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Abstract

The mu opioid receptor (MOR) belongs to the superfamily of G-protein coupled

receptors (GPCRs) and remains an important target in the management of pain

and addiction, with an emerging role in promoting tumour growth.

Understanding of the complex role of the MOR in these signalling pathways

would be aided by further study of receptor-ligand interactions. Development

of fluorescent ligands to target the MOR may provide the necessary tools to

study such receptor pharmacology and localisation in healthy and diseased

tissue.

Previously described high affinity fluorescent MOR ligands have been

unsuitable for confocal imaging studies due to high levels of non-specific

interactions with the cellular membrane. The introduction of amino acid-based

linker moieties to separate the orthostere and fluorophore of fluorescent

ligands has been reported to improve receptor binding affinity, receptor

subtype selectivity and the confocal imaging properties of fluorescent ligands

for various GPCRs.

This thesis describes the development of novel fluorescent MOR ligands based

upon the opioid antagonists naltrexone and alvimopan which also contain

amino acid-based linkers. Evaluation of the reported SAR of small molecule

opioid receptor ligands was used to inform orthostere selection and location of

linker attachment. Different amino acid linker compositions were investigated

through the synthesis and evaluation of MOR binding affinity of non-

fluorescent congeners in a series of TR-FRET competition binding assays.

Coupling of the optimised congeners to red-emitting fluorophores (BODIPY

630/650 or sulfo-Cy5) afforded nine amino acid-linked fluorescent ligands for

MOR. Assessment of MOR binding affinity of the fluorescent ligands was

achieved in TR-FRET saturation binding assays.

Investigation of the linker composition of β-naltrexamine-based ligands did not 

identify any significant differences in MOR binding affinity between non-
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fluorescent congeners containing different amino acid linkers. However, a

subsequent series of BODIPY 630/650-containing fluorescent ligands were

identified to possess sub-nanomolar MOR binding affinities (pKD = 9.20-9.58).

Non-fluorescent derivatives of (3R,4R)-3,4-dimethyl-4-(3-hydroxyphenyl)

piperidine displayed improved MOR binding affinity when a phenylalanine

moiety was bound via an N-propanoate, but further elaboration of the linker

was found not to improve binding further. High affinity fluorescent ligands for

the MOR containing the BODIPY 630/650 fluorophore were once more

identified utilising this design approach (pKD = 8.14-8.47).
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1. Introduction

1.1 G protein-coupled receptors

G protein-coupled receptors (GPCRs) represent the largest family of cell-

surface receptors and the most frequently targeted receptor family for

pharmaceutical intervention and research.1, 2 Its members display a vast and

diverse range of functions, but all possess a conserved structure and primary

mechanism of action. Structurally, GPCRs consist of seven transmembrane α-

helices arranged in a non-linear barrel shape.1, 3 These helices are connected

by less structured extracellular and intracellular loops with an extracellular N-

terminal region and intracellular C-terminal region (Figure 1-1).1, 3 Regulation

of GPCR signalling is activated endogenously by peptide, hormone and

neurotransmitter agonists, but intervention by exogenous drugs allows

signalling to be manipulated for medical and research purposes.

Receptor activation by orthosteric ligand binding typically occurs within the

transmembrane bundle causing a conformational change in receptor structure

that allows new cytoplasmic interactions to occur.1 Binding of a heterotrimeric

G protein to the intracellular region of a GPCR can occur before or after

receptor activation, with activation resulting in the exchange of a bound

guanosine diphosphate (GDP) molecule for guanosine triphosphate (GTP).4 The

GTP-bound G protein is released from the receptor and the G protein subunits

disperse. The GTP-bound α-subunit can interact with proteins elsewhere in the 

cell, with further signalling induced by hydrolysis of GTP to GDP. In this inactive

state, the α-subunit can reunite with the βγ-subunit complex - which can also 

engage in signalling pathways while separated - and reassociate with the GPCR

(Figure 1-1).
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Figure 1-1: A representation of GPCR activation and G protein signalling.

Source: Sven Jahnichen, 24.04.2006.

The GPCR structure is composed of seven transmembrane helices joined by intracellular and

extracellular loops. They are also characterised by an extracellular N-terminal region and an

and intracellular C-terminal region. (A) An orthosteric agonist can bind to the extracellular

binding site. (B) The bound agonist switches the GPCR into an active conformation. (C) In this

state, the G protein-bound GDP is exchanged for GTP. (D) With GTP bound, the α- and βγ-

subunits dissociate. (E) Signalling interactions made by the α-subunit result in hydrolysis of GTP 

to GDP. The agonist dissociates from the receptor binding site, returning it to the inactive

conformation. (F) The inactive conformation of the GPCR is able to bind to a GDP-bound G

protein heterotrimer.

1.2 Opioid receptors

The opioid family of receptors (ORs) are members of the class A gamma

subgroup of GPCRs which bind a Gi/o trimer via the C-terminus of the active

receptor.5 The dissociated αi/o subunit inhibits adenylyl cyclase activity,

preventing production of cyclic adenosine monophosphate (cAMP) from

adenosine triphosphate (ATP), leading to transient receptor potential cation

A B

CF

DE
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channel subfamily V member 1 (TRPV1) ion channel inhibition.6 The βγ subunit 

complex can also interact with various membrane-bound ion channels,

including pre- and post- synaptic Ca2+ ion channels and G protein–coupled

inwardly rectifying K+ (GIRK) channels.7, 8 It is in these ways that the ORs are

able to modulate neuronal excitation and neuropeptide release, resulting in

their antinociceptive effects (Figure 1-2).5, 9

Figure 1-2: Opioid receptor signalling by activated G protein subunits.5

Source: Stein (2016)5

Activation of an OR results in the release of its G protein subunits. The αi/o subunit inhibits

adenylyl cyclase activity, leading to TRPV1 ion channel inhibition due to lower cAMP levels. The

βγ subunit complex can interact with various membrane-bound ion channels either directly, or 

via phospholipase C/phosphokinase C (PLC/PKC) pathways.5

ORs are also able to recruit various kinases to phosphorylate their cytoplasmic

regions, including GPCR kinases (GRK), which can recruit arrestin.9 Once bound,

arrestin desensitises the OR by preventing coupling to G proteins and initiates

receptor internalisation and recycling or degradation.9

Sequence analysis of cDNA in mice with selective deletion of genes confirms

only three OR genes exist: the mu (MOR), delta (DOR) and kappa (KOR)

receptors.10 Other OR subtypes have been proposed, including the

nociception/orphanin FQ (N/OFQ), epsilon and sigma receptors, but none are

widely considered to be “true” ORs due to significant differences in gene

sequence or receptor function.5 For this reason, these additional receptors
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were not considered further in this project. There is some structural variety

amongst the three major ORs due to post-translational modifications and gene

splicing.10 Changes in functionality can also be obtained through the formation

of dimers and oligomers.10 Additionally, different ligands can elicit different

effects at the same receptor through allosteric modulation and biased

signalling.10, 11

ORs are implicated in the regulation of numerous signalling pathways and

physiological responses. Though most commonly known for their role in

nociception and analgesia, OR activation is additionally associated with

constipation, respiratory depression, convulsions, anxiety, diuresis and

reduction of inflammation.5 This results from the wide distribution of ORs in

different cells of the body, including neurons of the peripheral (PNS) and

central (CNS) nervous systems, neuroendocrine cells, immune cells and cells of

the gastrointestinal (GI) tract .5

Endogenous peptidic OR ligands are known to regulate these effects. The

endorphins, enkephalins and dynorphins share the “opioid motif”, a common

N-terminal Tyr-Gly-Gly-Phe-Met/Leu sequence responsible for orthosteric OR

binding. Receptor subtype selectivity is determined by the remaining C-

terminal regions of these polypeptides: β-endorphin and the enkephalins act 

primarily at MOR and DOR, and the dynorphins selectively bind to KOR.5

Endomorphins do not contain the “opioid motif”, but are able to selectively

bind MOR.5

1.2.1 Opioid receptors as therapeutic targets

A broad range of OR ligands have been developed to target the pathways

regulated by ORs for clinical benefit. Some OR ligands, such as the natural

products of Papaver somniferum (opium poppy), morphine (1) and codeine (2),

have been used in medicine for millennia,12 while novel OR ligands continue to

be approved for medicinal use.13
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A range of different opioid agonists are used therapeutically (Figure 1-3) with

differences in prescribing based not only on the level of analgesia required, but

also the route of administration, desired onset and duration, as well as the side

effect profile of the drug.5, 14-16 OR agonists are primarily prescribed for pain;

other effects are usually off-target interactions rather than desired

outcomes.14-16 The most commonly prescribed opioid agonists - morphine (1),

codeine (2), oxycodone (3), tramadol (4), fentanyl (5) and many of their

derivatives - act primarily at the MOR.5, 14, 15

Figure 1-3: Structures of the most commonly prescribed opioid agonist.14

The structures of the most commonly prescribed OR agonist drugs in England. Tramadol is

marketed as a racemic mixture of the 1S,2S and 1R,2R enantiomers.

OR antagonists are commonly prescribed to deal with the side effects of opioid

use or overuse. Clinically approved OR antagonists (Figure 1-4) can be split into

two groups: centrally acting MOR antagonists, which are able to penetrate the

blood-brain barrier (BBB) and act throughout the body, and peripherally acting

MOR antagonists (PAMORAs), whose activities are restricted to peripheral

cells. The peripheral selectivity of PAMORAs results from physicochemical

properties which limit GI absorption and result in poor BBB penetrability.
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Figure 1-4: Structures of clinically approved opioid antagonists.

Bowel related issues are the most common side effects of opioid use, whether

following surgery or from treatment of chronic cancer pain, and include opioid-

induced constipation (OIC) and postoperative ileus (POI).17 OIC results from

increased intestinal fluid absorption due to alterations to MOR- and DOR-

regulated K+ channel activation in GI cells.17 Methylnaltrexone (MNTX) (11),

naloxegol (8), and the recently approved naldemedine (10) are all approved

opioid antagonists for the treatment of OIC. POI, the loss of coordinated bowel

propulsion following surgery, can be treated by alvimopan (9), another

peripherally acting MOR antagonist. Opioid agonists that are prescribed for

surgical pain act through the MOR to block the release of neurotransmitters

from excitatory motor neurons and stimulate the release of neurotransmitters

from inhibitory motor neurons, causing this lack of GI motility.18 Antagonism of

peripheral ORs can treat these conditions without impacting CNS analgesia by

centrally-acting OR agonists.

Naloxone (6) and naltrexone (7) possess high bioavailability from the gut and

are able to penetrate the BBB and act on the ORs of the CNS.15 They are used

to treat overdose of opioid agonists and in addiction therapy, although

antagonist treatment alone does not prevent the cravings associated with

opioid withdrawal so has poor compliance.15
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OR ligands with more complex pharmacological profiles have been developed,

such as the mixed agonist/antagonist buprenorphine (12), which is a partial

agonist of MOR that acts as an antagonist of KOR and DOR.19, 20 The high MOR

binding affinity, slow dissociation kinetics, and partial MOR agonist profile of

buprenorphine (12), make it suitable for treatment of opioid dependency,

often in a fixed-dose formulation with naloxone (6), as it prevents other opioids

from eliciting a full effect while decreasing cravings and withdrawal.20

Figure 1-5: Structure of the mixed agonist/antagonist buprenorphine (12)

1.2.2 The mu opioid receptor in cancer

Opioids are commonly used to treat chronic pain in cancer patients, but

evidence has emerged in the past two decades linking the MOR with increased

tumour growth. Morphine (1) has been found to stimulate phosphorylation

and activation of the survival-promoting protein kinase Akt in MOR-expressing

cells,21, 22 stimulate angiogenic cell proliferation in MOR-expressing cells in both

in vitro and in vivo models,22 and reduce time to tumour detection when

treated with morphine (1) in a breast tumour xenograft model in mice.22 The

co-administration of naloxone (6) reduces the rate of tumour growth,

increasing the time to tumour detection by over 50%.22 MOR knockout mice

injected with melanoma cells, present significantly reduced tumour growth,

even in the absence of exogenous opioids.23

Seven weeks of morphine (1) treatment was found to increase the density of

tumour vasculature and cause tumours to increase in size and number,

resulting in shorter survival in transgenic mouse models that developed breast
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tumours from a tumour antigen fusion gene.24 Importantly, morphine (1)

treatment was not found to advance the onset of tumour development,

indicating that opioid use does not increase the chance of an individual

developing cancer.24

Several studies have found that expression of the MOR is higher in both human

tumours and mouse tumour models,24-26 that overexpression of MOR in non-

small cell lung cancer (NSCLC) cells, and that treatment with various MOR

agonists results in changes typical of increased epithelial mesenchymal

transition as well as increased tumour growth rates.27 Clinical studies into

MOR-induced tumour growth, though largely limited to retrospective analyses

and anecdotal evidence, support this hypothesis.28, 29 Furthermore, breast

cancer patients possessing an MOR A118G polymorphism showed a decreased

mortality rate compared to wildtype patients.30, 31

The MOR-activated systems responsible for its role in tumour development are

not yet well understood. Further study of these systems, and continued study

of non-cancer MOR activation are therefore paramount to improve future

treatment methods and aid next-generation drug design.

1.3 Studying ligand-receptor interactions

The study of ligand-receptor interactions, and the signalling pathways activated

or inhibited as a result, is a key way in which cellular functions are understood

in both healthy and diseased states. Different experimental and computational

tools are available to study these interactions.

1.3.1 In silico modelling

Three-dimensional models of GPCRs solved via X-ray crystallography can be

used to aid ligand design. The process of creating high quality crystals of

membrane-bound receptors like GPCRs remains challenging, as the GPCR

structure can become compromised when removed from the cell membrane.32
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However, advances in crystallisation techniques have allowed a growing

number of high quality X-ray crystal structures of GPCRs (including the ORs in

201233-35) to be solved. In some instances, active and inactive conformations of

a receptor can be identified through co-crystallisation with a bound agonist or

antagonist.32

In silico modelling allows chemical structures to be docked into the active site

of the solved x-ray crystal structure of a receptor, predicting individual

interactions between the compound and receptor, as well as the overall

binding affinity. De novo ligand design is then the process of modifying docked

compounds to improve existing predicted interactions or to form new

interactions with the receptor.32, 36 Alternatively, smaller structural fragments

can be docked into optimal positions for receptor interaction. The docked

fragments are then covalently linked into a single structure, while still

maintaining these optimised positions.36-38 A de novo approach to ligand design

is especially valuable when a high degree of concordance is found between in

silico predictions and in vitro results.36

In silico modelling is a useful and promising tool for ligand design which

continues to be improved upon. However, experimental evaluation of

synthesised ligands is still required to fully optimise ligand design.

1.3.2 Radioligand binding assays

Radioligands are simply radiolabelled versions of known ligands – a ligand

which has an atom in its structure exchanged for a radioisotope equivalent,

such as 3H, 125I or 32P. Radioligands have been widely used in pharmacology to

determine receptor binding affinities of either the radioligand – and therefore

the unlabelled version of the ligand – or an unlabelled competitor.39 The

receptor binding affinity (equilibrium dissociation constant - KD) of a

radioligand can be determined in a saturation binding assay by measuring the

specific binding of the radioligand across a suitable range of concentrations in

which specific binding reaches saturation (Bmax). The binding affinity of an
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unlabelled competitor ligand (Ki) can be determined by measuring the

competitive displacement of a fixed concentration of radiolabelled ligand.

Additionally, receptor kinetic assays using radioligands can be used to

determine the association and dissociation rates of either the radioligand or an

unlabelled competitor.39, 40

However, radioligand binding assays require a large cell population (over

10,000 cells) per data point and, unlike fluorescent ligands, cannot be used to

study interactions at a single cell level. Safety while handling radioligands

alongside disposal of the subsequent radioactive waste are additional

disadvantages to radioligand use. These issues are greatly magnified if the

radioligand is not commercially available and must be synthesised.

1.3.3 Fluorescent ligands

Fluorescent ligands have increasingly replaced the use of radioligands in ligand-

receptor binding studies, mostly due to safety and cost considerations – not

only the cost of purchasing radioligands but also equipment for safe handling

and storage. Fluorescent ligands can be used in the same pharmacological

assays as radioligands to determine labelled or unlabelled ligand binding

affinities and kinetics. However, the applications of fluorescent ligands are far

more diverse than this, and through the use of different fluorophores,

orthosteres and linker structures (described below), a diverse range of

fluorescent ligands can be made with different physical and photophysical

properties to study receptor binding, signalling and for cell visualisation.

Radioligands remain useful in the study of specific ligands, as their binding

profile is representative of the unlabelled version of the ligand. While

fluorescent ligands have many benefits, they are considered to be unique

pharmacological entities, which are not representative of their unlabelled

parent compound.41
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1.3.3.1 Principles of fluorescence

Fluorescence occurs in certain molecules in which an electron can be promoted

from the singlet ground state (S0) to the singlet excited state (S1) by the

absorption of a photon. The return of this electron to S0 results in the emission

of a photon as fluorescence. However, due to loss of energy by vibrational

relaxation while in S1 (Stokes shift), the emitted photon has lower energy than

the absorbed photon, resulting in a longer wavelength of emitted light (Figure

1-6).

Intersystem crossing occurs when an excited electron transitions from S1 to the

triplet excited state (T1). In S1 the spin of the excited electron remains paired,

but in T1 these spins are parallel. In T1 energy loss is slower and photon emission

as phosphorescence is greatly delayed compared to fluorescence. Intersystem

crossing is more favourable in molecules which have overlapping S1 and T1

levels, as less energy is required to move between them.

The fluorescence quantum yield (ΦF) of a fluorescent molecule (fluorophore) is

the frequency with which an absorbed photon results in fluorescent emission

of a photon. A fluorophore with a high ΦF will convert a high percentage of

absorbed photons into fluorescence, while a lower ΦF fluorophore will convert

more absorbed photons into phosphorescence.
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Figure 1-6: Jablonski diagram displaying the excitation states of electrons in fluorescent

compounds.

(a) In the singlet ground state (S0) electron spins are paired. When an electron is promoted to

the singlet excited state (S1) it remains paired. In the triplet excited state (T1) the electrons are

parallel. (b) Absorption of a photon by an electron in the singlet ground state (S0) results in

promotion of the electron to the singlet excited state (S1). While in the singlet excited state

vibrational relaxation results in energy loss (Stokes shift). When the excited electron returns to

the singlet ground state, a photon of lower energy is emitted as fluorescence. Intersystem

crossing occurs when an excited proton in S1 transitions to T1. Electrons in T1 can undergo

further vibrational relaxation before returning to S0, emitting energy as phosphorescence.

1.3.3.2 Structure of a fluorescent ligand

In the most basic form, fluorescent ligands are composed of a known receptor

ligand (typically an orthostere) labelled with a fluorophore. The first example

of this was 9-aminoacridine-labelled propranolol (9-AAP) (13), with numerous

other examples described in the literature (Figure 1-7).42-44 Unlike most

radioligands, the labelling position is crucial, as fluorescent labelling can
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significantly alter the structure of the ligand and its properties. It is important

to avoid fluorophore conjugation onto key functional positions of the

orthostere which would interfere with binding, but direct attachment of a bulky

fluorophore anywhere on a ligand is likely to influence receptor binding.

Figure 1-7: Examples of early directly labelled fluorescent ligands.42-44

Early examples of fluorescent ligands attached a fluorophore to an orthostere directly.

Examples include the 9-aminoacridine-propranolol β-adrenoceptor antagonist 9-AAP (13), The

prazosin-BODIPY FL α-adrenoceptor antagonist QAPB (14) and the histamine-fluorescein

complex (15)

For this reason, the orthostere and fluorophore are now more commonly

separated through a linker moiety. Linkers are typically linear chains, often

composed of a repeated structural subunit, such as the polyethylene glycol

(PEG) linker of 18 or the glycyl linker of 16 (Figure 1-8).45, 46 Linkers typically

possess few structural features to reduce disruption of orthostere binding.

However, even with a well calculated point of attachment and linker design,

fluorescent ligands will possess different properties from their unlabelled

precursor. Detailed reviews covering the past five decades of fluorescent ligand

designs have been published by Baindur et al.,44 Middleton et al.47 and Vernall

et al.41
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Figure 1-8: Examples of fluorescent ligands with differently composed linkers.45, 46, 48

The XAC-based fluorescent ligand (16) utilises a glycyl linker between the orthostere and

fluorescein isothiocyanate (FITC) fluorophore.46 An octanyl linker connects the potentidine

orthostere and nitrobenzofurazan (NBD) fluorophore of 17.48 The BODIPY 558/568 fluorophore

and pirenzepine orthostere of 18 are connected by a PEGyl hexamer linker.45

Choice of fluorophore is a crucial aspect of fluorescent ligand design. Factors

such as fluorophore polarity, solubility, emission wavelength, quantum yield

and stability of fluorescent signal should be considered in relation to the

purpose of the ligand and the experiments it will be used in. In general, low

photobleaching (irreversible loss of fluorescence due to photon induced

chemical damage), high fluorescence intensity, high quantum yield and near-

infrared (NIR) emission spectra (to distinguish the signal from

autofluorescence) are preferred in fluorophores, such as sulfo-Cy5 and some

BODIPY variants.

When investigating a particular receptor system, it is useful to have multiple

fluorescent ligands with different fluorophores available, so that the best
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fluorescent ligand can be matched to the assay. For example, BODIPY 630/650

benefits from superior fluorescence intensity and a longer fluorescence

lifetime compared with other red-emitting fluorophores, while sulfo-Cy5 is a

hydrophilic fluorophore which achieves a better signal to noise ratio due to

fewer non-specific membrane interactions.49

Figure 1-9: Structures of some commonly used fluorophores.

A new approach to linker design has recently been pioneered, incorporating

more complex structural elements. Vernall et al.50 synthesised fluorescent

adenosine receptor ligands using a xanthine amine congener (XAC) orthostere

bound to BODIPY 630/650-X via a peptidic linker. Previous examples of peptidic

linker moieties are composed of unsubstituted glycyl subunits,46 but the linkers

in the Vernall et al.50 study utilised different amino acids to optimise receptor-

ligand interactions. This work expanded upon the observations of Jacobson et
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al.51 that conjugation of amino acids to XAC could influence A1 and A3

adenosine receptor (A1AR and A3AR) binding affinity, with certain amino acid

congeners conferring improvements in receptor subtype selectivity compared

to the non-selective XAC. Vernall et al.50 synthesised a series of terminally

Fmoc-bound (fluorenylmethyloxycarbonyl) dipeptide congeners of XAC (Figure

1-10), incorporating different combinations of amino acids to optimise A3AR

binding and selectivity against A1AR. There was some variation in the adenosine

receptor binding profiles between the non-fluorescent congeners and the

corresponding BODIPY 630/650-X fluorescent compounds, but the study

yielded fluorescent ligands containing a Ser-Tyr dipeptide linker with greatly

improved A3AR binding affinity and receptor subtype selectivity compared to

previous non-peptidic fluorescent ligands (Figure 1-11).50

Figure 1-10: Structures of dipeptide Fmoc XAC congeners with different amino acid

compositions synthesised by Vernall et al.50

A similar approach was taken by this group to synthesise fluorescent ligands

for the histamine H1 receptor (H1R).52 They developed a series of high affinity

mepyramine- and VUF13816-based fluorescent H1R ligands containing a

peptidic linker. The high lipophilicity of the fluorescent mepyramine compound

34a had made it unsuitable for confocal imaging.53 Replacement of the pentyl

linker of 34a with di- or tripeptides yielded compounds 34b-d which, while

resulting in attenuation of binding affinity compared to 34a, exhibited

displaceable membrane binding at H1R, indicating a high degree of specific

binding ideal for confocal imaging.52, 53 Similar structures containing the
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VUF13816 orthostere produced similarly high affinity fluorescent ligands with

favourable imaging properties (Figure 1-12).52 The optimal amino acid linker

composition of these fluorescent VUF13816 ligands continues to be studied

(unpublished).

Compound A3AR pKi A1AR pKi A3AR Ki/A1AR Ki

31 9.12 7.62 31.6

32 7.51 8.03 0.3

33 8.38 7.79 3.9

Figure 1-11: Structures and adenosine receptor binding affinities of XAC-BODIPY 630/650-X

fluorescent ligands with different linker compositions.50

The linker moiety of the fluorescent ligand 31 is composed of a Tyr-Ser dipeptide, resulting

from optimisation of the amino acids in the linker to improve A3AR binding affinity and receptor

subtype selectivity compared to the non-selective fluorescent ligands 32 and 33.50

Recent projects which have developed fluorescent ligands containing peptidic

linkers sought to improve the hydrophilicity and imaging properties of the

ligands, rather than to improve binding affinity through new linker-receptor

interactions. These projects have utilised only simple Ala-Ala linkers rather than

more complex amino acid combinations.54, 55
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Compound H1R pKD Compound H1R pKD

34a 8.9a 35a 7.9-8.6b

34b 7.5-8.3b 35b 7.6-8.1b

34c 7.2-8.2b 35c 7.5-8.0b

34d 7.3-7.8b

Figure 1-12: Structures and H1R binding affinities of mepyramine- and VUF13816-based

fluorescent ligands.52, 53

Incorporation of different peptidic linkers into mepyramine-BODIPY 630/650-X fluorophores

resulted in a loss of binding affinity but improved imaging properties compared to 34a.52, 53

VUF13816-BODIPY 630/650-X peptide-linked fluorescent ligands also possessed high H1R

binding affinities and favourable imaging properties.

a – pKD value determined from the shift in histamine response curve in the presence of 34a in

an intracellular calcium mobilization assay in CHO cells expressing H1R.53

b – range of pKD values determined from three methods: shift in histamine response curve in

the presence of fluorescent ligand in an intracellular calcium mobilization assay in CHO cells

expressing H1R; saturation curve of fluorescent ligand binding in a BRET assay in HEK293 cells

expressing Nluc-H1R; saturation curve of fluorescent ligand binding over time in a BRET assay

in HEK293 cells expressing Nluc-H1R.52
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1.3.3.3 Applications of fluorescent ligands

Fluorescent ligands have been in use since the 1960s, mostly as histological

stains.56 The discovery of selective small molecule fluorescent ligands led to the

development of a growing number of pharmacological assays, which will be

described in this section.

Confocal microscopy

Use of fluorescent ligands in confocal microscopy can produce high-resolution

images of receptor localisation on different scales - from a population of cells

down to single cell level. Automated confocal microscopy has been used in

receptor-ligand binding studies, similar to those described above using

radioligands, to measure the binding affinity of labelled and unlabelled ligands

(Figure 1-13).40, 57

Figure 1-13: Confocal microscopy experiment using fluorescent ligands.

Source: Stoddart et al. (2015)40

A laser beam passes through an adjustable pinhole and is reflected off a dichromatic mirror. It

is then focused by the objective onto a focal plane of the fluorescent ligand-bound specimen.

Emitted fluorescence travels back through the objective, where in focus light is focused

through a different pinhole into the photomultiplier detector.40
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Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) measures fluctuations in the

emitted photons of excited fluorescent ligands as they pass through a small

confocal volume. Time dependent measurement of these emissions using

autocorrelation analysis provides information on the fluorescent ligand’s

mobility (and therefore binding state) and concentration within the confocal

volume.40, 58 FCS can be used in low-expression systems, including native tissue.

The small scale at which FCS operates under allows more detailed

characterisation of receptors, such as the spatial organisation of receptors,

detection of receptor oligomerisation into signalling complexes, and

identification of different receptor conformations.40, 53, 58

Fluorescence polarisation

Fluorescence polarisation (FP) is a simpler method which takes advantage of

differences in the flexible linker region of fluorescent ligands by measuring the

change in polarisation of light emitted from a fluorophore.39 Upon excitation

by polarised light, a receptor-bound fluorophore will emit light that is still

polarised, while an unbound fluorescent ligand will emit depolarised light due

to rapid rotation in the linker region. The differences in fluorescent ligand

mobility and resulting depolarisation of light can be measured to determine

binding affinity of the fluorescent ligand or an unlabelled competitor.39

However, when working with low concentrations, FP suffers from poor

precision compared with other quantitative methods.39

Fluorescence resonance energy transfer

Fluorescence resonance energy transfer (FRET) is a measurement of the non-

radiative transfer of energy between two fluorescent moieties. A lanthanide-

containing donor fluorophore is excited by a photon of a particular wavelength

and emits light at a different wavelength (or wavelengths). A successful transfer
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of energy is dependent on the proximity of the donor and acceptor

fluorophores. If the acceptor is in close proximity to the donor, the energy of

the emitted photon can be transferred to the acceptor, allowing it to fluoresce

at a different wavelength. In a FRET assay, a receptor is labelled with a donor

fluorophore and a fluorescent ligand for that receptor contains an acceptor

fluorophore which is able to absorb the emitted wavelength of the donor

(Figure 1-14).40, 58

Figure 1-14: Principle of FRET using a fluorescently labelled receptor and ligand.40

Source: Stoddart et al. (2015).40

The lanthanide-based fluorophore (donor) of a tagged receptor is excited and emits light as

fluorescence. FRET occurs when the acceptor fluorophore of a bound fluorescent ligand is

excited energy transferred from the donor. FRET can only occur when the ligand is bound as it

requires close proximity between the donor and acceptor fluorophores.40, 58

For example, Lumi4-terbium cryptate (Lumi4-Tb) can be used to fluorescently

label receptors. The receptor is labelled with the donor fluorophore in such a

position that only bound ligands are sufficiently close enough for FRET to take

place. Lumi4-Tb absorbs light at a peak of around 340 nm and emits light at

peaks of 490, 548, 587 and 621 nm. Emitted light in the 621 nm range can be

absorbed by some fluorophores, such as BODIPY 630/650 which emits light at

a wavelength peaking at around 650 nm. In this example, fluorescence is

measured at 620 nm (from the donor) and 665 nm (for the acceptor) to ensure

that there is minimal overlap in emission spectra. The ratio of these emissions

indicates the frequency of FRET occurring, and therefore allows measurement

the binding affinity of the fluorescent ligand.
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Time-resolved FRET (TR-FRET) introduces a short gap (of 50-150 microseconds)

between the energy input and measurement of emission. This allows short-

lived fluorescence from sources other than the donor and receptor to decay,

leaving a clearer signal from the donor and acceptor emissions, which have

longer fluorescence lifetimes.

1.4 Fluorescent opioid receptor ligands

Development of fluorescent opioid ligands was initially limited to fluorescent

conjugates of peptidic OR ligands, mostly enkephalins and their synthetic

analogues.44 Compared to small molecule fluorescent conjugates, the addition

of a fluorophore represents a less significant increase in molecular weight and

often positions the fluorophore further from the ligand binding site, reducing

the likelihood of interfering with orthosteric binding.47 Fournie-Zaluski et al.59

discovered that attachment of a dansyl moiety to the N-terminus of met-

enkephalin (36a) resulted in a loss of OR binding affinity, while C-terminal

dansyl attachment (36b) retained the activity of the unlabelled enkephalin.

Following this, several other C-terminally linked fluorescent peptides were

synthesised, each possessing improved binding affinity compared to their

parent ligands (Figure 1-15).60-62

Peptidic fluorescent OR ligands have remained popular, with structures

developed to incorporate non-naturally occurring amino acids, such as

dimethyl tyrosine (DMT), tetrahydro-isoquinoline-3-carboxylic acid (Tic) and N-

leucine (Nle) (Figure 1-16).63-66
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Figure 1-15: Structures of several early enkephalin-based fluorescent OR ligands.59-62

Figure 1-16: Structures of fluorescent peptidic ligands which utilise unnatural amino acids.63,

64
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The development of non-peptidic fluorescent OR ligands was initially slow, and

those that had been discovered utilised morphinan scaffolds with directly

bound fluorophores, such as the fluorescein-oxymorphone derivatives

developed by Kolb and colleagues (Figure 1-17).67, 68 The close spatial

relationship between the orthostere and fluorophore resulted in greatly

diminished receptor binding, relative to their unlabelled parent compounds.67,

68

Figure 1-17: Fluorescent oxymorphone derivatives with directly bound fluorescein

fluorophores.67, 68

Progress was made by Archer et al.,69 who incorporated a short sarcosine linker

between different orthosteres and a NBD fluorophore (Figure 1-18). The same

group produced a series of BODIPY-labelled ligands, including a MOR-selective

irreversibly binding fluorescent ligand (46).70 Unfortunately, some of these

compounds suffered from significant hydrophobicity or exhibited absorption

and emission wavelengths unsuitable for many modern pharmacological

methods, which typically prefer NIR emitting fluorophores.57, 69, 70
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Figure 1-18: Selection of fluorescent OR ligands.69, 70

6- and 7-position conjugated NBD fluorescent ligands 45 and 47 were synthesised by Archer et

al.69 containing a sarcosine linker. BODIPY-fluorescent OR ligands (43, 44 and 46) were

synthesised by Emmerson et al.70 including the irreversible fluorescent ligand 46.

Since the 1990s, development of fluorescent MOR ligands has been somewhat

neglected compared to advances at other receptors.41 More recently however,

Schembri et al.57 reported the successful synthesis of several oripavine-derived

fluorescent ligands (Figure 1-19). This project aimed to modernise fluorescent

MOR ligands with more practically useful fluorophores and longer linker

moieties to reduce the impact of fluorophore attachment on binding. Of the

compounds synthesised, the sulfo-Cy5 (51) and BODIPY 630/650-X (50)

compounds were particularly favoured: 50 for its high binding affinity, receptor

subtype selectivity and bright fluorescence, and 51 for its rapid, reversible

specific binding to MOR, making it well suited for confocal imaging.57 Despite

its favourable properties, 50 was found to exhibit more non-specific binding

than 51, making it less useful for confocal imaging.57
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Figure 1-19: Fluorescent oripavine-derived OR ligands synthesised by Schembri et al.57

Finally, in an attempt to broaden the range of available fluorescent OR ligands,

Lam et al.71 synthesised fluorescent OR agonists using morphine (1) and a sulfo-

Cy5 fluorophore (Figure 1-20). The fluorescent compound 52 was found to

possess similar properties to the parent compound morphine (1) and was able

to induce internalisation.71

Figure 1-20: A fluorescent OR agonist composed of morphine and sulfo-Cy5, synthesised by

Lam et al.71

For further information regarding fluorescent OR ligands, particularly those of

the KOR and DOR, a thorough review of selective and non-selective fluorescent
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opioid ligands synthesised to date has recently been published by Drakopoulos

et al.72

1.5 Research aims

Despite the progress which has been made in the development of diverse

fluorescent MOR ligands, scope remains for novel compounds with previously

unobtained properties. Perhaps most notably absent from the literature, are

red-emitting BODIPY-labelled fluorescent MOR ligands which are suitable for

confocal imaging studies. The BODIPY 630/650-X fluorescent MOR ligand 50

demonstrates the potential to produce a high affinity fluorescent ligand with

highly desirable fluorescent properties, but further development is required to

improve the specific binding profile of either this or similar fluorescent

compounds.57

A potential solution to this disadvantage of BODIPY 630/650 use can be found

in the peptide-linked fluorescent A3AR and H1R ligands described by Vernall et

al.50 and Stoddart et al.52 respectively. In both instances, lipophilic BODIPY

630/650-X-containing fluorescent ligands with hydrocarbon linkers - which

were considered unsuitable for confocal imaging - were modified with peptidic

linker moieties.50, 52 Unlike the corresponding non-peptidic ligands, peptide-

linked fluorescent ligands identified in these studies displayed displaceable

membrane binding, making them far better suited for confocal imaging and

broader pharmacological applications.50, 52 This same rationale, applied to MOR

ligands, could result in BODIPY 630/650-containing fluorescent MOR ligands

which retain the benefits of this fluorophore, while making it sufficiently

hydrophilic for broader use in pharmacological assays.

Aside from altering the physicochemical properties of the fluorescent ligands,

the incorporation of peptides into the linker of fluorescent ligands can improve

receptor binding affinity and subtype specificity.50 By progressively altering the

amino acid side chains of the peptide linker, Vernall et al.50 were able to

improve A3AR binding affinity and selectivity. It may also be possible to uncover
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beneficial interactions for MOR binding through similar modifications of amino

acids bound to a MOR ligand orthostere. Perhaps the closest example to this in

OR ligands is the study by Lipkowski et al.,73 which attempted to incorporate

peptide sections from leu-enkephalin (58) and dynorphin A (59) into the 6-

position of oxymorphone (53) and naltrexone (7) (Figure 1-21). These

modifications did not result in improvement of MOR binding or receptor

subtype selectivity, but the ligand design was based on several assumptions

around how these synthetic morphinans and endogenous ligands bind to the

MOR, and presumed overlap in the resulting ligands (54-57) which may not be

accurate.73

Figure 1-21: Oxymorphone- and naltrexone-bound derivatives of leu-enkephalin and

dynorphin A, synthesised by Lipkowski et al.73

Peptides bound to the 6-position of either oxymorphone (53) or naltrexone (7) were chosen to

match those contained in the structures of leu-enkephalin (58) and dynorphin A (59) (shown in

bold).73

This project aimed to design, synthesise and pharmacologically evaluate novel

fluorescent antagonist ligands for the MOR with several key features. To
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enhance MOR binding through interactions between the linker and receptor,

and to decrease non-specific interaction through increased hydrophilicity,

fluorescent ligands were designed to include linkers containing an optimal

number and composition of amino acids. With these modifications it was

hoped that lipophilic fluorophores such as BODIPY 630/650 could be

incorporated into the fluorescent ligand structure, while maintaining desirable

properties for confocal imaging and broader pharmacological applications. It

was decided that the compounds produced in this study should be MOR

antagonists, as they are better suited for studying receptor-ligand interactions.

Fluorescent agonist ligands, such as those synthesised by Lam et al.,71 are

useful for studying aspects of receptor signalling but induce cellular changes

through receptor activation which can make studying receptor-ligand

interaction more difficult. The evaluation, synthesis and determination of MOR

binding affinity of morphinan-based fluorescent ligands of this design are

described in Chapter 2.

As described in this chapter, the receptor binding components (orthosteres) of

fluorescent OR ligands can be divided into endogenous peptides (and their

derivatives) and small molecule morphinan-based compounds. To truly expand

the fluorescent tools available to pharmacologists studying ORs, it is important

to consider designs outside of these existing paradigms. Therefore, a further

aim of this project was to synthesise fluorescent small molecule MOR

antagonist ligands using a non-morphinan orthostere, in addition to the

inclusion of an amino acid-based linker. The evaluation, synthesis and

determination of MOR binding affinity of such fluorescent ligands is described

in Chapter 3.
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2. Design, synthesis and pharmacological evaluation

of β-naltrexamine-based fluorescent ligands 

This chapter will describe an approach to fluorescent ligand design that was

more similar to previously described fluorescent opioid ligands, as it utilised a

morphinan-containing orthostere from which a linker to a fluorophore was

attached. In contrast to previously reported fluorescent ligands based on the

morphinan scaffold, this approach incorporated amino acids in the linker

between the pharmacophore and fluorophore. As described in the previous

chapter, this aimed to improve the physicochemical properties of the

compound, as well as providing an opportunity for the residues in the linker to

form interactions with the receptor binding site.

This chapter will discuss the design process undertaken for these fluorescent

ligands, beginning with an evaluation of the SARs for ligands of this type and

how this rationalises the choice of orthostere and point of linker attachment,

before moving on to describe in silico modelling of the newly designed

compounds. This is followed by a description of the synthesis and

pharmacological evaluation of a series of non-fluorescent congeners, before

finishing with the synthesis and pharmacology of the final fluorescent ligands.

2.1 Structure-activity relationships (SARs) of morphinan opioids

There is an extensive range of diverse scaffolds for opioid receptor ligands

reported in the literature. The SAR of opioid ligands containing the morphinan

structure will be discussed here, such as the agonists morphine (1) and

buprenorphine (12), the antagonists naloxone (6) and naltrexone (7), and novel

structures from SAR studies which are not used clinically. Other non-morphinan

opioid ligand structures, such as that of the antagonist alvimopan (9), will be

discussed in Chapter 3.
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2.1.1 The morphinan core structure

Many frequently used opioids share a common morphinan (17-

azatetracyclo[7.5.3.01,10.02,7]heptadeca-2,4,6-triene) structure. This consists of

four connected rings (Figure 2-1): an aromatic ring (ring-A) and two further

saturated carbon rings chained below (ring-B and ring-C) with a fourth ring

(ring-D) containing a nitrogen protruding from carbons 9 and 13. As is often the

case with structures bearing multiple chiral centres, the morphinan scaffold

appears in a number of naturally occurring alkaloids such as morphine (1),

codeine (2) and thebaine, all isolated from the opium plant. From these natural

products, a great number of semi-synthetic derivatives have been reported.

Figure 2-1: The morphinan structure.

The morphinan structure consists of an aromatic ring (A) with two saturated rings (B and C)

linked below. A fourth ring (D) containing a secondary amine links carbons 9 and 13. Chiral

centres are present at positions 9R, 13R and 14R.
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Figure 2-2: Common positions for modification of the morphinan structure found in opioid

receptor ligands.

A 4,5α-epoxy bridge (which forms ring-E) is commonly found in morphinan-based opioid

receptor ligands. R1 is almost always a hydroxyl group in active compounds (such as in

morphine 1) but is a common site for prodrug modifications such as ethers (codeine 2) and

esters (diamorphine 68). R2 is a highly variable site. Most opioid medicines of this type have a

ketone (naloxone 6) or chiral hydroxyl (morphine 1) or methoxyl group (buprenorphine 12) at

the 6-position, but it is frequently used by medicinal chemists as a site to introduce variability

or to alter pharmacokinetic properties (naloxegol 8). R3 is methylated in most opioid agonists

(morphine 1, oxymorphone 53), but N-allyl (naloxone 6) or N-cyclopropylmethyl (naltrexone 7)

substitution generates antagonists. In clinically used opioids, R4 is exclusively protonated or a

hydroxyl, but further modification has produced some interesting irreversible ligands

(clocinnamox 91). A 6,14-bridge allows for a broad range of modifications to R5 in the literature

but usually features a tertiary alcohol in clinical examples (buprenorphine 12, etorphine 86).

2.1.2 The 4,5α-epoxy bridge 

This large family of morphinan-containing opioid receptor ligands share many

common features, notably, the 4,5α-epoxy bridge which forms a fifth ring (ring-

E) on the morphinan scaffold (Figure 2-2). This ring-E is found in the structures

of naturally occurring alkaloids and their semi-synthetic derivatives. Crystal

structure evidence suggests that this oxygen atom acts as a hydrogen bond

acceptor for Y1483.33 of the MOR.33 However, it is not essential for binding, as

evidenced by the existence of morphinan opioid ligands which lack the 4,5α-

epoxy bridge (Figure 2-3).
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Compound R1 R2 R3

Levorphanol (60) H H CH3

Levomethorphan (61) CH3 H CH3

Butorphanol (62) H OH cBuCH2

Cyclorphan (63) H H cPrCH2

Levallorphan (64) H H Allyl

Figure 2-3: Structures of several opioid receptor ligands which lack a 4,5α-epoxy bridge. 

2.1.3 The 3-hydroxyl group

Another frequent structural feature of this family is the 3-OH found on the

aromatic ring-A. This phenolic group is a requirement for producing an active

ligand, as attempts to install alternative groups at this position have resulted in

loss of activity.74, 75 It is possible to replace the phenolic hydroxyl group with a

carboxamide and maintain activity at the opioid receptors, albeit with

significantly reduced binding affinity (Figure 2-4).75 Extension from the amide

results in further loss of binding affinity.75 It is suggested that this phenol is able

to form hydrogen bond interactions with H2976.52 of the MOR, through a chain

of two water molecules (Figure 2-5).33
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O H

N

R

HO

Compound R MOR pKi

Morphine (1) OH 9.1

65 CONH2 7.5

66 CONHCH3 6.4

67 CONH(CH3)2 5.8

Figure 2-4: The effect of 3-position substitution on the MOR binding affinity of morphine.75

Binding affinities (pKi) at MOR were determined by inhibition of [3H]-DAMGO in guinea pig

brain membranes.75

Figure 2-5: Hydrogen bonding in the crystal structure of MOR between the 3-hydroxyl group

of β-FNA (74) and H2976.52 via two water molecules.

Adapted from Manglik et al. 2012.33

The crystal structure of β-FNA bound to MOR (PDB: 4DKL) shows two water molecules (shown 

here as red stars) which could form a hydrogen bonding network (dotted red line) between the

3-hydroxyl of β-FNA and H2976.52.33

Derivatives of the phenolic hydroxyl group are common in many medicines,

including the natural product codeine (2), the 3-methyl ether of morphine (1).
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However, codeine itself has relatively weak affinity for the MOR (Ki = 0.35 µM

versus [3H]-DAMGO in guinea pig brain membranes), displaying a 200-fold

reduction in binding affinity relative to morphine (Ki = 1.8 nM).76 Instead, it acts

as a prodrug of morphine, requiring demethylation in the liver by cytochrome

P450 2D6 (CYP2D6). The reduced analgesic effect of codeine, compared to that

experienced by patients administered morphine, is a result of this necessary

metabolism, which slows release of morphine into the body. Patients who carry

allelic variants of CYP2D6, which reduce the enzyme’s rate of metabolism,

experience reduced efficacy from codeine owing to decreased morphine

concentration.77 Likewise, an allelic variant which increases CYP2D6

metabolism results in increased efficacy and morphine concentration.77

Compound R1 R2

Morphine (1) H H

Codeine (2) CH3 H

Diamorphine (68) Ac Ac

Figure 2-6: Structures of morphine and its metabolic precursors.

Both codeine (2) and diamorphine (68) are prodrugs of morphine. Codeine (2) requires liver

metabolism by CYP2D6 to yield morphine, resulting in a slower release and lower morphine

concentration in the blood.77 The 3- and 6-acetyl groups of diamorphine (68) can be hydrolysed

by plasma esterase enzymes to produce morphine.78

The other common alteration to the 3-hydroxyl group is esterification, with the

best-known example of this being diamorphine (diacetylmorphine, heroin, 68)

- the 3,6-diacetoxy analogue of morphine (1). Unlike etherified analogues, such

as codeine (2), esters do not require liver metabolism to be converted to the

active morphine, as they can be hydrolysed by plasma esterases. When

administered intravenously, the increased lipophilicity of these esters allows
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swift passage across the blood-brain barrier, resulting in its rapid effect after

administration.78 Esterification of the phenolic hydroxyl has been used to

develop opioids with differing rates of action and for alternative delivery

methods.79, 80

2.1.4 Modification of the 6-position

The 6-position on ring-C is the most varied site for modification amongst both

clinical and non-clinical compounds. In some examples, such as oxymorphone

(53), naloxone (6) and naltrexone (7), the 6-position is sp2 hybridised and

occupied by a ketone. In morphine (1), buprenorphine (12) and numerous

other examples, the 6-position is saturated, resulting in an additional chiral

centre (Figure 2-7).

As with the 3-hydroxyl group, the 6-position can be functionalised with simple

ethers and esters to alter the pharmacokinetic properties of the compound.

Larger functional groups have been substituted onto this site in numerous SAR

studies and in some drugs, to introduce greater pharmacokinetic and

pharmacodynamic changes to the ligand. The MOR antagonist naloxegol (8)

contains a methoxylated PEGyl heptamer attached to the 6-position via an

ether. The resulting increased hydrophilicity prevents it from penetrating the

blood-brain barrier.81 In addition, the PEGylation makes 8 a substrate for P-

glycoprotein (P-gp), further limiting its BBB permeability.81 Naloxegol (8)

therefore acts as a peripheral opioid antagonist and is used in the treatment of

opioid-induced constipation, having no interaction with central opioid

reeptors.81



37

Figure 2-7: The structures of naloxone and naltrexone and their chiral derivatives.

The chiral configuration of the 6-position influences several ligand properties.

In the case of morphine (1), binding affinity and function at MOR are not greatly

affected by altering the chiral configuration at position-6.82 In contrast, the

epimeric products resulting from the reduction of the 6-keto moiety of

naloxone (6) and naltrexone (7) display diverse properties; the corresponding

β-alcohols (69b and 71b) share similar antagonist properties to the parent

ketones, however the α-alcohols (69a and 71a) exhibit mixed agonist-

antagonist activity for different opioid receptors.83 The 6-amino analogues of

naloxone and naltrexone are all MOR antagonists with reduced antagonist

binding affinity, relative to the parent compounds, although this difference was

greater in vivo compared to in vitro studies, suggesting pharmacokinetic factors

Compound R1 R2

6-position

stereochemistry

6 Naloxone Allyl C=O N/A

69a α-Naloxanol Allyl CHOH 6S

69b β-Naloxanol Allyl CHOH 6R

70a α-Naloxamine Allyl CHNH2 6S

70b β-Naloxamine Allyl CHNH2 6R

7 Naltrexone cPrCH2 C=O N/A

71a α-Naltrexanol cPrCH2 CHOH 6S

71b β-Naltrexanol cPrCH2 CHOH 6R

72a α-Naltrexamine cPrCH2 CHNH2 6S

72b β-Naltrexamine cPrCH2 CHNH2 6R

8 Naloxegol Allyl CHO(CH2CH2O)7CH3 6S
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also play a role.84 Jiang et al.84 found that the binding affinity for MOR

(inhibition of [3H]-naloxone in rat brain membrane) between the α- and β-

naloxamines (70a and 70b) and naltrexamines (72a and 72b) differs; β-

naloxamine (70b, pIC50 = 7.3) and β-naltrexamine (72b, pIC50 = 9.2) both display

a higher affinity than their α-counterparts (pIC50 = 7.0 and 8.0 respectively).84

This difference remains consistent in numerous N-acyl derivatives expanding

from this position, where the β-epimers display slightly higher MOR-affinity 

than the corresponding α-epimers.85, 86

Larger modifications to the 6-position have been shown to influence subtype

selectivity. The “message-address” concept is often used to describe

modifications to the 6-position, where the main morphinan body conveys the

“message” (binding affinity and function) and modifications to ring-C, such a 6-

postion functionalisation, describe the “address” (selectivity between opioid

receptor subtypes).34 The amino acids closer to the extracellular side of the

receptor binding pocket are poorly conserved between opioid receptor

subtypes, compared to the highly-conserved amino acids found deeper in the

pocket (Figure 2-9).34 These differences allow ring-C substituents to influence

subtype specificity.

Figure 2-8: Chemical structures of opioid ligands based on the structure of β-naltrexamine. 

β-funaltrexamine (β-FNA - 74) is an irreversible antagonist of MOR which covalently binds to

K2335.39 in the MOR binding pocket.33 It differs from the δ-selective antagonist naltrindole (73)

only in ring-C substituent.34 Nalfurafine (75) and the cinnamoyl compound series (76a-d) all

possess KOR agonist activity, with 75 displaying high selectivity for KOR.87
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This is demonstrated in the example of naltrindole (73), a δ-selective antagonist 

whose indole is proposed to prevent MOR binding, due to a steric clash with

W3187.35.33 A leucine residue (L3007.35) occupies the same position in the crystal

structure of the DOR, which does not result in a clash and allows binding and

therefore selectivity (Figure 2-9).33, 34

Figure 2-9: Overlays of naltrindole and β-FNA in the crystal structures of the mu and delta 

opioid receptor.33, 34

Source: (left) Grenier et al. 2012,34 (right) Manglik et al. 2012.33

Left: The crystal structures of DOR (PDB: 4EJ4, orange) and MOR (PDB: 4DKL, blue) are overlaid

displaying the high conservation of amino acids deeper in the binding pocket, but greater

variation in the extracellular regions of the helices. Particularly of note is L3007.35 in DOR which

is replaced by W3187.35 in MOR. The structure of naltrindole (73, yellow) is overlaid on the

crystal structure of β-FNA (74, green) covalently bound to MOR.34 Right: Naltrindole (73) is

predicted to clash with W3187.35 in the MOR, preventing its binding and conferring selectivity

for DOR.33

While modification of the 6-position of β-naltrexamine-based structures may 

confer changes to MOR, DOR, and KOR selectivity, ligand function at KOR has

also been manipulated by 6-position substitution. One such example is

nalfurafine (75), the 6-N-methyl-trans-3-(3-furyl)acrylamido analogue of β-

naltrexamine (72b).88 Despite featuring an N-cyclopropylmethyl group in the β-

naltrexamine structure, which is typically antagonism-inducing (see 2.1.6),

nalfurafine (75) is a KOR agonist with weak partial agonist activity at MOR.88

While the high KOR-selectivity of 75 seems to be dependent on the 6-N-methyl



40

group,87 KOR agonism is often found in other β-naltrexamine-based 

compounds. For example, KOR agonist activity was found in the series of 6-

cinnamoyl derivatives (76a-d) described by Derrick et al.89, 90 and low level KOR

agonism is displayed by the irreversible MOR antagonist β-FNA (74).87, 91, 92 β-

naltrexamine-based ligands should therefore be tested for KOR binding affinity,

as the SAR of how KOR agonism is induced is not well understood.

2.1.5 Modification of the 7-position via a 6-14 bridge

The introduction of an ethylene bridge between carbons 6 and 14 on ring-C has

been utilised in ligands such as buprenorphine (12) and etorphine (86), to

introduce additional structural modifications and improve binding affinity.19

The bridge is installed via Diels-Alder chemistry between a diene-containing

morphinan (e.g. oripavine (78)), and methylvinyl ketone (Figure 2-10, route A).

This is typically followed by a Grignard reaction to introduce additional

functional groups (tert-butyl in the case of buprenorphine (12), n-propyl for

etorphine (86)).93 The ring-C olefin is often reduced as this can lead to higher

MOR binding affinity, perhaps due to the resulting increase in flexibility in this

region.57, 93

The high affinity of 6-14 bridged opioid ligands is well known, as is their often

poor subtype selectivity.94 For example, diprenorphine (87) is a non-selective,

weak partial agonist at all three ORs, that is used to displace other high affinity

ligands, such as the powerful tranquilizer etorphine (86), which cannot be

displaced by more frequently used antagonists like naloxone (6). These 6-14

bridged opioid ligands typically possess a mixture of partial agonism and

antagonism at different opioid receptors.94 Numerous compounds of this type

have been synthesised and characterised, displaying only minor changes in

binding affinity at the three ORs.95-98 However, manipulation of N/OFQ

receptor affinity is possible through modifications to this region.95, 98
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Compound Scaffold R1 R2

12 Buprenorphine 81 cPrCH2 t-Bu

86 Etorphine 80 Me n-Pr

87 Diprenorphine 81 cPrCH2 Me

Figure 2-10: Three approaches to the synthesis of 6-14 bridged opioid ligands.57, 93, 97, 99, 100

Using oripavine (78) or another diene-containing morphinan as the starting material, Diels-

Alder chemistry can be carried out with either methylvinyl ketone, methylacrylate or a

substituted maleimide. 57, 93, 97, 99, 100 79 can be further reacted with a Grignard reagent to

introduce an additional functional group (80).93 Ester hydrolysis of 82 and subsequent amide

coupling can also be used to functionalise the position (83).57, 97 The ring-C olefin in 80 and 83

can be reduced to give the more flexible 81 and 84 respectively.57, 93 In the synthesis of 81, the

reduction step is sometimes carried out prior to the Grignard reaction.93 This reduction has

been found not to work in imide compounds (85), possibly due to hinderance of the palladium

from accessing the site by the bulky maleimide.57

The structures of several common 6-14 bridged opioid receptor ligands are shown in the table,

referencing the R-groups and structure of the general scaffold that they are derived from.
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Figure 2-11: The structures of fluorescent opioid receptor ligands containing 6-14 bridged

morphinan orthosteres.57, 69

Left: Schembri et al.57 utilised a 7-position amide to couple an oripavine-derived orthostere to

several fluorophores (48-51). Right: One of the fluorescent ligands synthesised by Archer et

al.69 is a thebaine-derived structure similar to etorphine (86), where the fluorescent 7-

nitrobenzo-2-oxa-1,3-diazole (NBD) moiety is connected to the 7-position (47).

An alternative method for introducing variation to this region is by using an

alkyl acrylate, rather than methylvinyl ketone (Figure 2-10, route B).97 This

approach has been used extensively to introduce new chemical groups through

hydrolysis of the installed ester, followed by amidation.57, 97, 99 These

approaches have previously been used to link to a fluorophore, producing

various fluorescent ligands for the opioid receptors (Figure 2-11).57, 69 A third

method of expansion from ring-C uses a substituted maleimide in place of

methylvinyl ketone as the dienophile (Figure 2-10, route C).57, 99, 100

2.1.6 N-Alkylation

The 17-position amine of the morphinan structure is known to be highly

influential over opioid receptor ligand properties in multiple ways. Whilst a

simple N-methyl group is present in morphine and many other well-known

opioids, different alkyl groups at this position generate a notable array of

functional and pharmacodynamic properties in ligands.
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Figure 2-12: The effect of the N-substituent of different compounds in the oxymorphone

family on function.101, 102

The oxymorphone family of opioid ligands exemplifies this variety of function

with changes in N-substituent (Figure 2-12). Two of the better known opioid

antagonists, naloxone (6) and naltrexone (7), bear N-allyl and N-

cyclopropylmethyl substituents respectively to confer MOR antagonist activity,

unlike the N-methyl parent compound oxymorphone (53), which is an

agonist.101 However, the N-benzyl (89) and N-phenethyl (90) analogues are

both potent agonists and N-dimethylallyl substitution produces the partial

agonist nalmexone (88).101, 102

This demonstrates the complex role of N-substituents in the SAR of morphinan

opioid ligands. The 2012 crystal structure of the MOR (PDB: 4DKL)33 suggests

potential interactions between the N-cyclopropylmethyl group of the

covalently bound β-FNA (74) and neighbouring aromatic amino acids (Figure 2-

13). However, given the differences between the N-substituents described

above, it is challenging to predict what effect N-substitution with untested

functional groups would have on ligand binding and function. The precise SAR

of this N-substituted region still requires further investigation.
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Figure 2-13: A potential π-π stacking interaction between the N-cyclopropylmethyl group of

β-FNA, and aromatic amino acids in the binding pocket of MOR.33

Adapted from Manglik et al. 2012.33

The proximity and orientation of the N-cyclopropylmethyl group of β-FNA (74) between

Y3267.43 and W2936.48 in the crystal structure of MOR (PDB: 4DKL) suggest a π-π stacking 

interaction.

Another way in which the 17-position amine has been exploited is through

quaternisation. Alkylation (typically methylation) of the tertiary amine

produces a permanently charged quaternary species, giving it unique

properties compared to its tertiary counterparts. This charge does not interfere

greatly with binding as it is the protonated (and therefore charged) amine

which forms an ionic interaction with D1473.32 in the MOR binding pocket.33

One such example is methylnaltrexone (MNTX, 11), a peripherally-acting opioid

antagonist whose permanent charge prevents absorption across the blood

brain barrier.103

2.1.7 Modification of the 14-position

Variation at this position is fairly limited amongst most common opioid ligands

and is typically a proton or hydroxyl group. Manglik et. al33 did not propose a

Y326
7.43

W293
6.48
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specific interaction for the 14-hydroxyl group in their crystal structure of the

MOR (PDB: 4DKL) based on its proximity to amino acids within receptor binding

pocket. It has been suggested that the presence of the hydroxyl group in the

oxymorphone-derived antagonists naloxone (6) and naltrexone (7) may restrict

the freedom of rotation of the N-substituent, and subsequently eliminates low

level agonism, making them antagonists.104

O R2

N

HO

R1

O

Compound MOR pKi R1 R2 Function

Oxymorphone (53) 9.0105 Me OH Agonist

53a 10.0105 Me OMe Agonist

53b 9.9105 Me OBn Agonist

Naloxone (6) 7.3-9.0a cPrCH2 OH Antagonist

6a 9.7106 cPrCH2 O(CH2)3Ph Agonist

Naltrexone (7) 8.1-9.7b allyl OH Antagonist

7a 9.5106 allyl O(CH2)3Ph Agonist

Clocinnamox (91) 8.0107 cPrCH2 pCCA
Antagonist

(irreversible)

pCCA – p-chlorocinnamoylamino. a – refs57, 108-112 b – refs57, 99, 108-110, 113, 114

Figure 2-14: Modifications to the 14-position and their effect on MOR binding and ligand

function.

The structures of 14-substituted opioid receptor ligands are shown, with binding data (pKi) at

MOR. Binding affinities at MOR were determined by inhibition of [3H]-DAMGO in rat brain

membranes.105-107

Several recent studies have investigated 14-alkoxymorphinans to better

establish SAR in this region (Figure 2-14). 14-O-Methylation of oxymorphone

(53) was found to produce a compound (53a) with improved binding affinity at



46

all 3 opioid receptors.105 The 14-O-benzyl analogue (53b) produced similar

MOR affinity, but with reduced receptor subtype selectivity.105 The 14-O-

phenylpropyl analogues of both naloxone (6) and naltrexone (7) are full

agonists (6a and 7a respectively), in contrast to the antagonist activity of their

14-hydroxyl parent compounds.106 Even the removal of the 3-hydroxyl group

from 7a yielded a ligand with sub-nanomolar MOR affinity.115 It is unclear

whether new interactions formed by the phenylpropyl group simply overcome

the loss of the 3-hydroxyl group, or if it adopts an entirely different binding

position. A 14-amino group can also be used to functionalise this position,

usually to form the corresponding amide analogues, such as those of the

irreversible antagonist clocinnomox (91) and its derivatives.116-118

2.2 Selection of a lead molecule and fluorescent ligand design

There were several key criteria chosen to select a lead molecule. The lead

molecule needed to be an antagonist, increasing the likelihood that any

analogues synthesised would also be antagonists. A high binding affinity at

MOR was desirable, as it would be more likely to produce high affinity

fluorescent ligands. The lead molecule was also desired to be able to

accommodate a linker in a position which is not critical for binding or function

– linker attachment should not replace an important functional group.

Therefore, a lead molecule with a well-understood structure-activity

relationship (SAR) profile was sought, to minimise the disruption of key

interactions and give the most predictable outcome in terms of binding and

function.

2.2.1 Lead molecule selection

Known opioid receptor ligands were assessed using these criteria, with two

molecules identified as candidates. Both naloxone (6) and naltrexone (7) are

opioid receptor antagonists, with similarly well-established SAR profiles. Both
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are high affinity ligands which have been utilised in numerous SAR studies,

displaying tolerance for a broad range of modifications.

The well-established SAR profiles of naloxone (6) and naltrexone (7) guided the

attachment point of the linker moiety. As described above, the 3-postion and

N-substituent of morphinan-based opioid ligands are important for binding and

ligand function. The 14-position is capable of supporting larger substituents,

but can also affect ligand function and receptor binding, making these

unsuitable sites for ligand attachment.

Subsequently, the 6-position was selected as the most suitable site for linker

attachment. Introduction of an amine to the 6-position was ideal for

attachment of the amino acid-based linker by direct amide coupling.

Procedures for the reductive amination of the 6-keto moiety of both naloxone

and naltrexone are well established.84, 119 However, the vast majority of

literature examples employ β-naltrexamine (72b) as the orthostere, with few

examples of either epimer of naloxamine (70a and 70b) used. It is likely that

this is due to the higher binding affinity of 72b, providing the best starting point

to produce high affinity ligands. For these reasons, β-naltrexamine (72b) was

selected as the lead molecule for fluorescent ligand design.

Structures discounted from consideration include agonists and compounds

containing prodrug modifications, such as ethers or esters at the 3-position.

Buprenorphine (12) and other 6-14 bridged orthosteres were considered, as

these structures have been previously used in fluorescent ligands. The

fluorescent ligands described by Schembri et al.57 (Figure 2-11) were

antagonists, despite buprenorphine (12) itself being a partial agonist.

Structurally, what drives this switch from partial agonism to antagonism is

unclear. The oripavine starting material required to synthesise these

compounds is an agonist, and therefore a controlled substance with greater

legal barriers to use in synthesis. Due to these concerns, these 6-14 bridged

compounds were deemed to be unsuitable orthosteres.
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2.2.2 Fluorescent ligand design

The final fluorescent ligands were planned to consist of the β-naltrexamine 

orthostere connected to a fluorophore via a 6-position linker consisting of one

or more amino acids. The number of amino acids and their composition would

be determined through the synthesis and pharmacological evaluation of non-

fluorescent congeners, as shown in the design scheme in Scheme 2-1.

An initial set of congeners were tested, consisting of the β-naltrexamine (72b)

orthostere coupled to a single α-acetamido acid. The results from competition 

binding studies, alongside in silico modelling data, were used to inform further

linker alterations. Once the optimal linker composition was established, a

number of different fluorophores were coupled to the linker, with the resulting

fluorescent compounds evaluated for MOR binding affinity in saturation

binding experiments.

Scheme 2-1: Design scheme for the synthesis of β-naltrexamine-based fluorescent ligands. 

The approach taken to design, synthesize and pharmacologically evaluate β-naltrexamine-

based fluorescent ligands is shown: (a) reductive amination of naltrexone to naltrexamine and

purification of epimers; (b) peptide coupling to a selection of different α-acetamido acids; (c) 

competition binding assay against a fluorescent ligand; (d) if the results suggested that a longer

linker would be beneficial, coupling of a selection of different amino acids at the second

position; (e) competition binding assay against a fluorescent ligand; (f) if the results suggested
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that linker length is optimal, coupling of a selection of fluorophores to the linker; (g) saturation

binding assay against an unlabelled ligand.

2.3 Non-fluorescent β-naltrexamine congeners 

The first generation of congeners (92) were composed of variants of a single α-

acetamido acid coupled to the 6-position of β-naltrexamine. The N-acetyl

group was included to represent the further expansion of the linker, either to

another amino acid or to a fluorophore. This acetamide would be expected to

possess properties more similar to the final fluorescent ligands, than to the

corresponding free primary amine. A selection of eight amino acids were

chosen to reflect all types of amino acid (polar, non-polar, acidic, basic) as

shown in Figure 2-15.

Compound

Amino

acid R

92a Gly H

92b Ala CH3

92c Val CH(CH3)2

92d Phe CH2Ph

92e Ser CH2OH

92f Asn CH2CONH2

92g Asp CH2COOH

92h Lys (CH2)4NH2

Figure 2-15: Structures of the single amino acid non-fluorescent congeners.
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2.3.1 In silico modelling

In silico modelling of the proposed ligands was undertaken to better

understand the potential interactions of these β-naltrexamine congeners with 

the MOR, and as a tool to predict the optimal length and chemical composure

of the linker region. The modelling was carried out using the online modelling

software DockingServer (http://www.dockingserver.com/web). The crystal

structure of the MOR (PDB: 4DKL) produced by Manglik et al.33 was uploaded

to the online software and the proposed ligand structures (those shown in

Figure 2-15) were drawn and docked into the binding site of the receptor.

It was immediately clear that the predicted numerical values for binding affinity

(pKi) were inaccurate. Compounds with well-established literature pKi values,

such as naloxone (6) and naltrexone (7), were several log units lower than

typical reported values. Instead, the positions of the docked β-naltrexamine 

orthostere were analysed and the relative differences in predicted pKi were

noted.

Figure 2-16: Positional criteria for the β-naltrexamine congeners within the MOR binding site. 

Three key interactions that were easy to identify quickly were used to confirm the binding

position of the β-naltrexamine orthostere. These are highlighted for the Phe congener 92d in

the right-hand image: A - the alignment of the 3-hydroxy to H2976.52; B - the 4,5-epoxy in close

proximity to Y1483.33; C - the cyclopropylmethyl group positioned between Y3267.43 and

W2936.48.

The examples which predicted the highest relative binding affinity typically

adopted a similar position to that of the covalently bound β-FNA. Building on 
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this observation, each congener was repeatedly docked, looking for several key

positional criteria: the positioning of the cyclopropylmethyl group between

Y3267.43 and W2936.48, 4,5-epoxy in close proximity to Y1483.33 and the

alignment of the 3-hydroxyl group to H2976.52 (as shown in Figure 2-16).

Twenty examples of each ligand were collected in which the bound ligand fitted

this positional criteria. Further analysis of these examples showed that

predicted interactions of the linker moieties were highly varied for each docked

congener. Often the linker did not display any interactions or come into close

proximity with any part of the receptor. Instead, the 6-position moiety

projected into the extracellular space. However, there were several

noteworthy interactions specific to individual congeners which appeared

across multiple docking predictions.

Figure 2-17: Docked ligands with highlighted linker side chain interactions.

Left: In some predictions, the aspartate congener (92f) was shown to form an ionic interaction

with K2335.39. Right: The Lys congener (92h) was sometimes predicted to interact ionically with

E2295.35 but this resulted in disruption of some of the desirable interactions between the

pharmacophore and receptor described in Figure 2-13.

In some iterations, the Asp congener (92g) was predicted to form an ionic

interaction with K2335.39 (Figure 2-17) - the same lysine to which β-FNA is 

covalently bound in the crystal structure (PDB: 4DKL).33 When docked, a

glutamate congener was not able to form an interaction with K2335.39,

suggesting that the shorter side chain present on Asp was more ideally placed

to do so.
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An ionic interaction was also predicted between the Lys congener (92h) and

E2295.35, but this interaction distorted the docking pose of the rest of the ligand

(Figure 2-17). An interaction of this kind could be more favourable without

distortion if ornithine, or another basic amino acid with a shorter sidechain,

replaced lysine.

The non-polar Ala (92b), Val (92c) and Phe (92d) congeners were predicted to

form a non-polar interaction with Leu219. However, this residue appears in the

extracellular loop region of the receptor so it may not be available for binding

due to the flexibility of this region. Similarly, the Asn congener (92f) was, in

some instances, predicted to hydrogen bond with the backbone of this

intracellular region.

The frequency of interactions with the extracellular loop region, as well as the

trend of 6-position moieties showing no interaction with the receptor, are likely

due to two key features of the MOR ligand binding site: the binding pocket is

both shallow and polar. Manglik et al.33 noted that the binding pocket of the

MOR is particularly exposed and shallow, observing the difference between

MOR and the M3 muscarinic receptor (M3R) which is deeper and narrower

(Figure 2-18). The openness of the MOR ligand binding site means it is exposed

to the extracellular fluid, and therefore contains a high concentration of polar

amino acids. β-naltrexamine congeners containing non-polar amino acids 

might therefore be unable to find sites to make hydrophobic interactions.

The relatively short 6-position substituent of the bound β-FNA in the crystal 

structure can be seen protruding from the receptor, indicating its shallowness

within the helical bundle (Figure 2-19). The proximity of the congeners to the

surface may be why the modelling predicted interactions with the extracellular

loop regions of the receptor.
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Figure 2-18: Comparison of the ligand binding pockets of MOR and M3R.

Source: Manglik et al. 2012.33

The MOR (a) binding pocket is both wide and exposed in comparison to the M3 muscarinic

receptor (b) which has a narrow opening for ligand entry.

Figure 2-19: The MOR with bound β-FNA. 

Crystal structure taken from Manglik et al. 2012.33 Displayed in PyMOL.

A high density of polar amino acid side chains is present in the exposed binding pocket of the

MOR. The oxygen (red), nitrogen (blue) and sulfur (yellow) atoms are coloured to indicate polar

regions. The 6-position substituent is clearly visible extending to the surface of the binding

pocket (right).
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These observations were supported by the docking of two further sets of

congeners, each containing two amino acids in their linker (Figure 2-20). One

set contained Asp at the first position adjacent to the orthostere, as 92g had

the most consistent predicted interactions. The second position was varied,

with the same eight amino acids used in the single amino acid congeners

(Figure 2-15). The second set contained Ala at the first position with the same

variation at the second position. This was intended to allow the amino acid at

the second position to form interactions with reduced conformational

restriction from any interactions made by the amino acid at the first position.

Figure 2-20: General formula for docked congeners containing 6-position dipeptides.

The 16 docked compounds were composed of either Ala or Asp at the first position and one of

eight amino acids shown in Figure 2-15 at the second position.

Gathering sufficient data to reach a firm conclusion was challenging, as the

predicted binding positions of the dipeptide congeners were highly variable. In

instances where the positioning of the orthostere met the criteria described

above, the 6-position substituent was still varied in its positioning and

proposed interactions. The only common theme observed amongst most

examples was that the linker would coil back into the receptor rather than

extending toward the extracellular regions of the receptor (Figure 2-21),

possibly indicating that the linker was unable to find points of interaction

further from the binding site.

The predicted docking positions of the tested congeners indicated that the first

amino acid coupled to the 6-position of naltrexamine may be able to interact

with the ligand binding pocket. Specifically, a polar amino acid at the first

position could form the strongest interactions with the polar residues of the
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binding pocket - particularly acidic or basic side chains. However, any further

elaboration of the linker may exceed the limits of the binding pocket and was

predicted to not form beneficial interactions.

Figure 2-21: Predicted binding poses for congeners with linkers containing two amino acids.

Left: The congener containing Ala (position 1) and Phe (position 2) is docked showing the linker

coiling within the binding pocket rather than extending towards the extracellular regions of the

receptor. Right: The congener with Ala (position 1) and Ser (position 2) extends across the

entrance of the bind site rather than out of it.

The modal outcome of the docking was for the 6-position moiety to not form

any interactions or, less plausibly, interact with an extracellular loop region.

This suggests that there are few possible interactions for functional groups at

the 6-position, or perhaps that this model may not be a good predictor of in

vitro outcomes.

2.3.2 Synthesis of β-naltrexamine single amino acid congeners 

The synthesis of β-naltrexamine from naltrexone has been described previously 

in the literature.84, 119 The synthetic route used in this project (Scheme 2-2) was

a modified version of the route described by Filer et al.,119 with the tritiated

naltrexone used in the procedure substituted for the 1H isotope. This was

followed by peptide coupling to the array of α-acetamido acids shown in Figure

2-15. Congeners containing a side chain protective group were deprotected

prior to pharmacological testing.
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Sodium triacetoxyborohydride (STAB) is typically preferred as a mild reducing

agent, particularly in reductive amination reactions, due to its safety profile.120

Sodium cyanoborohydride is often avoided as it can produce the toxic

byproducts HCN and NaCN.120 However, a literature search yields no examples

of STAB use in the reductive amination of naltrexone (7) to β-naltrexamine 

(72b), with NaBH3CN preferred in every case. An unpublished synthesis by a lab

group member attempted a reductive amination of the chemically similar

naloxone (6) using STAB as the reducing agent, but this almost exclusively

yielded the α-epimer (70a). This may due to the larger acetoxy groups of STAB,

which may sterically hinder and prevent it from accessing the imine from the

face that would produce the β-epimer (70b). Alternatively, it may result from

differences in the strengths of these reducing agents, due to the electron-

withdrawing effects of their respective cyano and acetoxy groups. However,

the frequency with which STAB and NaBH3CN are interchangeable in other

reactions suggest that this is not the case.

Scheme 2-2: Synthesis of single amino acid congeners of β-naltrexamine (92). 

Reagents and conditions: (a) i. NH4OAc, MeOH, rt; ii. NaBH3CN, MeOH, rt, 25%; (b) α-acetamido 

acid, PyBOP, DIPEA, DMF, rt, 73-90%; (c) TFA, TIPS, water, CH2Cl2, rt, 90%; (d) 4M HCl in 1,4-

dioxane, rt, 99%.

Even when NaBH3CN is used, the α-epimer (72a) remains the major product.84

Use of substituted amines, such as dibenzyl amine, can direct the reduction

towards greater β-epimer (72b) yield.85 However, this approach introduces an

additional hydrogenation step which would also decrease the final yield.

A pilot reaction using NH4OAc with NaBH3CN yielded four products. The β-

epimer (72b) composed 25% of the total products, alongside the α-epimer 
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(72a) (50%) and a racemate of naltrexols (71a and 71b) (25% combined). Given

the relatively small amount of β-naltrexamine (72b) necessary for this project,

it was decided to continue with this method, to react the remaining naltrexone

(7) without further optimisation. The yield observed in this small-scale reaction

was replicated in larger scale reactions. To minimise the chance of HCN

production, the workup for this reaction was carried out at pH 9, without

adjusting to pH 1 with HCl as described in the Filer et al. protocol.119 The

products were separable by column chromatography, having replicated the

respective literature Rf values through thin layer chromatography (TLC).84

Figure 2-22: Structures of the product and by-products from β-naltrexamine (72b) coupling 

to α-acetamido acids. 

When the coupling reaction was carried out with HCTU as the coupling reagent and with an

excess of α-acetamido acid and coupling reagent, a mixture of 92, 96 and 97 were produced.

When the reaction was carried out with PyBOP as the coupling reagent and with a 1:1:1

stoichiometric ratio between the reagents, the desired product (92) was the primary product.

The purified β-naltrexamine (72b) was coupled to eight α-acetamido acids: Ac-

Gly-OH, Ac-Ala-OH, Ac-Val-OH, Ac-Phe-OH, Ac-Ser-OH, Ac-Asn-OH, Ac-Asp(4-O-

tBu)-OH and N2-Ac-N6-Boc-Lys-OH. This was carried out using benzotriazol-1-

yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) as the coupling

reagent with diisopropylethylamine (DIPEA) in a 1:1:1:1 stoichiometric ratio (β-

naltrexamine (72b)/PyBOP/DIPEA/acetamido acid). Initial attempts to use the

uronium-based reagent O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HCTU) produced a mixture of

products (Figure 2-22). In addition to the desired product (92), the 6-
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guanidinylated by-product (97) and 3-esterified, 6-guanidinylated by-product

(96) were also present in large quantities.

To confirm that 6-position guanidinylation was occurring, two small scale

investigative reactions were carried out; β-naltrexamine (72b) and naltrexone

(7) were both separately mixed with HCTU and DIPEA in dimethylformamide

(DMF). Unaltered naltrexone (7) was identified by liquid chromatography-mass

spectrometry (LCMS), whereas the β-naltrexamine (72b) was entirely

consumed and the 6-guanidinylated product (97) was identified by LCMS. At

this time, a similar issue of guanidinylation had been encountered with the

alvimopan-based compounds (Chapter 3), so the non-uronium-based PyBOP

was chosen as an alternative coupling reagent. The stoichiometry was also

altered from a 1:3:3 ratio (β-naltrexamine/coupling reagent/α-acetamido acid) 

to 1:1:1 to discourage esterification of the 3-OH. These conditions generated

the desired products in acceptable yields (39-74%) with neither by-product 96

nor 97 detectable in the reaction mixture.

1H-NMR analysis of the products of the peptide couplings revealed varying

levels of epimerisation at the amino acid chiral centres. Racemisation of α-

acetamido acids during peptide coupling is known to occur via a 5(4H)-

oxazolone intermediate as shown in Scheme 2-3. The degree to which the

chiral centre is racemised depends on the acidity of the α-proton, which varies 

for different amino acids. For example, the chiral centres of the Asn (92f) and

Asp(tBu) (95g) β-naltrexamine congeners were highly racemised (Figure 2-23).

The electron withdrawing side chains of these amino acids can stabilise the α-

carbocation, making the α-proton more acidic.121 The electron donating alkyl

chain in the Lys(Boc) congener (95h) is less stabilising over the α-carbocation, 

and so produced very little racemisation (Figure 2-23).121

After separation by HPLC, three of the eight congeners produced sufficient

chirally pure material that both L- and D-epimers could be pharmacologically

tested. The chirality of the diastereomeric pair was assigned to each compound

based on the relative size of identifiable peaks in the 1H NMR of the mixture

(Figure 2-23). The compound associated with the larger peak in the mixed 1H
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NMR was designated as the L-epimer, and the smaller peak was assigned to the

D-epimer. In most cases this was a clear distinction, however, the 1H NMR

peaks for both epimers of the Asp(tBu) congener were very similar, suggesting

almost complete epimerisation of the chiral centre.

CR – coupling reagent

Scheme 2-3: The mechanism of α-acetamido acid racemisation via a 5(4H)-oxazolone

intermediate.

(a) The acetyl carbonyl oxygen acts as a nucleophile in conjunction with deprotonation of the

amide nitrogen, forming a lactone (5(4H)-oxazolone) and eliminating the coupling reagent (CR);

(b) Deprotonation of the 5(4H)-oxazolone α-carbon causes it to become sp2 hybridised; (c) The

negative charge from deprotonation is stabilised across several positions in the oxazolone ring;

(d) Protonation returns the α-carbon to the sp3 hybridised state, generating an equal

distribution of the two oxazolone enantiomers; (e) Nucleophilic attack of the oxazolone ester

by a primary amine reopens the ring giving the same product as a non-cyclised peptide

coupling, but with racemisation of the stereo centre.

Finally, the tert-butyl ester protecting group of both Asp congeners, and the

Boc protecting group of the Lys congener were removed. tert-Butyl ester

deprotection was carried out using an 18:1:1 mixture of trifluoroacetic acid

(TFA)/triisopropylsilane (TIPS)/H2O in CH2Cl2. Boc deprotection was achieved

using a 4M HCl/1,4-dioxane.
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Figure 2-23: 1H-NMR spectra for two β-naltrexamine congeners showing differing amounts 

of racemisation for each amino acid.

The proportion of product which has been converted to the D-epimer can be seen in the

respective peaks of several functional groups of each β-naltrexamine congener. The clearest 

view of the level of epimerisation can be seen by looking at the acetyl CH3 singlet peak (typically

around 2.0 ppm). (above) The Asp(tBu) congener (95g) was highly racemised, as seen in the

acetyl CH3 peaks (inset) where there are two peaks of similar height. (below) There was very

little racemisation of the Lys(Boc) congener (95h), as shown at the acetyl CH3 peaks (inset)

where one peak is much larger than the other.
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2.3.3 MOR binding affinity of the non-fluorescent β-naltrexamine congeners 

Before evaluating the β-naltrexamine congeners, the KD of the BODIPY

630/650-labelled oripavine derivative 50 (synthesised and characterised by

Schembri et al.57) was determined using TR-FRET in a saturation binding assay.

50 showed saturable high affinity binding to the SNAP-MOR in HEK293 cell

membranes with a pKD measured as 8.88 ± 0.36 (mean ± SEM, n = 3) (Figure 2-

24).

Figure 2-24: Structure and saturation binding of the fluorescent ligand 50 to the SNAP-MOR

in HEK293 membranes.

Membranes from Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cells were incubated with

varying concentrations of the fluorescent ligand 50 (synthesised by Schembri et al.57). Non-

specific binding (blue) was determined in the presence of 10 µM naloxone. Total binding (red)

was determined in the absence of naloxone. Data points are the mean of a single experiment

(mean ± SEM) carried out in triplicate which are representative of three separate experiments,

from each of which a value for KD was determined.

The MOR binding affinities of the non-fluorescent congeners were then

assessed by TR-FRET in a competition binding assay against 50. The results were
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plotted as competition binding curves (Figure 2-25) from which pKi values were

determined (Table 2-1).

Figure 2-25: Competition binding assay using the non-fluorescent β-naltrexamine congeners. 

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 50 (synthesised by Schembri et al.57) and increasing concentrations

of each of the β-naltrexamine congeners described in Figure 2-15. Where sufficient material of

the respective D-isomer of a congener was isolated it was also tested. Data points are the mean

of 3 or 4 separate experiments (mean ± SEM), each carried out in duplicate.

All congeners reduced binding to non-specific binding levels. Competition

binding experiments indicated that, although changes to linker composition

produced a range of affinities (one-way ANOVA, P = 0.01), none of the linkers

resulted in a significant change in MOR binding affinity compared to the

unsubstituted β-naltrexamine (72b).

Similarly, no significant increase in binding affinity was seen with any congener

compared to the glycine congener (92a), although congeners 92e and 92g (L-
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isomers) showed a significant reduction in binding affinity from 92a (P < 0.05,

post-hoc Dunnett’s multiple comparisons test). However, there was no

significant difference between 92a and the D-isomers 98e and 98g.

Compound Config. R MOR pKi ± SEM n

Naloxone (6) 7.69 ± 0.11 4

β-Naltrexamine (72b) 7.30 ± 0.08 4

92a R H 7.56 ± 0.16 3

92b R CH3 7.19 ± 0.28 3

92c R CH(CH3)2 7.50 ± 0.11 4

92d R CH2Ph 7.76 ± 0.11 4

92e R CH2OH 6.93 ± 0.12 3

98e S CH2OH 7.61 ± 0.17 3

92f R CH2CONH2 7.57 ± 0.12 3

98f S CH2CONH3 7.05 ± 0.13 3

92g R CH2COOH 6.98 ± 0.11 3

92g S CH2COOH 7.44 ± 0.19 3

92h R (CH2)4NH2 7.37 ± 0.08 3

Table 2-1: MOR binding affinities of α-acetamido acid β-naltrexamine congeners. 

pKi values at MOR were calculated from experimental IC50 values using the Cheng-Prusoff

equation.122 Experimental IC50 values were determined by competitive displacement of the

fluorescent ligand 50 (synthesised by Schembri et al.57) in Lumi4-Tb-labelled SNAP-MOR-

expressing HEK293 cell membranes. Values are the mean of 3 or 4 separate experiments (mean

± SEM), each carried out in duplicate.

In light of these findings, along with the in silico modelling results, it was

decided that there was no basis for further elaboration of the linker.

Importantly, attachment of the linker at the 6-position did not diminish the
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binding affinity of the unsubstituted β-naltrexamine (72b), indicating that the

amino acid linker was well tolerated, regardless of side chain group. Synthesis

of the final fluorescent ligands was carried out without further investigation of

non-fluorescent congeners.

2.4 Synthesis and pharmacological evaluation of fluorescent ligands

The synthesised fluorescent ligands were composed of the β-naltrexamide 

bound to one of three fluorophore moieties via either an α-acetamidolysyl or 

β-alanyl linker (Figure 2-26). The fluorophores used were BODIPY 630/650-X,

BODIPY 630/650 (without the hexanoyl spacer) and sulfo-Cy5.

Figure 2-26: Structures of β-naltrexamine fluorescent compounds. 

Two β-naltrexamine scaffolds bound to different linker moieties were combined with three 

fluorophores to give six novel fluorescent ligands. The two scaffolds utilise α-acetamidolysyl or 

β-alanyl linkers, which are bound to either BODIPY 630/650-X, BODIPY 630/650 or sulfo-Cy5. 
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The inclusion of an amino acid-based linker in these fluorescent ligands aimed

to increase hydrophilicity and reduce non-specific binding, potentially making

these fluorescent ligands more suitable for different imaging applications. The

sulfo-Cy5 fluorescent ligand (51) synthesised by Schembri et al.57 was preferred

due to improved confocal imaging properties compared to the BODIPY

630/650-X compound (50), which displayed incomplete displacement of

binding in the presence of an excess of unlabelled competitor, suggesting a

higher level of non-specific binding. Fluorescent ligands composed of two

different BODIPY 630/650 variants, with differing distances between

orthostere and fluorophore, were synthesised to test the effect of this spacer

on MOR binding affinity and potentially non-specific binding. However,

fluorescent ligands containing sulfo-Cy5 (101 and 104) were also synthesised

as they potentially possessed properties that were better suited to different

pharmacological applications.

2.4.1 Synthesis of fluorescent β-naltrexamine compounds 

Amino acid coupling of β-naltrexamine to the two amino acids was carried out 

using PyBOP and DIPEA in a 1:1:1:1 stoichiometric ratio (β-naltrexamine 

(72b)/PyBOP/DIPEA/acetamido acid), followed by Boc-deprotection of both

compounds in 4M HCl/1,4-dioxane. BODIPY 630/650-X and sulfo-Cy5 were

both pre-formed N-hydroxysuccinimide (NHS) esters, which were reacted with

the β-naltrexamine congeners in the presence of DIPEA to produce the final 

fluorescent BODIPY 630/650-X (99 and 102) and sulfo-Cy5 (101 and 104)

compounds. Coupling to the shorter BODIPY 630/650 compound differed, as it

was a free acid rather than an NHS ester, requiring the use of PyBOP with DIPEA

in a 1:1:1 ratio (PyBOP/BODIPY/β-naltrexamine congener) to discourage 3-

position ester formation.
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Scheme 2-4: Synthesis of fluorescent β-naltrexamine-based compounds. 

Reagents and conditions: (a) N2-acetyl-N6-Boc-lysine or N-Boc-β-alanine, PyBOP, DIPEA, DMF, 

rt, 73-90%; (b) 4M HCl in dioxane, rt, 99%; (c) BODIPY 630/650-X-OSu or sulfo-Cy5-OSu, DIPEA,

DMF, rt, 35-83%; (d) BODIPY 630/650-OH, PyBOP, DIPEA, DMF, rt, 42-47%.

2.4.2 MOR binding affinity of fluorescent β-naltrexamine compounds 

MOR binding affinities (pKD) of the fluorescent compounds 99-104 were

determined in saturation binding experiments (Figure 2-27, Figure 2-27a and

Table 2-2). The four BODIPY 630/650-containing ligands (99, 100, 102 and 103)

all exhibited sub-nanomolar binding affinities for MOR. Differences in linker

composition or length were found to not significantly change MOR binding

affinity (One-way ANOVA, P = 0.32). However, the sulfo-Cy5-containing 101

displayed a near-100-fold loss in pKD compared to the BODIPY 630/650-

containing (99 and 100) lysine-linked compounds.
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The total binding curve for compound 104 at this concentration did not appear

to reach saturation, meaning that a reliable pKD value could not be determined.

This suggests a significantly lower MOR binding affinity for 104 than the other

measurable compounds.

Figure 2-27: Saturation binding assay results for the lysine-linked fluorescent β-naltrexamine 

compounds.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with

increasing concentrations of the fluorescent compounds 99-101. Non-specific binding (blue)

was determined in the presence of 10 µM naloxone. Total binding (red) was determined in the

absence of naloxone. Specific binding (black) was calculated from total binding minus non-

specific binding. Data points are the mean of a single experiment (mean ± range) carried out in

duplicate which are representative of four separate experiments from which a value for KD was

determined.
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Figure 2-27a: Saturation binding assay results for the β-alanine-linked fluorescent β-

naltrexamine compounds.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with varying

concentrations of the fluorescent compounds 102-104. Non-specific binding (blue) was

determined in the presence of 10 µM naloxone. Total binding (red) was determined in the

absence of naloxone. Specific binding (black) was calculated from total binding minus non-

specific binding. Data points are the mean of a single experiment (mean ± range) carried out in

duplicate which are representative of three separate experiments from which a value for KD

was determined.
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Compound MOR pKD ± SEM n

99 9.22 ± 0.16 4

100 9.20 ± 0.15 4

101 7.43 ± 0.12 4

102 9.58 ± 0.10 3

103 9.22 ± 0.16 3

104 N/Aa 3

a – could not determine KD within the tested concentration range

Table 2-2: MOR binding affinities of β-naltrexamine-based fluorescent ligands. 

pKD values were determined for the specific binding of each fluorescent ligand from the total

binding and non-specific binding (+ 10 µM naloxone) curves generated in Lumi4-Tb-labelled

SNAP-MOR-expressing HEK293 cell membranes. pKD values are the mean of a 3-4 experiments

(± SEM), each carried out in duplicate.

Following this, compound 102 was selected for further competition binding

assays against naloxone (6) and naltrexone (7) to confirm it was specifically

labelling the MOR (Figure 2-28).
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Compound Obs. pKi ± SEM Lit. pKi range

Naloxone (6) 7.68 ± 0.26 7.3-9.0a

Naltrexone (7) 7.86 ± 0.37 8.1-9.7b

a – refs57, 108-112 b – refs57, 99, 108-110, 113, 114

Figure 2-28: Competition binding assay results for naloxone and naltrexone against the

fluorescent ligand 102.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 102 and varying concentrations of naloxone (6) and naltrexone (7).

Data points and the observed pKi values are the means of 4 separate experiments (mean ±

SEM), each carried out in triplicate. Values for pKi were determined from the experimental IC50

and the fluorescent ligand KD and concentration using the Cheng-Prusoff equation.122 Ranges

of reported pKi values for these compounds at MOR are included.

2.5 Discussion

Six fluorescent ligands with amino acid-based linkers joining the β-

naltrexamine (72b) orthostere to a fluorophore were successfully synthesised

and pharmacologically evaluated for binding affinity at MOR.

The 6-position of the morphinan scaffold of β-naltrexamine (72b) was

identified as a suitable site for linker attachment, and subsequent substitution

of this position with N-acetylated amino acids resulted in no significant loss of
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MOR binding affinity from 72b, indicating that substitution at this position is

well tolerated.

It was hoped that interactions made between the amino acid substituent side

chain groups and the receptor might improve MOR binding affinity. In silico

modelling suggested that some beneficial interactions may be possible with

certain amino acid side chains, but most docking predictions indicated a lack of

interactions at this position. Competition binding experiments showed few

significant differences in MOR binding affinity between amino acid congeners,

mostly in agreement with the in silico predictions. These findings may be an

example of the “message-address” concept described for morphinan opioid

ligands, which suggests that ring-C substituents can affect receptor subtype

selectivity but are not beneficial for binding affinity.34

The only amino acid side chains which resulted in significant differences in MOR

binding affinity from the Gly-congener 92a were the L-Ser (92e) and L-Asp (92g)

congeners, which had significantly lower MOR binding. However, the

respective D-isomers 98e and 98g showed similar MOR binding affinities to

92a, suggesting that particular conformations of these polar side chains are

detrimental to MOR binding. In accordance with the “message-address”

concept of OR binding, it may be that these side chain groups are able to confer

some degree of receptor subtype selectivity against MOR binding. This could

be illuminated by KOR and DOR competition binding experiments for these

compounds.

In order to calculate the pKi values for these non-fluorescent congeners, it was

necessary to determine the KD of the fluorescent competitor ligand 50. The pKD

of 50 was measured as 8.88, slightly higher than the reported pA2 value (8.37 -

determined from antagonist concentration response curves fitted to a

Gaddum-Schild equation in an ERK1/2 phosphorylation assay against the MOR

agonist DAMGO and carried out in CHO cells expressing MOR).57 Given the

practical differences in determining these receptor binding values, it is

unsurprising that the values differ. However, these values are similar enough
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to give confidence to the measured values obtained from the saturation

binding experiments.

The inclusion of amino acids in the linker aimed to increase the hydrophilicity

of the compounds, to reduced non-specific binding. This had previously been

proposed as a drawback of the BODIPY-based fluorescent MOR ligand 50,

which had displayed incomplete loss of fluorescence in the presence of an

excess of unlabelled competitor, suggesting a higher level of non-specific

binding.57 Prior to carrying out the assays, there was some indication of success

in meeting this aim. When preparing for the competition binding studies of

non-fluorescent congeners, the 10 mM stock solution of 50 in dimethyl

sulfoxide (DMSO) was found to be insoluble in HEPES-buffered saline solution

(HBSS). The 10mM solution of 50 had to be further diluted in DMSO to 1 mM

before it could be solubilised in HBSS. By comparison, the BODIPY 630/650-

containing compounds from this study were soluble in HBSS buffer solution

from a 10mM stock solution in DMSO. This suggests an improved hydrophilicity

profile in these BODIPY 630/650-containing ligands compared to 50, which may

lead to fewer non-specific interactions away from the orthosteric binding site.

Further testing will be required in order to confirm to what degree the

compounds synthesised in this study participate in non-specific binding.

The four BODIPY 630/650-containing compounds (99, 100, 102 and 103) all

exhibited sub-nanomolar binding affinities for MOR (Table 2-2), which was

unchanged by variation in linker design (N-acetyl lysine or β-alanine) and length 

(the inclusion or absence of a hexanoyl spacer moiety). The lysine-linked sulfo-

Cy5 compound (101) displayed a binding affinity for MOR comparable to the

sulfo-Cy5 fluorescent MOR ligand (51) synthesised by Schembri et al.,57 but the

total binding curve for 104 did not reach saturation in the tested range so a

reliable pKD value could not be determined.

To confirm it was specifically labelling the MOR, 102 was selected for further

competition binding assays against naloxone (6) and naltrexone (7). There was

a high degree of variation in the results of these experiments (Figure 2-28),

which could be attributed to the concentration of fluorescent ligand used. It is
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common for the fluorescent ligand (or radioligand) concentration used in a

competition binding assay to be equal to its KD. However, due to the high MOR

binding affinity of compound 102, this concentration is very low. More

consistent results would likely be achieved if a higher concentration of

fluorescent ligand 102 was used.

The observed pKi value for naltrexone (7) is slightly lower than previously

reported, and the pKi value for naloxone (6) is only comparable to some of the

lower reported values. This also may have resulted from the inconsistency of

the results. However, the pKi value obtained for naloxone (6) in the competition

binding experiments, which used the fluorescent ligand 50 (Table 2-1), was

comparable to the value obtained with 102. To ensure that receptor occupancy

was at equilibrium, the experiment using 50 was repeated with a longer

incubation period, but this produced a similar outcome. This suggests that this

difference in obtained pKi values is a result of methodological differences from

the literature values.
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3 Design, synthesis and pharmacological evaluation

of 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine-

based fluorescent ligands

Existing fluorescent opioid receptor ligands are typically composed of a

fluorophore bound to either an endogenous opioid peptide, or a morphinan-

based opioid ligand, such as the fluorescent compounds synthesised in Chapter

2. The biological applications of fluorescent ligands continue to grow, as does

the need for fluorescent ligands of different structures and properties. In order

to escape the existing paradigm of fluorescent opioid ligand design, non-

morphinan structures were considered to form the basis of a new class of

fluorescent opioid ligands.

A problem associated with morphinan-based fluorescent ligand design is the

legal barriers associated with the acquisition and synthetic use of narcotic

starting materials. Even antagonist starting materials, such as the naltrexone

(7) used in the synthesis of β-naltrexamine-based fluorescent ligands described 

in Chapter 2, require additional oversight during synthesis. Therefore, a

fluorescent ligand synthesised from non-biologically active, commercially

available starting materials would be desirable.

3.1 Selection of a lead molecule

The same criteria used to select a morphinan orthostere in Chapter 2 were also

used to select a non-morphinan lead molecule. The chosen characteristics of a

lead molecule were an MOR antagonist with high MOR binding affinity and a

well-established SAR profile. The range of well-described opioid ligands which

are neither morphinan-based, nor developed from an endogenous peptide, is

quite limited. The 2007 review of opioid antagonists by Goodman et al.123

includes a diverse array of novel opioid receptor ligand structures from patent

literature (Figure 3-1). Many of these structures are reported to possess sub-

nanomolar binding affinities for MOR which would be highly desirable for
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fluorescent ligand design.123 However, publications describing the SAR of these

compounds are rare and, whilst some aspects of SAR can be inferred from the

structures covered under the patent, it is unclear where might be suitable on

these structures for linker attachment with minimal impact on MOR binding

affinity.

Figure 3-1: Structures of novel MOR antagonists or inverse agonists.

105-108 are a selection of MOR antagonist structures with the reported MOR binding affinities

taken from patents.123 These structures have not been reported outside of these patents, so

their SAR profiles are not well understood. 109 is better described in the literature, but is an

inverse agonist, rather than an antagonist, and was therefore unsuitable as a lead molecule.

Many of these compounds have been targeted towards treatment of

compulsive consumption of food, alcohol and drugs.123 Similarly, GSK1521498

(109) has been the subject of numerous published studies on compulsive

reward-related behaviours.109, 124, 125 Though often described as an antagonist,

this compound has shown inverse agonism of MOR, KOR and DOR.125 In this

project, the lead molecule for fluorescent ligand design should be an

antagonist, rather than a reverse agonist, as it is desirable that the fluorescent

ligand does not elicit a response upon receptor binding. The functional profiles

of many of these novel opioid ligands is not well described, so the outcome of

using them as the orthostere in a fluorescent ligand is unpredictable. Due to

this uncertainty, these compounds were not considered appropriate for use in

this study. While it may be possible to synthesise a fluorescent opioid



76

antagonist from these structures, a thorough study of their SAR would first be

required, which falls outside the scope of this project.

Alvimopan (9) was chosen as the lead molecule for this study, fulfilling the

criteria as a high affinity MOR antagonist, which has also been the subject of

numerous SAR studies. The structure of alvimopan (9) was published by

Zimmerman et al.110 in 1994 but the (3R,4R)-3,4-dimethyl-4-(3-hydroxyphenyl)

piperidine (DMHPP) orthostere it contains was first reported in 1978.126

Numerous SAR studies of DMHPP-containing ligands led to the discovery of

alvimopan (9) and have defined much of the structure’s SAR. This made it an

ideal candidate for fluorescent ligand design, as this existing SAR could be used

to select a point of attachment for the linker moiety and guide linker design.

3.2 SARs of (3R,4R)-3,4-dimethyl-4-(3-hydroxyphenyl) piperidine structures

Unlike other non-morphinan opioid antagonists, alvimopan (9) has a well-

established SAR which has been explored in numerous published studies. The

antagonist function of alvimopan (9) and other related compounds is derived

from the DMHPP orthostere which is described below. SAR studies exploring

the effect of modifications to DMHPP on MOR binding affinity, receptor

subtype selectivity and function, are also described in this section.

3.2.1 Structural determinants of function

Zimmerman et al.126 first described the discovery of the DMHPP structure,

focusing on the chiral relationship between the 3- and 4-position substituents.

They describe the change in function of known agonist 110 to antagonism

when methylated at the 3-position, with antagonist activity found to be greater

in the (R)-methyl diastereomer 111 than the (S)-methyl 112. Further study of

the relationship between these methyl groups has shown a trend of slightly

lower MOR binding by the 3S,4S-enantiomer, with the 3R,4R-enantiomer (111)

preferred in most studies using this scaffold.127
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Figure 3-2: Variants of the 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine structure.

The antagonist DMHPP structure 111 discovered by Zimmerman et al. is the 3R-methyl variant

of the agonist 110. The 3S-methyl variant 112 showed a weaker antagonist activity in rat and

mouse responses than 111.126 These findings led to the discovery of the opioid antagonist

alvimopan (9).110

It has been hypothesised that this change in function is not the result of

interactions made by the 3-methyl group in the receptor, but rather the effect

that this group has on the piperidine ring conformation.123 Unlike the more

rigid structures of morphinan opioids, there is some flexibility for the phenol to

adopt either an axial or equatorial position relative to the piperidine. The

proposed equatorial positioning of alvimopan (9) is supported by crystal

structure data127 as well as the antagonist activity of the equatorially locked

structure 113 (Figure 3-3).128 Even removal of the 3-methyl group of this

equatorially locked species produced an antagonist (114),129 supporting the

role of 3R-methyl as being responsible for conformational change, rather than

interacting with the receptor.
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Figure 3-3: The proposed equatorial phenol positioning in DMHPP antagonists.

The phenol of alvimopan (9) is hypothesised to adopt an equatorial position relative to the

piperidine ring as a result of 3-position methylation.123 The equatorially locked compounds 113

and 114 support this claim, as they are both antagonists.128, 129 The DMHPP-containing opioid

antagonist LY255582 (115) is shown above its crystal structure, adopting an equatorial

position.127

The opioid antagonist axelopran (116) was initially believed to adopt a similar

conformation to that of alvimopan (9),130 but separation of the precursor

isomers 117a and 117b revealed 117b to be a weakly binding partial agonist,

while 117a was a high affinity antagonist (Figure 3-4).131 To produce this

antagonism, it is possible that the piperidine ring of 117a switches to a boat

conformation for the phenol to adopt an equatorial conformation, but x-ray

crystallography of 117a shows it adopting the axial chair conformation.131 The

absence of the 3- and 4-methyl groups may cause the phenol to prefer this axial

conformation. The antagonism of axelopran (116) may result from a steric clash

between the axial phenol and the 2-6 ethylene bridge, preventing it from

adopting an agonist binding pose.
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Figure 3-4: The structures of axelopran (116) and its precursor isomers.130, 131

The opioid ligand axelopran (116) and its precursor 117a are both antagonists, despite

appearing to position their 4-aryl rings axially.130, 131 117b, the isomer of 117a possesses partial

agonist activity, though its active conformation has not been investigated.131

3.2.2 Modification of the aromatic ring

Outside of the conserved chirality of the piperidine 3- and 4-position

substituents, SAR studies have sought to evaluate the suitability of different

positions on the DMHPP structure for substitution and elaboration. The

aromatic ring has been investigated by modification of substituent position and

composition.

The phenol ring of DMHPP structures is understood to interact with the

receptor similarly to the phenol ring-A of morphinan opioid ligands, but

DMHPP-based ligands appear to have a higher tolerance for functionalisation.

While the substitution of an amide onto the aromatic ring of morphine results

in a dramatic loss in binding affinity (Figure 2-4),75 the same change in the

DMHPP compounds 118a and 115 results in a minor change in MOR binding

affinity (Figure 3-5).111, 132 This is exemplified by the MOR antagonist axelopran

(116), a ligand possessing similar properties to alvimopan (9), which is achieved

through numerous bioisosteric replacements, including a meta-amide group.
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R Scaffold 118 MOR pKi Scaffold 119 MOR pKi

3-OH 118a 8.72 LY255582 (115) 10.00

3-CONH2 118b 8.33 119b 9.7

3-CONHMe 118c 7.15

3-CON(Me)2 118d 5.92

3-CO2Me 118e 6.07 119e 7.36

3-CO2H 119f 6.84

3-CH2OH 118g 7.96

3-NH2 118h 6.82 119h 8.72

3-NHCOMe 118i 7.17 119i 8.62

3-H 119j 8.11

2-OH 119k 6.39

4-OH 119m 7.52

Figure 3-5: Comparison of different aryl ring substituents and their effect on MOR binding

affinity.111, 132

Small, polar functional groups such as an amide (118b, 119b) can be substituted onto DMHPP

scaffolds such as 118 and 119 with relatively small changes to MOR binding affinity compared

to the corresponding hydroxyl-containing compounds (118a and 115).111, 132 Larger groups

typically see a reduction in pKi, but not to the degree seen in morphinan ligands (as shown in

Figure 2-4). Ionisable groups are also less favoured, but removal of the hydroxyl (119j) can still

produce a high affinity ligand.132 Relocation of the hydroxyl group to either the para- or meta-

position results in a large loss of MOR binding affinity (119k and 119m).132

Other small polar groups at this position can also be tolerated, and can even be

used to improve receptor subtype selectivity, albeit with a lower affinity for



81

MOR.111, 132 Removal of the hydroxyl group from 115, while resulting in a loss

of MOR binding affinity, still produced a high affinity ligand (119j) due to the

exceptional MOR binding affinity of the parent compound. MOR binding

affinity of the KOR-selective ligand JDTic (120) is actually improved by removal

of the hydroxyl, with no effect shown over KOR binding (Figure 3-6).133 A meta-

amide group on this structure produces no change in MOR affinity, but rather

a loss in binding affinity at KOR.133, 134

Compound R pKe (MOR) pKe (DOR) pKe (KOR)

JDTic (120)a OH 7.60 7.13 10.70

121a H 8.05 6.35 10.62

122b CONH2 7.68 6.32 9.92

a - ref133, b - ref134

Figure 3-6: Opioid receptor binding affinities for JDTic (120) and its meta-substituted

variants.133, 134

Removal of the aryl hydroxyl group from the KOR-selective antagonist JDTic (120) results in a

gain in MOR binding affinity with little effect on KOR binding affinity. Replacement of the

hydroxyl group with an amide does not affect MOR binding but reduces KOR binding affinity.133,

134

Relocation of the hydroxyl group of 115 can result in a more drastic loss of

binding affinity. The para-hydroxyl variant (119m) binds with similar MOR

affinity to some of the less well-tolerated meta-substituents shown in Figure 3-

5, but the ortho-hydroxyl compound 119k suffers a 4000-fold loss in MOR

binding affinity compared to 115.132

The fact that some changes to the composition and position of the aryl ring

substituent are tolerated, whilst other changes cause an extreme reduction in
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MOR binding affinity, demonstrates that this region of the orthostere is highly

influential over receptor binding. Despite the variety of tolerated substituents,

the aryl ring is clearly tightly bound within the receptor binding site, leaving

room for only subtle structural modifications, without suffering unacceptable

losses to binding affinity.

3.2.3 N-substitution

In morphinan opioid ligands, the N-substituent is crucial in determining ligand

function, with minor structural changes causing the ligand to switch its

agonist/antagonist activity (see Figure 2-12). As previously discussed, the

functionality of DMHPP ligands is determined by the stereoisomerism of the 3-

and 4-methyl groups, and N-substitution has not been found to influence ligand

function. Instead, the N-substituent can influence receptor subtype selectivity,

as demonstrated by the DMHPP-based KOR antagonist JDTic (120). In this

regard, the role of DMHPP N-substituents is similar to the 6-position

substituents of morphinan-based opioid ligands. However, the “message-

address” concept described for morphinan opioid ligands (2.1.4) cannot be

applied to DMHPP compounds, as N-substitution is also able to modulate

receptor binding affinity.

SAR studies investigating N-substitution of DMHPP determined that a phenyl

or cyclohexyl group bound to the amine via an ethylene or propylene spacer

was optimal for MOR binding;127, 135 N-substitution of a phenylpropyl group

(125) resulted in a 100-fold increase in MOR affinity compared to the N-methyl

compound (111) (Figure 3-7).135 This phenyl positioning is conserved in the

structure of alvimopan (9), alongside a 2-amide-bound glycine moiety, which

alters the compound’s physicochemical properties to restrict its absorption

from the GI tract.110
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Compound R pKi or % inh. At 100 nM

111 Me 7.1

123 CH2Ph 89%

124 (CH2)2Ph 8.82

125 (CH2)3Ph 9.16

126 (CH2)4Ph 8.70

127 CH2
cHex 7.77

128 (CH2)2
cHex 9.19

129 (CH2)3
cHex 9.31

Figure 3-7: The effect of differences in N-alkyene-phenyl substituent spacing on MOR binding

affinity.127, 135

Binding affinities were determined by displacement of [3H]-naloxone from MOR in rat brain

homogenate.127, 135

The N-substituent conformation which facilitates this increased binding affinity

has been investigated through restriction of the N-alkyl spacer. A study by Le

Bourdonnec et al.136 synthesised and tested a series of conformationally locked

congeners of the N-phenylethyl DMHPP compound 124 (Figure 3-8). Two of

these quinolizidine compounds possessed higher binding affinities than the

unrestricted 124. Functional assays revealed 131b to be an agonist, while 130b

remained an antagonist. In silico analysis of their respective lowest energy

conformations showed that 124 and 130b maintained equatorial phenols,

while an axial phenol conformation was generated for 131b. The same group

investigated further substitution of the quinolizidine ring of 130b, but this was

found to be detrimental to MOR binding.137
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Compound Scaffold Conformation MOR pKi

124 - - 8.74

130a 130 6R,9R 6.37

130b 130 6S,9S 9.21

130c 130 6R,9S 6.96

130d 130 6S,9R 6.96

131a 131 2R,9R 7.59

131b 131 2S,9S 9.05

131c 131 2R,9S 7.43

131d 131 2S,9R 7.14

Figure 3-8: MOR binding affinities of DMHPP compounds with conformationally restricted N-

substituents.136

A series of fused ring compounds were investigated to determine the active conformation of

the phenylethyl DMHPP compound 124.136 Every isomeric combination of the quinolizidines

130 and 131 were tested, with two analogues identified to possess higher binding affinities

than the unrestricted 124. 131b was found to be an agonist, likely due to distortion of the

piperidine ring. 130b displayed antagonist activity and was determined to represent the active

conformation of 124.

Another approach to conformational restriction of N-substituents introduced

functional groups into the propylene spacer of compound 125 (Figure 3-9).138

MOR binding affinity was impaired when the spacer was forced to adopt a cis-

conformation through the introduction of a double bond (133), but the trans-

isomer (132) displayed a similar MOR affinity to 125, suggesting that they share

similar binding poses. Substitution of a benzofuran (134) also resulted in a loss
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of MOR binding affinity, indicating that rotational freedom of the phenyl ring is

necessary for it to be optimally positioned for binding.138

Figure 3-9: DMHPP compounds with conformationally restricted N-substituents.138

A series of conformationally restricted variants of the phenylpropyl DMHPP compound 125

were synthesised. The MOR binding affinity of the trans-propenyl isomer 132 was unchanged

from the unrestricted 125. The cis-propenyl isomer 133 exhibited a lower MOR binding affinity,

suggesting that the trans-conformation is representative of the binding pose of 125. The loss

of MOR binding affinity displayed by the benzofuran congener (134) reveals that rotational

freedom of the phenyl ring is necessary to be optimally positioned for binding.138

Functionalisation of the amino acid side chain of alvimopan (9) has also been

explored, with several different amino acids utilised to replace glycine (Figure

3-10).139 Most of these modifications were found to reduce MOR binding

affinity, except the lysine variant (135d), which had a similar MOR binding

affinity to alvimopan but possessed far greater receptor subtype selectivity.

Removal of the benzyl group from alvimopan resulted in a larger loss of binding

affinity, but this could be partially recovered when different amino acids were

substituted for glycine.139 It is noteworthy that addition of a phenyl group to

alvimopan (135b) resulted in a loss in MOR binding affinity, but the same

modification in the des-benzyl structure improved binding affinity (136e). This

may suggest that these functional groups compete for the same binding site,

making the amino acid side chain detrimental for MOR binding when the benzyl

group is present, but favourable for binding when the benzyl group is absent.
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Compound R1 R2 MOR pKi or % inh. at 10 µM

Alvimopan (9) Bn H 9.33

135a Bn Me 9.20

135b Bn Bn 8.77

135c Bn CH2COOH 8.14

135d Bn (CH2)4NH2 9.30

136a H H 20%

136e H Bn 7.44

136f H CH2
cHex 7.70

136g H (CH2)2Ph 7.24

136i H (CH2)4NH2 45%

Figure 3-10: Modifications to the structure of alvimopan (9).139

Modification of the amino acid utilised in the structure of alvimopan (9) resulted in loss of MOR

binding affinity (135a-c) except the lysine congener (135d) which showed similar binding

affinity to alvimopan (9). Removal of the benzyl group from alvimopan (9) resulted in a loss of

MOR binding affinity (136a), which was partially recovered by the inclusion of amino acids

containing a phenyl or cyclohexyl group (136e-g).

3.2.4 Modification of the piperidine ring

The crucial role that 3- and 4-position substituents play in determining ligand

function limits how the piperidine ring can be functionalised. Outside of the

fused ring structures described above, modifications to the piperidine ring have

been more limited than those seen in other regions. Most elaboration of the

piperidine ring had been through internal bridging to investigate piperidine ring
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conformation, such as 113 and 114 (Figure 3-3),128, 129 and the 2-6 ethylene

bridge seen in axelopran (116).130, 131

Substitution onto the 6-position of 124 showed that modification of this

position with even small alkyl groups was detrimental to opioid receptor

binding, with further loss of binding affinity associated with larger

substituents.140 Substitution of the piperidine ring should therefore be avoided,

except to confer specific positioning of the N-substituent (as seen in Figure 3-

8).

3.3 Fluorescent ligand and non-fluorescent congener design

The SAR studies of the DMHPP structure reveal its potential to produce high

affinity antagonist ligands for MOR. Modification of the piperidine ring is best

avoided due to the potential for function-altering conformation shifts and,

while aryl ring substitution can be tolerated, a meta-hydroxyl or amide group

should be utilised for optimal MOR binding affinity. Contrastingly, N-

substitution could provide an ideal location for linker and fluorophore

attachment.

Elaboration of the linker from the existing glycine moiety of alvimopan (9) could

achieve this project’s aim of utilising amino acids in the linker of a DMHPP-

based fluorescent ligand to improve physiochemical properties. The study by

Le Bourdonnec et al.139 into amino acid substitution of alvimopan (9) supports

the potential for incorporating different amino acids at this site, but only in the

absence of the benzyl group (Figure 3-10). While loss of this group is

detrimental to MOR binding affinity, it has been shown that certain amino acids

are able to recover some of the lost binding affinity.139 Benzyl removal also has

synthetic benefits, as the epimers generated by benzylation must be separated,

resulting in a loss of useful material.110, 141

It was decided that fluorescent compounds of the design shown in Figure 3-11

would be synthesised. The composition of the first bound amino acid (referred

to as “the first position”) would be determined using synthesised non-
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fluorescent single amino acid congeners (136) through measurement of MOR

binding affinity. These results would be used to inform any further elaboration

of the linker. It was planned that click chemistry would be used to attach the

alkynyl group of a modified fluorophore to a terminal azidoalanine moiety,

forming a 1,2,3-triazole ring (Scheme 3-1). Some non-fluorescent congeners

would incorporate a terminal phenylalanine moiety as a bioisostere of the

1,2,3-triazole amino acid (138).

Figure 3-11: General design of DMHPP-based fluorescent ligands.

The planned structure of the fluorescent ligands designed in this chapter consisted of the 3,4-

dimethyl-4-(3-hydroxyphenyl) piperidine orthostere connected to a peptidic linker region

(137). The composition of this linker region was refined by the synthesis and pharmacological

evaluation of non-fluorescent congeners (136 and 138). Click chemistry was planned to be used

to attach the alkynyl group of a modified fluorophore to an azidoalanine moiety, forming a

1,2,3-triazole ring (Scheme 3-1). This was represented in non-fluorescent congeners by

incorporating a phenylalanine bioisostere (138).

Scheme 3-1: Mechanism of the azide-alkyne cycloaddition between azidoalanine and the

alkyne of a modified fluorophore.
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3.4 Synthesis of 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine

A benefit of the DMHPP structure as a lead molecule is that it can be

synthesised from commercially available, non-narcotic starting materials.

Synthesis of DMHPP 146a was first described by Mitch et al.142 (Scheme 3-2)

but suffered from low yield and included the neurotoxic intermediate 141, the

m-methoxy-variant of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

which is known to induce Parkinsonism.143 A safer, higher yielding route with

fewer synthetic steps was published by Werner et al.141 five years later

(Scheme 3-7) and has served as the standard route to 146a synthesis since, on

both laboratory and industrial scales.

Scheme 3-2: Synthetic scheme for (3R,4R) 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine by

Mitch et al.142

Reported reagents and conditions: (a) (3-methoxyphenyl)lithium, THF, -70°C; (b) p-TsOH,

PhMe, reflux; (c) n-BuLi, MeI, THF, -10°C; (d) H2CO, (Me)2NH, H2SO4, H2O, 70°C; (e) H2,

Pd/Ba2SO4, EtOH, rt; (f) i) NaBH3CN, MeOH, rt; ii) dibenzoyl L-tartrate, EtOH; (g) i) vinyl

chloroformate, DCE, reflux; ii) HCl, EtOH, reflux, iii) HBr, AcOH, reflux.

Both of these racemic synthetic routes produce undesired isomers which

require chiral purification and result in significant losses in mass of useful

product. In response to this problem, an enantioselective synthetic route to

146a was developed by Furkert et al.144 which almost exclusively produced the

desirable 3R,4R-isomer (Scheme 3-3). The reported overall yields of both the
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Werner et al.141 and Furkert et al.144 routes were similar (15-16%), although the

latter involved more synthetic steps.

Unlike the commonly utilised Mitch et al. and Werner et al. syntheses, there

are no reports of the enantioselective synthetic route being repeated since the

paper was published in 2007. Therefore, it was initially decided that the route

described by Furkert et al.144 would be followed in this project, as an external

assessment of the utility of this synthetic route. The chemistry following the

Furkert et al.144 route is reported in section 3.4.1 below. Unfortunately, the

enantioselectivity described by the authors could not be replicated in this

project. Instead, the synthetic route described by Werner et al.141 was pursued,

and is reported on in section 3.4.2.

3.4.1 Enantioselective synthetic route

The reported enantioselective synthetic route by Furkert et al.144 is shown in

Scheme 3-3. Unfortunately, the described enantioselectivity could not be

replicated in this project, and thus the synthetic route was not followed to

completion. The completed chemistry from this project is shown in Scheme 3-

4.
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Scheme 3-3: Synthetic scheme for chirally-selective route to (R),(R)-3,4-dimethyl-4-(3-

hydroxyphenyl)piperidine by Furkert et al.144

Reported reagents and conditions: a) t-BuSOCl, NEt3, DCM, 2 h, 0°C; b) m-CPBA, DCM, 3 h, RT;

c) Et3SiH, BF3·OEt2, DCM, 3 h, 0°C; d) Br2, NEt3, DCM, 1 h, 0°C; e) CBS catalyst, BH3·PhNEt2, THF,

16 h, 0°C; f) (EtO)2P(O)Cl, DMAP, NEt3, DCM, 24 h, 0°C; g) MeMgBr, CuBr·SMe2, dry THF, 5 h, -

40°C; h) 3-OMe-PhB(OH)2, Pd(Ph3P)4, Na2CO3, 1:1 ethanol/toluene, 100°C, 30 min; i) TfOH,

anisole, DCM, 30 min, 0°C; j) CH2O, NaBH3CN, MeCN, 30 min, RT; k) n-BuLi, Me2SO4, THF, 30

min, -50°C; l) NaBH4, methanol, 3 h, 0°C; m) 1)NaOH, PhOCOCl, toluene, 2 h, reflux; 2) HBr,

AcOH, 18 h, reflux.

In contrast to the literature method, the coupling of tert-butylsulfonyl chloride

(tBuSOCl) to α-furfurylamine (147) was carried out using a stoichiometric

amount tBuSOCl, added dropwise as a dilute solution in dichloromethane

(DCM) to prevent di-substitution of the amine. The reaction of sulfinamide 148

with meta-chloroperbenzoic acid (mCPBA) had two effects. Upon addition of

mCPBA, oxidation of the sulfinamide to produce the sulfonamide was quickly

observed by TLC. A Prilezhaev reaction then introduced an epoxide onto the

furan ring, with a subsequent aza-Achmatowitz rearrangement to produce the

6-membered ring 149 (Scheme 3-5). Alcohol reduction using boron trifluoride
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diethyl etherate and triethylsilane resulted in a poor yield of 150 (22% over two

steps), vastly different from the reported 78% yield.144 Attempts to modify the

reaction conditions (temperature, stoichiometry, order of reagent addition)

produced only minor changes to overall yield. A key discovery was that the

reaction did not scale up well, with the best yield of 36% achieve using 100 mg

of 150. The remaining material was reacted in twelve separate reaction vessels

in parallel to optimise the yield over these steps.

Scheme 3-4: Synthesis of (R),(R)-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine precursors.144

Based on the synthesis described by Furkert et al.144 shown in Scheme 3-3. Reagents and

conditions: (a) t-BuSOCl, NEt3, DCM, 2 h, 0°C, 90%; (b) m-CPBA, DCM, 3 h, RT; (c) Et3SiH,

BF3·OEt2, DCM, 3 h, 0°C, 36% (2 steps); (d) Br2, NEt3, DCM, 1 h, 0°C, 77%; (e) CBS catalyst,

BH3·PhNEt2, THF, 16 h, 0°C, 77%; (f) (EtO)2P(O)Cl, DMAP, NEt3, DCM, 24 h, 0°C, 82%; (g)

MeMgBr, CuBr·SMe2, dry THF, 5 h, -40°C, 34%; (h) 3-OMe-PhB(OH)2, Pd(Ph3P)4, Na2CO3, 1:1

ethanol/toluene, 100°C, 30 min, 73%; (i) TfOH, anisole, DCM, 30 min, 0°C, 94%; (j) CH2O,

NaBH3CN, MeCN, 30 min, RT, 89%.

Bromination of 150 by Br2 in the presence of triethylamine (TEA) produced the

4-bromo compound 151 in good yield. The ketone was then enantioselectively

reduced to the (S)-alcohol using a CBS catalyst ((3aR)-1-methyl-3,3-diphenyl-

3a,4,5,6-tetrahydropyrrolo[1,2-c][1,3,2]oxazaborole). The chiral purity of 152

was confirmed by determination of [α]D which was comparable to the literature

value.144 The alcohol of 152 was then esterified by diethyl chlorophosphate and

4-dimethylaminopyridine (DMAP) in high yield, although the reaction did not



93

go to completion under the tested conditions, with a small amount of starting

material recovered each time.

Scheme 3-5: Oxidation and rearrangement of N-furfurylsulfonamide by mCPBA.

Oxidation of 148 results in epoxide formation, which occurs via a Prilezhaev reaction. An aza-

Achmatowitz rearrangement converts the 5-membered epoxide intermediate into the 6-

membered intermediate 149.

The procedure developed by Furkert et al.144 had optimised the reaction

conditions for the enantioselective methylation of 153, using different

methylating agents and copper catalysts. It was therefore disappointing to find,

when using the described methyl Grignard and copper (I) bromide dimethyl

sulphide complex, that the product 154 was a mixture of enantiomers, in

contrast to the near-complete enantioselectivity reported in the protocol.144

The authors described the reaction as occurring via an SN2’ mechanism, with

methylation occurring at the unsaturated 5-position to produce the desired (R)-

isomer (154a). They report that the (S)-isomer (154b) was produced by the SN2

mechanism through direct displacement of the phosphate (Scheme 3-6). The

conditions used were proposed to direct the methylation almost exclusively to

the SN2’ route, but the experiments carried out in this study did not replicate

the literature results, producing a mixture of 154a and 154b.
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Scheme 3-6: Reaction mechanisms to produce the two 3-methyl enantiomers of 154.

Above: The SN2 mechanism results in direct substitution at the 3-position of the piperidine ring,

producing the (R)-isomer 154b. Below: The (S)-isomer is produced by an SN2’ mechanism,

substituting onto the 5-position and eliminating the phosphate from the sp2-hybridised 3-

position.

After several attempts to direct the methylation towards the desired product

were unsuccessful, it was decided that the synthetic route should be switched

to the route developed by Werner et al.141 (Scheme 3-7). Since this method

would require separation of enantiomers, the Furkert et al.144 synthesis was

continued, using the mixed methylation products (154) to produce 157. Since

157 differs only from compound 161 in the Werner et al.141 synthesis in their

respective O-phenol substituents, testing the separability of the enantiomers

of 157 would indicate if the enantiomers of 161 were also separable.

For that purpose, a Suzuki coupling was carried out between the mixed

enantiomers of 154 and 3-methoxybenzeneboronic acid in the presence of

tetrakis(triphenylphosphine)-palladium (0) and sodium carbonate to give the

product 155. This was then treated with triflic acid and anisole to remove the

tert-butylsulfonyl (bus) protecting group to give the secondary amine 156.

Reductive amination of formaldehyde by 156, using STAB as the reducing

agent, yielded the N-methyl piperidine 157.

The 3R (157a) and 3S (157b) isomers were successfully isolated by high

performance liquid chromatography (HPLC), indicating that the iso-propyl

derivative 161 could also be purified using this method. 157a made up 61% of

the isolated product, with 157b composing the remaining 39%. It is assumed
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that this ratio is unchanged for compounds 154-157 and that this is

representative of the ratio of SN2’ to SN2 products 154a and 154b in Scheme 3-

6.

3.4.2 Non-enantioselective synthetic route

As discussed above, once it was established that chirally-pure products would

not be achievable using the method developed by Furkert et al.,144 it was

decided that the protocol described by Werner et al.141 would be a more

suitable route to synthesis of 146a (Scheme 3-7). In the absence of any benefit

over chiral selectivity, this approach was more desirable as it halved the

number of synthetic steps from fourteen to seven (shown in Figure 3-8).

Scheme 3-7: Non-chirally-selective synthesis of 3,4-dimethyl-4-(3-

hydroxyphenyl)piperidine.141

Based on the synthesis described by Werner et al.141 with shown yields achieved in this project.

Reagents and conditions: (a) i) n-BuLi, THF, -75°C, 1 h; ii) 1,3-dimethylpiperid-4-one, -75°C, 94%;

(b) EtO2CCl, EtOAc, 24 h, 79%; (c) decalin, 24 h, reflux, 99%; (d) n-BuLi, Me2SO4, THF, 1 h, -50°C,

77%; (e) NaBH4, MeOH, 0°C, 71%; (f) NaOH, PhOCOCl, toluene, 2 h, reflux, 74%; (g) HBr, AcOH,

18 h, reflux, 86%.
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Scheme 3-8: Comparison of synthetic routes to produce DMHPP 146.

The longer synthetic route developed by Furkert et al.144 describes enantiomeric selectivity in

favour of the (R)-isomer of 157. However, this result could not be replicated in this study. In

the absence of chiral selectivity, the shorter route developed by Werner et al.141 to synthesise

161 was preferred. Both methods incorporate the same final four steps to produce 146.

1-Bromo-3-iso-propoxybenzene was stirred with n-BuLi, converting it to the

more reactive aryllithium, to which dimethylpiperid-4-one was added, resulting

in addition of the phenol into the ketone. This produced a mixture of all four

stereoisomers of the tertiary alcohol 159 in high yield. Ethylchloroformate was

coupled to the alcohol to give the carbonate ester 160. Heating 160 to 195°C in

decalin resulted in thermal elimination of ethanol and carbon dioxide, leaving

the unsaturated 1,2,3,6-tetrahydropyridine 161 and trace amounts of 159.

At this stage the enantiomers of 161 were separated by HPLC using the same

method developed to purify the enantiomers of 157. As expected, 161a and

161b were easily separated using this method. Following separation, the

remaining chemistry was carried out on both enantiomers separately and in

parallel, using the same conditions.

Deprotonation of the 6-position of 161 by n-BuLi and 4-position methylation by

dimethyl sulfide yielded chirally-pure 162a and 162b in separate reactions. The

presence of the chiral 3-methyl group resulted in exclusively trans-methylation

of the 4-position. A stoichiometric amount of dimethyl sulfide was used to

avoid previously reported amine quaternisation.141 Due to initial difficulties in

sourcing dimethyl sulfide, methyl iodide was also investigated as a methylating

agent in this reaction. However, this approach produced only small quantities
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of product, with mostly unreacted starting material and a mixture of

unidentified by-product recovered. A similar result had also been reported

when using methyl iodide or methyl bromide as methylating agents.141

The unsaturated bond of the 1,2,3,4-tetrahydropyridine ring was reduced by

sodium borohydride to produce 163. Displacement of the N-methyl group by

phenylchloroformate (164) and subsequent removal of both the N- and O-

substituents by hydrogen bromide in acetic acid completed the syntheses of

146a and 146b.

3.5 First generation non-fluorescent congeners

Following the successful synthesis of the DMHPP orthostere, a series of single

amino acid congeners bound to DMHPP by a N-propanamide moiety were

synthesised, and their MOR binding affinity determined over two phases

(Figure 3-12). An initial set of glycine congeners using both the 3R,4R-isomer

146a and the 3S,4S-isomer 146b were synthesised and tested. This was carried

out to both confirm 146a as the higher MOR affinity isomer, and to substantiate

the reported loss of MOR binding affinity when the benzyl group is removed

from alvimopan (9).139 The second set of congeners were exclusively

synthesised from 146a, with various amino acids substituted onto the N-

propanamide. This set included several of the congeners synthesised and

tested by Le Bourdonnec et al.139 and some previously untested structures.
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Figure 3-12: Structures of the tested single amino acid congener sets.

The first set of tested congeners included both the 3R,4R-orthostere 146a and its 3S,4S-isomer

146b. For each orthostere structure a glycine acid, glycine methyl ester and unsubstituted N-

propionic acid congener were tested. In the second set, a series of different amino acid

congeners bound to 146a were tested as both the methyl ester and acid forms.

3.5.1 Synthesis of enantiomeric DMHPP congeners

The synthesis shown in Scheme 3-9 follows a route similar to the one proposed

by Zimmerman et al.110 in their paper describing the discovery of alvimopan (9).

A propanoate moiety was introduced to the piperidine amine by Michael

addition of 146a to ethyl acrylate. This ethyl ester (167a) was hydrolysed under

acidic conditions to produce the acid 165a. Coupling to glycine methyl ester

using the coupling reagent (2-(1H-benzotriazol-1-yl)-1,1,3,3-

tetramethyluronium hexafluorophosphate (HBTU) with hydroxybenzotriazole

(HOBt) and DIPEA, produced 166a in a surprisingly low yield. The purity of the

base used in the reaction was questionable, so the reaction was repeated with

fresh DIPEA. This change did not result in an improved yield, but sufficient

material had been produced for testing and for further ester hydrolysis to give

the free acid 136a. Synthesis of the 3S,4S congeners was carried out using the

same method, as shown in Scheme 3-9.
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Scheme 3-9: Synthesis of non-fluorescent glycine DMHPP congeners.

Reagents and conditions: (a) ethyl acrylate, DMF, 20 h, 50°C, 84%; (b) 4M HCl, dioxane, 2 h,

reflux, 99%; (c) glycine-OMe.HCl, HBTU, HOBt, DIPEA, THF, 24 h, 16%.

3.5.2 MOR binding affinities of enantiomeric DMHPP congeners

Figure 3-13: The structures of the oripavine-derived fluorescent ligands used in this study,

synthesised and characterised by Schembri et al.57

These fluorescent MOR ligands were used as labelled competitor ligands in competition

binding studies to determine the MOR binding affinities of unlabelled compounds. The Sulfo-

Cy5 fluorescent ligand 51 was most appropriate to be used in the competition binding studies

measured by automated confocal imaging (described in 3.5.2), due to its low levels of non-

specific binding.57 The BODIPY 630/650-X fluorescent ligand 50 was found to be better suited

for the TR-FRET competition binding studies due to its higher MOR binding affinity (described

in 3.5.4).
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The MOR binding affinities of the first set of congeners was determined using

automated confocal microscopy in a competition binding assay against the

sulfo-Cy5-labelled oripavine derivative 51 (synthesised and characterised by

Schembri et al.57). The results were plotted as competition binding curves

(Figure 3-14) from which pKi values were determined.

Figure 3-14: Competition binding assay for enantiomeric DMHPP congeners.

MOR-expressing HEK293 cells were incubated with 50 nM of the fluorescent ligand 51

(synthesised by Schembri et al.57) and increasing concentrations of each of the enantiomeric

congeners described in Figure 3-15. Data points are the mean of 3 or 4 separate experiments

(mean ± SEM), each carried out in duplicate.
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Figure 3-15: MOR binding affinities of enantiomeric DMHPP congeners.

pKi values at MOR were calculated from experimental IC50 values using the Cheng-Prusoff

equation.122 Experimental IC50 values were determined by competitive displacement of the

fluorescent ligand 51 (synthesised by Schembri et al.57) in MOR-expressing HEK293 cells. Values

are the mean of 3 or 4 separate experiments (mean ± SEM), each carried out in duplicate.

All congeners reduced binding to non-specific binding levels. Competition

binding experiments indicated significant differences within the range of

affinities (one-way ANOVA, P = 0.004) and between the Gly-OMe congeners

166a and 166b and the remaining acidic congeners (P < 0.05, post-hoc Tukey’s

multiple comparisons test). Significant differences in MOR binding affinity were

not found between any of enantiomeric pairs, with only minor differences in

pKi exhibited.

3.5.3 Synthesis of further single amino acid congeners

In the second set of single amino acid congeners, the composition of the amino

acid coupled to the propanamide of the 3R,4R-isomer 165a was altered with a

selection of different amino acids (Scheme 3-10). A previous study by Le

Bourdonnec et al.139 had tested a limited selection of congeners sharing the

Compound MOR pKi ± SEM n

Naloxone (6) 8.70 ± 0.15 4

165a - (R,R)-OH 6.28 ± 0.20 3

165b - (S,S)-OH 6.55 ± 0.31 3

166a - (R,R)-Gly-OMe 7.40 ± 0.17 3

166b - (S,S)-Gly-OMe 7.04 ± 0.16 3

136a - (R,R)-Gly-OH 6.68 ± 0.17 3

136b - (S,S)-Gly-OH 6.48 ± 0.23 3
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structure 136 (Figure 3-10). Some of these described compounds were

synthesised, along with a selection of other amino acid congeners.

Scheme 3-10: Synthesis of single amino acid DMHPP congeners.

Reagents and conditions: (a) ethyl acrylate, DMF, 50°C, 84%; (b) 4M HCl, dioxane, reflux, 99%;

(c) amino acid alkyl ester hydrochloride, HBTU, HOBt, DIPEA, THF, 12-17%.

The method used to synthesise these congeners was unaltered from the

method described for the first set of single amino acid congeners (3.5.2) and

again resulted in low reaction yields. However, sufficient material had been

produced for testing (166a,c-i) and for further ester hydrolysis to give the free

acids (136a,c-i).

3.5.4 MOR binding affinity of single amino acid congeners

Given the large number of compounds, the higher throughput TR-FRET-based

method of competition binding assay against the BODIPY 630/650-labelled

oripavine derivative 50 (synthesised and characterised by Schembri et al.57),

was used to determine the MOR binding affinities of the second set of single

amino acid congeners. The results were plotted as competition binding curves
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(Figure 3-16 and Figure 3-17), from which pKi values were determined for

compounds which reduced binding to non-specific levels (Table 3-1).

Percentage inhibition at the highest tested concentration (10 µM) is given for

compounds which did not produce full competition binding curves.

CHA – cyclohexylalanine, HoPhe - homophenylalanine

Figure 3-16: Competition binding assay results for single amino acid DMHPP congeners.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 50 (synthesised by Schembri et al.57) and increasing concentrations

of each of the amido ester congeners described in Scheme 3-10. Data points are the mean of

3 or 4 separate experiments (mean ± SEM), each carried out in duplicate.
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CHA – cyclohexylalanine, HoPhe - homophenylalanine

Figure 3-17: Competition binding assay results for single amino acid DMHPP congeners.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 50 (synthesised by Schembri et al.57) and increasing concentrations of

each of the amido acid congeners described in Scheme 3-10. Data points are the mean of 3 or

4 separate experiments (mean ± SEM), each carried out in duplicate.

Amongst the methyl ester compounds that displayed full inhibition of

fluorescent ligand 50, a significant range of pKi values were observed (one-way

ANOVA, P = 0.001). 166e and 166h were found to possess significantly higher

MOR binding affinities than 166d and 166g (P < 0.05, post-hoc Tukey’s multiple

comparisons test). Fewer acidic congeners were able to produce full

competition binding curves, but of those that did, 136e showed significantly
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higher MOR binding affinity than 136g (P < 0.05, post-hoc Tukey’s multiple

comparisons test).

Compound

MOR pKi ± SEM or % inh.

at 10 µM (lit. valuea) n Compound

MOR pKi ± SEM or

% inh. at 10 µM n

136a Gly 28% (20%) 4 166a Gly 59% 4

136c Ala 60% 3 166c Ala 82% 3

136d Val 40% 3 166d Val 6.79 ± 0.17 3

136e Phe 7.07 ± 0.13 (7.44) 4 166e Phe 7.39 ± 0.07 4

136f CHA 6.67 ± 0.17 (7.70) 3 166f CHA 7.32 ± 0.14 3

136g HoPhe 6.34 ± 0.10 (7.24) 3 166g HoPhe 6.91 ± 0.12 3

136h Tyr 78% 3 166h Tyr 7.53 ± 0.14 3

136i Lys 60% (45%) 3 166i Lys 73% 3

CHA – cyclohexylalanine, HoPhe - homophenylalanine

Table 3-1: MOR binding affinities of single amino acid DMHPP congeners.

pKi values at MOR were calculated from experimental IC50 values using the Cheng-Prusoff

equation.122 Experimental IC50 values were determined by competitive displacement of the

fluorescent ligand 50 (synthesised by Schembri et al.57) in Lumi4-Tb-labelled SNAP-MOR-

expressing HEK293 cell membranes. Where a complete dose-response curve could not be

established, percentage inhibition of the fluorescent ligand 50 by unlabelled congener at 10

µM is given. Values are the mean of 3 or 4 separate experiments (mean ± SEM), each carried

out in duplicate.

a – Reported pKi values by Le Bourdonnec et al.139 measured by competitive displacement of

[3H]-diprenorphine from MOR-expressing CHO cells.

Based on these results, phenylalanine was identified as the optimal amino acid

to occupy the first position of a DMHPP-based fluorescent ligand linker. The

higher MOR binding affinities displayed by the methyl ester congeners,

compared to the corresponding acids, suggested that this was a suitable

position for linker elaboration.
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3.6 Second generation non-fluorescent congeners

Compound R

170a Gly H

170b Ala CH3

170c Val CH(CH3)2

170d Ser CH2OH

170e Asn CH2CONH2

170f Asp CH2COOH

170g Lys (CH2)4NH2

170h Arg (CH2)3NHC(NH2)NH

Figure 3-18: DMHPP-containing fluorescent ligand and non-fluorescent congener design.

Left: General formula for the planned DMHPP-containing fluorescent ligands. The peptidic

linker region would contain a phenylalanine moiety at the first position based on previous

pharmacological testing. The second position would be occupied by one of the amino acids

shown in the table. The third position was planned to be a 1,2,3-triazole with a fluorophore

attached via the 4-position. Right: To determine the optimal amino acid composition at the

second position, a series of non-fluorescent congeners were synthesised with each of the

amino acids shown in the table. In these congeners, a phenylalanine moiety was substituted

into the third position as a bioisostere of the 1,2,3-triazole.

It was decided that the composition of an amino acid at the second position

should be explored, but, unlike the single amino acid congeners (136), there

was no existing literature data for compounds of this kind with two or more

amino acids. A range of amino acids representative of all amino acid types were

selected to be used at the second position in this set of congeners (Figure 3-

18). It was planned that a fluorophore could be attached to the linker via an
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azide-alkyne cycloaddition between the alkyne of a modified fluorophore and

an azidoalanine amino acid (Scheme 3-1). Rather than using the more

expensive azidoalanine in the non-fluorescent congeners, a phenylalanine was

incorporated at the third position as a bioisostere of the 1,2,3-triazole which

results from this click reaction. Eight compounds with the final structures 170

shown in Figure 3-18 were synthesised and their MOR binding affinities

determined to identify the optimal composition of the linker.

3.6.1 Synthesis of tripeptide congeners

The longer tripeptide linkers were assembled by solid phase peptide synthesis

prior to coupling to 165a. This resulted in a much faster synthetic route to

produce the tripeptide congeners, which could be carried out in parallel

reactions. Solid phase synthesis proceeded as shown in Scheme 3-11 using a

rink amide resin. The initial (C-terminal) Fmoc-protected phenylalanine was

coupled to the resin amine using an excess of amino acid, HCTU and DIPEA in

DMF. The resin was washed with DMF, followed by Fmoc deprotection with a

20% solution of piperidine in DMF. The resin was washed again in DMF and the

coupling and deprotection steps were repeated twice more with the

appropriate amino acids in order to give the final products (176). After each

coupling step (before deprotection), a 3:2 mixture of acetic anhydride/pyridine

was added to the resin to “cap” (acetylate) any unreacted amino groups. Once

the tripeptides (176) were assembled and Fmoc-deprotected, they were

cleaved from the resin using an 18:1:1 mixture of TFA/TIPS/water. Any amino

acid side chain protective groups were also removed by the cleavage mixture.

It was planned that the purified tripeptide would then be coupled to 165a to

give the final tripeptide congeners.
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Scheme 3-11: Proposed solid phase synthesis of the linker tripeptides and coupling to the

DMHPP orthostere.

Solid phase peptide synthesis was carried out using a rink amide resin. Three cycles of Fmoc-

amino acid coupling followed by Fmoc deprotection were carried out. Cleavage from the resin

and amino acid side chain deprotection was carried out simultaneously. The final compounds

170a-h were proposed to be synthesised by coupling to 165a, but this method yielded no

identifiable products. Reagents and conditions: (a) Fmoc-phenylalanine, HCTU, DIPEA, DMF, rt;

(b) Pyridine, DMF, rt; (c) Fmoc-amino acid, HCTU, DIPEA, DMF, rt; (d) TFA, TIPS, water, rt; (e)

165a, HCTU, DIPEA, DMF.

Use of newer rink amide resin was found to improve the yield of solid-phase

tripeptide synthesis, suggesting degradation in some of the older samples used.

The cleavage products (177a-h) were typically mixed with large quantities of

unidentified by-products, which may have been a mixture of resin fragments

and acetyl-capped incomplete peptides. The desired products were easily

separable from this mixture by column chromatography. Despite having

isolated 10-20 mg of each tripeptide, a coupling reaction with 165a produced

no identifiable products (170). A small amount of uncoupled tripeptide was

recovered but the starting 165a could not be identified in the reaction mixture.
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It was proposed that 165a could be forming esters with the phenolic hydroxyl

group (Figure 3-19), so several protecting groups for the phenol were

investigated to avoid this potential esterification. Initially a tert-

butyldimethylsilyl (TBS) group was coupled to the phenol using TBS chloride

with an imidazole catalyst (Scheme 3-12). TBS is known to be stable under basic

conditions and easily cleaved by acid, so ester hydrolysis of 179 was carried out

using 1M NaOH. However, the phenol is a better leaving group than an aliphatic

alcohol, making the TBS-phenol-ether more susceptible to basic cleavage and,

as a result, this reaction yielded only 165a, without any remaining TBS-

protected product.

Figure 3-19: The proposed structure of a di-DMHPP ester.

The low yields observed in the peptide coupling reactions described in 3.5.1, 3.5.3 and 3.6.1

between the N-propionic acid DMHPP 165a and an amino ester or tripeptide were proposed

to have resulted from esterification between the N-substituent and the phenolic hydroxyl

group, giving the structure shown (178). Further coupling between 178 and additional units of

165a or an amino acid amine could also have occurred.

N

OH

O

O

(a)

N

O

O

O

(b)

Si

N

OH

O

OH

167a 179 165a

Scheme 3-12: TBS-protection of the phenol of 167a followed by an unsuccessful ester

hydrolysis.

The phenolic hydroxyl group of 167a was successfully protected with a tert-butyldimethylsilyl

(TBS) group, but basic hydrolysis of the ethyl ester of 179 also removed the TBS group. Reagents

and conditions: (a) TBS chloride, imidazole, DMF, rt; (b) 1M NaOH, EtOH, H2O, rt.



110

The phenol was instead benzyl-protected using benzyl bromide with potassium

carbonate (Scheme 3-13). It was found that equal amounts of benzyl bromide

and 167a were necessary in order to avoid benzylation of the tertiary amine

(181). This stoichiometry resulted in a 70% yield with incomplete consumption

of both reagents, but heating the reaction promoted quaternisation of the

amine (181). Instead, the reaction was stopped after stirring overnight at room

temperature and the product (180) and unreacted starting material (167a)

were recovered. Ester hydrolysis of 180 was successfully carried out under

acidic conditions.

Scheme 3-13: Benzyl-protection of the phenol of 167a followed by ester hydrolysis.

The phenolic hydroxyl group of 167a was successfully benzyl-protected with a stoichiometric

amount of benzyl bromide at room temperature to avoid producing the dibenzyl quaternised

species 181. Acidic hydrolysis of the ethyl ester of 180 produced the acid 182. Reagents and

conditions: (a) BnBr, K2CO3, DMF, rt; (b) 2M HCl, dioxane, H2O, rt.

Coupling of 182 to the tripeptide was again unsuccessful, with disappearance

of 182 and limited recovery of unreacted tripeptide. Alternative reaction

conditions were trialled for this coupling reaction, replacing HCTU with

tetramethylfluoroformamidinium hexafluorophosphate (TFFH) to generate an

in-situ acid fluoride to couple to the tripeptide. Once again, this reaction was

unsuccessful, but a noteworthy outcome was the identification by LCMS of a

common by-product of both the HCTU and TFFH reactions. The by-product had
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a molecular weight of 394, a number which could not be fitted to any LCMS

adduct of the starting materials or desired product. 1H NMR analysis of the

purified by-product revealed a profile typical of a DMHPP-based compound and

it was determined that the structure was likely to be the guanidinylated

DMHPP 183 (Figure 3-20).

Uronium-based coupling reagents are known to “cap” peptide amines, forming

a guanidinum and preventing further amide formation. It is therefore plausible

that this could occur on the secondary amine of this piperidine ring. Formation

of 183 is surprising though, as it would have to result from a reverse Michael

reaction, followed by attack by the piperidine on the HCTU uronium. However,

the matching molecular weight by LCMS and 1H NMR evidence (Figure 3-20)

strongly suggest that this was the case.

Since both HCTU and TFFH contain the uronium group, it was decided that

substitution of these coupling reagents for the phosphonium-based PyBOP

would illuminate the issue. The coupling reaction between 165a and the

asparagine-containing tripeptide (177e) with PyBOP successfully produced the

product 170e, albeit in a low yield (15%). 146a was identified in the reaction

mixture, confirming that a reverse Michael reaction had occurred under these

basic coupling conditions. It seems that the α-proton of the N-propanoate was

more acidic than anticipated and was removed by the DIPEA under these

conditions, resulting in the reverse Michael reaction.
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Figure 3-20: 1H NMR of the guanidinylated DMHPP 183.

Above: The structure is clearly identifiable as containing the DMHPP structure from features

such as the 3-CH3 3H doublet at 0.63 ppm, the 4-CH3 3H singlet at 1.23 ppm, the characteristic

piperidine peaks between 1.90 and 2.35 ppm, the benzyl CH2 peak at 5.08 ppm, and the

arrangement of aromatic peaks. The noteworthy additions to this spectra are the two large

singlet peaks at 2.79 and 2.97 ppm. The 1H NMR predictions generated by the MestReNova and

ChemDraw software both -predicted two large singlet peaks for the guanidinium methyl

groups, but differed dramatically in their predicted locations, likely due to interpretation of the

permanent charge in this region. Below: The 1H NMR of HCTU also showed two large singlet

peaks in a similar region (3.03 and 3.39 ppm, the latter overlaps with a water peak) which adds

further evidence to the formation of this species.
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The PyBOP-coupled reaction could have been further optimised to improve the

yield, however an alternative solution was pursued in which acrylic acid was

coupled to the resin-bound peptide. Michael addition of 146a to the cleaved

acrylamide 185 yielded the products 170a-h (Scheme 3-14), without the need

for phenol hydroxyl protection.

Scheme 3-14: Alternative route to synthesis of DMHPP tripeptide congeners.

Reagents and conditions: (a) Acrylic acid, HCTU, DIPEA, DMF, rt; (b) TFA, TIPS, water, rt; (c)

146a, NMP, 85°C.

3.6.2 MOR binding affinity of tripeptide congeners

The MOR binding affinities of the non-fluorescent congeners were then

assessed by TR-FRET in a competition binding assay against the fluorescent

compound 50. The results were plotted as competition binding curves (Figure

3-21), from which pKi values were determined (Table 3-2). All congeners

reduced binding to non-specific levels.
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Figure 3-21: Competition binding assay results for tripeptide DMHPP congeners.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 50 (synthesised by Schembri et al.57) and increasing concentrations

of each of the tripeptide congeners described in Figure 3-18. Data points are the mean of 3 or

4 separate experiments (mean ± SEM), each carried out in duplicate.

The competition binding assay results for the tripeptide congeners produced a

significant range of pKi values (one-way ANOVA, P = 0.009), although only 170b

exhibited a significantly higher pKi value than 170d, 170e and 170f (P < 0.05,

post-hoc Tukey’s multiple comparisons test), with no other significant

differences found. Comparison of these results with the Phe-OH congener 136e

showed no significant change in binding affinity from 136e (P > 0.05, post-hoc

Dunnett’s multiple comparisons test). However, all of these congeners

produced significantly lower binding affinities than the Phe-OMe congener
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166e (P < 0.05, post-hoc Dunnett’s multiple comparisons test) except for 170a

and 170b.

Compound MOR pKi ± SEM n

Naloxone (6) 7.69 ± 0.11 4

170a Phe-Gly-Phe 7.03 ± 0.09 3

170b Phe-Ala-Phe 7.11 ± 0.14 3

170c Phe-Val-Phe 6.86 ± 0.12 3

170d Phe-Ser-Phe 6.68 ± 0.12 3

170e Phe-Asn-Phe 6.74 ± 0.16 3

170f Phe-Asp-Phe 6.72 ± 0.13 3

170g Phe-Lys-Phe 6.78 ± 0.17 3

170h Phe-Arg-Phe 6.82 ± 0.11 3

Table 3-2: MOR binding affinities of tripeptide DMHPP congeners.

pKi values at MOR were calculated from experimental IC50 values using the Cheng-Prusoff

equation.122 Experimental IC50 values were determined by competitive displacement of the

fluorescent ligand 50 (synthesised by Schembri et al.57) in Lumi4-Tb-labelled SNAP-MOR-

expressing HEK293 cell membranes. Values are the mean of 3 or 4 separate experiments (mean

± SEM), each carried out in duplicate.

The absence of improvement in MOR binding affinity shown by these tripeptide

congeners indicated that the introduction of further amino acids to the linker

was unlikely to improve binding affinity. Therefore, the decision was made for

the project to proceed to synthesis of the fluorescent ligands.

3.7 Fluorescent 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine-based

compounds

Since amino acid composition at the second position was shown not to

significantly influence MOR binding affinity, it was decided that a glycine

moiety would be used at this position, giving a fluorescent ligand of the design

189 shown in Scheme 3-15. It was planned that an azidoalanine would occupy

the third position of the tripeptide linker, and once bound to the DMHPP
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orthostere, would undergo a click reaction with an alkyne-bound BODIPY

630/650 (190) to produce the 1,2,3-triazole-linked fluorescent product 189.

Scheme 3-15: Synthesis of the click-BODIPY 630/650 DMHPP fluorescent ligand.

The proposed synthetic scheme for synthesis of the fluorescent compound 189. Reagents and

conditions: (a) TFA, TIPS, H2O, rt; (b) 146a, NMP, 85°C; (c) 190, H2O, rt.

3.7.1 Synthesis of fluorescent β-naltrexamine compounds 

Solid-phase synthesis of the azido-containing tripeptide (186) was unchanged

from the method described in Scheme 3-11. Following TFA cleavage of the

peptide from the resin, the purified peptide 187 was reacted with 146a in NMP

at 85°C. Formation of a new product was observed by TLC, however, LCMS

analysis revealed that it was not the desired product (188). The limited amount

of material recovered made it difficult to definitively determine what occurred

in the reaction, but 1H NMR and LCMS evidence suggested that the dipeptide

191 had been produced, with loss of the azidoalanine.

A proposed mechanism for the formation of this product is shown in Scheme

3-16. The excess of 146a in this highly concentrated reaction would create a

basic environment which could have resulted in deprotonation of the α-carbon 

of azidoalanine. Literature examples describe β-elimination of azidoalanine 

under basic, high temperature conditions to produce dehydroalanine.145, 146
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Tautomerism of the dehydroalanine from the alkene to the imine would then

provide a site for nucleophilic attack by water molecules present in the

hygroscopic solvent.147, 148 Further research is required in order to confirm the

presence of both the dipeptide congener with a terminal amide (191) and 2-

oxopropanamide following this reaction.

Scheme 3-16: The proposed reaction and mechanism for the β-elimination of azidoalanine 

and subsequent imine hydrolysis.

(a) The piperidine amine of 146a deprotonates the α-carbon of azidoalanine, resulting in 

elimination of an azide ion and forming dehydroalanine; (b) Tautomerization of dehydroalanine

converts it to the imine; (c) Hydrolysis of the imine results in a new primary amide and the loss

of 2-oxopropanamide.

This reaction may have been possible at a lower temperature and reduced

concentration of 146a without loss of the azidoalanine, but this would require

the reaction to be left for several weeks. Even at 85°C and in a highly

concentrated solution, these Michael reactions typically took 2-3 days to reach
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completion. At this stage of the project there was insufficient time remaining

to experiment with different conditions to form the azido product 188, so a

different approach was decided upon.

Scheme 3-17: Synthesis of fluorescent DMHPP compounds from 170g.

Reagents and conditions: (a) BODIPY 630/650-X-OSu or sulfo-Cy5-OSu, DIPEA, DMF, rt, 40-53%;

(b) BODIPY 630/650-OH, PyBOP, DIPEA, DMF, rt, 35%.

The Phe-Lys-Phe congener 170g had been produced in sufficient quantity that

it could be used to produce fluorescent ligands by coupling a fluorophore

carboxylic acid to the lysine amine (Scheme 3-17). This approach benefitted

from both speed of synthesis and that a greater variety of fluorophores could

now be attached, as an alkynyl group on the fluorophore was no longer

necessary for attachment. Similar to the fluorescent compounds described in

Chapter 2, three fluorophores were coupled to 170g: BODIPY 630/650-X,

BODIPY 630/650 and sulfo-Cy5.

Due to the apparent acidity of the propanamide α-proton, the use of base in 

these fluorophore couplings was problematic. BODIPY 630/650-X and sulfo-Cy5
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were both pre-formed NHS esters, which theoretically did not require base to

react. However, the 1H NMR of 170g showed that it was a di-formic acid salt,

due to formic acid used during HPLC purification. It was decided that these

reactions would be carried out in the absence of base, and, should the reaction

not proceed, dilute base could be added slowly until the reaction was

complete. This caution was unnecessary in practice, as the reaction proceeded

without base to produce the products 192 and 194. Coupling to the shorter

BODIPY 630/650 compound differed, as it was a free acid rather than an NHS

ester. In this reaction, the coupling reagent PyBOP and BODIPY 630/650 were

mixed in DMF with one equivalent of DIPEA to form the active ester before the

addition of 170g. It was hoped that the base would be consumed during this

first step, with none remaining to deprotonate the propanamide. These

conditions successfully produced the fluorescent compound 193.

3.7.2 MOR binding affinity of fluorescent β-naltrexamine compounds 

MOR binding affinities (pKD) of the fluorescent compounds 192-194 were

determined in saturation binding experiments (Figure 3-22 and Table 3-3). The

specific binding curves of the BODIPY 630/650-containing ligands (192 and 193)

were both saturated, displaying similar pKD values. However, the specific

binding curve for compound 194 at this concentration did not appear to reach

saturation, meaning that a reliable pKD value could not be determined. This

suggests a significantly lower MOR binding affinity for 194 than 192 and 193.
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Figure 3-22: Saturation binding assay results for fluorescent DMHPP compounds.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with

increasing concentrations of the fluorescent compounds 192-194. Non-specific binding (blue)

was determined in the presence of 10 µM naloxone. Total binding (red) was determined in the

absence of naloxone. Specific binding (black) was calculated from total binding minus non-

specific binding. Data points are the mean of a single experiment (mean ± range) carried out in

duplicate which are representative of four separate experiments from which a value for KD was

determined.

Following this, compound 192 was selected for further competition binding

assays against naloxone (6) and naltrexone (7) to confirm it was specifically

labelling the MOR (Figure 3-23).
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Compound pKD ± SEM n

192 - BODIPY 630/650-X 8.47 ± 0.04 3

193 - BODIPY 630/650 8.18 ± 0.09 3

194 - sulfo-Cy5 N/Aa 3

a – could not determine KD within the tested concentration range

Table 3-3: MOR binding affinities of fluorescent DMHPP ligands.

pKD values were determined for the specific binding of each fluorescent ligand from the total

binding and non-specific binding (+ 10 µM naloxone) curves generated in Lumi4-Tb-labelled

SNAP-MOR-expressing HEK293 cell membranes. pKD values are the mean of a 3-4 experiments

(mean ± SEM), each carried out in duplicate.

Compound Obs. MOR pKi ± SEM Lit. MOR pKi range

Naloxone (6) 8.20 ± 0.15 7.3-9.0a

Naltrexone (7) 8.18 ± 0.14 8.1-9.7b

a – refs57, 108-112 b – refs57, 99, 108-110, 113, 114

Figure 3-23: Competition binding assay results for naloxone and naltrexone against the

fluorescent ligand 192.

Lumi4-Tb-labelled SNAP-MOR-expressing HEK293 cell membranes were incubated with 2 nM

of the fluorescent ligand 192 and varying concentrations of naloxone (6) and naltrexone (7).

Data points and the observed pKi values are the mean of 4 separate experiments (mean ± SEM),

each carried out in triplicate. Values for pKi were determined from the experimental IC50 and

the fluorescent ligand KD and concentration using the Cheng-Prusoff equation.122 Ranges of

reported pKi values for these compounds at MOR are included.
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3.8 Discussion

Three fluorescent peptide-linked MOR ligands were successfully synthesised

and pharmacologically evaluated for binding affinity at MOR using the DMHPP

orthostere.

The synthesis of the DMHPP structure itself and its N-substituted congeners

encountered several challenges. The initial synthetic route pursued to

synthesise 146a was carried out in accordance with the method described by

Furkert et al.,144 but did not result in the described enantioselectivity of

products. The observed ratio of enantiomers 157a and 157b, which were

quantified following chiral purification, suggests a synthetic bias in favour of

the desired 3R enantiomer 154a during methylation, but not the near-

complete enantioselectivity previously reported. Without the benefit of

enantioselectivity, the non-selective synthetic route described by Werner et

al.141 was preferred, and was completed without complication to produce 146a

and 146b.

The discovery that the N-propanoic acid congener 165a undergoes both a

reverse Michael reaction, and subsequent guanidinylation of the piperidine

amine, was unexpected. This is only the second reported instance of amide

couplings to 165a, the first being Le Bourdonnec et al.139 in 2008, in which 165a

was coupled to a Wang resin-bound amino acid with no reported synthetic

issues (Scheme 3-18). However, the absence of reported yields for these

reactions make them difficult to compare.139 In the same study, it was reported

that N-substituted amino acids (195) could not be coupled to 165a using, “a

wide range of coupling reagents and reaction conditions”, but a similar

approach to the one described in Scheme 3-14 to form acrylamides (185)

before carrying out a Michael addition to 146a was successful (Scheme 3-

18).139 Without further development of the findings of Le Bourdonnec et al.,139

it is not possible to determine if similar issues were encountered or resolved.
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Scheme 3-18: Synthetic routes used by Le Bourdonnec et al.139 to synthesis single amino acid

DMHPP congeners.

Above: Synthesis of congeners of the formula 136 were reported by Le Bourdonnec et al.139 to

have been successfully synthesised by coupling 165a to Wang resin-bound amino acids. Below:

Le Bourdonnec et al.139 reported that N-substituted resin-bound amino acids (195) could not

be coupled to 165a by the same method. Instead the N-substituted resin-bound amino acids

(195) were coupled to acryloyl chloride and the subsequent acrylamides (196) were reacted

with 146a to give 197 after resin cleavage.

Only minor differences in binding affinity were observed between the tested

3R,4R and 3S,4S enantiomers of 136a-b, 165a-b and 166a-b, but differences of

this magnitude can be found in other DMHPP-based compounds, with 3R,4R

enantiomers typically displaying a slightly higher MOR binding affinity than the

respective 3S,4S enantiomer.127 The enantiomers of both of the acidic

compounds 136 and 165 displayed similar MOR binding affinities, suggesting

that the glycine moiety does not play a crucial role in MOR binding. These acidic

congeners displayed lower MOR binding affinities than the corresponding

methyl esters, indicating that the free acid, while beneficial for imparting

important pharmacokinetic properties on alvimopan (9) as a clinical drug, may

not be beneficial for MOR binding.

A loss in MOR binding affinity was observed for all methyl ester congeners (166)

when hydrolysed to their respective acids (136), but the magnitude of MOR
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affinity attenuation differed between congeners. Congeners containing an

aromatic or cyclohexyl amino acid side chain displayed the highest MOR

binding affinities, although some of the calculated pKi values were lower than

previously reported, but these difference may be due to the different methods

used to measure MOR binding affinity (see Table 3-1).139 Phe was identified as

the optimal amino acid to occupy the first position of the linker due to the high

pKi values of both the methyl ester 166e and acid 136e, the similarity between

the observed and literature pKi values of 136e, and the high receptor subtype

selectivity reported for 136e, which is desirable, despite not being an explicit

aim of the project.139

No significant differences in MOR binding affinity were found between the

tripeptide congeners 170a-h, suggesting that no further benefit would be

gained from linker elaboration. Much like the β-naltrexamine congeners 

described in Chapter 2, it is likely that the functional groups of the second

position amino acid are too far from the shallow binding pocket of MOR to

positively influence binding affinity. These tripeptide congeners produced a

similar MOR binding affinity to the phenylalanine congener 136e, showing that

elaboration of the linker through a longer peptide chain was well tolerated,

providing a suitable site for linker and fluorophore attachment.

The BODIPY 630/650-containing compounds (192 and 193) exhibited similar

MOR binding affinities to the BODIPY 630/650 compound 50 described by

Schembri et al.57 The total binding curve for the sulfo-Cy5-containing

compound 194 did not reach saturation in the tested range, so a reliable pKD

value could not be determined. To confirm it was specifically labelling the MOR,

192 was selected for further competition binding assays against naloxone (6)

and naltrexone (7). The observed pKi values for naloxone (6) and naltrexone (7)

were within the range reported in the literature (see Figure 3-23).
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4 General discussion and conclusion

A series of fluorescent ligands based on the MOR antagonists naltrexone (7)

and alvimopan (9) were successfully synthesised and evaluated for their MOR

binding affinity. Common outcomes were observed in the MOR binding

affinities of both β-naltrexamine- and DMHPP-based fluorescent ligands, and 

the corresponding non-fluorescent congeners, which are discussed below, as

well as identification of further pharmacological experimentation necessary to

better characterise these ligands. Additionally, opportunities for future

projects based on the results of this study are proposed.

4.1 General discussion

Across all tested orthostere and linker combinations, the BODIPY 630/650-

containing compounds possessed higher MOR binding affinities than the

corresponding sulfo-Cy5 compounds. Of the sulfo-Cy5-containing compounds,

only 101 exhibited saturated specific MOR binding at 500 nM, so pKD values for

104 and 194 could not be determined. The MOR binding affinity of 104 (pKD =

7.43) is similar to the single amino acid congeners (92a-h, 98g-h) (pKi = 6.93-

7.76) and the unsubstituted β-naltrexamine (72b) (pKi = 7.30). A similar trend

was found for the sulfo-Cy5 compound 51 synthesised by Schembri et al.,57

which also had a similar MOR binding affinity to its non-fluorescent congener.

The pA2 value of 51 (pA2 = 7.31 by displacement of DAMGO in MOR-expressing

CHO cells) was similar to the pKi value of the unsubstituted precursor (pKi =

6.97 by displacement of [3H]-diprenorphine in MOR-expressing CHO cell

membranes).

In contrast, BODIPY 630/650 attachment to these congeners was beneficial for

MOR binding, resulting in significant increases in MOR binding compared to

their non-fluorescent congeners. In silico modelling of other BODIPY 630/650-

containing fluorescent ligands has predicted that the BODIPY 630/650
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fluorophore can become embedded in the cellular membrane, benefitting

ligand binding through hydrophobic interactions.50 This could explain the

difference in MOR binding affinity observed between BODIPY 630/650- and

sulfo-Cy5-containing compounds in this study, as the hydrophilic sulfo-Cy5

fluorophore would not gain the same benefit from these hydrophobic

interactions.

4.2 Further in vitro characterisation

Due to significant interruption to laboratory access during the 2020/21 COVID-

19 pandemic, there were aspects of this project which could not be completed

in full. Further pharmacological investigation of the fluorescent ligands

synthesised in this project is required to better understand their properties and

applications. Given the promising results displayed by these ligands in the

assays undertaken so far, it is anticipated that these subsequent assays will

soon be completed.

The non-specific binding profiles of these compounds should be established,

particularly for the BODIPY 630/650-containing ligands. The high binding

affinities of these compound must be contextualised by establishing to what

degree non-specific binding contributes to these values. The non-specific

binding values determined in the TR-FRET saturation binding assays, whilst

insightful, do not fully express the non-specific binding of the tested

compounds. The non-specific binding measured in these assays were based on

proximity and alignment with the Lumi4-Tb-tagged receptor, and non-specific

binding which occurred further away from a tagged receptor was not reflected

in the saturation binding assay results. The non-specific binding profiles of

these compounds could be determined through live cell confocal imaging, both

with and without an excess of an unlabelled orthosteric competitor.

Colocalization of the fluorescent ligands with the fluorescently labelled

receptors, and the degree of displacement of the fluorescent ligand by the
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competitor, would clarify whether non-specific binding is influential over the

obtained binding affinities.

It would also be valuable to establish the receptor subtype selectivity of the

fluorescent ligands, which could be achieved by conducting similar saturation

binding experiments to those carried out in this study. Fluorescently labelled

DOR- and KOR-expressing cell lines would be used, and the non-specific binding

curve would be established through coincubation with known DOR and KOR

antagonists in place of naloxone (6). While high receptor subtype selectivity is

not a requirement for these fluorescent ligands to be pharmacologically useful,

understanding the selectivity would give clearer guidance for how these

fluorescent ligands could be used.

This project specifically aimed to produce fluorescent antagonists for MOR.

Given the literature precedent of 6-sustituted β-naltrexamine compounds 

which have retained antagonist activity, and the conserved antagonist profile

of the DMHPP orthostere, it is likely that these synthesised fluorescent ligands

will remain antagonists of MOR. However, a functional assay will be necessary

to confirm this. Antagonism of the fluorescent compounds could be

determined by measuring the inhibition of a functional response, such as ERK

phosphorylation or cAMP production, when the fluorescent ligand is in

competition with a MOR agonist such as DAMGO. Furthermore, it could be

useful to carry out similar experiments at DOR and KOR, as some opioid ligands

are known to possess mixed functional activities at different ORs.

4.3 Future works

In addition to the characterisation of these synthesised fluorescent

compounds, this study could form the foundation for future investigations into

fluorescent opioid ligands with optimised physicochemical and receptor

binding properties. Further improvements to MOR binding affinity of the β-

naltrexamine-based compounds could be developed through modifications to

other regions of the morphinan scaffold. In particular, 14-position
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modifications provide intriguing possibilities for improvements to binding

affinity, while balancing these improvements against changes to ligand

function (Figure 2-14). As further research is carried out to better establish the

SAR of this region, the results could be used to inform better fluorescent ligand

design.

While modifications to the 6-position of β-naltrexamine (72b) did not yield

benefits to MOR binding affinity, the “message-address” concept suggests that

the 6-linker region could be investigated for receptor subtype selectivity. The

N-acetylated single amino acid β-naltrexamine congeners synthesised in this 

study could form the starting point of such an investigation, from which larger

functional groups could be introduced to refine any existing subtype selectivity.

The DMHPP-based fluorescent ligands described in this study display that this

orthostere can be fluorescently labelled to produce high affinity fluorescent

MOR ligands, but further refinement of these structures may be possible.

Fluorescent ligands of the design 189 could not be synthesised due to

decomposition of the azidoalanine precursor 187, possibly via the proposed

mechanism described in Scheme 3-16. Further investigation is required to

confirm the by-products of this reaction and to determine appropriate reaction

conditions to synthesise 189, but it would likely require a significant decrease

in reaction concentration and temperature, resulting in a far longer reaction

time. Instead, optimisation of the existing fluorescent ligands might be

preferable. It is unclear whether the terminal phenylalanine moiety, which had

been used as a bioisostere of 1,2,3-triazole, is beneficial for binding. The lack

of significant differences in MOR binding affinity between the congeners 170a-

h suggest that that modification of amino acids in the linker beyond the first

position are not influential over MOR binding affinity. Therefore, removal or

replacement of the phenylalanine, as shown in the designs 198 and 199 (Figure

4-1), may result in increased hydrophilicity and better confocal imaging

properties, without reducing MOR binding affinity.
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Figure 4-1: The planned DMHPP based ligand design of this project and proposed alternative

fluorescent ligand designs.

Fluorescent ligands of the design 189 could not be synthesised due to decomposition of the

precursor 187 under reaction conditions. 198 and 199 are proposed as alternative fluorescent

ligand designs which could maintain the binding profile of 192, while potentially increasing

hydrophilicity and improving photophysical properties.

Removal of the benzyl group from alvimopan results in a large drop in MOR

binding affinity,139 but the fluorescent ligands synthesised in this project show

that high affinity fluorescent ligands can be produced in the absence of this

benzyl group. Reintroduction of the benzyl group could lead to further gains in

binding affinity, although the study by Le Bourdonnec et al.139 demonstrates

that substitution of glycine from the structure of alvimopan with other amino

acids does not improve MOR binding affinity. However, the lysine congener

(200) possessed a similar MOR binding affinity to alvimopan (7) with greater

receptor subtype selectivity (Figure 4-2). Incorporation of 7 or 200 into

fluorescent ligands of the design 201 could produce fluorescent ligands that

possess high binding affinity and selectivity for MOR.
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Compound MOR pKi KOR pKi DOR pKi

Alvimopan (7) 9.33 7.00 7.92

200 9.30 6.24 5.82

Figure 4-2: Design for alvimopan-based fluorescent ligands containing a peptidic linker.

Le Bourdonnec et al.139 identified that replacement of the glycine moiety of alvimopan (7) with lysine

resulted in a compound (200) possessing similar MOR binding affinity to 7 but with greatly improved

receptor subtype selectivity. Investigation of fluorescent ligands of the structure 201 could produce

fluorescent compounds with high binding affinity and selectivity for MOR, where R2 = H or (CH2)4NH2.

4.4 General conclusions

This project succeeded in synthesising high affinity fluorescent ligands for the

MOR containing amino acid-based linkers. Fluorescent ligands composed of a

β-naltrexamine (72b) orthostere fluorescently labelled with a BODIPY 630/650

fluorophore via an amino acid linker, displayed sub-nanomolar binding affinity

for MOR. Additionally, the first fluorescent ligands based on the MOR

antagonist alvimopan (7) are reported, with two BODIPY 630/650-containing

fluorescent ligands displaying high MOR binding affinities.

Although improvement in MOR binding affinity through the introduction of

amino acid-based linkers was limited, these fluorescent ligands may possess

improved confocal imaging properties from increased hydrophilicity, compared

to previously reported high affinity fluorescent MOR ligands. Further
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pharmacological evaluation is required to fully assess the receptor subtype

selectivity, binding specificity, and imaging properties of these ligands.
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5. Experimental

5.1 General chemistry

Chemicals and solvents were purchased from standard commercial suppliers

without further purification. Deuterated solvents were purchased from Fisher

Scientific UK Ltd and VWR International LLC. Flash column chromatography was

performed using Fluorochem silica gel 60A 40-63u. Thin-layer chromatography

(TLC) was performed using Merck silica gel 60F 254 plates and examination was

carried out under UV light (254 nm).

Reactions were monitored by liquid chromatography-mass spectrometry

(LCMS) or TLC. Staining was carried out using potassium permanganate,

vanillin, ninhydrin and 2,4-dinitrophenylhydrazine (2,4-DNP). Unless otherwise

stated, reactions were carried out at room temperature. Organic extracts

following aqueous work up procedures were dried using MgSO4 or Na2SO4

before gravity filtration and evaporation. Evaporation of organic solvents was

done in vacuo at 40°C in a water bath.

LCMS results were collected on a Shimadzu UFLCXR HPLC system with an

Applied Biosystems MDS SCIEX API2000 electrospray ionisation mass

spectrometer. The coupled column was a Phenomenex Gemini-NX 3 µm-110 Å

C18, 50x2mm column thermostated at 40°C. The flow rate was 0.5 mL/min and

the UV detection was at 220 nm and 254 nm. The eluent used was a MeCN/H2O

mix containing 0.1% formic acid at a gradient of 1:19 to 19:1 (v/v) over 5

minutes.

High resolution mass spectrometry (HRMS) time of flight, electrospray (TOF ES

+/-) were recorded on a Waters 2795 separation module/micromass LCT

platform.

Specific rotation was measured using a Bellingham + Stanley Ltd ADP220

Polarimeter with a 1 ml sample tube with a 0.5 dm pathway length. [α]T
D was

calculated using the following equation:
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Where α = measured rotation in degrees. l = length of the pathway in

decimetres. c = concentration in g/ml. T = temperature at which the

measurement was taken (Celsius).

1H-NMR spectra were recorded on a Bruker-AV 400 at 400.13 MHz and 13C-

NMR was recorded at 101.62 MHz. Chemical shifts (δ) were recorded in ppm 

with reference to the chemical shift from the deuterated solvent. Coupling

constants (J) were recorded in Hz.

Analytical HPLC was performed using either system 1 or 2 to confirm purity.

System 1: Phenomenex Gemini reverse phase 5 µm C18 column (250 x 4.6 mm),

a flow rate of 1.00 mL/min and UV detection at 214 and 254 nm. Linear gradient

5% - 95% solvent B over 30 minutes. Solvent A: 0.1% formic acid (FA) in water;

Solvent B: 0.1% FA in MeCN.

System 2: Phenomenex Gemini reverse phase 5 µm C18 column (250 x 4.6 mm),

a flow rate of 1.00 mL/min and UV detection at 214 and 254 nm. Linear gradient

5% - 95% solvent B over 30 minutes. Solvent A: water; Solvent B: MeOH.

Semi-preparative HPLC was performed using either system 3 or 4.

System 3: Phenomenex Genimi reverse phase 5 µm C18 column (250 x 10 mm),

a flow rate of 5.00 mL/min and UV detection at 214 and 254 nm. Linear gradient

5% - 95% solvent B over 30 minutes. Solvent A: 0.1% formic acid (FA) in water;

Solvent B: 0.1% FA in MeCN.

System 4: Phenomenex Gemini reverse phase 5 µm C18 column (250 x 10 mm),

a flow rate of 5.00 mL/min and UV detection at 214 and 254 nm. Linear gradient

5% - 95% solvent B over 30 minutes. Solvent A: water; Solvent B: MeOH.

Chirally-selective HPLC (analytical and semi-preparative) was performed using

either system 5 (analytical) or 6 (semi-preparative).
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System 5: Phenomenex Lux 3 µm Cellulose-1 column (250 x 4.6 mm), a flow

rate of 1.00 mL/min and UV detection at 214 and 254 nm. Isocratic 1% solvent

B over 10 minutes. Solvent A: n-Hexane; Solvent B: EtOH.

System 6: Phenomenex Lux 5 µm Cellulose-1 column (250 x 10 mm), a flow rate

of 5.00 mL/min and UV detection at 214 and 254 nm. Isocratic 1% solvent B

over 10 minutes. Solvent A: n-Hexane; Solvent B: EtOH.

(4R,4aS,7R,7aR,12bS)-7-amino-3-(cyclopropylmethyl)-1,2,3,4,5,6,7,7a-

octahydro-4aH-4,12-methanobenzofuro[3,2-e]isoquinoline-4a,9-diol (72b)

Naltrexone (7) (100 mg, 0.29 mmol, 1.0 eq) and ammonium acetate (224 mg,

2.90 mmol, 10.0 eq) were dissolved in dry MeOH (5 ml) under N2 and stirred at

room temperature for 30 min. A solution of sodium cyanoborohydride (20 mg,

0.32 mmol, 1.2 eq) in MeOH (2 ml) was added dropwise to the reaction mixture

and stirred at room temperature for 2 hr. The reaction mixture was then

diluted with water (50 ml) and the pH adjusted to 9 using 1M NaOH. It was then

extracted with chloroform (3 x 20 ml) and the combined organic extracts were

dried over MgSO4. The solvent was evaporated in vacuo and column

chromatography (1-5% 1M NH4OH in MeOH/CH2Cl2) afforded 72b as a yellow

oil (25 mg, 25%).

[α]19
D: -131.9 (H2O, c 1.00)

1H NMR (MeOD): δ 0.09 – 0.22 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.47 –

0.60 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.82 – 0.95 (m, 1h, cyclopropyl 1-

CH), 1.34 – 1.45 (m, 2H, 8-CH2, 15-CH2), 1.49 – 1.60 (m, 2H, 7-CH2, 8-CH2), 1.79

(td, J = 12.9, 10.3 Hz, 1H, 7-CH2), 2.14 (td, J = 10.0, 3.2 Hz, 1H, 16-CH2), 2.22 (td,

J = 12.0, 4.3 Hz, 1H, 15-CH2), 2.38 (dd, J = 12.1, 5.9 Hz, 1H, N-CH2-C3H5), 2.42

(dd, J = 12.1, 6.0 Hz, 1H, N-CH2-C3H5), 2.51 (ddd, J = 12.1, 7.3, 4.4 Hz, 1H, 6-CH),

2.63 (td, J = 12.4, 6.0 Hz, 1H, 16-CH2), 263 – 2.69 (m, 1H, 10-CH2), 3.06 (d, J =
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18.4 Hz, 1H, 10-CH2), 3.10 (d, J = 5.7 Hz, 1H, 9-CH), 4.22 (d, J = 7.3 Hz, 1H, 5-CH),

6.54 (d, J = 8.1 Hz, 1H, 1-CH), 6.61 (d, J = 8.0 Hz, 1H, 2-CH)

13C NMR (MeOD): δ 3.9, 4.1, 9.6, 18.6, 22.7, 25.7, 30.7, 31.0, 44.1, 47.5, 53.5, 

59.3, 62.4, 70.5, 97.4, 118.6, 119.6, 123.1, 131.2, 141.0, 141.7.

General procedure 1 – amide coupling of β-naltrexamine and N-acetylated

amino acid

Amino acid (0.06 mmol) and HBTU (22 mg, 0.06 mmol, 1.0 eq) were dissolved

in DMF (2.5 mL). DIPEA (10.5 µL, 0.06 mmol, 1.0 eq) was added and the reaction

mixture was stirred for 20 minutes. β-naltrexamine (20 mg, 0.06 mmol, 1.0 eq) 

was separately dissolved in DMF (2.5 mL) and added dropwise to the main

reaction mixture. The reaction mixture was stirred for two hours. The solvent

was removed under high vacuum and the residue was purified by column

chromatography (1:19 MeOH: CH2Cl2). Where necessary, further purification

was carried out using reverse phase HPLC (system 4).

2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)acetamide (92a)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-glycine (7 mg, 0.06 mmol) to give 92a, a white solid (19 mg, 73%).

1H NMR (MeOD): δ 0.25 (d, J = 4.9 Hz, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.60

(p, J = 9.3 Hz, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.93 (h, J = 8.7, 7.9 Hz, 1H,

cyclopropyl 1-CH), 1.42-1.53 (m, 2H, 8-CH2 and 15-CH2), 1.55-1.64 (m, 2H, 7-

CH2 and 8-CH2), 1.86 (qd, J = 13.5, 12.5, 3.9 Hz, 1H, 7-CH2), 2.23-2.39 (m, 2H,

15-CH2 and 16-CH2), 2.46-2.56 (m, 1H, N-CH2-C3H5), 2.60-2.84 (m, 3H, 10-CH2
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and 16-CH2 and N-CH2-C3H5), 3.15 (d, J = 18.5 Hz, 1H, 10-CH2), f3.69 (ddd, J =

12.4, 7.7, 4.5 Hz, 1H, 6-CH), 3.85 (d, J = 1.5 Hz, 2H, glycine-CH2), 4.48 (d, J = 7.7

Hz, 1H, 5-CH), 6.60 (d, J = 8.2 Hz, 1H, 2-CH), 6.65 (d, J = 8.1 Hz, 1H, 1-CH).

13C NMR (MeOD): δ 2.6, 3.5, 13.1, 19.5, 21.1, 22.4, 23.8, 29.7, 42.3, 48.5, 51.3, 

58.5, 60.1, 62.5, 70.2, 91.4, 117.4, 118.9, 140.7, 142.3, 170.0, 172.5.

m/z: HRMS C24H31N3O5 [MH]+ calcd 442.2336; found 442.2341

(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)propanamide (92b)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-alanine (8 mg, 0.06 mmol) to give 92b, a white solid (20 mg, 74%).

1H NMR (DMSO-d6): δ 0.05-0.07 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.29-

0.45 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.67-0.82 (m, H, cyclopropyl 1-CH),

1.07 (d, J = 7.1 Hz, 3H, alanine CH3), 1.10 – 1.21 (m, 2H, 8-CH2 and 15-CH2), 1.28

– 1.40 (m, 2H, 7-CH2 and 8-CH2), 1.55 (qd, J = 12.7, 2.5 Hz, 1H, 7-CH2), 1.75 (s,

3H, acetyl CH3), 1.87 (td, J = 12.0, 3.8 Hz, 1H, 16-CH2), 2.03 (td, J = 12.3, 5.0 Hz,

1H, 15-CH2), 2.17 – 2.29 (m, 2H, N-CH2-C3H5), 2.51 – 2.59 (m, 1H, 10-CH2), 2.55

– 2.62 (m, 1H, 16-CH2), 2.86 (d, J = 18.4 Hz, 1H, 10-CH2), 2.90 (d, J = 5.6 Hz, 1H,

9-CH), 4.19 (p, J = 7.2 Hz, 1H, alanine α-CH), 4.37 (d, J = 7.7 Hz, 1H, 5-CH), 6.42

(d, J = 8.1 Hz, 1H, 1-CH), 6.48 (d, J = 8.0 Hz, 1H, 2-CH), 7.91 (d, J = 8.2 Hz, 1H,

acetamide NH), 8.04 (d, J = 7.9 Hz, 1H, 6-NH), 8.27 (s, 1H, 3-OH).

13C NMR (DMSO-d6): δ 3.5, 3.7, 9.3, 19.0, 22.2, 22.7, 24.3, 29.8, 30.4, 43.7, 47.0, 

47.8, 51.1, 58.4, 61.7, 69.6, 90.5, 117.0, 118.4, 123.5, 131.3, 140.4, 142.1,

168.8, 172.0.

m/z: HRMS C25H33N3O5 [MH]+ calcd 456.2493; found 456.2493
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(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-3-methylbutanamide (92c)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-valine (10 mg, 0.06 mmol) to give 92c, a white solid (16 mg, 55%).

1H NMR (DMSO-d6): δ 0.07 – 0.17 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.40 –

0.54 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.82 (dd, J = 8.4, 6.8 Hz, 6H, valine

CH(CH3)2), 0.78 – 0.91 (m, 1H, cyclopropyl 1-CH), 1.24 (dd, J = 11.6, 2.8 Hz, 1H,

15-CH2), 1.26 (td, J = 13.8, 3.0 Hz, 1H, 8-CH2), 1.42 (dt, J = 13.5, 3.3 Hz, 1H, 8-

CH2), 1.48 - 1.57 (m, 1H, 7-CH2), 1.64 (qd, J = 13.0, 2.8 Hz, 1H, 7-CH2), 1.82 –

1.93 (m, 1H, valine CH(CH3)2), 1.88 (s, 3H, acetyl CH3), 1.98 (td, J = 11.9, 3.7 Hz,

1H, 16-CH2), 2.13 (td, J = 12.4, 5.0 Hz, 1H, 15-CH2), 2.28 – 2.42 (m, 2H, N-CH2-

C3H5), 2.51 – 2.59 (m, 1H, 10-CH2), 2.60 (dd, J = 7.2, 4.1 Hz, 1H, 16-CH2), 2.97 (d,

J = 18.4 Hz, 1H, 10-CH2), 3.02 (d, J = 5.5 Hz, 1H, 9-CH2), 3.35 – 3.48 (m, 1H, 6-

CH), 4.18 (dd, J = 9.3, 6.9 Hz, 1H, valine α-CH), 4.46 (d, J = 7.8 Hz, 1H, 5-CH),

6.52 (d, J = 8.1 Hz, 1H, 1-CH), 6.58 (d, J = 8.1 Hz, 1H, 2-CH), 7.86 (d, J = 9.3 Hz,

1H, acetamide NH), 8.22 (s, 1H, 3-OH), 8.26 (d, J = 7.8 Hz, 1H, 6-NH).

13C NMR (DMSO-d6): δ 4.0, 4.2, 9.6, 18.7, 19.5, 22.6, 23.0, 24.8, 30.3, 30.7, 31.6, 

44.3, 47.4, 1.6, 57.6, 58.8, 62.2, 70.0, 90.9, 117.5, 118.9, 123.8, 131.7, 140.9,

142.5, 169.6, 171.0.

m/z: HRMS C27H37N3O5 [MH]+ calcd 484.2806; found 484.2815
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(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-3-phenylpropanamide (92d)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-phenylalanine (12 mg, 0.06 mmol) to give 92d, a white solid (20 mg,

63%).

1H NMR (DMSO-d6): δ 0.13 (d, J = 4.9 Hz, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.35

– 0.63 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.74 – 0.97 (m, 1H, cyclopropyl 1-

CH), 1.18 – 1.30 (m, 2H, 8-CH2 and 15-CH2), 1.33 – 1.44 (m, 2H, , 7-CH2 and 8-

CH2), 1.49 (td, J = 12.6, 2.7 Hz, 1H, 7-CH2), 1.79 (s, 3H, acetyl CH3), 2.00 (td, J =

12.2, 3.9 Hz, 1H, 16-CH2), 2.14 (td, J = 12.5, 5.1 Hz, 1H, 15-CH2), 2.29 – 2.46 (m,

2H, N-CH2-C3H5), 2.53 – 2.67 (m, 1H, 16-CH2), 2.73 (dd, J = 13.5, 8.9 Hz, 1H,

phenylalanine CH2), 2.92 (dd, J = 13.5, 5.6 Hz, 1H, phenylalanine CH2), 2.98 (d,

J = 18.4 Hz, 1H, 10-CH2), 3.05 (d, J = 5.5 Hz, 1H, 9-CH), 3.38 – 3.45 (m, 1H, 6-CH),

4.45 (d, J = 7.7 Hz, 1H, 5-CH), 4.51 (td, J = 8.8, 5.7 Hz, 1H, phenylalanine α-CH), 

6.53 (d, J = 8.1 Hz, 1H, 1-CH), 6.59 (d, J = 8.0 Hz, 1H, 2-CH), 7.15 – 7.31 (m, 5H,

phenylalanine aromatic protons), 8.10 (d, J = 8.7 Hz, 1H, acetamide NH), 8.17

(s, 1H, 3-OH), 8.26 (d, J = 8.0 Hz, 1H, 6-NH).

13C NMR (DMSO-d6): δ 3.5, 3.8, 9.0, 22.2, 22.6, 24.1, 29.7, 30.2, 38.6, 43.9, 46.9, 

51.1, 53.8, 58.3, 61.7, 69.6, 90.4, 117.1, 118.5, 123.3, 126.2, 128.0, 129.2,

131.2, 137.8, 140.4, 142.0, 168.9, 170.6.

m/z: HRMS C31H37N3O5 [MH]+ calcd 532.2806; found 532.2810
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(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-3-hydroxypropanamide (92e)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-serine (9 mg, 0.06 mmol) to give 92e, a white solid (12 mg, 43%).

1H NMR (DMSO-d6): δ 0.04 – 0.21 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.41 –

0.51 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.75 – 0.92 (m, 1H, cyclopropyl 1-

CH), 1.17 – 1.30 (m, 2H, 8-CH2 and 15-CH2), 1.41 (dt, J = 13.2, 3.3 Hz, 1H, 8-CH2),

1.49 (dq, J = 12.5, 3.6 Hz, 1H, 7-CH2), 1.66 (qd, J = 12.9, 2.9 Hz, 1H, 7-CH2), 1.88

(s, 3H, acetyl CH3), 1.98 (td, J = 12.0, 3.7 Hz, 1H, 16-CH2), 2.14 (td, J = 12.4, 5.1

Hz, 1H, 15-CH2), 2.33 (h, J = 6.1 Hz, 2H, N-CH2-C3H5), 2.59 (td, J = 11.5, 5.2 Hz,

1H, 16-CH2), 2.96 (d, J = 18.3 Hz, 1H, 10-CH2), 3.01 (d, J = 5.6 Hz, 1H, 9-CH), 3.38

– 3.58 (m, 1H, 6-CH), 3.51 (dd, J = 5.9, 2.2 Hz, 2H, serine CH2), 4.30 (dt, J = 8.5,

5.9 Hz, 1H, serine α-CH), 4.52 (d, J = 7.6 Hz, 1H, 5-CH), 6.52 (d, J = 8.1 Hz, 1H, 1-

CH), 6.58 (d, J = 8.0 Hz, 1H, 2-CH), 7.86 (d, J = 8.4 Hz, 1H, acetamide NH), 8.15

(d, J = 8.1 Hz, 1H, 6-NH), 8.26 (s, 1H, 3-OH).

13C NMR (DMSO-d6): δ 3.5, 3.7, 9.2, 22.1, 22.7, 24.4, 29.8, 30.4, 43.7, 47.0, 51.2, 

54.8, 58.4, 61.7, 62.1, 69.6, 90.5, 117.0, 118.4, 123.4, 131.3, 140.4, 142.1,

169.2, 169.7.

m/z: HRMS C25H33N3O6 [MH]+ calcd 472.2442; found 472.2440
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(R)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-3-hydroxypropanamide (98e)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-serine (9 mg, 0.06 mmol) to give 98e (a white solid) as a biproduct

of 92e (7 mg, 25%).

1H NMR (DMSO-d6): δ 0.06 – 0.17 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.42 –

0.53 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.79 – 0.91 (m, 1H, cyclopropyl 1-

CH), 1.18 – 1.33 (m, 2H, 8-CH2 and 15-CH2), 1.38 – 1.49 (m, 2H, 7-CH2 and 8-

CH2), 1.72 (qd, J = 13.1, 3.3 Hz, 1H, 7-CH2), 1.90 (s, 3H, acetyl CH3), 1.97 (td, J =

12.0, 3.7 Hz, 1H, 16-CH2), 2.13 (td, J = 12.5, 5.1 Hz, 1H, 15-CH2), 2.32 (h, J = 6.1

Hz, 2H, N-CH2-C3H5), 2.58 (td, J = 12.3, 5.5 Hz, 1H, 16-CH2), 2.96 (d, J = 18.3 Hz,

1H, 10-CH2), 3.01 (d, J = 5.6 Hz, 1H, 9-CH), 3.39 – 3.59 (m, 1H, 6-CH), 3.56 (d, J

= 5.4 Hz, 2H, serine CH2), 4.23 (dt, J = 8.4, 5.4 Hz, 1H, serine α-CH), 4.53 (d, J =

7.6 Hz, 1H, 5-CH), 6.51 (d, J = 8.1 Hz, 1H, 1-CH), 6.57 (d, J = 8.0 Hz, 1H, 2-CH),

7.87 (d, J = 8.4 Hz, 1H, acetamide NH), 8.08 (d, J = 8.4 Hz, 1H, 6-NH), 8.37 (s, 1H,

3-OH).

13C NMR (DMSO-d6): δ 3.5, 3.7, 9.2, 22.1, 22.8, 24.5, 29.9, 30.4, 43.7, 47.0, 51.2, 

55.4, 58.4, 61.7, 61.8, 69.6, 90.6, 117.0, 118.3, 123.4, 131.3, 140.4, 142.1,

169.4, 169.9.

m/z: HRMS C25H33N3O6 [MH]+ calcd 472.2442; found 472.2443
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(S)-2-Acetamido-N1-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)succinimide (92f)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-asparagine (10 mg, 0.06 mmol) to give 92f, a white solid (13 mg,

44%).

1H NMR (DMSO-d6): δ 0.05 – 0.20 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.40 –

0.58 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.74 – 0.94 (m, 1H, cyclopropyl 1-

CH), 1.17 – 1.32 (m, 2H, 8-CH2 and 15-CH2), 1.37 – 1.48 (m, 2H, 7-CH2 and 8-

CH2), 1.71 (td, J = 13.1, 12.6, 10.0 Hz, 1H, 7-CH2), 1.87 (s, 3H, acetyl CH3), 1.97

(td, J = 12.0, 3.7 Hz, 1H, 16-CH2), 2.13 (td, J = 12.4, 5.1 Hz, 1H, 15-CH2), 2.32 (dd,

J = 12.7, 6.5 Hz, 1H, N-CH2-C3H5), 2.36 (dd, J = 12.7, 6.5 Hz, 1H, N-CH2-C3H5),

2.39 (dd, J = 15.4, 8.1 Hz, 1H, asparagine CH2), 2.46 (dd, J = 15.4, 4.8 Hz, 1H,

asparagine CH2), 2.59 (td, J = 12.6, 12.0, 5.0 Hz, 1H, 16-CH2), 2.96 (d, J = 18.4

Hz, 1H, 10-CH2), 3.01 (d, J = 5.6 Hz, 1H, 9-CH), 3.35 – 3.46 (m, 1H, 6-CH), 4.50

(td, J = 8.2, 4.8 Hz, 1H, asparagine α-CH), 4.55 (d, J = 7.7 Hz, 1H, 5-CH), 6.51 (d,

J = 8.0 Hz, 1H, 1-CH), 6.57 (d, J = 8.1 Hz, 1H, 2-CH), 6.85 (s, 1H, asparagine

CONH2), 7.27 (s, 1H, asparagine CONH2), 7.94 (d, J = 8.4 Hz, 1H, acetamide NH),

8.03 (d, J = 8.4 Hz, 1H, 6-NH), 8.31 (s, 1H, 3-OH).

13C NMR (DMSO-d6): δ 3.5, 3.7, 9.2, 22.1, 22.9, 24.4, 29.9, 30.4, 37.5, 43.7, 47.0, 

49.8, 51.3, 58.4, 61.7, 69.6, 90.5, 117.0, 118.3, 123.4, 131.3, 140.4, 142.1,

169.1, 170.9, 171.6.

m/z: HRMS C26H34N4O6 [MH]+ calcd 499.2551; found 499.2551
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(S)-2-Acetamido-N1-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)succinimide (98f)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-asparagine (10 mg, 0.06 mmol) to give 98f (a white solid) as a

biproduct of 92f (8 mg, 27%).

1H NMR (DMSO-d6): δ 0.08 – 0.19 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.42 –

0.54 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.75 – 0.92 (m, 1H, cyclopropyl 1-

CH), 1.20 – 1.30 (m, 2H, 8-CH2 and 15-CH2), 1.37 – 1.50 (m, 2H, 7-CH2 and 8-

CH2), 1.67 (qd, J = 14.0, 13.5, 3.4 Hz, 1H, 7-CH2), 1.85 (s, 3H, acetyl CH3), 1.99

(td, J = 12.1, 3.8 Hz, 1H, 16-CH2), 2.14 (td, J = 12.4, 5.0 Hz, 1H, 15-CH2), 2.31 (dd,

J = 15.1, 8.2 Hz, 1H, N-CH2-C3H5), 2.31 – 2.43 (m, 2H, N-CH2-C3H5 and asparagine

CH2), 2.46 (dd, J = 15.1, 5.8 Hz, 1H, asparagine CH2), 2.59 (td, 18.4, 5.7 Hz, 1H,

16-CH2), 2.98 (d, J = 18.4 Hz, 1H, 10-CH2), 3.04 (d, J = 5.6 Hz, 1H, 9-CH), 3.37 –

3.45 (m, 1H, 6-CH), 4.54 (d, J = 7.6 Hz, 1H, 5-CH), 4.57 (td, J = 8.3, 5.8 Hz, 1H,

asparagine α-CH), 6.52 (d, J = 8.1 Hz, 1H, 1-CH), 6.59 (d, J = 8.0 Hz, 1H, 2-CH),

6.85 (s, 1H, asparagine CONH2), 7.24 (s, 1H, asparagine CONH2), 7.99 (d, J = 8.4

Hz, 1H, acetamide NH), 8.09 (d, J = 8.1 Hz, 1H, 6-NH), 8.20 (s, 1H, 3-OH).

13C NMR (DMSO-d6): δ 3.5, 3.8, 9.1, 22.2, 22.8, 24.1, 29.8, 30.3, 38.1, 43.9, 46.9, 

49.7, 51.3, 58.3, 61.7, 69.6, 90.4, 117.1, 118.4, 123.4, 131.2, 140.4, 142.1,

169.1, 170.8, 171.3.

m/z: HRMS C26H34N4O6 [MH]+ calcd 499.2551; found 499.2554
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tert-Butyl (S)-3-acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoate (95g)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-aspartic acid 4-tert-butyl ester (14 mg, 0.06 mmol) to give 95g, a

white solid (13 mg, 39%).

1H NMR (MeOD): δ 0.42 – 0.57 (m, 2H,  cyclopropyl 2-CH2 and 3-CH2), 0.68 –

0.87 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 1.02 – 1.16 (m, 1H, cyclopropyl 1-

CH), 1.46 (s, 9H, t-Bu CH3), 1.51 – 1.68 (m, 3H, 7-CH2, 8-CH2, 15-CH2), 1.71 (dt, J

= 13.8, 3.1 Hz, 1H, 8-CH2), 1.94 (qd, J = 12.9, 2.8 Hz, 1H, 7-CH2), 1.99 (s, 3H,

acetyl CH3), 2.48 – 2.66 (m, 1H, 16-CH2), 2.60 (dd, J = 16.3, 8.5 Hz, 1H, aspartate

CH2), 2.69 (td, J = 12.6, 3.7 Hz, 1H, 15-CH2), 2.78 (dd, J = 16.3, 5.3 Hz, 1H,

aspartate CH2), 2.86 (dd, J = 13.5, 7.5 Hz, 1H, N-CH2-C3H5), 3.08 (dd, J = 12.5, 4.3

Hz, 1H, 16-CH2), 3.14 (dd, J = 19.5, 6.0 Hz, 1H, 10-CH2), 3.30 – 3.40 (m, 2H, 10-

CH2, N-CH2-C3H5), 3.60 (ddd, J = 12.7, 7.8, 5.0 Hz, 1H, 6-CH), 3.89 (d, J = 5.7 Hz,

1H, 9-CH), 4.62 (d, J = 7.9 Hz, 1H, 5-CH), 4.70 (dd, J = 8.4, 5.4 Hz, 1H, aspartate

α-CH), 6.71 (d, J = 8.3 Hz, 1H, 1-CH), 6.74 (d, J = 8.3 Hz, 1H, 2-CH).
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tert-Butyl (R)-3-acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoate (95d)

The title compound was synthesised as described in general procedure 1, using

N-acetyl-L-aspartic acid 4-tert-butyl ester (14 mg, 0.06 mmol) to give 95d (a

white solid) as a biproduct of 95g (10 mg, 30%).

1H NMR (MeOD): δ 0.40 – 0.57 (m, 2H,  cyclopropyl 2-CH2 and 3-CH2), 0.63 –

0.91 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 1.02 – 1.15 (m, 1H, cyclopropyl 1-

CH), 1.44 (s, 9H, t-Bu CH3), 1.51 – 1.67 (m, 3H, 7-CH2, 8-CH2, 15-CH2), 1.70 (dt, J

= 13.8, 3.1 Hz, 1H, 8-CH2), 1.92 (qd, J = 12.9, 2.8 Hz, 1H, 7-CH2), 2.01 (s, 3H,

acetyl CH3), 2.48 – 2.66 (m, 1H, 16-CH2), 2.55 (dd, J = 16.0, 7.7 Hz, 1H, aspartate

CH2), 2.68 (td, J = 12.5, 3.5 Hz, 1H, 15-CH2), 2.77 (dd, J = 16.1, 6.4 Hz, 1H,

aspartate CH2), 2.85 (dd, J = 13.5, 7.5 Hz, 1H, N-CH2-C3H5), 3.01 – 3.18 (m, 2H,

10-CH2, 16-CH2), 3.34 – 3.39 (m, 2H, 10-CH2, N-CH2-C3H5), 3.61 (ddd, J = 12.7,

7.8, 4.8 Hz, 1H, 6-CH), 3.87 (d, J = 5.7 Hz, 1H, 9-CH), 4.62 (d, J = 7.8 Hz, 1H, 5-

CH), 4.72 (dd, J = 7.7, 6.4 Hz, 1H, aspartate α-CH), 6.71 (d, J = 8.3 Hz, 1H, 1-CH),

6.74 (d, J = 8.2 Hz, 1H, 2-CH).

(S)-3-Acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoic acid (92g)
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To tert-butyl (S)-3-acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoate (95g) (1 mg, 0.002 mmol) in DMF (1

ml) was added an 18:1:1 mixture of TFA (0.9 ml), TIPS (0.05 ml) and water (0.05

ml). The reaction mixture was stirred at room temperature until complete by

TLC. Solvent was removed under high vacuum and purification by reverse

phase HPLC (system 4) yielded 92g, a white solid (1 mg, 99%).

1H NMR (DMSO-d6): δ 0.26 – 0.51 (m, 2H,  cyclopropyl 2-CH2 and 3-CH2), 0.51 –

0.74 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.92 – 1.09 (m, 1H, cyclopropyl 1-

CH), 1.86 (s, 3H, acetyl CH3), 2.42 (dd, J = 16.1, 8.0 Hz, 1H, aspartic acid CH2),

2.62 (dd, J = 16.1, 5.8 Hz, 1H, aspartic acid CH2), 3.35 – 3.44 (m, 1H, 6-CH), 4.59

(td, J = 8.1, 5.9 Hz, 1H, aspartic acid α-CH), 4.65 (d, J = 7.5 Hz, 1H, 5-CH), 6.62

(d, J = 8.0 Hz, 1H, 1-CH), 6.68 (d, J = 8.2 Hz, 1H, 2-CH), 8.12 (s, 1H, acetamide

NH), 8.14 (s, 1H, 6-NH).

m/z: HRMS C26H33N3O7 [MH]+ calcd 500.2391; found 500.2395

(R)-3-Acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoic acid (98g)

To tert-butyl (R)-3-acetamido-4-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-4-oxobutanoate (95e) (1 mg, 0.002 mmol) in DMF (1

ml) was added an 18:1:1 mixture of TFA (0.9 ml), TIPS (0.05 ml) and water (0.05

ml). The reaction mixture was stirred at room temperature until complete by

TLC. Solvent was removed under high vacuum and purification by reverse

phase HPLC (system 4) yielded 98g, a white solid (1 mg, 99%).
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1H NMR (DMSO-d6): δ 0.27 – 0.51 (m, 2H,  cyclopropyl 2-CH2 and 3-CH2), 0.50 –

0.75 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.93 – 1.10 (m, 1H, cyclopropyl 1-

CH), 1.86 (s, 3H, acetyl CH3), 2.63 (dd, J = 16.4, 4.9 Hz, 1H, aspartic acid CH2),

3.34 – 3.44 (m, 1H, 6-CH), 4.54 (td, J = 8.3, 5.1 Hz, 1H, aspartic acid α-CH), 4.66 

(d, J = 7.5 Hz, 1H, 5-CH), 6.61 (d, J = 8.2 Hz, 1H, 1-CH), 6.67 (d, J = 8.2 Hz, 1H, 2-

CH).

m/z: HRMS C26H33N3O7 [MH]+ calcd 500.2391; found 500.2403

tert-Butyl ((S)-5-acetamido-6-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-6-oxohexyl)carbamate (95h)

The title compound was synthesised as described in general procedure 1, using

N2-acetyl-N6-Boc-L-lysine (17 mg, 0.06 mmol) to give 95h, a white solid (27 mg,

73%).

1H NMR (MeOD): δ 0.08 – 0.26 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.47 –

0.62 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.82 – 0.95 (m, 1H, cyclopropyl 1-

CH), 1.24 – 1.70 (m, 8H, 7-CH2, 8-CH2, 15-CH2, lysine β-CH2, lysine γ-CH2, lysine

δ-CH2), 1.43 (s, 9H, Boc CH3), 1.69 – 1.92 (m, 2H, 8-CH2, lysine β-CH2), 2.01 (s,

3H, acetyl CH3), 2.15 (td, J = 12.1, 11.6, 3.2 Hz, 1H, 16-CH2), 2.24 (td, J = 12.1,

4.5 Hz, 1H, 15-CH2), 2.40 (h, J = 6.4 Hz, 2H, N-CH2-C3H5), 2.63 - 2.68 (m, 1H, 10-

CH2), 2.65 (td, J = 18.8, 6.0 Hz, 1H, 16-CH2), 2.96 – 3.19 (m, 4H, 9-CH2, 10-CH2,

lysine ε-CH2), 3.67 (ddd, J = 12.3, 7.4, 4.6 Hz, 1H, 6-CH), 4.31 (dd, J = 8.4, 5.6 Hz,

1H, lysine α-CH), 4.46 (d, J = 7.5 Hz, 1H, 5-CH), 6.56 (d, J = 8.1 Hz, 1H, 1-CH),

6.62 (d, J = 8.1 Hz, 1H, 2-CH).
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13C NMR (MeOD): δ 4.2, 4.5, 10.2, 22.6, 23.5, 24.1, 25.4, 28.8, 30.6, 31.1, 32.0, 

33.2, 41.1, 45.3, 52.8, 54.9, 60.2, 63.7, 71.7, 79.7, 93.0, 118.6, 120.0, 125.4,

132.4, 141.7, 143.7, 158.5, 173.2, 174.0.

(S)-2-Acetamido-6-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)hexanamide (92h)

To tert-butyl ((S)-5-acetamido-6-(((4R,4aS,7R,7aR,12bS)-3-

(cyclopropylmethyl)-4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-

methanobenzofuro[3,2-e]isoquinolin-7-yl)amino)-6-oxohexyl)carbamate (95h)

(25mg, 0.041 mmol) in dioxane (1 ml) under N2 was added 4M HCl in dioxane

(1 ml). The reaction mixture was stirred at room temperature until complete

by TLC. Solvent was removed under high vacuum and purification by reverse

phase HPLC (system 4) yielded 92h, a white solid (24 mg, 100%).

1H NMR (MeOD): δ 0.46 – 0.59 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.69 –

0.87 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 1.05 – 1.18 (m, 1H, cyclopropyl 1-

CH), 1.35 – 2.02 (m, 10H, 7-CH2, 8-CH2, 15-CH2, lysine β-CH2, lysine γ-CH2, lysine

δ-CH2), 2.04 (s, 3H, acetyl CH3), 2.62 (td, J = 13.1, 6.2 Hz, 1H, 16-CH2), 2.70 (td,

J = 10.0, 3.2 Hz, 1H, 15-CH2), 2.87 – 2.99 (m, 3H, N-CH2-C3H5, lysine ε-CH2), 3.08

– 3.23 (m, 2H, 10-CH2, 16-CH2), 3.30 – 3.42 (m, 2H, 10-CH2, N-CH2-C3H5), 3.60 –

3.71 (m, 1H, 6-CH), 3.95 (d, J = 5.4 Hz, 1H, 9-CH), 4.33 (dd, J = 8.5, 5.3 Hz, 1H,

lysine α-CH), 4.69 (d, J = 7.8 Hz, 1H, 5-CH), 6.71 – 6.77 (m, 2H, 1-CH, 2-CH).

13C NMR (MeOD): δ 3.4, 6.2, 6.9, 22.6, 23.7, 24.5, 24.6, 28.1, 28.9, 31.1, 32.7, 

40.5, 43.8, 47.6, 52.7, 54.8, 58.7, 62.2, 68.1, 91.9, 119.6, 120.9, 121.9, 130.7,

143.0, 143.7, 173.5, 174.1.
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m/z: HRMS C28H40N4O5 [MH]+ calcd 513.3071; found 513.3066

tert-Butyl (3-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)amino)-3-oxopropyl)carbamate (95i)

The title compound was synthesised as described in general procedure 1, using

N-Boc-β-alanine (11 mg, 0.06 mmol) to give 95i, a white solid (28 mg, 90%).

1H NMR (MeOD): δ 0.09 – 0.22 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.45 –

0.59 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.81 – 0.92 (m, 1H, cyclopropyl 1-

CH), 1.34 – 1.48 (m, 2H, 8-CH2, 15-CH2), 1.40 (s, 9H, Boc CH3), 1.49 – 1.61 (m,

2H, 7-CH2, 8-CH2), 1.78 (qd, J = 13.8, 12.6, 3.4 Hz, 1H, 8-CH2), 2.16 (td, J = 9.2,

3.6 Hz, 1H, 16-CH2), 2.23 (td, J = 11.9, 4.1 Hz, 1H, 15-CH2), 2.34 (t, J = 6.8 Hz, 2H,

β-alanine NH-CH2-CH2-CO), 2.34 – 2.54 (m, 1H, N-CH2-C3H5), 2.58 – 2.73 (m, 2H,

10-CH2, 16-CH2), 3.06 (d, J = 18.5 Hz, 1H, 10-CH2), 3.15 (d, J = 5.5 Hz, 1H, 9-CH),

3.24 – 3.30 (m, 2H, β-alanine NH-CH2-CH2-CO), 3.62 (ddd, J = 12.7, 7.8, 4.8 Hz,

1H, 6-CH), 4.37 (d, J = 7.7 Hz, 1H, 5-CH), 6.54 (d, J = 8.2 Hz, 1H, 1-CH), 6.60 (d, J

= 8.1 Hz, 1H, 2-CH).

13C NMR (MeOD): δ 4.1, 4.6, 9.9, 23.6, 25.5, 28.8, 31.2, 31.6, 37.5, 37.9, 45.6, 

49.9, 52.7, 60.1, 63.8, 71.7, 80.2, 93.2, 118.6, 120.1, 125.1, 132.4, 142.0, 143.7,

158.4, 173.6.

3-Amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)propanamide (92i)
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To tert-butyl (3-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)amino)-3-oxopropyl)carbamate (95i) (26mg, 0.050 mmol) in dioxane (1 ml)

under N2 was added 4M HCl in dioxane (1 ml). The reaction mixture was stirred

at room temperature until complete by TLC. Solvent was removed under high

vacuum and purification by reverse phase HPLC (system 4) yielded 92i, a white

solid (25 mg, 100%).

1H NMR (MeOD): δ 0.45 – 0.60 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 0.66 –

0.88 (m, 2H, cyclopropyl 2-CH2 and 3-CH2), 1.04 – 1.19 (m, 1H, cyclopropyl 1-

CH), 1.51 – 1.67 (m, 2H, 8-CH2, 16-CH2), 1.67 – 1.81 (m, 2H, 7-CH2, 8-CH2), 1.88

(qd, J = 12.8, 2.0 Hz, 1H, 7-CH2), 2.61 (td, J = 13.2, 4.8 Hz, 1H, 16-CH2),2.59 –

2.72 (m, 2H, NH-CH2-CH2-CO), 2.70 (td, J = 12.8, 3.6 Hz, 1H, 15-CH2), 2.91 (dd, J

= 13.6, 7.6 Hz, 1H, N-CH2-C3H5), 3.08 – 3.25 (m, 4H, 10-CH2, 16-CH2, NH-CH2-

CH2-CO), 3.33 – 3.43 (m, 2H, 10-CH2, N-CH2-C3H5), 3.62 – 3.72 (m, 1H, 6-CH),

3.95 (d, J = 5.8 Hz, 1H, 9-CH), 4.58 (d, J = 7.9 Hz, 1H, 5-CH), 6.73 (d, J = 8.2 Hz,

1H, 1-CH), 6.76 (d, J = 8.3 Hz, 1H, 2-CH).

13C NMR (MeOD): δ 3.4, 6.2, 6.8, 24.4, 24.7, 28.8, 31.1, 33.0, 37.0, 43.7, 47.6, 

52.4, 58.7, 64.2, 71.3, 92.2, 119.4, 121.0, 121.9, 130.8, 143.1, 143.7, 171.9.

(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-6-(6-(2-(4-((E)-2-(5,5-difluoro-7-(thiophen-2-yl)-5H-

4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-

yl)vinyl)phenoxy)acetamido)hexanamido)hexanamide (99)
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To (S)-2-acetamido-6-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)hexanamide (92h) (0.88 mg, 1.5 µmol, 1.0 eq) in DMF (0.5

ml) was added DIPEA (0.78 µl, 4.5 µmol, 3.0 eq) followed by BODIPY 630/650-

X NHS ester (1.0 mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml). The reaction mixture

was stirred at room temperature for 90 min. Solvent was removed under high

vacuum and purification by reverse phase HPLC (system 3) yielded 99, a blue

solid (1.2 mg, 75%).

m/z: HRMS C57H66BF2N7O8S [MH]+ calcd 1058.4827; found 1058.4837

(S)-2-Acetamido-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)-6-(2-(4-((E)-2-(5,5-difluoro-7-(thiophen-2-yl)-5H-4λ4,5λ4-

dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-

yl)vinyl)phenoxy)acetamido)hexanamide (100)

To BODIPY 630/650 (0.68 mg, 1.5 µmol) in DMF (0.5 ml) was added PyBOP (0.78

mg, 1.5 µmol, 1.0 eq) and DIPEA (1.30 µl, 7.5 µmol, 5.0 eq). The reaction

mixture was stirred at room temperature for 15 min after which (S)-2-

acetamido-6-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)hexanamide (92h) (0.88 mg, 1.5 µmol, 1.0 eq) in DMF (0.5

ml) was added. The reaction mixture was then stirred at room temperature for

90 min. Solvent was removed under high vacuum and purification by reverse

phase HPLC (system 3) yielded 100, a blue solid (0.6 mg, 42%).

m/z: HRMS C51H55BF2N6O7S [MH]+ calcd 945.3987; found 945.3982
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1-(6-(((S)-5-Acetamido-6-(((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-

dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)amino)-6-oxohexyl)amino)-6-oxohexyl)-3,3-dimethyl-2-

((1E,3E)-5-((E)-1,3,3-trimethyl-5-sulfonatoindolin-2-ylidene)penta-1,3-dien-

1-yl)-3H-indol-1-ium-5-sulfonate (101)

To (S)-2-acetamido-6-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-

4a,9-dihydroxy-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-

e]isoquinolin-7-yl)hexanamide (92h) (0.88 mg, 1.5 µmol, 1.0 eq) in DMF (0.5

ml) was added DIPEA (0.78 µl, 4.5 µmol, 3.0 eq) followed by sulfo-Cy5 NHS ester

(1.17 mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml). The reaction mixture was stirred at

room temperature for 90 min. Solvent was removed under high vacuum and

purification by reverse phase HPLC (system 3) yielded 101, a blue solid (0.6 mg,

35%).

m/z: HRMS C55H66N5O11S2
- [M]- calcd 1135.4890; found 1135.4827
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N-(3-(((4R,4aS,7R,7aR,12bS)-3-(Cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)amino)-3-oxopropyl)-6-(2-(4-((E)-2-(5,5-difluoro-7-(thiophen-2-yl)-5H-

4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-

yl)vinyl)phenoxy)acetamido)hexanamide (102)

To 3-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)propanamide (92i) (0.73 mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml) was added

DIPEA (0.78 µl, 4.5 µmol, 3.0 eq) followed by BODIPY 630/650-X NHS ester (1.0

mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml). The reaction mixture was stirred at room

temperature for 90 min. Solvent was removed under high vacuum and

purification by reverse phase HPLC (system 3) yielded 102, a blue solid (1.2 mg,

83%).

m/z: HRMS C46H46BF2N5O6S [MH]+ calcd 846.3303; found 846.3286

N-((4R,4aS,7R,7aR,12bS)-3-(Cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)-3-(2-(4-((E)-2-(5,5-difluoro-7-(thiophen-2-yl)-5H-4λ4,5λ4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinin-3-yl)vinyl)phenoxy)acetamido)propanamide

(103)
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To BODIPY 630/650 (0.68 mg, 1.5 µmol) in DMF (0.5 ml) was added PyBOP (0.78

mg, 1.5 µmol, 1.0 eq) and DIPEA (1.30 µl, 7.5 µmol, 5.0 eq). The reaction

mixture was stirred at room temperature for 15 min after which 3-amino-N-

((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)propanamide (92i) (0.73 mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml) was added.

The reaction mixture was then stirred at room temperature for 90 min. Solvent

was removed under high vacuum and purification by reverse phase HPLC

(system 3) yielded 103, a blue solid (0.6 mg, 47%).

m/z: HRMS C52H57BF2N6O7S [MH]+ calcd 959.4143; found 959.4143

1-(6-((3-(((4R,4aS,7R,7aR,12bS)-3-(Cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)amino)-3-oxopropyl)amino)-6-oxohexyl)-3,3-dimethyl-2-((1E,3E)-5-((E)-

1,3,3-trimethyl-5-sulfonatoindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-1λ4-

indole-5-sulfonate (104)

To 3-amino-N-((4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-

2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7-

yl)propanamide (92i) (0.73 mg, 1.5 µmol, 1.0 eq) in DMF (0.5 ml) was added

DIPEA (0.78 µl, 4.5 µmol, 3.0 eq) followed by sulfo-Cy5 NHS ester (1.17 mg, 1.5

µmol, 1.0 eq) in DMF (0.5 ml). The reaction mixture was stirred at room

temperature for 90 min. Solvent was removed under high vacuum and

purification by reverse phase HPLC (system 3) yielded 104, a blue solid (0.7 mg,

45%).
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m/z: HRMS C55H66N5O11S2
- [M]- calcd 1036.4211; found 1036.4231

N-(Furfuryl)-tert-butylsulfinamide (148)

To a solution of furfurylamine (3.5 g, 3.18 mL, 36.00 mmol) and triethylamine

(10.9 g, 15.00 mL, 107.7 mmol, 3 eq) in dichloromethane (20 mL) at 0°C was

added tert-butylsulfinyl chloride (5.0 g, 4.41 mL, 35.6 mmol, 1 eq) in

dichloromethane (40 ml) dropwise over a period of 30 minutes. The mixture

was stirred for a further 1 hour at 0°C and reaction completion was confirmed

by thin layer chromatography (TLC) (50% EtOAc in petroleum ethers (PE)). The

solution was diluted with further dichloromethane and washed with water (20

mL) and brine (20 mL). The organic phase was dried over magnesium sulfate

and the solvent evaporated off under vacuum. Column chromatography (50%

EtOAc in PE) afforded 148 as a yellow oil (6.5 g, 90%).

1H NMR (CDCl3): δ 1.21 (s, 9H, t-Bu CH3), 3.46 (br t, J = 6.26 Hz, 1H, NH), 4.23

(dd, J = 14.82/7.01, 1H, CH2), 4.33 (dd, J = 14.82/5.22, 1H, CH2), 6.26 (dd, J =

3.25/0.81 Hz, 1H, furan 3-CH), 6.32 (dd, J = 3.21/1.84 Hz, 1H, furan 4-CH), 7.37

(dd, J = 1.85/0.86 Hz, 1H, furan 5-CH).

13C NMR (CDCl3): δ 22.5, 42.2, 56.0, 107.8, 110.3, 142.4, 151.9.  

m/z: LCMS C9H15NO2S [MH]+ calcd 202.3, found 202.1 with tR of 2.44 min.

N-(tert-Butylsulfonyl)-1,2-dihydropyridin-3-one (150)

To a solution of N-(furfuryl)-tert-butylsulfinamide (148) (100 mg, 0.50 mmol, 1

eq) in dichloromethane (5 mL) at room temperature was added 3-

chloroperbenzoic acid (m-CPBA) (86 mg, 0.50 mmol, 1 eq). After 20 minutes a

further 1 molar equivalent of m-CPBA was added (86 mg, 0.50 mmol) and again
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at 40 minutes and 60 minutes (total m-CPBA used was 344 mg, 2.00 mmol, 4

eq). The reaction was monitored throughout by TLC (50% EtOAc in PE) which

showed that after 2 hours the reaction was complete. The mixture was diluted

in dichloromethane (15 mL) and washed with saturated sodium bicarbonate

solution (10 mL x2), water (10 mL) and brine (10 mL). The organic phase was

dried over magnesium sulfate and the solvent evaporated until approximately

5 mL of solvent remained (note: this solution should not be evaporated to

dryness as the product has been observed to decompose explosively1). The

solution was cooled to 0°C and triethylsilane (58 mg, 0.08 mL, 0.50 mmol, 1 eq)

added with stirring. BF3·OEt2 (71 mg, 0.06 mL, 0.50 mmol, 1 eq) was then added

dropwise and the reaction was stirred at 0°C for 3 hours. The mixture was

diluted in dichloromethane (15 mL) and washed with saturated sodium

bicarbonate solution/10% w/v sodium sulfite (1:1) (10 mL), saturated sodium

bicarbonate solution (10 mL), water (10 mL) and brine (10 mL). The organic

phase was dried over magnesium sulfate and the solvent evaporated off under

vacuum. Column chromatography (20-50% EtOAc in PE) afforded 150 as an off-

white solid (39 mg, 36%).

mp: 113-114°C

1H NMR (CDCl3): δ 1.39 (s, 9H, t-Bu CH3), 4.06 (s, 2H, pyridinone 2-CH2), 4.23 (s,

2H, pyridinone 6-CH2), 6.25 (dt, J = 10.28/2.17 Hz, 1H, pyridinone 4-CH), 7.08

(dt, J = 10.30/3.62 Hz, 1H, pyridinone 5-CH).

13C NMR (CDCl3): δ 24.4, 46.1, 54.4, 62.1, 128.3, 146.4, 192.2. 

m/z: LCMS C9H15NO3S [MH+MeCN]+ calc 259.3, found 259.2 with tR of 2.30 min.

4-Bromo-N-(tert-butylsulfonyl)-1,2-dihydropyridin-3-one (151)
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To a solution of N-(tert-butylsulfonyl)-1,2-dihydropyridin-3-one (150) (665 mg,

3.06 mmol) in dichloromethane (30 mL) at 0°C was added bromine (489 mg,

0.16 mL, 3.06 mmol, 1 eq) in dichloromethane (13.7 mL) dropwise. After 30

minutes the reaction was complete by TLC (50% EtOAc in PE). Triethylamine

(310 mg, 0.43 mL, 3.06 mmol, 1 eq) was then added with further stirring at 0°C

for 30 minutes. The mixture was diluted in dichloromethane (50 mL) and

washed with water (30 mL x2), saturated sodium bicarbonate solution (30 mL)

and brine (30 mL). The organic phase was dried over magnesium sulfate and

the solvent evaporated off under vacuum. Recrystallization in methanol

afforded 151 as colourless crystals (696 mg, 77%).

mp: 128-130°C.

1H NMR (CDCl3): δ 1.40 (s, 9H, t-Bu CH3), 4.23 (s, 2H, pyridinone 2-CH2), 4.27 (d,

J = 3.9 Hz, 2H, pyridinone 6-CH2), 7.47 (t, J = 3.9 Hz, 1H, pyridinone 5-CH).

13C NMR (CDCl3): δ 24.3, 48.2, 54.7, 62.2, 122.2, 146.8, 185.0 

m/z: LCMS C9H14NO3BrS [MH]+ calc 295.0, found 295.1 with tR of 2.59 min.

(S)-4-Bromo-N-(tert-butylsulfonyl)-1,2,3,6-tetrahydropyridin-3-ol (152)

To a solution of (R)-(+)-2-methyl-CBS-oxazaborolidine (263 mg, 0.95 mmol, 0.3

eq) in tetrahydrofuran (15 ml) at 0°C was added borane-N,N-diethylaniline

(1.034 g, 1.13 mL, 6.34 mmol, 2 eq). 4-Bromo-N-(tert-butylsulfonyl)-1,2-

dihydropyridin-3-one (151) (940 mg, 3.17 mmol) in tetrahydrofuran (30 mL)

was then added dropwise over 15 minutes. The reaction was allowed to warm

slowly to room temperature and was stirred for 16 hours. Excess borane was

quenched with methanol (2.1 mL) and the solvents removed by evaporation.

The resulting residue was re-dissolved in dichloromethane (50 mL) and washed

with 1M HCl (20 mL x2), water (20 mL) and brine (20 mL). The organic phase
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was dried over magnesium sulfate and the solvent evaporated off under

vacuum. Column chromatography (30% EtOAc in PE) afforded 152 as an off-

white solid (886 mg, 94%).

[α]19
D: -46.0 (MeOH, c 1.00).

mp: 120-122°C.

1H NMR (CDCl3) δ 1.42 (s, 9H, t-Bu CH3), 2.75 (br s. 1H, OH), 3.68 (d, J = 4.2 Hz,

2H, pyridinol 6-CH2), 3.86 (d, J = 17.6, 1H, pyridinol 2-CH2), 4.04 (d, J = 17.8, 1H,

pyridinol 2-CH2), 4.23 (br s, 1H, pyridinol 3-CH), 6.25 (t, J = 3.5 Hz, 1H, pyridinol

5-CH).

13C NMR (CDCl3) δ 24.5, 47.8, 51.5, 62.0, 68.6, 124.1, 128.8 

m/z: LCMS C9H16NO3BrS [MH]+ calc 297.0, found 297.0 with tR of 2.41 min.

(S)-4-Bromo-N-(tert-butylsulfonyl)-1,2,3,6-tetrahydropyridin-3-yl diethyl

phosphate (153)

To a solution of (S)-4-bromo-N-(tert-butylsulfonyl)-1,2,3,6-tetrahydropyridin-

3-ol (152) (1.265 g, 4.24 mmol) in dichloromethane (28 mL) at 0°C was added

triethylamine (3.432 g, 4.73 mL, 33.92 mmol, 8 eq) and a catalytic amount of

dimethylaminopyridine (26 mg, 5%). Chlorodiethylphosphate (2.195 g, 1.84

mL, 12.72 mmol, 3 eq) was added gradually over 2.5 hours. It was then allowed

to warm to room temperature and left to stir overnight. It was then washed

with brine (20 mL) and the aqueous layer extracted with dichloromethane (10

mL x3). The combined organic extracts had their solvent evaporated under

vacuum before column chromatography (75% EtOAc in PE) afforded 153 as an

orange oil (1.511 g, 82%).

[α]19
D: -19.0 (MeOH, c 1.00).
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1H NMR (CDCl3): δ 1.37 (two overlapping quartets, J = 7.0 Hz, 6H, Et CH3), 1.42

(s, 9H, t-Bu CH3), 3.63 (dd, J = 14.1/3.6 Hz, 1H, pyridinol 2-CH2), 3.85 (d, J = 17.8

Hz, 1H, pyridinol 6-CH2), 3.95 (dd, J = 14.5/3.6 Hz, 1H, pyridinol 2-CH2), 4.04 (d,

J = 17.7, 1H, pyridinol 6-CH2) 4.22 (two overlapping quintets, J = 7.0 Hz, 4H in

total, Et CH2), 4.88-4.92 (m, 1H, pyridinol 3-CH), 6.36 (t, J = 3.5 Hz, 1H, pyridinol

5-CH).

13C NMR (CDCl3): δ 16.0, 16.1, 24.5, 47.9, 50.4, 62.1, 64.4, 64.5, 73.3, 118.6, 

131.4.

m/z: LCMS C13H25NO6BrPS [MH]+ calc 433.0, found 433.1 with tR of 2.76 min.

4-Bromo-N-(tert-butylsulfonyl)-3-methyl-1,2,3,6-tetrahydropyridine (154)

To a slurry of Copper (I) bromide dimethyl sulfide complex (103 mg, 0.50 mmol,

2 eq) in tetrahydrofuran (1 mL) at 0°C was added methyl magnesium bromide

(0.17 mL of a 3.0 M solution in diethyl ether, 0.50 mmol, 2 eq). The mixture was

stirred for 30 minutes before reducing the temperature to -40°C using a bath

of dry ice and acetonitrile. (S)-4-Bromo-N-(tert-butylsulfonyl)-1,2,3,6-

tetrahydropyridin-3-yl diethyl phosphate (153) (108 mg, 0.25 mmol) in

tetrahydrofuran (1.5 mL) was then added dropwise over 15 minutes. The

reaction conditions were maintained at -40°C until the reaction was complete

by TLC (100% EtOAc). The reaction was quenched with saturated ammonium

chloride solution (5 mL) and extracted with diethyl ether (5 mL x3) and the

combined layers were washed with brine (5 mL). The organic phase was dried

over magnesium sulfate and then filtered through Celite. Evaporation of the

solvent under vacuum afforded 154 as an off-white solid (25 mg, 34%).

mp: 96-97°C.
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1H NMR (CDCl3): δ 1.20 (d, J = 7.0 Hz, 3H, pyridine 3-CH3), 1.37 (s, 9H, tBu CH3),

2.60 (d, J = 7.2 Hz, 1H, pyridine 3-CH), 3.29 (d, J = 9.7 Hz, 1H, pyridine 2-CH2),

3.62 (dd, J = 13.4/4.6 Hz, 1H, pyridine 2-CH2), 3.90 (t, J = 19.5 Hz, 2H, pyridine

6-CH2), 6.01 (td, J = 3.6/1.5 Hz 1H, pyridine 5-CH).

13C NMR (CDCl3): δ 17.7, 24.6, 38.5, 47.9, 51.3, 61.8, 125.2, 127.0. 

m/z: LCMS C10H18NO2BrS [MH]+ calc 295.0, found 295.1 with tR of 2.90 min.

N-(tert-butylsulfonyl)-4-(3-methoxyphenyl)-3-methyl-1,2,3,6-

tetrahydropyridine (155)

To a solution of 4-Bromo-N-(tert-butylsulfonyl)-3-methyl-1,2,3,6-

tetrahydropyridine (154) (15 mg, 0.05 mmol) in 1:1 ethanol-toluene (1.2 mL)

were added 3-methoxybenzeneboronic acid (9 mg, 0.06 mmol, 1 eq) and

sodium carbonate (1 M, 0.22 mL). A catalytic amount of

tetrakis(triphenylphosphine)palladium(0) (5%) was added and the reaction

heated to 100°C in a microwave for 30 minutes. The solvent was then removed

by evaporation under vacuum and the resulting mixture partitioned between

diethyl ether (5 mL) and water (5 mL) before the organic phase was washed

with brine (5 mL). The organic phase was dried over magnesium sulfate and the

solvent evaporated off under vacuum. Column chromatography (15-30% EtOAc

in PE) afforded 155 as a pale yellow oil (12 mg, 73%).

1H NMR (CDCl3): δ 1.08 (d, J = 6.9 Hz, 3H, pyridine 3-CH3), 1.45 (s, 9H, tBu CH3),

2.91 (br s, 1H, pyridine 3-CH), 3.55 (m, 2H, pyridine 6-CH2), 3.85 (s, 3H, O-CH3),

4.04 (d, J = 17.7 Hz, 1H, pyridine 2-CH2), 4.19 (d, J = 17.8 Hz, 1H, pyridine 2-CH2),

5.86 (dd, J = 3.4/1.0 Hz, 1H, pyridine 5-CH2), 6.85 (dd, J = 10.8/2.5 Hz, 2H, phenol

2 and 6-CH), 6.92 (dt, J = 7.7/1.3 Hz, 1H, phenol 4-CH), 7.28 (t, J = 7.7 Hz, 1H,

phenol 5-CH).
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13C NMR (CDCl3): δ 18.0, 25.0, 32.4, 47.0, 51.1, 55.4, 61.9, 112.2, 112.7, 118.7, 

120.8, 129.5, 141.8, 159.8.

m/z: LCMS C17H25NO3S [MH]+ calc 324.2, found 324.4 with tR of 2.20 min.

4-(3-methoxyphenyl)-3-methyl-1,2,3,6-tetrahydropyridine (156)

To a solution of N-(tert-butylsulfonyl)-4-(3-methoxyphenyl)-3-methyl-1,2,3,6-

tetrahydropyridine (155) (323 mg, 1.00 mmol) and anisole (2.17 mL, 2.163 g,

20.00 mmol, 20 eq) in dichloromethane (30.1 mL) was added a solution of triflic

acid (0.53 mL, 900 mg, 6.00 mmol, 6 eq) in dichloromethane (30.1 mL) dropwise

at 0°C. The reaction was left to stir at 0°C until complete by TLC. The reaction

was quenched by the addition of 2M NaOH (40 mL) and the organic and

aqueous layers separated. The aqueous layer was extracted with

dichloromethane (20 mL x3) and the combined organic phases dried over

magnesium sulfate. Solvents were evaporated under vacuum. Column

chromatography (10% 1M NH3/ MeOH in dichloromethane) afforded 156 as a

colourless oil (157 mg, 77%).

1H NMR (CDCl3) δ 1.02 (d, J = 7.0 Hz, 3H, pyridine 3-CH3), 2.85 (m, 1H, pyridine

3-CH), 2.93 (dd, J = 12.5/4.6 Hz, 1H, pyridine 2-CH2), 3.23 (dd, J = 12.5/4.8 Hz,

1H, pyridine 2-CH2), 3.52 (s, 1H, NH), 3.57 (t, J = 2.6 Hz, 2H, pyridine 6-CH2), 3.81

(s, 3H, O-CH3), 5.89 (dd, J = 3.4/2.3 Hz, 1H, pyridine 5-CH), 6.81 (dd, J = 8.0/2.1

Hz, 1H, phenol 6-CH), 6.84 (t, J = 2.0 Hz, 1H, phenol 2-CH), 6.89 (dt, J = 7.7/1.2

Hz, 1H, phenol 4-CH), 7.24 (t, J = 7.9 Hz, 1H, phenol 5-CH)

13C NMR (CDCl3) δ 18.2, 30.2, 44.9, 49.7, 55.2, 112.0, 112.4, 118.6, 122.4, 129.3, 

141.8, 142.2, 159.6.
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4-(3-methoxyphenyl)-1,3-dimethyl-1,2,3,6-tetrahydropyridine (157)

To a solution of 4-(3-methoxyphenyl)-3-methyl-1,2,3,6-tetrahydropyridine

(156) (157 mg, 0.772 mmol) in dichloroethane (5.5 mL) was added 37%

aqueous formaldehyde (23mg, 0.06 ml, 0.772 mmol, 1 eq) followed by the slow

addition of sodium triacetoxyborohydride (665 mg, 3.089 mmol, 4 eq) at room

temperature. After 90 minutes of stirring, acetic acid (0.04 mL, 43.4 mg, 0.723

mmol, 1 eq) was added and the reaction was left to stir for a further 30 minutes.

The solution was basified by the addition of saturated sodium bicarbonate

solution (10 mL) and extracted with dichloromethane (10 mL x3). The combined

organic phases were dried with magnesium sulfate and solvents evaporated off

under vacuum. Column chromatography (10% 1M NH3/ MeOH in

dichloromethane) afforded 157 as a yellow oil (149 mg, 89%).

1H NMR (CDCl3): δ 1.00 (d, J = 7.0 Hz, 3H, pyridine 3-CH3), 2.38 (s, 3H, N-CH3),

2.39 (dd, J = 11.2/5.2 Hz, 1H, pyridine 6-CH2), 2.69 (dd, J = 11.2/4.9 Hz, 1H,

pyridine 6-CH2), 2.91 (m, 1H, pyridine 3-CH), 2.99 (dt, J = 16.8/3.0 Hz, 1H,

pyridine 2-CH2), 3.10 (dt, J = 16.8/3.0 Hz, 1H, pyridine 2-CH2), 3.81 (s, 3H, O-

CH3), 5.85 (td, J = 3.6/1.2 Hz, 1H, pyridine 5-CH), 6.79 (ddd, J = 8.2/2.7/0.8 Hz,

1H, phenol 6-CH), 6.85 (t, J = 2.0 Hz, 1H, phenol 2-CH), 6.90 (dt, J = 7.7/1.2 Hz,

1H, phenol 4-CH), 7.22 (t, J = 8.0 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 18.8, 32.3, 45.9, 55.2, 55.5, 60.3, 112.0, 112.1, 118.8, 122.7, 

129.1, 141.0, 142.6, 159.5.

4-(3-isopropoxyphenyl)-1,3-dimethylpiperidin-4-ol (159)
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To a solution of 1-bromo-3-isopropoxybenzene (3.76 mL, 5 g, 23.25 mmol, 1.35

eq) in tetrahydrofuran (50 mL) at -75°C was added n-butyllithium (1.48M in

hexanes) (15.1 mL, 22.39 mmol, 1.3 eq). The reaction was allowed to stir at -

75°C for 1 hr before the dropwise addition of 1,3-dimethyl-4-piperidone (2.30

mL, 2.187 g, 17.22 mmol, 1 eq). The reaction was left to stir at -75°C until

complete by TLC. The reaction mixture was diluted with heptane (100 mL)

followed by the addition of saturated ammonium chloride solution (50 mL). The

layers were separated and the organic layer was washed with water (25 mL)

and brine (25 mL). It was then dried with magnesium sulfate and solvents

evaporated off under vacuum. Column chromatography (10% 1M NH3/MeOH

in EtOAc) afforded 159 as a colourless oil (4.099 g, 94%).

1H NMR (CDCl3): δ 0.65 (d, J = 6.8 Hz, 3H, piperidine 3-CH3), 1.34 (d, J = 6.0 Hz,

6H, i-Pr CH3), 1.72 (dt, J = 14.1, 2.5 Hz, 1H, piperidine 5-CH2), 2.11-2.23 (m, 2H,

piperidine 2-CH2 and 5-CH2), 2.23-2.33 (m, 1H, piperidine 3-CH), 2.36 (s, 3H, N-

CH3), 2.42 (dd, J = 12.9, 2.5 Hz, 1H, piperidine 6-CH2), 2.70 (ddd, J = 11.2, 4.0,

1.6 Hz, 1H, piperidine 2-CH2), 2.77 (ddt, J = 11.3, 4.3, 1.9 Hz, 1H, piperidine 6-

CH2), 4.56 (hept, J = 6.1 Hz, 1H, i-Pr CH), 6.78 (ddd, J = 8.2, 2.5, 1.0 Hz, 1H,

phenol 6-CH), 7.01 (dt, J = 7.9, 1.5 Hz, 1H, phenol 2-CH), 7.04 (t, J = 2.1 Hz, 1H,

phenol 4-CH), 7.25 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 12.3, 22.1, 22.1, 39.3, 40.6, 46.2, 51.5, 58.8, 69.8, 73.4, 

112.7, 113.9, 116.9, 129.2, 149.0, 157.9.

m/z: LCMS C16H25NO2 [MH]+ calc 264.2, found 264.2 with tR of 2.48 min.

Ethyl (4-(3-isopropoxyphenyl)-1,3-dimethylpiperidin-4-yl) carbonate (160)

To a solution of 4-(3-isopropoxyphenyl)-1,3-dimethylpiperidin-4-ol (159)

(4.000 g, 15.19 mmol) and triethylamine (2.96 mL, 2.151 g, 21.26 mmol, 1.4 eq)
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in ethyl acetate (100 mL) at 0°C was added ethyl chloroformate (2.03 mL, 2.307

g, 21.26 mmol, 1.4 eq) dropwise over 15 minutes. The reaction was allowed to

stir and warm to room temperature over 24 hrs. 2M NaOH (100 mL) and

additional EtOAc (100 mL) were added and the layers separated. The aqueous

layer was extracted with further EtOAc (2 x 50 mL). The combined organic

phases were then washed with water (50 mL) and brine (50 mL). It was then

dried with magnesium sulfate and solvents evaporated off under vacuum.

Column chromatography (5-10% 1M NH3/MeOH in EtOAc) afforded 160 as a

colourless oil (4.044 g, 79%).

1H NMR (CDCl3): δ 0.75 (d, J = 6.8 Hz, 3H, piperidine 3-CH3), 1.30 – 1.38 (m, 9H,

i-Pr CH3 and Et CH3), 1.88 – 2.02 (m, 1H, piperidine 3-CH), 2.17 – 2.33 (m, 2H,

piperidine 2-CH2 and 6-CH2), 2.36 (s, 3H, N-CH3), 2.35 – 2.47 (m, 1H, piperidine

5-CH2), 2.69 (ddd, J = 11.5, 4.1, 1.5 Hz, 1H, piperidine 2-CH2), 2.83 (br d, J = 11.4

Hz, 1H, piperidine 6-CH2), 3.00 (dt, J = 14.2, 2.5 Hz, 1H, piperidine 5-CH2), 4.19

(ddq, J = 15.2, 10.7, 7.1 Hz, 2H, Et CH2), 4.52 (hept, J = 6.0 Hz, 1H, i-Pr CH), 6.74

– 6.84 (m, 3H, Ph 2-CH, Ph 4-CH and Ph 6-CH), 7.24 (t, J = 7.9 Hz, 1H, Ph 5-CH).

13C NMR (CDCl3): δ 12.6, 14.4, 22.0, 22.1, 32.8, 42.6, 45.9, 51.0, 58.8, 63.5, 69.9, 

84.3, 113.2, 114.3, 117.3, 129.0, 143.4, 153.2, 157.7.

m/z: LCMS C19H29NO4 [MH]+ calc 336.2, found 336.1 with tR of 2.20 min.

4-(3-isopropoxyphenyl)-1,3-dimethyl-1,2,3,6-tetrahydropyridine (161)

To a two-neck flask containing ethyl (4-(3-isopropoxyphenyl)-1,3-

dimethylpiperidin-4-yl) carbonate (160) (8.650 g, 25.79 mmol) was added

anhydrous decalin (100 ml). The reaction was heated to reflux (195°C) for 24

hrs or until the reaction was complete by TLC. Ethanol produced in the reaction

was removed by evaporation under vacuum. The decalin was washed with 2M
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HCl (4 x 25 mL) and the combined aqueous phases were basified with 2M NaOH

(200 mL) and the product extracted with EtOAc (3 x 50 mL). The organic phase

was finally washed with water (50 mL) and brine (50 mL), dried with magnesium

sulfate and solvents evaporated off under vacuum. Column chromatography

(5% 1M NH3/MeOH in EtOAc) afforded 161 as a pale yellow oil (6.248 g, 99%).

(R)-4-(3-isopropoxyphenyl)-1,3-dimethyl-1,2,3,6-tetrahydropyridine (161a)

[α]19
D: -79.7 (MeOH, c 1.00).

1H NMR (CDCl3): δ 1.00 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.33 (d, J = 6.1 Hz,

6H, i-Pr CH3), 2.38 (s, 3H, N-CH3), 2.39 (dd, J = 10.9, 5.1 Hz, 1H, piperidine 2-

CH2), 2.68 (dd, J = 11.2, 4.9 Hz, 1H, piperidine 2-CH2), 2.87 – 2.97 (m, 1H,

piperidine 3-CH), 2.98 (dt, J = 16.8, 3.0 Hz, 1H, piperidine 6-CH2), 3.09 (dt, J =

16.8, 3.0 Hz, 1H, piperidine 6-CH2), 4.55 (hept, J = 6.0 Hz, 1H, i-Pr CH), 5.86 (td,

J = 3.6, 1.2 Hz, 1H, piperidine 5-CH), 6.76 (ddd, 8.2, 2.5, 0.9 Hz, 1H, phenol 6-

CH), 6.83 (t, J = 2.1 Hz, 1H phenol 2-CH), 6.87 (dt, J = 7.7, 1.2 Hz, 1H, phenol 4-

CH), 7.20 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 18.9, 22.2, 22.3, 32.4, 46.1, 55.6, 60.4, 69.9, 114.2, 114.2, 

118.7, 122.7, 129.3, 141.2, 142.7, 158.0.

m/z: LCMS C16H23NO [MH]+ calc 246.2, found 246.2 with tR of 2.07 min.

(S)-4-(3-isopropoxyphenyl)-1,3-dimethyl-1,2,3,6-tetrahydropyridine (161b)

[α]19
D: +79.7 (MeOH, c 1.00).
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1H NMR (CDCl3): δ 1.00 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.33 (d, J = 6.1 Hz,

6H, i-Pr CH3), 2.38 (s, 3H, N-CH3), 2.39 (dd, J = 10.9, 5.1 Hz, 1H, piperidine 2-

CH2), 2.68 (dd, J = 11.2, 4.9 Hz, 1H, piperidine 2-CH2), 2.87 – 2.97 (m, 1H,

piperidine 3-CH), 2.98 (dt, J = 16.8, 3.0 Hz, 1H, piperidine 6-CH2), 3.09 (dt, J =

16.8, 3.0 Hz, 1H, piperidine 6-CH2), 4.55 (hept, J = 6.0 Hz, 1H, i-Pr CH), 5.86 (td,

J = 3.6, 1.2 Hz, 1H, piperidine 5-CH), 6.76 (ddd, 8.2, 2.5, 0.9 Hz, 1H, phenol 6-

CH), 6.83 (t, J = 2.1 Hz, 1H phenol 2-CH), 6.87 (dt, J = 7.7, 1.2 Hz, 1H, phenol 4-

CH), 7.20 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 18.9, 22.2, 22.3, 32.4, 46.1, 55.6, 60.4, 69.9, 114.2, 114.2, 

118.7, 122.7, 129.3, 141.2, 142.7, 158.0.

m/z: LCMS C16H23NO [MH]+ calc 246.2, found 246.2 with tR of 2.07 min.

(3R,4S)-4-(3-isopropoxyphenyl)-1,3,4-trimethyl-1,2,3,4-tetrahydropyridine

(162a)

To a solution of I-4-(3-isopropoxyphenyl)-1,3-dimethyl-1,2,3,6-

tetrahydropyridine (161a) (588 mg, 2.40 mmol) in THF (10 ml) at -10°C was

added n-Butyllithium (1.56 ml of a 1.48M solution in hexanes, 3.59 mmol, 1.5

eq) dropwise. The dark red solution was allowed to stir at -10°C for 30 minutes.

The flask was then cooled to -50°C and dimethylsulphate (0.25 ml, 332 mg,

2.636 mmol, 1.1 eq) was added dropwise over 15 minutes. The reaction was

then allowed to stir at -50°C until complete by TLC and LCMS (I hour). A dilute

solution of ammonium hydroxide (1:3 35% NH4OH/water, 5 ml) and heptane (5

ml) were added at 0°C and stirred for a further 1 hour, allowing the solution to

warm to room temperature. The layers were then separated and the aqueous

phase extracted with EtOAc (25 mL). The combined organic phases were

washed with water (10 mL) and brine (10 mL), dried over MgSO4 and
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evaporated under vacuum. Column chromatography (1% 1M NH3/MeOH in

EtOAc) afforded 162a as a pale yellow oil (481 mg, 77%).

[α]19
D: -59.7 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.60 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.34 (d, J = 6.1 Hz,

6H, i-Pr CH3), 1.44 (s, 3H, piperidine 4-CH3), 1.92 (dqd, J = 10.5, 6.9, 3.4 Hz, 1H,

piperidine 3-CH), 2.47 (dd, J = 11.6, 10.4 Hz, 1H, piperidine 2-CH2), 2.67 (dd, J =

11.5, 3.6 Hz, 1H, piperidine 2-CH2), 2.67 (s, 3H, N-CH3), 4.34 (d, J = 7.8 Hz, 1H,

piperidine 5-CH), 4.53 (hept, J = 6.0 Hz, 1H i-Pr CH), 5.98 (d, J = 7.8 Hz, 1H,

piperidine 6-CH), 6.72 (ddd, J = 8.2, 2.5, 1.1 Hz, 1H, phenol 6-CH), 6.94 – 6.98

(m, 2H, phenol 2-CH, 4-CH), 7.17 (t, J = 8.2 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 15.2, 22.3, 22.3, 28.2, 38.9, 40.3, 42.6, 52.9, 69.9, 106.3, 

112.8, 117.4, 121.4, 127.9, 135.3, 148.1, 157.1.

m/z: LCMS C17H25NO [MH]+ calc 260.2, found 260.3 with tR of 2.12 min.

(3S,4R)-4-(3-isopropoxyphenyl)-1,3,4-trimethyl-1,2,3,4-tetrahydropyridine

(162b)

Experimental method unchanged from that described for the synthesis of

(3R,4S)-4-(3-isopropoxyphenyl)-1,3,4-trimethyl-1,2,3,4-tetrahydropyridine

(162a) yielding 162b as a pale yellow oil (78%).

[α]19
D: +59.7 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.60 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.34 (d, J = 6.1 Hz,

6H, i-Pr CH3), 1.44 (s, 3H, piperidine 4-CH3), 1.92 (dqd, J = 10.5, 6.9, 3.4 Hz, 1H,

piperidine 3-CH), 2.47 (dd, J = 11.6, 10.4 Hz, 1H, piperidine 2-CH2), 2.67 (dd, J =

11.5, 3.6 Hz, 1H, piperidine 2-CH2), 2.67 (s, 3H, N-CH3), 4.34 (d, J = 7.8 Hz, 1H,

piperidine 5-CH), 4.53 (hept, J = 6.0 Hz, 1H i-Pr CH), 5.98 (d, J = 7.8 Hz, 1H,
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piperidine 6-CH), 6.72 (ddd, J = 8.2, 2.5, 1.1 Hz, 1H, phenol 6-CH), 6.94 – 6.98

(m, 2H, phenol 2-CH, 4-CH), 7.17 (t, J = 8.2 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 15.2, 22.3, 22.3, 28.2, 38.9, 40.3, 42.6, 52.9, 69.9, 106.3, 

112.8, 117.4, 121.4, 127.9, 135.3, 148.1, 157.1.

m/z: LCMS C17H25NO [MH]+ calc 260.2, found 260.3 with tR of 2.12 min.

(3R,4R)-4-(3-isopropoxyphenyl)-1,3,4-trimethylpiperidine (163a)

To a solution of (3R,4S)-4-(3-isopropoxyphenyl)-1,3,4-trimethyl-1,2,3,4-

tetrahydropyridine (162a) (465 mg, 1.79 mmol) in methanol (10 mL) at 0°C was

added sodium borohydride (109 mg, 2.87 mmol, 1.6 eq). It was stirred while

warming to room temperature until complete by TLC. The solution was

quenched with 1:1 acetone/sat. NaHCO3 solution (10 mL). The solvents were

evaporated off under vacuum and the remaining mixture re-dissolved in EtOAc

(20 mL). This was then washed with water (10 mL) and brine (10 mL), dried over

MgSO4 and evaporated under vacuum. Column chromatography (5% 1M

NH3/MeOH in EtOAc) afforded 163a as a pale yellow oil (332 mg, 71%).

[α]19
D: -69.4 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.80 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.31 (s, 3H,

piperidine 4-CH3), 1.34 (dd, J = 6.0, 1.9 Hz, 6H, i-Pr CH3), 1.60 (ddd, J = 10.3, 3.4,

1.7 Hz, 1H, piperidine 6-CH2), 1.94-2.05 (m, 1H, piperidine 3-CH), 2.28 (s, 3H, N-

CH3), 2.32 (dt, J = 9.0, 3.1 Hz, 2H, piperidine 5-CH2), 2.53 (d, J = 2.9 Hz, 2H,

piperidine 2-CH2), 2.76-2.82 (m, 1H, piperidine 6-CH2), 4.54 (hept, J = 6.1 Hz,

1H, i-Pr CH), 6.70 (dd, J = 8.2, 2.2 Hz, 1H, phenol 4-CH), 6.82 (t, J = 2.2 Hz, 1H,

phenol 2-CH), 6.86 (ddd, J = 7.8, 1.8, 0.9 Hz, 1H, phenol 6-CH), 7.20 (t, J = 8.0

Hz, 1H, phenol 5-CH).
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13C NMR (CDCl3): δ 16.5, 22.1, 22.2, 27.6, 38.0, 38.8, 46.7, 52.3, 58.6, 69.7, 

112.1, 114.4, 118.1, 128.9, 151.9, 157.8.

LCMS m/z for C17H27NO [MH]+ calc 262.2, found 262.2 with tR of 2.14 min.

(3S,4S)-4-(3-isopropoxyphenyl)-1,3,4-trimethylpiperidine 163)

Experimental method unchanged from that described for the synthesis of

(3R,4R)-4-(3-isopropoxyphenyl)-1,3,4-trimethylpiperidine (163a) yielding 163b

as a pale yellow oil (69%).

[α]19
D: +69.4 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.80 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.31 (s, 3H,

piperidine 4-CH3), 1.34 (dd, J = 6.0, 1.9 Hz, 6H, i-Pr CH3), 1.60 (ddd, J = 10.3, 3.4,

1.7 Hz, 1H, piperidine 6-CH2), 1.94-2.05 (m, 1H, piperidine 3-CH), 2.28 (s, 3H, N-

CH3), 2.32 (dt, J = 9.0, 3.1 Hz, 2H, piperidine 5-CH2), 2.53 (d, J = 2.9 Hz, 2H,

piperidine 2-CH2), 2.76-2.82 (m, 1H, piperidine 6-CH2), 4.54 (hept, J = 6.1 Hz,

1H, i-Pr CH), 6.70 (dd, J = 8.2, 2.2 Hz, 1H, phenol 4-CH), 6.82 (t, J = 2.2 Hz, 1H,

phenol 2-CH), 6.86 (ddd, J = 7.8, 1.8, 0.9 Hz, 1H, phenol 6-CH), 7.20 (t, J = 8.0

Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 16.5, 22.1, 22.2, 27.6, 38.0, 38.8, 46.7, 52.3, 58.6, 69.7, 

112.1, 114.4, 118.1, 128.9, 151.9, 157.8.

m/z: LCMS C17H27NO [MH]+ calc 262.2, found 262.2 with tR of 2.14 min.
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Phenyl (3R,4R)-4-(3-isopropoxyphenyl)-3,4-dimethylpiperidine-1-

carboxylate (164a)

To a solution of (3R,4R)-4-(3-isopropoxyphenyl)-1,3,4-trimethylpiperidine

(163a) (403 mg, 1.542 mmol) in anhydrous toluene (20 mL) at 85°C was added

phenyl chloroformate (0.23 mL, 290 mg, 1.850 mmol, 1.2 eq) dropwise. The

solution was heated to reflux and stirred for 2 hours. It was then cooled to 45°C

and quenched with 1.4 M NaOH (5 mL) before allowing it to cool to room

temperature. The layers were partitioned and the organic washed with 1:1

MeOH/1M HCl (10 mL x3), 1:1 MeOH/1M NaOH (10 mL), water (10 mL) and

brine (10 mL), dried over MgSO4 and evaporated under vacuum. Column

chromatography (5% 1M NH3/MeOH in EtOAc) afforded phenyl 164a as an

orange oil (423 mg, 75%).

[α]19
D: -65.1 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.71-0.82 (m, 3H, piperidine 3-CH3), 1.35 (d, J = 6.1 Hz, 6H, i-

Pr CH3), 1.42 (s, 3H, piperidine 4-CH3), 1.61-1.70 (m, 1H, piperidine 5-CH2), 2.00-

2.15 (m, 1H, piperidine 3-CH), 2.32 (dd, J = 13.0, 5.0 Hz, 1H, piperidine 5-CH2),

3.13-3.60 (m, 2H, piperidine 2-CH2, piperidine 6-CH2), 3.94- 4.14 (m, 1H,

piperidine 2-CH2), 4.25-4.39 (m, 1H, piperidine 6-CH2), 4.56 (septet, J = 6.1 Hz,

1H, i-Pr CH), 6.74 (ddd, J = 8.2, 2.5, 0.8 Hz, 1H, phenol 4-CH), 6.82 (t, J = 3.6 Hz,

1H, phenol 2-CH), 6.85 (d, J = 8.1 Hz, 1H, phenol 6-CH), 7.06 – 7.31 (m, 3H,

phenol 5-CH, phenyl 2-CH, phenyl 6-CH), 7.32 – 7.48 (m, 3H, phenyl 3-CH,

phenyl 4-CH, phenyl 5-CH).

13C NMR (CDCl3): δ 14.3, 22.0, 26.4, 29.1, 29.6, 38.3, 38.4, 38.7, 40.3, 40.7, 45.9, 

46.5, 69.6, 112.1, 112.2, 113.9, 117.5, 120.8, 121.6, 125.0, 126.2, 129.1, 129.4,

150.9, 157.8.

m/z: LCMS C23H29NO3 [MH]+ calc 368.5, found 368.3 with tR of 2.30 min.
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Phenyl (3S,4S)-4-(3-isopropoxyphenyl)-3,4-dimethylpiperidine-1-carboxylate

(164b)

Experimental method unchanged from that described for the synthesis of

phenyl (3R,4R)-4-(3-isopropoxyphenyl)-3,4-dimethylpiperidine-1-carboxylate

(164a) yielding phenyl 164b as an orange oil (74%).

[α]19
D: +65.1 (MeOH, c 1.00).

1H NMR (CDCl3): δ 0.71-0.82 (m, 3H, piperidine 3-CH3), 1.35 (d, J = 6.1 Hz, 6H, i-

Pr CH3), 1.42 (s, 3H, piperidine 4-CH3), 1.61-1.70 (m, 1H, piperidine 5-CH2), 2.00-

2.15 (m, 1H, piperidine 3-CH), 2.32 (dd, J = 13.0, 5.0 Hz, 1H, piperidine 5-CH2),

3.13-3.60 (m, 2H, piperidine 2-CH2, piperidine 6-CH2), 3.94- 4.14 (m, 1H,

piperidine 2-CH2), 4.25-4.39 (m, 1H, piperidine 6-CH2), 4.56 (septet, J = 6.1 Hz,

1H, i-Pr CH), 6.74 (ddd, J = 8.2, 2.5, 0.8 Hz, 1H, phenol 4-CH), 6.82 (t, J = 3.6 Hz,

1H, phenol 2-CH), 6.85 (d, J = 8.1 Hz, 1H, phenol 6-CH), 7.06 – 7.31 (m, 3H,

phenol 5-CH, phenyl 2-CH, phenyl 6-CH), 7.32 – 7.48 (m, 3H, phenyl 3-CH,

phenyl 4-CH, phenyl 5-CH).

13C NMR (CDCl3): δ 14.3, 22.0, 26.4, 29.1, 29.6, 38.3, 38.4, 38.7, 40.3, 40.7, 45.9, 

46.5, 69.6, 112.1, 112.2, 113.9, 117.5, 120.8, 121.6, 125.0, 126.2, 129.1, 129.4,

150.9, 157.8.

m/z: LCMS C23H29NO3 [MH]+ calc 368.5, found 368.3 with tR of 2.30 min.

3-((3R,4R)-3,4-dimethylpiperidin-4-yl)phenol (146a)
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A solution of phenyl (3R,4R)-4-(3-isopropoxyphenyl)-3,4-dimethylpiperidine-1-

carboxylate (15a) (500 mg, 1.36 mmol) in glacial acetic acid (0.84 ml) and 48%

hydrobromic acid (0.84 ml) were heated to reflux for 16 hours. The solution

was cooled to room temperature and extracted with methyl tert-butyl ether

(x3) to remove any phenol by-product. The aqueous phase was titrated to pH

10 and extracted with 1:3 toluene/butan-1-ol until no further compound could

be detected in the extracts. The combined extracts were evaporated under

vacuum. Column chromatography (30% 1M NH3/MeOH in EtOAc) afforded

146a as an orange oil (240 mg, 86%) which dried into a foam at room

temperature.

[α]19
D: +118.7 (MeOH, c 1.00).

1H NMR (MeOD): δ 0.84 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.44 (s, 3H,

piperidine 4-CH3), 1.86 (dt, J = 14.0, 3.6 Hz, 1H, piperidine 5-CH2), 2.26 – 2.34

(m, 1H, piperidine 3-CH), 2.39 (ddd, J = 14.5, 11.1, 6.2 Hz, 1H, piperidine 5-CH2),

3.16 (dd, J = 13.1, 3.2 Hz, 1H, piperidine 6-CH2), 3.26 – 3.39 (m, 2H, piperidine

2-CH2), 3.50 (dd, J = 13.0, 3.8 Hz, 1H, piperidine 6-CH2), 6.66 (dd, J = 7.9, 2.2 Hz,

1H, phenol 6-CH), 6.76 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.80 (dd, J = 8.0, 1.7 Hz,

1H, phenol 4-CH), 7.16 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (MeOD): δ 14.8, 24.2, 27.4, 37.4, 38.8, 41.7, 47.2, 113.5, 114.1, 117.5, 

130.6, 150.2, 158.8.

m/z: LCMS C13H19NO [MH]+ calc 206.3, found 206.3 with tR of 0.84 min.

3-((3S,4S)-3,4-dimethylpiperidin-4-yl)phenol (146b)

Experimental method unchanged from that described for the synthesis of 3-

((3R,4R)-3,4-dimethylpiperidin-4-yl)phenol (146a) yielding 146b as an orange

oil (82%) which dried into a foam at room temperature.
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[α]19
D: -118.7 (MeOH, c 1.00).

1H NMR (MeOD): δ 0.84 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.44 (s, 3H,

piperidine 4-CH3), 1.86 (dt, J = 14.0, 3.6 Hz, 1H, piperidine 5-CH2), 2.26 – 2.34

(m, 1H, piperidine 3-CH), 2.39 (ddd, J = 14.5, 11.1, 6.2 Hz, 1H, piperidine 5-CH2),

3.16 (dd, J = 13.1, 3.2 Hz, 1H, piperidine 6-CH2), 3.26 – 3.39 (m, 2H, piperidine

2-CH2), 3.50 (dd, J = 13.0, 3.8 Hz, 1H, piperidine 6-CH2), 6.66 (dd, J = 7.9, 2.2 Hz,

1H, phenol 6-CH), 6.76 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.80 (dd, J = 8.0, 1.7 Hz,

1H, phenol 4-CH), 7.16 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (MeOD): δ 14.8, 24.2, 27.4, 37.4, 38.8, 41.7, 47.2, 113.5, 114.1, 117.5, 

130.6, 150.2, 158.8.

m/z: LCMS C13H19NO [MH]+ calc 206.3, found 206.3 with tR of 0.84 min.

Ethyl 3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoate

(167a)

To a solution of 3-((3R,4R)-3,4-dimethylpiperidin-4-yl)phenol (146a) (240 mg,

1.17 mmol) in anhydrous tetrahydrofuran (10 mL) at 50 °C was added ethyl

acrylate (0.25 mL, 235 mg, 2.33 mmol, 2 eq) dropwise. The reaction was left to

stir for 20 hours at 50°C. The solution was cooled to room temperature and

filtered through celite, washing with MeOH before the solvents were

evaporated under vacuum. Column chromatography (5% 1M NH3/MeOH in

EtOAc) afforded 167a as a white solid (300 mg, 84%).

1H NMR (CDCl3) δ 0.73 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.25 (t, J = 7.2 Hz,

3H, Et-CH3), 1.30 (s, 3H, piperidine 4-CH3), 1.58 (d, J = 12.9 Hz, 1H, piperidine 5-

CH2), 1.93 – 2.01 (m, 1H, piperidine 3-CH), 2.29 (td, J = 12.4, 4.6 Hz, 1H,

piperidine 5-CH2), 2.41 (td, J = 11.5, 2.6 Hz, 1H, piperidine 6-CH2), 2.51 (t, J = 7.1

Hz, 2H, propanoate α-CH2), 2.58 (t, J = 3.4 Hz, 2H, piperidine 2-CH2), 2.61-2.80
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(m, 2H, propanoate β-CH2), 2.85 (dt, J = 10.8, 3.7 Hz, 1H, piperidine 6-CH2), 4.13

(qd, J = 7.1, 2.0 Hz, 2H, Et-CH2), 6.63 (dd, J = 7.8, 2.3 Hz, 1H, phenol 4-CH), 6.74

(t, J = 2.1 Hz, 1H, phenol 2-CH), 6.83 (d, J = 8.0 Hz, 1H, phenol 6-CH), 7.16 (t, J =

7.9 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3) δ 16.1, 27.5, 30.8, 32.0, 38.4, 38.9, 49.9, 51.7, 53.9, 55.8, 112.6, 

113.2, 117.7, 129.2, 151.6, 156.1, 173.4.

m/z: LCMS C18H27NO3 [MH]+ calc 306.4, found 306.2 with tR of 1.89 min.

Ethyl 3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoate

(167b)

Experimental method unchanged from that described for the synthesis of ethyl

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoate (167a)

yielding 167b as a white solid (84%).

1H NMR (CDCl3): δ 0.73 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.25 (t, J = 7.2 Hz,

3H, Et-CH3), 1.30 (s, 3H, piperidine 4-CH3), 1.58 (d, J = 12.9 Hz, 1H, piperidine 5-

CH2), 1.93 – 2.01 (m, 1H, piperidine 3-CH), 2.29 (td, J = 12.4, 4.6 Hz, 1H,

piperidine 5-CH2), 2.41 (td, J = 11.5, 2.6 Hz, 1H, piperidine 6-CH2), 2.51 (t, J = 7.1

Hz, 2H, propanoate α-CH2), 2.58 (t, J = 3.4 Hz, 2H, piperidine 2-CH2), 2.61-2.80

(m, 2H, propanoate β-CH2), 2.85 (dt, J = 10.8, 3.7 Hz, 1H, piperidine 6-CH2), 4.13

(qd, J = 7.1, 2.0 Hz, 2H, Et-CH2), 6.63 (dd, J = 7.8, 2.3 Hz, 1H, phenol 4-CH), 6.74

(t, J = 2.1 Hz, 1H, phenol 2-CH), 6.83 (d, J = 8.0 Hz, 1H, phenol 6-CH), 7.16 (t, J =

7.9 Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ 16.1, 27.5, 30.8, 32.0, 38.4, 38.9, 49.9, 51.7, 53.9, 55.8, 

112.6, 113.2, 117.7, 129.2, 151.6, 156.1, 173.4

m/z: LCMS C18H27NO3 [MH]+ calc 306.4, found 306.2 with tR of 1.89 min.
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3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a)

To a solution of ethyl 3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoate (167a) (40 mg, 0.913 mmol) in dioxane (1 mL) was added 4M HCl

(in dioxane and water) (0.5 mL) and heated to reflux (105°C) for 2 hours. Once

cooled to room temperature the solvents were evaporated in vacuo to give

165a as a white solid (39 mg, 95%).

1H NMR (MeOD): δ 0.83 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.45 (s, 3H,

piperidine 4-CH3), 1.93 (d, J = 14.8 Hz, 1H, piperidine 5-CH2), 2.34 – 2.44 (m, 1H,

piperidine 3-CH), 2.49 (td, J = 14.1, 4.4 Hz, 1H, piperidine 5-CH2), 2.91 (t, J = 7.0

Hz, 2H, propanoate α-CH2), 3.42 (dt, J = 14.2, 2.7 Hz, 1H, piperidine 6-CH2), 3.49

(t, J = 7.1 Hz, 2H, propanoate β-CH2), 3.53 – 3.62 (m, 3H, piperidine 2-CH2,

piperidine 6-CH2), 6.66 (dd, J = 8.0, 2.4 Hz, 1H, phenol 6-CH), 6.73 (t, J = 2.1 Hz,

1H, phenol 2-CH), 6.77 (dd, J = 7.7, 1.8 Hz, 1H, phenol 4-CH), 7.16 (t, J = 7.8 Hz,

1H, phenol 5-CH).

13C NMR (MeOD): δ 15.1, 27.0, 28.7, 29.3, 38.3, 38.4, 43.7, 50.9, 54.1, 56.0, 

113.27, 114.2, 117.3, 130.7, 150.2, 158.8, 173.6.

m/z: HRMS C16H23NO3 [MH]+ calc 278.1751, found 278.1755.

3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165b)
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Experimental method unchanged from that described for the synthesis of 3-

((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) yielding 165b as a white solid (98%).

1H NMR (MeOD): δ 0.83 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.45 (s, 3H,

piperidine 4-CH3), 1.93 (d, J = 14.8 Hz, 1H, piperidine 5-CH2), 2.34 – 2.44 (m, 1H,

piperidine 3-CH), 2.49 (td, J = 14.1, 4.4 Hz, 1H, piperidine 5-CH2), 2.91 (t, J = 7.0

Hz, 2H, propanoate α-CH2), 3.42 (dt, J = 14.2, 2.7 Hz, 1H, piperidine 6-CH2), 3.49

(t, J = 7.1 Hz, 2H, propanoate β-CH2), 3.53 – 3.62 (m, 3H, piperidine 2-CH2,

piperidine 6-CH2), 6.66 (dd, J = 8.0, 2.4 Hz, 1H, phenol 6-CH), 6.73 (t, J = 2.1 Hz,

1H, phenol 2-CH), 6.77 (dd, J = 7.7, 1.8 Hz, 1H, phenol 4-CH), 7.16 (t, J = 7.8 Hz,

1H, phenol 5-CH).

13C NMR (MeOD): δ 15.1, 27.0, 28.7, 29.3, 38.3, 38.4, 43.7, 50.9, 54.1, 56.0, 

113.27, 114.2, 117.3, 130.7, 150.2, 158.8, 173.6.

m/z: HRMS C16H23NO3 [MH]+ calc 278.1751, found 278.1754.

General procedure 2 – amide coupling of 3-(4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanoic acids to amino acid methyl esters

To a solution of a 3-(4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic

acid (165a or 165b) (1 eq) in DMF was added HBTU (0.5 eq), HOBt (1 eq) and

amino acid methyl ester hydrochloride (1 eq). TEA (4 eq) was then added

dropwise and the solution was stirred at room temperature for 24 hours. The

DMF was evaporated off under vacuum and before re-dissolving in toluene and

further evaporation under vacuum to remove any residual DMF. Column

chromatography (5% 1M NH3/MeOH in EtOAc) of the product afforded the

product. Where necessary, further purification was carried out using reverse

phase HPLC (system 3).
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Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycinate (166a)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (23 mg, 0.072 mmol, 1 eq) and glycine methyl ester

hydrochloride (9 mg, 0.072 mmol, 1 eq) to give 166a as a white solid (4 mg,

16%).

1H NMR (MeOD) δ 0.77 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.32 (s, 3H,

piperidine 4-CH3), 1.63 (d, J = 13.2 Hz, 1H, piperidine 5-CH2), 2.02 – 2.10 (m, 1H,

piperidine 3-CH), 2.35 (td, J = 12.6, 4.2 Hz, 1H, piperidine 5-CH2), 2.41 – 2.51

(m, 1H, piperidine 6-CH2), 2.47 (t, J = 6.6 Hz, 2H, propanamide α-CH2), 2.61 –

2.77 (m, 4H, piperidine 2-CH2, propanamide β-CH2), 2.93 (dt, J = 11.0, 4.0 Hz,

1H, piperidine 6-CH2), 3.71 (s, 3H, O-CH3), 3.92 (d, J = 17.8 Hz, 1H, glycine CH2),

3.99 (d, J = 17.8 Hz, 1H, glycine CH2), 6.59 (dd, J = 8.0, 2.4 Hz, 1H, phenol 6-CH),

6.75 (d, J = 2.2 Hz, 1H, phenol 2-CH), 6.78 (d, J = 8.4 Hz, 1H, phenol 4-CH), 7.11

(t, J = 7.9 Hz, 1H, phenol 5-CH).

m/z: HRMS C19H28N2O4 [MH]+ calc 349.2122, found 349.2116.

Methyl (3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycinate (166b)
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The title compound was synthesised as described in general procedure 2, using

3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (146b) (23 mg, 0.072 mmol, 1 eq) and glycine methyl ester

hydrochloride (9 mg, 0.072 mmol, 1 eq) to give 166b as a white solid (4 mg,

16%).

1H NMR (MeOD) δ 0.77 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.32 (s, 3H,

piperidine 4-CH3), 1.63 (d, J = 13.2 Hz, 1H, piperidine 5-CH2), 2.02 – 2.10 (m, 1H,

piperidine 3-CH), 2.35 (td, J = 12.6, 4.2 Hz, 1H, piperidine 5-CH2), 2.41 – 2.51

(m, 1H, piperidine 6-CH2), 2.47 (t, J = 6.6 Hz, 2H, propanamide α-CH2), 2.61 –

2.77 (m, 4H, piperidine 2-CH2, propanamide β-CH2), 2.93 (dt, J = 11.0, 4.0 Hz,

1H, piperidine 6-CH2), 3.71 (s, 3H, O-CH3), 3.92 (d, J = 17.8 Hz, 1H, glycine CH2),

3.99 (d, J = 17.8 Hz, 1H, glycine CH2), 6.59 (dd, J = 8.0, 2.4 Hz, 1H, phenol 6-CH),

6.75 (d, J = 2.2 Hz, 1H, phenol 2-CH), 6.78 (d, J = 8.4 Hz, 1H, phenol 4-CH), 7.11

(t, J = 7.9 Hz, 1H, phenol 5-CH).

m/z: HRMS C19H28N2O4 [MH]+ calc 349.2122, found 349.2112.

General procedure 3 – Ester hydrolysis of 3-(4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanoylamido methyl esters

To a solution of the 3-(4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoylamido methyl ester in dioxane (0.5 mL) was added 4M HCl (in

dioxane and water) (0.1 mL) and heated to reflux (105°C) for 2 hours. Once

cooled to room temperature the solvents were evaporated to give the 3-(-4-(3-

hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoylamido acid

hydrochloride product.

(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycine hydrochloride (136a)



178

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycinate (166a) (5 mg, 0.014 mmol) to give 136a as a white solid

(5 mg, 100%).

1H NMR (MeOD) δ 0.82 (d, J = 7.4 Hz, 3H, piperidine 3-CH3), 1.45 (s, 3H,

piperidine 4-CH3), 1.94 (d, J = 14.8 Hz, 1H, piperidine 5-CH2), 2.35 – 2.44 (m, 1H,

piperidine 3-CH), 2.49 (td, J = 14.1, 4.5 Hz, 1H, , piperidine 5-CH2), 2.85 (t, J =

6.4 Hz, 2H, propanamide α-CH2), 3.38 – 3.70 (m, 5H, propanamide β-CH2,

piperidine 2-CH2, piperidine 6-CH2), 3.75 (dd, J = 11.4, 6.4 Hz, 1H, piperidine 6-

CH2), 6.66 (dd, J = 8.0, 2.3 Hz, 1H, phenol 6-CH), 6.73 (t, J = 2.2 Hz, 1H, phenol

2-CH), 6.78 (d, J = 7.8 Hz, 1H, phenol 4-CH), 7.17 (t, J = 7.9 Hz, 1H, phenol 5-CH).

m/z HRMS C18H26N2O4 [MH]+ calc 335.1965, found 335.1955.

(3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycine hydrochloride (136b)

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3S,4S)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)glycinate (166b) (5 mg, 0.014 mmol) to give 136b as a white solid

(5 mg, 100%).

1H NMR (MeOD) δ 0.82 (d, J = 7.4 Hz, 3H, piperidine 3-CH3), 1.45 (s, 3H,

piperidine 4-CH3), 1.94 (d, J = 14.8 Hz, 1H, piperidine 5-CH2), 2.35 – 2.44 (m, 1H,

piperidine 3-CH), 2.49 (td, J = 14.1, 4.5 Hz, 1H, , piperidine 5-CH2), 2.85 (t, J =

6.4 Hz, 2H, propanamide α-CH2), 3.38 – 3.70 (m, 5H, propanamide β-CH2,

piperidine 2-CH2, piperidine 6-CH2), 3.75 (dd, J = 11.4, 6.4 Hz, 1H, piperidine 6-

CH2), 6.66 (dd, J = 8.0, 2.3 Hz, 1H, phenol 6-CH), 6.73 (t, J = 2.2 Hz, 1H, phenol

2-CH), 6.78 (d, J = 7.8 Hz, 1H, phenol 4-CH), 7.17 (t, J = 7.9 Hz, 1H, phenol 5-CH).
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m/z HRMS C18H26N2O4 [MH]+ calc 335.1965, found 335.1958.

Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-alaninate (166c)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-alanine methyl ester

hydrochloride (11 mg, 0.080 mmol, 1 eq) to give 166c as a white solid (4 mg,

14%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.22 (s, 3H,

piperidine 4-CH3), 1.23 (d, J = 7.6 Hz, 3H, alanine CH3), 1.51 (d, J = 12.8 Hz, 1H,

piperidine 5-CH2), 1.96 (d, J = 7.3 Hz, 1H, piperidine 3-CH), 2.14 (dt, J = 12.7, 6.4

Hz, 1H, piperidine 5-CH2), 2.22 – 2.35 (m, 2H, piperidine 2-CH2, piperidine 6-

CH2), 2.28 (t, J = 6.9 Hz, 2H, propanamide α-CH2), 2.47 – 2.58 (m, 3H,

propanamide β-CH2, piperidine 2-CH2), 2.82 (d, J = 10.7 Hz, 1H, piperidine 6-

CH2), 3.62 (s, 3H, O-CH3), 4.29 (p, J = 7.2 Hz, 1H, alanine α-CH), 6.55 (dd, J = 7.7,

2.3 Hz, 1H, phenol 6-CH), 6.66 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.71 (d, J = 8.0

Hz, 1H, phenol 4-CH), 7.08 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.21 (s, 1H, phenol

OH), 8.55 (d, J = 7.3 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 16.1, 17.4, 27.2, 29.1, 32.6, 37.9, 47.2, 49.0, 50.9, 53.5, 

54.7, 112.2, 112.4, 116.0, 128.8, 157.1, 163.8, 171.2, 173.2.

m/z: HRMS C20H30N2O4 [MH]+ calc 363.2278, found 363.2288.
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Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-valinate (166d)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-valine methyl ester

hydrochloride (13 mg, 0.080 mmol, 1 eq) to give 166d as a white solid (5 mg,

16%).

1H NMR (MeOD): δ 0.85 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 0.97 (dd, J = 6.8,

1.0 Hz, 6H, valine CH3), 1.42 (s, 3H, piperidine 4-CH3), 1.89 (dt, J = 13.6, 3.8 Hz,

1H, piperidine 5-CH2), 2.15 (dp, J = 7.0, 6.6 Hz, 1H, valine β-CH), 2.27 – 2.37 (m, 

1H, piperidine 3-CH), 2.46 (ddd, J = 15.6, 12.1, 4.3 Hz, 1H, piperidine 5-CH2),

2.80 (t, J = 6.7 Hz, 2H, propanamide α-CH2), 3.13 – 3.31 (m, 2H, piperidine 2-

CH2, piperidine 6-CH2), 3.32 – 3.41 (m, 3H, propanamide β-CH2, piperidine 2-

CH2), 3.45 (d, J = 12.4 Hz, 1H, piperidine 6-CH2), 3.72 (s, 3H, O-CH3), 4.35 (d, J =

5.9 Hz, 1H, valine α-CH), 6.65 (ddd, J = 8.1, 2.4, 0.9 Hz, 1H, phenol 6-CH), 6.75

(t, J = 2.1 Hz, 1H, phenol 2-CH), 6.79 (dt, J = 7.8, 1.5 Hz, 1H, phenol 4-CH), 7.16

(t, J = 7.9 Hz, 1H, phenol 5-CH), 8.45 (s, 1H, phenol OH).

13C NMR (MeOD): δ 15.2, 18.5, 19.4, 27.6, 30.0, 30.7, 38.8, 38.9, 50.6, 52.5, 

54.6, 55.9, 59.4, 113.7, 114.1, 117.7, 130.6, 158.7, 169.0, 173.1, 173.5.

m/z: HRMS C22H34N2O4 [MH]+ calc 391.2591, found 391.2593.
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Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-phenylalaninate (166e)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-phenylalanine methyl

ester hydrochloride (17 mg, 0.080 mmol, 1 eq) to give 166e as a white solid (6

mg, 17%).

1H NMR (CDCl3): δ 0.60 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.28 (s, 3H,

piperidine 4-CH3), 1.58 (dd, J = 10.5, 3.9 Hz, 1H, piperidine 5-CH2), 1.87 – 2.02

(m, 1H, piperidine 3-CH), 2.21 – 2.36 (m, 2H, piperidine 5-CH2, piperidine 6-

CH2), 2.40 (qt, J = 16.7, 5.4 Hz, 2H, propanamide β-CH2), 2.50 – 2.62 (m, 4H,

propanamide α-CH2, piperidine 2-CH2), 2.88 – 2.97 (m, 1H, piperidine 6-CH2),

3.00 (dd, J = 13.9, 6.9 Hz, 1H, phenylalanine CH2), 3.11 (dd, J = 13.9, 6.1 Hz, 1H,

phenylalanine CH2), 3.68 (s, 3H, O-CH3), 4.92 (dt, J = 8.2, 6.5 Hz, 1H,

phenylalanine α-CH), 6.67 (dd, J = 7.9, 2.4 Hz, 1H, phenol 6-CH), 6.77 (t, J = 2.1

Hz, 1H, phenol 2-CH), 6.80 (dd, J = 7.9, 1.7 Hz, 1H, phenol 4-CH), 7.06 – 7.11 (m,

2H, phenylalanine ortho-CH), 7.13 – 7.25 (m, 3H, phenylalanine para-CH,

phenylalanine meta-CH), 7.16 (t, J = 7.9 Hz, 1H, phenol 5-CH), 9.10 (d, J = 8.4

Hz, 1H, amide NH).

13C NMR (CDCl3): δ 16.3, 27.6, 30.4, 31.9, 38.3, 38.6, 38.6, 49.2, 52.3, 53.2, 54.3, 

56.1, 112.6, 113.1, 117.8, 127.0, 128.5, 129.3, 129.4, 136.6, 151.7, 156.2, 172.2,

172.8.

m/z: HRMS C26H34N2O4 [MH]+ calc 439.2591, found 439.2597.

Methyl (S)-3-cyclohexyl-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanamido)propanoate (166f)
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The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-cyclohexylalanine

methyl ester hydrochloride (18 mg, 0.080 mmol, 1 eq) to give 166f as a white

solid (6 mg, 17%).

1H NMR (MeOD): δ 0.85 (d, J = 7.4 Hz, 3H, piperidine 3-CH3), 0.88 – 1.05 (m, 2H,

cyclohexyl 2-CH2, cyclohexyl 6-CH2), 1.14 – 1.40 (m, 4H, cyclohexyl 3-CH2,

cyclohexyl 4-CH2, cyclohexyl 5-CH2), 1.42 (s, 3H, piperidine 4-CH3), 1.50 – 1.82

(m, 7H, cyclohexylalanine β-CH2, cyclohexyl 1-CH, cyclohexyl 2-CH2, cyclohexyl

3-CH2, cyclohexyl 5-CH2, cyclohexyl 6-CH2), 1.88 (d, J = 14.5 Hz, 1H, piperidine

5-CH2), 2.26 – 2.37 (m, 1H, piperidine 3-CH), 2.46 (td, J = 12.6, 4.2 Hz, 1H,

piperidine 5-CH2), 2.76 (t, J = 6.6 Hz, 2H, propanamide α-CH2), 3.10 – 3.24 (m,

2H, piperidine 2-CH2, piperidine 6-CH2), 3.24 – 3.40 (m, 3H, piperidine 2-CH2,

propanamide β-CH2), 3.44 (d, J = 12.0 Hz, 1H, piperidine 6-CH2), 3.70 (s, 3H, O-

CH3), 4.48 (dd, J = 9.9, 5.1 Hz, 1H, cyclohexylalanine α-CH), 6.65 (ddd, J = 8.1,

2.4, 0.8 Hz, 1H, phenol 6-CH), 6.75 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.79 (dt, J =

7.9, 1.3 Hz, 1H, phenol 4-CH), 7.16 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.43 (s, 1H,

OH)

13C NMR (MeOD): δ 15.3, 27.1, 27.3, 27.5, 30.2, 30.7, 33.2, 34.7, 35.4, 38.8, 

39.0, 40.0, 50.7, 51.6, 52.7, 54.5, 55.9, 113.7, 114.1, 117.7, 130.5, 158.7, 168.7,

173.1, 174.7.

m/z: HRMS C26H40N2O4 [MH]+ calc 445.3061, found 445.3058.

Ethyl (S)-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)-4-phenylbutanoate (166g)
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The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-homophenylalanine

ethyl ester hydrochloride (18 mg, 0.080 mmol, 1 eq) to give 166g as a white

solid (6 mg, 16%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.15 (t, J = 6.3

Hz, 3H, Et-CH3) 1.22 (s, 3H, piperidine 4-CH3), 1.51 (d, J = 12.7 Hz, 1H, piperidine

5-CH2), 1.74 (m, 4H, homophenylalanine β-CH2, propanamide α-CH2), 2.05 –

2.10 (m, 1H, piperidine 3-CH), 2.15 (td, J = 12.7, 4.2 Hz, 1H, piperidine 5-CH2),

2.22 – 2.41 (m, 4H, propanamide β-CH2, piperidine 2-CH2, piperidine 6-CH2),

2.44 – 2.68 (m, homophenylalanine γ-CH2, piperidine 2-CH2), 2.85 (d, J = 11.1

Hz, 1H, piperidine 6-CH2), 4.09 (qd, J = 6.3, 2.2 Hz, 2H, Et-CH2), 4.26 (td, J = 8.7,

4.8 Hz, 1H, homophenylalanine α-CH), 6.54 (dd, J = 7.9, 1.6 Hz, 1H, phenol 6-

CH), 6.64 – 6.71 (m, 2H, phenol 2-CH, phenol 4-CH), 7.07 (t, J = 7.8 Hz, 1H,

phenol 5-CH), 7.13 – 7.21 (m, 3H, phenyl ortho-CH, phenyl para-CH), 7.22 – 7.30

(m, 2H, phenyl meta-CH), 8.27 (s, 1H, phenol OH), 8.58 (d, J = 7.9 Hz, 1H, amide

NH)

13C NMR (DMSO-d6): δ 15.4, 16.6, 27.7, 31.7, 33.3, 33.6, 38.4, 49.1, 49.6, 51.5, 

52.3, 54.5, 55.6, 56.0, 112.6, 112.9. 116.5, 126.4, 128.8, 129.4, 141.3, 152.1,

157.6, 172.1, 173.1.

m/z: HRMS C27H36N2O4 [MH]+ calc 467.2904, found 466.2901.

Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-tyrosinate (166h)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid
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hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and L-tyrosine methyl ester

hydrochloride (19 mg, 0.080 mmol, 1 eq) to give 166g as a white solid (5 mg,

14%).

1H NMR (MeOD): δ 0.76 (d, J = 7.2 Hz, 3H, piperidine 3-CH3), 1.37 (s, 3H,

piperidine 4-CH3), 1.80 (d, J = 14.1 Hz, 1H, piperidine 5-CH2), 2.22 (d, J = 7.7 Hz,

1H, piperidine 3-CH), 2.37 (td, J = 14.0, 10.1 Hz, 1H, piperidine 5-CH2), 2.52 –

2.71 (m, 2H, propanamide α-CH2), 2.84 (dd, J = 14.0, 9.2 Hz, 1H, tyrosine β-CH2),

2.91 – 3.05 (m, 2H, piperidine 2-CH2, piperidine 6-CH2), 3.07 – 3.19 (m, 4H,

tyrosine β-CH2, piperidine 2-CH2, propanamide β-CH2), 3.24 (d, J = 14.6 Hz, 1H,

piperidine 6-CH2), 3.70 (s, 3H, O-CH3), 4.69 (ddd, J = 9.3, 5.3, 2.1 Hz, 1H, tyrosine

α-CH), 6.64 (ddd, J = 8.1, 2.4, 0.8 Hz, 1H, phenol 6-CH), 6.67 – 6.77 (m, 3H,

phenol 2-CH, tyrosine phenol ortho-CH), 6.78 (dd, J = 8.1, 1.9 Hz, 1H, phenol 4-

CH), 7.02 (d, J = 8.5 Hz, 2H, tyrosine meta-CH), 7.15 (t, J = 7.9 Hz, 1H, phenol 5-

CH).

13C NMR (MeOD): δ 15.4, 27.6, 30.5, 31.6, 36.9, 37.8, 38.9, 50.5, 52.8, 54.5, 

55.3, 56.0, 113.7, 114.0, 116.3, 116.3, 117.8, 128.6, 130.5, 131.3, 151.1, 157.5,

158.6, 169.4, 173.0, 173.5.

m/z: HRMS C26H34N2O5 [MH]+ calc 455.2640, found 455.2548.

Methyl N6-(tert-butoxycarbonyl)-N2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanoyl)-L-lysinate (168i)

The title compound was synthesised as described in general procedure 2, using

3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoic acid

hydrochloride (165a) (25 mg, 0.080 mmol, 1 eq) and Nε-Boc-L-lysine methyl

ester hydrochloride (24 mg, 0.080 mmol, 1 eq) to give 166g as a white solid (5

mg, 12%).
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1H NMR (MeOD): δ 0.81 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.34 – 1.54 (m, 4H,

lysine γ-CH2, lysine δ-CH2), 1.43 (s, 9H, tBu-CH3), 1.45 (s, 3H, piperidine 4-CH3),

1.65 – 1.78 (m, 1H, lysine β-CH2), 1.79 – 1.91 (m, 1H, lysine β-CH2), 1.95 (d, J =

14.5 Hz, 1H, piperidine 5-CH2), 2.36 – 2.53 (m, 2H, piperidine 5-CH2, piperidine

3-CH), 2.83 (t, J = 6.7 Hz, 2H, propanamide α-CH2), 3.02 (t, J = 6.8 Hz, 2H, lysine

ε-CH2), 3.29 – 3.38 (m, 1H, piperidine 6-CH2), 3.40 – 3.56 (m, 4H, piperidine 2-

CH2, propanamide β-CH2), 3.60 (d, J = 14.4 Hz, 1H, piperidine 6-CH2), 3.73 (s,

3H, O-CH3), 4.41 (dd, J = 8.8, 5.1 Hz, 1H, lysine α-CH), 6.66 (ddd, J = 8.1, 2.4, 0.8

Hz, 1H, phenol 6-CH), 6.73 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.78 (dt, J = 7.9, 1.5

Hz, 1H, phenol 4-CH), 7.17 (t, J = 7.9 Hz, 1H, phenol 5-CH).

13C NMR (MeOD): δ 13.4, 22.7, 25.6, 27.4, 27.7, 29.1, 30.6, 36.8, 37.1, 39.6, 

49.3, 51.5, 52.4, 53.1, 54.1, 78.5, 111.8, 112.8, 115.9, 129.3, 148.9, 157.4,

171.4, 172.7.

(3-((3R,4R)-4-(3-Hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoyl)-L-

alanine (136c)

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-alaninate (166c) (3 mg, 0.008 mmol) to give 136c as a white

solid (3 mg, 100%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.22 (s, 3H,

piperidine 4-CH3), 1.23 (d, J = 7.6 Hz, 3H, alanine CH3), 1.51 (d, J = 12.8 Hz, 1H,

piperidine 5-CH2), 1.96 (d, J = 7.3 Hz, 1H, piperidine 3-CH), 2.14 (dt, J = 12.7, 6.4

Hz, 1H, piperidine 5-CH2), 2.22 – 2.35 (m, 2H, piperidine 2-CH2, piperidine 6-

CH2), 2.28 (t, J = 6.9 Hz, 2H, propanamide α-CH2), 2.47 – 2.58 (m, 3H,

propanamide β-CH2, piperidine 2-CH2), 2.82 (d, J = 10.7 Hz, 1H, piperidine 6-
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CH2), 4.29 (p, J = 7.2 Hz, 1H, alanine α-CH), 6.55 (dd, J = 7.7, 2.3 Hz, 1H, phenol

6-CH), 6.66 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.71 (d, J = 8.0 Hz, 1H, phenol 4-CH),

7.08 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.21 (s, 1H, phenol OH), 8.55 (d, J = 7.3 Hz,

1H, amide NH).

13C NMR (DMSO-d6): δ 16.1, 17.4, 27.2, 29.1, 32.6, 37.9, 47.2, 49.0, 53.5, 54.7, 

112.2, 112.4, 116.0, 128.8, 157.1, 163.8, 171.2, 173.2.

m/z: HRMS C19H28N2O4 [MH]+ calc 349.2122, found 349.2130.

(3-((3R,4R)-4-(3-Hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoyl)-L-

valine (136d)

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-valinate (166d) (3 mg, 0.008 mmol) to give 136d as a white solid

(3 mg, 100%).

1H NMR (DMSO-d6): δ 0.68 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 0.85 (dd, J = 6.8,

3.5 Hz, 6H, valine CH3), 1.23 (s, 3H, piperidine 4-CH3), 1.51 (d, J = 12.6 Hz, 1H,

piperidine 5-CH2), 1.91 – 2.09 (m, 2H, valine β-CH, piperidine 3-CH), 2.18 (td, J

= 12.7, 4.2 Hz, 1H, piperidine 5-CH2), 2.24 – 2.43 (m, 3H, propanamide α-CH2,

piperidine 6-CH2), 2.52 – 2.63 (m, 4H, propanamide β-CH2, piperidine 2-CH2),

2.87 (d, J = 11.8 Hz, 1H, piperidine 6-CH2), 4.17 (dd, J = 8.7, 5.6 Hz, 1H), 6.55

(dd, J = 7.9, 2.3 Hz, 1H, phenol 6-CH), 6.66 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.70

(d, J = 7.9 Hz, 1H, phenol 4-CH), 7.08 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.19 (s, 1H,

phenol OH), 8.31 (d, J = 8.7 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 16.6, 18.5, 19.6, 27.7, 30.3, 30.7, 33.0, 38.4, 38.4, 49.5, 

54.7, 55.7, 57.4, 112.6, 113.0, 116.5, 129.4, 152.0, 157.6, 164.0, 171.9, 173.7.
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m/z: HRMS C21H32N2O4 [MH]+ calc 377.2435, found 377.2427.

(3-((3R,4R)-4-(3-Hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoyl)-L-

phenylalanine (136e)

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-phenylalaninate (166e) (5 mg, 0.011 mmol) to give 136e as a

white solid (5 mg, 100%).

1H NMR (MeOD): δ 0.77 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 1.42 (s, 3H,

piperidine 4-CH3), 1.90 (d, J = 10.5 Hz, 1H, piperidine 5-CH2), 2.30 – 2.47 (m, 2H,

piperidine 3-CH, piperidine 5-CH2), 2.69 (dt, J = 17.0, 6.7 Hz, 1H, phenylalanine

β-CH2), 2.79 (dt, J = 16.9, 6.4 Hz, 1H, phenylalanine β-CH2), 2.94 (dd, J = 13.9,

9.9 Hz, 2H, propanamide α-CH2), 3.20 – 3.29 (m, 1H, piperidine 6-CH2), 3.36 –

3.42 (m, 2H, propanamide β-CH2), 3.43 – 3.52 (m, 2H, piperidine 2-CH2), 3.61 –

3.73 (m, 1H, piperidine 6-CH2), 4.72 (dd, J = 9.7, 4.7 Hz, 1H, phenylalanine α-

CH), 6.66 (dd, J = 8.1, 2.3 Hz, 1H, phenol 6-CH), 6.72 (d, J = 2.3 Hz, 1H, phenol

2-CH), 6.76 (d, J = 7.8 Hz, 1H, phenol 4-CH), 7.17 (t, J = 7.9 Hz, 1H, phenol 5-CH),

7.19 – 7.35 (m, 5H, phenyl CH).

13C NMR (DMSO-d6): δ 15.2, 26.4, 26.9, 29.3, 36.3, 36.6, 37.0, 43.6, 60.2, 70.5, 

72.2, 112.2, 122.8, 115.7, 126.5, 128.2, 129.1, 129.3, 137.7, 149.5, 157.4, 169.2,

172.9.

m/z: HRMS C25H32N2O4 [MH]+ calc 425.2435, found 425.2425.
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(S)-3-cyclohexyl-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)propanoic acid (136f)

The title compound was synthesised as described in general procedure 3, using

methyl (S)-3-cyclohexyl-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanamido)propanoate (166f) (5 mg, 0.011 mmol) to

give 136f as a white solid (5 mg, 100%).

1H NMR (DMSO-d6): δ 0.77 (d, J = 7.3 Hz, 3H, piperidine 3-CH3), 0.80 – 0.99 (m,

2H, cyclohexyl 2-CH2, cyclohexyl 6-CH2), 1.05 – 1.31 (m, 4H, cyclohexyl 3-CH2,

cyclohexyl 4-CH2, cyclohexyl 5-CH2), 1.35 (s, 3H, piperidine 4-CH3), 1.47 – 1.72

(m, 7H, cyclohexylalanine β-CH2, cyclohexyl 1-CH, cyclohexyl 2-CH2, cyclohexyl

3-CH2, cyclohexyl 5-CH2, cyclohexyl 6-CH2), 1.76 (d, J = 14.2 Hz, 1H, piperidine

5-CH2), 2.20 – 2.29 (m, 1H, piperidine 3-CH), 2.26 (td, J = 14.1, 3.0 Hz, 1H,

piperidine 5-CH2), 2.80 (t, J = 7.5 Hz, 2H, propanamide α-CH2), 3.19 – 3.43 (m,

6H, propanamide α-CH2, piperidine 2-CH2, piperidine 6-CH2), 4.25 (q, J = 7.6 Hz,

1H, cyclohexylalanine α-CH), 6.61 (dd, J = 7.9, 2.2 Hz, 1H, phenol 6-CH), 6.66 (t,

J = 2.0 Hz, 1H, phenol 2-CH), 6.70 (d, J = 8.1 Hz, 1H, phenol 4-CH), 7.12 (t, J = 7.9

Hz, 1H, phenol 5-CH), 8.48 (d, J = 7.8 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 15.1, 25.6, 25.8, 26.0, 26.4, 27.0, 29.2, 31.5, 33.1, 33.6, 

36.3, 37.1, 38.3, 43.6, 48.6, 49.7, 52.3, 53.3, 112.2, 112.8, 115.7, 129.2, 149.4,

157.4, 169.2, 174.0.

m/z: HRMS C25H38N2O4 [MH]+ calc 431.2904, found 431.2894.
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(S)-2-(3-((3R,4R)-4-(3-Hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)-4-phenylbutanoic acid (136g)

The title compound was synthesised as described in general procedure 3, using

ethyl (S)-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)-4-phenylbutanoate (166g) (5 mg, 0.011 mmol) to give 136g as

a white solid (5 mg, 100%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.22 (s, 3H,

piperidine 4-CH3), 1.51 (d, J = 12.7 Hz, 1H, piperidine 5-CH2), 1.74 (m, 4H,

homophenylalanine β-CH2, propanamide α-CH2), 2.05 – 2.10 (m, 1H, piperidine

3-CH), 2.15 (td, J = 12.7, 4.2 Hz, 1H, piperidine 5-CH2), 2.22 – 2.41 (m, 4H,

propanamide β-CH2, piperidine 2-CH2, piperidine 6-CH2), 2.44 – 2.68 (m,

homophenylalanine γ-CH2, piperidine 2-CH2), 2.85 (d, J = 11.1 Hz, 1H, piperidine

6-CH2), 4.26 (td, J = 8.7, 4.8 Hz, 1H, homophenylalanine α-CH), 6.54 (dd, J = 7.9,

1.6 Hz, 1H, phenol 6-CH), 6.64 – 6.71 (m, 2H, phenol 2-CH, phenol 4-CH), 7.07

(t, J = 7.8 Hz, 1H, phenol 5-CH), 7.13 – 7.21 (m, 3H, phenyl ortho-CH, phenyl

para-CH), 7.22 – 7.30 (m, 2H, phenyl meta-CH), 8.27 (s, 1H, phenol OH), 8.58

(d, J = 7.9 Hz, 1H, amide NH)

13C NMR (DMSO-d6): δ 16.6, 27.7, 31.7, 33.3, 33.6, 38.4, 49.1, 49.6, 51.5, 52.3, 

54.5, 55.6, 1126, 112.9. 116.5, 126.4, 128.8, 129.4, 141.3, 152.1, 157.6, 172.1,

173.1.

m/z: HRMS C26H34N2O4 [MH]+ calc 439.2591, found 439.2594.
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(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoyl)-L-

tyrosine (136h)

The title compound was synthesised as described in general procedure 3, using

methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-tyrosinate (166h) (4 mg, 0.009 mmol) to give 136h as a white

solid (4 mg, 100%).

1H NMR (DMSO-d6): δ 0.59 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.22 (s, 3H,

piperidine 4-CH3), 1.50 (d, J = 13.3 Hz, 1H, piperidine 5-CH2), 1.85 – 1.99 (m, 1H,

piperidine 3-CH), 2.15 (td, J = 12.8, 4.4 Hz, 1H, piperidine 5-CH2), 2.24 – 2.42

(m, 3H, propanamide α-CH2, piperidine 6-CH2), 2.52 – 2.65 (m, 3H,

propanamide β-CH2, piperidine 2-CH2), 2.72 (dd, J = 13.8, 8.4 Hz, 1H, tyrosine

β-CH2), 2.86 (d, J = 11.4 Hz, 1H, piperidine 6-CH2), 2.91 (dd, J = 13.9, 5.0 Hz, 1H,

tyrosine β-CH2), 4.38 (td, J = 8.2, 5.0 Hz, 1H, tyrosine α-CH), 6.55 (dd, J = 7.9,

1.6 Hz, 1H, phenol 6-CH), 6.59 – 6.67 (m, phenol 2-CH, tyrosine phenol ortho-

CH), 6.69 (d, J = 8.6 Hz, 1H, phenol 4-CH), 6.92 – 7.01 (m, 2H, tyrosine phenol

meta-CH), 7.08 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.18 (s, 1H, phenol OH), 8.42 (d,

J = 8.1 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 15.7, 27.2, 29.5, 32.1, 36.3, 37.7, 37.8, 48.9, 53.6, 53.8, 

54.9, 112.2, 112.5, 114.9, 116.1, 127.5, 129.0, 130.0, 151.3, 155.9, 157.1, 163.4,

170.8, 173.2.

m/z: HRMS C26H34N2O4 [MH]+ calc 441.2384, found 441.2390.
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(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanoyl)-L-

lysine (136i)

The title compound was synthesised as described in general procedure 3, using

methyl N6-(tert-butoxycarbonyl)-N2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanoyl)-L-lysinate (168i) (4 mg, 0.009 mmol) to give

136i as a white solid (2 mg, 50%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.23 (s, 3H,

piperidine 4-CH3), 1.32 (tq, J = 13.7, 8.5 Hz, 2H, lysine γ-CH2), 1.43 – 1.60 (m,

4H, lysine δ-CH2, lysine β-CH2, piperidine 5-CH2), 1.67 (ddt, J = 11.4, 9.6, 5.5 Hz,

1H, lysine β-CH2), 1.91 – 2.00 (m, 1H, piperidine 3-CH), 2.13 (td, J = 12.6, 4.3 Hz,

1H, piperidine 5-CH2), 2.22 – 2.34 (m, 3H, propanamide α-CH2, piperidine 6-

CH2), 2.47 – 2.57 (m, 4H, lysine ε-CH2, piperidine 2-CH2), 2.69 (t, J = 7.6 Hz, 2H,

propanamide β-CH2), 2.82 (dd, J = 9.9, 5.7 Hz, 1H, piperidine 6-CH2), 4.27 (ddd,

J = 9.1, 7.8, 5.0 Hz, 1H, lysine α-CH), 6.55 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H, phenol

6-CH), 6.68 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.71 (dt, J = 7.9, 1.2 Hz, 1H, phenol

4-CH), 7.09 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.39 (s, 1H, phenol OH), 8.56 (d, J =

7.9 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 16.6, 22.8, 27.7, 27.8, 30.3, 31.3, 33.2, 38.4, 38.4, 39.1, 

49.6, 51.9, 54.5, 55.5, 112.7, 112.9, 116.4, 129.4, 152.2, 157.7, 165.5, 172.1,

173.1.

m/z: HRMS C23H37N3O4 [MH]+ calc 420.2857, found 420.2861.
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Methyl (3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoyl)-L-lysinate (166i)

The title compound was synthesised as described in general procedure 3, using

methyl N6-(tert-butoxycarbonyl)-N2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl)propanoyl)-L-lysinate (168i) (4 mg, 0.009 mmol) to give

166i, a white solid as a biproduct of 136i (2 mg, 50%).

1H NMR (DMSO-d6): δ 0.67 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.23 (s, 3H,

piperidine 4-CH3), 1.32 (tq, J = 13.7, 8.5 Hz, 2H, lysine γ-CH2), 1.43 – 1.60 (m,

4H, lysine δ-CH2, lysine β-CH2, piperidine 5-CH2), 1.67 (ddt, J = 11.4, 9.6, 5.5 Hz,

1H, lysine β-CH2), 1.91 – 2.00 (m, 1H, piperidine 3-CH), 2.13 (td, J = 12.6, 4.3 Hz,

1H, piperidine 5-CH2), 2.22 – 2.34 (m, 3H, propanamide α-CH2, piperidine 6-

CH2), 2.47 – 2.57 (m, 4H, lysine ε-CH2, piperidine 2-CH2), 2.69 (t, J = 7.6 Hz, 2H,

propanamide β-CH2), 2.82 (dd, J = 9.9, 5.7 Hz, 1H, piperidine 6-CH2), 3.63 (s, 3H,

O-CH3), 4.27 (ddd, J = 9.1, 7.8, 5.0 Hz, 1H, lysine α-CH), 6.55 (ddd, J = 8.0, 2.4,

0.8 Hz, 1H, phenol 6-CH), 6.68 (t, J = 2.1 Hz, 1H, phenol 2-CH), 6.71 (dt, J = 7.9,

1.2 Hz, 1H, phenol 4-CH), 7.09 (t, J = 7.9 Hz, 1H, phenol 5-CH), 8.39 (s, 1H,

phenol OH), 8.56 (d, J = 7.9 Hz, 1H, amide NH).

13C NMR (DMSO-d6): δ 16.6, 22.8, 27.7, 27.8, 30.3, 31.3, 33.2, 38.4, 38.4, 39.1, 

49.6, 51.9, 52.3, 54.5, 55.5, 112.7, 112.9, 116.4, 129.4, 152.2, 157.7, 165.5,

172.1, 173.1.

m/z: HRMS C23H37N3O4 [MH]+ calc 420.2857, found 420.2861.
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Ethyl 3-((3R,4R)-4-(3-((tert-butyldimethylsilyl)oxy)phenyl)-3,4-

dimethylpiperidin-1-yl)propanoate (179)

To ethyl 3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoate (167) (278 mg, 0.91 mmol) and imidazole (124 mg, 1.820 mmol,

2 eq) in DMF (25 ml) was added tert-butyldimethylsilyl chloride (206 mg, 1.365

mmol, 1.5 eq) and stirred at rt for 4 hours. The solution was diluted with water

(200 ml) and extracted with EtOAc (3 x 50 ml). The combined organics were

washed with brine (50 ml) and dried over Na2SO4. Column chromatography (5%

MeOH in EtOAc) yielded 179 as a pale orange oil (344 mg, 90%)

1H NMR (CDCl3): δ 0.18 (s, 6H, silyl CH3), 0.74 (d, J = 7.0 Hz, 3H, piperidine 3-

CH3), 0.98 (s, 9H, tBu CH3), 1.25 (t, J = 7.1 Hz, 3H, Et CH3), 1.29 (s, 3H, piperidine

4-CH3), 1.56 (d, J = 12.3 Hz, 1H, piperidine 5-CH2), 1.91 – 1.99 (m, 1H, piperidine

3-CH), 2.26 (td, J = 12.4, 4.3 Hz, 1H, piperidine 5-CH2), 2.40 (td, J = 11.7, 2.3 Hz,

1H, piperidine 6-CH2), 2.49 (t, J = 7.2 Hz, 2H, propanoate α-CH2), 2.54 – 2.58 (m,

2H, piperidine 2-CH2), 2.70 (ddt, J = 26.5, 12.4, 7.1 Hz, 2H, propanoate β-CH2),

2.83 (dd, J = 7.6, 3.6 Hz, 1H, piperidine 6-CH2), 4.13 (qd, J = 7.1, 2.6 Hz, 2H, Et

CH2), 6.65 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H, phenol 6-CH), 6.75 (t, J = 2.0 Hz, 1H,

phenol 2-CH), 6.86 (ddd, J = 7.9, 1.7, 0.9 Hz, 1H, phenol 4-CH), 7.14 (t, J = 7.9

Hz, 1H, phenol 5-CH).

13C NMR (CDCl3): δ -4.2, 14.4, 16.2, 18.4, 25.9, 27.6, 30.8, 32.8, 38.5, 39.0, 50.1,

54.0, 55.7, 60.5, 117.2, 117.9, 118.8, 129.0, 152.0, 155.6, 172.9.

m/z: LCMS C24H41NO3Si [MH]+ calc 420.7, found 420.1 with tR of 4.62 min.
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Ethyl 3-((3R,4R)-4-(3-(benzyloxy)phenyl)-3,4-dimethylpiperidin-1-

yl)propanoate (180)

To ethyl 3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanoate (167) (88 mg, 0.288 mmol) and K2CO3 (119 mg, 0.864 mmol, 3

eq) under N2 was added dry DMF (10 ml) and stirred at rt for 10 mins. Benzyl

bromide (38 µl, 0.317 mmol, 1.1 eq) was added dropwise and the reaction was

left to stir at rt overnight. Solvent was removed under high vacuum and the

residue was partitioned between water (50 ml) and EtOAc (50 ml). The organic

was washed with brine (20 ml) and dried over Na2SO4. Column chromatography

(5% MeOH in EtOAc) yielded 180 as an orange oil (80 mg, 70%).

1H NMR (CDCl3): δ 0.66 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 1.16 (t, J = 7.1 Hz,

3H, Et CH3), 1.21 (s, 3H, piperidine 4-CH3), 1.50 (d, J = 11.3 Hz, 1H, piperidine 5-

CH2), 1.85 – 1.94 (m, 1H, piperidine 3-CH), 2.19 (td, J = 12.4, 4.4 Hz, 1H,

piperidine 5-CH2), 2.33 (td, J = 11.5, 2.7 Hz, 1H, piperidine 6-CH2), 2.41 (t, J = 7.2

Hz, 2H, propanoate α-CH2), 2.44 – 2.53 (m, 2H, piperidine 2-CH2), 2.53 – 2.70

(m, 2H, propanoate β-CH2), 2.74 (dt, J = 10.8, 4.1 Hz, 1H, piperidine 6-CH2), 4.04

(qd, J = 7.1, 2.3 Hz, 2H, Et CH2), 4.96 (s, 2H, benzyl CH2), 6.71 (dd, J = 8.4, 2.5 Hz,

1H, phenol 6-CH), 6.77 – 6.85 (m, 2H, phenol 2-CH, phenol 4-CH), 7.14 (t, J = 7.9

Hz, 1H, phenol 5-CH), 7.19 – 7.42 (m, 5H, benzyl CH).

13C NMR (CDCl3): δ 14.3, 16.2, 27.7, 30.9, 32.7, 38.7, 38.9, 50.1, 53.9, 55.7, 60.4, 

70.1, 111.1, 113.5, 118.6, 127.7, 128.0, 128.7, 129.1, 137.3, 152.0, 158.8, 172.9.

m/z: LCMS C25H33NO3 [MH]+ calc 396.6, found 396.2 with tR of 3.60 min.
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3-((3R,4R)-4-(3-(benzyloxy)phenyl)-3,4-dimethylpiperidin-1-yl)propanoic

acid (182)

To a solution of ethyl 3-((3R,4R)-4-(3-(benzyloxy)phenyl)-3,4-

dimethylpiperidin-1-yl)propanoate (180) (72 mg, 0.182 mmol) in dioxane (5

mL) was added 4M HCl (in dioxane and water) (2.5 mL) and heated to reflux

(105°C) for 2 hours. Once cooled to room temperature the solvents were

evaporated in vacuo to give 182 as a white solid (70 mg, 100%).

1H NMR (CDCl3): δ 0.76 (d, J = 7.1 Hz, 3H, piperidine 3-CH3), 1.30 (s, 3H,

piperidine 4-CH3), 1.71 (d, J = 13.9 Hz, 1H, piperidine 5-CH2), 2.01 – 2.15 (m, 1H,

piperidine 3-CH), 2.34 (td, J = 11.8 Hz, 1H, piperidine 5-CH2), 2.41 (t, J = 7.2 Hz,

2H, propanoate α-CH2), 2.33 (td, J = 11.5, 2.7 Hz, 1H, piperidine 6-CH2), 2.73 –

2.95 (m, 4H, piperidine 2-CH2, propanoate β-CH2), 3.09 (s, 1H, piperidine 6-

CH2), 4.04 (qd, J = 7.1, 2.3 Hz, 2H, Et CH2), 4.98 (s, 2H, benzyl CH2), 6.72 – 6.83

(m, 3H, phenol 6-CH, phenol 2-CH, phenol 4-CH), 7.14 (t, J = 8.2 Hz, 1H, phenol

5-CH), 7.22 – 7.41 (m, 5H, benzyl CH).

13C NMR (CDCl3): δ 15.8, 29.2, 29.8, 38.3, 48.8, 53.8, 55.2, 70.2, 111.7, 127.7, 

128.2, 128.7, 129.6, 137.1, 159.0, 174.0.

m/z: LCMS C23H29NO3 [MH]+ calc 368.5, found 368.2 with tR of 2.85 min.

General procedure 4 – solid phase peptide synthesis.

Novagel rink amide resin (0.69 mmol/g) (290 mg, 0.2 mmol) was swelled in

DMF in a filtered column for 1 hour before draining. 20% v/v piperidine in DMF

(5 ml) was added and the column gently agitated over 1 hour. The column was

drained and then washed with DMF (3 x 5 ml). Separately, a coupling solution

of HCTU (414 mg, 1.0 mmol, 5 eq), Fmoc-amino acid (1.0 mmol, 5 eq) and DIPEA
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(174 µl, 1.0 mmol, 5 eq) were stirred in DMF for 15 min at rt. The coupling

solution was added to the column and the column gently agitated over 4 hours.

The resin was drained, washed with DMF (3 x 5 ml), a 3:2 v/v mixture of acetic

anhydride/pyridine (5 ml) was added and the column was gently agitated over

1 hour. The column was drained and then washed with DMF (3 x 5 ml). The

Fmoc-deprotection in 20% v/v piperidine in DMF, Fmoc-amino acid coupling,

and capping steps were repeated twice more, with DMF washing (3 x 5ml)

between each step. This was followed by washing in DMF (3 x 5 ml), Fmoc-

deprotection in 20% v/v piperidine in DMF (5 ml), and further washing in DMF

(3 x 5 ml). A coupling mixture of HCTU (414 mg, 1.0 mmol, 5 eq), acrylic acid

(69 µl, 1.0 mmol, 5 eq) and DIPEA (174 µl, 1.0 mmol, 5 eq) were stirred in DMF

for 15 min at rt. This coupling mixture was then added to the column and the

column gently agitated over 4 hours. Washing in DMF (3 x 5 ml) was followed

by washing with DCM (3 x 5 ml) and the resin was dried under a stream of

nitrogen. The product was cleaved from the resin using an 18:1:1 v/v/v mixture

of TFA, TIPS and water (5 ml). The filtrate solvent was evaporated in vacuo.

Column chromatography (10% MeOH in EtOAc) yielded the product as a pale

yellow oil.

General procedure 5 – Michael addition of 3-((3R,4R)-3,4-dimethylpiperidin-

4-yl)phenol (146a) to acrylamido tripeptides.

3-((3R,4R)-3,4-dimethylpiperidin-4-yl)phenol (146a) (5 eq) and acrylamido

tripeptide (1 eq) were dissolved in minimal NMP and stirred at 85°C until

complete by TLC or LCMS (2-3 days). NMP was removed under high vacuum

and the residue was taken up in a 20% v/v solution of MeOH/EtOAc. It was then

was passed through a silica plug with additional washing with EtOAc and

purified by HPLC (system 3), to give the product as a pale yellow oil. Unreacted

146a was recovered by washing the silica with MeOH.
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(2S)-N-(2-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-2-oxoethyl)-2-(3-

((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamide (170a)

The title compound was synthesised as described in general procedure 5, using

N-((2S)-1-((2-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-2-

oxoethyl)amino)-1-oxo-3-phenylpropan-2-yl)acrylamide (177a) (5 mg, 0.01

mmol), which was synthesised using general procedure 4. This yielded 170a as

a white solid (7 mg, 100%).

1H NMR (DMSO-d6): δ 0.62 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.19 (s, 3H,

piperidine 4-CH3), 1.45 (d, J = 12.5 Hz, 1H piperidine 5-CH2), 1.85 – 1.96 (m, 1H,

piperidine 3-CH), 2.08 (td, J = 12.6, 4.2 Hz, 1H, piperidine 5-CH2), 2.13 – 2.30

(m, 3H, propanamide α-CH2, piperidine 6-CH2), 2.34 – 2.46 (m, 4H,

propanamide β-CH2, piperidine 2-CH2), 2.69 – 2.77 (m, 1H, piperidine 6-CH2),

2.73 (dd, J = 13.7, 9.6 Hz, 1H, Phe3 β-CH2), 2.81 (dd, J = 13.8, 9.6 Hz, 1H, Phe1 β-

CH2), 3.00 (dd, J = 14.4, 5.2 Hz, 1H, Phe3 β-CH2), 3.04 (dd, J = 14.1, 4.9 Hz, 1H,

Phe1 β-CH2), 3.55 (dd, J = 16.6, 5.4 Hz, 1H, Gly2 CH2), 3.78 (dd, J = 16.7, 6.1 Hz,

1H, Gly2 CH2), 4.41 (td, J = 9.0, 4.5 Hz, 1H, Phe1 α-CH), 4.50 (td, J = 8.9, 4.5 Hz,

1H, Phe3 α-CH), 6.55 (dd, J = 8.0, 2.3 Hz, 1H, phenol 6-CH), 6.66 (s, 1H, phenol

2-CH), 6.69 (d, J = 8.0 Hz, 1H, phenol 4-CH), 7.08 (t, J = 7.9 Hz, 1H, phenol 5-CH),

7.12 (s, 1H, amide NH2), 7.15 – 7.30 (m, 10H, phenyl CH), 7.43 (s, 1H, amide

NH2), 8.02 (d, J = 8.5 Hz, 1H, Pr-Phe1 amide NH), 8.26 (t, J = 5.8 Hz, 1H, Phe1-

Gly2 amide NH), 8.41 (s, 1H, phenol OH), 8.46 (d, J = 8.0 Hz, 1H, Gly2-Phe3 amide

NH).

13C NMR (DMSO-d6): δ 16.1, 27.3, 29.9, 32.8, 37.5, 37.6, 37.9, 40.4, 42.0, 49.0, 

53.9, 54.0, 55.1, 112.1, 112.5, 116.1, 126.3, 128.0, 128.1, 128.9, 129.1, 129.1,

137.9, 138.1, 151.7, 157.2, 165.1, 168.5, 171.6, 172.9.



198

m/z: HRMS C36H45N5O5 [MH]+ calc 628.3493, found 628.3492.

(2S)-N-((2S)-1-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-1-oxopropan-2-

yl)-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)-3-phenylpropanamide (170b)

The title compound was synthesised as described in general procedure 5, using

N-((2S)-1-(((2S)-1-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-1-oxopropan-

2-yl)amino)-1-oxo-3-phenylpropan-2-yl)acrylamide (177b) (5 mg, 0.01 mmol),

which was synthesised using general procedure 4. This yielded 170b as a white

solid (7 mg, 100%).

1H NMR (DMSO-d6): δ 0.61 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.16 (d, J = 7.1

Hz, 3H, Ala2 β-CH3), 1.19 (s, 3H, piperidine 4-CH3), 1.45 (d, J = 12.2 Hz, 1H

piperidine 5-CH2), 1.84 – 1.95 (m, 1H, piperidine 3-CH), 2.08 (td, J = 12.5, 4.0

Hz, 1H, piperidine 5-CH2), 2.13 – 2.27 (m, 3H, propanamide α-CH2, piperidine 6-

CH2), 2.29 – 2.45 (m, 4H, propanamide β-CH2, piperidine 2-CH2), 2.66 (dd, J =

13.9, 10.1 Hz, 1H, Phe3 β-CH2), 2.73 (d, J = 10.8 Hz, 1H, piperidine 6-CH2), 2.83

(dd, J = 13.8, 8.6 Hz, 1H, Phe1 β-CH2), 2.96 (dd, J = 14.4, 5.2 Hz, 1H, Phe3 β-CH2),

3.01 (dd, J = 14.1, 4.9 Hz, 1H, Phe1 β-CH2), 4.21 (p, J = 7.0 Hz, 1H, Ala2 α-CH), 

4.40 (td, J = 8.4, 5.0 Hz, 1H, Phe1 α-CH), 4.54 (td, J = 9.7, 4.1 Hz, 1H, Phe3 α-CH), 

6.54 (dd, J = 8.0, 2.3 Hz, 1H, phenol 6-CH), 6.65 (t, J = 2.0 Hz, 1H, phenol 2-CH),

6.68 (d, J = 8.0 Hz, 1H, phenol 4-CH), 7.07 (t, J = 7.8 Hz, 1H, phenol 5-CH), 7.09

(s, 1H, Phe3 amide NH2), 7.11 – 7.26 (m, 10H, phenyl CH), 7.36 (s, 1H, Phe3

amide NH2), 7.84 (d, J = 8.2 Hz, 1H, Pr-Phe1 amide NH), 8.18 (d, J = 7.2 Hz, 1H,

Phe1-Ala2 amide NH), 8.30 (s, 1H, phenol OH), 8.33 (d, J = 8.4 Hz, 1H, Ala2-Phe3

amide NH).
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13C NMR (DMSO-d6): δ 16.1, 18.0, 27.3, 29.9, 32.8, 37.4, 37.6, 37.9, 40.2, 48.5, 

49.0, 53.3, 53.6, 54.0, 55.1, 112.2, 112.5, 116.0, 126.2, 126.2, 127.9, 128.0,

128.9, 129.1, 129.2, 137.8, 137.9, 151.7, 157.1, 171.1, 171.3, 171.8, 172.6.

m/z: HRMS C36H42N5O5 [MH]+ calc 642.3650, found 642.3660.

(2S)-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-4-(3-

hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)-3-methylbutanamide (170c)

The title compound was synthesised as described in general procedure 5, using

(2S)-2-((S)-2-acrylamido-3-phenylpropanamido)-N-(1-amino-1-oxo-3-

phenylpropan-2-yl)-3-methylbutanamide (177c) (5 mg, 0.01 mmol), which was

synthesised using general procedure 4. This yielded 170c as a white solid (7

mg, 100%).

1H NMR (DMSO-d6): δ 0.62 (d, J = 7.0 Hz, 3H, piperidine 3-CH3), 0.76 (dd, J = 6.7,

2.4 Hz, 6H, Val2 CH3), 1.19 (s, 3H, piperidine 4-CH3), 1.45 (d, J = 12.4 Hz, 1H

piperidine 5-CH2), 1.86 – 1.98 (m, 3H, Val2 β-CH, piperidine 3-CH), 2.08 (td, J =

12.5, 4.2 Hz, 1H, piperidine 5-CH2), 2.13 – 2.27 (m, 3H, propanamide α-CH2,

piperidine 6-CH2), 2.33 – 2.46 (m, 4H, propanamide β-CH2, piperidine 2-CH2),

2.68 (dd, J = 14.1, 10.1 Hz, 1H, Phe3 β-CH2), 2.73 (dt, J = 11.4, 3.6 Hz, 1H,

piperidine 6-CH2), 2.81 (dd, J = 13.9, 9.0 Hz, 1H, Phe1 β-CH2), 2.95 (dd, J = 14.0,

4.3 Hz, 1H, Phe3 β-CH2), 2.99 (dd, J = 13.8, 5.2 Hz, 1H, Phe1 β-CH2), 4.11 (dd, J =

8.8, 6.8 Hz, 1H, Val2 α-CH), 4.48 (td, J = 8.6, 5.2 Hz, 1H, Phe1 α-CH), 4.61 (td, J =

9.2, 4.2 Hz, 1H, Phe3 α-CH), 6.55. (dd, J = 7.9, 2.5 Hz, 1H, phenol 6-CH), 6.64 –

6.72 (m, 2H, phenol 2-CH, phenol 4-CH), 7.06 (s, 1H, Phe3 amide NH2), 7.08 (t, J

= 7.8 Hz, 1H, phenol 5-CH), 7.12 – 7.27 (m, 10H, phenyl CH), 7.35 (s, 1H, Phe3

amide NH2), 7.92 (d, J = 9.0 Hz, 1H, Phe1-Ala2 amide NH), 8.00 (d, J = 8.3 Hz, 1H,
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Pr-Phe1 amide NH), 8.35 (d, J = 8.5 Hz, 1H, Ala2-Phe3 amide NH), 8.43 (s, 1H,

phenol OH).

13C NMR (DMSO-d6): δ 14.4, 16.1, 18.1, 19.1, 26.5, 27.3, 29.3, 30.6, 32.9, 37.5, 

37.6, 38.0, 38.3, 49.0, 53.3, 53.6, 54.0, 55.1, 112.2, 112.5, 116.0, 126.2, 126.2,

127.9, 128.0, 128.9, 129.1, 129.2, 137.8, 137.9, 151.7, 157.1, 171.1, 171.3,

171.8, 172.6.

m/z: HRMS C39H51N5O5 [MH]+ calc 670.3963, found 670.3957.

(2S)-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-3-hydroxy-2-((S)-2-(3-((3R,4R)-

4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)propanamide (170d)

The title compound was synthesised as described in general procedure 5, using

N-((2S)-1-(((2S)-1-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-3-hydroxy-1-

oxopropan-2-yl)amino)-1-oxo-3-phenylpropan-2-yl)acrylamide (177d) (5 mg,

0.01 mmol), which was synthesised using general procedure 4. This yielded

170d as a white solid (7 mg, 100%).

1H NMR (DMSO-d6): δ 0.62 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.19 (s, 3H,

piperidine 4-CH3), 1.46 (d, J = 12.3 Hz, 1H piperidine 5-CH2), 1.85 – 1.94 (m, 1H,

piperidine 3-CH), 2.10 (td, J = 12.5, 4.0 Hz, 1H, piperidine 5-CH2), 2.14 – 2.27

(m, 3H, propanamide α-CH2, piperidine 6-CH2), 2.29 – 2.47 (m, 4H,

propanamide β-CH2, piperidine 2-CH2), 2.68 (dd, J = 14.1, 10.1 Hz, 1H, Phe3 β-

CH2), 2.74 (d, J = 11.2 Hz, 1H, piperidine 6-CH2), 2.84 (dd, J = 13.9, 9.2 Hz, 1H,

Phe1 β-CH2), 2.97 (dd, J = 13.9, 4.1 Hz, 1H, Phe3 β-CH2), 3.08 (dd, J = 14.0, 4.5

Hz, 1H, Phe1 β-CH2), 3.48 (dd, J = 10.9, 6.2 Hz, 1H, Ser2 β-CH2), 3.59 (dd, J = 10.7,

6.0 Hz, 1H, Ser2 CH2), 4.27 (q, J = 6.4 Hz, 1H, Ser2 α-CH), 4.41 (td, J = 8.7, 4.5 Hz,
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1H, Phe1 α-CH), 4.59 (td, J = 9.2, 4.0 Hz, 1H, Phe3 α-CH), 6.56 (dd, J = 8.0, 2.3 Hz,

1H, phenol 6-CH), 6.65 – 6.72 (m, 2H, phenol 2-CH, phenol 4-CH), 7.08 (t, J = 7.8

Hz, 1H, phenol 5-CH), 7.12 – 7.29 (m, 11H, Phe3 amide NH2, phenyl CH), 7.40 (s,

1H, Phe3 amide NH2), 8.06 (d, J = 8.2 Hz, 1H, Pr-Phe1 amide NH), 8.19 (d, J = 7.5

Hz, 1H, Phe1-Ala2 amide NH), 8.37 (d, J = 8.4 Hz, 1H, Ala2-Phe3 amide NH), 8.44

(s, 1H, phenol OH).

13C NMR (DMSO-d6): δ 16.1, 27.3, 32.9, 37.0, 37.8, 37.9, 37.9, 49.0, 53.4, 54.0, 

54.0, 55.1, 55.1, 61.7, 112.2, 112.5, 116.0, 126.1, 126.2, 127.9, 128.0, 128.9,

129.1, 129.1, 137.9, 138.0, 151.7, 157.2, 165.6, 169.8, 171.3, 171.5, 172.8.

m/z: HRMS C37H47N5O6 [MH]+ calc 658.3599, found 658.3604.

(2S)-N1-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-4-(3-

hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)succinamide (170e)

The title compound was synthesised as described in general procedure 5, using

(2S)-2-((S)-2-acrylamido-3-phenylpropanamido)-N1-(1-amino-1-oxo-3-

phenylpropan-2-yl)succinimide (177e) (6 mg, 0.01 mmol), which was

synthesised using general procedure 4. This yielded 170e as a white solid (8

mg, 100%).

1H NMR (DMSO-d6): δ 0.63 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.20 (s, 3H,

piperidine 4-CH3), 1.46 (d, J = 11.8 Hz, 1H piperidine 5-CH2), 1.85 – 1.96 (m, 1H,

piperidine 3-CH), 2.03 – 2.30 (m, 4H, propanamide α-CH2, piperidine 5-CH2,

piperidine 6-CH2), 2.31 – 2.46 (m, 5H, propanamide β-CH2, piperidine 2-CH2,

Asn2 β-CH2), 2.52 – 2.66 (m, 2H, Asn2 β-CH2, Phe3 β-CH2), 2.73 (d, J = 10.5 Hz,

1H, piperidine 6-CH2), 2.82 (dd, J = 14.2, 9.7 Hz, 1H, Phe1 β-CH2), 2.87 (dd, J =
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13.9, 3.9 Hz, 1H, Phe3 β-CH2), 3.11 (dd, J = 14.1, 4.2 Hz, 1H, Phe1 β-CH2), 4.34

(td, J = 8.9, 4.1 Hz, 1H, Phe1 α-CH), 4.44 – 4.58 (m, 2H, Asn2 α-CH, Phe3 α-CH), 

6.55 (dd, J = 7.9, 2.3 Hz, 1H, phenol 6-CH), 6.67 (t, J = 2.1 Hz, 1H, phenol 2-CH),

6.70 (d, J = 7.8 Hz, 1H, phenol 4-CH), 6.99 (s, 1H, Asn2 NH2), 7.09 (t, J = 7.9 Hz,

1H, phenol 5-CH), 7.13 – 7.30 (m, 11H, Phe3 amide NH2, phenyl CH), 7.43 (s, 1H,

Phe3 amide NH2), 7.47 (s, 1H, Asn2 NH2), 8.06 (d, J = 8.3 Hz, 1H, Pr-Phe1 amide

NH), 8.30 (s, 1H, phenol OH), 8.33 (d, J = 7.8 Hz, 1H, Phe1-Ala2 amide NH), 8.36

(d, J = 8.4 Hz, 1H, Ala2-Phe3 amide NH).

13C NMR (DMSO-d6): δ 16.1, 27.3, 29.9, 32.8, 36.8, 36.9, 37.8, 37.9, 37.9, 40.2, 

48.9, 49.7, 53.4, 54.0, 55.2, 112.2, 112.5, 116.1, 126.1, 126.2, 127.9, 128.1,

128.9, 129.0, 129.1, 137.8, 138.2, 151.7, 157.1, 170.5, 171.3, 171.3, 171.9,

172.8.

m/z: HRMS C38H48N6O6 [MH]+ calc 685.3708, found 685.3705.

N
H

ON

OH

O

H
N

N
H
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NH2

O

HO
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(3S)-4-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-3-((S)-2-(3-((3R,4R)-4-

(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)-4-oxobutanoic acid (170f)

The title compound was synthesised as described in general procedure 5, using

(3S)-3-((S)-2-acrylamido-3-phenylpropanamido)-4-((1-amino-1-oxo-3-

phenylpropan-2-yl)amino)-4-oxobutanoic acid (177f) (6 mg, 0.01 mmol), which

was synthesised using general procedure 4. This yielded 170f as a white solid

(8 mg, 100%).

1H NMR (DMSO-d6): δ 0.63 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.20 (s, 3H,

piperidine 4-CH3), 1.46 (d, J = 12.1 Hz, 1H piperidine 5-CH2), 1.86 – 1.96 (m, 1H,

piperidine 3-CH), 2.06 – 2.31 (m, 4H, propanamide α-CH2, piperidine 5-CH2,
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piperidine 6-CH2), 2.34 – 2.49 (m, 5H, propanamide β-CH2, piperidine 2-CH2,

Asn2 β-CH2), 2.52 – 2.70 (m, 2H, Asp2 β-CH2, Phe3 β-CH2), 2.77 (d, J = 10.8 Hz,

1H, piperidine 6-CH2), 2.83 (dd, J = 13.9, 9.2 Hz, 1H, Phe1 β-CH2), 2.92 (dd, J =

14.0, 4.2 Hz, 1H, Phe3 β-CH2), 3.06 (dd, J = 14.0, 4.5 Hz, 1H, Phe1 β-CH2), 4.34

(td, J = 8.7, 4.4 Hz, 1H, Phe1 α-CH), 4.45 (q, J = 7.0 Hz, 1H, Asn2 α-CH), 4.51 (td, 

J = 9.6, 4.2 Hz, 1H, Phe3 α-CH), 6.54 (dd, J = 8.8, 1.9 Hz, 1H, phenol 6-CH), 6.64

– 6.72, phenol 2-CH, phenol 4-CH), 7.00 – 7.29 (m, 12H, phenol 5-CH, Phe3

amide NH2, phenyl CH), 7.40 (s, 1H, Phe3 amide NH2), 8.02 (d, J = 8.2 Hz, 1H, Pr-

Phe1 amide NH), 8.30 (s, 1H, phenol OH), 8.37 (d, J = 7.6 Hz, 1H, Phe1-Ala2 amide

NH), 8.41 (d, J = 8.4 Hz, 1H, Ala2-Phe3 amide NH).

13C NMR (DMSO-d6): δ 16.1, 27.2, 29.8, 32.6, 37.0, 37.3, 37.6, 37.9, 40.2, 48.9, 

50.0, 53.5, 53.8, 54.0, 55.1, 112.2, 112.6, 116.1, 126.1, 126.2, 128.0, 128.1,

128.9, 129.1, 129.1, 137.9, 138.1, 151.5, 157.2, 170.6, 171.2, 171.2, 171.4,

172.6, 172.8.

m/z: HRMS C38H48N6O6 [MH]+ calc 686.3548, found 686.3544.

(2S)-6-amino-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-4-

(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)hexanamide (170g)

The title compound was synthesised as described in general procedure 5, using

(2S)-2-((S)-2-acrylamido-3-phenylpropanamido)-6-amino-N-(1-amino-1-oxo-3-

phenylpropan-2-yl)hexanamide (177g) (7 mg, 0.015 mmol), which was

synthesised using general procedure 4. This yielded 170g as a white solid (10

mg, 100%).
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1H NMR (DMSO-d6): δ 0.61 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.19 (s, 3H,

piperidine 4-CH3), 1.14 – 1.27 (m, 2H, lysine γ-CH2), 1.40 – 1.63 (m, 5H,

piperidine 5-CH2, Lys2 β-CH2, Lys2 δ-CH2), 1.83 – 1.98 (m, 1H, piperidine 3-CH),

2.07 (td, J = 12.8, 4.2 Hz, 1H, piperidine 5-CH2), 2.13 – 2.31 (m, 3H, propanamide

α-CH2, piperidine 6-CH2), 2.36 – 2.48 (m, 4H, propanamide β-CH2, piperidine 2-

CH2), 2.62 – 2.78 (m, 4H, Lys2 ε-CH2, Phe3 β-CH2, piperidine 6-CH2), 2.82 (dd, J =

13.8, 9.1 Hz, 1H, Phe1 β-CH2), 2.96 (dd, J = 14.0, 4.0 Hz, 1H, Phe3 β-CH2), 3.02

(dd, J = 13.9, 4.9 Hz, 1H, Phe1 β-CH2), 4.16 (td, J = 8.1, 5.4 Hz, 1H, Lys2 α-CH), 

4.43 (td, J = 8.6, 4.9 Hz, 1H, Phe1 α-CH), 4.52 (ddd, J = 10.1, 8.2, 4.1 Hz, 1H, Phe3

α-CH), 6.55 (dd, J = 8.0, 2.2 Hz, 1H, phenol 6-CH), 6.62 – 6.72, phenol 2-CH,

phenol 4-CH), 7.08 (t, J = 8.0 Hz, 1H, phenol 5-CH), 7.10 (s, 1H, Phe3 amide NH2),

7.12 – 7.27 (m, 10H, phenyl CH), 7.41 (s, 1H, Phe3 amide NH2), 7.96 (d, J = 8.2

Hz, 1H, Pr-Phe1 amide NH), 8.25 (d, J = 7.8 Hz, 1H, Phe1-Ala2 amide NH), 8.33 (s,

1H, phenol OH), 8.44 (d, J = 8.2 Hz, 1H, Ala2-Phe3 amide NH).

13C NMR (DMSO-d6): δ 16.1, 22.1, 26.7, 27.4, 29.9, 31.2, 32.8, 37.5, 37.6, 37.9, 

38.0, 38.6, 40.2, 49.1, 52.8, 53.8, 53.8, 54.0, 55.1, 112.3, 112.6, 116.1, 126.3,

126.4, 128.1, 128.1, 129.0, 129.2, 129.3, 137.8 ,137.9, 151.7, 157.3, 165.1

,171.3, 171.6, 171.6, 173.0.

m/z: HRMS C40H54N6O5 [MH]+ calc 699.4228, found 699.4228.

N
H

ON

OH

O

H
N

N
H

O

NH2

O

NH

NH2HN



205

(2S)-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-5-guanidino-2-((S)-2-(3-

((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)pentanamide (170h)

The title compound was synthesised as described in general procedure 5, using

(2S)-2-((S)-2-acrylamido-3-phenylpropanamido)-N-(1-amino-1-oxo-3-

phenylpropan-2-yl)-5-guanidinopentanamide (177h) (7 mg, 0.015 mmol),

which was synthesised using general procedure 4. This yielded 170h as a white

solid (10 mg, 100%).

1H NMR (DMSO-d6): δ 0.61 (d, J = 6.9 Hz, 3H, piperidine 3-CH3), 1.19 (s, 3H,

piperidine 4-CH3), 1.32 – 1.42 (m, 2H, Arg2 γ-CH2), 1.45 (d, J = 12.6 Hz, 1H,

piperidine 5-CH2), 1.40 – 1.71 (m, 2H, Arg2 β-CH2), 1.83 – 1.95 (m, 1H, piperidine

3-CH), 2.08 (td, J = 13.1, 6.5 Hz, 1H, piperidine 5-CH2), 2.12 – 2.30 (m, 3H,

propanamide α-CH2, piperidine 6-CH2), 2.34 – 2.45 (m, 4H, propanamide β-CH2,

piperidine 2-CH2), 2.64 – 2.77 (m, 2H, Phe3 β-CH2, piperidine 6-CH2), 2.82 (dd, J

= 13.8, 9.0 Hz, 1H, Phe1 β-CH2), 2.92 – 3.09 (m, 4H, Arg2 δ-CH2, Phe1 β-CH2, Phe3

β-CH2), 4.19 (td, J = 8.0, 5.1 Hz, 1H, Arg2 α-CH), 4.42 (td, J = 8.5, 4.9 Hz, 1H, Phe1

α-CH), 4.53 (ddd, J = 9.8, 8.1, 4.2 Hz, 1H, Phe3 α-CH), 6.55 (dd, J = 8.0, 2.2 Hz,

1H, phenol 6-CH), 6.63 – 6.73, phenol 2-CH, phenol 4-CH), 7.07 (t, J = 7.8 Hz,

1H, phenol 5-CH), 7.09 (s, 1H, Phe3 amide NH2), 7.10 – 7.27 (m, 10H, phenyl

CH), 7.37 (s, 1H, Phe3 amide NH2), 8.00 (d, J = 8.2 Hz, 1H, Pr-Phe1 amide NH),

8.36 (d, J = 7.5 Hz, 1H, Phe1-Ala2 amide NH), 8.37 (s, 1H, phenol OH), 8.42 (d, J

= 8.0 Hz, 1H, Ala2-Phe3 amide NH), 8.65 (t, J = 5.1 Hz, 1H, Arg2 δ-NH). 

13C NMR (DMSO-d6): δ 16.1, 24.6, 27.3, 28.8, 29.9, 32.9, 37.5, 37.5, 37.9, 49.0, 

51.4, 53.7, 53.8, 54.0, 55.1, 112.2, 112.5, 116.0, 126.2, 128.0, 128.0, 128.9,

129.1, 129.1, 137.8, 137.9, 151.7, 157.2, 157.3, 165.8, 171.0, 171.5, 171.6,

172.7.

m/z: HRMS C40H54N8O5 [MH2]2+ calc 364.2182, found 364.2189.
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(2S)-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-6-(6-(2-(4-((E)-2-(5,5-difluoro-7-

(thiophen-2-yl)-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-

yl)vinyl)phenoxy)acetamido)hexanamido)-2-((S)-2-(3-((3R,4R)-4-(3-

hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)hexanamide (192)

To (2S)-6-amino-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-

4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)hexanamide (170g) (1.17 mg, 1.5 µmol, 1.0 eq) in DMF

(0.5 ml) was added BODIPY 630/650-X NHS ester (1.0 mg, 1.5 µmol, 1.0 eq) in

DMF (0.5 ml). The reaction mixture was stirred at room temperature for 90

min. Solvent was removed under high vacuum and purification by reverse

phase HPLC (system 3) yielded 192, a blue solid (1.0 mg, 53%).

m/z: HRMS C69H80BF2N9O8S [MH]+ calcd 1244.5984; found 1244.5992.

(2S)-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-6-(2-(4-((E)-2-(5,5-difluoro-7-

(thiophen-2-yl)- 5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-

yl)vinyl)phenoxy)acetamido)-2-((S)-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-
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dimethylpiperidin-1-yl)propanamido)-3-phenylpropanamido)hexanamide

(193)

To BODIPY 630/650 (0.68 mg, 1.5 µmol) in DMF (0.5 ml) was added PyBOP (0.78

mg, 1.5 µmol, 1.0 eq) and DIPEA (0.26 µl, 1.5 µmol, 1.0 eq). The reaction

mixture was stirred at room temperature for 15 min after which (2S)-6-amino-

N-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-4-(3-

hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)hexanamide (170g) (0.73 mg, 1.5 µmol, 1.0 eq) in DMF

(0.5 ml) was added. The reaction mixture was then stirred at room temperature

for 90 min. Solvent was removed under high vacuum and purification by

reverse phase HPLC (system 3) yielded 193, a blue solid (0.6 mg, 35%).

m/z: HRMS C63H69BF2N8O7S [MH]+ calcd 1131.5144; found 1131.5148.

(E)-2-((2E,4E)-5-(1-(6-(((5S)-6-((1-amino-1-oxo-3-phenylpropan-2-yl)amino)-

5-((S)-2-(3-((3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl)propanamido)-3-phenylpropanamido)-6-oxohexyl)amino)-6-oxohexyl)-

3,3-dimethyl-5-sulfo-3H-indol-1-ium-2-yl)penta-2,4-dien-1-ylidene)-1,3,3-

trimethylindoline-5-sulfonate (194)

To (2S)-6-amino-N-(1-amino-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(3-((3R,4R)-

4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-yl)propanamido)-3-

phenylpropanamido)hexanamide (170g) (1.05 mg, 1.5 µmol, 1.0 eq) in DMF

(0.5 ml) was added sulfo-Cy5 NHS ester (1.17 mg, 1.5 µmol, 1.0 eq) in DMF (0.5

ml). The reaction mixture was stirred at room temperature for 90 min. Solvent
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was removed under high vacuum and purification by reverse phase HPLC

(system 3) yielded 194, a blue solid (0.8 mg, 40%).

m/z: HRMS C72H90N8O12S2 [M-H]- calcd 1321.6047; found 1321.6037.

5.2 General pharmacology

Cell culture

MOR-expressing HEK293 cells and SNAP-MOR-expressing HEK293 cells were

obtained from Dr Arisbel Gondin, who performed the transfections and

isolated stable clones as described in Gondin et al.149 Cells were grown in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal

calf serum (FCS) and maintained at 37 °C in a humidified incubator containing

5% CO2.

Cells were grown to confluence in 75 cm2 tissue culture treated flasks (T75s).

Passaging of cells proceeded with removal of the DMEM and washing with

phosphate buffered saline (PBS). Cells were lifted from the flask by 1 mL 1x

trypsin-EDTA and removed from the flask with PBS. Following this, the cells

were centrifuged at 1000 rpm for 5 min and the supernatant discarded. The

pellet was resuspended in DMEM and a portion (typically 1/5 or 1/10)

transferred into a new T75 flask containing DMEM.

Preparation of Lumi4-Tb-labelled membranes

SNAP-MOR-expressing HEK293 cells were seeded into poly-D-Lysine-coated

175 cm2 tissue culture treated flasks (T175s) and grown to confluence. DMEM

was aspirated and the cells were washed with PBS. SNAP tag labelling was

performed by addition of 12 ml of 100 nM Lumi4-Tb (CisBio, Bagnols-sur-Ce’ze,

France) in Tag-lite labelling medium to the cells and the cells incubated at 37

°C in a humidified incubator containing 5% CO2 for 1 hour. The labelling solution

was removed, and the cells washed with PBS. Cells were then removed from

the flask by scraping and washing with further PBS. The cells were transferred
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to a 50 ml tube and centrifuged at 1500 rpm for 10 min. The supernatant was

removed, and the resulting pellets stored at -80°C.

Membranes were prepared from the defrosted cell pellets which were

resuspended in 20 ml PBS and homogenised using an electrical homogeniser in

20 × 2 sec bursts. The resultant homogenate was centrifuged at 1500 x g for 20

min to remove unbroken cells and nuclei. The supernatant was decanted and

subsequently centrifuged at 41415 x g for 30 min, the supernatant discarded,

and the pellet resuspended in PBS. Further homogenisation was carried out by

20 passes of a glass homogeniser. Protein concentration was determined using

a BCA protein assay and membranes were stored at оϴϬ�Σ��ƵŶƟů�ƌĞƋƵŝƌĞĚ͘

Whole cell competition binding assays

Cells were seeded into poly-D-Lysine-coated thin clear bottomed black wall 96

well plates (Greiner Bio-One Ltd, Stonehouse, UK) 24 hours prior to the assay.

On the day of the experiment, DMEM was aspirated and the cells washed with

room temperature PBS. The cells were incubated in duplicate with increasing

concentrations of unlabelled ligand and 50 nM fluorescent ligand 51 in a final

volume of 100 µl of HEPES-buffered saline solution (HBSS: 145 mmol/L NaCl, 5

mmol/L KCl, 1.7 mmol/L CaCl2, 1 mmol/L MgSO4, 10 mmol/L HEPES, 2 mmol/L

sodium pyruvate, 1.5 mmol/L NaHCO3, 10 mmol/L D-glucose, pH 7.4) for 1 hour

at 37 °C in a humidified incubator. Plates were imaged using an ImageXpress

Ultra confocal plate reader which captured four images per well. Excitation of

51 used a 635 nm laser (20 % laser power) with emission collected through a

640-685 nm bandpass filter. The focus and laser gain settings used were

adjusted for each plate. Values for fluorescence intensity were obtained using

a multi-wavelength cell scoring algorithm within the MetaXpress software,

normalised as a percentage of maximal integrated intensity per plate (where

fluorescence intensity in the absence of unlabelled competitor was defined at

100%) from mean total well intensity.
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Results were fitted to a competition binding curve in GraphPad Prism 8.4.3

using non-linear regression analysis (variable slope – four parameters). IC50

values were used to determine Ki using the Cheng-Prusoff equation:122

=௜ܭ
ହ଴ܥܫ

1 +
[݂݈ ݎ݁݋ݑ ݏܿ ݁݊ [݈݀݊ܽ݃݅ݐ

஽ܭ

Where [fluorescent ligand] = concentration of free fluorescent ligand used in the assay. KD =

the dissociation constant of the fluorescent ligand for the receptor. IC50 = the concentration of

unlabelled ligand that displaces 50% of the specific binding of the fluorescent ligand.

Membrane-based competition binding assays

To each well of an opaque bottomed 96-well plate were added increasing

concentrations of unlabelled ligand and fluorescent ligand at a concentration

equal to its KD, followed by 2.5 µg of Lumi4-Tb-labelled SNAP-MOR-expressing

HEK293 cell membrane, in a final volume of 100 µl of HBSS. Membranes were

incubated in duplicate or triplicate for 90 mins at 37 °C, after which plates were

read in a TR-FRET competition binding assay using a PHERAstar FS plate reader

(BMG Labtech, Offenberg, Germany) with the terbium (donor) excited with 30

flashes of laser at 337 nm and emission collected at 620 nm (terbium) and 665

nm (Cy5/BY630) 400 ms after excitation.

Competition binding curves were fitted from the percentage of maximal

measured HTRF emission ratio (665/620 nm) (where HTRF emission ratio in the

absence of unlabelled competitor was defined at 100%, and the mean of the

lowest duplicate or triplicate sample set on the plate was defined as 0%) in

GraphPad Prism 8.4.3 using non-linear regression analysis. IC50 values were

used to determine Ki using the Cheng-Prusoff equation (see above).122

Saturation binding assays

Saturation binding assays were carried out using Lumi4-Tb-labelled SNAP-

MOR-expressing HEK293 cell membranes. Increasing concentrations of

fluorescent ligand followed 2.5 µg of membrane were added to each well of an

opaque bottomed 96-well plate in HBSS, both in the absence (total binding)
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and presence (non-specific binding) of 10 µM naloxone, in a final volume of 100

µl of HBSS. Membranes were incubated in duplicate or triplicate for 90 mins at

37 °C, after which plates were read in a TR-FRET saturation binding assay using

a PHERAstar FS plate reader as described above.

Total and non-specific binding curves were fitted from the measured HTRF

emission ratio (665/620 nm) (where HTRF emission ratio in the absence of

unlabelled competitor was defined at 100%, and the mean of the lowest

duplicate or triplicate sample set on the plate was defined as 0%) in GraphPad

Prism 8.4.3 using a one site – total and non-specific binding model, from which

KD of specific binding curve was determined.

Statistical analysis

Statistical analysis was carried out using GraphPad Prism 8.4.3 software by one-

way ANOVA and post-hoc analysis as described.

5.3 In silico modelling

The three dimensional model of MOR (PDB: 4DKL)33 was obtained from GPCRdb

(https://www.gpcrdb.org) and loaded into the online docking software

DockingServer (http://www.dockingserver.com/web). Prior to docking, the

binding site was established using the bound ligand β-FNA (74). Compounds of

the structures 92 (Figure 2-15) and 93 (Figure 2-20) were drawn and docked.

Twenty docking poses of each congener which visually met the criteria

described in Figure 2-16, were inspected for 6-substituent interactions.

Outputs were visualised on DockingServer as no export file was available.
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