neglect the φ dependence by re-

move the φ dependent terms, which will be revisited later:

∂u
∂t

= Dnuc

[
∂2u
∂r2 +

2
r

∂u
∂r

+
1
r2

∂2u
∂θ2 +

cot θ

r2
∂u
∂θ

]
. (275)

Using the separation of variables technique we let:

u(r, θ, t) = p(r)q(θ)T(t), (276)

and substituting Eq. (276) in Eq. (275) we obtain:

1
Dnuc

Tt

T
=

prr

p
+

2
r

pr

p
+

1
r2

qθθ

q
+

cot θ

r2
qθ

q
. (277)

Separating T(t) gives us our first ODE in equation 278. As the right hand

side of equation 277 does not depend upon t, both sides must be equal to

the same constant, which we choose to be −k2:

1
Dnuc

Tt

T
= −k2, (278)

prr

p
+

2
r

pr

p
+

1
r2

qθθ

q
+

cot θ

r2
qθ

q
= −k2. (279)

Next, multiplying through Eq. (279) by r2 allows us to bring all terms of

radial dependence to the left hand side and all terms of angular dependence

to the right:

−r2 prr

p
− 2r

pr

p
− k2r2 =

qθθ

q
+ cot θ

qθ

q
. (280)

Both sides of Eq. (280) can then be equated to a constant, −µ2 to give the

ODEs:

r2prr + 2rpr + (k2r2 − µ2)p = 0, (281)
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qθθ

q
+ cot θ

qθ

q
= −µ2, (282)

and Eqs. (278), (281), and (282) are rearranged to give the final set of equa-

tions:
1. T′ + k2DnucT = 0,

2. q′′ + cot θq′ + µ2q = 0,

3. r2p′′ + 2rp′ + (k2r2 − µ2)p = 0.

(283)

Equation 1 of Eq. (283) is easily solved, subject to the initial condition T(0) =

T0, to give:

T(t) = T0e−k2Dnuct. (284)

In equation 2 we set x = cos θ for x ∈ [−1, 1]. Using the derivatives:

d
dθ

=
dx
dθ

d
dx

= − sin θ
d

dx
= −(1− x2)1/2 d

dx
, (285)

d2

dθ2 = sin2 θ
d2

dx2 − cos θ
d

dx
= (1− x2)

d2

dx2 − x
d

dx
, (286)

and the equation for the angular dependence becomes:

(1− x2)q′′ − 2xq′ + µ2q = 0, (287)

which is the Legendre differential equation for separation constant µ2 =

l(l + 1), l ∈ Z≥0. Our solution is therefore given by the Legendre functions

of the first (Pl(x)) and second (Ql(x)) kinds, of degree l:

q(x) = APl(x) + BQl(x), x = cos θ. (288)

It is known that as x → ±1, Ql(x) → ∞ and hence does not not conform

to our condition of boundedness, hence B = 0 and we take q(x) to be the

Legendre polynomial Pl(x):

q(x) = APl(x). (289)
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In equation 3 of 283 we set p(r) =
z(r)

(kr)1/2 which has first and second

derivatives of:

p′(r) =
z′

(kr)1/2 −
z

2r(kr)1/2 , (290)

and:

p′′(r) =
z′′

(kr)1/2 −
z′

r(kr)1/2 +
3
4

z
r2(kr)1/2 , (291)

respectively. Substituting into Eq. 3 of Eq. (283), and recalling that we have

set µ2 = l(l + 1), we find;

r2z′′ + rz′ + (k2r2 − (l +
1
2
)2)z = 0. (292)

Setting s = kr and noting that, by the chain rule,
d
dr

=
ds
dr

d
ds

= k
d
ds

, the

radial equation becomes:

s2z′′ + sz′ + (s2 − (l +
1
2
)2)z = 0. (293)

This is the Bessel equation of order l + 1
2 with solution:

z(s) = Cjl(s) + Dyl(s), (294)

where jl(s) and yl(s) are the spherical Bessel functions of the first and sec-

ond kind respectively, related to the ordinary Bessel functions, Jl(s) and

Yl(s), by:

jl(s) =
√

π

2s
Jl+ 1

2
(s), (295)

and

yl(s) =
√

π

2s
Yl+ 1

2
(s). (296)

We require boundedness of z(r), that is | lim
r→0

z(r)| < ∞, and hence as

lim
s→0

yl(s) = ∞, for our solution to hold we must have D = 0. Secondly we

have no flux at the outer boundary, at which r = a. The Neumann boundary

condition is applied to our remaining term z(s) = Cjl(s), recalling we have

set s = kr:
d
dr

[z(kr)] |r=a = C
d
dr

[jl(kr)] |r=a = 0. (297)
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As we require nontrivial solutions, C 6= 0 and we have the eigenvalue prob-

lem:

j′l(αlp) = 0, (298)

where αlp is the pth zero of the derivative of the lth order spherical Bessel

function, j′l . Our eigenvalues can be found numerically and are written as

ka = αlp.

The solutions can be combined by u(r, θ, t) = z(r)q(θ)T(t) and written as:

u(r, θ, t) =
∞

∑
l=0

∞

∑
p=1

Clp jl(
αlp

a
r)AlPl(x)T0e

−
(αlp

a

)2

Dnuct
. (299)

We find the weighting coefficient Al using the orthogonality relation of the

Legendre polynomials:

∫ 1

−1
Pl(x)Pl′(x)dx =


0, if l 6= l′

2
2l + 1

, if l = l′.
(300)

and Clp using the orthogonality condition for spherical Bessel functions for

each fixed l:

∫ a

0
jl(

αlp

a
r)jl(

αlq

a
r)r2dr =

0, if p 6= q

Nlp, if p = q.
(301)

where, as given by Ziener (2015) [94]:

Nlp =
a
2

[
a2 − l

(l + 1)
α2

lp

] [
jl(αlp)

]2
+

a2

2αlp
jl(αlp)j′l(αlp) +

a3

2
[
j′l(αlp)

]2 . (302)

By our boundary condition, j′l(αlp) = 0, the last two terms of Eq. 302 are

zero and our normalization factor becomes:

Nlp =
a
2

[
a2 − l

(l + 1)
α2

lp

] [
jl(αlp)

]2 . (303)

Multiplying Eq. 299 at the source (or initial condition), q(θ)z(r) = q0(θ)z0(r),
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by Pl′(x)jl(
αlp′

a
r)r2, and integrating with respect to x between −1 and 1, and

between 0 and a with respect to r, we find:∫ 1

−1

∫ a

0
z0(r)jl(

αlp′

a
r)q0(θ)Pl′(x)r2drdx

=
∞

∑
l=0

∫ 1

−1
AlPl(x)Pl′(x)dx

∞

∑
p=1

∫ a

0
Clp jl(

αlp

a
r)jl(

αlp′

a
r)r2dr

= AlClp

∫ 1

−1
[Pl(x)]2dx

∫ a

0

[
jl(

αlp

a
r)
]2

r2dr

= AlClp
a

2l + 1

[
a2 − l

(l + 1)
α2

lp

] [
jl(αlp)

]2 .

(304)

Hence our coefficient is given by our normalization factors, setting x′ =

cos(θ′):

AlClp =
2l + 1

a

∫ π

0
q0(θ

′)Pl(cos θ′) sin θ′dθ′

∫ a
0 z0(r′)jl(

αlp

a
r′)r′2dr′[

a2 − l
(l + 1)

α2
lp

] [
jl(αlp)

]2 , (305)

and our solution is:

u(r, θ, t) = z(r)q(θ)T(t)

= T0

∞

∑
l=0

2l + 1
a

∫ π

0
q0(θ

′)Pl(cos θ′)Pl(cos θ) sin θ′dθ′

∞

∑
p=1

∫ a
0 z0(r′)jl(

αlp

a
r′)jl(

αlp

a
r)r′2dr′[

a2 − l
(l + 1)

α2
lp

] [
jl(αlp)

]2 e
−
(αlp

a

)2

Dnuct
.

(306)

Using the methods introduced in Skupin (2010) [79], we include the φ de-

pendence explicitly by considering a point on the sphere P(r, θ, φ), and the

point source P′(r′, θ′, φ′). The φ dependence depends only on the cosines

of the angles of these two points, and hence for each source the coordinate

system can be rotated to force one of the angles to be zero [79]. The angle

ψ between the points is then given by the spherical law of cosines:

h(ψ) = cos(ψ) = cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(φ− φ′). (307)
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Initially we have:

h0(ψ
′) = A(cos2(θ′) + sin2(θ′) cos(φ′ − φ′))

= A0,
(308)

hence we integrate this initial condition over the entire period to find the

normalization constant:∫ 2π

0
h0(ψ

′)dψ =
∫ 2π

0
A0dψ = 2πA0

⇒ A0 =
1

2π

∫ 2π

0
h0(ψ

′)dψ′.
(309)

Our complete solution is therefore:

u(r, θ, φ, t) =
T0

2π

∫ 2π

0
h0(ψ

′)dψ′
∞

∑
l=0

2l + 1
a

∫ π

0
q0(θ

′)Pl(cos ψ) sin θ′dθ′

∞

∑
p=1

∫ a
0 z0(r′)jl(

αlp

a
r′)jl(

αlp

a
r)r′2dr′[

a2 − l
(l + 1)

α2
lp

] [
jl(αlp)

]2 e
−
(αlp

a

)2

Dnuct
,

(310)

which is in the form:

u(r, θ, φ, t) =
∫

V
u0(r, θ, φ, t)G(r, r′, θ, θ′, φ, φ′, t, t′)dV, (311)

where:

u0(r, θ, φ, t) = z0(r′)q0(θ
′)h0(φ

′)T0, (312)

with Green’s function:

G(r, θ, φ,t, r′, θ′, φ′) =

∞

∑
l=0

(2l + 1)
2πa

Pl(cos ψ)
∞

∑
p=1

jl(
αlp

a
r′)jl(

αlp

a
r)[

a2 − l
(l + 1)

α2
lp

] [
jl(αlp)

]2 e
−
(αlp

a

)2

Dnuct
.

(313)
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a.2 perinuclear space

The Green’s function is derived as in Section A.1, however recalling the

equation for the radial dynamics:

s2z′′ + sz′ + (s2 − (l +
1
2
)2)z = 0, (314)

whose solution is a linear combination of the spherical Bessel functions of

the first and second kind:

z(s) = Cjl(s) + Dyl(s), (315)

we notice that in this case we are unable to set D = 0 as we do not consider

the region containing s = 0 where yl(s) becomes unbounded. We must now

therefore apply the no flux boundary condition on both radial boundaries:

d
dr

[z(kr)] |r=a = 0,
d
dr

[z(kr)] |r=λa = 0, (316)

which gives the system: j′l(ka) y′l(ka)

j′l(λka) y′l(λka)

C

D

 =

0

0

 . (317)

As we require C, D 6= 0 we obtain the condition:

j′l(αlp)y′l(λαlp)− y′l(αlp)j′l(λαlp) = 0, (318)

where we have set k =
αlp

a
. This is an eigenvalue problem where, as be-

fore, αlp is the pth solution to the lth order problem. We also see from our

boundary conditions that:

D = −C
j′l(αlp)

y′l(αlp)
, (319)

and hence we can write:

z(s) = Cz̄(s), (320)

where:

z̄(s) = cjl(s) + dyl(s), (321)
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for constants c = 1 and d = −
j′l(αlp)

y′l(αlp)
.

Fixing l we find the value of our coefficient C using the orthogonality re-

lation [94]:

∫ λa

a
z̄l(

αlp

a
r)z̄l(

αlq

a
r)r2dr =


0, if p 6= q

r
2

(
r2 − l

(l + 1)
α2

lp

) [
z̄l(

αlp
a r)

]2
∣∣∣∣λa

a
, if p = q.

(322)

We multiply the radial part of our initial condition, z0(kr), by z̄l(kr) and

integrate over our domain to find:∫ λa

a
z0(r)z̄l(

αlp′

a
r)r2dr

=
∞

∑
p=1

∫ λa

a
Clpz̄l(

αlp

a
r)z̄l(

αlp′

a
r)r2dr

= Clp

∫ λa

a

[
z̄l(

αlp

a
r)
]2

r2dr

= Clp

(
λa
2

(
(λa)2 − l

(l + 1)
α2

lp

) [
z̄l(λαlp)

]2
− a

2

(
a2 − l

(l + 1)
α2

lp

) [
z̄l(αlp)

]2) ,

(323)

and hence we have:

Clp =
2
∫ λa

a z0(r′)z̄l(
αlp

a
r′)r′2dr′(

(λa)3 − λal
(l + 1)

α2
lp

) [
z̄l(λαlp)

]2 −(a3 − al
(l + 1)

α2
lp

) [
z̄l(αlp)

]2 .

(324)
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Combining this result with the angular solutions found in the previous sec-

tion we have the overall solution:

u(r, θ, t) =
T(0)
2π

∫ 2π

0
h0(ψ

′)dψ′
∞

∑
l=0

(2l + 1)
∫ π

0
q0(θ

′)Pl(cos ψ) sin θ′dθ′

×
∞

∑
p=1

∫ λa
a z0(r′)z̄l(

αlp

a
r′)z̄l(

αlp

a
r)r′2dr′(

(λa)3 − λal
(l + 1)

α2
lp

) [
z̄l(λαlp)

]2 −(a3 − al
(l + 1)

α2
lp

) [
z̄l(αlp)

]2

× e
−
(αlp

a

)2

Dpnst
,

(325)

where Dpns the the diffusion coefficient in the perinuclear space, which is

expected to be different to that in the nucleoplasm, Dnuc. The solution is in

the form of Eq. (311) for the initial conditions in Eq. (312) with the Green’s

function:

G(r, θ, φ, t, r′, θ′, φ′) =
∞

∑
l=0

(2l + 1)
2π

Pl(cos ψ)

∞

∑
p=1

z̄l(
αlp

a
r′)z̄l(

αlp

a
r)(

(λa)3 − λal (l+1)
α2

lp

) [
z̄l(λαlp)

]2 −(a3 − al (l+1)
α2

lp

) [
z̄l(αlp)

]2
× e
−
(αlp

a

)2

Dpnst
.

(326)
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B
S E PA R AT I O N O F VA R I A B L E S I N S P H E R O I D A L

C O O R D I N AT E S

b.1 nucleoplasm

In a limiting case of the ellipsoidal coordinates, the prolate spheroid, is

obtained by rotating the elliptic coordinates about the major axis such that,

at z = 0, the surface on the two principle axis gives a circle of radius ′a′.

(Figure 22). The system (ξ, ν, φ) is related to Cartesian coordinates by:

x = c
√
(ξ2 − 1)(1− ν2) cos φ,

y = c
√
(ξ2 − 1)(1− ν2) sin φ,

z = cξν,

(327)

1 ≤ ξ ≤ ξ0, −1 ≤ ν ≤ 1, 0 ≤ φ < 2π. (328)

where c > 0 is a constant and ξ0 is the surface of the prolate spheroid given

by:

ξ0 =
b
c

. (329)

for c =
√

b2 − a2, where a and b are the radii of the minor and major-axis

respectively as seen in Figure. 22. With a similar methodology to the spheri-

cal case we use the separation of variables technique to find solutions to the

diffusion equation in prolate spheroidal coordinates, where the dependent

175



B.1 nucleoplasm

variable is given by u(ξ, ν, φ, t). Again via the chain rule we see that the

Laplacian is:

∇2 =

1
c2(ξ2 − ν2)

[
∂

∂ξ

(
(ξ2 − 1)

∂

∂ξ

)
+

∂

∂ν

(
(1− ν2)

∂

∂ν

)
+

(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2

∂φ2

]
.

(330)

In order to solve our heat equation in prolate spheroidal coordinates:

∂u
∂t

=

Dnuc

c2(ξ2 − ν2)

[
∂

∂ξ

(
(ξ2 − 1)

∂

∂ξ

)
+

∂

∂ν

(
(1− ν2)

∂

∂ν

)
+

(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2

∂φ2

]
u.

(331)

we let:

u(ξ, ν, φ, t) = p(ξ)q(ν)s(φ)T(t), (332)

and by subbing in the variables of Eq. (332) into Eq. (331), the diffusion

equation in this case becomes:

∂u
∂t

1
T(t)

=
Dnuc

c2(ξ2 − ν2)

[
∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
+

∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)

+
(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2s(φ)
∂φ2

1
s(φ)

]
.

(333)

As the right hand side has no ‘t’ dependence and the left hand side has no

ξ, ν or φ dependence, we can set both sides equal to a constant −κ2, and

taking Dnuc to the RHS, find the ODE in the time variable:

1
Dnuc

T′

T
= −κ2, (334)

with remaining terms:

1
c2(ξ2 − ν2)

[
∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
+

∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)

+
(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2s(φ)
∂φ2

1
s(φ)

]
= −κ2.

(335)

Writing γ2 = k2c2 and rearranging we have:[
∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
+

∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)

+
(ξ2 − ν2)

(ξ2 − 1)(1− ν2)

∂2s(φ)
∂φ2

1
s(φ)

]
= −γ2(ξ2 − ν2).

(336)

176



B.1 nucleoplasm

and we can separate the φ dependence by multiplying through by
(ξ2 − 1)(1− ν2)

(ξ2 − ν2)
:

[
∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
+

∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)

]
(ξ2 − 1)(1− ν2)

(ξ2 − ν2)

+γ2(ξ2 − 1)(1− ν2) = −∂2s(φ)
∂φ2

1
s(φ)

= µ2,

(337)

and setting equal to a constant µ2. We can therefore write our second ODE

as:

s′′ + µ2s = 0, (338)

and have remaining terms:

∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
+

∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)
+ γ2(ξ2 − ν2)

=
µ2(ξ2 − ν2)

(ξ2 − 1)(1− ν2)
,

(339)

where we have now divided back through by
(ξ2 − 1)(1− ν2)

(ξ2 − ν2)
. We separate

the term on the RHS by writing:

µ2(ξ2 − ν2)

(ξ2 − 1)(1− ν2)
=

µ2

(1− ν2)
+

µ2

(ξ2 − 1)
, (340)

and, with foresight, write (ξ2 − ν2) = (ξ2 − 1) + (1− ν2), to obtain:

∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
− µ2

(ξ2 − 1)
+ γ2(ξ2 − 1)

= − ∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)
+

µ2

(1− ν2)
− γ2(1− ν2).

(341)

With no change to our equations we can add γ2 to both sides, and we set

equal to a constant λ:

∂

∂ξ

(
(ξ2 − 1)

∂p(ξ)
∂ξ

)
1

p(ξ)
− µ2

(ξ2 − 1)
+ γ2(ξ2 − 1) + γ

= − ∂

∂ν

(
(1− ν2)

∂q(ν)
∂ν

)
1

q(ν)
+

µ2

(1− ν2)
− γ2(1− ν2) + γ

= λ

(342)
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Our final two ODE’s are therefore:

(ζ2 − 1)p′′ + 2ζ p′ −
(

λ− γ2ζ2 +
µ2

(ξ2 − 1)

)
p = 0, (343)

and:

(1− ν2)q′′ − 2νq′ +
(

λ− γ2µ2 − µ2

(1− ν2)

)
q = 0. (344)

Our system of separated ODE’s is now:

1. T′ + κ2DnucT = 0,

2. s′′ + µ2s = 0,

3. (ζ2 − 1)p′′ + 2ζ p′ −
(

λ− γ2ζ2 +
µ2

(ξ2 − 1)

)
p = 0,

4. (1− ν2)q′′ − 2νq′ +
(

λ− γ2µ2 − µ2

(1− ν2)

)
q = 0,

(345)

with separation constants −κ2, µ2 and λ. Clearly Eqs. 3. and 4. of (345)

are of identical form however they are defined over different ranges of the

independent variable with −1 ≤ µ ≤ 1 and 1 ≤ ζ ≤ ζ0. These equations

must be solved subject to the corresponding boundary/initial conditions:

1. u(ξ, ν, φ, 0) = T0

2. u(ξ, ν, 0, t) = u(ξ, ν, 2π, t)

3.
du(ξ, ν, φ, t)

dt

∣∣∣∣
ξ=ξ0

= 0, lim
ξ→1

u(ξ, ν, φ, t) < ∞,

4. lim
ν→±1

u(ξ, ν, φ, t) < ∞.

(346)

Eq. 1 of Eq. (345) has form identical to that in the spherical case and hence

as previously the solution is given by:

T(t) = T0e−κ2Dnuct. (347)

The solution in the φ direction is given by:

s(φ) = A1 cos(µφ) + B1 sin(µφ), (348)
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with the boundary condition satisfied provide that µ is a non-negative in-

teger; m = 0, 1, 2, .... Eq. 3 of Eq. (345) is the radial spheroidal wave equa-

tion whose general solution is the linear combination of the radial prolate

spheroidal radial wave function’s of the first and second kind:

P(ξ) = A2R(1)
ml (ξ, γ) + B2R(2)

ml (ξ, γ). (349)

The radial functions are a generalisation of the spherical Bessel functions

and hence, as the spherical Bessel function of the second kind is unbounded,

R(2)
n is also unbounded and we let B2 = 0:

p(ξ) = A2R(1)
ml (ξ, γ), (350)

The no flux boundary condition is applied at ξ = ξ0 to give the eigenvalue

problem:

R(1)′
ml(ξ0, γmlp) = 0, (351)

where the eigenvalue γmlp denotes the pth zero of derivative of the mth or-

der, lth degree, radial prolate spheroidal wave function.

The general solution of Eq. 4 of Eq. (345) is the angular prolate spheroidal

wave function (a generalisation of the Legendre function):

q(ν) = A3Sml(ν, γ), (352)

with the degree l giving the number of zeros in the interval ν ∈ (−1, 1).

We require that u is bounded along the z-axis away from the focal line,

this requires q(ν) to be bounded when ν < |1| and hence λ = λml(γ) for

m = 0, 1, 2... and l = m, m + 1, m + 2, ....

We can write our solution as:

u(ξ, ν, φ, t) = AmlpR(1)
ml (ξ, γmlp)Sml(ν, γmlp)

sin(mφ)

cos(mφ)
e−k2Dnuct, (353)
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where we have combined our constants A1, A2 and A3 into Amlp. The

normalisation factors are given by the orthogonality condition:∫ 2π

0

∫ 1

−1

∫ ξ0

1
uml(ξ, ν, φ)unk(ξ, ν, φ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ

=

0, m 6= n, l 6= k,

Nmn, m = n, l = k.
(354)

and our initial condition:

u(ξ, ν, φ) = p0(ξ)q0(ν)s0(φ) = AmlpR(1)
ml (ξ, γmlp)Sml(ν, γmlp)

sin(mφ)

cos(mφ)
,

(355)

is therefore multiplied by R(1)
nk (ξ, γnkp)Snk(ν, γnkp)

sin(nφ)
cos(nφ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2−

ν2) and we integrate over our domain to obtain the coefficient:

Amlp =
1

Nml

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)s0(φ)R(1)

ml (ξ
′, γmlp)Sml(ν

′, γmlp)

× sin(mφ′)

cos(mφ′)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ.

(356)

Finally this gives:

v(ξ, ν, φ, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)s0(φ)R(1)

ml (ξ
′, γmlp)R(1)

ml (ξ, γmlp)

× Sml(ν, γmlp)Sml(ν
′, γmlp)

sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)

× dξdνdφe−k2Dnuct

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

∫ 2π

0

∫ 1

−1

∫ ξ0

1
p0(ξ)q0(ν)s0(φ)R(1)

0l (ξ
′, γ0lp)R(1)

0l (ξ, γ0lp)

× S0l(ν, γ0lp)S0l(ν
′, γ0lp)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dnuct,

(357)

such that u is in the form:

u(ξ, ν, φ, t) =
∫

D
u0(ξ, ν, φ, 0)G(ξ, ξ ′, ν, ν′, φ, φ′, t)dΩ, (358)
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with initial condition:

u0(ξ, ν, φ, 0) = p0(ξ)q0(ν)s0(φ)T0, (359)

and Green’s function:

G(ξ, ξ ′, ν, ν′, φ, φ′, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

R(1)
ml (ξ

′, γmlp)R(1)
ml (ξ, γmlp)Sml(ν, γmlp)

× Sml(ν
′, γmlp)

sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)
e−k2Dnuct

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

R(1)
0l (ξ

′, γ0lp)R(1)
0l (ξ, γ0lp)S0l(ν, γ0lp)S0l(ν

′, γ0lp)e
−k2Dnuct

+
1
V

.
(360)

b.2 perinuclear space

The Green’s function is derived as in Section B.1, however we now have the

domain:

ξ0 ≤ ξ ≤ ξ0, −1 ≤ ν ≤ 1, 0 ≤ φ < 2π. (361)

where ξ1 is the surface of the outer nuclear membrane given by:

ξ1 =
b1

c1
. (362)

for our second focal point c1 =
√

b2
1 − a2

1, such that c1 > c and a1 = a + h

and b1 = b + h are the radii of the minor and major-axis respectively as seen

in Figure. 22.

Recalling the equation for the radial dynamics given by Eq. 3. (345) whose

solution is a linear combination of the spheroidal radial wave functions of

the first and second kind:

P(ξ) = A2R(1)
ml (ξ, γ) + B2R(2)

ml (ξ, γ), (363)
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We notice that in this case we are unable to set B2 = 0 as we do not consider

the region containing ξ = 1, where R(2)
ml (ξ, γ) becomes unbounded. We

must now therefore apply the no flux boundary condition on both radial

boundaries:

d
dξ

[p(ξ)] |ξ=ξ0 = 0,
d

dξ
[p(ξ)] |ξ=ξ1 = 0, (364)

which results in the system:R‘(1)
ml (ξ0, γmlp) R‘(2)

ml (ξ0, γmlp)

R‘(1)
ml (ξ1, γmlp) R‘(2)

ml (ξ1, γmlp)

A2

B2

 =

0

0

 . (365)

As we require A1, B1 6= 0 we obtain the condition:

R
′(1)
ml (ξ0, γmlp)R

′(2)
ml (ξ1, γmlp)− R

′(2)
ml (ξ0, γmlp)R

′(1)
ml (ξ1, γmlp) = 0, (366)

an eigenvalue problem where, as before, γmlp is the pth solution to the mth

order, lth degree problem. We also see from our boundary conditions that

we can write:

B2 = −A2
R
′(1)
ml (ξ1, γmlp)

R
′(2)
ml (ξ1, γmlp)

, (367)

and hence we can write:

pml(ξ, γmlp) = R(1)
ml (ξ, γ) + CR(2)

ml (ξ, γ)), (368)

where:

C =
R
′(1)
ml (ξ1, γmlp)

R
′(2)
ml (ξ1, γmlp)

, (369)

Combining this result with the angular and temporal solutions found in

Section B.1, we have:

v(ξ, ν, φ, t) = AmlpZml(ξ, γmlp)Sml(ν, γmlp)
sin(mφ)

cos(mφ)
e−k2Dt, (370)

where we have written:

Zml(ξ, γmlp) = R(1)
ml (ξ, γmlp) + CR(2)

ml (ξ, γmlp). (371)
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Fixing l we find the value of our coefficient using the orthogonality relation

as in Ziener (2015):∫ 1

−1

∫ ξ1

ξ0
Zml(ξ, γmlp)Sml(ν, γmlp)Znl(ξ, γnlq)Snl(ν, γnlq)

(ξ2 − ν2)dξdν = δmn,
(372)

[94]. We multiply the spatial part of our initial condition:

v(ξ, ν, φ, 0) = p0(ξ)q0(ν)s0(φ) = AmlpZml(ξ, γmlp)Sml(ν, γmlp)
sin(mφ)

cos(mφ)
,

(373)

by Znk(ξ, γnkp)Snk(ν, γnkp)
sin(nφ)
cos(nφ)

√
(ξ2 − 1)

√
(1− ν2)(ξ2− ν2), and integrate

over our domain to find:

Amlp =

1
Nml

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Zml(ξ
′, γmlp)Sml(ν

′, γmlp)

× sin(mφ′)

cos(mφ′)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφ.

(374)

The final solution is therefore:

v(ξ, ν, φ, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Zml(ξ
′, γmlp)

× Zml(ξ, γmlp)Sml(ν, γmlp)Sml(ν
′, γmlp)

sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)

√
(ξ2 − 1)

×
√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dpnst

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

∫ 2π

0

∫ 1

−1

∫ ξ1

ξ0

p0(ξ)q0(ν)s0(φ)Z0l(ξ
′, γ0lp)Z0l(ξ, γ0lp)

× S0l(ν, γ0lp)S0l(ν
′, γ0lp)

√
(ξ2 − 1)

√
(1− ν2)(ξ2 − ν2)dξdνdφe−k2Dpnst,

(375)
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B.2 perinuclear space

such that U is in the form of Eq. (358), with initial conditions as in Eq. (359),

and Green’s function:

G(ξ, ξ ′, ν, ν′, φ, φ′, t) =
∞

∑
m=1

∞

∑
l=m,m+1,

∞

∑
p=1

1
πNml

Zml(ξ
′, γmlp)Zml(ξ, γmlp)Sml(ν, γmlp)Sml(ν

′, γmlp)

× sin(mφ) sin(mφ′)

cos(mφ) cos(mφ′)
e−k2Dpnst

+
∞

∑
l=0

∞

∑
p=1

1
2πN0l

Z0l(ξ
′, γ0lp)Z0l(ξ, γ0lp)S0l(ν, γ0lp)S0l(ν

′, γ0lp)e
−k2Dpnst

+
1
V

.
(376)
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Figure 80.: Calcium response for Nucleus 1 measured over 4 ROI’s corresponding to

those described in 53.
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supplementary figures and data

Figure 81.: Calcium response for Nucleus 2 measured over 4 ROI’s corresponding to

those described in 53.

Figure 82.: Calcium response for Nucleus 3 measured over 4 ROI’s corresponding to

those described in 53.
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supplementary figures and data

Figure 83.: Calcium response for Nucleus 4 measured over 4 ROI’s corresponding to

those described in 53.

Figure 84.: Calcium response for control 1 measured over 4 ROI’s corresponding to those

described in 53.
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supplementary figures and data

Figure 85.: Calcium response for control 2 measured over 4 ROI’s corresponding to those

described in 53.
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supplementary figures and data

(a)

(b)

Figure 86.: Figure showing the different spiking patterns of clusters of varying numbers

of channels, with all other simulation conditions remaining equal.

189



supplementary figures and data

(a)

(b)

Figure 87.: The relationship between nuclear size and geometry in the root EZ.
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