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Chapter 1 Introduction

Mercury is a highly toxic pollutant produced by coal combustion.[1] The emission of

mercury fume causes a severe impact on the ecosystem and human health, attribute to

its high volatility and persistent exist properties. Furthermore, mercury can be

accumulated through the biological chain and cause further threats to the environment.

The gaseous elemental mercury is the main form of mercury pollution around the

world and it is emitted into the atmosphere due to industrial activities (power plants).

Based on the findings of studies, mercury emission from the coal-fired power plant

has made up to approximately 13.2% (292tonnes) in 2015 and the anthropogenic

activities are considered as the main factors for that consequences[2]. Therefore,

regulations have already been made both locally and globally on controlling

atmospheric emission. To date, an international treaty called Minamata Convention

has been ratified by 123 countries. Under the Minamata Convention, from 2017,

States parties already prohibited the manufacturing, importing, and exporting

mercury-containing coal. Furthermore, novel mercury control technology, especially

for mercury emissions in coal-fired flue gas, is currently the main technical

requirement.

Mercury released from coal-fired power plant exists in three forms: elemental

mercury (Hg0), oxidized mercury (Hg2+) and particulate bound mercury (Hgp)[3]. At

typical air emissions and operating temperatures Hg0 has a high vapour pressure,

which also increases the removal complexity. Mercury oxide, unlike Hg0, because it is

easy to contact particulate matter is easily removed in Wet flue gas desulfurization

unit (WFGD) equipment and easily collected by Electrostatic Precipitators (ESP) and

Fabric Filter(FF)[4]. Hg0 is the hardest to remove because of its high volatility and

low solubility. Currently, adsorbent injection for boiler optimization and SCR

(original activated carbon or reformed activated carbon), halogen salt (e.g. CaBr2) is a

commercially available mercury release control technology. Since the nature of coal

and the equipment of power plants are very different, there is no general mercury

control plan that can be applied in all cases, and it is always necessary to combine
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control methods. Activated carbon injection is the deepest and most mature method,

but at a high price. The United States department of energy estimates that removing a

pound of mercury will cost between $25,000 and $70,000 to 90 per cent if

absorbed[5]. In addition, in high-sulphur coal conditions, the emission potential of

activated carbon was clearly reduced. Therefore, removal of Hg0 flue gas from

coal-fired process flue gas or convert Hg0 to Hg2+,which is easy to remove, is crucial

to mercury emission control.

One method that can be considered is to use the oxidation of precious metals or

transition metal for catalytic oxidation reaction with Hg0 and produce Hg2+. Then the

WFGD system can easily remove it. However, although precious metals such as gold

(Au) and palladium (Pd) have been proved to have good catalytic oxidation properties,

their application cost in industries 28 is too expensive[6]. Additionally, in practical

applications, the presence of sulfur dioxide (SO2), a common component in coal flue

gas 30 can inhibit the catalytic oxidation of Hg0. Therefore, much work so far has

focused on the method of SCR and Hg0 cooperative, which can convert the SO2

through a catalyst into SO3. Furthermore, the conversion efficiency can be improved

by using dopants. Among all dopants, Mo is the dopant with the best effect of

removing SO2 interference[7].

Considering economic efficiency, using transition metal oxides to remove mercury is

an effective approach such as copper oxide (CuOx), cobalt oxide (CoOx), and

manganese oxide (MnOx) were selected for Hg0 removal. At present, MnMo catalyst

and Cu base adsorbent have been selected as the better combination for Hg0 removal.

There were study on the optimization of Mo doping ratio[8].

In this study, a series of MnMo/γ-Al2O3 catalysts and CuMoS/γ-Al2O3 adsorbent with

different ratios were synthesized by initial wet impregnation (IWI) method, and the

removal performance of Hg0 was studied. In previous work, the optimization of Mo

doping ratio has been completed[9]. Therefore, the main purpose of this study is to

optimize the MoMn/γ-Al2O3 catalysts and CuMoS/γ-Al2O3 adsorbents according to

the performance test of mercury removal energy. The effect of Mo addition on
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catalysts and adsorbents were elucidated through system characterization, and the

optimal proportion of active ingredients was optimized.

(1) Catalysts preparation.

Using γ-Al2O3 as the carrier, MnOx/γ-Al2O3 and MnOx-MoO3/γ-Al2O3 catalyst and

Cu-S/γ-Al2O3 and Cu-Mo-S/γ-Al2O3 adsorbents with different manganese content are

prepared via incipient-wetness impregnation method in this project.

(2) Demercuration performance study.

The demercuration performance is studied by qualitative and quantitative analysis,

while the demercuration performance of catalysts is measured via temperature

programmed surface reaction (TPSR). The catalyst's performance in terms of

adsorption and catalytic oxidation of Hg0 are tested under 30℃ ~700℃ dynamic

temperature programmed experiment condition. The removal effect of Hg0 is probed

via qualitative analysis, while the catalytic oxidation effect of Hg0 is studied via

quantitative analysis.

(3) Structural characterization.

The relationship between the structure, morphology and catalytic performance of

catalysts is probed via systematic characterization. XRD and TEM characterization

are used to study the relationship between crystal plane and lattice and oxygen

vacancy on catalyst surface, as well as the influences on catalytic oxidation. BET is

used to characterize the influences of specific surface area on adsorption effects. The

relationship between acidity sites on catalyst surface and demercuration performance

is studied via in-situ FTIR characterization. The influences of pre-doping of

molybdenum on manganese-based catalyst, as well as the synergistic effects between

molybdenum and manganese after the addition of molybdenum, are thereby proved

via mechanism analysis.

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/8.9.3.0/resultui/html/index.html
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Chapter 2 Literature review

2.1 Introduction

Mercury and its compounds are toxic and harmful substances. Small doses of mercury

can cause great harm to human health, the ecological environment, soil, water, and

air[10]. Moreover, mercury has the characteristics of strong latent toxicity transfer in

food chain enrichment in migrating organisms from region to region[11]. Mercury

entering the atmospheric environment is ultimately a global pollutant undergoing

atmospheric circulation. Oxidised mercury can settle near the emission source only

after staying in the atmosphere for a few days, while elemental mercury can remain in

the atmosphere for several years, thus being transmitted and distributed over a long

distance, which is the main source of mercury migration and pollution on a global

scale[12]. Mercury entering the aquatic environment mainly reacts with sulphate on

the surface of sediments to form insoluble mercury sulphide. Mercury in the bottom

mud of aquatic environments can be transformed into methylmercury under the action

of microorganisms. Methylmercury redissolves in water and concentrates in aquatic

organisms, making it one of the most toxic mercury compounds[13]. Mercury

entering soil and water bodies due to sedimentation is released back into the

atmosphere to participate in the migration of atmospheric mercury, and settles again

in the form of gaseous or particle attachment, forming secondary emissions and

pollution[14]. In general, background concentrations of mercury in the atmosphere do

not constitute a hazard to human health; therefore, mercury pollution is fundamentally

caused by mercury emissions from the development and use of mercury. In addition

to natural causes (e.g. volcanic eruptions, rock weathering, and forest fires), human

activities (e.g. the production of chlor-alkali from the burning of fossil fuels, metal

smelting, and cement) have become important sources of atmospheric mercury

pollution[15].

Coal, as a type of non-clean energy, is the main cause of air pollution. Coal for power

generation is the main reason for the increase in coal consumption. Burning coal for

power generation leads to the emission of gaseous pollutants such as NOx, SO2, and
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Hg0 to the atmosphere. If these gaseous pollutants are not controlled, serious

environmental problems will occur, such as acid rain haze, photochemical smog, and

Minamata disease. A lot of research has been undertaken on coal in China, and results

have shown that mercury levels vary widely depending on the location and type of

coal. For example, the average mercury concentration in Chinese coal is 0.22 ppm,

but in some samples from Guizhou it has been found to reach 7.2 ppm, 10.5 ppm, or

even 55 ppm[16]. Despite the relatively low mercury concentrations in coal, huge

amounts of mercury are released into the atmosphere each year from coal burning

worldwide. Mercury is a highly toxic element that is released through natural and

anthropogenic emissions, and poses a serious threat to human health and ecosystems

owing to its unique characteristics of bioaccumulative volatility and durability. Due to

the potential harm of mercury to biological systems, especially to human health,

mercury emissions have attracted increasing attention. Among the various emission

sources, coal-fired power plants are the largest known source of anthropogenic

mercury. Therefore, reducing mercury emissions from coal-fired power plants is a

global goal. At present, China attaches great importance to NOx and SO2 pollution

control, and the technology has matured[17]. On the contrary, there is a lack of

emphasis on Hg pollution control, and emission standards are far lower than those in

developed countries. Therefore, the development of an economical and efficient

technology for mercury removal from coal flue gas in China is urgently needed[16].

2.2 Mercury toxicity

Mercury is one of the major lethal pollutants, while metallic mercury vapour, organic

mercury, and inorganic mercury are all highly toxic. Mercury and its compounds are

mainly absorbed by the human body in three ways: via the skin, respiratory tract, and

digestive tract[18]. Over 95% of organic mercury compounds can be absorbed by the

digestive tract, and mainly harm the central nervous system, kidney, and digestive

system of the human body, but can also harm the skin, respiratory system, blood, and

eyes[19]. After entering the human body, mercury from mercury compounds may

combine rapidly with tissue protein and the sulfhydryl group of blood to provide a
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certain mercury detoxification capacity in the human body. Mercury then gradually

accumulates in the kidneys, which are the functional organ for detoxification of the

human body, thus causing kidney failure. Once inorganic mercury enters a waterbody

through air deposition, it can be transformed into the most toxic methylmercury by

biomethylation under anaerobic conditions. It can subsequently enters the human

body via the food chain, causing nervous system disorder, liver and kidney injury, and

child development damage. Mercury poisoning includes acute and chronic

mercurialism; the former is mainly caused following the absorption of

high-concentration mercury vapour over a short period of time, while the latter is

mostly occupational disease, with symptoms of headaches, tremors, and testiness, and

may cause mental disorders and kidney failure in severe cases[20].

The Japanese “minamata disease” incident occurred in the 1950s and affected more

than 10 000 residents after eating methylmercury-containing fish over a long period

of time[3]. Such incidents also occurred in the mid-1960s, when mercury poisoning

cases appeared due to the continuous discharge of mercury- and

methylmercury-containing wastewater from a chemical plant in the Songhua River

basin. The harmfulness of mercury pollution has gained attention worldwide,

especially the mercury pollution associated with coal-fired power plants. The United

States and the European Union issued the Mercury Emission Standard of coal-fired

power plants in 2011 and 2005, respectively. In 2013, driven by the United Nations

Environment Programme (UNDP), representatives from 186 countries and regions

around the world signed the International Mercury Convention: Minamata Conven'ion.

China’s latest Air Pollutant Release Standard for Heat-Engine Plant (GB13223- 2011)

stipulates that the discharge concentration of mercury and its compounds shall not

exceed 0.03 mg/m3. With increasingly strict mercury emission standards, technology

to control mercury pollution in coal-fired power plants is urgently needed[21].

2.3 Mercury Source

There are two main sources of mercury pollution in the atmosphere: natural sources,

including mercury discharged by rock weathering, volcanic eruptions, ocean
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movement, forest fires, and other natural phenomena; and anthropogenic sources,

such as mercury extraction and purification from ore smelting, fossil fuel combustion,

chlor-alkali and electrical equipment industry, and coal burning, which is the main

source of atmospheric mercury pollution[22]. As the largest anthropogenic mercury

emission source in the world, coal-fired power plants contribute approximately

one-third of the mercury emission source.

According to the UN's 2013 pollution report, global mercury emissions in 2010 were

2600 t, 75% (1960 t) of which were man-made. The amount of mercury released in

2010 was only 40% of the current level of mercury in the atmosphere. The remaining

60% of atmospheric mercury is associated with earlier releases. According to these

reports, China's mercury emissions are much higher than those of other countries. In

2005, China emitted approximately 830 t of mercury, almost as much as the next few

high-emitting countries combined[23]. However, the main source of mercury

emissions in China is coal, which emits approximately 400 t, most of which is for

power generation and industrial use. Effective control of mercury emissions from coal

burning can effectively reduce the total amount of mercury emissions in China[24].

2.4 Research status of mercury removal technology in coal-fired plant

Mercury in the flue gas of coal-fired power plants has three forms: elemental mercury

(Hg0), mercuric oxide (Hg2+), and particulate mercury (HgP)[25]. Both Hg2+ and HgP

are easily adsorbed by coal ash and removed by the existing coal-fired flue gas

pollutant control equipment, while Hg2+ is soluble in water and can be removed using

wet desulphurisation devices. However, Hg0 is difficult to remove from existing

power plant equipment because of its strong chemical stability and insolubility in

water[26]. Therefore, the difficulty of coal-fired flue gas demercuration is Hg0

adsorption and catalytic oxidation. According to the research status both in China and

abroad, the demercuration process of coal-fired power plants currently mainly

includes pre-combustion mercury removal, mercury removal in the combustion

process, and post-combustion mercury removal.
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2.4.1 Pre-combustion mercury removal technology

Pre-combustion mercury removal mainly refers to coal washing and heat treatment

technologies. As a trace element, mercury mainly exists in the iron pyrite of coal in

the inorganic compound state. Therefore, an organic flotation agent can be added to

the coal washing stage to realise mercury sediment removal. Research has shown that

the mercury removal rate of coal washing technology can reach 21%–37%. Although

it has the advantages of low cost and being a relatively proven technique, coal

washing technology can only remove a small amount of mercury. In addition, the

washing rate of China's raw coal is only 22%, which is far below the standards of

developed countries[27]. Therefore, it is difficult to reduce China's mercury emissions

from coal burning by relying solely on coal washing technology. The volatile

characteristics of mercury and its compounds are utilized in the heat treatment

technology of raw coal at high temperatures and high pressures, thus volatilising

mercury and its compounds. In addition, the mixed combustion of coal and biomass

fuel can increase the chlorine content of the combustion process and improve the

mercury removal efficiency. However, partial decomposition also occurs during the

heating process of coal, leading to a lower calorific value. Therefore, coal washing

technology is relatively more advanced, and the heat treatment technology of coal is

not applicable for large-scale industrial applications.

2.4.2 Technologies of mercury removal in combustion

According to the research status both in China and abroad, there are fewer studies on

mercury removal technology during the combustion process compared with

pre-combustion technologies. Mercury removal during the combustion process mainly

includes changing the combustion conditions and adding additives to coal, which

transform mercury into an easy-to-remove form, and remove it through the flue gas

treatment device[26]. Temperature, atmosphere, and pulverised coal fineness all

affect the combustion process, and the specific technologies include fluidised bed

combustion, low-carbon combustion, and low-nitrogen combustion technologies. In

the fluidised bed combustion method, the standing time of flue gas in the furnace is
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increased to improve the oxidation rate of mercury and the adsorption opportunity of

particles produced in the combustion process. The additives added to the treated coal

mainly include limestone, potassium iodide, and calcium bromide, which can change

the form of mercury and improve the mercury removal efficiency. However, they also

produce new pollutants and corrode equipment.

2.4.3 Post-combustion mercury removal technologies

Post-combustion mercury removal refers to mercury removal from flue gas, which is

the key to mercury removal technology, and with the constantly improving

environmental standards of various countries, mercury removal from flue gas may

become the key to mercury pollution control technology of coal-fired power plants.

Currently, flue gas dust removal, desulphurisation, and denitrification equipment in

coal-fired power plants are mature; therefore, improving the mercury removal

efficiency of flue gas based on existing equipment and devices will become a future

research focus. Many studies have been conducted on post-combustion mercury

removal technology, mainly including adsorption methods, normal pollutant control

devices, catalytic oxidation methods, photocatalysis, and plasma technology[28].

2.4.3.1 Removal of mercury by adsorption

The commonly used adsorbents for mercury removal in adsorption method include

activated carbon, fly ash, calcium based adsorbent mineral material adsorbent and

metal oxide adsorbent, etc. Adsorbents with highly developed pore structure not only

have strong physical adsorption capacity to mercury, but also are good carriers for

various active components. Adsorbents with highly developed pore structure not only

have strong physical adsorption capacity to mercury, but also are good carriers for

various active components.

（1）Activated carbon adsorbent

Activated carbon has developed pore structure and higher specific surface area. It is

an efficient adsorbent for mercury removal. The adsorption of mercury on activated
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carbon includes the physical process and chemical reaction, such as adsorption,

condensation and diffusion. The mercury removal efficiency is mainly related to the

physical properties of the adsorbent itself (particle size, aperture, surface area, etc.),

temperature and residence time of flue gas components, mercury concentration and

other factors. Mercury removal from activated carbon can be divided into two types

according to adsorption mechanism: The first mechanism relies on the special pore

structure and a large number of micro-pores on the surface of the adsorbent to remove

mercury through strong physical adsorption capacity. Another type of mechanism

depends on the abundant organic functional groups (such as carboxyl, hydroxyl,

carbonyl, lactone, etc.)[29] on the surface of the adsorbent, which have good

chemisorption ability. Activated carbon adsorbent for mercury removal is the most

mature and popular technology for mercury removal from flue gas in coal-fired power

plants, and it is widely used in the world. In order to further improve the mercury

adsorption performance of activated carbon, many researchers modified activated

carbon with halogens and so on. The mercury removal ability of modified activated

carbon is improved, but the cost is increased due to the decrease of activated carbon

utilization. Moreover, the poor thermodynamic stability also limits the use of

activated carbon adsorbent in the face of complex flue gas, resulting in the limitations

of activated carbon in the removal of mercury from flue gas[30].

（2）Fly ash and calcium-based adsorbents

Fly ash refers to the coal ash produced after combustion, which has the advantages of

small particle size, practicality, high cost and so on. The source of fly ash is the

product of fuel combustion, so it can be obtained by combining with the existing fly

ash removal technology. Compared with activated carbon adsorbent, fly ash is a kind

of adsorbent with lower cost. The adsorption of mercury by fly ash includes physical

adsorption, chemical adsorption and chemical reaction. The adsorption performance

of mercury is mainly attributed to the unburned carbon in fly ash. In addition, MnO,

MgO, Fe2O3 and oxygen-containing functional groups on the surface also have

catalytic oxidation effect on mercury[31]. The smaller the particle size of fly ash is,
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the stronger the mercury removal ability is, and the better the mercury removal

adsorbent can be obtained by modifying it.

（3）Mineral adsorbents

Mineral adsorbents are mainly made of minerals with abundant reserves, low price

and no toxicity to the environment. Its composition is mainly some clay minerals,

including zeolite, vermiculite, kaolin, diatomite, bentonite, etc.. For example, the

synthetic zeolite is generally called molecular sieves, is the use of alumina clay silica

and alkali as raw materials synthesis, often used as gas and liquid desiccant adsorbent

and carrier[32]. In structure, it has many holes with uniform pore size and

well-arranged pores. Molecular sieves with different pore sizes separate molecules of

different sizes and shapes. The adsorption capacity of these mineral materials is not

high, and the mercury adsorption capacity can be greatly improved by modifying

them. The preparation of low cost and high efficiency mercury removal adsorbents by

mineral modification has been a research hotspot in recent years[33].

（4）Metal oxide adsorbents

Metal oxide adsorbent is a potential adsorbent for mercury removal, especially the

transition metal, showing good oxidation performance[34]. Because lattice oxygen in

metal oxides has a strong oxidation property, it has a good effect on the oxidation of

elemental mercury. Metal oxides include single metal oxides and bimetal oxides and

various metal oxide complexes. Some of the metal oxides (such as Al2O3 and

SiO2)[35] have good mechanical properties, high specific surface area and

well-developed pore structure, making them ideal carriers for adsorbents.

2.4.3.2 Removal of mercury by catalytic oxidation

Removal of Hg0 from flue gas is key to mercury removal technology. Compared with

other methods, catalytic oxidation technology is one of the most promising

technologies for mercury removal. This technology can be reused many times and can

maintain a long-term high efficiency without secondary pollution. Catalytic oxidation
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refers to the oxidation of elemental mercury (Hg0) in flue gas to oxidised mercury

(Hg2+) through the synergistic action of the catalyst and oxidising substances in the

flue gas. Mercury ions are highly water-soluble, easily adsorbed, and can be removed

by other flue gas treatment equipment. At present, most studies on catalytic oxidation

methods use HCl or Cl2 in flue gas as oxidants, but the concentrations of these two

oxidants in flue gas is relatively low[21]. On the contrary, O2, as the most commonly

used oxidant, also has a high concentration in coal-fired flue gas. The use of O2 as an

oxidant to achieve the oxidation of mercury in the absence of HCl is the current

research focus of catalytic oxidation technology[36]. On the contrary, O2, as the most

commonly used oxidant, also has a high concentration in coal-fired flue gas. The use

of O2 as an oxidant to achieve the oxidation of mercury in the absence of HCl is the

current research focus of catalytic oxidation technology[16].

Owing to the complex composition of flue gas and the long operation time of mercury

removal equipment, the catalyst requirements are high. Mercury removal catalysts

resist poisoning and maintain catalytic activity under a wide temperature window with

low cost and long service life. Currently, selective catalytic reduction (SCR)

catalysts[37]and metal and metal oxide catalysts are most commonly used, and are

mainly divided into two categories: supported catalysts and non-supported catalysts.

A supported catalyst consists of at least two components: a carrier and an active

component. Common carriers include γ-Al2O3, activated carbon, and molecular sieves,

which are characterised by large specific surface areas and more micropores and

reaction sites than other carriers[38]. The active components include precious metals

and transition metals. Transition metal oxides have become a research hotspot in

recent years because of their low cost and low activity, and mainly include V, Co, Cr,

Ce, Mo, and Mn[39]. The main synthesis methods for non-supported catalysts include

sol-gel and co-precipitation methods. These methods utilise the interaction between

different components to form a porous structure and increase the specific surface area

of the catalyst. However, the synthesis process is uncontrollable, with complex

interactions among various components and many influencing factors. Therefore, the



17

pore structure of the synthesis catalyst is disordered and the pore diameter distribution

is not concentrated, which seriously affects the effect of mercury removal[40].

(1) Molybdenum-based catalysts

Molybdenum-based catalysts have been widely studied in recent years because of

their excellent catalytic performance and low price. Molybdenum is a transition metal

with variable valence. There are a variety of molybdenum-based catalysts, mainly

oxide sulphide nitrides. Molybdenum disulphide, a two-dimensional transition metal

with a graphene-like structure, is widely used in catalytic studies[13].

Molybdenum-based catalysts are mainly used in the production of acrylonitrile

methane dry-reforming by hydrodesulphurisation propane ammoxidation of

petroleum. In addition, MoO3 has been widely used as a stabiliser and promoter to

improve the active mechanical properties and structural properties of NH3–SCR

reaction catalysts owing to its excellent anti-sulphur toxicity properties. The synthesis

methods of molybdenum-based catalysts mainly include the impregnation chemical

vapour-deposition solvent thermal ion-exchange method[41].

(2) Manganese-based catalysts

Manganese oxides have the strongest catalytic abilities among existing metal oxides

in nature[40], and manganese-based catalysts are considered to be among the most

promising catalysts for mercury removal because of their high catalytic oxidation

performance, low cost, and environmental friendliness. Manganese oxides mainly

include MnO, MnO2, Mn2O3, and Mn3O4, among which MnO2 has the most

outstanding performance because Mn4+ has a stronger oxidation capacity than other

species of Mn[42]. These manganese oxides have excellent physical and chemical

properties, such as high reversible capacitance structures, flexible stabilities, high

charge and discharge rates, and fast cation diffusion rates. Manganese oxides have

wide application prospects and can be used as adsorbent catalysts for electrode

materials. In addition, manganese-based materials usually have high structural

flexibility and can be modified by catalyst carriers and other elements[17]. The
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application of manganese oxides in a gas polyphase catalytic reaction was proposed

several decades ago, and the material exhibited a strong polyphase catalytic

performance. At present, manganese-based oxides are commonly used for the SCR of

NH3, catalytic combustion, Hg0 adsorption, and the catalytic oxidation of CO.

2.4.3.3 Novel demercuration technologies

Photocatalysis is defined as the direct and indirect oxidation and reduction reactions

on the surface of materials caused by photogenerated holes and electrons generated

via the activation of semiconductors by light sources. In recent years, owing to its

affordable price, high chemical stability, strong oxidation, and lack of secondary

pollution, public attention has been focused on photocatalytic technology.

Photocatalytic oxidation demercuration uses highly reactive oxygen produced by a

catalyst under a light source to react with mercury in flue gas to oxidise mercury to

Hg2+, which is then captured by a part of the subsequent device. Currently, the

commonly used photocatalysts include TiO2, C3N4, and BiVO4[43]. This method is

still at the experimental stage and needs further investigation before it can be used in

an actual device for demercuration[44].

Plasma technology has also been used for demercuration in recent years. There are

various ways to generate plasma, and currently, corona discharge is the most

profusely explored method in flue gas treatment[45]. Dielectric barrier discharge

plasma technology blocks discharge via dielectrics and converts simple mercury in

flue gas into divalent mercury. However, few application examples exist owing to the

immaturity of this technology; hence, further study is required. The uniquely elusive

property of mercury limits the application of plasma technology in demercuration[34].

2.5 Summary

To date, many studies have investigated mercury. The first and most basic was Kevin

et al.[46], who reviewed the migration and transformation law of mercury during coal

combustion. The authors laid the theoretical foundation for removing mercury from

coal-fired power plants. Mineral adsorbents have been a popular research topic of
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mercury removal in recent years. Mineral adsorbents used for mercury removal are

characterised by their abundant reserves and low cost. The mineral adsorbent

commonly used is ash (including fly ash) pyrite. Modification and improvement are

generally required to improve the mercury removal efficiency of mineral adsorbents.

Xu et al.[47] conducted X-ray fluorescence and X-ray electron spectroscopy tests, and

found that mercury removal from fly ash was mainly due to its physical and chemical

adsorption. Fly ash has a high specific surface area and small pore size, which are

conducive to improving the efficiency of mercury removal. However, the conditions

for the use of mineral adsorbents in power plants are still harsh. High temperatures

will enable the catalytic oxidation ability of some active components, which is not

conducive to the adsorption of Hg0.

Technologies for mercury removal by metal catalysts focus on the oxidation capacity

and high specific surface area of metal catalysts, and modification is sometimes

needed to improve the efficiency of mercury removal by metal catalysts. At present,

many types of metal catalysts have been investigated. Kokkinos et al.[48] chose

tetravalent manganese feroxyhyte as a catalyst based on its high oxidation capacity,

high surface area, and high negative charge density. Yi Zhao et al.[49] ssynthesised a

CoFe2O4 catalyst using the sol-gel method, finding that Co and Fe could oxidise Hg0

to Hg2+ through a series of reactions, and that the efficiency of mercury removal

reached 85%. Ma et al.[50] designed a layered mixed-oxide structure of

MnO2/CeO2-MnO2. The results showed that the synthesised catalyst had rich surface

oxygen and a layered pore structure, and the removal efficiency of Hg0 reached 89%

because the pore structure was conducive to the adsorption of gaseous mercury. The

basic active site for Hg0 oxidation is MnO2, while CeO2 promotes the synthesis of O2

and improves the oxidation characteristics of MnO2. Liu et al.[51] analysed the

unsaturated metal potential based on density functional theory (DFT) and concluded

that Hg0 could stabilise the unsaturated metal potential existing in the organic

framework of metals. This also provided a strong condition for the further oxidation

of Hg0. These catalysts can be re-oxidised under oxygen, which can facilitate their
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reuse. To further reduce the cost of mercury removal, some scholars have investigated

the use of renewable mercury removal technology[52]. In the future, mercury removal

technology should be developed to improve the efficiency of mercury removal and

reduce the application cost of mercury removal technology by combining

multi-pollutant emission control.
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Chapter 3 Experiments

3.1 Research method

In this study, a catalyst for mercury removal from coal-fired flue gas was developed

via the incipient-wetness impregnation method, which features low cost, high

catalytic oxidation performance and environmental friendliness. The demercuration

performance was studied via temperature-programmed surface reaction (TPSR), and

the optimal temperature for demercuration was determined by steady-state analysis.

On top of that, the demercuration mechanism based on Mn catalyst modified from Mo

was optimized by a series of systematic characterization.

The specific surface area (SBET) of the catalysts was measured through Micromeritics

ASAP 2020 to give the information of pore volume and average pore size. The pore

size and distribution of the catalyst restricted the internal diffusion resistance of the

reactants and products and the relative concentration of the surface reactants, so the

specific surface area was an essential parameter for the surface and morphology of the

reaction catalyst. X-ray Diffraction XRD (Bruker, Germany) was a method conducted

to find the pattern diffracted by X-ray and analyze the crystallinity of the catalysts. To

explore the influence of dopants on the catalyst, we used in-situ diffuse reflectance

infrared Fourier transform spectroscopy (in-situ DRIFTS) as an effective means to

study the surface reaction mechanism of catalysts. In this study, the acid sites of the

catalysts were explored. (Using NH3 as the alkaline probe molecule, we can treat Hg

as an alkaline gas). According to the in-situ DRIFTS experiments, the

temperature-programmed desorption (TPD) was used to study adsorption and

desorption behaviour of NH3 (Simulation of mercury) on the samples’ surface. The

adsorption capacity of catalyst to Hg was explained by analyzing the peak strength.

Transmission electron microscope (TEM) and high-resolution transmission electron

microscopy (HRTEM) images were captured via a JEM 2100 microscope operated at

200 kV. TEM can clearly observe the metal-supported catalyst, and analyze the

arrangement of the constituent atoms and the direction of crystal growth.



22

The relationship between the structure, morphology and catalytic performance of

catalysts was probed via systematic characterization. XRD and TEM characterization

were used to study the relationship between crystal plane, lattice and oxygen vacancy

on the catalyst surface, as well as the influence on catalytic oxidation. BET was used

to characterize the influence of specific surface area on adsorption effects. The

relationship between acidity sites on the catalyst surface and demercuration

performance was studied via in-situ FTIR characterization. The influence of

pre-doping of molybdenum on the manganese-based catalyst, as well as the

synergistic effects between molybdenum and manganese after the addition of

molybdenum, were thereby proved via mechanism analysis.
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3.2 Chemicals and reagents

The reagents and chemicals applied in this chapter are listed in Table 1.1.

Table 1.1.Main chemicals and reagents used in the experiments

Chemicals Molecular formula Standard Supplier

Ammonium

molybdate

(NH4)6Mo7O24·4H2O AR Sinopharm

Chemical Reagent

Co., Ltd.

Manganese nitrate

(Tetrahydrate)

Mn(NO3)2·4H2O AR Sinopharm

Chemical Reagent

Co., Ltd.

Cupric Nitrate

(Hexahydrate)

Cu(NO3)2·6H2O AR Sinopharm

Chemical Reagent

Co., Ltd.

Aluminium oxide

(Gamma)

γ-Al2O3 Size range：

1.18≤X≤

1.70nm

V-SK Co., Ltd.

Nitrogen N2 99.999% Dalian Anruisen

Special Gas Co.

Ltd.

Argon gas Ar 99.999% Dalian Anruisen

Special Gas Co.

Ltd.

Hydrogen sulfide H2S 99.999% Dalian Anruisen

Special Gas Co.

Ltd.
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3.3 Experimental instruments

The instruments and equipment applied in this chapter are listed in Table 1.2.

Table 1.2. Instruments and equipment

Instrument Model Supplier

On-line mercury analyzer Tekran 3300RS Tekran Instruments Co. Ltd

Tubular furnace (vertical) 60250-12-6A Hangzhou Zhuoke Instrument

Co. Ltd.

Tubular furnace (horizontal

type)

GSL1700X Zhengzhou Kejing electric

Furnace Co. Ltd.

Air drying oven DHG-9070A Shanghai Yiheng Scientific

Instrument Co., Ltd.

Electronic balance FA2104 Shanghai Sunny Hengping

Scientific Instrument Co., Ltd.

X-ray diffraction analyzer Bruker D8 A25 Brock Co. Ltd.

X-ray photoelectron

spectrometer

Kratos AXIS Ultra

DLD

Kratos Co. Ltd.

Specific surface area tester ASAP 2020 Micromeritics Instrument Co.

Ltd.

Fourier Transform Infrared

Spectrometer

Bruker V70 Brock Co. Ltd.

Transmission electron

microscope

JEM 2100 JEOL Co. Ltd.

http://www.baidu.com/link?url=UZlwb22w6B1XdGnYrEB91e_lRknCA_7ZRUxV4cXy9HcXfgVP3cZpocfBnReWp2nBb3yjd_PS9E-Kz8NzKM4EPq
http://www.baidu.com/link?url=UZlwb22w6B1XdGnYrEB91e_lRknCA_7ZRUxV4cXy9HcXfgVP3cZpocfBnReWp2nBb3yjd_PS9E-Kz8NzKM4EPq


25

3.4 Preparation of catalysts

Mo-Mn catalysts were synthesized by the incipient wetness impregnation (IWI)

method. The mesoporous γ-Al2O3 was used as the support: (NH4)6Mo7O24•4H2O and

Mn(NO3)2•4H2O (Sino-pharm Chemical Reagent Co, Ltd) were used as the precursors.

In this study, the MoMn/γ-Al2O3 catalysts with 2,4,6 wt% of Mn-loading were

prepared. The detailed processes for sample production were recommended

elsewhere[42]. Metal precursors, such as Cu(NO3)2•6H2O and (NH4)6Mo7O24•4H2O,

were dissolved in deionized water. IWI prepared CuO/γ-Al2O3 and CuMoO/γ-Al2O3.

After calcination, CuS/γ-Al2O3 and CuMoS/γ-Al2O3 were prepared by the

sulfurization of CuO/γ-Al2O3 and CuMoO/γ-Al2O3 via sulfur-chemical vapor reaction

(S-CVR) method.

3.5 Hg0 removal experiments

3.5 Hg0 removal experiments

The demercuration performance was studied by qualitative and quantitative analysis,

while the demercuration performance of catalysts was measured via

temperature-programmed surface reaction (TPSR). The catalyst’s performance in

terms of adsorption and catalytic oxidation of Hg0 was tested under 30℃~700℃

dynamic temperature-programmed experiment conditions. The removal effect of Hg0

was probed via qualitative analysis, while the catalytic oxidation effect of Hg0 was

studied via quantitative analysis. All reactions use air as carrier gas and the proportion

of oxygen(5%) is regulated by the addition of nitrogen. The catalyst should be dried

in an oven(120℃) before use to avoid the interference of water on the experiment.

A special experimental device was designed to test the Hg0 catalytic removal effect

with prepared specimens. The mercury producer (Tekran 3310, USA) inside the

machine generated certain amounts of Hg0 within a given time. And mercury analysis

system (Tekran 3300RS, USA) continuously calculated the amount of mercury (HgT),

Hg2+ that was shown as [Hg2+] = [HgT]-[Hg0]. Therefore, the data of Hg0 catalytic

oxidation with the different catalysts can be well recorded for later analyses with an
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integrated dynamic-state experimental method to be used to get the maximum

instantaneous mercury removal efficiency (ΔXmax) and catalytic oxidation rate.

The maximum instant mercury removal efficiency �� ��� and Catalytic Oxidation

Ration can be calculated by following equations[42].

�� ��� = [���]��−[���]���
[���]��

× 100% (1)

Catalytic Oxidation Ration= ��2+

[��0]
× 100% (2)

Figure. 1 Schematic diagram of the experimental system
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Chapter 4 Performance of Mn/Mo-Mn catalyst in Hg0 removal

4.1 Analysis of Hg0 removal efficiency

4.1.1 Evaluation of Hg adsorption and catalytic oxidation performance

The Hg0-TPSR results for different concentrations of Mn promoted by 1.25% Mo

have been shown in Figure 3. Based on Figure 2 and 3, the characteristic temperatures

have been concluded in Table 2, including the initial adsorption temperature (Ta0), the

adsorption rate peak (Tra, peak), the best effective adsorption range (Ta, range), the

initial desorption temperature (Td0) and the desorption rate peak (Trd, peak).

Ta0 was an indicator related to catalyst activity. To some extent, it had a strong

connection with activation energy. 1% Mn had the highest initial adsorption

temperature, which was 69.4℃. Then, Ta0 decreased 25.5℃ gradually with an

increase in the Mn concentration. The trend for Ta0 change was applicable for both

Mn oxides and Mo-promoted Mn oxides. If we compared Ta0 of Mn oxides with

Mo-promoted Mn oxides, it can be found that Ta0 for Mo-promoted Mn oxides was

much higher than oxides of the same concentration of Mn. Thus, it could be

concluded that the increase of Mn would cause deterioration in Ta0 and the dope of

1.25%Mo would increase Ta0 notably.
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Figure 2. HgT and Hg0 (a) and Hg2+(b) dynamic transient-state analysis of Mn

catalysts with ranges of Mn loadings.
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Figure 3.HgT and Hg0(a), Hg2+(b) dynamic transient-state analysis of Mn-Mo

catalysts with ranges of Mn loadings.

Table 2. Characteristic temperatures of Mn oxides and Mo-promoted Mn oxides.

Sample

Ta0

(℃)

Tra,peak

(℃)

Ta,range

(℃)

Td0

(℃)

Trd,peak

(℃)

1Mn 69.4 183.9 278.8 409.2 419.1

2Mn 45.8 67.6 293.1 407.1 437.3

4Mn 41.3 172.3 212.7-326.6 398.5 443.8

6Mn 31.2 148.4 240 362 367

8Mn 25.5 190.5 228.5 365.5 396.3

1.25Mo2M

n
63.2

159.4 177-376.9
433.1

433.1

1.25Mo4M

n 62.6 133 173.9-350.6
426.1

445.8

1.25Mo6M

n 48.6 70.3 180.7-330.5
407.3

407.3

4.1.2 Quantitative analysis for evaluating Hg0 catalytic oxidation

The activation energy of Hg2+ and Hg0 capture process for Mn oxides and Mn oxides

promoted by 1.25% Mo were also recorded in this study. The results were listed in

Table 2. The R2 values for all Mo-promoted Mn oxides exceeded 0.94, indicating a

good fit to Arrhenius equation. The values of Ea for 1.25% Mo-promoted Mn oxides

were recorded in the third column of Table 3. According to the calculation, the value
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of Ea of 1.25%Mo6%Mn was lower than the original Mn oxides by at least 17%. The

activation energy for 1.25%Mo2%Mn and 1.25%Mo4%Mn was also reduced by

approximately 50% and 32% respectively. These data directly showed that adding Mo

had a positive effect on their Hg0 and Hg2+ capture performance in terms of reducing

activation energy. This characteristic will allow the mercury capture process to occur

at a relatively lower temperature and save energy. Among the group of Mn samples

with Mo loading, 1.25%Mo4%Mn samples had shown the lowest activation energy

compared with the other two Mo-loading samples. While the 1.25%Mo6%Mn had the

highest activation energy among all the three.

The ΔXmax region was in a best position to evaluate indicators of mercury removal

rates directly. The max for each concentration was recorded (Table 3). The order of

maximum Hg0 removal efficiency from high to low was 1.2%5Mo2%Mn (98% at

336℃) > 1.25%Mo4%Mn (96% at 202℃) >1.25%Mo6%Mn (75% at 289℃).

Combined activation energy with removal rate, the 1.25%Mo2%Mn and

1.25%Mo4%Mn sample demonstrated the high mercury removal rate.

Table 3. Summary of reaction kinetics for Mn oxides and Mn oxides promoted by

1.25%Mo

Sample Slope
Ea

(kJ/mol)
R2

ΔXmax

(%)

1Mn -10222 85.0
0.80

7
95

2Mn -7443 61.9
0.98

6
92

4Mn -5514 45.8
0.97

5
96
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Table 4. Catalytic capacity analysis for Mn oxides and Mn oxides promoted by

1.25Mo.

Sample

Sa

(min

μg/m3)

Sd

(min

μg/m3)

ΔS

(min

μg/m3)

SHg2+

(min

μg/m3)

Ratio

(%)

2Mn 3524.95 2366.82 1158.14 1135.13 32.2

4Mn 3318.37 1903.80 1414.57 1459.42 42.6

6Mn 2634.78 2113.42 521.35 426.61 19.8

1.25Mo2M

n 3973.53 1692.72
2280.80 2254.20 57.4

1.25Mo4M

n 3749.04 1434.04
2314.99 2312.81 61.7

6Mn -6196 51.5
0.92

1
88

8Mn -7419 61.7
0.80

6
66

1.25Mo2Mn -4081
33.9

0.96

2 98

1.25Mo4Mn -3729
31.0

0.97

2 96

1.25Mo6Mn -5109
42.5

0.94

9 75
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1.25Mo6M

n 2816.06 1994.24
821.82 808.81 29.2

The relative absorption capacity (Sa), relative desorption capacity (Sd) and their

difference (ΔS) were used to assess the Hg0 and Hg2+ capture ability because Hg0 and

Hg2+ were speculated to be captured in the form of [Hg-O] at the surface of Mn

oxides.[42] The results were summarized in Table 4. It can be seen that both relative

absorption capacity andΔS decreased with more Mn proportion. 4Mn had the highest

catalytic oxidation and the lowest relative desorption capacity. Compared with the Mn

oxides, Mn oxides promoted by 1.25Mo had larger relative absorption capacity and

even lower relative desorption capacity, causing larger ΔS. This indicated that the

addition of 1.25 Mo could improve the efficiency of the catalyst in all aspects.

4.2 Characterization

4.2.1 XRD

To analyze the crystallization and monolayer coverage of each catalyst, we

investigated XRD patterns for a series of Mn and Mo-adjusted Mn-based bimetallic

catalysts at different loadings on γ-Al2O3 support. Generally, the γ-Al2O3 support’s

characteristic peaks can be found in XRD pattern (Figure 4) at 37.5°, 46.5°and 67.2

respectively. The intensity of these peaks decreased as the Mn loading increased. This

indicated that a higher amount of Mn could result in stronger interactions between Mn

and γ-Al2O3[39]. The remaining peaks indicated that the dopant Mn had formed

crystals on the catalyst surface. The increase of MnOx doping amount in

MnOx/γ-Al2O3 catalysts resulted in the presence of the diffraction peaks of MnO2,

MnO and Mn2O3 in the XRD patterns of 4Mn/γ-Al2O3 and 6Mn/γ-Al2O3. This could

be attributed to the formation of MnOx crystallites on the Mn-rich catalysts.

According to the peak location, MnO2 belonged to β-MnO2 and δ-MnO2. δ-MnO2

contributed to the catalytic oxidation of mercury. MnOx crystal structures assembled

on the support might cause a certain effect on the absorption performance of catalysts.



33

The highest crystallinity of MnOx occurred at 6Mn/γ-Al2O3 samples. Although more

MnOx crystal structures may block the formation of MnOx monolayer coverage and

reduce absorption performance, it showed a high catalytic oxidation ability. This also

explained that the catalytic oxidation efficiency of Mn catalyst increased as the Mn

content increased. However, the further increase of the dopant cannot be distributed

better on the surface of the carrier, making the required activation energy increase and

catalytic oxidation efficiency decrease.

Figure 4. XRD patterns of catalysts a. 2Mn/γ-Al2O3, b. 1.25Mo2Mn/γ-Al2O3, c.

4Mn/γ-Al2O3, d. 1.25Mo4Mn/γ-Al2O3, e. 6Mn/γ-Al2O3, f. 1.25Mo6Mn/γ-Al2O3.

By comparing the samples before and after Mo doping, we found that the weak

diffraction peaks of MnO2, MnO and Mn2O3 in the XRD patterns, and the addition of

Mo slightly decreased the intensity of the diffraction peaks. This illustrated the lower

weak peak intensity, indicating that the active components were distributed more

evenly over the sample because of the addition of Mo. Therefore, by considering

these two significant aspects, we found that the 1.25Mo4Mn sample had good

monolayer coverage and catalytic oxidation ability. This result also matched the
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Hg0-TPSR results shown in Figure 2. Adding 1.25Mo can promote the formation of

catalyst monolayer coverage and efficiency.

4.2.2 BET

The effect of modified Mo-based catalysts with a different Mn ratio on the surface,

volume of resources and width of catalyst resources was further evaluated. Results for

Mn and Mo-Mn catalysts combined were shown in Figure 5.

As it can be seen from Figure 5, with the increase of Mn content, the specific surface

area of 4Mn and 6Mn catalyst decreased significantly, because the crystalline MnOx

increased with the rise of Mn content. Similar trends were observed in the specific

surface and volume of pores in the sample. This was mainly because the metal oxide

was supported on the surface of Al2O3, and the growth and establishment of

nanoparticles led to the formation of crystals under the heavy manganese load. The

specific surface of the crystal structure was generally smaller than that of the

amorphous structure, which obstructed the pores and led to the decrease of the surface

and total volume of pores. This was typical of the impregnation process.

However, when 1.25Mo was added to the Mn catalyst, all samples were optimized to

a different degree. 1.25Mo4Mn showed the largest change, and the specific

surfacearea increased by more than 30%, which was higher than other samples. This

revealed that the catalyst 1.25Mo4Mn had the highest activity among these samples,

which also explained the reason for the high mercury removal capacity of

1.25Mo4Mn.
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Figure 5. The surface properties of Mo catalysts with different ratios of Mn

4.2.3 TEM

For the purpose of studying the morphology and structure characteristics of catalysts,

TEM and HRTEM were used to characterize 4Mn and 1.25Mo4Mn catalysts(Figure

6). TEM images in Figure 6(a.) and (b.) can clearly observe the layered structure,

indicating that MnO2 components were well dispersed on the surface of the γ-Al2O3

carrier, which was the same with the XRD analysis.

The HRTEM image in Figure 6(c.) clearly showed a well-crystallized δ-MnO2(110)

lattice plane with a spacing of 0.41nm. After Mo was added, no molybdenum oxide

with clear lattice spacing was found in Figure 6(d.), indicating that MoOx spread

evenly over the catalyst's surface..
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Figure 6. TEM images of a.1.25Mo4Mn/γ-Al2O3 catalyst, b.4Mn/γ-Al2O3 catalyst;

HRTEM image of c.1.25Mo4Mn/γ-Al2O3 and d.4Mn/γ-Al2O3; FFT view of the

c.1.25Mo4Mn/γ-Al2O3 catalyst and f.4Mn/γ-Al2O3.

Besides, no relevant particle lattice was observed, indicating poor crystallinity, which

may be due to the presence of MoOx, which enhanced the interaction between Mn

and Al2O3 carrier and affected its crystallization. This explained that the diffraction

peak intensity of MnO2 decreases under the influence of Mo(Figure 4). In Figure 6
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(d.), it was found that the (111) and (210) crystal planes of MnO2 overlapped, (111)

crystal plane was above (210) crystal plane, with an overlap angle of 80 degrees.

From Figure 6(d.), it can be confirmed that the two active components overlap. This

indicated that Mo ions with a large ionic radius were added to the Mn lattice, resulting

in crystal surface overlap, which may produce more active sites at the interface, thus

improving the catalytic effect of Hg0.

4.2.4 DRIFT

In order to further study the influence of acidic sites on catalytic performance, we

used NH3 as a molecular probe in DRIFT. Previous literature showed that the catalytic

oxidation of Hg0 was positively correlated with the number of Brønsted acid sites on

the catalyst surface because Hg0 can be seen as a base.

Figure 7 showed a semi-quantitative analysis of Brønsted acid and Lewis acid ratios,

which was the integrated area for in-situ DRIFT of 4Mn, 1.25Mo2Mn, 1.25Mo4Mn

and 1.25Mo6Mn catalyst at different temperatures. Combined with the analysis of

Hg-TPSR, it can be found that the catalyst with a high B/L acid site ratio had higher

catalytic oxidation efficiency. Besides, the the catalyst at temperature (150℃ ) with

the highest B/L acid site ratio in 1.25Mo2Mn was higher than other catalysts. This can

also explain the 1.25Mo2Mn catalyst activity temperature slightly higher than other

catalysts.
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Figure 7. In-situ DRIFT study of surface acid sites for FTIR of NH3 on

4Mn/γ-Al2O3，1.25Mo2Mn/γ-Al2O3, 1.25Mo4Mn/γ-Al2O3 and 1.25Mo6Mn/γ-Al2O3

catalysts.

4.3 Summary

IIn this chapter, MnO2/γ-Al2O3 and MnO2-MoO3 /γ-Al2O3 catalysts with different Mn

loading ratios were prepared by the same volume impregnation method. The mercury

removal effects of catalysts were studied from the qualitative and quantitative

perspectives through the temperature-programmed surface reaction (TPSR). The

relationship between the structure, composition and reaction activity of the catalysts

by different characterization methods was studied.

(1) In single metal Mn catalyst and MnMo bimetallic catalyst, when the Mn loading

was 4%, 4%Mn/γ -Al2O3 and 1.25%Mo4%Mn/γ-Al2O3 had the best catalytic effect.

Dynamic analysis showed that 4%Mn/γ -Al2O3 had the best catalytic oxidation effect

when the temperature was around 275℃. When Mo entered the catalyst as a dopant,
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the 1.25%Mo4%Mn/γ-Al2O3 catalyst can achieve the best catalytic oxidation

efficiency (96%) at 202 ℃.

(2) XRD analysis showed that the pre-doping of Mo was conducive to the

distribution of MnOx on the carrier. This was consistent with the result of the

representation of BET. Meanwhile, with the addition of Mo, the BET Surface area

was greatly increased. This indicated that with the addition of Mo, the activity of the

catalyst was greatly enhanced. TEM can clearly observe that with the addition of

molybdenum, the two layers of crystal surface overlapped, which provided more

active sites for the catalyst. According to DRIFT analysis, there were more acidic sites

on the surface of the Mo-Mn bimetallic catalyst, which was conducive to the

adsorption of Hg0.
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Chapter 5 Performance of Cu-S/Cu-Mo-S adsorbent in Hg0 removal

5.1 Hg0 removal efficiency analysis

5.1.1 Dynamic transient screening of adsorbents

For the purpose of selecting the best performance of CuS and CuMoS absorbents

among different Cu loadings, the dynamic transient screening method was used, and

the results were presented in Figure 8 and Figure 9 respectively. The capture

performance of adsorbents was evaluated and results were shown by following Figure

8. In this experiment, four groups of CuS containing adsorbents with different copper

loading amounts (from 2%wt to 8%wt) were tested. It was obvious that the adsorption

performance of four groups were almost the same, all of which had an efficiency

higher than 95% before the temperature reached 70 ℃. After 70℃, all adsorbents

started lost their efficiency gradually. It was about 135℃ the 2wt% Cu-loading

adsorbent achieved the removal efficiency of 10%. This could be roughly concluded

that the maximum CuS containing adsorbents absorbing temperature should not

exceed 135℃. Among these adsorbents, the 4%wt Cu-loading adsorbent had a

broader effective temperature window compared with the other three groups

(remained higher than 90% efficiency between 70℃ and 115℃). It was obvious that

while four groups of absorbents had nearly the same mercury removal efficiency

below 70 ℃ but 4%wt-Cu had the advantage of a wider effective temperature range.
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Figure 8. Results of dynamic transient screening of CuS adsorbents at 2wt%, 4wt%,

6wt% and 8wt% for ��0 capture (concentration: 30μg/�3).

Figure 9. Results of dynamic transient screening of CuMoS adsorbents at 2wt%,
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4wt%, 6wt% and 8wt% for ��0 capture (concentration: 30μg/�3).

Figure 9 showed the capture performance of CuMoS adsorbents with different

Cu-loading. It was conspicuous that adsorbents with 2wt% Cu-loading and 4wt% Cu-

loading showed a perfect mercury removal performance within 100℃, 6wt% Cu-

loading and 8wt% Cu-loading showed slightly low efficiency. Moreover, all of them

had a steady efficiency higher than 95% at the temperature range of 30℃-100℃.

With the increase of temperature, the activity of all CuMoS began to decrease

gradually. All of them were below the 10% removal efficiency at 150℃. Among these

adsorbents, 4wt% Cu-loading also showed a broader effective temperature window

(30℃-150℃). It had both advantages of excellent adsorption ability and remaining

active in a wider temperature range. Therefore, adsorbents of CuS and CuMoS with

4% Cu-loading were chosen and used as the most promising mercury capture

adsorbents for further research.

5.1.2 Steady-state evaluation

Based on the dynamic transient screening, steady-state evaluated the temperature

range of adsorbents effective in mercury capture. The range was from 25 to 150 ℃,

and results were recorded as diagrams which were shown in Figure 10 and Figure 4

respectively. Figure 10 clearly revealed that the CuS adsorbent removal efficiency

remained higher than 95% when the temperature was lower than 100℃, but dropped

to approximately 80% and 60% when the temperature reached 125℃ and 150℃

respectively. Among these groups’ temperature were below 100 ℃, the efficiency in

mercury capture increased gradually while the temperature increased; until 75℃, the

mercury capture efficiency reached the peak efficiency of 97%. After that, the

efficiency started to decrease gradually to approximately 95% at 100 ℃.
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Figure 10. Results of steady state evaluation of adsorbent doped with 4wt% CuS

(��0 concentration: 30μg/�3)

Figure 11. Results of steady-state evaluation of adsorbent doped with 4wt% CuMoS

(��0 concentration: 30μg/�3)

In Figure 11. The efficiency of CuMoS adsorbent could maintain above 96% when

the temperature was lower than 100℃ and slightly dropped to 94% when the
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temperature reached 150℃. The efficiency among adsorbents was continuously

increasing till the temperature approached 75℃, then decreased gradually as the

temperature continued increasing. Adsorbents at 75℃ showed the peak value of

efficiency and had a slightly better performance of mercury capture. This result

showed that both CuS and CuMoS adsorbent had a best performance temperature of

75℃. However, there was no significant drop in CuMoS adsorbent capture efficiency

when the temperature was higher than 100℃ comparing with CuS adsorbent.

Therefore, the temperature range around 75℃ could be concluded as the most

suitable temperature for CuS and CuMoS adsorbents to present better performance of

mercury capture. The addition of Mo could promote the ability of absorbent at high

temperatures.

5.1.3 Space velocity analysis

From Figure 12, the WHSV of 2.2 × 103ℎ−1 achieved the highest, approximately

96% of mercury removal efficiency. By contrast, the efficiency had slightly decreased

when the WHSV increased to 2.6 × 103ℎ−1at the initial state, but it then increased to

95% after 50min. When the WHSV was further increased to 4.0 × 103ℎ−1 , the

efficiency dropped to 92.5%. This indicated that the adsorbent would lose part of

efficiency when the space velocity was high, because high velocity could reduce the

time of gas diffusion and reaction with adsorbents. The results suggested that the

WHSV raised to above 2.6 × 103ℎ−1 could maintain the high mercury capture

performance, and a significant drop in capture efficiency occurred when the WHSV

increased to 4.0 × 103ℎ−1.
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Figure 12. CuS adsorbent Hg0 capture performance at different space velocity

scenarios

Figure 13. CuMoS adsorbent Hg0 capture performance at different space velocity

scenarios
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Figure 13 revealed that at the initial state, the growth trend of three data was the same

and intertwined. After 30 mins, data segregated and showed a clearly varied trend.

The efficiency of WHSV of 4.4 × 103ℎ−1 reached 96%, but that of WHSV of 8.4 ×

103ℎ−1 dropped to 95%. The WHSV of 5.3 × 103ℎ−1 maintained the removal

efficiency above 95%. These results showed that the reverse relationship was that

high space velocity led to low mercury removal efficiency and suggested that the high

mercury removal efficiency could be achieved when the space velocity was 5.3 ×

103ℎ−1. If the space velocity increased to 8.4 × 103ℎ−1, it might cause a performance

drop.

5.2 Characterization

5.2.1 XRD

To test the crystallization and monolayer coverage on the surface of the adsorbents,

we used the X-Ray diffraction method. In this experiment, the CuS and Mo-loading

CuS adsorbents with different Cu quantities were investigated. The XRD patterns

were shown in Figure 9. It was conspicuous that Al2O3 characteristic intensity peaks

were located at 38.5° and 68.5° and the peak at 46° represented both Al2O3 and Cu2S.

Points 20°, 34.5° and 44.5° showed very mild intensity of Al2O3 and Cu2S existence.

By comparing the differences among quantities in Figure 14, we found a mild

decrease among Cu2S characteristic intensity peaks. This indicated that the addition of

Mo could affect the Cu2S crystal structure formed on the surface of adsorbents. Cu2S

had higher heat-resistance chemical properties than Cu2+. This explained the results

shown in Figure 8 and Figure 9. Comparing the peak between CuS and Mo-loading

CuS adsorbents, we found that Cu2S intensity peaks of CuMoS as presented in these

patterns were slightly higher than those of CuS adsorbents. The Cu2+ was transformed

to Cu1+ as the result of CuMoS formation. Therefore, the amount of Cu2S increased.
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Figure 14. XRD patterns of CuS adsorbents before and after Mo modified

5.2.2 XPS

The XPS spectrum of Cu 2p presented the chemical states[53] of both Cu+ (932.2eV

and 952.1eV for Cu 2p3/2 and 2p1/2) and Cu2+ (934.13V and 954.2eV for Cu 2p3/2 and

2p1/2). However, peaks of Cu compounds were almost immobile in the XRD pattern

of 4%CuS/γ-Al2O3. The reduced copper was present in the sample for amorphous. For

4%CuMoS/γ-Al2O3(Figure b), the satellite peak almost disappeared, indicating that a

small amount of Cu2+ in the sample was reduced to Cu1+ to form Cu2S[54]. These

univalent copper adsorbents provided better thermal stability, which was consistent

with the results of XRD and Hg-TPSR analysis.

As to the spectrum of Mo 3d, Figure C showed that the two main peaks of Mo were

centered on 236eV and 232.8eV respectively. These two peaks belonged to Mo6+.

Also, the Mo4+ was present in 4%CuMoS/γ-Al2O3(293.28eV for Mo 3d5)[55]. With

the addition of Mo, the conversion was more from Cu2+ to Cu+. This should be the

reason for the disappearance of the satellite peak for Cu2+ in 4%CuMoS/γ-Al2O3.
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The XPS spectrum of S2p3 in 4%CuS/γ-Al2O3 and 4%CuS/γ-Al2O3 was almost

identical. The peaks around 160–166eV showed the typical values for sulfide (S2−,

161.9eV and 163.1eV for 2p3/2 and 2p1/2, respectively) and disulfide ((S2)2−,164.0eV

and 165.2eV for 2p3/2 and 2p1/2, respectively)[56]. Their corresponding product would

be CuS, Cu2S and MoS2.

Cu-S has been verified as an excellent adsorbent to reduce Hg in Cu and S co-impregnated

activated carbon[57]. CuS/ γ -Al2O3 adsorbents’ and CuMoS/ γ -Al2O3 adsorbents’ main

adsorption capacity comes from Cu-S. The addition of Mo led to the generation of

more active sites.

Figure 15. XPS spectra of CuMoS adsorbents

5.2.3 BET

To further evaluate the effect of adding Mo and increasing adsorbent quantities, we

investigated surface area and pore properties of adsorbents. In Figure 16, the main

trend showed that surface area and pore volume significantly decreased while the
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amount of adsorbents increased. These trends of BET surface area and pore volume

were typical of adsorbents which were synthesized by impregnation. This trend also

showed in adsorbents with the addition of Mo. Based on this information, there was

no direct relationship between the adsorption capacity of the adsorbent and BET

surface area and pore structure.

Figure 16. The surface properties of CuS and CuMoS adsorbents with different ratios

of Cu

5.2.4 TEM

To study the morphology and structure characteristics of adsorbent, we used TEM and

HRTEM to characterize 4%CuS and 4%CuMoS adsorbent(Figure 18). The layered

structure was clearly observed in TEM images (Figure 18), showing that Cu2S

components were well dispersed on the surface of γ-Al2O3 carrier. The HRTEM image

clearly showed a well-crystallized (102) lattice plane with a spacing of 0.24nm. After

Mo was added, no significant changes were observed in HRTEM images. This was

same with the XRD analysis. The change of Cu2S content was so small that it was

difficult to reflect these changes in HRTEM.
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Figure 17. TEM images of a. (4%Cu2%S/γ-Al2O3) b. (4%Cu8%Mo2%S/γ-Al2O3) ,

HRTEM of c.and e. (4%Cu2%S/γ-Al2O3) ,d. and f.(4%Cu8%Mo2%S/γ-Al2O3).

a b

c d

d=0.24nm(102)

fe
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5.3 Summary

In this chapter, CuS/γ-Al2O3 and CuS-MoO2/γ-Al2O3 adsorbents with different Cu

loading ratios were prepared by the same volume impregnation method. The removal

of mercury from adsorbents was studied qualitatively and quantitatively by

temperature-programmed surface reaction (TPSR). The relationship between

adsorbent structure, composition and reactivity was studied by different

characterization methods. The synergistic effect mechanism between CuS and Mo

was revealed.

(1) TPSR analysis showed that when the Cu doping ratio was 4%, the effective

mercury removal temperature of 4%Cu8%Mo2%S/γ-Al2O3 adsorbent was the highest.

The steady-state evaluation showed that, with the addition of MO, the effective

adsorption temperature expanded from 100 ℃ to 150 ℃, and the adsorption rate

remained above 90%.

(2) XRD analysis showed that, with the addition of Mo, the strength of Cu2+

decreased. Combined with XPS analysis, Mo doping led to a higher proportion of Cu+

on the surface of the adsorbent, and part of Cu2+ was converted to Cu+, which had

strong adsorption. After doped with MoOx, the specific surface area of the catalyst

decreased, which may be due to the Mo oxide immersed in the pores of the carrier and

the blocked part of the carrier channel.

file:///C:/Users/admin/AppData/Local/youdao/dict/Application/8.9.5.0/resultui/html/index.html
file:///C:/Users/admin/AppData/Local/youdao/dict/Application/8.9.5.0/resultui/html/index.html
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Chapter 6 Conclusions

In this paper, MnO2/γ -Al2O3 and MnO2-MoO3 /γ -Al2O3 catalysts with different Mn

loading ratios and CuS/γ -Al2O3 and CuS-MoO3/γ -Al2O3 adsorbents with different Cu

loading ratios were prepared by the same volume impregnation method. The mercury

removal effects of catalysts were studied from the qualitative and quantitative

perspectives through the temperature-programmed surface reaction (TPSR). The

influence of temperature on the mercury removal efficiency of the adsorbent was

studied by steady-state analysis. The relationship between the structure, composition

and reaction activity of the catalysts and the adsorbents by different characterization

methods was studied. The main conclusions are as follows：

(1) In single metal Mn catalyst and MnMo bimetallic catalyst, when the Mn loading

was 4%, 4%Mn/γ -Al2O3 and 1.25%Mo4%Mn/γ-Al2O3 had the best catalytic effect.

Dynamic analysis showed that 4%Mn/γ -Al2O3 had the best catalytic oxidation effect

when the temperature was around 275℃. When Mo entered the catalyst as a dopant,

1.25%Mo4%Mn/γ-Al2O3 catalyst can achieve the best catalytic oxidation

efficiency(96%) at 202 ℃. XRD analysis showed that the pre-doping of Mo was

conducive to the distribution of MnOX on the carrier. This was consistent with the

result of the representation of BET. Meanwhile, with the addition of Mo, the BET

surface area was significantly increased. This indicated that with the addition of Mo,

the activity of the catalyst was greatly enhanced. TEM can clearly observe that with

the addition of molybdenum, the two layers of crystal surface overlapped, which

provided more active sites for the catalyst. According to in-situ DRIFT analysis, there

were more acidic sites on the surface of the Mo-Mn bimetallic catalyst, which was

conducive to the adsorption of Hg0.

(2) In CuS/γ -Al2O3 adsorbents, all adsorbents had strong adsorption capacity and

were above 90%. When the Cu doping ratio was 4%, the effective adsorption

temperature window was the largest, and 4%Cu2%S/γ -Al2O3 adsorbent can maintain

the adsorption rate of more than 90% to Hg0 in the range of 30-110 ℃. With the

addition of MO, 4%Cu8%Mo2%S/γ-Al2O3 adsorbent’s effective adsorption
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temperature expanded from 100 ℃ to 150 ℃, and the adsorption rate remained above

90%. XRD analysis showed that the strength of Cu2+ decreased with the addition of

Mo. Combined with XPS analysis, Mo doping led to a higher proportion of Cu+ on

the surface of the adsorbent, and part of Cu2+ was converted into Cu1+, which

provided a stronger adsorption capacity of Hg0 for the adsorbent. After doped with

MoOx, the specific surface area of the catalyst decreased, which may be because Mo

oxide impregnated into the aperture of the carrier and blocked part of the carrier's

channel.

(3) The addition of Mo led to a transition between Cu2+ and Cu+. The synergistic

effect between MoOx and Cu2+ promoted the adsorption capacity of the adsorbent to

mercury. Meanwhile, the addition of Mo broadened the active temperature of the

adsorbent and reduced the conditions of use.

(4) Combined with the exhaust removal of coal-fired power plants. In the WFDG

system, the MoMn catalyst was used to catalyze the oxidation of over 90% Hg0, and

the WFDG can directly remove most of the mercury vapor. The remaining small

amount of mercury can be directly removed during the discharge process by means of

a highly efficient CuMoS adsorbent. Such a combination could effectively reduce

mercury emissions from coal-fired power plants.
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