School of Chemistry

MRes Research Project

Title: Studies towards the total synthesis of simonsol A
Student's Name: Grace Boden
Supervisor: Prof. Ross Denton

1. Acknowledgements

I'd like to thank The University of Nottingham for giving me the opportunity to conduct research in their facilities. To Prof. Ross Denton for providing me with a challenging but enjoyable project, and for supporting me throughout my time at the university. To Robert Arnold and the rest of the Denton group for their advice and constant words of encouragement, making every moment in the lab a pleasure.

2. Abbreviations

AChE: Acetylcholinesterase
Ar: Aryl
Bn: Benzyl
Bpin: (pinacolato)boron
BuChE: Butyrylcholinesterase
Bz: Benzoyl
Calcd.: Calculated
Cy: Cyclohexyl
dba: dibenzylideneacetone
DBE: 1,2-Dibromoethane
DBU: 1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE: 1,2-Dichlorethane
DEPT: Distortionless enhancement by polarization transfer
DHQ: Dihydroquinone
DIPEA: N, N-Diisopropylethylamine
DMF: Dimethylformamide
dppp: 1,3-Bis(diphenylphosphino)propane
EPSP: 5-Enolpyruvylshikimate-3-phosphate
Eq.: Equivalents
[H]: Reductant
HR-ESI-MS: High resolution electrospray ionisation mass spectroscopy
HTS: High throughput screening
IPA: i-Propanol

L-Glu: L-Glutamine
Ln: Ligand(s)
[M]: Metal catalyst
MIBK: 4-Methyl-2-pentanone
MOM: Methoxymethyl
NAD(P)H: Nicotinamide adenine dinucleotide phosphate
$N A D^{+}$: Nicotinamide adenine dinucleotide
NBS: N-Bromosuccinimide
NMR: Nuclear magnetic resonance
o: ortho (position)
[O]: Oxidant
p: para (position)
[Pd]: Palladium source
Pd G3 XPhos: (2-Dicyclohexylphosphino-2', 4', $\mathbf{6}^{\prime}$ 'triisopropyl-1,1'-biphenyl)[2-(2'-amino-1,1'biphenyl)]palladium(II) methanesulfonate

Piv: Pivaloyl
Pyr: Pyridine
R: Unspecified chemical group
Rf: Retention factor
r.t.: Room temperature

SPhos: 2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl
TBAB: Tetrabutyl(n)ammomium bromide
TBAF: Tetrabutyl-n-ammonium fluoride
TBAI: Tetrabutyl(n)ammonium iodide
TBDPSCI: tert-Butyldiphenylsilylchloride
TEA: Triethylamine
TFA: Trifluoroacetic acid
TFAA: Trifluoroacetic anhydride
THF: Tetrahydrofuran
TLC: Thin layer chromatography
TMEDA: Tetramethylethylenediamine
XPhos: Xantphos

3. Table of Contents:

4. Abstract 6
5. Introduction 7
5.1. Neolignans 7
5.1.1. Definitions 8
5.1.2. Biosynthesis of precursors9
5.2. Triaryl neolignans 12
5.2.1. Dunnianol and isodunnianol 13
5.2.2. Synthesis of dunnianol 13
5.3. Simonsol A 14
5.3.1. Assignment of simonsol A 15
5.3.2. Proposed biosyntheses of simonsol A 16
6. Project outline 21
7. Results and discussion. 21
7.1. Synthetic route development. 21
7.2. Cross-coupling reactions 22
7.2.1. Suzuki-Miyaura cross-coupling reactions 26
7.2.1.1. Microwave-assisted Suzuki-Miyaura cross-coupling reactions 26
7.2.1.2. Preparation and use of protected phenol cross coupling partner 28
7.2.1.3. Nickel and copper catalysed Suzuki-Miyaura cross-coupling reactions 30
7.2.1.4. Protodeboronation and alternative coupling partners. 31
7.2.1.5. Suzuki-Miyaura cross-coupling of quinone substrate. 33
7.2.2. Negishi cross-coupling reactions 35
7.2.3. Stille cross-coupling reactions 36
7.2.4. Kumada cross-coupling reactions. 38
7.2.5. Oxidative-addition cross-coupling reactions 38
7.3. Investigations into Claisen rearrangements 41
8. Computational studies 42
9. Conclusions 44
10. Future work 45
11. Experimental 46
11.1. General details 46
11.2. Synthesis of compounds 47
12. References 69

4. Abstract

Neolignans are secondary metabolites found in plants from the genus Illicium and investigations into their bioactivity have shown them to possess medicinal properties. Dunnianol, a sesquineolignan, has shown neurotrophic activity in the promotion of neurite outgrowth. We hypothesised that the biosynthesis of simonsol A is derived from dunnianol and this report focusses on the comparison between the two compounds and describes the synthesis towards simonsol A. An intermediate towards the synthesis of simonsol A was prepared through a microwave-assisted Suzuki-Miyaura cross-coupling reaction, followed by allylation of the phenolic core in 50% yield over 4 steps. Computational studies of the relative energies for the interconversion provide strong evidence towards the newly proposed biosynthesis of simonsol A. The energy barrier of the Claisen rearrangement was found to be $45.6 \mathrm{kcal} / \mathrm{mol}$ and for the Cope rearrangement, $32.5 \mathrm{Kcal} / \mathrm{mol}$.

5. Introduction

5.1. Neolignans

Plants have been used medicinally for thousands of years with reported use on cuneiform dating back to 2600 BC. ${ }^{1}$ Due to limited technologies, plant extracts were used as crude concentrates, not as the isolated compound. ${ }^{2}$

The therapeutic applications of natural remedies is attributed to specific groups of chemicals which are in abundance in a wide range plants. Although the pharmacological activities of such plants can often be explained by the bioactivity of one component, it is not uncommon that multiple constituents act together in a uniformed manner to amplify the effects of each. ${ }^{3}$ This is referred to as a synergistic drug interaction, where the combined effects of two drugs have a greater than additive effect. This effect has been demonstrated with the antimalarial artemisinin in combination with casticin, where the drug interaction changes from antagonistic to synergistic on increasing the ratio of the two from 1:3 to 1:10$1000 .{ }^{4}$ Evidently these compounds possess certain structural features which enable them to exhibit substantial bioactivities making them an interesting focal point for modern-day drug discovery.

Although the benefits of using plant extracts for therapeutic applications has been recognised for millennia, many pharmaceutical companies favour directing drug discovery through the development of synthetic compounds. ${ }^{5}$ The development of advanced screening technologies, such as high throughput screening (HTS), directed drug discovery towards using small molecular fragments and combinatorial synthesis. ${ }^{6}$ Natural product libraries consist of samples varying in purity, alongside plant extracts and concentrates ${ }^{7}$ which aren't compatible with traditional HTS technologies. ${ }^{8}$ Following the development of new cutting-edge technologies, there has been a resurgence in the use of natural products in modern-day drug discovery. ${ }^{9}$ By synthesising natural products we can understand, structurally, what makes them active and apply this to potential new drug candidates in the hope to make them less complex.

5.1.1. Definitions

Classical lignans and neolignans are a class of naturally occurring compounds prevalent within the plant kingdom. The term lignan was first defined by Haworth in 1936 as two propenylphenyl units (1) linked by their central C-8 carbon. ${ }^{10}$ An example of a lignan is dibenzylbutane (2). The term neolignan was introduced by Gottlieb as propenylphenyl units linked in ways other than through their C-8 carbons ${ }^{11}$ and many other smaller sub-classes of similar compounds, such as norlignans ${ }^{12}$ and flavonolignans, ${ }^{13}$ exist with varying coupling modes. An example of an ortho-ortho coupled neolignan is dunnianol (3) and an example of an ortho-O coupled neolignan is isodunnianol (4) (see Figure 1).

(1)

(2)

(3)

(4)

Figure 1: The classical propenylphenyl unit (1); dibenzylbutane, a classical lignan (2); dunnianol, a neolignan with ortho-ortho coupling (3); isodunnianol, a neolignan with ortho-O coupling (4).

Many neolignans are thought to be derived from repeating units of chavicol (5) which undergo various transformations, such as oxidative phenolic couplings at various positions, giving rise to the extensive structural diversity seen in the genus Illicium (see Figure 2).

Figure 2: Structure of chavicol (5).

5.1.2. Biosynthesis of precursors

The shikimate pathway is a seven step biosynthesis ${ }^{14}$ towards essential organic compounds, such as amino acids, that plants have developed to obtain all the chemical components it needs to survive. Found only in microorganisms and plants, ${ }^{15}$ the shikimate pathway can be used to generate precursors to a vast range of monomeric sub-units which are then available to be used in biological processes. The biosynthesis starts with reaction of phosphoenolpyruvate (6) with (D)-ethyrose-4-phosphate (7) catalysed by the enzyme DHQ synthase forms intermediate $\mathbf{8}$. Loss of water from 9 followed by selective reduction of the ketone, by shikimate dehydrogenase, leads to the formation of shikimic acid (10) (see Scheme 1).

Scheme 1: Biosynthesis towards shikimic acid (10).

Shikimic acid (10) is an intermediate in the biosynthesis of L-tyrosine (11), an amino acid which is a precursor in the biosynthesis of a wide range of other monomeric units.

Catalysed by shikimate kinase, shikimic acid (10) is phosphorylated to intermediate 12. Selective alkylation with phosphoenolpyruvate with 5-enolpyruvylshikimate-3phosphate (EPSP) synthase affords intermediate 13, then successive loss of the 3phosphate, catalysed by chorismite synthase, to 14 followed by rearrangement to 15 , and then a oxidative decarboxylation provides species 16 which is then finally converted to Ltyrosine (11) via a transamination reaction with the amino acid L-glutamine (see Scheme 2).

L-tyrosine (11)

(14)

Scheme 2: Biosynthesis of L-tyrosine (11) from shikimic acid (10).

L-tyrosine (11) is a precursor to 4-hydrocinnamyl alcohol (18) and through further manipulation can be converted to chavicol, a common monomeric unit in the biosynthesis of simonsol A and other neolignans (see Scheme 3).

Deamination of L-tyrosine (11) by the enzyme tyrosine ammonia lyase followed by a reduction leads to p-coumaric acid (17). Subsequent reduction provides 4-hydrocinnamyl alcohol (18), a precursor to chavicol (5). It has been proposed that upon activation of the terminal alcohol via esterification followed by subsequent decomposition of 19 and reduction of resulting species 20 with $N A D(P) H$, chavicol (5) can be obtained.

Scheme 3: A proposed biosynthesis of chavicol (5) from L-tyrosine (11).

5.2. Triaryl neolignans

Various sesquineolignans, which have previously been extracted from Illicium simonsii, have displayed promising bioactivities. Biological assays have demonstrated their anti-AChE and anti-BuChE, antioxidant, ${ }^{16}$ anti-inflammatory ${ }^{17}$ and antiviral capabilities with certain examples also having neurological benefits in promoting neurite outgrowth. ${ }^{18}$ For the purpose of this dissertation, dunnianol, isodunnianol and simonsol A will be discussed only.

5.2.1. Dunnianol and isodunnianol

Dunnianol (3) was first isolated from Illicium dunnianum in 1991. ${ }^{19}$ It is composed of three units of chavicol (5) coupled at the ortho position. Dunnianol (3) has shown to be effective as an anti-inflammatory ${ }^{20}$ and antimicrobial agent, ${ }^{21}$ whilst its structural isomer, isodunnianol (4), displayed promising results for regulating autophagy and apoptosis for treating chemotherapy induced cardiotoxicity, ${ }^{22}$ as well as anti-AChE activity. ${ }^{23}$ There are currently no known syntheses of isodunnianol (4).

dunnianol (3)

isodunnianol (4)

Figure 3: Structures of dunnianol (3) and isodunnianol (4).

5.2.2. Synthesis of dunnianol

Dunnianol (3) was first synthesised in 1998 by Brown and co-workers through the nonselective oxidative phenolic coupling of chavicol (5) using $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6},{ }^{24}$ and again by Liu and co-workers in 2004 using peroxidase and hydrogen peroxide. ${ }^{25}$ In 2010, Denton and coworkers reported a concise synthesis of dunnianol (3). ${ }^{26}$

Demethylation of commercially available 4-allylanisole (21) to chavicol (5) and subsequent regio- and chemo-selective di-bromination gave species 22.
Directed ortho-lithiation of 4-allylanisole (21) followed by reaction of the resulting organolithium species with trimethylborate provided boronic acid 23. Suzuki-Miyaura cross-
coupling reaction of $\mathbf{2 2}$ and $\mathbf{2 3}$ gave triaryl $\mathbf{2 4}$ which, after demethylation, provided dunnianol (3) in 17\% yield over four steps (see Scheme 4).

Scheme 4: Synthesis of dunnianol (3) as reported by Denton and co-workers.

5.3. \quad Simonsol A

Extracted from the fruits of Illicium simonsii, simonsol A (25) is an example of a sesquineolignan containing a dihydropyran core and an allylated quaternary carbon centre (see Figure 4). There are currently no reported syntheses of simonsol A (25).

simonsol A (25)

Figure 4: Structure of simonsol A (25).

5.3.1. Assignment of Simonsol A

Simonsol A (25) was isolated by Wang and co-workers ${ }^{27}$ who were able to make a full stereochemical assignment by comparing experimental and calculated ECD spectra for the four possible isomers. The calculated ECD spectrum for 25b matched closest to the experimental ECD spectrum allowing them to fully assign simonsol $\mathrm{A}(\mathbf{2 5})$ as (R, R) (see Figure 5).

(25a)

(25c)

(25b)

(25d)

5.3.2. Proposed biosyntheses towards simonsol A

Wang et al proposed that the biosynthesis of simonsol A (25) starts with single electron reductions of chavicol (5) and triketone 28, forming radicals 26 and 29 respectively. Oxidative coupling of $\mathbf{2 6}$ and $\mathbf{2 9}$ gives biaryl $\mathbf{3 0}$. A single electron reduction of $\mathbf{3 0}$ to $\mathbf{3 1}$ provides the precursor to triaryl 32. Subsequent tautomerisation to 33 followed by hemiacetal formation and a selective ketone reduction gives 34 which undergoes loss of $\mathrm{H}_{2} \mathrm{O}$ to give simonsol A (25) (see Scheme 5).

Formation of radicals 26 \& 29

Oxidative coupling of radicals 26 \& 29

Reaction of radical 31 to give simonsal A (25)

simonsol A (25)

(34)

(33)

Scheme 5: A proposed biosynthesis of simonsol A (25) by Wang et al. ${ }^{61}$

From an organic chemistry perspective, this biosynthesis isn't plausible. The probability of the species $\mathbf{2 7}$ existing as the triketone tautomer $\mathbf{2 8}$ is very low as it involves loss of aromatic stabilisation (see Equation 1).

The synthesis also includes a selective reduction of the carbonyl at position 5 on the central ring of trimer 33. This may be possible in the presence of an enzyme however as this is occurring alongside a series of oxidative additions, this seems unlikely. Therefore this proposed biosynthesis, which involves mutually incompatible redox steps, is chemically implausible.

Aromatic
Not aromatic

Equation 1: Enol-keto tautomerization of $\mathbf{2 7}$ to triketone $\mathbf{2 8}$ illustrating the loss of aromaticity.

An alternative biosynthesis of simonsol A (25) proposed by members of the Denton group begins with oxidative phenolic coupling of radicals 35 and 37 in the ortho positions giving 38. Subsequent tautomerisation gives biaryl 39. A further oxidative coupling, at the ortho position, provides triaryl 41, whilst also installing the allylic quaternary carbon centre. After a series of tautomerisations, triaryl 41 is converted to intermediate 43 and simonsol A (25) is then obtained through a ring-closing hemi-acetal formation (see Scheme 6). This biosynthesis is more reasonable than the one preceding it, however it still relies on two different monomer units.

Formation and coupling of radicals 35 and 37

Coupling of radicals 40 and 35 to give simonsol $A(25)$

Scheme 6: A proposed biosynthesis of simonsol A (25) from two units of chavicol (5) and one of 2-
allylbenzene-1,4-diol (36).

The final biosynthesis proposed in this report relies purely on chavicol (5) (see Scheme 7). Two consecutive oxidative additions of the chavicol radical 35 at the ortho position provides dunnianol (3), via biaryl 44. Selective oxidation of the central ring forms triaryl 46. A Cope rearrangement installs the quaternary carbon centre in trimer 47. Tautomerisation to trimer 48 followed by a ring-closing hemi-acetal formation provides simonsol A (25).

Scheme 7: An alternative biosynthesis of simonsol A from chavicol.

Of the three biosyntheses presented in this report, the latter is most feasible due to it relying exclusively on chavicol, a compound present in abundance in the genus Illicium, and two other known natural products, namely magnolol and dunnianol. The intervention of a Cope rearrangement is something that may have previously been considered unlikely but has gained scientific proof from work that is currently unpublished from the Denton group. ${ }^{28}$

6. Project Outline

Following increased interest in sesquineolignans with respect to their bioactivities, the primary aim of this project is to develop a concise synthesis of simonsol A. Computational studies on the energies and corresponding transition states of key intermediates in the proposed chemical synthesis will also be carried out to provide insight into the different possible biosyntheses of simonsol A and to highlight possibly unknown natural products from this family.

7. Results and Discussion

7.1. Synthetic Route Development

Our first-generation retrosynthetic analysis incorporates a cross-coupling of monomer units 21 and 54, and a Claisen rearrangement to access simonsol A (25). It was reasoned that the hemi-acetal of simonsol A (25) could be obtained by global deprotection of tri-anisole 49. This in turn could be accessed from a Claisen rearrangement of $\mathbf{5 0}$ which could be formed from phenol $\mathbf{5 1}$. The triaryl unit could be formed by various different cross-coupling methods, depicted as Suzuki-Miyaura cross-coupling partners 52 and 53 for convenience (see Scheme 8).

simonsol A (25)

(54)

(49)

(52)

(51)

Scheme 8: Retrosynthetic analysis for the formation of simonsol A (25).

7.2. Cross-coupling reactions

7.2.1. Suzuki-Miyaura cross-coupling reactions

Preparation of the monomer units for Suzuki-Miyaura cross-coupling reactions began with ortho-lithiation of 4-allylanisole (21) followed by subsequent reaction with trimethylborate to give boronic acid 23. For ease of purification, $\mathbf{2 3}$ was treated with pinacol which gave boronic acid pinacol ester 55 in 51% yield over two steps (see scheme 9). Despite attempts to improve the yield by varying solvent choice and temperature during addition of trimethyl borate, no improvement on 51% was obtained.

Scheme 9: Synthesis of 49 from 4-allylanisole (21).

Dibromination of 4-methoxyphenol (54) was achieved by using the brominating agent benzyl trimethylammonium tribromide and gave 2,6-dibromo-4-methoxyphenol (52) in moderate yield (see Equation 2). Initial attempts gave a light brown solid in $>95 \%$ isolated yield with no chromatography, however after chromatography 56\% of a colourless solid was obtained. This could be attributed to residual bromine or water in the solid.

Equation 2: Synthesis of 2,6-dibromo-4-methoxyphenol (52) from 4-methoxyphenol (54).

Next, the key Suzuki-Miyaura reaction towards the synthesis of triaryl 51 was investigated. Initial attempts were made with a variety of conditions. Generally, these reactions were unsuccessful with the best results obtained with Pd G3 XPhos and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ (Table 1, entry 5). The major products observed for the failed reactions were protodeboronated and dehalogenated starting material.

Entry	Catalyst ($5 \mathrm{~mol} \%$)/ligand	Solvent	Base	Temp (${ }^{\circ} \mathrm{C}$)	Time (h)	Isolated yield (\%)	Isomerisation (\%)
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	dioxane/ $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	110	18	55	9-17
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O}$	NaOH	65	24	0	-
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF/ $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	65	24	0	-
4	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{SPhos}$	THF/ $\mathrm{H}_{2} \mathrm{O}$	KF	90	24	0	-
5	Pd G3 XPhos	THF/ $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	r.t.	20	86	8-15
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	80	18	0	-
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	NaHCO_{3}	80	18	0	-
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	THF	TEA	80	18	0	-
9	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$	NaHCO_{3}	80	18	0	
10	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	THF/ $\mathrm{H}_{2} \mathrm{O}$	NaOH	80	18	0	-
11	$\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{2} / \mathrm{PPh}_{3}\right.$	toluene $/ \mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	80	18	0	-
12	$\mathrm{NiCl}_{2}\left(\mathrm{PCy}_{2} / \mathrm{PPh}_{3}\right.$	toluene $/ \mathrm{H}_{2} \mathrm{O}$	NaOH	80	18	0	-
13	NiCl_{2} glyme/ PPh_{3}	toluene $/ \mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	80	18	0	-
14	NiCl_{2} glyme/ PPh_{3}	toluene $/ \mathrm{H}_{2} \mathrm{O}$	NaOH	80	18	0	-

Table 1: Suzuki-Miyaura cross-coupling reaction conditions of phenol 52 and pinacol ester 55.

Isomerisation of the allyl groups occurred in many of these initial attempts. This process can occur through base or metal catalysis. This results in isomerisation to the more stable internal E-alkene ${ }^{29}$, identified through J coupling analysis. Due to the presence of two allyl groups, mono- (to 51a) or bis- (to 51b) isomerisation can occur (see Scheme 10).

Scheme 10: Isomerisation of 51 to 51a and 51b.

To eliminate this, similar coupling reactions were performed with chlorine in place of the allyl groups allowing further functionalisation to be performed later on in the synthesis (see Table 2).

Entry	Catalyst (5 mol\%)	Solvent	Base (Eq.)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	dioxane $/ \mathrm{H}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{CO}_{3}(6)$	85	16
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene $/ \mathrm{EtOH}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}(6.4)$	85	16

Table 2: Investigations into the Suzuki-Miyaura cross-coupling of boronic acid 56 and phenol 52.

Several new observations were made during these reactions. The first was an obvious colour change of reaction mixture from colourless to deep red following addition of the base. The presence of the acidic phenolic proton suggests that the phenol coupling partner was present in solution as the phenolate, as these are typically highly coloured solutions. The second observation was that a distinctive set of peaks in the ${ }^{1} \mathrm{H}-$ NMR spectrum emerged as a major impurity which was not isolated during purification by chromatography. Depending on the number of equivalents of base used in the reaction, the ratios of the two peaks were either strictly $1: 1$ or $2: 1$. With the chemical shifts matching those of the deborylated and dehalogenated starting material, it suggests that this impurity is related to the starting materials. Its apparent instability on silica has led us to propose that it could be a boron complex, formed as a result of a phenolate attacking the boronic acid species (see Figure 7).

Figure 7: Proposed structure of impurity.
7.2.1.1. Microwave-assisted Suzuki-Miyaura cross-coupling reactions

There are various reports of microwave-assisted Suzuki-Miyaura cross-couplings, the first being reported in 1996 by Larhed and Hallberg. ${ }^{30}$ Microwave reactions are associated with shorter reaction times, more efficient heating and often higher yields than those that use conventional heating methods. ${ }^{31}$ Due to it's high dielectric constant, water is considered a good choice of solvent for microwave-heated reactions, not to mention it's low cost, high availability and it's non-toxic properties. The primary issue with using water as a solvent is poor solubility of substrates, with reactions often needing a phase transfer agent or heterogeneous catalyst to overcome these barriers. ${ }^{32}$ The coupling of halophenols with boronic acids with microwave irradiation is reported by Schmidt et al. ${ }^{33}$ Catalysed by Pd/C ($10 \%, 50 \%$ wet) in the presence of TBAF. $3 \mathrm{H}_{2} \mathrm{O}$ in water, the reaction between boronic acid 56 and phenol 52 had reached completion after 30 minutes at $150^{\circ} \mathrm{C}$, through microwave irradiation (see Equation 3).

Equation 3: A microwave-assisted Suzuki-Miyaura cross-coupling reaction of boronic acid 50 and phenol 46.

A variety of conditions were trialled. Use of KOH was unsuccessful with 0% conversion to the expected product. Use of TBAF. $3 \mathrm{H}_{2} \mathrm{O}$ on a 0.25 mmol scale, with respect to 52 , at $150^{\circ} \mathrm{C}$ for 30 minutes gave a 61\% yield, however following an increase in scale to 0.5 mmol , the reaction failed. Using TBAF (1.00 M solution in THF) gave a 28% yield. Reactions with CsF and KF were unsuccessful (see Table 3).

Entry (scale/mmol)	Catalyst (5 mol\%)	Base (6 eq.)	Temp (${ }^{\circ} \mathrm{C}$)	T (min)	Isolated yield (\%)
$1(0.25)$	Pd / C	KOH	150	30	0
$2(0.25)$	Pd / C	$\mathrm{TBAF} .3 \mathrm{H}_{2} \mathrm{O}$	150	30	61
$3(0.50)$	Pd / C	$\mathrm{TBAF} . \mathrm{xH}_{2} \mathrm{O}$	150	40	0
$4(0.50)$	Pd / C	$\mathrm{TBAF}(1 \mathrm{M} \mathrm{THF})$	80	40	28
$5(0.20)$	Pd / C	CsF	180	30	0
$6(0.20)$	Pd / C	KF	180	30	0

Table 3: Conditions for microwave-assisted Suzuki-Miyaura cross-coupling reactions.

7.2.1.2. Preparation and use of protected phenol coupling partner

Following numerous failed reactions it was speculated that the free phenol component of the central unit was preventing the coupling from occurring. In an attempt to prevent any participation from the phenol, use of a suitable protecting group to mask the OH through the coupling reaction was considered a viable solution.

Protection of the 2,6-dibromo-4-methoxyphenol (52) with a variety of protecting groups were trialled, to no avail (see Table 3).

(52)

Entry	Protecting group/additive	Base	Solvent	Temp. (${ }^{\circ} \mathrm{C}$)	Conversion (\%)
1	acetic anhydride	pyridine	pyridine	r.t.	0
2	allyl bromide	$\mathrm{K}_{2} \mathrm{CO}_{3}$	acetone	55	0
3	acetyl chloride	NaH	pyridine	0 -r.t.	0
4	allyl bromide	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	r.t.	0
5	allyl bromide	DBU	acetone	r.t.	0
6	allyl bromide/TBAI	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	r.t. - 120	0
7	allyl bromide	KOH	MIBK	r.t.	0
8	MOMCl	DIPEA	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	0
9	$\mathrm{BnBr} / \mathrm{TBAI}$	NaH	THF	0 -r.t.	0
10	TBDPSCI	imidazole	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	0
11	$\mathrm{Me}_{2} \mathrm{SO}_{4}$	KOH	acetone	r.t.	0
12	BzCl	pyridine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	0
13	PivCl	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	r.t.	0

Table 3: Conditions for the protection of phenol 52.

An analogous reaction with 2,6-dibromo-4-iodophenol (58) with allyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetone at reflux for one hour gave the protected phenol 59 in quantitative yields. This process was scalable and no further purification of the product was required. Following the successful preparation of 59, a selective Ullmann cross-coupling with methanol using
catalytic $\mathrm{Cu}(\mathrm{I})$ chloride, 1,10-phenanthroline and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ gave the desired coupling partner 60 in good yields (see Scheme 10).

(58)
 100\%

Scheme 10: i) Allylation of phenol 58 to 59; ii) Ullmann cross-coupling of 59 with methanol with to $\mathbf{6 0 .}$

After obtaining the protected coupling partner 60, Suzuki-Miyaura cross-couplings with boronic acid 56 using $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and Pd G 3 XPhos were carried out. Both reactions were unsuccessful (see Equation 4). The introduction of an allyl ether functionality creates an additional site in which palladium can insert which can in turn lead to alternative coupling reactions occurring instead, such as a Heck reaction or pi-allyl formation.

Equation 4: Suzuki-Miyaura cross-coupling reaction with protected phenol 60 and boronic acid 56.

A shift in the characteristic allyl peak, proton 2 on the dibromo substrate $\mathbf{6 0}$, from 6.15 Hz in the starting material to 5.94 Hz in the crude reaction mixtures indicates a marked change in its chemical environment. A slight change of shift for that allyl proton would be expected going from the monomeric coupling partner to the desired product, however, due to change in shift being so large, this suggested direct participation of the allyl group.

7.2.1.3. Nickel and Copper Catalysed Suzuki-Miyaura Reaction

There are reports in the literature of nickel and copper catalysed Suzuki-Miyaura crosscoupling reactions. ${ }^{34-36}$ The reaction of protected phenol $\mathbf{6 0}$ and boronic acid 56 under nickel catalysis proved unsuccessful with the major product being protodeboronated starting material (see Equation 5).

Equation 5: Nickel catalysed Suzuki-Miyaura cross-coupling of dibromo 60 and boronic acid 56.

A literature review of copper-catalysed Suzuki-Miyaura cross-coupling reactions reported the successful coupling of similar substrates. ${ }^{36}$ Diiodo species $\mathbf{6 3}$ was prepared from 4nitrophenol (62), sodium chlorite, sodium iodide and HCl in a $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ solvent system in excellent yields. The allylation of $\mathbf{6 3}$ with allyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN at reflux afforded coupling partner 64 in 81% yield over two steps.

The formation of the boronic ester coupling partner 65 was a one-step process reacting boronic acid 56 with 2,2-dimethyl-1,3-propanediol in toluene with the drying agent MgSO_{4}, again, in good yields.

The coupling of 64 and 65 was attempted using catalytic CuCl. xantphos with $\mathrm{NaO}^{+} \mathrm{Bu}$ in toluene at $80^{\circ} \mathrm{C}$, however this was not successful with a range of non-desired products forming (see Scheme 11).

Scheme 11: i) Preparation of diiodo 64; ii) Preparation of boronic ester 65; (iii) Conditions for copper-catalysed Suzuki-Miyaura reaction of 64 and 65.

Following from this, no further Suzuki-Miyaura reactions with substrates containing allyl groups were attempted.

7.2.1.4. Protodeboronation and alternative coupling partners

A number of side reactions are frequently observed with Suzuki-Miyaura cross-couplings, namely protodeboronation, oxidation and palladium catalysed homocoupling ${ }^{37}$. These processes can be acid ${ }^{38}$, base ${ }^{39}$ or metal salt catalysed (see Equation 6). ${ }^{40}$

Equation 6: Protodeboronation can occur through acid, base or metal catalysis.

One of the most effective strategies in minimising protodeboronation is to use the "slow release" method, ${ }^{41}$ generating the boronic acid in situ. N-coordinated boronates ${ }^{42}$ are less susceptible to protodeboronation than their boronic acid equivalents. Alternatively, potassium organotrifluoroborate reagents can be used. ${ }^{43}$ In all cases, accumulation of the boronic acid is avoided reducing the number of side reactions from occurring.

Preparation of the potassium organotrifluoroborate is as reported by Lloyd-Jones and coworkers. ${ }^{44}$ Subjecting boronic acid 56 to KF in the presence of $L-(+)$-tartaric acid, which acts as an alkali-metal sponge, gave the potassium organofluoroborate salts 68 and 69 in the ratio $2: 1$ respectively (see Equation 7).

Equation 7: Preparation of potassium organofluoroborate salts 68 and 69.

During the reaction flocculation appeared to prevent full conversion to the trifluoroborate salt. Increased conversion was observed when the reaction mixture was sonicated
extensively, however there was still a substantial amount of the difluoroborate salt present and the two could not be separated.

Following the preparation of the organofluoroborate salts 68 and 69, a Suzuki-Miyaura cross-coupling reaction was carried out with phenol 52 (see Equation 8). All reactions failed with a range of side-products forming.

Equation 8: Suzuki-Miyaura cross-coupling reaction between organotrifluoroborates 68 and 69, and phenol 50. Bases trialled: $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{TBAF}, \mathrm{KF}, \mathrm{Na}_{2} \mathrm{CO}_{3}$.

7.2.1.5. Suzuki-Miyaura coupling of quinone substrate

An alternative retrosynthetic analysis of simonsol A shows that quinone $\mathbf{7 0}$ can be obtained through the cross-coupling of boronic acid 23 and dibromoquinone 71, depicted as SuzukiMiyaura coupling partners for simplicity (see Scheme 12).

Scheme 12: Second generation retrosynthetic analysis of simonsol A (25).

Dibromoquinone $\mathbf{7 1}$ was prepared from the oxidation of 2,6-dibromohydroquinone (72) with oxone and TBAB in average yields. The coupling of 71 and boronic acid 56 with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ provided trimer 73 in 37% yield (see Scheme 13). The same reaction with Pd G3 XPhos gave protodeboronated starting material as the major product.

Scheme 13: Preparation triaryl 73 with quinone $\mathbf{7 1}$ and boronic acid 56.

With alternative cross-coupling reactions yielding much higher, this route was abandoned.

7.2.2. Negishi cross-coupling reactions

Negishi cross-couplings are an alternative coupling reaction of a zinc organometallic reagent and an unsaturated halide (see Equation 12). Due to the quick transmetallation of organozinc reagents to palladium, such reactions can take place under very mild conditions making them an attractive alternative to the Suzuki-Miyaura coupling. ${ }^{45}$

Equation 12: A Negishi cross-coupling with an aryl halide (Ar-X) and organozinc reagent (Ar'-ZnX).

Palladium is often the catalyst of choice, however there are reports of nickel ${ }^{46}$ and, less commonly, cobalt ${ }^{47}$ catalysed Negishi reactions. Coupling of dibromo 60 and organozinc species $\mathbf{7 4}$ under various conditions were carried out (see Table 4). Three different catalysts were chosen and the reactions performed at both room temperature and at $50^{\circ} \mathrm{C}$. All six reactions failed with the major products being dehalogenated and de-metallated starting material.

Entry	Catalyst $[\mathbf{M}]$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Conversion (\%)
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	r.t.	0
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	50	0
3	CoCl_{2}	r.t.	0
4	CoCl_{2}	50	0
5	$\mathrm{Ni}(d p p p) \mathrm{Cl}_{2}$	r.t.	0
6	$\mathrm{Ni}(d p p p) \mathrm{Cl}_{2}$	50	0

Table 4: Conditions for Negishi cross-coupling of dibromo 60 and organozinc 74.

Following the low success of these reactions, it was decided that no further Negishi reactions were to be carried out.

7.2.3. Stille cross-coupling reactions

Stille reactions (see Equation 13) employ an organotin reagent and an unsaturated halide to form C-C bonds. ${ }^{48}$ Examples of palladium catalysed cross-couplings of stannanes and carbon electrophiles were first reported in 1977 by Kosugi and co-workers. ${ }^{49}$ Use of the Stille reaction, particularly in the manufacturing of pharmaceuticals, is often frowned upon due to the high toxicities of organotin reagents. Despite this, they are often an efficient and versatile way of forming carbon-carbon bonds and are still widely used in research.

$$
\mathrm{R}-\mathrm{X}+\mathrm{R}^{\prime}-\mathrm{SnBu}_{3} \xrightarrow{[\mathrm{Pd}]} \text { R-R' }+\mathrm{X}-\mathrm{SnBu}_{3}
$$

Equation 13: A Stille cross-coupling reaction with an aryl halide (Ar-X) and an organostannane ($\mathrm{R}-\mathrm{SnBu}_{3}$).

Preparation of organotin reagent 77 started with a selective lithium-halogen exchange on 75 providing the organolithium reagent 76. Subsequent addition of tributyltin chloride, 77 was isolated in 22% yield (see Scheme 14).

Scheme 14: Preparation of organostanne 72.

Coupling of organostannane 77 and 2,6-dibromo-4-methoxyphenol (52) was unsuccessful. (see Equation 15). Analysis of the reaction mixture showed de-stannylated material with no desired product. After evaluating the practicalities of this reaction it was decided that no further investigations into this line of work would take place. The low yielding preparation of the organostannane alongside the high toxicity associated with these reactions make them inappropriate in this scheme of work.

Equation 15: Stille cross-coupling reaction with organostannane 77 and phenol 52.

7.2.4. Kumada-Corriu cross-coupling reactions

Kumada-Corriu cross-coupling reactions employ a Grignard reagent and an unsaturated halide. They are usually catalysed by either palladium or nickel ${ }^{50}$ and occur readily at lower temperatures ${ }^{51}$ making them an attractive alternative for carbon-carbon bond formations. Preparation of the aryl Grignard reagent 78 was achieved by reacting 2-bromo-4chloromethoxybenzene (75) with magnesium turnings and 1,2 -DBE in THF at $65^{\circ} \mathrm{C}$ and was used directly in the next step. Following the addition of 2,6-dibromo-4-methoxyphenol (52) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ the major products that formed were 4-chloromethoxybenzene (67) and the starting phenol 52. This suggested that the Grignard reagent had been quenched by the phenolic proton on 52 (see Scheme 15).

Scheme 15: Preparation of Grignard reagent 78 and unsuccessful cross-coupling reaction with phenol 52.

7.2.5. Oxidative-addition cross-coupling reactions

Oxidative addition cross-couplings occur in many of the biosynthetic pathways of secondary plant metabolites, ${ }^{52}$ particularly those with phenolic cores. In early 2020, Proctor and coworkers developed a sulfoxide-mediated oxidative cross-coupling of phenols (see Equation 16). ${ }^{53}$

Equation 16: Oxidative addition cross-coupling for the coupling of phenols with phenols, phenol derivatives and arenes.

Oxidation of commercially available 3-methylbenzo[b]thiophene-1-oxide (79) with hydrogen peroxide and TFA provided 80 in 66\% yield (see Equation 17).

Equation 17: Oxidation of benzothiophene 79 to sulfoxide 80.

Coupling of 4-methoxyphenol (54) and 4-allylanisole (21) were unsuccessful with the major product being homocoupling of phenol (54) (see Equation 18).

(54)

(21)

(51)

Equation 18: Sulfoxide-mediated oxidative cross-coupling of 4-methoxyphenol (54) and 4-allylanisole (21).

It has been proposed that the reaction proceeds following activation of sulfoxide $\mathbf{8 0}$ with TFAA to intermediate 81. An interrupted Pummerer reaction with 4-methoxyphenol (54) provides sulfonium 82, with partial positive charges ortho to the phenol oxygen.

Nucleophilic attack from 4-allylanisole (21), with partial negative charges ortho to the methoxy group should have provided biaryl 83 which would then react further to form triaryl 51. However, the major product observed was biaryl 84, obtained through homocoupling of 4-methoxyphenol (54) (see Scheme 16).

Scheme 16: Proposed mechanism for the sulfoxide-mediated oxidative cross-coupling of chavicol (21) and 4-methoxyphenol (54).

7.3. Investigations into Claisen rearrangements

Following the successful synthesis of triaryl 57, allylation of the central phenolic core with allyl bromide gave triaryl 61 in an 82% yield (see Equation 19).

Equation 19: Allylation of triaryl 57 with allyl bromide.

After obtaining key intermediate 61, investigations into the Lewis acid-catalysed Claisen rearrangement were carried out. Initial attempts with BBr_{3} were unsuccessful (see Equation 20). ${ }^{1} \mathrm{H}$ NMR spectra identified that all three methoxy groups had successfully been deprotected, however loss of the characteristic allyl peak suggested that HBr had added across the double bond.

Equation 20: Unsuccessful Lewis acid-catalysed Claisen rearrangement of 61 using BBr_{3}.

Following this, an analogous experiment with BCl_{3}, a milder Lewis acid, was carried out with thermal control throughout in the hope that this would prevent addition of HCl across the allyl bond (see Equation 21). When BCl_{3} was used to catalyse the Claisen rearrangement at $-18^{\circ} \mathrm{C}$, it was observed that all three methoxy groups remained intact with a characteristic shift of allyl peak. Additionally, two dd peaks at 3.18 ppm and 3.30 ppm provided evidence that the two diastereotopic protons in 86 were present and that the rearrangement had been triggered. Due to ending the reaction early, full conversion of $\mathbf{6 1}$ to 86 was not observed, and 86 was never isolated.

Equation 21: Lewis acid-catalysed Claisen rearrangement of 61 with BCl_{3}.

8. Computational studies

To gain further insight into the proposed biosynthesis of simonsol A, quantum chemical calculations were carried out using the Spartan 2018 suite of software. The results are shown in Scheme x. The ω B97X-D/6-31g* theoretical model was chosen as appropriate as it has been used widely for the modelling of organic reactions. Calculations were carried out in the gas phase and molecular mechanics (equilibrium conformer) calculations were used on the starting materials to identify suitable conformations for the QM calculations. Transition structures were characterised by frequency calculations which had a single imaginary frequency corresponding to the breaking/forming bond(s) in the transition structure. calculated energies of the relevant structures has determined the energy barrier for the Claisen rearrangement to be $45.7 \mathrm{Kcal} / \mathrm{mol}$ and, for the Cope rearrangement, $33.6 \mathrm{Kcal} / \mathrm{mol}$.

These barriers are very large and may be overestimated by this theoretical model. The Claisen rearrangement is yet to be carried out under simple thermal conditions. This suggests that a Lewis acid-mediated ionic "Claisen" rearrangement is likely to be required in the synthesis. This is in agreement with the experimental result obtained which suggested that boron trichloride had promoted the rearrangement. These calculations are also supportive of the newly proposed biosynthesis that relies on dunnianol (see Scheme 7, section 5.3.2.). 87 represents a truncated version of intermediate $\mathbf{4 7}$ in the dunnianol-based biosynthesis. The energy barrier associated with the Cope rearrangement of $\mathbf{8 8}$ to $\mathbf{9 0}$ is a much more reasonable $32.5 \mathrm{kcal} / \mathrm{mol}$. This would give 90 a half-life of approximately 8 hours at $130^{\circ} \mathrm{C}$. Furthermore, the key tautomerisation of 88 to 90 is also shown to be viable with the ketone tautomer 89 , the precursor to natural product 91 , being favoured over 88. In summary the calculations have shown that there is a very high barrier for a concerted Claisen rearrangement.

Scheme 17: Interconversions of 87 to calculate energy barriers for Claisen and Cope rearrangements

9. Conclusions

A range of cross-coupling reactions have been investigated towards the synthesis of simonsol A (25). Although these were generally unsuccessful, synthesis of key intermediate 61 (see Figure 6) was achieved in 50% yield over two steps.

(61)

Figure 6: Structure of key intermediate 61.

Additionally, quantum calculations determined the energy barriers for the Claisen and Cope rearrangements as $45.7 \mathrm{Kcal} / \mathrm{mol}$ and $32.5 \mathrm{Kcal} / \mathrm{mol}$ respectively. This provides strong evidence for our proposed biosynthesis of simonsol A.

10. Future work

Carrying on from the work in this report, it would be of interest to further develop the synthetic route towards simonsol A by exploring the oxidative cross-coupling of 4allylanisole (21) with a modified phenolic coupling partner, such as 4-iodophenol (92) (see Scheme 18). If successful, triaryl 93 could be further manipulated to form intermediate 51. Allylation of 51 to triaryl 50, followed by a Lewis acid-mediated Claisen rearrangement to 49 and deprotection to 94 could, following tautomerisation to 39, undergo a ring-closing hemiacetal formation to simonsol A(25).

Scheme 18: Future work - oxidative cross-coupling reaction with 4-iodophenol (92) and 4-allylanisole (21).

11. Experimental

11.1. General details:

Unless stated, all reactions were carried out under an atmosphere of nitrogen in standard glassware. De-gassing was achieved by purging solutions with nitrogen for 10-15 minutes. For moisture sensitive reagents and reactions, glassware was dried in the oven ($125^{\circ} \mathrm{C}$) overnight. $0^{\circ} \mathrm{C}$ was achieved using an ice-water bath. $-18^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$ was achieved using an ice-salt bath ($3: 1 \mathrm{w} / \mathrm{w}$). $-78^{\circ} \mathrm{C}$ was achieved using a dry ice-acetone bath. Petroleum ether refers to the fraction with bp $40-60^{\circ} \mathrm{C}$. Commercially available reagents were used as supplied, with the exception of dry THF, dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dry DMF which were dried on an alumina column before use. TMEDA and trimethyl borate were also distilled over sodium
wire and stored under argon before use. Butyllithium reagents were titrated with N benzylbenzamide. Room temperature varied between $18{ }^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. Macherey-NagalTM Standard SIL G Silica sheets were visualised with ultra-violet light (254 nm), staining with KMnO_{4} solution when required. Flash column chromatography was performed using Fluorochem silica gel 60, 35-70 microns. Infrared spectra were obtained neat on a Bruker ALPHA-IR Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ascend400 instrument as dilute solutions in a deuterated solvent. Chemical shifts (δ) are recorded in parts per million (ppm) relative to residual solvent peaks. All coupling partners (J) are reported in $\mathrm{Hz} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ signals are described by the following abbreviations: $\mathrm{s}=$ singlet, $d=d o u b l e t, t=t r i p l e t, m=m u l t i p l e t, ~ d d=d o u b l e t ~ o f ~ d o u b l e t s, ~ d t=d o u b l e t ~ o f ~ t r i p l e t s . ~ M a s s ~$ spectra were obtained on a Bruker MicroToF II instrument.

11.2. Synthesis of compounds

2-(5-allyl-2-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (55):

To a solution of hexane (21.0 mL) and TMEDA ($1.90 \mathrm{~mL}, 12.7 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ was added s BuLi (12 mL of a 1.10 M solution in hexanes, 13.2 mmol) over 15 minutes. After 1 hour, 4allylanisole ($1.10 \mathrm{~mL}, 7.17 \mathrm{mmol}$) was added over 25 minutes and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 hours. Trimethylborate (1.30 mL) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was warmed to room temperature and was stirred for a further 80 minutes.

The reaction mixture was acidified to pH 2 with $\mathrm{HCl}(1.00 \mathrm{M}$ aqueous solution) and then the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30.0 \mathrm{~mL})$. The organics were combined, dried over MgSO_{4}, filtered and concentrated in vacuo. To the crude oil at room temperature was added $\mathrm{MeOH}(21.0 \mathrm{~mL})$ and pinacol ($2.40 \mathrm{~g}, 20.3 \mathrm{mmol}$) and then the reaction mixture was stirred at room temperature for 14 hours. The organics were concentrated in vacuo.

Purification by flash column chromatography (petroleum ether/EtOAc, 4:1) gave boronic acid pinacol ester 55 as a colourless oil ($0.930 \mathrm{~g}, 51 \%$).

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.20(\mathrm{dd}, J=$
$8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.95(\mathrm{ddt}, J=16.8$,
$10.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10), 5.04\left(\mathrm{~m}, \mathrm{~J}=13.4,9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11^{\prime \prime}\right), 3.81(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{H}-8), 3.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9), 1.35(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-17, \mathrm{H}-18, \mathrm{H}-19, \mathrm{H}-$
$20) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.9(\mathrm{Cq}), 138.1(\mathrm{CH}), 136.9(\mathrm{Ar} \mathrm{CH})$,
$132.6(\mathrm{Ar} \mathrm{CH}), 131.6(\mathrm{Cq}), 115.5\left(\mathrm{CH}_{2}\right), 110.8(\mathrm{Ar} \mathrm{CH}), 83.6(2 \times \mathrm{Cq}), 56.2$
$\left(\mathrm{CH}_{3}\right)$, $39.4\left(\mathrm{CH}_{2}\right), 25.0\left(4 \times \mathrm{CH}_{3}\right)$; HRMS (ESI^{+}): $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 274.1670, found 275.1809; IR: Vmax cm ${ }^{-1}$ 2977, 1605, 1415, 1370, 1283, 1143, 1071, 966.
${ }^{13}$ C NMR: C-B signal not observed due to quadrupolar relaxation.

2,6-dibromo-4-methoxyphenol (52):

To 4-methoxyphenol (54) ($25 \mathrm{mg}, 0.202 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.180 \mathrm{~mL})$ was added a solution of benzyltrimethylammonium tribromide ($0.180 \mathrm{~g}, 0.462 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.27 \mathrm{~mL})$ and MeOH $(0.550 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for 16 hours. Following completion of the reaction, the organics were concentrated in vacuo and the brown residue was triturated with $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$, filtered and dried through suction filtration to give 2,6-dibromo-4methoxyphenol as a light brown solid (52) ($48 \mathrm{mg}, 85 \%$).
 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$), $3.7(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8$ (Cq), 143.9 (Cq), 118.0 (2 x CH), $109.8(2 \mathrm{x}$ $\mathrm{C}-\mathrm{Br}), 56.3\left(\mathrm{CH}_{3}\right)$; $\mathrm{HRMS}\left(\mathrm{ESI}^{-}\right): \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{2}$ [M - H] calcd. 281.9310 found 280.8645 .

OH proton not observed. Spectroscopic data consistent with the literature. ${ }^{54}$

5,5"-diallyl-2,2',5'-trimethoxy-[1,1':3',1"-terphenyl]-2'-ol (51):

2,6-dibromo-4-methoxyphenol (52) ($20 \mathrm{mg}, 0.0714 \mathrm{mmol}$), 2-(5-allyl-2-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (55) ($58 \mathrm{mg}, 0.212 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(0.5 \mathrm{M}, 0.840 \mathrm{~mL}$, 0.420 mmol) in THF (1.00 mL) were sparged with argon for 10 minutes and Pd G3 XPhos (3 $\mathrm{mg}, 0.00355 \mathrm{mmol}$) was added and the reaction was stirred at r.t. for 18 hours.

The organics were concentrated in vacuo and purified by flash column chromatography (cyclohexane:EtOAc, 9:1) to give triaryl 51 as a yellow oil ($29 \mathrm{mg}, 86 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-18$), 7.20 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-16$), 6.97 (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-$ 15), 6.88 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10$), 6.01 (ddt, $J=16.8,9.7,6.8$ Hz, 2H, H-20, H-23), $5.20-5.05$ (m, 4H, H-21, H-24), 3.85 (s, 6H, $\mathrm{H}-29, \mathrm{H}-31$), 3.4 (s, 3H, H-30), 3.42 (d, J = $6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-19, \mathrm{H}-22$);

HRMS (ESI'): $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]-$ calcd. 416.1988 found 415.1915; IR:
$V_{\operatorname{max~cm}}{ }^{-1} 3048,2929,1638,1500,1460,1244,1041,964,788$.

OH proton not observed by ${ }^{1} \mathrm{H}$ NMR. Missing ${ }^{13} \mathrm{C}$ NMR data.

5,5"-dichloro-2,2',5'-trimethoxy-[1,1':3',1'-terphenyl]-2'-ol (57):

To a suspension of 2,6-dibromo-4-methoxyphenol (52) ($71 \mathrm{mg}, 0.252 \mathrm{mmol}$) and 3-chloro-5methoxyphenylboronic acid (56) ($120 \mathrm{mg}, 0.645 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O}(2.50 \mathrm{~mL})$, was added TBAF. $3 \mathrm{H}_{2} \mathrm{O}$ ($630 \mathrm{mg}, 2.00 \mathrm{mmol}$). The reaction mixture was sparged for 10 minutes and 10% $\mathrm{Pd} / \mathrm{C}(50 \%$ wet, $27 \mathrm{mg}, 0.0130 \mathrm{mmol})$ added. The suspension was heated at $150^{\circ} \mathrm{C}$ through microwave irradiation for 30 minutes. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}(2.00 \mathrm{~mL})$ and acidified to pH 6 with $\mathrm{HCl}(1.00 \mathrm{M}$ aqueous solution). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.00 \mathrm{~mL})$ and combined organic phases dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (cyclohexane:EtOAc, 9:1 to 4:1) to give triaryl 57 as a an orange residue ($62 \mathrm{mg}, 61 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ ($\mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-18$), 7.32 (dd, J = 8.7, 2.6 Hz, 2H, H-1, H-16), 6.94 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-15), 6.84$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-10$), 3.84 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}-18, \mathrm{H}-20$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}-19)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0(2 \times \mathrm{Cq}), 153.5(\mathrm{Cq})$, 145.2 (Cq), 131.9 ($2 \times \mathrm{CH}$), $129.5(2 \times \mathrm{CH}) 128.8(2 \times \mathrm{Cq}), 127.2$ (2 x Cq), 126.3 ($2 \times \mathrm{C}-\mathrm{Cl}$), $116.6(2 \times \mathrm{CH}), 112.7(2 \mathrm{CH})$, $56.5\left(2 \times \mathrm{CH}_{3}\right), 56.0\left(1 \times \mathrm{CH}_{3}\right)$; HRMS (ESI): $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-}$calcd. 404.0582, found 403.0513 .

OH proton not observed by ${ }^{1} \mathrm{H}$ NMR. Missing IR data.

2,6-dibromo-4-iodophenol (58):

(58)

To a solution of 2,6-dibromophenol ($2.00 \mathrm{~g}, 7.94 \mathrm{mmol}$) in MeCN (50 mL) was added NIS $(2.20 \mathrm{~g}, 9.70 \mathrm{mmol})$ over 20 minutes. The orange solution was stirred at room temperature for 3 hours. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30.0 \mathrm{~mL})$ and quenched with a saturated solution of sodium thiosulfate (30.0 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50.0 \mathrm{~mL})$ and the combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (hexane:EtOAc, 95:5) to give 2,6-dibromo-4-iodophenol (58) as an off-white solid (2.46 g , 79\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.74(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8$ (Cq), 139.9 ($2 \times \operatorname{ArCH}$), 111.0 ($2 \times \mathrm{C}-\mathrm{Br}$), 82.0 (C-I); $\mathbf{R f}_{\mathrm{f}}$ (EtOAc/hexane, 1:1): 0.58 .

OH proton not observed by ${ }^{1} \mathrm{H}$ NMR. Correct M / Z was not found. Spectroscopic data consistent with the literature. ${ }^{55}$

2-(allyloxy)-1,3-dibromo-5-iodobenzene (59):

To a solution of 2,6-dibromo-4-iodophenol (58) ($50 \mathrm{mg}, 0.132 \mathrm{mmol}$) in acetone (0.400 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(36 \mathrm{mg}, 0.261 \mathrm{mmol})$ and allyl bromide ($23 \mu \mathrm{~L}, 0.266 \mathrm{mmol}$). The suspension was stirred at room temperature for 1 hour. The suspension was acidified to pH 1 with $\mathrm{HCl}(1.00 \mathrm{M}$ aqueous solution) and the aqueous phase extracted with $\mathrm{EtOAc}(3 \times 15.0$ $\mathrm{mL})$. The combined organic phases were dried over MgSO_{4}, filtered and the organics were concentrated in vacuo to give 59 as on off-white powder ($50 \mathrm{mg}, 93 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4$), 6.15 (ddt, $\mathrm{J}=17.2,10.3$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 5.45$ (dd, $J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9$ '), $5.31(\mathrm{dd}, J=10.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-9 \mathrm{C}$), 4.53 ($\mathrm{dt}, \mathrm{J}=5.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-7$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.5 (Cq), 140.8 ($2 \times \operatorname{ArCH}$), 132.8 (CH), 119.7 ((CH2), 119.2 ($2 \times \mathrm{C}-\mathrm{Br}$), 87.7 (Cq), $74.4\left(\mathrm{CH}_{2}\right)$; IR: Vmax cm ${ }^{-1} 2363,1436,1411,1236 ; \mathbf{R f}_{\mathbf{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petrol, 1:1): 0.69.

Spectroscopic data consistent with the literature. ${ }^{55}$

2-(allyloxy)-1,3-dibromo-5-methoxybenzene (60):

A suspension of 2-(allyloxy)-1,3-dibromo-5-iodobenzene (59) (1.00 g, 2.39 mmol$), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.6 \mathrm{~g}, 4.92 \mathrm{mmol})$ and 1,10-phenanthroline ($86 \mathrm{mg}, 0.470 \mathrm{mmol}$) in $\mathrm{MeOH}(2.00 \mathrm{~mL})$ was sparged for 10 minutes and $\mathrm{CuCl}(32 \mathrm{mg}, 0.320 \mathrm{mmol})$ was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture was diluted with EtOAc (50.0 mL) and washed with $\mathrm{HCl}(1.00 \mathrm{M}$ aqueous solution, $2 \times 30.0 \mathrm{~mL})$. The aqueous phase was extracted
with EtOAc ($3 \times 30.0 \mathrm{~mL}$) and the combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (cyclohexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 7: 3$) yielding 2-(allyloxy)-1,3-dibromo-5methoxybenzene (60) as a colourless oil ($0.670 \mathrm{~g}, 81 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06$ (s, 2H, H-2, H-4), 6.17 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-8$), 5.45 (dd, $J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-9^{\prime}$), $5.33-5.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-9^{\prime \prime}\right), 4.49(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-7), 3.76$ (s, 3H, H-10); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4$ (Cq), 147.0 (Cq), 132.7 (CH), 118.6 ($2 \times \mathrm{Ar} \mathrm{CH}$), $118.3\left(\mathrm{CH}_{2}\right), 118.1(\mathrm{Cq}), 74.24\left(\mathrm{CH}_{2}\right), 56.0$ $\left(\mathrm{CH}_{3}\right)$; IR: Vmax $\mathrm{cm}^{-1} 3080,3058,3015,2978,2831,1593,1532,1415,1042$, 966, 927.

Correct M / Z was not found.

2-(5-chloro-2-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane (65):

To a solution of (5-chloro-2-methoxyphenyl)boronic acid (56) (502 mg, 2.70 mmol$) \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}$ (3.50 mL) was added 2,2-dimethyl-1,3-diol ($188 \mathrm{mg}, 1.81 \mathrm{mmol}$) and MgSO_{4} ($257 \mathrm{mg}, 2.14$ $\mathrm{mmol})$. The reaction mixture was stirred at r.t. for 28 hours. Additional 2,2-dimethyl-1,3-diol $(93 \mathrm{mg}, 0.894 \mathrm{mmol})$ was added and the reaction mixture stirred at r.t. for a further 16 hours. The reaction mixture was filtered through a pad of celite, rinsing with $\mathrm{Et}_{2} \mathrm{O}$ to give boronic ester 65 as a light yellow oil ($0.520 \mathrm{~g}, 76 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.29 (dd, $J=$ 8.8, $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 6.78 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-7), 3.78$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H}-8, \mathrm{H}-9$), $1.04(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}-11, \mathrm{H}-12)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 162.3 (Cq), 135.5 (Ar CH), 131.3 (Ar CH), 125.6 (C-CI), 112.0 (Ar CH), $72.7\left(2 \times \mathrm{CH}_{2}\right) 56.2$ (OMe), $31.9(\mathrm{Cq}), 22.0\left(2 \times \mathrm{CH}_{3}\right)$; IR: $\mathrm{Vmax} \mathrm{cm}^{-1}$ 2961, 1439, 1306, 1147, 1049.

B-C signal not observed due to quadripolar relaxation. The correct M / Z was not found. Spectroscopic data is consistent with the literature. ${ }^{56}$

2,6-diiodo-4-nitrophenol (63):

To a solution of $\mathrm{NaClO}_{2}(360 \mathrm{mg}, 4.00 \mathrm{mmol})$ and $\mathrm{NaI}(1.2 \mathrm{~g}, 8.00 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added 4-nitrophenol (62) ($309 \mathrm{mg}, 2.22 \mathrm{mmol}$) in $\mathrm{MeOH}(100 \mathrm{~mL}) . \mathrm{HCl}(37 \%, 0.50 \mathrm{~mL})$ was added the reaction stirred at r.t. for 24 hours.

On completion of the reaction, the reaction mixture was diluted with EtOAc (150 mL) and the aqueous phase extracted with $\operatorname{EtOAc}(3 \times 200 \mathrm{~mL})$. Organic phases were combined and washed with brine (100 mL), dried over MgSO_{4} and filtered. Concentration of the organics in vacuo gave 2,6-diido-4-nitrophenol (63) as a bright orange powder ($0.950 \mathrm{~g}, 95 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.4(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-4)$. $\mathrm{HRMS}(E \mathrm{EI}): \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{I}_{2} \mathrm{NO}_{3}[\mathrm{M}-$ H] ${ }^{-} \mathrm{m} / \mathrm{z}$ calcd. 390.8202 , found 389.8142 .

OH not observed. Missing ${ }^{13} \mathrm{C}$ NMR data. Spectroscopic data consistent with literature. ${ }^{57}$

tributyl(5-chloro-2-methoxyphenyl)stannane (77):

A solution of 2-bromo-4-chloroanisole (75) (550 mg) in THF (3.75 mL) was cooled to $-78^{\circ} \mathrm{C}$ and n-BuLi (1.20 mL) was added over 30 minutes. The reaction mixture was stirred for 2.5 hours. $\mathrm{SnBu}_{3} \mathrm{Cl}(0.540 \mathrm{~mL})$ was added dropwise over 1 minute and the reaction mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 hours. The reaction mixture was then warmed to room temperature where it was stirred for 17 hours. The reaction mixture was quenched with $\mathrm{MeOH}(1.00 \mathrm{~mL})$ and organics concentrated in vacuo. The crude reaction material was purified by flash column chromatography (silica: $\mathrm{K}_{2} \mathrm{CO}_{3}, 9: 1,100 \%$ pentane) to give organostannane 77 as a colourless oil ($241 \mathrm{mg}, 22 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 7.24$ (dd, J = 8.5, 2.6 Hz, 1H, H-1), 6.73 (d, J=8.5 Hz, 1H, H-5), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-7$), 1.52-0.9 (m, 27H, Bu3); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2$ (Cq), 136.2 (Ar CH), 133.1 (ArCH), 129.1 (Cq), 126.1 (C$\mathrm{Cl}), 110.0$ (ArCH), $55.4(\mathrm{OMe})$, $29.2\left(3 \times \mathrm{CH}_{2}\right), 27.3\left(3 \times \mathrm{CH}_{2}\right)$, $13.7\left(3 \times \mathrm{CH}_{2}\right), 9.9\left(3 \times \mathrm{CH}_{3}\right)$.

Due to safety reasons, IR data could not be obtained.

2-(allyloxy)-1,3-diiodo-5-nitrobenzene (64):

(63)

(64)

To a solution of 2,6-diido-4-nitrophenol (63) ($250 \mathrm{mg}, 0.639 \mathrm{mmol}$) in MeCN (2.00 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(178 \mathrm{mg}, 1.29 \mathrm{mmol})$ and allyl bromide $(0.120 \mathrm{~mL}, 1.39 \mathrm{mmol})$. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 18 hours. The organics were concentrated in vacuo and EtOAc (30.0 mL) added. The organic phase was washed with water ($1 \times 30.0 \mathrm{~mL}$). The aqueous phase was extracted with EtOAc ($3 \times 30.0 \mathrm{~mL}$) and combined organic phases dried over MgSO_{4}, filtered and concentrated in vacuo.

The crude material was purified by flash column chromatography (cyclohexane:EtOAc, 95:5) to give 2-(allyloxy)-1,3-diiodo-5-nitrobenzene (64) as a pale yellow solid ($218 \mathrm{mg}, 76 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65$ (s, 2H, H-2, H-4), 6.20 (ddt, J = 17.1, 10.4, $5.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{H}$), 5.53 (dq, $\left.J=17.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12 \mathrm{'}^{\prime}\right), 5.37(\mathrm{dq}, \mathrm{J}=10.4,1.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-12^{\prime \prime}\right), 4.60(\mathrm{dt}, \mathrm{J}=5.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10)$; ${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 163.4 (Cq), 144.8 (Cq), 135.2 ($2 \times \mathrm{Ar} \mathrm{CH}$), $132.0(\mathrm{CH}), 119.9\left(\mathrm{CH}_{2}\right), 90.5(2 \times \mathrm{C}-$ I), $74.5\left(\mathrm{CH}_{2}\right)$; HRMS (ESI ${ }^{+}$): $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{I}_{2} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd. 430.9679 , found 431.8598; IR: Vmax cm ${ }^{-1}$ 2976, 1504, 1432, 1050.

2'-(allyloxy)-5,5"-dichloro-2,2",5'-trimethoxy-1,1':3',1"-terphenyl (61):

To a solution of triaryl $57(101 \mathrm{mg}, 0.249 \mathrm{mmol})$, $\mathrm{NaI}(150 \mathrm{mg}, 1.00 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(88 \mathrm{mg}$, $0.638 \mathrm{mmol})$ in DMF $(0.800 \mathrm{~mL})$ was added allyl bromide ($87.0 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$). The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 18 hours.

The reaction mixtures were diluted with $\operatorname{EtOAc}(10.0 \mathrm{~mL})$ and the organic phase washed with water ($1 \times 20.0 \mathrm{~mL}$). The aqueous phase was extracted with EtOAc $(3 \times 30.0 \mathrm{~mL})$ and the organics combined. The organic phases were washed with brine ($3 \times 30.0 \mathrm{~mL}$) and then dried over MgSO_{4}, filtered and the solvent removed in vacuo.

The crude material was purified by flash column chromatography (cyclohexane:EtOAc, 4:1) giving triaryl 61 ($94 \mathrm{mg}, 85 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30$ ($\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-18$), 7.28 - 7.24 (m, 2H, H-1, 16), 6.87 (d, J = $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-15$), 6.79 (s, 2H, H-8, H-10), 5.35 (m, 1H, H-20), 4.81 (dt, J = 10.4, 1.7 $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-21^{\prime}\right)$, 4.76 (dq, J = 17.1, 1.7 Hz, 1H, H-21"), 3.78 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{H}-23$), 3.77 (s, 6H, H-22, H-23), 3.74 (dt, J = 5.6, 1.7 Hz, 2H, H19); IR: Vmax cm ${ }^{-1} 2934,1493,1459,1246,1202,1032,810$, 643.

[^0]
2,6-dibromobenzene-1,4-diol (67):

To a solution of 2,6-dibromo-4-methoxyphenol (52) ($500 \mathrm{mg}, 1.77 \mathrm{mmol}$) in MeCN (8.25 mL) was added TMSI ($1.50 \mathrm{~mL}, 10.5 \mathrm{mmol})$. The reaction was refluxed for 3 hours. Additional TMSI ($1.65 \mathrm{~mL}, 11.6 \mathrm{mmol}$) was added and the reaction refluxed for a further 16 hours. The reaction mixture was poured over ice/water and the aqueous phase extracted with EtOAc (3 $\times 30.0 \mathrm{~mL})$. The organic phase was washed with $\mathrm{Na}_{2} \mathrm{SO}_{4}(1 \times 30.0 \mathrm{~mL})$, water ($1 \times 30.0 \mathrm{~mL}$) and brine ($1 \times 30.0 \mathrm{~mL}$). The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo to afford 2,6-dibromobenzene-1,4-diol (72) as a light brown powder (443 mg, 93\%).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 9.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.94(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-2, \mathrm{H}-4)$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 151.6$ (Cq), 143.2 (Cq), 118.7 ($2 \times \mathrm{Ar}$ CH) 112.8 ($2 \times \mathrm{C}-\mathrm{Br}$); HRMS (ESI): $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} \mathrm{m} / \mathrm{z}$ calcd. for 267.9040, found 266.8491 .

Spectroscopic data consistent with literature. ${ }^{59}$

2,6-dibromocyclohexa-2,5-diene-1,4-dione (71):

To a solution of 2,6-dibromobenzene-1,4-diol (72) ($490 \mathrm{mg}, 1.83 \mathrm{mmol}$) in MeCN (3.50 mL) and $\mathrm{H}_{2} \mathrm{O}(2.50 \mathrm{~mL})$ was added oxone ($610 \mathrm{mg}, 4 \mathrm{mmol}$) and TBAB ($181 \mathrm{mg}, 0.562 \mathrm{mmol}$) and the reaction mixture stirred at $r . t$. for 1.5 hours. Brine $(10.0 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc ($3 \times 10.0 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (cyclohexane:EtOAc, 9:1) yielding 2,6-dibromocyclohexa-2,5-diene-1,4dione (71) as a yellow powder ($338 \mathrm{mg}, 80 \%$).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (s, 2H, H-2, H-4); HRMS (ESI):
$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Br}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} \mathrm{m} / \mathrm{z}$ calcd. for 265.8880, found 264.8504; IR: Vmax $\mathrm{cm}^{-1} 1692,1577,1263,1003,902$

${ }^{13}$ C NMR data missing. Spectroscopic data consistent with literature. ${ }^{60}$

5,5"-dichloro-2,2"-dimethoxy-[1,1':3',1'-terphenyl]-2',5'-dione (68):

A solution of quinone $\mathbf{7 1}$ ($30 \mathrm{mg}, 0.113 \mathrm{mmol}$), boronic acid $56(54 \mathrm{mg}, 0.290 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.400 \mathrm{~mL}$ of a 2.00 M aqueous solution, 0.800 mmol$)$ in THF (1.10 mL) was degassed for 10 minutes. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 0.00519 \mathrm{mmol})$ was added and the reaction heated at $90^{\circ} \mathrm{C}$ for 16 hours. EtOAc (5.00 mL) was added and the organic phase was washed with $\mathrm{HCl}(5.00$ mL of a 1.00 M aqueous solution). The aqueous phase was extracted with EtOAc (3×5.00 mL) and the combined organic phases dried over MgSO_{4}, filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (cyclohexane:EtOAc, 4:1 to $3: 1$) yielding triaryl 70 as an orange residue ($16 \mathrm{mg}, 37 \%$).

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }^{2}$) $\delta 7.33$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-16$), 7.30 (d, J = $2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-18), 6.93$ (d, J = $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-15), 6.78(\mathrm{~s}$, 2H, H-8, H-10), 3.83 (s, 6H, H-19, H-20); IR: Vmax cm ${ }^{-1}$ 2938, 1491, 1461, 1438, 1241, 1026, 805, 647.
${ }^{13} \mathrm{C}$ NMR data missing. Correct M / Z not found

3-methylbenzo[b]thiophene 1-oxide (75):

To a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ and TFA (15.0 mL) was added 3-methylbenzo[b]thiophene (79) ($0.9 \mathrm{~mL}, 6.73 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}_{2}(0.850 \mathrm{~mL}$ of a 30% aqueous solution). The purple solution was stirred at r.t. for 1 hour and reaction progress was monitored by TLC. The reaction was quenched with NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 30.0 mL). The combined organic phases were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude reaction material was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ EtOAc, 4:1) to give sulfoxide 80 ($729 \mathrm{mg}, 66 \%$).

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 7.91(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.60-7.39$ (m, 3H, $\mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-3), 6.78$ (s, 1H, H-7), 2.29 (d, J = $1.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.0(\mathrm{Cq}), 145.4(\mathrm{Cq}), 138.7$ (Ar CH), 132.3 (Ar CH), 132.0 (Ar $\mathrm{CH}), 129.0(\mathrm{Cq}), 126.2(\mathrm{ArCH}), 122.7(\mathrm{ArCH}), 14.4\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right): \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}$ calcd. for 164.2220, found 165.0375. $\mathbf{R f}=0.16$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: E t O A c, 4: 1$.

Spectroscopic data consistent with literature. ${ }^{61}$

Coordinates for computational studies:

82:

C	0.632527	2.157291	1.028277
C	-0.122758	4.843516	1.345540
C	-0.702985	2.494619	1.330836
C	1.555591	3.198482	0.862143
C	1.193827	4.529256	1.015009
C	-1.061414	3.833839	1.494961
H	2.580776	2.946126	0.603477
H	1.931680	5.313366	0.879109
H	-2.095926	4.052854	1.737443
H	-0.422708	5.879168	1.474988
C	0.084578	-2.632577	-0.421117
C	-1.401760	-4.625646	-1.699564
C	0.642420	-3.391391	-1.452771
C	-1.236352	-2.900790	-0.022868
C	-1.973034	-3.893578	-0.667949
C	-0.088420	-4.382469	-2.096633
H	1.666188	-3.183920	-1.753005
H	-2.988308	-4.080297	-0.334246
H	0.360526	-4.957855	-2.899619
H	-1.986075	-5.397774	-2.191265
O	-1.673182	1.567467	1.534047
O	-1.847760	-2.245358	0.994229
C	0.439485	-0.251789	0.270351
C	2.760283	-0.911836	1.624926
C	0.876238	-1.583300	0.273182
C	1.112027	0.750415	0.976470
C	2.281966	0.395527	1.655070
C	2.049156	-1.903802	0.951937
H	2.805334	1.153966	2.232792

H	2.405745	-2.927983	0.979438
O	-0.696922	0.077452	-0.445476
O	3.897905	-1.287827	2.264453
H	4.283755	-0.522300	2.706933
C	-0.427934	0.506876	-1.779607
H	0.447828	1.170857	-1.770996
H	-0.173832	-0.376257	-2.383626
C	-1.598324	1.227808	-2.368959
H	-1.419447	1.591586	-3.380215
C	-2.769069	1.448644	-1.782062
H	-3.551023	1.997088	-2.297631
H	-2.992374	1.109696	-0.776426
H	-1.567882	0.877851	0.852223
H	-1.210345	-1.667003	1.436199

83:

C	-0.300243	0.942406	1.754686
H	-0.276529	1.774669	2.456133
C	0.063054	1.166431	0.474809
C	0.031122	0.037700	-0.490994
O	0.359568	0.167752	-1.655829
C	-0.541084	-1.315562	-0.022309
C	-0.712973	-0.354963	2.261672
C	-0.801540	-1.416929	1.453301
H	-1.108194	-2.381674	1.845924
O	-0.991682	-0.475971	3.592929
H	-0.917643	0.387219	4.014362
C	0.511962	2.494566	-0.001648
C	1.403148	4.995446	-0.921251
C	-0.201667	3.666476	0.299181
C	1.672580	2.613943	-0.772857

C	2.124047	3.846679	-1.227843
C	0.244159	4.905486	-0.159974
H	2.222698	1.713019	-1.017503
H	3.029280	3.907050	-1.822993
H	-0.322189	5.803050	0.081454
H	1.738435	5.966661	-1.272740
C	0.428332	-2.427537	-0.430754
C	2.282213	-4.447540	-1.064610
C	0.042272	-3.574946	-1.117293
C	1.777543	-2.316855	-0.058064
C	2.696131	-3.312288	-0.374680
C	0.952165	-4.581816	-1.436090
H	-0.991216	-3.694912	-1.422730
H	3.737134	-3.199182	-0.078691
H	0.617594	-5.461220	-1.976621
H	3.004454	-5.220792	-1.307850
O	-1.338653	3.558438	1.046712
O	2.141166	-1.193192	0.620884
C	-1.911069	-1.437294	-0.772395
H	-1.687677	-1.522345	-1.842057
H	-2.408339	-2.356699	-0.444870
C	-2.821567	-0.265014	-0.537040
H	-2.571653	0.653508	-1.066563
C	-3.872030	-0.284351	0.277415
H	-4.494154	0.593312	0.425617
H	-4.145392	-1.179897	0.831321
H	3.094504	-1.198415	0.764668
H	-1.758063	4.425584	1.095182

84:

H	-1.819266	5.197699	-2.630283
C	-1.136985	4.673760	-1.969229

C	0.607625	3.319306	-0.267563
C	-1.520161	3.472969	-1.378932
C	0.130540	5.185627	-1.714521
C	1.000638	4.516840	-0.858992
C	-0.653587	2.774383	-0.539736
H	-2.497145	3.047377	-1.590284
H	0.446098	6.117698	-2.173292
H	1.980584	4.931782	-0.636003
O	1.380393	2.656667	0.633421
C	-0.179243	0.282465	-0.315202
O	0.700078	0.424930	-1.136965
C	-1.042941	1.472094	0.046387
C	-2.125756	1.352911	0.832457
H	-2.712279	2.223556	1.114529
C	-2.558880	0.059029	1.400550
O	-3.438357	0.003900	2.238196
C	-0.397500	-1.016199	0.474631
C	-1.894452	-1.174901	0.836993
H	-2.446158	-1.432384	-0.077994
H	-2.031191	-1.998887	1.539872
C	0.445084	-0.773929	1.777558
H	0.125558	-1.512779	2.515964
H	0.199179	0.214957	2.180350
C	1.928551	-0.879823	1.579677
H	2.287348	-1.801535	1.124508
C	2.803363	0.050996	1.948796
H	3.872248	-0.091283	1.817111
H	2.478555	0.984828	2.401429
C	0.017552	-2.288335	-0.280085
	0.615999	-4.689370	-1.663947

C	0.391920	-4.703720	-0.294416
C	0.524802	-3.488217	-2.351239
H	0.181785	-1.391519	-2.219714
H	0.445252	-5.639568	0.259072
H	0.687440	-3.451900	-3.423521
H	0.853803	-5.612821	-2.182739
O	-0.170216	-3.566560	1.729863
H	2.309961	2.871087	0.493391
H	-0.102839	-4.479056	2.034820

85:
$\begin{array}{llll}\mathrm{H} & -0.427159 & 5.600063 & -2.151598\end{array}$
$\begin{array}{llll}C & 0.225840 & 4.914609 & -1.621776\end{array}$
$\begin{array}{llll}C & 1.895628 & 3.138661 & -0.262348\end{array}$
$\begin{array}{llll}\text { C } & -0.268730 & 3.703397 & -1.145403\end{array}$
$\begin{array}{llll}\text { C } & 1.564966 & 5.227747 & -1.421321\end{array}$
$\begin{array}{llll}\text { C } & 2.398907 & 4.345865 & -0.740554\end{array}$
$\begin{array}{llll}C & 0.550062 & 2.800689 & -0.470738\end{array}$
$\begin{array}{llll}\text { H } & -1.308404 & 3.435347 & -1.312262\end{array}$
$\begin{array}{llll}H & 1.969546 & 6.164910 & -1.791363\end{array}$
$\begin{array}{llll}H & 3.443292 & 4.599555 & -0.572418\end{array}$
$\begin{array}{llll}\text { C } & 0.878258 & -2.312848 & -0.243073\end{array}$
$\begin{array}{llll}\text { C } & 1.942621 & -4.862400 & -0.759462\end{array}$
$\begin{array}{llll}\text { C } & 0.049998 & -3.431925 & -0.414857\end{array}$
$\begin{array}{llll}\text { C } & 2.269697 & -2.491525 & -0.385621\end{array}$
$\begin{array}{llll}\text { C } & 2.783624 & -3.768007 & -0.627088\end{array}$
$\begin{array}{llll}\text { C } & 0.562869 & -4.695779 & -0.667632\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.026232 & -3.292530 & -0.348901\end{array}$
$\begin{array}{llll}\text { H } & 3.860367 & -3.867948 & -0.714715\end{array}$
$\begin{array}{llll}\text { H } & -0.107432 & -5.539672 & -0.795240\end{array}$
$\begin{array}{llll}\text { H } & 2.364706 & -5.844236 & -0.952930\end{array}$
$\begin{array}{llll}O & 2.652625 & 2.263073 & 0.450041\end{array}$

O	3.170395	-1.489429	-0.246334
C	0.641833	0.258788	-0.463068
O	1.476672	0.303397	-1.358838
C	0.016766	1.515394	0.039517
C	0.242124	-1.030774	0.163525
C	-0.995439	1.456869	0.912501
H	-1.451346	2.368079	1.295166
C	-0.754035	-1.025026	1.064718
H	-1.054694	-1.949702	1.550406
C	-1.573728	0.175485	1.436881
O	-1.722758	0.257421	2.851744
H	-0.837236	0.316592	3.233652
C	-3.011141	0.008779	0.877119
H	-2.959258	0.018734	-0.216790
H	-3.577965	0.892731	1.197192
C	-3.695337	-1.237097	1.362502
H	-3.832878	-1.313970	2.438826
C	-4.116092	-2.215569	0.565266
H	-4.611909	-3.097523	0.959901
H	-3.988828	-2.166852	-0.514408
H	3.572419	2.552881	0.444683
H	2.787387	-0.686255	-0.644903

TS1:

$\begin{array}{llll}\text { C } & -1.161141 & 0.432458 & 2.184324\end{array}$
$\begin{array}{llll}H & -1.334250 & 1.043421 & 3.068024\end{array}$
$\begin{array}{llll}C & -0.671649 & 1.018128 & 1.049852\end{array}$
$\begin{array}{llll}\text { C } & -0.458141 & 0.224956 & -0.153678\end{array}$
$\begin{array}{llll}\text { O } & -0.030566 & 0.772946 & -1.210011\end{array}$
$\begin{array}{llll}\text { C } & -0.560656 & -1.219155 & -0.018580\end{array}$
$\begin{array}{llll}C & -1.428651 & -0.959996 & 2.240303\end{array}$
$\begin{array}{llll}\text { C } & -1.154756 & -1.758600 & 1.168675\end{array}$

H	-1.357762	-2.819565	1.236701
C	1.604749	-1.183939	0.499315
H	1.605923	-2.242334	0.729882
H	1.519539	-0.515255	1.352358
C	2.174291	-0.722238	-0.692725
H	2.380236	-1.442421	-1.480322
C	2.139335	0.612598	-1.005245
H	2.437435	0.971369	-1.984253
H	2.026480	1.367442	-0.234283
O	-1.963571	-1.524111	3.361454
H	-2.134335	-0.831818	4.010168
C	-0.335433	2.461945	1.018037
C	0.334176	5.190919	0.940197
C	0.529227	3.018961	1.974993
C	-0.834164	3.303479	0.019988
C	-0.515493	4.655945	-0.022232
C	0.857712	4.374020	1.935235
H	-1.480347	2.874510	-0.736940
H	-0.924069	5.285810	-0.805752
H	1.530106	4.787503	2.684862
H	0.596839	6.244419	0.919694
C	-0.560283	-2.081725	-1.243501
C	-0.651650	-3.700386	-3.558358
C	-1.011536	-1.585727	-2.471348
C	-0.158192	-3.429758	-1.209872
C	-0.199087	-4.224389	-2.354131
C	-1.061852	-2.374637	-3.615349
H	-1.311008	-0.547710	-2.524238
H	0.124851	-5.262082	-2.296164
H	-1.420997	-1.949454	-4.547036
H	-052224	2.191915	2.928371

O	0.292136	-3.950202	-0.026975
H	1.665135	2.698293	3.475268
H	0.528587	-4.875739	-0.163973

TS2:

$\begin{array}{llll}\text { C } & -0.651195 & 0.991519 & 1.683698\end{array}$
$\begin{array}{llll}H & -0.856712 & 1.848115 & 2.322631\end{array}$
$\begin{array}{llll}\text { C } & -0.031036 & 1.173980 & 0.498288\end{array}$
$\begin{array}{llll}C & 0.237894 & 0.001493 & -0.375148\end{array}$
$\begin{array}{llll}0 & 0.751980 & 0.112803 & -1.478790\end{array}$
$\begin{array}{llll}\text { C } & -0.147505 & -1.338245 & 0.176088\end{array}$
$\begin{array}{llll}\text { C } & -1.098798 & -0.314500 & 2.136967\end{array}$
$\begin{array}{llll}\text { C } & -0.615343 & -1.444435 & 1.478338\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.727790 & -2.416937 & 1.948084\end{array}$
$\begin{array}{llll}0 & -1.490061 & -0.472912 & 3.441013\end{array}$
$\begin{array}{llll}\text { H } & -1.798465 & 0.375759 & 3.779536\end{array}$
$\begin{array}{llll}C & 0.431233 & 2.504542 & 0.043350\end{array}$
$\begin{array}{llll}C & 1.371989 & 5.012137 & -0.807387\end{array}$
$\begin{array}{llll}C & -0.398271 & 3.635053 & 0.087187\end{array}$
$\begin{array}{llll}\text { C } & 1.730536 & 2.664976 & -0.448176\end{array}$
$\begin{array}{lllll}C & 2.206670 & 3.901446 & -0.865605\end{array}$
$\begin{array}{llll}C & 0.072346 & 4.878785 & -0.333072\end{array}$
$\begin{array}{llll}H & 2.368420 & 1.790372 & -0.503074\end{array}$
$\begin{array}{llll}\text { H } & 3.221417 & 3.994345 & -1.238931\end{array}$
$\begin{array}{llll}\text { H } & -0.584346 & 5.745821 & -0.290146\end{array}$
$\begin{array}{llll}H & 1.726674 & 5.985778 & -1.132231\end{array}$
$\begin{array}{llll}\text { C } & 0.576002 & -2.492013 & -0.446659\end{array}$
$\begin{array}{llll}\text { C } & 2.117744 & -4.577131 & -1.529650\end{array}$
C $\quad-0.014510 \quad-3.528249-1.162328$
$\begin{array}{llll}\text { C } & 1.971542 & -2.525448 & -0.273673\end{array}$
$\begin{array}{llll}\text { C } & 2.734157 & -3.557641 & -0.810734\end{array}$
$\begin{array}{llll}\text { C } & 0.740940 & -4.567528 & -1.704277\end{array}$

H	-1.087223	-3.527570	-1.317824
H	3.812190	-3.564447	-0.662493
H	0.251389	-5.357597	-2.264479
H	2.721214	-5.376982	-1.948036
O	-1.678826	3.481886	0.545621
O	2.530009	-1.521357	0.455635
C	-2.174847	-1.151457	-0.881848
H	-1.792898	-1.057804	-1.893929
H	-2.428601	-2.154673	-0.555043
C	-2.742620	-0.077486	-0.214563
H	-2.630268	0.919956	-0.631560
C	-3.108734	-0.198467	1.116031
H	-3.497520	0.661365	1.655555
H	-3.364105	-1.166112	1.536586
H	-2.144271	4.319118	0.432665
H	3.489597	-1.610259	0.432383

12. References

1 D. A. Dias, S. Urban and U. Roessner, Metabolites, 2012, 2, 303-336.
2 N. Thomford, D. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi and K. Dzobo, International Journal of Molecular Sciences, 2018, 19, 1578.

3 N. E. Thomford, D. A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi and K. Dzobo, International Journal of Molecular Sciences, 2018, 19, 1578.

4 L. K. Caesar, N. B. Cech, J. Kubanek, R. Linington and H. Luesch, 2019, 36, 845-936.
5 G. D. Wright, Microbial Biotechnology, 2019, 12, 55-57.
6 F. E. Koehn and G. T. Carter, Nature Reviews Drug Discovery, 2005, 4, 206-220.
7 M. S. Butler, F. Fontaine and M. A. Cooper, Planta Medica, 2014, 80, 1161-1170.
8 J. W. H. Li and J. C. Vederas, Science, 2009, 325, 161-165.
9 F. Li, Y. Wang, D. Li, Y. Chen and Q. P. Dou, Expert Opinion on Drug Discovery, 2019, 14, 417-420.
R. D. Haworth, Journal of the Chemical Society (Resumed), 1942, 0, 448-456.
O. R. Gottlieb, Progress in the Chemistry of Organic Natural Products, 1978, 35, 1-72
P. Eklund and J.-E. Raitanen, Molecules, 2019, 24, 220.
L. I. Pilkington, Molecules, 2018, 23, 1-24.
K. M. Herrmann and L. M. Weaver, Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50, 473-503.
K. M. Herrmann, American Society of Plant Physiologists, 1995, 7, 907-919.
J. Y. Pan, S. L. Chen, M. H. Yang, J. Wu, J. Sinkkonen and K. Zou, Natural Product Reports, 2009, 26, 1251-1292.
J. Wang, T. Ho, L. Chang, C. Chen, Journal of Pharmacy and Pharmacology, 1995, 47, 857-860.
M. Moriyama, J. M. Huang, C. S. Yang, H. Hioki, M. Kubo, K. Harada and Y. Fukuyama, Tetrahedron, 2007, 63, 4243-4249.
I. Kouno, T. Morisaki, Y. Hara, C. S. Yang, Chemical \& Pharmaceutical Bulletin, 1991, 39, 2606-2608.
Z. H. Pan, L. Cheng, D. S. Ning, L. Y. Peng, Y. X. Fu and L. C. Li, Phytochemistry Letters, 2019, 30, 210-214.
J. F. Liu, Z. Y. Jiang, C. A. Geng, X. bin Zou, Y. Shi, Y. B. Ma, X. M. Zhang and J. J. Chen, Planta Medica, 2010, 76, 1464-1467.
C. Chen, L. Jiang, M. Zhang, X. Pan, C. Peng, W. Huang and Q. Jiang, Food and Function, 2019, 10, 2651-2657.
C.-F. Dong, L. Liu, H.-R. Luo, X.-N. Li, Z.-Y. Guan and Y.-F. Wang, Regular Article Nat. Prod. Bioprospect, 2012, 2, 133-137.
L. K. Sy and G. D. Brown, Journal of Chemical Research - Part S, 1998, 0, 476-477.
S. C. Tzeng and Y. C. Liu, Journal of Molecular Catalysis B: Enzymatic, 2004, 32, 7-13.
R. M. Denton and J. T. Scragg, Synlett, 2010, 4, 633-635.
P. J. Yin, J. S. Wang, D. D. Wei, Y. Zhang, P. R. Wang, X. B. Wang and L. Y. Kong, Fitoterapia, 2013, 88, 31-37.
D. Darmawan, Journal of Chemical Information and Modeling, 2019, 53, 1689-1699.
N. R. Davies, Nature, 1964, 201, 490-491.
M. Larhed and A. Hallberg, Journal of Organic Chemistry, 1996, 61, 9582-9584.
A. de La Hoz, A. Díaz-Ortiz and P. Prieto, Alternative Energy Sources for Green Chemistry, 2016, ch. 1, 1-33.
N. E. Leadbeater and M. Marco, Journal of Organic Chemistry, 2003, 68, 888-892.
B. Schmidt and M. Riemer, Journal of Organic Chemistry, 2014, 79, 4104-4118.
C. Griffiths and N. E. Leadbeater, Tetrahedron Letters, 2000, 41, 2487-2490. X.-H. Fan and L.-M. Yang, European Journal of Organic Chemistry, 2011, 8, 14671471.
S. Thapa, B. Shrestha, S. K. Gurung and R. Giri, Organic and Biomolecular Chemistry, 2015, 13, 4816-4827.
A. J. J. Lennox and G. C. Lloyd-Jones, Israel Journal of Chemistry, 2010, 50, 664-674.
H. G. Kuivila and K. V. Nahabedian, General Acid Catalysis in the Protodeboronation of Areneboronic Acids, 1961, 3, 2159-2163.
H. G. Kuivila, J. F. Reuwer Jr. and J. A. Mangravite, Canadian Journal of Chemistry, 1963, 41, 3081-3090.
H. G. Kuivila, J. F. Reuwer and J. A. Mangravite, Journal of the American Chemical Society, 1964, 86, 2666-2670.
A. J. J. Lennox and G. C. Lloyd-Jones, Israel Journal of Chemistry, 2010, 50, 664-674.
A. J. J. Lennox and G. C. Lloyd-Jones, Chemical Society Reviews, 2014, 43, 412-443.
A. J. J. Lennox and G. C. Lloyd-Jones, Journal of the American Chemical Society, 2012, 134, 7431-7441.
A. J. J. Lennox and G. C. Lloyd-Jones, Angewandte Chemie International Edition, 2012, 51, 9385-9388.
D. Haas, J. M. Hammann, R. Greiner and P. Knochel, ACS Catalysis, 2016, 6, 15401552.
A. Joshi-Pangu, M. Ganesh and M. R. Biscoe, Organic Letters, 2011, 13, 1218-1221.
J. M. Hammann, D. Haas and P. Knochel, Angewandte Chemie International Edition, 2015, 54, 4478-4481.
V. Farina, V. Krishnamurthy and W. J. Scott, Organic Reactions, John Wiley \& Sons, Inc., 1997, 50, 1-652.
M. Kosugi, K. Sasazawa, Y. Shimizu and T. Migita, Chemistry Letters, 1977, 6, 301302.

50 M. M. Heravi, V. Zadsirjan, P. Hajiabbasi and H. Hamidi, Monatshefte fur Chemie, 2019, 150, 535-591.

51 E. Yagodkin and C. J. Douglas, Tetrahedron Letters, 2010, 51, 3037-3040.
52 G. M. Keserú and M. Nógrádi, Studies in Natural Products Chemistry, 1997, 20, 263322.
Z. He, G. J. P. Perry and D. J. Procter, Chemical Science, 2020, 11, 2001-2005.

54 M. Boukachabia, N. Vriamont, D. Lambin, O. Riant and L. Aribi-Zouioueche, Comptes Rendus Chimie, 2014, 17, 403-412.

55 J. Chae and S. L. Buchwald, Journal of Organic Chemistry, 2004, 69, 3336-3339.
57 US Pat. US7037905B2, 2006.
58 L. Bedrač and J. Iskra, Advanced Synthesis \& Catalysis, 2013, 355, 1243-1248.
59 Y. Kitagawara, T. Ohe, K. Tachibana, K. Takahashi, S. Nakamura and T. Mashino, Drug Metabolism and Disposition, 2015, 43, 1303-1306.
60 Z. He, A. P. Pulis and D. J. Procter, Angewandte Chemie International Edition, 2019, 58, 7813-7817.

61
P. J. Yin, J. S. Wang, D. D. Wei, Y. Zhang, P. R. Wang, X. B. Wang and L. Y. Kong, Fitoterapia, 2013, 88, 31-37.

[^0]: ${ }^{13} \mathrm{C}$ NMR data missing.

