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Abstract 

Streptococcus (S.) suis is a commensal porcine pathogen that is the leading causative agent 

of bacterial meningitis and sepsis in young pigs globally. Systemic infection in swine is 

associated with considerable mortality and has significant animal welfare and economic 

consequences. This zoonotic pathogen causes similar clinical pathology in humans as seen 

in pigs, which can result in life-changing post-streptococcal sequelae. S. suis is recognised as 

an emerging zoonotic disease and is the primary cause of meningitis in human adults in South 

East Asia, with two recent outbreaks in China manifesting as Streptococcal toxic shock-like 

syndrome in patients. The virulence mechanisms by which S. suis transitions from a 

commensal species within the nasopharynx and tonsillar microflora to a pathogenic species 

proliferating within host blood and disseminating into peripheral organs and the brain are still 

largely unknown. Proposed virulence mechanisms are often extrapolated from current 

knowledge about the pathogenesis of similar infections caused by Group A and Group B 

Streptococci.  Whilst S. suis infections are readily treatable with β-lactam antibiotics, reports 

of antimicrobial resistance are increasing and driving the need for alternative therapeutics with 

novel targets and mechanisms of action. Maintaining effective treatment options are critical as 

the genetic diversity of serotypes within the S. suis strain population has meant that an 

effective commercial vaccine has yet to be developed. Establishing a more comprehensive 

understanding of the mechanisms of S. suis pathogenesis must be achieved to identify 

molecular targets for novel therapies and diagnostic tools.  

Transposon mutagenesis is frequently used in bacteriology to identify genes which are 

associated with increased fitness or essential for life. The Pragmatic Insertional Mutation 

Mapping System is a mapping-based tool which utilises the mutagen pG+host::ISS1 to identify 

essential genes in Gram-positive species in varying growth conditions. The PIMMS protocol 

was successfully used to elucidate genes which were essential for the growth of S. suis P1/7 

in Brain-Heart Infusion (BHI) media with the addition of hydrogen peroxide (H2O2) to model a 

phagocytic respiratory burst in vitro. In total, 160 genes were identified as being essential for 

general survival and growth in media. Of these, functional annotation revealed that the majority 

of genes were associated with basic cellular functions including metabolism and information 

processing. Further analysis revealed that several genes were associated with the cell division 

cycle and the signal recognition particle pathway. A total of 35 genes were identified as 

important for survival and growth in the presence of H2O2. Statistical analysis revealed that a 

switch from carbohydrate metabolism to general metabolism occurred in the transition from 

the BHI to the H2O2 environment, evidenced by an overrepresentation of genes associated 

with general metabolism in the H2O2 phenotype. Genes associated with alternative metabolic 

pathways in the presence of H2O2 and the direct and indirect expression and secretion of 
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virulence factors were identified following further investigation. The FtsEX, complex, FtsY, 

Fhs, FolD, CcpA, SecE, putative signal peptidase I (SSU0212), OppD and putative 

haemolysin-III (Hly-III) (SSU0854) were identified as having promising novel therapeutic or 

diagnostic potential which require greater investigation and may be utilised in the control of 

future S. suis infections.  
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1.0 Introduction 

1.1 S. suis: an important swine pathogen 

1.1.1 Classification of S. suis 

Streptococcus suis (S. suis) is a facultatively anaerobic, Gram-positive coccoid bacterium 

which occurs as single cells, in pairs or short chains (Dutkiewicz et al., 2017a; Gottschalk et 

al., 1989). Streptococci are classified based on colony morphology, haemolysis, biochemical 

reactions, and serological specificity. They are divided into three groups based on the 

haemolytic activity they exert on whole blood agar, a process by which bacteria lyse red blood 

cells to liberate haem compounds as a source of iron for growth and colonisation (Bates et al., 

2003): β-haemolytic (clear, complete lysis of red cells), α-haemolytic (incomplete, green 

haemolysis), and γ-haemolytic (no haemolysis) (Sharma and Gupta, 2014). Most S. suis 

strains appear as grey-white colonies and are classified as α-haemolytic (Huh et al., 2011).  

The peptidoglycan layer of S. suis is enveloped in a capsular polysaccharide (CPS) 

constituting of a layer of monosaccharides, amino acids and repeating antigen subunits (Lowry 

et al., 2014; Sarkar et al., 2014). Serological evaluation of the genetic diversity between CPS 

antigens using traditional co-agglutination assays has led to the characterisation of 29 true 

serotypes of S. suis identified to date, despite 35 originally being described (Auger et al., 

2018). Serotypes include 1-19, 21, 23-25, 27-30, 31 and 1/2 which expresses CPS antigens 

common to both serotype 1 and 2. Divergent serotypes 32 and 34 have since been reclassified 

as Streptococcus orisratti and serotypes 20, 22 and 26 as S. parasuis (Hill et al., 2005; Estrada 

et al., 2019). S. suis also possesses genotypic diversity within serotypes whose distribution 

varies worldwide. Multilocus sequence typing (MLST) can be used to assess the degree of 

genetic relatedness between isolates and had been used to determine the distribution of 

pathogenic and commensal-specific serotype and MLST patterns in countries globally to gain 

greater insight into the pathogenic potential of circulating strains (Estrada et al., 2019; King et 

al., 2002).  

 

1.1.2 S. suis as a commensal species in the healthy porcine microbiome 

It is now widely accepted S. suis contributes to the normal porcine nasal and oropharyngeal 

microflora and may also have niches within the gastrointestinal and reproductive tracts 

(Murase et al., 2019). Reviews of tonsillar carrier rates suggest that colonisation is likely to be 

close to 100% (Goyette-Desjardins et al., 2014). Discrepancies in tonsillar carrier rates have 

demonstrated significant ranges between herds and farms, for example in China detection 
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rates in clinically healthy animals ranged from 19.5-93.9%, however such broad ranges are 

likely due to sampling and culture based differences and findings cannot be extrapolated to 

the rest of the world (Zhang et al., 2009). Worldwide, serotype 2 is most frequently isolated 

from swine (27.9%) and is also most commonly associated with invasive disease in humans, 

followed by serotypes 9 (19.4%) and 3 (15.9%), however percentages vary between countries 

(Goyette-Desjardins et al., 2014).  

S. suis has adapted to its porcine reservoir host and is a highly successful coloniser of mucosal 

surfaces of the upper respiratory tract, particularly the palatine tonsils, nasal cavities and 

submaxillary lymph nodes (Tharavichitkul et al., 2014; Wileman et al., 2019). Colonisation 

typically occurs in animals between 4-10 weeks of age; however, it has been suggested that 

colonisation may occur as early as five days post-partum and prior to weaning (Torremorell, 

Calsamiglia and Pijoan, 1998; Dutkiewicz et al., 2017a).  

Piglets heterogeneously acquire the bacteria as a result of close contact with carrier sows 

(Zhang et al., 2009). It is widely accepted that piglets can become colonised vertically via the 

ingestion of uterine and vaginal mucus secretions during parturition, however research into 

the role of the porcine vaginal and skin microbiomes in the colonisation of S. suis in neonates 

is lacking (Amass, Sanmiguel and Clark, 1997). As S. suis resides within the palatine tonsils, 

suckling may be another colonization route, however species level analysis of Streptococcus 

populations on the skin and teats of sows is yet to be established (Pena Cortes et al., 2018) 

and there is no available literature which describes the detection of S. suis in milk. 

The gastrointestinal tract may also be a niche for S. suis colonisation. At the time of weaning 

piglets undergo major intestinal microbial shifts as they transition from colostrum and milk to 

solid feed that contains carbohydrate, fibre, pre- and probiotics (Guevarra et al., 2019). 

Organic acids, essential oils and enzymes which are included to feed to maximise cereal 

metabolism and improve gut barrier function may also contribute to microbiota shifts (Xu et 

al., 2020). Numbers of Lactobacilli and Enterobacteria decrease significantly whilst S. suis has 

been found to increase within the digesta within the stomach, jejunum and colon during this 

period (Su et al., 2008; García et al., 2016), providing increased S. suis colonisation potential.  

Whilst S. suis is an endemic pathobiont in global commercial swine populations and 

predominately infects piglets, it has also been isolated in rare cases from clinically ill 

companion and production mammals including ruminants, horses, cats and dogs (Devriese 

and Haesebrouck, 1992; Salasia, Lämmler and Devriese, 1994; Roels et al., 2009; Muckle et 

al., 2010; Okwumabua et al., 2017). S. suis has also been isolated from clinically ill fallow deer 

and birds, as well as wild European rabbits and boars (Devriese et al., 1993; Sánchez del Rey 

et al., 2013; Sánchez del Rey et al., 2016). Although humans are not considered reservoirs, 
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colonisation by S. suis has been confirmed in those with close contact with both swine and 

associated pork products, at an estimated rate of 5%, although this figure is likely to be an 

underestimation (Strangmann, Fröleke and Kohse, 2002; Goyette-Desjardins et al., 2014). 

 

1.1.3 Routes of infection and modes of transition in swine 

Despite being a frequent early coloniser of the porcine upper respiratory tract, S. suis is also 

most important global bacterial cause of meningitis in swine production and contributes to 

severe economic losses and compromised animal welfare globally (Haas and Grenier, 2018; 

Hopkins et al., 2018; Vötsch et al., 2018). Primary infections result in meningitis, polyarthritis, 

endocarditis and polyserositis (Dutkiewicz et al., 2017a) which are associated with clinical 

signs such as fever, lameness (Dekker et al., 2013), inflammation of joints, and rapid onset of 

neurological signs such as paddling (Besung et al., 2019) and sudden death (Marois et al., 

2007). Systemic infections with S. suis are mainly associated with weaning piglets and show 

high morbidity with a poor prognosis, even with early treatment (Baums et al., 2009). The 

mechanism for S. suis transition from a commensal species to a pathogenic species causing 

systemic infection in some piglets and not others is not fully understood (Hopkins et al., 2018). 

Clinical cases of S. suis infections most frequently appear in animals aged between 4 to 8 

weeks of age and the highest mortality rates are typically observed 2-4 weeks after the 

weaning period (Cloutier et al., 2003). Porcine weaning management practices including 

abrupt separation from the sow, transportation and handling and grouping of animals from 

different origins, are known to exacerbate stress and contribute to reduced immune 

competence and may increase S. suis infection risks (Campbell et al., 2013). The mortality 

rate may be as high as 30% in untreated piglets, with an average within-litter mortality of 14.4% 

(Hopkins et al., 2018). Reported variation in clinical signs, including cessation of disease in 

some experimental infection studies has been attributed to differences in individual immune 

responses to infection as well genetic variation between strains (Berthelot-Hérault et al., 

2001), however differences in infectious doses and route of inoculation may also play a role. 

S. suis can also accumulate in the environment and animals may be colonised from a number 

of sources including feed and water troughs contaminated with saliva, insect vectors, fomites 

such as manure covered boots and from cutaneous injuries resulting from castration, ear 

notching and tail docking (Dee and Corey, 1993; Lloyd et al., 2016; Arai et al., 2018; Hopkins 

et al., 2018; Murase et al., 2019). The routine application of animal manure as crop fertiliser 

may also provide a reservoir for S. suis and promote environmental persistence (Zhao et al., 

2014). 



13 

 

Despite this, transmission of S. suis is considered to mainly occur via the respiratory route, 

directly through nose to nose contact but can be transmitted horizontally in susceptible swine 

from both asymptomatic carrier herds and individuals with clinical disease (Dekker et al., 

2013). It is thought that infection begins once the bacteria penetrate host mucosa, enter the 

bloodstream and invade the spleen, liver, kidney, lung and heart, however the exact trigger 

and shift from commensal to invasive pathogen within the host and pathogenesis of infection 

is still largely unknown (Segura et al., 2016). S. suis can also overcome tight junctions within 

the blood-brain barrier which promotes the infection of the central nervous system and 

inflammation, leading to the clinical manifestation of meningitis (Hoffman and Weber, 2009). 

Strains have also been demonstrated to translocate from the gastrointestinal tract to the 

mesenterial lymph nodes, liver, spleen and joints in susceptible pigs under transport stress 

(Swildens et al., 2004). This indicates that the gastrointestinal tract cannot be excluded as a 

potential site of infection especially as the S. suis population within the gut microbiome have 

been found to increase in weaning piglets (Su et al., 2008; García et al., 2016).  

In vivo interactions between S. suis and other endemic swine pathogens has been shown to 

exacerbate other infectious diseases that are also associated with significant economic losses 

(Valdes-Donoso et al., 2018). Post-weaned piglets with existing Mycoplasma or Pasteurella 

infections are susceptible to S. suis induced suppurative pneumonia (Reams et al., 1994). Co-

infections with porcine reproductive and respiratory syndrome virus (PRRSV), porcine 

circovirus 2 (PCV2), and porcine respiratory coronavirus (PRCoV) have been found to result 

in the down regulation of the innate immune response and deregulation of the adaptive 

immune response which interferes with normal host defence mechanisms and predisposes 

animals to S. suis induced septicaemia and pneumonia (López and Martinson, 2017). Animals 

co-infected with H1N1 influenza virus and S. suis have also been shown to exhibit more severe 

clinical symptoms of pneumonia and increased mortality rates (Lin et al., 2015). 

 

1.2 The emergence of S. suis as a zoonotic pathogen  

1.2.1 Epidemiological trends of human S. suis infections  

S. suis is amongst ten porcine pathogens that are zoonotic to humans (Pappas, 2013). Since 

the first case was reported in the Netherlands in 1968, more than 1600 cases have been 

reported globally in 30 countries including China, Brazil and Vietnam which are some of the 

highest global pork producers (Arends & Zanen, 1988; Bojarska et al., 2020; Feng et al., 2014; 

Hu et al., 2000; Wisselink et al., 2000). Despite also being significant pork producers, Canada 

and the United States have significantly lower reports of infections alongside South America, 

Australia and New Zealand (Lopreto et al., 2005; Gottschalk et al., 2010, 2013; Soares et al., 
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2015; O’Dea et al., 2018). The highest prevalence rate by far is in Southeast Asia, with the 

majority of cases associated with serotype 2, however serotypes with typically lower zoonotic 

potential including 1, 4, 5, 9, 14, 16, 21 and 31 have also been reported to cause severe 

systemic disease (Nghia et al., 2008; Wertheim et al., 2009; Taniyama et al., 2016; Kerdsin et 

al., 2017). Differences between human infection rates reported worldwide could be due to 

industrialisation and farming practices, with many more small scale farms in Asia, differences 

in slaughter practices and also serotype or strain specific variation (Huong, Ha, et al., 2014). 

S. suis may be responsible for more than 90% of human bacterial meningitis cases in 

Southeast Asia, particularly in Vietnam, Thailand and China where high pork consumption and 

small-scale swine farming is endemic (Goyette-Desjardins et al., 2014; van Samkar et al., 

2015).  

Meta analyses have identified that more than eighty percent of infections occur in healthy 

middle-aged adult males and infections appear to be most greatly associated with close 

occupational contact with infected pigs or pork products, particularly where appropriate 

personal protective equipment practices are not adopted (Zhu et al., 2008; Wertheim et al., 

2009; van Samkar et al., 2015; Rayanakorn et al., 2018) An increased risk of infection has 

been reported for immunocompromised patients including those with alcoholism, diabetes 

mellitus, cancer and structural heart disease (Voutsadakis, 2006; Gomez et al., 2014; van 

Samkar et al., 2015; Mancini et al., 2016). Highest occupational risks are found in swine 

farmers and transporters, abattoir workers, butchers and veterinarians (Strangmann, Fröleke 

and Kohse, 2002; Ibaraki et al., 2003; Voutsadakis, 2006; Zalas-Wiecek et al., 2013; 

Dutkiewicz et al., 2017b), with occasional reports in those handling carcasses including chefs 

and hunters (Halaby et al., 2000; Piech et al., 2009; Malezieux et al., 2014). Oral infection is 

rarely observed in Western countries, however S. suis is considered an emerging food-borne 

pathogen in Southeast Asia where consumption of traditional “high-risk” dishes containing raw 

blood and tissues increases the risk of infection alongside backyard slaughtering and the 

consumption of sick animals (Hanterdsith et al., 2013; Huong et al., 2014; Dutkiewicz et al., 

2017b).  

Despite increased awareness of human S. suis infections within scientific and medical 

disciplines, the number of reported global infections reported in literature is continuing to rise 

(Huong, Ha, et al., 2014). A lack of awareness amongst community members and 

policymakers about the economic burden of disease, lack of public health interventions for at-

risk populations, underutilisation of diagnostic capacity in hospitals and poor continuity of care 

may contribute to this increase (Dutkiewicz et al., 2017b; Rayanakorn et al., 2018; Huong et 

al., 2019). On the other hand, improved diagnostic capability may account for  the increased 

numbers of S. suis infections in Southeast Asia (McNerney, 2015; Gomez-Torres et al., 2017).  
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1.2.2 Systemic inflammatory response syndrome, post-streptococcal sequalae and toxic-like 

shock syndrome  

Although, activation of the cellular immune response is a biologically protective mechanism 

which is associated with production of antibodies against invading pathogens and pathogen 

clearance, systemic inflammatory response syndrome (SIRS) may occur secondary to 

infection as a consequence of an exaggerated defence response (Chakraborty and Burns, 

2020). SIRS is one of the most commonly reported clinical conditions resulting from S. suis 

infection in swine and humans, most likely due to the pathogens capacity to persist at high 

concentrations in the blood (Wertheim et al., 2009; Kim et al., 2018; Dai et al., 2019; 

Ljungström, Andersson and Jacobsson, 2019; Minasyan, 2019). SIRS is a systemic disorder 

that is mediated by a downstream cytokine cascade resulting in vasodilation, increased 

vascular permeability, myocardial depression, reduced global oxygen supply and 

procoagulant activity; and ranges from sepsis, septic shock and multiple organ dysfunction 

syndrome (Tupchong, Koyfman and Foran, 2015; Hotchkiss et al., 2016). In general, septic 

shock is associated with high morbidities including long-term chronic illness characterised by 

prolonged inflammation, immune suppression, cognitive and functional deficits in humans and 

has been described in patients following infections with S. suis (Zhu et al., 2008; Hotchkiss et 

al., 2016). During an  outbreak of S. suis in the Sichuan Province in 2005, 24% of patients 

experienced septic shock, which led to death in 80% of cases (Lun et al., 2007a). In swine, 

sepsis directly impacts on economic burden and animal welfare, with attributed mortality rates 

resulting from S. suis sepsis thought to be as high as 20% (Cloutier et al., 2003).  

Other post-streptococcal sequalae associated with systemic S. suis infection and sepsis 

include profound or complete hearing loss and/or vestibular dysfunction which can occur uni- 

or bilaterally (Navacharoen et al., 2009; Huong et al., 2019; Rayanakorn et al., 2019). Loss of 

sensorineural hearing in the high-frequency range and vestibular damage from bacterial toxins 

appears to occur early during the pathogenesis of meningitis (Sena Esteves et al., 2017). 

Major complications include cognitive deficit, motor deficit, seizures, visual impairment, and 

hydrocephalus. Challenging behaviour, learning difficulties, hypotonia, diplopia and tinnitus 

are considered more minor sequalae that have also been reported (Edmond et al., 2010; van 

Samkar et al., 2015).  

Streptococcal toxic shock syndrome is frequently associated with Group A Streptococcus 

(GAS) infections through expression of putative superantigens including SpeA, SpeC and SSA 

(Proft et al., 2003). These antigens are not present in S. suis, however two large-scale 

outbreaks of human infections were associated with streptococcal toxic shock-like syndrome 
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(STSLS) in China during 1998 and 2005 with a 20% mortality rate and more than 200 

occupation-associated infections recorded (Hu et al., 2000; Yu et al., 2006; Fittipaldi et al., 

2012; Wang et al., 2019; Wang et al., 2019; Zhang et al., 2017). S. suis related STSLS has 

been associated with the presence of an 89Kpb genomic pathogenicity island, acquired 

through horizontal gene transfer. More specifically, it was associated with the presence of 

virD4 within a putative type IV-like secretion system and its upregulation is shown to be 

associated with the increased secretion of the cell death inducer and proinflammatory effector 

PrsA in murine models (Jiang et al., 2016; Lun et al., 2007b). This is thought to be a direct 

factor in STSLS sequelae and emphasises the importance of S. suis as an emerging zoonotic 

pathogen and increased virulence potential through acquisition of new genetic material.  

 

1.3 Diagnosis of S. suis infections in swine and humans 

 

1.3.1 Diagnosis of S. suis in swine  

Presumptive diagnosis of S. suis infection in swine is often based on history, age of animals 

and clinical signs of acute meningitis which may include also red skin discoloration, anorexia, 

ocular-nasal exudate, diarrhoea, lameness, pyrexia, malaise and inflammation of joints  

(Goyette-Desjardins et al., 2014; Hopkins et al., 2018; Besung et al., 2019). Confirmation of 

infection requires necropsy evaluation of gross and microscopic lesions and bacterial culture 

(Goyette-Desjardins et al., 2014; Besung et al., 2019). Tissue biopsies of affected tissues and 

histopathological analysis of the brain, heart, liver, intestines, kidney, and spleen are examined 

microscopically, with lesions in affected tissues likely to indicate meningitis, 

bronchopneumonia, endocarditis, myocarditis, pericarditis, erosion and enteritis, 

haemorrhagic hepatitis, glomerulonephritis, lymphoid depletion and haemorrhage and 

accumulation of inflammatory cells in the spleen; all pathologies that are compatible with 

systemic bacterial infection, meningitis and arthritis (Madsen et al., 2001; Besung et al., 2019).   

Microbiological characterisation of isolated bacteria include assessing haemolytic activity and 

colony morphology, analysis of catalase, esculin hydrolysis, pyrrolidinyl arylamidase, sugar 

fermentation and Hippurate hydrolysis are often deployed to identify the causative pathogens 

in routine veterinary diagnostics, however assays may cause discrepancies between species 

of Streptococcus and lead to a misdiagnosis (Brigante et al., 2006; Preethirani et al., 2015).  

Since S. suis is the primary pathogen that causes meningitis and septicaemia in pigs, the 

majority of work into the development of diagnostic tools has been centred around developing 

diagnostic PCR tests to identify specific serotypes of S. suis based on genes within the CPS 

cluster (Liu et al., 2013) or multiplex PCR tests for other swine respiratory pathogens such as 
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those implicated in PRRSV (Lung et al., 2017). More recently,  the highly conserved glutamate 

dehydrogenase (Gdh) and the recombination/repair protein (RecN) encoding genes within the 

S. suis genome have been targeted but primers for these regions are not routinely included in 

current assays (Tarini et al., 2019).   

 

1.3.2 Diagnosis of S. suis infections in humans  

S. suis infections in humans predominately manifest as meningitis (van Samkar et al., 2015) 

with patients presenting with fever/neck stiffness/altered mental status or headache and 

requiring prompt analysis of cerebrospinal fluid and/or blood, to distinguish the pathogen from 

other aetiological agents or non-infectious causes of meningeal inflammation (Hoffman and 

Weber, 2009; Viallon et al., 2016). Quantitative (q) PCR is preferentially used for 

simultaneously screening for the major bacterial pathogens responsible for causing meningitis 

in humans which include S. agalactiae, S. pneumoniae, Neisseria meningitidis, Haemophilus 

influenzae, Listeria monocytogenes as well as 16S rRNA sequencing from other potential 

bacterial agents (Wagner et al., 2018; Albuquerque et al., 2019). Given S. suis is an emerging 

pathogen, it is often not included in PCR based diagnostics (El Bashir, Laundy and Booy, 

2003). Despite this, many low-income countries lack infrastructure for infectious disease 

management and the ability to rapidly and accurately identify infections in molecular 

microbiology facilities which may result in misdiagnosis (Wertheim et al., 2009; Ahmed et al., 

2015). This may have historically contributed to the underreporting of S. suis infections in 

humans (Wertheim et al., 2009).  

Achieving diagnosis is not always limited by PCR techniques and other nucleotide-based 

technologies such as DNA microarray and ribotyping have been used to characterise S. suis, 

however they are not always routinely used in conventional diagnostics (Xia et al., 2018). 

Loop-mediated isothermal amplification (LAMP) which targets 16S rRNA has been used to 

identify clinical isolates containing the 89Kpb pathogenicity island and may be more cost 

effective as point of care diagnosis (Njiru, 2012) and for epidemiological monitoring of strains 

(Zhang et al., 2013). However, it should be noted that few strains carry the pathogenicity island 

and it would not be applicable for wide scale screening.  

Next generation sequencing (NGS) technologies in combination with tailored bioinformatic 

workflows to analyse genomic information are emerging as a promising single, universal 

pathogen detection method for infectious disease diagnostics (Gu, Miller and Chiu, 2019; 

Salazar et al., 2020). Pathogens are identified by recombining sequencing reads and aligning 

them to reference databases (Simner, Miller and Carroll, 2018). When NGS and PCR are used 

synergistically, pathogen genome regions of interest at very low levels within samples which 
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can be selectively enriched before sequencing and can successfully detect multiple pathogens 

in clinical samples which may be missed by routine techniques (Anis et al., 2018). NGS 

technologies for diagnosis of S. suis infections may be particularly valuable when patients 

have received prior antibiotic therapy and have been demonstrated to detect pathogenic DNA 

in culture-negative blood five days post-venepuncture (Dai et al., 2019). Despite having 

greater sensitivity than traditional technologies, the use of NGS for diagnostic purposes 

require further development as they still lack specificity and are associated with high cost 

reagents (Gu, Miller and Chiu, 2019; Torchia et al., 2019).  

 

1.4 Antibiotic susceptibility and resistance  

Chemotherapy is still the most important strategy for the treatment of acute S. suis bacterial 

infections (Yao et al., 2014). Successful treatment relies on the effectiveness of antibiotics 

(Yongkiettrakul et al., 2019), with S. suis susceptibility to β-lactam antibiotics including 

penicillin, ampicillin ceftriaxone and cetiofur with fluoroquinolones and trimethoprim-

sulfonamides also critically important for treatment (Burch and Sperling, 2018; Yongkiettrakul 

et al., 2019). Despite being largely susceptible to β-lactam antibiotics, a low level of resistance 

to penicillin has been reported in some S. suis strains, which could be attributed to 

spontaneous mutations in genes encoding binding proteins (Haenni et al., 2018; Zhang et al., 

2008). 

The overuse of antibiotics in human and veterinary medicine, including the empirical treatment 

with broad-spectrum antibiotics to treat Streptococcal infections, has contributed to the 

emergence of multi-drug resistant genotypes and dissemination of resistance genes. The 

prophylactic and metaphylactic use of tetracyclines, macrolides and aminoglycosides in swine 

agriculture has contributed to high rates of resistance in S. suis strains world-wide but 

geographical variations exist (Barton, 2014; Tall et al., 2016; Lekagul, Tangcharoensathien 

and Yeung, 2019; Rodrigues, 2020). In addition to differences in the prophylactic usage of 

antimicrobials, variations may also result from differing farming practices including animal 

stocking densities, biosecurity and perception that the use of antibiotics contributes to 

profitability through use as growth promoters (Stevens et al., 2007; van der Fels-Klerx et al., 

2011; Eltayb et al., 2012; Raasch et al., 2018). Whilst the use of antibiotics as growth 

promotors was prohibited in Europe in 2006, the USA in 2017, Australasia and Brazil have 

implemented partial bans on drug classes which have critical importance in human medicine 

(Brüssow, 2017; Manyi-Loh et al., 2018). Key policies in many countries within Southeast Asia 

have been introduced but enforcement remains a challenge, as does local compliance to 

reduce prophylactic usage (Goutard et al., 2017).  
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1.5 Pathogenesis of S. suis infections  

When pathogens breach barrier surfaces such as the skin or mucosal surfaces, pattern 

recognition receptors of the immune system are rapidly stimulated by microbe associated 

molecular patterns (Gasteiger et al., 2017).  Stimulation results in a downstream cascade of 

proinflammatory cytokines and chemokines which control the release of effector immune cells 

and recruit them to the site of infection (Sokol and Luster, 2015). Proinflammatory cytokines 

such as tumour necrosis factor (TNF) and interleukin (IL)-1 and IL-6 also act as endogenous 

pyrogens which mediate fever (Netea, Kullberg and Van der Meer, 2000). Myeloid effector 

cells include polymorphonuclear neutrophils, dendritic cells and macrophages which are 

involved in the clearance of pathogens via phagocytosis, release of granules that contain 

enzymes and toxic compounds and formation of extracellular traps (Rosales et al., 2017; 

Hirayama, Iida and Nakase, 2018). This rapid, non-specific activity which recognises and 

destroys pathogens during the early stages of infection is known as an innate immune 

response (Hirayama, Iida and Nakase, 2018). Whilst the innate immune response has limited 

capacity for memory, cell mediated/adaptive immunity is associated with immunological 

memory and the ability to respond to and clear a pathogen with greater specificity (Ratajczak 

et al., 2018). Cell mediated immunity is characterised by the binding, activation and 

proliferation of T and B leukocytes which are activated by pathogen antigens expressed on 

antigen-presenting cells following phagocytosis (Janeway et al., 2001). During this process B 

cells mature into memory cells and express surface immunoglobulins (antibodies) which 

become antigen receptors but can also secrete immunoglobulin into the circulating blood 

which can rapidly recognise and produce a more fine-tuned response to re-invading 

pathogens (Bonilla and Oettgen, 2010; Hoffman, Lakkis and Chalasani, 2016).  

S. suis causes severe systemic infection in both swine and humans of similar pathology but 

typically characterised by septicaemia and meningitis (Kim et al., 2018). In order to cause 

disease, S. suis successfully colonises the host, breaches epithelial barriers, achieves and 

maintains a high level of bacteraemia, invades organs and stimulates exaggerated 

inflammation (Fittipaldi et al., 2012). The ability for S. suis to transition from a commensal 

organism and cause severe systemic infection through resisting the innate immune response 

has been associated with more than 100 putative adhesins and virulence factors, which can 

be classed into four main groups. These include surface components or secreted elements, 

enzymes, transcriptional factors and/or regulatory systems and transporter factors or secretion 

systems (Gottschalk and Segura, 2000; Dutkiewicz et al., 2018). Specifically, those factors 

that have been linked to adhesions and invasion of epithelial cells, resistance to phagocytosis, 

stimulation of proinflammatory cytokines and interaction with the blood-brain barrier (BBB) 

have been the target of most pathogenesis-based research. Despite an increasing number of 
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studies, the pathogenesis of S. suis infection is yet to be fully elucidated and disease 

physiology is hypothesised and based on the similarity in pathology caused by Group B 

Streptococcus infections in humans (Mitchell and Mitchell, 2010; Calzas et al., 2017).  

 

1.5.1 Immune evasion and modulation: the capsular polysaccharide (CPS)  

When a pathogen invades, host cells recognise pathogen-associated molecular patterns 

(PAMPs) through pathogen recognition receptors, which activates the innate and acquired 

immune responses, which in turn serve to eliminate and recognise pathogens  (Shishido et 

al., 2012; Xia et al., 2019). In the absence of specific antibodies that are produced by the 

humoral response following previous exposure, S. suis resists phagocytosis and intracellular 

killing by leukocytes, following epithelial invasion and entry into the blood. Survival in blood is 

attributed to the capsular polysaccharide (CPS), as non-capsulated mutants are rapidly 

cleared during challenge within S. suis swine and murine models (Chabot-Roy et al., 2006; 

Houde et al., 2012). Bacterial CPS are a diverse class of high molecular weight 

polysaccharides found in many species of Gram-positive and Gram-negative bacteria which 

prevent desiccation and shield bacterial cell wall proteins from host immune cell recognition 

(Cress et al., 2014). The S. suis CPS components express similarities to host sialic acids (Van 

Calsteren et al., 2010) that are responsible for the identification of invading pathogens, and 

regulation of host inflammation (Pillai et al., 2012; Varki and Gagneux, 2012; Chang and Nizet, 

2014). Similarly to Group B Streptococcus, the sialic acid moiety of the S. suis CPS may 

facilitate immune system invasion through the molecular mimicry of host sialic acids and 

downregulate leukocyte activation (Pillai et al., 2012; Chang and Nizet, 2014). Sialic acid 

linkages may also mediate bacterial attachment to the surface of phagocytes in the blood and 

dissemination to organs via “phagocyte hitchhiking”, as sialidase-treated bacteria have 

reduced adhesion levels to murine macrophages in vitro (Segura and Gottschalk, 2002; Sofias 

et al., 2020).  

The CPS of some strains have been found to block nitric oxide (NO) production and bacterial 

phagocytosis in contrast to non-encapsulated mutants (Houde et al., 2012). The increase in 

internalisation is supported by Lecours et al., (2012) who also demonstrated that non-

encapsulated mutants induced the secretion of proinflammatory cytokines from murine Toll-

like-receptors and dendritic cells, in contrast to a significant reduction in parental strains, 

therefore supporting the role for the CPS in immune quiescence and phagocytosis resistance. 

S. suis may still be engulfed by phagocytic cells, however bacteria have been demonstrated 

to remain viable 24 hours following phagocytosis which may also contribute to the 

dissemination of S. suis within both dendritic cells and porcine brain microvascular endothelial 
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cells (Segura et al., 2006). Persistence has historically been attributed to the CPS, however 

muramidase-released protein (MRP) may also be accountable (Meijerink et al., 2012). Since 

the role of Lactosylceramides (LacCers), a ceramide lipid found in the microdomains of 

neutrophils (Bacic, Fincher and Stone, 2009) have been implicated in inducible nitric oxide 

synthase (iNOS) gene expression and nitric oxide (NO) production, the blocking of LacCers 

by the CPS may also contribute to a diminished immune response by dysregulating NO 

production, therefore impacting downstream signalling pathways which lead to 

proinflammatory cytokine production, T cell recruitment,  apoptosis and cell signalling that are 

ordinarily modulated by NO (Pannu et al., 2004; Vig et al., 2004; Wink et al., 2011).  

 

1.5.2 Epithelial translocation and immune perturbation: Suilysin (SLY) and Dipeptidyl 

peptidase IV (DPP-IV) 

To reach the bloodstream of the host, S. suis must colonise and disrupt the integrity and 

navigate across mucosal barriers (Bercier, Gottschalk and Grenier, 2020). Pathogenic 

Streptococci are characterised by the release of cytotoxic cholesterol-dependent pore-forming 

cytolysins (haemolysins) during infection  (Meng et al., 2016). Suilysin (SLY), is an 

extracellular protein expressed by S. suis but is antigenically related to the streptolysin O and  

pneumolysin of S. pyogenes and S. pneumoniae respectively (He et al., 2014). SLY 

specifically bind to cholesterol rich receptors on host cells, and are associated with paracellular 

translocation across the epithelial layers, lysis of immune cells and stimulation of 

macrophages to secrete large quantities of proinflammatory cytokines which increase the 

permeability of the blood brain barrier (BBB)  (Billington, Jost and Songer, 2000; Lun et al., 

2003; Vötsch et al., 2020). SLY-producing strains of S. suis stimulate the released of lactate 

dehydrogenase, an enzyme involved in cell lysis, and increasing permeability between the 

tight junctions between epithelial cells in a number of studies of porcine epithelial cell line 

infection studies  (Vanier et al., 2004; Bercier, Gottschalk and Grenier, 2020)  

Inflammation is a hallmark of S. suis infection and SLY may potentiate the inflammatory 

response by macrophages and the breakdown of the BBB (Tanabe, Gottschalk and Grenier, 

2008; Vanier et al., 2009). This has led to the hypothesis that cytokines released by the BBB 

may modulate the increased inflammatory activity of astrocytes or glial cells which in turn 

increase the permeability or adhesion properties of brain microvascular endothelial cells 

(BMECs) and facilitate intracranial release of cytokines, chemokines and ROS which 

contribute to the development and severity of meningitis (Vadeboncoeur et al., 2003; Yau et 

al., 2018). Several studies have demonstrated that SLY induces the upregulation of 

inflammatory cytokines IL-6, IL-8 and tumour necrosis factor-α (TNFα) in cell line models 



22 

 

including porcine and human BMECs, human monoblastic leukaemia cells, and porcine 

alveolar macrophages (Lun et al., 2003; Vadeboncoeur et al., 2003; Vanier et al., 2009). 

Intracellular adhesion molecules (ICAM) are expressed on endothelial cells and promote the 

adhesion and transmigration of leukocytes across the BBB (Glushakova et al., 2018). Purified 

SLY was shown to significantly increase the upregulation of ICAMs on human THP-1 

monocytes but failed to upregulate ICAM-1, vascular cell adhesion molecule-1 (VCAM-1) and 

E-selectin on human endothelial cells (Al-Numani et al., 2003).  

SLY has also been linked to the lysis of red blood cells and the release of extracellular 

haemoglobin has been associated with the recruitment of leukocytes, platelets and red blood 

cells to vessel walls, oxidation of lipoproteins and vascular injury (Belcher et al., 2010). Human 

erythrocytes also exhibited greater susceptibility to lysis, followed by equine, ovine, bovine 

and porcine red blood cells (Gottschalk, Lacouture and Dubreuil, 1995). This reinforces the 

need for caution when extrapolating findings from studies using differing S. suis strains, cell 

lines and animal species and highlights the requirement for studies which include a high 

diversity of S. suis strains and standard experimental designs that produce reproducible and 

comparative results in order to fully elucidate the virulence factors that are associated with the 

pathogenesis of infection  (Auger et al., 2017). 

Other surface-bound and secreted proteases may also contribute to immune modulation and 

persistence in the central nervous system (CNS) by degrading antimicrobial peptides that 

stimulate an inflammatory response. S. suis produces four major proteases which include 

arginine aminopeptidase, chymotrypsin-like protease, casein protease and the dipeptidyl 

peptidase IV (DPP-IV) which have been hypothesised to hydrolyse host proteins to attenuate 

immune responses and destroy tissues (Jobin and Grenier, 2003). Dipeptidyl peptidase IV 

(DPP-IV) is a serine exopeptidase secreted by eukaryotic cells plays an important role in 

degrading cytokines, chemokines and neuropeptides to regulate normal inflammation, 

immunity and vascular function (Fadini and Avogaro, 2011) DPP-IV is also widely expressed 

by prokaryotic cells, including S. suis DPP-IV, which cleaves peptides and proteins with X-

Proline or X-Alanine at their N-termini  (LeBel et al., 2018). This includes a porcine host 

defence peptide that is produced by porcine leukocytes and is pivotal in swine innate immune 

defence against infections (Lee et al., 2005).  

Many studies examining the role of putative virulence factors in S. suis mediated meningitis 

have been performed on murine models or porcine and human tissue culture methods and 

have produced conflicting data (Takeuchi et al., 2013; Meng et al., 2016). Therefore, more 

research is required to characterise virulence factors that are essential for the pathogenesis 

of S. suis infections in swine to obtain a greater understanding of how and why S. suis may 
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transition from a commensal bacteria to cause systemic infection as well as identifying targets 

for a commercial vaccine and novel therapeutics.   

 

1.6 Current vaccine development against S. suis  

There is no current commercially available vaccine against S. suis for veterinary or human 

use. The requirement for an efficacious commercial vaccine against S. suis for veterinary 

application has been recognised however, the high genotypic, phenotypic and geographic 

variability of strains, combined with an incomplete understanding of the molecular 

mechanisms of S. suis infection and persistence, has hampered  vaccine development 

(Segura, 2015; Pian et al., 2016). Despite the complex epidemiology of S. suis, research has 

been predominately performed using serotypes 2 and 9 as they are the most frequently 

associated with invasive disease in swine. There is enormous strain diversity even in individual 

serotypes which makes vaccine development to cover all serotypes very difficult (King et al., 

2002; Rieckmann et al., 2019).  

Several vaccines have been trialled against S. suis that have focused on conferring protection 

to piglets as they are the most affected age group. Field trials have focused on serotype-

specific inactivated whole-cell autogenous bacterins which are isolated from clinically 

diseased animals, purified and administered to sows or piglets (Baums et al., 2010). Formalin 

processing and heat treatments which lead to cross-link instability, structural rigidity and 

denaturation of proteins in the process of processing bacterins may be a factor contributing to 

commercial vaccine development failure alongside reports of poor disease control and higher 

production costs (Meeusen et al., 2007; Thaysen-Andersen et al., 2007; Segura, 2015; Borkar 

and Goenka, 2019). Research suggests that inactivated vaccines lack the ability to confer 

immunity to heterologous strains and may require continuous adaptation to include the most 

appropriate serotypes, which may have geographical limitations given the diversity in 

serotypes throughout differing regions and countries. It is likely that this would make the 

generation of a universal serotype or capsular based vaccine unlikely to be successful  

(Meeusen et al., 2007). Furthermore, in the case of S. suis, there may be greater challenges 

associated with specific vaccine effects during field studies as it is a commensal bacteria in 

which colonization may occur in up to 100% of individuals within a herd (Arai et al., 2018).  

Experiments using live attenuated vaccines may confer immunity to S. suis and overcome 

drawbacks associated with bacterin-based measures, however they can be associated with 

unpredictable methods of attenuation, with the potential for evolutionary reversion back to 

virulence (Meeusen et al., 2007; Bull, 2015; Li et al., 2018). One live attenuated serotype 2 

strain was found to provide piglets with 100% cross-reaction protection against the same 
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serotype but only 60% protection against serotype 7 strains, highlighting the continued 

problem of generating vaccines with cross-serotype protection (Hu et al., 2019). 

Characterising highly conserved immunogenic factors that elicit heterogenous protection 

against all S. suis serotypes may contribute to a vaccine with greater application (Feng et al., 

2018). Prepartum vaccination of sows with inactivated recombinant surface antigen  conferred 

cross-immunity to heterologous strains of S. suis in challenged neonatal piglets (Hsueh et al., 

2017). However, immunoglobulin was only detectable until 6 weeks of age which was 

attributed to the short half-life of colostrum-derived immunoglobulin.  

Many vaccines including those described here are still in experimental phases and require 

additional studies to evaluate their long-term protective capacity (Feng et al., 2018). 

Prophylactic vaccination of swine with a commercial vaccine against S. suis may directly 

reduce the requirement for antibiotic use in agriculture and indirectly by reducing the number 

of subsequent human infections, therefore identifying suitable vaccine targets is paramount 

(Lipsitch and Siber, 2016). Currently, vaccine development strategies may target single genes 

or proteins that have been empirically identified, however the pathogenesis of S. suis infection 

is multifaceted and using techniques that enable the identification of multiple genes associated 

with infection and persistence can be utilised.   

 

1.7 Identification and prediction of bacterial gene essentiality and virulence factors 

1.7.1 Transposon sequencing  

Transposon elements (TEs) are mobile genetic elements that naturally exist in all bacterial 

genomes, have a vital role in evolution and can provide resistance to antibiotics and heavy 

metals (Blackwell, Iqbal and Thomson, 2019). TEs have the capacity to move within or 

between chromosomes and replicons in cells and mobility is mediated by a transposase 

enzyme which hydrolyses the double strand and promotes transposon insertion into the 

genome (Munoz-Lopez and Garcia-Perez, 2010) (Nesmelova and Hackett, 2010). Disrupting 

genes by artificially inserting transposons, known as transposon mutagenesis, has been used 

to elucidate genes involved in pathogenesis of bacterial infections (Lin et al., 2014) and 

provides a mechanism to exploit the function of transposons to achieve a greater 

understanding of how bacterial genotypes contribute to observed phenotypes (Van Opijnen 

and Camilli, 2013; Peng et al., 2017). High-throughput approaches facilitate simultaneous 

sequencing of many transposon mutants grown under differing environments alongside 

massive parallel sequencing, to identify genes important for growth or survival and potentially 

linked to host pathogenesis. Approaches involve the construction of transposon insertion 
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libraries where the majority of non-essential genes contain high-density insertions before the 

library is then cultured within the phenotype environment. Mutant frequency can then be 

determined by comparison of growth conditions, for example growth in bacterial media 

compared with growth in blood or serum for a pathogen that can cause septicaemia, such as 

S. suis. Bacterial DNA is then subjected to massive parallel sequencing, in particular focussed 

on the genome/transposon junctions which allows for the quantification of essential and 

conditionally essential genes involved (Van Opijnen and Camilli, 2013).  

Four main approaches for mapping the essential genome have been developed. They include 

insertion sequencing (INSeq), transposon insertion sequencing (TN-Seq), high-throughput 

insertion tracking by deep sequencing (HITS) and transposon-directed insertion site 

sequencing (TraDIS) (Gawronski et al., 2009; Goodman et al., 2009; Langridge et al., 2009; 

van Opijnen, Bodi and Camilli, 2009). Each mapping approach is similar, however there are 

subtle differences in applicable transposon or insertional elements, preparation protocols and 

sequencing approaches, PCR product sizes, library design and software tools used to 

bioinformatics analysis (Van Opijnen and Camilli, 2013). Genome-wide mapping approaches 

have been successfully used to identify niche-specific essential genes in several significant 

Streptococcus species. These include S. pneumoniae (Verhagen et al., 2014), S. pyogenes 

(Le Breton et al., 2015), S. agalactiae (Hooven et al., 2016), S. uberis (Blanchard et al., 2016) 

S. mutans (Shields et al., 2018) S. equi (Charbonneau et al., 2020) and S. suis (Arenas et al., 

2020). 

High throughput mapping approaches are often associated with laborious, timely and complex 

laboratory and bioinformatics protocols in order to produce mutants, isolation and sequencing 

of DNA fragments flanking insertions (Blanchard et al., 2016). Successful transformation often 

only occurs in bacterial species which have high transformation frequencies (Maguin et al., 

1996). Perhaps one of the most significant challenges of attempting to randomly insert 

transposons into bacterial genomes is that many transposons demonstrate preference for 

insertion at differing locations on genes based on their nucleotide sequences which may result 

in insertion biases and incomplete coverage of a region (Munoz-Lopez and Garcia-Perez, 

2010; Green et al., 2012). To overcome some limitations of conventional mapping approaches, 

a more accessible transposon insertion mapping pipeline was developed utilising the 

thermosensitive replicon pG+host::ISS1 transformant which integrates randomly into Gram-

positive Streptococcal, Enterococcal and Lactococcal genomes (Maguin et al., 1996), species 

which have previously been notoriously difficult to manipulate  (Blanchard et al., 2015a). The 

Pragmatic Insertion Mutation Mapping System (PIMMS), has low insertion bias and 

mutagenesis with pGhost9:ISS1 can be achieved with little manipulation of cells and inter-
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strain competition, further reducing bias (Blanchard et al., 2016). The PIMMS laboratory 

protocol alongside a bespoke bioinformatic pipeline has been successfully used to analyse 

genes essential for survival of Streptococcus uberis, a pathogen responsible for bovine 

mastitis and is widely applicable to any bacterial species that can be mutated with 

pGhost9:ISS1 including S. suis (Blanchard et al., 2016; Tomazi et al., 2019).  

Several housekeeping genes have been already identified as important for cellular 

homeostasis in S. suis. They include sodA which confers protection against superoxide 

radicals (Merkamm and Guyonvarch, 2001), enzymes and proteins associated with amino 

acid synthesis (aroA), phosphorylation (thrA) and protein assembly for normal cell growth 

(cpn60) (Katinka et al., 1980; Hemmingsen et al., 1988; Sun et al., 2005). Others are 

associated with nutrient acquisition such as Dpr which is involved in iron acquisition and 

homeostasis and Gki which regulates glucose kinase activity (Pulliainen et al., 2005). The 

mechanisms of survival and dissemination of S. suis in porcine and human blood are poorly 

understood, therefore genome-wide transposon mutagenesis and high throughput 

sequencing could identify conditionally essential genes which may be important for 

pathogenesis. One recent TNSeq based approach investigated a S. suis infection model in 

gnotobiotic piglets and identified a number of conditionally essential genes important for 

survival in porcine brain, blood, serum and cerebral spinal fluid through direct inoculation of 

S. suis transposon libraries.  The majority of genes identified were involved in metabolic and 

transport processes, translation, ribosomal structure and biogenesis, transcription, replication, 

recombination, repair and cell wall and envelope biogenesis (Arenas et al., 2020).  Using 

similar mapping approaches to identify similarities and differences in genes required for 

survival in human infections through in vitro studies in blood, serum or other biologically 

relevant fluids will likely provide greater insight into the pathogenesis of both human and swine 

S. suis infections.   

 

1.8 The role of hydrogen peroxide (H2O2) in control of bacterial infection  

Given that S. suis must survive and proliferate within the human or porcine host to cause 

septicaemia, the function of host phagocytic cells is critical for pathogen clearance. The 

phagocytic respiratory burst utilises endogenous reactive oxygen species (ROS)  to target 

phagocytosed pathogens, of which, H2O2 is a fundamental precursor to reactive intermediates 

which have bactericidal capacity (Odobasic, Kitching and Holdsworth, 2016; Yang, Huang and 

Xu, 2016; Nguyen, Green and Mecsas, 2017). Many bacteria have developed strategies that 

facilitate resistance to killing by neutrophils and the elimination of ROS during respiratory 

bursts, including indirect detoxification of ROS and indirect repairing damaged molecular and 
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cellular targets (Nguyen, Green and Mecsas, 2017). Indirect resistance mechanisms can 

include proteins that are involved in the repair of DNA or bacterial proteins damaged by ROS 

during a respiratory burst, metal ion transporters involved in metal homeostasis and oxidative 

stress resistance and have been already been identified in a number of pathogens including 

Group A Streptococci (Henningham et al., 2015).  

Recently, the genes associated with survival of S. equi in blood and against the action of 

hydrogen peroxide have been identified in a TIS based genomic comparison study 

(Charbonneau et al., 2020).  Fourteen genes were identified that were ubiquitous for bacterial 

survival in both whole blood and hydrogen peroxide and included those associated with energy 

production and conversion, cell replication, recombination, and repair. It is likely that similar 

genes may impact the survival and dissemination of S. suis in swine and human blood and 

provide potential targets for understanding key host/pathogen infection dynamics.   

 

1.9 Research aims and objectives  

The aim of the project was to characterise genes determined as essential for S. suis survival 

and growth in the presence of hydrogen peroxide using PIMMS bioinformatics-based 

comparative analysis and determine the potential functional roles of encoded proteins and 

potential role in S. suis survival and virulence.  
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2.0 Materials and methods  

 

2.1 Bacterial strains and growth conditions  

Unless otherwise stated, all reagents were obtained from Sigma-Aldrich. S. suis P1/7 (ATCC 

BAA-853) (Holden et al., 2009) and 5 mutant S. suis P1/7:pGh9:ISS1 pools (mutant pools 

(MP) 1, 2, 3, 4 and 5) containing approximately 20,000 bacteria were provided by Dr Sharon 

Egan at the University of Nottingham. Strains were routinely cultured in Brain-Heart Infusion 

(BHI) broth (Oxoid) or on solid media at 37C for 16 hours in the presence of 0.5µg/ml 

erythromycin (Ery).   

 
2.2 Minimum inhibitory concentration (MIC) of hydrogen peroxide (H2O2) 

To determine the concentration of H2O2 required to exert a selective pressure on S. suis, the 

MIC of H2O2 in BHI was determined. In a 96-well plate, an overnight culture of S. suis was 

diluted such that each well contained 105 cfu/ml. Doubling dilutions of BHI containing H2O2 

(Sigma Aldrich), ranging from 50-0.78 µM were added to wells, alongside controls containing 

BHI only and no H2O2. Bacterial concentrations were confirmed by overnight growth of serially 

diluted cultures on BHI agar. The experiment was conducted in triplicate and repeated twice. 

The plate was incubated at 37°C for 15 hours in a Varioskan LUX microplate reader. Optical 

density (OD) readings were taken every hour at 600nm and prior to readings, the plate was 

shaken at 300spm for 5 seconds to agitate samples.  

 
2.3 Survival and growth of S. suis P1/7: pGh9:ISS1 mutant pools in hydrogen peroxide  

A 6.25 mM dilution of H2O2 was prepared in BHI and inoculated with approximately 105 CFU/ml 

of each S. suis mutant pool, with a control generated for each sample omitting H2O2. Cultures 

were grown at 37°C for a maximum of 6 hours with bacterial concentrations determined hourly 

by plating serial dilutions at each time point and for the initial inoculum to determine bacterial 

concentration. Samples were stored in 25% glycerol (v/v) at -80°C for each time point.  

 
2.4 Preparation of Streptococcal Chromosomal DNA from S. suis  

2.4.1 Cell harvesting 

Enriched mutants were harvested from 0.5µg/ml erythromycin BHI agar plates using 15ml of 

0.9% sterile saline solution (Oxoid, UK) and sterile wedge spreader (Fisher Scientific, UK) and 



29 

 

an equal volume of sterile 50% glycerol added to the remaining suspensions and inverted to 

mix and stored at -80°C.  

 

2.4.2 Extraction of genomic DNA from cells 

Genomic DNA was extracted from 1.0ml of harvested cultures. Cultures were centrifuged at 

13,000 x g for 5 minutes at room temperature. The supernatant was removed, and cell pellet 

washed in 1.0ml of Tris-EDTA (TE) buffer (10 mM Tris-HCl, 1 mM disodium EDTA, pH 8.0). 

The supernatant was removed, and cell pellet resuspended in 500µl of fresh cell wall 

disruption buffer (30U/ml mutanolysin; 10mg/ml lysozyme in TE buffer). Samples were 

incubated at 37°C for 30 minutes. Following incubation, 40µl of cell lysis buffer (SDS (20% 

w/v in 50 mM Tris, 20 mM EDTA pH 7.8) and 120µg Proteinase K were added to cells and 

gently inverted to solubilise cells into a clear solution. Cells were incubated for a further 60 

minutes at 37°C. An equal volume of saturated 6.0M NaCl solution was added to the cell 

solution and agitated for 15 seconds to precipitate cell wall material. Samples were centrifuged 

at 17,000 x g for 10 minutes to obtain a firm pellet. Approximately 1.0ml of supernatant was 

removed and added to a fresh microcentrifuge tube and centrifuged as above, repeated twice 

with 700 µl and 500 µl of supernatant respectively to remove protein contaminants. DNA was 

precipitated by the addition of 100% ice cold ethanol (Fisher Scientific, UK) and incubated on 

ice for 60 minutes. Precipitated DNA was centrifuged at 13,000 x g for 5 minutes. The ethanol 

was carefully discarded, and the DNA pellet washed twice with 70% ice cold ethanol and 

centrifuged as above. DNA pellets were air-dried overnight and carefully re-suspended in 50 

µl of TE buffer containing 20µg/ml RNAse A and incubated at 4°C for 16 hours followed by 

incubation for 30 minutes at 37°C to remove RNA.  

 

2.4.3 Quantifying DNA concentration  

DNA concentrations were quantified using Qubit® dsDNA Broad Range (BR) Assay (Fisher 

Scientific, UK). Assay components were equilibrated to room temperature and Qubit® working 

solution was created by diluting the Qubit® dsDNA BR reagent (Fisher Scientific, UK) at a ratio 

of 1:200 in Qubit® dsDNA BR buffer (Fisher Scientific, UK), ensuring that the final volume of 

working solution in each assay tube was 198 µl for each DNA sample and 190 µl for each 

standard used. The final volume in each assay was made up to 200 µl by adding respective 

Qubit® standards or DNA. Samples were vortexed for 3 seconds, incubated at room 

temperature for 2 minutes and quantified using a Denovix DS-11 FX+ Fluorometer (Cambridge 

Biosciences).  
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2.5 Generation of DNA fragments for PIMMS based bacterial sequencing  

2.5.1 DNA shearing and purification   

Approximately 4µg of each sample of genomic DNA sample was suspended in 200ul of TE 

buffer and fragmented in 3Kb MiniTUBEs (Covaris, UK) using focused-ultrasonic using a 

Covaris M220 focused ultrasonicator. Following shearing, DNA samples were transferred into 

a Lo-Bind microcentrifuge tube and purified using Agencourt AMPure XP Solid Phase 

Reversible Immobilisation (SPRI) beads (Beckman Coulter, UK) at a ratio of 1:1.8 of 

DNA:beads according to manufacturer’s instructions. Briefly, samples were slowly mixed by 

pipetting and incubated at room temperature for 5 minutes and collected on a magnetic rack. 

The supernatant was removed and beads were washed twice with 70% BioUltra grade 

ethanol, with DNA eluted in 85ul of molecular grade water.  

 

2.5.2 DNA fragment repair  

The purified DNA fragments were blunt end repaired using NEBNext End Repair Module (New 

England Biolabs, UK). 1x NEBNext End Repair buffer and 5% NEBNext End Repair Enzyme 

mix were added to each sample and incubated at 20°C for 30 minutes using a Thermocycler 

PCR block (Thermofisher, UK). DNA was purified using SPRI beads previously described and 

eluted into 50 µl of molecular biology grade water.  

 

2.5.3 DNA re-circularisation and inverse PCR 

To circularise the DNA fragments, DNA was incubated with 1x ligase buffer, 1000 U of T4 

DNA ligase (NEB, UK) and incubated at 15°C for 16 hours. The DNA was purified using the 

NucleoSpin® Gel and PCR Clean-up kit (Macherey & Nagel, Germany) according to the 

manufacturer’s instructions, however at the elution step, samples were eluted using 30µl of 

pre-heated (70°C) elution buffer. Re-circularised DNA was quantified using Qubit BR assays 

previously described. PCR was performed using 100ng of re-circularised DNA, 1x Phusion HF 

buffer (NEB), 200µM of dNTPs, 0.5 µM of each primer (forward: p064 5’- 

AGAACCGAAGAATTCGAACGCTC-3’ and reverse: p082 5’-

CCAACAGCGACAATAATCACATC-3’). The PCR programme for inverse PCR reactions 

followed: 98°C for 5 minutes, paused and 1U of Phusion High Fidelity DNA Polymerase (NEB), 

was added to samples. This was followed by 35 cycles of 98°C for 10 seconds, 63°C for 30 

seconds and 72°C for 1 minute and one cycle of 72°C for 8 minutes. The PCR products were 
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purified using SPRI beads using the method described above by combining 50 µl of each DNA 

sample to 90 µl of SPRI beads. DNA was eluted into 30 µl of molecular biology grade water. 

 

2.6 Nucleotide sequencing  

Triplicate PCRs of each sample were pooled into individual tubes containing a final 

concentration of 500ng of DNA. Extracted DNA from the S. suis P1/7 mutant pools (n=5) grown 

in BHI (input pools), and mutant pools (n=5) grown in H2O2 (output pools) were sequenced at 

the Leeds Next Generation Sequencing Facility using 2x150PE reads using NextSeq 500 to 

obtain approximately 16 million reads per pool. 

 

2.7 Bioinformatics analysis Bioinformatics analysis  

2.7.1 Quality Control 

Libraries were constructed using the standard NEB Ultra workflow (New England Biolabs, 

USA). The resulting raw FASTQ sequence data was assessed for sequence quality using 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure the data was 

of sufficient quality (>Q30).  

 

2.7.2 Raw data processing 

The PIMMS 2.0 bioinformatic pipeline (Blanchard et al., 2015) was used to process sequence 

reads and map them to the S. suis P1/7 genome. The S. suis P1/7 genomic sequence 

information was downloaded from NCBI (accession number: AM946016.1). Matched reads 

were defined as sequence reads containing the ISS1 and S. suis P1/7 genomic information 

and were mapped to the reference genome to confirm the locations of mutations within the 

genome for each sequence analysed. A true insertion was defined as one with ≥3 occurrences 

within each mutant pool, to be confident that detections had not occurred by chance. 

Bioinfographics of the distribution of pGh9:ISS1 insertions in BHI and H2O2 were subsequently 

created using GraphPad Prism version 9.0.0 for Windows (GraphPad Prism, 2020).  

 

2.7.3 Functional annotation of essential genes 

Phenotypically essential genes were determined for both input and output pools and 

bioinfographics were created using Venny 2.1.0 (Oliveros, 2007). The essential genes from 

the genome protein annotation file were parsed using an in-house script, to create an essential 
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gene FASTA file for further analysis. To enable genes to be grouped according to the functions 

of encoded proteins and give a broad indication of their function, BlastKOALA was used to 

obtain KEGG Orthologies (KO) (Kanehisa, Sato and Morishima, 2016). The essential gene 

FASTA files were uploaded to BlastKOALA with taxonomy ID 218494. KEGG genes were 

searched in the family_eukaryotes + genus_prokaryotes database and assigned a K number 

which corresponded to a Brite Hierarchy, indicating functionality. Further assessment was 

performed to assess the distribution of the C terminal centile positions for every unique 

insertion point to identify the presence of truncated genes within the BHI input and H2O2 output 

pools. Likely subcellular protein location was determined for genes identified as being 

essential for growth in H2O2 using PSORTb 3.0 bacterial protein subcellular localisation 

software (Yu et al., 2010) and SignalP 5.0 (Almagro Armenteros et al., 2019).  

 

2.7.4 Statistical analysis for identification of overexpression of genes in specific phenotypes  

EdgeR Bioconductor software (Robinson, McCarthy and Smyth, 2009) was used to conduct 

statistical analysis to identify putative genes with an increased fitness value using a false 

discovery rate threshold of <0.05. Metabolic pathway analysis was performed using 

BLASTKOALA and the categorised output for each phenotype was assessed for enrichment 

of specific genes within the same metabolic pathways using a chi-squared statistical analysis 

in R (R Core Team, 2020). Differences were considered significant between metabolic 

pathways in the two growth conditions if the p value was <0.05.  

 

2.7.5 Essential genes shared with other bacterial species 

The protein sequences from the essential genes was parsed through the Database of 

Essential Genes (DEG) (Zhang et al., 2004) to identify whether putative function was shared 

with other bacterial species. Amino acid sequences from essential genes of interest were   

uploaded and compared to all essential genes within DEG. Genes were considered as having 

shared putative function when the percentage identity of amino acid sequences was greater 

than 70% and the query length was greater than 75% of the original amino acid sequence. 

Unique Clusters of Orthologous Genes (COG) numbers for the genes identified were allocated 

a functional category using the COG database (Galperin et al., 2020). 
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3.0 Results  

3.1 Analysis of S. suis P1/7 survival and growth in hydrogen peroxide  

S. suis P1/7 was incubated for 15 hours in BHI media containing H2O2 at concentrations 

ranging from 0.78 µM to 50 µM in a 96-well plate. Optical densities (ODs) were measured at 

an absorbance of 600nm to measure survival and growth of bacteria at every hour. Analysis 

of the resulting growth curves indicated that bacterial growth was inversely associated with 

increasing concentrations of H2O2 and no growth of bacteria was observed at concentrations 

above 25µM (see Figure 3.1). A concentration of 6.25µM was chosen to assess the effect of 

H2O2 as it was shown to impact but not completely prevent bacterial growth.  

 

 

 

 

Figure 3.1: Growth assessment for S. suis P/17 in the presence of hydrogen peroxide.  

The growth of S. suis was assessed in BHI media in the presence of H2O2 to assess impact 
on bacterial survival. Cultures were analysed in triplicate and media controls omitting bacteria 
were performed for each concentration of H2O2. No bacteria growth was observed above a 
concentration of 25 µM of H2O2.  
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3.2 Sequencing and PIMMS 

After parsing the sequencing data for quality, it was analysed through the PIMMS pipeline to 

determine the number of bacterial mutants that could be detected in each growth condition. A 

total of 84,518,709 sequencing reads were analysed for the BHI cultured bacterial populations, 

635,998 which contained transposon/genome junction information and individual S. suis 

mutant DNA. A total of 23,208 unique mutations were identified within this population with the 

exact location of the ISS1 element mapped within the bacterial chromosome. Within the 

cultured populations grown in BHI containing H2O2, a slightly higher total of 97,180,970 

sequencing reads were identified, containing 1,383,668 sequence reads with both 

transposon/genome junction information and a higher total of 42,157 unique mutations also 

observed within this population.   

 

3.3 Distribution of pGh9:ISS1 insertions in BHI and H2O2 

The location of each transposon insertion site was used to generate a graphical representation 

of identified mutation within S. suis P1/7 genome for bacteria cultured in BHI media (input 

pool), to determine any potential for transposon insertion site bias (Figure 3.2).  Consistent 

distribution of genomic mutations was observed across the bacterial genome, with areas 

where mutations could not be identified indicating the likely location of genes essential for 

growth within this environment. A similar profile was observed for the H2O2 (output pool) data 

where no overrepresentation of specific genomic mutations was observed for a particular 

genomic site, indicating that there was no site-specific bias or overrepresentation of individual 

bacterial mutants within the population as a whole (Figure 3.3).  
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Figure 3.2 Genomic representation of S. suis P1/7 bacterial mutants identified after growth in BHI  

The graph represents a non-linear relationship between gene loci and the total number of mutations detected within bacterial colonies grown in 

BHI media. A total of 2052 loci including tRNA were identified. Represented in red, mutations were identified throughout the genome and areas 

where no coloured points are displayed represent regions of the genome where no bacterial mutants could be identified. Several mutations were 

represented at high numbers (4000), indicating that some mutations were highly represented within the overall population.  
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Figure 3.3  Genomic representation of S. suis P1/7 bacterial mutants identified after growth in H2O2   

The graph represents a non-linear relationship between gene loci and the total number of mutations detected within bacterial colonies grown in 

BHI with additional H2O2. A total of 1969 loci including tRNA were identified. Represented in blue, mutations were identified throughout the 

genome, however areas where no coloured points are displayed represents bacterial mutants which were unable to be identified in a number of 

loci. Several mutations were represented at high numbers (4000-5000), indicating that mutations were highly represented in some bacteria. 
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3.4 Essential genes in the S. suis genome 

To identify phenotypic differences between input and output populations, a comparison was 

performed using PIMMS 2.0. A total of 2052 coding sequences including tRNA genes were 

identified within the annotated S. suis P1/7 genome. Genes were deemed essential for 

bacterial growth in specific phenotypes when no ISS1 insertions were identified throughout 

the coding sequences of bacterial mutant pools. In the BHI phenotype, a total of 160 genes 

were identified as being essential. A total of 35 genes were identified as being essential for 

the H2O2phenotype and 198 genes identified as essential for growth in both conditions (Figure 

3.4).  

 

 

Figure 3.4 Comparison of the number of essential genes found after growth of 

S.  suis in BHI and in the presence of H2O2.  

Phenotypically essential genes identified from S. suis grown in BHI (represented in blue), 

H2O2 (represented in yellow) and essential genes common to both phenotypes (centre). A 

total of 2052 genes were identified in the bacterium, of which 160 were essential for growth 

in exclusively BHI, 198 essential for growth in both phenotypes and 35 for growth 

exclusively in H2O2.  
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3.5 Analysis of essential genes for S. suis growth  

 

A total of 159 out of 160 genes identified as essential for growth in BHI were functionally 

annotated using BlastKOALA. The majority of which were related to metabolism of 

carbohydrates, nucleotides, lipids, cofactors and vitamins and amino acids (n=54), followed 

by genetic information processing (n=38), signalling and cellular processes (n=11) and 

environmental information processing (n=5). A total of 51 genes could not be assigned a KO 

number and 42% (n=67) had no functional annotation (Table 3.1). 

In total, 194 genes out of 198 essential for growth in both BHI and H2O2 were given functional 

annotation using BlastKOALA (Table 3.2). Most genes were associated with genetic 

information and processing (n=85), followed by metabolism (n=60) including glycan 

biosynthesis and metabolism (n=6) and cellular and signalling processes (n=6). A total of 28 

genes could not be assigned a KO number, 3 genes were poorly characterised and 38% 

(n=73) had no functional annotation.  

Finally, all 35 genes essential for growth in H2O2 were annotated. Most genes were related to 

genetic information processing (n=10), followed by metabolism of carbohydrates, nucleotides, 

lipids, cofactors and vitamins and amino acids (n=10), environmental information processing 

(n=3) and cellular processes (n=2) . A total of 8 genes could not be assigned a KO number 

and 54% (n=19) had no functional annotation (Table 3.3). Additionally, genes belonging to 

protein families associated with signalling and cellular processes (n=7) and metabolism of 

energy (n=6), terpenoids and polyketides (n=4) were identified in the input pools but not in 

output pools. 
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Table 3.1: Essential coding sequences for S. suis grown in BHI and their associated Brite hierachies using KEGG mapper 

reconstruction result from BlastKOALA.  

Brite Hierarchy Counts Gene 

 
Protein families: genetic information 
processing  
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SSU0009, SSU0020, hisS, SSU0705, SSU0721, SSU079, ffh, gyrA, SSU1141, 
rplA, SSU1168, SSU1186, era, SSU1227, gyrB, SSU1387, SSU1461, mraW, 
nusB, rpsF, SSU1642, argS, gidA, SSU1958, recF, trsA rplB, rpoB, priA, ileS, 
lysS, holB, rimM, cca, engB, glyS, SSU165  

Genetic information processing: unclassified  1 SSU0545 
Protein families: signalling and cellular 
processes 

10 SSU0219, SSU0292, fba, asnS, SSU0709, dpr, glnQ5, SSU0159, SSU0377, ftsZ 

Signalling and cellular processing: unclassified  1 mecA 
Environmental information processing 5 SSU0577, SSU1121, vicK, SSU1853, SSU1867 
Protein families: metabolism 10 revA, csp2K, addB, spxA, pepB, SSU1108, SSU1116, SSU1431, oppB, 

SSU1677 
Carbohydrate metabolism  10 prsA, treA, glmS, ddlA, SSU1256, galE, SSU1395, atoB, accD, pgi 
Glycolysis/ Gluconeogenesis  1 Ldh 
Lipid metabolism  2 fabH, oppC 
Metabolism of cofactors and vitamins  4 SSU0054, SSU0919, engC, gltX 
Metabolism of terpenoids and polyketides 4 mvaK1, mvaD, SSU1119, uppS 
Amino acid metabolism  7 SSU0335, SSU0365, hom, thrB, SSU0996, SSU1129, csdB 
Nucleotide metabolism 5 thyA, SSU0797, apt, pyrH, SSU1778 
Energy metabolism  6 SSU0063, cysM, potB, potC, oppF, cysE 
Metabolism: unclassified  5 murD, folD, ftsW, SSU1329, fabK 
Unknown   51 SSU0010, rplX, SSU0213, mvaK2, thiD, rplS, SSU0334, murG, SSU0432, 

cps2B, SSU0528, SSU0529, argR, SSU0645, dpfB, addA ribC, pheT, SSU1110, 
SSU1114, SSU1115, rmlA,, SSU1152A, SSU1161, SSU1166, murF, secG, 
rpmGB, SSU1294, SSU1321, ezrA, SSU1341, SSU1396, SSU1399, SSU1440, 
SSU1458, ppaC, SSU1525, SSU1537, SSU1542, serS, fabE, scrB, SSU1622, 
SSU1626, rbfA, oppA, iscU, hasC, nrdI, SSU1953 

Total  159  

Essential genes were characterised (indicated by gene names in italics) and uncharacterised (indicated by unique SSU numbers) genes based 
on their KO numbers. 



40 

 

Table 3.2: Essential coding sequences for S. suis growth in BHI and H2O2 and their associated Brite hierachies using KEGG mapper 
reconstruction result from BlastKOALA..  

Brite Hierarchy Counts Gene 

Genetic information processing 84 infA, SSU0112, groES, fus, glnR, SSU0162, hrcA, grpE, recU, SSU0436, SSU0439, 
SSU0729A, SSU0780, SSU0792, infC, ccpA, prfB, SSU1536rpsJ, rplC, rplV, rpsC, 
rplP, rpsQ, rplN, rplE, rpsN, rpsH, rplF, rplR, rpsE, rpmD, rplO, secY, rpmJ, rpsM, rpsK, 
rpoA, rpsL, rpsG, rpmF, dnaK, gatC, gatA, rpoZ, dnaE, SSU0505B, SSU0704, parE, 
rplU, rpmA, rpsP, rplL, rplJ, rpsT, pheS, lig, ftsY, rnc, SSU1045, alaS, rplT, rpmI, rrf, 
rplK, vicR, rpsU, SSU1348, metK, SSU1545, ftsL, efp, rpsR, nusA, SSU1728, rpsO, 
proS, tRNA-Cys, rpe, SSU1935, veg, rplI 

Genetic information processing: unclassified  1 nrdH 
Protein families: signalling and cellular 
processes 

5 SSU0437, SSU1122, SSU1544, ftsA, rpoD 

Signalling and cellular processes: unclassified  1 SSU1112 
Protein families: metabolism  5 SSU0720, SSU1120, SSU1123, SSU1124, eno 
Environmental information processing  12 SSU0113, SSU0703, potA, SSU0951, pstC, pstS, pstI, ptsH, ftsX, ftsE, pbpX, SSU1952 
Amino acid metabolism  4 SSU0440, dapB, SSU1131, ptsK 
Metabolism of other amino acids  3 SSU1517, gnd, SSU1613 
Carbohydrate metabolism  12 plr, tpi, pfk, pyk, murB, prsA2, SSU1320, nadE, SSU1530, SSU1541, accA, thiN 
Energy metabolism  8 atpC, atpD, atpG, atpA, atpH, atpF, atpB, atpE 
Lipid metabolism  3 SSU1200, accC, SSU1954 
Nucleotide metabolism  7 hpt, gmk, tmk, tdk, SSU1044, cmk, tRNA-Arg 
Metabolism of cofactors and vitamins  6 coaC, dyr, SSU1486, alr, SSU1689, SSU1784 
Glycan biosynthesis and metabolism  6 SSU1117, rmlB, rmlC, SSU1548, oppD, SSU1672 
Metabolism: unclassified  6 SSU0065, SSU0435, SSU0560, SSU1109, SSU1292, rpmE 
Poorly characterised  3 SSU0743, glr, SSU1644 
No KO number assigned 
 

28 SSU0004, SSU0064, SSU0084, SSU0086, SSU0087, SSU0121A, SSU0121B, 
SSU0254A, SSU0373, SSU0438, SSU0522, SSU0530, SSU0619, cpsY, SSU0769, 
SSU0770, SSU0820, SSU0825, SSU1111, SSU1113, SSU1118, SSU1291,  
ssb, SSU1648, SSU1657, rgpG, rpsD, SSU1937 

Total  153  

Essential genes were characterised (indicated by gene names in italics) and uncharacterised (indicated by unique SSU numbers) genes based 

on their KO numbers 
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Table 3.3: All essential coding sequences for S. suis grown in H2O2 and their associated Brite hierachies using KEGG mapper 

reconstruction result from BlastKOALA.  

Brite Hierarchy  Counts Gene 

 
Protein families: genetic information and 
processing  

 
10 
 

 
SSU0013, SSU0712, prfA, SSU0857, SSU0853, SSU1293, ptsK, nusA, SSU0505A, 
vicX, 

Genetic information processing  2 rplD, rnz,  
Environmental information processing  3 prsA, oppD, SSU1078  
Cellular processes  2 accA, SSU1608 
Protein families: metabolism  2 recR, SSU1866  
   
Carbohydrate metabolism 1 gcaD 
Nucleotide metabolism  1 SSU1823  
Lipid metabolism  1 SSU1077 

Metabolism of cofactors and vitamins 1 SSU0321 

Amino acid metabolism  3 adk, SSU1906, SSU1442 
Metabolism: unclassified  1 SSU0018  
No KO number assigned 8  rpmC, SSU0568, SSU0679, SSU0854, coaA, SSU1137, rnpA, rplI  

Total  35  

Essential genes were characterised (indicated by gene names in italics) and uncharacterised (indicated by unique SSU numbers) genes based 

on their KO number 
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3.6 Truncated genes important for S. suis P1/7 growth in H2O2 

Analysis was performed on the output data to identify additional genes which may be 

conditionally essential in the presence of H2O2, where mutations could only be identified in the 

final 15% of the C-terminal sequence of the gene. This identified a further 17 ‘truncated’ genes 

from the H2O2 output pool where the comparative gene in the BHI population showed multiple 

mutations detected throughout the gene sequence (Table 3.4).  Similarly, to BHI, the majority 

of genes in the H2O2 output pool were related to genetic information and processing (n=8) as 

well as environmental information processing (n=2) and metabolism (n=3).  Some genes were 

poorly characterised (n=2) or could not be assigned a KO number (n=2).   Furthermore, 65% 

(n=11) were not functionally annotated and 1 was a pseudogene. Additionally, genes essential 

for xenobiotic biodegradation and metabolism (n=1) was only identified in the input pool (Table 

3.1).  
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Table 3.4: Truncated genes important for S. suis P1/7 growth in H2O2 and their associated Brite hierarchies*.  

Brite hierarchy  Counts Gene 

 
Protein families: genetic information and processing 

 
8 
 

 
pth, rplQ, SSU0158, SSU0212, SSU0713*, trmD, SSU1757, SSU1775 

Environmental information processing  2 SSU0114,  SSU0883,  

Carbohydrate metabolism  1 SSU1290 

Energy metabolism  1 fhs 

Metabolism of other amino acids  1 metG,  
Poorly characterised 2 SSU0473, sufD 

No KO number assigned  2 SSU0798, SSU1569 

Total 17   
 

Essential genes were characterised (indicated by gene names in italics) and uncharacterised (indicated by unique SSU numbers) genes based 

on their KO numbers. 

*Each protein coding sequence only contained insertions within the 15 percentile of the C terminus. 



44 

 

3.7 Analysis of subcellular location of genes essential for growth in H2O2 

The subcellular location of corresponding proteins identified as conditionally essential for 

growth in H2O2 was determined using PSORTb 3.0. The majority of genes were identified as 

likely to be cytoplasmic proteins (n=18), localised within the cell. A total of 8 cytoplasmic 

membrane proteins were identified including inner membrane (SSU0854), molecular 

chaperone (prsA), oligopeptide transport (oppD), zinc transport (SSU1866) and unknown 

cytoplasmic membrane proteins (SSU1906, SSU0018, SSU1077). An extracellular protein of 

unknown prediction was also identified (rpmC) (Table 3.5). A total of 9 sequences had 

exclusively unknown prediction where no subcellular localisation could be determined 

(SSU0568, SSU0505A, SSU0071, SSU1939 SSU1823, SSU0853, SSU1293, SSU1442, 

SSU0712).  

A number of genes were identified as essential for growth in both BHI media and H2O2 as 

indicated by * in Table 3.7.  A total of 36 genes  were identified as likely cytoplasmic membrane 

proteins within the H2O2 phenotype (rplO, SSU0093, SSU0437, SSU0440, SSU0087, 

SSU0440, SSU0560, SSU0703, SSU0729A, potA, SSU0770, SSU0780, SSU0951, pstC, 

pstS, atpD, atpF, atpB, atpE, ftsY, SSU1111, SSU1112, SSU1113, SSU1118, SSU1122, 

SSU1123, ftsX, ftsE, SSU1292, glr, SSU1544, SSU1548, oppD, rplM, SSU1952, SSU1954), 

with only one extracellular protein (SSU0087) identified (Table 3.5). A total of 140 genes were 

cytoplasmic proteins and 22 genes had unknown prediction (SSU0004, SSU0065, SSU0084, 

SSU0086, SSU0092, SSU0121A, SSU0121B, SSU0254A, SSU0278, SSU0324, SSU0436, 

SSU0505B, SSU0522, SSU1043, SSU1045, SSU1117, SSU1132, SSU1291, SSU1503, 

SSU1657, SSU1692, SSU1936). PSORTb analysis of truncated genes for growth in H2O2 

identified 4 cytoplasmic membrane proteins of no known localisation (SSU0114, SSU0212, 

SSU0473, SSU1775) (Table 3.7). 

SignalP 5.0 was used to confirm the presence of signal peptides, indicating translocation from 

the cytoplasm. Analysis of genes essential for growth in H2O2 and both H2O2 and BHI both 

identified prsA (marked with a #) as having a lipoprotein signal peptide (Sec/SPII- lipoprotein 

signal peptides transported by the Sec translocon and cleaved by Signal Peptidase II) (Table 

3.5).SignalP analysis of the truncated genes for growth in H2O2 identified 1 secretory signal 

peptides (Sec/SPI- secretory signal peptides transported by the Sec translocon and cleaved 

by Signal Peptidase I) (SSU0883) and 1 lipoprotein signal peptide (SSU0798) (Table 3.6).  

 

3.8 Additional functional statistical analysis 

EdgeR statistical analysis was performed to identify putative genes which had an increased 

fitness value. No genes were found to have statistically significant impact on fitness.  A chi-
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squared statistical analysis of genes essential for growth in BHI and H2O2 was performed using 

R to identify enrichment of metabolic pathways. The results indicated that genes required for 

pathways including information processing, signalling and cellular processes, environmental 

information processing, glycolysis, metabolism of lipids, cofactors and vitamins, terpenoids, 

amino acids and nucleotides, energy metabolism, glycan biosynthesis and unknown 

processes were significantly associated with growth in both BHI and H2O2 phenotypes (Table 

3.7). However, the analysis also identified an overrepresentation of essential genes 

associated with general metabolism required for growth in H2O2, compared to genes for 

carbohydrate metabolism in BHI, indicating a switch from carbohydrate metabolism to general 

metabolism in the H2O2 phenotype (Table 3.7). 
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Table 3.5: Subcellular localisation of genes identified as essential genes for growth in the presence of H2O2.  A total of 45 positive 

localisations were identified based on PSORTb analysis.   

Gene Function  Subcellular localisation  Total insertions in 
BHI 

Unique insertions 
in BHI 

 
SSU0018 

 
Rod shape-determining protein 
MreC 

 
Cytoplasmic membrane 

 
6 
 

 
1 

rpmC 50S ribosomal protein L29 Extracellular protein  5 1 
SSU0854 Haemolysin-III related membrane 

protein 
Cytoplasmic membrane: inner 
membrane  

30 3 

SSU1077 Conserved hypothetical protein Cytoplasmic membrane 7 1 
#prsA Foldase protein prsA precursor Molecular chaperone, lipoprotein 

signal peptide 
10 2 

oppD 
 

Oligopeptide transport ATP-binding 
protein oppD 

Cytoplasmic membrane: oligopeptide 
transport 

3 1 

SSU1866 
 

Metal cation ABC transporter 
membrane protein 

Cytoplasmic membrane: zinc 
transport  

3 1 

SSU1906  Putative membrane protein Cytoplasmic membrane  4 1 
rplO* 50S ribosomal protein L15 Cytoplasmic membrane  0 0 
SSU0093* ABC transporter ATP-binding protein Cytoplasmic membrane  0 0 
SSU0437* 
 

Putative membrane protein Cytoplasmic membrane  0 0 

SSU0440* Acetyltransferase (GNAT) family 
protein 

Cytoplasmic membrane  0 0 

SSU0087* 
 

Putative 
phosphoribosylaminoimidazole 
carboxylase (fragment) 

Extracellular protein  0 0 

SSU0440* 
 

Aetyltransferase (GNAT) family 
protein 

Cytoplasmic membrane  0 0 

SSU0560* 
 

Cell envelope-related transcriptional 
attenuator domain protein 

Cytoplasmic membrane  0 0 

SSU0703* 
 

Putative membrane protein Cytoplasmic membrane  0 0 
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SSU0729A*  
 

Conserved hypothetical protein 
(fragment) 

Cytoplasmic membrane  
 

0 0 

potA* 
 

Putative spermidine/putrescine ABC 
transporter ATP-binding protein 

Cytoplasmic membrane  
 

0 0 

SSU0770* DegV family protein Cytoplasmic membrane  0 0 
SSU0780* Putative exported protein Cytoplasmic membrane  0 0 
SSU0951*+ 
 

Putative phosphate ABC transporter 
permease protein 

Cytoplasmic membrane  
 

0 0 

pstC*+ 
 

Putative phosphate ABC transporter 
permease protein 

Cytoplasmic membrane  
 

0 0 

pstS*+ 
 

Putative phosphate ABC transporter, 
extracellular phosphate-binding 
lipoprotein 

Cytoplasmic membrane  
 

0 0 

atpD* ATP synthase beta chain Cytoplasmic membrane  0 0 
atpF*+ ATP synthase B chain Cytoplasmic membrane  0 0 
atpB*+ ATP synthase A chain Cytoplasmic membrane  0 0 
atpE* ATP synthase C chain Cytoplasmic membrane  0 0 
ftsY* Putative cell division protein FtsY Cytoplasmic membrane  0 0 
SSU1111*+ Putative glycosyl transferase Cytoplasmic membrane  0 0 
SSU1112*+ Putative membrane protein Cytoplasmic membrane  0 0 
SSU1113*+ Putative glycosyl transferase Cytoplasmic membrane  0 0 
SSU1118* Putative membrane protein Cytoplasmic membrane  0 0 
SSU1122*+ Putative polysaccharide export ABC 

transporter permease protein 
Cytoplasmic membrane  
 

0 0 

SSU1123*+ Putative glycosyltransferase Cytoplasmic membrane  0 0 
ftsX*+ 
 

Putative cell division protein 
 

Cytoplasmic membrane  
 

0 0 

ftsE*+ Putative cell division ATP-binding 
protein 

Cytoplasmic membrane  0 0 

SSU1292* Putative membrane protein Cytoplasmic membrane  0 0 
glr* Glutamate racemase Cytoplasmic membrane  0 0 
SSU1544* Putative thioredoxin reductase Cytoplasmic membrane  0 0 
SSU1548* Putative helicase Cytoplasmic membrane  0 0 
oppD*  Oligopeptide transport ATP-binding 

protein OppD 
Cytoplasmic membrane  0 0 
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SSU1672* Putative D-alanyl-D-alanine 
carboxypeptidase 

Cytoplasmic membrane  0 0 

rplM* 50S ribosomal protein L13 Cytoplasmic membrane  0 0 
SSU1952* 
 

Putative tRNA (5-
methylaminomethyl-2-thiouridylate)-
methyltransferase 

Cytoplasmic membrane  
 

0 0 

SSU1954* ABC transporter ATP-binding protein Cytoplasmic membrane 0 0 

Total  45    

*Essential genes for growth in both H2O2 and BHI 

#Identified to contain a signal peptide by SignalP 
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Table 3.6: Subcellular localisation of truncated genes for growth in H2O2 by PSORT and SignalP. A total of 4 positive localisations were 

identified based on PSORTb analysis and 2 positive localisations identified based on SignalP analysis.   

Gene Function Subcellular localisation Insertions 
mapped in BHI 

Insertions mapped 
in H2O2 

SSU0114 ABC transporter permease protein Cytoplasmic membrane protein 17 10 
SSU0212 Putative signal peptidase I 4 Cytoplasmic membrane protein 16 27 
SSU0473 Putative membrane protein Cytoplasmic membrane protein 18 41 
SSU1775 
 

Putative preprotein translocase SecE 
subunit 

Cytoplasmic membrane protein 1 67 

SSU0883 
 

Putative glutamine ABC transporter, 
glutamine-binding protein/permease 
protein 

Secretory signal peptide 10 15 

SSU0798 Putative lipoprotein Lipoprotein signal peptide 39 6 
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Table 3.7: Chi-square analysis of genes essential for growth in BHI and H2O2, with significant P-values in bold.  

Brite Hierachy BHI ChiSq p value H2O2 ChiSq p value 

Information processing 159.811479 0.00049975 188.990616 0.00049975 

Signalling and cellular processes 3.09065657 0.11044478 0.1542939 0.84007996 

Environmental Information Processing 16.9514169 0.00049975 6.63586378 0.0089955 

Metabolism 2.92143133 0.10094953 4.10581599 0.04797601 

Carbohydrate Metabolism 6.00903855 0.01749125 2.69922481 0.14942529 

Glycolysis 6.00697496 0.01949025 5.23918478 0.017991 

Lipid Metabolism 0.00361263 1 0.11374772 0.78710645 

Metabolism of Cofactors and Vitamins 14.1654344 0.001999 12.7337825 0.00349825 

Terpenoid Metabolism 0.01158951 1 2.47907611 0.15892054 

Amino Acid Metabolism 10.5794723 0.001999 10.0896454 0.00749625 

Nucleotide Metabolism 0.27555375 0.67166417 0.13733693 0.72513743 

Energy Metabolism 32.3223711 0.00049975 20.053576 0.0009995 

Glycan Biosynthesis 0.70780107 0.45927036 0.02894736 1 

Unknown 115.518384 0.00049975 39.7266848 0.00049975 
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3.9 DEG analysis 

The protein sequences from genes identified as essential for growth in the presence of H2O2 

was parsed through the Database of Essential Genes (DEG) (Zhang et al., 2004) to identify 

whether putative function was common to known genes in different bacterial species.  

Following DEG analysis, a total of 16 genes which were essential for growth in H2O2 and 

shared H2O2 and BHI phenotypes were identified as having shared putative function with at 

least one other species of bacteria (see Appendix 2). Homology was described as a 

percentage amino acid match. Streptococcus (S.) mutans UA159 grown on blood agar, S. 

pyogenes NZ131 grown in Todd-Hewitt medium and S. agalactiae A909 and S. pneumoniae 

grown in rich medium were consistently represented with homologous genes identified. Some 

genes shared similarity with other Gram-positive bacterial species including Bacillus (B.) 

subtilis and B. thuringiensis BMB171 grown in rich medium as well as Gram-negative 

Staphylococcus aureus subsp. aureus MSSA476 grown in MHBII medium and Mycoplasma 

pulmonis UAB CTIP grown in rich medium.  

A total of 94% (n=15) of genes shared putative function with genes in S. agalactiae A909. 

Furthermore, 69% (n=11) of genes appeared in both S. agalactiae A909 and S. mutans 

UA159. A total of 56% of genes (n=9) were identified in S. pyogenes NZ131 and 38% (n=6) 

in S. pneumoniae. Genes rpIO and atpD were additionally found in Staphylococcus aureus 

subsp. aureus MSSA476. AtpD was identified in Mycoplasma pulmonis UAB CTIP and B. 

thuringiensis BMB171 and rpIO in B. subtilis.  
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4.0 Discussion  

S. suis is a highly adapted, commensal zoonotic pathobiont which contributes to the normal 

porcine nasal and oropharyngeal microflora (Vötsch et al., 2018). S. suis opportunistically 

infects young animals and is the leading cause of meningitis, endocarditis and sepsis in young 

pigs (Dutkiewicz et al., 2017a) which is associated with considerable animal welfare and 

economic implications (Wileman et al., 2019). S. suis is also responsible for increasing 

numbers of human infections with similar pathology in South East Asia where high pork 

consumption and small-scale swine farming are rooted in tradition (Goyette-Desjardins et al., 

2014; van Samkar et al., 2015). Despite receiving greater scientific interest in recent years, 

the mechanisms by which S. suis breaches host barrier surfaces, maintains a high level  of 

bacteraemia and causes systemic disease are still largely unknown (Fittipaldi et al., 2012) and 

research methods into understanding the putative role of virulence factors have been 

inconsistent and produced conflicting data (Takeuchi et al., 2013; Meng et al., 2016).  

The first line of treatment for S. suis is broad-spectrum β-lactam antibiotics (Burch & Sperling, 

2018) and enforcement of the use antibiotics for prophylactic purposes in some countries  and 

antimicrobial resistance remains a continuing challenge and with increasing demand for new 

therapeutic agents for disease control (Goutard et al., 2017).  Furthermore, attempts to 

produce an effective commercial veterinary vaccine to reduce the requirement for 

conventional antibiotics have been hampered by an incomplete understanding of the 

pathogenesis of infection and high variability of strains (Segura, 2015; Pian et al., 2016). Since 

gaining a greater understanding of the pathogenesis of infection is the key to vaccine and 

therapeutic development, this project aimed to identify genes which may be important during 

host phagocytic respiratory burst through comparative growth experiments of individual S. suis 

mutants grown in the presence of hydrogen peroxide and using the transposon sequencing 

approach known as PIMMS (Blanchard et al., 2016)  

 

4.1 PIMMS-based analysis of genes essential for S. suis growth  

The S. suis pan-genome is the complete genetic repertoire which constitutes both the core-

genome and accessory genome (Carlos Guimaraes et al., 2015). The accessory genome is a 

sub-set of non-essential genes which may not be consistently expressed in all S. suis  isolates 

but rather are associated with niche-adaptive, pathogenic and antibiotic resistant functions 

and S. suis may survive and proliferate in the absence of these genes under certain 

phenotypic conditions (Saunders et al., 2005; Segerman, 2012). On the other hand, the core-

genome is highly conserved and shared by all individuals of the same species and codes for 

proteins involved in basic cellular homeostasis, translation and replication. This should 
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represent genes that are essential for general replication for S. suis and mutations in such 

genes would likely result in the inability for the bacteria to survive and proliferate (Segerman, 

2012; Juhas et al., 2014; van Tonder et al., 2014; Carlos Guimaraes et al., 2015; Martínez-

Carranza et al., 2018). As gene essentiality is condition-dependent, it is possible to identify 

genes of interest that are involved in the pathogenesis of S. suis infection including 

hypothetical proteins which have not previously been established as essential through the 

process of elimination (Moule et al., 2014). 

Transposon elements (TEs) are mobile genetic elements that naturally exist in all bacterial 

genomes and have a vital role in evolution and resistance to antibiotics and heavy metals 

(Blackwell, Iqbal and Thomson, 2019). TEs have the capacity to move within or between 

chromosomes and replicons in cells; known as transposition or retrotransposition depending 

on whether DNA or RNA is concerned (Munoz-Lopez and Garcia-Perez, 2010). Transposon 

mutagenesis provides a method by which bacterial genomes can be randomly mutated 

utilising TEs and have been used extensively for the study of bacterial pathogenesis to further 

understand how bacterial genotypes contribute to observed phenotypes (Lin et al., 2014). 

High-throughput approaches have been used to facilitate simultaneous sequencing of many 

transposon mutants alongside massively parallel sequencing (MPS). Approaches involve the 

construction of transposon insertion libraries where most of or all non-essential genes contain 

high-density insertions before the library is cultured in vitro or in vivo. Mutant frequency can 

be determined at the start and end of growth conditions via MPS of the transposon junctions, 

which allow quantification of essential and conditionally essential genes involved (Van Opijnen 

and Camilli, 2013). In addition the normal growth of mutants defective in genes that are 

previously hypothesised to be essential, could reveal alternative biochemical pathways for 

fulfilling essential functions and give rise to novel therapeutic and vaccine targets (Goodall et 

al., 2018; Charbonneau et al., 2020).  

High throughput mapping approaches are often associated with laborious, timely and complex 

laboratory and bioinformatics protocols in order to produce mutants, isolate and sequence 

DNA fragments flanking insertion elements (Blanchard et al., 2016). Successful transformation 

often only occurs in bacterial species which have high transformation frequencies (Maguin et 

al., 1996). Perhaps one of the most significant challenges of attempting to randomly insert 

transposons into bacterial genomes is that many transposons demonstrate preference for 

insertion at differing locations on genes based on their nucleotide sequences, which may result 

in insertion biases and incomplete coverage of a region (Green et al., 2012; Munoz-Lopez & 

Garcia-Perez, 2010). Some conventional sequencing approaches are associated with 

additional complexity, for example during the annealing steps of PCR in the Transposon 

Directed Insertion Sequencing (TraDIS) protocol , fluorescence is lost and the transposon-
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specific sequencing primer requires a PhiX Control Library spike-in to prevent sequencing 

failure (Barquist et al., 2016) which is associated with additional cost and risk of contamination 

of microbial isolate genomes (Mukherjee et al., 2015). Finally, conventional sequencing 

approaches are often associated with the need for advance programming pipelines in order to 

map sequences and analyse data which are not universally accessible.  

To mitigate the limitations of conventional mapping approaches, PIMMS was developed with 

the intention of providing a more accessible transposon insertion mapping pipeline which 

utilises standard inverse PCR techniques to generate libraries and novice-friendly 

bioinformatics pipeline which takes less than 10 minutes to complete using a desktop 

computer (Blanchard et al., 2015). Another advantage of the PIMMS pipeline is that it utilises 

the pG+host::ISS1 transformant. This transposon element has been shown to integrate 

randomly into Streptococcal, Enterococcal and Lactococcal genomes (Maguin et al., 1996), 

which have previously shown notoriously low transposition frequencies. The pG+host:: 

transformant has also recently been utilised in a TraDIS-based approach with modified ISS1 

libraries to elucidate genes required for the fitness of S. equi subsp. equi in equine blood and 

hydrogen peroxide (Charbonneau et al., 2020).  

In the analysis of the distribution of mutants within the S. suis P1/7 mutant libraries used within 

this study, the distribution of mutants in both the bacterial media and H2O2 phenotypes 

identified no specific insertion site bias with a similar representation of mutants identified 

throughout the genome in both environments (Figures 3.1 and 3.2). This provided a visual 

representation of those sections within the genome where no mutations could be generated 

without being lethal for bacterial survival. The results confirmed minimal presence of insertion 

bias and was consistent with previous studies utilising this approach for the mastitis pathogen 

S. uberis (Blanchard et al., 2016) and zoonotic pathogen S. agalactiae (Santi et al., 

unpublished).  

 

4.2 Analysis of essential genes for S. suis survival and growth  

Essential genes are defined as those necessary for the survival and maintenance of basic cell 

function (Koonin, 2000). Genetic technologies and studies of gene essentiality for survival and 

pathogenesis can be widely applied to many biological fields (Martínez-Carranza et al., 2018) 

and have facilitated a shift from culture-based to genome-based vaccinology research 

(Rinaudo et al., 2009).  
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4.2.1 Genes essential for survival and growth of S. suis are predominately associated with 

metabolic pathways involved in basic cellular function 

To create the input pool of S. suis P1/7 and obtain an accurate representation of genes 

essential for general survival and growth, bacteria were cultured in BHI media which provided 

the optimal environment and nutrition for reproducible growth and mimic normal selection 

pressures associated with growth such as natural competition for resources (Bonnet et al., 

2020). In total, results from the PIMMS analysis identified 160 genes which were essential for 

growth in BHI. Of these, functional annotation analysis revealed that the majority of genes 

were involved in basic cellular functions including metabolism (of carbohydrates, nucleotides, 

lipids, cofactors, vitamins, and amino acids), and information processing (genetic, signalling, 

environmental and other cellular processes). In a study of S. uberis on an alternative bacterial 

media, Todd Hewitt Agar (THA), a number of comparative genes that were also identified as 

essential in the current study of S. suis P1/7 that were associated with basic cellular functions 

including cell division and cell cycle (ftsA, recU), regulation and cell signalling (HisS),  DNA 

metabolism (HolB and GryA) and those related to the cell wall and capsule (Glr, MurF, DdlA, 

MurG, RmlB, MurE,  PbpX, GlmS, RmlA) to name a few (Blanchard et al., 2016). These 

metabolic pathways associated with standard cellular processes are consistent with others 

identified in similar studies of S. pyogenes gene essentiality where essential genes were 

associated with key cellular processes and metabolic pathways and were conserved within 

the core genome (Le Breton et al., 2015).  

In addition, 42% of the essential genes identified in the BHI input pool had no functional 

annotation and could only be deemed as hypothetical proteins (Table 3.1). Putative gene 

function are hypothesised based on inferred sequence homology with known proteins, location 

within the genome and surrounding genes and also relevant gene-gene interactions, however 

the exact function remains unknown (Zhao et al., 2013; Hanoudi, Donato and Draghici, 2017). 

When the complete genome of S. suis P1/7 was first published, more than 800 genes were 

annotated as having putative function (Holden et al., 2009) and this lack of knowledge is 

common, especially in species such as S. suis where genomic based research analysis is still 

relatively in its infancy (Wood et al., 2012). Many genomic studies performed on S. suis have 

thus far focused on elucidating genes and proteins involved in the pathogenesis and virulence 

of disease from clinical isolates of the most invasive serotypes of S. suis (Fittipaldi et al., 2010; 

Tohya et al., 2016; Zhu et al., 2018). Since this project is the first to identify genes essential 

for general survival, it is unsurprising that a large proportion of proteins have not yet been 

functionally annotated.   
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4.2.2 Essential genes associated with the cell division cycle  

Bacterial cells can reproduce using multiple mechanisms including budding, hyphal growth, 

daughter cell formation and through the formation of multicellular baeocytes. However the role 

binary fission, where cells double in size, clone genetic information and divide into two 

daughter cells is the most common method of propagation and best understood by scientists 

(Chien, Hill and Levin, 2012). The genetic mechanisms that regulate and drive bacterial cell 

division are complex. Prior to separation, bacteria assemble essential proteins to the division 

site into an intricate complex called a “divisome” which ensures that cytokinesis occurs at the 

correct time (Rowlett and Margolin, 2015). The tubulin-like GTPase FtsZ protein is a critical 

and conserved structural component of the divisome which initiates cell division through the 

formation of a Z-ring in the centre of the cell (Mahone and Goley, 2020). Upon formation, 

approximately a dozen known additional essential proteins (FtsA, ZipA, FtsE, FtsX, FtsK, 

FtsQ, FtsL, FtsB, FtsW, FtsI, FtsN, and AmiC) are recruited to the cell division site. This is 

known as a septal ring which mediates DNA replication, DNA segregation, division site 

selection, invagination of the cell envelope and synthesis of a new cell wall (Weiss, 2004). 

Notably, 8 genes implicated in the divisome were identified as being essential for the survival 

of S. suis. They included ftsZ, ftsA, ftsL, ftsW, fftsX, ftsE, EzrA and PbpX (see Tables 3.1 and 

3.2).  

FtsA modulates the assembly state of FtsZ and connection of the Z-ring to the cytoplasmic 

membrane (Weiss, 2004) and FtsW is a polymerase implicated in the biosynthesis of the 

peptidoglycan cell wall alongside penicillin binding proteins including PbpX (Strobel et al., 

2014; Taguchi et al., 2019). Recent advances in research in the role of FtsL, a component of 

the conserved FtsQLB complex, have demonstrated that it has an essential role in the 

recruitment of FtsW and the activation of peptidoglycan synthesis (Park, Du and Lutkenhaus, 

2020). Furthermore, the membrane complex FftsEX is an ABC transporter located in the cell 

membrane. FtsE is an ATPase associated with the transmission signals that regulate the 

activity of cell wall hydrolases in the periplasm, whereas FtsX interacts with peptidoglycan 

hydrolase at the septum (Alcorlo et al., 2020). Finally, EzrA is a negative regulator of Z-ring 

assembly by regulating the correct formation of Z-rings in the mid-cell and ensuring that only 

one ring forms per cycle (Levin, Kurtser and Grossman, 1999).  

The mechanisms of cell division and proteins involved are largely conserved across bacteria 

(Rivas-Marin et al., 2020) and a localisation dependency pathway has been determined with 

10 of the essential proteins 

(FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the 

divisome assembles based on a hierarchy (Goehring and Beckwith, 2005) and the functioning 
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and localisation of proteins cohesively is dependent on those which are upstream and 

downstream from each other (Gonzalez et al., 2010). Therefore, the divisome has become a 

target for the development of alternative antimicrobials. The removal or inactivation of proteins 

within the divisome through the creation of mutants has been demonstrated to significantly 

impair cell division and often be fatal in Gram-positive and Gram-negative species. In S. 

pneumoniae, the partial depletion of FtsA resulted in the delocalisation of the Z-ring, cell 

expansion and lysis (Mura et al., 2017). Furthermore, depletion of FtsL in E. coli resulted in 

wrinkled-colony morphology and arrested cell division (Gonzalez et al., 2010) and mutations 

in FtsEX blocked septal peptidoglycan synthesis and blocked the initiation of constriction and 

ongoing constriction events (Du, Pichoff and Lutkenhaus, 2020). This could be described as 

being phenotypically similar to the activity of semisynthetic antimicrobial cephalexin, which 

has broad spectrum activity against Gram-positive and Gram-negative bacteria (Speight, 

Brogden and Avery, 1972). Ciprofloxacin has been demonstrated to exhibit bacteriostatic 

activity when DNA gyrase is inhibited (Silva et al., 2011), an essential enzyme necessary for 

the supercoiling of chromosomal DNA during cell division, however mutations in this gene 

have led to an increase in quinolone resistance, including in studies of S. suis (Escudero et 

al., 2007; Collin, Karkare and Maxwell, 2011). The latest finding by Du et al., 2020 indicates 

that the FtsEX complex could be a possible target for novel broad-spectrum antimicrobials, 

particularly since they are located within the cytoplasmic membrane (Table 3.5). Additionally, 

since FtsZ is implicated as the central protein responsible for initiating cell division, it has 

become an attractive antimicrobial target and compounds such as peptides, polyphenols and 

synthetic small molecules have been investigated with promising effects (Han et al., 2020) 

and low cytoxicity towards host cells, evidenced through a lack of disruption to human 

erythrocytes and a low binding capacity to mammalian tubulin (Kunal et al., 2020). The 

inhibition of FtsZ in B. subtilis by small-molecule synthetic peptides lead to the impairment of 

Z-ring assembly, the distribution of rings which deviated from the mid-cell, hyperaccumulation 

of FtsZ and long undivided cells (Araújo-Bazán et al., 2016). Targeting of this protein by similar 

molecules may provide an alternative treatment strategy for S. suis porcine infections.  

The divisome functions in a complex web of interactions, and not just linearly (Figure 4.1). 

New evidence suggests that many proteins in the divisome may undergo subtle confirmational 

changes or complete bypass of pathways when Fts proteins are overexpressed or mutated. 

Often the bypassing mechanism involves several proteins and varying domains which are up 

and downstream of each other, and the mechanisms of recruitment are still unclear (Gonzalez 

et al., 2010; Du and Lutkenhaus, 2017). Fts proteins have also been demonstrated to share 

overlapping functions with proteins outside of the divisome (Mura et al., 2017) and have 

regions that are dispensable in the recruitment of subsequent targets (Gonzalez et al., 2010). 
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This highlights the need for more research into the potential of identifying novel antimicrobials 

which can block the cell division pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic representation of the hierarchy of proteins associated with the bacterial 

divisome and their multi-pathway interactions (from Misra et al). Misra et al Microbiological 

Research 2018 208:12-24.  
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4.2.3 Essential genes associated with the Signal Recognition Particle (SRP) pathway  

 

The BHI and H2O2 growth conditions were both very similar phenotypes, given that survival 

was compared in BHI media with and without the addition of H2O2. Genes that were identified 

as essential for growth within both phenotypes were validated as likely essential nature of 

these for general growth and survival. Similarly to those genes identified as essential for 

growth in BHI, most genes were associated with cellular processes including genetic 

information processing, metabolism and signalling (Table 3.2).  

The genes Ffh, FtsY involved in the Signal Recognition Particle (SRP) pathway were identified 

across both conditions. The SRP pathway is a universally conserved protein targeting system 

which is associated with membrane protein assembly (Angelini, Deitermann and Koch, 2005) 

and facilitates the localisation of proteins to their correct cellular destinations (Akopian et al., 

2013). The ability of bacteria to survive and colonise is dependent on the correct functioning 

of the SRP and has been demonstrated to cause significant dysfunction in several species of 

yeast and bacteria by disrupting protein organisation and localisation. The bacterial SRP 

contains universally conserved membrane proteins Ffh and Ftsy (Park et al., 2002), where Ffh 

recognises exposed sequences and binds them to the SRP RNA and interacts with the SRP 

receptor, FtsY (Bernstein et al., 1989). FtsY is a peripheral membrane protein which, promotes 

the release of proteins from the ribosome (Draycheva et al., 2016) and directs them to either 

the cytoplasmic reticulum or plasma membrane (Faoro et al., 2018). 

Targeting the SRP pathway may significantly reduce the virulence of those Streptococci in 

which Ffh is dispensable for growth. Research exploring the function of Ffh found deficiencies 

severely impaired growth of S. mutans in the absence of environmental stress (Hasona et al., 

2005) and altered the metabolic processes involved in pH homeostasis, including pyruvate 

dissimilation and sugar transport which have been hypothesised to facilitate an increased acid 

tolerance when grown in slightly acidic conditions at around pH 5  (Crowley et al., 2004).  Ffh 

was found to be essential for bacterial survival within this study of S. suis unlike for S. mutans, 

therefore it would be unlikely that an attenuated S. suis mutant could be generated for future 

functional studies since the mutation would likely be lethal to the bacteria. 

Research carried out on S. pyogenes has also identified secreted extracellular virulence 

factors which are dependent on the SRP pathway for secretion, namely the haemolysin SLO 

and SPN which is associated with the escape of bacteria from neutrophil extracellular traps 

(Hynes and Sloan, 2016). The deletion of the pathway resulted in mutants which were highly 

attenuated in both zebrafish and murine infection models (Rosch et al., 2008). The S. suis 

FtsY shares significant homology with S. pyogenes, S. sanguinis and S. agalactiae (see 
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Appendix 2), therefore the SRP may be universally associated with the secretion of 

extracellular virulence factors in haemolytic Streptococci. Fragment-based drug discovery 

have also identified 3 fragments which have affinity for the NG domain of FtsY in a number of 

Gram negative pathogens including E. coli and Acinetobacter baumannii (Faoro et al., 2018). 

Although the mechanism of action was not elucidated, it may provide a starting point for the 

development of high affinity FtsYNG binders as an antimicrobial alternative for antibiotic 

resistant bacterial strains. More research into the role of the S. suis SRP is required to 

elucidate the pathogenesis of S. suis in greater detail, however the SRP may be a promising 

target for therapeutics which reduce the virulence of many Streptococcal species.  

 

4.3 Analysis of essential genes for S. suis survival in H2O2 

4.3.1 H2O2 modulates a host phagocytic respiratory burst in vitro 

Endogenous reactive oxygen species (ROS) are an essential part of the innate host defence 

against infection, associated with the rapid elimination of invading microbes (Vatansever et 

al., 2013; Belambri et al., 2018). When phagocytes including neutrophils and monocytes are 

recruited to sites of infection, they engulf and kill pathogens (Slauch, 2011; Yang, Huang and 

Xu, 2016). and produce large concentrations of superoxide via hyper activation of NADPH-

dependent phagocytic oxidases (NOX-2) which target phagocytosed pathogens during a 

phenomenon known as a “respiratory burst”  (Babior, 1984; Slauch, 2011; Singel and Segal, 

2016; Xu et al., 2016). Superoxide reacts rapidly with itself and dismutes to oxygen and H2O2 

(Babior, 1984; Singel and Segal, 2016) and whilst not primarily involved in bacterial killing, 

when catalysed by myeloperoxidase, the combination of H2O2 with halides and pseudo halides 

including chloride (Cl-), bromide (Br-), thiocyanate (SCN-), tyrosine or nitrite (NO2
-)  produce 

reactive intermediates which have potent bactericidal capacity through the damage of DNA, 

protein and lipid molecules (Odobasic, Kitching and Holdsworth, 2016; Yang, Huang and Xu, 

2016; Nguyen, Green and Mecsas, 2017).  

Since H2O2 is pivotal in the phagocytic respiratory burst, it can been used as a model for in 

vitro studies which investigate the pathogenesis and immune evasion of pathogens which 

cause bacteraemia, such as S. equi which causes strangles in horses (Charbonneau et al., 

2020) and has been used to examine the impact of increasing H2O2 on phagocytic activity 

against Klebsiella pneumoniae (Phan et al., 2011).  
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4.3.2 Further investigation of essential genes related to virulence  

S. suis express a plethora of virulence factors which facilitate epithelial and blood brain barrier 

(BBB) translocation, survival and persistence in blood and perturbation of host immune 

responses, which results in severe systemic infection, meningitis and septicaemia with similar 

pathology in swine and humans (Kim et al., 2018). The ability of S. suis to initially resist 

phagocytosis and respiratory burst and stimulate exaggerated inflammation and sepsis may 

be one of the hallmarks of its pathogenesis. Roles of the CPS and its sialic acid moiety has 

been implicated in the downregulation of leukocyte activity (Chang and Nizet, 2014), blockage 

of NO production and resistance to phagocytosis (Houde et al., 2012). Furthermore, the role 

of pore-forming cytotoxin haemolysin III, also known as suilysin, in the lysis of immune cells 

and stimulation of the hypersecretion of proinflammatory cytokines that increase the 

permeability of the BBB is well documented (Billington, Jost and Songer, 2000; Lun et al., 

2003; Vötsch et al., 2020). Despite an increasing number of studies aimed at elucidating the 

genetic basis of pathogenesis, disease physiology is often still hypothesised and extrapolated 

from infections caused by Group B Streptococcus  which has similarity pathology (Mitchell and 

Mitchell, 2010; Calzas et al., 2017). There is greater requirement for research which aims to 

elucidate S. suis-specific virulence factors which highlight explanations as to how the 

bacterium opportunistically causes infections. New genes identified as specific for the evasion 

of the immune response may also be identified as potential targets for novel therapeutics or 

antimicrobials.  

In the study, PIMMS comparative analysis revealed that 35 genes were identified as being 

exclusively essential for survival and growth in the presence of H2O2. Most were related to 

genetic information processing, metabolism including those pertaining glycan biosynthesis 

and cellular processes (Table 3.3). Since H2O2 was used to model a phagocytic respiratory 

burst, a number of genes were identified as contributing to virulence; namely PEP, Fsh, secE, 

CcpA, oppD and putative Haemolysin III and putative Signal Peptidase I (SSU0212).  

 

4.3.2.1 Fundamental genes associated with alternative metabolic pathways and adaption to 

host environment 

When pathogenic bacteria cause invasive disease, they are exposed to changes in 

temperature, oxygen concentrations and pH values (Härtel et al., 2011) and the host immune 

system actively restricts the availability of nutrients and cofactors, which creates a hostile 

growth environment (Richardson et al., 2015). Research has demonstrated that the ability of 

S. suis to survive in the blood, CFS and brain tissue during the pathogenesis of disease due 

to adaptations in metabolic activity. Analysis of S. suis metabolic adaptations in porcine blood 
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identified an increased expression of genes associated with pathways involving the transport 

of alternative carbohydrate sources including glycogen metabolism and the pentose 

phosphate pathway which functions parallel to glycolysis (Ramos-Martinez, 2017). This is 

consistent with the findings in the current study that S. suis switched from carbohydrate 

metabolism in enriched media to general metabolism in the presence of H2O2 (Table 3.7) and 

supports evidence that H2O2 impairs the functioning of the Kreb’s Cycle involved in aerobic 

respiration of glucose  (Tretter and Adam-Vizi, 2000). The pentose phosphate pathway 

produces NADPH and ribose 5-phosphate (R5P) (Ge et al., 2020) which are utilised for 

anabolic processes including the synthesis of cell wall constituents, vitamins, co-enzymes, 

nucleic acids and amino acids in the absence of ATP and oxygen (Campbell, 2006; Pal et al., 

2013). It has also been implicated in rapid adaption to oxidative stress in E. coli, where NADPH 

flux is rapidly re-routed through the pentose phosphate pathway upon exposure to H2O2 in 

order to increase the availability of NADP+ for reactions such as glutathione-dependent 

defence against reactive oxygen species (Christodoulou et al., 2018).  

S. suis has been found to be auxotrophic for genes which encode enzymes required for the 

biosynthesis of amino acids arginine, histidine, glutamine, leucine and tryptophan (Willenborg 

et al., 2015) and relies on the synthesis of oxaloacetate from the Kreb’s Cycle as an essential 

precursor of aspartic acid, threonine, lysine, β-alanine (pantothenate), nicotinamide, 

nicotinate, α-ketoglutarate, and purines (Richardson et al., 2015). Arginine, glycine and 

aspartic acid have been implicated in the structure of extracellular cysteine protease, also 

known as Streptococcal pyrogenic exotoxin B which is a critical virulence factor in group A 

Streptococci (Stockbauer et al., 1999). Furthermore, S. suis cysteine protease ApdS has been 

demonstrated to participate in immune system evasion through the cleavage of key 

antimicrobial peptides which are secreted by neutrophils. The cleavage of antimicrobial 

peptides led to impaired neutrophil chemotaxis the inhibition of the formation of neutrophil 

extracellular traps and formation of reactive oxygen species (Xie et al., 2019). Since R5P is a 

precursor for aromatic amino acids including tryptophan, the current study highlights the 

requirement for greater research into alternative pathways that S. suis may utilise to 

synthesise amino acids that are associated with secretory exotoxins, oxidative stress 

tolerance and immune evasion independent of oxaloacetate (Litwack, 2018).  

Streptococcal species such as S. suis and GBS are also auxotrophic for genes involved in 

purine metabolism and have evolved alternative pathways to biosynthesise purines via 

carbon-metabolism de novo. Upregulation of genes required for purine biosynthesis in human 

blood growth studies of S. pneumoniae has been reported (Orihuela et al., 2004) leading to 

the suggestion that there may be a deficiency in purine availability within host fluids and 

tissues in vivo (Rajagopal et al., 2005). One possible pathway could be the formation of 
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phosphoribosylpyrophosphate from R5P which initiates the purine synthetic pathway and 

produces precursors for guanine nucleoside monophosphates (Litwack, 2018). Purine 

biosynthesis genes have been previously demonstrated to be essential in the virulence of both 

Gram-positive and Gram-negative pathogens including Salmonella typhimurium (Mahan, 

Slauch and Mekalanos, 1993), Shigella fexineri (Cersini et al., 2003) and Brucella abortus 

(Alcantara et al., 2004). In addition, 5,10-methylene-tetrahydrofolate 

dehydrogenase/cyclohydrolase (FolD) and 10-formate-tetrahydrofolate synthetase (Fhs) are 

a catabolic enzymes which catalyse N10-formyltetrahydrofolate (N10-fTHF) in purine nucleotide 

biosynthesis and the formylation of the initiator tRNA which initiates protein synthesis in 

bacteria (Sah et al., 2015). Until recently, it was unclear as to why some bacteria possess both 

FolD and Fhs given shared reported function. However, evidence demonstrated that the 

function of FolD in E. coli was replaced when Fhs from Clostridium perfringens was integrated 

into the genome (Sah et al., 2015). This is consistent with the findings in the current study that 

FolD was expressed in the BHI only phenotype but only Fhs was expressed in the H2O2 

phenotype, indicating a potential switch between pathways when bacteria were exposed to 

H2O2 (see Tables 3.1 and 3.4). Critically, functional Fhs has been demonstrated to be essential 

for virulence of S. suis in both murine and porcine infection models. Mutant strains were 

reported at lower bacterial loads in the blood, brain, liver and spleen and minor clinical signs 

of infection and higher murine survivals rates compared to wild type and control infection 

groups. In addition, similar infection studies in piglets showed mutant strains displayed 

reduced capacity for colonisation in the heart, liver, spleen, lung, kidney, brain, blood and CFS 

(Zheng et al., 2016). Overall, this provides evidence that S. suis may regulate virulence via 

fundamental metabolic pathways (Rajagopal et al., 2005) and the need for further investigation 

to elucidate whether the switch between FolD to Fhs consistently occurs in S. suis and if it is 

mediated by exposure to phagocytic respiratory burst.  

As previously discussed, the regulation of processes related to sugar uptake and metabolism 

by Streptococci are crucial for fitness in host tissues and fluids. Carbon catabolite repression 

(CCR) controls hierarchical sugar utilisation and bacterial growth rates and CcpA is the major 

transcriptional regulator in Gram-positive bacteria  (Iyer, Baliga and Camilli, 2005). In addition 

to being critical for sugar metabolism, CcpA has also been demonstrated to contribute to 

sophisticated adaptive and virulence capacity in several species of bacteria, including S. 

pneumoniae  where CcpA mutants were severely attenuated in their ability to colonise murine 

nasopharynx and lung tissue, indicating a potential role in the fitness on mucosal environments 

(Iyer, Baliga and Camilli, 2005). Furthermore, CcpA may also contribute to acid resistance in 

S. mutans (Abranches et al., 2008). Considering the fact that oral Streptococci are typically 

not as inherently resistant to acidification (Quivey, Kuhnert and Hahn, 2001), this finding may 
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provide greater explanation as to not only how S. suis has adapted to its tonsillar niche, may 

also provide an insight into the pathogenesis of enteric infection with S. suis in humans after 

the ingestion of raw pork products (Huong, Hoa, et al., 2014). Studies of S. suis CcpA deletion 

mutants showed reduced expression of the surface-associated virulence factors Surface 

Antigen One (Sao) associated with cell wall anchoring (Xia et al., 2019), Enolase (Eno) 

associated with BBB permeability (Sun et al., 2016), Serum Opacity Factor (Ofs), shown to 

mediate adhesion to host cells and disrupt high-density lipoproteins in the blood (Courtney 

and Pownall, 2010), and Suilysin (Sly) which promotes epithelial translocation (Bercier, 

Gottschalk and Grenier, 2020). Furthermore, mutation resulted in the reduced expression of 

18 genes related to capsular polysaccharide and cell wall synthesis, resulting in reduced 

capsule thickness and reduced resistance to neutrophil killing. It was therefore proposed that 

genes regulating the capsule may expressed when S. suis enters the blood, since it is a 

glucose-rich environment (Willenborg et al., 2011). In the current study, CcpA was expressed 

in both the BHI and H2O2 phenotypes (see Table 3.2), but since CcpA is associated with 

fundamental carbohydrate metabolism in Gram-positive species, it is unsurprising that it was 

identified in the enriched BHI media, but it does highlight the integral link between nutrient 

utilisation and virulence for S. suis pathogenesis.  

 

4.3.2.2 Genes associated with the expression and secretion of virulence factors  

An essential component of Streptococcal pathogenesis is the secretion of virulence-

associated proteins from the bacterial cytosol across phospholipid membranes and into host 

tissues or the environment (Green & Mecsas, 2016). Secreted proteins have many functions 

to enhance the virulence of cells, including adherence and invasion of host cells, innate and 

adaptive immune evasion and the killing of host cells including tissue and blood cells (Sharma 

et al., 2017). Protein translocation and secretion relies on dedicated apparatus, and putative 

preprotein translocase SecE subunit (SSU1775) from the Sec secretion pathway was 

identified as essential for survival in the presence of H2O2 (See Table 3.6).  

 

The Sec protein translocation pathway is a highly conserved cytoplasmic membrane complex. 

Briefly, it consists of SecB which prevents premature protein folding in the cytoplasm, the 

ATPase SecA, SecDF which may act as a molecular chaperone and SecYEG which forms a 

stable complex in the cytoplasmic membrane (Beckwith, 2013). SecYEG is a protein-

conducting channel which consists of three integral membrane proteins, SecY and SecE which 

interact with SecG (Veenendaal, Van Der Does and Driessen, 2004). Sec-dependent 

translocation of proteins across the membranes is mediated by the Signal Recognition Particle 
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Pathway previously discussed (Cranford-Smith and Huber, 2018), therefore this supports the 

findings in the current study that SecY and SecG were found to be essential in the BHI input 

pool (see Tables 3.1 and 3.2).  

Virulence factor translocation via the Sec pathway are well documented in Gram-negative 

bacterial species including Listeria monocytogenes (Desvaux and Hébraud, 2006), Vibrio 

cholorae, K. pneumoniae and Yersinia enterocolitica (Korotkov, Sandkvist and Hol, 2012). Sec 

protein homologues, also known as auxiliary proteins, have been identified in several species 

of Gram-positive bacteria and whilst not considered essential for viability (Bensing and Sullam, 

2002). In Streptococci, S. gordonii SecA2 and SecY2 have been implicated in the ability of the 

bacteria to bind to human platelets, suggesting it may be may contribute to platelet 

aggregation during pathogenesis (Bensing and Sullam, 2002; Fitzgerald, Foster and Cox, 

2006). More recently, S. suis has been demonstrated to have SecA2 and SecY2 which 

constructs fimbria-like proteins involved in adhesion to host cells (Zhang et al., 2018), 

highlighting the potential role in pathogenesis. Furthermore, S. suis with secE mutations have 

shown reduced fitness in pigs (Arenas et al., 2020) and a recent investigation found that 

physical blocking of the Sec complex led to cell death as a result of the degradation of 

translocator components and upregulating proteins involved in cell apoptosis upon prolonged 

secretion stress (Van Stelten et al., 2009). 

A putative signal peptidase I (SSU0212), was also identified as an essential gene for survival 

in the presence of H2O2 (See Table 3.6). Type I signal peptidases (Type I SPase) are 

indispensable enzymes which catalyse the cleavage of signal peptide sequences from 

preproteins before being translocated across the cell membrane and reach their appropriate 

specific secretion pathways (Tuteja, 2005). Type I Spases interact closely with the SecYEG 

pathway, since it cleaves the preproteins as they emerge (Auclair, Bhanu and Kendall, 2012). 

Similarly to Streptococci, Gram-positive S. aureus infects host tissues, evades the immune 

system and scavenges nutrients and minerals from the host environment via a diverse number 

of secreted virulence factors, of which, SPase contributes to most of the secretome  

(Schallenberger et al., 2012) and a similar dependence for S. suis protein translocation is 

highly likely.  Located at the bacterial membrane surface, this protein represents a potential 

antimicrobial target (Paetzel, Dalbey and Strynadka, 2000). The broad-spectrum bacteriostatic 

drug arylomycin which targets Type I SPase, has been demonstrated to cause an insufficient 

flux of proteins through the secretion pathway and subsequent mislocalisation of proteins in 

S. pneumoniae  (Kulanthaivel et al., 2004; Smith and Romesberg, 2012) and may also have 

similar mechanisms of action in S. suis. Previous studies investigating the intracellular tropical 

parasite Leishmania major have demonstrated that a recombinant Type I SPase vaccine 

decreased the parasitic load by 81% in challenge studies via the Th-1 mediated immune 



66 

 

response (Rafati, Ghaemimanesh and Zahedifard, 2006). This indicates that whilst the Type I 

SPase is a membrane associated protein, there is also potential to investigate vaccination 

development based on the targeting of such pathways. 

With invasive and systemic disease such as those caused by S. suis, the ability to diagnose 

infection and begin antibiotic therapy promptly is critical. There is an increasing demand for 

point-of-care diagnostics.  Increasing numbers of rapid diagnostic assays such as lateral flow 

immunoassays which are currently used as alternative to PCR for diagnosis of Covid-19 

(Chaimayo et al., 2020). Immunochromatographic tests which identify S. pneumoniae 

antigens in the CFS of human patients with suspected meningitis have also been developed 

(Moïsi et al., 2009). Lateral flow assays are highly desirable since they are associated with 

greater ease of use because they do not require laboratory investigation or trained individuals, 

they have a raid turnaround time, low cost, and are portable (Koczula & Gallotta, 2016). The 

development of a lateral flow assay which specifically identifies S. suis antigens may be 

especially desirable for the rapid diagnosis of S. suis in humans in developing countries, since 

they often have fewer resources to facilitate laboratory analysis of samples (Giri and Rana, 

2020). Since Type I SPases are antigenic and located in the cell membrane, S. suis SSU0212 

could potentially be a novel immunochromatographic target for the development of more rapid 

diagnostic assays. Never the less, the true function of SSU0212 should be elucidated since it 

does appear to have the potential to be an antibiotic, vaccine and immunochromatographic 

target.  

Bacterial oligopeptide permease (Opp) transport systems are associated with nutrient 

acquisition and the internalisation of signal peptides which contribute to quorum-sensing 

pathways (Gardan et al., 2009). The transport system belongs to an ATP-binding cassette 

transporter family and is encoded by a polycistronic operon which contains OppA, OppB, 

OppC, OppD and OppF (Wang et al., 2005) and OppD  was identified as essential for growth 

in the H2O2 phenotype (See Table 3.6). Opps have been highlighted to have a complex 

association with virulence capacity in Group A Streptococci and are associated with regulation 

of virulence-associated genes. A S. suis deletion mutant lacking OppA was demonstrated to 

have dual effects on gene regulation: responsible for the positive and negative regulation of 

pyrogenic exotoxins and the negative regulation of haemolysin (Wang et al., 2005).  Defective 

mutants were associated with an increase in the transcription of erythrogenic toxins in vitro 

and significantly lower mortality and epidermis damage compared to the wild-type strain in 

challenge studies and further supports the complex nature of Opps in bacterial virulence and 

pathogenesis.  
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The role of Opps have been implicated in quorum sensing, a process by which bacteria gain 

information about their environment and adjust gene expression accordingly (Rutherford and 

Bassler, 2012). In Streptococcus thermophilus, Opps have been demonstrated to be essential 

in the triggering bacterial competence (Gardan et al., 2009), with high competency amongst 

Streptococci species, including S. suis associated with interspecies exchange of antibiotic 

resistance genes (Salvadori et al., 2019). In addition, quorum sensing enhances the response 

of bacteria to oxidative stress. The transactivator OxyR, has been demonstrated to be 

responsive to H2O2 in Pseudomonas aeruginosa, and appears to also influence the expression 

of quorum sensing transcriptional regulators (Wei et al., 2012). Furthermore, quorum sensing 

may enhance the stress response to H2O2 (García-Contreras et al., 2014), therefore since 

Opps are associated with quorum sensing in Streptococci, the essential role of OppD in S. 

suis exposed to  H2O2 requires further investigation because it could participate in the quorum 

sensing within host environments since Opps appear to be multifunctional within the cell, and 

the role of Opps in S. suis competence, quorum sensing and pathogenesis of infection should 

be investigated further.   

 

4.3.2.3 S. suis P1/7 Haemolysin-III-related protein and role in virulence 

Perhaps one of the most significant and well understood Streptococcal virulence factors is the 

secretory haemolytic exotoxins which exert cytolytic activity against host cells during 

pathogenesis (Rosa-Fraile, Dramsi and Spellerberg, 2014). Several haemolysins have been 

characterised, including Streptolysin S (SLS) and Streptolysin O (SLO). The SLS protein has 

been associated with damage to host soft tissues, resistance to phagocytosis, translocation 

of bacteria across epithelia, and iron acquisition through the lysis of host erythrocytes (Molloy 

et al., 2011). The SLO protein has been implicated in the formation of pores in eukaryotic cells, 

suppression of neutrophil oxidative burst, neutrophil degranulation and disruption of the 

formation of extracellular traps (Uchiyama et al., 2015). The S. suis haemolysin, Suilysin (SLY) 

is antigenically related to Group B Streptococcal SLO (He et al., 2014), and has been 

described to be related to virulence of S. suis in almost every stage of pathogenesis. Functions 

include but are not limited to increasing the permeability of tight junction proteins and 

translocation across epithelial cells in the primary stages of infection (Bercier et al., 2020), 

destruction of immune cells and perturbation of macrophages resulting in a proinflammatory 

cascade once bacteraemia has been established (Billington, Jost and Songer, 2000), and 

potentiation of inflammation of astrocytes and glial cells which increases the permeability of 

the blood-brain barrier (Vadeboncoeur et al., 2003; Yau et al., 2018).  
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The S. suis putative haemolysin-III (Hly-III) (SSU0854) was identified as being essential for 

growth in the presence of H2O2 (Table 3.6). Hly-III has been demonstrated to contribute to 

virulence in several ways. A mutant of the highly virulent Chinese strain ZY05719 was 

demonstrated to exhibit reduced cytolytic and haemolytic activity and growth in whole blood. 

Furthermore, pathogenicity was also reduced in a zebra fish challenge model where mortality 

rate decreased compared to the wild type strain. Critically, knockout mutants were associated 

with a low expression of SLY, indicating that Hly-III inactivation may result in the blockage of 

pathways associated with SLY secretion (Zheng et al., 2013). Recently, an attenuated S. suis 

live vaccine deficient in a number of virulence factors including SLY, was found to show 

reduced invasive capacity in the brain, lung and liver and had a weak ability to induce 

inflammation and stimulate streptococcal toxic shock-like syndrome in a murine infection 

model. The vaccine also triggered T-cell dependent immunity and conferred protection to 

inoculated animals during subsequent exposure (Li et al., 2019). Given the putative Hly-III 

protein may also be responsible for haemolytic and cytolytic activity in different serotypes of 

S. suis and be associated with the SLY secretion pathway, SSU0854 should certainly be 

investigated to determine its specific role during porcine infection and may be a promising 

candidate for subsequent live-attenuated vaccine development.  

 

4.4 Future directions and comparative study links 

Recently, two other studies of Streptococci have been reported, investigating the role of genes 

using transposon mutagenesis for fitness using a number of different in vitro and in vivo based 

models of infection. S. equi subsp. equi is a significant equine pathogen which is the primary 

aetiological agent for strangles in horses. This manifests as an upper respiratory infection 

which results in the formation of abscesses in the submandibular and retropharyngeal lymph 

nodes which can lead to respiratory distress (Boyle, 2017). Current attenuated strain based 

vaccines for strangles have been associated with adverse reactions in horses, including 

bacterial replication at the vaccination site, and the need for safer alternatives has been 

recognised (Kemp-Symonds, Kemble and Waller, 2007). In an attempt to identify genes 

related to fitness during pathogenesis, S. equi subsp. equi bacterial mutants were created 

using the pG+host::ISS1 plasmid and comparative analysis undertaken using a TraDIS based 

approach. Mutants were grown in whole equine blood and blood with the addition of H2O2 

(Charbonneau et al., 2020). In equine blood with the addition of H2O2, 15 genes had 

significantly reduced fitness and included genes associated with energy production and 

conversion, replication, recombination, and repair. Although the genes identified in the S. equi 

study did not cross-over with genes identified in this study, there are functional similarities 
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between a number of genes associated with energy metabolism identified as important for 

fitness in both studies. Whilst the S. suis in the current study was grown in BHI media with the 

addition of H2O2, S. equi was grown in equine blood with the addition of H2O2, and therefore 

bacteria in blood were additionally exposed to cellular elements including erythrocytes and 

leukocytes in addition to crystalloids and other nutritional components (Basu and Kulkarni, 

2014), making direct comparison between both studies difficult.  

Using whole host blood as an in vitro model may provide a more representative environment 

for elucidating genes associated with the pathogenesis rather than H2O2 with bacterial media, 

given the presence of leukocytes, complement and the possibility of pre-existing antibodies 

from previous Streptococcal infections within blood. Especially considering the fact that the 

H2O2 environment only models one portion of the highly complex cascade of interactions within 

neutrophils and monocytes during an immune response to infection (Singel and Segal, 2016; 

Nguyen, Green and Mecsas, 2017). Future research should aim to investigate the fitness of 

S. suis mutant strains in a variety of whole porcine and human blood types to elucidate those 

genes associated with pathogenesis of infection in both pigs and humans, and also to identify 

whether these genes share homology, since a cross-over may indicate similarities or 

differences in the pathogenesis of systemic infections in different mammalian species.  

In a further study analysis of an S. suis serotype 10 strain was performed using a Tn-Seq 

approach where mutants were recovered from blood, CFS and brain meninges of inoculated 

piglets in an intrathecal experimental infection model (Arenas et al., 2020). In total, 361 genes 

were identified as conditionally essential for infection in vivo, and comparative to this study, 

genes were primarily associated with metabolism, cell regulation and transport processes. 

Genes associated with ribosomal structure and biogenesis, transcription, and cell wall and 

membrane envelope biogenesis, stress defence and immune evasion were also identified as 

contributing to the infectivity capacity of S. suis. A total of 23 genes identified in the in vivo 

model of infection were also identified and discussed in further detail in the current project and 

are summarised in Table 4.1. 
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Table 4.1: Genes shared between the current study and those identified in an intrathecal 
experimental infection of S. suis serotype 10 mutants of piglets*.  

 

*Genes are categorised based on the phenotype that they were identified in in the current 
study and compared with those found in the study by (Arenas et al., 2020).  

 

The similarities in genes between the intrathecal experimental study and the current study 

provide validation for the PIMMS protocol to identify genes essential for survival and for 

survival in refined environments. Genes associated with fundamental cellular processes 

required for survival including carbon metabolism, the biosynthesis and metabolism of amino 

acids, transporters and transcriptional regulators were consistently found across both 

experiments. Additionally, genes associated with virulence which would be expected to be 

identified in the in vivo model of infection were also identified as being essential for survival in 

H2O2 in the current study. This suggests that this study using H2O2 as a model for phagocytic 

respiratory burst during in vitro experiments may be used to facilitate the collection of 

preliminary data on the pathogenesis of systemic diseases without the requirement for 

infecting live animals. 

 

Gene Functional pathway  

BHI  

pEP Carbon metabolism 
rpoB Purine and pyrimidine metabolism 
cysE Biosynthesis of amino acids 
thrB Biosynthesis of amino acids 
oppF Transporters 
potA Transporters 

cps2B Cell envelope biosynthesis 
ezrA Transcriptional regulators 
spxA Transcriptional regulators 

Shared (BHI and H2O2) 

hpt Purine and pyrimidine metabolism 
gmk Purine and pyrimidine metabolism 
ftsY Cell envelope biosynthesis 
grpE Stress tolerance 
dnaK Stress tolerance 
ccpA Transcriptional regulators 

H2O2 

fhs Carbon metabolism 
secE Cell envelope biosynthesis 

SSU0114 Transporters 
SSU1675 Transporters 
SSU0883 Transporters 
SSU0018 Cell envelope biosynthesis 
SSU0473 Membrane and secreted structures 
SSU1608 Transcriptional regulators 
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4.5 Conclusion  

To conclude, this study was the first to identify essential genes for the growth of S. suis P1/7 

in the presence of BHI and with the addition of H2O2 using the mutagen pG+host::ISS1 and the 

PIMMS bioinformatic pipeline. In total, the PIMMS analysis strategy successfully identified 160 

genes essential for growth in BHI, 198 genes essential for growth in both BHI and H2O2 and 

35 genes essential for growth in H2O2.  An additional 17 truncated genes were identified in 

H2O2 which were categorised as important for S. suis P1/7 survival and potential virulence. 

Survival and growth of cells in BHI media was predominately associated with genes involved 

in genetic information processing, metabolism, and cellular signalling processes. Furthermore, 

genes essential for survival and growth in H2O2 were associated with genetic information 

processing, metabolism, environmental information processing and cellular processes.  A 

switch from carbohydrate metabolism to general metabolism was observed in the transition 

between the BHI phenotype and H2O2 phenotype and the role of alternative metabolic 

pathways in the presence of oxidative stress including the pentose phosphate pathway and 

its association with the resistance to reactive oxygen species and amino acid synthesis were 

highlighted as requiring greater investigation.  

Several genes were highlighted as potential therapeutic, vaccine and diagnostic targets. 

These included the FtsEX, complex associated with the cell division cycle, carbohydrate 

metabolism genes FtsY in the signal recognition particle pathway, Fhs, FolD and associated 

with central carbohydrate metabolism that were essential for growth in the BHI phenotype. In 

addition, OppD, identified in both the BHI and H2O2 phenotypes, and SecE in the H2O2 

phenotype were associated with the expression and secretion of virulence factors.  The 

potential role of putative signal peptidase I (SSU0212), and secretory virulence factor putative 

haemolysin-III (Hly-III) (SSU0854) identified in the H2O2 phenotypes were also discussed in 

greater detail. Although highlighted as having promising potential as novel targets, the genes 

require further investigation to further elucidate their function in survival and virulence during 

a phagocytic respiratory burst through the generation of knockout mutants and growth in whole 

porcine blood and in macrophage cell lines to validate current findings and continue to refine 

the in vitro model for S. suis P1/7 infection without the requirement for infecting animals. The 

PIMMS protocol provides an excellent framework for the identification of virulence-associated 

genes and alternative antimicrobials and vaccine targets in bacterial pathogens which are 

significant to veterinary and human medicine.  
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Appendix 1 

A summary of the credits gained between whilst completing the Master of Research 

qualification.  

Date Event Source Credits 
 

07.05.20 Challenges in antibiotic resistance: Gram 
Negative bacteria: online course 

Futurelearn 1 

11.05.20 The role of vaccines in preventing infecious 
diseases and antimicrobial resistance: online 
course 

Futurelearn 0.5 

16.05.20 Bacterial genomes: from DNA to protein 
function using bioinformatics: online course 

Futurelearn 1 

17.06.20 Structured reviews of literature: Evidence 
synthesis: online seminar 

UoN Graduate 
centre 

1 

20.05.20 Research integrity: online course UoN Graduate 
centre 

1 

30.06.20 Excel basic course: online course UoN Graduate 
centre 

0.5 

01.07.20 Presenting with power: online course UoN Graduate 
centre 

0.5 

03.07.20 Presentation Design Masterclass: online 
course 

Udemy 1 

07.07.20 Emotional intelligence: online course UoN Graduate 
centre 

0.5 

07.07.20 Word intermediate course: online course UoN Graduate 
centre 

0.5 

07.07.20 Being assertive in the right way: online course UoN Graduate 
centre 

0.5 

07.07.20 The 7 steps to the perfect telephone etiquette: 
online course 

UoN Graduate 
centre 

0.5 

21.08.20 Antimicrobial resistance in the food chain: 
online course  

Futurelearn 1 

06.09.20 Ethical decision making in care: online course Futurelearn 1 
18.10.20 What makes an effective presentation?: online 

course 
Futurelearn 0.5 

24.11.20 Social Media For Policy Engagemen: online 
seminar 

UoN Graduate 
centre 

1 

24.10.20 How to succeed at interviews: online course Futurelearn 0.5 
07.11.20 Systematic literature review: an introduction  Futurelearn 1 
01.07.20 Spring Post Graduate Symposium: attendance 

and presentation   
UoN Graduate 

centre 
5 

15.08.20-
17.08.20 

Healthcare Assistant clinical training course Fn CPD 15 

16.12.20 International Veterinary Vaccinology Network 
Virtual Symposium: attendance  

IVVN  3 

28.02.21  Research Portfolio Module (VETS4027) SVMS, UoN 20  

Total:   56.5 
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Appendix 2 

 

Essential genes for growth in H2O2 and H2O2 and BHI phenotypes identified as having shared putative function with other bacterial 

species, the phenotype and functionality determined by DEG analysis.  

S. suis 
gene 

Essentiality in additional 
species 

 

Associated 
phenotype 

COG Pathway q_Start Q_End % 
Homology 

SSU0078 
rpmC 

Streptococcus mutans 
UA159 

Blood agar Ribosomal protein L29 1 68 94.1 

 Streptococcus agalactiae 
A909 

Rich medium Ribosomal protein L29 1 68 92.6 

SSU0854 Streptococcus agalactiae 
A909 

Rich medium Predicted membrane protein, 
hemolysin III-like protein; 
COG1272R 

4 216 77.4 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Predicted membrane protein, 
hemolysin III-like protein; 
COG1272R 

1 171 77.1 

SSU0092 
rplO* 

Streptococcus agalactiae 
A909 

Rich medium Ribosomal protein L15 1 146 89.7 

 Streptococcus mutans 
UA159 

Blood agar  
 
 

Ribosomal protein L15 1 146 89.0 
 

 Staphylococcus aureus 
subsp. aureus MRSA252 

MHBII medium Ribosomal protein L15 1 146 82.2 
 

 Bacillus subtilis 168 Rich medium Ribosomal protein L15 1 146 71.2 
SSU0093* 
 

Streptococcus sanguinis 
 

Rich medium Preprotein translocase subunit SecY 1 436 70.9 

 Streptococcus agalactiae 
A909 

Rich medium Preprotein translocase subunit SecY 1 436 70.9 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Preprotein translocase subunit SecY 1 436 70.6 

 Streptococcus mutans 
UA159 

Blood Agar Preprotein translocase subunit SecY 1 436 72.0 
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SSU0087* 
 

Streptococcus sanguinis Rich medium Ribosomal protein L6P/L9E 1 178 87.0 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Ribosomal protein L6P/L9E 1 178 82.6 
 

 Streptococcus agalactiae 
A909 

Rich medium Ribosomal protein L6P/L9E 1 178 83.7 
 

SSU0703* 
 

Streptococcus 
pneumoniae 

Rich medium 
 

Uncharacterised conserved protein, 
heparinase superfamily 

3 437 88.3 

 Streptococcus sanguinis Rich medium Uncharacterised conserved protein, 
heparinase superfamily 

1 437 87.9 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Uncharacterised conserved protein, 
heparinase superfamily  

3 437 85.6 

 Streptococcus agalactiae 
A909 

Rich medium Uncharacterised conserved protein, 
heparinase superfamily 

1 437 84.7 

 Streptococcus mutans 
UA159 

Blood Agar Uncharacterised conserved protein, 
heparinase superfamily 

1 437 84.7 

SSU0951* Streptococcus mutans 
UA159 
 

Blood Agar Flavoprotein (flavin reductase) 
subunit CysJ of sulfite and N-
hydroxylaminopurine reductases  
 

1 295 89.5 
 

 Streptococcus sanguinis 
 

Rich medium Flavoprotein (flavin reductase) 
subunit CysJ of sulfite and N-
hydroxylaminopurine reductases  

1 294 88.4 

 Streptococcus agalactiae 
A909 

Rich medium Flavoprotein (flavin reductase) 
subunit CysJ of sulfite and N-
hydroxylaminopurine reductases  

1 294 86.7 

SSU0952 
pstC* 
 

Streptococcus agalactiae 
A909 

Rich medium ABC-type phosphate transport 
system, permease component  

1 305 87.2 

 Streptococcus mutans 
UA159 

Blood Agar ABC-type phosphate transport 
system, permease component 

1 305 85.5 

SSU0953 

pstS* 

Streptococcus sanguinis Rich medium ABC-type phosphate transport 
system, periplasmic component  

1 289 78.2 
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 Streptococcus mutans 
UA159 

Blood Agar ABC-type phosphate transport 
system, periplasmic component  

3 288 74.8 

 Streptococcus agalactiae 
A909 

Rich medium ABC-type phosphate transport 
system, periplasmic component  

1 288 73.2 

SSU1014 
atpD* 

Streptococcus sanguinis Rich medium FoF1-type ATP synthase, beta 
subunit 

1 468 93.8 

 Streptococcus 
pneumoniae 

Rich medium FoF1-type ATP synthase, beta 
subunit 

1 468 93.6 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium FoF1-type ATP synthase, beta 
subunit 

1 468 91.8 

 Streptococcus mutans 
UA159 

Blood Agar FoF1-type ATP synthase, beta 
subunit 

1 466 90.6 

 Streptococcus agalactiae 
A909 

Rich medium FoF1-type ATP synthase, beta 
subunit 

1 468 91.7 

 Bacillus thuringiensis 
BMB171 

Rich medium FoF1-type ATP synthase, beta 
subunit 

1 466 78.2 

 Staphylococcus aureus 
subsp. aureus MSSA476 

MHBII medium FoF1-type ATP synthase, beta 
subunit 

1 466 77.9 

 Mycoplasma pulmonis 
UAB CTIP 

Rich medium FoF1-type ATP synthase, beta 
subunit 

4 463 70.3 

SSU1028 
ftsY* 
 
 

Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium 
 

Signal reception particle GTPase 
FtsY 

117 424 86.0 

 Streptococcus sanguinis Rich medium 
 

Signal reception particle GTPase 
FtsY 

116 424 85.8 

 Streptococcus agalactiae 
A909 

Rich medium 
 

Signal reception particle GTPase 
FtsY 

44 424 71.0 

SSU1239  
ftsE* 

Streptococcus sanguinis Rich medium Cell division protein FtsB 1 230 91.3 

 Streptococcus 
pneumoniae 

Rich medium Cell division protein FtsB 1 230 88.2 

SSU1517 
glr* 
 

Streptococcus sanguinis Rich medium 
 

Glutamate racemase  1 264 81.1 
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 Streptococcus 
pneumoniae 
 

Rich medium 
 

Glutamate racemase 1 264 79.5 

 Streptococcus agalactiae 
A909 

Rich medium 
 

Glutamate racemase 1 264 75.4 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Glutamate racemase  1 264 75.0 

SSU1692 
rplM* 

Streptococcus sanguinis Rich medium 
 

Ribosomal protein L13 
 

1 148 96.6 

 Streptococcus agalactiae 
A909 

Rich medium 
 

Ribosomal protein L13 
 

1 148 95.9 

 Streptococcus mutans 
UA159 

Blood Agar Ribosomal protein L13 1 148 93.2 
 

SSU1952* Streptococcus mutans 
UA159 

Blood Agar Ribosomal protein L13 1 280 77.1 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Energy-coupling factor transporter 
ATP-binding protein EcfA2 

1 280 74.3 

 Streptococcus agalactiae 
A909 

Rich medium 
 

Energy-coupling factor transporter 
ATP-binding protein EcfA2 

1 280 71.8 

 Streptococcus 
pneumoniae 

Rich medium 
 

Energy-coupling factor transporter 
ATP-binding protein EcfA2 

1 273 74.7 

SSU1954* Streptococcus sanguinis Rich medium 
 

Phosphatidylglycerophosphate 
synthase 

1 179 78.8 

 Streptococcus 
pneumoniae 

Rich medium 
 

Phosphatidylglycerophosphate 
synthase 

1 178 79.8 

 Streptococcus agalactiae 
A909 

Rich medium 
 

Phosphatidylglycerophosphate 
synthase 

2 179 80.3 

 Streptococcus mutans 
UA159 

Blood Agar Phosphatidylglycerophosphate 
synthase 

2 179 76.4 

 Streptococcus pyogenes 
NZ131 

Todd-Hewitt medium Phosphatidylglycerophosphate 
synthase 

1 179 72.1 

Total  16 genes       

 

*essential in both H2O2 and BHI
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