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Abstract
Many systems such as traffic or electrical flow can be described as flows
following paths of least resistance in networks. The efficiency and resilience
of these networks define the system’s ability to function effectively. Research
into network efficiency and resilience often focuses on the role of network
topology, with the aim of uncovering optimal network structures that boost
system performance. However, little attention has been paid to the role of
node behaviour. This thesis bridges that gap by analysing the efficiency
and resilience of networks whose nodes have heterogeneous behaviour. The
nodes may variably be sources or sinks of the flow. The nodes may also be
equipped with the ability to adjust their behaviour in response to the state
of the network. The efficiency and resilience of networks are evaluated as a
function of their composition of node types and behaviours. The primary
motivation for this is the proliferation of renewable sources of electrical power
in energy grids. The resulting electrical networks have highly dynamic and
heterogeneous nodes. This thesis provides a framework in which to analyse
the behaviour of these systems.

A variety of mathematical methods are utilised throughout this thesis. The
efficiency of network flows is analysed using a measurement from game
theory called the Price of Anarchy, from which an equivalency between least-
resistance network flows and Nash equilibria is also identified. The average
variation of efficiency with node composition is found to be approximately
invariant across different network structures. The highest inefficiencies are
found to always occur when there are an equal number of source and sink
nodes.

Resilience is investigated using models of cascading network failures. Both
a steady state and a dynamical model are employed. Analytical results for
cascades on simple lattices are derived, while for complex networks it is
shown that resilience can often be improved by increasing the numbers of
source and sink nodes. This analysis is employed on a test case of electrical
networks, constructed using real household power consumption and photo-
voltaic generation data. The impact of the dynamic variability of these
data-driven networks on resilience is analysed. Lowest resiliences are found
during times when high numbers of photo-voltaic source nodes are active.
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Summary

This summary is intended to serve as a high level guide or map to the thesis.
The reader may wish to refer back here periodically in order to contextualise
a particular chapter in the overall theme of the work.

The objective of this thesis is to analyse the efficiency and resilience of flows
on networks that possess nodes with heterogeneous behaviour. This will
uncover the dependence of network performance on node properties. The
primary application of this work is to power grids containing high volumes
of variable, low output renewable power. A diverse set of methods will be
employed throughout the thesis. Chapter 1 introduces the main themes
and reviews the literature. Each section in the chapter will briefly review a
particular subject that will be utilised later on.

Chapter 2 is concerned with evaluating the efficiency of flows following
paths of least resistance in networks. The chapter exploits the equivalence
between these flows and Nash equilibria. This enables the Price of Anarchy,
a measurement from game theory, to be used as a computationally efficient
means of computing (in)efficiency. The relationship between efficiency and
network redundancy is then discussed. The chapter then moves on to compute
the efficiency of complex networks as a function of the proportions of flow
source and sink nodes. These results are then interpreted for the design of
renewable electrical grids. The research in chapter 2 is published in Smith
et al. (2019).

Chapter 3 assesses the resilience of electrical grids to cascading failures. The
chapter begins by introducing the steady state cascade algorithm that will
be used to compute resilience. The resilience of simple lattice networks is
then investigated, and analytic results derived. These results will provide
intuition for the case of large, complex networks which will be investigated
using numerical simulations. The resilience of these complex networks will
be computed as a function of their proportions of flow source and sink nodes.
This work was published in Smith et al. (2020).
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Chapter 4 investigates some of the dynamical properties of the swing equation,
a nonlinear dynamical model of power flow. This model will be used in chapter
5 to develop a more sophisticated model of cascading failures with which to
analyse network resilience. Chapter 4 therefore serves as a prelude to chapter
5, and highlights the model’s important characteristics.

Chapter 5 uses the dynamical swing-equation based model of cascades to
analyse network resilience. As in previous chapters, the resilience will be
computed as a function node behaviour. The results in this chapter will
then be contrasted with those of chapter 3 which uses a steady-state cascade
model.

Chapter 6 develops a model of small, domestic scale renewable power grids.
Power consumption data from UK households, as well as real photo-voltaic
power production data will be used to inform these models and provide
a realistic notion of network node heterogeneity. The methods developed
throughout the thesis to analyse the impact of node heterogeneity on network
efficiency and resilience will be demonstrated in these real-world data driven
models.

Finally, chapter 7 summarises the thesis and highlights directions for future
research.
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Chapter 1

Introduction and literature
review

1.1 Introduction

Networks comprise individual elements and the connections between them.
Many systems arising in nature, engineering, and the social sciences can be
described as networks. For example, the internet (De Domenico and Arenas,
2017), social groups (Kitsak et al., 2010; Borge-Holthoefer and Moreno, 2012),
neurons in biological tissue (e.g. Bullmore and Sporns, 2009), the interaction
of proteins inside cells (e.g. Jeong et al., 2001), and electrical distribution grids
(Witthaut and Timme, 2012). Although the individual elements comprising
these networks may often be quite simple, their interactions can give rise to
complex, emergent behaviour (Bar-Yam, 2019). Providing quantitative and
qualitative descriptions of these complex systems provides a formidable set
of challenges.

Two important notions in network science are those of efficiency and resilience.
For example, efficiency might gauge how much power is lost in an electrical
network. Resilience might measure a network’s ability to function coherently
after some initial shock. Efficiency and resilience are typically analysed as
a function of a network’s topology, in order to find connectivity patterns
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that optimise the system’s performance. So far in the literature, relatively
little attention has been given to the role of node behaviour in determining
efficiency and resilience. This thesis bridges that gap by analysing networks
whose nodes have heterogeneous behaviour. Each node may be either a source
or a sink of some physical flow that travels across the network. Nodes may
also have some ability to adjust their behaviour in reaction to the state of
the network. The primary motivation for this investigation is the increasing
proliferation of renewable energy sources in electrical networks. This trend is
causing an upheaval in the traditional structure of power grids, producing
power networks with variable numbers of generators and consumers (Parhizi
et al., 2015). The proportions of generators and consumers may change
throughout a day, or even be controlled by a central planner. Uncovering
the dependence of efficiency and resilience on node behaviour is therefore
essential for understanding this modern energy landscape.

The main objective of this thesis is therefore to investigate the efficiency
and resilience of flows through networks whose nodes have heterogeneous
behaviour. Techniques from a variety of disciplines will be used in pursuit of
this goal. Game theory will be used to analyse flow routing efficiency. Power
flows will be modelled as nonlinear dynamical systems. Crucially, network
science will provide the means to investigate the interaction between the
flows and the networks underpinning them. The rest of this chapter reviews
the relevant literature in these disciplines, focusing on specific elements of
each that will be utilised throughout the thesis. Section 1.2 gives a brief
overview of network science and highlights the network models that will be
used repeatedly in subsequent chapters. Section 1.3 reviews the literature on
the so-called Price of Anarchy, a game theoretic measurement of inefficiency
that will be the focus of chapter 2. Section 1.4 reviews network resilience and
cascading failures. Section 1.5 reviews network power flow models. Finally,
section 1.6 will summarise the chapter and set out the objectives for the rest
of the thesis.
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1.2 Networks

This section provides a brief review of network science. The aim is not to
provide an exhaustive survey of the subject’s literature, which is vast, but to
outline the main models and concepts that will be used in this thesis. For a
broader overview of network science and its fundamentals, the reader might
refer to the textbook by Barabási et al. (2016).

The objective of network science is to provide researchers with the tools
to analyse the complexity of interconnected systems. The field draws on a
foundation of nonlinear dynamics, statistical physics, and graph theory. It has
grown into a vibrant and interdisciplinary subject over the past two decades,
driven in part by technological advances giving researchers vast amounts of
data on real world networks (Tan et al., 2013). The field is now employed in
a diverse set of roles, supporting important efforts such as the development
of new pharmaceutical therapies (Maron et al., 2020; Cheng et al., 2019),
maintenance and design of communications infrastructure (Milanović and
Zhu, 2018), and epidemic modelling (see for example Pastor-Satorras and
Vespignani, 2001; Iannelli et al., 2017; Steinegger et al., 2020). Indeed, the
Covid-19 crisis has seen network science attain an unprecedented level of
importance and scrutiny, having formed the backbone of many modelling
projects in response to the pandemic (Arenas et al., 2020; Vespignani et al.,
2020; Aleta et al., 2020; Estrada, 2020). With the proliferation of contact trac-
ing apps (Ferretti et al., 2020; Ahmed et al., 2020) and network visualisations
in the media (BBC, 2020; The New York Times, 2020; The Guardian, 2020a;b;
Metro, 2020), the language and imagery of network science is increasingly
entering the public consciousness.

Mathematically, a network is a graph G(V , E) comprising of a set of n nodes
V and m edges E . Two nodes are adjacent if there is a single edge connecting
them. A network is said to be connected if any node can be reached from any
other. Additionally, a network is said to be simple if there is no more than
one edge connecting any two nodes, and if no node is adjacent to itself via a
self-loop. Non-simple graphs may be referred to as multi-graphs. A graph
may also have other properties, such as edge weights describing the strength
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of the connections, or an orientation describing the direction of edges. The
degree K of a node is the number of other nodes to which it is adjacent.

The topology, or structure, of a network can be encoded in the form of
matrices. Let us now summarise the most important of these. The adjacency
matrix A of a simple undirected network is a symmetric n×n matrix defined
by

Aij =

1, if node i is adjacent to node j,

0, otherwise.
(1.1)

The degree K of node i is given by the ith row sum of A. If the network is
non-simple, then its adjacency matrix is

Amulti
ij =

l, if l edges link nodes i and j,

0, otherwise.
(1.2)

The incidence matrix E is an n × m matrix describing the relationship
between nodes and edges:

Eij =

1, if edge j is incident on node i,

0, otherwise.
(1.3)

If the network is directed, then its incidence matrix will have signed entries:

Edir
ij =


1, if edge j originates at node i,

−1, if edge j terminates as node i,

0, otherwise.

(1.4)

Another important matrix is the Laplacian L, the n× n matrix defined as

Lij =


∑n

k=1 Aik, if i = j,

−Aij, if i 6= j.
(1.5)

The Laplacian can be computed as

L = D − A, (1.6)
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where D is the degree matrix, a diagonal matrix containing the degrees of
each node. The Laplacian matrix can also be computed as

L = EET . (1.7)

If the network is weighted, then an equivalent weighted Laplacian is given by

LW = EWET , (1.8)

where W is an m×m diagonal matrix containing the weights of each edge.
Many of the techniques of network science then derive from analysing the
above matrices. Of particular importance is the eigenvalue spectrum of L,
which, amongst other things, gives information about the connectivity of the
network. In particular, if the network is connected then L will have precisely
one eigenvalue equal to 0. If a network has split into two distinct connected-
components, which are internally connected but not connected to each other,
then L will have two eigenvalues equal to 0. In general, the multiplicity of the
0 eigenvalue gives the number of connected-components. For a proof of this,
see for instance Manik et al. (2014). Beyond giving a notion of connectivity,
this eigenvalue property also introduces some numerical difficulties which
will be touched upon at several points in this thesis.

Network scientists have developed an extensive array of techniques to char-
acterise the structural properties of networks. In addition to measurements
of network connectivity, an important notion is that of centrality. Many
variants of and methods to quantify centrality have been devised, all of them
providing a measure of the importance of particular nodes and edges in the
structure of a network. One of the earliest was Katz centrality (Katz, 1953),
which counts the number of possible walks from a given node to any other
node. A sum is formed, weighted to give short walks a larger contribution.
The higher the value of this sum, the more central the node. PageRank
(Page et al., 1999) and eigenvalue-centrality (Bonacich, 2007) are closely
related. There is also betweenness centrality, which computes all the shortest
paths between all possible pairs of nodes and then computes the fraction of
these paths that pass through a given node (Brandes, 2001). The length of
paths within networks is also an important feature. This is often measured
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using the characteristic path length (Watts and Strogatz, 1998), which is
the mean length of all shortest paths between each pair of nodes in the
network. Also related is communicability, which takes into account both
shortest paths and longer deviations between pairs of nodes to interpret how
easily information can be transmitted from one to the other (Estrada and
Hatano, 2008). Another crucial network attribute is that of clustering. This
is often quantified using the clustering-coefficient (Watts and Strogatz, 1998),
which measures how connected a given node’s neighbours are to each other.

Perhaps the most fundamental characteristic of a network is the degree
distribution of its nodes. The nodes in a regular network, or lattice, will all
have constant degree K. However, many networks in the real world do not
have any such regular structure. The degrees of these more complex networks
may be modelled as random variables. The properties of the resulting
distributions can be used to categorise network structures. For example, a
network whose nodes are connected together completely at random will have
a binomial or Poisson degree distribution. Other networks may have a power-
law distribution, indicating that the vast majority of nodes have low degree
with a few nodes of much higher degree acting as centralised hubs. Various
methods have been devised to artificially generate random networks with
specific degree distributions. Not only do these methods furnish researchers
with the ability to create synthetic networks resembling real-world structures,
they also provide intuition about how the complexity of these structures can
arise naturally from simple principles. Let us now review the three most
common such methods, each producing a distinct type of network. They will
be used throughout this thesis to provide a test-bed of synthetic networks
from which general results and conclusions will be derived.

The simplest of these methods is the Erdős–Rényi procedure (Erdős and Rényi,
1960). Starting with n nodes and no edges, the method then connects each
pair of nodes with a probability p. The resulting networks have binomially
distributed degrees. The case of p = 1 produces the complete graph with
constant degreeK = n−1. The Erdős–Rényi method can in fact be regarded
as a percolation process on the complete graph (see Albert and Barabási,
2002, for more details). Most networks occurring in the real world are sparse
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with mean degree K � n. For these networks, the binomial distribution
can be well approximated by the Poisson distribution. However, the Poisson
distributed nature of Erdős–Rényi networks is typically unable to replicate
the features of many networks found in nature. For instance, the degrees of
the nodes in a Poisson network are relatively tightly grouped near the mean
degree. This means the networks are unlikely to contain many large hubs or
peripheral outliers. Poisson networks also possess very low clustering.

The second of the three main methods is the Watts–Strogatz algorithm
(Watts and Strogatz, 1998), illustrated in figure 1.1. This method is able to

q

(a) (b) (c)

Figure 1.1: Illustration of the Watts–Strogatz algorithm (Watts and Strogatz,
1998). Starting with a ring lattice, such as the one shown in (a), the algorithm
rewires the edges with a probability q. The network in (b) shows a realisation
of a Watts–Strogatz graph with q = 0.1 and is typical of a small-world
network. (c) shows an instance where q = 1, giving a Poisson distributed
network.

capture some of the key properties of real networks, in particular the so-called
small-world property. A small-world network is one in which the characteristic
path length is small, like in a Poisson network, but the clustering coefficient is
high like a regular lattice. This small-world quality can be observed in social
networks for example (Barabási et al., 2016). The Watts–Strogatz method
constructs small-world networks in the following way. First, start with a
regular ring lattice, as shown in figure 1.1(a), with each node connected to
its K/2 nearest neighbours. Each edge in the lattice is then selected and
randomly rewired to another node with a probability q. As q increases from 0,
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the characteristic path length decreases sharply while the clustering coefficient
remains approximately constant until q ≈ 0.1 after which it decreases. The
small-world networks occupy this region of approximately q = 0 to q = 0.1.
An example is illustrated in figure 1.1(b), showing the long range shortcuts
that typify small-world networks and result in the high cluster, low path
length quality. At q = 1, the networks are completely random and we recover
the Poisson case where both the clustering and path lengths are small. The
Watts–Strogatz method will be used multiple times in this thesis, with the
parameter q being used to interpolate between regular lattices at q = 0 and
Poisson networks at q = 1.

The final method we will consider is that of Barabási and Albert (1999) which
is used to construct so-called scale-free networks. These networks possess
power-law degree distributions. This means that most nodes will have a low
degree, but there will be a few highly connected hubs. This hub and spoke
structure, and the associated power-law degree distribution, can be observed
in many settings such as airline route networks and the internet (Albert
and Barabási, 2002). The Barabási–Albert method constructs scale-free
networks using preferential attachment. The method starts with a small
cluster of only a few nodes. A new node is then added and connected to
the pre-existing nodes with a probability proportional to their degrees. New
nodes are added in this fashion until the desired network size n is reached.
Preferential attachment is also referred as the “rich-get-richer” principle and
encapsulates the idea that highly connected nodes have an enhanced ability
to create yet more connections, leading to centralised hubs. This can be seen
in social networks where popular socialites can continue to accrete friends via
their pre-existing connections, while the less popular members of the network
remain isolated.

Figure 1.2 summarises these key network types — Poisson, small-world,
and scale-free — and the methods used to create them. There are many
other types of network and various algorithms to create them. For example,
multiplex and multilayer networks. These represent systems with multiple
different but coupled types of interactions. Refer to De Domenico et al. (2013)
for a mathematical introduction to multiplex networks. However the methods

8



  Poisson networks 

- Formed using the                  proceedure.
- Degrees are binomially distributed, 
  equivalent to Poisson distributed in the 
  case of large, sparse networks.
- They rarely contain many large hubs or 
  small outliers. 
- The characterisitc path lengths and 
  clustering coefficients are typically small. 

  Small-world networks 

- Formed using the Watts-Strogatz algorithm.
- They have high clustering coefficients
  but short characteristic path lengths.
- This high clustering, low path length 
  characteristic can be observed in
  biological neural networks and social 
  influence networks.  

  Scale-free networks 

- May be constructed using the algorithm 
  of              and Albert. 
- Indicative of preferential attachment. 
- Characterised by power-law degree 
  distributions.
- Most nodes have low degree, with a small 
  number of very highly connected hubs. 
- Examples include airline networks and 
  the world-wide-web.  

isábaraB

iynéR-sődrE

Figure 1.2: Summary of three important network types. The sizes of the
nodes in the illustrations indicate their degrees. The network visualisations
were made using the Networkx (Hagberg et al., 2008) package in Python.

of figure 1.2 will form the basis for constructing synthetic networks in much
of the following work.

Networks may also have some dynamics. The dynamics may concern the
topology itself, with the structure of the network evolving through time (e.g.
Bianconi and Barabási, 2001; Bornholdt and Rohlf, 2000). The dynamics
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could alternatively concern some property or quantity of the nodes and edges,
for example some physical quantity such as traffic flowing through the network
(e.g. Coclite et al., 2005). Sometimes these two types of dynamics may even be
coupled, with the flow through a network influencing the network’s structure.
For an example of this see Garlaschelli et al. (2007). An extensively studied
form of network dynamics that of coupled oscillators, the most famous model
of which is that of Kuramoto (1975). For a survey of oscillator dynamics on
networks refer to Dörfler and Bullo (2014). The use of coupled oscillators is
widespread within mathematical biology, where they are employed to study
networks of neurons. Various different coupled ODE models are used in the
literature to study biological networks of neurons, such as non-smooth and
piece-wise linear models (e.g. Nicks et al., 2018; Coombes et al., 2018), the
stability of which can be interrogated using the master stability function
(Coombes and Thul, 2016). Recently, oscillator dynamics have been used to
model electrical networks (Witthaut and Timme, 2012), a topic which will
be explored further in section 1.5.2. Other dynamical processes on networks
include Ising models (Hopfield, 1982), percolation (e.g. Cellai et al., 2013),
and epidemic spreading (e.g. Pastor-Satorras et al., 2015). Discrete versions
of differential operators can also be posed on networks, such as the diffusion
equation (e.g. Gomez et al., 2013; Angstmann et al., 2013). The general form
of diffusion on a network is

dx(t)
dt = −Lx(t) + s(t), (1.9)

where x ∈ Rn is a vector of some quantity associated with each node, L
is the Laplacian and s ∈ Rn is a source term. Variants of equation (1.9),
such as pattern forming reaction-diffusion systems, have also been studied
on networks (Kouvaris et al., 2015). Another important category of network
dynamics is that of game theory. For example, Gómez-Gardeñes et al. (2012)
looked at the prisoners dilemma being played by nodes on a multiplex network
with best response dynamics.

This thesis is primarily concerned with flows through networks, and their
efficiency and resilience. Network dynamics are central to this investigation.
The network flows themselves will be modelled using various dynamical

10



methods. For instance, chapter 2 draws upon game theory to compute flows
and assess their efficiency, while chapter 3 models flows that are equivalent
to steady states of equation (1.9). Chapters 4, 5 and 6 analyse electrical
power flows using a type of nonlinear oscillator model. Additionally, network
cascades, a form of topological dynamics coupled to flow dynamics, will be
used in chapters 3 onwards to assess resilience. Each of these aspects will be
explored in detail in the remainder of this literature review.

1.3 The Price of Anarchy P

In chapter 2, the efficiency and redundancy of physical flows in networks
will be quantified using a measurement from game theory called the Price
of Anarchy P . Introduced by Koutsoupias and Papadimitriou (1999), P
gauges the inefficiency caused by a lack of cooperation in competitive systems.
This section introduces P and surveys the attendant literature. We begin by
reviewing some key concepts from game theory that are necessary to provide
a definition of P .

1.3.1 Game theory and definition of P

The modern discipline of game theory began with the foundational work
of Morgenstern and Von Neumann (1944). It provides a mathematical
framework in which to analyse competitive systems. Typically, a game in
this sense will comprise n players competing with each other to maximise
their payoffs. Examples include animals competing for food, and businesses
competing to maximise profit. A player is said to be rational if they always
act to increase their payoff, if such a move is possible. If the players are
rational and do not cooperate with each other, then the system will eventually
reach a state called a Nash equilibrium. These equilibria are defined as states
where no player can increase their payoff by altering their strategy, given
the strategies of the other players. Each non-cooperative game may have
many Nash equilibria. Since being introduced by John Nash (1950; 1951), the
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analysis and computation of Nash equilibria has become fundamental to game
theory. They are in general sub-optimal; if the players are instead able to
cooperate and coordinate their strategies, then they can often achieve higher
overall payoffs. The optimal state that can be reached through cooperation
will be referred to as the system optimum (SO). The SO maximises the total
payoff to all players, and by definition it will yield a total payoff greater than
or equal to that of any Nash equilibrium. A well studied example in which
non-cooperative behaviour leads to a sub-optimal Nash equilibrium is that of
road traffic, where drivers are effectively in competition for routes of shortest
travel time. Drivers do not typically cooperate with other drivers when
choosing their routes. This is often referred to as “selfish routing” and leads
to congestion that might be avoidable if the drivers instead coordinated their
efforts (Roughgarden and Tardós, 2002). Another example is the “tragedy of
the commons” (Lloyd, 1833; Hardin, 1968), in which villagers vie to graze their
livestock on an area of common land. If the villagers act non-cooperatively,
they will all use as much of the commons as possible at any given time. It
can be seen that this situation is a Nash equilibrium by considering that
the only change of strategy available to any villager is to use less of the
commons. If they do this, then the other villagers will simply move to occupy
the newly available land since this increases their payoffs. Therefore any
change of strategy simply decreases the villager’s payoff, given the strategies
of the other players. This Nash equilibrium behaviour eventually leads to the
destruction of the commons; a situation that could have been avoided had
the villagers coordinated to ration the land. In economics, the tragedy of the
commons has come to refer generally to the depletion of a common resource
through non-cooperative behaviour. Examples include the overfishing of
marine stocks (McWhinnie, 2009), the over-ploughing of soil resulting in the
dust bowl of 1930’s Oklahoma (Lal, 2009), and the panic buying of toilet roll
(Loxton et al., 2020).

We have so far considered games as systems in which players seek to maximise
a payoff. A reciprocal type of game can be formulated in which players instead
compete to minimise a cost. This is the usual fomulation of network traffic
routing games, which will form the foundation of chapter 2. Let us now work
towards a formal definition of the Nash equilibrium and the system optimum
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in the context of a cost-minimisation game. Let the game consist of n rational,
non-cooperative players. Each player will have a set of possible strategies.
Let Si denote the ith player’s set of possible strategies, with si ∈ Si being
their particular choice of strategy. The strategy profile of the game is the
n-tuple containing the strategy choices of all players:

s = (s1, s2, . . . , sn) ∈ S = S1 × S2 × · · · × Sn. (1.10)

Each player i has a cost function ci(s), which computes the cost they will
incur if the strategy profile s is played. Note that the cost to player i is a
function of all the players’ strategies, not just their own. Now let s−i denote
the strategy profile for all players except for player i:

s−i = (s1, s2, . . . , si−1, si+1, . . . , sn) ∈ S−i, (1.11)

where
S−i = S1 × S2 × · · · × Si−1 × Si+1 × · · · × Sn. (1.12)

Finally, let ci(si, s−i) denote the cost to player i if they adopt strategy si,
given that all other players adopt strategy profile s−i. We can now define a
Nash equilibrium s∗ as a strategy profile

s∗ = (s∗1, s∗2, . . . , s∗n) ∈ S, (1.13)

such that for every player i

ci(s∗i , s∗−i) ≤ ci(si, s∗−i) ∀si ∈ Si. (1.14)

This means that at s∗ no player can decrease their cost, given the strategies
of the others. For a proof of the guaranteed existence of these equilibria in
non-cooperative games, refer to Nash (1951). For a broader overview of Nash
equilibria, including variants such as mixed-strategy Nash equilibria, the
reader might refer to the book by Tadelis (2013). We can now also formally
define the system optimum. It is the strategy profile sSO ∈ S that minimises
the total cost:

min
s∈S

n∑
i=1
ci(s). (1.15)
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sSO does not necessarily satisfy condition (1.14). This means that some
players at the SO may be able to change strategies to decrease their cost.
This subset of players must resist such changes, and thus tolerate an elevated
cost, in order to minimise the total cost across the system as a whole. This
sort of self-sacrifice for the greater good might be possible with cooperation
or system-wide coordination. However, as we will see in chapter 2, some
systems cannot behave in a cooperative way. These systems can sometimes
be modified in order to drive their Nash equilibria towards optimality.

The Price of Anarchy P quantifies the sub-optimality of Nash equilibria.
P is defined as the ratio of the total cost of a game’s worst possible Nash
equilibrium, to the total cost of its SO:

P :=
∑n

i=1 ci(s∗)∑n

i=1 ci(sSO) . (1.16)

P can be interpreted as measuring the cost of non-cooperation, since the SO
is typically reached through cooperation, and the Nash equilibrium through
a lack of it. The higher the value of P , the greater the inefficiency caused
by the players’ non-cooperation. P is sometimes referred to in the literature
as gauging the price of “selfishness” (Roughgarden, 2005). The players in
a non-cooperative game can also be thought of as optimising only locally,
whereas the SO is reached through a coordinated system-wide optimisation.
Another interpretation of P is therefore that it measures the discrepancy
between local and global optimisation in a competitive system.

1.3.2 Examples of P in competitive systems

Chapter 3 uses P to gauge the efficiency of least resistance flows in networks,
by exploiting their equivalence with the Nash equilibira of routing games.
This work is mostly derived from previous studies of P in relation to network
traffic flows, but let us first review of some of the other contexts in which P
has been investigated. One of the most common applications is in network
creation games, where the nodes of a network seek to connect up to each
other by sprouting edges. A popular variety of this game was introduced by
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Fabrikant et al. (2003). In this game, every node pays a cost c for each edge
it creates. The objective of each node is to be connected to all other nodes
whilst minimising the sum of the costs. Fabrikant et al. showed that all Nash
equilibria in these games result in tree networks, and that any network that
is not a tree is just a transient state in the game. They also argued that if a
network is a tree then P is constant with respect to c. These results were
later revised by Albers et al. (2006) who showed that for certain values of c,
there can in fact be non-transient Nash equilibria giving networks containing
cycles. They also demonstrated that P decreases with c, as well as providing
upper bounds on P . Upper bounds on P for other variants of the network
creation game have also been derived (Demaine et al., 2007).

Another important application of P is in machine load balancing games,
such as the allocation of resources in batch computing processes. The usual
formulation of these games is that a job i needs to choose a machine j, adding
a load wj(i) to that machine. The jobs seek to match to machines with the
lowest possible load. Various upper bounds for this class of game have been
proved, such as P being bounded by O(log m/log log m) for m machines
(Fiat et al., 2007).

Knight and Harper (2013) used P to measure the inefficiency caused when
NHS patients are free to choose the location of their treatment. They showed
that allowing this choice leads to a marked decrease in efficiency, particularly
in health care services that ordinarily have sufficient capacity. Similarly, Rose
(2018) studied P in a customer-to-service matching game, and applied the
analysis to the case of Uber drivers matching with passengers.

1.3.3 P in network flow routing games

Much of the work on P in flow routing games can be traced back to work of
Roughgarden and Tardós and their work on “selfish routing” (Roughgarden
and Tardós, 2002; Roughgarden, 2005). In these papers, they examine traffic
flowing through a network from a source node to a sink node. Each unit of
traffic incurs a cost representing travel time for each edge they traverse. The
objective of each unit is to minimise their total travel time from source to
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sink. Roughgarden and Tardós (2002) approximate the traffic flow on each
edge as a continuous quantity, since each unit of traffic makes up only a very
small amount of the overall traffic volume. This so-called non-atomic flow
approximation has been used widely in traffic flow modelling (Coclite et al.,
2005) and in subsequent publications on the Price of Anarchy (Roughgarden,
2003; 2006; Skinner, 2015; Rose et al., 2016; Youn et al., 2008). Each edge
e in the network then possesses a continuous flow volume fe ∈ R, and a
cost function ce(fe) giving the travel time. These cost functions are typically
monotonically increasing functions of fe. This means the edges are congestible;
the more traffic that uses them, the longer the travel time becomes. Each
infinitesimal unit of traffic competes non-cooperatively with the rest of the
traffic for paths of least cost. The resulting Nash equilibrium is achieved
when all routes between the source and the sink have equal cost, meaning
that none of the traffic can change its routing strategy to decrease its cost.
The total cost across the network is

C(f) =
m∑
i=1
ci(fi)fi, (1.17)

where m is the number of edges and f ∈ Rm is the flow vector giving the
flow volumes on each edge. The system optimum is the traffic pattern f SO

that minimises this total cost. P is then given by

P = C(f
Nash)

C(f SO) . (1.18)

The fundamental example given by Roughgarden and Tardós (2002) is the
network depicted in figure 1.3(a), which was first studied by Pigou (1920).
A flow volume of 10 enters the network at the source node on the left and
travels to the sink node on the right. The nodes are connected by two edges.
The bottom edge has a fixed cost of 10, indicated in figure 1.3(a) by the
cost function c2(f2) = 10. The top edge has a variable cost which is equal
to its traffic volume: c1(f1) = f1. This top edge can be thought of as a
congestible short-cut. If little traffic takes this edge, it will have a low cost
and provide a cheap route from source to sink. At the Nash equilibrium,
illustrated in figure 1.3(b), all 10 units of traffic volume take this top edge so
that its cost is c1(10) = 10. Both routes therefore have an equal cost with
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c1(f1) = f1

c2(f2) = 10

(b) Nash equilibrium (c) System optimum

(a)

c1(10) = 10

c2(0) = 10

CNash = (10 × 10) + (0 × 10) = 100 CSO = (5 × 5) + (5 × 10) = 75

c1(5) = 5

c2(5) = 10

Figure 1.3: (a) The Pigou network. 10 units of traffic flow volume enter at
the source node on the left and travel to the sink node on the right. The top
edge has variable cost and the bottom edge has a fixed cost of 10. (b) At the
Nash equilibirum, all of the flow take the top edge giving a total cost of 100.
Edge thickness indicates relative traffic usage. (c) At the SO, half of the flow
takes the top edge and half takes the bottom giving a total cost of 75. The
resulting Price of Anarchy is P = 100/75 = 4/3.

c1 = c2 = 10. This is a tragedy of the commons situation; so much of the
traffic has opted to take the potentially cheaper route that its cost is now
as high as the fixed cost route. The total cost in the network, computed
via equation (1.17), is then CNash = 100. It is straightforward to show that
the total cost is minimised, giving the SO, when only half the flow takes the
variable cost edge. This is illustrated in figure 1.3(c) and gives a total cost of
CSO = 75. Consequently, P = CNash/CSO = 4/3. Roughgarden and Tardós
(2002) showed that 4/3 is in fact the upper bound on P for any network with
linear cost functions. They also provided upper bounds for networks with
quadratic and cubic cost functions. In a subsequent paper (Roughgarden,
2003) it was shown that these upper bounds are independent of network
topology, and depend only upon the type of edge cost functions.

Roughgarden (2006) showed that there is no efficient algorithm to find the
optimum network for a non-cooperative routing problem. Given this algorith-
mic complexity, it may be more fruitful to identify the general topological
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characteristics that tend to produce inefficient Nash equilibria. This might
then inform the design of road networks. In this vein, Youn et al. (2008) sim-
ulated non-cooperative traffic flowing through the road networks of Boston,
Manhattan and London. For edge cost prices they used the Public Bureau of
Roads function (Bureau of Public Roads, 1964)

ce(fe) = de
ve

[
1 + γ

(
fe
pe

)µ]
, (1.19)

where de, ve and pe are the length, speed limit, and number of lanes respec-
tively of road e. γ and µ are some empirical constants derived from road
traffic data. In each network, they found that P exhibits a series of ripples
as the total traffic flow volume is increased, and that P never reaches the
upper bound. The morphology of these ripples were found to be unique to
each network topology. As an abstract model, they then simulated traffic
through large ensembles of small world, Erdős-Rényi and scale-free networks
with linear edge cost functions given by

ce(fe) = αefe + βe. (1.20)

The coefficients (αe, βe) ∈ [1, 3]× [1, 100] were chosen at random for each
edge. They calculated the ensemble average P as a function of the total
flow volume for these networks, and found that in all cases P smoothly
increases to a maximum whose location is a function of the mean values of
the coefficients in equation (1.20). In the high volume limit, P decreases to
1. This is due to the networks becoming so congested that both the Nash
and SO strategies are equally costly.

Skinner (2015) studied the more abstract model of a square lattice network,
with flow entering on one side and being routed to the other. Some edges
in the lattice are chosen at random to have a variable cost, and the rest to
have a fixed cost. In particular, the cost functions of the edges are chosen to
be ce(fe) = fe with a probability p and ce(fe) = 1 with a probability 1− p.
At p = 0, the lattice will consist entirely of fixed cost edges, and at p = 1
entirely of variable cost edges. Skinner showed that P can be maximised
when p is equal to the percolation threshold of the lattice. Rose et al. (2016)
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built on this work and showed that P also depends on the aspect ratio of the
lattice and the total flow volume F , and that the maximum does not always
coincide with the percolation threshold. It was shown that P exhibits a series
of ripples as a function of p and F , similar to those found by Youn et al.
(2008). Rose et al. showed that the locations of these ripples with respect
to p and F correspond to critical points at which it becomes beneficial for
the flow to travel down more expensive routes, as the previous best routes
become congested through overuse.

Aside from manipulating network topology, composition, and flow volume,
it might be possible to increase efficiency by changing the behaviour of the
flow. Balcan et al. (2013) demonstrated that since the non-cooperative flow
tends only to act on local knowledge, it can be advantageous to feed the
traffic flow some global information. For example, a central planner or traffic
authority could provide information to drivers about the state of other parts
of the network. They show that even small amounts of global knowledge
will cause the flow to quickly approach the best possible Nash equilibrium.
Çolak et al. (2016) looked at a traffic routing model whose constituents
have a “social good” parameter, allowing the behaviour of the flow to be
smoothly interpolated from completely selfish to completely cooperative.
It was found that only a small increase in cooperative behaviour leads to
substantial gains in efficiency. Encouragingly, these two papers show that by
modifying the flow behaviour only slightly, one can obtain a much quicker
and more substantial increase in efficiency compared to the difficult methods
of manipulating the network topology itself. Such modification of traffic
is becoming increasable feasible due to smart traffic routing apps, variable
speed limits and variable road pricing. However, Cole et al. (2006) showed
that finding optimal pricing strategies is NP-hard, and no variable pricing
strategy can offer any benefits greater than those available by removing or
rewiring edges. A further drawback to flow behaviour modification is that
drivers may be inherently irrational. Lima et al. (2016) found that traffic flow
patterns often deviate far away from the Nash flow pattern, due to factors
like drivers having favourite routes. Of course it may not be possible in many
cases to have any influence over the fundamental behaviour of the flow, as
is the case for electrical flows. In this situation we are confined to change
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network properties alone.
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D

c(f) = f

c(f) = 1

c(f) = 1

c(f) = f

A

B

C

D

c(f) = f

c(f) = 1

c(f) = f

c(f) = 1

c(f) = f

(a) (b)

Figure 1.4: Demonstration of Braess’s paradox. In both (a) and (b), flow
enters the network at node A, and exits at node D. Both networks comprise
a mixture of congestible variable cost edges, with ce(fe) = fe, and non-
congestible fixed cost edges with ce(fe) = 1. In (a) the two available routes
are ABD and ACD, both of which have the same composition of variable
and fixed cost edges. This means there is no advantage to choosing one route
over the other. The Nash flow is therefore identical to the SO, giving P = 1.
In (b), a new variable cost edge BC is introduced. This gives an additional
route ABCD, which consists only of variable edges. As much selfish flow as
possible attempts to use this new route, leading to increased congestion and
P > 1. Network (b) is sometimes referred to as a Wheatstone bridge in
electrical engineering.

In some cases the Nash flow may overuse a particular edge to such an extent
that it would be better to simply remove it from the network. Such a system
is illustrated in figure 1.4(b), where the removal of the central edge causes a
decrease in the cost of the Nash equilibrium, and correspondingly a decrease
in P . This counter-intuitive behaviour is referred to as Braess’s paradox
(Braess et al., 2005), and can be broadly defined as a situation in which
the addition of an edge to a network causes increased inefficiency due to
over-competition for the new resource.

Braess’s paradox has been studied in a wide range of settings. For example,
in their work on P in road networks, Youn et al. (2008) found that removing
certain roads decreased traffic times. Under their analysis, the removal of
Blackfriars bridge in London would ease congestion. Cohen and Horowitz
(1991) reported Braess’s paradox in electrical networks where the cost on each
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edge is a voltage drop. They found that the addition of an edge can cause an
increase in power loss. Wang and Baillieul (2016) outlined a measurement
called the “cost of link addition” to quantify the extent of the paradox in
electrical networks. The measure is defined as the ratio of the power loss
after a link is added, to the power loss before. That Braess’s paradox can
occur in electrical networks is perhaps unsurprising, given that the current
is comprised of infinitesimal particles seeking paths of least resistance. The
correspondence between electrical flows and the Nash equilibria of non-atomic
routing games will be addressed in chapter 2.

The network in figure 1.4(b) is referred to as a Wheatsone bridge in electrical
engineering. Milchtaich (2003) proved that Braess’s paradox can only occur
if there is at least one Wheatstone bridge contained within the network.
Braess’s paradox is often mentioned in connection with the Price of Anarchy.
The two concepts are indeed related, however, P is not dependent upon the
existence of Wheatstone bridges. For example, the Pigou network in figure 1.3
contains no Wheatstone bridges and yet has P = 4/3. The correspondence
between P and the inefficiency caused by excess capacity in a network will
be looked at in detail in chapter 2.

More exotic variants of the paradox have also been reported. Solé-Ribalta
et al. (2016) investigated transport on multiplex networks, where each layer
is a different mode of transport. They show that in some circumstances the
addition of more layers to the multiplex can increase congestion. Witthaut and
Timme (2012) investigate Braess’s paradox in networks of coupled oscillators.
They show that the removal of an edge from the network can sometimes cause
the critical coupling capacity to decrease, which means that the removal of
the link has allowed the network to synchronise more easily. They explain
their results by noting that the presence of small cycles within the networks
can cause an effect similar to so-called geometric frustration seen in spin
glasses. If removing a link causes the break up of a small cycle, then this
may lead to a drop in the critical coupling capacity. In further work on
oscillator network models, it was shown that introducing an additional link
can cause a synchronous state to become unstable (Coletta and Jacquod,
2016). Oscillator models, particularly of electrical grids, will be reviewed
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in further detail in this literature review in section 1.5.2. Oscillator models
will then form the basis of chapters 4 to 6, where they will be used to model
AC power flow and investigate the resilience of electrical networks to edge
removals.

1.4 Network resilience

While chapter 2 investigates the efficiency of flow networks using the Price
of Anarchy, subsequent chapters turn their attention to network resilience.
This section provides a brief overview of the network resilience literature.

The resilience of a network is broadly defined as its ability to function after
the removal of some of its structure. A common measure of resilience is
to remove nodes or edges at random and record the fraction that must be
removed to disconnect the network. The higher this fraction, the more
resilient the network. This type of process can be formalised using the
language of percolation theory. The book by Stauffer and Aharony (2018)
provides a good general overview of percolation theory. A percolation process
is where a node (or edge) is chosen to be “occupied” with a probability
p. Occupied in this sense may mean that the node is activated or allowed
to function properly. The percolation threshold pc is the point at which
a giant connected component emerges that comprises only occupied edges.
The inverse percolation process is where nodes (or edges) are chosen to be
“de-occupied” or removed from the network with a probability l = 1−p. The
critical threshold lc is then the fraction of edges that need to be removed to
disconnect the giant connected component of a network. lc is related to the
regular percolation threshold by lc = 1− pc. The higher the value of lc , the
greater the number of nodes (or edges) that must be removed to disconnect
the network and thus the more resilient is the network.

Percolation processes on networks have received a great deal of attention
in the literature, and the reader might refer again to Barabási et al. (2016)
for a high-level overview. Let us summarise some of the important results.
The critical threshold on Erdős-Rényi networks can be computed exactly as
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lc = 1− 1/K. This means that the greater the mean degree of a Poissonian
random network, the higher the value of lc and so higher the resilience. For
example if a Poisson network has K = 3, then 2/3 of its nodes need to be
removed to completely disconnect the network. Percolation on small-world
networks (Moore and Newman, 2000a;b) and scale-free networks (Cohen
et al., 2002; Schwartz et al., 2002), have revealed them to possess very high
values of lc making them robust against random removals. This resilience
is due to the hub structure of the networks. A randomly removed node is
most likely to be one of the many peripheral nodes, and not a highly central
hub. However, these types of networks are extremely vulnerable to a targeted
attack that deletes nodes with highest degree or centrality. Such a procedure
can rapidly dismantle scale-free networks (Albert et al., 2000; Cohen et al.,
2001).

Measuring the resilience of a network using this percolation methodology
allows researchers to find ways of optimising network structure to boost
resilience. For example Halu et al. (2016) used a simulating-annealing method
to decrease the critical threshold lc of electrical grids. Importantly Paul et al.
(2004) and Tanizawa et al. (2005) showed that networks with a bimodal
degree distribution can be made resilient against both random and targeted
attacks.

The percolation method only takes into account network topology. However,
many networks also possess some form of dynamics. In this case, a measure
of resilience should also gauge the network’s ability to support the proper
function of the dynamical process. For example, the removal of an airport
from an airline network may not be sufficient to disconnect the network,
but it may cause such congestion that the transportation network can no
longer serve its purpose. This is an example of a cascading failure. Other
examples include electrical blackouts (Carreras et al., 2002; Dobson et al.,
2007), overloads in the Internet (Crucitti et al., 2004), and crashes in financial
markets (Huang et al., 2013; Haldane and May, 2011). In these scenarios, a
purely topological measure is not enough to capture resilience. In response to
this problem, various ways of modelling cascading failures have been devised.
The simplest is perhaps the sandpile model (Goh et al., 2003), where some
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load builds up on a node until a maximum carrying threshold is exceeded.
At this point, the node is taken out of operation and its load passed onto
adjacent nodes, causing an avalanche of failures. This type of model is able
to recreate the power-law distribution of cascade sizes typically observed
in real world systems (Dobson et al., 2007). Another type of threshold
method was employed by Watts (2002), where a node fails if a fraction ϕ
of its K neighbours have also failed. A critical region of the (ϕ,K) phase
space was identified within which power-law distributed cascades occur. It
was also shown that networks with more heterogeneous degree distributions
are typically more resilient to cascades. A flow based cascade model was
investigated by Motter and Lai (2003), Lai et al. (2004), and Crucitti et al.
(2004) where a network flow is computed using a steady state model of
electricity. An edge in the network was chosen to fail if it carries an amount
of flow greater than the edge’s threshold α. It was shown that networks
are particularly vulnerable if their edges carry a flow load proportional to
the degree of the adjoining nodes. In this case, the cascade behaves like a
targeted attack, taking out high degree hubs. A variant of this model will
be developed in chapter 3 to probe the resilience of electrical grids with
high numbers of small generators. Cascades have been studied on large
scale power grid topologies in Pahwa et al. (2014), and in Yang et al. (2017)
which showed that large scale cascades are most likely to be triggered by
edges in the vicinity of a network’s core. Cascades have also been studied
in interdependent, multiplex networks (e.g. Zhang et al., 2018; Buldyrev
et al., 2010). Various strategies to protect networks from cascades have been
investigated. For example, selective pruning of a network topology was shown
to help arrest cascades (Motter, 2004; Witthaut and Timme, 2015), whilst
a rewiring scheme to suppress cascades was considered by Brummitt et al.
(2012). Fang et al. (2015) considered a combinatorial optimisation scheme to
enhance network topology for robustness against cascades.

Chapters 3 onwards will develop methods for measuring the impact of cascades
on flow networks, particularly in relation to electrical grids. The impact of
variable node function and increased power distribution of sources will be
considered. This will highlight the possibility of altering a network’s resilience
without changing its connectivity.
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1.5 Modelling electrical networks

Chapters 3 onwards turn their attention specifically to the resilience of
electrical flow networks. In particular the modern trend of electrical networks
that possess variable source and sink numbers. In electrical engineering
there are various ways to compute electrical flow, with various advantages
and disadvantages. Two methods are used in this thesis. The first is the
steady state linearsed DC power flow method. The second is the so-called
swing equation. This final section of the literature review looks at both of
these equations and reviews their usage in the wider literature. This section
assumes that the reader has some basic familiarity with the fundamentals of
AC power flow, and terms such as impedance and susceptance. For a primer
on AC power flow, one might refer to the textbook by Glover et al. (2016).

1.5.1 The DC power flow equation

Electrical circuits are governed by Kirchoff’s laws, which specify conservation
of current flow and voltage. For an overview of Kirchoff’s laws, refer to the
textbook on electrical circuits by Alexander and Sadiku (2012). The DC
power flow equation is a steady state model for computing power flow in a
network, and gives a direct solution to Kirchoff’s laws. It is in essence a DC
approximation of an AC power network. Note that in an AC setting, the
total or apparent power S is a complex number whose real and imaginary
components are termed the real power P and reactive power Q respectively:

S = P + iQ. (1.21)

The real power P is the quantity that will be consumed by loads or consumers
in an electrical grid, and is measured in Watts. It is this quantity that is
important for our purposes and that we seek to model using the DC power
flow equation. To derive the DC model for an electrical network with n nodes
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and m edges, we start with the power flow equations:

Pi = |Vi|
n∑
j=1
|Vj| [Gij cos (θi − θj) +Bij sin (θi − θj)] , (1.22)

Qi = |Vi|
n∑
j=1
|Vj| [Gij sin (θi − θj) +Bij cos (θi − θj)] . (1.23)

Pi and Qi are the real and reactive power respectively at node i, and Vi is
the voltage. The voltage phase angle at node i is θi. Gij and Bij are the
conductance and susceptance respectively of edge ij. These are the real and
imaginary parts of the admittance

Yij = Gij + iBij, (1.24)

where i denotes the imaginary unit. The impedance of edge ij is

Zij = Rij + iXij, (1.25)

where Rij and Xij are the resistance and reactance respectively. The
impedance is the reciprocal of admittance:

Yij = 1
Zij

. (1.26)

An in-depth discussion of the power flow equations is given in Li (2014).
In power systems engineering, equations (1.22) and (1.23) are often solved
iteratively via a Newton–Raphson method. However, under three reasonable
assumptions for a power grid, the equations can be simplified to an n-
dimensional linear system. The first assumption is that the reactance of
the edges is much larger than the resistances: Xij � Rij. This allows the
approximation Bij ≈ 1/Xij. The second assumption is that the voltage phase
differences θi− θj are small, allowing small angle approximations in equation
(1.22). The final assumption is that the magnitude of the node voltages
across the network are roughly constant. Taking these three assumptions
together, and normalising the voltages by the network’s reference voltage
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allows equation (1.22) to be approximated as

Pi =
n∑
j=1
Bij(θi − θj). (1.27)

Writing this in matrix-vector form gives the linearised DC power flow equation:

P = L θ, (1.28)

where P ∈ Rn and θ ∈ Rn are vectors containing the real power and voltage
phase angle respectively at each node. L is the weighted graph Laplacian,
also known as Kirchoff’s matrix:

L = ETdiag(B)E, (1.29)

where B ∈ Rm is the vector of susceptances.

The DC power flow equation (1.28) will be used in chapter 3 as a computa-
tionally efficient model of steady state power flow. This will then be used to
investigate the resilience of electrical grids. A solution of equation (1.28) is
in fact a steady state of the graph diffusion equation (1.9), and represents a
solution to Kirchoff’s laws. The equation is commonly used in the electrical
engineering literature (Stott et al., 2009) and in popular commercial software
such as ETAP. It is also employed more generally in network science. It
was used by Motter and Lai (2003) to investigate the resilience of the US
power grid. Halu et al. (2016) used it to model small scale power networks
and optimise them for resilience. It also forms the basis of flow betweenness
centrality (Brandes, 2001).

1.5.2 The swing equation

The swing equation provides a fully dynamic, nonlinear model of power flow.
It is based on the notion of modelling each node in the network as a rotating
machine. For example, conventional generators possess a rotating core that
spins within electrical windings. A detailed treatment of the swing equation
is given by Filatrella et al. (2008). Let us now derive the swing equation for
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an electrical network with n nodes. During normal operation, each rotating
machine should spin at the grid reference frequency Ω. The ith node’s phase
angle is then

φi(t) = Ωt+ θi(t), (1.30)

where θi(t) is its phase difference. Conservation of energy at each node means
that the mechanical power and electrical power being transmitted from the
rest of the network must balance the dissipative and inertial energy:

Pmech
i (t) = P iner

i (t) + P diss
i (t) + P elec

i (t), (1.31)

where

P iner
i = 1

2Ji
d
dt

(dφi
dt

)2

, (1.32)

and

P diss
i = Di

(dφi
dt

)2

. (1.33)

Ji is the moment of inertia of node i, and Di is a damping coefficient.
Substituting equation (1.30) into equations (1.32) and (1.33), and making
the assumption that |θ̇i| � Ω gives

P iner
i = JiΩ

d2θi
dt2

, (1.34)

and
P diss
i = DiΩ2 + 2DiΩ

dθi
dt . (1.35)

As in the DC power flow case considered in section 1.5.1, we shall assume
that the reactance of each edge is much larger than the resistance, so that
the impedance is dominated by the imaginary terms. We also again assume
that the voltage across the network is approximately constant at V0. From
equation (1.22), the electrical power P elec is then given by

P elec
i =

n∑
j=1
V 2

0 Bij sin (θi − θj) , (1.36)
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where Bij is the susceptance of edge ij. Equations (1.34), (1.35) and (1.36)
can then be substituted into (1.31):

JiΩ
d2θi
dt2

+ 2DiΩ
dθi
dt = Pmech

i −DiΩ2 −
n∑
j=1
V 2

0 Bij sin (θi − θj) . (1.37)

By introducing
γi := 2Di

Ji
, (1.38)

Pi := Pmech
i −DiΩ2

JiΩ
, (1.39)

and
Kij := V 2

0 Bij

JiΩ
, (1.40)

equation (1.37) can be written as

d2θi
dt2

+ γi
dθi
dt = Pi −

n∑
j=1
Kij sin (θi − θj) . (1.41)

Equation (1.41) is the standard form of the swing equation: an n-dimensional
system of coupled second-order oscillators that specify the power flow in an
AC electrical network. The parameter Pi is the effective power injected at
node i, with units of s−2. If the node is a power source then Pi > 0, and
Pi < 0 if it is a sink. The coefficients γi and Kij have units of s−1 and s−2

respectively. Typical values of Pi, γi and Kij are all O(1) for a realistic
power grid. For normal grid operation, each node must be synchronised to
the grid frequency Ω, which occurs when the condition

Pi =
n∑
j=1
Kij sin (θi − θj) (1.42)

is satisfied for all i. Finding the steady states of a power grid therefore
amounts to finding solutions to equation (1.42).

The swing equation is commonly used in electrical engineering (Glover et al.,
2016), and allows researchers to investigate the transient stability of power
lines (Fouad and Vittal, 1991). It also plays an integral part in popular
commercial software used in power systems engineering, such as SPICE. It
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should be noted that the power sinks, also sometimes referred to as loads,
are not necessarily rotating machines. They may instead be constant, ohmic
sinks. In this case, if there are k such ohmic sink nodes, the n-dimensional
swing equation can be reduced to dimension n − k (Manik et al., 2014).
However, this renders the role of the network topology ambiguous; the
equations representing the sink nodes will have been effectively absorbed
into the equations for the rest of the network. Fortunately, it has been
shown that the dynamics of a system containing constant ohmic sinks leads
to equations whose form is equivalent to the n-dimensional swing equation
(Bergen and Hill, 1981). This leads to the structure preserving model and
synchronous motor model, and allows any ohmic sink nodes to be effectively
treated as rotating machines. Refer to Nishikawa and Motter (2015) for an
in-depth discussion of this point. Additionally, some generators such as solar
panels may not be rotating machines. However these generators are typically
connected into the grid using control mechanisms such as phase-locked-loops
(Chung, 2000) that allow them to synchronise to the grid frequency Ω like a
conventional generator. More sophisticated control mechanisms are currently
being developed, such as the virtual synchronous machine (Chen et al., 2011),
that will further allow renewable sources to approximate conventional rotating
machines.

The swing equation has seen increased interest from within the complex
systems and network science community. Manik et al. (2014) investigated
the stability of a simple two node, one edge swing equation system. One
node was chosen to be a source with power +P and the other to be a sink
with power −P . They showed that there is a saddle node bifurcation at
the critical value 2P = K. Beneath this value no stable synchronous states
exist, since there is insufficient coupling K to support the 2P units of power
being transmitted across the edge. Above this critical value there is a single
attracting state representing the stable operating point of the power grid.
Menck et al. (2013; 2014) used numerical simulations to analyse the stability of
the swing equation posed on large, complex networks. They showed networks
containing dead-ends or tree like substructures were particularly unstable.
Rohden et al. (2012) showed that increasing the numbers of generators on a
network can sometimes decrease power grid stability. Witthaut and Timme
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(2012) observed that the addition of new edges into the swing equation can
cause a loss of stability, a phenomenon they relate to Braess’s paradox as
discussed in section 1.3.

1.6 Summary

This chapter has introduced the main themes and motivation of the thesis,
and reviewed the relevant literature. Aspects from each of the reviewed topics
will be drawn upon throughout the thesis in aid of the overall objective: to
analyse the efficiency and resilience of networks with heterogeneous node
behaviour. Network science will underpin much of the work, with nonlinear
dynamical models as well as steady state models being used to evaluate
network flows. Additionally, the Price of Anarchy will be used to assess flow
efficiency.

Several deficiencies are apparent from the literature, that this thesis will seek
to address. Firstly, neither the Price of Anarchy nor network resilience to
cascades has been analysed as a function of the composition and behaviour
of network nodes. Secondly, cascading failures in networks tend to be inves-
tigated using steady state models rather than nonlinear dynamical models.
And thirdly, the field of network science has paid little attention to electrical
“micro-grids”; small-scale, highly dynamic electricity grids containing high
volumes of renewable sources. Each of these issues will be addressed in the
following chapters.

31



Chapter 2

Redundancy and the Price of
Anarchy in flow networks

2.1 Introduction

Flows on networks, such as traffic taking routes of shortest travel time or
electrical current taking paths of least resistance though a network, can waste
resources because they follow a local rather than a system-wide optimisation
of the flow (Cohen and Horowitz, 1991; Youn et al., 2008; Çolak et al.,
2016). In the case of traffic this is because drivers choose their routes non-
cooperatively or “selfishly”, whilst for electricity the behaviour stems from
physical conservation laws. Nevertheless, the efficiency of these systems can
often be improved, either by attempting to alter the flow dynamics, limiting
flow volume, or changing the underlying network structure. Understanding
the relationship between efficiency, flow volume and network structure is
therefore important for any system operator attempting to optimise the flow.
Additionally, flow inefficiency may be caused in part by structural redundancy
in the network, which might in itself be desirable for purposes of resilience
and robustness. Such a situation would present the operator with a trade-off
to be made between efficiency and resilience.

This chapter gauges this flow inefficiency using the Price of Anarchy P

32



and investigates its relationship with structural redundancy, particularly for
physically constrained flows such as electrical current. The chapter then
focuses on how P depends upon network structure and specifically upon the
behaviour and composition of the network’s nodes. This is motivated by the
increasing proliferation of distributed renewable sources of energy in modern
electrical grids. This paradigm shift means modern power networks may
no longer contain only a few very large sources, but many small generators
embedded throughout their structure. The numbers of generators may
even vary throughout a day, influenced by both external conditions and
network controllers. Uncovering the dependence of P on the proportions of
generators and consumers is therefore an important step to understanding
how distributed generation impacts efficiency and redundancy.

The main focus of this chapter is therefore on the relationship between P
and redundancy, and its dependence on node behaviour. The work presented
in this chapter was published in Smith et al. (2019). Section 3.2 defines P
for flow networks and details how the relevant quantities are computed, as
well as demonstrating the dependence of P on network structure. Section
3.3 establishes the relationship between non-cooperative “selfish” behaviour
and least-resistance flows, such as electrical current, and defines a measure
of network redundancy. The relationship between P and redundancy is then
demonstrated on a variety of networks; both synthetic random networks and
real power grid topologies. Section 3.4 then investigates the dependence of
P on network node behaviour.

2.2 The Price of Anarchy P in flow networks

2.2.1 Definition and computation of P

This section introduces the network flow model and the formulation of P to be
used throughout the chapter. It is broadly the same as the model introduced
by Roughgarden (2003), but with variable and heterogeneous source and
sink terms. All flows are modelled as moving though networks of the form
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G = (V , E) with n = |V| nodes and m = |E| edges. n+ nodes are chosen to
be sources of flow, n− to be sinks, and the remaining np nodes are passive or
empty. All networks satisfy the condition n+ + n− + np = n. The flows are
composed of individual units incurring a cost each time they traverse an edge.
The network edges may represent represent roads or electrical transmission
lines depending on the context. The individual units of flow comprise only a
very small amount of the overall flow volume and so, following Roughgarden
(2005), the flow is approximated as a continuous quantity. This is the so-called
non-atomic flow approximation and is commonly employed in traffic flow
modelling (e.g. Coclite et al., 2005) and further work on the non-cooperative
flow (e.g. Youn et al., 2008). Each edge e ∈ E then has a continuous flow
volume fe ∈ R, with its cost of traversal given by a linear function

ce(fe) = αefe + βe. (2.1)

The functions ce represent travel time in the context of a traffic flow. For an
electric current flow, the functions represent voltage drop with the coefficients
αe and βe denoting Ohmic resistance and flow independent voltage drops
respectively. Electrical networks form the main motivation for this work and
so we shall constrain our attention to linear cost functions, since network
voltages are typically linear functions of current. The total cost borne across
all infinitesimal units on an edge e is ce(fe)fe, representing power loss in the
electrical context. The total cost across the entire network is

C(f) =
∑
e∈E
ce(fe)fe, (2.2)

where f ∈ Rm is the flow vector. The global optimal flow fGO is the flow
pattern that minimises the total cost:

min
f
C(f) constrained by Ef = b, (2.3)
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where E ∈ Rn×m is the node-edge incidence matrix and b is the flow injection
vector with components

bv =


(1 + ξv)F/n+, if node v is a source,

−(1 + ξv)F/n−, if node v is a sink,

0, otherwise,

(2.4)

with F being the total flow or current injected into the network. ξv is a
normally distributed random variable with mean 0, and is used to induce
heterogeneity in the strength of the sources and sinks. The variance of ξv
will be chosen small enough to be unlikely to cause the source-sink terms in
equation (2.4) to change sign. In the rare event that a sign change does occur,
the result will be discarded and ξv drawn again. The condition Ef = b

enforces conservation of flow at nodes, also known as Kirchoff’s current law.

Note that the source-sink strength heterogeneity can effectively be turned
off by setting ξv = 0 ∀v. This gives the case where all sources output the
same volume of flow and all sinks consume the same volume of flow. This
homogeneous source-sink behaviour will used throughout most of this chapter.
Unless explicitly stated otherwise, the reader is to assume that ξv = 0 ∀v in
the experiments shown in subsequent sections.

Recall that a Nash equilibrium flow fNash is a state in which none of the flow
units can decrease their cost. Equivalently, it is a state where the cost of all
routes between an arbitrarily chosen source-sink pair is the same. This is the
equilibrium reached when the flow acts non-cooperatively or “selfishly” and
is given by the optimisation problem

min
f

∑
e

∫ fe

0
ce(q) dq constrained by Ef = b. (2.5)

Refer to Roughgarden (2005) for a full derivation of equation (2.5). Both
(2.3) and (2.5) are convex, quadratic objective functions that are solved using
standard optimisation methods, as detailed in Appendix I. The Price of
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Anarchy P in the system is then defined as

P := C(fNash)
C(fGO) ≡

CNash

CGO
, (2.6)

being cost of the Nash flow relative to the cost of the global optimum. It
will be shown in Section 2.3 that the physical constraints of electrical flows
are equivalent to Nash equilibria, and P can therefore be used to probe the
inherent network inefficiency of electrical networks.

2.2.2 Examples in lattices

Since the edge cost functions in equation (2.1) are linear, P is bounded from
above by a value of 4/3 (Roughgarden, 2003). However, away from this upper
limit the values of P are strongly influenced by flow volume F , network
topology, and the proportions of flow source and sink nodes. The dependence
on flow volume and topology has been examined in Youn et al. (2008); Skinner
(2015); Rose et al. (2016); however, the dependence upon source and sink
proportions has not been previously investigated. This dependence on node
behaviour is the focus of Section 2.4.

To demonstrate the impact of node behaviour, and provide motivation for
following sections, it is instructive to show how P varies with flow volume in
some simple example networks. Let us start though with the Pigou network
(Pigou, 1920) as introduced in Chapter 2 and depicted in figure 2.1(a).
This network will also be useful in the next section for demonstrating the
relationship between P and network redundancy. Being the simplest network
with a value of P > 1, the Pigou network admits an analytic description of
P as a function of F , which will now be derived. The Pigou network consists
of two nodes connected by two edges. One node is a flow source and the other
a sink, generating and consuming respectively a volume F . The cost on the
upper edge, labelled edge 1, is equal to the flow volume f1. The cost on edge
2 is equal to unity and is independent of the flow volume f2. In the notation
of equation (2.1), the coefficients on the edges are thus (α1, β1) = (1, 0) and
(α2, β2) = (0, 1). Each infinitesimal unit of flow takes either the variable
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Figure 2.1: (a) The Pigou network. The left and right nodes are a source
and sink respectively. A total flow volume of F flows through the network.
The upper edge, labelled edge 1, has a variable cost function. Units of flow
traversing edge 1 therefore incur a cost equal to the flow volume on the
edge. Edge 2 has a fixed cost, independent of the flow volume. (b) The
Price of Anarchy P as a function of F in the network, which has been
computed numerically from the optimisation problems (2.3) and (2.5) using
the algorithm outlined in Appendix 1. An analytic description of P(F ) is
given in equation (2.7).

cost edge 1, or the fixed cost edge 2 to travel from the source to the sink.

At the Nash equilibrium, which is reached when individual flow units act
un-cooperatively, the flow will mostly tend to use the cheaper, variably
costed edge 1. This will lead to congestion and inefficiency. Optimally, some
flow should take the more expensive edge 2. Recall also that at the Nash
equilibrium, there is no possible reduction in cost available to the flow units by
changing route. Figure 2.1(b) shows P , which gauges the inefficiency of the
Nash equilibrium, as a function of F and illustrates the strong dependence
of P on flow volume. The maximum value of 4/3 is attained only at a
value of F = 1, and is typically much less elsewhere. This behaviour can
be quantified analytically as follows. For 0 < F ≤ 1/2, indicated by the
unshaded area in figure 2.1(b), all flow is routed over edge 1 in both the
Nash and GO equilibria, with identical costs C = F 2; consequently P = 1.
For 1/2 < F ≤ 1 (light-grey area), f1 = F under the Nash flow, and so
CNash = F 2. The GO minimises its cost when f1 = 1/2 and f2 = F − 1/2,
giving CGO = F − 1/4 and so P = F 2/(F − 1/4). For F > 1 (dark-grey
area), the Nash equilibrium routes all flow surplus of F = 1 through edge
2, giving CNash = F , whereas the GO remains unchanged from the previous
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regime, hence P = F/(F − 1/4). In summary, for the Pigou network:

P =


1, for 0 < F ≤ 1/2,
F 2/(F − 1/4), for 1/2 < F ≤ 1,
F/(F − 1/4), for F > 1.

(2.7)

+ - + -

1

1.14

0 1
1

1.14

0 1

(a) (b)

(c) (d)

Figure 2.2: (a) and (b) show instances of lattices, with thick and thin lines
indicating edges with variable and fixed cost respectively. Edges are selected
uniformly at random to be of the variable type, according to a probability
p. The lattices in this example have a height of 8 nodes and a width of 6.
In both (a) and (b) the lattices are shown in an instance where p = 0.25 so
that approximately a quarter of edges should therefore be chosen to have a
variable cost. Nodes sitting within the light-grey regions are sources of flow,
while those within the dark-grey region are sinks. Panels (c) and (d) show P
as a function of p for an ensemble of 2000 lattices. (c) is the case for a single
source-sink pair as illustrated in (a), while (d) is the many source-sink case
as illustrated in (b). Red shaded areas indicate standard deviation.
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From the above example, it is clear that P is highly dependent on F . However,
network topology and the distribution of edge cost parameters also have a
strong influence. This was demonstrated in Rose et al. (2016) using flow
networks with a lattice topology, as depicted in figure 2.2(a). It was shown
that P predictably depends upon the fraction of variably costed edges, as
well as the size and aspect ratio of the lattice. These results of Rose et al.
will now be recreated and compared to those obtained from a modified lattice
model, to show that the proportion of source and sink nodes in a network is
also an important factor.

The lattice networks under consideration have a random mixture of variable
and fixed cost edges. In particular, each edge is chosen with a probability p
to have variable cost, with coefficients (αe, βe) = (1, 0). Remaining edges
have a fixed cost with coefficients (αe, βe) = (0, 1). A lattice with p = 0
will therefore contain only edges whose costs are constant and independent
of flow volume. A lattice with p = 1 will be completely variable; all of its
edges will be a linear function of flow volume. The mean Price of Anarchy P
is then computed as a function of p over an ensemble of 2000 lattice network
realisations.

The lattice networks considered in Rose et al. (2016), an example of which
is depicted in figure 2.2(a), had only one source and one sink node. The
resulting P profile, shown in figure 2.2(c), undergoes a series of ripples as p
is increased from 0 to 1. These ripples were identified and explained by Rose
et al. (2016) as being equal in number to the number of nodes across the
width of the lattices. It is now shown that these ripples can be suppressed
by introducing more source and sink nodes into the lattice. Figure 2.2(b)
shows a lattice with many source and sink nodes; each node in the left-most
column of the lattice is a source, and each node in the right-most column
is a sink. The resulting P profile in figure 2.2(d) is a flattened, rounded
curve. P is now more broadly spread across the range of p, with a diminished
peak. Furthermore, the results are less noisy than those in figure 2.2(c), as
indicated by the significantly reduced standard deviation. This flattening and
de-noising of the P curve can be ascribed to the system being more tightly
restricted by the increased number of sources and sinks. More source and
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sink nodes, and therefore fewer passive or empty nodes, constrains the space
of available flow patterns, thus limiting the possible difference between the
Nash and the global optimum. In general, P decreases as passive nodes are
replaced with sources and sinks. Further examples of this will be shown in
Section 2.4, which investigates the impact of source-sink numbers on general
complex networks.

In summary, this section has introduced the network model for computing
P in flow networks and provided preliminary evidence that P is strongly
influenced by topology, edge cost functions, flow volume and, crucially, source-
sink numbers. The rest of this chapter uses this model to investigate the role
of source-sink numbers and network topology, and interprets the results for
physical flows such as electricity.

2.3 Relationship with redundancy

In the literature, it is conventionally assumed that flows tend towards the
Nash equilibrium through “selfish” or un-coordinated behaviour, for instance
in Roughgarden (2003; 2005); Youn et al. (2008). This allows the possibility
that the Nash flow can in principle move towards the global optimum through
some form of central management or enforced cooperation. This is true in
traffic flows where drivers can be pushed towards more optimal behaviour
through in-car traffic routing apps and adaptive road speed limits, as explored
in Çolak et al. (2016) for example. In some systems, however, the global
optimum may not be available since the system is constrained by physical
conservation laws to behave as a Nash equilibrium. This section reveals that
this is the case for electrical flows. The section then interprets the meaning
of the global optimum in an electrical flow context, showing that it is related
to a novel measure of topological redundancy.
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2.3.1 Nash equilibria and Kirchoff’s laws

Recall that the Nash equilibrium is given by the optimisation problem in
equation (2.5), and is the state in which no reduction in cost is available
to a unit of flow by changing route. Equivalently, this means the cost of
every route between an arbitrary source-sink pair must be equal. The cost
functions can be interpreted as voltages in an electrical flow context. The
Nash flow must also satisfy conservation of flow, also known as Kirchoff’s
current law (KCL). A physical interpretation of the Nash equilibrium now
comes from a consideration of Kirchoff’s voltage law (KVL), which states that
voltages around closed cycles in an electrical network sum to zero (Alexander
and Sadiku, 2012). If there is a cycle embedded in a network, then there will
be at least two distinct paths between a pair of source and sink nodes. At
the Nash equilibrium, each arm of the cycle must have equal cost; hence the
cost of any traversal around the cycle is zero, and so the Nash equilibrium
condition is equivalent to KVL. The Nash flow therefore necessarily satisfies
both Kirchoff’s current and voltage laws and is thus a physically legitimate
electrical flow for an electrical network in stable operation with matched
supply and demand. The relative inefficiency of this flow, resulting in P > 1,
thus stems from the constraints of Kirchoff’s conservation laws that define
the Nash equilibrium.

2.3.2 Defining a redundancy measure, R

P measures the disparity between the costs associated with the Nash and
GO flows. In an electrical context the GO would correspond to a flow being
able to violate KVL in order to minimise total power loss; however, such an
equilibrium would nevertheless be desirable to obtain because it minimises
the power consumed by the network. Therefore, P remains a useful metric for
assessing efficiency in networks with flows following paths of least resistance,
and also for topological redundancy as we now show.

Consider again the Pigou network from figure 2.1(a), whose values of P as a
function of F are given in equation (2.7). The Nash equilibrium, equivalent
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Figure 2.3: (a) The Pigou network. A flow volume ∆ can be transfered from
edge 1 to edge 2 by capping the flow capacity of edge 1. (b) The dashed line
shows how the cost of the Nash flow changes with increasing ∆ for F = 1,
as given by equation (2.11). The cost of the Nash and GO flows on the
unmodified network are indicated by the solid lines. At ∆′ = 1/2, the Nash
flow is optimised and coincides with the GO.

to a flow obeying both KVL and KCL, and whose cost is CNash, can be
driven towards the GO by manipulating the network such that excess flow
is transferred from edge 1 to edge 2. Specifically, an amount ∆ of the flow
from edge 1 in the network can be removed by capping the edge’s capacity in
order to reduce the cost of the Nash flow, as shown in figure 2.3(a). Figure
2.3(b) shows how the cost of this modified Nash flow decreases with ∆ for
a total flow volume in the network of F = 1. The Pigou network admits a
simple analytic expression for the cost of this modified Nash flow:

CNash(F,∆) = (f1 −∆)2 + f2 + ∆, (2.8)

where f1 and f2 are the flow volumes on edge 1 and edge 2 respectively at the
Nash equilibrium, when the total flow volume is F . f1 and f2 are given for
any value of F in section 2.2.2. Using f1 = F − f2, equation (2.8) becomes

CNash(F,∆) = (F − f2 −∆)2 + f2 + ∆. (2.9)

To find the optimum reduction ∆′ that minimises CNash, we need to find ∆
such that

∂CNash

∂∆ = 0. (2.10)
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Recall from section 2.2.2 that at F = 1 all of the flow uses edge 1 under Nash
conditions. Consequently, for F = 1, we have f1 = 1 and f2 = 0. Equation
(2.9) then becomes

CNash(F,∆) = (F −∆)2 + ∆, (2.11)

and so
∂CNash

∂∆ = 2∆− 2F + 1. (2.12)

Equating the above to zero reveals that the optimum is ∆′ = F −1/2 = 1/2.
Indeed, for any F ≤ 1, all of the flow takes edge 1 under Nash conditions.
Thus f1 = F and f2 = 0 for F ≤ 1. It is easy to check that ∆′ = F − 1/2
therefore holds for 1/2 ≤ F ≤ 1. Note that ∆′ = F − 1/2 is negative
for F < 1/2. This is not physical and means that no reduction in cost is
possible for F < 1/2. From section 2.2.2, we know that for F > 1, the Nash
equilibrium is f1 = 1 and f2 = F − 1. Consequently,

CNash(F,∆) = (1−∆)2 + F − 1 + ∆, for F > 1. (2.13)

This gives
∂CNash

∂∆ = 2∆− 1, (2.14)

and so ∆′ = 1/2. In summary, ∆′ = F − 1/2 for 1/2 ≤ F ≤ 1 and
∆′ = 1/2 for F ≥ 1, with no reduction in cost available for F ≤ 1/2.

For notational brevity we define CNash = CNash(F, 0) and C ′Nash = CNash(F,∆′).
The equilibrium on the modified network, by definition, has cost C ′Nash ≤ CNash.
This means that edge 1 provides redundant capacity that can be removed.
Defining this edge redundancy in terms of the costs gives:

R1 := CNash − C ′Nash

CNash
=


0, 0 ≤ F < 1/2,
(F − 1/2)2

/F 2, 1/2 ≤ F < 1,
1/(4F ), F > 1,

(2.15)

which is the relative decrease in cost available by removing capacity from
edge 1. Note that this redundancy is flow volume dependent; it varies as a
function of F . The capacity reduction ∆′ enforces the flow volume on edge 1
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to be equal to the volume on edge 1 under GO flow conditions. The GO flow
pattern therefore reveals the optimal capacity reduction ∆′, as illustrated in
figure 2.3(b). In summary, a capacity cap ∆ should be enforced to improve
the efficieny of the Nash flow. The optimal capacity cap ∆′ is given by
the difference between the flow volumes on edge 1 for each equilibria, i.e.,
∆′ = fNash

1 − fGO
1 .

Figure 2.4: (a) The example Pigou network. (b) P (red line) and R (blue
dashed line) for the Pigou network in (a) are shown as functions of F . (c)
A small world network with q = 0.1, k = 4, n = 16 and (n+, n−, np) =
(8, 8, 0). (d) P and R as functions of F for the small world network shown
in (c).

In order to generalise the redundancy measure in equation (2.15) to larger
networks it is averaged over both edges to give R := Re. The measure R is
therefore the mean decrease in cost attainable by removing capacity from an
edge. Figure 2.4(b) shows R as a function of F in the Pigou network. The
figure also shows P as a function of F to demonstrate the correspondence
between the two measures. Their forms emulate each other, with peaks
occurring at the same values of F . Therefore, despite an electrical flow being
constrained by physics to operate at the Nash equilibrium, computing P
and fGO is still useful since P acts as a proxy for edge redundancy and fGO

gives the volume of redundancy on each edge. A high value of P therefore
indicates that a network’s edges are providing excess capacity; reducing this
capacity will reduce power loss over the network.
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2.3.3 Computing R in complex networks

For larger networks with overlapping paths, there is unlikely to be an analytic
expression for ∆′ and so Algorithm 1 is used. This algorithm, summarised
in the pseudo-code listing below, uses knowledge of the GO flow pattern to
evaluate the optimal amount by which to cap each edge. The GO and Nash
flows are computed via the optimisation problems (2.3) and (2.5) respectively.
The algorithm begins by computing the Nash and GO flow on the given
network. It then iterates over the edges, and on each edge checks whether the
Nash flow volume is greater than the GO flow volume. If it is, then an upper
volume cap equal to the GO flow volume is placed on that edge and the Nash
flow recomputed. This adjusted Nash flow will be more efficient and have
a lower cost, since redundant capacity has now been effectively removed by
the cap. The relative decrease in cost is then recorded. The mean of these
decreases then gives the network’s redundancy measure R.

Algorithm 1 Compute R
Input: A network G = (V , E , c)
Output: The redundancy measure R on G

1: Compute the Nash and GO flows fNash and fGO

2: CNash = ∑
e∈E ce(f eNash)f eNash

3: for e ∈ E do
4: if f eNash > f eGO then
5: Set an upper limit κ = f eGO on edge e
6: Compute modified Nash flow f ′Nash
7: C ′Nash = ∑

e∈E ce(f ′
e

Nash)f ′eNash
8: Re = (CNash − C ′Nash)/CNash

9: else
10: Re = 0
11: end if
12: end for
13: R = Re

2.3.4 Correspondence between R and P

Using Algorithm 1, the redundancy measure R can now be computed for
complex networks such as the small-world network depicted in figure 2.4(c).
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This network has 16 nodes, a mean degree of 4 and a random rewiring
parameter of q = 0.1. It has equal numbers of sources and sinks but no
passive nodes; i.e., (n+, n−, np) = (8, 8, 0). Figure 2.4(d) shows R as a
function of flow volume F in this network. It exhibits a series of peaks,
attaining a maximum at F ≈ 8. Plotted in the same figure is the Price of
Anarchy P , which displays peaks in the same places as R. This similarity in
the behaviour of P and R was also observed in the Pigou network in figure
2.4(b).

(a)
(b)

(c) (d)

Figure 2.5: (a) The Austrian power grid, constructed from open source
topological data from (APG, 2017). (b) P and R for the network in (a) as a
function of total current F , where F has been normalised using the per-unit
system. Panels (c) and (d) show P and R for the IEEE 14 bus and 118 bus
test networks respectively, where the flow has again been normalised into the
per-unit system.

To further examine the correspondence between R and P they will now
be computed for several real world networks, starting with the Austrian
national power grid plotted in figure 2.5(a). Obtained from APG (2017), the
Austrian data set contains n = 67 nodes and m = 85 edges. Each node is
a substation, behind which may be either a power station or a distribution
grid which is unresolved by the data. Generators and distribution nodes
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represent sources and sink respectively. The edges are power transmission
lines. 11 nodes are generators, and the remainder are distribution nodes
so that (n+, n−, np) = (11, 56, 0). The data set contains only topological
information; power output and consumption data is not available. Therefore,
power input and output is modelled as per equation (2.4) with ξv = 0 so
that sources generate an equal amount, sinks consume an equal amount, and
flow supply-demand is matched. Heterogeneous levels of generation and real
world power consumption data will be treated in the next section and in
Chapter 7 respectively; the objective here however is simply to demonstrate
the dependence of R as a function of F on a realistic topology. Figure
2.5(b) shows the R versus F profile for the Austrian grid. R peaks at two
values of F before decreasing 0 for high F , indicating that for very high flow
volumes there is little redundancy since all edges are heavily used. P is also
plotted alongside R, once again demonstrating the similarity between the
two measures. The resistance and voltage drop coefficients for the power loss
functions in the Austrian grid are unknown from the data and so, following
Youn et al. (2008), they are modelled here as uniform random variables in the
range [0, 1]. As noted in Youn et al. (2008), rescaling these variables simply
gives a 1:1 rescaling in the F axis. The F axis can therefore be regarded as
the flow volume relative to the edge coefficients; this type of normalisation
is common in electrical engineering where it is referred to as the per-unit
system (Alexander and Sadiku, 2012).

Next, R and P are computed as a function of F for the well-known IEEE
test networks; specifically, the 14 bus and 118 bus test networks. These
networks are widely used in the electrical engineering literature as test beds
for new algorithms and models. They are snapshots of subsets of the United
States power transmission grid from the 1960s. Nodes and edges have the
same meaning as in the Austrian grid data. The 14 bus network has n = 14
nodes and m = 20 edges. The 118 bus network has n = 118 nodes and
m = 179 edges. All other quantities are modelled in the same way as in the
Austrian case above. The resulting R and P profiles are displayed in figures
2.5(c) and (d). Here the peak values of P are ∼ 1.035, corresponding to a
value of R indicating an average 0.4% increase in efficiency available to the
whole system from reducing the capacity of a single edge. As this is a per
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edge value, it reveals a substantial amount of inefficiency across the network
as a whole.

Key to what follows in the next section is that the maximum values of P and
R occur at the same flow volume F . Determination of R is computationally
onerous, requiring the evaluation of a convex optimisation problem for each
of a network’s edges, rendering it impractical for all but the smallest of
networks. This is because the Nash flow must be recomputed after capping
each edge. Evaluating P therefore provides a simple computational proxy for
identifying regimes of relative redundancy, enabling very large networks of
complex topology and composition to be investigated. The next section will
investigate how P depends upon the network’s node composition, revealing
how regimes of high P and therefore redundancy are influenced by the
proportions of source and sink nodes.

2.4 Dependence of P on node composition and function

The previous two sections have defined P in the context of flow networks
and established its use as a proxy for redundancy in the case of physically
constrained flows such as electricity. This section investigates how P depends
on network composition, and particularly on source-sink node proportions.

We first consider networks whose source and sink nodes have equal flow
outputs and inputs respectively, given by the case where ξv = 0 for all
v ∈ V in equation (2.4). For a total flow volume F , the dependencies of
P on network structure and composition are obtained from an ensemble of
1000 such random small-world network realisations, constructed using the
Watts–Strogatz method (Watts and Strogatz, 1998). These networks are
parameterised by the rewiring probability q ∈ [0, 1], initial degree k, and the
number of nodes n. A network with q = 0 is a regular lattice, while a network
with q = 1 is a completely disordered random network. As usual, a given
network’s n nodes comprise n+, n− and np source, sink and passive nodes,
respectively. In this section, the location of these nodes will be allocated
uniformly at random. The edge cost coefficients αe and βe are both uniformly
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distributed random variables in the range [0, 1].

(a) (b)

(c) (d)

0.5 2.5
0.0

2.5

0 100
1.00

1.03

0.5 2.5
0.0

2.5

0 6
10

10

10

10

-3

-2

-1

0

Figure 2.6: (a) The Nash equilibrium edge power xe = ce(fe)fe distribution
in small world networks with q = 0.1, k = 4, n = 32, n+ = n− = 16,
np = 0. Distributions of (b) CGO and (c) CNash in an ensemble of 1000
such networks with total flow volume F = 20. The solid lines are fitted
shifted gamma distributions with shape parameter ν = 3.44, scale parameter
µ = 3.50 and shift parameter σ = 12.3 in (b) and ν = 3.51, µ = 3.51
and σ = 12.4 in (c). The mean of these distributions is given by νµ + σ.
Therefore the mean cost is 24.34 in (b) and 24.72 in (c), indicating that
the Nash flow is on average slightly more expensive than the GO for this
value of F . Both the Nash and the GO distributions have a similar degree
of skewness 2/

√
ν. (d) The mean Price of Anarchy P as a function of F ,

with maximum at (F ∗,P∗). The shaded region indicates the 95% confidence
interval, computed using the statistical bootstrapping method (Efron and
Tibshirani, 1986).

The resulting Nash and GO flows on these random networks are found to
have exponentially distributed individual edge costs xe = ce(fe)fe, as seen
in figure 2.6(a). In the context of electrical current, the value xe is the power
loss over edge e. In a traffic context xe is the total travel time borne by all
drivers on the edge. At the macroscopic scale the Nash and GO flow costs
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are gamma-distributed with a probability density function

P (C) =
(
C − σ

µ

)ν−1
e−
C−σ
µ

µΓ(ν) , (2.16)

where ν, µ and σ are the shape, scale and shift parameters respectively. This
is shown in figures 2.6(b) for the GO flow, and 2.6(c) for the Nash flow,
and confirmed with Kolmogorov–Smirnov tests (see Frank and Massey, 1951,
for an overview). The emergence of gamma distributed total costs can be
attributed to the fact that they are formed from ensembles of exponentially
distributed individual edge costs.

Note that the use of a shift parameter σ is not standard in a gamma distri-
bution. However, it is necessary here due to the nature of the data. To see
why this is, consider that the data in figures 2.6(b) and (c) are the flow costs
across an ensemble of randomly generated network topologies connecting a
set number of source and sink nodes, with a fixed flow volume F . The lowest
cost in each ensemble will therefore belong to the most efficient topology in
the ensemble. However, for any F > 0, even this most efficient topology must
result in a non-zero cost. This is because the flow F must still be routed from
the sources to the sinks. For example, a volume of traffic will still experience
a non-zero total travel time between their origin and destination, no matter
how efficient the road network. These lowest costs in the ensemble increase
as F increases, shifting the resulting distributions of costs to higher values.
The shift parameter σ should therefore be regarded as taking into account
the total flow volume F .

For each value of total flow F , the mean of the resulting distribution of P ,
denoted P , is shown in figure 2.6(d). With increasing flow, P rapidly rises
to a maximum P∗ at F ∗, before declining to unity. How the values of P∗

and F ∗ depend on the network node configuration, defined by n+, n− and
np is now considered.

Each network must have at least one source node and one sink node, and
is constrained by n+ + n− + np = n. These conditions restrict the space of
possible network node configurations to a triangular-shaped simplex whose
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Figure 2.7: (a) A sketch of the node configuration space simplex. The black
dot represents a configuration of (n+, n−, np) = (5, 10, 5). (b), (c): P∗ and
F ∗, respectively, for an ensemble of 500 small world networks, each with
n = 150, k = 4 and q = 0.1 projected onto the simplex in (a). (d)–(f) P as
a function of n+ along the sections (i)–(iii) indicated in (b). In (f), the red
line indicates the function a+ bn−1/2

+ with a = 1.003 and b = 0.024.

vertices touch one of the n+, n−, np axes, as illustrated in figure 2.7(a). Each
unique node configuration (n+, n−, np) is represented by a unique point on
the simplex. For example the black dot in figure 2.7 represents a configuration
of (n+, n−, np) = (5, 10, 5). For networks with identical n, the values of P∗

and F ∗ for each of the n(n− 1)/2 possible configurations are then projected
onto this simplex. The results of this projection for an ensemble of small-
world networks with n = 150 and q = 0.1 are shown in figures 2.7(b) and
2.7(c). The contours in these results are symmetric about a line bisecting
the simplex, corresponding to networks with equal numbers of sources and
sinks; n+ = n−. This symmetry is due to the reciprocity between sources
and sinks.

The maximum value of P∗ is found at the apex of the simplex in figure
2.7(b), corresponding to networks with only one source and one sink; i.e.,
(n+, n−, np) = (1, 1, 148). The values of P∗ then decrease monotonically
down the central bisecting line, indicated by section (i) in fig. 2.7(b) and
plotted separately in fig. 2.7(d). Moving down this line, from the apex to
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the bottom of the simplex, corresponds to increasing the numbers of sources
and sinks in the network whilst keeping the proportions of them matched at
n+ = n−. In other words, the networks become increasingly filled with an
equal mixture sources and sinks. This decrease in P∗ with decreasing empty
nodes is in agreement with the results found on lattice networks in figure
2.2; specifically, that efficiency is increased by adding in more sources and
sinks. This increase in the efficiency of the Nash flow is due to the increase
in source-sink nodes restricting the number of possible flow patterns, limiting
the possible difference between the Nash and the GO.

Lines of constant numbers of passive nodes are represented as horizontal
sections on the simplex, such as the section (ii). For each such line, the
maximum P∗ is given in the centre where n+ = n−. Section (ii) is plotted
separately in (e), and shows this to be the case; P∗ is maximised in the centre.
This means that inefficiency is maximised when the numbers of sources and
sinks are matched, for all values of passive nodes. Moving down section (iii)
in fig. 2.7(b) corresponds to networks with only one sink, but increasingly
many source nodes. As the source nodes are added in, P∗ decreases rapidly.
This is shown in panel (f), revealing that P∗ decreases like ∼ a+ bn−1/2

+ .

In contrast to P∗, the value of F ∗ is maximised at the bottom-centre of the
simplex where there are no empty nodes. This is shown in fig. 2.7(c) and
means that the fewer empty nodes there are, the higher the flow volume
required to maximise inefficiency. Taking the results of fig. 2.7(b) and (c)
together, it can be seen that although the highest inefficiencies occur when
there is only one source and one sink, the flow volume at which this maximum
occurs is very small. On the other hand, having a network half populated
with sink nodes and its other half with sources, results in a small peak in
inefficiency but occurring at a high flow volume. Therefore, the most efficient
configuration of source-sink nodes depends upon the flow volume that the
network will be handling.

The morphology of the contours shown in figures 2.7(b) and 2.7(c) remains
invariant with the network rewiring parameter q, meaning these results apply
to both small-world and random Poisson (q ' 0.2) networks, as demonstrated
in figure 2.8. These invariant properties also persist when considering scale-
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(a) (b)

Figure 2.8: (a) P∗ and (b) F ∗ for an ensemble of 500 random Poisson
networks each with n = 64, generated by the Watts-Strogatz method (Watts
and Strogatz, 1998) with q = 0.6 and k = 4.

free networks formed through preferential attachment, whose topologies are
quite distinct from those of either the small-world or Poisson class. Figures
2.9(a) and 2.9(b) show the P∗ and F ∗ simplexes for a scale-free network with
n = 150 and mean degree 3, constructed using the Albert–Barabasi algorithm
(Barabási and Albert, 1999). As in the case of small-world networks, the
highest values of P∗ are found at the apex of the simplex and occur at a low
flow volume; networks at the bottom of the simplex have lower maximum P
but occurring at a higher flow volume.

(a) (b)

Figure 2.9: (a) P∗ and (b) F ∗ for an ensemble of 500 scale-free networks
with n = 150 and mean degree 3.

In practice sources and sinks may be expected to have heterogeneous levels of
output and input, such as an electrical grid containing a range of generators
with different output capacities. To account for this, ξv in equation (2.4)
is now set to be a normally distributed random variable with mean 0 and
variance 0.2. This represents a substantial amount of heterogeneity whilst
typically still preserving the types of the nodes, and therefore the location

53
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Figure 2.10: (a) P∗ and (b) F ∗ for an ensemble of 500 random n = 64
small-world networks with q = 0.1. In these networks ξv is a normally
distributed random variable, with mean 0 and variance 0.2, inducing sources
and sinks to have heterogeneous flow inputs and outputs.

on the simplex. Figure 2.10 demonstrates this heterogeneity in ensembles of
small-world networks and reveals that the key features of the simplex remain.
In particular the highest values of P∗ are found at the apex and along the
centre line of the simplex where the numbers of source and sink nodes are
equal.

The morphology of the contours in the simplex also remains approximately
invariant with network size n, however, the amplitudes of P∗ and F ∗ do scale
with network size. To capture this scaling, a point in the centre of the simplex
corresponding to networks with n+ = n− = np was recorded for increasing
n. These results are shown in figure 2.11. The value of P∗ as a function of
n is shown in fig. 2.11(a) and demonstrates that for small-world, Poisson
and scale free networks it saturates to a constant value for n > 50. It is
notable that P∗ saturates more quickly with n for scale-free networks. This is
likely because the characteristic hub-and-spoke structure of Barabási–Albert
networks (Barabási and Albert, 1999) emerges at lower values of n than
does the small-world or Poisson quality of Watts-Strogatz networks. It is,
however, unclear why P∗ saturates to a higher value for scale-free networks
than the other networks. Figure 2.11(b) shows that F ∗ increases linearly
with network size. These scaling results can be used in conjunction with
figure 2.7 to interrogate networks of arbitrary size.

The linear scaling shown in figure 2.11(b) can be explained. F ∗ corresponds
to a threshold beyond which the network flows adjust such that the two
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Figure 2.11: (a) P∗ and (b) F ∗ as functions of n for small-world networks
(blue squares) with q = 0.1 and k = 4; Poisson networks (gray triangles)
generated using the Watts–Strogatz method with q = 0.6 and k = 4
and scale-free networks (red circles), generated using the Barabási–Albert
method (Barabási and Albert, 1999). All networks are chosen to have a node
configuration n+ = n− = np.

equilibrium costs begin to converge. To exceed the threshold the total flow
must increase linearly because the expected density of flow decreases linearly
with increasing n.

2.5 Conclusion

This chapter has investigated how the inefficiency of flows occurring on
different classes of random network, as gauged by the Price of Anarchy P ,
is affected by the network structure and the function of its nodes. It has
also established a correspondence between P and a measure of network
redundancy, an important consideration in addressing issues of network
resilience and cost-effectiveness. In particular, high values of P have been
shown to indicate high levels of redundant capacity in a network.

This investigation has been primarily motivated by understanding properties
associated with flows of current in electrical micro-grids, wherein nodes are
either sources or sinks of current, or are passive conduits. Poisson, scale-
free and small-world networks have been used to establish the generality
of the results with respect to network topology; this reveals a predictable
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dependence of P on node composition for networks of arbitrary structure.

The simplex plots of figure 2.7 and their symmetry and invariance properties,
when taken in conjunction with the system size scalings shown in figure 2.11,
provide an operating space that defines maximal inefficiency and redundancy
for an ensemble of networks with general topology and with variable node
composition. With application to micro-grids, a given network’s composition
will change both diurnally and seasonally, traversing a trajectory through
this configuration space. This path will depend on the nature of the sources
of power and the load consumed by the sinks. These features will vary with
population behavior and the variable outputs from renewable power sources,
as will be explored in Chapter 6. This information can be exploited to aid in
the dynamic design and management of smart networks so as to constrain
trajectories to preferred regions on the simplex. Insofar as redundancy is
related to resilience (Halu et al., 2016; Quattrociocchi and Caldarelli, 2014;
Corson, 2010), this aspect of the system’s performance can be manipulated
dynamically via the network’s node type configuration and edge costing. A
striking feature is that greatest values of inefficiency (or redundancy) occur
when the number of sources and sinks are equal, as apparent in figure 2.7,
a situation that is prevalent for small renewable energy networks where the
numbers of generators and consumers are comparable. By contrast, the
results show that a centralised electrical distribution grid comprising a few
sources but many sinks has a low P∗, indicating it is both efficient and lacks
redundancy. Equivalent plots can be constructed that are particular for an
individual network’s structure and composition with which its performance
can be gauged. For instance, the redundancy in a micro-grid could be
reduced by attempting to move the grid into a peripheral region of the
simplex. Methods to accomplish this type of movement will be considered in
Chapter 6.

These findings have established that even for simple linear edge functions,
network topology and flow conservation laws are sufficient to induce inef-
ficiency that depends predictably on the configuration and behaviour of
nodes. An interesting extension to this work would be the consideration
of nonlinear cost functions, for which the values of P may be substantially
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larger (Roughgarden, 2003; Youn et al., 2008).

The inefficiency caused by redundancy is only one metric with which to
assess performance and it is inefficient networks that will generally also be
the most resilient to faults or attack. Redundancy may also give networks
flexibility to operate in a variety of conditions; however, since inefficiency
and redundancy coincide, optimising a network’s structure and composition
purely for efficiency may result in a loss of useful redundancy. Hence in using
the simplex to aid network design it is likely that options will be constrained
to an operating space offering an acceptable efficiency-resilience trade-off.
The dependence of resilience upon node composition and behaviour forms
the main theme of subsequent chapters.
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Chapter 3

Resilience of steady state flow
networks

3.1 Introduction

Cascading failures on networks can be catastrophic. A small fault or pertur-
bation can spread throughout a system and compromise entirely its ability to
operate. Blackouts in electrical grids, financial crashes and shocks, and the
spread of congestion and delays through transport networks are all examples
of cascades. Understanding how susceptible networks are to such events, and
how certain topologies and network structures may improve resilience, is
therefore vitally important to ensure the safe operation of infrastructure.

This chapter is concerned with cascades through steady state flow networks,
which serve as a model for electrical power grids. Modern power grids have
an increased number of small distributed generators, compared to traditional
grids which contain only a few very large generators. Additionally, the
composition and relative numbers of generators and consumers may vary
throughout a day. Chapter 2 highlighted that inefficiency, gauged using the
Price of Anarchy, varied as a function of the composition of flow source and
sink nodes. The focus of this chapter is on how the resilience to cascades
varies as a function of this source-sink composition in networks, in order
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to uncover operating spaces that can boost the robustness of a network.
The work presented here was published in Smith et al. (2020). Section 3.2
introduces the cascade model that will be used throughout the Chapter.
Section 3.3 examines cascades on simple, regular lattice networks to develop
general principles of how a cascade relates to edge capacity and node type.
Finally, section 3.4 investigates cascades on a variety of complex networks,
both synthetic and real, and computes their resilience as a function of their
node-type composition.

3.2 Steady state cascade model

This section describes the network cascade model which will be used to
investigate the resilience of flow networks to catastrophic failures. At every
step of the cascade, the network flow is computed using the steady-state
model introduced in section 1.5.1. As in Chapter 2, we consider networks of
the form G = (V , E), with n = |V| nodes and m = |E| edges, wherein n+

nodes are sources of flow, n− are sinks and the remaining np are passive or
empty. Each edge e ∈ E has a flow volume fe, computed using the linearised
DC power flow equation (Stott et al., 2009)

fe = 〈Ee, θ〉
xe

. (3.1)

Here xe is the reactance of edge e and as before E ∈ Rn×m is the node-edge
incidence matrix, with Ee its eth column. The inner product is denoted
by 〈·, ·〉 and θ ∈ Rn is the vector of node voltages. The inner product in
equation (3.1) determines the voltage difference across edge e, which is then
divided by reactance to obtain a linearised current flow fe. The node voltage
vector θ is determined from the linear system

L θ = P, (3.2)

where L = E diag(Y )ET is the weighted graph Laplacian and Y ∈ Rm

the vector with entries 1/xe. L is also referred to as Kirchoff’s matrix and
finding a solution to equation (3.2) amounts to solving Kirchoff’s voltage and
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current laws. Note that these solutions are also equivalent to the Nash flow
equilibria that were computed in chapter 2; however, those were computed
using a convex optimisation algorithm, rather than the direct method applied
here. The flow injection vector P ∈ Rn has entries

Pv =


(1 + ξv)P tot/n+, if node v is a source,

−(1 + ξv)P tot/n−, if node v is a sink,

0, otherwise,

(3.3)

with P tot the total power injected into the network and ξv a random variable
used to induce heterogeneity in source and sink strength. Supply and demand
will always be matched so that

∑
v∈V

Pv = 0. (3.4)

It is worth noting that for every connected component in the network, the
Laplacian will have a zero eigenvalue. If a network is simple and connected,
then it will be composed of a single connected component and its Laplacian
will therefore have rank n − 1. This means that L in equation (3.2) is
singular and non-invertible. However, computation of fe requires only the
relative differences in voltage values between adjacent nodes. One of the
node voltages may therefore be set to zero, and all other voltages measured
relative to that ground node. This allows the system in (3.2) to be reduced
to dimension n − 1. This reduced system has full rank and can be solved
directly via a LU decomposition.

Solutions of equations (3.1) and (3.2) describe a steady-state equilibrium flow
which will be computed at each step of the network cascade, which proceeds
as follows. First, a maximum capacity of α is assigned to each edge of the
network. Next, the initial equilibrium flow is computed. The highest flow
volume in the network at this stage will be denoted α∗:

α∗ := max
e∈E

f initial
e . (3.5)

α∗ is the minimum edge capacity required for the network to function. Once
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Compute the initial flow
on the network

Delete the most heavily 
loaded edge

Recompute the flow

If the flow volume on any 
edge exceeds α 

Then, delete the overloaded
edge(s) 

Otherwise, finish if no more 
capacities are exceeded 

For each connected
component i 

If i contains at least one
source and one sink   

Otherwise, then remove 
 component i Then, adjust source-sink 

ouput within component i  

Figure 3.1: Schematic of the network cascade algorithm. The flow is computed
by solving equations (3.1) and (3.2).

the initial flow is computed, the cascade is triggered by removing the edge with
the highest flow volume. This serves as a model for overloading power line
failure. The flow fe is then recalculated for each edge in this modified network.
If fe > α on any edge, that edge is deemed overloaded and removed. The
flow is then recalculated and the network checked again for more overloads.
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This process continues until the network attains a final equilibrium with all
edges carrying a flow ≤ α.

During this cascade the network may fragment into separate connected
components, and so the algorithm must be recursively forked into each
of these new components. Additionally, source and sink strengths must
be adjusted throughout the cascade in order to keep supply and demand
matched, satisfying equation (3.4). It will be assumed initially that sources
and sinks adjust their demand and supply reciprocally. In particular, if a
component contains n′+ sources, n′− sinks and a flow supply surplus δ, then
each source decreases its output by δ/2n′+ and each sink increases its demand
by δ/2n′−. If the component contains either no sources or no sinks then the
flow cannot be balanced and the entire component is removed. Balancing of
power by non-reciprocal source/sink behaviour is discussed in section 3.5.1,
together with other models for triggering the cascade. The cascade process
is summarised in figure 3.1.

The network eventually attains a final state, with the fraction of surviving
edges relative to the original number denoted by S. A value of S = 0
indicates an entire network failure; S = 1 denotes complete resilience. As the
edge capacity α in the network increases, the network will be better equipped
to survive a cascade. Each network will require some amount α∗ of capacity
in order to operate normally. Some networks, owing to their structure and
composition, will be inherently well equipped to survive cascades. Others,
however, will be more fragile and require a large amount of capacity in excess
of α∗ in order to survive. This prompts defining a resilience metric ρ that
gauges how much capacity is needed for at least half of the network to survive,
denoted αc, relative to the network’s minimum operating capacity α∗:

ρ := αc
α∗
≡ S

−1(1/2)
maxe∈E fe

. (3.6)

When a network has a capacity of αc, half of the network will survive and
so S = 1/2. The smaller the value of ρ, the more resilient the network.
If ρ = 1, for example, then the minimum operating capacity α∗ alone is
sufficient for most of the network to survive, indicating that the network
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is inherently resilient. If ρ = 2, the network requires double its operating
capacity. ρ will be used throughout this chapter to gauge the resilience of a
variety of networks.

3.3 Cascades on regular lattices

3.3.1 Lattices with degree K = 2

The fraction of surviving edges S depends on network size, topology, edge
capacity, and both the composition and location of the node types. To
gain insight into this dependence it is instructive to consider the example
of a cascade on a network with a simple ring-lattice structure, as illustrated
in figure 3.2(a). This simple lattice network admits analytic descriptions
of its behaviour at each iteration of the cascade. We will now proceed to
derive these descriptions and use them to reveal the dependence of S on the
placement of the source nodes and the edge capacity values α. It will then
be shown that these results provide intuition for the general case of lattices
with K > 2. Section 4.4 will also reveal that this intuition carries over even
for the case of complex networks.

As shown in figure 3.2(a), the lattice has n+ = 2, n− = n− 2 and common
degree K = 2. The shortest path distance between the two source nodes
is d. For simplicity, let ξv = 0 for all v in equation (3.3) so that sources
and sinks are homogeneous. The power injected into each of the 2 source
nodes is therefore P tot/2, and P tot/(n− 2) is consumed by each of the sinks.
Here and throughout this chapter, the electrical flow is determined using the
steady state equations (3.1) and (3.2). As described in Section 3.2, cascades
are triggered by removing the most heavily loaded edge and then iteratively
recomputing the flow and removing any further edges where α is exceeded.
Initially, the maximum flow volume on any edge is

max
e∈E

fe = P tot

2

(
1− d

n− 2

)
, (3.7)
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indicated by the red edges in figure 3.2(a). This is also α∗, the minimum
edge capacity required for the network to operate under normal conditions.
One of these most loaded edges is knocked out to initiate the cascade. After

/2

/2(n-2)

2 (1- d
n-2 )

(1- d
n-2 )

(a) Iteration 1 (b) Iteration 2

d d

/2(n-2)d

/2 2 (1- d
n-2 )

/2

/2

/2

Figure 3.2: (a) Illustration of the ring-lattice with common degree K = 2,
n+ = 2 and n− = n− 2. The distance between the two sources is labelled d.
The annotations give the flow volumes on various edges of interest under the
initial flow conditions. The two most loaded edges are highlighted red. (b)
shows the second iteration of the cascade process, occurring after one of the
most loaded edges in (a) is removed. After recomputing the flow, the new
most loaded edge is highlighted in red.

this edge removal, the flow must then be carried by the one outgoing edge
of the incident source node, as indicated by the green edge in figure 3.2(b).
The most heavily loaded edge is now located where the flow from the first
source mixes with the flow from the second, giving an edge flow volume of

f2 = P tot

(
1− d

n− 2

)
, (3.8)

indicated by the red edge in figure 3.2(b). If the edge capacity α ≥ f2, then
the edge can survive and the network can continue to operate with no further
overloads. Thus the fraction of surviving edges is

S = m− 1
m

for α ≥ f2. (3.9)
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After the initial trigger, and subsequent redistribution of flow, some of the
edges can still survive even if α < f2. In particular, the d edges along the
shortest path between the two sources survive, provided α exceeds the largest
flow volume found along this path. This volume is P tot/2, shown by the
green edge in figure 3.2(b), and so

S = d

m
for P tot

2 ≤ α < f2. (3.10)

The resulting final state is illustrated in figure 3.3(b).

Whether any edges survive the cascade if α < P tot/2 depends upon the
flow-balancing behaviour of the source and sink nodes; that is, if a connected
component of the graph has a flow surplus or deficit, how do the source and
sink nodes adjust their net flow outputs to match supply and demand? It is
assumed for simplicity that this behaviour is reciprocal between sources and
sinks. In particular, if a connected component has n′+ sources and n′− sinks,
and has a flow surplus of δ, then each source will decrease its output by
δ/2n′+ and each sink will increase its demand by δ/2n′−. In this way supply
and demand will be equalised.

Under these assumptions, and if α < P tot/2, then a cascade will unfold as
follows. First, the most loaded edge will be deleted. This will be an edge
adjacent to one of the two sources, call this source 1, leading to the second
iteration shown in figure 3.2(b), where the flow will be redistributed amongst
the m− 1 remaining edges. The remaining edge incident on source 1 is then
deleted (green edge in figure 3.2(b)), since its flow volume is now P tot/2 > α.
The most loaded edge incident on source 2 with flow volume given by equation
(3.8) will also be deleted (red edge in figure 3.2(b)), disconnecting most of
the network. The remaining edge incident on source 2 lies along the shortest
path between the two sources and will have a load given by

f0 = P tot

(1
2 −

d

n− 2

)
. (3.11)

If α ≥ f0, then at least one edge can survive the second iteration of the
cascade. As we move along this path, from source 2 towards source 1, the
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(a) Iteration 3 (if  

i

(b) Iteration 3 (if 

d
2(n-2)

) )
d

2(n-2)

Figure 3.3: (a) and (b) show two possible outcomes of iteration 3 of the
cascade, occurring after the red edge in figure 3.2(b) is removed due to α
being less than f2 in equation (3.10). (a) shows the outcome if α < P tot/2.
The number i of sink nodes surviving this far is given by the function g(α, d)
in equation (3.13). These can survive the entire cascade if the relevant criteria
in equation (3.18) are met. (b) shows the case if α ≥ P tot/2.

ith edge along the path will have flow volume

fi = P tot

(1
2 −

d− i
n− 2

)
. (3.12)

A chain of i edges as shown in figure 3.3(a) can therefore survive the second
round of the algorithm if α ≥ fi. Thus, for these values of α, the number of
edges i surviving this round of the cascade is obtained by letting fi = α in
equation (3.12) and rearranging for i. After some manipulation this yields
the result

i = r − (n− 2)
(1

2 −
α

P tot

)
=: g(α, d). (3.13)

The fraction of edges surviving this iteration is then bg(α, d)c/m, where b·c
denotes the floor function. Now, assuming at least one edge has survived
so far, the third iteration of the algorithm will begin, which will start by
balancing the supply and demand on the remaining network. This remaining
structure will consist of one source, with output σ = P tot/2, and i sinks,
connected in a chain, each with demand P tot/(n− 2). There will therefore
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be a flow surplus of

δ = P tot

2 − iP tot

n− 2 , (3.14)

and the source will decrease its output by δ/2, giving a new output of

σ′ = P tot

2 − δ

2 = P tot

2 − 1
2

(
P tot

2 − iP tot

n− 2

)

= P tot(n− 2) + 2iP tot

4(n− 2) . (3.15)

After balancing the supply and demand, the new flow pattern will be com-
puted. The most loaded edge will now be the one incident on the source, and
will have to carry all of the flow from the source to the other edges. This edge
will therefore have a load equal to σ′ given in equation (3.15). If α is greater
than or equal to this load σ′, then the i edges in the chain survive and the
network will have reached its final state with S = bg(α, d)c/m. Otherwise
if α < σ′, then S = 0. A lower bound on α therefore occurs when

α = P tot(n− 2) + 2iP tot

4(n− 2) ,

which upon rearranging for i gives

i = (4α− P tot)(n− 2)
2P tot

, (3.16)

where i is given by g(α, d) in equation (3.13). Therefore, equating (3.13)
and (3.16)

d− (n− 2)
(1

2 −
α

P tot

)
= (4α− P tot)(n− 2)

2P tot
,

and rearranging and simplifying gives the result

α = P totd

(n− 2) , (3.17)

which is the capacity required for the bg(α, d)c edges which survived the
second iteration to also survive the third and final iteration. This final state
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is illustrated in figure 3.3(a). Recall that for anything to have survived the
second iteration, α must be greater than or equal to f0 in equation (3.11).
The results in equations (3.9), (3.10) and (3.17) can now be summarised as

S =



0 for (α, d) where α < P tot
(

1
2 −

d

n−2

)
and d > α(n−2)

P tot ,

1
m
bg(α, d)c for (α, d) where P tot

(
1
2 −

d

n−2

)
≤ α ≤ P tot

2 and d ≤ α(n−2)
P tot

d

m
for (α, d) where P tot

2 ≤ α < P tot
(
1− d

n−2

)
m−1
m

for (α, d) where α ≥ P tot
(
1− d

n−2

)
.

(3.18)

This provides a full description of cascades for a given capacity α and source
distance d. The numerical simulation results in figure 3.4(a), showing S as
a function of d and α, verify the results in equation (3.18). Figure 3.4(b)
shows the same results, but where the horizontal axis has been normalised by
α∗. Recall from equation (3.5) that α∗ is the minimum capacity required for

0 0
0 03 3

(a) (b)

0

1

Figure 3.4: Panel (a) shows the fraction S of edges surviving a cascade on
a ring-lattice network with n nodes and with two source nodes separated
by a distance d, as illustrated in figure 3.2(a). S is plotted as a function
of d and edge capacity α. The white dashed boundaries labelled (i) to (iv),
indicate sequentially the bounds in equation (3.18). Red indicates network
survival. Panel (b) shows the same results as (a) but with the horizontal axis
normalised by α∗. The resilience boundary (iv) now occurs at a value of 2
for all d.

the network to be able to operate under normal conditions, and is equal to
the maximum flow volume before the cascade occurs. The quantity α/α∗ is
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thus the capacity in the network relative to the minimum required for normal
function.

The normalisation in figure 3.4(b) reveals that for α/α∗ ≥ 2 the network is
resilient to cascade failures, independent of the relative locations of the source
nodes. This can be understood as follows. α∗ is defined as the largest initial
flow volume in the network, in this case equal to the quantity in equation
(3.7). By comparing equations (3.10) and (3.7), it can be seen that 2α∗ = f2.
The bound in equation (3.9) shows that all but one of the edges survive
a cascade if α ≥ f2. Normalising this by α∗ therefore gives the required
resilience boundary. For α/α∗ < 2, the network is less robust with resilience
conditional on d.

0 0
0 03 3

(a) (b)

0

1

Figure 3.5: Fraction S of edges surviving a cascade in ring lattice networks,
as illustrated in figure 3.2. Here the edge capacities have been perturbed
by Gaussian noise with standard deviation 0.05 in (a) and 0.1 in (b). S is
shown as a function of the distance d between the two sources and the mean
normalised capacity. Each row of the surfaces is a particular realisation of
the network. The distinctive boundaries located in figure 3.4 are still visible.

It is useful here to employ the resilience metric ρ = αc/α∗ defined in equation
(3.6), where αc is the capacity required for at least half of the edges to survive.
In this case, we have ρ = 2 for all values of d. In other words, 2 times the
minimum operating capacity is required for most of the network to survive.

To investigate the effect of stochasticity in the cascade process, figures 3.5(a)
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and (b) show the case where the capacities α on each edge are perturbed with
Gaussian noise. The features and boundaries identified in equation (3.18)
approximately remain.

3.3.2 Lattices with degree K > 2

While lattices with K = 2 admit a simple analytic description of their full
behaviour, lattices with K > 2 are more complex due to the presence of
overlapping paths. We shall therefore rely on approximations and numerical
simulation to determine their resilience to cascade failures.

0 0
0 03 3

(a) (b)

0

1

Figure 3.6: Panels (a) and (b) the fraction of edges S surviving a cascade
on a ring lattice with degree K = 6 and K = 10 respectively. The white
line indicates the resilience boundary, beyond which the network survives the
cascade.

As K increases, the conditional boundaries identified in equation (3.18) erode
due to the presence of multiple paths along which the flow can equilibrate.
Nevertheless, the resilience boundary, as seen in figure 3.4, remains robust
and independent of source separation d. This is demonstrated in figures 3.6(a)
and (b), which show the fraction of surviving edges S for lattices with K = 6
and K = 10 respectively. Beyond the boundary shown in these figures, most
of the network survives. The location of the boundary with respect to α/α∗
therefore gives the value of ρ, the relative increase in capacity required for
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most of the network to survive. As is evident from figures 3.6(a) and (b),
the value of ρ decreases as K goes from 6 to 10. A decrease in ρ indicates
increased resilience, since less capacity is required for the network to survive.

= 64

= 32

= 16

1

2

0 60

Figure 3.7: The resilience ρ, equivalent to the location of the resilience
boundary, as a function of degree K for a variety of lattice sizes n. The data
is fitted with ρ = K/(K − 1).

To track how ρ decreases, it is plotted as a function of K in figure 3.7. The
values of ρ were computed numerically from simulations on lattices of different
sizes n. This reveals that ρ decreases approximately as ρ ≈ K/(K − 1).
The value of ρ in lattices therefore rapidly decreases with K, meaning that
increasing the degree of the lattice dramatically increases resilience.

This K/(K− 1) behaviour can be understood by considering the ring-lattice
network with common degree K when n+ = 1 and n− = n− 1. The initial
flow in this case will be apportioned equally across the K edges emanating
from the single source. These edges are the most heavily loaded and so
α∗ ≈ P tot/K. When one of these edges is removed to initiate a cascade, the
flow is redistributed among the K − 1 remaining edges connected to the
source and these must now supply flow to the rest of the network. For the
lattice to survive the cascade, there must be sufficient capacity in the system
for these edges to survive. Consequently αc ≈ P tot/(K − 1) and therefore
αc/α∗ ≡ ρ ≈ K/(K − 1).
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3.4 Cascades on complex networks

Having investigated the effects of cascade failures on lattices in the previous
section, this section introduces some exemplar complex networks and describes
how the resilience metric ρ is calculated for such networks.

0 0.250

1

0

1

0 0.25

(a) (b)
α∗ αc

α/P tot α/P tot

Figure 3.8: The mean fraction of edges S̄ surviving a cascade as a function of
edge capacity α for ensembles of 200 Watts-Strogatz networks with n = 50,
K = 4 and (n+, n−, np) = (10, 40, 0). Source-sink node locations are chosen
randomly. (a) and (b) are for q = 0.1 and q = 1 respectively. The mean
minimum operating capacity α∗ and the mean critical capacity αc, beyond
which more than half of the network structure survives, are indicated by the
dashed and solid lines respectively.

As before, the fraction of surviving edges S will be computed as a function
of edge capacity using the algorithm outlined in figure (3.1), this time for
ensembles of randomly generated complex networks. Figures 3.8(a) and (b)
show the mean number of surviving edges S̄ against α for two ensembles
of random networks generated using the Watts–Strogatz method (Watts
and Strogatz, 1998). The networks all have size n = 50, m = 100, and
with source and sink node locations chosen uniformly at random. The
chosen rewiring parameters are q = 0.1 in figure 3.8(a) and q = 1 in (b),
characteristic of small-world and Poisson networks respectively. Both network
ensembles are susceptible to substantial disruption for capacities α / 0.06.
For α ' 0.2, they are both essentially robust with nearly all edges surviving.
The ensemble mean operating capacity ᾱ∗ is marked in both (a) and (b),
along with the mean critical capacity ᾱc which is the capacity value beyond
which more than half of the network will on average survive. Figures 3.8(a)
and (b) show that ᾱc increases as the networks become more Poissonian,
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meaning that greater capacity is required for the networks to survive as they
become more random. A bisection method is used to locate ᾱc and ᾱ∗ from
data of the type shown in figure 3.8, allowing the mean resilience metric ρ̄ to
be calculated. The relative location of ρ̄, for different network structures and
node compositions will be the focus of Section 3.5.

For ensembles of random networks ρ does not take a single value but rather is
a random variable. For Watts-Strogatz networks, we find that the probability
density P (ρ) is found to be log-normal:

P (ρ) = 1
ρν
√

2π
exp

(
−(ln ρ − µ)2

2ν2

)
, (3.19)

with mean value µ = ρ̄ that scales with network size n but with similar
standard deviation ν ≈ 0.255 across the full range of rewiring parameters
q ∈ [0, 1], encompassing small-world to Poisson network topologies. This
data collapse is demonstrated in figure 3.9(b) which shows the distribution
of ρ for ensembles of networks with q = 0.1 and q = 0.6, labelled (i) and
(ii) respectively. The reason for this log-normality is possibly related to
fragmentation processes; it is known that the sizes of fragments of an object
after being repeatedly smashed apart are log-normally distributed (Cheng
and Redner, 1988). For instance, sediment particle sizes after continued
erosion (Dacey and Krumbein, 1979), and even the sizes of pieces of food
after chewing (Kobayashi et al., 2006), have been identified as log-normal.
This suggests the possibility that network cascades could be regarded as a
type of fragmentation process. However, our objective here is only to fit a
distribution in order for the data to be conveniently expressed using two
parameters; this will allow for an efficient method of sampling later on in
Chapter 6. Therefore, the relationship between cascades, fragmentation, and
log-normal distributions will be not be investigated further in this thesis. Let
us note, however, that it could form an interesting topic for future research.

Plots (iii) and (iv) in figure 3.9(b) show the probability densities for two
ensembles of scale-free networks that have power-law degree distribution
with initial node degree m0 = 3 and m0 = 4 respectively. These networks
are generated using the Albert–Barabasi preferential attachment method
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(Barabási and Albert, 1999). The range of ρ is smaller than that found for
Watts–Strogatz networks, thereby indicating a greater resilience, and this
agrees with earlier studies on the resilience of scale-free networks predicated on
random edge removal (Callaway et al., 2000; Albert et al., 2000). When n+ ≈
n− the distribution is bimodal, with the larger component of the distribution
corresponding to when the edge triggering the cascade is connected to a
hub. It may be possible that more peaks emerge in the distribution for
larger scale-free networks, as more hubs with varying vulnerabilities begin
to form in the network. Networks grown by preferential attachment, such
as social networks and the Internet, possess a scale-free structure, whereas
electrical grids and road/rail transportation networks do not because their
structures are often dictated by geographical constraints. This chapter is
concerned chiefly with electrical grids, so from here networks generated by
the Watts–Strogatz procedure shall provide the structural substrate on which
general results regarding resilience to failures can be deduced. The form of
the resilience distributions for larger scale-free networks shall therefore be
left for future research.

(a) (b)
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Figure 3.9: (a) shows the mean resilience ρ̄ plotted against mean degree K̄ for
various ensembles of Watts–Strogatz networks, parameterised by their size n
and topological randomness q. The dashed black line is ρ̄ = K̄/(K̄ − 1). (b)
shows the probability density P (ρ) in random networks with (n+, n−, np) =
(30, 30, 0). Histograms (i) and (ii) are for ensembles of 200 Watts–Strogatz
networks with q = 0.1 and q = 0.6. Both are fitted to Lognormal(µ, ν2),
with (µ, ν) = (1.18, 0.25) in (i) and (µ, ν) = (1.63, 0.26) in (ii). Both fits
are confirmed with Kolmogorov–Smirnov tests Frank and Massey (1951).
Histograms (iii) and (iv) are for scale-free networks with m0 = 3 and m0 = 4
respectively.

The approximation of ρ ≈ K/(K − 1) uncovered in Section 3.3.2 can also
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be detected in the case of random networks containing only one or two large
source nodes, and whose remaining nodes are sinks. Figure 3.9(a) shows ρ̄
plotted against K̄ for a selection of such networks whose topologies are of
Watts-Strogatz type. The data is overlaid with ρ̄ = K̄/(K̄ − 1) where K̄
is the mean degree. ρ̄ therefore decreases rapidly with K̄ indicating that
increasing degree drastically improves resilience for small-world and Poisson
networks, as well as in lattices as seen in the previous section.

3.5 Dependence on node composition and function

This section investigates how the resilience of complex networks depends on
the proportions of source and sink nodes. This is motivated by the rapid
increase in the volume of renewable, distributed power generation in modern
electrical grids. Understanding the role of source-sink composition is therefore
vital to understand how the shift from centralised generation to smaller, more
distributed generation impacts network function.

3.5.1 Synthetic complex networks

The resilience metric ρ as defined in equation (3.6) will be computed as
a function of the proportions of sources and sinks in a variety of complex
networks. Following the approach of Chapter 2, ρ will then be projected onto
the node configuration simplex as illustrated in figure 3.10(a). Recall that
the condition n+ + n− + np = 0, together with the requirement that there
be at least one source and one sink node, constrains the space of possible
node-type compositions onto this triangular simplex. The length of an edge
of the simplex is the size n of the network and each of the n(n − 1)/2
unique points on the triangle represents a unique node-type composition.
For example, the dot in figure 3.10(a) represents (n+, n−, np) = (5, 10, 5).
Ensembles of Watts–Strogatz networks, paramaterised by (q,K, n), are used
and node-types according to (n+, n−, np) are placed uniformly at random.
The mean resilience ρ̄ is calculated from 200 realisations of such networks
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and its value projected onto the corresponding location on the simplex. ρ̄
is the mean increase in capacity required for more than half a network to
survive a cascade; the lower the value of ρ̄, the more resilient the network.
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Figure 3.10: (a) A sketch of the node configuration simplex. The black dot
represent a node-type configuration of (n+, n−, np) = (5, 10, 5). Plots (b) to
(e) show ρ̄ projected onto the simplex for ensembles of 200 Watts-Strogatz
networks of size n = 100, K = 4 and with q = 0, 0.2, 0.4 and 1 respectively.
(b) to (e) therefore represent increasing topological randomness, from regular
lattices to Poisson networks.

Figure 3.10(b) shows ρ̄ for regular lattices (q = 0) with n = 100, K = 4, as
a function of node-type composition The largest values of ρ̄ and therefore the
lowest resilience are located down two edges of the simplex, corresponding to
networks with large numbers of sinks and very few sources, or vice versa. This
means that the few source (or sink) nodes must generate (or absorb) the flow,
and so incident edges must carry large flow volumes, making the network
susceptible to failure. Resilient networks are spread throughout the interior
region, corresponding to networks with many small, highly distributed sources
and sinks. This agrees with the intuition that a mix of node-types has a high
degree of redundancy and is therefore resilient because of the multiple flow
paths such networks contain.
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As q increases and the network structure becomes more random the morphol-
ogy of ρ̄ changes, the trend being shown in figures 3.10(c) to (e). A band
of greatest ρ̄ broadens from the edges, moving into the interior region, until
for q ' 0.12 the largest values of ρ̄ are found in the interior of the simplex.
This represents an inversion in the resilience measure, counter-intuitively
showing that for networks in this regime of q a more heterogeneous mix of
node-types give less resilience than does a network with a few large suppliers
of power. This behaviour of ρ̄ continues progressively until q = 1 (a Poisson
network), where ρ̄ has largest values in the centre of the simplex and lowest
values along two edges. In all cases the morphology of ρ̄ is symmetric about
the centre line, reflecting the reciprocity between sources and sinks.

(b)(a)

Figure 3.11: (a) ∆ρ as defined in equation (3.20) as a function of q for
ensembles of Watts–Strogatz networks with n = 60. (b) ∆ρ as a function of
both q and n. The dashed line is the locus of the inversion point ∆ρ = 0.
All data points are averaged over 200 realisations.

The inversion in the behaviour of ρ̄ with q can be gauged by determining the
value of

∆ρ := ρ̄Left − ρ̄Centre, (3.20)

where ρ̄Left and ρ̄Centre are the values of ρ̄ at the bottom-left and centre of the
simplex respectively. If ∆ρ > 0, then the lowest values of ρ̄ are to be found
in the centre of the simplex, meaning that having many small distributed
sources boosts resilience. If ∆ρ < 0 then the greatest resilience, and so the
smallest values of ρ̄, are at the exterior of the simplex, corresponding to
networks with only a small number of very large sources. If ∆ρ ≈ 0, then
the resilience is approximately invariant to node-type composition.

For regular lattices ∆ρ > 0, whereas for Poisson networks ∆ρ < 0. Figure
3.11(a) shows that for networks with n = 60, ∆ρ decreases monotonically as
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a function of q, the inversion occurring at the value of q where the network
transitions from approximate small-world order to the more Poissonian regime.
Figure 3.11(b) shows the dependence of ∆ρ with q and n. ∆ρ = 0 is shown by
the dashed line and denotes the locus of the inversion, which is approximately
independent of network size. Therefore, for networks of any size, the greatest
resilience is given by having a mix of many small sources and sinks when the
networks are lattices or small-world. The opposite is true for more random
Poisson networks; the greatest resilience results from having only a few large
sources.

Preceding results consider homogeneous flow injection (i.e. ξv = 0 in equation
(3.3)) and cascades triggered by the removal of the most heavily loaded edge,
which serve as a model for overloading failure. The impact of varying these
model choices, and thus introducing several different types of heterogeneity,
will now be considered.

It is assumed so far that both sources and sinks have the same ability to
adjust their outputs and inputs respectively to match supply and demand
of flow as the network begins to break down. In practice, in electrical grids,
different types of nodes may have differing abilities to adjust their operation.
For example, when a cascading blackout begins, the grid will typically begin
to shed loads, meaning sink nodes decrease their inputs to prevent further
network damage. In other cases, if there is excess power on the grid, batteries
may be brought online to increase demand. Both cases represent situations
where the sinks (loads) have greater flexibility to adjust their demands in
the timescales required than the sources (generators).

The case where only sink nodes have the ability to adjust their flow is
considered in figure 3.12. The main features seen in the case of reciprocal
balancing in figure 3.10 remain the same; the lowest values of ρ̄ are are found
in the centre of the simplex for regular networks and around the edge for more
disordered ones. Indeed any such heterogeneity in the abilities of the nodes
causes a break in the symmetry, where the lower values of ρ̄ skew towards
node configurations containing more of whichever type of node possesses
the greatest adaptability. In the case of figure 3.12, the lowest values skew
towards the side representing networks with high numbers of sinks, since
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Figure 3.12: ρ̄ for Watts–Strogatz networks with n = 100, k = 4 and q = 0
in (a) and q = 1 in (b). Each pixel represents an average over 200 network
realisations. In both (a) and (b), only the sink nodes have the ability to
adjust their flow in order to balance supply and demand. This results in a
break in the symmetry of the simplex.

these are the node type with the greatest flexibility in this case.

A further assumption made so far is that cascades are triggered by the removal
of the most heavily loaded edge. This serves as a model of overloading line
failure, where more heavily loaded lines are more likely to suffer failure. There
may, however, be other initial triggers such as lightning strikes or software
failures. To take this into account, cascades are now modelled with the
triggering edge chosen with a probability proportional to its initial load. In
particular, if an edge initially has load fe, then it is chosen as the trigger
with a probability |fe|/||f ||1, where f ∈ Rm is the vector of edge loads and
|| · ||1 is the L1 vector norm. Figures 3.13(a) and (b) show this case for
Watts–Strogatz networks with q = 0 and q = 1 respectively. Again, the
key features of the homogeneous case remain, including the inversion with
respect to q.

So far it has also been assumed that source and sink output strengths
are homogeneous; however, in reality there is often significant variation in
strength. To account for this heterogeneity in source-sink size, ξv in equation
(3.3) is now set to be a normally distributed random variable and the sources
and sinks now balance flow proportionally to their initial load. In particular
if a network fragment contains n′+ sources and n′− sinks and has flow surplus
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Figure 3.13: ρ̄ for Watts–Strogatz networks with n = 100, k = 4 and q = 0
in (a) and q = 1 in (b). Each pixel represents an average over 200 network
realisations. In both (a) and (b), the probability of an edge being chosen to
trigger the cascade is proportional to its initial flow volume.

of δ, each source v will decrease its output by

∆ = |Pv|δ
2n+〈P 〉+

, (3.21)

and each sink will increase its input by

∆ = |P−|δ
2n−〈P 〉-

, (3.22)

where 〈·〉+ and 〈·〉- denote the mean source and sink strengths respectively.
It is found that the same qualitative behaviour of the simplex persists in the
presence of substantial noise; namely, the same inversion of ρ̄ is observed
as q increases. For example, figures 3.14(a) and (b) show ρ̄ for random
Watts–Strogatz networks with q = 0.2, where ξv is a random variable with
mean 0 and deviation 0.2 in (a) and 0.3 in (b). These networks contain
sources and sinks with normally distributed strengths, which have significant
variation whilst still preserving node type in all realisations that we consider.
By comparison with figure 3.10, which shows the same networks but with no
noise, it is clear to see the same simplex features remain.

Figures 3.14(c) and (d) show the same networks as in (a) and (b), but where
source and sink sizes are drawn from gamma distributions, parameterised by
shape k and scale θ. Values are (k, θ) = (1, 2) and (k, θ) = (2, 1/2) in (c)
and (d) respectively. Whilst the same relative behaviour within the simplex
persists with gamma distributed noise, giving highest values of ρ̄ around
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Figure 3.14: ρ̄ for an ensembles of 200 Watts–Strogatz networks all with
q = 0.1, n = 100 and K̄ = 4. In (a) and (b) the source and sink sizes are
perturbed by a normally distributed random variable with mean 0 and a
deviation of 0.2 and 0.3 respectively. In (c) and (d), source and sink sizes are
drawn from gamma distributions with (k, θ) = (1, 2) and (k, θ) = (2, 1/2)
respectively.

the perimeter for highly ordered and small world networks, the amplitudes
of ρ̄ are smaller. This indicates that skewed source-sink size distributions
lend greater resilience to networks, while still preserving the same trend with
respect to q observed in figure 3.10.

3.5.2 Resilience real power grid topologies

Having established general results on synthetic networks in Section 3.5.1, we
shall now proceed to look at several real world test cases of power grids. The
resilience of the Austrian national grid is considered in figure 3.15. The grid
topological data has been obtained from APG (2017). This network comprises
n = 67 nodes, m = 85 edges and has mean degree K̄ = 2.53. Each node
represents a sub-network of node-types and edges at both meso-and micro-
scales that are unresolved by the data of (APG, 2017). Figure 3.15(b) shows
ρ̄ with each pixel entry averaged from 100 realisations of node-type location
and with the sources and sinks assumed to have reciprocal strengths. The
resulting resilience landscape is characteristic of a state intermediate of those
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shown in figures 3.10 (c) and (d), where the lowest values of ρ̄ are found in
the centre of the simplex. This indicates the resilience of the Austrian power
grid is enhanced by distributing power generation across many small sources.
Indeed when half of the nodes are generators and the other half consumers,
the resilience has a value ρ̄ < 1. Having equal numbers of sources and sinks
therefore leads to a state where the grid’s normal operating capacity is more
than enough to cope with a cascade.
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Figure 3.15: (a) Power grid topology of Austria, constructed using data
from (APG, 2017). (b) ρ̄ for this grid projected onto the node configuration
simplex. Each pixel is an ensemble average over 100 random source-sink
locations.
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Figure 3.16: ρ̄ in the node configuration simplex for (a) the IEEE 14 bus
test networks and (b) the IEEE 188 bus test network. All pixels represent
an ensemble of 50 random placements of the (n+, n−, np) nodes.

As further examples on power grid topologies, figures 3.16(a) and (b) show
the resilience simplex for the the IEEE 14 and IEEE 118 bus test networks.
In both cases, ρ̄ is highest around the perimeter of the simplex, resembling
the case for regular and small world networks.
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3.6 Conclusion

This chapter has considered how the resilience of networks to cascading
failures is affected by the composition of node-types and topology. For the
case of grids comprising a few large generators figure 3.9(a) shows that the
resilience can be approximated by K̄/(K̄−1), where K̄ is the mean network
degree. For the case of renewable energy electrical-grids, the resilience is
found using simplexes of the type shown in figure 3.10. Here the appropriate
node-types correspond to locations of passivity, generation or consumption
of power, and these functions will mutate diurnally in response to changes in
demand (Parhizi et al., 2015).

Crucially, although networks with homogeneous node-type of a given topology
can be resilient to failure, this is no longer the case for a network of the
same topology but with a heterogeneous composition of node-types. Regular
lattices and ordered networks are most resilient when the number of node-
types are similar. This changes as network’s structure becomes increasingly
disordered, with the least resilient configurations becoming those with similar
numbers of node-types. This means that whether having only a few large
sources, or many small distributed sources is most resilient depends upon
how disordered the network is. Nevertheless, there still exist regimes of
resilience with a range of node-type compositions that can be accessed across
the entire spectrum of networks. This Chapter has relied on steady state
approximations to compute flow; the subsequent Chapters investigate a fully
dynamical version and reveal the impact of transient behaviour on network
resilience.
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Chapter 4

The swing equation

4.1 Introduction

The previous chapters have modelled network flows as steady states. Chapter
2 identified the equivalence between Nash equilibria and steady state solutions
of Kirchoff’s laws. This allowed the use of the Price of Anarchy as a measure
of flow inefficiency. Chapter 3 assessed the resilience of networks to cascading
failures, where the flow was computed directly from Kirchoff’s laws. These
steady state models, however, may fail to capture important dynamical
properties seen in real world power grids. Transient dynamics, which can
cause network failures, and the emergent power-balancing and stabilising
properties of power grids (Vasquez et al., 2009), cannot be modelled using a
purely steady-state approach.

The swing equation is a differential equation based model often used in power
systems analysis, which is used to analyse the dynamical properties of power
grids. This chapter introduces the swing equation and compares it to the
steady state power flow model used previously. Following the theme of the
previous two chapters, its dynamical properties will then be investigated as
a function of the proportions of power flow source and sink nodes on the
network. This analysis has not been conducted before, and reveals the impact
of distributed generation. The ability of a power grid to function properly
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will be gauged using the critical coupling capacity, which determines how
readily a network will synchronise. Following chapters will then use the swing
equation to reveal the resilience of fully dynamic electrical network models.
This will also determine the limitations of a purely steady state approach.

Section 4.2 introduces the swing equation model and compares its steady
states to those obtained from the linearised DC power model flow model
used in chapter 3. Section 4.3 computes the critical coupling capacity as a
function of node composition, to reveal the impact of distributed generation
on the swing equation dynamics, and section 4.4 investigates the transient
effects of edge removal.

4.2 Definition and comparison with steady state flow

This section introduces the dynamical electrical network model, and compares
it to the steady state model used in chapter 3. As usual, the networks under
consideration are of the form G = (V , E), with n = |V| nodes and m = |E|
edges. n+ nodes will be chosen as sources of electrical power, n− as sinks,
with the remaining np acting as passive conduits so that n+ + n− + np = n.
The electrical flow dynamics over the networks are modelled using the swing
equation (Filatrella et al., 2008), a detailed derivation of which was presented
earlier in this thesis in chapter 1, section 1.5.2. Let us briefly summarise it
once again.

The swing equation relies on the fact that power grids contain rotational
inertia, and models the nodes of the network as rotating machines. Each
node i has a mechanical phase angle

φi(t) = Ωt+ θi(t). (4.1)

Ω is the grid reference frequency and has a value of 2π × 50Hz in Europe,
most of Asia and Africa, and 2π × 60Hz in North America; θi is then the
phase difference of node i. As detailed in section 1.5.2, a consideration of
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power conservation at each node leads to the following equation of motion

d2θi
dt2

+ γi
dθi
dt = Pi(t) +

n∑
j=1
Kij sin (θi − θj). (4.2)

This is the standard form of the swing equation, as used in the electrical
power systems engineering. Equation (4.2) balances dissipative power on
the left, with the power generated (or consumed) Pi at each node and the
power transmitted from adjacent nodes, given by the summation term. The
parameters are

γi = 2Di

Ji
, (4.3)

where Di and Ji are the damping and moment of inertia respectively of node
i. The parameter γi is therefore the ratio of damping to inertia for each node,
and has units of s−1. The power term in (4.2) is given by

Pi(t) = P in
i (t)−DiΩ2

JiΩ
, (4.4)

where P in
i is the power consumed or generated at node i, measured in units

of Watts. Pi has units of s−2. The coupling coefficient Kij is defined as

Kij = AijV
2

0 Bij

JiΩ
, (4.5)

where V0 is the grid voltage, which is assumed to be constant throughout
the network, and Bij is the susceptance of the edge connecting nodes i and
j. Aij is the ijth element of the adjacency matrix. Kij also has units of s−2.
For simplicity, and following Witthaut and Timme (2012), it will be assumed
that damping, inertia, and susceptance are homogeneous throughout the
network. This gives γi = γ ∀i and Bij = B ∀ij. The coupling coefficient
can then be rewritten as Kij = κAij, where κ is a constant. Typical values
of γ, κ and Pi for a power grid are all of order O(1) (Manik et al., 2014). If
node i is a source, then Pi > 0; if it is a sink then Pi < 0. Throughout any
calculations, supply and demand will be matched so that

n∑
i=1
Pi = 0. (4.6)
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Equation (4.2) gives system of n second order oscillators; which can be split
into a system of 2n first order equations of the form

dθi
dt = ωi (4.7)

dωi
dt + γ ωi = Pi(t) + κ

n∑
j=1
Aij sin (θi − θj) . (4.8)

The system in equation (4.8) can then be integrated using standard time-
stepping techniques. The power flow on each edge ij ∈ E is a function of
the phase difference between the adjacent nodes;

fij = κ sin (θi − θj) . (4.9)

In order for a power grid to function, the whole network must be synchronised
to the grid’s reference frequency Ω. Thus a valid operating condition is
satisfied when the frequency ω, and its rate of change, are equal to zero
(Witthaut and Timme, 2012). Such a state is a solution to the steady state
equation

Pi − κ
n∑
j=1
Aij sin (θi − θj) = 0. (4.10)

Finding the steady operating states in power networks with the swing equation
therefore amounts to finding an n-dimensional vector of phase angles θ such
that equation (4.10) is satisfied. In practice, during the operation of a
power grid, the frequencies are allowed to drift slightly from Ω. Typically,
a tolerance of 1Hz drift is permitted before automatic shut-downs occur to
protect the grid. The impact of this drifting and de-synchronisation will be
explored in chapter 5.

It will now be demonstrated that, under reasonable assumptions, a steady
state of the swing equation is a solution to Kirchoff’s laws and equivalent to
the steady states found using the linearised DC power flow model in chapter
3. To do this, we first rewrite equation (4.10) in vector form;

P − κE sin (ETθ) = 0, (4.11)

where P ∈ Rn is the power vector whose ith entry is Pi, and E is the n×m
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node-edge incidence matrix. Taking a small-angle approximation in equation
(4.11) gives

P − κEETθ = 0, (4.12)

and so
κLθ = P, (4.13)

where L = EET is the graph Laplacian matrix, also referred to as Kirchoff’s
matrix. The small-angle approximation requires that the phase angle differ-
ence between adjacent nodes is small; a reasonable assumption in most power
grids (Filatrella et al., 2008). Equation (4.13) is now the linearised power
flow equation. Solving equation (4.13), either by taking the pseudo-inverse
of L or grounding one of the nodes to make the system non-singular, gives a
direct solution to Kirchoff’s laws. If the coefficient κ is not a scalar, but a
vector containing the value κe for each edge e, then it can be incorporated
into L to form a weighted graph Laplacian Lκ = E diag(κ)ET .

To illustrate the equivalence between steady states of the swing equation
and those obtained via direct solutions of Kirchoff’s laws, figure 4.1 shows
both states plotted together for two different test networks, as well as the
rate of convergence. Figure 4.1(a) shows the two steady states for a ring
lattice network with n = 32 and common degree k = 4. Half of the
network’s nodes are power sources and the other half are sinks, so that
(n+, n−, np) = (16, 16, 0). The total power injected into the network is
P0 = 1. The blue line indicates the power flow level of each edge computed
via a direct solution of Kirchoff’s laws, while the dashed red line is the
steady state of the swing equation. The two flow patterns clearly coincide.
Figure 4.1(b) shows the same experiment but for a Poisson network, also
with configuration (n+, n−, np) = (16, 16, 0). The equivalency of the two
patterns also clearly holds for this random network. This is evidence that
in the steady state, the flow patterns obtained from the swing equation are
identical to those from a direct solution to Kirchoff’s laws. Figures 4.1(c) and
(d) show how the swing equation converges on the steady state computed via
Kirchoff’s laws, for the lattice and Poisson networks respectively. In both
plots, the time-series of the difference between the swing equation’s flow
pattern fsw, and the flow pattern computed directly from Kirchoff’s laws
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Figure 4.1: The edge flow volumes |fe| for each edge e in two networks with
64 edges and 32 nodes. The ordering of the edges on the horizontal axis of
each plot is arbitrary. The solid blue line in each plot is the flow pattern
obtained via a direct solution to Kirchoff’s laws, as given in eq. (3.1). The
dashed red lines indicate the steady state flow pattern of the swing equation.
Panel (a) is for a regular ring lattice and (b) is a Poisson network generated
using the Watts–Strogatz method with topological randomness q = 1. Both
networks have equal numbers of source and sink nodes, and no passive nodes.
(c) and (d) show the time-series of the discrepancy between the swing flow
pattern fsw and the direct-Kirchoff fDC states for the networks in (a) and
(b), respectively. The discrepancy is measured in the 2-norm, and time t is
in units of seconds.

fDC, is measured in the 2-norm. In both (c) and (d), the swing equation is
initialised at time t = 0 with a random initial state. Panel (c) shows the
time-series for the lattice from figure 4.1(a), while (d) shows the case for the
Poisson network from (b). In both cases, the swing equation can be seen to
converge quickly to the Kirchoff steady state after approximately 5s.
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4.3 The critical coupling strength

Although the steady state flow patterns of the swing equation are equivalent
to direct solutions of Kirchoff’s laws, as shown in the previous section, it is
the swing equation’s ability to capture non-equilibrium dynamics that has
established its use in power systems engineering. These dynamic properties,
such as transients and synchronisation dynamics, mean that analysis based
purely on steady state methods give only an incomplete picture.

This section investigates the ability of power networks to synchronise; in
particular, how that ability is impacted by the proportions of electrical power
sources and sinks in the network. The aim is to determine whether having a
more distributed spread of generators throughout a network allows for easier
synchronistion than having only a few large generators, as in traditional
power grids. This issue has not been previously addressed in the literature,
and is of increasing importance as power grids become progressively more
distributed. To investigate the impact of this trend in power grid design,
the critical coupling value κc will be computed across a range of networks
with variable numbers of consumers and generators. κc is the minimum edge
coupling value κ for which the network can achieve a synchronous state, as
required for power grid operation. The lower the value of κc, the easier it is
for the network to synchronise. A low value of κc is therefore desirable in
the design of an electrical grid as it means less excess capacity will have to
be installed to ensure grid function.

Recall that the coupling coefficient is given by

κ = V 2
0 B

JΩ , (4.14)

where B is the edge susceptance. Increasing κ for an edge therefore amounts
to increasing the susceptance, or, equivalently, decreasing the impedance.
Note that the numerator V 2

0 B in equation (4.14) is a quantity of power and
has units of Watts. This value is sometimes referred to as the power rating
or power capacity of an edge (Manik et al., 2014). The total power injected
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into the network is given by

P tot =
n+∑
k=1

Pi, (4.15)

where k indexes only over source nodes, and Pi is defined in equation (4.4).
The quantity κ/P tot is therefore a dimensionless measure of the edge coupling
strength relative to the total power in the network. Throughout this chapter,
the critical coupling capacity κc will be normalised in this way. Specifically,
κc/P

tot is the critical edge coupling per the total power in the network.
However, in this section a value of P tot = 1 is used so that κc/P tot = κc. For
notational brevity, from here on κc is to be understood as the dimensionless
quantity, normalised by P tot = 1.
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Figure 4.2: Distributions of critical coupling strengths κc for: (a) an ensemble
of 200 small world networks with n = 50, q = 0.1 and (n+, n−, np) =
(30, 30, 0), and (b) a Poisson network also with n = 50 and (n+, n−, np) =
(30, 30, 0).

For simple one and two node systems κc can be found analytically (Witthaut
and Timme, 2012); however, no such analysis exists for the general case of
complex networks of arbitrary size. The dependence of κc on network node
composition will therefore be computed numerically as follows. First, for a
given network with node composition (n+, n−, np), the initial steady state
of the swing equation will be found by numerically integrating equations
(4.8) for a high value of κ. Typically a value of κ ∼ 5 will be used to
ensure a synchronous state is found. Then, the value of κ will be gradually
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reduced using continuation until a synchronous state can no longer be found.
This point is the critical value κc. This process will be repeated across an
ensemble of random networks, with identical node configuration (n+, n−, np),
to produce a distribution of κc. Two examples of such distributions are
shown in figure 4.2. The mean critical coupling capacity κ̄c is then computed
from the ensemble. This process is then repeated for each of the n(n− 1)/2
possible configurations of (n+, n−, np), and each value projected into the
node configuration simplex as used in chapters 2 and 3. This will reveal how
κ̄c varies as a function of node composition for each specific network type.

Note that there are likely to be many possible probability distribution func-
tions that could provide a good fit for the data in figure 4.2. However, since
there is presently no working hypothesis that should lead us to favour any
particular distribution over another, the data shall be left un-fitted so as not
to imply any spurious underlying physical explanations.

Figures 4.3(a) to (d) show κ̄c plotted in the node configuration simplex for
ensembles of networks constructed using the Watts-Strogatz method (Watts
and Strogatz, 1998), where all networks have size n = 50, initial degree
K = 4, random rewiring parameter q, and m = 100. Each pixel in the
simplexes is obtained from distributions of 200 such network realisations.
Panel (a) shows the case for regular lattices with q = 0. The highest value
of κ̄c is located at the apex of the simplex, representing the case where the
networks have only one source and one sink, with all others passive. This
means that such a node configuration offers the worst possible synchronising
ability. Down the lateral edges of the simplex, representing networks with
only a few big sources or sinks, the values of κ̄c remain high. The lowest values
of κ̄c, and thus the networks which can synchronise most readily, are found
in the interior of the simplex. This interior region of the simplex represents
networks with a high level of distribution, possessing many small source and
sink nodes. The absolute lowest value of κ̄c is found at the bottom centre
of the simplex, representing networks with an equal number of sources and
sinks, and no passive nodes. These observations support the hypothesis that
increasingly distributed generation leads to networks that can synchronise
more easily with lower values of coupling. The same trend is also seen for the
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Figure 4.3: Simplex plots showing the variation of the mean coupling capacity
κ̄c as a function of the numbers of source n+, sink n−, and passive or empty
np nodes. Each point on each simplex represents a unique configuration of
(n+, n−, np), and the value of each point is determined from an ensemble
average over 200 networks. All networks have n = 50 nodes and m = 100
edges. Simplex (a) shows the variation of κ̄c for regular ring lattices. (b), (c)
and (d) show the cases for Watts-Strogatz networks with random rewiring
parameter q values of 0.1, 0.4 and 1.0 respectively. Each of the slices (i) to
(iv) are plotted separately in figure 4.4.

small-world networks with q = 0.1 in figure 4.3(b), and the Poisson networks
with q = 0.4 and q = 1.0 in 4.3(c) and 4.3(d) respectively. The amplitudes
of κ̄c in these more random networks are also uniformly lower than for the
lattice networks. This indicates that for all node configurations, random
networks synchronise more readily than lattices. These features can be seen
clearly in figure 4.4, which shows slices through each of the four simplexes in
figure 4.3. These cross-sections demonstrate that κ̄c is minimised when there
are equal numbers of sources and sinks.

For a real world demonstration, κ̄c shall now be computed as a function of
the node configuration for the Austrian national grid, as used previously
in chapter 4. This network, illustrated in figure 4.5(a), is constructed from
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Figure 4.4: Each of the slices (i)-(iv) from figure 4.3 plotted individually.
Each line represents the critical coupling κ̄c as a function of the number of
sink nodes, for a fixed number of source nodes n+ = 15. Each data point
is obtained from an average of 200 network realisations; the shaded regions
indicate standard deviation. In each case κ̄c is minimised in the centre,
indicating the point at which there is an equal number of sources and sinks.
As randomness q increases, the values of κ̄c decrease uniformly.

data from (APG, 2017) and contains 67 nodes and 85 edges. Each node is
a substation, behind which is either a load (net consumer) or a generator.
Each of the edges is a transmission line. As before, the damping and inertia
of the nodes will be assumed to be constant so that αi = α for all nodes.
4.5(b) shows the normalised critical coupling κ̄c for the Austrian grid and
demonstrates that the lowest values are found in the centre of the simplex,
just as in the case for the synthetic random networks of figure 4.3. A slice
through the centre of the simplex, plotted separately in panel 4.5(c), confirms
this and shows that κ̄c is minimised when the numbers of sources and sinks
is equal. This shows that more distributed generation allows the Austrian
grid to synchronise more easily, making it more robust against perturbations.

4.4 Impact of network edge removals

A small perturbation to a stable steady state of the swing equation will decay
back to a synchronous state. Such a perturbation is referred to as a transient.
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Figure 4.5: (a) The Austrian power grid constructed using data from (APG,
2017). (b) The mean critical coupling capacity κ̄c as a function of node
configuration for the Austrian grid. (c) The cross-section (i) from panel (b)
plotted separately, demonstrating that κ̄c is minimised in the centre of the
simplex where n+ = n−.

Analysing the amplitude and duration of transients is a common form of
stability analysis in power systems engineering. The reader might refer to
Chiang et al. (1987) for an overview.

This section investigates transients that are caused by the sudden removal of a
single edge from the network, and investigates how their severity is influenced
by the inertia and damping on the grid, as well as by the flow volume on the
removed edge. If the networks possess significant transient behaviour, this
may be critical to the operation of the network. For instance, if the frequency
drifts too far from Ω during the transient, the network may begin to shut
down as frequency monitoring devices are triggered. Additionally, edge flow
capacities may be tripped during transients, significantly changing the course
of a cascading failure.

All transients in this section are simulated by first finding a synchronous
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Figure 4.6: The amplitude of transients as a function of time t in seconds in a
regular lattice with common degree K = 4 and configuration (n+, n−, np) =
(25, 25, 0). Transients are shown for various different values of the parameter
α = 2D/J .

state of the network by integrating equation (4.8), and then deleting the
most heavily loaded edge. The amplitude and duration of the resulting
transient are then recorded. Figure 4.6 shows such transients for a regular
lattice with n = 50 nodes, common degree K = 4, and node configuration
(n+, n−, np) = (25, 25, 0). The amplitudes of the transients in figure 4.6
are measured by the 2-norm || · ||2 of the n-dimensional vector ω, whose ith

element is ωi. A value of ||ω||2 = 0 indicates that the network is synchronised
to the grid frequency Ω, as is the case before the edge is removed at time
t = 0. Figure 4.6 reveals that for all values of γ that are tested, the amplitude
of the transients never exceeds 0.3. This indicates that their amplitudes are
small and within the tolerance of a typical grid. Frequencies may typically
be allowed to drift up to around 1Hz away from Ω before shutdowns are
triggered. As γ is increased, meaning that the damping increases relative to
the inertia on the grid, the amplitudes decrease yet further. Nonetheless, the
durations of these small transients are very long. For γ = 1/2, the network
returns to synchrony after about t = 60s. Higher values of γ result in small
transients lasting more than 2 minutes.

The transients in figure 4.6 were triggered by removing the most heavily
loaded edge. We now turn our attention to how the choice of triggering

96



0 4 0 4
0

10

0.00

0.15

(a) (b)

Figure 4.7: (a) The amplitude of the transients, measured by the deviation
from the steady state ||θ − θ′||2, as a function of the relative flow volume on
the triggering edge for ensembles of lattices with K = 4 and (n+, n−, np) =
(10, 40, 0). (b) The length of time taken for the transients to drop beneath
||ω||2 on the same networks as in (a). Brighter colours here denote higher
density of data points.
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Figure 4.8: (a) The amplitude of the transients, as a function of the relative
flow volume on the triggering edge for ensembles of Poisson networks with
q = 1, K = 4 and (n+, n−, np) = (10, 40, 0). (b) The length of time taken
for the transients to drop beneath ||ω||2 on the same networks as in (a).

edge effects the transients. This is investigated using an ensemble process as
follows. First, an ensemble of random Watts-Strogatz networks is instantiated,
each with identical parameters q, K, n and (n+, n−, np) but with source-
sink node locations chosen at random. For each network, a steady state
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is found and then a transient triggered by removing a random edge. The
flow volume on that edge, relative to mean flow volume in the network is
recorded. This is denoted fi/f̄ . The maximum deviation caused by the
resulting transient, measured as ||θ − θ′||2 is recorded. Here θ denotes the
steady state solution, and θ′ is the state at the maximum of the transient.
The time taken for the frequency ||ω||2 to drop back beneath 0.1 is also
recorded, and denoted t′. The quantities ||θ − θ′||2 and θ′ are then plotted
against relative load fi/f̄ of the triggering edge to reveal that impacts the
severity of the transients. Figure 4.7 shows such an experiment of a regular
lattice with q = 0, K = 4 and (n+, n−, np) = (10, 40, 0). The size of the
transient increases linearly with the flow volume of the triggering edge. The
duration also increases, but plateaus off for very heavily loaded edges. The
same trends are also observed in the case of Poisson networks with q = 1.0,
K = 4 and (n+, n−, np) = (10, 40, 0), as shown in figure 4.8. These results
show clearly that the severity of the transients correlate with the flow load
on the deleted edge.

The linear relationship between the size of the transient and the flow volume
of the triggering edge, as seen in figures 4.7(a) and 4.8(a), can be explained
as follows. First, note that the flow volume fi on the triggering edge must
be reapportioned across the remaining edges after it has been deleted. This
linear perturbation in edge flow volumes will cause a linear change in the
nodal values θ. This is because the relationship between edge flows and node
values, given in equation (4.9), is approximately linear under the realistic
small-angle assumption.

4.5 Conclusion

This chapter has introduced the swing equation, a dynamical model for
computing the power flow in electrical networks. The swing equation is
capable of capturing dynamic properties of an electrical grid which a steady
state model, such as those used in previous chapters, cannot. Although section
4.2 showed that the steady states of the swing equation are equivalent to those
found from direct solutions to Kirchoff’s laws, section 4.4 found evidence of
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significant transient behaviour occurring between steady states. Although
these transients are small in amplitude, their duration is long, particularly
compared to the time-scales over which cascading failures on an electrical grid
occur. This raises the possibility that much of a cascade may happen during
transient behaviour in the grid, meaning that the swing equation may produce
significantly different results if used to compute cascading failures, compared
to the steady state model used in chapter 3. This will be investigated in
detail in the next chapter.

This chapter has also investigated how the proportions of sources and sinks,
or generators and consumers, on the network impact its ability to synchronise.
It has been shown that for all networks, including a real-world power grid
topology, synchronisation can be achieved more readily when networks contain
many small sources and sinks distributed throughout their structure. This is
an encouraging result, indicating that the modern trend towards increased
distribution of power generation is beneficial for the dynamical properties of
the network.
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Chapter 5

Resilience of dynamic flow
networks

5.1 Introduction

Power grids are susceptible to a variety of failures, such as overloading lines,
de-synchronisation, and voltage instability (D’Souza, 2017). Chapter 3 used
a steady state model to assess the resilience of power grids to cascading
failures of overloading lines, showing that increasing the proliferation of
small generators boosts resilience for more ordered networks and small-world
networks. However, chapter 4 used a dynamical model of electrical power
flow called the swing equation to show that significant transient behaviour
occurs in power networks, which is not captured by a steady state model.

This chapter investigates cascading failures using the swing equation to
reveal the importance of dynamics in determining resilience. Following the
theme of preceding chapters, the dependence of resilience upon the numbers
and proportions of generators and consumers is then investigated. This
dependence is important to understand given the increasing trend towards
small, distributed renewable sources of power in modern grids. Uncovering
the impact of distribution will offer insight into how the proportions and
volume of generation can be controlled to boost operational resilience.
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Section 5.2 introduces the dynamic cascading failure model which will be used
to asess the resilience of power grids. Section 5.3 then investigates how this
resilience is distributed over ensembles of networks, and determines the effect
of increased the mean degree. Section 5.4 then investigates the resilience
as a function of node configuration, ascertaining the impact of distributed
generation.

5.2 Dynamic cascade model

This section gives an overview of the model which will be used to simulate
cascading failures on power grids. A power network’s ability to survive
such a failure will be used as a measure of its resilience. The model is
similar to that used in chapter 3; however, the power flow will be computed
using the swing equation rather than the steady state model. This will
result in cascading failures that take into account transient behaviour and
synchronisation dynamics, as well as overloading line failures.

As in chapters 2 and 3, all networks will be of the form G = (V , E), with
n = |V| nodes and m = |E| edges. n+ nodes are chosen to be generators,
n− to be consumers, and the remaining np to be passive or empty such that
n+ + n− + np = n. Generators and consumers may sometimes be referred
to as source and sink nodes. The power flow over each network will be
computed via the swing equation, which was examined in detail in chapter 1
and again in chapter 4. However, let us briefly restate it here for convenience.
Each node i ∈ V has a phase angle θi ∈ [0, 2π) and a rotational frequency
ωi = θ̇i, which is measured relative to the power grid’s reference frequency Ω.
The dynamics of θi and ωi for each node are then given by the two coupled
equations

dθi
dt = ωi (5.1)

dωi
dt + γ ωi = Pi(t) + κ

n∑
j=1
Aij sin (θi − θj) , (5.2)

resulting in a system of 2n ordinary differential equations to describe the
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dynamics of the network. Aij denotes the ijth component of the adjacency
matrix A. The parameter γ describes the ratio of the damping D of each
node and its moment of inertia J :

γ = 2D
J
. (5.3)

The coupling parameter κ incorporates the susceptibility B of each edge and
the grid voltage V0:

κ = V 2
0 B

JΩ . (5.4)

Following Witthaut and Timme (2012) the susceptibility, damping, and
inertia are assumed to be homogeneous constants across the network, which
will allow for a tighter focus on the specific impact of consumer and generator
numbers on resilience. As in Witthaut and Timme (2015), parameter values
are chosen to be γ = 1 and κ = 5. These choices are within a realistic
range for a power grid and, as shown in section 4.3, and ensures that a stable
synchronous state is found. The power term Pi in equation 5.2 will have a
value of Pi > 0 if node i is a generator, or Pi < 0 if i is a consumer. Pi is
itself given by

Pi = P in
i −DΩ2

JΩ , (5.5)

where P in
i is the power in Watts injected into node i. The quantities γ, κ

and Pi have units of s−1, s−2, and s−2 respectively with typical values of Pi
being O(1). The power flow on each edge ij ∈ E is given by

fij = κ sin (θi − θj) . (5.6)

A steady state of the system is given by the case where ω and ω̇ are both
equal to zero, meaning that the grid is synchronised to the reference frequency
Ω. This is true when

Pi − κ
n∑
j=1
Aij sin (θi − θj) = 0, ∀i ∈ V . (5.7)

Steady states satisfying equation (5.7) can be obtained by time-stepping
system (5.2).
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Figure 5.1: Overview of the dynamical network cascade model. The initial
steady state and all power flow patterns are computed by time-stepping
equation (5.2). A steady state of the system will satisfy equation (5.7); the
cascade finishes when such a state has been reached (within some specified
tolerance) for all network components, or when no components remain.

Having now outlined the dynamical system used to model electrical power
flow, the scheme used to simulate cascading failures taking into account both
line overloads and de-synchronisation proceeds as follows. Firstly, a network
G = (V , E) is instantiated. An initial stable power flow pattern f init ∈ Rm

is then found by time-stepping system (5.2). A maximum flow capacity α
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is then assigned to each edge. If, at any point, the flow volume on an edge
exceeds α, then that edge will be deemed overloaded and removed from the
network. The initial maximum edge flow volume is recorded and labelled α∗,
so that

α∗ := max
(ij)∈E
|f init

(ij) |. (5.8)

This shall be referred to as the network’s operating capacity: the minimum
capacity required in order for the network to function in its initial state.
The cascade is then triggered by removing the most heavily loaded edge,
serving as a model for the overloading power line events observed in power
grids. The power flow on the network will then naturally readjust, possibly
to a new stable operating condition. The evolution of the flow is captured
by continuously time-stepping the swing equation throughout the cascade
process. If, after the initial edge removal, the flow volume on any other
edges exceed α, then they too are removed. The network is continuously
monitored to see if it fractures into separate connected components. If such
fractures occur, then the cascade process is continued in each new connected
component. In each component, power generation and consumption must be
matched so that ∑

i∈V′
Pi = 0, (5.9)

where V ′ is the component’s node set. This matching is done by adjusting
the strength of each generator and consumer node. For simplicity these
adjustments are done reciprocally, as in chapter 3. Specifically, if a given
connected component contains n′+ generators, n′− consumers, and has a flow
surplus of δ, then each generator node decreases its output by δ/2n′+ and
each consumer node increases its demand by δ/2n′−. If a component contains
either no generators or consumers, then flow cannot be balanced and the
entire component must be removed.

The frequency values ωi are also continuously monitored to ensure the network
does not drift too far from the reference frequency Ω. Real-world power
grids begin to shut down if the frequencies drift outside of a small tolerance,
typically 1Hz, of Ω in order to prevent physical damage to hardware. To
simulate this in the present cascade model, components of the networks will
therefore be removed if local values of ωi become greater that 1Hz.

104



This process continues, with edges being pruned if their flow volumes exceed
α, power supply being balanced where possible, and components of the grid
being removed if they drift too far from Ω. Eventually the system will reach
a steady state where any remaining network components possess a steady
electrical power flow satisfying equation (5.7) within some tolerance. In
particular a tolerance of 10−5 is used for all subsequent simulations. The
fraction of edges S surviving the cascade will then be recorded. A value of
S = 0 indicates total network failure. S = 1 indicates complete survival and
resilience to cascades. The cascade scheme is summarised in the flowchart in
figure 5.1.

As in chapter 3, the value of S will then be determined as a function of the
network’s capacity α. This is done by repeating the above cascade scheme
for a range of values of α for each network. If the network can survive the
cascade with an amount of capacity α less than the operating capacity α∗,
then this indicates that the network is inherently resilient to such failures.
If a network only survives if it possesses a large amount of α in excess of
α∗, then it is highly susceptible to failure. This is because a large amount of
capacity must be installed, in excess of the α∗ required for normal operation,
in order to protect it from cascading failure. Defining αc as the value of α
at which half of the network survives, i.e. S = 1/2, suggests the resilience
measure

ρ = αc
α∗
. (5.10)

This is the ratio of the volume of capacity required for at least half the
network to survive, to the volume of capacity required for normal operation.
The smaller the value of ρ, the more inherently resilient the network. This is
the same metric used in chapter 3, thus allowing direct comparison with the
steady state model.

The cascade model used in chapter 3 relied on a steady state power flow
model. The resulting cascades were therefore a sequence of steady states and
were unable to capture any transient dynamics. The cascade model presented
in this chapter is a dynamical system, which takes into account transient
behaviour and de-synchronisation events. The rest of the chapter will use
this dynamical cascade model and the resilience measure ρ to investigate
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the resilience of dynamic power flow networks. These results will also be
compared with the results obtained from the steady state case in chapter 3.

5.3 Cascades on random networks

This section investigates the resilience of ensembles of random networks to
the dynamical cascades described in section 5.2. Random network models
will form the substrate on which general conclusions regarding resilience of
complex networks can be made. Of particular interest in this section is how
resilience varies across ensembles, and how long cascades take to unfold in
each network.

5.3.1 Distribution of resiliences ρ

Each ensemble will comprise random networks generated using the Watts-
Strogatz method (Watts and Strogatz, 1998). Every network in a given
ensemble will have the same number of nodes n and edges m, as well as
identical values of topological randomness q and mean degree K. The
networks in a given ensemble will also all have the same node configuration
(n+, n−, np), but with the positions of the consumers and generators randomly
allocated. For each network, the fraction S of edges surviving a cascade will be
computed as a function of the network’s capacity α. From this, the resilience
measurement ρ is determined. ρ is the ratio of the critical capacity αc required
to survive a cascade to the operating capacity α∗, which is required for normal
operation. The ensemble averaged fraction S̄ of surviving edges can then
be computed as a function of network capacity, as can the ensemble average
operating capacity ᾱ∗, ensemble average critical capacity ᾱc, and enesemble
average resilience ρ̄. This resilience measure ρ̄ gives the value of capacity
at which, on average, at least half a network will survive a cascade. Figure
5.2 shows these measurements for four different ensembles. Each ensemble
contains 500 networks of size n = 60 andm = 120. The panel in figure 5.2(a)
shows S̄ as a function of α for an ensemble with (n+, n−, np) = (15, 45, 0)
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Figure 5.2: The mean fraction S̄ of edges surviving a cascade as a function
of edge capacity α for four different ensembles of Watts-Strogatz networks.
Each ensemble contains 500 network realisations. The horizontal axes have
been normalised by each respective ensemble’s mean operating capacity ᾱ∗.
The grey vertical line in each plot indicates the mean resilience measure ρ̄ for
each ensemble. Panel (a) shows the case for networks with node configuration
(n+, n−, np) = (15, 45, 0) and q = 0.1. (b) shows (n+, n−, np) = (30, 30, 0)
and q = 0.1; (c) shows (n+, n−, np) = (15, 45, 0) and q = 0.6; (d) shows
(n+, n−, np) = (30, 30, 0) and q = 0.6.

and q = 0.1, corresponding to networks with a small-world structure and a
proportion of generators to consumers resembling a traditional power grid. In
this case, S̄ = 0 for small values of α, rises sharply around the critical value,
and saturates to 1 for high α. This behaviour is repeated in the other three
ensembles demonstrated in figure 5.2, albeit the position of ρ̄ varies between
them. The variation of ρ̄ with node configuration and q will be the subject of
section 5.4. It can already be seen in figure 5.2 that increasing randomness
q leads to higher values of ρ̄ and thus lower resilience. Additionally, panels
(b) and (d) have slightly lower values of ρ̄ than (a) and (b), indicating that
increasing the level of distributed generation slightly increases resilience in
these cases. The sigmoidal character of the S̄ profiles in figure 5.2 was also
observed for the equivalent steady state cases in chapter 3.
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Figure 5.3: Distributions of resilience ρ across 8 different ensembles, each
containing 500 Watts–Strogatz networks. All horizontal axes have been scaled
by the mean ρ̄. The left-hand column of distributions is for ensembles with a
node configuration characteristic of traditional grids with a few large genera-
tors. The right-hand column is for networks with equal numbers of consumers
and generators, indicative of a modern distributed grid. Each of the four rows
of panels represents a different value of randomness q, from regular lattices at
the top to Poisson networks at the bottom. Each histogram is fitted to a log-
normal distribution, parameterised by the mean µ and variance ν. Values of
(µ, ν) are: (a) (0.88, 0.19), (b) (0.77, 0.18), (c) (1.02, 0.12), (d) (0.86, 0.1),
(e) (1.37, 0.21), (f) (1.29, 0.18), (g) (1.45, 0.35), (h) (1.35, 0.36). All con-
firmed with Kolmogorov-Smirnov tests (see Frank and Massey, 1951) return-
ing KS measures < 0.03 and p-values > 0.2, where the null-hypothesis is
that the data is the gamma-distribution, indicating a good fit.
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While figure 5.2 shows the variation of the ensemble mean values S̄ and ρ̄,
the individual values of ρ within each ensemble are realisations of a random
variable. The distribution of ρ for various ensembles is shown in figure 5.3.
The figure shows the case for networks with configuration (n+, n−, np) =
(15, 45, 0) as well as the case for networks with (n+, n−, np) = (30, 30, 0),
representing grids with a large numbers of small sources. The figure also shows
the effect of increasing topological randomness q for these ensembles. For
every case tested, the distributions can be fitted to a log-normal distribution.
These distributions are parameterised by their mean µ and variance ν. Recall
from Chapter 3 that the resilience values for steady-state cascades are also log-
normally distributed. Here, as in Chapter 3, we note that this log-normality
may be due to a relationship between cascades and fracturing processes.
However, this relationship will not be investigated in this thesis, though it
may form an interesting point for further work. Our purpose here is only to
fit a convenient distribution to allow for efficient sampling of the data later
on in Chapter 6.

The fit of each distribution was validated with a Kolmogorov–Smirnov (KS)
test (see Frank and Massey, 1951, for an overview), which measures the
maximum distance between the cumulative distribution of the data and the
cumulative test distribution. These tests are performed using SciPy’s KS test
routine (Virtanen et al., 2020). This routine returns a KS measure: a value
which, if less than approximately 0.5, means that the data is likely to come
from the test distribution. In the case of figure 5.3, all KS measures are less
than 0.03. Since these KS measures are somewhat hard to interpret, SciPy’s
KS routine includes the functionality to convert the KS values into p-values,
where the null hypothesis is that the test distribution and the distribution
of the data are the same. p-values of greater than 0.05 mean that this null
hypothesis cannot be rejected. Therefore, high p-values here loosely mean
that the data is likely to come from the test distribution. This meaning of
the p-value may seem somewhat backwards compared to usually adopted
interpretations, and is due to the slightly unusual choice of null-hypothesis in
the SciPy KS software. Nevertheless, high p-values here indicate the gamma
distribution is a likely match for the data. All p-values in figure 5.3 are > 0.2,
indicating, under this framework, a good fit to the gamma distribution.
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These results demonstrate that across a broad spectrum of random networks,
the resilience ρ is log-normally distributed across network realisations. This
finding will come into play in chapter 7, where it will be used to provide a
computationally fast method of simulating cascades.

5.3.2 Causes of edge removal

5.3.1 showed that the mean fraction S of edges surviving a cascade varies
sigmoidally with edge capacity α. In this section, we look at what happens to
the edges that do not survive. Following the cascade algorithm in figure 5.1,
edges may be removed from the network either because their flow exceeds their
capacity α, or because the adjoining nodes have de-synchronised and drifted
too far from the grid’s reference frequency. Figure 5.4 shows the fraction of
edges failing via each of these two modes for various network configurations
as a function of edge capacity. The figure shows that at the critical point
αc, networks whose compositions are indicative of a traditional electrical
grid, result in the proportion of edges removed due to de-synchronisation
exceeding those removed due to overload. The opposite is true for grids
with equal numbers of sources and sinks. This indicates that networks with
equal numbers of sources and sinks are less prone to de-synchronisation.
This agrees with the findings in chapter 4, which showed that increased
distribution results in a decreased critical coupling strength κc.

5.3.3 Duration of cascades

We now turn our attention to the question of how long cascades take to
unfold in networks. The steady state model used in chapter 3, had no notion
of time; it was just an iteration of steady states. The dynamical cascades
used in this chapter, however, depend upon the time variable t, which has
units of seconds. This allows the duration of a cascade to be measured.
An understanding of the timescale of cascades will allow us to determine
the possible impact of transients. If the cascade timescales are similar to
those of the transient dynamics identified in chapter 4, then this indicates
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α/ᾱ∗ α/ᾱ∗
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Figure 5.4: Fraction of edges, denotedm′/m, that either survive, overload, or
de-synchronise, for 8 different ensembles, each containing 500 Watts-Strogatz
networks. All axes have been scaled by the mean operating capacity ᾱ∗. The
left-hand column of distributions is for ensembles with a node configuration
characteristic of traditional grids with a few large generators. The right-hand
column is for networks with equal numbers of consumers and generators,
indicative of a modern distributed grid. Each of the four rows of panels
represents a different value of randomness q, from regular lattices at the top
to Poisson networks at the bottom.
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that transients may play an important role in the evolution of a cascade,
ultimately causing a divergence from the steady state cases of chapter 3.
Understanding the time duration of cascades will also give intuition about
the type of counter-measures available to protect against an ongoing cascade.
If the durations are very short, then a network controller will have little time
to respond and counter-measures must therefore be preventative rather than
reactive. If the durations are very long, then a network controller may in
principle be able to act to arrest the cascade.
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Figure 5.5: The mean duration T , in seconds, of cascading failures as a
function of the network edge capacity α, normalised by each ensemble’s mean
operating capacity ᾱ∗. Each plot is for an ensemble of 500 Watts–Strogatz
networks, each with n = 50 and (n+, n−, np) = (10, 40, 0). The values of
topological randomness q in panels (a) to (d) are, respectively, 0, 0.1, 0.6 and
1.0. The solid vertical line in each plot is the location of the mean critical
capacity. The underlying distributions at each of the vertical lines in panel
(b) are plotted separately in figure 5.6.

Let us define the duration T of a network cascade as the time taken in seconds
from the initial removal of the most loaded edge, to the time at which the
network reaches a steady state satisfying equation (5.7). Figure 5.5 shows the
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mean time taken T for a cascade to occur, measured as a function of edge
capacity, for four different network ensembles. In all the examples of figure
5.5, the duration of the cascades is short for low values of α. From figure
5.2, we know that cascades in this region of α will generally be catastrophic,
corresponding to values of S̄ ≈ 0. As α increases, which is associated with
increasing S̄, the durations also increase. The duration reaches a peak at
approximately the mean critical capacity ᾱc. Beyond this point, the duration
settles to a value of around T ≈ 30s. Cascades therefore last the longest when
approximately half the network survives, which occurs at ᾱc. Catastrophic
network cascades, in which the entire network is destroyed, are the fastest,
lasting only a few seconds.

Short durations therefore tend to occur for values of α associated with small
values of S. Longer durations would seem to coincide with values of α that
allow for greater survivability. The ensemble average durations T describe
quite smooth profiles as a function of α, but, as with ρ, individual values of
T within an ensemble are realisations of a random variable.

These features can can be seen more clearly by plotting individual values of S
against T , for specific values of α. Such scatter plots are shown in figure 5.6.
Each of the four panels shows S plotted against T for four different values of
α in the same ensemble. This ensemble is in fact the same as that in figure
5.5(b). Each panel in figure 5.6 corresponds to one of the four vertical lines
in figure 5.5(b), and reveals the underlying structure. Panel 5.6(a) shows S
versus T for α = 0.75, which is beneath the critical value αc and corresponds
to a situation where most cascades result in a low value of S̄ and T . This is
confirmed in 5.6(a), which shows most of the cascades are tightly clustered in
the bottom-left of the plot. These cascades completely destroy the networks,
giving values of S ≈ 0 and very short durations T . However, it is also clear
that there is another cluster of less severe cascades, whose durations are
longer. The result is that the durations are in fact bi-modal, as shown by the
adjoining histogram in 5.6(a). This same trend is also clear in 5.6(b), which
shows the case for α = 1. This is still beneath the critical value. The second
cluster has now grown and encompasses most of the cascades. Panel 5.6(c)
shows the situation at the critical point ᾱc. Here, a third cluster has emerged
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Figure 5.6: Scatter plots of the duration T of a cascade against the fraction S
of surviving edges, for an ensemble of 500 random networks with configuration
(n+, n−, np) = (10, 40, 0). This is the same ensemble as shown in figure
5.5(b). Each panel has a different value of edge capacity α, corresponding
the vertical sections in 5.5(b). The values of α for panels (a) to (d) are,
respectively, 0.75, 1, 1.21, and 2. The colours of the scatter points encode the
density of points; the brighter the denser. Adjoining each axis are histograms
giving a picture of the distribution of each variable.

at the top centre-left which now contains the vast majority of the cases. This
can be seen as the very small, bright yellow blob. These are the cascades
which cause little damage, and whose durations are roughly the same as the
second cluster of intermediately damaging cascades. For α greater than ᾱc,
as shown in 5.6(d), the only cluster of any significance remaining is that of
the cascades causing little damage, which emerged in panel (c).

In summary, a short duration is associated with catastrophic cascades, while
cascades that cause little impact have a longer and approximately constant
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duration. The duration is maximised at the critical value ᾱc. Additionally,
the values of T mean that cascades unfold on a similar timescale to the
transients identified in chapter 4, further motivating the use of a dynamical
model for determining resilience.

5.3.4 Effect of increasing connectivity K on ρ

In chapter 3, it was found that for steady-state networks containing only
one large source, and many small sinks, the resilience increased rapidly with
increased degree K. This was indicated by the rapidly decreasing value of ρ̄.
It was further identified that this decrease in ρ̄ could be well explained by the
function K/(K − 1). To examine if this behaviour holds when considering

0 60
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2
0.0

1.0

0.1

0.2

Figure 5.7: Mean resilience ρ̄ as a function of mean degree K for networks
all with configuration (n+, n−, np) = (1, 59, 0). Each data point is obtained
from an ensemble average across 200 network realisations. The dashed line
indicates the function K/(K − 1).

dynamical networks, ρ̄ has been plotted as a function of K in figure 5.7 for
various ensembles of networks each containing only one large source. It can be
seen that the ρ̄ values do still decrease with K. However, the relationship to
K/(K − 1) is no longer as clear, particularity for the more random networks
with q = 1. The data is significantly noisier than the steady state equivalent.
The K/(K − 1) approximation does however remain a satisfactory guideline
for the behaviour of regular lattices (q = 0), with only one large source.
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These results mean that while increasing K does still increase resilience, it is
a less efficacious strategy than in the steady state case; this is especially true
for more random networks.

5.4 Dependence of ρ on node composition

The dependence of resilience upon the proportions of consumers and genera-
tors will now be investigated by computing ρ̄ across ensembles of random
networks. Following the methodology of previous chapters, ρ̄ will be projected
onto the node configuration simplex. Recall that this simplex is formed by
the conditions n+ + n− + np = n, n+ ≥ 1, and n− ≥ 1. Each point on
the simplex represents one of the n(n− 1)/2 possible node configurations
(n+, n−, np) for networks of fixed size n. For a schematic of this simplex
refer back to figure 3.10 in chapter 3. These configuration simplexes provide
a neat visualisation of the variation in resilience with the numbers and ratios
of source and sink nodes. Regions of the simplex with low values of ρ̄ indicate
node configurations (n+, n−, np) offering high resilience.

Figure 5.8 shows simplex plots for ensembles of random networks generated
using the Watts-Strogatz method (Watts and Strogatz, 1998). These networks
are parameterised by their size n, their mean degree K, and their rewiring
parameter q ∈ [0, 1] which interpolates between regular lattices at q = 0
and Poissonian networks at q = 1. All the simplexes shown in figure 5.8 have
n = 100 and K = 4, with each pixel representing the value of ρ̄ obtained
from an ensemble of 100 network realisations. All of the simplexes appear
somewhat noisy, especially compared to their steady state counterparts
obtained in chapter 3. This can be attributed to the smaller ensemble sizes
used to generate the simplexes in figure 5.8. These smaller ensemble sizes were
required due to the increased computational workload involved in computing
a single value of ρ̄ in these dynamic networks. Nevertheless, clear trends
can still be identified from the data in figure 5.8. The simplex in panel
5.8(a) shows the case for networks with q = 0. Here, the highest values
of ρ̄ are found at the apex of the simplex and down the two lateral edges.
This means that networks with only one large generator (or equivalently one
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large consumer, due to source-sink reciprocity) have the least resilience. The
highest resiliences, given by the lowest values of ρ̄, are found in the interior
of the simplex. This region represents networks with a highly distributed mix
of small consumers and generators. The absolute lowest value is found at
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Figure 5.8: Panels (a) to (d) show ρ̄ projected onto the node configuration
simplex for Watts-Strogatz networks with topological randomness parameter
q = 0, 0.2, 0.4 and 1 respectively. Simplexes (a) to (d) therefore represent
increasing structural randomness from regular lattices in (a) to Poisson
networks in (d). All networks have n = 100 and K = 4. Each pixel shows
ρ̄ obtained from an ensemble average over 100 network realisations where
source and sink locations are allocated randomly. ρ̄ is computed using the
algorithm outlined in figure 5.1.

the bottom-centre of the simplex, where networks possess equal numbers of
generators and consumers with no empty nodes. This region of the simplex
possesses values of ρ̄ < 1, meaning that the critical amount of edge capacity
αc required to survive a cascade is less than the operating capacity α∗. The
networks occupying this region are therefore inherently resilient to cascades
and require no additional capacity. In totality figure 5.8(a) demonstrates that
for regular networks, increased distribution of generation leads to substantial
increases in resilience compared to networks with only a small number of
large generators. The same trend can also be seen in figure 5.8(b) which
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shows the case for networks with q = 0.2. These networks are therefore more
topologically random than those in 5.8(a). The relationship between increased
distribution and increased resilience is still clear, with the lowest values of
ρ̄ occupying the central region of the simplex. There are however two key
differences between the results in figure 5.8(b) and 5.8(a). Firstly, the values
in the centre of simplex 5.8(b) are higher than their counterparts in 5.8(a),
having values of ρ̄ ≈ 1. Secondly, the region of low resilience extends further
into the interior of the simplex compared to 5.8(a). Taken together these two
observations mean that for networks with q = 0.2, higher numbers of small
sources and sinks are required to achieve substantial increases in resilience
and that ultimately these increases are less than in regular lattices. As the
networks become progressively disordered, shown by the cases for q = 0.4
in figure 5.8(c) and q = 1 in 5.8(d), the benefits of distribution continue
to decrease. For the completely disordered Poisson networks of 5.8(d), the
values of ρ̄ in the interior of the simplex are almost homogeneous with values
of ρ̄ > 1 indicating that networks with equal numbers of consumers and
generators are no longer inherently resilient. Some of the highest values of ρ̄
can be found in the upper-centre of the simplex, indicative of networks with
a small but equal number of consumers and generators, and a large number
of empty nodes.

In summary, the simplexes in figure 5.8 show that for more ordered networks,
an increased number of small, distributed generators gives a substantial boost
in the relative resilience as gauged by ρ̄. However, as networks become more
random and disordered, increasing the level of distribution provides less
benefit. Equivalent plots for networks of size n = 50 are shown in figure 5.9,
demonstrating that these results also apply to smaller networks.

The results in figure 5.8 can be directly compared to the simplexes obtained
previously in chapter 3, figure 3.10, which were computed using a steady state
flow model. Those simplexes also identified that increased distribution delivers
increased resilience for ordered networks, but that as disorder increases the
benefits diminish. However, this trend was much more pronounced in the
steady state case compared to the dynamic case of figure 5.8. Additionally,
the morphology of the simplexes in figure 5.8 also differs slightly from the
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Figure 5.9: Panels (a) to (d) show ρ̄ projected onto the node configuration
simplex for Watts-Strogatz networks with topological randomness parameter
q = 0, 0.2, 0.4 and 1 respectively. Simplexes (a) to (d) therefore represent
increasing structural randomness from regular lattices in (a) to Poisson
networks in (d). All networks have n = 50 and K = 4. Each pixel shows
ρ̄ obtained from an ensemble average over 100 network realisations where
source and sink locations are allocated randomly. ρ̄ is computed using the
algorithm outlined in figure 5.1.

steady state case. In particular, the most resilient values are found at
the bottom of the simplexes, indicative of networks with no passive nodes.
By contrast, in the steady state case the lowest values were found in the
upper centre of the simplex, indicating that having some amount of passive
nodes conferred additional resilience. Therefore, in the dynamic case, while
increased distribution still in general boosts resilience, passive nodes are
no longer advantageous. The dynamic, transient properties of the swing
equation therefore have a significant impact on the resilience of networks
which must be taken into consideration when assessing the optimal operating
composition of an electrical network.
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5.5 Conclusion

This chapter has introduced a model of dynamical cascading failures. The
basis of the model is the swing equation, and allows the dynamical properties
of power flow to be captured and taken into account when assessing the
resilience of a power grid to a cascade. This chapter has shown that for
ensembles of random networks, the resilience measure ρ used previously in
chapter 3 is still a meaningful and measurable quantity. Additionally, ρ is
log-normally distributed across random networks; this convenient statistical
property will be exploited in the next chapter.

The objective of using the the dynamical model in this chapter was to
investigate if the transient properties of dynamic power flow significantly
impact the resilience of networks, causing a divergence from the resilience
results of chapter 3. By examining the duration of cascades in each network,
this chapter has shown that the timescale of cascades does indeed coincide
with those of the transients identified in chapter 4. This means that we should
expect the dynamics to have a significant impact on cascades. It has also been
identified that large proportions of edges also fail due to de-synchronisation,
rather that capacity overload. Higher levels of distributed generation were
found to reduce the amount of these de-synchronisations.

Examining the durations of cascades also identified that the more catastrophic
the cascade, the shorter its duration. This offers a poor outlook for network
operators who may wish to interrupt and arrest a cascade, since the most
damaging events are typically over in only a few seconds. This adds extra
importance to preventative measures; in particular, the design of grids that
are inherently robust. Simply increasing the mean degree of networks, likely
to be an expensive option, has been shown to only offer limited additional
resilience. However, adjusting the proportion of generators and consumers
in the networks has been shown to have a substantial ability to boost the
resilience, particularly for more ordered network topologies. This is an
encouraging finding for the design of modern distributed grids, whose numbers
of generators and consumers can typical be varied and controlled (Olivares
et al., 2014). The next chapter applies some of these findings to test cases
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obtained from real-world generation and consumption data.
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Chapter 6

Micro-grid test case

6.1 Introduction

The continuing shift towards renewable generation is causing an overhaul in
the structure of power grids (D’Souza, 2017). At the macroscopic level, high
power transmission grids are becoming more decentralised as wind and solar
power farms come online. At the micro level, household scale distribution
networks are increasingly variable and even passive as houses become partially
self-sufficient through solar panels and batteries. The composition of these
distribution grids may change throughout a day resulting in a highly dynamic
grid with an extensive operating space.

The previous chapters have used both steady state and dynamical models
to characterise the efficiency and resilience of flow networks. Chapters 3
and 5 showed that the resilience of networks to cascading failures varies as
a function of the proportion of consumers and generators in the network.
Chapter 4 demonstrated that the critical coupling strength required for
grid synchronisation also varies with consumer-generator composition. This
chapter applies these findings and their underlying methods to a data-driven
model of an electrical micro-grid. Power consumption and generation data
from UK households is used to show how variability in a real-world energy
landscape impacts the resilience of the networks.
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6.2 Data-driven micro-grid model

Power consumption and generation data will be used throughout this chapter
to construct models of electrical micro-grids. These models will provide an
experimental test bed in which to investigate how the inherent variability of
renewable power impacts the resilience of the grid. This section introduces
the principles of micro-grids, and then provides an overview of the relevant
data sets and how they will be analysed using the methods of the previous
chapters.

6.2.1 Overview of micro-grids

A micro-grid is a collection of houses, each of which may possess photo-
voltaic (PV) panels and batteries. These houses are networked together
with connections capable of supporting bidirectional power flow. As the
name suggests, micro-grids are typically small and consist of some tens of
households. These small bidirectional power networks are designed to support
self-sufficiency; households may be able to use their own PV production to
match their consumption needs, or even supply excess production back to the
grid. Each micro-grid is connected to the external regional distribution grid
via a node in the micro-grid called a principle point of connection (PPC).
The PPC acts to balance demand within the network. If there is excess power
being generated within the micro-grid, then the PPC functions as a sink
node and consumes the excess production. If demand in the micro-grid is
exceeding local PV generation, then the PPC functions as a source node and
supplies power into the micro-grid from the external distribution network. If
net demand on the PPC is zero, then the grid is self-sufficient. This situation
is often referred to as islanding. For a summary of micro-grid designs and
their development, refer to Parhizi et al. (2015). Micro-grids are widely
regarded as an efficient and resilient design strategy for future low-carbon
grids and are already being implemented in sustainable housing projects. For
an example of how conventional grids might be converted into ensembles of
micro-grids, refer to Halu et al. (2016).
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6.2.2 Overview of data

In order to construct synthetic models of micro-grids, we require both real-
world household power consumption data as well as photo-voltaic (PV)
power output data. Together, these will give a realistic model of the daily
variability in power flow. For power generation, we shall be using the data
set curated by UK power networks and London city council. This data set
is available from London Datastore (2014). It was gathered over the course
of approximately two years and comprises the power consumption levels of
around 5000 houses in the greater London area. The data was collected from
smart meters installed in user’s houses, and provides half-hourly resolution.
For PV generation data we use another data set also curated by UK power
networks, available at London Datastore (2016). The data contains the
power output for an ensemble of low-voltage domestic scale PV units, also
in the greater London area. This PV data contains over a year’s worth of
measurements at up to 10-minute resolution windows.

Before detailing how these two data sets will be used to generate synthetic
micro-grids, let us first take an overview of the data. Figure 6.1 shows the
mean power consumption of all households in the power consumption data
set. In particular, panel 6.1(a) shows the mean weekly power consumption
measured in kWh per week over the entire range of the data, from January
2012 to January 2014. Clear seasonal trends are visible, with the highest
power demand occurring in the winter of each year. This trend is common
for the UK, where winters have long nights and central heating demand is
high. In regions with hot summers and high usage of air conditioning, such as
the southern US, the opposite trend may be true with highest consumption
occurring in the summer. Panel 6.1(b) focuses on the month of December
2013, as highlighted by the grey shaded region in panel (a). This month-long
view of power consumption in kW shows the regular daily oscillations in
demand. Panel 6.1(c) focuses on the week of 07/12/13 to 14/12/13, as
highlighted by the grey region in panel (b), and shows these daily oscillations
in higher detail. The morphology of these oscillations appear regular. The
minimum consumption each day occurs in the middle of the night at around
3am. There is then an increase in the morning, which sometimes manifests
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Figure 6.1: Mean power demand over all houses in the data set from (London
Datastore, 2014). Red shaded regions indicate standard deviations. Panel (a)
shows mean total weekly power demand measured in kWh per week. Panel
(b) shows power consumption in kW over the month of December 2013 and
(c) shows power consumption over the second week of that month. The first
two days are the weekend. The ticks along the horizontal axis in panel (c)
denote 3am each day, which approximately corresponds to the daily nadir in
power consumption. Each panel is a zoomed in version of the panel above.

as a secondary peak in consumption. This may correspond to people people
waking up and the activation of timed central heating systems. The demand
then dips around midday when most people are out at work, before reaching
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Figure 6.2: Mean power generation over all PV panels in the data set from
(London Datastore, 2016). Blue shaded regions indicate standard deviations.
Panel (a) shows mean total weekly power generation measured in kWh
per week. Panel (b) shows power generation in kW over the month of
September 2014 and (c) shows power generation over a week in that month.
Light shaded yellow areas in (c) denote hours of sunlight (as obtained from
timeanddate.com, 2021). Each panel is a zoomed in version of the panel
above.

a maximum peak in the evening when families return home.

Figure 6.2 shows the mean power output of all PV panels in the generation
data set. Panel 6.2(a) shows the weekly mean power generation measured in
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kWh per week from September 2013 to November 2014. Unsurprisingly the
peak power generation occurs during the summer months, and is minimal dur-
ing the darker winter months. Panel 6.2(b) focuses on the month of September
2014, as highlighted by the grey region in panel (a), and clearly shows the
daily oscillations in power output. The amplitudes of these oscillations are
less regular than those in the power consumption data, highlighting the
impact of weather variability. Panel 6.2(c) focuses on the week of 13/09/14
to 20/09/14, as highlighted by the grey region in panel (b), and demonstrates
morphology of each day’s power generation profile. Maximum generation
occurs around midday, with no production occurring at night.

Taken together, these two data sets provide a realistic picture of the daily and
seasonal variations in power usage in low voltage domestic settings. This will
be utilised throughout the rest of this chapter to provide a realistic setting
in which to deploy some of the analysis of previous chapters.

6.2.3 Data usage in micro-grid models

The models of micro-grids in this chapter comprise n − 1 houses together
with 1 PPC node, giving n nodes in total. For each of the n− 1 houses, a
time-series of power consumption will be selected uniformly at random from
the approximately 5000 time-series contained within the data set. A subset
of the houses will be chosen to have PV panels. The fraction of houses with
PV will be referred to as the PV uptake. A PV uptake of 100% means that
all n− 1 houses are equipped with PV panels. The output of each PV unit
will also be given by a time-series selected at random from the data set. At
each point in time, the power consumption and generation will be balanced
via the PPC. Each such micro-grid is therefore a random realisation that
displays realistic daily and seasonal fluctuations in power usage.

It should be noted that the time period covered by the power consumption
data is not the same as the period covered by the PV data, although the
two do overlap. However, this chapter is not concerned with reconstructing a
particular historical period, nor with attempting to infer the impact of PV
generation on the usage of power. All that is needed for this chapter is a
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realistic notion of the daily variability of PV and household power usage,
for which these two data sets are perfectly adequate. All time-series data
for PV panels will be sampled from within the range November 2013 to
November 2014 in the PV data set. All time-series data for household power
consumption will be sampled from within the range January 2013 to January
2014 in the power demand data set. This gives a full years worth of data
for both PV and consumption. For a typical micro-grid experiment in this
chapter, its activity will be tracked over the course of a given week in this
synthetic year. To constrain the focus of these experiments, four seasonal
time windows will be considered: Winter, Spring, Summer, and Autumn.
Winter will be represented by the first week in January, spring by the first
week in May, summer by the first week in July, and autumn by the first
week in October. This will allow the analysis of both the daily and seasonal
variability in micro-grid activity.

6.2.4 Simplex projection

Recall that previous chapters used the node configuration simplex to examine
the impact of varying the proportions of source and sink nodes in networks.
Networks with n nodes were constructed wherein n+ nodes were sources
having a positive power output, n− were sinks, and the remaining np were
passive. The condition n = n+ + n− + np then allowed each network
with composition (n+, n−, np) to be represented as a unique point on the
simplex. Refer back to figure 3.10(a) for a diagram of this configuration space.
Projecting results onto the simplex allowed quantities like efficiency, critical
coupling, and resilience to viewed as a function of node composition. This
revealed the effect of altering node composition on these key characteristics
of network function.

However, the effective node compositions of the micro-grids considered in
6.2.3 are not static. The constantly varying levels of household demand and
generation result in a mutable node composition. On a winter’s evening,
there will be high power demand due to central heating and no PV output.
This will result in most nodes being net consumers. Midday in the summer,
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when there is little power demand and PV units are at their most productive,
will yield a network of net generators. Additionally, micro-grids are likely
to be relatively passive due to the heterogeneity of power demand amongst
households. For instance, on a given evening there are likely to be a few
households whose power demand significantly exceeds most others. There
will also likely be a subset of houses that on a particular evening have little to
no demand, perhaps because the occupants are absent. These features would
result in a network where most of the demand is dominated by a subset of
houses; other houses with much lower demand would act mostly as passive
junctions.

In order to investigate the impact of this variable composition on network
performance, let us now examine a method of projecting the state of a
network onto the node configuration simplex. We wish to be able to express
the composition of a network via three numbers, as in previous chapters
where networks where characterised by (n+, n−, np). First of all, let the
power demand state of a micro-grid at time t be given by the power vector
P ∈ Rn. If a node i has power Pi < 0, then it is a net consumer. If it has
Pi > 0, then it is producing more power via PV than it is consuming and is
thus a net producer. Let us now define a source-node density η+ as

η+ := 1
nmax(P )

∑
x∈P+

x, (6.1)

where P+ is the vector containing only the positive entries of P . Equation
(6.1) therefore takes a sum of the source terms in the network and normalises
it by the largest term. Equivalently let us define sink-node density η− as

η− := 1
nmin(P )

∑
x∈P−

x, (6.2)

where P− is the vector containing only the negative entries of P . The
passivity ηp of the network is then defined as

ηp := 1− η+ − η−. (6.3)

This procedure therefore gives three numbers (η+, η−, ηp) between 0 and 1

129



quantifying the density of generators and consumers in a network. These
numbers also define a unique position on a simplex. The results displayed
in simplexes in previous chapters are mostly relative quantities, such as
resilience ρ, which have been normalised by power flow volume. Therefore
those results can be used in conjunction with the (η+, η−, ηp) mapping to
examine the varying resilience of micro-grids.

Let us now examine some simple examples of networks comprising only 4
nodes in order to provide intuition about the (η+, η−, ηp) coordinate system.
First consider a 4 node network with power vector P = (3,−1,−1,−1)T .
There is one generator providing all the power to three smaller consumers.
This is a composition representative of a traditional power grid and gives
(η+, η−, ηp) = ( 1

4 ,
3
4 , 0). The network therefore has no passivity ηp = 0, but

a high sink density as the network is composed mostly of small sinks. Now
consider the case with P = (1, 1,−1,−1)T where there are equal numbers
of sources and sinks with and no passive nodes. This is represented as
(η+, η−, ηp) = ( 1

2 ,
1
2 , 0). Unsurprisingly, the source and sink densities are

equal and there is no passivity. As another example, consider the network
with P = (1, 0, 0,−1)T containing one source, one sink, and two empty
nodes. Correspondingly we have a simplex coordinate (η+, η−, ηp) = ( 1

4 ,
1
4 ,

1
2)

containing a dominant passive term. As mentioned earlier, sink heterogeneity
can lead to high passivity. To see this consider the example of a network with
power vector P = (12,−9,−2,−1)T . Here there is one large source with
output +12 and three sinks. The demands of the sinks are highly skewed,
with one large sink having a power demand of 9 and the two others being
less than a third in strength. These small sink nodes are therefore relatively
passive compared to the dominant sink. The corresponding coordinate is
(η+, η−, ηp) = ( 3

12 ,
4

12 ,
5

12), which has a large passive term.

The composition of a micro-grid will change throughout the day as demand
and production vary, tracing a trajectory through the (η+, η−, ηp) simplex.
To demonstrate this, figure 6.3 shows the trajectory of a day in September
for a realisation of a micro-grid derived from the data. It has 25 nodes and
all houses are equipped with PV. Midnight is represented by point (i) in
the simplex in figure 6.3(a). At this point, there is no PV production but
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Figure 6.3: The daily trajectory in the node composition simplex of a micro-
grid with n = 25 nodes, where all houses have PV. The data for each house
is sampled from September, giving a trajectory representing late summer in
the UK. Panel (a) shows the trajectory in the simplex whose axes are defined
in equations (6.1) to (6.3). Points (i) and (ii) represent midnight and midday
respectively. Panel (b) shows the total consumption and generation in the
network over the 24 hours, with the positions of (i) and (ii) indicated by the
dashed lines. Panels (c) and (d) show the house-by-house power activity at
midnight and midday respectively.

still a significant amount of demand, as shown by the demand-production
plots in figure 6.3(b). The demand at midnight is highly heterogeneous, as
shown by the household power activity chart in panel (c). This heterogeneity
manifests as high passivity; correspondingly, point (i) is located high up in
simplex (a) in the region indicative of highly passive networks. The location
of point (i) on the right edge of the simplex indicates that the network is
dominated by sink terms; the only source is the PPC which must supply all
of the power since there is no PV online. Midday is indicated by point (ii) in
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simplex (a). At this point there is a high volume of PV production which
is outstripping the demand, as shown in panel (b). Again, the household
activity chart in panel (d) shows that the demand and production is highly
heterogeneous resulting in point (ii) being located high up in the simplex.
Point (ii) is located towards the left edge of simplex (a), indicative of a
network dominated by source terms. This is indeed the case at midday, where
most houses are net sources. The daily trajectory therefore starts on the right
edge, where there is no generation and middling demand, before swinging
across to the opposite site of the simplex towards midday where the network
is mostly generative. The trajectory then swings back over to the right hand
side at night.

The daily oscillation in the simplex, from the right hand side at night to
the left hand side in the day, appears to be a general behaviour of micro-
grids. Further examples are demonstrated in figure 6.4. Each panel in the
figure represents the ensemble average weekly trajectory of 50 micro-grid
realisations, each constructed using the data. The left column of panels
represents networks where only half of the houses are equipped with PV,
while the right hand column represents networks with 100% PV uptake.
Each row represents a week from each season of the year. In each case,
the trajectories spend the nights on the upper right edge, before departing
into the centre of the simplex in the morning and travelling towards the left
edge. This movement becomes more pronounced as the seasons progress
and daylight hours increase, leading to greater PV output. For example,
panel (f) shows that in the summer the full uptake networks travel over
halfway down the left edge of the simplex indicating that generation is
significantly outstripping demand. The characteristic oscillations are more
pronounced in the full PV uptake panel. The smallest movement in the
simplex is observed in the winter for the half uptake case in panel (a), where
the trajectories barely depart from the upper right corner. This indicates a
highly heterogeneous demand with little to no production. In all cases, the
trajectories live mostly in the upper half of the simplex corresponding to high
passivity and therefore high heterogeneity. This passivity is typical of micro-
grids. Performing similar simplex projections on macroscopic transmission
grids, where all nodes represent large, similarly rated substations would likely
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produce trajectories living much lower down in the simplex indicative of their
relative homogeneity.
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Figure 6.4: The thick red lines indicate the mean weekly trajectories for
ensembles of 50 micro-grids with n = 50 nodes, each constructed using the
power consumption and demand data-sets. The left hand column represents
networks where only half of the houses have PV panels, and the right where
all houses have PV. Each row represents a different season.
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6.3 Variability in critical coupling

Power grids must operate within a narrow frequency range. Any significant
drift from the grid’s reference frequency will result in physical damage to
grid components. Maintaining grid synchrony is therefore vital for the safe
operation of power infrastructure. Chapters 4 and 5 modelled power grids
using the swing equation, a model capable of capturing frequency dynamics.
The critical coupling strength κc is the minimum coupling necessary to
achieve grid synchrony in the swing system. Low values of κc are desirable;
the lower its value, the more the network composition inherently facilitates
synchronisation. For two and three node swing equation systems, the value of
κc can be found analytically (Manik et al., 2014). Chapter 4 used numerical
simulations to find κc in complex networks and showed that its mean value κ̄c
varies as a function of the composition of source and sink nodes in a network.
As discussed in previous sections, micro-grids have a time-varying source-sink
node composition. It should therefore be expected that the critical coupling
will also vary with time. This section tracks the composition of ensembles of
micro-grids over the course of a week, and uncovers these variations in κ̄c.

The variability of κ̄c will be evaluated as follows. First, an ensemble of N
micro-grid models will be instantiated. For each micro-grid, the effective
node composition (η+, η−, ηp) will then be computed at each time point via
the procedure in section 6.2.4. Time points are at 10 minute intervals. Linear
interpolation will be used to provide the necessary 10 minute resolution in
each time-series. This will result in N trajectories through the (η+, η−, ηp)
simplex. These trajectories will then be averaged at each time point to give
a single, ensemble mean trajectory T . Each point in trajectory T will be a
coordinate (η+, η−, ηp) in the node composition simplex. We now wish to find
the value of κ̄c for each of these points. Recall that the simplexes in figure
4.3 in chapter 4 show κ̄c for ensembles of networks of size n = 50, whose
topologies are generated using the Watts–Strogatz procedure. Mapping the
trajectory T onto these simplexes will reveal the variation in κ̄c. To do this,
each point in T will be multiplied by n = 50, since (η+, η−, ηp) coordinates
are densities, as computed via equations (6.1), (6.2), and (6.3). This will
yield the effective position of each trajectory point in the simplexes of figure
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4.3.

Each simplex in figure 4.3 shows the case for a different value of topological
randomness q. The general trend is that the lowest values of κ̄c are found in
the centre of the simplex for all values of q, with the highest values around
the edge of the simplex. The values of κ̄c decrease with increasing q, meaning
that more random networks are more conducive to synchronisation. We
have not yet investigated the influence of the topology of the micro-grid
models; we have only discussed the power variability of their nodes. The
choice of micro-grid network topology will determine onto which simplex
from figure 4.3 the trajectory will be mapped. However, micro-grids are still
an emerging technology lacking clear unifying topological features. We shall
therefore pick two extreme cases for the underlying topology of the micro-grid
models; those of regular lattices with q = 0 and of Poisson networks with
q = 1. We shall also pick two seasonal extremes: winter and summer. Two
trajectories, representing a week in winter and a week in summer respectively,
will therefore be projected onto both the q = 0 and q = 1 simplexes from
figure 4.3. This will reveal the variation in κ̄c over the course of an average
week in summer and an average week in winter, for two different underlying
topologies.

The results are shown in figure 6.5. All cases are for micro-grids of size
n = 50 with 100% PV uptake. Ensemble sizes are N = 50. Panel 6.5(a)
shows the ensemble mean trajectory for a week in winter overlaid onto the
κ̄c simplex for regular lattices, taken from the data for figure 4.3(a). The
corresponding κ̄c time-series is displayed beneath and shows that κ̄c = 0.5 for
most of the week. This value of κ̄c corresponds to times where the trajctory
is adhered to either of the two lateral edges of the simplex. We know from
section 6.2.4 that these points occur during night time when grid activity is
dominated by consumption, and around midday when activity is dominantly
productive. Each day there are two drops in κ̄c. These dips correspond to
times when the net activity swings from production to generation and back
again, causing the trajectory to cross through the centre of the simplex. This
occurs in the morning when demand drops and PV increases, and in the
afternoon when the opposite occurs. The same behaviour is visible in figure
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6.5(b), which shows the same trajectory but where the underlying topology is
Poissonian. The values of κ̄c are lower in this case than for the lattice, which
is to be expected as Poisson networks are more conducive to synchronisation.
The bottom two panels, (c) and (d), show the equivalent results but for an
average week in summer. Again, the same behaviour as in winter can be
observed, but the daily dips are more abrupt. This is due to higher volumes
of PV power output in the summer, causing faster and more pronounced
swings across the simplex.

Taken together, the results of figure 6.5 show that the critical coupling
capacity is in general briefly minimised during the day for a micro-grid,
when production and supply switch back and forth in prominence. An
effective way to minimise the critical coupling capacity, and thus ensure grid
synchronisation, may be to try and force the system to spend longer periods
occupying the centre of the simplex. This might be achievable through some
combination of smart scheduling, pricing, and battery technologies.
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Figure 6.5: The mean variation in the critical coupling capacity κc of a micro-
grid over the course of a week, for four different scenarios. The colours in the
simplex plots encode the mean critical coupling capacity κ̄c as computed in
chapter 4. Simplex labels have been omitted for visual clarity. The red lines
in each simplex show the mean weekly trajectory of 50 micro-grid realisations
each with 50 nodes. The time-series plots show the progression of κ̄c as the
trajectory progresses. Panel (a) shows the case of a week in winter where the
underlying network structure is a regular lattice. Panel (b) shows the same
trajectory but where the underlying network is Poisson. Panel (c) shows a
week in summer for a regular lattice micro-grid, and (d) shows the same week
on a Poisson network.
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6.4 Variability in resilience

Chapters 3 and 5 investigated the resilience of electrical networks to cas-
cading failures. Their resilience was found to vary as a function of the
node composition of the networks, as well as with topological randomness
q. This section investigates how the dynamic, mutable node composition of
micro-grids impacts their resilience to cascading failures.

6.4.1 Methodology

As in the previous section, an ensemble of N micro-grids will be instantiated,
each having n houses. The trajectory of each grid in the ensemble will then
be tracked though the (η+, η−, ηp) simplex over the course of a week. To
assess resilience, a cascading failure will then be triggered randomly at some
point in the week. The time at which each cascade occurs will be chosen
with a probability proportional to the maximum power in the network, in
order to simulate the phenomenon that blackouts and failures occur during
periods of high demand (Dobson et al., 2007). Specifically, let the maximum
power in the network at time t during a trajectory be denoted

Pmax(t) = max |P (t)|. (6.4)

P ∈ Rn is the power vector expressing the activity at time t of each node
in the micro-grid. The probability of a cascade being triggered at t is then
chosen to be

p(t) = Pmax(t)∑
t′ Pmax(t′) , (6.5)

where the denominator is the sum of all of the maximum powers over the
week-long trajectory.

From chapter 5, it is known that the resilience of a power network to a
cascade will depend upon its node composition. In that chapter, and in
chapter 3, resilience was measured using a metric ρ. This is defined as the
ratio of the critical edge capacity αc of a network required for at least half of
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the network structure to survive a cascade, to the maximum flow volume α∗
in the network at the start of the cascade:

ρ = αc
α∗
. (6.6)

The lower the value of ρ, the less capacity is required to survive a cascade
and so the more inherently resilient the network composition.

The resilience of a micro-grid to a cascade will depend upon its location in
the simplex at the time when the cascade is triggered. To gauge this, the
coordinate (η+, η−, ηp) of the cascade point will be multiplied by the number
of nodes n to get effective source and sink numbers. Recall from chapter 5
that the mean resilience ρ̄ was computed in the simplex for networks of sizes
n = 50 and n = 100, for various values of topological randomness q. Recall
also that for a given point in the simplex, the value of ρ is log-normally
distributed. The parameters for the underlying log-normal fits for the simplex
data in chapter 5 provide a computationally efficient way of simulating a
cascade; all that is needed is the appropriate log-normal parameters for the
given cascade point in the simplex. From this, the log-normal distribution
can be sampled, to provide a value of resilience for that point in the simplex
for a random realisation of a Watts-Strogatz network with given q and n.
The critical capacity required to survive a cascade can then be computed as
αc = ρα∗. The lower the value of αc, the more resilient the network. α∗ is
obtained from the data using a steady-state calculation. Specifically, the data-
fed power vector P is used to compute the steady state flow pattern using
the linearised DC flow approximation from Chapter 3. The maximum flow
volume in this steady state is α∗. Consequently, these resilience experiments
use an efficient hybrid steady-state dynamical method; the steady state is
used for computing α∗, while the sampling method allows the swing-equations
dynamics to be taken into account for the cascades which occur on a fast
time-scale.

The above procedure for computing αc will be repeated for large ensembles
of micro-grid realisations and provides a computationally efficient means of
characterising resilience to cascades, without having to simulate a cascade
directly. As with the previous chapter, micro-grids will be chosen to have
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size n = 50 and various different test cases of q, season and uptake will be
considered.

6.4.2 Results

All ensemble sizes in this section are N = 500. Each micro-grid in each
ensemble has 50 nodes and is assumed to have a Watts–Strogatz underly-
ing topology with mean degree k = 4, and parameterised by topological
randomness q ∈ [0, 1]. Figure 6.6 shows the results for an ensemble in the
winter whose underlying topologies are lattices (q = 0). Panel 6.6(a) shows
the case where each micro-grid has only 50% PV uptake. The simplex in
(a) shows the variation of ρ̄ with node composition for lattices with n = 50,
as computed in chapter 5. The dots in the simplex show the locations of
each cascading failure. Most occur at the upper right edge of the simplex,
corresponding to times when there is little PV production and the micro-grids
are dominated by heavy demand in the evenings. We know from section 6.2.4
that the 50% uptake case in the winter spends most of the day in this region
of the simplex. The histogram in panel (c) shows the corresponding values
of the the critical edge capacity αc required to survive each of the cascades.
The mean value is ᾱc = 4.6kW. This means that on average, a micro-grid
with 50% PV uptake must have connections rated to carry at least 4.6kW in
order for most micro-grids to survive a potential cascading failure. Panel (b)
shows the case for 100% uptake, and reveals that roughly half of the cascades
happen in the upper right when the gird is dominated by demand and the
other half on the left hand side when the grid is dominated by PV. A few
cascades also occur towards the centre of the simplex. Panel (d) shows the
corresponding critical capacities, with a mean value of ᾱc = 4.5kW. This
is roughly 0.1kW less than in the 50% uptake case. This means that in the
winter, and if the grid topology is regular, then increasing the proliferation
of PV on the grid will bring only a small increase in resilience.

Figure 6.7 shows the case of lattice micro-grids in the summer. Panel (a)
shows that the 50% PV uptake case leads to cascades occurring on both the
right and left side of the simplex. Compared to the 50% case in winter, shown
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Figure 6.6: Random cascading failures occurring during a week in winter for
an ensemble of 500 micro-grid realisations, where the underlying network
topologies are all lattices (q = 0). The procedure used to generate these
results is outlined in section 6.4.1. Each micro-grid has 50 nodes. The values
of resilience ρ̄ displayed within each simplex were computed in chapter 5. The
dots in each simplex indicate the locations where cascading failures occurred.
The histograms beneath each simplex show the corresponding values of edge
capacity αc required to survive each cascade. The mean ᾱc is indicated by
the vertical line in each histogram. The higher the value of ᾱc, the less
resilient the micro-grid. For the half PV uptake case in the left hand column,
ᾱc = 4.6kW. For the full uptake case in the right column, ᾱc = 4.5kW.

in 6.6(a), the summer cascades have a higher tendency to occur in the left side
of the simplex. This is indicative of the higher PV production in the summer,
meaning that even in the 50% PV case, there are times of the day when
the grid is dominated by production. Figure 6.7(c) shows the corresponding
values of critical capacity, with a mean of ᾱc = 4.1. This is less than in the
winter case; the higher volumes of PV cause more cascades to occur in the
more resilient upper central region of the simplex. The case for 100% PV
uptake in the summer for lattice micro-grids is shown in panel (b). Due to the

142



very high volumes of PV production in such grids in the summer, the daily
trajectories are able to travel far down the left hand side of the simplex, into
regions dominated by high source term concentrations. Consequently, many
cascades happened in this region. The values of ρ̄ increase down the sides of
the simplex where these cascades are occurring. The values of αc are therefore
higher, as shown in panel (d). The mean is ᾱc = 10.3kW, higher than any
other case considered thus far. Having a high PV uptake can therefore cause
a lack of resilience in summer months, due to the high volumes of power they
output at midday which must all be shunted to the PPC since there will
be insufficient demand within the network to consume it. It is also notable
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Figure 6.7: Random cascading failures occurring during a week in summer
for an ensemble of 500 micro-grid realisations, where the underlying network
topologies are all lattices (q = 0). Each micro-grid has 50 nodes. The
dots in each simplex indicate the locations where cascading failures occurred.
The histograms beneath each simplex show the corresponding values of edge
capacity αc required to survive each cascade. For the half PV uptake case
in the left hand column, ᾱc = 4.1kW. For the full uptake case in the right
column, ᾱc = 10.3kW.
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that the distribution αc for the 100% uptake case in the summer is bimodal.
The smaller mode corresponds to cascades occurring in the upper right of
the simplex. These are cases which occur in the evening when the grid is
dominated by heterogeneous demand, and yield less damaging cascades. The
larger mode corresponds to the cascades occurring during high PV output.

Figures 6.8 and 6.9 show the equivalent results when the underlying network
topology is Poisson (q = 1). They show the same qualitative behaviour as in
the lattice cases of the previous two figures. Namely, that the resiliences of
both the 50% and 100% uptake cases are approximately the same during the
winter, and that during the summer the 100% uptake case shows a relatively
high vulnerability to cascades due to high volumes of PV as shown in 6.9(d).
The values of αc are slightly higher across the board for Poisson networks,
which is to be expected since chapter 5 showed that Poissonian networks
were less resilient than lattices.

The values of the critical coupling capacity found in this section are mostly
within the approximate range 5 to 15kW. In low voltage distribution grids,
such as micro-grids, the network connections are typically armoured low
voltage cables. These cables tend to be rated for maximum power flows in
the range 4 to 15kW (British Standard, 2018), depending on cable thickness.
These two ranges overlap, meaning that real-world distribution scale grids
are operating at close to the critical coupling capacity αc. In summary, this
section has shown that increasing the volume of PV can have an adverse
effect on resilience during summer months, due to the high volumes of power
that must be handled by the network.
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Figure 6.8: Random cascading failures occurring during a week in winter for
an ensemble of 500 micro-grid realisations, where the underlying network
topologies are all Poisson (q = 1). Each micro-grid has 50 nodes. The values
of resilience ρ̄ displayed within each simplex were computed in chapter 5. The
dots in each simplex indicate the locations where cascading failures occurred.
The histograms beneath each simplex show the corresponding values of edge
capacity αc required to survive each cascade. For the half PV uptake case
in the left hand column, ᾱc = 4.6kW. For the full uptake case in the right
column, ᾱc = 4.9kW.
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Figure 6.9: Random cascading failures occurring during a week in summer
for an ensemble of 500 micro-grid realisations, where the underlying network
topologies are all Poisson (q = 1). Each micro-grid has 50 nodes. The
dots in each simplex indicate the locations where cascading failures occurred.
The histograms beneath each simplex show the corresponding values of edge
capacity αc required to survive each cascade. For the half PV uptake case
in the left hand column, ᾱc = 4.2kW. For the full uptake case in the right
column, ᾱc = 10.9kW.
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6.5 Effect of batteries

Many micro-grid designs incorporate batteries. These are used to smooth the
disparity between supply and demand and thus increase the self-sufficiency
of the grid. PV power produced during the day can be stored for periods
of high demand in the evening. This chapter uses a simple model of a
household battery to investigate time impact of storage upon the trajectories
of micro-grids in the node configuration simplex, and their resilience.

It will be assumed that each house in the grid that has PV also has a lithium
ion battery. As a reference, the battery model will be based on the Tesla
Powerwall 2 (Tesla, 2018). This is a type of lithium ion battery commonly
being installed into sustainable housing projects. It can charge and discharge
at a maximum rate of 5kW and has a maximum capacity of 14kWh. The
behaviour of the batteries will be modelled as follows. At each point in time,
the power demand of a given house and its PV power output will be measured.
If production exceeds demand, the excess power will be used to charge the
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Figure 6.10: The power activity of a house equipped with both PV and
a battery, over the course of a week in January. Negative values indicate
consumption. Each vertical line represents midnight each day. The blue and
red shaded regions indicate PV generation and household power consumption
respectively. The green line indicates battery activity. When the line is
positive, the battery is discharging power to be consumed by the household.
When it is negative, the battery is consuming and storing power from the
PV unit. The black line indicates the net power demand of the household.
When it is zero, the house’s demand is matched by its own supply.
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battery at up to the maximum charging rate. Any further excess will be
supplied back to the grid as usual. Similarly, if demand exceeds supply, the
battery will discharge at up to its maximum rate. If this is insufficient, any
remaining power demand will be drawn from the grid. The net power activity
of such a house is thus depends on three terms: the battery activity, the PV
production, and the power demand. Figure 6.10 shows each of these values
over the course of a week for a such a house. The black line represents the
net power of the house. The figure shows that the battery is able to store
sufficient power during times of PV production to cover some periods of high
demand occurring later in each day. In such situations, the net activity shown
by the black line is zero. This means the house is self-sufficient during these
periods. If the net activity is positive, then the house is effectively a generator
and will contribute to the generation density term η+ when computing the
grid’s node composition. Similarly, a net value less than zero will contribute
to η−. It is to be expected that batteries will increase the passivity ηp of the
grid since more houses will net zero and thus draw little from the grid.

Figure 6.11 shows the mean weekly trajectories through the node configuration
simplex for battery equipped micro-grids. The figure shows the case for 50%
and 100% PV uptake in both summer and winter. During winter, shown
in (a) and (b), both uptake cases live entirely on the upper right edge of
the simplex and do not travel into the simplex interior at all. This means
that the grids are dominated entirely by small, heterogeneous sink nodes.
This is due to the relatively low PV outputs of the winter months being
small enough to be completely stored within household batteries for later
consumption. The result is no net generators, since all houses consume their
own PV power entirely. During the summer months, shown in panels (c) and
(d), there is much more PV power on grid. Battery capacity is insufficient
to store all of this PV power, leading to houses becoming net generators to
the grid. As a result, the trajectories take excursions to the other side of
the simplex. In comparison with the equivalent cases in 6.2.4 that had no
batteries, the trajectory of the 100% uptake summer case is still more passive
and tends to hug the exterior of the simplex.

The impact of batteries on the critical coupling capacity κc is shown in
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Figure 6.11: The thick red lines indicate the mean weekly trajectories for
ensembles of 50 micro-grids with n = 50 nodes. The left hand column
represents networks where only half of the houses have PV panels, and the
right where all houses have PV. Each row represents a different season. Each
house that has PV panels is also equipped with a battery.

figure 6.12. Refer back to section 6.3 for details of the computation of κc.
Recall that the mean critical coupling capacity κ̄c was found to exhibit daily
decreases that correspond to points where the grid transitions from being net
generative to net consumptive. Panels 6.12(a) and (b) show that these daily
decreases are no longer present during the winter in grids with batteries. This
is because there is now insufficient PV power to produce any net generators,
and therefore there are no excursions across the simplex. During the summer,
as shown in panels (c) and (d), the daily decreases are still visible. However,
they are smaller and more abrupt than in the non-battery case. This is
because the excursions across the simplex in the summer are quicker, due to
battery activity restricting the period of time each day that PV is generating
enough to cause net generation.
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The impact of batteries on the resilience of micro-grids to cascades is shown
in figure 6.13. This figure focuses on the 100% PV penetration during
the summer, since this scenario was found in 6.4.2 to cause the greatest
vulnerability to cascades. We now wish to see if batteries can improve
the situation. Figure 6.13 shows that the inclusion of batteries has caused
the cascades to occur during configurations that are closer to the edge of
the simplex. The resulting distributions of the critical edge capacity αc
are bimodally distributed, as in the non-battery case, corresponding to the
cascades occurring during either times of net production or net consumption.
The mean values of critical capacity ᾱc in the lattice and Poisson case are
ᾱc = 9.5kW and ᾱc = 10.3kW respectively. These values are approximately
1kW less than the equivalent non-battery cases analysed in 6.4.2, meaning
that the batteries have caused an approximately 10% decrease in the mean
capacity required to survive a cascade in the summer.
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Figure 6.12: The mean variation in the critical coupling capacity κc of a micro-
grid over the course of a week, for four different scenarios. Each household is
equipped with a battery. The colours in the simplex plots encode the mean
critical coupling capacity κ̄c as computed in chapter 4. The red lines in each
simplex show the mean weekly trajectory of 50 micro-grid realisations each
with 50 nodes, each node having an associated battery. The time-series plots
show the progression of κ̄c as the trajectory progresses. Panel (a) shows
the case of a week in winter where the underlying network structure is a
regular lattice. Panel (b) shows the same trajectory but where the underlying
network is Poisson. Panel (c) shows a week in summer for a regular lattice
micro-grid, and (d) shows the same week on a Poisson network.
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Figure 6.13: Random cascading failures occurring during a week in summer
for an ensemble of 500 micro-grid realisations during the summer. Each
micro-grid has complete battery and PV uptake. The left hand column shows
the case where the underlying network structure is a regular lattice. The right
hand column shows the case where is Poisson. Each micro-grid has 50 nodes.
The dots in each simplex indicate the locations where cascading failures
occurred. The histograms beneath each simplex show the corresponding
values of edge capacity αc required to survive each cascade. For the lattice
case in the left hand column, ᾱc = 9.5kW. For the Poisson case in the right
column, ᾱc = 10.3kW.
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6.6 Conclusion

This chapter introduced a model of electrical micro-grids. These are low
voltage, household distribution scale power grids comprising some tens of
houses. They tend to incorporate renewable technologies such as batteries
and photo-voltaic (PV) panels. Real household level power consumption
and PV generation data were incorporated into the micro-grid models to
produce a realistic framework within which to analyse the daily and seasonal
variability of renewable generation.

The effective node composition of a micro-grid is mutable and changes
throughout a day. At some times, all of its nodes may function as consumers;
at other times the nodes function as generators. The objective of the chapter
was to investigate how this dynamic variability in node composition impacts
key network features relevant to power grids; namely, critical coupling strength
κc and critical edge capacity αc. A method was devised to project the state
of a micro-grid onto a node configuration simplex, such as those used in
previous chapters. This then allowed the data from previous chapters to be
sampled, revealing how κc and αc vary during the daily and weekly trajectory
of a micro-grid through the node configuration simplex.

It was shown that the daily and weekly trajectories of micro-grids occupy
the upper half of the node configuration simplex. This is to be expected,
given their highly passive nature. The grids spend most of their time on
either of the two lateral edges of the simplex, corresponding to whether they
are dominated by generation or consumption. During the day, they take an
excursion across the simplex and back again as the balance between supply
and consumption flips.

The resilience of grids to cascading failures was investigated for various
scenarios. Increasing the volume of PV in domestic settings is generally
regarded as a means of building resilience and self-sufficiency. However the
findings of this chapter highlight an unexpected drawback of PV panels; they
can decrease resilience during the summer months. This results from the
high volume of solar output that the grid must deal with in times where
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demand is low. The introduction of batteries was shown to partly mitigate
this seasonal vulnerability.

The critical coupling strength κc required for grid synchronisation was found
to decrease periodically each time the trajectory crossed the simplex. These
decreases are advantageous since they boost the grids inherent ability to
maintain synchrony. However, the introduction of household batteries was
found to partially suppress these decreases.

This chapter has found that adding batteries and PV to grids does not have
a straightforward impact. Although they certainly boost self-sufficiency, they
can also negatively impact resilience and the grids ability to synchronise.
This highlights the need to find more sophisticated control methods that
may help to drive the trajectories of micro-grids further into the centre of
the node configuration simplex, while still supporting self-sufficiency.
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Chapter 7

Conclusion and further work

This thesis has investigated the resilience and efficiency of networks whose
nodes have heterogeneous behaviour. The nodes may variably function as
flow sources or sinks, and possess different abilities to adjust their flow in
reaction to network conditions. In this final chapter, the contributions of this
thesis to the understanding of resilience and efficiency will be summarised
and areas of potential future work will be identified.

7.1 Network efficiency and redundancy

7.1.1 Summary

Chapter 2 investigated the efficiency of flow networks with heterogeneous
nodes using the Price of Anarchy P . Conventionally, P is used in game
theory to study the impact of non-cooperation. Chapter 2 applied P to study
flows such as electricity in networks by exploiting the equivalence between
least-resistance flows and the Nash equilibria of traffic routing games. These
Nash equilibria were shown to be solutions to Kirchoff’s laws. P was then
shown to provide a computational efficient measure of the inefficiency of a
network flow.
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P was computed as a function of the total flow volume in the network for
each possible proportion of flow source, sink, and passive nodes. Each of
the n(n− 1)/2 possible node configurations was represented as a point on
a triangular simplex. It was shown that for each possible configuration, P
increases as a function of total flow volume and attains a single maximal peak.
This peak indicates high inefficiency. The location and height of this peak
for each node composition were then projected into the node configuration
simplex. Remarkably the highest inefficiencies were found to occur when the
numbers of source and sink nodes are equal; this is a configuration that may
occur regularly in electrical grids with a high level of distributed generation.
This phenomenon was observed across the full range of Watts–Strogatz
networks, as well as in scale-free networks and real power grid topologies.
The dependence of P on the configuration of node types was therefore found
to be approximately invariant across network topologies. This was further
verified by introducing various modes of noise and by varying network size to
extract scaling behaviour. These scalings mean the results can be applied to
networks of arbitrary size. The values of P were found to settle to a roughly
constant value for each respective configuration as size n increases beyond
n ≈ 100.

Chapter 2 also introduced a numerical algorithm for computing redundancyR
in networks. R was defined as the percentage increase in efficiency available
by capping the capacity of a single edge in the network. P was shown to be
a proxy for R. Crucially, the locations of peaks in P and R coincide. P
therefore provides a computationally efficient means of assessing topological
redundancy.

The results of chapter 2 provide a simple means of viewing inefficiency as a
function of the proportion of flow source and sink nodes. This allows regions
of high efficiency in the operating space to be located. In networks such as
renewable grids, node types are mutable and can even be influenced by a
central controller. Such a network could therefore be guided towards regions
of high efficiency. However, since efficiency is tied to a lack of redundancy,
and redundancy is allied to resilience, there is a trade-off to be made between
efficiency and resilience. Indeed, subsequent chapters go on to show that the
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regions typified by inefficiency are also regions that are resilient to cascading
failure.

7.1.2 Further research

The results of chapter 2 present several open questions that might form the
basis of future research. Firstly, chapter 2 allocated the locations of source and
sink nodes at random in networks. It would be of interest to investigate how
specific source-sink placement strategies on a given fixed network topology
influence P . It should be noted that Roughgarden (2006) found that designing
networks to minimise P is NP-hard. Nonetheless, general principles of source-
sink placement may still prove useful. For example, perhaps placing sources
in highly central positions might in general decrease P .

An obvious further question is how nonlinear network edge cost functions
impact P . It is possible that nonlinear functions lead to much higher
values of P . Additionally, the exact relationship between P and topological
redundancy R should be investigated further. This thesis only showed that
the two provide the same information about where the peaks of inefficiency
with respect to flow volume occur. Providing an exact way of converting
between the two measures would provide a much deeper insight.

A potentially fruitful line of research would be to investigate P on a multiplex
network. This would have application to transportation systems. The two
edge, two node Pigou network used repeatedly in chapter 2 to demonstrate
P could in fact be regarded as a trivial two-layer multiplex; one layer having
a variable cost and the other having a fixed cost. A general investigation
into more complex two-layer systems may yield valuable insights into the
efficiency of multi-mode transportation systems such as those in London,
where travellers may use the bus layer of the underground rail layer.
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7.2 Network resilience

7.2.1 Summary

While the analysis in chapter 2 focused on network efficiency, with applica-
tion to both electrical and traffic flow networks, chapters 3 onwards focus
specifically on the resilience of electrical networks. These chapters used a
combination of numerical simulations and, in chapter 6, real world power
consumption data to investigate how the resilience of electrical networks
depends upon the proportions of source (generator) and sink (consumer)
nodes.

Chapter 3 used a steady state model of power flow together with an iterative
model of cascading network failures to assess resilience. For a given network,
the fraction of nodes surviving a cascade was computed a function of the
network’s edge capacity. The critical edge capacity at which at least half
of the network survives was used a measure of resilience. The lower the
value of αc, the less excess capacity the network requires to survive and
thus the higher its resilience. As in chapter 2, each of the network’s nodes
may be a source or sink, with each n(n− 1)/2 possible configuration being
represented as a unique point on the node configuration simplex. The value of
αc was then computed as a function of the networks node composition. This
revealed that for regular lattices and small-world networks, an even mixture
of source and sink nodes provides a high resilience to cascading failures.
These compositions correspond to those that also confer high redundancy, as
highlighted in chapter 2. For Poisson networks, the opposite was found to
be true; higher distribution of sources and sinks yields lower resilience. The
point of transition between these two scenarios was tracked as a function
of topological randomness q and network size n for ensembles of random
networks. This reveals whether, for a given network, a more equal mixture
of source and sink terms will cause an increase or decrease in resilience.
In addition, the distribution of the resilience metrics was identified to be
log-normal across all Watts–Strogatz networks.

Chapter 4 introduced the swing equation, a dynamic model of power flow
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capable of capturing the essential frequency dynamics of AC power grids.
The critical coupling strength κc required for the power grid to synchronise
was computed as a function of node composition and found to be minimsed
when the proportions of source and sink nodes are equal. This means that
increased distribution of generation yields a power network with a greater
inherent ability to support synchronous operation, an essential requirement
for a power grid.

Chapter 5 then used the swing equation to develop a nonlinear dynamical
model of a cascading failure. This differed from the cascade models of chapter
3, as this dynamical model was capable of capturing line failures caused by de-
synchronisaton in addition to solely line overloads. De-synchronisations were
shown to occur more frequently in networks with lower levels of distributed
generation. Cascades were shown to evolve on a similar timescale to transient
behaviours identified in chapter 4. The transients therefore play an important
role in cascade dynamics, highlighting the need for a dynamical model such
as the swing equation. Measuring the duration of cascades also revealed
that the most damaging events occur the quickest. Catastrophic network
destroying failures unfold over the course of just several seconds, meaning
that strategies to avoid cascades must be preventative.

Computing the resilience of networks to these dynamic cascades as a function
of node composition revealed that the greatest resilience for a regular network
occurs when there is an equal mix of sources and sinks. The resilience then
decreases as the randomness of the underlying network topology increases.
These results are similar to those found using the steady state cascade
model, but differ in some key respects. In particular, the inversion behaviour
observed in chapter 3 is less pronounced and increasing the mean degree
of the network is not as effective at boosting resilience. Finally, chapter 6
applied the resilience results of the preceding chapters to a data-driven model
of electrical micro-grids. The chapter then analysed impact of increased solar
power and network variability on resilience. It was found that while increasing
the uptake of domestic photo-voltaic panels can lead to greater self-sufficiency,
it can also lead to a decrease in resilience against power failures.
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7.2.2 Further research

Much of the analysis of resilience in chapters 3 to 6 relied on synthetic random
networks. This is for two reasons. First of all, the topological designs of
renewable power networks such as micro-grids are still an area of ongoing
research. The general structural design principles of these networks have
yet to crystallise. Therefore a random, synthetic approach allows greatest
generality. Secondly, for larger power grids, high quality topological data is
hard to come by. Such data is typically of low resolution, with little detail
about the fine network structure underpinning each node. These data sets are
also typically badly maintained. The IEEE test networks are now 60 years old
and yet still in common usage, such is the sparsity of good data. However, this
data sparsity is beginning to change. Companies such as Facebook are now
using a combination of ground and satellite imaging, together with machine
learning to produce high detail maps of power infrastructure (Facebook,
2020). This sort of data could be invaluable in future research into electrical
networks. A clear line of further work therefore stems from extending the
analysis presented in this thesis into these complex and detailed data sets. For
example, conducting the analysis of chapter 6 on such larger scale networks
would likely result in less passive systems that trace greater trajectories
through the node configuration simplex.

It was mentioned in section 1.5.2 that renewable sources of energy are
connected onto power grids using control mechanisms such as phase-locked
loops (Chung, 2000) or virtual synchronous machines (Chen et al., 2011).
These technologies help the renewable source approximate the behaviour of
conventional rotating generators, allowing the use of the swing equation in
the analysis of networks that contain renewable sources. However, the control
mechanisms themselves, in particular the virtual synchronous machine, are
non-trivial are capable of producing various instabilities. An analysis of these
control mechanisms and their interactions with the rest of the grid is outside
of the scope of this thesis, however it forms ongoing research.

An important area of further work is to identify control strategies for schedul-
ing the use of batteries in micro-grids. As shown in chapter 6, a naive usage
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of batteries can in fact lead to an increase in the critical coupling strength
required for synchronisation. This is due to the increased passivity that the
batteries introduce. Devising a control scheme to utilise batteries in such
a way as to boost self-sufficiency whilst also promoting dynamical stability
would be valuable future work.
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Appendix I

The optimisation problems in (3.3) and (3.5) are both convex, quadratic
objective functions of the form C : Rm → R, subject to a set of linear
constraints Ef = b. The method of subgradient-projection (Boyd et al.,
2004) is used to solve both of these systems. This is an iterative scheme
where the approximation f ∈ Rm at the kth step is

f (k) = P
(
f (k−1) − γ(k−1)∇C(f (k−1))

)
, (A1)

where γ(k−1) is the step-size at iteration k − 1 and P : Rm → Rm is the
Euclidean projection of a vector onto the feasible set {f |Ef = b} given by

P(y) = (I − ET (EET )−1E) y + ET (EET )−1b. (A2)

The step-size is chosen to be non-summable but diminishing:

γ(k) ≥ 0, lim
k→∞

γ(k) = 0,
∞∑
k=1

γ(k) =∞, (A3)

for which convergence of the subgradient-projection method is guaranteed
(Boyd et al., 2004). The particular choice used here is γ(k) = 0.1/

√
k. The

projector in the subgradient method requires the inversion of the Laplacian
EET , but this may be done ahead of time. Then at each iteration only two
sparse matrix-vector multiplications are required. Thus this method is very
fast, despite the high number of iterations typically involved. The inversion
of the Laplacian is problematic since, for a simple connected graph with n
nodes, the incidence matrix will have rank n− 1. This means E and EET

are rank deficient and singular. To overcome this problem, two additional
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‘virtual’ edges are added which are connected at one end to any arbitrary
node, but are unconnected at the other end. This breaks the simplicity of the
graph and adds two extra columns to E. An additional row must then be
added to E to demand that the extra edges always possess zero flow. In this
way the rank of E is made equal to its dimension without affecting the flow
on the original network, and the resulting Laplacian EET is well conditioned.
The convergence of this method is shown in Figure A1.
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Figure A1: Convergence of the subgradient-projection method for finding
the Nash flow on a square lattice network with 120 nodes. Note that despite
the high number of iterations, the method is still fast since each iteration
involves just a sparse matrix-vector multiplication.
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