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Abstract

Uncertainty is a pervasive element of many real-world applications and very often existing

sources of uncertainty (e.g. atmospheric conditions, economic parameters or precision of mea-

surement devices) have a detrimental impact on the input and ultimately results of decision-

support systems. Thus, the ability to handle input uncertainty is a valuable component of real-

world decision-support systems. There is a vast amount of literature on handling of uncertainty

through decision-support systems. While they handle uncertainty and deliver a good perfor-

mance, providing an insight into the decision process (e.g. why or how results are produced) is

another important asset in terms of having trust in or providing a ‘debugging’ process in given

decisions.

Fuzzy set theory provides the basis for Fuzzy Logic Systems which are often associated

with the ability for handling uncertainty and possessing mechanisms for providing a degree

of interpretability. Specifically, Non-Singleton Fuzzy Logic Systems are essential in dealing

with uncertainty that affects input which is one of the main sources of uncertainty in real-world

systems. Therefore, in this thesis, we comprehensively explore enhancing non-singleton fuzzy

logic systems capabilities considering both capturing-handling uncertainty and also maintaining

interpretability. To that end the following three key aspects are investigated; (i) to faithfully

map input uncertainty to outputs of systems, (ii) to propose a new framework to provide the

ability for dynamically adapting system on-the-fly in changing real-world environments. (iii) to

maintain level of interpretability while leveraging performance of systems.

The first aspect is to leverage mapping uncertainty from input to outputs of systems through

the interaction between input and antecedent fuzzy sets i.e. firing strengths. In the context of

Non-Singleton Fuzzy Logic Systems, recent studies have shown that the standard technique

for determining firing strengths risks information loss in terms of the interaction of the input

uncertainty and antecedent fuzzy sets. This thesis explores and puts forward novel approaches

to generating firing strengths which faithfully map the uncertainty affecting system inputs to

outputs. Time-series forecasting experiments are used to evaluate the proposed alternative firing

strength generating technique under different levels of input uncertainty. The analysis of the

results shows that the proposed approach can also be a suitable method to generate appropriate

firing levels which provide the ability to map different uncertainty levels from input to output

of FLS that are likely to occur in real-world circumstances.

i



The second aspect is to provide dynamic adaptive behaviours to systems at run-time in chang-

ing conditions which are common in real-world environments. Traditionally, in the fuzzification

step of Non-Singleton Fuzzy Logic Systems, approaches are generally limited to the selection

of a single type of input fuzzy sets to capture the input uncertainty, whereas input uncertainty

levels tend to be inherently varying over time in the real-world at run-time. Thus, in this the-

sis, input uncertainty is modelled -where it specifically arises- in an online manner which can

provide an adaptive behaviour to capture varying input uncertainty levels. The framework is

presented to generate Type-1 or Interval Type-2 input fuzzy sets, called ADaptive Online Non-

singleton fuzzy logic System (ADONiS). In the proposed framework, an uncertainty estimation

technique is utilised on a sequence of observations to continuously update the input fuzzy sets of

non-singleton fuzzy logic systems. Both the type-1 and interval type-2 versions of the ADONiS

frameworks remove the limitation of the selection of a specific type of input fuzzy sets. Also

this framework enables input fuzzy sets to be adapted to unknown uncertainty levels which is

not perceived at the design stage of the model. Time-series forecasting experiments are imple-

mented and results show that our proposed framework provides performance advantages over

traditional counterpart approaches, particularly in environments that include high variation in

noise levels, which are common in real-world applications. In addition, the real-world medical

application study is designed to test the deployability of the ADONiS framework and to provide

initial insight in respect to its viability in replacing traditional approaches.

The third aspect is to maintain levels of interpretability, while increasing performance of sys-

tems. When a decision-support model delivers a good performance, providing an insight of the

decision process is also an important asset in terms of trustworthiness, safety and ethical aspects

etc. Fuzzy logic systems are considered to possess mechanisms which can provide a degree of

interpretability. Traditionally, while optimisation procedures provide performance benefits in

fuzzy logic systems, they often cause alterations in components (e.g. rule set, parameters, or

fuzzy partitioning structures) which can lead to higher accuracy but commonly do not consider

the interpretability of the resulting model. In this thesis, the state of the art in fuzzy logic sys-

tems interpretability is advanced by capturing input uncertainty in the fuzzification -where it

arises- and by handling it the inference engine step. In doing so, while the performance in-

crease is achieved, the proposed methods limit any optimisation impact to the fuzzification and

inference engine steps which protects key components of FLSs (e.g. fuzzy sets, rule parameters

etc.) and provide the ability to maintain the given level of interpretability.
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Chapter 1

Introduction

Fuzzy set (FS) theory, introduced by Zadeh [189] as an extension of the classical set theory

which is formed by crisp sets. FSs provide a way to represent uncertainty and are generally

designed in respect to linguistic labels. When FSs are interconnected by linguistic rules, they

establish the basis for Fuzzy Logic Systems (FLSs). Thus, while FLSs are considered as sys-

tems to cope with uncertainty, they are also frequently referred to as ‘interpretable’ systems for

applications.

As will be elaborated in the next sections, input uncertainty is a pervasive element in real-

world decision-support applications. In this thesis, in order to further develop handling input

uncertainty capacity of systems, three key aspects are explored:

(i) Interaction of non-singleton input and antecedent FSs to faithfully map input uncertainty

to outputs of systems by generating firing strengths with respect to different input uncertainty

levels.

(ii) Proposal of a new framework to dynamically capture different levels of input uncertainty

at run-time, which provides the ability to adapt input FS in changing real-world environments.

(iii) Maintaining the given level of interpretability in systems while leveraging the capacity

of input uncertainty handling and increasing the performance of systems.

The structure of this chapter is as follows. Section 1.1 presents a brief history of logic.

1
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Section 1.2 describes a historical overview of the uncertainty concept in science. Section 1.3

explains what uncertainty is. Section 1.4 provides the background and motivation for the re-

search in this thesis. Section 1.5 then presents the aims and objectives of this thesis, followed

by the thesis structure in Section 1.6.

1.1 Historical Overview of Logic

In 450 BC, Protagoras claimed that True is a subjective matter and he exemplified this idea

stating, “while the wind is cold to a person, it might be warm to another person", leading to the

idea that there is no absolute True for all [6].

Later, Plato discussed this opinion in the dialogue named Theaetetus as below:

SOCRATES: Do you call thinking what I call thinking?

THEAETETUS: What is that?

SOCRATES: The talk which the soul holds with herself on what she sees. It appears to me

that, when she thinks, she is doing nothing else than conversing, asking questions

and giving answers, affirming and denying. When she reaches a decision and is

not in doubt, we can that opinion. So what I call forming an opinion is talking and

opinion is speech that is held not with someone else or aloud but in silence with

oneself.

Here the identification of thoughts or opinion with talk suggests the transference of predicates,

true and false. Overall, Plato investigated the question of What is it that can properly be called

true or false? [6, 77]

Later, Aristotle laid a foundation for Aristotelian logic which often led him to be regarded

as the father of logic [6]. During the rise of modern formal logic following Frege and Peirce,

adherents of traditional logic (seen as the descendant of Aristotelian Logic) and the new math-

ematical logic tended to see one another as rivals, with incompatible notions of logic [159].
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Over the years, logic has been extensively studied by considering different concepts. In 1662,

Port-Royal Logic was published by Antoine Arnauld and Pierre Nicole and it was one of the

influential works on logic after Aristotle until the nineteenth century [18]. Then, Boolean alge-

bra was introduced by George Boole in his first book The Mathematical Analysis of Logic in

1847 [14].

1.2 Historical Overview of Uncertainty

In Boolean logic, a statement can be true (1) or false (0) —and nothing in between. According

to this logic, for instance, an element can either belong to a set or not. For instance, assume

a person is regarded as young at the age of 25. According to boolean logic, a person at the

age of 24 or 26 may not be regarded as young. This way of certainty eventually indicates that

the structures and parameters of a model are definitely known and there are no doubts about

their values or their occurrence [196]. However, uncertainty has a prominent role in ordinary

human life and also decision-making systems, in all their varieties, require an understanding of

this uncertainty concept [76]. With regards to the certainty existence in life, the philosopher

Bernard Russell has made the following statement [143]:

“All traditional logic habitually assumes that precise symbols are being employed.

It is, therefore, not applicable to this terrestrial life but only to an imagined celestial

existence."

Even though the fact that uncertainty is often an inseparable component in most measure-

ments at the empirical level, the concept of uncertainty was neglected in the emergence of

developments until the nineteenth century. The general attitude was that ‘scientific knowledge

should be expressed in precise numerical terms; imprecision and other types of uncertainty do

not belong to science’ [76].

Despite the general attitude, Ludwig Boltzmann generalised Maxwell’s approach for the ki-

netic theory of dilute gases to non-equilibrium processes. His particle distribution function gives
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the statistical average number of molecules, rather than specific manifestations of microscopic

entities [50, 76]. This was to pave the way for a new field of physics which later developed as

statistical mechanics.

Thus, in comparison to the previously used mechanics, this new approach (using statistics)

provided advantages for complex systems. Following the development of statistical mechanics,

this statistical method was applied in many different fields such as telephone networks, market-

ing, insurance, investment etc. The studies showed that the larger the system and the higher the

randomness, the better these methods perform [76]. As the beginning of the emergence of large

systems, in 1973, Zadeh has made the following statement regarding systems complexity:

“As the complexity of a system increases, our ability to make precise and yet signif-

icant statements about its behaviour diminishes until a threshold is reached beyond

which precision and significance (or relevance) become almost mutually exclusive

characteristics" [190].

Prior to statistical usage, analytical methods were utilised in simple systems where the system

contained a very small number of components related to each other in a predictable way. On the

other hand, statistical methods are applied to complex systems that contain a very large number

of components and a very high degree of randomness [76]. In 1948, Weaver [180] referred

to these two systems as complementary organised simplicity and disorganised complexity - in

two extreme complexity and randomness scales - and claimed that the area between these two

systems’ fields was subject to further research.

Albeit, in the second half of the twentieth century, the development of computer technology

relatively helped in terms of the computational power requirement, it was soon revealed that

it was not adequate to make substantial progress in the scientific development between the

concepts of organised simplicity and disorganised complexity, so a new broader view unfolded

to take into consideration developing mathematical theories formalising their various facets.

Thereby, the broader uncertainty theory was born from the probabilistic approaches [76, 196].
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1.3 What is Uncertainty

According to the Cambridge Dictionary [1], the word uncertainty is defined as “a situation in

which something is not known, or something that is not known or certain”. From the scientific

perspective, there is no consistent definition of uncertainty and it depends mostly on the con-

text of the discussion. Yet, in a broad sense, “uncertainty implies that in a certain situation an

observer does not dispose about information which quantitatively and qualitatively is appropri-

ate to describe, prescribe or predict deterministically and numerically a system, its behavior or

other characteristica” [195]. As uncertainty is involved in many real phenomena, it can stem

from various sources, for instance, the information may be incomplete, imprecise, fragmentary,

unreliable, vague, or contradictory. Traditionally, these effects define the type of associated un-

certainty [76]. In decision-making systems, generally, the associated uncertainty types can be

viewed under two clusters: model uncertainty and data uncertainty.

Model uncertainty can be related to a given model’s components or structure. By implement-

ing further studies, (e.g. using various training techniques or alternative training data), model

uncertainty can be reduced in decision-making models. Therefore, the model uncertainty can

also be regarded as reducible uncertainty.

On the other hand, data uncertainty relates to inputs of a system may result from data mea-

surement errors, inconsistencies between measured values, limited sample sizes during data

collection and those used by the model (e.g. in their level of aggregation/averaging). Thus, it

is often an inseparable companion at the empirical level [76]. For instance, a sensor measure-

ment can be affected by non-ideal situations, such as measurement conditions, the measuring

instrument, adopted measurement methods, the model with which the measurand is described

etc. Therefore, since the early beginning of scientific experimental activity, this measurement

process has only been capable of providing an approximation of the crisp perfect value [48].

Considering the heterogeneity and diversity in real-world conditions, data uncertainty can also

be regarded as irreducible uncertainty.

In this thesis, the irreducible uncertainty is focused, as it is one of the principal uncertainty
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in real-world conditions. Rather than attempting to reduce it and processing inputs as discrete

perfect values, we aim to model system inputs as distributions and process these distributions

in a faithful manner to map input uncertainty to outputs of systems.

1.4 Background and Motivation

As mentioned in Section 1.3, real-world environments are subject to uncertainty. Thus, uncer-

tainty handling becomes a vital factor in many decision-support systems, such as time-series

forecasting, robotics, signal processing, bioinformatics etc. While one of the key aspects of

decision-support systems is to establish an accurate decision, understanding and validating these

decision processes (e.g. why or how the results are produced) is another important asset of these

systems, since the interpretability capacity can potentially establish safety, trustworthiness, fair-

ness and allow debugging process etc. in given decisions.

In 1965, Zadeh [189] introduced FS theory which provides the basis for FLSs. While FLSs

are considered as robust systems for uncertainty handling, they are also frequently referred to

as ‘interpretable’ systems. The main rationale for the latter is that FSs are generally designed in

respect to linguistic labels and are interconnected by linguistic rules in FLSs, which can provide

both the ability of handling of uncertainty and insight of why or how results are produced [54,

137]. One of the initial decision-making systems was developed to control a steam engine

with fuzzy rule-base systems in 1975 [88]. Since then, FLSs have been successfully applied

in a broad variety of decision-making systems, such as control [9, 178], robotics [145, 175],

medical application [163], business [13], group decision-making [15] etc.

As real-world applications are generally subject to changing conditions, a system’s inputs are

often influenced by these conditions which may cause a broad range of uncertainty. In order

to capture input uncertainty, in 1994, NSFLSs were formalised to utilise non-singleton FSs in

the fuzzification step of FLSs [105]. Since then, NSFLSs have been utilised in a range of

applications including non-linear time series forecasting, classifications and robotics [12, 17,

52, 53, 66, 131, 146, 188, 192].
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Although NSFLSs show performance benefits in applications, in order to leverage uncertainty

mapping from input to outputs of systems, specifically, the following three key aspects are

focused on in this thesis: (I) faithfully mapping input uncertainty to outputs, (II) proposing a

new framework to adapt input FSs to different uncertainty levels on-the-fly, (III) maintaining

the given level of interpretability in systems (e.g. not altering rules, antecedents, consequents

etc.), while delivering performance benefits.

The first aspect is to faithfully map different input uncertainty to outputs of systems by sys-

tematically generating firing strengths in the interaction between antecedent and input FSs.

Traditionally, in the inferencing step of FLSs, inputs are processed with respect to the system

rules through interaction between the input and antecedent FSs, resulting in rule firing strengths

which have a significant role driving the mapping of antecedents to consequents. In NSFLSs,

the most common firing strength generation technique is to adopt the maximum membership

degree grade of the intersection between the input and antecedent FSs. However, recent studies

show that the adopting the maximum point of the intersection to determine the firing strength

can be imperceptive to different uncertainty levels in input FSs. For instance, two different input

FSs (i.e. Input1 and Input2 in Fig. 1.1) may intersect an antecedent at the same membership

grade, resulting in the same firing level. Despite the fact that these input FSs are clearly different

and contain different levels of uncertainty (widths), the same firing strengths are generated for

different input FSs. In other words, the system is ‘blind’ to the change in input uncertainty. Re-

cent firing strength generation studies have demonstrated advantages over the standard approach

[131, 176].

Figure 1.1: An illustration of two distinct input FSs (with different uncertainty levels [widths])
having the same firing level with the antecedent FSs.
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In this thesis, as presented in our studies [120, 122], we will analyse the current firing strength

determining approaches and explore behaviours of these approaches under different levels of

input uncertainty. Later, building on the critical analysis, a novel approach is put forward to

systematically generate firing strengths which faithfully map the uncertainty affecting system

inputs (as explained in Chapter 3).

The second aspect of this thesis is to provide dynamic adaptive behaviours to NSFLS on-

the-fly under different input uncertainty levels. This adaptive behaviour can cope with the real-

world environment which contains different sources of uncertainty, causing different settings

in different time periods. When input data contains uncertainty, NSFLSs are useful to model

it and generally have the potential to deliver better performance compared to Singleton Fuzzy

Logic System (SFLSs) [19, 32, 94]. In NSFLS design, traditionally, input FSs are built through

a priori knowledge about the uncertainty level or implementing an optimisation technique to

define parameters of systems [106]. While efficient, these approaches are invariably dependent

on the availability of a priori knowledge or the availability of a training dataset which accurately

reflects all potential real-world operating conditions. Furthermore, these approaches generally

lead to a limited selection of one type of input FS models which prevents NSFLSs from being

able to adapt to the breadth of changing uncertainty levels inherent to real-world applications.

In this thesis, as presented in our studies [121, 124], a complete ADaptive ONline Non-

Singleton (ADONiS) framework is proposed to dynamically configure input FSs at run-time,

in an online manner, which provides the ability to adapt into real-world circumstances without

requiring a priori knowledge or training procedures and also without limiting the system to the

selection of one type of input FS (as explained in Chapter 4).

Moreover, real-world environments are subject to different sources of uncertainty which may

vary in magnitude over time. In other words, different sources of uncertainty may affect input

values at different levels at different times which inevitably cause a variation in input uncer-

tainty levels over time. Type-2 (T2) input FSs provide the ability to also capture variation in

uncertainty levels by means of extra degrees of freedom. Thus, as presented in our study [123],

the proposed ADONiS is later extended to a new type of noise-robust, adaptive interval type-
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2 (IT2) input NSFLS which enables on-the-fly adaptation of the input FS to capture both the

current uncertainty and the variation in uncertainty levels over time (as explained in Chapter 5).

The third aspect of this thesis is to maintain a given level of interpretability of fuzzy models.

In recent years, an increasing number of studies have focused on fundamental questions such as

what interpretability is in general, and in particular in respect to FLSs and how an interpretable

FLS can be achieved etc. [3, 4, 71, 82]. These studies show that the interpretability of FLSs

depends on their various components e.g. the number of rules, the structure of the rule set and

the actual interpretability of each rule - which in turn depends on how meaningful the actual

FSs are, how well they reflect the model which the interpreting stakeholder has in mind when

considering the given linguistic label [54, 57, 137].

Assessing the interpretability degree of FLSs is a challenging task and it is related to multiple

components in multiple contexts. When the aim is to increase the accuracy of FLSs, tradition-

ally, some parametric equations and/or statistical optimisation techniques are used to tune/alter

key components (e.g. MFs, rule parameters) based on data-driven approaches. Although chang-

ing parameters can provide an increase in accuracy, it usually causes a poorer interpretability as

the key parameters are altered in a data-centric manner. Therefore, as the third aspects of this

thesis -as presented in our study [119]-, while we increase performances of FLSs, in conjunc-

tion with the first two aspect of this thesis, we also focus on not changing key interpretability

parameters and maintaining a given interpretability level of FLSs (as explained in Chapter 6).

Throughout the thesis, handling of input uncertainty approaches are proposed and evalu-

ated in the context of time-series prediction experiments. Chapter 7 moves beyond time series

prediction towards a real-world case study which was in part motivated by the international

COVID-19 crisis in 2019: the automated control of breathing (oxygenation) support for neona-

tal babies. The case study was designed to test the deployability of ADONiS in a real-world

setting and to provide initial insight in respect to its viability in replacing traditional approaches,

in particular standard, singleton fuzzy logic control systems. In this application, the system rules

and MFs parameters are defined by a medical expert and sensory inputs are processed as inputs

to provide the oxygen level suggestions as output. The particularly interesting aspect of the
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application is that there is an expectation from the medical professionals to be able to under-

stand the decision making underpinning the oxygen flow, thus ideally the model parameters and

rules should be preserved – unless the medical experts themselves decide to change them. This

provides the challenge of how best to deal with input (sensor) uncertainty affecting the control

system and thus an ideal case study for ADONiS.

In the next section, we present the aim and objectives to further develop input uncertainty

capturing-handling capacity of NSFLSs.

1.5 Aims and Objectives

The aim of this thesis is to further develop input uncertainty capturing and handling capacity

while also maintaining the ‘interpretability’ of NSFLSs. To achieve this aim, the following

objectives were identified:

1. To conduct a critical analysis of the specific behaviour of different firing strength de-

termining approaches in mapping input uncertainty to outputs of NSFLSs, and to put

forward a novel approach to generating firing strengths which faithfully handles the un-

certainty affecting system inputs.

2. To develop a framework that enables capturing different levels of input uncertainty - as

one of the principal sources of uncertainty - and to model the input uncertainty dynami-

cally, on-the-fly, where it arises.

3. To extend the proposed framework with an extra mechanism of adaptation to the mag-

nitude of uncertainty change over time, achieving a compromise between reactivity and

smoothness. Thus, to capture both the uncertainty in the last observed value(s) and un-

certainty levels variation over time by means of the extra degree of freedom.

4. To maintain the given level of interpretability in the FLSs through the preservation of the

key parameters for interpretability, while also providing an increase in performance of

FLSs.
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5. To test the deployability of the proposed framework to provide initial insight in respect to

its viability in real-world applications.

1.6 Thesis Structure and Key Contributions

Chapter 2 outlines an overview of background material including FS theory, FS operations

and FLSs. Also, a review of the current NSFLS studies is presented with a focus on inference

engine and fuzzification steps which are traditionally associated with input uncertainty handling

and capturing, respectively. The chapter then highlights the current challenges that are faced by

current NSFLS literature in further developing the input uncertainty capacity of NSFLSs. Later,

to link the NSFLS to the interpretability concept of FLSs, a brief overview of interpretability

is provided. Lastly, since time-series forecasting is the application employed to evaluate the

proposed technique and frameworks in this thesis, the time-series generation and noise adding

procedures are presented along with the evaluation methods.

Chapter 3 puts forward novel approaches to systematically generate firing strengths which is

to leverage mapping the uncertainty affecting system inputs to outputs. To highlight the strength

and key challenges of current firing strength determining approaches, a critical analysis study

is undertaken. Building upon this analysis, an alternative approach is proposed which provides

a mapping of different levels of uncertainty information from inputs to outputs of NSFLSs,

addressing objective 1. Chapter 3’s contribution is pinpointed in the inferencing step of Fig. 1.2.

Chapter 4 proposes an end-to-end framework to adaptively configure non-singleton input

FSs to the changing uncertainty levels. Considering the fact that a broad range of uncertainty

sources can vary greatly in magnitude over time, the adaptation of NSFLSs to the varying

environments can provide an efficient and effective solution for input uncertainty mapping to

outputs of NSFLSs, by addressing objective 2. In this chapter, to highlight the strength of

the proposed framework, extensive time-series forecasting experiments are implemented and

comparisons results are reported. Chapter 4’s contribution is located in the fuzzification step of

Fig. 1.2.
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Figure 1.2: The representation of the overall contribution of each Chapters 3 - 6 of the thesis.

Chapter 5 puts forward the extension of the proposed framework from Chapter 4 by capturing

both the uncertainty and its magnitude change over time, achieving a compromise between

reactivity and smoothness. While capturing the last observed input uncertainty adaptively in the

principal T1 input FS, the extra degree of freedom (i.e. footprint of uncertainty [FOUs]) of IT2

input FSs are used to capture/model the variation in uncertainty levels in an adaptive manner.

This provides the dynamic structure of having different widths and FOU values on generated

input FSs which can enable models to be prepared for drastic changes in environments, by

addressing objective 3. This extension of our proposed framework is also tested on time-series

forecasting experiments to provide a comparative study under different level of noise and noise

variations over time. Chapter 5 is illustrated in Fig. 1.2.

The focus of Chapter 6 is expanded to encompass interpretability, considering specifically

whether the mechanisms developed in Chapters 3 - 5 can be usefully applied to maintain a

given level of interpretability of models. This chapter first presents an overview of the literature



1.7. Publications Arising from the Thesis 13

on the concept of interpretability for FLSs to present the main parameters for an interpretable

FLS. Then the proposed framework is examined in terms of maintaining interpretability of sys-

tems while it provides increased performance. Through a detailed set of time-series prediction

experiments, the potential of the proposed framework is explored in comparison to a traditional

optimised approach, by addressing objective 4. The behaviour and performance of both ap-

proaches are analysed with a view to informing future research aimed at developing FLSs with

both high performance and high interpretability. Chapter 6’s focus is pointed in the rule-base

step of Fig. 1.2.

In Chapter 7, the neonatal baby O2 support suggestion application is undertaken to test the

deployability of ADONiS in a real-world setting and to provide initial insight in respect to its

viability in replacing traditional approaches, in particular standard, singleton fuzzy logic control

systems. First, an overall neonatal baby study overview is presented with related literature.

Then, the system design and methodology are presented. Later, the application results are

presented with medical expert opinions.

Chapter 8 summarises and concludes the work presented in this thesis, highlighting the main

contributions, limitations, future works and articles produced with forthcoming papers.

1.7 Publications Arising from the Thesis

[122] PEKASLAN, D., KABIR, S., GARIBALDI, J. M., AND WAGNER, C. Determin-

ing firing strengths through a novel similarity measure to enhance uncertainty handling in

non-singleton fuzzy logic systems. In Proceedings of the 9th International Joint Conference

on Computational Intelligence - Volume 1: IJCCI, (2017), INSTICC, SciTePress, pp. 83–90.

(Contribution to Chapter 3)

[120] PEKASLAN, D., GARIBALDI, J. M., AND WAGNER, C. Exploring subsethood to

determine firing strength in non-singleton fuzzy logic systems. In Fuzzy Systems (FUZZ-IEEE),

IEEE International Conference on (2018), IEEE.(Contribution to Chapter 3)
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ter 5)
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[123] PEKASLAN, D., WAGNER, C., AND GARIBALDI, J. M. Leveraging IT2 Input
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Chapter 2

Background

Uncertainty is a pervasive element of many real-world applications, and very often, its have a

detrimental effect on inputs of decision-support systems. Since inputs are generally affected by

different levels of uncertainty, the ability to faithfully map these uncertainty levels (from input to

output) becomes an essential aspect for decision-support systems. Furthermore, while carrying

out the decision process, providing an insight of these processes is also another important asset

which allows us to understand and validate the functioning of a the given decisions or systems.

As mentioned in the previous chapter, FLSs are considered as robust systems for handling

uncertainty and are also frequently referred to as ‘interpretable’ systems. Taken together, this

thesis aims to further develop input uncertainty handling capacity of FLSs in an adaptive man-

ner, as well as maintain the given interpretability level of FLSs. Hence, while different uncer-

tainty levels can be handled on run-time, an insight of why or how results are produced can be

provided in the decision-support process of FLSs. The structure of this chapter is as follows.

FSs and FSs operations are mainly the foundation of FLSs. Thus, Section 2.1 introduces the

theoretical background of Type-1 and Type-2 FSs and Section 2.2 outlines FS operations.

As one of the commonly used models, Mamdani [88] fuzzy systems are not only good at han-

dling uncertainty but also offer a comprehensible way of characterising system behaviours [194],

which provides interpretability for the model. Thus, Mamdani fuzzy systems are chosen to be

employed throughout the thesis and Section 2.3 provides details of three different Mamdani

15
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FLSs (singleton, non-singleton, Type-2 non-singleton) which generally comprise three essen-

tial steps: fuzzification, inferencing and defuzzification.

Section 2.4 and 2.5 provides the literature survey of NSFLSs as they are specifically designed

to cope with input uncertainty. A literature survey which focuses on the inference step of

(NS)FLSs and fuzzification step of NSFLSs are provided, respectively.

Section 2.6 presents an overview of the concept of interpretability in FLSs. Also maintaining

given level of interpretability is presented.

Since time-series forecasting provides an ideal test-bed for systematic evaluation -such as

offering the potential to accurately control the levels of uncertainty-, time series forecasting case

studies are provided throughout the thesis. Therefore, Section 2.7 introduces chaotic nonlinear

time-series generations, noise injection procedures and performance evaluations.

Lastly, Section 2.8 gives summary of this chapter. Also, to assist the reader, the list of used

abbreviations can be found at the beginning of this thesis.

2.1 Fuzzy Sets

Human thinking is described by using language and linguistic terms which are, by nature, im-

precise. Zadeh [189] introduced FS theory with the aim to capture uncertain information charac-

terised by MFs. FSs are generally designed with respect to linguistic labels and are the basis for

FLSs. In the following subsections, the concepts and definitions related to FSs are introduced.

2.1.1 Type-1 Fuzzy Sets

In classical set theory, a subset F of a set X can be defined by its characteristic function (also

called discrimination function or indicator function) µF (x) as a mapping from the elements of

X to the elements of the set {0,1} [94]
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F ⇒ µF (x) =


1 if x ∈ F

0 if x /∈ F .

(2.1)

Thus F can be defined as conditions F = {x | x meets some condition(s)} and mathemati-

cally knowing the µF (x) is the same as knowing F itself.

A Type-1 Fuzzy Sets (T1 FSs) A is a generalisation of the crisp set, and it is defined on a

universe of discourse X . FSs are characterised by MF µA(x) that takes value in the interval

[0, 1]. An FS A in X can be represented as a set of ordered pairs of a generic element x and its

grade of MF is shown as follows:

A = {(x, µA(x)) | x ∈ X} (2.2)

If membership grades are constrained to be either 0 or 1, then a crisp set is obtained. Oth-

erwise, membership grades µA(x) takes the value in the interval of [0, 1] for each element

x ∈ X [94].

When X is continuous, MF A is commonly written as:

A =
∫
X

µA(x)/x, (2.3)

where
∫

denotes the collection of all points x ∈ X with associated (/) MF µA(x). When X

is discrete, A is commonly written as:

A =
∑
X

µA(x)/x, (2.4)

where the
∑

denotes the denotes the collection of all points x ∈ X with associated (/) MF

µA(x).

While different pre-defined shapes can be used for MFs, it can also be non-parametric (e.g.
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(a) A Singleton MF (b) A Triangular shaped MF

(c) A Gaussian shaped MF (d) A Trapezoid shaped MF

Figure 2.1: Four different MF samples

not defined shaped). Four samples of pre-defined shaped MFs are shown in Fig. 2.1.

2.1.2 Type-2 Fuzzy Sets

In the previous section, the difference between crisp sets and FSs is presented. When the mem-

bership function cannot represent only either 0 or 1, T1 FSs are utilised to get membership

grades between the interval of [0, 1]. Similarly, when the circumstances are more uncertain, the

membership grade itself may not be represented as a crisp number. To capture these more fuzzy

circumstances, Type-2 Fuzzy sets (T2 FSs) introduced by Zadeh in 1975 [191].

2.1.2.1 General Type-2 Fuzzy Sets

A T2 FS is characterised by a fuzzy MF that has a membership grade for each element of the

set as a fuzzy set in [0,1]. A General Type-2 FS (GT2 FS) [191] is constructed using a T2
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membership function formulated as 0 ≤ µ
Ã

(x, u) ≤ 1 where x ∈ X and u ∈ Jx ⊆ [0, 1] as

follows:

Ã = {(x, µA(x, u)) | x ∈ X, u ∈ Jx ⊆ [0, 1]} (2.5)

where x is the primary and u is the secondary variable, while Jx refers to the primary member-

ship, µA(x, u) is referred to the secondary membership of x.

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] . (2.6)

where
∫

denotes the collection of all points x ∈ X with associated (/) MF µA(x). When X

is discrete, A is commonly written as:

Ã =
∑
x∈X

∑
u∈Jx

µÃ(x, u)/(x, u) Jx ⊆ [0, 1] . (2.7)

Regardless of the extra degree of freedom capacity, GT2 FSs have limited usage in applica-

tions, due to high computational cost. In the literature, several approaches have been developed

to reduce this computational burden. For instance, [55, 110] focus on GT2 FS type-reduction

and defuzzification steps. Another study [175] introduced a framework, which is referred to as

zSlices based GT2 FS in fuzzy systems. The proposed approaches lead to a reduction in both

the complexity and the computational requirements for GT" FSs applications, and it has been

implemented, for example, two-wheeled mobile robot which operates in a real-world outdoor

environment.

2.1.2.2 Interval Type-2 Fuzzy Sets

Even though the GT2 FSs are successfully applied in many applications, as mentioned, it has

been perceived to be computationally expensive techniques for uncertainty management in real-

world applications. Hence, Interval Type-2 Fuzzy Sets (IT2) FSs introduced, which simplifies
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the secondary membership grades to be 0 or 1 [94]. So that the (2.6) can be re-expressed by

considering all µÃ(x, u)=1 as:

Ã =
∫

x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] . (2.8)

where
∫

denotes the collection of all points x ∈ X with associated (/) MF µA(x). When X

is discrete, A is commonly written as:

Ã =
∑
x∈X

∑
u∈Jx

1/(x, u) Jx ⊆ [0, 1] . (2.9)

2.1.2.3 Footprint of Uncertainty

Overall, the region bounded by the primary membership function is called the footprint of

uncertainty (FOU) [95] and it is the union of all primary memberships as shown below.

FOU(Ã) =
⋃
∀x∈X

Jx (2.10)

The FOU concept is utilised to focus attention on the uncertainty in a primary membership

function. Therefore FOU provides a convenient verbal and graphical representation.

Depending on applications and design choices, many different FOU assembly can be imple-

mented. In this thesis, we will be using the uncertain standard deviation technique to gener-

ate FOU on the primary membership [95]. While the FS shape is defined as Gaussian (See

Fig. 2.2a), the uncertainty on the primary membership function is applied by adding and sub-

tracting a given uncertainty level (n) from the standard deviation (σ) of the FSA (σ±n=[σ1, σ2]),

shown in Fig. 2.2b.

µA(x) = exp
[
−1

2

(
x− c
σ

)2
]
σ ∈ [σ1, σ2], (2.11)

where c and σ are the centre and the variance of the MF, respectively.
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(a) Gaussian MF. (b) IT2 FS.

Figure 2.2: FOU for Gaussian MF with uncertain standard deviation σ ± n=[σ1, σ2]

Since IT2 FSs are defined based on the FOU (lower µ
Ã

(x) and upper µ̄Ã(x) membership

functions 2.2b), the computational cost is reduced significantly.

µ
Ã

(x) = exp
[
−1

2

(
x− c
σ1

)2
]
, (2.12)

µ̄
Ã

(x) = exp
[
−1

2

(
x− c
σ2

)2
]
, (2.13)

where c is the centre, σ1 is calculated by σ − n and σ2 is calculated by σ + n where n is the

given uncertainty level on the principal MF.

For instance, on a restaurant rating scale from 0 − 10, the rating 5 may represent the word

average in the crisp sense, as shown in Fig. 2.3a. Accordingly, any rating which is less than 5

(e.g. 4.99) or more (e.g 5.01) can be considered as not average. Yet, by nature, that decision can

include some uncertainty and the value 5 may not exactly define the only decision of average

for the restaurant. In that case, the rating can be represented as a FS by taking into account the

uncertainty (e.g. it can be represented as Gaussian MF, shown in Fig. 2.3b. Furthermore, if the

membership grades of this representation can not be determined as exact degrees, T2 FSs are

designed to allow the uncertainty to be represented in the membership grade as well (Fig. 2.3c).
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(a) Rating average 5 with exact
value.

(b) Rating average 5 with un-
certainty.

(c) Rating average 5 with
higher uncertainty.

Figure 2.3: Three different MF samples to represent the work average

Even though this type of extensions can be elaborated more and the secondary degree can be

represented by FS and so on, for practical reasons, commonly, T1 and IT2 FSs are used in many

applications.

After having a detailed T1 and T2 FSs background, we will now proceed with the FS opera-

tions.

2.2 Fuzzy Set Operations

As mentioned in the previous section, FSs are a generalisation of the crisp sets, and as it is

practised in the crisp set theory, intersection, union and complement operations are applied to

FSs [189].

Let T1 FSs A and I be described by their MFs µA(x) and µI(x) on X . A fuzzy union

operation can be described as follows[189]. :

A ∪ I ⇔ µA∪I(x) = max[µA(x), µI(x)] = µA(x) ∨ µI(x), ∀x ∈ X, (2.14)

where ∨ denotes the maximum operator, as shown in Fig 2.4c.

Fuzzy intersection definition can lead to the MF:

A ∩ I ⇔ µA∩I(x) = min[µA(x), µI(x)] = µA(x) ∧ µI(x), ∀x ∈ X, (2.15)
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(a) Sample of two (Triangular
and Gaussian) fuzzy sets.

(b) Intersection of the two
fuzzy sets.

(c) Union of the two fuzzy sets.

Figure 2.4: Example of fuzzy operations (b) intersection (min as t-norm) and (c) union (max
as t-conorm).

where ∧ denotes the minimum operator, as shown in Fig. 2.4b.

The general name for these operations are t-norm (?) for intersection and t-conorm operator

for the union, and in the literature, different methods are proposed for these operations. For in-

stance, algebraic sum, bounded sum or drastic sum as t-conorm and algebraic product, bounded

product or drastic product for t-norm operator [39, 41, 75, 94, 184, 189].

Throughout this thesis, as the most common operator, we will be using minimum for t-norm

and maximum for t-conorm operator between FSs. Regarding the use of these FSs in decision-

support models, we will now introduce the Fuzzy rule-based systems step-by-step.

2.3 Fuzzy Rule-Based Systems

In the field of artificial intelligence (machine intelligence), there are various ways to represent

knowledge [139]. One of the convenient and intuitive approach to represent human knowledge

is to form it into natural language expressions such as:

IF premise (antecedent), THEN conclusion (consequent).

In the literature, different models utilise this type of rules in different ways. For instance,

traditionally, Takagi-Sugeno (TS) [162] or Adaptive-Network-based Fuzzy Inference System

(ANFIS) [70] utilise FSs in the premise part of the rules, and some parametric equations or
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Figure 2.5: A block diagram of fuzzy Mamdani model.

FSs are used in the conclusion part of the rules. Generally, tuning procedures are applied to

update/define the parameters of different models. In Mamdani [88] fuzzy rule-based systems,

traditionally, FSs are utilised in both premise and consequents part of the system rules.

Since FSs are linguistically labelled, FLSs mechanisms can be understood by humans and

insight of questions why or how results are produced? can be provided. Yet, as tuning proce-

dures are applied (e.g. ANFIS), the model parameters are altered in a data-driven way which

usually causes reducing the model interpretability –even though the accuracy of models can be

increased [21, 23, 63, 111].

Since Mamdani models’ rule premises and conclusions are established by FSs, it provides

a more interpretable decision-making process than other models, e.g. TSK or ANFIS. Thus,

Mamdani fuzzy models are preferred to be used in many applications [4, 194].

In this thesis, while the core part of our investigations focuses on increasing models’ perfor-

mance -by mapping input uncertainty to output-, the other focus is to maintain the given level

of interpretability of the model. Therefore, throughout the investigation, the Mamdani model is

chosen to be used which traditionally compound from four different components; fuzzification,

rule-base, inference engine and defuzzification (See Fig. 2.5). Depending upon the used FSs,

different versions of models as Singleton, Non-Singleton and Type-2 Non-Singleton Mamdani

fuzzy models are employed, and for the sake of simplicity, the details of each model are pre-

sented on a sample of single-input single-output (SISO) model with a single representative rule.

Later, a brief explanation with multi-input and single-output (MISO) is also provided after each

SISO example.
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2.3.1 Singleton Fuzzy Logic System

In this model, inputs are assumed to be exact/correct value and the operations are employed as

detailed below.

2.3.1.1 Fuzzification - Singleton

In the fuzzification step of singleton FLSs, a given crisp input is transformed into a singleton

input FS (See Fig. 2.6). Assume that I is a fuzzy set in the universe of discourse X where an

FS µI(x) takes values in the interval [0,1], formulated as:

I = {x, µI(x) | ∀x ∈ X} . (2.16)

Singleton fuzzy sets are characterised by a single value x with a membership of 1 as follows:

µI(x) =


1 if x ∈ I

0 if x /∈ I .
(2.17)

In the case of multiple inputs are given (x=(x1, . . . , xn)T ∈ U1, ..., Un), each xi is fuzzified

into MFs (Ii i = 1, . . . , n).

Figure 2.6: Singleton Fuzzy Logic System
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2.3.1.2 Rule Base

Fuzzy rules can be generated from expert knowledge and/or by using data-driven techniques.

In FLSs, rules consist of two main parts: IF -THEN and in the Mamdani model, both IF and

the consequents (THEN ) parts consist of FSs. A sample of a rule can be seen in (2.18) and

visualised in Fig. 2.6.

2.3.1.3 Inference Engine - Singleton

The inference engine in the Mamdani model provides a mapping of singleton input FSs to output

FSs. During this process, firing strength levels are calculated in each interaction of singleton

input FS and the corresponding antecedent FSs in rules. After each rule is evaluated separately,

a decision is made for each individual rule by using operators logical operators.

Rule = IFx isA THEN y isG (2.18)

As shown in Fig. 2.7, the input is designed in singleton FS and the firing strength between

this interaction (µI(x) ? µA(x)) is only a function of input x which provides a scalar value. The

firing strength between input FS (I) and antecedent FS (A) is reflected in the output FS (G), as

shown as the representative sample of this inferencing procedure in Fig. 2.6.

In the case of multi-input single output (MISO) model, the rule is formed as follows:

Figure 2.7: Firing Strength of singleton input FS (I) and antecedent FS (A).
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Rule1 = IFx1 isA1 and . . . and IF xn isAn THEN y isG (2.19)

where x1 ∈ U1, ..., xn ∈ Un and the output y ∈ V which represented by fuzzy relation

between input space in U1 × · · · × Un and the output space Y and denoted as follows:

R1 = A1 × · · · × An → G (2.20)

The MF of this mapping is denoted by µA1×···×An→G(x, y) where input x = (x1, ..., xn)T .

This MF can be re-expressed as follows:

µA1×···×An→G(x, y) = µA1×···×An→G(x) ? µG(y)

= µA1(x1) ? · · · ? µAn(xn) ? µG(y)

=
[
T ni µAi

(xi)
]
? µG(y)

(2.21)

where multiple antecedents are connected by t-norm operator and T refers to t-norm.

When inputs µI(x) are delivered to the model, they are processed over the rule as follows:

µG1(y) = sup
x∈U

[µI(x) ? µA1×···×An→G(x, y)]

= sup
x∈U

[
T ni µI(xi) ?

[
T ni µAi

(xi)
]
? µG(y)

]
= sup

x∈U

{[
T ni µI(xi) ? µAi

(xi)
]
? µG(y)

}
= µG(y) ?

{[
supx1∈U1µI(x1) ? µA1(x1)

]
?

· · · ?
[
supxn∈UnµI(xn) ? µAn(xn)

]}
, y ∈ V

(2.22)

In 2.22 a single Rule (R1) inferencing is shown which provides B′. If we assume there are

M rules (where Rl l = 1, . . . ,M ), then the final fuzzy set B is determined by combining for

all B′s from each rule as follows:
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G′ = G1 ⊕ · · · ⊕GM . (2.23)

where ⊕ is t-conorm operator.

2.3.1.4 Defuzzification

After obtaining the output FS (G′), the defuzzifier convert this set into a crisp value (See

Fig. 2.6). In the literature, there are different defuzzifier have been proposed [94]. In this

thesis, the centroid defuzzification method (COG) is used over the obtained output FSs in all

experiments.

2.3.2 Non-Singleton Fuzzy Logic System

As real-world settings often include uncertainty sources which affect system inputs at different

levels. NSFLSs are designed to capture input uncertainty and handle it in the inference engine

steps. Apart from the fuzzification and inference engine steps, the same procedures as singleton

models are followed in the rule base and defuzzification steps.

Figure 2.8: Non-Singleton Fuzzy Logic System
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(a) Singleton input FS with no
uncertainty

(b) Non-Singleton input FS
with lower uncertainty

(c) Non-Singleton input FS
with higher uncertainty

Figure 2.9: Singleton and Non-Singleton Gaussian FSs

2.3.2.1 Fuzzification - Non-Singleton

When input data has uncertainty (e.g. measurement imprecision, noise by external factors etc.),

coping with this uncertainty becomes critical in decision-making systems. In non-singleton

fuzzification step, capturing uncertainty is done by associating input data (x) with non-singleton

FSs (See Fig. 2.8). Conceptually, it is assumed that the input x is the value which is likely to

be correct, but because of existing uncertainty, neighbouring values of x′s have also potential

to be the correct value. As we go away from the input x value, the possibility of being the

correct value is decreasing [104]. Therefore, the width of the non-singleton FS is associated

with the uncertainty level in the given input. For instance, while high uncertainty can result

in wider non-singleton FSs, low uncertainty leads to narrower or even singleton (noise-free)

input FSs. As shown in Fig. 2.9, different uncertainty levels are captured with different width

of FSs. Non-singleton FSs can thus capture input uncertainty in an efficient manner, without

requiring changes to other (unrelated) parts of the FLSs, such as antecedents or consequents.

While the different design of non-singleton FSs can be characterised, such as convex shapes

or non-convex etc., in this thesis (in Chapters 3-6), we use the most common choice; Gaussian

input FSs, and standard deviation (σ) is used to define the uncertainty level as it defined the

width of the FS:

µI(x) = exp
−1

2

(
x− x′

σ

)2
 , (2.24)
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where σ is the input uncertainty level, x′ are the neighbouring values of the mean, which is

located at x.

In the case of multiple inputs are given (x=(x1, . . . , xn)T ∈ U1, ..., Un) and inputs are contain

some levels of uncertainty, in order to capture this uncertainty, given inputs are mapped into

non-singleton MFs (Ii i = 1, . . . , n)

After capturing the input uncertainty in non-singleton input FSs, it proceeds to the inference

engine to interact with the given rules.

2.3.2.2 Rule Base

The rule-base of NSFLSs is the same as the singleton fuzzy logic systems which is mentioned

in the previous section. So that the same rules -with the same parameters in antecedent and

output FSs- can be employed in both singleton or non-singleton fuzzy systems. See Fig. 2.8

2.3.2.3 Inference Engine - Non-Singleton

In the inference engine step, the constructed non-singleton input FSs interact with the corre-

sponding antecedent FSs in the given rules, as shown in Fig. 2.8. The captured input uncertainty

from the fuzzification is handled in this step and this uncertainty is reflected as firing strength

between the interaction of input and antecedent FSs. Therefore, it can be sad that firing strength

has a significant role in terms of mapping input uncertainty to outputs of FLSs.

Figure 2.10: Firing Strength of non-singleton input FS (I) and antecedent FS (A) over the
intersection (Q′).
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Traditionally, as shown in Fig. 2.10, another FS (Q′) emerges from the interaction between

the input and antecedent FSs.

µQ′(x) = µI(x) ? µAi
(x) (2.25)

where ? is the t-norm operator.

Later, the maximum membership degree of the Q′ FS is defined as the firing strength level of

that interaction, as shown in Fig. 2.10. Throughout the thesis, we use the acronym sta-NS for

this standard approach in firing strength definition.

After evaluating each individual rule, output FS is obtained by using the defined operator.

2.3.2.4 Defuzzification

As it is practised in singleton systems, structurally the same output FSs (G′) are obtained in

the defuzzification step, as shown in Fig 2.8. Thus, the same defuzzifier approaches can be

employed in this step to obtain the crisp output of the system.

As can be seen in NSFLS design in Fig. 2.8, input uncertainty changes the fuzzification and

inference engine firing strength definitions, and the remaining procedures are employed the

same as the singleton models.

2.3.3 Interval Type-2 Non-Singleton Fuzzy Logic System

As mentioned in Section 2.1.2, T2 FSs are useful when the circumstances more fuzzy and

the membership grade itself of T1 FS may not be able to reflect the uncertainty level as a crisp

number. In this case, membership grade is defined as interval, and because of the computational

simplicity, IT2 FSs are usually preferred models in applications.
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Figure 2.11: IT2 input FSs Non-Singleton Fuzzy Logic System

2.3.3.1 Fuzzification - Interval Type-2 Non-Singleton

In IT2 NFLSs, the given input (x) are defined as IT2 FS, as shown in Fig. 2.11. Based on the

design choice, the extra degree of freedom of IT2 input FSs can be utilised to capture different

uncertainty types. In this thesis, in Chapter 5, while the core T1 input FSs are used to capture the

input uncertainty, the FOU of IT2 input FSs is used to capture the variation in uncertainty over

a period of time. The widths of the primary FS is associated with the uncertainty level and the

width of secondary MF (FOU) is associated with the variation in uncertainty levels over time.

Thus, constant unstable environmental conditions (varying uncertainty levels) are captured in

the extra degree of freedom of IT2 input FSs.

The lower and upper input FSs can be defined as follows with a given input x and uncertainty

level (σ) while the variation in uncertainty level is n:

µ
Ĩ
(x) = exp

−1
2

(
x− x′

σ − n

)2
 , (2.26)

µ̄
Ĩ
(x) = exp

−1
2

(
x− x′

σ + n

)2
 , (2.27)

While different defined shape or without pre-defined shapes can be used in IT2 input FSs,
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we use Gaussian shape with uncertain standard deviation technique to construct IT2 input FSs

which are proceed to the inference engine step.

2.3.3.2 Rule Base

As it is employed in singleton and Type1 NSFLSs, the same rule base are used in IT2 NSFLSs

as well (Fig. 2.11).

2.3.3.3 Inference Engine - Interval Type-2 Non-Singleton

Practically, the same firing strength definition method from T1 NSFLS is used in IT2 NSFLSs.

However, as there are two (upper and lower) FSs in the IT2 input FSs, each FS is processed

separately on T1 antecedent FSs, and an interval firing strength is obtained for each individual

rule, as shown in Fig. 2.11. This interval firing strength is reflected in the consequent of each

rule and output FS (G̃′′) is obtained.

2.3.3.4 Type Reduction

Unlike the NSFLSs, IT2 output FSs are generated in IT2 NSFLSs. Therefore, type-reduction

procedure is applied to the obtained output set (G̃′′), as shown in Fig. 2.11. In literature different,

type reduction procedures are proposed, and in this thesis, the common Enhanced Karnik and

Mendel (EKM) [181] is employed on the obtained output FS to find the left and right points.

2.3.3.5 Defuzzification

In the defuzzification of IT2 NSFLSs, the calculated left and right values from EKM algorithm

are simply averaged to calculate the crisp output of IT2 NSFLSs. (Fig. 2.11)

So far, three different fuzzy Mamdani rule base have been detailed in each step. We now

proceed with the literature reviews regarding determining firing strengths and the fuzzification

step of NSFLSs.
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2.4 A Review in Regards to Firing Strengths

As mentioned in the previous sections, firing strengths have a significant role in driving the

mapping of antecedents to consequents, being based on the interaction of the input and an-

tecedent FSs. In this section, first, we present the literature with respect to early firing strength

related studies. Later, a literature survey of firing strength determining studies in optimised and

Mamdani FLSs will be provided, respectively.

Over the years, a large body of work has explored the use of other approaches to establishing

what is effectively the compatibility between FSs through various measures in reasoning [16,

34, 36, 44, 59, 86, 142]. Even though Zadeh’s Compositional Rule of Inference (CRI) provided

successful results in various systems, some drawbacks have been highlighted [167, 168] and

different similarity-based fuzzy reasoning methods have been proposed over the years.

2.4.1 Approximate Reasoning Studies

Early studies have shown that the notion of a similarity measure between two fuzzy sets may

be successfully applied in fuzzy reasoning. The Approximate Analogical Reasoning Schema

(AARS) has been proposed which mainly built on a distance measure and a pre-defined thresh-

old (τ ) value to avoid going through the conceptually complicated CRI [167, 168]. AARS

method has been applied on linguistic variables by calculating the distance measure between A′

and A which is denoted as D(A′, A) in (2.28). The distance measure calculation can be imple-

mented among several mentioned distances (i.e., Disconsistency measure, Hausdorff measure,

Kaufman and Gupta measure, Gupta measure). After calculating the D(A′, A) by a chosen

measure, it is used to obtain similarity measure (SAARS) as:

SAARS = D(A′, A)
(1 +D(A′, A)) ; SAARS ∈ [0, 1] (2.28)

A simple rule with the defined threshold value and a given fact is given below.



2.4. A Review in Regards to Firing Strengths 35

Rule: if X is A, then Y is B (threshold τ )

Fact: X is A′ (such that SAARS exceeds τ )

——————————————————————–

Conclusion: Y is B′

If the calculated similarity measure SAARS is greater than the defined τ , then the rule is fired,

otherwise not fired. Lastly, the B′ is deducted by using modification techniques Expansion or

Reduction form methods [165, 166, 167, 168].

In addition to the AARS method, another two similar approaches for medical diagnostic

problems have been proposed [28]. In that method, patients’ symptoms are represented by A,

which is linked to fuzzy quantifier. Then a user provides features which are represented by A′

and are also linked to the fuzzy quantifiers. The cosine similarity between these two vectors A′

and A is calculated as follows:

Scos(A′, A) = |A′||A|cosθ
max(|A′||A|, |A′||A′|) (2.29)

where, |A’| and |A| the length of the vectors and cosθ is the cosine of the angle between vectors

and Scos is the similarity measure.

After the Scos is calculated, the rule firing decision is made based on a pre-defined threshold

τ as well. If the Scos ≥ τ , the rule is fired. Later, this study has been extended by including

weight parameters in the similarity measure and the same threshold controlling mechanism is

applied [29]. In other studies, a subsethood measure between the A′ and A has been used and

this study has been extended later in [185, 186, 187] by using different similarity measures or

including weights parameters in the used similarity measures. Then, as it is practised in the

previous studies, the gathered similarity measure is compared with a pre-defined threshold and

the rule is only fired, if the calculated measure is greater than the threshold, otherwise not fired.

A new similarity measure has been recently proposed and extended the work AARS [168]

in the first scheme of the work [112, 133, 134] . Also, in the second scheme, a new similarity

measure (between A′ and A) has been proposed and used to modify the fuzzy relation (between
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A and B). In the application scheme (i.e. Mamdani model), they also have utilised a defined

threshold (ε), and the rules are fired based on this threshold check mechanism as well.

Firing strength has an essential role in terms of mapping input uncertainty to outputs of

systems. Thus, determining firing strength systematically is an essential task for FLSs. The

inference schemes listed above have a similar mechanism to eliminate the computational cost

of fuzzy relation calculation. However, they rely on pre-defined thresholds, and the measures

are used to make a decision on whether a rule can be fired or not, rather than directly being

associated with firing level itself.

2.4.2 Inference Step of NSFLSs

Fuzzy reasoning had extensive attention, and over the years, many researches have been carried

out which are mostly on theoretical bases. This section will investigate the practical application

of different reasoning or inferencing approaches in the context of optimised NSFLSs.

In one of the initial work [115], to capture input uncertainty, the fuzzy neural system inputs

have been mapped into fuzzy numbers. Firing levels between input and system weight MFs

are defined by using the mutual subsethood measure (ξ) and the fuzzy inner product is used

between each node to define the firing level of the corresponding rule. (2.30).

ξ(s, w) = C(s ∩ w)
C(s) + C(w)− C(s ∩ w) ∈ [0, 1], (2.30)

where s is a fuzzified input value, w is the system weight, c() is the cardinality and ξ is the

calculated mutual subsethood measure.

In the training procedure, antecedents, consequents and input spread parameters (uncertainty

levels) are updated in a data-driven manner. The proposed inference approach has been em-

ployed in several applications [58, 102, 108, 114, 116, 117, 127, 154] as well as evolving

extensions [155, 157], T-S models [118], fuzzy cognitive maps for classification and predic-

tion [160] and also implementation of asymmetry input fuzzy numbers [30, 170]. Even though

the promising results have been obtained over different applications, the mutual subsethood
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measure is degree to which input FSs equal to weight FSs which can be seen a special case

of Jaccard index, where the union operator is replaced by the probabilistic sum. For instance,

a firing strength between high uncertainty input (a ‘wide’ width in input FS) and low uncer-

tainty antecedent (a ‘narrow’ width in antecedent FS) can produce the same firing level with the

case of low uncertainty input and high uncertainty antecedent. In a traditional sense, this firing

strength may be expected to be different because of the distinct circumstances in uncertainty

levels. Thus, using the mutual subsethood measure may not produce faithful firing levels under

certain circumstances. The details of this aspect will be elaborated in Chapter 3. In addition,

traditionally, FLSs are frequently being referred to as ‘interpretable’ systems. When the optimi-

sation procedures are applied, the ANFIS model parameters are often altered in a data-central

manner. Although this can provide high accuracy, but commonly do not consider whether the

resulting model is interpretable. Thus, it can also be said that the protecting interpretability of

the system was not mainly considered either in the aforementioned studies. Furthermore, offline

training procedures leads to a single parameter input FS spread which may not be able to cap-

ture varying input uncertainty levels in real-world circumstances. Thus, having a single width

parameter for input FSs may prevent NSFLSs to adapt different uncertainty levels of real-world

environments.

Another study on fuzzy neural network has been conducted by using the AARS approach

related to firing rules, and in this study, different similarity measures have been investigated to

compare with the defined threshold [132]. However, as it was practised in the initial AARS

work [168], rather than determining firing level, the firing rule is decided based on the threshold

value which is also defined through a supervised training procedure. As mentioned before,

firing levels are one of the way of mapping input uncertainties to outputs of systems. Therefore,

determining firing levels systematically is an important asset, whereas the study is conducted

whether a rule should be fired or not based on calculated measures between input and weight

MFs.

As mentioned in Section 2.3.2, the traditional way to define firing strengths in NSFLSs is to

adopt maximum membership degree grade of the intersection between the input and antecedent

FSs [94]. Throughout this thesis, we will use the term sta-NS to refer to this traditional approach
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in determining firing strength.

Even though sta-NS has provided promising results, it may not systematically map differ-

ent uncertainty levels in inputs to output of systems in different firing strength levels. Because

different input FSs which have different uncertainty levels may intersect the antecedent at the

same membership grade, resulting in the same firing level, despite the fact that these input FSs

are clearly different. (A detailed critical analyses will be given in Chapter 3). In order to deter-

mine more systematic firing levels, a new approach has been proposed to utilise the centroid of

intersection between input FSs (I) and antecedent FSs (A) [130, 131]. In this approach, first,

the centroid of the intersection between I and A has been calculated. Then, the corresponding

membership degree of the centroid position of the intersection has been defined to be the firing

strengths. This centroid-based approach has been used in time series predictions and UAV stud-

ies successfully [131, 51]. More recently, Wagner et al., (2016) have proposed to use similarity

measures to define firing strength between the input and antecedent FSs [176]. In their work,

the Jaccard similarity measure [68] between input FS (I) and antecedent FS (A) has been used

to define firing level, and this study has also shown advantages in time series prediction and

robotics applications [52, 53, 188]. Throughout this thesis, the centroid based and similarity-

based approaches will be referred as cen-NS and sim-NS, respectively. Different aspects of

these approaches will be elaborated and critically analysed in Chapter 3. Furthermore, a novel

approach will be put forward to generating firing strengths which faithfully map the uncertainty

affecting system inputs to outputs.

While firing strength plays a crucial role in terms of input uncertainty handling, capturing

uncertainty is also another important asset for NSFLSs. Especially, as the input uncertainty

levels tend to vary in the real-world, capturing it adaptively can provide advantages and even

maybe essential under certain situations. Therefore, in the next subsection, we will provide

a literature survey which focuses on input uncertainty capturing in the fuzzification step of

NSFLSs.
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2.5 A Review in Regards to the Fuzzification Step of NSFLSs

This section will review the NSFLSs literature by focusing on how input FSs parameters are

defined in various study and applications.

Initial works have introduced the idea of expressing systems’ input data as FSs; Hayashi,

Buvklet and Czogala (1992) have used the system inputs as vectors of fuzzy sets during pro-

cessing in fuzzy neural network [65]. Later, this method has also been used in [10] fuzzy neural

network with the control of an metal-cutting process application.

2.5.1 Fuzzification of NSFLSs

Later on, NSFLSs formulation has been presented [104] and forecasting of a chaotic noisy

time series [107] and financial markets application has been implemented [105]. Overall, non-

singleton input FSs show better performance in compare to counterpart singleton fuzzy models.

Considering the dynamic behaviours of applications, the first implementation of dynamic NS-

FLSs has been carried out [106]. In this work, the fuzzy neural network has been trained to

achieve a desired mapping defined by a set of input–output pairs of a target system. During this

optimisation, different parameters (i.e. width of antecedent and input FSs) have been altered in

a data-driven manner. As a result, the dynamic NSFLSs have provided performance benefits.

However, the offline training procedures rely upon the training dataset. Also, defining a single

width parameter tends to prevent NSFLSs from being able to adapt to the breadth of chang-

ing uncertainty levels inherent to real-world applications. Furthermore, altering key parameters

based on the data-driven method may not comply with the initial interpretability settings of

models (e.g. changing key parameters may cause poorer interpretability).
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NSFLSs have also been employed in signal processing simulation by training parameters

over various noise levels [126] and this study results have shown that non-singleton input FSs

have performance advantages in terms of handling noisy signals. In another study [25], TSK

fuzzy models have been used in controlled neuroprostheses based on the processing of sensory

electroneurographic (ENG) signals. In their approach, genetic algorithms was utilised to de-

fine system parameters (e.g standard deviation of input FSs) and the comparable results were

presented. NSFLSs have also been employed in the classification of cardiac arrhythmia by

using ECG signals [32]. In their classification model, the TSK model has been used, and in

training, the genetic algorithm has also been utilised to define model parameters. Results have

indicated that NSFLSs outperform its corresponding SFLSs by using features that contain un-

certainty. Even though genetic algorithms may often show advantages to find globally optimal

solutions [25], parameters changing procedure has been implemented based upon the training

dataset and on the real-world application phase, single constant parameters for input FSs (e.g.

the same width value for all inputs) may not fully capture different uncertainty levels in in-

puts. Also, modifying rule sets or antecedent parameters in a data-centric manner may affect

the interpretability of models –if rules and sets were designed by experts or understood well

initially.

Type-1 and Type-2 neuro-fuzzy NSFLSs have also been used to make one step ahead predic-

tion of the daily exchange rate between Mexican Peso and US Dollar [98]. In the parameters

determination, the recursive least-squared-back-propagation hybrid learning method has been

utilised and the advantage of a comparative study of different NSFLSs have been reported.

IT2 input FSs in the TS model are also used in two experiments as Mackey-Glass time series

forecasting and robotic hand identification [164]. In their approach, as it is a general practice,

parameter tuning has been applied to the defined IT2 input FSs as well as other elements of the

model. Results have showed that the IT2 Fuzzy modelling is a tool that allows dealing with a

high level of uncertainty problems. Although IT2 input FSs have been applied successfully to

capture uncertainty, after the tuning procedures, single parameter (widths) has been utilised for

input FSs. However, using a single parameter for input FSs may not efficiently capture different

real-world uncertainty levels.
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Another study has been carried out for removing Mixed Gaussian and Impulse Noise from

images by using non-singleton T1 input FSs with IT2 antecedents in neuro-fuzzy FLSs [192].

In this study, Quantum-behaved Particle Swarm Optimisation algorithm has been utilised to

define parameters. During the training, 30% of additive Gaussian white noise and 50% im-

pulse noise have been injected into the clean images and parameters tuning procedure has been

employed over this contaminated image dataset. The proposed method has been compared to

different filter techniques (i.e. median filter, Wiener filter, Gaussian filter, ROAD, IPAMF+BM)

and counterpart SFLSs on benchmark datasets. Although successful image filtering results

have been obtained overall, offline parameters tuning may prevent the model from adapting to

different noise levels over time. Because, traditionally, input FS width parameters should be

corresponding to image noise levels. As different noise level naturally occur in images, that

input FS parameter may not capture it efficiently.

A recent two-wheeled self-balancing robot study has used different TSK fuzzy logic con-

troller (singleton, non-singleton T1, IT2 and GT2) and compared the robot’s performance bal-

ancing under noise-free and noisy conditions [193]. Study results have shown that non-singleton

T1 FLS outperform singleton counterparts under noisy conditions. Also, GT2 FLSs have led

the robot to adjust faster than IT2 FLSs under different conditions. Fuzzy neural networks have

been used with ellipsoidal non-singleton Type-2 MFs [72] in an H-∞ based synchronisation of

the fractional order chaotic systems [103]. In the proposed method, firstly, a clustering method

has been utilised to optimise T2 MFs parameters. Later, Invasive Weed optimisation has been

applied to shape rules of the system. The proposed method has been compared to singleton

and various counterpart methods (e.g. self-organising fuzzy modified least-squares network,

simple evolving Takagi–Sugeno fuzzy model etc.). Results have indicated that the proposed

method provides better performances under the variance of added white noise 0.1. Although

the aforementioned evolving mechanisms can provide advantages, optimising parameters based

on a training dataset in an offline manner may not provide overall flexibility in adapting to dif-

ferent noise levels in the real-world. Also, the interpretability of the model relies on only the

used data, as all the key parameters are determined/altered based on data-driven algorithms.

Thus, it can deliver improved performance at the cost of poorer interpretability.
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Moreover, different applications of standard NSFLSs have been utilised, such as control of

motors [2, 135], pattern classification [17], state-space identification of UAV [150]. In addition

that, as the tuning parameters require extra computational cost, different methodologies has

also been proposed to expedite the converge time [99, 138, 38] and a structural and capability

classification of different variants of FLSs is also reported [169].

Overall, real-world applications are often subject to varying conditions which are associated

with uncertainty sources affecting systems’ inputs at run-time. Even though the aforementioned

studies provide promising results, it can be said that training aspects are dependent on offline

optimisation which leads to single parameters for input FSs. This having a single parameter for

input FSs prevents NSFLSs from being able to adapt to the changing uncertainty levels that are

inherent to real-world applications. As stated in objectives 2, dynamically capturing different

levels of input uncertainty and modelling it where it arises can provide advantages for being

able to adapt different uncertainty conditions of real-world. These concepts will be discussed

in details in Chapters 4 and 5.

Furthermore, traditionally, the aforementioned models use generally statistical optimisation

techniques to tune parameters based on data-driven approaches. While these optimisation pro-

cedures provide performance benefits, they often cause building more complex fuzzy rule sets,

rule parameters, MFs or fuzzy partitioning structures with high accuracy but commonly do not

consider whether the resulting model is interpretable or not [3, 4, 22, 153]. Regarding the

rule structure, Mamdani model rules [88] -where conclusions are FSs- are widely admitted as

the more interpretable rules [4] which can provide the overall ability to be interpretable to the

model. The details of the maintaining interpretability concept will be explored in Chapter 6

along with a comparison between an optimised model and the proposed framework from Chap-

ter 4.

Mamdani NSFLS has been used to classify battlefield ground vehicles, and the steepest de-

scent optimisation procedure has been applied to determine system parameters (e.g. width of

input FSs) [183]. This method of design has been played a part of three different architectures

(nonhierarchical, hierarchical in parallel and hierarchical in series) classifier and conducted a
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comparison compared to Bayesian classifier results. Results have indicated that fuzzy systems

outperforms Bayesian classifier. Even though the Mamdani model can provide advantages in

terms of interpretability capacity, optimising parameters in a data-driven manner may distort

the meaning of parameters. Also, when input widths are defined based on the training dataset,

different settings may require different widths to capture different levels of uncertainty which

may not be achieved with a single determined width parameter (e.g. MFs).

In an inverse scattering image procedure, Mamdani NSFLSs have been used as part of the

proposed method to limit the noise’s effects on the retrieval procedure and fully exploit the

information content [12]. Regarding input width determining step in fuzzification, a heuristic

calibration has been carried out, and different widths for input FSs have been varied in a range to

define the optimum width parameter which constructs Type-1 input FSs. The experiment results

have shown that the proposed method is effective, providing both acceptable reconstruction

accuracy and robustness to the noise. However, traditionally, the width of input FS is associated

with the noise level and having a single optimum value in input FSs may not accurately capture

different noise levels during the inverse scattering.

In another study, Type-1 and Type-2 Mamdani NSFLSs have been explored to deal with the

uncertainty in urban water management systems [87]. The study results have indicated that

using fuzzy numbers instead of crisp data points for input can effectively address high data

uncertainty problems. In the fuzzification of non-singleton input FSs, a range of different width

values have been employed and the results are compared. This approach may also not be well

suited to input FS widths corresponding to the data’s actual uncertainty level.

Apart from those, as mentioned in the previous section, other studies have utilised non-

singleton Type-1 fuzzifications in the Mamdani model in a different context, such as time-series

prediction and robotics applications which generally shows that non-singleton systems outper-

form singleton counterparts models [51, 52, 53, 130, 131, 176, 188]. In those studies, either a

priori knowledge or different trials have been utilised to define the input FSs parameters. Even

though a priori knowledge of the uncertainty level can be efficient to define input width param-

eters, this approach is invariably dependent on the availability of this knowledge and does not
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allow the modelling of levels of uncertainty which vary over time.

Adaptive Mamdani NSFLSs models, which update input FS parameters on the run-time,

have been proposed to put forward IT2 input FSs generation [146, 147, 148, 149] and later

these studies have been extended [140, 141]. In these studies, on robotic sensors, some trials

have been carried out by generating noise (i.e. changing temperature, sound noise, and wind

while recording measurements at a fixed distance) and the collection of 10000 sensor measures

have been used to generate a non-specified convex shape piece-wise linear T1 input FSs. Then,

different noise effects -with various levels- have been performed and different T1 sets have been

generated which later utilised to construct IT2 input FSs in trails. After defining the IT2 through

the different experiment settings in the pre-trials, on the run-time of the actual experiment, 5

consecutive crisp measurements from the sensor at the given instance have been collected, and

the average of these 5 measurements has been interpolated with the previously constructed

type-2 fuzzy sets at the right and left of the incoming measurement to generate an interpolated

type-2 fuzzy input. These studies have shown that non-singleton input FSs usage and update

it at run-time provides performance benefits in the used robotic applications. Even though the

adaptive manner is very plausible and endorsed by experiments, it is still limited to the pre-trial

conditions which was employed on the sensor with changing temperature, sound noise, and

wind while recording measurements in advance. For instance, if conditions of pre-trials are

changed (e.g. generation higher noise), a different IT2 may have been obtained. Consequently,

during the testing phase, input FSs would be interpolated with the gathered IT2 from pre-trials.

This may lead to a wider width, despite the testing may be performed in noise-free conditions.

Thus, it can be said that, although updating input FS parameters is a very plausible approach,

non-singleton input FSs may not sensitively be implemented based on the actual noise level of

the testing-phase.

More recently, using of a weighted moving average (WMA) has been suggested to update

the input value in time-series forecasting experiments [129] which has shown the advantages

of non-singleton input FSs usage under different levels of noise. In this study, after WMA has

altered input values, input FSs have been constructed over this new input. However, it has been

assumed that the synthetic and stable noise levels had been known a priori, and the width of
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input FSs have been kept constant. Although efficient performance increase has been achieved,

this study focused only on update input values rather than widths of input FSs which suppose

to capture noise in input value. While updating input values can be efficient, this approach is

invariably dependent on the availability of this a priori knowledge in term of input noise levels

and does not allow the modelling of different levels of uncertainty which vary over time.

Overall, real-world settings contain different uncertainty sources (e.g. environmental condi-

tions) which usually affect input values at different levels at different times. Thus, an effective

uncertainty mapping -from input to outputs- becomes an essential characterisation for NSFLSs.

In this thesis, we build this input uncertainty mapping by adaptively capturing input uncertainty

where it arises at run-time (Chapters 4 and 5) and systematically handling this uncertainty over

rules of models (Chapter 3). While we capture-handle input uncertainty and provide perfor-

mance benefits, synchronously, we also aim to maintain the interpretability of FLSs (Chapter 6).

Thus, in the next section, we will present an overview of FLSs interpretability.

2.6 Interpretability

A key aspect of the vision of interpretable artificial intelligence (AI) is to have decision-making

models which can be understood by humans. Thus, while an AI application may deliver a

good performance, providing an insight of the decision process is also an important asset in

terms of trust, fairness, privacy, reliability or robustness of models [40]. Traditionally, the

accuracy and interpretability aspects yield a trade-off which attracts growing interest in the

research community and it is assumed that this trade-off plays an essential role in the current

literature panorama of computational intelligence [3]. Even though the interpretability-accuracy

of AI is widely acknowledged to be a critical issue, it still remains a challenging task [74].

Historically, it has been acknowledged that FLSs are considered as interpretable systems in

terms of having linguistic rules and FSs etc. As mentioned in the previous sections, in Mamdani

models [88], FSs are used in both parts of rules (premises and consequents) which offer a

more comprehensible way of characterising system behaviours that can provide an interpretable
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structure in decision-making [194].

In the literature, there is no formal consensus on the definition of interpretability. However,

informally an interpretable model can be characterised as on which a human can understand

why or how results are produced in a given model. The readability of these models can be

regarded as the first step to achieve an interpretable model [4].

Overall, a growing body of literature has examined to assess interpretability of FLSs [4, 54,

93] and different taxonomies have been proposed to cover different component of systems in the

context of interpretability. Traditionally, it can be said that there are multiple aspects to consider

interpretability of FLSs, such as, FS-based interpretability (e.g. labels, distinguishability, a

moderate number of FSs etc) or rule-based interpretability (e.g. readability of a single rule or

parsimony of rule-set etc.).

FS-based interpretability covers semantic constraint criteria in fuzzy modelling. During the

construction of a FLS, if expert knowledge is available to build up the overall system, experts

can inherently follow the interpretable FS designs and the semantics can be understandable,

based on that expert knowledge. If expert knowledge is not available, data-driven approaches

can be utilised to define FSs of FLSs. In this type of model construction, common properties

can be followed to provide interpretability to FSs of system.

Rule-based interpretability focuses on fuzzy rules to generate a compact and consistent rule

base. Experts can also create system rules which reflect experts’ knowledge and the inter-

pretability is provided naturally. If expert knowledge is not available, various taxonomies [54,

194] can be followed to provide an interpretable rule-set, such as rule-set simplicity, complete-

ness, consistency etc. Also, hybrid approaches exist to construct interpretable FLSs in terms of

both FS-based and rule-based aspects.

As the literature shows, interpretability of a FLS can be related to multiple aspects in multi-

ple views which makes the interpretability concept a complex field. While this thesis particu-

larly focuses on further developing input uncertainty capturing-handling capacity in an adaptive

manner at run-time, it is assumed that a degree of interpretability is given in models. While the

performance of FLS is increased through coping with input uncertainty, the aim is also to main-
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tain the given degree of interpretability of FLSs by not changing key parameters which will be

elaborated in the next subsection.

2.6.1 Maintaining Interpretability

One view of why FLSs are interpretable is that it allows us to use sets of interpretable FSs and/or

rules which can be defined by experts in order to generate a desired behaviour. In this sense, it

can be said that if a fuzzy system is constructed with understandable rules (e.g. simpler rules,

parsimony in rule-sets) and parameters (e.g. labels, MFs), these components play a crucial role

in the interpretability of systems which is beneficial to preserve throughout the implementation.

Although an interpretability degree is provided in a FLS by experts or in a data-driven way,

real-world inputs can vary, and these varying circumstances may not fully correspond to the ini-

tial design of fuzzy systems which result in low performances in models. Therefore, in practice,

very often those systems that have such rule bases and FSs that are further optimised in order

to cope with changes, such as operating conditions, variations uncertainty, and noise levels in

real-world environments. In order to increase the accuracy of these fuzzy systems, some fuzzy

models (e.g. ANFIS) rely on data-driven design techniques, and due to their accuracy-oriented

nature, this often leads to less interpretable FLSs by altering the key parameters (e.g. MFs,

rules etc.) [3]. Even though a final model structure can provide high accuracy, the interpretabil-

ity of the fuzzy system usually deteriorates [92, 194], although the interpretability had achieved

during the designing stage of the system initially.

Therefore, while achieving an improved accuracy in the face of different real-world uncer-

tainty conditions, the minimising altering the given FLS parameters can help maintain the ini-

tially given interpretability of FLSs. In this thesis, we focus on interpretability in the sense of

minimising the changes that affect the key interpretability components. While coping with in-

put uncertainty capacity is enhanced, the given interpretability can be maintained. In Chapter 6,

we will investigate whether the proposed approaches in this thesis can be usefully applied to

maintain interpretability by addressing objective 4.
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Throughout this thesis, in each chapter (in Chapters 3-6), case studies are employed in time-

series forecasting experiments to assess the characteristic of each proposed approach/frame-

work. Thus, in the next section, time-series generation and noise injection procedures are de-

tailed as well as the performance evaluation metrics.

2.7 Datasets and Evaluation

Because of offering the potential to control the levels of uncertainty accurately, time series

forecasting provides an ideal test-bed for the systematic evaluation of decision-support models.

In the literature many different studies have been successfully employed and tested in time

series forecasting [24, 45, 69, 94, 116, 130, 129].

Due to the uncertainty controlling advantages and the usability, in this thesis, we conduct

time-series predictions case studies on two of the most commonly used chaotic nonlinear time-

series Mackey-Glass (MG) [85] and Lorenz time series [84].

2.7.1 Mackey-Glass Time series

The Mackey-Glass equation is the nonlinear time delay differential equation which is formu-

lated as:

dx(t)
dx

= ax(t− τ)
1 + x10(t− τ) − bx(t) (2.31)

where a, b and n are constant real numbers, t is the current time, and τ is the delay time.

2.7.2 Lorenz Time series

The Lorenz Time series was derived from a model of the earth’s atmospheric convection flow

heated from below and cooled from above, and it is described using nonlinear differential equa-
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tions as follows [84]:

ẋ = σ(y − x) ẏ = x(p− z)− y ż = xy − bz (2.32)

where the dots denote the next values to the three variables x, y, z in the time series.

The defined parameters values for both MG and Lorenz time-series will be provided in each

experiment.

2.7.3 Adding Noise to Time Series

In the literature, noise is generally measured by the signal-to-noise ratio (SNR) which is often

expressed in decibels (dB). While lower noise levels are represented by higher SNR values,

higher levels of noise are represented by lower SNR values. SNR is calculated as follows:

SNR = 10 ∗ log
(σ2

nf

σ2
n

)
, (2.33)

where σnf is the standard deviation of the noise-free dataset and σn is the noise level.

Often, it is assumed that the values SNR and σnf are known a priori. Thus, when the σn is

sought, (2.33) is re-arranged as follows:

σn = σnf

10( SNR
20 )

. (2.34)

Gaussian noise represents a generally appropriate approximation of noise in real-world sce-

narios and it is thus one of the common variants for noise adding procedures [83]. Here, the

mean value is set to zero and the noise level (σn) is used to drive the standard deviation of the

Gaussian distribution. Then a random noise value is picked from the created distribution and is

added to the noise-free set (xt) as follows:

x′t = xt +N (0, σ2
n) t = 1, 2, 3, ..., N , (2.35)
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Figure 2.12: The sample of different noise levels on Mackey-Glass Time series dataset

where x′t represents the noisy value and N (0, σ2
n) is the Gaussian distribution to gather ran-

dom noise values and N is the number of values in the dataset. Thereby, a noisy dataset can be

generated for each t in the dataset.

A sample of noise differences in the range of noise-free to 0 dB can be seen in Fig. 2.12

2.7.4 Evaluation

Throughout the thesis, performances of proposed methods are evaluated based on the MSE

(Mean Square Error) which is the average squared difference between the estimated results and

the actual values. For instance, in a time-series prediction case study, let the prediction be

P = {pt : t ∈ T} and T = {ti | 1 ≤ i ≤ N} and the actual values are X = {xt : t ∈ T} and

T = {ti | 1 ≤ i ≤ N}. The prediction performance is evaluated by using the MSE as follows:

MSE = 1
N

N∑
t=1

(pt − xt)2, (2.36)

where p is the estimated value, x is the actual value and N is the number of estimation.

Apart from MSE, the symmetric mean absolute percentage error (sMAPE) is also used for

performance evaluation in Chapter 4. SMAPE is a measure of prediction accuracy of a fore-

casting method and it was first proposed by Armstrong [5]. Due to the sMAPE limits the error

rate to 200% and is robust to outliers, it can be used an alternative to the commonly used MSE.
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The sMAPE measure is calculated as follows:

sMAPE = 100
N

N∑
t=1

| pt − xt |
(| xt | + | pt |)/2

, (2.37)

where x is the actual value, p is the estimated value and N is the number of values in the series.

Also, in Chapter 6, the recently proposed Unscaled Mean Bounded Relative Absolute Error

(UMBRAE) measure its utilised [27]. UMBRAE combines the best features of various alterna-

tive measures without suffering their common issues. Specifically, UMBRAE can be considered

as informative, resistant to outliers, symmetric, scale-independent and interpretable.

With UMBRAE, the performance of a proposed method can be easily interpreted: when

UMBRAE is equal to 1, the proposed method performs approximately the same as the bench-

mark method; when UMBRAE < 1, the proposed method performs better than the bench-

mark method; when UMBRAE > 1, the proposed method performs worse than the benchmark

method.

MBRAE = 1
N

N∑
t=1

| pt − xt |
| pt − xt | +e∗t

, (2.38)

where x is the actual value, p is the estimated value, e∗ is an error between a commonly used

benchmark method and actual value, and N is the number of values in the series

While MBRAE is a scaled error that may not be directly interpreted as normal error ratio

reflecting the error size. In order to provide a more readable or interpretable error measure, the

transformation is applied as follows:

UMBRAE = MBRAE

1−MBRAE
, (2.39)

After having detailing the datasets and evaluation methods, we move on to providing sum-

mary of the chapter.
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2.8 Summary

This chapter provides background information and an overview of the existing literature that

has been used in this thesis. In particular, NSFLSs have been broadly reviewed with regards to

the handling of input uncertainty in determining firing strength and capturing input uncertainty

adaptively in the fuzzification step.

The first aspect is to leverage the interaction between input and antecedent FSs by faithfully

mapping input uncertainty to outputs. The past and current approaches in determining firing

strength have been provided, and the key strengths and challenges of these approaches were

highlighted.

The second aspect is to focus on modelling the input uncertainty in a dynamic adaptive man-

ner on-the-fly. The key literature in fuzzification of NSFLSs has been reviewed, and advantages

and possible limitations have been examined.

The third aspect is to maintain a given level of interpretability in FLS, while employing the

input uncertainty mapping to an output of NSFLSs. Thus, the maintaining interpretability has

been briefly introduced and more detailed discussion will be provided in Chapter 6.

As the test-bed for this thesis’ case studies, time-series dataset generations have been outlined

and noise injection procedures are detailed. Later, different evaluation procedures have been

provided.

With background materials reviewed, in the next chapters, we will investigate the leverage

of the mechanisms of NSFLSs. Chapter 3 mainly presents a novel approach to systematically

generate firing strengths which is to leverage mapping the uncertainty affecting system inputs

to outputs.
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Handling Input Uncertainty

In real-world circumstances, a broad range of sources of uncertainty are often directly associated

with inputs of decision-support systems. NSFLSs are specifically designed for modelling the

uncertainty in input FSs and handling it through the interaction between inputs and antecedent

FSs in system rules. Firing strengths in fuzzy rules emerge from these interactions and play a

critical role in reflecting the input uncertainty into the consequents, which in turn determine the

crisp output of the system. Therefore, processes to systematically determine appropriate firing

strengths become a crucially vital element to handle varying input uncertainty, which is often

subject to real-world environments. Hence, in this chapter, as presented in our studies [122,

120], we focus on investigating/analysing the current firing strength determining approaches,

and we put forward a novel approach to generating firing strengths which faithfully map the

uncertainty affecting system inputs to outputs, addressing objective 1.

Section 3.1 discusses the background and importance of approached to determining firing

strength. In Section 3.2, a critical analysis by exploring the specific behaviours of the different

firing strength approaches is conducted under different input uncertainty levels. Section 3.3

puts forward an alternative subsethood based (named sub-NS) approach which aims to system-

atically determine faithful firing strengths that allow an appropriate input uncertainty mapping

to outputs of NSFLSs. Later, the behaviour of the proposed sub-NS is compared and contrasted

with the current approaches in the same case study. In Section 3.4 time series forecasting exper-

53
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iments are employed with a different firing strength determining approach. These experiments

aim to observe/compare each approach’s behaviour and performance in the time series forecast-

ing context, which contains various noise levels. Section 3.5 summarises the contribution of

this chapter to this thesis.

3.1 Background and Motivation

As mentioned in Chapter 2, the first step in FLSs is to map given inputs into FSs. In singleton

fuzzification, it is assumed that the input values are exact/correct values, and singleton FSs are

constructed. Later, these singleton FSs are processed through rules in the inference engine step

of FLSs. Due to simplicity and lower computational cost, singleton fuzzification is a commonly

used design in applications. However, due to the fact that inputs are commonly exposed to

sources of uncertainty, non-singleton FSs have the potential to capture the uncertainty in input

data, and so may provide better results than SFLSs for the same number of rules.

In the fuzzification of NSFLSs, given inputs are mapped into non-singleton FSs to capture

input uncertainty. Traditionally, widths of constructed input FSs are associated with the level

of uncertainty in input values. For instance, when a sensor measures a distance from a wall,

if the received measurement is always the same (e.g. 5 meters), a singleton fuzzification may

be constructed with the assumption that the measurement is exact/correct (Fig. 3.1a). However,

as there might be sources of uncertainty (e.g. sensor imprecision or environmental noise), this

measurement value may not be determined as an exact crisp value. In that case, the measure-

ment can be represented as non-singleton FSs by taking into account the uncertainty. For exam-

ple, the measurements may fluctuate with a proportionally low rate which results in a relatively

narrow width in input FSs (Fig. 3.1b). If the sensor exposed to a high degree of uncertainty

causing fluctuation at the broader level, a wider width is constructed to capture that uncertainty

in measurements (Figs. 3.1c or 3.1d). Hence, the distance from the wall is represented by input

FSs modelling which captures the possible uncertainty in the provided measurements.
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(a) Sensor measurement with noise-free exact
value.

(b) Sensor measurement with a ’low’ uncertainty

(c) Sensor measurement with a ’high’ uncer-
tainty

(d) Sensor measurement with a ’higher’ uncer-
tainty.

Figure 3.1: Representing a distance sensor measures as input FSs under four different uncer-
tainty levels.

In the inference engine step of NSFLSs, inputs are processed with respect to the system rules

through interaction between the input and antecedent FSs. These interactions result in rule fir-

ing strengths where input uncertainty is directly reflected on the determined firing strengths in

NSFLS. Hence, particularly in NSFLS designs, the firing strength has a vital role in terms of

input uncertainty handling. Considering that the real-world usually contains sources of uncer-

tainty, systematically determining firing strength -by mapping various uncertainty information

from inputs to outputs- becomes an essential component of NSFLS applications.

The traditional inference approach is for the firing strength to be equal to the maximum

membership degree of the intersection between input and antecedent FSs [94]. While this ap-

proach is standard for singleton inference, a broad body of work has explored the use of other

approaches to establishing what is effectively the compatibility between FSs through various

measures [16, 34, 36, 44, 59, 86].
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As the initial firing strengths focused studies, Turksen et al. [167, 168] proposed the Approx-

imate Analogical Reasoning Schema (AARS) in rule firing decision, such that if the calculated

similarity measure between input and antecedent FS is greater than a pre-defined threshold,

the rule is fired. Chen et al. [28, 29] employed another similarity measures and [185] utilised

subsethood measure with the same threshold strategy in medical diagnosis application. Later,

the AARS is applied in NSFLSs [132] with the same threshold mechanisms as well. Following

these studies, [133] extended the previous AARS works by proposing a new similarity measure

which is used in fuzzy relations and in the practical application, a threshold is also defined to

make a decision on rule firing. Even though the aforementioned studies are related to firing

strength levels, they have mostly adhered to the strategy of firing rules based on predefined

threshold values rather than determining firing strength levels to map input uncertainty to the

output of FLSs.

In addition that an initial work [116] on the fuzzy neural system is implemented and extended

in various forms [118, 155, 160]. In these studies, firing strengths between input and the system

weight MFs are defined by using the mutual subsethood measure (2.30). Even though these

studies aim to handle input uncertainty with firing strength, the mutual subsethood measure

may not fully focus on the given input uncertainty levels, because of the symmetric property.

For instance, a mutual subsethood measure between a wide input MF and a narrow system

weight MF (which overlaps at the centre) provides the same measure for the case of vice-versa.

However, having the same firing strength for both cases may not intuitively be expected as there

are different input uncertainty in compare to the given weight MF. Therefore, traditionally, using

mutual subsethood measure may not determine firing strengths faithfully, which is also the case

of the Jaccard similarity measures as detailed in Section 3.2.

More recently, in the context of input uncertainty handling of NSFLSs, a variety of methods

have been explored to capture the interaction between input and antecedent FSs faithfully. In

the centroid-based inferencing approach, focuses on the area of intersection between input and

antecedent FSs [130, 131]. The centroid of the intersection between input and antecedent FSs

is calculated. Then, the membership degree in the antecedent FS corresponding to the centroid

on the intersection is used as the firing strength. Later another study explored the use of sim-
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ilarity measures itself as firing strengths in NSFLSs in order better to capture the interaction

between input and antecedent FSs [176]. Later, these approaches have been used in unmanned

aerial vehicle applications successfully [51, 52]. The main objective of utilising centroid-based

and similarity-based composition approaches is to provide more faithful firing strength degrees

which are sensitive to input uncertainty changes. So that various input uncertainty information

can be systematically reflected into the output of FLSs. These approaches will be critically

analysed in the next sections, and behaviours will be explored under different input uncertainty

levels.

As mentioned above, in the real-world, system inputs are often affected by sources of uncer-

tainty. Firing strengths in NSFLS designs have a significant role in mapping input uncertainty

to the output of systems. Therefore, in this chapter, first, we analyse the current firing strength

composition approaches by critically investigating behaviours under different input uncertainty

levels. Second, as presented in our studies [120, 122], we propose an alternative approach

which employs a subsethood measure (named sub-NS) between non-singleton input and an-

tecedent FSs for determining firing strength which allows a systematic and faithful mapping

of various uncertainty information from inputs to the outputs. These investigations and the

proposed alternative approach address objective 1 of the thesis, as detailed in the following

sections.

3.2 A Critical Analysis of the Current Firing Strength Deter-

mining Approaches

In this section, first, the current firing strength determining approaches (standard, centroid and

similarity-based) are introduced by a critically analysis the specific behaviours of these ap-

proaches in mapping various input uncertainty on a single antecedent FS. Second, a case study

to further investigate these approaches is presented in subsection 3.2.4. Later, a novel approach

is introduced and a comprehensive comparison with different samples of uncertainty levels is

presented in subsection 3.2.4 along with the possible advantage and disadvantages for tradi-
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tional NSFLS designs.

As mentioned in the previous section, input data is usually corrupted by uncertainty in most

real-world scenarios. When systems contain different levels of uncertainty, inputs can be fuzzi-

fied into non-singleton FSs to capture uncertainty [105]. In this regard, it is generally assumed

that the received input x is the value which is centred in the non-singleton FSs. After that, the

width of the input FSs are determined based on the uncertainty level of systems. Based on this

observation, there is usually an association between the uncertainty level and the input FS’s

width. As the Gaussian FS is one of the commonly used designs, it has been chosen to carry

out experiments throughout the thesis.

The next subsections will investigate the current firing strength determining approaches and

explore behaviours under various input uncertainty levels.

3.2.1 Standard Composition-Based Approach

As the most common composition-based technique (named sta-NS), in the standard inference

method, the maximum membership degree grade of the intersection between the input and

antecedent FSs is determined as the firing strength. Throughout this thesis, the acronym sta-NS

will be used to refer to this standard composition based approach.

Let a given input x1 ∈ X is constructed as I1 FS to capture the uncertainty. When the

constructed I1 is processed through the antecedent FSs (A) in a rule, as detailed in subsec-

Figure 3.2: An illustration of firing strength between antecedent (A) and input FSs (I1)
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Figure 3.3: An illustration of two distinct input fuzzy sets having the same intersection level
with A

tion 2.3.2.3, the given input uncertainty is directly reflected into the firing strengths. This firing

strength calculation is employed by using the supremum over µI1(xi) ? µA(xi). Sample of this

operation can be seen in Fig. 3.2, between antecedent A and the input I1.

However, adopting the maximum point of the intersection to determine the firing strength

may risk information loss in terms of the interaction of the input and antecedent FSs [131].

For example, in addition to the I1, if another input (x2) is given with higher uncertainty. This

new input FS (I2) results in a wider width to capture that higher uncertainty. However, as

shown in Fig. 3.3, these two input FSs (I1 and I2) may intersect the antecedent (A) at the same

membership grade, resulting in the same firing level, despite the fact that these input FSs are

clearly different.

Recent work, including Pourabdollah et al. [130, 131] and Wagner et al. [176] have attempted

to address this issue by introducing alternatives which employ the centroid of the intersection

and similarity measures between input and antecedent FSs, respectively. Both of these ap-

proaches will be analysed and discussed further in sections below -as alternatives to the sta-NS

approach.

3.2.2 Centroid-Based Composition Approach

The centroid-based approach (name cen-NS) focuses on the area of intersection between input

and antecedent FSs. Firstly, the centroid of intersection between input FS (I) and antecedent
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Figure 3.4: An illustration of firing level obtained using the cen-NS method for two different
levels of uncertainty -I3 low and I4 high on the antecedent A.

FS (A) is calculated:

xcen(I ∩ A) =
∫
x∈X x µI∩A(x)dx∫
x∈X µI∩A(x)dx

(3.1)

where xcen is the centroid of the intersection input and antecedent FSs (I ∩ A).

Then, the corresponding membership degree of the position of the centroid (xcen(I ∩ A)) on

the membership function of the intersection is defined to be the firing strength:

µI∩A(xcen(I ∩ A)) (3.2)

Even though cen-NS may address the ‘imperceptiveness’ of the sta-NS (See in Fig. 3.3), cen-

NS design may not fully reflect changes in uncertainty levels under different circumstances. For

example, as shown in Fig. 3.4, in which two different input FSs are shown, lying at the same

point x on the universe — I3 having low uncertainty (expressed as the width of the input FS)

and I4 having more uncertainty (larger width). Even though the two cases’ uncertainty levels

are different, they both result in the same firing strength (one) where traditionally, one may

intuitively expect to be different. In the case I4, there is a fair possibility that the actual input

can even exist outside of the antecedent A. Indeed, regardless of the level of uncertainty in I4,

a firing strength of one is always obtained.
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3.2.3 Similarity-Based Composition Approach

A similarity measure on fuzzy sets is a function that determines to what degree (in the interval

of [0,1]) two fuzzy sets contain the same values with the same degree of membership. Wagner

et al. [176] suggested that any similarity measure between input FS and antecedent FS can be

used to define the firing strength. In the initial work [176], they focused on the Jaccard similarity

measure:

S(I, A) =
∫
x∈X min(µA(x), µI(x))∫
x∈X max(µA(x), µI(x)) (3.3)

where the input FS is (I) and the antecedent FS is (A).

Employing the proposed sim-NS in determining firing strengths can overcome having the

same firing level in the given examples of Figs. 3.3 and 3.4. However, under particular input

uncertainty levels, the sim-NS may generate undesirable firing strengths depending upon the

model designs. For example, featuring an input x with two different levels of uncertainty,

depicted by I5 and I6, is shown in Fig. 3.5. In the case of A and I6, it may seem intuitive

to obtain a firing strength value around 0.6, as there is relatively high uncertainty in the given

input. In the A and I5 pair, the sim-NS method gives a firing strength of close to zero. Indeed,

as the uncertainty in x reduced further to the extreme situation of a singleton input at x, the

firing strength given by sim-NS reduces to zero as well.

Figure 3.5: An illustration of firing level obtained using the sim-NS method, of input x, in the
case of two different levels of uncertainty, I3 (low) and I4 (high) on the antecedent A.
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Traditionally, in singleton input FSs or ‘low’ uncertainty levels in input FSs, firing strength

would be expected to be higher than zero -if input and antecedents are intersected at some

points, such as on the centre. Yet, sim-NS tend to produce firing levels which are zero or close

to zero regardless of the intersections between input and antecedent FSs. It is also worthwhile

noting that, in some FLS designs, antecedent and input FSs can be desired to compatible or

similar. For instance, an FLS design may be built to investigate the compatibility of people

opinions. Such that a person X may state an opinion about a restaurant. If the FLS is to seek

for the opinion compatibility to the given antecedents FSs in rules, then sim-NS is to investigate

the similarity between the given opinion from person X and antecedents FSs. Thus, in those

particular designs, it can be said that sim-NS produce intuitive firing levels, i.e. one if only both

input (opinion) FS and antecedent FS are equal.

After the three different firing strengths determining approach are critically analysed in the

first set of samples, we now proceed with more comprehensive test cases where more uncer-

tainty levels are tested on a single antecedent FS.

3.2.4 Exploration of the Current Techniques

In this section, the aforementioned firing strength determining approaches are examined, and a

comprehensive comparison with 50 samples of input uncertainty levels are presented with the

aim to observe the overall behaviours of each approach.

In order to investigate the current approaches, an input value x is fixed, and different uncer-

tainty levels (standard deviations [SDs]) are investigated in the firing strength definition aspect.

The input value x is chosen as the same value, which is 5, of the mean of the antecedent FS A,

as shown in Fig. 3.6. In this way, this experiment allows us to observe different firing strength

approaches’ behaviours under different uncertainty levels when the system input and antecedent

are coincidental on the centre. 50 different sequential SDs (from 0 to 3.0) values are explored in

the experiment and three samples of these inputs I (with SD 0.3, 0.1.2 and 3.0) are illustrated,

together with the antecedent A, in Fig. 3.6. The firing strengths from each of the three proposed

methods (sta-NS [blue circle], cen-NS [green triangle], sim-NS [red square]) is calculated for
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(a) σ = 0.3 (b) σ=1.2 (c) σ=3.0

Figure 3.6: An illustration of increased SDs in the input FSs (I) over the defined antecedent A.

Figure 3.7: Comparison of the current firing strength determining approaches in each intersec-
tion of I-A based on changes in standard deviations of inputs I .

each level of SD and illustrated in Fig. 3.7. For instance, the dashed vertical line on the left-

hand side of Fig. 3.7 represents the produced firing strengths in the case when I has the SD

value of 0.3 as in Fig. 3.6a. Also, the middle and right-hand side dashed vertical lines show the

produced firing strengths values for each approach from Figs. 3.6b and 3.6c, respectively.

Fig. 3.7 shows that as the uncertainty level increase (from the left to the right-hand side), the

sta-NS and cen-NS approaches always produce the single firing strength (of one), regardless of

the standard deviation in the input I . When the input contains a low level of uncertainty (left-

hand side of the Fig. 3.7), traditionally, it is intuitive to gather the firing strength level one as

the input and antecedent FSs have the same mean. However, it can be observed that the sta-NS

and cen-NS methods are not designed to take into consideration higher input uncertainty levels

(towards the right) in the systems, as there is a fair possibility that the actual input can even

exist outside of the antecedent A.
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When the produced firing strengths by sim-NS are scrutinised in Fig. 3.7, we observe from

Fig. 3.6 that when the input has comparatively low uncertainty levels (towards to left), the

produced firing strengths are close to zero. When the input width and antecedent FS width are

getting close (the middle), the firing strength gradually increases to reach a maximum value.

Then, when input uncertainty keep increasing (towards the right), the firing strength gradually

decreases. Traditionally, when the input uncertainty increase (towards the right), considering

the possibility of actual input may exist outside of the antecedentA, it may be intuitive to expect

a low firing strength levels which are in line with sim-NS. However, when the input has a low-

level of uncertainty and the input overlap on the centre of antecedent FSs (towards to the left),

sim-NS may not provide traditionally expected firing levels. For example, when the input I has

a low level of uncertainty (e.g. SD of 0.05), the sim-NS generates a firing strength close to zero.

Therefore, we argue that in a traditional control sense, sim-NS may not efficiently design to

consider low levels of uncertainty. However, if the design is built based on the compatibility of

input and antecedent FSs (e.g. seeking similarity of a provided word [input] on the antecedent

FSs in CWW), it should be noted that sim-NS can provide intuitive firing levels.

In summary, traditionally, while adopting either the sta-NS or cen-NS approaches may be

helpful under low level of uncertainty (left-hand side of Fig. 3.7), they may not generate in-

tuitively expected firing strength levels under the high level of uncertainty (right-hand side of

Fig. 3.7). Conversely, while sim-NS can handle the high level of input uncertainty (right-hand

side of Fig. 3.7) in traditional designs, it may be less helpful under low level of uncertainty (left-

hand side of Fig. 3.7). We here note that these assumptions about being helpful are made based

on a traditional control sense. In some particular designs (e.g. measuring similarity between

input and antecedents FSs) the sim-NS and other approaches can also provide appropriate firing

strengths and be helpful as well.
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3.3 An Alternative - Subsethood Based Approach

Uncertainty levels that are associated with inputs are often changes in real-world settings.

Therefore, a viable alternative approach that can systematically reflect different input uncer-

tainty to firing levels can enhance the capacity of NSFLSs in coping with real-world settings.

Hence, in this section -by considering the critical analyses in the previous case study (Sec-

tion 3.2.4)-, an alternative subsethood-based composition approach (named sub-NS) is put for-

ward with the aim of systematically determining faithful firing strengths that allow an appropri-

ate input uncertainty mapping to the output of NSFLSs.

The subsethood measure [189] determines a ratio degree to which an FS is a subset of another

fuzzy set. Various subsethood measures have been extensively studied by researchers over the

years [46, 78, 158, 173]. In this thesis, we focus on one of the early definitions of subsethood

measure as given by Kosko [78].

Perhaps the simplest way to express subsethood of set I in set A can be expressed as the ratio

of the cardinality of the intersection of the two sets over that of set I , i.e.:

sSH(I, A) = |A ∩ I|
|I|

(3.4)

where || refers to cardinality. This ratio can be formulated as follows:

sSH(I, A) =
∫
x∈X min(µA(xi), µI(xi))dx∫

x∈X µI(xi)dx
(3.5)

In this thesis, we propose to utilise the subsethood ratio between antecedent and input FSs,

which is directly taken as the firing level (sSH(I, A)) of these two FSs. As the number of

elements from the input set I , which are part of the intersection, increases, the subsethood ratio

will rise and eventually reach one when I is covered by A entirely. Likewise, as the set I moves

further from A, meaning the non-intersecting number of elements increases, the subsethood

ratio decreases and reaches zero when there is no intersection between the two sets at all.
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(a) σ = 0.3 (b) σ=1.2 (c) σ=3.0

Figure 3.8: An illustration of increased SDs in the input FSs (I) over the defined antecedent A.

Figure 3.9: The proposed sub-NS firing strength determining approaches in each intersection
of I-A based on changes in standard deviations of inputs I .

3.3.1 Exploration of the Alternative Subsethood Based Approach

In this subsection, the same case study settings from Section 3.2.4 are followed, and the pro-

posed sub-NS is employed over the different input uncertainty levels.

When Fig. 3.9 is scrutinised, the alternative sub-NS show traditionally expected firing levels

under both low and high levels of uncertainty. The proposed sub-NS (diamond) firing levels

are reduced as the uncertainty level increases in the fixed input x values (towards the right).

Furthermore, when the uncertainty level is decreased (toward the left), the determined firing

levels are increased as it is traditionally be expected (e.g. singleton input and antecedent FS

are coincidental on the centre). For example, while a noise-free singleton FS result in firing

strength one, the higher input uncertainty (e.g. 3.0 SD) leads to lower firing levels, as there is

the possibility of actual input may exist outside of the antecedent A.



3.3. An Alternative - Subsethood Based Approach 67

Table 3.1: Firing strength determining approaches

sta-NS cen-NS sim-NS sub-NS

sup(µI(x) ? µA(x)) µI∩A(xcen(µI(x) ? µA(x)))
∫

x∈X
min(µA(x),µI(x))∫

x∈X
max(µA(x),µI(x))

∫
x∈X

min(µA(x),µI(x))dx∫
x∈X

µI(x)dx

Taken together, different firing strength determining approaches (Table 3.1) are explored with

respect to the specific behaviour of the mapping input uncertainty to firing strengths. As shown

in Fig. 3.10, traditionally, sta-NS and cen-NS provide faithful firing strengths on the left-hand

side, whereas sim-NS cause a gradual decrease in firing levels. When the input has higher

uncertainty levels (right-hand side), sim-NS traditionally produces expected firing levels as it

gradually decreases, yet sta-NS and cen-NS kept firing level constant regardless of input un-

certainty increase. In sub-NS approach, as shown in Fig 3.10, while lower input uncertainty

produces high firing levels (left-hand side), high input uncertainty leads to a gradual decrease

which is in line with the expectation in a traditionally designed NSFLSs for both left and right-

hand side of the figure.

To evaluate and validate the alternative sub-NS approach’s characteristics, a time-series fore-

casting experiment is carried out in the next section.

Figure 3.10: Comparison of different firing strength determining approaches, including sub-NS,
in each intersection of I-A based on changes in standard deviations of inputs I.
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3.4 Experiments

The alternative sub-NS is proposed to determine firing strengths under different input uncer-

tainty levels systematically. Synthetically generated time series can provide an ideal testbed

-with the potential to accurately control the levels of uncertainty. Therefore, the systematic

evaluation of sub-NS and also the current approaches, are implemented on time series forecast-

ing experiments under different uncertainty levels.

Throughout the experiments, six different noise levels are used, and the performance/be-

haviours of each firing strength determining approach are reported. As the time-series datasets,

the commonly used chaotic Mackey-Glass (MG) [85], Lorenz [84] time series, which exhibits

chaotic behaviour (Details can be found in Section 2.7), have been chosen to implement time-

series predictions by using Mamdani Fuzzy model [88]. In the inference step of FLSs, the

standard min as t-norm and max as t-conorm operators are used, and the centroid defuzzifica-

tion method is utilised in the last step of FLSs.

3.4.1 Time-Series Partitioning

In order to generate the respective datasets, initially 2000 samples (from t = −999 to t = 1000)

are generated and, in order to avoid fluctuations in the initial part of the time series, only the last

1000 (from t = 1 to t = 1000) points are preserved for use in the experiments. So that we obtain

two chaotic time series which are denoted by X = {xt : t ∈ T} and T = {ti | 1 ≤ i ≤ 1000}.

More details on the time series generation reported in Section 2.7. In this chapter, the values

τ = 30 , a = 0.2 and b = 0.1 are set for MG and σ = 10, b = 8
3 and p = 28 are set for Lorenz

time series. The system rule generation is completed over the first 700 ({xi | 1 ≤ i ≤ 700})

points (training dataset) of the total 1000 values and the remained 300 points are used for testing

under different noise levels for both MG and Lorenz time series.
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Figure 3.11: An illustration of the seven antecedent MFs used.

3.4.2 Rule Generation

The rule generation is performed on the first 70% of the time-series samples by using one of

the most common rule generation technique – the one-pass Wang-Mendel method [179], as

follows:

• Firstly, the minimum (xmin) and maximum (xmax) values of the noise-free training time

series are obtained to determine the domain interval [xmin, xmax]. Then, the defined

[xmin, xmax] interval is equally divided into regions to represent the support for antecedent

FSs. In the experiments, seven antecedents are defined (A1, A2, ..., A7). As such, seven

evenly spaced antecedent FSs are generated as shown in Fig. 3.11.

• After constructing the antecedent FSs, nine past values are used as inputs and the follow-

ing (10th) value is used as prediction, i.e. it is the output. Examples of the input-output

pairs can be seen in (3.6).

x1 = [x1, x2...x9] y1 = x10

x2 = [x2, x3...x10] y2 = x11.

...

xN = [xn−9, xn−8... xn−1] yN = xn,

(3.6)

where n = 700 is the number of value in the training set and N is the paired data value.

• The input-output pairs ((x1 : y1), (x2 : y2), ..., (xN : yN)) are created for each value in
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the training time series and the inputs (xi) for each input-output pair are assigned to the

corresponding FSs (A1, A2, ..., A7) (See Fig. 3.11) based on their maximum membership

degree. As it is practised in the Wang-Mendel one-pass method, for the consequent FSs,

the same seven FSs are used and the outputs (yi) are assigned to the corresponding FSs as

well. After that, a rule reduction procedure is implemented on the conflicting rules. For

details, please see [179].

• A sample of the generated rules can be seen in (3.7).

Rule1 = IF x1 isA1 AND... IF x9 isA4 THEN y1 isA3 (3.7)

where x1, x2..., x9 are the input variable and A1, A2, ..., A9 are the antecedent FSs.

3.4.3 Testing

In order to test the uncertainty handling performance of the proposed sub-NS over the current

approaches, 6 different Gaussian noise (0, 2, 3, 5, 10 and 20 dB) are injected to both MG and

Lorenz testing time series ({xi | 701 ≤ i ≤ 1000}). SNR noise injection details can be found

in 2.7.3.

As mentioned in section 3.2, the time series’s noise is captured in defined Gaussian non-

singleton input FSs, and the width/standard deviation of these input FSs correspond with the

injected noise in the testing time series. For instance, when the 20 dB noisy set is used, the

SD of Gaussian becomes ’lower’ to capture that level of noise and when the 0 dB noisy set is

used, the SD value is set to be ’wider’, accordingly. For illustrative purposes,a sample of x = 3

constructed input FSs under 6 different noise levels can be seen in Fig. 3.12.

Figure 3.12: input FSs under 6 different noise.
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After setting up rules and system parameters, the forecasting experiments are employed by

using different firing strength definition approaches (sta-NS, cen-NS, sim-NS, sub-NS) each

time. In order to mitigate the effect of randomness in the results, each experiment is repeated

30 times for all case scenarios and the average of generated Mean Square Errors (MSEs) are

calculated.

3.4.4 Results for Mackey-Glass Time Series

After implementing the rule generation, 184 rules are obtained by using Wang-Mendel imple-

mentation. Then 20 dB noise is added, and the Standard deviation of 20 dB SNR value is set

as the SD of non-singleton Gaussian input FSs (Fig. 3.12). Then the prediction experiment is

implemented by employing the sta-NS in the inference engine. Following that, the same experi-

ment is repeated by using cen-NS, sim-NS and the proposed sub-NS to generate firing strengths

in the prediction. As shown in Fig. 3.13 and Table 3.13, the MSE results from the 20 dB noisy

experiments show that while the sta-NS approach is produced average MSE value 0.0023, the

sub-NS technique MSE reduced to 0.0020 which shows that the system uncertainty handling

performance is improved by 13% in the case using sub-NS in comparison the traditional sta-NS

technique. In addition to sta-NS approach, the other degree of subsethood measure (i.e. (cen-

NS and sim-NS) to define firing levels are investigated, and the comparison of the results can

be seen in Table 3.2.

Table 3.2: Mackey-Glass time series prediction, average MSE values over different firing
strength definition approaches

sta-NS cen-NS sim-NS sub-NS

20 dB 0.0023 0.0024 0.0023 0.0020

10 dB 0.0073 0.0067 0.0068 0.0065

5 dB 0.0151 0.0142 0.0141 0.0138

3 dB 0.0201 0.0190 0.0189 0.0185

2 dB 0.0224 0.0213 0.0212 0.0208

0 dB 0.0288 0.0277 0.0280 0.0274
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Figure 3.13: The illustration of Mackey-Glass time series prediction, average MSE values over
different firing strength definition approaches

The experiments with the exact same rule set and parameters are continued under another

five noise levels, and each noise level is tested with all firing strength definition approaches as

well. At the end of the experiment, in comparison with the sta-NS approach, sub-NS technique

is improved system accuracy by 10%, 9%, 8%, 7% and 5% under 10dB, 5dB, 3db, 2dB and 0

dB, respectively (Table 3.2 and Fig. 3.13).

Table 3.3: Lorenz Time series prediction, average MSE values over different firing strength
definition approaches

sta-NS cen-NS sim-NS sub-NS

20 dB 1.2030 1.1968 1.0165 1.0855

10 dB 4.4244 4.1681 4.0737 4.0008

5 dB 8.8446 8.4495 8.3506 8.2384

3 dB 11.0766 10.7439 10.7340 10.6505

2 dB 13.6672 13.4096 13.4588 13.3842

0 dB 17.9265 17.7147 17.7973 17.7769
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Figure 3.14: The illustration of Lorenz time series prediction, average MSE values over differ-
ent firing strength definition approaches

3.4.5 Results for Lorenz Time Series

Further experiments are carried out on the Lorenz chaotic time series, and the 174 rules are

generated by using the aforementioned rule generation procedure. By following the same ex-

periment steps, different predictions are implemented under six different noise levels. These

experiment results can be seen in Table 3.3 and Fig. 3.14.

3.4.6 Discussion

In order to examine the proposed alternative sub-NS over the current NSFLSs firing strength

determining approaches, the source of the observed MSE improvements in the described time-

series prediction FLSs is compared.

When the MG and Lorenz time series prediction performances are examined under all six

different levels of noise, the alternative sub-NS approach, generally, outperforms the other cur-

rent firing strength definition techniques under different noise levels (See Figs. 3.13 and 3.14).

Especially in comparison to the standard sta-NS approach, the sub-NS performances show a

clear performance improvement in regards to the MSE values obtained.
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Also, when the alternative sub-NS is compared to the cen-NS and sim-NS, overall, when

the uncertainty level increases the performances between the sim-NS and the sub-NS becomes

more similar.

Overall, this particular set of results shows a better estimation of the actual value by the

sub-NS compared to the other approaches in the context of NSFLSs.

3.5 Summary

As real-world settings contain many sources of uncertainty, faithful handling of uncertainty is an

important asset for decision-support systems. NSFLSs are specifically designed to handle input

uncertainty where it is directly reflected into the firing strength level through the interaction

of input and antecedent FSs. In Section 3.2, current firing strength determining approaches

(standard, centroid and similarity-based) are investigated, and a critical analysis of the specific

behaviours are reported.

Firing strengths have a vital role in mapping input uncertainty to the outputs of FLSs. Thus

in this chapter, as presented in our studies [120] and [122], an alternative subsethood-based

firing strength determining approach (sub-NS) is introduced with the aim to systematically and

faithfully mapping different levels of uncertainty information from inputs to outputs. A case

study (Section 3.3), is implemented with the alternative sub-NS approach in comparison to the

current firing strength determining approaches (standard, centroid and similarity-based) and

underpin the possible advantages.

After presenting the critical investigation from the case study, to observe/compare behaviours

of sub-NS and the current approaches, artificially generated chaotic time series prediction ex-

periments are carried out under different noise levels. The experiment results point towards the

idea that the sub-NS can also be a suitable approach to generate appropriate firing levels which

provide the ability of mapping different uncertainty levels from input to output of FLSs.
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Even though sub-NS can handle different input uncertainty levels and produce appropriate

firing levels between the input and antecedent FSs, the question of ‘which parameters should be

used in constructing input FSs of NSFLSs to capture the uncertainty’ still remains. Thus, in the

next chapter, we will introduce a framework to capture input uncertainty adaptively on-the-fly,

and we will integrate this framework with the proposed sub-NS in later sections.



Chapter 4

ADaptive Online Non-Singleton Fuzzy

Logic Systems -ADONiS-

As mentioned in the previous chapter, uncertainty is a pervasive component in input of applica-

tions and sub-NS have been proposed to handle input uncertainty by systematically determining

firing strengths in the inference-engine step of NSFLSs. While handling input uncertainty is a

vital task for NSFLSs, capturing it properly in the fuzzification step is also another essential

factor in mapping various levels of input uncertainty to the outputs which can leverage capacity

of NSFLSs. Considering the fact that a broad range of sources of uncertainty can vary greatly

in magnitude over time, the adaptation of NSFLSs to the varying environments can provide an

efficient and effective solution for input uncertainty mapping to outputs of NSFLSs. There-

fore, as presented in our studies [121, 124], this chapter introduces an end-to-end framework to

adaptively configure non-singleton input FSs on-the-fly to the changing uncertainty levels in an

online manner.

Section 4.1 discuss the background and motivation for capturing the input uncertainty in

an online manner. Section 4.2 first introduces the proposed framework in a general perspective

(addressing objective 2 in Section 1.5) then proceeds to develop one specific instance for a time-

series domain. In Section 4.3, the proposed ADONiS framework is explored in two time series

forecasting experiments: (i) comparing the proposed framework ADONiS over the non-adaptive

76
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counterparts, and (ii) the ADONiS is integrated with different inferencing approaches, including

the proposed alternative sub-NS (from Chapter 3), and comparative results are provided. In

doing so, this chapter addresses objective 2 of this thesis. Lastly, Section 4.4 summaries the

contribution of this chapter to the thesis.

4.1 Background and Motivation

In the previous chapter, the alternative approach sub-NS is proposed to leverage capacity of un-

certainty mapping from inputs to outputs by systematically determining firing strengths in the

inference engine step of NSFLSs. Following the sub-NS approach, we now focus on dynam-

ically capturing and modelling different input uncertainty levels on-the-fly in the fuzzification

step which also has a primary role for uncertainty mapping in NSFLSs. Later in Chapter 5,

we will extend this capacity to capture both uncertainty and the variation in the uncertainty by

means of an extra degree of freedom in input FSs.

In the literature, several studies focus on defining input FS parameters with procedures of tun-

ing or with a priori knowledge of level of uncertainty. Initial work was carried out to change NS-

FLS parameters dynamically by implementing a training process [105, 106]. Later on, several

studies were conducted to expedite the convergence speed of the NSFLSs training [38, 99, 138]

NSFLSs have been used in many different applications, such as control of DC motors [2], con-

trol of a stepper motor [135], pattern classification [17, 32], and state space identification of

UAV [150]. While these studies showed promising results, they are dependent on the availabil-

ity of a training data set which is expected to accurately reflect all real-world potential operating

conditions, and they are generally limited to the selection of one type of FS model to capture the

input uncertainty. As the real-world circumstances are prone to change over time, depending on

a single parameter for input FSs may not conveniently capture various uncertainty levels. Also,

availability of a training dataset, which reflects all the real-world potential circumstances, may

not be feasible.
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Apart from the offline training studies, recently, a noise handling study in UAV was carried

out [51] and range of different trials were implemented to determine parameters of input FSs

in the fuzzification step. Also, time-series forecasting experiments with NSFLSs were per-

formed [130, 131, 176] and in those studies, it was assumed that the uncertainty levels are

already known a priori and used to define parameters of input FSs. Later on, the WMA tech-

nique was used to update the input value of NSFLSs [129]. Input FSs are constructed around

these updated inputs in the fuzzification step of NSFLSs. However, similarly, it was assumed

that the synthetic and stable noise levels were known a priori. While a priori knowledge of the

uncertainty level can be efficient to define parameters, this approach is invariably dependent

on the availability of this knowledge and does not allow the modelling of levels of uncertainty

which vary over time.

Considering the varying circumstances of real-world settings, determining input FS width pa-

rameters in an offline manner (i.e. tuning or a priori knowledge) prevents NSFLSs from being

able to adapt to the changing uncertainty levels in the real-world. Therefore, in this chapter, a

complete ADaptive ONline Non-Singleton Fuzzy Logic System (ADONiS) framework is pro-

posed to dynamically configure input FSs, in an online manner on-the-fly. In the ADONiS,

input FS parameters are continuously adapted based on information gained from an iterative

uncertainty level estimation process over a sequence of observations. A representative of this

adaptive behaviour can be seen in Fig. 4.1. In doing so, ADONiS provides the ability to adapt

to varying circumstances without requiring pre-training procedures or a priori knowledge of

Figure 4.1: The ADONiS framework’s adaptive behaviour to capture input uncertainty in the
generated input FSs which is associated with the crisp input measured.
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uncertainty levels. Also, by means of the online adaptive ability of ADONiS, the systems can

be built upon ‘pure’ rules -for instance, defining rules based on noise-free circumstances- which

removes the apprehension for the varying uncertainty levels in real-world settings.

Taken together, following the input uncertainty handling by sub-NS in the previous chapter,

we now propose the ADONiS framework with the aim of capturing different input uncertainty

levels at run-time (addressing objective 2) that collectively enhance uncertainty mapping from

input to outputs of NSFLSs, as detailed in the next sections.

4.2 The Proposed Framework -ADONiS-

In this section, first, we will introduce the general framework structure which is applicable

for general real-world applications where uncertainty levels affecting system inputs vary in

magnitude over time, such as signal processing, robotics, medical applications and forecasting

etc. Second, since time-series datasets offer the potential to accurately control the levels of

uncertainty affecting system inputs at any given time, a specific instance of the ADONiS will

be employed on a time series case. Later, in Section 4.3, it will be linked and validated with

time series forecasting experiments.

4.2.1 General Framework Structure of ADONiS

The ADONiS framework is designed to associate an online uncertainty detection technique

with the parameterization of the non-singleton input FSs. In the proposed framework, input

FS parameters are continuously adapted based on an uncertainty level estimation process over

a sequence of observations. By doing so, ADONiS provide the capability of reflecting differ-

ent uncertainty levels into widths of corresponding input FSs adaptively on run-time without

requiring a priori knowledge or offline training procedure. Therefore ADONiS can adapt itself

to different environmental conditions where inputs are exposed to various uncertainty sources

which vary over time.
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Figure 4.2: The four main steps of the proposed ADONiS framework.

The overall the ADONiS structure can be encapsulated in four main steps, as also shown in

Fig. 4.2.

Step 1 - Define the size of the frame: First, a number of observations (e.g. a sequence

of a signal or a patch of an image) are collected into a frame. The number of the collected

observation defines the frame size which can be dynamic throughout application or can be stable

based on design choice (See Fig. 4.2). For example, when using sensors, such as in a robotics

context, the size of the frame may be selected in respect to the sampling rate of the sensors

or based on a fixed time frame. While an expert opinion can determine the frame size, it can

also be defined by following data-driven procedures. For instance, in a time series prediction

context, a search algorithm can be utilised to determine optimal frame size.

After defining the frame size, the collected observations will be utilised to cooperate with the

input FSs in the following steps.

Step 2 - Estimate the uncertainty: In this step, the collected observations in the defined frame

are used to estimate the uncertainty levels. A suitable uncertainty estimation technique can be

chosen by designers and it is employed across the gathered values in the frame. According to

the input structure of the NSFLS, the uncertainty detection can be implemented by considering

different features such as actual input variance vs expected variance, over time, for each input

individually or together.
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Step 3 - Construct Input FSs: As mentioned in the previous section, widths of input FSs

are related to the existed uncertainty level in input values. Therefore, the estimated uncertainty

from the defined frame is utilised to inform widths of input FSs. For example, Gaussian FSs

can be defined and the detected uncertainty level can be used as the σ value of the Gaussian

input FSs. By doing so, the uncertainty is captured by reflecting the estimation in widths of the

input FSs.

Step 4 - Advance the defined frame: After constructing the input FS(s) for the current it-

eration, the generated input FS(s) proceed to the inference engine step and the given task is

implemented. Following that the defined frame is advanced. This frame-advancing operation

can be employed step-by-step (i.e. advancing the frame one by one to inform each observed

value individually) or piece-by-piece (i.e. advancing the frame chunk by chunk to inform ob-

served values jointly). The latter provides the same width to the group of input values which

may cause a less sensitivity in uncertainty changes. In this chapter’s experiments, we imple-

ment step-by-step frame advancing as detailed in the next sections. Later, in Chapter 5, both the

frame advancing strategy will be detailed and implemented to construct adaptive IT2 input FSs.

Input uncertainty is one of the principal uncertainty in applications and generally, based on

circumstances (e.g. environmental conditions), level of input uncertainty vary over time. Non-

singleton input FSs provide the capacity of capturing the input uncertainty. Traditionally, studies

confine input FS parameters to selecting a single value (i.e. stable width for all input FSs)

which does not allow the modelling of different levels of uncertainty. For example, in a robotic

context, the environmental noise can vary from ‘low’ to ‘high’ and resume to ‘low’ again, as

the conditions are changed. In these circumstances -which prone to occur in the real-world-

limiting input FSs to a single parameter can not effectively capture the varying noise levels.

The proposed four-step process enables ADONiS to adapt to different levels of uncertainty

affecting a system’s inputs. In each iteration, inputs are associated with a given non-singleton

FS, for which the parameters are determined directly by the levels of uncertainty detected over

the observed/selected values (frame). Thus, different levels of input uncertainty can be captured

at run-time and dynamically updated FLSs to account for changes, addressing objective 2.
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Figure 4.3: The generated noisy time-series.

After having the four steps ADONiS details in terms of the general applicability, in order to

provide a detailed concrete explanation, we now proceed with the ADONiS on a time-series in-

stance in the next subsection. As the uncertainty level can be increased or decreased effortlessly,

we will also employ time-series forecasting experiments in the following Section 4.3.

4.2.2 ADONiS for Time-Series Analysis

In this subsection, in order to provide an illustration, we focus on applying the proposed ADO-

NiS framework to the context of time series analysis. As such, we provide an instance of

the generic ADONiS framework steps tailored to time series. Giving that the ADONiS is de-

signed to capture different levels of input uncertainty, we artificially generate a time series

X = {xt : t ∈ T} and T = {ti | 1 ≤ i ≤ N} which contain ‘low’ and ‘high’ level of noise. By

doing so, the proposed ADONiS framework’s behaviour can be demonstrated and illustrated

under different input noise levels. The sample of the entire X can be seen in Fig. 4.3.

Figure 4.4: ADONiS Step 1: Defining the frame.
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Step 1 - Define the size of the frame A sequence of observations collected into a frame

and the quantity of these observations defined the frame size. Since the data is an univariate

time-series, the frame will be slid and therefore, it can also be called a window for this specific

instance. As illustrated in Fig. 4.4, the defined window is depicted as red dashed lines and

denoted as the set W t at the assumed current time t. The window size is referred to as p and

defined as follows:

W t = {xi | t ∈ T ∧ t− p < i ≤ t} (4.1)

where W t is the defined frame at the time t.

Step 2 - Estimate the uncertainty After obtaining the input data within the window W t, the

uncertainty level over the gathered values is estimated, as shown in Fig. 4.5. In this instance,

we denote the corresponding uncertainty level as σt at the time t. Note that, in this step, based

on preference, different uncertainty estimation techniques can be utilised.

σt = f(W t) (4.2)

where f is the chosen uncertainty estimation function and σt is the estimated uncertainty level

at the time t.

Figure 4.5: ADONiS Step 2: Estimating the noise.
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Figure 4.6: ADONiS Step 3: Constructing input FS.

Step 3 - Construct Input FSs The uncertainty estimation (σt) is leveraged to inform the non-

singleton FS (I t) which is associated with input(s) in the window. In this instance, the Gaussian

shape is chosen for the input FS (See Fig. 4.6) and we note that other shapes can be used by

reflecting the estimated uncertainty into the width of the input FSs.

I t = ((x, µIt(x))|x ∈ U), (4.3)

where

µIt(x) = exp
−1

2

(
xt − x′

σt

)2
 , (4.4)

where σt is the width or standard deviation of the FS and x′ are the neighbouring values of

the mean which is located at xt in the universe of U .

Figure 4.6 details the constructed input FSs which is based on the last observed value (xt) in

the defined frame.
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Figure 4.7: ADONiS Step 4: Employing the input FSs in the fuzzy model and advancing the
frame.

Step 4 - Advance the defined frame After, the input FS (I t) at the time t is generated for the

current window, it is proceeded to the NSFLS to implement the defined task such as prediction

or classification etc. A SISO sample of these procedures is illustrated in Fig. 4.7.

In the time series, as time past and more data is generated, the defined window is advanced by

the step size (denoted by λ) and the same procedure is repeated. Depending on design choice,

the window size can be re-adjust or remain the same as the previously defined size.

Algorithm 1: Constructing adaptive input FSs by means of sliding window noise estimation.
Input : the input value xt at the most recent time step t
Output: the corresponding input FS I t for the input xt

1 Function uncertaintyEstimation(W t):
2 σt ← f

(
W t

)
. f is a chosen uncertainty estimation function;

3 return σt;
4 Function fuzzifyInput(xt, σt)):
5 I t ← Gaussian FS with mean xt and s.d. σt;
6 return I t ;
7 repeat
8 p← frameSize . Defining the frame size;
9 W t ← [xt−p+1, xt]; . W t is the current frame;

10 σt ← uncertaintyEstimation(wt) ;
11 I t ← fuzzifyInput(xt, σt) ;
12 until xt = end;
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Figure 4.8: The demonstration of the capturing high uncertainty in the input FS t run-time.

Algorithm 1 presents the pseudo-code of the proposed adaptive input FSs fuzzification in the

context of time-series analysis.

In Fig. 4.7, a sample of constructing input FSs where a ‘low’ level of noise leads to a nar-

row width/s.d. is visualised. As time past and new values are observed, the window can be

advanced by one (leads to a sliding window practically), and the same steps are repeated. As

another sample is illustrated in Fig. 4.8, when the input is disturbed by ‘higher’ noise level

than the previous sample, input FS width is dynamically informed by following the ADONiS

steps and a wider FSs is constructed, in turn, providing the capacity of capturing different levels

of noise in an online manner without any a priori knowledge. An animated illustration of the

complete process can be seen online at https://ieeexplore.ieee.org/document/

8790770/media or at https://bit.ly/3deRA1r.

After having a detailed explanation of the ADONiS on a time-series instance, we now pro-

ceed to time-series forecasting experiments in order to demonstrate ADONiS behaviour in the

context of forecasting under varying input noise levels.

https://ieeexplore.ieee.org/document/8790770/media
https://ieeexplore.ieee.org/document/8790770/media
https://bit.ly/3deRA1r
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4.3 Experiments

As was mentioned in previous chapters, time-series forecasting provides an ideal test-bed for the

systematic evaluation (offering the potential to accurately control the levels of uncertainty/noise

affecting system inputs at any given time) of techniques designed to deal with input uncertainty.

Thus, this section validates the practical impact of the proposed ADONiS framework by em-

pirically evaluating it across non-linear chaotic time-series predictions under various levels of

noise. Mainly, two different experiments are carried out as Experiment 1 and Experiment 2.

In Experiment 1, we aim to illustrate ADONiS adaptive behaviours where inputs of sys-

tems are corrupted at different levels of noise and how does that varying input uncertainty are

adaptively captured and mapped to outputs of the system, addressing objective 2. In these ex-

periments, a comparison of the adaptive behaviour of ADONiS against different non-adaptive

counterparts is reported.

In Experiment 2, we integrate ADONiS with different firing strength generation techniques -

including the proposed sub-NS (See details in Chapter 3)- and comparative prediction results are

provided. In this experiment, the same time-series dataset (with varying noise levels) are used

and we aim to observe the behaviours of ADONiS with different inference engine techniques

as part of the broader architecture.

In the next subsection, we present the general experimental set-up and in the next section, we

will specify each experiment individually.

4.3.1 Experimental Set-Up

This subsection will provide overall the key design aspects in the experimental set-up for both

Experiment 1 and Experiment 2 by detailing the used time-series datasets, rule generation pro-

cedures, fuzzification and overall predictions in NSFLSs.
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4.3.1.1 Time Series Generation

In both experiments, two commonly used chaotic (Mackey-Glass and Lorenz) time-series are

used to implement time-series forecasting. The details of the used time-series generation and

partitioning can be found in Section 3.4.1. Following that procedures, the values τ = 30 ,

a = 0.2 and b = 0.1 are set for MG and σ = 10, b = 8
3 and p = 28 are set for Lorenz

time-series in the generation. By doing do, chaotic behaviours are provided in the datasets and

ADONiS design can be tested in those particular chaotic circumstances.

4.3.1.2 Rule Generation

In the literature, different rule generation techniques are exist [80, 61, 113]. As it was practised

in the previous section, one of the most common rule generation technique – the one-pass

Wang-Mendel method is implemented on the first 70% of the time-series samples, using a

commonly adopted FLS architecture [179] with seven antecedents based on evenly spaced MFs.

The prediction is implemented by using nine past points and the 10th value is predicted. The rule

generation’s details can be found in Section 3.4.2. Two key training approaches are explored

for both experiments to generate system rules: Noise-Free Time Series based rule generation

and Noisy Time Series based rule generation.

The noise-free time series rule generation aims to design the system with ‘pure’ rules and

test the ADONiS behaviour under different noisy testing settings. The objective of this strategy

is to mimic a real-world application case where there is no a priori knowledge for the level of

noise on run-time. For instance, in a robotics context, rules are defined based on noise-free

laboratory conditions and the robot is tested under noisy real-world environments. By doing

so, the system rules can be relatively less ‘complex’, while ADONiS can dynamically handle

unseen noisy conditions from input to output of models on-the-fly, addressing objective 2.

The noisy time-series rule generation aims to design a system where there is only noisy data

available. In this case, we aim to report ADONiS behaviour and robustness within the design of

noisy rules. In this rule generation, training time-series samples are injected with a predefined
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(a) Stable Noise (b) Mixed Stable Noise (c) Variable Noise

Figure 4.9: An Illustration of the three instances of a test time series generated with different
noise level scenarios. The bottom figures shows the corresponding noise levels in the time
series.

noise levels, as detailed in the given experiments.

4.3.1.3 Test Time Series Generation

In order to test the performance of the proposed ADONiS, the remaining 30% of the time series

dataset is used in three different scenarios: using a stable 10 dB level of Gaussian white noise

(see Fig. 4.9a); a mixed scenario where the Gaussian noise varies from a very low and stable 20

dB to a period of high, but stable 0 dB, before returning to 20 dB (see Fig. 4.9b); the low and

high noise levels from the previous testing series are perturbed randomly in magnitude (by 10

dB) itself which is illustrated in Fig. 4.9c.

By generating these pattern of noise variation, we attempt to mimic real-world situations

where an unexpected disturbance suddenly occurs in the signal data (e.g. light variation affect-

ing a camera). By doing so, the ADONiS adaptive behaviour can be illustrated with respect to

varying uncertainty mapping from input to outputs of model.

4.3.1.4 Fuzzification

In Experiment 1, both the adaptive input FS generation approach and a simpler a priori input FS

definition approach are used to implement a comparative study between the proposed ADONiS

framework and non-adaptive approach performances.
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In Experiment 2, in each variant, the proposed adaptive input FS generation approach is used

and it is integrated with different firing strength generation techniques (sta-NS, cen-NS,sim-NS

and the proposed sub-NS).

In the ADONiS fuzzification case, since, the forecasting is done with nine past points, we

define the window size (p) to be nine as well and the noise estimation function is adopted

from [136] and implemented on the each past nine points xt = (xt−8, xt−7, ..., xt). Note that,

based on designer choice, different noise estimation techniques and different window size can

be utilised in this step. While smaller window size may provide more sensitive noise estimation,

we follow the main structure and nine past points are taken to estimate the noise levels. The

noise estimation is implemented as follows:

yt = 1√
2

(xi+1 − xi) ∀ i ∈ W t, (4.5)

where W t is the defined window at the time t and yt is the calculated difference vector from

the W t at the time t.

Then the standard deviation of the difference vector is calculated as follows:

σt =

√√√√ 1
p− 1

p−1∑
i=1

(yi − ȳ)2, (4.6)

where ȳ is the mean of the difference vector and σt is the estimated noise.

Then the estimated noise (σt) is used as the standard deviation parameter of the xt non-

singleton Gaussian input FSs and the estimated noise level is captured in the constructed input

FS. In this instance, we advance the window step-by-step (λ = 1) and each input FS is always

be associated with the estimated (σt) value. For example, the input xt−5 ∈ xt is associated with

the uncertainty of the frameW t−5. Note that the windowW t−5 is the set of {xi | t−5−p <

i ≤ t − 5} where p is defined as nine. Considering the input vector contains nine values, the

association can be ‘formulated’ as follows:
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Figure 4.10: A sample set of the all generated input FSs in the Stable Noise series (Fig. 4.9b).
Note: the inset figure it tilted for better visibility.

(W t−9 ∼ xt−9) ; I t−9

(W t−8 ∼ xt−8) ; I t−8

...

(W t ∼ xt) ; I t

(4.7)

where the symbol ∼ refers the association between the defined window and the corresponding

input. The ; notation is used to represent ‘leads to’ the corresponding input FS.

Overall, fuzzification is implemented in an online learning manner and the input FSs are

adapted without requiring any a priori knowledge about the noise levels or any offline proce-

dures. In Fig. 4.10, the adaptive framework is illustrated with the generated input FSs (λ = 1

step-by-step process) by implementing on the Stable Noise time-series dataset (Fig. 4.9b).

The pseudo-code of this specific implementation can be seen in Algorithm 2.

4.3.1.5 Prediction

After generating the adequate input FSs to be associated with the most recent crisp input to the

(NS)FLSs, the last 9 (I t−9+1, I t−9+3, ..., I t) input FSs are processed to predict the next crisp

point in the time series (and thus the crisp input for the next iteration).

In the used (NS)FLS models, the min and max operators are used for the t-norm and t-

conorm, respectively. Then the centre of gravity technique is utilised in the defuzzification
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Algorithm 2: Constructing adaptive input FSs by means of sliding window noise estimation
(4.5) and (4.6) [136].
Input : the input value xt at the most recent time step
Output: the corresponding input FS It for the input xt

1 Function noiseEstimation(W t):
2 index← 1;
3 y ← [] . y is the list for the difference list;
4 repeat
5 y[index]← 1√

2 (W t[index+ 1]−W t[index]);
6 index = index+ 1;
7 until index = p− 1;
8 σt ← s.d(y) . Standard deviation of the y;
9 return σt ;

10 Function fuzzifyInput(xt, σ̂n)):
11 It ← Gaussian FS with mean xt and s.d. σt;
12 return It ;
13 t← 0;
14 repeat
15 p← frameSize . Defining the frame size;
16 W t ← [xt−p+1, xt]; . W t is the current frame;
17 σt ← noiseEstimation(W t) ;
18 It ← fuzzifyInput(xt, σt) ;
19 t← t+ 1 ;
20 until xt = end;

step. Since structurally different NSFLSs (adaptive and non-adaptive) are compared in the

experiment, scaled performance results may provide a more feasible comparison. Therefore,

the performance of each FLS is assessed using the Symmetric Mean Absolute Percent Error

(sMAPE) [90] which provides a result between 0% and 200%. Also, as one the most common

error measures, Mean Square Error (MSE) based results are included in Appendix A.2.

In order to mitigate the randomness in the results, each time series is generated 30 times

and at the end of each experiment set the average sMAPE values are provided, while the MSE

results are provided in Appendix A.2. Also, statistical analyses for both experiment are included

in Appendix A.3.

After having detailed the experimental setup for both experiments, we now proceed to the

implementation of experiments along with the obtained results.
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Figure 4.11: Experiment 1 with two sub-stages.

4.3.2 Experiment 1 - Adaptive and Non-Adaptive Comparison

In the real-world, a broad range of noise sources are common and while these sources have an

affect on inputs of models, they vary in magnitude over time. As regards to the objective 2

of this thesis, dealing with varying input uncertainty can provide performance benefits for the

models. In Experiment 1, we focus on testing ADONiS behaviour under different level of noise

that is injected to the input of models. The overall experimental steps can be seen in Fig. 4.11.

Regarding the rule generation of the systems, two sub-experiments Experiment 1.1 and Experi-

ment 1.2 are conducted as noise-free rule generation and noisy rule generation, respectively.

In the non-adaptive design of the counterpart (NS)FLSs, the inputs FSs are constructed man-

ually giving rise to four different comparative systems: a singleton FLS using singleton input

FSs, and three distinct NSFLSs, using input FSs configured for 20 dB (σ20), 10 dB (σ10) and

0 dB (σ0) noise levels respectively. In the experiments, the comparison of each variant is pro-

vided to ensure that the proposed adaptive fuzzification technique is challenged against different

non-adaptive approaches.

4.3.2.1 Experiment 1.1 Noise-Free Rule Generation Results

In Experiment 1.1, noise-free rule generation is conducted, and the ADONiS framework’s per-

formance is reported compared to the different non-adaptive counterparts. This experiment’s
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Figure 4.12: Experiment 1.1- MG Noise-free rule generation with ADONiS and Non-Adaptive
fuzzifications, sMAPE prediction result comparison. Confidence intervals shown as black lines

main rationale is that generating rules in a ‘pure’ version and capture/handle noise in the test-

ing phase on run-time. This setting aims to investigate ADONiS adaptive behaviours under

‘unseen’ noise levels and how it compares to manually designed counterparts.

After generating noise-free rules, the three test datasets (Fig. 4.9) are used for individual

forecasting experiments.

First, the Stable Noise test series (Fig. 4.9a) is used to compare the adaptive and non-adaptive

approaches. The prediction results are reported at the left-hand side of Fig. 4.12 for MG and

Fig. 4.13 for Lorenz Time series. As can be seen, the adaptive fuzzification prediction results

are quite similar to the σ20 and σ10 fuzzification value results and provide generally low error

Figure 4.13: Experiment 1.1-Lorenz Noise-free rule generation in with ADONiS and Non-
Adaptive fuzzifications, sMAPE prediction result comparison.
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(which is intuitive as 10dB noise was injected into this time series), while the singleton approach

and the σ0 fuzzification lead to higher error levels.

Second, the Mixed Stable Noise test series (Fig. 4.9b) is used in the testing. The sMAPE result

comparisons are provided in the middle of Figs. 4.12 and 4.13 which show that the adaptive

technique has a clear performance benefit over each case of non-adaptive systems.

Third, the more challenging test series (Variable Noise as shown in Fig. 4.9c) is used in

testing with results shown at the right-hand side of Figs. 4.12 and 4.13. Here, again, the

adaptive technique outperforms each of the non-adaptive systems.

Each corresponding experiment MSE results can be seen in Appendix A.2.

4.3.2.2 Experiment 1.2 Noisy Rule Generation Results

After completing three sets of experiments with the noise-free rule settings, a more challenging

context is established by generating rules by using noisy datasets (See Fig. 4.11). Three training

datasets, which follow a similar structure as the corresponding test datasets, are generated. For

example, if the model will be tested with the Stable noise from Fig. 4.9b, the training dataset

is generated based on the same structure and noise levels. . This experiment’s main rationale

is to test ADONiS behaviour compared to the other non-adaptive designs under different rule

generation circumstances. The prediction sMAPE results are shown in Fig. 4.14 for MG and

Figure 4.14: Experiment 1.2 - MG Noisy rule generation with ADONiS and Non-Adaptive
fuzzifications, sMAPE prediction result comparison.
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Figure 4.15: Experiment 1.2 - Lorenz Noisy rule generation with ADONiS and Non-Adaptive
fuzzifications, sMAPE prediction result comparison.

Fig. 4.15 for Lorenz Time-series predictions. MSE results are reported in Appendix A.2.

In these experiments, first, 10 dB noise is injected into the training datasets and the system

rule generation is completed. Then, the corresponding Stable Noise test dataset which includes

10 dB noise is used in the testing. The sMAPE results are shown at the left hand-side of Fig. 4.14

and Fig. 4.15. ADONiS and the two non-adaptive (σ20 and σ10) fuzzification techniques produce

similar sMAPE results.

For the second scenario, another training dataset is generated to correspond to the Mixed

Stable Noise time series structure (Fig. 4.9b). This training series is used to generate system

rules, and the resulting systems are tested using the Mixed Stable dB Noise. The results for both

ADONiS and non-adaptive systems are shown in the middle of Fig. 4.14 and Fig.4.15. Though

a variety of pre-fixed σ values are evaluated as bases of comparison for the adaptive technique,

the proposed adaptive technique has the lowest sMAPE values.

Further, for the third case, a similar dataset to the Variable Noise (Fig. 4.9c) dataset is used for

training. As the results are shown at the right hand-side of Fig. 4.14 and Fig. 4.15, the ADONiS

approach produces the lowest or close to the lowest sMAPE values.

Overall, in both Experiment 1.1 and Experiment 1.2, the ADONiS adaptive input uncertainty

handling capacity are compared to other non-adaptive counterparts under varying noise levels.

Generally, as can be seen, the ADONiS framework provides the best or close the best perfor-
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Figure 4.16: Experiment 2 with two sub-stages.

mance, as will be detailed in the discussion. We now proceed with a further ADONiS analysis

in Experiment 2, where it is integrated with different firing strength-determining approaches.

4.3.3 Experiment 2 - ADONiS Integrated with Firing Strength Determin-

ing Techniques

In Experiment 1, we focused on ADONiS compared to non-adaptive systems under circum-

stances where input noise varies over time.

In Experiment 2, we focus on integrating the ADONiS framework with sta-NS, cen-NS, sim-

NS and the proposed sub-NS firing strength determining approaches where input noise vary

over time. In each variant of experiment, ADONiS is integrated with a different firing strength

determining architecture (See Fig. 4.16) and the performance of each ADONiS framework is

compared. The rationale for these experiments is to investigate further and leverage ADONiS

framework performance while capturing input uncertainty in fuzzification and handling it in the

inference engine of NSFLSs, specifically mapping uncertainty from input to output of FLSs.

In each variant of the experiments, first, the sta-NS approach is implemented and then the

same experiments are repeated by using cen-NS, sim-NS and the proposed sub-NS composition

methods within the NSFLSs. As shown in Fig. 4.16, in two subsequent experiments, ADONiS

is implemented for noise-free and noisy rule generations, respectively, for both the MG and

Lorenz time series.
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Figure 4.17: Experiment 2.1 - MG Noise-Free trained ADONiS integrated with advanced sta-
NS, cen-NS, sim-NS and sub-NS prediction results with adaptive NSFLSs.

4.3.3.1 Experiment 2.1 Noise-Free Rule Generation Results

The models’ rules are generated by using noise-free training datasets for both MG and Lorenz

time series and subsequently evaluated for all three testing noise scenarios captured in Fig. 4.9.

The results for all three scenarios and both time series are shown in Figs. 4.17 and 4.18.

As shown in the figures, when the sub-NS approach is integrated with the ADONiS frame-

work, it produces slightly better sMAPE values than the rest of sim-NS, cen-NS and sta-NS

NSFLSs counterparts.

Figure 4.18: Experiment 2.1 - Lorenz Noise-free trained ADONiS integrated with advanced
sta-NS, cen-NS, sim-NS and sub-NS prediction results with adaptive NSFLSs.
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Figure 4.19: Experiment 2.2 - MG Noisy trained ADONiS integrated with advanced sta-NS,
cen-NS, sim-NS and sub-NS prediction results with adaptive NSFLSs.

4.3.3.2 Experiment 2.2 Noisy Rule Generation Results

In the noisy rule generation experiments (See Figs. 4.19 and 4.20), while the sub-NS shows

better performance under stable noise level in testing, the sim-NS outperforms it under unstable

Mixed Stable Noise and Variable Noise testing conditions.

4.3.4 Discussion

When the model rules are generated from noise-free time-series (Experiment 1.1, see Figs. 4.12

and 4.13), the noise levels in the test series can be considered as unexpected/unseen for the

model. When a stable 10 dB noise level is used in the testing dataset (the left hand-side of

Figs. 4.12 and 4.13), both ADONiS and some non-adaptive systems provide similar results for

Figure 4.20: Experiment 2.2 - Lorenz Noisy trained ADONiS integrated with advanced sta-NS,
cen-NS, sim-NS and sub-NS prediction results with adaptive NSFLSs.
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both the MG and Lorenz experiments. In the non-adaptive implementation, as the test series

contains 10 dB noise level, manually adjusting input FSs to the 10 dB σ10 values can be argued

to provide an unfair or at least unreasonable advantage to the non-adaptive technique. Such

that in the real world, of course, the actual level of noise/uncertainty cannot commonly be

known in advance. In contrast, the proposed ADONiS framework does not require any a priori

information about the noise levels. The proposed framework is shown to be advantageous to

capture and handle unseen noise levels compared to the non-adaptive variants in the set of

Experiments 1.1.

In Experiment 1.2, we explore the scenario where pre-defined noise levels are employed

during rule generation (Figs. 4.14 and 4.15). Even though we test the NSFLSs with a series

of noise levels which include the actual noise levels for which the non-adaptive NSFLSs were

training, the proposed ADONiS framework produces either the lowest or close to the lowest

sMAPE values in all experimental scenarios.

In addition, experiments 1.1 and 1.2 are repeated under uniform noise injection rather than the

Gaussian type noise injection. The results of these experiments are presented in Appendix A.1.

As shown in those results, the proposed framework shows the similar prediction performance

as a Gaussian noise type and generally outperforms manually designed NSFLS counterparts.

As a core part of the rationale underpinning this chapter is the strong focus on appropriate

managing of uncertainty affecting system inputs, we have explored (Experiment 2) different

inference engine approaches (sta-NS, cen-NS, sim-NS and the alternative sub-NS). As shown

in Figs. 4.17 and 4.18, the sub-NS architecture can achieve slightly better sMAPE values in

comparison to other integrated ADONiS designs under noise-free rule-generation. Figs. 4.19

and 4.20 show that in the noisy training conditions both sub-NS and sim-NS have a performance

benefit. Based on these experiments, there is strong potential for integrating the proposed ADO-

NiS framework with the other inference architectures in real-world application with varying

noise levels.

In order to assess the statistical reliability of these results, a series of paired sample t-tests

are conducted and reported in AppendixA.3. Divergence of results is found depending upon
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the type of error measure used (sMAPE vs MSE), and according to noise levels both in testing

and training. However, in general, sub-NS is found to be the best performing technique. This

is particularly true within the noise-free training conditions, in which it performs significantly

better than all other measures in 10 out of 12 conditions. In noisy training conditions, sub-NS

is found to be significantly better in only 3 out of 12 conditions, while sim-NS is found to be

best in 8. The detailed results can be found in AppendixA.3.

Overall, the experiments show that while in some specific (constant and low-noise) cases,

offline (pre-defined) fuzzification for a noise level of σ20 or σ10 is superior, for cases where

the uncertainty levels are unstable, the proposed ADONiS framework delivers superior results

across the extensive variety of scenarios explored. Given that real-world environments are sub-

ject to a broad range of uncertainty sources, input of models is affected at different levels over

time. The proposed ADONiS framework dynamically adjusts input FSs on-the-fly, in an online

manner, which directly benefits applications subject to unstable and/or unknown noise levels as

are common in real-world circumstances which address objective 2 of the thesis.

4.4 Summary

Since real-world environments are influenced by a broad range of input-affecting uncertainty

sources -which can vary greatly in magnitude over time-, the availability of a priori knowledge

of varying circumstances may not be possible for models. Even though it is assumed that a

priori knowledge is available (e.g. training dataset covering all real-world circumstances), input

FS tuning procedures are generally limited to selecting one type of FS model to capture the

input uncertainty. This aspect tends to prevent NSFLSs dependent on offline tuning from being

able to adapt to the breadth of changing uncertainty levels inherent in real-world applications.

In this chapter, a complete framework (ADONiS) is proposed to configure NSFLS input FSs,

in an online manner, by applying an uncertainty detection technique to a sequence of recent

observations. In doing so, ADONiS enables constructing input FSs which can dynamically

capture different levels of uncertainty on the run-time, in turn providing capacity to adapt the
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breadth of changing uncertainty levels inherent to real-world applications.

The results from Experiment 1 (the comparison of the proposed ADONiS and non-adaptive

techniques) suggests that the proposed approach of dynamically changing input FSs is a suitable

approach for handling input noise, especially where input noise levels vary. In particular, when

there is no a priori knowledge of the future noise levels (Experiment 1.1), the ADONiS can be

built on noise-free rules and still be able to map varying input uncertainty to outputs of NSFLSs.

Further, in Experiment 2, four firing strength generation techniques -designed to handle the

interaction of input and antecedent FSs with high fidelity- are evaluated in conjunction with

ADONiS. Here, the results show that combining ADONiS with advanced NSFLS inference

mechanisms can deliver better input uncertainty mapping in comparison to the traditional NS-

FLS inference.

Overall, as presented in our studies [121, 124], the experiment results in different scenarios,

highlighting the ADONiS framework’s generality and performance benefits under unexpect-

ed/unseen or seen noise levels for the model. Therefore, by addressing objective 2; ADONiS

is capable of capturing uncertainty at run-time and dynamically updating FLSs to account for

changes in the uncertainty affecting inputs.

As the limitations of the particular ADONiS framework version which is used in this chapter,

although a significant accuracy increase was achieved in the presented forecasting experiments,

given the small set of experiments and adoption of a single noise estimation algorithm, these

results can only represent an initial step towards a general conclusion and a real-world applica-

tion. Furthermore, in order to make a plausible uncertainty level estimation, defined frames (in

step 1 of the ADONiS) should contain adequate information. If parameters of frame size can

not contain a reflective information, input FS may not efficiently capture the current uncertainty.

In addition, in the case of using a large frame and a complex uncertainty detection technique,

the increase in the computational cost may limit the applicability of the framework, depending

on applications. It is worthwhile noting that, defining frame size can be implemented based on

expert knowledge or by using various data-driven procedures.
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So far, in Chapter 3, we have proposed an alternative approach (sub-NS) to handle input

uncertainty in the inference engine step of NSFLSs. In this chapter, we have proposed the

ADONiS framework to dynamically adapt input FSs to different uncertainty levels dynamically

on-the-fly. While capturing different uncertainty levels in the last observed values can provide

benefits to ADONiS, another mechanism to capture variation in the uncertainty levels over time

can also be beneficial for decision support systems. Thus, in the next chapter, we will elaborate

on the ADONiS with IT2 input FSs to capture both uncertainty in the last observed value(s) and

the uncertainty levels’ variation over time.



Chapter 5

Adaptive Interval Type-2 Input FSs

In the previous chapter, the ADONiS framework is proposed to capture uncertainty in the last

observed value(s) at run-time. The environments of real-world circumstances are often subject

to change over time. While some uncertainty sources may exist in a period of time, it may not

linger afterwards. Furthermore, the uncertainty effect of each source may vary in magnitude

over time as well. These real-world settings put serious challenges forward to decision-support

systems due to the uncertainty of inputs that can vary broadly over time. ADONiS demon-

strates promising results in capturing the level of uncertainty from the last observed value(s),

yet an extra mechanism for assembling the varying circumstances can provide additional bene-

fits. For instance, in a robotics application environment where uncertainty varies considerably,

the last observed value may have a ‘low’ level of uncertainty which results in a narrow input

FS. However, as the environmental conditions vary, there is a possibility that the uncertainty

may increase again. Hence, the extra degree of freedom can provide the capacity for capturing

the degree of variation over time in environmental conditions. Therefore, in this chapter, by

addressing objective 3, we focus on extending the ADONiS structure by capturing both the un-

certainty in the last observed value(s) and also the degree of variation in uncertainty levels over

time, as presented in our study [123].

Section 5.1 introduces the background and motivation of this chapter. Section 5.2 provides

the extended ADONiS framework to capture both the last observed uncertainty and variation

104
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in uncertainty levels which addresses objective 3. Section 5.3 presents a time-series forecast-

ing case study to demonstrate the behaviour of the extended framework. Lastly, Section 5.4

summarises the contribution of this chapter to this thesis.

5.1 Background and Motivation

Most real-world environments are subject to different uncertainty sources in which each source

may exist/affect the inputs simultaneously or partially/individually in different time scales. In

particular, the variations in the uncertainty levels makes estimating and handling uncertainty

a complex and challenging task which may results in non-optimal outcomes. So far in this

thesis, in Chapter 3, the alternative approach sub-NS is proposed to further develop the capacity

of uncertainty mapping from inputs to outputs by systematically determining firing strengths

in the inference engine step of NSFLSs. In Chapter 4, the ADONiS framework is proposed

to adaptively capture input uncertainty levels from the last observed value(s) which also has

a primary role for input uncertainty mapping to outputs of NSFLSs. While input uncertainty

handling and capturing is a crucial element of decision-support systems, additionally capturing

the variation in uncertainty levels over-time can also potentially provide performance benefits

with regards to properly responding to circumstantial changes in decision-support systems.

While Type-1 FSs are designed to capture uncertainty [189], Type-2 (T2) FSs [191] are an

extension of the T1 FSs, where each degree of membership is a FS rather than a crisp number

(Details can be found in Section 2.1.2). Due to this extra degree of freedom, generally, T2 FSs

can provide a better ability to capture variation in uncertainty levels [35, 49, 91, 152, 174, 182,

192].

In the literature, many attempts have been made with the purpose of defining Type-2 input FS

parameters with offline training procedures or a priori knowledge assumptions in NSFLSs [25,

72, 89, 96, 97, 164, 183, 192]. Even though plausible results have been acquired, the parameter

determining for Type-2 input FSs can be regarded as impractical, as both the width and the

extra degree of freedom in input FSs mainly rely on either offline training procedures or a priori
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assumptions about the uncertainty levels. Considering the different uncertainty levels which

are omnipresent in real-world applications, Type-2 input FS designs should be fully adaptive to

stable/unstable environments, e.g. variation in uncertainty levels.

Apart from that several studies [146, 147, 148, 149] put forward another method in adaptive

IT2 input FSs generation which were later extended in later studies [140, 141]. In these studies,

some pre-trials have been conducted by applying different conditions (changing temperature,

sound noise, and wind) while recording a robotics sensor measurements at a fixed distance.

Based on the gathered sensor measurements, a non-specified convex shaped piece-wise linear

T1 input FSs are generated and repeating these process different T1 input FSs are utilised to

construct IT2 input FSs in those pre-trials. After defining the IT2 with a variety of distances in

the pre-trials, on the run-time of the actual experiments, five consecutive crisp measurements

from sensors are collected and the average of these 5 measurements is interpolated with the

originally constructed T2 FSs. In those studies FOUs of input FSs are used to model the uncer-

tainty associated with the measurements. Even though the adaptive manner in those studies is

very plausible and endorsed by experiments, since the original T2 FSs are defined by employing

pre-trials experiments, this findings are still limited to the chosen pre-trial conditions.

In real-world circumstances, as varying levels of uncertainty source may disturb input data at

different levels/times, capturing and handling this variation in uncertainty levels can be a useful

step for applications. In order to capture these different circumstances adaptively, this chapter

puts forward the extension of the ADONiS framework; while capturing the last observed input

uncertainty adaptively in the principal T1 FS, the extra degree of freedom (i.e. FOU) of IT2

is used to capture/model the variation in uncertainty levels in an adaptive manner (addressing

objective 3 stated in 1.5). In doing so, for instance, in an environment where the circumstances

change drastically, the FOU is automatically be adjusted to be wider to capture these variations

in uncertainty levels. Additionally, in an environment where the circumstances are stable, the

FOU is automatically be adjusted to be narrower.

ADONiS and the extended IT2 ADONiS behaviours are compared in Fig. 5.1 by depicting

four different case scenarios. As can be seen in the first two rows, the last observed uncertainty
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Figure 5.1: ADONiS and the IT2 extended ADONiS input FSs comparison under four different
sample secanrios.

levels are relatively similar (labelled as ‘low’) and variations in uncertainty levels are different

(’low’ in the first row, ’high’ in the second row). While the ADONiS framework leads to quite

similar T1 input FSs, the extended framework produces two distinct IT2 input FSs by also

capturing the variation in the uncertainty levels. For instance, in a robotics context, the first row

can be portrayed as a steady environment where noise levels are low and stable over time. The

second row can be depicted as the environmental conditions are unstable and subject to change,

even though the last observed value(s) contain ’low’ uncertainty. In doing so, by means of FOU,

the variation in uncertainty levels is also captured around the constructed T1 FSs enabling the

system to respond properly to changes in its inputs. Similar scenarios can be characterised for

the third and fourth rows in Fig. 5.1 as well.

Dynamically having different widths and FOU values on generated input FSs, -without re-

quiring a priori knowledge- can enable models to be being prepared for drastic changes in

environments. Furthermore, when uncertainty can not be fully reflected on the T1 input FSs,

the dynamically adjusted FOU can also provide performance benefits and robustness for the

model, as detailed in the next section.
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5.2 The Extended ADONiS Framework

Considering both the advantages of ADONiS and Type-2 FS designs in respect to input FSs, in

this section, we extend the proposed ADONiS framework with a strategy to design adaptive IT2

input FSs at a run-time. In the extended proposed framework, first, the last observed uncertainty

level is captured and principal T1 input FSs are constructed as in Chapter 4. Second, the varia-

tion of uncertainty levels is also captured and reflected as FOU (standard deviation uncertainty)

on the constructed principal T1 input FSs.

As mentioned and illustrated in Fig. 5.1, in the previous section, in an unstable environment,

the generated FOU will adapt itself by widening. Simultaneously, the widths of the principal T1

input FSs are adapted itself to the last observed uncertainty level as well. In doing so, the FOU

is utilised to capture the variation in uncertainty levels, while the core T1 input FS is utilised to

capture the last observed uncertainty level. Likewise, in a stable environment where uncertainty

levels are durable, the generated FOU adapts itself by narrowing and the width of the principal

T1 input FSs are adapted itself to the last observed stable uncertainty level which can be high or

low. Note that, in the ADONiS application case, both T1 FSs would have a similar structure as

shown in the first and second rows or third and fourth rows of Fig. 5.1. However, by employing

the extended framework, environmental conditions are sufficiently captured in the IT2 input FSs

of the NSFLSs which can be helpful in environments where uncertainty levels are not stable.

In the next subsection, we will elaborate on each point of the extended framework where each

step can be followed in Fig. 5.2.

Figure 5.2: The extended ADONiS framework to generate adaptive IT2 input FSs. Grey colour
highlighted steps are the same procedures in ADONiS implementation.
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5.2.1 General Framework Structure

As shown in Fig. 5.2, the extended ADONiS framework is completed in seven steps. While 4

of these steps are employed same as the ADONiS framework (see the grey colour highlighted

Steps 1,2,4 and 7), the remained steps are additionally implemented to construct IT2 input FSs.

As the extension of the ADONiS framework, in this version, two different time frames are

defined. In order to prevent confusion, the first frame will be referred to as Uncertainty Frame

and the second frame is Variation Uncertainty Frame throughout this chapter.

Step 1 - Define the size for the uncertainty frame: This step is the same as in the ADONiS

framework implementation. A sequence of observations from the input source are collected

over a given frame which is referred as Uncertainty Frame. For instance, in a robotics context,

this frame size can be set as stable containing sensor measurements every 1-second time-frame

or it can be set to contain a certain number of values (e.g. every 100 values). Also, based on the

design choice, the size/length of this frame can be dynamically changed, as shown in Fig. 5.2.

This proposed extended framework is can be utilised in different applications such as signal

processing, robotics, medical applications and forecasting etc. As the time-series instance pro-

vide a suitable testbed, in this subsection, the general framework is illustrated on a time-series

instance. So that following the implementation in 4.2.2, the dataset is denoted as X = {xt :

t ∈ T} and T = {ti | 1 ≤ i ≤ N}. The defined uncertainty frame (red vertical dashed lines) is

denoted as the set W t, where W t ⊆ X , and is shown as follows:

Figure 5.3: Step 1 defining the uncertainty frame size in the extended ADONiS framework to
generate IT2 input FSs.
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Figure 5.4: Step 2 the last observed uncertainty estimation in the extended ADONiS framework
to generate IT2 input FSs.

W t = {xi | x ∈ X , t− p < i ≤ t} (5.1)

where t is the last observed time, p is the size of the frame.

A time-series sample of this frame can be seen in Fig. 5.3 as the red dashed line.

Step 2 - Estimate Uncertainty: Same as in the ADONiS framework, an uncertainty detec-

tion technique is implemented to estimate the last observed uncertainty level over the collected

observations. In this step, different techniques can be utilised. As is practised in Chapter 4,

a chosen algorithm is used to estimate the uncertainty level of the defined uncertainty frame

(red vertical dashed lines) and this step is also following the same procedure from Chapter 4, as

shown in Fig. 5.4.

σt = f(W t) (5.2)

where f is the chosen uncertainty estimation function and σt is the estimated uncertainty level

at the time t.

Step 3 - Storing the estimated uncertainty: Unlike the ADONiS framework, in this step, es-

timated uncertainty levels are stored for each uncertainty frame. Thus, as the uncertainty frame

advances, a new estimation will be stored for each new step. In doing so, the record of these

estimated uncertainty changes can provide insight into ‘how much stable is the environment?’

which in turn can be utilised to prepare the input FSs. The estimation set is denoted by Q
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Figure 5.5: Step 3 storing the last observed uncertainty estimation in the extended ADONiS
framework to generate IT2 input FSs.

and while the uncertainty estimation is operated, each estimation is added to this defined set as

follows:

Qt = Qt−1 ∪ σt, (5.3)

where Q is the set of estimated uncertainty level values, t is the current time and σt is the

estimated uncertainty level at the time t.

The stored uncertainty levels -along with the previous estimations- are illustrated at the bot-

tom of in Fig. 5.5, as σ.

Step 4 - Construct a Type-1 input FS: By following the same procedures from the ADONiS

framework, a principal Type-1 input FS is constructed by using the last estimated uncertainty

level of the uncertainty frame frame. This estimated uncertainty (σ) can be used, for example,

with Gaussian FSs to inform their width/standard deviation. In doing so, this T1 input FS can

capture the last observed uncertainty level which will be the core of the generated IT2 later. The

illustration of the T1 input FS generation is shown in Fig. 5.6.

I t = {(x, µIt(x)) | ∀x ∈ U}, (5.4)
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Figure 5.6: Step 4 constructing T1 input FSs in the extended ADONiS framework to generate
IT2 input FSs.

where µIt(x) is degree of membership.

Step 5 - Define the size for the variation uncertainty frame: Unlike the ADONiS imple-

mentation, another frame is defined in this step. The reason for defining this frame is to observe

the environmental changes over time and utilise these observed circumstances (e.g. unstable or

stable) in IT2. By doing so, generated IT2 input FSs will be able to capture variation over-time

which enables the system to respond properly to changes in its inputs. For instance, in a sudden

uncertainty change, the principal T1 input FS may not fully capture these changes; however,

by means of FOU, the extra degree of freedom can provide additional ability to capture these

uncertainty changes.

This frame is referred as variation uncertainty frame (vertical blue dashed lines) and depend-

ing on the design choice, the size/length of the frame can be changed or stable according to the

application. In this instance, we denote the variation uncertainty frame as V , where V ⊆ Q,
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Figure 5.7: Step 5 defining variation uncertainty frame in the extended ADONiS framework to
generate IT2 input FSs.

and the size of this frame is denoted as ω. This frame over the stored estimated uncertainty

levels is defined as follows:

V t = {σi | σ ∈ Q , t− ω < i ≤ t} (5.5)

This variation uncertainty frame is illustrated as blue dashed line at the middle figure of

Fig. 5.7.

Step 6 - Construct an Interval Type-2 input FS: Here, the variation of the uncertainty levels

over the Variation Uncertainty frame is computed and is used to specify the size of the IT2 FOU

around the initial T1 (principal) MF generated in Step 4. In doing so, in an environment where

the uncertainty keeps changing, the variation lead to be high which in turn creates wider FOU

values. Conversely, if uncertainty levels are kept constant (regardless of being high or low)
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Figure 5.8: Step 6 defining FOU as the variation in uncertainty levels.

over time, the variation leads to low which in turns generating narrower FOU values. A sample

of generated FOU value on the IT2 FSs can be seen as blue at the bottom Fig. 5.8. This can

provide the ability to capture varying circumstances and the IT2 construction is implemented as

follows:

σ̂t =
√√√√ 1
ω

ω∑
i=1

(σi − σ̄)2, ∀ i ∈ V t, (5.6)

where σ̄ is the mean of the uncertainty variation set (V t), ω is the size of the set and σ̂t is the

variation in the uncertainty frame at the time t.

Ĩ t = {((x, u), µ
Ĩt(x, u)) | x ∈ U , u ∈ Jx ⊆ [0, 1]}, (5.7)

where Jx is the primary membership
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Figure 5.9: Step 7 processing the generated IT2 input FS(s) and advance the frames.

Step 7 - Advancing the defined frame:

After generating the IT2 input FS(s) for the current frame, the generated input FS(s) are

proceeded to the NSFLS to implement the defined task such as prediction. A sample of SISO

can be seen in Fig. 5.9. As time pass and more data is gathered, the defined uncertainty frame

and the variation uncertainty frame are advanced by defined steps. The step size of the each

frame is denoted as λ for the uncertainty frame and δ for the variation uncertainty frame steps.

So that the extended framework is completed for 7 steps and the same procedures are repeated.

Overall, the proposed framework can be employed in a variety of applications where the

input is subject to both uncertainty and varying uncertainty levels over time. The extended

ADONiS strategy is employed by leveraging the seven-step methodology over the generated

time-series, as shown in Fig. 5.8. By following the uncertainty estimation algorithm, the last

observed noise level (σt) is detected in the Uncertainty frame (red dashed lines W t in Fig. 5.8)

and it is stored along with the previously detected noise levels. To construct Type-1 input FS,
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the detected uncertainty (σt) is utilised as the standard deviation of the Gaussian FS. Then,

Variation Uncertainty Frame (blue dashed line V t in Fig. 5.8) is defined and the variance (σ̂t)

for the estimates within this frame is calculated. The gathered variance is used to generate

FOU of the constructed T1 input MF resulting in IT2 input (blue MFs in Fig. 5.8). The well

known uncertain standard deviation technique is performed by simply adding and subtracting

the gathered noise variance from the actual (σt ± σ̂t) value to calculate the standard deviation

of upper and lower MFs of the IT2 input MF.

In order to illustrate the adaptive behaviour, two samples of this extended 7 steps strategy

(a) FOU Generation under stable noise

(b) FOU Generation under highly varying noise

Figure 5.10: Illustration of different generated IT2 input MFs.
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is shown in Fig. 5.10. Even though the noise level estimated in the last observed values are

similar in both examples, the variation of the noise over the frame differs substantially in both

cases (note, here, both the frames are of equal size for simplicity). Specifically, in Fig. 5.10a

and Fig. 5.10b, the last observed noise levels (σt) are similar for both cases. While in Fig. 5.10a

these estimations are steady over-time, in Fig. 5.10b, it is not steady and varying over time. The

adaptive input FS and FOU generation thus lead to two very different IT2 input MFs, with a

smaller FOU generated for the more stable case on the right of Fig. 5.10a and a wider FOU

for the more unstable case on the right of Fig. 5.10b. The animated illustration of this adaptive

behaviour can be seen on https://bit.ly/37LV4sG.

As shown in the time-series instance, the proposed approach is to ’envelop’ (using the FOU)

the variation of noise levels affecting a system over time and it is designed to capture the often

strong variation of encountered by real-world systems. For example, if the environmental con-

ditions are unstable in a robotics application (e.g. a light sensor is exposed to a flickering light

occasionally), the inputs values vary considerably, leading to varying uncertainty levels. The

adaptive FOU provides the degrees of freedom to capture this variation. If the circumstances

tend to be more stable, then the variation of the uncertainty levels is smaller, resulting automat-

ically in narrower FOUs more akin to type-1 MFs, enabling the system to respond properly to

changes in its inputs.

After having detailed implementation of the extended framework on time-series instances, in

the following section, time-series datasets will be utilised in order to demonstrate and explore

the proposed strategy in forecasting experiments.

5.3 Experiments

The time-series generation is an easily manageable test-bed since the noise injection can be

implemented with easily controllable operations. As the aim of the proposed extended frame-

work is to capture both uncertainty and the variation in uncertainty levels, these conditions

can be accommodated in time-series dataset conveniently. Therefore, in this section, the pro-

https://bit.ly/37LV4sG
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posed extended strategy is tested and the practical impact is shown in time-series forecasting by

demonstrating the ability of capturing both uncertainty and the variation in uncertainty levels

(addressing objective 3 in Section 1.5). In doing so, the different noise level conditions can be

captured in input FSs by means of extra degree freedom which provide a robust prediction in

the case of varying noise levels.

As it was practised in Chapters 3 and 4, the same time-series datasets (MG and Lorenz time-

series), are chosen to perform forecasting. Two different experiments are carried out and in both

experiments, the proposed adaptive strategy is compared to different non-adaptive counterparts.

9 inputs are used to predict 10th value in [179], the frame sizes (uncertainty frame [p] and

uncertainty variation frame [ω]) are set to be 9 to contain 9 variables. In the type-reduction

step, the well known EKM algorithm is used, details can be seen found in [181]. In the rule

generation, the same procedures from sections 3.4.1 and 3.4.2 are followed by using the first

70% of the noise-free time-series.

(a) A sample of the generated time-series which contain high and low noise.

(b) The injected corresponding noise levels

Figure 5.11: Illustration of testing time-series and corresponding noise levels.
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Figure 5.12: Experiment 1 and Experiment 2 scenarios.

In the test time-series generation, in order to provide the varying circumstances, mixed noise

levels (low, high,...,low) are used in the testing time-series. The low and high noise injections

are implemented more frequently over the times series and varying circumstances are created.

A sample of this time-series can be seen in Fig. 5.11. While the upper figure shows the produced

time-series (Fig. 5.11a), the bottom figure shows the corresponding used noise levels 5.11b in

the time-series as 20 and 0 dBs. In doing so, the proposed extended framework can be tested on

time-series which contains both low-high uncertainty levels and which vary over-time as well.

5.3.1 Experimental Set-Up

As illustrated in Fig. 5.12, two different experiments are carried out to evaluate the extended

ADONiS framework. Both experiments largely followed the similar structure, as was practised

in the previous chapters. In both experiments, after evaluating the adaptive approach (IT2-

ADONiS), a follow-on set of non-adaptive experiments is conducted where a set of predefined

FOU sizes are used, rather than automatically adapting the FOU size. In non-adaptive designs,

T1 FSs are generated by following the first 4 steps of the extended framework (see Section 5.2),

after that the performance of the NSFLS for 10 fixed FOU sizes, i.e. for values between 0.01

and 0.1 for MG and between 0.5 and 3.5 for Lorenz time-series are evaluated. In doing so,

the adaptive IT2-ADONiS forecasting performance is compared with different non-adaptive

counterparts.

The differences between the two experiments are the step size of the uncertainty frame (λ).
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Algorithm 3: Constructing adaptive IT2 input FSs by means of sliding window noise esti-
mation (4.5) and (5.6) and variation in noise levels.
Input : the input value xt at the most recent time step
Output: the corresponding IT2 input FS Ĩ t for the input xt

1 Function variationNoise(V t):
2 σ̂t ← s.d(V t) . Standard deviation of the V t;
3 return σ̂t ;

4 Function noiseEstimation(W t):
5 index← 1;
6 y ← [] . y is the list for the difference list;
7 repeat
8 y[index]← 1√

2 (W t[index+ 1]−W t[index]);
9 index = index+ 1;

10 until index = p− 1;
11 σt ← s.d(y) . Standard deviation of the y;
12 return σt ;

13 Function fuzzifyT1Input(xt, σ̂n)):
14 It ← Gaussian FS with mean xt and s.d. σt;
15 return It ;

16 Function fuzzifyIT2Input(I t, σ̂t):
17 Ĩ t ← The uncertain standard deviation on the Gaussian FS I t with σt ± σ̂t
18 return Ĩ t ;
19 t← 0;
20 repeat
21 p← frameSize . Defining the uncertainty frame size;
22 W t ← [xt−p+1, xt]; . W t is the current uncertainty frame;;
23 σt ← noiseEstimation(W t) ;
24 I t ← fuzzifyT1Input(xt, σt) ;
25 ω ← frameSize . Defining the variation uncertainty frame size;
26 V t ← [σt−ω+1, σt]; . V t is the variation frame;
27 σ̂t ← variationNoise(V t) ;
28 Ĩ t ← fuzzifyIT2Input(I t, σ̂t) ;
29 t← t+ 1 ;
30 until xt = end;

In the variants of Experiment 1 the uncertainty frame is advanced step-by-step where the λ

and ω step size set to be 1 which practically, result in sliding windows. This sliding operator

allows the principal T1 FSs to be sensitive to any changes in the last observed uncertainty levels.

Algorithm 3 presents the pseudo-code of the proposed adaptive IT2 input FSs fuzzification in

the context of this experiment.
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Experiment 2 is designed to evaluate the specific aspect of using adaptive FOU in compare to

non-adaptive FOUs. In this experiment, the assumption is made that the principal T1 input FS

may not be able to fully capture the last observed uncertainty changes. For instance, in a robotic

sensor context, the uncertainty frame size can be set to 5 seconds time-frame. However, uncer-

tainty levels are changed drastically within that 5 second time-frame and the principal T1 input

FSs may not fully capture these changes. In order to portrayed this scenarios, in Experiment 2,

the principal T1 FSs are constructed in a less sensitive manner and adaptive FOU(s) are built

on these T1 FSs. So that the question of "Can adaptive FOU provide optimum performances, in

the case of T1 FSs cannot capture the last observed uncertainty levels sensitively?. Hence, the

uncertainty frame is advanced piece-by-piece where the λ = 9 and ω = 1 step size. In doing

so, the principal T1 FSs are to change in every 9 steps, rather than each step.

Having detailed both experiments rationales and general settings in this subsection, we now

proceed to experiments and results in the following subsections.

5.3.2 Experiment 1 - Advancing the frame Step-by-Step

As mentioned above, in this experiment, first, the proposed 7 step strategy is utilised to complete

prediction of time-series which contains varying noise levels. The defined frames are advanced

by using step-by-step (λ = 1 and ω = 1) approach where it is advanced for each value in the

time-series. The association of each window to each IT2 input FSs can be seen in (5.8) and

illustrative sample can be seen in Fig. 5.13.

(V t−8 ∼ W t−8 ∼ xt−8) ; Ĩ t−8

(V t−7 ∼ W t−7 ∼ xt−7) ; Ĩ t−7

...

(V t ∼ W t ∼ xt) ; Ĩ t

(5.8)
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Figure 5.13: Experiment 1 - Each input FSs having different width and FOU values

where W is the uncertainty frame (red dashed line in Fig. 5.13),V is the variation uncertainty

frame (blue dashed line in Fig. 5.13), x refers to corresponding input value, Ĩ is the constructed

IT2 input FS, the symbol ∼ refers only the association between the defined windows and the

corresponding inputs. The ; notation is to denote ‘leads to’ the corresponding IT2 input FS.

The animated samples of Experiment 1 can be seen in https://bit.ly/2KOWv0D. The

experiment is repeated for both MG and Lorenz time-series.

Figure 5.14: Experiment 1 - MG time-series the MSE prediction result comparison of adaptive
and non-adaptive FOU generation in the test set which contains varying noise levels

https://bit.ly/2KOWv0D
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Figure 5.15: Experiment 1 - Lorenz Time-series the MSE prediction result comparison of adap-
tive and non-adaptive FOU generation in the test set which contains varying noise levels

5.3.2.1 Experiment 1 Results

As shown in Fig. 5.14 for MG and 5.15 for Lorenz time-series, the least FOU values (0.01 for

MG and 0.5 for Lorenz) provide the best prediction performance among the other 10 manually

set FOU values. In the adaptive approach, similar MSE results are produced, indicating an

accurate adaptation of the FOU size. The detailed discussion will be provided in Section 5.3.4.

5.3.3 Experiment 2 - Advancing the frame Piece-by-Piece

In this experiment, the uncertainty frame is advanced piece-by-piece where after each 9 input

value is received, the frame is advanced over that 9 inputs at once (λ = 9). So that the same

estimated uncertainty levels are applied to the 9 input FSs. In other words, each 9 T1 input FS

will have the same width. Note that in the previous experiment, each input FS has different

width to capture the last observed uncertainty. However, in this experiment, each individual

uncertainty capturing become less sensitive for the core T1 FSs. The association to construct

IT2 inputs can be seen in (5.9) and the illustrative sample is shown in Fig. 5.16. As it is shown,

the window W t is associated with each input. Animated illustration of this example can also be

seen on https://bit.ly/3nKUSPT.

https://bit.ly/3nKUSPT
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(V t−8 ∼ W t ∼ xt−8) ; Ĩ t−8

(V t−7 ∼ W t ∼ xt−7) ; Ĩ t−7

...

(V t ∼ W t ∼ xt) ; Ĩ t

(5.9)

Figure 5.16: Experiment 2- Each principal T1 input FSs having the same width (σt) and differ-
ent FOU values.

Figure 5.17: Experiment 2 - MG Time-series the MSE prediction result comparison of adaptive
and non-adaptive FOU generation in the test set which contains varying noise levels
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where W is the uncertainty frame (red dashed line in Fig. 5.16), V is the uncertainty variation

frame (blue dashed line in Fig. 5.16), x refers to corresponding input value, Ĩ is the constructed

IT2 input FS, the symbol ∼ refers only the association between the defined windows and the

corresponding inputs. The ; notation is to denote ‘leads to’ the corresponding input FS.

Note that, in (5.9) and Fig. 5.16, theW frame association differs from Experiment 1 (Fig. 5.13).

As it is advanced by piece-by-piece, each input FSs have the same width (σt) which is the esti-

mated uncertainty level in the uncertainty frame (W t red dash lines). Additionally, each input

FS have different FOU values which is the variation in the variation uncertainty frame (blue

dash lines).

5.3.3.1 Experiment 2 Results

As can be seen in Fig. 5.17 for MG and Fig. 5.18 for Lorenz time-series, the best performance is

provided by the FOU value 0.04 of MG and 1.7-2.3 of Lorenz time-series among the 10 different

manually performed FOU value. When the proposed adaptive approach is implemented, it

provides similar performance with the best manually adjusted approach. The detailed discussion

will be provided in the next subsection.

Figure 5.18: Experiment 2 - Lorenz Time-series the MSE prediction result comparison of adap-
tive and non-adaptive FOU generation in the test set which contains varying noise levels



126 Chapter 5. Adaptive Interval Type-2 Input FSs

5.3.4 Discussion

In Experiment 1, the uncertainty frame is advanced step-by-step (λ = 1) which allows each T1

input FS(s) to have different widths corresponding to the last observed estimated uncertainty

levels. Thus, this step-by-step technique provides sensitivity to the last observed uncertainty

level changes in T1 input FSs. In the adaptive IT2-ADONiS variants of Experiment 1, the T1

principal FSs are extended with an adaptive FOU to generate IT2 input FSs. The size of the

FOU is driven by variation in uncertainty levels as measured over an Uncertainty Variation

Frame and the FOU is applied to T1 input FSs which provides an adaptive behaviour. In the

non-adaptive variants of Experiment 1 (T1-ADONiS manually designed FOUs), 10 different

sequential FOU values are employed manually to T1 input FSs to investigate the ‘optimum’

FOU value in prediction performances.

As shown in Figs. 5.14 and 5.15, the manually adjusted FOU value 0.01 and 0.5 provides the

optimum performance which is also similar to the performance of the proposed extended ADO-

NiS strategy. It is crucial to note that when we use the extended ADONiS framework, we do

not need to know any a priori information about the noise levels, their variation or any specific

FOU sizes. So that without ‘brute-forcing’ different FOU values, the optimum performance can

be gained by simply using the extended ADONiS framework.

Having the uncertainty frame advancing step-by-step can provide the ability to capture the un-

certainty of individual inputs which may induce sensitive T1 input FSs in uncertainty changes.

As shown in the previous sections (Fig. 5.13), each principal T1 input FSs have different widths

to capture each estimated uncertainty, enabling uncertainty modelling in a ‘sensitive’ manner.

As shown in Experiment 1’s results, in both cases, the least FOU value -as well as the adaptive

approach- provides the best performance among all other variants. As the principal T1 input

FSs are sensitive to the uncertainty changes, this led us to consider that IT2’s extra degree of

freedom may not be crucially necessary at this level of sensitivity. Therefore, in the second ex-

periment, to specifically investigate FOU values-performance association, we opted to reduce

the T1 input FS sensitivity by advancing the frame piece-by-piece rather than on each input.
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In Experiment 2, to evaluate the specific FOU adaptiveness aspect of each IT2 input FSs, the

principal T1 input FSs are generated in a less sensitive manner and optimum performance is

investigated with the extended framework and non-adaptive counterparts. In this experiment,

the uncertainty frame is advanced piece-by-piece where the step size is set to 9 (λ = 9). This

leads each T1 input FSs in the uncertainty frame to have the same width (See Fig. 5.16) which

cause relatively less sensitivity in each uncertainty level change. In both variants of Experiment

2 (adaptive extended IT2-ADONiS and non-adaptive counterparts), T1 input FSs are generated

by following this technique.

As shown in Figs. 5.17 and 5.18, the optimum performances are provided by the FOU value

0.04 for MG and 2.3 for Lorenz time-series and the proposed adaptive framework also produces

similar performances. As was the case in Experiment 1, the ADONiS framework does not

require any extra manual adjustments in FOU to reach the optimum performance.

In both experiments, the proposed adaptive approach results are compared to counterpart

Type-2 systems. In these comparison different sequential FOU width values are applied on these

Type-2 systems in a brute-force to find the optimum performance value. As results show that the

optimum valued Type-2 system and the proposed adaptive systems can achieve the relatively

similar performance. Even though both performance are similar the proposed approach does

not require the sequential trials but adapt itself based on conditions automatically on-the-fly. On

the other hand the counterpart Type-2 system required many trials to find the optimum width

which would provide the optimum performance. However, in a real-world context, it may not

be possible to run all different FOU sizes sequentially/manually. Furthermore, it is worthwhile

noting that, these optimum FOU values are valid for the specifically used testing time-series.

In other testing-sets, the optimum FOU parameters would change depending on noise levels as

well. Since the extended adaptive approach does not require any manual parameters settings, it

can be said that the proposed approach for its automatic adaption would be strongly useful in a

real-world setting where uncertainty varies over-time.
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5.4 Summary

The real-world encompasses different uncertainty sources and these sources may vary vastly

which cause either major or minor impact on a system’s inputs at different times. Even though

in Chapter 4, the ADONiS framework provides promising results in capturing uncertainty in the

last observed value(s), it is the variations in the uncertainty levels, in particular, which makes

estimating and handling uncertainty a complex and challenging task.

Considering the potential advantages of NSFLSs and Type-2 designs in respect to input FSs,

in this chapter, we, therefore, extended the ADONiS framework and put forward a strategy to

design IT2 input FSs of NSFLSs at run-time. Specifically, while Chapter 4 has shown how

individual levels of last observed uncertainty can be captured by T1 input FSs, this chapter

explore whether the additional degrees of freedom of IT2 FSs can be used to capture a variety

of (varying) levels of input uncertainty as are commonly encountered in real-world applications,

–as presented in our study [123].

In the extended framework, principal T1 input FSs are generated by detecting uncertainty

within an Uncertainty Frame. Further, the variations in uncertainty levels are measured over

an Uncertainty Variation Frame and it is used to generate FOU on the T1 FSs resulting in the

comprehensively adaptive IT2 input FSs. Even though the T1 FSs capture the last observed

uncertainty level properly, because of the variation in uncertainty levels, the last observed un-

certainty capturing may not fully reflect the environmental conditions overall. The extended

framework’s main aim is to capture the variation in uncertainty levels (using the FOU) and

enable systems to respond properly to changes in its inputs.

The proposed extended framework is evaluated in MG and Lorenz time-series prediction

experiments. In the testing time-series dataset, ‘low’ (20 dB) and ‘high’ (0 dB) noise levels are

used and they are injected to the dataset in a ‘low’,‘high’,...,‘low’,‘high’ manner to design an

environment where the noise levels vary over-time. Two different experiments are conducted

by comparing performances between the adaptive extended IT2 ADONiS framework and non-

adaptive counterparts. In both experiments, it has been shown that the extended IT2 ADONiS
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framework provides the optimum performance compared to non-adaptive trials. It is worthwhile

noting that in these experiments, the proposed extended IT2 ADONiS framework does not

require an extensive brute-force FOU parameters trials to achieve the optimum performance,

whereas non-adaptive IT2 counterparts requires to employ some trials to find the optimum FOU

and performance conclusively.

Overall, the proposed strategy ensures that IT2 input FSs are designed dynamically on-the-

fly, removing the requirement of a priori knowledge of uncertainty levels and training proce-

dures in parameter definitions. Also, as shown in Experiment 1 and Experiment 2’s results, by

modelling the variation of the uncertainty levels, the conditions affecting a system’s inputs are

captured appropriately in input FSs (addressing objective 3 of this thesis). For instance, in a

robotics application, if environmental conditions are unstable and the uncertainty levels vary

considerably, the adaptive FOU provides the degrees of freedom to capture this variation. If

the circumstances tend to be more stable, then the variation of the uncertainty levels is smaller,

resulting automatically in narrower FOUs more akin to T1 input FSs, enabling the system to

respond accordingly to changes in its inputs.

The limitations of the conducted experiments can be listed as follows: (i) Only a small set

of experiments are carried out on commonly used two chaotic time series. (ii) A single noise

estimation algorithm is conducted. Based on the used dataset type (e.g. sensor signals or stock

market data), an appropriate noise estimation algorithm should be selected accordingly. (iii)

The method to determine width of FOUs which is depending on the selection of variation

uncertainty frame parameter (ω). In order to define the FOU(s) properly, the size of variation

uncertainty frame should be determined adequately to reflect the variation of environments. (iv)

The computational burden. As the variation uncertainty frame is used to calculate variation in

uncertainty levels, it may cause an extra computational burden which, therefore, frame sizes

should be chosen optimally. Overall, we note that there are an enormous number of different

settings that can be implemented (e.g. different noise designs, different parameters in frames

or predictions). Hence, it should be noted that these results can only represent an initial step

towards a general conclusion and a real-world application. Considering these limitations, in the

future, different settings will be explored with different settings and datasets.
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So far in this thesis, input uncertainty handling (Chapter 3) in the inference engine steps,

input uncertainty capturing (Chapter 4) in the fuzzification steps and extended varying input

uncertainty capturing (in this chapter) are investigated and evaluated. In general, case studies

have shown that the performance improvements of FLSs are promising. Besides the uncertainty

handling capacity of FLSs, interpretability is the other main key aspect of using FLSs; having

an insight into decision processes that humans can comprehend can facilitate overall operations

of models in various aspects. Therefore, in Chapter 6, we will explore the interpretability mech-

anism of NSFLSs and we will investigate whether the given interpretability can be ‘protected’

while the performance is increased by using the proposed approach/frameworks in this thesis.



Chapter 6

Maintaining Levels of Interpretability

A key aspect of the vision of interpretable AI is to have decision-making models which can be

understood and evaluated by humans. Hence, while a decision-making model delivers a good

performance, providing an insight into the decision process is also an important asset in terms

of having trust or allowing a ‘debug’ process in decisions. Even though the interpretability

of AI is widely acknowledged to be a critical issue, it still remains a challenging task. FLSs

are considered to possess mechanisms which can provide a degree of interpretability. FLSs

building process can be done by experts or by using data-driven approaches and a level of in-

terpretability can be provided in the initial design -by benefiting expert insights or by following

interpretability taxonomies (e.g. rule parsimony in rule base or completeness, distinguishability,

complementarity in MFs partitioning etc.). Yet, when accuracy-oriented adaptive learning pro-

cesses are used on the designed FLSs, initially given interpretation of the FLSs cannot always

be guaranteed due to the altering key parameters and conflicting objectives of accuracy and

interpretation [21, 23, 62, 64, 100, 111]. In this chapter, as presented in our study [119], the fo-

cus is expanded to encompass interpretability, considering specifically whether the mechanisms

developed in Chapters 3-5 can be usefully applied in the sense of minimising the changes that

affect the key interpretability components. Hence, while the proposed methods allow NSFLSs

to achieve better performance by coping with input uncertainty in the fuzzification and infer-

ence engine steps, the initially given level of interpretability degree can be maintained without

altering the structure or key parameters of given FLSs.

131
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Section 6.1 discusses the background and motivation for maintaining interpretability of FLSs.

Section 6.2 explores the capability of maintaining interpretability in the ADONiS. Section 6.3

presents steps of the conducted case study and a discussion of the findings is given in Sec-

tion 6.4. Lastly, in Section 6.5 a summary of this chapter is presented.

6.1 Background and Motivation

FSs are generally designed with respect to linguistic labels and are interconnected by linguis-

tic rules [191]. Therefore, FLSs are frequently referred to as ‘interpretable’ systems. Early

research in FLSs focused on building rules with expert knowledge reflecting experts insights

inherently which provide a degree of interpretability in systems. Later, when expert knowledge

is not available, data-driven approaches are started utilising to design FLSs. In order to provide a

degree of interpretability in those data-driven designed systems some taxonomies are proposed.

For instance low-level interpretability and high-level interpretability in regards to overall inter-

pretability degree assessment of FLSs [54, 194]. Low-level interpretability is mostly related to

the semantics associated with the used MFs in a given model. This low-level interpretability

can be achieved by imposing constraints on the MFs or approaches considering measures such

as distinguishability, coverage, etc. The high-level interpretability is more related to the number

of rules, variables, labels per rule etc.

Even though the level of interpretability degree can be provided by experts and/or data-driven

techniques, the varying real-world circumstances -which contain different levels of uncertainty-

require approaches that bring challenges regarding the interpretability levels of models.

To deal with varying circumstances of real-world settings, different approaches have been

developed over the years. Such approaches are mostly inherited from numerical learning tech-

niques, such as ANFIS [70] or TSK models [162]. Traditionally, models use parametric equa-

tions and/or statistical optimisation techniques to tune parameters based on data-driven ap-

proaches. As depicted in Fig. 6.1, while these optimisation procedures provide performance

benefits, they often cause alteration in fuzzy rule sets, rule parameters, MFs or fuzzy partition-
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Figure 6.1: An illustration of building an interpretable FLS and applying optimisation proce-
dures which may affect MFs and/or rules resulting in high accuracy but poorer interpretability.

ing structures with high accuracy but commonly do not consider whether the resulting model is

interpretable or not [4, 22, 153]. This poses an interesting question for the tuning of FLSs: can

we improve the performance of FLS without negatively affecting the given FLSs’ interpretabil-

ity? In other words, can we have both: interpretability and good performance?

In recent years an increasing number of studies have started to focus on fundamental ques-

tions such as what interpretability is, in general, and in particular in respect to FLSs? How many

rules or how many variables per rule are interpretable? Or to which degree are properties of the

partitioning of the variables key for interpretable FLSs? [4, 71, 57, 82, 137]. In the literature,

various taxonomies have been suggested to explore interpretability degree of FLSs [4, 54, 93]

and nowadays, FLSs research focuses on combining the high performance and interpretability

of models [22, 56, 60, 194].

So far in this thesis, in Chapter 3, an alternative inference engine method is proposed; in

Chapter 4, the ADONiS framework is proposed; and in Chapter 5, the ADONiS framework is

extended with the aim of leveraging performance of FLSs. Overall, input uncertainty is cap-

tured/adapted in the fuzzification stage and handled in the inference engine step at run-time that

delivers good performance in the face of varying input uncertainty conditions. Therefore, as

shown in the previous Chapters, these proposed frameworks can provide performance benefits

in comparison to the counterparts models. Additionally, while providing performance benefits,

the proposed methods confine the tuning procedures into the fuzzification stage, leaving other

components (e.g. the rules, defined MFs etc. ) of the system ‘untouched’, thus providing a
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fundamental requirement for maintaining the given interpretability. As the capacity for inter-

pretability is one of the main assets of FLSs and is often one of the key motivations to use

FLSs in decision-support [137], in this chapter, the ADONiS framework usage is explored in

the context of whether it can usefully be applied to maintain the interpretability level of systems.

Later, ADONiS usage in comparison to a commonly used tuned counterpart (ANFIS) model is

compared and contrasted in response to varying noise levels in a time-series prediction context.

In the next section, ADONiS implementation is evaluated in the context of overall maintain-

ing interpretability in FLSs.

6.2 Maintaining the Given Level of Interpretability with ADO-

NiS

Model interpretability can be characterised such that a human can comprehend and validate

why/how results are produced in a given system. As mentioned in Chapter 2, interpretability

is a complex field where multiple components take part in multiple views. A growing body

of literature has been examined to assess interpretability of FLSs [4, 54, 93, 194] and different

taxonomies proposed to cover multiple aspects to consider interpretability of FLSs, such that

the FS-based interpretability (e.g. labels, distinguishability, a moderate number of FSs etc) or

the rule-based interpretability (readability of a single rule and parsimony of rule-set etc.).

In an FSs-based constructing process, if expert knowledge is available, experts can design

MFs, labels and parameters etc. based on their knowledge in their field and the semantics of

these FSs can be understood by humans. In doing so, FSs-based interpretability is instinc-

tively provided by experts. If expert knowledge is not available, the FSs can be constructed by

following generally acknowledged properties such as distinguishability, complementarity etc.

By following general properties, the semantics of FSs can be built and interpretability of the

generated FSs can be enabled.

In a rule-base constructing process, experts can define system rules based on the generated
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FSs. Since experts use their field knowledge, these rules’ interpretability can be provided com-

monly as experts design them. If expert knowledge is not available, data-driven approaches can

be utilised to generate rules and the interpretability of these rules can be achieved by following

the generally accepted properties such as rule simplicity, consistency etc.

As an example, consider an FLS is designed by collaborating medical experts and computer

scientists to model a decision. The FSs are constructed by medical experts which provides

meaningful designs to them. Also, the rules are defined based on medical knowledge. In doing

so, the overall interpretability can be provided in the initial design of the FLS. However, the real-

world has different conditions which cause varying circumstances on the run-time. Even though

the initial FLS design is interpretable by medical experts, varying patient inputs (e.g noise in

the heart rate sensor) may not fully correspond to the given FSs or rules (e.g. none of the

rules may not be fired in the face of of noisy inputs). Therefore, uncertainty in real-world data

may not match with the given system. Traditionally, in order to deal with these uncertainties in

environments, data-centric optimisation procedures can be employed at different stages of FLSs,

e.g. altering FSs parameters, increasing/decreasing rule numbers etc. This usually provides

performance benefits, yet since the FSs and/or rules are altered in a data-driven way, medical

experts may no longer understand it. Thus, the initial interpretability of FLS may deteriorate.

In the ADONiS design, the performance increase is achieved by enabling to model uncer-

tainty ‘where it arises’ and handled through the given rules. Particularly, input uncertainty (e.g.

noise in the heart rate sensor) is captured adaptively in the fuzzification step and handled in

interactions between input and antecedent FSs in the inference engine step. In doing so, while

the performance increase is achieved, ADONiS limits any optimisation impact to the fuzzifi-

cation and the inference engine steps. Therefore, different components of FLSs such as MFs,

antecedents, consequent etc. remain ‘untouched’. An illustrative figure can be seen in Fig. 6.2.

Thus, while dealing with different input uncertainty levels on run-time, the initially given inter-

pretability is protected and the FSs or rules remain meaningful to experts.

Furthermore, since the ADONiS is designed to provide adaptive behaviours by capturing

and handling different circumstances on the run-time, the rule-base can be constructed based
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Figure 6.2: An illustration of building the ADONiS FLS where input uncertainty is captured in
the fuzzification and handled in the inference engine steps at run-time. While having an increase
performance, the other key parameters are ‘untouched’ which leads to maintaining the initially
given interpretability degree.

on noise-free circumstances and ADONiS can integrate input with the given rules. This char-

acteristic allows having a simpler rule-set which can also contribute to the interpretability of

models.

To recapitulate, since input data is affected by uncertainty sources in the real-world, tradi-

tionally, models use offline optimisation procedures to cope with these changing environments.

Such optimisation procedures traditionally use a training dataset and lead to changes of the

same key parameters which are vital for interpretability, thus delivering improved performance

at the cost of poorer interpretability. However, the ADONiS framework adapts itself to the

changing uncertainty levels by tuning input FS parameters in the fuzzification step on run-time

and deliver performances. While the performance is increased, it also preserves the valuable

interpretable structure, namely the rules, antecedents and consequents, addressing objective 4.

In the next section, we will investigate ADONiS employment in respect to accuracy-interpretability

by comparing another commonly used model.
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6.3 Experiment in Comparing ADONiS to Optimisation Based

Methods

This section compares and contrasts the ADONiS adaptation framework and commonly used

the ANFIS model in response to varying noise levels in a time-series prediction experiment.

This case study’s main aim is not to find which approach delivers the best time-series predic-

tion but rather to assess to which extent ADONiS can actually deliver both good performance

and interpretability in the face of varying levels of noise - through comparison to optimisa-

tion based techniques. Specifically, in the course of experiment implementation under different

noise levels, the key parameters of interpretability (FSs, antecedents and consequents etc) status

are examined with a question that ‘to which degree the original parameters are preserved?’ for

both ADONiS and ANFIS models.

As mentioned in previous chapters, as the time-series provide a convenient test-bed in terms

of generating dataset and adding noise in a controllable manner, we have chosen the time-series

prediction case study in this chapter as well.

6.3.1 Time Series Generation

MG time-series is generated and 1009 noise-free values are obtained for t from 100 to 1108.

One of the common models for noise is additive white Gaussian noise [81]. Three different

signal-to-noise ratios (20 dB, 5 dB and 0 dB) are used to generate noisy time-series with addi-

tive Gaussian white noise. These four (noise-free and noisy) datasets are split into 70% (rule

generation/training) and 30% (testing) samples to be used in different variants of the experi-

ments. In the MG generation, τ value is set to be 17 to exhibit chaotic behaviour. Details of

time-series generation and noise adding procedures can be found in Sections 2.7 and 2.7.3.
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6.3.2 Rule Generation

Regarding the rule generation in the experiments, while different approaches have been intro-

duced [31, 80], in this particular case study, we follow the well established Wang-Mendel [179]

rule generation technique. We acknowledge that other approaches may be equally or more vi-

able, for example, in the given domain of time-series prediction, nevertheless, for this study, our

key objective was to generate one basic rule base which is maintained identical across all FLSs,

thus providing a basis for systematic comparison. Further, we note that the specific antecedent

and consequent FSs used here are selected to evenly partition the domain of the variables, and

thus are not meaningful in a traditional linguistic sense, yet followed the low-level interpretabil-

ity properties [194].

The MFs generation in this case study is implemented by following similar FLS architecture

in [179]:

First, the domain of the training set [xmin, xmax] is defined. In order to capture all inputs

(including the ones, which can be outside of the input domain, in testing), the defined domain

is expanded by 10% and the cut-off procedure is implemented for the inputs which are outside

of this domain in testing.

Then the input domain is evenly split into seven regions, and bell-shaped antecedents are

generated. As shown in Fig. 6.3, these constructed MFs are linguistically labelled as Further

Left (FL), Medium Left (ML), Close Left (CL), Medium (M), Close Right (CR), Medium Right

(MR), Further Right (FR). Here, by designing the FSs in this form, the following low-level

Figure 6.3: An illustration of the seven antecedent MFs used.
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interpretability properties are provided.

• Distinguishability: In order to conceive a clear semantics meaning, FSs are clearly de-

fined in a distinctive range in the universe of discourse, as shown in Fig. 6.3. In a case

of FSs were overlaps; as a result, it might be difficult to assign distinct linguistic labels

and semantic meaning to these FSs. Note that when the MFs are defined by experts,

overall semantic meaning can be interpretable by that particular expert. Yet, in our data-

driven approach, the distinguishability feature of these FSs becomes more influential in

the overall interpretability of the FLSs.

• Moderate number of MFs: Considering human cognitive psychology, the number of

defined FSs are defined to not exceed the short-term memory capacity, which is 7 ±

2 [101]. So that a human can efficiently conceive the overall process of the FSs and

related components. Thus, 7 MFs are defined as shown in Fig. 6.3.

• Coverage or completeness of fuzzy partitioning: Every data point should belong to at

least one MF in the entire universe of discourse which means the membership degree

of the data point should not be zero. This can be possible with a design of MFs which

covers all the universe. Thus, min and max values are selected as the centre of Further

Left and the Further Right MFs, as shown in Fig. 6.3. As mentioned before, the data-

driven optimisation approaches may confine this coverage, as it heavily depends on the

given training dataset and the testing domain may not match under varying circumstances

of real-world settings.

• Normalisation: In general, having at least one data point with a membership degree equal

to one can represent a clear semantic meaning for the particular MF, that should be normal

MF. Thus, we have designed MFs to be normal FSs.

• Complementarity: Strong fuzzy partitioning are widely assumed to have high semantic

interpretability in the sense of keeping clear and transparent structures. For this reasons,

the defined MFs are evenly distributed and also ensured that the sum of all its membership

values are 1 or close to 1.
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We consider the preservation of the original shape of the FSs (post-tuning) as important (as

it is that shape which will be meaningful in applications of FLSs such as in medical decision

support, common control applications, etc.).

For the rule generation and the prediction, as in [179], nine past values are used as inputs

and the following (10th) value is predicted, i.e. the output. After forming the input-output

pairs as ((x1 : y1), (x2 : y2), ..., (xN : yN), ) each input value within the pair is assigned to the

corresponding antecedent FS (FL, ..,M, .., FR). As practised in the Wang-Mendel one-pass

method, the same seven FSs are used for the consequent FSs, and the outputs (yi) are assigned

to the corresponding FSs (FL, ..,M, .., FR) as well. A sample of the generated rules can be

seen in (6.1). For details of rule generation, please refer [179].

R1 = IFx1 isMRAND... x9 isM THEN y1 is CR (6.1)

In the rule generation, the data-driven interpretability is provided by following some of the

high-level interpretability properties [194] below.

• Rule base parsimony and simplicity: According to the principle of Occam’s razor (the

best model is the simplest one fitting the system behaviours well). By following the

procedure from the key study [179], rule reduction procedure is applied to obtain the

rule-set.

• Readability of single rule: As mentioned, the number for the human cognitive skills

should be 7 ± 2. To achieve the understanding, the premises in the rules are followed the

same principle.

• Completeness: By covering the whole domain and also by using non-singleton input FSs,

at least one rule are fired in the system.

The used data-driven system design approach [179] follows the aforementioned low and high

level properties. This allows the FLS to have a level of interpretability; even though the system
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Figure 6.4: An initial ANFIS structure with MFs.

is designed by using the data-driven approach. We consider the preservation of the original

shape of the MFs (post-tuning) leading the preservation of rule-set.

6.3.3 Parameters Tuning

6.3.3.1 ADONiS

When implementing ADONiS, the varying circumstances are captured in the fuzzification step

(with sliding window λ = 1) and handled in the inference step. By doing so, no offline op-

timisation procedure is used on the key parameters of FLS to deal with noise in the dataset.

Thus, previously established MFs (FL, ..,M, ..FR) and previously generated model rules re-

main ‘untouched’ which provides ADONiS the ability to maintain the given interpretability.

Here, it is worthwhile noting that the given interpretability level might be ‘high’ or ‘low’. Re-

gardless of the interpretability level, ADONiS is to preserve the model component to maintain

the given interpretability degree and details will be discussed in Section 6.4.4.

6.3.3.2 ANFIS Optimisation

As one common model, ANFIS is widely used in many applications to improve the performance

of FLSs [7, 8, 43, 73]. ANFIS uses optimisation on model parameters which aims to ‘fine-tune’
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to obtain more accurate approximation than a initially defined system. The optimisation is

conducted by using a given training dataset with the objective to deliver good performance, i.e.

minimum error. In doing so, if the training dataset covers noisy conditions, the parameters are

altered accordingly and the model is ‘prepared’ for the upcoming noisy environment in testing

settings.

In the ANFIS implementation of this experiments, each of the seven antecedent MFs are

assigned an input neuron (See Fig. 6.4) [26]. The gradient descent optimisation technique is

then implemented to update the antecedent MF parameters and the consequent linear functions.

In the meantime, the least-squares estimation method [161] is used to update the parameters

of consequent linear functions in each training epoch. During each epoch, the antecedent FS

parameters are updated for each input. Therefore, as a sample in Fig. 6.5 illustrates, while be-

ginning with only seven antecedents, after optimisation, different antecedent FSs are generated.

This alteration are implemented for each set of 7 FSs corresponding to each 9 inputs. Thus,

theoretically 9x7=63 different or similar FSs are obtained for each inputs –with the associated

increase in model complexity which will be discussed in Section 6.4.4.

Figure 6.5: After optimisation, the ANFIS structure with the altered MFs.
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Figure 6.6: Experiment scenarios.

6.3.4 Performance Evaluation

In order to assess the noise handling capability of each model, we calculate the difference be-

tween model predictions and noise-free data values at each time-point. Both ADONiS and

ANFIS performances are measured by using the common root-mean-squared-error (RMSE)

and in addition, the recently proposed Unscaled Mean Bounded Relative Absolute Error (UM-

BRAE) [27]. UMBRAE combines the best features of various alternative measures without

suffering their common issues, e.g. being infinite or undefined under certain circumstances,

high sensitivity to outliers.

To use UMBRAE, a benchmark method needs to be selected. In this case study, the bench-

mark method simply uses the average of input values as predictions. With UMBRAE, the

performance of a proposed method can be easily interpreted: when UMBRAE is equal to

1, the proposed method performs approximately the same as the benchmark method; when

UMBRAE < 1, the proposed method performs better than the benchmark method; when

UMBRAE > 1, the proposed method performs worse than the benchmark method.

6.4 Results and Discussion

In total, 4 x 4 = 16 different experimental scenarios are implemented, using different noise levels

in both rule generation/optimisation and testing phases. Specifically, four different training sets

(noise-free, 20, 5 and 0 dB) and four different testing sets (noise-free, 20, 5 and 0 dB) are

used–to represent a variety of potential real-world noise levels. Experiment setup can be seen
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in Fig. 6.6.

In each variant of experiments, while both model’s performance is compared, the exploration

also focuses to ‘how does the interpretability is affected?’ e.g. the meaningfulness of antecedent

MFs during the prediction.

In the ADONiS implementation, the first 700 values are used to generate rules and the re-

maining 300 values are used for testing. Note that as ADONiS uses 9 inputs to construct input

FSs, the first 9 values of the testing set are omitted, leaving only the final 291. In ANFIS, while

using the exact same rules as ADONiS, the first 400 data pairs are used as the training set; the

following 300 data pairs are used as a validation set; and the final 291 of the remaining 300 data

pairs are used as the testing set.

6.4.1 Experiment 1 - Noise-free Rule Generation Results

In the first experiment, the rule set is generated using the noise-free time-series dataset. Four

different testing datasets (noise-free, 20, 5 and 0 dB) are used.

RMSE results of the ADONiS prediction experiment, with noise-free testing, can be seen on

the left-hand side of Fig. 6.7a, as blue colours bars. Note that since there is no noise in the

testing dataset, the generated input FSs tend to be a singleton FS. Thus, the traditional singleton

prediction is implemented in this particular experiment.

After completing noise-free testing and using the same rule-set (from the noise-free training

dataset), the 20 dB testing dataset is used in the prediction experiment of the ADONiS. The

RMSE results of this experiment are shown in Fig. 6.7a. Thereafter, the remaining 5 dB and 0

dB testing datasets are used with the same rule set–RMSE results are shown in Fig. 6.7a.

Following the ADONiS prediction (with noise-free rule set and four different testing datasets),

ANFIS optimisation is carried out on the previously generated rule parameters, and the an-

tecedent parameters are updated in the ‘black-box’ manner. Then, these updated antecedents

are used in the prediction of the noise-free testing dataset. The results of this experiment are

shown in Fig. 6.7a as orange colours bars and as can be seen that ANFIS performance outper-
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(a) RMSE results (b) UMBRAE results

Figure 6.7: Experiment 1: Noise-Free rule generation

forms ADONiS significantly in this particular experiment.

After that, the same updated rules from the noise-free training dataset are used with the 20 dB

testing dataset. The performance of ANFIS is reported in Fig. 6.7a. As can be seen, ADONiS

and ANFIS have similar performances under the 20 dB noisy testing variant.

Following this, 5 dB and 0 dB noisy datasets were used in testing–RMSE results are illus-

trated in Fig. 6.7a. As shown, in both of these noisy conditions, ADONiS outperform ANFIS

substantially.

As the second error measure, UMBRAE is used to compare ADONiS ANFIS based on a

benchmark prediction performance. These sets of experimental results can be seen in Fig. 6.7b

and the result trend similar to the RMSE results. Yet, under 5 dB and 0 dB testing conditions,

ANFIS provides UMBRAE error measure of around 1 which indicates that this ANFIS perfor-

mance is only as good as the used benchmark method that is simply averaging the inputs.

6.4.2 Experiment 2 - 20 dB Noisy Rule Generation Results

In this experiment, rule generation is completed by using the 20 dB noisy time-series dataset.

The resulting rules are then used in ADONiS predictions on the noise-free, 20 dB, 5 dB and 0
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(a) RMSE results (b) UMBRAE results

Figure 6.8: Experiment 2: 20dB Noisy rule generation

dB noisy testing datasets. The RMSE experiment results are shown in Fig. 6.8a.

After ADONiS implementation, ANFIS optimisation is implemented on the antecedents’

parameters, according to the 20 dB noisy training dataset. Then the ANFIS predictions are per-

formed on the same four (noise-free, 20 dB, 5 dB and 0 dB) different datasets. These prediction

results are illustrated in Fig. 6.8a. These findings show a clear trend that ADONiS and AN-

FIS provide similar performances under noise-free or low-noise conditions. Under higher noise

levels (5 and 0 dB), ADONiS has a clear performance advantage.

As evaluated using the UMBRAE error measure, equivalent results are illustrated in Fig. 6.8b.

These UMBRAE results show that while ADONiS produces the error measure of around 0.6.

6.4.3 Experiment 3 and 4 - 5 and 0 dB Noisy Rule Generation Results

The same procedures from the previous experiments are followed. First, rules are generated

based upon the 5dB noisy time-series datasets. Next, ADONiS performance is tested with the

four (noise-free, 20 dB, 5 dB and 0 dB) testing datasets. Afterwards, ANFIS optimisation is

used to update the antecedent parameters and ANFIS predictions are completed on the same

four (noise-free, 20 dB, 5 dB and 0 dB) testing datasets. 5dB rule generation results are shown



6.4. Results and Discussion 147

(a) RMSE results (b) UMBRAE results

Figure 6.9: Experiment 3: 5 dB Noisy rule generation

in Fig. 6.9 for RMSE and UMBRAE. Thereafter, 0 dB rule generation is completed and the four

different testing results are illustrated in Figs. 6.10. These two experiment results show that the

performance of the ADONiS is better than ANFIS under all the conditions.

(a) RMSE results (b) UMBRAE results

Figure 6.10: Experiment 4: 0 dB Noisy rule generation
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6.4.4 Discussion

Overall, the interpretability of a fuzzy model builds upon several components, e.g. rules, an-

tecedents and/or consequent numbers, and the semantics at the fuzzy partitioning level, MFs

etc. Traditionally, while optimisation techniques may provide a better performance, this leads

to changing the parameters (e.g. antecedents FSs) based on a training dataset which results

in a less interpretable model. However, since FLSs have mechanisms to provide interpretabil-

ity, changing these parameters in a data-driven way can negatively affect the interpretability of

models. For example, it may cause a loss of complementarity, coverage or distinguishability of

FSs across a universe of discourse and the meaningfulness of the used FSs. Conversely, tuning

parameters in the fuzzification step can maintain interpretability as well as provide performance

benefits.

In the experiment, we first explore the ADONiS model, which targets the fuzzification step by

confining the optimisation effect but handling noise ‘where it arises’. Second, traditional ANFIS

optimisation is used. In this section, after a brief performance comparison, the interpretability

is discussed for both models.

Overall, when all the results are scrutinised all together (Figs. 6.7, 6.8, 6.9, 6.10), it can be

seen that ADONiS and ANFIS provide comparable performances. While ANFIS shows better

performance in the noise-free training and noise-free testing cases, especially under high levels

of noise, ADONiS’ performance is better than that of the ANFIS-tuned FLS.

In the experiments, the input domain is equally divided into 7 antecedents which are linguis-

tically labelled from Further Left to Further Right (FL, ..,M, .., FR) (See Fig.6.3) and each

input is assigned with these antecedents as shown on the left-hand side of Fig. 6.11. The same

rule set is generated once. In the ADONiS approach, no optimisation procedure is performed

offline (all tuning is done online through adaptation) and all the rules, antecedents and conse-

quents remain intact. As can be seen on the right-hand side of Fig. 6.11, the same antecedents

and consequents are used in the testing stage for ADONiS. Here, the input uncertainty is cap-

tured and handled throughout the fuzzification and inference engine process rather than opti-

mising antecedent or consequent parameters. We note that this is intuitive as changes affecting
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Figure 6.11: Comparison of Antecedents in ADONiS implementation which highlights that the
antecedent MFs remain identical throughout the experiments.

the inputs should not affect the linguistic models of antecedents and consequents - preserving

interpretability. For example, when a rule is examined in (6.2), all the Medium (M) MFs are the

same as in Fig. 6.3 and it can be observed that the given sample inputs x1 and x9 are processed

using the same MFs. In doing so, the initially designed 7 antecedent are used in the whole

prediction process.

IF x1 isM... x5 isMR... x9 isM THEN y1 is CR (6.2)

On the other hand, in the ANFIS implementation, although the same rules are used (see the

left-hand side of Fig. 6.12) the optimisation procedure focuses on the antecedent parameters.

Thus, the parameters are changed in respect to the training data, changing the antecedent and

thus necessarily making it different to the original (considered interpretable) model (see the

right-hand side of Fig. 6.12). Also, since each set of 7 MFs are altered for each corresponding
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inputs, different set of 7 MFs are obtained for each input. Overall, this can affect both the

semantics and the complexity at the fuzzy partitioning level. For example, the Medium MF is

changed through the optimisation procedure. As can be seen in Fig. 6.12 and rule (6.3), the

Medium’ (M ′) and Medium”’ (M ′′′) are not the same for inputs x1 and x9 which inhibits the

interpretability of the model.

IF x1 isM’... x5 isMR”... x9 isM”’ THEN y1 (6.3)

Overall, these initial results show that both models can provide comparable prediction re-

sults under different levels of noise. As shown, traditionally, the ANFIS model is to change

key parameters of FLSs in the optimisation procedure. These parameters changes can provide

increase in accuracy but cause poorer interpretability as the key parameters are altered in a

data-driven way. However, while the ADONiS provides a comparable accuracy increase, it also

Figure 6.12: Comparison of Antecedents in ANFIS implementation which highlights that the
antecedent MFs are altered in optimisation of the experiments and each input has a new different
set of MFs.
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provides the ability to tune parameters in the fuzzification stage which can help to maintain the

interpretability –such that there is no alteration in MFs or rule parameters etc.

6.5 Summary

One of the key motivations to use FLSs is that their interpretability ability which is highly

related to both MFs based and rule-based aspects. These aspects can be provided by using

hand-crafted methods or data-driven techniques. In regard to the performance of FLSs, while

optimisation techniques can be applied to deliver improved performance, such optimisation has

traditionally lead to changes of the some key parameters which are vital for interpretability, thus

delivering improved performance at the cost of poorer interpretability.

In this chapter, the focus is expanded to encompass the interpretability capacity of the ADO-

NiS framework. While ADONiS provides performance improvements in the face of different

input uncertainty levels, it also preserves its given interpretable levels, namely the rules (kept

constant), antecedents and consequents, addressing objective 4.

Through a set of time-series prediction experiments, the potential of the ADONiS framework,

which handles input noise where it arises, is explored in comparison to a traditional ANFIS op-

timisation approach. Both approaches’ behaviour and performance are analysed with a view to

informing future research aimed at developing FLSs with both high performance and high in-

terpretability. It should be noted that experimental investigation has been limited to time-series

predictions with a comparison of a single ANFIS model in terms of interpretability capacities.

We believe that these initial results highlight a very interesting research direction for FLSs,

which can maintain interpretability by modelling complexity only in specific parts (i.e. fuzzifi-

cation or inference engine) of their structure.

So far, in this thesis, we have shown the ADONiS and the extended framework performance

improvements and maintaining interpretability capacity in the context of chaotic time-series

prediction experiments. In the next chapter, a set of experiments will be carried out to system-

atically evaluate the robustness and capability of the proposed frameworks in both controlled



152 Chapter 6. Maintaining Levels of Interpretability

and simulated real-world settings, addressing objective 5.



Chapter 7

Real-world Deployment of ADONiS - a

Medical Case Study

So far, in this thesis, both a priori and adaptive approaches to faithfully handling input uncer-

tainty have been introduced and evaluated in the context of time-series prediction experiments,

along with the aim of maintaining a given degree of interpretability for FLSs. This chapter

moves beyond time series prediction towards a real-world case study which was in part moti-

vated by the international COVID-19 crisis in 2020: the automated control of breathing (oxy-

genation) support for neonatal babies. The case study was designed to test the deployability

of ADONiS in a real-world setting and to provide initial insight in respect to its viability in

replacing traditional approaches, in particular standard, singleton fuzzy logic control systems.

In this application, the model parameters (MFs and rules) are determined by medical experts

and sensory inputs (heart rate, oxygen saturation levels and given oxygen levels) are processed

as inputs to provide the following oxygen level suggestions as output. The particularly inter-

esting aspect of the application is that there is an expectation from the medical professionals

to be able to understand the decision making underpinning the oxygen flow, thus ideally, the

model parameters and rules should be preserved – unless the medical experts themselves decide

to change them. This provides the challenge of how best to deal with input (sensor) uncertainty

affecting the control system and thus an ideal case study for ADONiS. The chapter explores a

number of scenarios and experiments, addressing objective 5.

153
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In Section 7.1, a general overview of the medical application is provided. In Section 7.2,

the methodology and thus the data collection, model construction of systems used (SFLS and

ADONiS frameworks) are presented. Section 7.3 presents a set of scenarios and associated ex-

periments which are conducted using simulated datasets to ascertain and illustrate the ADONiS

framework compared to the SFLS counterpart. Experiments on real-world datasets -captured

in a neonatal ward at the University of Nottingham and Queen’s Medical Centre (QMC)- are

conducted and evaluated both in terms of their actual output performance and their overall

‘qualitative’ behaviour. Lastly, Section 7.5 presents the summary of the chapter.

7.1 Neonatal Baby Study Overview

Estimations show that around 15 million premature birth incidents happen around the world

annually [151] and a significant proportion of these premature infants need mechanical respi-

ratory support for a period following their birth [11]. During respiratory support, O2 levels in

their blood is a highly critical parameter being associated with the risk of severe complications

such as chronic diseases and even mortality. Thus, in order to provide ideal O2 support, the

systematic and timely monitoring of infants’ condition is critical. The amount of oxygen in

the bloodstream (Oxygen saturation [SpO2 ]) and heart rate (HR) can be measured by sensors

such as skin probe pulse oximeters as shown in Fig. 7.1 [177]. Based on the monitoring, the O2

support level is determined in order to maintain the SpO2 level in the targeted range.

While O2 support level decisions are generally made by bedside caregivers (nurses), studies

show that this manual adjustment process is not very effective [47, 79]. For instance, when

a baby’s state changes to a ‘low’ SpO2, a manual adjustment of the O2 support requires the

bedside caregiver to both be present and to notice the drop in SpO2, and then make the necessary

adjustment to O2.

Reports show that manual O2 level adjustments often cause infants to spend a significant

amount of time outside of the targeted range [37], and the average proportion of time spent

within the target range can be as low as 30%-40% of time [33]. Thus, automated decision-
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Figure 7.1: Pulse oximetry devices on newborn babies reproduced from [177]

support to provide O2 level suggestions can be a useful tool, especially in comparison with

manual adjustment.

However, the automatic adjustment of O2 levels is a challenging task. Sensors, which mea-

sure a baby’s condition (e.g. SpO2 or HR), can be affected by various factors at different

scales and time-periods. The wavelength of light, measurement site, contact force, ambient

light intensity, ambient temperature, or electromagnetic interference can cause inaccurate sen-

sors measurements [128]. Furthermore, motion artefacts reduce the accuracy of continuous

long-term monitoring. Since infants exhibit more movement than adults typically, it can be

more difficult to measure vital signs accurately in neonatal babies [172]. Considering these

real-world circumstances, standard hospital hardware provides signal quality parameters for the

measured values to indicate the accuracy of readings. Nevertheless, while different approaches

have been developed to assess the quality of signals leveraging this information [33, 42, 144],

it remains a challenging and thus far unsolved area [109].

Furthermore, as alluded to above, due to safety, trustworthiness and ethical aspects of clinical

tests, the interpretability of the automated decisions are also an essential aspect [20, 67], and au-

tomated control approaches which do not afford the interpretability of the automated decisions

might seriously limit the usability of the approaches in practice [171].

Overall, while an automated tool can provide an advantage to maintain the targeted O2 range

for infants, two main requirements have been identified: (i) the model should have a capacity to

cope with real-world uncertainty/noise in sensor data and, (ii) the model should be interpretable
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for medical professionals to comprehend the decision-support process.

Following this overview of O2 level modelling in neonatal babies, we now systematically

address the capability of the proposed ADONiS framework in addressing the requirements, at

the same time, addressing objective 5.

7.2 Methodology

In this case study, neonatal baby O2 support level suggestions are modelled by collaborating

with an academic neonatologist and his team at the University of Nottingham and QMC hospi-

tal. As detailed in subsection 7.2.2, the models are designed based on their expertise, including

for the design of the FLSs MFs and rules.

7.2.1 Dataset Collection

As mentioned, generally, baby O2 support level adjustments are performed by bedside care-

givers based on a baby’s condition which is captured using sensors. In the specific context of

this case study and data-collection process, a CARESCAPE Monitor B850 transmission mode

pulse oximeter is used to gather HR and SpO2 levels every second, while the given O2 levels

are recorded simultaneously. In total, six babies’ parameters were anonymously collected for

various periods of time. A sample of the dataset is visualised in Fig. 7.2 where the left Y-axis

shows the baby’s HR which is represented by a solid black line and the right Y-axis shows

SpO2 levels, represented by a solid red line. Also, the ideal range -which is stated by medical

professionals- for both parameters is illustrated by dashed lines (black dashed lines for HR and

red dashed lines for SpO2). Note that HR readings in the dataset reported as 1 were removed

from the dataset as a pre-processing step.
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Figure 7.2: A baby HR and SpO2 values over a time interval

7.2.2 Model Construction - Membership Functions and Rules

O2 suggestion decisions are made for every minute and for each suggestion, at the current time

(t), heart rate (HR(t)), oxygen saturation (SpO2(t)), and the currently given oxygen (O2(t))

levels are used as inputs to make the suggestion of the next oxygen support level (O2(t+ 1)).

As the first step of constructing the model, Low, Moderate and High MFs were defined by

hand for HR, SpO2 and O2 by the academic neonatologist. Later, these provided MFs are

approximately replicated using linear MFs, which are used in the FLSs. A sample of manually

provided MFs for the SpO2 can be seen in Fig. 7.3a and the approximated, linear MFs are

shown in Fig. 7.3b.

Based on the hand-drawn MFs, system rules are defined by the academic neonatologist. A

sample of the created rule can be seen in 7.1. As the given sample rule suggest, if a baby has

low HR (t) (Bradycardia) and moderate SpO2 (t), and currently the given O2 (t) support is

moderate, then the next O2 (t+1) support should be high.

IF HR(t) is Low AND SpO2(t) is Moderate AND O2(t) is Moderate

THEN O2(t+ 1) is High
(7.1)

In total, 24 rules are created to model the O2 support level suggestions (All the created rules

can be found in appendix B in Table B.1).
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(a) The given MFs for SpO2

(b) The approximated MFs for SpO2

Figure 7.3: Illustration of low, moderate and high MFs for SpO2.

7.2.3 Singleton Fuzzy Logic Systems and ADONiS

In this section, SFLS outputs, i.e. O2 level suggestions are compared to those generated by the

ADONiS framework. Both FLSs use the exact same MFs and rules as outlined in the previous

subsection.

As discussed in Chapter 2, for the SFLS, model inputs are modelled as singleton FSs. The

resulting control surface of this model (HR in compare to SpO2 levels) can be seen in Fig 7.4.

Overall, as shown in Figs 7.4, SFLSs O2 suggestions exhibit ‘sharp’ changes between some

parameters (e.g. step descent if the SpO2 value crossed 90).

In the traditional NSFLS designs, inputs of systems are fuzzified into non-singleton FSs
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Figure 7.4: The control surface (HR and SpO2) of the SFLS based on generated MFs and rules.

which are associated with the level of input uncertainty. Naturally, the question arises that what

should be the width parameters for input FSs to model the input uncertainty which may highly

be associated to different factors at different times (e.g. ambient temperature, electromagnetic

interference or motion artefact)?

In order to highlight the effect of input FS width parameter selection, two standard NSFLS

systems’ -with the same rules and MFs- control surface are visualised and compared. In the

first instance (named NSFLS1), to exemplify a ‘low’ noisy environments, input widths are set

to be ‘narrow’ manually and the control surface is re-generated with the same rules and MFs.

The generated control surface for this particular NSFLS1 can be seen in 7.5a. Later, in another

example design (named NSFLS2), to depict a higher noisy environment, input widths are set

to be wider and the control surface is re-created by the exact same rules and MFs which is

shown in Fig. 7.5b. In order to illustrate the difference between these two NSFLSs (NSFLS1

and NSFLS2), the provided O2 suggestion levels difference between NSFLS1 and NSFLS2

is also visualised in Fig. 7.6. Note that to visually highlight the differences, the O2 axes scale

is set to 0-30. As it is shown in Fig. 7.6, naturally, the width parameters in input FSs have an

effect on the behaviour of systems and it should be determined properly being based on the

uncertainty level of system inputs.
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(a) NSFLS1. (b) NSFLS2.

Figure 7.5: NSFLS1 and NSFLS2 control surfaces (HR and SpO2) based on the generated
MFs and system rules.

Figure 7.6: O2 suggestion differences between NSFLS1 and NSFLS2.

As mentioned in Chapter 2, in the literature, traditionally data-centric optimisation proce-

dures are used to adjust FSs, rule parameters or input FSs widths of FLSs. However, in the

context of using non-singleton input FSs, relying on optimisation procedures may lead to a sin-

gle width parameter for input FSs which prevent models from being able to adapt to different

noise levels over time. As discussed in Chapter 4, due to the heterogeneity and diversity of

real-world conditions, uncertainty levels tend to vary. Thus any system adopting one uncer-

tainty level set a priori (resulting in one parameter set for the fuzzification stage in the case

of NSFLSs) is unable to adjust to variation in said noise level at runtime – making the online

adaptation to changing noise levels, as offered by ADONiS, desirable.

Additionally, with respect to systems interpretability, when a data-centric optimisation is ap-

plied to a model, changing MFs or rules (which are designed by the neonatologist initially) may

negatively impact the interpretability of these MFs, rules and thus the overall model. However,
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the ADONiS framework employs an online learning method to continuously update input FSs.

While this procedure can provide an improved capacity to deal with input-affecting uncertainty,

it can also facilitate maintaining the interpretability of given MFs and rules which are designed

based on by the neonatologist initially.

In order to conveniently explore the behaviour of the ADONiS framework in these setting

(uncertainty handling and interpretability capacity), we deploy it, selecting a window size of 5

minutes (i.e. the sliding window W size is set to 5) for inputs HR (WHR), SpO2 (WSpO2) and

O2 (WO2). Thus, the ADONiS framework will take the input data (and associated variation and

noise) over 5 minutes into account to inform input the widths of the Gaussian input FSs. The

same noise estimation algorithm (1) as outlined in Chapter 4 is used. We note that different

window sizes, different frequencies (e.g. every 30 seconds) or different estimation algorithms

could, of course, be used in this implementation as well.

The focus of the experiment is to ascertain and illustrate the behaviour of the dynamic adap-

tation in ADONiS in the context of the application. In other words, we are not looking to

determine the optimal set of parameters leading to optimal outcome. We note that for the given

application and dataset, no ground truth is available which would enable determining whether

such an optimum had been reached.

In each experiment, SFLS’s O2 level suggestion results are compared to those generated by

ADONiS framework. Since ground truth is not available for the given application, the exper-

iment results are evaluated by showing results of ADONiS and SFLSs O2 suggestions to the

neonatologist to get his opinion. After providing the results, the question "Which models’ sug-

gestion is better or preferable? and Why?" was asked, then, behaviours of systems and the

provided opinions are discussed.

Following this overview of the methodology, we now proceed to the experiments.
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7.3 Experiments

In each experiment, SFLS’s O2 level suggestion results are compared to those generated by

ADONiS framework. In order to observe behaviours of these systems under controllable envi-

ronments, we first created artificial datasets where each are designed to mimic a case of a baby

who exhibits different conditions. In total, we established five different case scenarios where

five different datasets are generated for each. The datasets are designed to contain 60 values

where each value can be regarded as a time unit (e.g. 1 minute etc.). The created case scenarios

are summarised below and the rationale for each established scenario will be explained in the

following subsections.

• Case Study 1: The simulatedHR and SpO2 levels are kept within the ideal range (defined

by the neonatologist) throughout the experiment.

• Case Study 2: For a single value in the dataset, the simulated HR and SpO2 levels are

changed on the edge of ideal ranges (e.g SpO2 level changed to 90% for short time).

• Case Study 3: For multiple values, the simulated HR and SpO2 levels are changed on

the edge the ideal ranges (e.g SpO2 levels keep changing around 90% for a longer time

interval).

• Case Study 4: For a single value, the simulated HR and SpO2 levels are changed signifi-

cantly (e.g. HR around 50 and SpO2 around 85% for a short time.)

• Case Study 5: For multiple values, the simulated HR and SpO2 levels are changed sig-

nificantly (e.g. HR around 50 and SpO2 around 85% for a longer time interval.)

After completing synthetic 5 case studies, SFLS and ADONiS framework models are used on

the real-world dataset to report the behaviours of each model. Later, case studies and real-world

experiment results are evaluated as detailed in the next subsection.
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7.3.1 Results Evaluation

Since there is no ground truth available to validate and compare the suggested O2 levels from

the ADONiS and SFLSs, there is a reliance on opinions from experts to verify results. In the

experiments, in particular, a form is prepared to demonstrate each case study and real-world

experiments scenarios along with the O2 suggestion results by providing visualisations and

results. Later this form is sent to Prof. Don Sharkey who is an academic neonatologist at the

University of Nottingham and Queen’s Medical Centre (QMC). For each case study and the

real-world experiment results, Prof. Don Sharkey’s opinion was asked by stating What is your

comment on these models’ O2 suggestions?, Which models’ suggestion is better or preferable?

and Why? in the form. Each response and opinion from Prof. Don Sharkey is provided in each

corresponding case study and real-world experiments in the following sections.

Figure 7.7: ADONiS and SFLS 2 models O2 support level suggestions
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7.3.2 Case Study 1 - Normal Conditions

In this case study, we considered a scenario where HR and SpO2 levels are simulated to be

within the ideal ranges throughout the experiment. This scenario is designed to mimic the case

of a baby whose HR and SpO2 levels are in normal conditions.

Throughout the synthetic dataset can be seen at upper Fig. 7.7 where the left y-axis shows

HR levels (a solid black line) and the right y-axis shows the SpO2 levels (a solid red line).

Also, the ideal range for both parameters are illustrated by dashed lines (a black dashed line for

HR and a red dashed line for SpO2). The horizontal axis is to represent the 60 values index.

As mentioned, two different model O2 support suggestions are investigated. The bottom

Fig. 7.7 shows the corresponded O2 suggestion levels for both systems, ADONiS (a blue line)

and SFLS (a green line).

As the bottom Fig. 7.7 shows, both models provide similar O2 support suggestions which are

stable and around 60% for the created dataset where the case scenarios are to mimic a baby

whose HR and SpO2 levels are within the ideal range throughout the experiment. It can be

said that the created rule (7.2) (rule 11 from the Table B.1) -by the neonatologist- was the main

driver in this O2 suggestion process.

IF HR(t) is Moderate AND SpO2(t) is Moderate AND O2(t) is Moderate

THEN O2(t+ 1) is Moderate
(7.2)

Since there is no high variation or uncertainty in the created dataset, the online adaption

capacity of ADONiS results in the non-singleton input FSs to be similar to singleton FSs, natu-

rally.

Since no ground truth available to evaluate the systems’ behaviours, the results are shown to

the neonatologist Prof. Don Sharkey and the questions of "Which models’ suggestion is better

or preferable? and Why?" were asked.
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The following opinion/answer were stated:

“If the baby is very stable in 60% oxygen this would suggest significant lung dis-

ease. Here the model prediction remaining static is important as the other variables

don’t change. Equally, the model could say 25% or 100% as long as it didn’t vary"

As Prof. Don Sharkey pointed out, the stability of suggestions are the key expected be-

haviours and both systems are followed this static behaviour. In terms of the suggested percent-

age (60%), we note that it can be adjusted by changing the output FSs parameters.

7.3.3 Case Study 2 - A short change on the ‘edge’

In this case study, we have created HR and SpO2 levels within ideal range; however, a sudden

short change (for 1 value in the dataset) occurs on the edge of the ideal range of the parame-

ters. This scenario is designed to mimic the case of a baby whose HR and SpO2 values are

somehow slightly affected (e.g. electromagnetic interference, a minor motion artefact or even

a real ‘slight’ change for a short time) while the simulated baby’s overall conditions are within

the ideal range.

7.3.3.1 Case Study 2.1 - A short drop on the ‘edge’

In case study 2.1, a short drop for both HR and SpO2 values are synthetically created. which

can be seen at upper Fig. 7.8.

Experiments are repeated by using this synthetically created dataset and both systems (ADO-

NiS and SFLS) O2 suggestions results can be seen at the bottom Fig 7.8.

As it is shown, ADONiS O2 support suggestion (a blue line) is increased to around 70%,

which is less than the SFLSs suggestion (around 95% [a green line]). As shown in Fig. 7.9a,

ADONiS framework adaptively results in non-singleton input FSs to be wider where it interacts

with different antecedent FSs (i.e. both Moderate SpO2 MF and Low SpO2 MF) whereas

singleton input FS only interact with the Low SpO2 MF (Fig. 7.9b). This non-singleton input
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Figure 7.8: Dataset of a short drop and both models (ADONiS and SFLS) O2 support level
suggestions in the Case Study 2.1.

(a) The adaptively created non-singleton
input FS (red) interacts with both HR
Low MF (black) and SpO2 Moderate MF
(black)

(b) The singleton input FS (red) interacts
with only SpO2 Low MF (black)

Figure 7.9: Non-singleton and Singleton input FS interaction with SpO2 Low, Moderate and
High MFs.

FS interaction results in O2 suggestion to have a lower magnitude than singleton input FS case.

The overall interaction of this non-singleton input FS over the created 24 rules can be seen in

Appendix B Fig. B.1.

Also, after the drop occurs for 1 value in the synthetically created dataset and when the

simulated HR and SpO2 levels return to the ‘normal’, ADONiS O2 suggestions recovers faster
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Figure 7.10: Dataset of a short increase and both models (ADONiS and SFLS) O2 support level
suggestions in the Case Study 2.2.

than the SFLS. Note that the third input (O2(t)) has a role in this recovery time and typically, a

standard NSFLS designs are to ‘recover’ slower than the SFLS.

7.3.3.2 Case Study 2.2 - A short increase on the ‘edge’

In this case study, another synthetic dataset was created where HR and SpO2 levels within the

ideal range; however, a short sudden increase occurs in the middle of the synthetically created

dataset which both HR and SpO2 can be seen at the top of Fig. 7.10.

Experiments are repeated by using this dataset and both models (ADONiS and SFLS) O2

suggestions results can be seen at the bottom of Fig 7.10. Similar to the Case study 2.1 (sub-

section 7.3.3.1), ADONiS and SFLS provide similar patterns. While ADONiS O2 support

suggestion is changed (decreased to around 45%) less than SFLS (around 30%). Also, when

the increase occurs for 1 step and the simulated HR and SpO2 levels return to the ‘normal’,

ADONiS recovers faster than the SFLS.
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Both case study 2.1 and 2.2 results were shown to Prof. Don Sharkey by asking "Which

models’ suggestion is better or preferable? and Why?". The response was that in both case

studies (2.1 and 2.2), the ADONiS framework provides more preferable O2 level suggestions

then SFLSs, because of the fact that small change in baby conditions leads to proportionally

small changes in suggestions.

7.3.4 Case Study 3 - A longer changes on the ‘edge’

In this case study, for multiple values of both HR and SpO2 levels are artificially changed on

the ‘edge’ of the ideal ranges. This scenario is designed to mimic the case of a baby whose HR

and SpO2 conditions are changed and continued for a longer time.

7.3.4.1 Case Study 3.1 - A longer drop on the ‘edge’

In the case study 3.1, the synthetically created dataset can be seen at the upper Fig. 7.11. Both

systems O2 support suggestions can be observed at the bottom figure of Fig. 7.11.

As can be seen in bottom Fig. 7.11, when both HR and SpO2 levels are dropped, both

models react by increasing the O2 support suggestion levels. Overall, while SFLS has more

and/or fluctuating suggestions, the ADONiS framework provides less and/or smooth sugges-

tions throughout the drops of HR and SpO2.

As indicated in the control surface of SFLS in section 7.2.3, sharp changes between some

values are demonstrated. Thus, as the HR and/or SpO2 levels are crossed the ideal range

borders, SFLS O2 level outputs increase sharply. However, because of the ADONiS adaptive

non-singleton input FS designs, these changes are formed in a more gradual manner, such as

not changing the O2 suggestions from 60% to 90% immediately.
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Figure 7.11: Dataset for longer drop and both models (ADONiS and SFLS) O2 support level
suggestions in the Case Study 3.1.

7.3.4.2 Case Study 3.2 - A longer increase on the ‘edge’

In this case study, both HR and SpO2 levels are artificially increased on the edge of ideal

ranges for multiple values in the dataset (See the upper Fig. 7.12) and both models O2 support

suggestions can be observed at the bottom figure of Fig. 7.12.

As can be seen in bottom Fig. 7.12, when HR and SpO2 levels are increased, both models

react by increasing theO2 support suggestion levels. Overall, while SFLS provides lessO2 level

outputs (between 25% to 35% [the green line]), ADONiS framework provides more O2 level

outputs (between 35% to 45%) throughout the increase of HR and SpO2 where the results are

inline with the previous Case Study 3.1.

According to Prof. Don Sharkey, in both case studies (3.1 and 3.2), ADONiS provides more

preferable O2 level suggestions then SFLSs, because of the fact that “vital signs remain just

outside normal range so no need to adjust significantly”.
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Figure 7.12: Dataset for longer increase and both models (ADONiS and SFLS)O2 support level
suggestions in the Case Study 3.2

Figure 7.13: Dataset for a significant drop and both models (ADONiS and SFLS) O2 support
level suggestions in the Case Study 4.1.
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7.3.5 Case Study 4 - A short significant change

In this case study, HR and SpO2 levels are overall simulated to be within the ideal range;

however, a sudden significant change (for 1 value) occurs in the middle of the created dataset.

This scenario is similar to Case study 2, but in this case, it is designed to mimic the case of a

baby whose HR and SpO2 values are significantly affected for a short time while the simulated

baby overall conditions are within the ideal range.

7.3.5.1 Case Study 4.1 - A short significant drop

In this case study, the simulated HR and SpO2 levels are dropped significantly for a single step.

Both models (ADONiS and SFLS) reactions are compared at the bottom figure of Fig. 7.13

and as can be seen, both models O2 suggestion is increased to around 95-100%. The reason for

these similar reactions is that even though the ADONiS’s adaptive behaviour provides a ‘wide’

non-singleton input FS, it falls within a single antecedent FS and does not interact with other

antecedents. Thus, the results become similar to SFLS. In such case, if input values (mean

of non-singleton FSs) are that ‘low’ and the input uncertainty (width of non-singleton FSs) is

not enough to interact with other antecedents, intuitively, it can be expected to obtain a similar

behaviour of SFLSs.

While ADONiS suggestion is slightly less than the SFLS initially, when the simulated HR

and SpO2 levels go back to normal range (after a single step drop), ADONiS O2 suggestions

get back to normal (60%) faster than the SFLS. As noted in Case Study 2.1, this faster recovery

time for the ADONiS model is due to the third non-singleton input (O2(t)).

7.3.5.2 Case Study 4.2 - A short significant increase

In this case study, the simulated HR and SpO2 levels are increased significantly for a single

step.

Both models (ADONiS and SFLS) reactions are compared at the bottom figure of Fig. 7.14,
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Figure 7.14: Dataset for a increase drop and both models (ADONiS and SFLS)O2 support level
suggestions in the Case Study 4.2.

and the results are in line with the previous Case study 4.1 results.

According to Prof. Don Sharkey, for the case study 4.1, the ADONiS provides more prefer-

able O2 level outputs then SFLSs as stated:

“Brief increase in O2 is all that is required before return to baseline. SFLS isn’t

realistic in that the long ‘tail’ as return to baseline O2 would result in an overshoot

of SpO2 to 100%”

Also, similar to the case study 4.1, SFLS might cause the SpO2 to drop after returning into the

normal range which may not be preferable. Thus, ADONiS provides more preferable results

for case study 4.2 as well.
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7.3.6 Case Study 5 - A longer significant change

In this case study, the significant changes are simulated for longer time intervals for both HR

and SpO2 levels.

7.3.6.1 Case Study 5.1 - A longer significant drop

The simulated dataset can be seen in the top figure of 7.15.

As shown in the bottom figure of Fig. 7.15, both models (ADONiS and SFLS) reacted in a

similar manner. Both models are reached 100% O2 suggestion levels. While SFLS reaches that

point immediately, ADONiS took time and reaches 100% suggestions gradually. The reason for

this taking time is that while the similar condition last (e.g. low SpO2), the non-singleton input

FSs widths are gradually decreased and become more certain about the conditions or sensor

readings. This can be interpreted as the ADONiS model is more cautious about the changes.

Also, as the simulated HR and SpO2 levels get back to the ideal range, the ADONiS sugges-

Figure 7.15: Dataset for a longer drop and both models (ADONiS and SFLS) O2 support level
suggestions in the Case Study 5.1.
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tions returned to the 60% levels faster than the SFLS.

7.3.6.2 Case Study 5.2 - A longer significant increase

The simulated dataset can be seen in the top figure of 7.16. As shown in the bottom figure of

Fig. 7.16, both models (ADONiS and SFLS) reacted in a similar manner which is in line with

the previous Case Study 5.1.

According to Prof. Don Sharkey, “the actual model in reality would probably fall between

both models of ADONiS and SFLS. The rapid increase in O2 is appropriate, the return to base-

line is either too short or too long and should be somewhere in-between of the provided sugges-

tions.

Figure 7.16: Dataset for a longer increase and both models (ADONiS and SFLS) O2 support
level suggestions in the Case Study 5.2.
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7.3.7 Actual Dataset Experiment

After completing the case studies and observing/comparing both models (ADONiS and SFLS)

behaviours, the given real-world datasets are used to make suggestions of O2 support levels. As

an illustrative sample, a baby dataset (named as 25.csv) roughly one-hour raw data (per second)

is shown in Fig. 7.17.

As the data is collected per second, the illustrated raw one-hour data contains roughly 3600

values for both HR and SpO2 levels.

In the used models, the O2 suggestions are implemented every minute. Thus the average of

each 60 seconds data is calculated. So that theO2 suggestions will be delivered for each minute,

this averaged dataset can be seen at the top of Fig. 7.18. Note that this averaging procedure leads

to 600 values in the dataset. For instance, while the indexing of roughly 3600 HR values was

denoted as set HR(t − ∼3600), HR(t − ∼3599), ..., HR(t − 1), HR(t), after averaging it is

denoted as HR(t−∼3600), HR(t−∼3540), ..., HR(t− 60), HR(t)).

In this datasets, both ADONiS and SFLS O2 suggestions are illustrated at the bottom of

Fig. 7.18. As can be seen, the overall ADONiS model O2 level suggestions are provided in a

smoother manner over time.

According to Prof. Don Sharkey, ADONiS provides more preferableO2 support suggestions.

Because “It isn’t excessive and allows the baby to return to normal in a more natural way”.

The rest of the datasets with O2 support suggestions for all the collected data can be found in

Figure 7.17: Roughly 1 hour HR and SpO2 levels (per second) of the baby 25.
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Appendix B Section B.3.

7.4 Overall Discussion

As can be seen in the case studies and the real-world data, ADONiS and the SFLS differ in

some aspects (e.g. reaction time and O2 levels outputs).

When HR and SpO2 levels are synthetically changed for a short time (e.g. as synthetically

created in Case Studies 2 and 4), the ADONiS model’s initial O2 level output changes are less

than those of the SFLS. Due to the width of the non-singleton input FSs automatically widening

(in the case where data has variation), the interaction between input FSs model antecedents leads

the initial reaction to be less than SFLS. It can be said that motion artefact or noise from the

environments may negatively affect the sensor readings and may cause this type of changes in

the HR and SpO2 input levels. Thus, ADONiS initial reactions are more cautious and tend

to observe conditions for a determined time interval (window size). Also, while SFLS O2

Figure 7.18: 1 hour HR and SpO2 levels (per minute) of the baby 25 and both models sugges-
tions.
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suggestions have sharp changes (e.g. slightly crossing the ideal range [Case Study 2]), due to

the adaptive input FSs, ADONiS provides more gradual O2 outputs changes over the HR and

SpO2 levels domain.

If a baby’s condition is changed and continued for a longer time interval (i.e. Case Studies

3 and 5), the O2 output of the ADONiS model gradually reaches the same values as that of

the SFLS. For example, if HR values show a bradycardia condition (lower HR levels than the

ideal range), both models react immediately, but initial ADONiS O2 level outputs are initially

not as high as the SFLS. If the HR values are kept at bradycardia levels in the determined time

interval, then ADONiS gradually reaches the same O2 level outputs as SFLS.

Considering no ground truth is available which would enable determining whether an optimal

output has been achieved, the academic neonatologist Prof. Don Sharkey were asked to evaluate

the outputs. Based on the given opinions, overall, it can be said that ADONiS provides more

preferable O2 level suggestions compared to SFLSs. We note that the focus of this application

is to ascertain and illustrate the behaviour of the ADONiS and SFLS and the obtained results

appear to be well supported by the medical professional. We note that the results do not enable a

general claim in terms of either approach being ideal; nevertheless, based on the empirical case

studies and their evaluation, the overall behaviour of the ADONiS system in this setting was

deemed to be acceptable by the neonatologist, and more so than the behaviour of a comparable

SFLS.

7.5 Summary

Overall, keeping infants’ conditions within the targeted range is a crucial task being associated

with the risk of severe complications such as chronic diseases and even mortality [156]. As

bedside caregivers may not be present and to notice to adjust the O2 support levels constantly,

an automated control design can be beneficial to maintain babies’ conditions.

However, this automated control decision-support process is a challenging task in terms of

two main aspects. First, it should have the capacity to cope with real-world uncertainty/noise in
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sensor data because of the fact that sensors, which measure a baby’s condition, can be affected

by various factors at different scales and time-periods. Second, there is an expectation from

medical professionals to be able to understand the decision making underpinning the oxygen

flow in terms of safety, trustworthiness and ethical aspects of clinical tests. Traditionally, while

the real-world uncertainty handling capacity is increased in a model, it is likely to cause alter-

ation in model structure (e.g. different MFs or different rules etc.) which may cause poorer

interpretability, –as shown in Chapter 6.

In the automated control of breathing support for neonatal babies, the deployability of ADO-

NiS is tested to ascertain and illustrate initial insight in respect to its viability in replacing tra-

ditional approaches, in particular standard SFLS. As our aim is to provide initial insights of the

deployability of ADONiS, further research and evaluations are required for the implementation

of ADONiS to control the O2 levels of real-world babies.

So far the results show that both models provide reasonable O2 suggestions based on the

created MFs and rules by the academic neonatologist. While the ADONiS model provides more

smooth and gradual changes, the SFLS shows more ‘agile’ patterns in O2 level suggestions. We

note that for the given application and dataset, no ground truth is available which would enable

us to determine whether such an optimum has been reached. Since ground truth is not available,

the experiment results are evaluated by showing them to the neonatologist to get his opinion on

both models’ given results.

According to the neonatologist, overall, the ADONiS provides more preferable O2 level sug-

gestions compared to the traditional SFLS in this particular experimental setting. We note that

different experts’ opinion may vary based on their experiences. Thus, having opinions from

only one medical expert may not be adequate to apply ADONiS in real-world modelling O2

support. Also, different possible designs in ADONiS structure (e.g. different window size or

uncertainty estimation algorithms) can be applied for further research and evaluations.

After having a detailed application of ADONiS on the neonatal baby O2 support modelling,

we now proceed to the conclusion of this thesis.
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Conclusions and Future Work

Due to the diversity of real-world conditions, input uncertainty is one of the principal uncer-

tainties in applications and it often varies in magnitude over-time. Thus, coping with varying

input uncertainty becomes a critical task in decision-support systems. Although there is a vast

amount of literature on the uncertainty handling in decision-support systems, there are still key

aspects to enhance, in particular in respect to maintaining the given interpretability of these sys-

tems while handling uncertainty. Fuzzy set theory provides the basis for FLSs which are often

associated with the ability of both handling uncertainty and having a capacity of interpretability.

In particular, Non-Singleton Fuzzy Logic Systems (NSFLSs) are designed to cope with uncer-

tainty that affects input which is one of the main uncertainty sources in real-world systems. In

this thesis, the aim is to further develop input uncertainty capturing and handling capacity while

also maintaining ‘interpretability’ level of systems. In order to achieve this aim, we pursued the

following specific list of objectives throughout the thesis.

1. To conduct a critical analysis of the specific behaviour of different firing strength de-

termining approaches in mapping input uncertainty to outputs of NSFLSs, and to put

forward a novel approach to generating firing strengths which faithfully handles the un-

certainty affecting system inputs.

2. To develop a framework that enables capturing different levels of input uncertainty - as

one of the principal sources of uncertainty - and to model the input uncertainty dynami-
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cally, on-the-fly, where it arises.

3. To extend the proposed framework with an extra mechanism of adaptation to the mag-

nitude of uncertainty change over time, achieving a compromise between reactivity and

smoothness. Thus, to capture both the uncertainty in the last observed value(s) and un-

certainty levels variation over time by means of the extra degree of freedom.

4. To maintain the interpretability level of the FLSs through the preservation of the key

parameters for interpretability, while also providing an increase in performance of FLSs.

5. To test the deployability of the proposed framework to provide initial insight in respect to

its viability in real-world applications.

In the following sections of this chapter, the main contributions of this thesis are summarised,

highlighting how the individual objective and thus overall the aim have been addressed through-

out the thesis. After that, the limitations and future research direction are presented. In the final

section, the list of publications from this thesis is given.

8.1 Contributions and Publications

Chapter 2 outlined an overview of background material and existing literature that were used

and referred to in this thesis. A review of the current NSFLS studies was presented with a

focus on inference engine and fuzzification steps which are traditionally associated with input

uncertainty handling and capturing, respectively. The chapter also highlighted the current re-

search gaps in further developing input uncertainty capacity of NSFLSs. Lastly, the application

employed to evaluate the proposed technique and framework in this thesis was also reviewed.

In the inference engine step of NSFLSs, inputs are processed with respect to the system rules

through interaction between the input and antecedent FSs. These interactions result in rule

firing strengths where input uncertainty is directly reflected on the determined firing strengths

in NSFLS. Hence, particularly in NSFLS designs, the firing strength has a vital role in terms of

input uncertainty handling.
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• Contribution 1: An alternative subsethood-based composition approach

Chapter 3 addressed objective 1, by proposing a novel alternative approach to systemati-

cally determine firing strengths. In Chapter 3, we focused on investigating the current and

an alternative approach to faithfully mapping input uncertainty to the outputs of systems.

First, a critical compare-contrast analysis was carried out on the current firing strength

determining techniques and potential challenges in certain conditions were stated which

addressed part of objective 1 (‘To conduct a critical analysis in exploring the specific be-

haviour of different firing strength determining approaches in mapping input uncertainty

to outputs of NSFLSs’). Building on the critical analysis outcome of the current methods,

we then put forward a novel alternative subsethood-based composition approach (named

sub-NS) with the aim of systematically determining firing strengths that allows an appro-

priate input uncertainty handling and mapping to the output of NSFLSs –as presented in

our studies [120, 122] below.

[122] PEKASLAN, D., KABIR, S., GARIBALDI, J. M., AND WAGNER, C. Determin-

ing firing strengths through a novel similarity measure to enhance uncertainty handling

in non-singleton fuzzy logic systems. In Proceedings of the 9th International Joint Con-

ference on Computational Intelligence - Volume 1: IJCCI, (2017), INSTICC, SciTePress,

pp. 83–90. (Contribution to Chapter 3)

[120] PEKASLAN, D., GARIBALDI, J. M., AND WAGNER, C. Exploring subsethood

to determine firing strength in non-singleton fuzzy logic systems. In Fuzzy Systems

(FUZZ-IEEE), IEEE International Conference on (2018), IEEE.(Contribution to Chap-

ter 3)

In doing so, we fulfil objective 1 (‘to put forward a novel approach to generating firing

strengths which faithfully handles the uncertainty affecting system inputs.’)

As pointed out throughout the thesis, in real-world conditions, a broad range of uncertainty

sources can affect inputs and they may vary greatly in magnitude over time. Considering these

circumstances of real-world settings, the adaptation of NSFLSs to the varying environments can

provide an efficient and effective solution for input uncertainty mapping to outputs of NSFLSs.
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• Contribution 2: The initial version of the ADONiS Framework

Chapter 4 addressed objective 2, by developing a framework that enables to dynamically

capture different levels of input uncertainty on-the-fly. Therefore, in Chapter 4, we pro-

posed an end-to-end framework (ADaptive Online Non-SIngleton Fuzzy Logic System

[ADONiS]) to adaptively configure non-singleton input FSs to the changing uncertainty

levels in an online manner. The ADONiS framework can continuously adapt input FS

parameters based on information gained from an iterative uncertainty level estimation

process over a sequence of observations –as presented in our studies [121, 125, 124] be-

low.

[121] PEKASLAN, D., GARIBALDI, J. M., AND WAGNER, C. Noise parameter esti-

mation for non-singleton fuzzy logic systems. In 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC) (2018), pp. 2960–2965. (Contribution to Chap-

ter 4 and Chapter 5).

[125] PEKASLAN, D., WAGNER, C., GARIBALDI, J. M., MARIN, L. G.,AND SÁEZ,

D. Uncertainty-aware forecasting of renewable energy sources. In 2020 IEEE Inter-

nationalConference on Big Data and Smart Computing (BigComp)(2020), IEEE, pp.

240–246

[124] PEKASLAN, D., WAGNER, C., AND GARIBALDI, J. M. Adonis—adaptive on-

line non-singleton fuzzy logic systems. IEEE Transactions on Fuzzy Systems 28, 10

(2020), 2302–2312. (Contribution to Chapter 4).

Thus, ADONiS can provide the ability to dynamically adapt to varying circumstances at

run-time without requiring pre-training procedures or a priori knowledge of uncertainty

levels in an online manner. Also, by means of the online adaptive ability of ADONiS,

the systems can be built upon ‘pure’ rules -for instance, defining rules based on noise-

free circumstances- which removes the apprehension for the varying uncertainty levels in

real-world settings. In doing so, we fulfilled objective 2 (‘To develop a framework that

enables capturing different levels of input uncertainty - as one of the principal sources of

uncertainty - and to model the input uncertainty dynamically, on-the-fly, where it arises.’)
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The environments of real-world circumstances are often subject to change over time. While

some uncertainty sources may exist in a period of time, they may not linger afterwards. Fur-

thermore, the effect of each sources of uncertainty may vary in magnitude over time as well.

These real-world settings put serious challenges forward to decision-support systems due to the

fact that input uncertainty can vary broadly and drastically over-time. The ADONiS frame-

work demonstrated promising results in capturing levels of uncertainty from the last observed

value(s) in input FSs and yet an extra mechanism to capture the varying circumstances can

provide additional benefits.

• Contribution 3: Extending the ADONiS Framework

Chapter 5 addressed objective 3, by extending the proposed ADONiS framework with an

extra mechanism for capturing the varying circumstances. Therefore, in Chapter 5, we

put forward the structure by capturing both the uncertainty in the last observed value(s)

and also the variation in uncertainty levels over time. While capturing the last observed

input uncertainty adaptively in the principal T1 input FS, the extra degree of freedom

(FOU) of IT2 input FSs were used to capture/model the variation in uncertainty levels in

an adaptive manner. For instance, in an environment where the circumstances changed

drastically, the FOU were automatically adjusted to be wider to capture these variations in

uncertainty levels. Additionally, in an environment where the circumstances were stable,

the FOUs were automatically adjusted to be narrower. Having different widths and FOUs

values dynamically -without requiring a priori knowledge or tuning- can enable models

to be being prepared for drastic changes in environments on run-time. Furthermore, when

uncertainty can not be fully reflected to the T1 input FSs, the dynamically adjusted FOUs

can also provide performance benefits and robustness for the model -as presented in our

study [123].

[123] PEKASLAN, D., WAGNER, C., AND GARIBALDI, J. M. Leveraging IT2 Input

Fuzzy Sets in Non-Singleton Fuzzy Logic Systems to Dynamically Adapt to Varying

Uncertainty Levels. IEEE International Conference on Fuzzy Systems 2019-June (2019).

(Contribution to Chapter 5)
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In doing so, we fulfilled objective 3 (‘To extend the proposed framework with an extra

mechanism of assembling the varying circumstances. To capture uncertainty in the last

observed value(s) at run-time and also provide the capacity for capturing the variation in

environmental conditions as an extra degree of freedom.’)

FSs are generally designed with respect to linguistic labels and are interconnected by lin-

guistic rules in FLSs. Thus, FLSs are frequently referred to as ‘interpretable’ systems which

builds one of the key motivations to use FLSs. However, to deal with varying circumstances

of real-world settings, approaches mostly inherited numerical learning techniques (e.g. para-

metric equations or statistical optimisation techniques) to tune parameters based on data-driven

approaches. While these procedures provide performance benefits, they often cause alteration

in key parameters, such as fuzzy rule sets, rule parameters, MFs or fuzzy partitioning structures

with high accuracy but commonly do not consider whether the resulting model is interpretable

or not.

• Contribution 4: Maintaining Interpretability

Chapter 6 addressed objective 4, by maintaining the given interpretability level while in-

creasing the performance of FLSs. Therefore, in Chapter 6, the focus was expanded to

encompass interpretability, considering specifically whether the mechanisms developed

in Chapters 3 - 5 can be usefully applied to maintain given interpretability of models by

minimising altering the given FLS parameters. The performance increase was achieved

by enabling to model uncertainty ‘where it arises’ and handling it through the given rules.

Particularly, input uncertainty (e.g. noise in the heart rate sensor) was captured dynam-

ically in the fuzzification step and handled in interactions between input and antecedent

FSs in the inference engine step. Thus, while the performance increase was achieved,

ADONiS frameworks limited any optimisation impact to the fuzzification and inference

engine steps -as presented in our study [119].

[119] PEKASLAN, D., CHEN, C., WAGNER, C., AND GARIBALDI, J. M. Perfor-

mance and interpretability in fuzzy logic systems – can we have both? In Information

Processing and Management of Uncertainty in Knowledge-Based Systems (Cham, 2020),
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M.-J. Lesot, S. Vieira, M. Z. Reformat, J. P. Carvalho, A. Wilbik, B. Bouchon-Meunier,

and R. R. Yager, Eds., Springer International Publishing, pp. 571–584. (Contribution to

Chapter 6)

In doing so, different components of FLSs such as MFs, antecedents, consequent etc.

remained ‘untouched’. Thus, while dealing with different input uncertainty levels on

run-time, the initially given interpretability degree can be protected and the FSs or rules

remain meaningful –if they were understood well initially. In doing so, we fulfilled ob-

jective 4 (‘To maintain the interpretability level of the FLSs through the preservation of

the key parameters for interpretability, while also providing an increase in performance

of FLSs.’)

As the next step, the deployability of the proposed framework is tested to provide initial in-

sight in respect to its viability in real-world applications. As this thesis writing period was car-

ried out during the international COVID-19 crisis in 2020, a related automated control of breath-

ing support for neonatal babies experiments were conducted. Estimations show that around 15

million premature birth incidents happen around the world annually and a significant propor-

tion of these premature infants need mechanical respiratory support in a period following their

birth. Reports show that manual O2 level adjustments often cause infants to spend a signifi-

cant amount of time outside of the targeted range which may cause chronic diseases and even

mortality. Thus, automated decision-making to provide O2 level suggestions can be a useful

tool while it involves the following aspects (i) handling uncertainty in sensor measurements

(ii) an expectation from the medical professionals to be able to understand the decision making

underpinning the oxygen flow.

• Contribution 5: The deployability of ADONiS in a Medical Case Study

Chapter 7 moved beyond time-series prediction towards a real-world case study which

was in part motivated by the international COVID-19 crisis in 2020. Objective 5 ad-

dressed by implementing ADONiS in the aforementioned automated control of oxygena-

tion support for neonatal babies which tested the deployability to ascertain and illustrate

initial insight in respect to ADONiS viability in replacing traditional approaches, in par-
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ticular standard SFLS. While the system (i.e. rules and MFs) was designed by medical

professionals, the sensory input (i.e heart rate and SpO2) uncertainty was captured and

handled in the fuzzification and inference engine steps. Thus, while input uncertainty

was handled on-the-fly, the initially given interpretability was preserved. The ADONiS

O2 level suggestion results were verified by asking opinions from the medical profes-

sionals. In doing so, we fulfilled objective 5 (‘To test the deployability of the proposed

framework to provide initial insight in respect to its viability in real-world applications.’)

After providing a detailed conclusion and contributions for each chapter, we will now discuss

the limitations and future works of this thesis.

8.2 Limitations and Future Works

In decision-support models, various uncertainty types exist and input uncertainty is one of the

primary sources of uncertainty in real-world applications. In this thesis, we focused specifically

on further developing input uncertainty capturing and handling capacity through the mapping

from input to the outputs of FLSs. Thus, this thesis does not address all sources of uncertainty

types. Furthermore, while applying the proposed approaches to increase performances, we

focused specifically to preserve the interpretability of FLSs. Thus, this thesis does not address

the interpretability concept in different systems but specifically focused on FLSs.

In Chapter 3, an alternative sub-NS approach is proposed to generate firing strengths which

can enhance handling input uncertainty of NSFLSs. Although a faithful input uncertainty map-

ping has been achieved and generally better time-series prediction performances (MSEs) have

been obtained by using sub-NS approach, if a model was specifically built on ‘agreement’ be-

tween input and antecedent FSs, we note that other approaches’ (e.g. sim-NS) firing strengths

may produce intuitively expected firing levels. Furthermore, the proposed alternative approach

has only been investigated in time-series forecasting application with only two commonly used

chaotic time-series datasets. Therefore, the future research direction will require sub-NS to be

analysed over different datasets and moreover, a variety of application areas where inputs are af-
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fected by uncertainty sources (e.g. robotics) will be explored. If the results from such datasets

and different applications will demonstrate the ability of faithful input uncertainty mapping

to the outputs of systems, this will point towards the idea that the sub-NS can be a suitable

approach to be used in applications where inputs may contain different levels of uncertainty.

However, we acknowledge that these investigations would go beyond this thesis research.

In Chapters 4 and 5, the ADONiS and the extended IT2 ADONiS framework have been

proposed which used the noise estimation algorithm -to inform input FSs- over an iterative

frame of a sequence of observations. Although an increase in accuracy has been achieved and

interesting insights have been obtained in time-series forecasting studies, given the small set

of experiments and adoption of the single noise estimation algorithm, these results can only

represent an initial step towards the general conclusion and real-world applications eventually.

Therefore, further experimental investigations will be carried out in a variety of application

domains by also employing different components (e.g. different noise estimation algorithms or

dynamic frame sizes) of the ADONiS and the extended IT2 ADONiS frameworks.

In Chapter 6, the proposed framework implementation has been explored in the context of

whether it can be usefully applied to maintain the interpretability level of systems. As men-

tioned, the uncertainty is captured in fuzzification and it is handled through the system rules

without altering the model’s interpretability parameters (e.g. MFs, number of rules or rule

parameters etc.). The experimental investigation has been limited to time-series predictions.

Furthermore, only a single model (ANFIS) has been used to make a comparison in terms of

interpretability. We believe that these initial results highlight an interesting research direction

for FLSs which can maintain interpretability by modelling complexity only in specific parts

of their structure (e.g. the fuzzification or the inference engine steps). Future work will con-

centrate on expanding the experimental evaluation with different models, datasets on different

domains while broadening the capacity for optimisation beyond the specific design of ADO-

NiS frameworks. Also, interpretability indices will be explored to evaluate the comparison of

different models regarding performance and interpretability ability.

In Chapter 7, a limited number of experiments have been implemented on a single application
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of the neonatal baby O2 support modelling without any real-world deployment. Furthermore,

these experiments have been limited by the fact that there is no ground truth available to validate

the suggested O2 levels from the ADONiS and SFLSs. Therefore, there has been a reliance on

opinions from the neonatologist to verify the results. It should also be noted that having opinion

from a single expert may not be adequate as different experts may have different opinion or un-

certainty in opinions. Multiple expert opinion is naturally lead to a Type-2 system which would

would go beyond this thesis research. In order to deploy the proposed ADONiS framework

in the future, we will seek to expand different medical datasets which have ground truth for

evaluation. Also, the maintained interpretability aspects will be evaluated by gathering expert

opinions. After these comprehensive evaluations on both the accuracy and interpretability of

the system, ADONiS can be a useful aid in modelling O2 support.

Additionally, in Chapter 5, one of the time-series forecasting experiments has demonstrated

that the least chosen FOU sizes provided the optimal performance –where the principal T1

input FSs were designed by ADONiS (please see 5.3.2 for details). Hence, in the future, an

additional analysis of the T1 ADONiS framework compared to traditional T2 FLSs will be

further evaluated to explore an answer to the question of ‘If the input uncertainty is properly

captured in T1 input FSs, would traditional T2 systems (T2 inputs or antecedent FSs) be still

more advantages than T1 systems?’ We note that this study would involve a large body of work

which would go beyond this thesis.

On a wider level, thus far, the experimental settings have been limited to time-series datasets

and the real-world evaluation were limited to only a single medical case study. Intuitively, one

future project would be to explore the integration of the proposed sub-NS into the ADONiS

frameworks for further evaluation in different application domains which may further inform

the suitability of using the integrated ADONiS and sub-NS frameworks.
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Appendix

A.1 Analysis of ADONiS under Uniform Noise

All experiments in the Chapter 4 have been replicated using uniformly distributed (rather than

normally distributed) noise and the results are presented in this section. Here, in the noise

generation, the interval of the uniform distribution is defined as [−δ, δ] with δ = (
√

3 σn). Note

that σn represents the noise level. such as σ20, σ10andσ0

x′t = xt + U(−δ, δ) t = 1, 2, 3..., N , (A.1)

where x′t represents the noisy value, U(−δ, δ) is the uniform distribution to generate random

noise values and N is the number of values in the dataset.

A.1.1 Experiment 1.1

The approach in Section 4.3.2.1 of the Chapter 4 is followed but the time series datasets are in-

jected with uniform rather than Gaussian noise. Fig. A.1 is the corresponding figure of Fig. 4.12,

as is Fig. A.2 for Fig. 4.13 of the Chapter 4.
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Figure A.1: Experiment 1.1- the repetition of Fig. 4.12 with uniform noise rather than Gaussian
noise in the time series datasets.

A.1.2 Experiment 1.2

As for Experiment 1.1., the approach of Section 4.3.2.2 of the Chapter 4 is followed but the

time series datasets are injected with uniform rather than Gaussian noise. Fig A.3 is the corre-

sponding figure of Fig. 4.14, as is Fig. A.4 for Fig. 4.15 of the Chapter 4.

A.2 Experiment Results shown through MSE

These results follow to same approaches as described in Sections 4.3.2 of the Chapter 4. How-

ever, the FLSs performances are shown using the Mean Square Error (MSE) rather than sMAPE.

Figure A.2: Experiment 1.1- the repetition of Fig. 4.13 with uniform noise rather than Gaussian
noise in the time series datasets.
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Figure A.3: Experiment 1.2- corresponding to Fig. 4.14 with uniform rather than Gaussian noise
in the time series datasets.

Figure A.4: Experiment 1.2- corresponding to Fig. 4.15 with uniform rather than Gaussian noise
in the time series datasets.

A.2.1 Experiment 1 - the Adaptive and Non-Adaptive Comparison in MSE

A.2.1.1 Experiment 1.1 Noise Free Training

The experiment in Section 4.3.2.1 of the Chapter 4 are followed and the MSE (rather than

sMAPE) is provided as a measure of prediction accuracy. Fig. A.5 provides the counterpart to

Fig. 4.12 and A.6 provides the counterpart to Fig. 4.13 from the thesis.

A.2.1.2 Experiment 1.2 Noisy Training

The experiment in Section 4.3.2.2 of the Chapter 4 are followed and the MSE (rather than

sMAPE) is provided as a measure of prediction accuracy. Fig. A.7 provides the counterpart to

Fig. 4.14 and A.8 provides the counterpart to Fig. 4.15 from the Chapter 4.
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Figure A.5: Experiment 1.1- corresponding to Fig. 4.12 showing MSE rather than the sMAPE
based results.

Figure A.6: Experiment 1.1 - corresponding to Fig. 4.13 showing MSE rather than the sMAPE
based results.

A.2.2 Experiment 2 - Advanced NSFLSs Comparison in the ADONiS

Framework in MSE

A.2.2.1 Experiment 2.1 Noise Free Training

The experiment in Section 4.3.3.1 of the Chapter 4 are followed and the MSE (rather than

sMAPE) is provided as a measure of prediction accuracy. Fig. A.9 provides the counterpart to

Fig. 4.17 and Fig. A.10 provides the counterpart to Fig. 4.18 from the Chapter 4.

A.2.2.2 Experiment 2.2 Noisy Training

The experiment in Section 4.3.3.2 of the Chapter 4 are followed and the MSE (rather than

sMAPE) is provided as a measure of prediction accuracy. Fig. A.11 provides the counterpart to

Fig. 4.19 and Fig. A.12 provides the counterpart to Fig. 4.20 from the Chapter 4.
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Figure A.7: Experiment 1.2 - corresponding to Fig. 4.14 showing MSE rather than the sMAPE
based results.

Figure A.8: Experiment 1.2 - corresponding to Fig. 4.15 showing MSE rather than the sMAPE
based results.

A.3 Statistical Analyses

In this section, in order to assess the statistical reliability of these result differences, a series of

paired sample t-tests are conducted. Here, the measure of performance (sMAPE or MSE) for

the best performing method is compared against that of the next best. This was done within

each of three conditions, for both MG and Lorenz time series experiments. These comparisons

indicate that for the experiments conducted, in noise free training and when using the sMAPE

measure, sub-NS results are significantly better than the next best performing (sim-NS) NSFLSs

results, under all three different cases and in both time series (MG and Lorenz) (See Table. A.1).

When using the MSE measure (Table A.3), sub-NS Noise-free training results are significantly

better than the next best performing NSFLSs results in all but Variable Noise testing conditions.

When trained under noisy conditions, and according to the sMAPE measure (Table A.2),

sub-NS is found to be significantly better than any other technique in the MG time-series Stable
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Figure A.9: Experiment 2.1 - corresponding to Fig. 4.17showing MSE rather than the sMAPE
based results.

Figure A.10: Experiment 2.1 - corresponding to Fig. 4.18 showing MSE rather than the sMAPE
based results.

Noise condition. However, sim-NS is found to be significantly the best performing technique in

both Mixed Stable and Variable noise conditions (Table A.2), according to the sMAPE measure.

The same pattern of results is evident when assessed under the MSE measure (Table A.4), with

the exception that sub-NS is also found to be significantly best performing technique in the

Lorenz time-series Stable Noise condition.

Table A.1: Experiment 2.1 Noise Free Training sMAPE results statistical paired sample t-test
(2 tailed df=29 the least average mean shown in bold)

MG Time Series Lorenz Time Series
Experiment Scenarios t value p value Experiment Scenarios t value p value
Stable Noise
(sim-NS and sub-NS) -6.983 < .00001

Stable Noise
(sim-NS and sub-NS) -5.157227 0.00002

Mixed Stable Noise
(sim-NS and sub-NS) -9.703 < .00001

Mixed Stable Noise
(sim-NS and sub-NS) -2.460 0.0201

Variable Noise
(sim-NS and sub-NS) -4.914 0.00003

Variable Noise
(sim-NS and sub-NS) -2.157 0.03939
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Table A.2: Experiment 2.2 Noisy Training sMAPE results statistical paired sample t-test
(2 tailed df=29 the least average mean shown in bold)

MG Time Series Lorenz Time Series
Experiment Scenarios t value p value Experiment Scenarios t value p value
Stable Noise
(sim-NS and sub-NS) -3.485 0.00158

Stable Noise
(cen-NS and sub-NS) -0.546 0.58909

Mixed Stable Noise
(sim-NS and sub-NS) 9.449 < .00001

Mixed Stable Noise
(sim-NS and sub-NS) 8.799 < .00001

Variable Noise
(sim-NS and sub-NS) 3.596 0.00118

Variable Noise
(sim-NS and sub-NS) 3.914 0.00051

Table A.3: Experiment 2.1 Noise Free Training MSE results statistical paired sample t-test
(2 tailed df=29 the least average mean shown in bold)

MG Time Series Lorenz Time Series
Experiment Scenarios t value p value Experiment Scenarios t value p value
Stable Noise
(sim-NS and sub-NS) -10.719 < .00001

Stable Noise
(sim-NS and sub-NS) -5.124 0.00002

Mixed Stable Noise
(sim-NS and sub-NS) -5.874 < .00001

Mixed Stable Noise
(sim-NS and sub-NS) -2.591 0.01483

Variable Noise
(cen-NS and sim-NS) -0.725 0.4741

Variable Noise
(sta-NS and sim-NS) 2.532 0.017

Table A.4: Experiment 2.2 Noisy Training MSE results statistical paired sample t-test
(2 tailed df=29 the least average mean shown in bold)

MG Time Series Lorenz Time Series
Experiment Scenarios t value p value Experiment Scenarios t value p value
Stable Noise
(sim-NS and sub-NS) -3.617 0.00112

Stable Noise
(sim-NS and sub-NS) -4.975 0.00003

Mixed Stable Noise
(sim-NS and sub-NS) 9.056 < .00001

Mixed Stable Noise
(sim-NS and sub-NS) 6.602 < .00001

Variable Noise
(sim-NS and sub-NS) 4.524 0.00009

Variable Noise
(sim-NS and sub-NS) 3.263 0.00283



218 Chapter A. Appendix

Figure A.11: Experiment 2.2 - corresponding to Fig. 4.19 showing MSE rather than the sMAPE
based results.

Figure A.12: Experiment 2.2 - corresponding to Fig. 4.20 showing MSE rather than the sMAPE
based results.
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Appendix

B.1 The created rules, by the neonatologist and his team

In this section, the created 24 rules ,by the neonatologist and his team, are shown in the table

below.
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B.2 The HR and SpO2 and O2 inputs visualisation

In this section, a sample visualisation of non-singleton HR, SpO2 and O2 over the created

antecedent MFs and 24 rules are shown in Fig. B.1.
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Figure B.1: The HR and SpO2 and O2 inputs visualisation over the all 24 rules
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B.3 O2 Suggestion Results of ADONiS and SFLS

Both models (ADONiS and SFLS)O2 support suggestion behaviours are tested on the given six

real-world datasets.



224 Chapter B. Appendix

Figure B.2: Dataset 18: HR and SpO2 levels of the baby ‘18’ and both models suggestions

Figure B.3: Dataset 21: HR and SpO2 levels of the baby ‘21’ and both models suggestions
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Figure B.4: Dataset 25: HR and SpO2 levels of the baby ‘25’ and both models suggestions

Figure B.5: Dataset 28: HR and SpO2 levels of the baby ‘28’ and both models suggestions
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Figure B.6: Dataset 30: HR and SpO2 levels of the baby ‘30’ and both models suggestions

Figure B.7: Dataset 31: HR and SpO2 levels of the baby ‘31’ and both models suggestions
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