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Abstract 
 

 Liver segmentation is a critical task for diagnosis, treatment and follow-up processes 

of liver cancer. Computed Tomography (CT) scans are the common medical image modality 

for the segmentation task.  Liver segmentation is considered a very hard task for many 

reasons. Medical images are limited for researchers. Liver shape is changing based on the 

patient position during the CT scan process, and varies from patient to another based on the 

health conditions. Liver and other organs, for example heart, stomach, and pancreas, share 

similar gray scale range in CT images. Liver treatment using surgery operations is very 

critical because liver contains significant amount of blood and the position of liver is very 

close to critical organs like heart, lungs, stomach, and crucial blood veins. Therefore the 

accuracy of segmentation is critical to define liver and tumors shape and position especially 

when the treatment surgery conducted using radio frequency heating or cryoablation 

needles.  

In the literature, convolutional neural networks (CNN) have achieved very high 

accuracy on liver segmentation and the U-Net model is considered the state-of-the-art for 

the medical image segmentation task. Many researchers have developed CNN models based 

on U-Net and stacked U-Nets with/without bridged connections. However, CNN models need 

significant number of labeled samples for training and validation which is not commonly 

available in the case of liver CT images. The process of generating manual annotated masks 

for the training samples are time consuming and need involvement of expert clinical 

doctors. Data augmentation has thus been widely used in boosting the sample size for 

model training. 

Using rotation with steps of 15o and horizontal and vertical flipping as augmentation 

techniques, the lack of dataset and training samples issue is solved. The choice of rotation 

and flipping because in the real life situations, most of the CT scans recorded while the 
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while patient lies on face down or with 45o, 60o,90o on right side according to the location 

of the tumor. Nonetheless, such process has brought up a new issue for liver segmentation. 

For example, due to the augmentation operations of rotation and flipping, the trained model 

detected part of the heart as a liver when it is on the wrong side of the body. 

The first part of this research conducted an extensive experimental study of U-Net 

based model in terms of deeper and wider, and variant bridging and skip-connections in 

order to give recommendation for using U-Net based models. Top-down and bottom-up 

approaches were used to construct variations of deeper models, whilst two, three, and four 

stacked U-Nets were applied to construct the wider U-Net models. The variation of the skip 

connections between two and three U-Nets are the key factors in the study. The proposed 

model used 2 bridged U-Nets with three extra skip connections between the U-Nets to 

overcome the flipping issue. A new loss function based on minimizing the distance between 

the center of mass between the predicted blobs has also enhanced the liver segmentation 

accuracy. Finally, the deep-supervision concept was integrated with the new loss functions 

where the total loss was calculated as the sum of weighted loss functions over each 

weighted deeply supervision. It has achieved a segmentation accuracy of up to 90%.  

The proposed model of 2 bridged U-Nets with compound skip-connections and specific 

number of levels, layers, filters, and image size has increased the accuracy of liver 

segmentation to ~90% whereas the original U-Net and bridged nets have recorded a 

segmentation accuracy of ~85%.  Although applying extra deeply supervised layers and 

weighted compound of dice coefficient and centroid loss functions solved the flipping issue 

with ~93%, there is still a room for improving the accuracy by applying some image 

enhancement as pre-processing stage. 
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1 Chapter 1 

Introduction 
 

1.1 Motivation 
 

Cancers recorded in 2017 as the second reason of death all over the world whereby 9.6 

million people are estimated to have died from the various forms of cancer.  Liver cancer 

was ranked the 4th among all cancers with a record of 819,435 cases with the rate ~13 per 

100,000. According to the disease burden rates, Disability-Adjusted Life Years (DALY) rates 

in 2017 where one DAILY equal one year loss of healthy life, Liver cancer ranked the second 

of all cancers that affects the healthy life. [1]  

In 2018, the number of liver cancer cases was ranked the 6th ranked between different 

cancers by 4.7% and 8,141,080 of total 18,078,957 Figure 1-1, while it became the 4th 

cause of death among all cancers with 626,679 of 9,555,027 , 6.6% Figure 1-2 [2]. 

According to ‗Global Cancer Observatory, International Agency for Research on Cancer, 

World Health Organization―  [2] the number of deaths because of cancers would be 

increased to reach 13 million in 2030 and 17 million in 2040.  

In the United States Since 1980, the number of liver cancer cases has tripled. 

Between 2007 and 2016, the number of people diagnosed with the disease increased by 

approximately 2% annually. Men are about 3 times more likely than women to be diagnosed 

with the disease. When compared with the United States, liver cancer is much more 

common in Africa and Southeast Asia. In some countries, it is the most common cancer 

type. [3], [4] 
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Figure 1-1 Estimated number of new cases of cancers in 2018, worldwide, all ages, both sexes, The chart adapted from 

“World Health Organization,2020.https://gco.iarc.fr/” [2] 

 

 

Figure 1-2 Estimated number of deaths in 2018 of all cancers worldwide, all ages, both sexes  The chart adapted from “World 

Health Organization,2020.https://gco.iarc.fr/” [2] 
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1.2 Research problems 
 
Medical image analysis is used to help clinical doctors to diagnose, planning, surgery, 

treatment, and follow up. Medical image segmentation aims to extract the organ of interest 

and display it separately. Liver segmentation aims to automatically identify the liver shape, 

location, and boundaries using one of the medical image modality, e.g. CT scans, MRI, 

Ultrasound, etc. The output of the segmentation is a mask for liver in white and the 

remaining image in black. Liver segmentation is an essential step in the processes of 

diagnoses, treatment, and follow-up for liver diseases including cancers. Segmenting the 

liver and tumors gives clinical doctors a clear view of the location, shape, and size of the 

liver and tumors, these details are needed to decide the method and dose of treatment.  

Liver segmentation introduced as a challenging task in Medical Image Computing and 

Computer-Assisted Intervention conference (MICCAI 2007). A significant number of surveys 

concluded the approaches of liver segmentation into 1) Gray level based (region growing, 

active contour, Graph cut, threshold based, clustering based). 2) Statistical models 

Active Shape Model (ASM), Active Appearance Model (AAM). 3) Texture based 

(Machine learning, Pattern recognition). 4) Other methods (deformable model based 

methods, Probabilistic atlas based methods , level set based methods)  [5]–[11].  

Several methods based on Deep learning approaches, including Convolutional Neural 

Network (CNN) have been reported in the literature, obtaining the best recently published 

automatic liver segmentation methods, as good performances as Dice Similarity 

Coefficient (DSC) of 0.96 [12], [13]. U-Net model had been built upon the elegant 

architecture of FCN. U-Net benefits from a superior design of skip connections between 

different stages of the network. The model consists of two paths with the same number of 

levels. The contracting path that apply convolutional filters on the input image to catch the 

image features and down-sampling to reduce the image size after each layer, while the 

expansion path concatenate the up-sampled feature maps from the previous layer with the 
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feature maps from the convolutional layer at the same level on the contracting path then 

apply de-convolution to increase the size of the feature maps with each level to end up with 

the same size as the original image. For U-Net model proposed in 2015 and achieved 92% 

accuracy for 2D segmentation of neuronal structure in electronic Microscopy (EM) images 

stack challenge by International Symposium on Biomedical Imaging (ISBI), U-Net 

considered as a state-of-the-art for medical image segmentation [14]. Many research 

papers in the literature proposed models based on U-Net structure with /without 

modifications .e.g.  Stacked 2U-Nets with conditional random field (CRF) approach as a 

post-processing step [15], integrating Graph cut with 2U-Net stacked, 2D bridged U-Net for 

prostate segmentation that connect two U-Nets using two bridge connections. The first 

bridge concatenates the output feature maps for each level from the expansion path of the 

first U-Net with the inputs of the same level on the contracting path of the second U-Net, 

while the second connection concatenates the output feature maps from each level of the 

contracting path of the first U-Net to the inputs of the same level on the expansion path of 

the second U-Net. [16] .etc. 

Although U-Net considered as state-of-the-art for medical image segmentation, the 

increasing in the number of models designed based on U-Net may cause confusion in terms 

of what is the best depth for U-Net? Is it better to stack more than one U-Net together? 

What is the best number of filters applied to each convolutional layer? Are there any 

recommendations for connecting two or more U-Nets to get better accuracy? In order to 

answer these questions and provide some recommendations for using U-Net in medical 

image segmentation, the research contains part for the results of the empirical study 

conducted for that reason.  

Liver segmentation is a very hard task for many reasons. The segmentation 

algorithm will be affected by different image modalities sources, e.g. MRI, CT, Ultrasound, 
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X-Ray, and endoscopy. Even with the same modality, using different machines, machine 

brands, and the scanning setting may result in different image characteristics. 

 Most medical image devices generate only gray-scale images where internal organs 

share or have similar intensity (e.g. liver, kidney, stomach, and heart). Some organs are 

very small in size in some layers of the scans. For example, some CT slices show the lowest 

parts of the liver as just a very small point. 

The shape and size of liver could change from patient to another patient. Even for 

the same patient, liver shape, size, and position vary according to the patient position 

during the scanning process where the patient may lie as face up, face-down, or on one 

side.  

The number of datasets available for public research is quite small because of the 

personal data confidentiality, and generating manually annotated masks for liver is a time 

consuming task that needs clinical experts. The manually annotated masks serve as a 

ground truth for model training, validation and accuracy testing.  

A new issue appeared during exploring different models based on U-Net we will refer 

to it as ―Flipping Issue‖. In order to increase the number of training samples, flipping 

vertical and horizontal and rotation with 15o angel step implemented as augmentation 

techniques that will cover the variations in real life patient position during the scanning 

process, e.g. facing down, facing up, lying on the right or left side with some angels (30o, 

45o, 60o, 90o) based on the tumor location during and after the treatment process. The 

tested models including U-Net and bridged U-Net had segmented two parts on both sides of 

the image, while the ground truth has only one part. The second segmented part is actually 

part of the heart not liver. The problem shows that some features related to the position of 

the liver hadn‘t been captured by the model due to using the augmented data during the 

model training. This research contains a section of experiments to solve this issue. 
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The segmentation accuracy is still an open challenge in medical image segmentation 

especially for the liver. In addition to, there is no single approach can segment multiple 

organs, or work with different modalities. Even with only liver and same modality for CT 

scans, models‘ accuracy will vary with different datasets. 

 

1.3 Project background 
 

The research is part of a project sponsored by eSienceFund from Ministry of 

Science, Technology and Innovation (MOSTI) in collaboration with Monash University and 

National Cancer Institute, Malaysia (IKN). The project objective is to segment the liver and 

tumors from CT images and study the effect of treatment using Radio Frequency and 

Cryoablation and the needed dose without affecting the liver healthy cells and the blood 

veins. The prototype that simulates the treatment process and the shortest and best 

position for radio frequency needles insertion to avoid the critical organs surrounding the 

liver and calculate the dose and effect on the healthy liver cells represents the novel 

contribution of the project.  The accuracy of the liver segmentation is crucial for the 

treatment process in terms of position, location, shape, and size. 

 

1.4 Research questions 
 

The research questions aim to enhance the accuracy of liver segmentation in terms 

of modifying U-Net model as the state-of-the-art of medical image segmentation and 

handling the shortage of medical images that needed to train U-Net models. By answering 

the following questions there will be some recommendations for extending U-Net model and 

explaining for some limitations. 
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1- Can augmentation solve the issue of limited number of available samples of medical 

images and masks?  

2- When trying to use U-Net model, does it give better performance if more layers 

added (Meaning deeper U-Net)? 

3- Will making U-Net wider by stacking more than one U-Net together enhance the 

accuracy? 

4- Which image size is preferred when using U-Net, deeper U-Net, and stacked U-Net? 

512*512, 256*256, or 128*128? 

5- Will changing the filters‘ number for the Bridged U-Net enhance the accuracy? 

6- Is there a better connection or skip connections than the original 2 bridged U-Nets? 

7- Does extending 2 bridged U-Net to be 3 U-Net make better performance? 

8- Which type of connections would be better for 3 bridged U-Net? 

9- What are the recommendations of using U-Net for liver segmentation? 

 

1.5 Research objectives 
 

The research has two main objectives. The first objective is to investigate different 

models structures that inherit the main U-Net structure with variant of modifications e.g. 

depth, width, number of filters , and skip connections .etc. to introduce recommendations 

for using models based on U-Net model.  

 

The second objective is to overcome the flipping issue that appeared as a result of 

applying the rotation and flipping as an example of augmentation techniques. All the tested 

model including U-Net, 2Bridged U-Net, modified U-Net and the compound 2 U-Nets showed 

the flipping issue. The flipping issue shows that, the model segment two parts as liver on 

the right and left while the ground truth only have one part to the left. The problem shows 

that the wider image context is not captured in the model. The flipping issue illustrated that 
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the model could not capture some geospatial features of the liver because the training 

augmented data showed the liver in different locations of the image due to the rotation.  

 

1.6 Proposed solutions  
 

In order to achieve the first objective, an extensive empirical study has been 

conducted to answer each of the research questions.  Top-down and bottom-up approaches 

are proposed to generate the models to study the performance of the deeper U-Net. Top-

Down approach starts with a U-Net model consists of 3 levels with a number of filters at 

each level, e.g. (8, 16, 32). Then adding a level at the bottom most layer will generate the 

next deeper mode, e.g. (8, 16, 32, 64).  The process of adding a new level at the bottom 

will continue until the deepest applicable level reached, according to the computational 

resource limitation, the whole process will be repeated with different U-Net that has a 

number of filters applied to the first layer different than 8.e.g. (16, 32, 64, 128, 256).  

Bottom-Up approach is similar to the Top-Down approach, but the bottom layer is the fixed 

layer and the next deeper model will be generated by adding the layer over the topmost 

layer, e.g. starting with 4 levels U-Net with a number of filters (256, 512, 1024, 2048) then 

add a new level on top to generate the deeper model with 5 levels and number of filters 

(128, 256, 512, 1024, 2048), the process will keep repeating with different layer at the 

deepest layer, .e.g. (32, 64, 128, 256, 512, 1024). Rotation and flipping techniques applied 

to overcome the lack of datasets need to train the CNN models. Stacking two, three, and 

four U-Nets are proposed to test the accuracy of wider U-Nets. Proposed models based on 2 

and 3 bridged U-Nets with modified and compound skip and bridge connections are used as 

a new model for liver segmentation, which has achieved better segmentation accuracy than 

the state-of-the-art. 
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Regarding the second objective, a new model based on the bridged U-Net is 

proposed with deep-supervision approach integrated in the model. In addition to that, a new 

proposed weighted loss function was applied to minimize the total loss of the model.  

 

The new model based on 2 bridged U-Net with modified and extended skip 

connections and extra bridged connections recorded better accuracy over the original U-Net 

and bridged net.  Applying the new approach of deep-supervision to the model reduced the 

flipping issue while integrating the new proposed weighted loss functions within the model 

with deep-supervision solved ~93% of the flipping issue. 

1.7 Research scope 
 

The research only focused on CT scans as the main medical images and not explored 

any other modality, e.g. X-Ray or MRI because CT scans are commonly used for Liver 

tumors diagnosis and treatment process.  The research focus on Liver segmentation and no 

other organs had been investigated. Other organs, for example, kidney, and blood vessels 

are not included because of the shortage of datasets, and significant difference between 

liver and other organs in features and texture and shape. Liver tumors couldn‘t be 

investigated because of time limitation. 

1.8 The structure of the thesis 
 

The rest of the thesis consists of 4 more chapters. Chapter 2 (Literature Review) 

contains the related work regarding image segmentation in general and specifically medial 

image segmentation focusing on the techniques, approaches, algorithms for liver 

segmentation. The research methodology will be detailed explained in chapter 3 with full 

details of the dataset and materials, software and hardware, the stat-of-the-art-models 

used in the research, the new models and techniques and the related experiments, the 
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contribution of loss functions and how it work to achieve the research objectives.  Chapter 

4 includes all the results that recorded from each experiment compared with the rest of 

results, discussion of the results indicators and the effect of model modifications and loss 

functions on the models‘ performance in terms of accuracy. Finally, the conclusion of the 

research and the relation to the objectives will be stated in chapter 5, in addition to the 

future research work and vision.  
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2 Chapter 2              

Literature review 

 

This chapter consists of 4 main sections. First section is an overview of image 

segmentation and a brief introduction for the most common used techniques. Section 2 

contains a review for medical image segmentation and the general used methods for 

segmentation. Section 3 illustrates in details the common deep learning approaches that 

used in medical image segmentation. Section 4 will focus on liver segmentation and the 

related models and approaches. 

 

2.1 Image segmentation 
 

Segmentation is defined as the process of partitioning an image into a set of non-

overlapping regions whose union is the entire image. These regions should ideally 

correspond to objects and their meaningful parts, and background. The level to which the 

subdivision is carried depends on the problem being solved. The segmentation should stop 

when the objects of interest in an application have been isolated. Image segmentation 

algorithms generally are based on one of two basic proper ties of intensity values: 

discontinuity and similarity. In the discontinuity category, the approach is to partition an 

image based on changes in intensity, such as edge detection. The principal approaches in 

the Similarity category are based on partitioning an image into regions that are similar 

according to a set of predefined criteria.  Thresholding, region growing, and region splitting 

and merging are examples of methods in this category[17][18]. 
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The popular techniques used for image segmentation are: thresholding method, edge 

detection based techniques, region based techniques, clustering based techniques, 

watershed based techniques, partial differential equation based and artificial neural network 

based techniques etc. These all techniques are different from each other with respect to the 

method used by these for segmentation.[19] 

2.1.1 Threshold 

A thresholding procedure attempts to determine an intensity value, called the 

threshold, which separates the desired classes. The segmentation is then achieved by 

grouping all pixels with intensity greater than the threshold into one class, and all other 

pixels into another class[20]. The output of the thresholding operation is a binary image 

whose gray level of 0 (black) will indicate a pixel belonging to the object of interest and a 

gray level of 1 (white) will indicate the background [21]. There are different types of 

thresholding based on the threshold value and how it has been calculated such as single, 

multiple, global, local, and Otsu thresholding.  

While single thresholding depends on a single intensity value and transforms input 

image to a binary image by grouping the pixels with intensities, higher than the threshold 

into one class, and the other pixels into another class. [22], [23],  Multi-thresholding use 

more than one thresholding point [24]. The output image, resulting from multi-thresholding, 

is no longer binary, but consists of a limited number of grey levels based on the number of 

thresholding values. Global thresholding is The simplest and fastest method is called 

global thresholding, where one threshold value is used for the entire image[22], The 

threshold can be fixed through all the image[25], while Local OR Adaptive Thresholding  

is used when the brightness of the image varies from part to another [26], [27].In adaptive 

thresholding, a criterion function is devised that yields some measure of separation between 

regions. A criterion function is calculated for each intensity and that which maximizes this 
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function is chosen as the threshold [21] and the image can be divided into small pieces, and 

apply thresholding to each piece individually [22].  While the advantage of thresholding 

method is no need of previous information, simplest method, its disadvantage is highly 

dependent on peaks, spatial details are not considered. 

 

2.1.2 Edge Based Segmentation Method  
 

The edge based segmentation methods are based on the rapid change of intensity 

value in an image because a single intensity value does not provide good information about 

edges. Edge detection techniques locate the edges where either the first derivative of 

intensity is greater than a particular threshold or the second derivative has zero crossings. 

In edge based segmentation methods, first of all the edges are detected and then are 

connected together to form the object boundaries to segment the required regions. The 

basic two edge based segmentation methods are: Gray histograms and Gradient based 

methods. The edges can be detected by applying one filter (operator) to the whole image in 

terms of matrix multiplications. sobel operator, canny operator and Robert‘s operator .etc. 

can be used. Result of these methods is basically a binary image. These are the structural 

techniques based on discontinuity detection. Usually edges occur at the point of intersection 

of two regions with varying intensities[28]. The advantage of these techniques is that they 

work very well only on images with good contrast between different regions. Their 

disadvantages include; they detect all the edges; hence, it is very difficult to find the 

relation between the edges and the region of interest. In addition, the algorithms are 

sensitive to noise[22] [21]. 
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2.1.3 Region Based Segmentation Method 
 

The region based segmentation methods are the methods that segments the image 

into various regions having similar characteristics. There are two basic techniques based on 

this method [29]. Region growing methods: The region growing based segmentation 

methods are the methods that segments the image into various regions based on the 

growing of seeds (initial pixels). These seeds can be selected manually (based on prior 

knowledge) or automatically (based on particular application). Then the growing of seeds is 

controlled by connectivity between pixels and with the help of the prior knowledge of 

problem, this can be stopped. Region splitting and merging methods the region splitting 

and merging based segmentation methods uses two basic techniques i.e. splitting and 

merging for segmenting an image into various regions. Splitting stands for iteratively 

dividing an image into regions having similar characteristics and merging contributes to 

combining the adjacent similar regions. Region based methods are immune to the noise and 

useful when it is easy to define similarity criteria easy but it consumes significant time and 

memory. 

 

2.1.4 Clustering Based Segmentation Method  
 

The clustering based techniques are the techniques, which segment the image into 

clusters having pixels with similar characteristics. There are two basic categories of 

clustering methods: Hierarchical method and Partition based method. The hierarchical 

methods are based on the concept of trees. In this the root of the tree represents the whole 

database and the internal nodes represent the clusters. On the other side the partition 

based methods use optimization methods iteratively to minimize an objective function. In 

between these two methods there are various algorithms to find clusters. There are basic 

two types of clustering. [30] Hard Clustering: Hard clustering is a simple clustering 
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technique that divides the image into set of clusters such that one pixel can only belong to 

only one cluster. An example of a hard clustering based technique is one k-means clustering 

based technique known as HCM. In this technique, first of all the centers are computed then 

each pixel is assigned to nearest center. Soft clustering soft clustering techniques are 

most useful for image segmentation in which division is not strict. The example of such type 

of technique is fuzzy c-means clustering where one pixel can belong to more than one 

clusters and this degree of belonging is described by membership values. Fuzzy c-means 

clustering technique is more flexible than other techniques but determining the membership 

function is not easy. 

2.1.5  Watershed Based Methods  
 

The watershed based methods uses the concept of topological interpretation. In this 

the intensity represents the basins having hole in its minima from where the water spills. 

When water reaches the border of basin the adjacent basins are merged together. To 

maintain separation between basins dams are required and are the borders of region of 

segmentation. These dams are constructed using dilation. The watershed methods consider 

the gradient of image as topographic surface. The pixels having more gradient are 

represented as boundaries which are continuous.[19]. The results are more stable, detected 

boundaries are continuous but gradients calculation is complex and computationally 

expensive.  

 

2.1.6 Partial Differential Equation (PDE) Based Segmentation Method  
 

The partial differential equation based methods are the fast methods of 

segmentation. These are appropriate for time critical applications. There are basic two PDE 

methods: non-linear isotropic diffusion filter (used to enhance the edges) and convex non-
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quadratic variation restoration (used to remove noise). The results of the PDE method is 

blurred edges and boundaries that can be shifted by using close operators. The fourth order 

PDE method is used to reduce the noise from image and the second order PDE method is 

used to better detect the edges and boundaries [30] although the computation is more 

complex. 

2.1.7 Artificial Neural Network Based Segmentation Method  
 

The artificial neural network based segmentation methods simulate the learning 

strategies of human brain for the purpose of decision making. Now days this method is 

mostly used for the segmentation of medical images. It is used to separate the required 

image from background. A neural network is made of large number of connected nodes and 

each connection has a particular weight. In this the problem is converted to issues which 

are solved using neural network. This method has basic two steps: extracting features and 

segmentation by neural network [19]. Although the need to write complex program is 

eliminated, it needs significant training time and number of samples for training.  

 

Segmentation of nontrivial images is a very hard problem made even harder by non-

uniform lighting, shadows, overlapping among objects, poor contrast between objects and 

background, and so on—that has been approached from many different angles, with limited 

success. Many image segmentation techniques and algorithms have been proposed and 

implemented during the past 40 years and yet, except for relatively ―easy‖ scenes, the 

problem of segmentation remains unsolved [18] 
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2.2 Medical Image segmentation 
 

Medical imaging has originated around 120 years ago [31], [32], and now with 

different modalities and processes, it plays an important role in public health through 

improving the process of diagnosis, treatment, and follow-up of a disease that has been 

diagnosed and/or treated [33]. However studying medical images depends mainly on the 

visual interpretation by the radiologists, and this may consume significant time and it is 

usually subjective, depending on the experience of the radiologist[22] . Using Computer-

aided systems for medical image analysis help doctors in many applications. Such as 

stomatology [34], dental surgery and teeth segmentation and labeling[35]–[37], mandible 

segmentation [38]–[40], reconstruction [41]–[43], and  visualization[44], bones fractures 

detection[45], muscles segmentation[46], and brain visualization and tumor detection,  

liver, lung, and kidney visualization.  

The medical imaging devices and output quality have been tremendously developed 

through the last 120 years [47]. X-ray , Computed Tomography (CT) , Magnetic Resonance 

Imaging (MRI), ultrasound, endoscopy are examples for the most currently used modalities 

for medical images [47]–[51][31]. 

In Medical image analysis, segmentation is one of the initial steps to identify the 

object (anatomical organs) which has been examined. The output of the segmentation step 

cruelly affects the whole process of medical image analysis. Some examples of medical 

image segmentation include, border detection in angiograms of coronary, surgical planning, 

simulation of surgeries, brain, liver, lung, kidney segmentation and tumor detection, blood 

cells automated classification, mass detection in mammograms, heart segmentation and 

analysis of cardiac images[48]. 

Due to the needs of exact definition of Region of Interest (ROI), complex visual 

characteristics of diseases and difficulty of basic knowledge provision complicate the 
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segmentation step in medical image analysis. Furthermore the segmentation methods are 

subject to the dimensionality and the modality of imaging and number of available datasets. 

Thus segmentation has remained a challenge and an active research field. So Medical image 

analysis is highly required to be automatic for better understanding the type and location of 

disease and detection of the disease progression as well, [52].  

The segmentation method may fail at the same anatomical structure if the images of 

the structure are obtained by using a different modality or even using the same modality 

but in different imaging machines[53]. However, there is no universal method which works 

for all kinds of anatomical structures, the segmentation of medical images is a challenging 

task. Segmentation of medical image faces many problems because of which the quality of 

segmentation process gets affected [54]. The problem of uncertainty arises when there is 

noise in the image which makes the segmentation and classification of image difficult. The 

reason is that intensity values of pixels are amended because of noise in the image. This 

alteration in the intensity values of pixels disturbs uniformity in the intensity range of image 

[55]. Noise can be in the image because of motion in the picture, blurring effect and lack of 

diverse features etc. The problem of partial volume averaging causes the issue of 

inconsistency in the intensity values of image pixels. So in order to handle this uncertainty 

in the medical diagnosis systems image segmentation is playing a vital role.  

 

The most common used techniques for medical image segmentation can be divided 

into three categories. 1) Conventional approaches that include basic techniques e.g. 

Thresholding based methods, Region based techniques, and Edge based techniques. 2) 

Deformable models include parametric/ non-parametric and level-set models. 3) 

Machine learning models include Supervised approaches (Active Shape Model-ASM, 

Active appearance Model-AAM, Statistical models, Markov Random Fields-MRF, Conditional 
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Random Fields-CRF, Atlas-Based, Neural Network, Convolutional Neural Network CNN etc…) 

and unsupervised techniques (Graph cut, K-Means, Fuzzy C-Mean)  

Figure 2-1 will be reviewed in the following subsections.  

Medical image segmentation techniques Based on Supervised and  Un-Supervised

deformable model 
methods

Conventional methods Machine Learning

Local 
thresholding

Supervised 
learning -
Classification

Threshold-
based 

global 
thresholding

Semi-supervised 
learning

Unsupervised 
learning- 
Clustering

Fuzzy  C-
Means 
(FCM)

k-means

Graph Cut
Markov Random 
Fields (MRF)ASM, AAM

Region-based

Region 
growing/ 
splitting 

watershed 

CNN

Atlas-
based

Conditional 
Random Fields 
(CRF)

Artificial Neural 
Networks (ANN)

Geometric 
deformable 
models ( GDM 
or Level set)

Parametric 
deformable 
models (PDM)Edge-based

U-Net

 

Figure 2-1 Medical image segmentation techniques 

2.2.1 Conventional approaches 
 

All the methods in this category used for Nature image segmentation as well as used 

in medical image segmentation. The three approaches thresholding, Region based, Edge 

based methods are explained before in section, 2.1.2, 2.1.3.  

 

 Thresholding 

Thresholding is one of the most common methods used for image segmentation. The 

image pixel values are classified by comparing it with a threshold value [56]. In [57] an 

overview of image segmentation techniques based on thresholding process. The five 

techniques of thresholding discussed in the paper include Mean method, P-tile method, 
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Histogram Dependent Technique (HDT), Edge Maximization Technique (EMT) and visual 

technique. A hybrid algorithm based on a self-adaptive thresholding method is proposed to 

optimize the threshold of the Otsu‘s method. The attractive features of the algorithm are 

that its segmentation results are stable, it is robust to noises and it holds for both bi-level 

and multi-level thresholding cases using multiscale 3D OTSU[58], [59] 

 

 Region Growing 

In this method an initial point is defined manually and then all points which are 

connected to that initial point having the same intensity values as that point are selected 

[60]. The main application of this method in the medical field is to depict the tumor regions. 

Region growing method cannot be utilized on its own. Additional operations are required to 

be performed before application of this method. The main disadvantage of this method is 

that it requires manual depiction of the initial point because of which there is a need to 

initialize an initial point for every region that is to be extracted. An automatic approach for 

masses segmentation from ultrasound images proposed in [61]. The method can be said 

optimal for the segmentation of ultrasound images because they preserve the spatial 

information and are insensitive to speckle noise. A hybrid approach composed of region 

growing and region merging introduced with an effective results [62].  

 

 Edge Based Approaches 

These approaches are the most common way of detecting discontinuity and 

boundaries of objects with in an image. In this method the two connected pixels have same 

intensity distribution form the edge and it is not essential that they will form a closed path 

[63]. The distinction between the pixels is this case is carried out by estimating the intensity 

gradient. These methods are mainly used as base or central technique for other 

segmentation approaches. 
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2.2.2 Deformable Methods 
 

Deformable method works on the basis of object boundaries. The features 

considered in view of image boundaries are the shape, smoothness and internal forces 

together with the external forces on the object under consideration [64]. All these factors 

influence the effectiveness of obtainable results. Closed curves and shapes in the image are 

utilized to outline the object boundaries. The process of outlining the boundary of an object 

is a closed curvature or plane that is initially positioned close to the preferred edge and later 

permitted to experience an iterative reduction progression. In order to keep the 

segmentation process smooth internal forces are derived within the image. The external 

forces are derived in order to originate a plane towards the preferred element in the image. 

The main advantage of these methods is the piece wise continuity. 

 

 Parametric Deformable Models (Explicit) 

In the statistics of deformable models parametric models are the one that can be 

described using finite number of parameters. These methods are also called active contours 

and make use of parameters generated curves for the representation of shape model. 

Parametric models are further divided into two categories which are: Edge based methods 

and Region based methods. [65].  

 

 Non-Parametric Models (Implicit) 

These methods are also called geometric active contour methods. These methods are 

the level set approaches and are based on the concepts of convolution theory. In the 

process of defining curve for the segmentation a level set function is utilized together with 
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the additional time aspect. The evaluation of curve in this case is independent of parametric 

values [64]. In [66] a 3D medical image segmentation can be analyzed using minimal path 

deformable model is presented in. The approach is based on extracting the organ contours.  

2.2.3 Machine Learning models/methods 
 

 Unsupervised methods:  

 

 Graph cut 

Graph-based segmentation approaches play an important role in medical image 

segmentation. A graph interprets pixels or regions in the original image into nodes in the 

graph. Then, the segmentation problem can be transformed into a labeling problem which 

requires assigning correct label to each node according to its properties. Markov random 

field (MRF) is successfully used in computer vision and machine learning to model 

contexture information of pixels. This contexture information provides a mechanism for 

obtaining image properties.[67]  

 

Although GCs/ GS methods and their variants have been receiving big success in 

medical image segmentation, there are still some limitations for the clinic applications. A 

common problem of graph-based approaches is the computation complexity. Since graph-

based approaches use graph as a representation of an image, with the incensement of 

resolutions, dimensions, and modalities of medical images, the corresponding nodes and 

edges are dramatically increased. Another problem for GCs is the ―small cut‖ or shrinking 

behavior and leakages, which tends to have small segmentations due to minimizing the sum 

of edge weights in the cut [68]. 

 

In recent years, the emergence of new algorithms, such as multimodality image 

technologies, hybrid method, deep learning, etc., provide wider research spaces for them 
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and made the use of GCs/ GS more flexible and more powerful. Many deep neural network 

models have been adopted successfully in various fields. Recent works also extended deep 

learning technique to solve the complex medical image segmentation problem, for example, 

brain tumor segmentation problem [69]. Among them, the combination of the deep learning 

and the traditional method is a new powerful technique which achieved high performance in 

some aspects [70]–[73]. In recent published work, Fang et al. [70] presented a novel 

framework, called CNN-GS, integrating convolutional neural networks (CNN) with GS 

method to segment nine-layer boundaries on retinal optical coherence tomography images. 

Fig. 11 illustrates the outline of the CNN-GS algorithm. CNN-GS method was composed of 

two main steps. One is CNN layer boundary classification and another is GS layer 

segmentation based on the CNN probability maps. CNN was used to extract features of 

retinal layer boundaries and train a classifier. Then, GS method used the probability maps 

created by the CNN to detect the layer boundary position. Sui et al. [71] proposed a similar 

method for the choroid segmentation of OCT retinal images using multiscale CNNs combined 

with GS. Lu et al. [72] developed a deep learning algorithm with GC refinement to segment 

the liver in CT scans. 3-D convolutional neural network was applied to obtain an initial 

segmentation and learn probability map. GC was then used to refine the initial 

segmentation. [73] 

 

  Clustering 

If we compare the functions of clustering and classifiers we can say that both are 

carrying out the same function with the difference in their way of working. The classifiers 

make use of training data to classify the image and thus are called supervised methods. 

Clustering approach contains unsupervised methods as it does not make use of training 

data. This inability of learning in clustering approach is compensated by iteratively dividing 

the image through the segmentation process and then illustrating the possessions of every 

division. In other words we can say that clustering techniques instruct themselves by means 
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of existing statistics [74]. Clustering process is mainly suitable for applications where the 

intensities distributions of pixels in the image are fit detached. The main application of this 

method can be observed in the segmentation of MRI.  

In K-Means clustering, the clustering is carried out by iteratively calculating the mean of 

intensities values of each separated class or cluster of the image. And the segmentation is 

carried out by categorizing each pixel with the closest obtained mean of the image [75] , 

while in Fuzzy C-Means the Segmentation through this process is carried out on the basis 

of fuzzy set premise. This process is also called generalization of k-means process. The 

difference between the two processes is that the points are categorized in separate classes 

in k-means process whereas fuzzy c-means permits the points to be connected with more 

than one class[76] . 

 

 Supervised methods: 

 

 Atlas Guided Approaches 

Medical images segmentation based on Atlas guided approaches is a way of 

analyzing image through labeling a preferred structure or set of framework commencing 

images made through modalities of medical imaging. The main purpose of this approach is 

to lend a hand to radiologists in the discovery and identification of diseases. The working 

flow of approach is optimized by identifying significant anatomy in the medical images [77]. 

These approaches are also called adaptable templates. The segmentation in this case is 

carried out by preparing an atlas using compiled information of anatomy. After the 

generation of atlas it is used as a reference structure for the segmentation of fresh images. 

These approaches consider registration problem to handle the segmentation process. Atlas 

wrapping is used for the segmentation process that works by mapping the generated atlas 

on the objected image [78]. The main application of these approaches is in the images 

where there is no well-defined relation between image pixels and regions. The other main 
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applications include its use in clinical practice and computer aided diagnosis to analyze 

shape and morphological differences between image regions. 

 

 Active Shape Model 

Active Shape Model  (ASM) is a subtype of statistical model that manipulates a shape 

model to describe the location of structures in a target image[79]. Given a rough starting 

approximation, an instance of a model can be fit to an image. By choosing a set of shape 

parameters, for the model we define the shape of the object in an object-centered 

coordinate frame. We can create an instance  of the model in the image frame by defining 

the position, orientation and scale[80], [81].  

ASM had been used to extract the mandible and mandible canal based and extended 

from 2D to 3D image and introduce enhancements for more accurate segmentation 

results[82]. While a fully automatic methodology to segment the mandible based on a 

statistical shape model (SSM) obtained a 3D reconstruction of the mandible in order to 

locate some structures [83], it was not focused on the analysis of bone tissues. Some of 

these features, such as density, are relevant in implantology since the quality of the bone is 

related to the success of the treatment. Another method proposed to solve three problems. 

The 3D mandible location, the cross section extraction of the mandible bone, and the bone 

tissue segmentation.by locating the three-dimensional bounding box that contains the 

mandible using the Particle Swarm Optimization (PSO) technique and a discrete snake 

model (active contour model) is then defined as a spline over the semi-ellipse obtained from 

the best PSO particle in addition to use canny for final edge detection[84].  The method that 

employed a multi-atlas segmentation to obtain an initial segmentation for the considered 

organs at risk and Active Shape Model (ASM) segmentation to refine the initial 

segmentation of some of the organs got the second position on MICCAI 2015[85]. 
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 Active Appearance Model (AAM) 

While Active Shape Model does not take advantage of all the available information - 

the texture across the target object, this can be modeled using an Active Appearance Model 

(AAM). this algorithm allows to find the parameters of such a model which generates a 

synthetic image as close as possible to a particular target image, assuming a reasonable 

starting approximation.[39], [79], [86]–[92]. 

While an approach focused to improve AAM and decrease annotation time needed for 

each CT slice to create and train AAM and develop a semi-automatic landmarking 

technique[39], a technique proposed in MICCAI 2009 based on initialization the AAM with a 

parts-and-geometry model, search with a global AAM followed by search with local AAMs, 

then post-processing using linear regression to enhance the segmented mandible[93]. On 

the other hand a development of AAM to be used with 3D medical images is proposed for 

mandible and mandible canal segmentation[82].  

In MICCAI 2015, the first rank for a paper that succeeded to segment mandible 

scoring the best results proposed a new method based on Active Appearance Models (AAM) 

built from manually segmented examples of High quality anatomical correspondences for 

the models are generated using a Minimum Description Length (MDL) GroupWise Image 

Registration (GIR) method. A multi start optimization scheme is used to robustly match the 

model to new images to obtain the anatomical correspondences on the surfaces using a 

variant of the Minimum Description Length approach to GroupWise image registration (MDL-

GIR). [94]. 

 Atlas as Individual Image 

The atlas is generated by compiling information on the anatomy that requires 

segmenting. This atlas is then used as a reference frame for segmenting new images. Atlas-

guided approaches are a powerful tool for medical image segmentation when a standard 
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atlas or template is available. Conceptually, atlas-guided approaches are similar to 

classifiers except they are implemented in the spatial domain of the image rather than in a 

feature space.  

The standard Atlas-guided approach treats segmentation as a registration problem. 

It first finds a one-to-one transformation that maps a pre-segmented atlas image to the 

target image that requires segmenting. This process is often referred to as atlas warping. 

The warping can be performed using linear transformations but because of anatomical 

variability [22]. This process results in a correspondence field, which maps each pixel in the 

atlas space to one in the patient coordinate system[95]. 

  When a single atlas would be constructed and used for registration and segmentation 

it called single atlas approach[96] [25]. While the underlying fusion of Multi Atlas-Based 

method is that, multiple independent classifiers might produce better classification .Multi 

atlas-based segmentation registers many independently built atlases to a target image and 

then combines their segmentation labels. There exist different ways for segmenting a 

particular target image, e.g., to select all the atlases or only their subset as well as to 

choose one or another strategy of combining the selected atlases to produce the goal region 

map[25][97]. 

Atlas based approaches proposed in MICCAI 2009 (Medical Image Computing and 

Computer-Assisted Intervention) by three different groups to solve segmentation challenge. 

A proposed approach combined a multiple atlas fusion strategy and a hierarchical atlas 

registration approach using the advantages of GPU technology to accelerate the deformable 

atlas registration and to make multi-atlas segmentation computationally feasible[98].  

Atlas-based segmentation approach had been used in combination with label fusion 

in order to initialize a segmentation pipeline that is based on using statistical appearance 

models and geodesic active contours. An anatomically correct approximation of the 
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segmentation result is provided by atlas-based segmentation acts as a starting point for an 

iterative refinement of this approximation[99].  

Moreover, a hybrid method that combined atlas registration using intensity based 

non-rigid registration based on b-spline and a level set function for segmenting the 

mandible in the test image. Nevertheless, the most similar atlas selection strategy need 

improved since registration to each atlas image is a time-consuming work. A probabilistic 

atlas can be taken into consideration to solve the problem[100]. 

Atlas image also applied in a combination with a hybrid deformable image 

registration, the result of which is then refined using a deformable surface model approach. 

Segmentation fusion using multiple atlases is also employed to further improve the 

segmentation accuracy in MICCAI 2010 [101]. 

While Multi-atlas registration-based segmentation is refined by a graph-cut 

optimization step [102], a patient specific atlas was estimated from a spiral CT atlases using 

a sparse label propagation strategy, then, the patient-specific atlas is integrated into a 

convex segmentation framework based on maximum a posteriori probability (MAP) for 

accurate segmentation [97]. 

In MICCAI 2015 challenges, the second and third ranked approaches were based on 

multiple atlases. In the third place a multi-atlas approach for the segmentation of multiple 

structures in the head and neck CT images, a patient image was first aligned with an 

average head and neck CT atlas on the global level. The aligned image was further 

processed by per-forming local non-rigid registrations with multiple atlases. The subsequent 

labels deformed from the atlases were then combined with weights determined by the local 

correlation coefficients between the patient image and the registered atlas images[103].  

While in the second place an algorithm consists of two building blocks. First, a multi-atlas 

segmentation employed to obtain an initial segmentation for the considered organs at risk. 
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Secondly, Active Shape Model (ASM) had been used to refine the initial segmentation of 

some of the organs[85].  

 Artificial Neural Network 

The most related ANN models to medical image segmentation including Convolutional 

neural network CNN, U-Net, Stacked U-Net, and Bridged U-Net would be reviewed with 

details in the following section 2.3.2 

Method Description Advantages Limitations 

Thresholding based on the 

histogram peaks of 

the image to find 

particular threshold 

values 

These methods are 

fastest, simplest and 

easiest to implement 

 

no need of previous 

information, simplest 

method 

These methods are 

responsive to artifacts 

and  piecewise 

continuity 

is not assured by them 

 

highly dependent on 

peaks, spatial details 

are not considered 

based 

Region Growing based on partitioning 

image into 

homogeneous 

regions 

These methods 

assure the piecewise 

continuity and are 

less sensitive to 

noise 

 

useful when it is easy 

to define similarity 

criteria 

Position of the start 

point and blurring 

affects are the main 

limitations of these 

methods 

expensive method in 

terms of time and 

memory 

Clustering based on division into 

homogeneous 

clusters 

These methods are 

easy to implement 

and can also be used 

as starting point for 

other approaches. 

 

fuzzy uses partial 

membership 

therefore more useful 

for real problems 

They require a spatial 

constraint 

to perform well. 

 

determining 

membership function is 

not easy 

Deformable 

Methods 

 They effectively 

handle the 

topological changes 

and assure the 

piecewise continuity. 

These methods are 

noise insensitive and 

provide sub-pixel 

accuracy. 

Requires the tuning of 

parameters and thus 

can affect speed of the 

system. 
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Atlas guided 

Approaches 

 These approaches 

are fact and assure 

an optimum solution 

for two class 

segmentation. 

Precise segmentation of 

difficult composition is 

itself difficult. 

Edge based 

methods 

based on 

discontinuity 

detection 

They are easy to 

implement and offer 

effective 

computational factor. 

 

good for images 

having better 

contrast between 

objects 

Not appropriate to 

figure out all 

kinds of problems. 

 

not suitable for wrong 

detected or too many 

edges 

Table 2-1 Image segmentation methods advantages and limitations 

 

2.3 Deep Learning approaches in Computer Vision and for 

image segmentation  

2.3.1 Deep Learning with CNN for Medical Imaging 
 

Convolutional networks convolutional (LeCun, 1989), also known as neural networks 

or CNNs, are a specialized kind of neural network for processing data that has a known, 

grid-like topology. Examples include time-series data, which can be thought of as a 1D grid 

taking samples at regular time intervals, and image data, which can be thought of as a 2D 

grid of pixels. Convolutional networks have been tremendously successful in practical 

applications. The name ―convolutional neural network‖ indicates that the network employs a 

mathematical operation called convolution. Convolution is a specialized kind of linear 

operation. Convolutional networks are simply neural networks that use convolution in place 

of general matrix multiplication in at least one of their layers[104], [105]. 

 

 Deep CNN architectures for classification  

LeNet [106] and AlexNet [106] introduced over a decade later, were in essence very 

similar models. Both networks were relatively shallow, consisting of two and five 

convolutional layers, respectively, and employed kernels with large receptive fields in layers 
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close to the input and smaller kernels closer to the output. AlexNet did incorporate rectified 

linear units instead of the hyperbolic tangent as activation function.  

 

After 2012 the exploration of novel architectures took off. By stacking smaller 

kernels, instead of using a single layer of kernels with a large receptive field, a similar 

function can be represented with less parameter. Simonyan and Zisserman (2014) [107] 

were the first to explore much deeper networks, and employed small, fixed size kernels in 

each layer. A 19-layer model often referred to as VGG19 or OxfordNet won the ImageNet 

challenge of 2014 [108]. 

 

On top of the deeper networks, more complex building blocks have been introduced 

that improve the efficiency of the training procedure and again reduce the number of 

parameters. Szegedy et al. (2014) [109] introduced a 22-layer network named GoogLeNet, 

also referred to as Inception, which made use of so-called inception blocks [110], a module 

that replaces the mapping with a set of convolutions of different sizes. Similar to the 

stacking of small kernels, this allows a similar function to be represented with less 

parameters. The ResNet architecture [111] won the ImageNet challenge in 2015 and 

consisted of so-called ResNet-blocks. Rather than learning a function, the residual block 

only learns the residual and is thereby pre-conditioned towards learning mappings in each 

layer that are close to the identity function. This way, even deeper models can be trained 

effectively. Consequently, AlexNet or other simple models such as VGG are popular for 

medical data, though recent landmark studies all use a version of GoogleNet called 

Inception v3[112]–[114]. Whether this is due to a superior architecture or simply because 

the model is a default choice in popular software packages is again difficult to assess.  

 

Three papers used an architecture leveraging the unique attributes of medical data: 

two use 3D convolutions[115], [116] instead of 2D to classify patients as having Alzheimer; 
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Kawahara et al. (2016b)[117] applied a CNNlike architecture to a brain connectivity graph 

derived from MRI diffusion-tensor imaging (DTI). In order to do this, they developed several 

new layers which formed the basis of their network, so-called edge-to-edge, edge-to-node, 

and node-to-graph layers. They used their network to predict brain development and 

showed that they outperformed existing methods in assessing cognitive and motor scores. 

 

 Deep CNN architectures for Segmentation  

 

Segmentation is a common task in both natural and medical image analysis and to 

tackle this, CNNs can simply be used to classify each pixel in the image individually, by 

presenting it with patches extracted around the particular pixel. A drawback of this sliding-

window approach is that input patches from neighboring pixels have huge overlap and the 

same convolutions are computed many times. Fortunately, the convolution and dot product 

are both linear operators and thus inner products can be written as convolutions and vice 

versa. By rewriting the fully connected layers as convolutions, the CNN can take input 

images larger than it was trained on and produce a likelihood map, rather than an output 

for a single pixel. The resulting ‘fully convolutional network‘ (fCNN) can then be applied to 

an entire input image or volume in an efficient fashion. However, because of pooling layers, 

this may result in output with a far lower resolution than the input. ‘Shift-and-stitch‘[118] is 

one of several methods proposed to prevent this decrease in resolution. The fCNN is applied 

to shifted versions of the input image. By stitching the result together, one obtains a full 

resolution version of the final output, minus the pixels lost due to the valid convolutions.  

 

Segmentation is the most common subject of papers applying deep learning to 

medical imaging [108], and as such has also seen the widest variety in methodology, 

including the development of unique CNN-based segmentation architectures and the wider 

application of RNNs.  
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Although these specific segmentation architectures offered compelling advantages, 

many other methods have also obtained excellent segmentation results with patch-trained 

neural networks. One of the earliest papers covering medical image segmentation with deep 

learning algorithms used such a strategy and was published by Ciresan et al. (2012) [119]. 

They applied pixel-wise segmentation of membranes in electron microscopy imagery in a 

sliding window fashion.  

 

fCNNs have also been extended to 3D and have been applied to multiple targets at 

once: Korez et al. (2016)[120], used 3D fCNNs to generate vertebral body likelihood maps 

which drove deformable models for vertebral body segmentation in MR images, Zhou et al. 

(2016) segmented nineteen targets in the human torso, and Moeskops et al. (2016b)[121] 

trained a single fCNN to segment brain MRI, the pectoral muscle in breast MRI, and the 

coronary arteries in cardiac CT angiography (CTA).  

 

One challenge with voxel classification approaches is that they sometimes lead to 

spurious responses. To combat this, groups have tried to combine fCNNs with graphical 

models like MRFs [122], [123] and Conditional Random Fields (CRFs)[124] to refine the 

segmentation output. In most of the cases, graphical models are applied on top of the 

likelihood map produced by CNNs or fCNNs and act as label regularizes.  
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2.3.2 CNN architecture and its variations 
 

This section explain U-Net model with full details and some of the most common 

used architecture based on U-Net. 

 

   U-Net 

One of the most well-known structures for medical image segmentation is U-Net 

which is a special type of Convolutional neural networks (CNN), initially proposed by 

Ronneberger et al. using the concept of deconvolution. This model is built upon the elegant 

architecture of FCN. Besides the increased depth of network to 19 layers, U-Net benefits 

from a superior design of skip connections between different stages of the network [14]. It 

employs some modifications to overcome the trade-off between localization and the use of 

context. This trade-off rises since the large-sized patches require more pooling layers and 

consequently will reduce the localization accuracy. On the other hand, small-sized patches 

can only observe small context of input. The proposed structure consists of two paths of 

analysis and synthesis. The analysis path follows the structure of CNN Figure 2-2. The 

synthesis path, commonly known as expansion phase, consists of an upsampling layer 

followed by a deconvolution layer. The most important property of U-Net is the shortcut 

connections between the layers of equal resolution in analysis path to expansion path. 

These connections provide essential high-resolution features to the deconvolution layers. 

 

This novel structure has attracted a lot of attention in medical image segmentation and 

based on which many variations have been developed. For instance, Gordienko et al. [125] 

explored lung segmentation in X-ray scans with a U-Net structure-based network. The 

obtained results have demonstrated that U-Net is capable of fast and precise image 

segmentation. In the same study, the proposed model was tested on single CPU and 

compared with multiple CPUs and GPUs to evaluate the effect of hardware on model 
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performance. The demonstrated results showed 3 and 9.5 times speedup respectively. 

DCAN [126] is another model which applied multi-levelcontextual information and benefitted 

from the auxiliary classifier on top of the U-Net. Their design showed 0.8001 of 

segmentation accuracy on gland segmentation which is almost 2% higher than the original 

U-Net in a shorter time of 1.5 s per testing image. The improved accuracy is due to the 

capability DCAN structure to combat the errors of touching object segmentation. [127] 

 

 

Figure 2-2 U-Net model structure for medical image segmentation, 

The figure adopted from “Olaf Ronneberger, Philipp Fischer, and Thomas Brox” [14] 

 

 
Ronneberger et al. (2015) [14] took the idea of the fCNN one step further and 

proposed the U-net architecture, comprising a ‘regular‘ fCNN followed by an upsampling 
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part where ‘up‘-convolutions are used to increase the image size, coined contractive and 

expansive paths. Although this is not the first paper to introduce learned upsampling paths 

in convolutional neural networks[118], the method combined it with so called skip-

connections to directly connect opposing contracting and expanding convolutional layers. A 

similar approach was used by Cicek et al. (2016)[128] for 3D data. Milletari et al. (2016) 

[129]proposed an extension to the U-Net layout that incorporates ResNet-like residual 

blocks and a Dice loss layer, rather than the conventional cross-entropy, that directly 

minimizes this commonly used segmentation error measure. 

 

The most well-known, in medical image analysis, of these novel CNN architectures is 

U-net, published by Ronneberger et al. (2015) [14]. The two main architectural novelties in 

U-net are the combination of an equal amount of upsampling and downsampling layers. 

Although learned upsampling layers have been proposed before, U-net combines them with 

so-called skip connections between opposing convolution and deconvolution layers which 

concatenate features from the contracting and expanding paths. From a training perspective 

this means that entire images/scans can be processed by U-net in one forward pass, 

resulting in a segmentation map directly. This allows U-net to take into account the full 

context of the image, which can be an advantage in contrast to patch-based CNNs. 

Furthermore, in an extended paper by Cicek et al. (2016)[128], it is shown that a full 3D 

segmentation can be achieved by feeding U-net with a few 2D annotated slices from the 

same volume. Other papers have also built derivatives of the U-net architecture; Milletari et 

al. (2016b)[129], for example, proposed a 3D-variant of U-net architecture, called V-net, 

performing 3D image segmentation using 3D convolutional layers with an objective function 

directly based on the Dice coefficient. Drozdzal et al. (2016)[130] investigated the use of 

short ResNet-like skip connections in addition to the long skip-connections in a regular U-

net. 
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Segmentation of lesions combines the challenges of object detection and organ and 

substructure segmentation in the application of deep learning algorithms. Global and local 

context are typically needed to perform accurate segmentation, such that multi-stream 

networks with different scales or non-uniformly sampled patches are used as in for example 

[131]. In lesion segmentation, U-net and similar architectures to leverage both this global 

and local context are applied. The architecture used in[132], similar to the U-net, consists 

of the same downsampling and upsampling paths, but does not use skip connections. 

Another U-net-like architecture was used in[133] to segment white matter lesions in brain 

MRI. However, they used 3D convolutions and a single skip connection between the first 

convolutional and last deconvolutional layers.  

 

RNNs have recently become more popular for segmentation tasks. For example, Xie 

et al. (2016)[134] used a spatial clockwork RNN to segment the perimysium in H&E-

histopathology images. This network considers prior information from both the row and 

column predecessors of the current patch. To incorporate bidirectional information from 

both left/top and right/bottom neighbors, the RNN is applied four times in different 

orientations and the end-result is concatenated and fed to a fully-connected layer. This 

produces the final output for a single patch. Stollenga et al. (2015) [135] where the first to 

use a 3D LSTM-RNN with convolutional layers in six directions. Andermatt et al. (2016) 

[136]used a 3D RNN with gated recurrent units to segment gray and white matter in a brain 

MRI data set. Chen et al. (2016d)[126] combined bi-directional LSTM-RNNs with 2D U-net-

like-architectures to segment structures in anisotropic 3D electron microscopy images. Last, 

Poudel et al. (2016) [137] combined a 2D U-net architecture with a gated recurrent unit to 

perform 3D segmentation.  
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   V-Net 

Probably one of the most famous derivations of U-Nets is the V-Net proposed by 

Milletari et al. [138]. They applied the convolutions in the contracting path of the network, 

both for extracting the features and reducing the resolution by selecting appropriate kernel 

size and stride (kernel size is 2 × 2 × 2, and stride is 2). The convolutions serve as pooling 

with the advantage of having smaller memory footprint since unlike pooling layers, switches 

that map the output of pooling layer back to the input do not need to be stored for 

backpropagation. This is similar to application 

deconvolution instead of up-pooling. The expansion phase will extract features and 

expand the concatenated low-resolution feature map and ultimately produce two channels 

volumetric segmentation at the last convolutional layer. Then, the output turns to 

probabilistic segmentation maps and passes to voxel-wise softmax for background and 

foreground segmentation. V-Net has been used in with a larger receptive field (covers 50–

100% of the input image) and multi-scale (four different resolutions) and delivered up to 

12% higher Dice coefficient compared to original V-Net. 

 

 W-Net Staked net with soft N-cut 

This model introduced a deep learning-based approach for fully unsupervised image 

segmentation. The proposed algorithm is based on concatenating together two fully 

convolutional networks into an encoder-decoder framework, where each of the FCNs are 

variants of the U- Net architecture. Training is performed by iteratively minimizing the 

reconstruction error of the decoder along with a soft normalized cut of the encoder layer. As 

the resulting segmentations are typically coarse and over-segmented, CRF smoothing and 

hierarchical merging applied to produce the final outputted segments. On the Berkeley 

Segmentation Data Set, the model outperformed a number of existing classical and recent 

techniques, achieving performance near human level by some metrics.  This method will be 
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useful in cases where it is difficult to obtain labeled pixelwise supervision, for in- stance in 

domains such as biomedical image analysis where new data sets may require significant re-

labeling for semantic segmentation methods to work well. [139] 

 

Figure 2-3 W-Net: A Deep Model for Fully Unsupervised Image Segmentation , The figure adopted from “Xide Xia, Brian 
Kulis” [139] 

 

 2Bridged U-Net 

In this paper, we focus on three problems in deep learning based medical image 

segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult 

to train when convolutional layers increase even though a deeper network usually has a 

better generalization ability because of more learnable parameters. Secondly, the 

exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when 

the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss 

functions for medical image segmentation, is not effective when the prediction is close to 

ground truth and will cause oscillation during training. To address the aforementioned three 
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problems, we propose and validate a deeper network that can fit medical image datasets 

that are usually small in the sample size. Meanwhile, we propose a new loss function to 

accelerate the learning process and a combination of different activation functions to 

improve the network performance. The experimental results suggest that our network is 

comparable or superior to state-of-the-art methods. 

 

The network is based on U-net, which is a classical encoder-decoder net in medical 

image application. Based on U-net, a stacked U-net is proposed. The stacked U-net 

improves network performance by using the first U-net to find a coarse feature and use the 

second U-net to obtain a fine result. The stacked U-net is, however, not useful for medical 

image segmentation. It is hard to reach convergence and usually dive into a sub-optimal 

solution because the increasing complexity of network. To overcome the issue, the model 

proposed a network bridging method. Different from the previous stacked U-net which 

acquires large number training data, bridging two U-nets can reduce the training cost and 

makes the network fit for medical application where the training data are usually not 

sufficient. This is because bridging two U-nets can fully use different features in multi levels, 

which will accelerate the convergence of neural network. Our network structure is shown on 

Fig. 2. The gray block represents a ELU cluster (2conv-BN-ELU blocks), and the yellow block 

represents a ReLU cluster (2 conv-BN-ReLU blocks). The dotted lines represent network 

bridging. The red lines represents skip connections. This model use MICAAI PROMISE12 

dataset to evaluate our network and the result shows that our network performs better than 

original U-net, stacked U-net and other state-of-the-art methods.  [16] 
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Figure 2-4 prostate segmentation using 2bridged U-Net 

 

2.3.3 Loss function variations 
 

Deep Learning algorithms use stochastic gradient descent approach to optimize and 

learn the objective. To learn an objective accurately and faster, we need to ensure that our 

mathematical representation of objectives, also known as loss functions are able to cover 

even the edge cases. The introduction of loss functions have roots in traditional machine 

learning, where these loss functions were derived on basis of distribution of labels [140]. 

For example, Binary Cross Entropy is derived from Bernoulli distribution and Categorical 

Cross-Entropy from Multinoulli distribution. In this paper, we have focused on Semantic 

Segmentation instead of Instance Segmentation; therefore the number of classes at pixel 

level is restricted to 2. Here, we will go over 15 widely used loss functions and understand 

their use-case scenarios.  [141]  
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Figure 2-5 Semantic taxonomy for loss functions 

This figure is adapted from “Jun Ma” [140] 

 

Type Loss Function Type Loss Function 

Distribution-based Loss Binary Cross-Entropy 

Weighted Cross-Entropy 

Balanced Cross-Entropy 

Focal Loss 

Distance map derived loss penalty term 

Region-based Loss Dice Loss 

Sensitivity-Specificity Loss 

Tversky Loss 

Focal Tversky Loss 

Log-Cosh Dice Loss(ours) 

Boundary-based Loss Hausdorff Distance loss 

Shape aware loss 

Compounded Loss Combo Loss 

Exponential Logarithmic Loss 
Table 2-2 Semantic taxonomy for the loss functions been used in CNN [141] 
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 Distribution-based Loss 

 

 Binary Cross-Entropy 

Cross-entropy [142] is defined as a measure of the difference between two 

probability distributions for a given random variable or set of events. It is widely used for 

classification objective, and as segmentation is pixel level classification it works well. Binary 

Cross-Entropy is defined as: 

     (    )    (    (  )  (   )    (    )) 

 

Here,    is the predicted value by the prediction model. 

 

 Weighted Binary Cross-Entropy  

Weighted Binary cross entropy (WCE) [143] is a variant of binary cross entropy 

variant. In this the positive examples get weighted by some coefficient. It is widely used in 

case of skewed data [144]  Weighted Cross Entropy can be defined as: 

      
(    )    (      (  )  (   )    (    )) 

Note:   value can be used to tune false negatives and false positives. E.g.; if you want to 

reduce the number of false negatives then set   > 1, similarly to decrease the number of 

false positives, set   < 1. 

 

 

 Balanced Cross-Entropy 

Balanced cross entropy (BCE) [145] is similar to Weighted Cross Entropy. The only 

difference is that in this apart from just positive examples, we also weight the negative 

examples. Balanced Cross-Entropy can be defined as follows: 
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Here,   is defined as   
 

   
 

 

  Focal Loss 

Focal loss (FL) [146] can also be seen as variation of Binary Cross-Entropy. It down-

weights the contribution of easy examples and enables the model to focus more on learning 

hard examples. It works well for highly imbalanced class scenarios, as shown in fig 1. Let‘s 

look at how this focal loss is designed. We will first look at binary cross entropy loss and 

learn how Focal loss is derived from cross-entropy. 

 

This loss is an improvement to the standard cross-entropy criterion. This is done by 

changing its shape such that the loss assigned to well-classified examples is down-weighted. 

Ultimately, this ensures that there is no class imbalance. In this loss function, the cross-

entropy loss is scaled with the scaling factors decaying at zero as the confidence in the 

correct classes increases. The scaling factor automatically down weights the contribution of 

easy examples at training time and focuses on the hard ones. 

  (  )    (    )
    (  ) 

   {
    ( )                        

        (   )          
 

 

To make convenient notation, Focal Loss defines the estimated probability of class as: 

 

   {
                            
              

 

Therefore, Now Cross-Entropy can be written as, 
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  (   )    (  )        (  ) 

 

 Distance map derived loss penalty term 

Distance Maps can be defined as distance (euclidean, absolute, etc.) between the 

ground truth and the predicted map. There are two ways to incorporate distance maps, 

either create neural network architecture where there‘s a reconstruction head along with 

segmentation, or induce it into loss function. Following same theory, Caliva et al. [147] 

have used distance maps derived from ground truth masks and created a custom penalty 

based loss function. Using this approach, its easy to guide the networks focus towards hard-

to-segment boundary regions. The loss function is defined as: 

 (   )   
 

 
∑(   )( )   (   )

 

   

 

Here,   are generated distance maps 

Note here, constant 1 is added to avoid vanishing gradient problem in U-Net and V-Net 

architectures. 

 

 Region-based Loss 

Region-based loss functions aim to minimize the mismatch or maximize the overlap 

regions between ground truth and predicted segmentation. 

 

  Dice Loss 

The Dice coefficient is widely used metric in computer vision community to calculate 

the similarity between two images. Later in 2016, it has also been adapted as loss function 

known as Dice Loss [148] .This loss is obtained by calculating smooth dice 

coefficient function. This loss is the most commonly used loss is segmentation problems.   

https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
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  (   )     
      

      
 

Here, 1 is added in numerator and denominator to ensure that the function is not undefined 

in edge case scenarios such as 

 

        
 

 

  Tversky Loss 

Tversky index (TI) [149] can also be seen as an generalization of Dices coefficient. It 

adds a weight to FP (false positives) and FN (false negatives) with the help of coefficient. 

 

  (    )   
   

     (   )   (   ) (    )
 

Here, when       , It can be solved into regular Dice coefficient. Similar to Dice Loss, 

Tversky loss can also be defined as: 

 

 

  (    )     
     

        (   )   (   ) (    )
 

It sets different weights to false negative (FN) and false positive (FP), which is different from 

dice loss using the equal weights for FN and FP. 

 

  Focal Tversky Loss 

Similar to Focal Loss, which focus on hard example by down-weighting easy/common ones. 

Focal Tversky loss [150]  also attempts to learn hard-examples such as with small 

ROIs(region of interest) with the help of  coefficient as shown below: 

 

     ∑(     )
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Here    indicates tversky index,    and can range from [1,3]. 

 

  Sensitivity Specificity Loss 

The total loss is the weighted sum of the mean squared difference of sensitivity and 

specificity. Similar to Dice Coefficient, Sensitivity and Specificity are widely used metrics to 

evaluate the segmentation predictions. In this loss function, we can tackle class imbalance 

problem using w parameter. The loss [151]  is defined as:  

 

                  (   )              

Where 

             
  

     
 

And  

             
  

     
 

 

 Log-Cosh Dice Loss 

Dice Coefficient is a widely used metric to evaluate the segmentation output. It has 

also been modified to be used as loss function as it fulfills the mathematical representation 

of segmentation objective. But due to its non-convex nature, it might fail in achieving the 

optimal results. Lovsz-Softmax loss [152] aimed to tackle the problem of non-convex loss 

function by adding the smoothing using Lovsz extension. Log-Cosh approach has been 

widely used in regression based problem for smoothing the curve. 
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Figure 2-6     Cosh(x) function is the average of eX and e--X
 

 

Figure 2-7     tanh(x) function is continuous and finite. It ranges from [-1; 1] 

Hyperbolic functions have been used by deep learning community in terms of non-

linearities such as       layer. They are tractable as well as easily differentiable.      ( ) 

is defined as  
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And 

        
      

 
       

 

but, at present       range can go up to infinity. So, to capture it in range,     space is 

used, making the          function to be: 

 

 ( )      (     ) 

and using chain rule 

 

  ( )   
     

     
       

 

which is continuous and finite in nature, as        ranges from[ -1 ; 1]. On basis of above 

proof which showcased that Log of       function will remain continuous and finite after 

first order differentiation. We are proposing           Dice Loss function for its 

tractable nature while encapsulating the features of dice coefficient. It can be defined as: 

 

            (    (        )) 

 

 Boundary-based Loss 

One variant of the boundary loss is applied to tasks with highly unbalanced 

segmentations. This loss‘s form is that of a distance metric on space contours and not 

regions. In this manner, it tackles the problem posed by regional losses for highly 

imbalanced segmentation tasks. 

    (     )   ∫ ||   ( )   ||
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Boundary-based loss, a recent new type of loss function, aims to minimize the 

distance between ground truth and predicted segmentation. Usually, to make the training 

more robust, boundary-based loss functions are used with region-based loss. 

 Shape-aware Loss 

Shape-aware loss [153], [154] as the name suggests takes shape into account. 

Generally, all loss functions work at pixel level, however, Shape-aware loss calculates the 

average point to curve Euclidean distance among points around curve of predicted 

segmentation to the ground truth and use it as coefficient to cross-entropy loss function. It 

is defined as follows: 

    (        ) 

 

               ∑  (    )   ∑     (    )

  

 

Using    the network learns to produce a prediction masks similar to the training shapes. 

 

 Hausdorff Distance Loss 

Hausdorff Distance (HD) is a metric used by segmentation approaches to track the 

performance of a model. It is defined as: 

 

 (   )                  ||   ||  

The objective of any segmentation model is to maximize the Hausdorff Distance 

[155], [156], but due to its non-convex nature, it is not widely used as loss function. Karimi 

et al. [157] has proposed 3 variants of Hausdorff Distance based loss functions which 

incorporates the metric use case and ensures that the loss function is tractable. These 3 

variants are designed on basis of how we can use Hausdorff Distance as part of loss 
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function: (i) taking max of all HD errors, (ii) minimum of all errors obtained by placing a 

circular structure of radius r, and (iii) max of a convolutional kernel placed on top of missing 

segmented pixels. 

 

Figure 2-8 Hausdorff Distance between point sets X and Y  [157] 

 

 

 Compounded Loss 

 

  Combo Loss 

Combo loss [158]is defined as a weighted sum of Dice loss and modified cross 

entropy. It attempts to leverage the flexibility of Dice loss of class imbalance and at same 

time use cross-entropy for curve smoothing. It‘s defined as: 
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Here DL is Dice Loss 
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  Exponential Logarithmic Loss 

Exponential Logarithmic loss [159] function focuses on less accurately predicted 

structures using combined formulation of Dice Loss and Cross Entropy loss. Wong et al. 

proposes to make exponential and logarithmic transforms to both Dice loss a cross entropy 

loss so as to incorporate benefits of finer decision boundaries and accurate data distribution. 

It is defined as: 

                             

Where  

       (   (  )     ) 

        (  (   (  ))
      )) 

 

 Correlation Maximized Structural Similarity Loss 

A lot of semantic based segmentation loss functions focus on classification error at 

pixel level while disregarding the pixel level structural information. Some other loss 

functions have attempted to add information using structural priors such as CRF, GANs, etc. 

In this loss functions, zhao et al. [160] have introduced a Structural Similarity Loss (SSL) to 

achieve a high positive linear correlation between the ground truth map and the predicted 

map. It‘s divided into 3 steps: Structure Comparison, Cross-Entropy weight coefficient 

determination, and mini-batch loss definition. As part of Structure comparison, the e 

coefficient has calculated which can measure the degree of linear correlation between 

ground truth and prediction: 

 

  | 
         

     
  

        

     
  | 
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Here,    is stability factor set to 0.01 as an empirical observed value.            are the 

local mean and standard deviation of the ground truth y respectively.   locates at the 

center of the local region and   is the predicted probability. After calculating the degree of 

correlation, zhao et al. have used it as coefficient for cross entropy loss function, defined as: 

 

                    

Using this coefficient function, we can define SSL loss as: 

 

       (          )             (         ) 

and finally for mini-batch loss calculation, The SSL can be defined as: 

 

      
 

 
 ∑  ∑    (          )

 

   

 

   

 

Where  
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Using above formula, loss function will automatically abandon those pixel level predictions, 

which doesn‘t show correlation in terms of structure. 
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Loss Function  Use Cases 
Binary Cross-Entropy Works best in equal data distribution among 

classes scenarios Bernoulli distribution based 

loss function 

Weighted Cross-Entropy Widely used with skewed dataset Weighs 

positive examples by B coefficient 

Balanced Cross-Entropy Similar to weighted-cross entropy, used 

widely with skewed dataset weighs both 

positive as well as negative examples by B 
and 1 - B respectively 

Focal Loss works best with highly-imbalanced dataset 

down-weight the contribution of easy 

examples, enabling model to learn hard 

examples 

Distance map derived loss penalty term Variant of Cross-Entropy Used for hard-to-

segment boundaries 

Dice Loss Inspired from Dice Coefficient, a metric to 

evaluate segmentation results. As Dice 

Coefficient is non-convex in nature, it has 

been modified to make it more tractable. 

Sensitivity-Specificity Loss Inspired from Sensitivity and Specificity 

metrics Used for cases where there is more 

focus on True Positives. 

Tversky Loss Variant of Dice Coefficient Add weight to 

False positives and False negatives. 

Focal Tversky Loss Variant of Tversky loss with focus on hard 

examples 

Log-Cosh Dice Loss(ours) Variant of Dice Loss and inspired regression 

log-cosh approach for smoothing Variations 

can be used for skewed dataset 

Hausdorff Distance loss Inspired by Hausdorff Distance metric used 

for evaluation of segmentation Loss tackle 

the non-convex nature of Distance metric by 

adding some variations 

Shape aware loss Variation of cross-entropy loss by adding a 

shape based coefficient used in cases of 

hard-to-segment boundaries. 

Combo Loss Combination of Dice Loss and Binary Cross-

Entropy used for lightly class imbalanced by 

leveraging benefits of BCE and Dice Loss 

Exponential Logarithmic Loss Combined function of Dice Loss and Binary 

Cross-Entropy Focuses on less accurately 

predicted cases 

Correlation Maximized Structural Similarity 

Loss 

Focuses on Segmentation Structure. Used in 

cases of structural importance such as 

medical images. 
Table 2-3 Loss functions and description 
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2.3.4 Regularization techniques 
 

Regularization can be defined as any modification we make to a learning algorithm 

that is intended to reduce its generalization error but not its training error. This 

regularization is often done by putting some extra constraints on a machine learning model, 

such as adding restrictions on the parameter values or by adding extra terms in the objective 

function that can be thought of as corresponding to a soft constraint on the parameter 

values. If chosen correctly these can lead to a reduced testing error. 

 

 L2 and L1 regularization 

L1 and L2 are the most common types of regularization. These update the general 

cost function by adding another term known as the regularization term. 

Cost function = Loss (say, binary cross entropy) + Regularization term 
 

Due to the addition of this regularization term, the values of weight matrices decrease 

because it assumes that a neural network with smaller weight matrices leads to simpler 

models. Therefore, it will also reduce overfitting to quite an extent. 

However, this regularization term differs in L1 and L2. 

In L2, we have: 

                     
 

  
  ∑|| ||  

Here, lambda is the regularization parameter. It is the hyperparameter whose value is 

optimized for better results. L2 regularization is also known as weight decay as it forces the 

weights to decay towards zero (but not exactly zero). 
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In L1, we have: 

                     
 

  
  ∑|| ||  

In this, we penalize the absolute value of the weights. Unlike L2, the weights may be 

reduced to zero here. Hence, it is very useful when we are trying to compress our model. 

Otherwise, we usually prefer L2 over it. 

 Dropout 

This is the one of the most interesting types of regularization techniques. It also 

produces very good results and is consequently the most frequently used regularization 

technique in the field of deep learning. 

To understand dropout, let‘s say our neural network structure is akin to the one 

shown below: So what does dropout do? At each iteration, it randomly selects some nodes 

and removes them along with all of their incoming and outgoing connections. So each 

iteration has a different set of nodes and this result in a different set of outputs. It can also 

be thought of as an ensemble technique in machine learning. 

This probability of choosing how many nodes should be dropped is the 

hyperparameter of the dropout function. Dropout can be applied to both the hidden layers 

as well as the input layers. Dropout is a computationally inexpensive but powerful 

regularization method. Dropout provides an inexpensive approximation to training and 

evaluating a bagged ensemble of exponentially many neural networks.Another significant 

advantage of dropout is that it does not significantly limit the type of model or training 

procedure that can be used. It works well with nearly any model that uses a distributed 

representation and can be trained with stochastic gradient descent. Due to these reasons, 

dropout is usually preferred when we have a large neural network structure in order to 

introduce more randomness. 
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 Data augmentation 

Dataset augmentation is a process of generating data artificially from the existing 

training data by doing minor changes like rotation, flips, adding blur to some pixels in the 

original image, or translations. Augmenting with more data will make it harder for the 

neural network to drive the training error to zero. By generating more data, the network will 

have a better chance of performing better on the test data. Depending on the task at hand, 

we might use all the augmentation techniques and generate more training data. 

To apply data augmentation, we can make use of the existing methods present in 

the frameworks like Keras, PyTorch. In Keras, we can use ImageDataGenerator to augment 

or create more data by doing transformations, and similarly, we can use 

the transforms class present in torchvision from PyTorch to augment data. 

Dataset Augmentation is a very popular approach for Computer vision tasks such as 

Image classification or object recognition as Images are high dimensional and include an 

enormous variety of factors of variation, many of which can be easily simulated. Operations 

like translating the training images a few pixels in each direction, rotating the image or 

scaling the image can often greatly improve generalization, even if the model has already 

been designed to be partially translation invariant by using the convolution and pooling 

techniques. 

 

 Early stopping 

The idea behind early stopping is that when we‘re fitting a neural network on the 

training data and model is evaluated on the unseen data after each iteration. If the 

performance of the model on the validation data is not improving i.e…validation error is 

increasing or remaining the same for certain iterations, then there is no point in training the 

model further. This process of stopping model training before it reaches the lowest training 

https://keras.io/preprocessing/image/
https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
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error is known as early stopping. Let‘s consider that we have set the patience of 5 epochs 

(i.e. the number of epochs to wait before early stop). For 5 epochs, we‘ll monitor the 

validation error, and if it isn‘t improving (either remains constant or increases) while the 

training error decreases, then we don‘t want to train any further. Figure 2-9 

By using the early stopping technique, we‘re making sure that the model doesn‘t 

remember the patterns and noise present in the training data. Instead, we‘re pushing it 

towards generalizing the training data. Early stopping can be applied manually during the 

training process, or you can do even better by integrating these rules in your experiment 

through the hooks/callbacks provided in most common frameworks like Pytorch, Keras and 

TensorFlow. Figure 2-10 

When training a large model on a sufficiently large dataset, if the training is done for 

a long amount of time rather than increasing the generalization capability of the model, it 

increases the overfitting. As in the training process, the training error keeps on reducing but 

after a certain point, the validation error starts to increase hence signifying that our model 

has started to overfit. 

 

Figure 2-9 Training versus testing error with early stopping 
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Figure 2-10 Training and Validation loss 

 

One way to think of early stopping is as a very efficient hyperparameter selection 

algorithm. The idea of early stopping of training is that as soon as the validation error starts 

to increase we freeze the parameters and stop the training process. Or we can also store 

the copy of model parameters every time the error on the validation set improves and 

return these parameters when the training terminates rather than the latest parameters. 

Early stopping has an advantage over weight decay that early stopping automatically 

determines the correct amount of regularization while weight decay requires many training 

experiments with different values of its hyperparameter. 

 

 Noise Robustness 

Noise is often introduced to the inputs as a dataset augmentation strategy. The 

addition of noise with infinitesimal variance at the input of the model is equivalent to 
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imposing a penalty on the norm of the weights. Noise injection is much more powerful than 

simply shrinking the parameters, especially when the noise is added to the hidden units. 

Another way that noise has been used in the service of regularizing models is by 

adding it to the weights. This technique has been used primarily in the context of recurrent 

neural networks. This can be interpreted as a stochastic implementation of Bayesian 

inference over the weights. 

 

 Bagging 

Bagging or bootstrap aggregating is a technique for reducing generalization error by 

combining several models. The idea is to train several different models separately, then 

have all of the models vote on the output for test examples. This is an example of a general 

strategy in machine learning called model averaging. Techniques employing this strategy 

are known as ensemble methods. This is an efficient method as different models don‘t make 

the same types of errors. 

 

2.3.5 Optimization techniques 

Here are three of the most common used optimization functions (Stochastic Gradient Decent, 

Adagrad, Adam. 

 

 Gradient Descent 

Gradient descent calculates gradient for the whole dataset and updates values in direction 

opposite to the gradients until we find a local minima. Stochastic Gradient Descent performs 

a parameter update for each training example unlike normal Gradient Descent which 

performs only one update. Thus it is much faster. Gradient Decent algorithms can further be 

improved by tuning important parameters like momentum, learning rate etc. [161] 
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 Adagrad  

Adagrad is more preferable for a sparse data set as it makes big updates for 

infrequent parameters and small updates for frequent parameters. It uses a different 

learning Rate for every parameter θ at a time step based on the past gradients which were 

computed for that parameter. Thus we do not need to manually tune the learning rate. 

[161] 

 Adam  

Adam stands for Adaptive Moment Estimation. It also calculates different learning 

rate. Adam works well in practice, is faster, and outperforms other techniques. [161].  

Stochastic Gradient Decent was much faster than the other algorithms but the 

results produced were far from optimum. Both, Adagrad and Adam produced better results 

that SGD, but they were computationally extensive. Adam was slightly faster than Adagrad. 

Thus, while using a particular optimization function, one has to make a trade off between 

more computation power and more optimum results. 

 
Figure 2-11  Perofmance comparasonfor SGD, Adagrad, Adam optemizers 

 



79 
 

2.3.6 Transfer learning in medical imaging  
 

Transfer learning is essentially the use of pre-trained networks (typically on natural 

images) to try to work around the (perceived) requirement of large data sets for deep 

network training. Two transfer learning strategies were identified: (1) using a pre-trained 

network as a feature extractor and (2) fine-tuning a pre-trained network on medical data. 

The former strategy has the extra benefit of not requiring one to train a deep network at all, 

allowing the extracted features to be easily plugged in to existing image analysis pipelines. 

Both strategies are popular and have been widely applied. However, few papers perform a 

thorough investigation in which strategy gives the best result. The two papers that do, 

Antony et al. (2016)[162] and Kim et al. (2016)[163], offer conflicting results.  

 

In the case of Antony et al. (2016), fine tuning clearly outperformed feature 

extraction, achieving 57.6% accuracy in multi-class grade assessment of knee osteoarthritis 

versus 53.4%. Kim et al. (2016), however, showed that using CNN as a feature extractor 

outperformed fine-tuning in cytopathology image classification accuracy (70.5% versus 

69.1%). Two recent papers, published in high-ranking journals, which fine-tuned a pre-

trained version of Google‘s Inception v3 architecture on medical data and achieved (near) 

human expert performance [113], [114].  Such results have not yet been achieved by 

simply using pre-trained networks as feature extractors.  

 

In the more recent papers using CNNs the network architectures had been trained from 

scratch instead of using pre-trained networks. Menegola et al. (2016) [164]performed some 

experiments comparing training from scratch to fine-tuning of pre-trained networks and 

showed that fine-tuning worked better given a small data set of around a 1000 images of 

skin lesions. However, these experiments are too small scale to be able to draw any general 

conclusions from.  
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2.4 Liver segmentation  
 

Liver detection and segmentation in medical images has been reported using CT, MRI 

and Ultrasound. In a liver medical diagnosis system, fully automatic methods are desirable, 

however, is a challenging task suffering several stages of development. Methods in the 

literature have focused on tumor segmentation in abdominal Dynamic Contrast-Enhanced 

MRI[165]. However, the most widely used method for liver diagnosis is CT, and hence, it is 

also the imaging modality with most prevalence the literature[166].  

As an overview, the study of CT-based liver segmentation has been validated until the last 

decade using mainly statistical and atlas-based segmentation models and were in the past 

decade overcome by the higher performance presented by machine learning methods. 

Moreover, in the past decade, three liver and liver lesion segmentation workshop challenges 

were organized, boosting the interest of the scientific community towards this task. 

Many research papers proposed methods for liver segmentation. Significant number 

of surveys concluded the approaches of liver segmentation into 1) Gray level based 

(region growing, active contour, Graph cut, threshold based, clustering based) , 2) 

Statistical models (ASM, AAM), 3) Texture based ( Machine learning, Patern reconition)   

, 4) Other methods ( deformable model based methods, Probabilistic atlas based methods 

, level set based methods)  [5]–[11].  

The following subsections will review the different techniques for liver segmentation 

divided into General techniques, Machine learning based techniques, and Deep learning 

based techniques for liver segmentation. 

2.4.1 General techniques for liver segmentation 
 

In 2007 a CT liver segmentation challenge was organized for MICCAI 2007 

conference. Until the past decade, the greatest contributions made in the field of whole liver 

segmentation were reported upon the MICCAI Sliver 2007 challenge, making available a 
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dataset of 40 contrast-enhanced CT images [11]. In this setting, the top ten methods 

proposed in the automatic segmentation category, included deformable models [167]–

[171], Statistical shape models (SSMs) [172]–[174], level-set methods [175], [176], atlas-

based methods [177]. The semi-automatic methods proposed by the top six papers in this 

category included graph-cuts segmentation [178], flood-filling segmentation [179], a level-

set based deformable segmentation  [180], radial basis function guided level-sets 

segmentation [181] and atlas-based segmentation[182] , further refined by manual 

interaction.  

 

As could be expected, in the vast majority, the semi-automatic segmentation methods 

proposed at the time surpassed the performance of the automatic methods. The challenge 

evaluated the results by comparison to expert-generated references and using in a 

combined scoring method which evaluated a set deviation metrics to ground truths. The 

performance results of the MICCAI Sliver showed that, the top three best performing 

automatic segmentation methods in the challenge were all based on Statistical shape 

models. SSMs, primarily presented by Cootes et al[79], [89], [93], consisted in statically 

model prior shape data as a parametric set of equations that focus rather on the boundary 

of the region to be segmented instead of its internal voxels [81]. These types of algorithms 

became very popular in medical image segmentation, despite presenting lack of flexibility. 

To overcome this, Kainmuller et al. presented a combined SSM-constrained segmentation 

followed by a deformable mesh guided by a heuristic tissue classifier. The method included 

a thresholding initialization step and allies the free-form intensity dependent flexibility 

conferred by the deformable step, being the best automatic method presented in the 

challenge [173]. Semi-automatic methods based on user interactive refined graph-cut (GC) 

segmentation won the competition [178]. Graph partitioning methods consider the image to 

be segmented as a graph, composed of nodes representing image voxels, and edges 

connecting the neighboring nodes, weighted by a given dissimilarity rule. This graph 
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representation can be partitioned into connected components according to criteria 

describing the properties of the expected segments resulting in the segmentation of the 

image. The dissimilarity measure can incorporate gradient, intensity, texture or any other 

images features. GC methods use a minimum cost function between all possible cuts of a 

graph representation of the images, requiring background and object manual initialization.  

 

In subsequent years, other methods have continuously been proposed in the literature and 

tested on the same MICCAI grand challenge dataset, allowing the direct performance 

comparison. Later, automatic segmentation methods were submitted to the challenge 

outperforming the abovementioned studies. SSM methods were continuously proposed with 

different modifications, such as combinations with free-form constraining [173],[183], level-

set [184], graph-cut [185] methods, among others. Graph-based methods such as GC was 

proposed by many papaers in semi-automatic segmentation methods due to its ability to 

interactively edit the segmentation[186].  

 

The level-set algorithm is another mathematical formulation of an iteratively evolving 

surface or contour. According to this technique the contour is represented using a signed 

function, i.e. the level-set function, where the zeros valued locations corresponds to the 

actual contour. The level-set function requires a contour initialization which then is 

computed, incorporating the contour propagation speed that is defined at each voxel. The 

advantage of this approach is that it can handle topological changes of the contour, but 

these methods can be time consuming and it is difficult to handle over-segmentation. 

Image-based methods, besides level-set algorithms were proposed in semi-automatic 

methods. Ruskó et al. proposed an improved histogram-guided Region Growing (RG) 

method, obtaining competitive results in multiphase CT images [187]. 
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More sophisticated SSMs such as Active Appearance Models (AAMs) have also been 

proposed in the literature. Transversal to SSMs and image and contour-based algorithms, 

initialization always stood as the biggest issue in the performance of these methods. Chen 

et al. proposed a novel combined AAM with a free-form segmentation based on Livewire and 

GC algorithms, for abdominal multi-organ pose estimation, initialization and segmentation 

[185]. The method was validated and compared with the dataset and results of the MICCAI 

Sliver challenge presenting similar performance and demonstrating less computational cost. 

Tomoshige et al. proposed a relaxed conditional SSM with conditional features error model, 

with a subsequent free deformation step demonstrating very positive results for automatic 

liver segmentation, on a private dataset of 144 non-contrast CT images, expressing 

performance as a Jaccard index valued 0.86 [188]. Another pertinent graph-based 

algorithm that became popular in medical image analysis is the Random Walker (RW) 

algorithm for segmentation, proposed by Grady (2006) [189]. Moghbel et al. tested the 

performance RW, after rib-cage removal using B-spline contouring, of on an image dataset 

composed of healthy and unhealthy livers, achieving a promising average performance 

expressed as a Dice similarity index (DSC) valued 0.94, and 0.91 for the MICCAI Sliver 

challenge.  

 

In turn, another popular type of segmentation algorithm were atlas-based methods. 

Probabilistic atlases (PA) use shape priors and spatial relationship information. Atlas-based 

methods were also presented in the MICCAI Sliver challenge; however, their initial 

formulation did not outperform the previous model- and image- based methods, not being 

able to handle properly the very high variation that characterized the liver shape among 

different patients. Nonetheless, Okada et al. proposed a novel method combining the 

properties of both probabilistic atlases for initialization followed by an optimized SSMs fitting 

to the image intensities [190]. Lastly, Xu et al. proposed a registration based on dense 3D-

scale invariant feature transform (SIFT) features to find correspondences between source 
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images and target atlas. The labels of the source image are later used to segment the 

target image, and the method was validated on the MICCAI Sliver challenge, with 

performances of 96% dice overlap [12]. In turn, Platero and Tobar developed a method 

combining the spatial normalization with the segmentation method based on standard CRF 

models to guide 19 atlases for liver segmentation, presenting high DSC valued 95%–97% 

for the MICCAI 2007 Grand Challenge [191].  

 

In the following year, MICCAI 2008 conference launched the MICCAI 2008 Workshop on 3D 

Liver Tumor Segmentation Challenge, making available CT data from 30 liver tumors. At 

this time, research in medical image started to incorporate machine learning methods. 

Hence the proposed methods are composed by a mixed variety of algorithms. Similarly, to 

the previous challenge, semi-automatic methods outperformed automatic ones. In this 

competition, the top ranked method presented, consisted in a semi-automatic method 

combining graph-cuts with a watershed low-level segmentation[192]. Moreover, region-

growing algorithms [193], thresholding only [194] and combined with filtering 

techniques[195] , intensity-based analysis [196], [197], deformable models[169], [198]. 

[5] 

 

2.4.2 Machine Learning based methods for liver segmentation 
 

Apart from the mentioned methods, novel segmentation techniques incorporating machine 

learning algorithms have gained attention by researchers. Machine learning, as in many 

other fields of Image analysis, has grown preponderantly, presenting superior results in a 

varied number of computational tasks. More recently, a sub-field of machine learning 

algorithms, denominated as deep learning, is the current state of the art set of algorithms 

that are being validated in the literature for signal and image processing tasks. Medical 

image analysis research field has also followed the deep learning trend and is currently 

applying these algorithms to a wide number of segmentation tasks. An overview of the key 
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first machine learning incorporations with standard methods, pure machine learning 

algorithms and more advanced deep learning methods applied to liver organ segmentation 

follow. Among these, data-driven methods for pixel labelling were widely used for target 

object segmentation. Goryawala et al. propose a 3D whole liver volume segmentation 

method, as a semi-automatic k-means clustering initialization followed by 3D RG algorithm, 

ensuring a parallel computational processing framework [199].  

 

In the context of the MICCAI 2008 workshop challenge, learning-based algorithms were 

proposed based on Adaboost models[200] , Bayesian probabilistic methods and Support 

Vector Machines (SVM) voxel classification.  

 

SVM belongs to the supervised learning methods that combine linear algorithms with linear 

or non-linear kernel functions SVM by finding the best generalizing hyperplane with maximal 

margin separating the two classes. The second best method proposed in the MICCAI 2008 

competition was a semi-automatic method using supervised SVM voxel classification 

strategy in 2D slices, further propagated adjacent slices for tumor segmentation[201] . 

Other Bayesian learning algorithms [193] were also proposed.  

 

In subsequent years also, many papers used the challenge dataset for method validation. 

Zhang et al. proposed a watershed liver initialization followed by SVM-based regional 

classification [202]. Sophisticated graph-based analyses of images have also been 

attempted in the literature. Wu et al. propose a supervoxels analysis, generated by the 2D 

simple linear iterative clustering, of images segmented with graph-cut algorithm [203]. 

Selver et al. developed a fully automated liver segmentations method that employs pre-

processing for exclusion of neighboring structures, k-means clustering, and multilayer 

perceptron (MLP) for feature based boundary recognition, and post-processing for removing 
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miss-segmented objects and smoothing liver contours [204]. The method is validated in CT 

images with and without contrast media.  

 

Another feature-based segmentation using SVM classification of textural features with 

combined morphological operations [205]. Hu et al. proposed a three-level AdaBoost-guided 

ASM to segment liver in CT images, including an Adaboost voxel labelling initialization, a 

profile classifier, refined by an ASM mesh model[13] . Zheng et al. propose a feature-

learning-based random walk method for liver segmentation using CT images. A learning 

step consisting on Haar, HOG LBP, and GLCM features are learned by an Adaboost guided 

Support Vector Machines (SVM) model, which generates automatic seed points on the 

original test image, to carry the automatic segmentation step via Random Walks 

algorithm[206].  

 

Markov Random Fields theory has also been applied to image segmentation. This algorithm 

considers that hidden node representing a label (e.g. object of interest, background, etc.) is 

assigned to each observation node. The method computes the hidden node configuration 

with the highest probability given the observation nodes and the built-in model. 

 

2.4.3 Deep learning-based methods for liver segmentation 
 

Several methods well established in the literature have been reported in the 

literature obtaining the best recently published automatic liver segmentation methods, as 

good performances as DSC of 0.96 [12], [13]. The evolution of deep learning methods has 

evolved from the first applications of these methods to signal processing. Hence, deep 

architectures range from Deep Belief Neural Networks (DBNs), Sparse Autoencoders (SAEs) 

and finally Convolutional Neural Networks (CNNs). First approaches were proposed using 

SAEs. The first method using deep neural networks for liver segmentation was proposed by 

Shin et al. in a multi-organ segmentation pipeline of Dynamic Contrast Enhanced Magnetic 
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Resonance Imaging (DCE-MRI) [206]. The models base their knowledge in previous 

applications of deep architectures to object recognition in natural images and propose an 

SAE neural network to separately learn 256 visual and temporal features in an unsupervised 

and automatic manner and detect multiple organs in a time series. The research seek to 

propose the first deep architecture procedure for medical image segmentation tasks, 

tackling the substantial shape changes that characterize the abdominal organs such as 

kidneys, liver, heart among others, hence using a data sets from two studies of liver 

metastases and one study of kidney metastases. The SAE was characterized by sparsity 

constraint application to logistic sigmoid activations, interleaved with max-pooling 

operations after each layer. A first step of tissue type labelling was performed, followed by 

tissue to separation of each organ recurring a parameter optimization using to context-

specific feature manipulation, to identify each organ in a supervised manner, obtaining a 

classification accuracy of approximately 64.8% for the liver.  

 

Lu et al. proposed a segmentation method combining a 3D CNN to obtain liver probability 

maps which would be further incorporated in the image information term of the energy 

functional of a GC algorithm. The papers validated the method on forty CT volumes, 20 

taken from the MICCAI Sliver07 challenge and 20 from the 3Dircadb datasets. The papers 

use stacked convolutional and average pooling layers, trained by gradient-based 

backpropagation. The papers take advantage of the capability of GC method of handling 

loose boundaries between tissues with similar intensity distributions. The proposed method 

is the first 3D CNN application to liver segmentation, and obtained a score of 77,8 by the 

Sliver challenge evaluation method [207].  

 

Hu et al. proposed an automatic 3D CNN, trained to output liver probability maps 

complemented with a globally optimized surface segmentation. The model used 42 CT 



88 
 

images from MICCAI Sliver challenge dataset obtaining an overall score of 80.3, surpassing 

any other methods previously proposed.  

Christ et al. proposed a cascaded CNN in 2D with a 3D dense conditional random field (CRF) 

approach as a post-processing step, to achieve higher segmentation accuracy while 

preserving low computational cost and memory consumption [15].  

 

Dou et al. presented a novel 3D CNN equipped with fully convolutional architecture and a 3D 

deep supervision mechanism to comprehensively address the challenges of volumetric 

medical image segmentation [15]. The deep supervision method, to which the authors 

name DSN, uses an objective function that guided the training of the upper and lower layer, 

propagating more efficiently the representation of the features, as well as speeding up the 

training process, by patch-based methods and volume-to-volume learning and inference. 

The CNN model consists in 6 convolutional layers, 2 max-pooling layers, and one softmax 

output layer layers finalized with 2 deconvolutional layers, trained via stochastic gradient 

descent (SGD), in a fully convolutional architecture with 3D kernels, outputting a spatially 

arranged classification across the whole input pixels. The resulting predictions are rougher 

and obtained in low-dimensional layers, which is thus solved by the deconvolutional final 

layers. Furthermore, the papers empathies the gradient instability that has been reported in 

previous works, where propagated ‗fading‘, exploding of vanishing of gradient magnitudes 

occurs. A DSN mechanism is proposed in the network architecture by softmax extraction of 

outputs predictions from intermediate layers convolutional results, connecting them directly 

to the final output layer, and whose weighting is incorporated in the backpropagation 

objective function. Finally, the papers propose the incorporation of a fully connected CRF, 

which has advantage in capturing complicated shaped object such as those with holes or 

thin structures, was used for liver segmentation refinement. The results were evaluated on 

the MICCAI Sliver challenge dataset presenting superior Volume Overlap Error and 

computational cost.  
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From this point, the ISBI 2017 conference, released a challenge focusing on liver lesion 

segmentation, this time making available a total of 200 abdominal contrast-enhanced CT 

images. The dataset was obtained from several different clinical sites with different scanners 

and protocols, thus having largely varying spatial resolution and fields-of-view. The in-plane 

resolution ranges from 0.60 mm to 0.98 mm, and the slice spacing from 0.45 mm to 5.0 

mm. The axial slices of all scans have an identical size of 512 × 512, but the number of 

slices in each scan differs greatly and varies between 42 and 1026. The following works 

presented, were developed under this scope of this challenge and will be reviewed in detail. 

Given the advances of these methods, it was only natural that they consisted in 

implementations using Convolutional Neural Network.  

Chlebus et al. proposed a two-step segmentation method, initiated by a liver volume 

segmentation followed by a liver lesion candidate detection and classification [15]. In the 

first step, a coarse segmentation was obtained from an ensemble of three CNNs trained with 

each of the three orthogonal interpolated volumes, followed by a 3D CNN liver refinement. 

The axial, sagittal and coronal volumes trained three 2D U-net models which whose softmax 

outputs were used to train a final 3D U-net that originated a full mask volume of original 

resolution. Based on the liver mask ROI extraction the second step consists in a two-step 

tumor segmentation using a 2D CNN for tumor segmentation, tumor candidate detection via 

3D connected component analysis of the mask volumes, followed by a Random Forest tumor 

candidate filtering. Similar to the first step, a 2D U-net was used for the tumor 

segmentation and were trained with class balanced boundary patches of the axial dataset, 

however, the paper hypothesize that the patching step used for training penalized the 

specificity of these segmentations, requiring thus, the incorporation of a 46 features 

extraction and classification step of these candidate tumor mask. The method scored a Dice 

coefficient of 0.65, and second place in the challenge, including a tumor candidate 

classification accuracy with the random forest approach of 90%.  
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Bi et al. propose a cascaded deep residual networks (ResNet) approach to segment the liver 

lesions [208]. As pre-processing this paper apply data augmentation strategies including 

random scaling, crops and flips. ResNet uses shortcut connections to avoid training 

degradation though deeper layers, whereas the optimal results are calculated by an 

averaging output of the different networks. The key feature of the architecture proposed is 

the cascading of parameter learning, made from learning the training data and from the 

previous iteration result outputs. The testing segmentations are further incorporated with 

multi-scale rescaling strategies whose outputs averaging produce the final predictions. 

Given the architecture depth of 20 hidden layers training the entire volumes would become 

computationally non-viable, so the authors randomly pick a balanced dataset of axial slices, 

of a total of 8802 images to train the neural network via stochastic gradient descent. The 

network is pretrained firstly on the ImageNet dataset for parameter fine-tuning, which is 

then further fine-tuned with the liver dataset. 

 

2.5 Summary  
 

Convolutional neural networks implemented fully convolutional layers to extract features 

from the input images by applying serious of convolution and pooling processes. The 

extracted features will enable the CNN to accomplish the task of classification or 

segmentation of the image with a significant accuracy. U-Net is sub type of CNN and 

considered as the-state-of-the-art for medical image segmentation. The reason why U-net 

provides accurate segmentation image is that it combines the details in the contraction path 

with the global information in the expansion path. At the bottom of contraction path, the 

output image with global information of the shrinking unit is very small, and the global 

information is fused with the previous layer of the contraction path after the convolution. 

But this fusion operation makes detail information and global information are both from the 
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contraction path, and the details have not yet been pooled as global information. Based on 

that behavior, the convolution kernel of the contraction path serves as the tasks of 

extracting details and global information at the same time and it may cause the redundancy 

of parameters, reduce the pertinence of convolution kernel, and reduce the efficiency of 

convolution kernel extraction feature. Another drawback for the U-Net structure is, the vast 

network structure slows down the training process. The training process getting results from 

the data set takes for a long time, so for some special medical images whose characteristics 

are not obvious enough (such as lymph nodes), people are more likely to adopt the 

traditional segmentation method, morphological operation. If the training speed can be 

speeded up and the network precision can be improved, the method of deep learning will be 

more widely used in image segmentation. [209] 

Segmentation or contouring processes are usually affected by the edge of the object. 

Despite the skip connection in the conventional U-Net more effectively handling edge 

information, there are still some drawbacks of the U-Net. First, the U-Net architecture 

duplicates low resolution information (low frequency components) of features. After pooling 

(down sampling), low resolution information of features pass on to the convolution layer in 

the next stage. However, this low resolution information of features is transferred by the 

skip connection of the U-Net as well. Duplication of low resolution information may then 

cause smoothing of the object boundary information in the network, which is more serious 

in the case of fuzzy object boundaries.  Another drawback of the U-Net architecture is that it 

may not sufficiently estimate high level features for high resolution edge information of the 

input object. The U-Net can use the skip connection to transfer high resolution information. 

However, unlike low resolution features after pooling, high resolution edge information does 

not pass through any convolution layers during transfer by the skip connection. Thus, higher 

level feature maps learned by the network do not contain enough of the input object‘s high 

resolution edge information. Thus, in the conventional U-Net, high level features are 

extracted disproportionately from low resolution information. [210] 
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The literature shows significant number of varieties of the models based on U-Net structure 

with many modifications had been implemented for medical image segmentation while a few 

of them focused on liver and liver tumors.  

Since U-Net model initially introduced on 2015, significant number of researches inherited 

the U-Net structure with different kind of modifications in order to achieve high 

segmentation accuracy using specific datasets. stacked U-Net, V-Net, Bridged 2U-Net are 

examples of the modifications on the U-Net main structure. Zhang et al., 2018 added a 

separated path to extract the global features and detail features separately with changing 

the number of convolutional channels of the original contraction path, the original expansion 

path and the new path is reduced. These two modifications make the training more rapid 

and improve the efficiency of the convolution kernel extraction feature. [209]. While the 

adjacent network with less number of parameters speeded up the training process it has a 

limited accuracy [211], Integrating U-Net with other traditional registration and 

segmentation techniques such as Conditional Random Field segmented the liver tumor with 

limited number of samples[212] [213]. Cascading U-Net  [214] and cascaded U-Net with 

Residual mapping  [215] is another form of U-Net modification by replacing the 

convolutional layers with a complete residual block or layers that successfully segment the 

liver and liver tumor on a two cascaded phases. [216]–[219]. UNet++ is a successful model 

for integrating the skip connections to form a basic style of deep supervision approach  

[220]. 

Based on the analysis of the mentioned approaches in the literature, the modifications on U-

Net model generated based on the specifications of the research problem and no specific 

detailed study had been conducted to compare between different type of modifications on 

U-Net in terms of the number of levels on each path of the U-Net, the number of filters that 

can be applied on each level, the effect of stacking multiple U-Net , the effect of changing 
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the skip connections between the two paths of the U-Net and the bridge connections 

between stacked U-Nets.  

Although Dice similarity coefficient (DSC) proved to be one of the best loss function and 

metrics for segmentation accuracy, we decided to integrate the proposed distance between 

centers of mass (Centroid ) with two types of deep-supervision techniques to add more 

constrained on the false positive output of the liver segmentation solve the flipping issue 

because DSC couldn‘t solve it. The combination of the weighted loss functions (DSC and 

Centroid) with De-convolutional deep-supervision and multi-resolution masks deep-

supervision is a novel approach to enhance the accuracy of liver segmentation. As far as we 

know from the literature, DSC, weighted DSC, and Deep-supervision implemented 

separately in different researches and achieved good accuracy for specific segmentation 

task.  
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3 Chapter 3                    

Research Methodology 

 

The research methodology designed to answer the main research questions stated in 

the introduction and overcome the issues, problems, and difficulties that had been raised 

during the research. The research questions concluded in investigating the effect of 

increasing the depth, width of the U-Net on the performance, investigate different 

connections between different model components. Overcome the issues of shortage in 

medical images datasets available for research and the flipping issue that appeared because 

of implementing specific augmentation techniques. 

The methodology consists of four main modules, ―Model design‖, data pre-processing, 

training the model, and finally the testing process. Figure  3-1 shows the modules and 

the processes in each module and the relationships between different modules and 

processes. The main contributions represented in the highlighted (Blue color) processes.  

 

Model Design  

Model design is the first module of the methodology where the CNN model designed 

with full details to accomplish the liver segmentation task. Designing the model contains 6 

sub-processes based on the generated model for each task. 1- ‗Model Structure’, 2- 

‘Model Depth’, 3-‘Model Width’, 4- ‘Skip Connections’, 5- ’Loss function design’, 

and 6- ’Model parameters’.  
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All the six processes within this module define part of the contribution of the 

research. 

In Model structure process, the base model structure is chosen. U-Net and 2 Bridged U-

Net models are chosen to be the base models based on the investigated question, in 

addition to integrate the concept of deep supervision and multiple outputs with the bridged 

U-Nets. Image sizes, number of layers in each level, number of filters are hyper parameters 

that define the U-Net based models. The second process is ‗Model Depth’ where number of 

levels in the contracting and expansion paths of the U-Net and the type of layers in each 

model‘s level e.g. (Conv, maxpooling, dropout…etc.) will vary to generate different models 

for accuracy investigation, while ‗Model width’ process shows how many U-Net will be 

stacked to construct the wider model to test the accuracy. Skip connections process 

where different skip connections between different levels and layers in each U-Net and 

between different U-Nets are designed and investigated to generate various models in order 

to recommend the best setting for U-Net based models. Design the loss function is a 

critical process that significantly affect the overall model performance. Integrating DSC with 

newly implemented centroid loss and applied weight factors on deep supervision style model 

represents one of the major contributions of the research to solve the flipping issue. Model 

parameters’ stetting process plays a crucial role that affects the overall model 

performance. The model parameters include but not limited to filter size, number of filters 

applied at each layer and the percentage of increasing or decreasing between different 

levels, and the stride size, maxpooling size, dropout percentage, learning rate and it‘s 

decay, the activation function, and the optimizer selection. 

Pre-Processing  

This module focus on preparing the data samples to be suitable for training and 

testing CNN based mode. Because CNN models need significant number of samples for 

training and validation while the available dataset is very limited, data augmentation 



96 
 

techniques are used to significantly increase the number of data samples. Deciding the 

splitting percentage of the data for training, validation, and testing in addition to choosing 

the samples in each group can affect the performance, for example the training samples 

should contain most of the variations in the data. A normalization technique is implemented 

to keep the DICOM pixel data values within a suitable integer range for CNN model. 

Model Training 

Training the model contains 3 sub-processes, 1- uploading the training and validation 

data, 2- Setting the model and process parameters, 3- training process. The main 

contribution in this module is defining the model parameters (2). Deciding the 

values of the model hyper parameters had significantly affected the model performance. 

Examples for the model‘s training parameters are learning rate, number of epochs, image 

size, loading batch size…etc. 

Model Testing 

The testing module contains only two processes, loading the testing sample, and 

testing and recording the results. Using augmented data for model training is common for 

classification task [221][222] and rarely used for image segmentation [223] because the 

classification needs to be applied on real world data e.g. handwriting numbers can‘t be 

found flipped or aggressively rotated otherwise it can give wrong prediction for 6 and 9. 

While all the models included in this research trained, validated on both original and 

augmented data, testing the CNN model using both original and augmented data for 

medical images could be an addition contribution. The same augmentation techniques 

applied to the testing samples. The tested models recorded very close accuracy on both 

original and augmented data. 
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Figure 3-1 Methodology modules and processes in each module and the relationships between different models and 
processes. The highlighted processes represent the research contributions 

 

3.1 Datasets 
3Dircadb1(3D Image Reconstruction for Comparison of Algorithm Database) is 

created by Hôpitaux Universitaires France as a public dataset for researchers in medical 

image segmentation. The dataset composed of 3D CT-scans for 20 patients with hepatic 

tumors in 75% of cases. For each patient there are number of CT scans in addition to 

manually annotated mask for several structures of interests e.g. liver, left kidney, right 

kidney, and hepatic tumors performed by clinical experts. All Ct scans and masks are in 

DICOM format with pixel size (512*512). The total number of CT scans are 2823.[224]. The 

CT scans of 20 patients divided into 14 patients (P6 to P19) for training, 4 patients (P1 to 

P4) for validation , and 2 patients (P5 and P20) testing. Figure  3-2. Excluding 13% of the 
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total samples used for testing, the remaining samples divided into training and validation 

with percentage 75% and 25%. 

   

   

    

      

Figure 3-2 Examples of 3Dircadb1 dataset, DICOM image and associated mask shows a lot of variations in the liver shape 
even for the same patient 

 

IKN (Institut Kanser Negara - Malaysia)  

IKN is the National cancer institute, Negara, Malaysia. IKN is governmental hospital 

and research center for cancer treatment. The collaboration with IKN supports the research 

with enough IKN data for testing the model after signing of a confidential data agreement.  

The data contains CT scans for 15 patients with liver or kidney tumors. The CT scans 

for each patient obtained before, during and after the treatment process. The dataset 

https://nci.moh.gov.my/index.php/ms/
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consists of 26,948 images in DICOM format. Because the dataset doesn‘t have any 

annotated mask for any organ, it can‘t be used for model training. All images contained in 

this dataset would be used for testing the trained model. During the treatment and scanning 

process, the patient position changed from lying on left or right side to face up or face down 

depending on the treatment procedure and the tumor position. Based on the position 

changing, the liver position and shape is different from patient to another and between each 

group of images. Figure  3-3 

      

Figure 3-3 Examples for IKN dataset, the patient position from left to right is face up, face down, right side 45 dgree, right 
side 90 degree 

 

3.2 Hardware/Software framework 

3.2.1 Hardware 
Intel® Core™ i7-6700 CPU @ 3.40GHz × 8, with 16GB RAM and GPU GeForce GTX 

1080/PCIe/SSE2 with 8GB RAM. Storage space of 500GB is needed to store the data 

samples used for training and validation and testing results. 

3.2.2 Software framework 
The software framework composed of the following packages, CUDA v9.0, anaconda 

1.6.0, conda 4.3.25, python 2.7.3, TensorFlow 1.2.1, Theano 0.8.2, Keras 2.1.1. In addition 

to the needed libraries for the implementation, e.g. openCV ,numpy, pydicom, skimage, 

matplotlip, PIL, pandas, and keras ( model, layers, optimizers..etc). Ubuntu 14.04.05 is the 

used operating system. Figure  3-4 
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Figure 3-4 Software framework 

 

3.3 Data augmentation 
 

There is significant number of augmentation techniques used to increase the number 

of data samples[221]. Only two augmentation techniques implemented in this research, 

horizontal and vertical flipping and rotation with 15 degrees step because CT scans in real 

situations recorded while patients lies on left or right side or rotated with some angels to 

make sure of easy and shortest pass to access the tumors locations. As a result of applying 

the augmentation techniques, the total number of CT scans increased from 2,823 to 

112,920. Training, validation, and testing samples became 74,680 (14 patients), 23,680(4 

patients), and 14,560 (2 patients) respectively. Figure  3-5. The testing samples represent 

13% of the total samples of 3Dircadb1, while the remaining samples divided into training 

and validation with percentage 75% and 25%. 
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Figure 3-5 Augmentation techniques examples, A- Rotation 180
o
, B-Horizontal Flip, C- Vertical Flip, D- Rotation 45 

o
, E- 

Rotation 60 
o
, Rotation 90 

o
, G- Rotation 270 

o
 

  

3.4 Baseline Models  
 

In this piece of work, U-Net as the state-of-the-art for medical image segmentation 

is selected to be the main model for most of the experiments. The u-net is convolutional 

network architecture for fast and precise segmentation of images. Up to now it has 

outperformed the prior best method (a sliding-window convolutional network) on the ISBI 

challenge for segmentation of neural structures in electron microscopic stacks [225].It has 

won the Grand challenge for Computer-Automated detection of caries in bitewing 

radiography at ISBI 2015 [226], and it had won the cell tracking challenge ISBI 2015  on 

the two most challenging transmitted light microscopy categories (Phase contrast and DIC 

microscopy) by a large margin  [227]. U-Net benefits from a superior design of skip 

connections between different stages of the network. The most important property of U-Net 

is the shortcut connections between the layers of equal resolution in analysis path to 
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expansion path. These connections provide essential high-resolution features to the 

deconvolution layers. U-Net became one of state-of-the-art for medical image segmentation 

since it had been introduced by Ronneberger et al on 2015. Significant number of papers 

used U-Net model with some modifications to achieve specific tasks in medical image 

segmentation.  

The second base model is 2Bridged U-Net, where it overcome three problems in deep 

learning based medical image segmentation. Firstly, U-net, as a popular model for medical 

image segmentation, is difficult to train when convolutional layers increase even though a 

deeper network usually has a better generalization ability because of more learnable 

parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much 

different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of 

the pervasive loss functions for medical image segmentation, is not effective when the 

prediction is close to ground truth and will cause oscillation during training. [16] 

During the testing phase of U-Net and 2Bridged U-Net, the flipping issue appeared to 

show that, some context features are not correctly captured through the convolutional 

processes. The results show the flipping issue that segment two polygons as liver on both 

image sides while it supposed to be only on object according to the ground truth. To solve 

this issue, we need to decrease the distance between the centers of two polygons to remove 

one of them. We proposed a solution that combines two parts. The first part is the proposed 

centroid loss function that minimizes the distance between the center of mass between the 

two polygons. The second part is integrating deep-supervision approach to the model. 

Deep-supervision will add extra loss functions (weighted loss function of DSC and Centroid) 

at each level of the proposed model. The extra loss functions will add more constrains on 

the deeper levels of the model to minimize the loss. The total loss of the model is the 

weighted sum for the loss over all the model levels. 
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All the proposed models in the research are designed based on two main models that 

are considered as the state-of-the-art for medical image segmentation. The first model is U-

Net [14] using CNN in medical image segmentation. U-Net structure will be used to 

generate multiple models with variations in the number of layers and levels to investigate 

the effect of adding more layers to the U-net (meaning Deeper U-Net based models). The 

U-Net model with the original structure of 5 levels with number of filters 64-1024 will be 

used to explore the effect of stacking more than one U-Net together to for wider models. 

 The second model is based on two bridged U-Net and consists of two U-Nets 

connected with two bridged connections for prostate segmentation.[16]. The model will be 

used to generate different models based on two and three stacked U-Nets with different 

bridge and skip connections between the U-Nets; the generated models will be investigated 

to explore the effect of different connections on the model‘s performance and design a 

model with better accuracy.  The structure of U-Net and Bridge net models is explained in 

full details in the following sections. 

 

3.4.1 U-net 
 

U-Net is considered as a state-of-the-art for medical image segmentation, initially 

proposed by Ronneberger et al[14] using the concept of de-convolution. This model is built 

upon the elegant architecture of fully convolutional network (FCN). U-Net benefits from a 

superior design of skip connections between different stages of the network. The model 

consists of two paths with the same number of levels. The contracting path consists of 4 

levels; each level consists of 2 convolution layers that apply 64 filters with size 3*3 without 

any stride or padding followed by pooling layer using the maxpooling process with size 

(2*2) to decrease the feature maps size by 50%. The last process at each level is applying 

dropout with size (0.5) to avoid the over-fitting and increase the regularization. The number 
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of filters applied on each level will be doubled from level to the next level .e.g. starting with 

64 filters at the first level then became 128, 256, and 512 for the next levels. At Level 5, 

1024 filters with size 3*3 applied for two layers of convolution without any pooling or 

dropout at this level. The expansion path consists of 4 levels, an up-sampling process 

using stride with size (2*2) would be applied on the output feature maps from the previous 

level to increase the size of the feature maps, and then a concatenation operation will 

concatenate the up-sampled feature maps with the output feature maps from the same 

level at the contracting path before applying de-convolutional process using 3*3 filters with 

the same number as the number of filters applied at the same level on the contracting path 

then dropout layer with size (0.4) is applied for regularization, e.g. from level 4 to the 

topmost level 1, the number of filters applied are 512, 256, 128, 64. After all the up-

sampling and de-convolution, the output size will be the same as the input image. Last layer 

for the whole model is apply convolution with size (1*1) using one filter and sigmoid 

activation function to classify the out pixels to one of 2 classes to define if the pixel is part 

of the mask or not. The following are some customized setting for the hyper-parameters for 

this study and different from the original U-Net paper. Rectified Linear Unit (ReLu) is the 

used activation function for all layers except the last layer. The model used learning rate 

(1e-5) and (adam) optimizer with DSC loss function. Detailed model structure included in the 

appendices  6.1.  Figure  3-6 
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Figure 3-6 U-Net model structure for medical image segmentation. Number of filters (red) from 64, 128, 256, 512, 1024. 
Feature maps size (black) outside starting with 512*512 and ends to 32*32. 

 

3.4.2 Bridge-Net 
 

2Bridged U-Net model consists of two U-Net connected by two types of bridged 

connections in addition to the skip connections between the contracting and expansion path 

of each U-Net. B1 and B2 represent the two paths of the first U-Net while B3 and B4 

represent the two paths of the second U-Net. The gray connections represent the skip 

connections between each two layers at the same level in each U-Net. The first bridge 

connection adds the output feature maps from B2 to the inputs of branch 3 (yellow), while 

the second bridge connection concatenates the output from B1 to the input of B4 (red). 

Figure  3-7 Figure  3-8 [16] 

 

 

Figure 3-7 W net with bridge and skip connections model structure 
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The detailed structure for 2 bridged U-Nets model showed in Figure  3-8. B1 and B2 

connected to create the first U-Net and the same with B3 and B4 for second U-Net. 

Branches 1 and 3 consisted of 4 levels of ( convolution  maxpooling ) layers using number 

of filters that increased by 200% from level 1 onward (32-46-128-256) (red), while 

branches 2 and 4 compound of 4 levels of layers ( upsampling  De-Convolution) with 

decreasing number of filters applied from level 4 to level 1 to reach the original image size 

at the output. Level 5 in each U-Net contains a convolutional layer with 512 filters for 

flattened images. The original image size is 256*256 and will be decreased by 50% after 

each max pool layer in the contracting path to reach the minimum of 16*16 pixels.  After 

each de-convolution and up-sampling layer on the expansion path, the feature maps size is 

increased by 200% to reach the original input size at the final output. The bridge and skip 

connections copy and concatenate high resolution feature maps between layers at the same 

level that may be lost during the convolution process. The first skip connection between the 

contracting and expansion path within each of the two U-Nets (Gray), the second 

connection is a bridge between the output of the expansion path of the first U-Net (B2) to 

the inputs of contracting path of the second U-Net(B3) ( Yellow).  The output from the 

contracting path of the first U-Net (B1) is concatenated to the inputs of the expansion path 

of the second U-Net (B4) (Blue). Each level at B2 concatenate the output feature maps from 

the same level at the contracting path in the same U-Net (Gray) in addition to the output 

feature maps from the previous level at the same expansion path (Green) then apply the 

Up-Sampling and De-Convolution. Each level at (B3) concatenate the output feature maps 

from the previous level at the same contracting path (Red) with the output feature maps 

from the same level at the expansion path of the first U-Net B2 through the bridge 

connection (Yellow), each level at the expansion path of the second U-Net (B4) concatenate 

the output feature maps from the same level at the contracting path at the same U-Net B3 

(Gray) with the feature maps from the previous level at the same expansion path at second 

U-Net B4 (Red) in addition to the output feature maps from the same level at the 
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contracting path at the first U-Net B1 (Blue) before applying the Up-Sampling and De-

Convolutional process Figure  3-8. To accelerate the convergence of neural network, the 

model proposed the gray block represents an ELU ( Exponential Linear Unit) cluster (2conv-

BN-ELU blocks), and the yellow block represents a ReLU (Rectified Linear Unit) cluster (2 

conv-BN-ReLU blocks) where BN stands for Batch Normalization process. The yellow lines 

represent network bridging. The blue lines represents skip connections.  [16]. Figure  3-8 

Exponential liner unit (ELU) replaces the negative part in ReLU with exponential function, 

which is helpful to make the average of output close to zero. Neural networks usually suffer 

low coverage rate because of vanishing gradient, especially for deep network. ELU provides 

a buffer in negative axis so that it will not saturate immediately. However, ELU still suffers 

the saturation problem when network gets deeper. A combination of ReLU and ELU 

improved the segmentation performance where only the deeper layers at level 4 and 5 used 

ReLu and the top level layers used ELU. After all the up-sampling and de-convolution, the 

output size will be the same as the input image. Last layer for the whole model is apply 

convolution with size (1*1) using one filter and sigmoid activation function to classify the 

out pixels to one of 2 classes to define if the pixel is part of the mask or not. The following 

are some customized setting for the hyper-parameters for this study and different from the 

original U-Net paper. The model used learning rate (1e-5) and (adam) optimizer with DSC 

loss function. Detailed model structure included in the appendices section  6.2 
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Figure 3-8 Bridged 2U-Net model 

 

3.5 Evaluation metrics 
Two categories of evaluation methods would be applied for most of the models in the study. 

Quantitative evaluation 

The accuracy for Training, evaluation and testing would be measured based on Dice 

Similarity Coefficient (DSC) that measure bitwise similarity between the ground truth and 

the prediction in terms of the intersection between the prediction and the ground truth 

divided by the absolute value of the sum of them  

DSC = 
   |     |

|  |   |  |
 

Where   the intersection between two sets of points, X and Y is are the ground truth and 

prediction set of pixels. The total accuracy is the average of the accuracy over all the testing 

samples. 
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Qualitative evaluation 

Qualitative or Subjective methods can be also called observation method. The most 

convenient method of assessment is subjective assessment, where segmentation results are 

judged by human evaluators. A qualitative comparison between the ground truth mask and 

the predicted liver mask image will be used to judge the accuracy of the models while using 

different loss functions to solve the flipping issue in section 4.2. 

 

3.6 Main proposed architecture designs  
 

The model designs are categorized into four main categories. The first category called 

Deeper models aim to reply the question stated that, how U-Net model performance will be 

affected with changing the depth of the model?, while the second category called Wider 

models will answer the question about the effect of increasing the width of the U-Net on the 

model performance, the wider models generated by stacking more than one U-Net together. 

The third category investigate the effect of modifying, or adding skip connections between 

bridged U-Nets on the performance to find a better performance model for the liver 

segmentation task. The research covered the different style of skip and bridged connections 

between 2 U-Nets and 3 U-Nets. The last category of models based on one of the best 

performance models from category 3 with a modified the structure and connections of 2 

bridged U-Nets. The generated models with different loss functions and deep supervision 

structure aim to solve the issue of flipping that appear as a result of applying rotation and 

flipping augmentation techniques on the training and testing dataset. The following sections 

show detailed explanation for all the models included in the four categories.  
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3.6.1 Deeper U-Net based models 
 

The main objective of this group of models is to investigate the effect of increasing 

the depth of a single U-Net model on the total model performance. The depth of the model 

is represented by the number of level in each path of the U-Net. For example, model (32, 

64, 128, 64, and 32) consists of 3 levels, 2 levels in each path and the deepest level. The 

number of applied filters are32 on the first level and 128 at the deepest level. To increase 

the depth of the model we add one level on the beginning of the model or level at the 

deepest level based on one of the following approaches, Top-Down or Bottom-Up. 

 

 Top-Down approach 

Starting with one U-Net model with the only three levels with applied filters (8, 16, 

32) for levels one, two, and three respectively. then change the structure by adding extra 

level at the bottom end to be 4 levels with number of filters ( 8,16,32, 64 ) and so on until 

we reach the model with maximum number of levels 9 and number of applied filters as ( 8, 

16, 32, 64, 128, 256, 512, 1024, 2048). Then repeat the experiments with model that have 

16 filters at the first layer and continue repeating with models with different number of 

filters at the starting layer (16, 32, 64, 128, and 256). In total we used 28 models, divided 

into 6 groups based on the number of filters applied on the first level (8, 16, 32, and 

64,128,256). Each group consists of number of models based on the contained number of 

levels (2, 3, 4, 5, 6, 7, 8, and 9).Figure 3-9  
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Figure 3-9 Top-Down approach, example for model starts with 8 filters applied to the first layer 32 filters applied to the 
deepest layer then increasing the depth of the model by adding extra layer with 200% of the filters each step, ending with 
2048 filters applied on the deepest layer of model of 9 levels. 

 

 Bottom-Up approach 

The second approach is to start at the deepest level with the original number of 

filters (1024) and with three levels model (128, 256, and 1024). We get the other models 

by adding more level to the beginning of the model. For example, the second deeper model 

would have the structure of 4 levels with number of filters ( 64,128,256,1024), and 

continue adding extra level for each experiment until the deepest structure with 8 levels 

with number of filters for each level as ( 8,16,32,64,128,256,1024) respectively.  

The same approach would be repeated for 3 groups of models based on the number 

of filters applied to the deepest level. The number of filters at the deepest level would be 

512, 1024, and 2048 number of filters. The total number of models for this experiment is 27 

models. In order to test the effect of the used image size on the segmentation accuracy, all 

the conducted experiments would be repeated 3 times for different image sizes (128*128, 

256*256, and 512*512). Some of the image size wouldn‘t be applicable to be used with 

certain model structure because the decreasing of the size to half after each level could lead 

to zero image size output with deeper model, for example using image size 128*128 with 

model structure (8, 16, 32, 64, 128, 256, 512, 1024, and 2048).Figure 3-10  
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Figure 3-10 Bottom-Up approach, example for model starts with 256 filters applied to the first layer 1024 filters applied to 
the deepest layer then increasing the depth of the model by adding extra layer with 50% of the filters each step to the top of 
the model, ending with 8 filters applied on the highest layer of model of 8 levels. 

 

3.6.2 Wider U-Net based models 
 

The main objective of this category is to investigate the effect of increasing the width 

of the model on the total performance. Increasing the width of the model means adding one 

complete U-Net model with the same structure. The connection between each two models 

will be only a direct adding of the output feature maps of the final level of first U-Net to the 

input of the first level of the second U-Net. This approach will allow exploring the effect of 

stacking more than U-Nets on the accuracy and the limitations in terms of how many 

stacked U-Net will give better accuracy? Will the accuracy keep increasing with adding 3 or 

4 or 5 U-Nets? Pear in mind stacking U-Nets without any extra connections or integrating 

other algorithm can be considered a special type of deeper U-Net.  

 

Starting with U-Net model with the original structure, 5 levels, with number of filters 

applied for each level is (64, 128, 256, 512, and 1024) then stacking a second U-Net with 

the same structure, The second U-Net would get the input from the output of the first U-
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Net. Three main models are implemented, first model consists of two stacked U-Nets, the 

second contains 3 stacked U-Nets, and the last model consists of 4 stacked U-Nets. Because 

of computational resources limitations only 4 stacked U-Net could be implemented and only 

images with sizes (128*128 and 256*256) could be used. Figure 3-11 

 

Figure 3-11 Wide models based on U-Nets, A- two stacked U-Nets, B- Three Stacked U-Nets, C- Four stacked U-Nets 

 

3.6.3 Skip connections 
 

This category aims to investigate different connections and skip connections between 

two or more U-Net model and the effect of different connections on the model performance 

in terms of accuracy and loss enhancement. The models are based on ―2 bridged U-Net‖ 

model section  3.4.2. The developed models are divided into three groups based on the 

number of connected U-Nets. The first group used 2 bridged U-Net, the second group used 

3 U-Nets and the third group used three U-Net will long connections. 
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 Two bridged U-Net 

The original model used 2 bridged U-Net. The model has direct skip connection from 

B2 to B3 (Yellow) and a skip connection from B1 to B4 (Red) in addition to the normal skip 

connections in each U-Net from B1 to B2 and from B3 to B4 (Blue).  In the modified model a 

new skip connection from B2 output to the input of B4 (Green) replaced the original 

connection from B1 to B4 (Red), while the compound model used both skip connections 

from B1 and B2 to the input of B4. The skip connections concatenate the output feature 

maps as the output of one of the U-Net branches to the inputs of another U-Net branch. The 

skip and bridged connections objective is to added features that might lost during the 

convolution and down-sampling in the contraction path to the expansion path of the same 

or other U-Nets. Figure 3-12 

 

 

Figure 3-12 Different types of bridged connections and skip connections with 2 U-Nets models 

 

 Three Bridged U-Net 

The models will use three U-Nets with different combinations of skip connections. 

The connections would add features from fist U-Net to the second and from the second to 

the third U-Net. The connections between each two U-Net will be one of the previous 
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category models (Original, Modified, and Compound). the name of any of three U-Net model 

will have two parts, first part will explain the connection between first and second U-Nets 

and the second part will state the type of connection between second and third U-Net, for 

example (Original – Compound) means that, the first and second U-Nets connected in the 

Original style (Red) while the second and third U-Nets implemented the Compound style 

(Red + Green).Figure 3-13  

 

Figure 3-13 Representation for examples of models developed based on three U-Net models using the different connections 
style (Original, Modified, and Compound) 

 

 Three Bridged U-Net with long connection 

This group of models based on 3 U-Net models. These models have exactly similar 

connections as in the previous group. In addition to the skip connections between first and 

second U-Nets and second to third U-Net, a long connection had been added to each model 

to concatenate the output feature maps B1 in the first U-Net to the inputs of B6 of the third 

U-Net (Blue). The names and list of variant connections are displayed in Figure 3-14 
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Figure 3-14 Representation for examples of 3 U-Net models with long connections between U-Nets (1 and 3) 

 

3.6.4 Loss functions design 
 

The objective of this group of experiments is to investigate, develop and modify the 

loss function in the modified model to solve the problem of flipping issue that appeared 

during the liver segmentation process. While using augmented data in the training process 

using both U-Net and 2 bridged U-Nets models, the testing results showed that, the modes 

detected part of the heart as a separate part of the liver. This issue resulted from using the 

rotation and flipping approaches during the augmentation. The models did not learn 

features that can relate the liver to a specific position of the CT image. The model 

segmented liver and part of the heart as liver in both sides of the CT image. Figure 3-15 
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Figure 3-15  The flipping issue appeared due to augmentation process, The ground truth (Green line), and the predicted liver 
(Red line) 

 

 Regression loss 

Using augmented data with original U-Net or 2 Bridged U-Net showed that, the 

model can detect the liver in two sides of the CT at the same time; in fact the model 

detected the heart as a second liver (or part of the liver because of similar texture and 

flipping and rotation augmentation techniques. 

 Dice similarity coefficient (DSC) 

The models implemented the Dice Similarity Coefficient (DSC) as the main loss 

function. The Dice similarity coefficient is a statistical tool which measures the similarity 

between two sets of data. This index has become arguably the most broadly used tool in the 

validation of image segmentation algorithms.  

The equation for this concept is: 

https://radiopaedia.org/articles/segmentation?lang=us
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DSC = 

   |     |

|  |   |  |
    

 Where  X  and Y are two sets. The two sets represent ground truth (Masks) and the 

predicted liver respectively. a set with vertical bars either side refers to the cardinality of 

the set, i.e. the number of elements in that set, e.g. |X| means the number of elements 

in set X . 

 ∩ is used to represent the intersection of two sets, and means the elements that are 

common to both sets. Figure 3-16. The model use backpropagation to update the weights 

to minimize the loss value. 

 

Figure 3-16 Dice similarity coefficient representation 

 

 Distance between centroid points of blobs 

 The center of mass is a position defined relative to an object or system of objects. It 

is the average position of all the parts of the system, weighted according to their masses. 
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Figure 3-17. For simple rigid objects with uniform density, the center of mass is located at the 

centroid.  
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Where  x , y are the coordinates of the centroid point of a blob. 

n is the number of points in the blob, w is weighted mass of the point of i 

The distance between centroid points of two blobs Dist 

Dist = (√(     )
  (     )

 ) 

Where (x1, y1) and (x2, y2) are the x and y coordinates of the centroid points of blob 1 and 

blob 2 respectively.  

 

Figure 3-17 Distance between center of mass of two blobs (Centroid distance) 

 

 Weighted sum of DSC and Centroid functions 

The proposed loss function will to calculate the distance between the centroid points 

of the blobs and add it to the dice similarity coefficient. The total loss of the model will be 
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the total weighted sum of centroid distance between blobs and dice similarity coefficient. In 

other words, to minimize the loss the model will minimize the distance between centroid 

points and maximize the Dice similarity coefficient. 

                 

Where L is the total loss, DSC is Dice Similarity Coefficient; Dist. is the distance between 

centroid points if the blobs, β1 and β2 are constant weights for DSC and Dist 

respectively.  

 

 Deep- supervision with different loss functions 

 

Deep supervision concept based on the concept of generating output at each level of 

the model and calculating the total loss as the weighted sum for all losses at all levels. 

Using deep-supervision allow the model to apply loss function at deeper levels of the model 

and accumulate the total loss with weights for each loss.  

Loss = ∑   
  
    

 

   
 

Where n is the number of levels in the model, α is the constant weight for each loss 

function, L is the loss at level i. 

 

 Deep supervision with De-Convolution using DSC loss function 

This approach applies one or more De-Convolution layer at each level to increase the 

size of the output feature maps to reach the same size as the original ground truth and the 

original image. The loss function would be applied on the resulted feature maps after the 

De-Convolution and the ground truth. The figure shows the number of de-convolution layers 



121 
 

that would be applied at each level before applying the loss function. For example, if the 

ground truth and training sample size is 256*256, while the size of feature maps at level 4 

is 32*32, the De-convolution layers would be used three times to increase the feature maps 

size to 46*46 then 128*128 then 256*256 equal to the ground truth. Dice similarity 

coefficient (DSC) will be used as the loss function and will be applied at all levels 

of the model. Figure 3-18 

 

Figure 3-18 Deep supervision approach using de-convolution processes 

 

 Deep supervision with multi-resolution mask using DSC loss function 

This category implements the concept of deep supervision by accumulative sum of 

loss functions applied at all levels of the model on the expansion path. This category will use 

a ground truth mask with the same size as the feature maps generated at each model 

levels. For example, when the out feature maps size from a certain level is 64*64, the 

model will use a ground truth mask with size 64*64 and apply the loss function.  The total 

loss will be the total weighted sum for the sub loss functions applied at each level of the 

model.  Similar to the previous category of models, Dice similarity coefficient (DSC) will 

be used as the loss function. Figure 3-19 
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Figure 3-19 Deep supervision approach using Multi-resolution masks 

 

 Deep supervision with De-Convolution using DSC and Centroid loss 

functions  

This category of models implemented a proposed loss function that represented as 

weighted sum of sub-loss functions at each level while the sub loss function is represented 

as the weighted sum of DSC and centroid distance loss functions.  

                 

Total Loss = ∑   
  
    

 

   
 

Total Loss = ∑  (               )
  
    

 

   
 

Where n is the number of levels in the model,   is the constant weight for each loss function, 

L is the loss at level i.  1 is the constant weight for Dice Similarity Coefficient (DSC) ,  2 

is the constant weight for distance between centroid points loss function (Dist). 
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The model in this category is similar to the Deep supervision with De-Convolution 

model except that, the DSC loss function will be replaced by the weighted sum of DSC and 

centroid distance loss function as explained in the previous equations. Figure 3-18 

 

 Deep supervision with multi-resolution mask using DSC and Centroid 

loss functions 

The model in this category is similar to the Deep supervision with multi-resolution 

mask model except that, the DSC loss function will be replaced by the weighted sum of 

DSC and centroid distance loss function as explained in the previous equations. Figure 3-19  

 

3.7 Training/validation process 
 

The training process consists of three sub-processes.  First, ~74,000 augmented 

DICOM image loaded using customized batch generation functions. Same number of ground 

truth masked loaded for training the model. The second process is setting up all the needed 

parameters for training. The model trained for 10 epochs and the learning rate started with 

1e-5 with calculated decay rate after each epoch. Each model trained three times used 

different image size (512*512, 256*256, 128*128) to find the best image size that result 

the best accuracy. The batch size changed from training cycle to another based on the 

memory and resource limitations. The model trained with kernel size 3*3 and max pooling 

with size 2*2. The contracting path implemented dropout layer with 0.5 rate while the 

expansion path used dropout rate 0.4 and the de-convolution layers applied stride size 2*2. 

The number of filters applied at each level increased by 200% from level n to level n+1 

while decreased by 50% from level n to n-1 at the expansion path. Table 3-1  
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The number of samples in 3Dircadb1 dataset became 112,920 after the augmentation. 

Training, validation, and testing samples became 74,680 (14 patients), 23,680 (4 patients), 

and 14,560 (2 patients) respectively. The testing samples represent 13% of the total 

samples of 3Dircadb1, while the remaining samples divided into training and validation with 

percentage 75% and 25%. 

Parameters Fixed  Variable values 

Batch size   Y 2,4,8,16,32 based on model and 

memory size 

Image size  Y (128*128) , (256*256), (512*512) 

    

Number  of epochs Y  10 

Learning Rate Y  1e-5 

Filter size Y  3 * 3 

Pooling size Y  2 * 2 

Dropout rate contracting path Y  0.5 

Dropout rate expanding  path Y  0.4 

Fitters per layer Y  Previous layer‘s filters * 2  
Table 3-1 Model parameters and training process settings 

 

3.8 Testing process 
The trained models are tested using two different datasets. The model tested using 

original DICOM images and augmented DICOM for two patients from 3Dircadb1 dataset. 

The number of tested samples is 400 and 14,000 images for original and augmented image 

respectively.  For visualization purpose, the ground truth and predicted mask are mapped 

on each tested sample image. Figure 3-20 

 

Figure 3-20 Testing result example, A) original, B) Ground Truth, C) Predicted Mask, D) mapped masks to the original image 
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The testing samples were not present in either training or validation process. The 

model tested using IKN dataset that was not included in the training or validation process 

because there are no annotated masks for the dataset. The testing samples contains ~1500 

selected DICOM image for 5 patients to cover different cases.  

  



126 
 

4 Chapter 4               

Experimental Results and 

Discussions 
 

The experiments divided into two parts. The first part aims to investigate the variations 

of models based on U-Net structures and study the effect of making the U-Net model wider 

by adding extra U-Net, deeper by adding extra layers, and different types of connections 

between 2U-Nets and 3U-Nets that known as skip-connections on the model performance. 

One of the objectives of this part is to propose recommendation for using models based on 

U-Net according to the indications and implications of the achieved results. Another 

objective for this part is to create a model based on one or more U-Nets with bridge and 

skip-connections that achieved better accuracy for liver segmentation. 

The second part aims to solve the flipping issue that appeared because of training the 

models on augmented data using rotation and flipping techniques. The flipping issue showed 

that, when the models trained using rotation and flipping augmentation techniques, for 

significant number of samples the predicted masks detected the liver at both sides of the 

image at the same time while it should appear at one side. The second part used W-Net 

model that consists of 2-U-Nets with compound bridge and skip connections. The sub- parts 

will test 3 different loss functions starting with DSC, Centroid loss, weighted loss of (DSC 

and Centroid). Two types of deep-Supervision approaches will be tested using DSC, and 

combined (DSC + Centroid) loss functions. One of the two deep-supervision approach will 

use De-convolution process to increase the feature maps size to be equal to the original 
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mask 256*256 , while the second approach will use Multi-Resolution masks with different 

size to be used at different level of the W-Net outputs. 

Section 4.1 and its subsections cover the first part of the experiments which aim to 

achieve the first objective that aim to conclude recommendations of using U-Net for medical 

image segmentation for liver. Section 4.2 and its subsections describe the second part of 

the experiments which aim to resolve the flipping issue.  

4.1 Model structure variations 
 

This section covers the first part of the experiments that investigate different structures 

of U-Net and it includes three sub-categories of experiments, 1 investigating the Deeper 

Models (section 4.1.1), 2 Investigating the wider Models (section 4.1.2), and 3 Study for 

models based on 3U-Net with different connections (section 4.1.3). The testing samples 

include the images for Patient 5 (P5) and patient 20(P20), in addition to testing the 

augmented data for the two patients (P5_Aug, and P20_Aug). The average accuracy for 

tested data and segmented data (Test_Avg, Test_Avg_Aug) is calculated for comparison 

purpose against Training and Validation accuracy. The testing accuracy calculated for 

each patient as Dice similarity coefficient for each image then average over the number of 

the patient‘s images. The results will only focus on 4 measures (Training, Validation, 

Test_Avg, and Test_Avg_Aug) while the remaining results for P5, P20, P5_Aug, and 

P20_Aug will be shown for reference only. 
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4.1.1 Deeper U-Net based models 
 

Generating deeper models based on single U-Net model by increasing the number of 

levels in both contracting and expansion paths. Each level of the model in the contraction 

path contains two convolution layers in addition to one maxpooling and one dropout layers 

while in the expansion path, each level contains de-convolution layer applied on the 

concatenation of the output feature maps from the previous level and the layer at the same 

level on the contracting path. Deeper model can be generated by of two approaches, Top-

Down or Bottom-Up. 

4.1.1.1 Models start with layer of 8 filters and different depth  

 

All four measured factors (Training, validation, testing, and testing using augmented 

data) have the same behavior, starting with very low value at the model with the minimum 

number of layers 8-32 then kept fluctuating until reached the maximum accuracy with the 

deeper model 8-512 then decreased at next deeper model 8-1024 and increased again at 

the deepest model 8-2048 Figure 4-1. The model with the minimum number of layers 8-32 

recorded the minimum value for each of the factors‘ validation, testing, and testing using 

augmented data while a deeper model 8-256 recorded the minimum accuracy for training. 

The accuracy of all models started with 8 filters at the first layer increased when getting 

deeper to reach the maximum at 8-512 with 7 levels. Table 4-1 

Name Test_Avg Test_Avg_Aug Training Validation 

8--32 19.08% 12.78% 73.29% 19.95% 

8--64 41.33% 36.97% 76.61% 75.02% 

8--128 34.09% 22.44% 74.82% 48.72% 

8--256 42.16% 46.11% 56.25% 76.52% 

8--512 78.56% 73.89% 86.32% 89.89% 

8--1024 34.82% 29.09% 82.09% 57.89% 

8--2048 74.50% 73.20% 82.54% 82.93% 

Table 4-1  Models start with layer of 8 filters and different depth (8-32, 8-64, 8-128, 8-256, 8-512, 8-1024, 8-2048) using 
image size 256*256 , Highest accuracy ( Green) lowest accuracy ( Red) 
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Figure 4-1 Accuracy of training, validation, testing, and testing using augmented data for all models started with 8 filters at 
the first level 

 

4.1.1.2 Models start with layer of 16 filters and different depth  
 

Moving from model 16-64 with 3 levels depth to the deepest model 16-2048, the 

three factors of Training, Validation, and Test_Avg_Aug have the same behavior starting 

with the minimum value at model 16-64 then fluctuate to the maximum accuracy at a 

deeper model 16-1024 then decreased again with the deepest model while Test_Avg 

accuracy start with medium value then increased to the maximum at model 16-1024 then 

decreased at the deepest model 16-2048.Figure 4-2. While the model with the lowest 

number of layers 16-64 recorded the minimum accuracy with Training, Validation, and 

Test_Avg_Aug, the next deeper model 16-128 recorded the minimum Test_Avg accuracy.  

The model with 7 levels and number of filters 16-1024 recorded the maximum accuracy 

with all factors, training, and validation, testing, and testing using augmented data 

Table 4-2. The accuracy of all models started with 16 filters at the first layer increased when 

getting deeper to reach the maximum at 16-1024 with 7 levels. Figure 4-2 
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Name Test_Avg Test_Avg_Aug Training Validation 

16--64 44.47% 35.87% 82.01% 71.83% 
16--128 40.41% 54.83% 83.97% 78.58% 

16--256 52.60% 67.13% 84.59% 85.00% 
16--512 40.79% 39.95% 93.00% 77.85% 
16--1024 69.81% 70.80% 95.07% 90.23% 
16--2048 45.36% 67.05% 93.24% 85.31% 

Table 4-2 Models start with layer of 16 filters and different depth (16-64, 16-128, 16-256, 16-512, 16-1024, 16-2048) using 
image size 256*256. Highest accuracy (Green) lowest accuracy (Red) 

 

Figure 4-2 Accuracy of training, validation, testing, and testing using augmented data for all models started with 16 filters at 
the first level 

 

4.1.1.3 Models start with layer of 32 filters and different depth  

 

Training and Test_Avg almost have the same curve behavior which starts with a 

minimum and medium value at first model 32-128 respectively then kept increasing until 

reached the maximum accuracy at the deepest model 32-2048. Validation and 

Test_Avg_Aug also shared similar behavior by starting with medium value then decreased 

to the minimum at the next deeper model 32-256 then increased to the maximum at deeper 

models 32-512 and 23-1024 respectively then decreased at the deepest model Figure 4-3. 

The model with 4 levels 32-256 recorded the minimum accuracy for validation, Test_Avg 
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and Test_Avg_Aug while model 32-128 with 3 levels recorded minimum training accuracy. 

While the deepest model with 7 levels 32-2048 recorded maximum accuracy from training 

and Test_Avg, model 32-512 with 5 levels recorded maximum validation and 32-1024 

model achieved the maximum accuracy for Test_Avg_Aug Table 4-3. Going deeper with 

models started with 32 filters increase the accuracy even if Validation and Test_Avg_Aug 

decreased after got the maximum accuracy. 

Name Test_Avg Test_Avg_Aug Training Validation 

32--128 45.08% 38.81% 84.54% 80.05% 

32--256 41.84% 34.11% 89.73% 64.30% 
32--512 46.49% 60.07% 96.50% 98.00% 
32--1024 66.42% 70.45% 96.91% 92.72% 

32--2048 68.59% 64.62% 97.27% 86.96% 

Table 4-3  Models start with layer of 32 filters and different depth (32-128, 32-256, 32-512, 32-1024, 32-2048) using image 
size 256*256. Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-3 Accuracy of training, validation, testing, and testing using augmented data for all models started with 32 filters at 
the first level 
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4.1.1.4 Models start with layer of 64 filters and different depth  

 

All the four measures recorded the same behavior starting with the minimum 

accuracy at the model with minimum number of 3 levels 64-256 and increased with deeper 

models to reach the maximum accuracy at the deepest model 64-2048. The model with the 

minimum number of levels 64-256 recorded the minimum for all measures while the 

deepest model 64-2048 with 6 levels recorded the maximum for all four factors of training, 

validation, Test_Avg, and Test_Avg_Aug. Table 4-4  Figure 4-4 

Name Test_Avg Test_Avg_Aug Training Validation 

64--256 45.57% 39.25% 89.33% 72.55% 
64--512 49.96% 44.23% 96.15% 83.52% 
64--1024 58.73% 75.93% 97.40% 91.50% 
64--2048 60.24% 80.39% 97.81% 93.68% 

Table 4-4  Models start with layer of 64 filters and different depth (64-256, 64-512, 64-1024, 64-2048) using image size 
256*256. Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-4 Accuracy of training, validation, testing, and testing using augmented data for all models started with 64 filters at 
the first level 
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4.1.1.5 Models start with layer of 128 filters and different depth  

 

Training and validation have similar curve with moving toward the deepest model, 

starting with minimum accuracy at model 128-512 with minimum number of 3 levels then 

increased to the maximum at the next deeper model 128-1024 then decreased again at the 

deepest model. Test_Avg and Test_Avg_Aug also have similar curve as starting from the 

minimum accuracy at model 128-512 and kept increasing with the deeper models to reach 

the maximum accuracy at the deepest model 128-2048 with 5 levels. The model with the 

minimum number of levels 128-512 recorded the minimum accuracy for all four factors 

while the next deeper model 128-1024 recorded the maximum for training and validation 

and the deepest model 128-2048 recorded the maximum for Test_Avg and Test_Avg_Aug. 

Figure 4-5 Table 4-5 

Name Test_Avg Test_Avg_Aug Training Validation 

128--512 50.86% 52.50% 94.88% 85.72% 
128--1024 60.98% 66.26% 97.81% 88.82% 
128--2048 69.61% 74.63% 97.51% 87.99% 

Table 4-5  Models start with layer of 128 filters and different depth (128-512, 128-1024, 128-2048) using image size 256*256. 
Highest accuracy (Green) lowest accuracy (Red) 

 

Figure 4-5 Accuracy of training, validation, testing, and testing using augmented data for all models started with 128 filters at 
the first level 
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4.1.1.6 Models start with layer of 256 filters and different depth  

 

Models 256-2048 couldn‘t be testing because of memory limitations. Table 4-6  

shows that, the deeper model 256-1024 recorded the maximum accuracy over the first 

model 256-512 for all factors, training, and validation, testing, and testing using augmented 

data Figure 4-6. 

Name Test_Avg Test_Avg_Aug Training Validation 

256--512 28.74% 41.02% 86.78% 78.33% 
256--1024 53.23% 70.20% 95.75% 83.64% 
256--2048 NA NA NA NA 

Table 4-6 Models start with layer of 256 filters and different depth (256-512, 256-1024, 256-2048) using image size 256*256. 
Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-6 Accuracy of training, validation, testing, and testing using augmented data for all models started with 256 filters at 
the first level 
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4.1.1.7 All models with 2048 filters at the deepest layer  

 

Model 256-2048 couldn‘t be tested because of memory limitations. Training and 

validation followed the same curve as started with medium value at model 128-2048 then 

increased to the maximum at model 64-2048 then decreased with deeper models to reach 

the minimum accuracy at the deepest model 8-2048. Test_Avg_Aug factor start with 

medium value at model 128-2048 then increased to the maximum at the next deeper model 

64-2048 then decreased to the minimum at the next model 8-2048 then increased gradually 

with going through the next deeper models. The Test_Avg factor kept fluctuating until 

reached the minimum accuracy at model 16-2048 then increased to the maximum at the 

deepest model 8-2048. Figure 4-7 Shows that, model 64-2048 with 5 levels recorded 

maximum accuracy for training, validation, and Test_Avg_Aug while the deepest model with 

8 levels 8—2048 recorded the maximum accuracy for testing. The deepest model 8-2048 

recorded the minimum value for training and validation and maximum of testing while the 

minimum for testing and testing using augmented data recorded for models 16-2048 and 

32-2048 respectively Table 4-7 Figure 4-7. Deeper models enhance the accuracy until 

certain levels (6) after that the accuracy will decrease again except for Test_Avg where 

maximum accuracy recorded at the deepest model with 9 levels. 

 

Name Test_Avg Test_Avg_Aug Training Validation 

256--2048 NA NA NA NA 
128--2048 69.61% 74.63% 97.51% 87.99% 

64--2048 60.24% 80.39% 97.81% 93.68% 
32--2048 68.59% 64.62% 97.27% 86.96% 

16--2048 45.36% 67.05% 93.24% 85.31% 

8--2048 74.50% 73.20% 82.54% 82.93% 

Table 4-7  All models with 2048 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 
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Figure 4-7 Accuracy of training, validation, testing, and testing using augmented data for all models with 2048 filters at the 
deepest level 

 

4.1.1.8 All models with 1024 filters at the deepest layer  

 

All the four measured factors shared the same behavior of starting to increase after 

the first model with 3 levels (256-1024) then reached the maximum at different models 

then continue decreasing to the minimum at the deepest model 8-1024. The maximum 

accuracy for training, validation, Test_Avg, and Test_Avg_Aug achieved at different models 

( 128-1024 , 32-1024, 16-1024, 64-1024 ) respectively Figure 4-8 , Table 4-8. The deepest 

model 7 levels recorded the minimum accuracy for all measured factors, while the 

maximum value recorded for different models for each factor Table 4-8. Deeper models 

enhance the accuracy until certain levels (4, 5, 6, or 7) after that the accuracy will decrease 

again. 
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Name Test_Avg Test_Avg_Aug Training Validation 

256--1024 53.23% 70.20% 95.75% 83.64% 

128--1024 60.98% 66.26% 97.81% 88.82% 

64--1024 58.73% 75.93% 97.40% 91.50% 

32--1024 66.42% 70.45% 96.91% 92.72% 

16--1024 69.81% 70.80% 95.07% 90.23% 

8--1024 34.82% 29.09% 82.09% 57.89% 
Table 4-8  All models with 1024 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 

 

 

Figure 4-8 Accuracy of training, validation, testing, and testing using augmented data for all models with 1024 filters at the 
deepest level 

 

4.1.1.9 All models with 512 filters at the deepest layer  

 

With the moving from model with the minimum number of layers 256-512 (2 levels) 

toward the deepest model 8-512 with7 levels, validation and Test_Avg_Aug have the same 

behavior, starting with a medium value then decrease for the next model then increase then 

decrease then increase at the deepest model. While validation reached the maximum 

accuracy at model 32-512 (5 levels), Test_Avg_Aug recorded maximum at the deepest 

model 8-512(7 levels) and both of them recorded the minimum at model 16-512. Training 

started with medium value then kept increasing to reach the maximum at model 32-512 
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then kept decreasing to reach the minimum at the deepest model 8-512, while Test_Avg 

start with the minimum accuracy at the first model 256-512 with two levels and increased 

at the second level then continues decreasing with the deeper models until reached the 

second minimum at model 16-512 then increased directly to the maximum at the next 

model 8-512 with the deepest structure of 7 levels Figure 4-9Figure 4-9. If the first model 

results ignored because it only contains 2 levels which is very rare to happen during the 

study, model 32-512 with medium depth of 5 levels recorded maximum accuracy for 

training and validation while the deepest of 7 levels recorded the maximum accuracy for 

Test_Avg and Test_Avg_Aug. The second deepest model 16-512 recorded the minimum 

accuracy for all factors except training which recorded the minimum accuracy at the deepest 

model 8-512 Table 4-9. Deeper models enhance the accuracy for training and validation 

until certain levels (5) after that the accuracy will decrease again while for Test_Avg and 

Test_Avg_Aug kept fluctuating until the maximum at the deepest model. 

Name Test_Avg Test_Avg_Aug Training Validation 

256--512 28.74% 41.02% 86.78% 78.33% 

128--512 50.86% 52.50% 94.88% 85.72% 

64--512 49.96% 44.23% 96.15% 83.52% 

32--512 46.49% 60.07% 96.50% 98.00% 

16--512 40.79% 39.95% 93.00% 77.85% 

8--512 78.56% 73.89% 86.32% 89.89% 

Table 4-9  All models with 512 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 
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Figure 4-9 Accuracy of training, validation, testing, and testing using augmented data for all models with 512 filters at the 
deepest level 

 

4.1.1.10 All models with 256 filters at the deepest layer  

 

Validation, testing (Avg_test), and testing using augmented data (Avg_AUG_Test) 

have the same accuracy curve behavior, started with a medium value at first model 64-256 

then decreased to the minimum accuracy at the next deeper model 32-256 then increased 

directly to the maximum accuracy at model 16-256 with 5 levels then decreased again. 

Training increased from the first model to reach the maximum at the next deeper model 32-

256 with 4 levels then decreased gradually to reach the minimum at the deepest model 8-

256 Figure 4-10. The model 32-256 with 4 levels recorded the minimum accuracy for all 

factors except training which recorded the maximum accuracy, while the next deeper model 

16-256 recorded the maximum accuracy for the all factors except training Table 4-10. 

Deeper models enhance the accuracy until certain levels (4 or 5) after that the accuracy will 

decrease again. 
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Name Test_Avg Test_Avg_Aug Training Validation 

64--256 45.57% 39.25% 89.33% 72.55% 

32--256 41.84% 34.11% 89.73% 64.30% 
16--256 52.60% 67.13% 84.59% 85.00% 

8--256 42.16% 46.11% 56.25% 76.52% 
Table 4-10 All models with 256 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 

 

 

Figure 4-10 Accuracy of training, validation, testing, and testing using augmented data for all models with 256 filters at the 
deepest level 

 

4.1.1.11 All models with 128 filters at the deepest layer  

 

Training, validation, and testing (Avg_Test) have exactly the same accuracy curve 

behavior that started with the maximum accuracy at first model 32-128 with 3 levels then 

decreasing with deeper models until reached the minim accuracy at the deepest model 8-

128 with 5 levels.  Testing using augmented data (Avg_AUG_Test) started with minimum 

accuracy at model 32-128 with 3 levels then increased to the maximum at the next deeper 

model 16-128 then decreased again with the deepest model Figure 4-11. Model 32-128 with 

3 levels recorded the maximum accuracy for all factors except (Avg_AUG_Test) where 

recorded the minimum, while the deepest model 8-128 recorded the minimum accuracy for 
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all factors also except (Avg_AUG_Test).  The model 16-128 recorded the maximum 

accuracy for Avg_AUG_Test and intermediate values for the other factors Table 4-11. 

Deeper models recorded worse accuracy and minimum accuracy at the deepest model 

except Test_Avg_Aug have the opposite behavior. 

Name Test_Avg Test_Avg_Aug Training Validation 

32--128 45.08% 38.81% 84.54% 80.05% 
16--128 40.41% 54.83% 83.97% 78.58% 

8--128 34.09% 22.44% 74.82% 48.72% 

Table 4-11  All models with 128 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 

 

 

Figure 4-11 Accuracy of training, validation, testing, and testing using augmented data for all models with 128 filters at the 
deepest level 

 

4.1.1.12 All models with 64 filters at the deepest layer  

 

The accuracy curve for Training and testing (Avg_Test) changed from maximum at 

first model 16-64 to the maximum at the deepest model 8-64 which is the opposite 

direction of the curve for validation and AVG_AUG_Test that went from minimum at the first 

model to the maximum at the second model 8-64. Model 16-64 recoded the maximum 
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accuracy for training and Test_Avg while the deepest model 8-64 recorded the maximum for 

validation and Test_Avg_Aug Table 4-12 Figure 4-12. 

Name Test_Avg Test_Avg_Aug Training Validation 

16--64 44.47% 35.87% 82.01% 71.83% 
8--64 41.33% 36.97% 76.61% 75.02% 

Table 4-12  All models with 64 filters at the deepest layer using image size 256*256. Highest accuracy (Green) lowest 
accuracy (Red) 

 

 

Figure 4-12 Accuracy of training, validation, testing, and testing using augmented data for all models with 64 filters at the 
deepest level 
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4.1.1.13 Analysis of all deeper models based on the number of filters applied at 

the first level  

 

The To-Down and Bottom-up approaches are alternatives to each other‘s as they 

represent the same U-Net based models with different approach of sorting and grouping. 

The Top-Down approach groups the models based on the number of filters applied to the 

first level of 3 levels U-Net and adding one level to the bottom most level to get a deeper 

mode and continue the adding process until reached the deepest level applicable for ex, 

group of models that start with 64 filters applied at the top most level contains the models 

(64-256, 64-512, 64-1024, 64-2048) while models started with 8 filters contains the models 

(8-32, 8-64, 8-128, 8-256, 8-512, 8-1024, 8-2048) and so on. The Bottom-Up approach 

categorized the models based on the number of filters that can be applied at the deepest 

level of 3 levels U-Net and getting the deeper models by adding a level to the top most level 

of the U-Net and continue until reaching the highest level applicable e.g. the category of 

models started with 1024 filters at the deepest level after adding all applicable levels are 

(256-1024, 128-1024, 64-1024, 32-1024, 16-1024, 8-1024) while the category of models 

started with 128 filters at the deepest levels contains the models (32-128, 16-128, 8-128). 

In this section, all models included in deeper U-Net experiments will be compared 

and full dataset in Table 4-13 
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Name Test_Avg Test_Av
g_Aug 

Training Validation Parameters Levels 
 
  

Min 
 Image 
 size 

8--32 19.08% 12.78% 73.29% 19.95% 29,321 3 64 
8--64 41.33% 36.97% 76.61% 75.02% 120,681 4 32 
8--128 34.09% 22.44% 74.82% 48.72% 485,673 5 16 
8--256 42.16% 46.11% 56.25% 76.52% 1,944,745 6 8 
8--512 78.56% 73.89% 86.32% 89.89% 7,779,241 7 4 
8--1024 34.82% 29.09% 82.09% 57.89% 31,113,641 8 2 
8--2048 74.50% 73.20% 82.54% 82.93% 142,444,073 9 1 

16--64 44.47% 35.87% 82.01% 71.83% 116,753 3 64 
16--128 40.41% 54.83% 83.97% 78.58% 481,745 4 32 
16--256 52.60% 67.13% 84.59% 85.00% 1,940,817 5 16 
16--512 40.79% 39.95% 93.00% 77.85% 7,775,313 6 8 
16--1024 69.81% 70.80% 95.07% 90.23% 31,109,713 7 4 
16--2048 45.36% 67.05% 93.24% 85.31% 124,440,145 8 2 

32--128 45.08% 38.81% 84.54% 80.05% 465,953 3 64 
32--256 41.84% 34.11% 89.73% 64.30% 1,925,025 4 32 
32--512 46.49% 60.07% 96.50% 98.00% 7,759,521 5 16 
32--1024 66.42% 70.45% 96.91% 92.72% 31,093,921 6 8 
32--2048 68.59% 64.62% 97.27% 86.96% 124,424,353 7 4 

64--256 45.57% 39.25% 89.33% 72.55% 1,861,697 3 64 
64--512 49.96% 44.23% 96.15% 83.52% 7,696,193 4 32 
64--1024 58.73% 75.93% 97.40% 91.50% 31,030,593 5 16 
64--2048 60.24% 80.39% 97.81% 93.68% 124,361,025 6 8 

128--512 50.86% 52.50% 94.88% 85.72% 7,442,561 3 64 
128--1024 60.98% 66.26% 97.81% 88.82% 30,776,961 4 32 
128--2048 69.61% 74.63% 97.51% 87.99% 124,107,393 5 16 

256--512 28.74% 41.02% 86.78% 78.33% 6,427,393 2 128 
256--1024 53.23% 70.20% 95.75% 83.64% 29,761,793 3 64 
256--2048 N/A N/A N/A N/A N/A N/A N/A 
Table 4-13  All models with same start and different number of levels compared with all possible starts.  Within each 
group,Highest accuracy (Green) lowest accuracy (Red) 
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Figure 4-13 Training accuracy for models included in based on the first layer filters approach 

The training accuracy for the models start with 8 filters applied on the first layer 

kept fluctuating and recorded the minimum at (8—256) and the maximum with model (8—

512) then continue fluctuating. The remaining 5 of 6 categories of models with different 

start (16, 32, 64, 128, and 256) have the same curve behavior with increasing the depth. 

The training accuracy increased while increasing the depth until reach the maximum when 

the deepest level use filters (1024, 2048, 2048, 1024, 1024). Only models started with 16 

or 128 filters after reached the maximum at filters (1024) slightly decreased when using 

2048 models.  The highest 4 maximum values achieved for models (128-1024, 64-2048, 

128-2048, 64-1024) in sequence, 2 of them start with 64 and 2 start with 128, while the 4 

minimum values achieved for models started with 8 filters (8-256, 8-32, 8-128, 8-64)in 

sequence. The number of models achieved the maximum accuracy divided into 1 model 

ended with 512, 3 models ended with 1024 and 2 models ended with 2048.Figure 4-13 

Table 4-13 
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Figure 4-14  Validation accuracy for models included in based on the first layer filters approach 

For the validation accuracy, 3 of 6 categories of the models started with (64, 128, 

256) increase the accuracy with increasing the model depth to reach the maximum at the 

deepest model with filters (2048, 1024, 1024) with exception for the model start with 128 

the decrease after the maximum. The other 3 categories that start with filters (8, 16, 32) 

increased with the deeper models and decreased with models with filters (128, 512, 256) 

then increased to reach the maximum at models ends with filters (512, 1024, 512) in 

sequence then decreased with the deeper models. The highest 4 maximum values achieved 

for models (32-512, 64-2048, 32-1024, 64-1024) in sequence while the 4 minimum values 

achieved for models started with 8 filters (8-32, 8-12, 8-1024, 32-256) in sequence. The 

number of models achieved the maximum accuracy divided into 2 model ended with 512, 3 

models ended with 1024 and 1 model ended with 2048. Figure 4-14 Table 4-13 
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Figure 4-15 Testing (Test_Avg) accuracy for models based on the first layer filters 

For Testing factor (Test_Avg), 4 of 6 categories of models that started with filters 

(32, 64, 128, 256) increased the accuracy with increasing the depth to reach the maximum 

at the deepest applicable model with filters (2048, 2048, 2048, 1024) in sequence, while 

the models started with 32 filters has a drop when using (32-256) filters. The remaining 2 

of 6 categories that start with filters (8, 16) fluctuating while going with deeper models and 

reached the maximum when used filters at the deepest level are (512, 1024) in sequence.  

The highest 4 maximum values achieved for models (8-512, 8-2048, 16-1024, 128-2048) in 

sequence while the 4 minimum values achieved for models started with 8 filters (8-32, 8-

512, 8-128, 8-1024) in sequence. The number of models that achieved the maximum 

accuracy in each group can be categorized based on the number of filter applied at the 
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deepest level into 1 model ended with 512, 2 models ended with 1024 and 3 models ended 

with 2048.  Table 4-13 

 

Figure 4-16 Testing using augmented data (Test_Avg_Aug) accuracy for models based on the first layer filters 

For Test_Avg_Aug factor (Testing using augmented data), 3 of 6 categories of 

models that started with filters (64, 128, 256) increased the accuracy with increasing the 

depth to reach the maximum at the deepest applicable model with filters (2048, 2048, 

1024) in sequence. The remaining 3 of 6 categories that start with filters (8, 16, 32) 

increased the accuracy with increasing the depth to reach the maximum at models with 

depth (512, 1024, 1024) in sequence with a drop of the accuracy during the increasing at 

the models (8-128, 16-512, 32-512) in sequence. The highest 5 maximum values achieved 

for models (64-2048, 64-1024, 128-2048, 8-512, 8-2048) in sequence while the 5 

minimum values achieved for models started with 8 filters (8-32, 8-128, 8-1024, 32-512, 
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16-64)in sequence. The number of models achieved the maximum accuracy divided into 1 

model ended with 512, 3 models ended with 1024 and 2 models ended with 2048. 

Figure 4-16,Table 4-13 

Over all maximum values for Validation, Test_Avg, Test_Avg_Aug factors recorded 

for models (32-512, 8-512, 64-2048) with values (98.00%, 78.56%, 80.39%) while the 

maximum accuracy for Training is (97.81%) that achieved by 2 models (64-2048, 128-

1024). The model (64-2048) recorded the maximum accuracy for 2 of 4 factors (Training, 

Test_Avg_Aug). 

For Top-Down approach, the total models generated by this approach are 27 models 

divided into 6 categories based on the number of filters at the first top level (8, 16, 32, 64, 

128, 256). The maximum accuracy for all 4 factors (Training, Validation, Test_Avg, 

Test_Avg_Aug) over all the 27 models recorded for models that ended with number of filters 

at the deepest level are one of three values( 512, 1024, 2048). Over all achieved 24 

maximum accuracies for the 4 factors, 45.83% recorded for models ended with 1024 filters 

and 33.83% recorded for models with 2048 filters at the deepest level while the remaining 

20.83% recorded for models with 512 filters at the deepest level.  For Testing_avg and 

Test_Avg_Aug, 16.66% of the achieved maximum accuracies recorded for models that 

ended with512 filters while both models with 1024 and 2048 recorded 41.66% of the 

achieved maximum values.  

The starting image size for the Deeper models investigation is 256*256 and will be 

decreased by 50% after each level on the contracting path because of the maxpooling layer 

with size (2,2) that limited the number of models would be produced where the minimum 

image size that can be reached is 1*1.  From 24 maximum values achieved for 4 factors 

over the 6 categories, 41.66% recorded for models with 7 levels deep and minimum image 

size reached 4*4 while 20.83% recorded for models with 6 levels deep and minimum image 
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size 8*8. The remaining maximum values recorded for models with depth (3, 5, 4) levels 

with minimum image size (64*64, 16*16, 32*32) in sequence with the percentage 

(16.66%, 12.5%, 8.33%) of the maximum values respectively. 

For Bottom-Up approach, the total models generated by this approach are 27 models 

divided into 6 categories based on the number of filters at the deepest level (64, 128, 256, 

512, 1024, 2048). The maximum accuracy for all 4 factors (Training, Validation, Test_Avg, 

Test_Avg_Aug) over all the 27 models recorded for models that started with number of 

filters at the first level are one of five values( 8, 16, 32, 64, 128). Over all achieved 24 

maximum accuracy for the 4 factors the models started with number of filters (8, 16, 32, 

64, 128) with percentage (20.83%, 33.33%, 25%, 16.66%, 4.16%) respectively.  For 

Testing_avg and Test_Avg_Aug, 50% of the achieved maximum accuracies recorded for 

models that started with 16 filters while models started with 8 and 64 filters recorded 

33.33% and 16.66% of the achieved maximum values respectively. 

From 24 maximum values achieved for 4 factors for each of the 6 categories, 25% 

recorded for each of the models with (4 and 5) levels deep and minimum image size 

reached (32*32 and 16*16) respectively while the models with (3 and 6) levels deep and 

minimum image size (64*64 and 8*8) recorded 16.66% of the total number of models that 

achieved one of the maximum values. The remaining maximum values recorded for models 

with depth (7 and 9) levels with minimum image size (4*4 and 1*1) in sequence with the 

percentage (12.5% and 4.16%) of the maximum values respectively.  
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Name Test_Avg Test_Av
g_Aug 

Training Validation Parameters Levels 
 
  

Min 
 Image 
 size 

8--512 78.56% 73.89% 86.32% 89.89% 7,779,241 7 4 

16--1024 69.81% 70.80% 95.07% 90.23% 31,109,713 7 4 

32--512 46.49% 60.07% 96.50% 98.00% 7,759,521 5 16 
32--1024 66.42% 70.45% 96.91% 92.72% 31,093,921 6 8 
32--2048 68.59% 64.62% 97.27% 86.96% 124,424,353 7 4 

64--2048 60.24% 80.39% 97.81% 93.68% 124,361,025 6 8 

128--1024 60.98% 66.26% 97.81% 88.82% 30,776,961 4 32 
128--2048 69.61% 74.63% 97.51% 87.99% 124,107,393 5 16 

256--1024 53.23% 70.20% 95.75% 83.64% 29,761,793 3 64 

Table 4-14 Maximum accuracy achieved by models based on the number of the first layer filters for Training, Validation, 
Testing, and testing using augmented data factors ( Top-Down approach). Highest accuracy (Green) within each group 

 

Name Test_Av
g 

Test_Av
g_Aug 

Training Validation Parameters Levels 
 
  

Min 
 Image 
 size 

Batch  
size 

64--2048 60.24% 80.39% 97.81% 93.68% 124,361,025 6 8 8 

8--2048 74.50% 73.20% 82.54% 82.93% 142,444,073 9 1 32 

128--1024 60.98% 66.26% 97.81% 88.82% 30,776,961 4 32 8 

64--1024 58.73% 75.93% 97.40% 91.50% 31,030,593 5 16 16 

32--1024 66.42% 70.45% 96.91% 92.72% 31,093,921 6 8 32 

16--1024 69.81% 70.80% 95.07% 90.23% 31,109,713 7 4 32 

32--512 46.49% 60.07% 96.50% 98.00% 7,759,521 5 16 16 

8--512 78.56% 73.89% 86.32% 89.89% 7,779,241 7 4 32 

32--256 41.84% 34.11% 89.73% 64.30% 1,925,025 4 32 32 

16--256 52.60% 67.13% 84.59% 85.00% 1,940,817 5 16 32 

32--128 45.08% 38.81% 84.54% 80.05% 465,953 3 64 32 

16--128 40.41% 54.83% 83.97% 78.58% 481,745 4 32 32 

16--64 44.47% 35.87% 82.01% 71.83% 116,753 3 64 32 

8--64 41.33% 36.97% 76.61% 75.02% 120,681 4 32 32 

Table 4-15 Maximum accuracy achieved by models based n the number of the deepest layer’s filters for Training, Validation, 
Testing, and testing using augmented data factors(Bottom-up approach). Highest accuracy (Green) within each group 
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4.1.1.14 Discussion 

 

The results and analysis in the previous sub-sections highlighted the following key 

findings. 1- Within the each group of models either stating with the same number of filters 

at the top level or ending with same number of filters at the deepest level, the accuracy 

increase with increasing the number of levels in other words, the accuracy increase while 

going deeper with the models. 2- The best recorded accuracy achieved by the models 

ended with 512, 1024, 2048 filters at the deepest level. 3-Tthe best performance recorded 

for models that apply convolutional process on image size 4*4 or 8*8 at the deepest level. 

4- Most of the top performer models consists of 5, 6, 7 levels and start with number of 

filters 8,16,32,64 at the first level. 5- Models with 3 or 4 levels never achieve good accuracy 

even with large number of filters. 6- Starting with small number of filters at the first level 

e.g. 8 or 16 will need high number of levels 7 or 9. 

In line with the hypotheses, within the same group of models that have the same 

number of filters at the first level or the deepest level , the accuracy will increase with the 

model going deeper or the number of model‘s level increase. The reason is that, increasing 

the number of levels will increase the number of nodes and the number of trainable 

parameters hence increasing the number of filters that applied on the feature-maps while 

the feature maps size will decrease after each pooling layer. 

The fact of increasing the accuracy is correlated with increasing the number of levels 

has some restrictions while applying across the models from different groups (different 

number of filters at the first level, or different number of filters at the deepest layer).  

The study is limited to use original image size of 256*256 and 128*128 and could 

not use 512*512 because of the computational resource limitations especially with deeper 

models that use 2048 filters at the deepest model. There are some constraints due to the 

limitations of the image size to achieve high accuracy e.g. the minimum image size at the 
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deepest level should not be less than 4*4 or 8*8, levels should be within 5, 6, 7 levels and 

the other conditions listed as findings.  

The results comply completely with results from the original paper of U-Net, Bridge 

Net, and W-Net  [14] [16] [138] [139] where the U-Net model consists of 5 levels and start 

with number of filters 32 or 64 at the first level and ended with 512 or 1024 filters at the 

deepest level. 

Some unexpected results for some models happened where the image size at the 

deepest level is very small e.g. 1*1 or very large 32*32 or 64*46 where the model has 3 

levels starting with 8 filters, in such cases the number of filters at the deepest level is 32 or 

64 which is very small to extract enough feature to train the model. 

Some of the models could achieve better accuracy if created deeper by adding 

deeper layers e.g. the model of 3 levels with filters 256, 512, 1024 where the minimum 

image size at the deepest level is 64, the model assume to record higher accuracy if another 

levels with 2048 filters or more but that could not be tested because of the resource 

limitations. 

4.1.1.15 Recommendations for deeper models based on U-Net structure 

 

Based on the results of the models based on u-Net with variations of the depth ( 

number of levels and layers) and number of filters applied at the first and last level the set 

of recommendations could be helpful for designing the U-Net based models. The image size 

used with these models is 256*256. 

 The number of filters applied at the first top level better to be one of these values (8, 

16, 32, 64). If the filters less than 16 it would need more levels to get better 

accuracy. 
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 The number of levels should be within these values (5, 6, 7) levels that leads the 

minimum image size used at the deepest level to be within the values (32*32, 

16*16, 8*8, 4*4). 

 The number of filters to be applied at the deepest level should be one of these values 

(512, 1024, 2048), models with less than 512 filter at the deepest level will not 

achieve good accuracy. 

 

4.1.2 Wider U-Net based models 
 

In this section, U-Net model‘s accuracy would be compared against the stacked 

models of 2, 3, and 4 U-Nets based on two different image sizes 256*256 and 128*128. 

According to the recommendations from the U-Net deeper models section, the 

implemented U-Net model has the original structure where the model consists of 5 levels 

on the contraction path and 4 levels on the expansion path. The number of filters applied 

started with 64 at the first level and ended with 1024 at the deepest (64, 128, 256, 512, 

and 1024). Another reason for using the U-Net with the original structure is to have a valid 

comparison with the state-of-the-art structure model structure.  

4.1.2.1 Comparing U-net, 2, 3 and 4 stacked U-Net with image size 256*256 
 

The accuracy of the models using image size 256*256 shows that, Validation 

accuracy started with the maximum value with one U-Net and kept decreasing with adding 

more U-Net to the model to reach the minimum when the model consist of 4 stacked U-

Nets. The other three factors, training, testing (Test_Avg) and testing using augmented 

data (Test_Avg_Aug) have the same curve where starting with a medium value for one U-

Net model then increased to reach the maximum accuracy with 2U-Nets then decreased to 

the minimum when using 4 U-Nets Figure 4-17. Stacked 2U-Nets model recorded the 
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maximum performance for all factors except validation where one U-Net recorded the 

maximum accuracy. The model with 4 stacked U-Net recorded the minimum accuracy for all 

factors Table 4-166 

 

Models Training  Validation Test_Avg Test_Avg_Aug 

U-Net 97.40% 91.50% 58.73% 75.93% 

Stacked 2 U 97.44% 90.36% 77.96% 77.95% 

Stacked 3 U 96.68% 89.27% 56.30% 75.04% 

Stacked 4 U 4.71% 10.52% 29.45% 36.32% 

Table 4-16  U-net, 2, 3 and 4 stacked U-Net with image size 256*256. Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-17 Comparing U-Net model with stacked 2, 3, and 4 U-Nets models using image size 256*256 

 

4.1.2.2 Comparing U-net with 2, 3 and 4 stacked U-Net with image size 128*128 
 

Validation and Test_Avg factors started with the maximum accuracy at the model 

using one U-Net then keep decreasing with stacking more U-Nets to reach the minimum at 

4U-Nets and 3U-Nets respectively. Training has the opposite directions where started with 

minimum at one U-Net and increased to the maximum at 4U-Nets while Test_Avg_Aug 

started with medium accuracy with one U-Net then keep decreasing to the minimum at 3U-
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Net model then suddenly increased to the maximum at 4U-Net model  Figure 4-18. The 4U-

Nets model recorded maximum accuracy for training and Test_Avg_Aug while recorded 

minimum of validation. The one U-Net model recorded maximum accuracy for validation and 

Test_Avg but recorded minimum with training while the 3U-Net model recorded minimum 

for both Test_Avg and Test_Avg_Aug Table 4-17. 

Models Training % Validation% Test_Avg Test_Avg_Aug 

U-Net 96.41% 91.91% 77.20% 82.28% 

Stacked 2 U 97.09% 88.97% 78.28% 80.37% 

Stacked 3 U 97.08% 90.11% 68.33% 71.88% 

Stacked 4 U 97.21% 88.77% 74.47% 87.00% 

Table 4-17  U-net, 2, 3 and 4 stacked U-Net with image size128*128. Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-18 Comparing U-Net model against stacked 2, 3, 4 U-Nets using image size 128*128 
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4.1.2.3 Compare U-Net with two and 3 and 4 stacked U-Net with image size 256*256 

versus 128*128 
 

For the Test_Avg factor, using image size 128*128 recorded accuracy higher than 

using image size 256*256 for all models (U-Net, 2 U-Nets, 3U-Nets, and 4U-Nets) 

Figure 4-20.  Testing using augmented data (Avg_AUG_Test) with image size 128*128 

recorded higher accuracy than using image size 256*256 for all models except 3U-Net 

model recorded higher accuracy using 256*256 than using 128*128 Figure 4-21. The 

accuracy for training recorded higher values using image size 256*256 than using 128*128 

for all models except for 3U-Nets is the opposite. Using image size 128*128 recorded higher 

accuracy than using 256*256 for Validation for all models except the 2U-Net model 

Figure 4-19 Table 4-18 

Models Image size Training % Validation% Test_Avg Test_Avg_Aug 

U-Net 256*256 97.40% 91.50% 58.73% 75.93% 

Stacked 2 U  97.44% 90.36% 77.96% 77.95% 

Stacked 3 U  96.68% 89.27% 56.30% 75.04% 

Stacked 4 U  4.71% 10.52% 29.45% 36.32% 

U-Net 128*128 96.41% 91.91% 77.20% 82.28% 

Stacked 2 U  97.09% 88.97% 78.28% 80.37% 

Stacked 3 U  97.08% 90.11% 68.33% 71.88% 

Stacked 4 U  97.21% 88.77% 74.47% 87.00% 

Table 4-18  Models with one, two, three, and four U-Nets using image sizes 128*128 and 256*256. Highest accuracy (Green) 
lowest accuracy (Red) within each group 

 

Figure 4-19  Models with one, two, three, and four U-Nets using image sizes 128*128 and 256*256, Training (left), validation 
(right) 
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Figure 4-20  Models with one, two, three, and four U-Nets using image sizes 128*128 and 256*256, Training (left), validation 
(right) 

 

 

Figure 4-21  Models with one, two, three, and four U-Nets using image sizes 128*128 and 256*256, Training (left), validation 
(right) 
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4.1.2.4 Discussion 

 

Generally, the image resolution shows difference in the segmented mask in terms of 

edge smoothness, the higher resolution gives higher smoothness in the segmented mask 

edge. Although all images used in training, validation and testing came with original size 

512*512 with DICOM format, each model trained and tested using variation of image sizes 

(256*256 and 128*128) because of the computational resource limitations. The different 

image sizes will widen the range of the investigation of the effect of varying the image size 

on the accuracy of the model while getting wider.  The study could not test a model with 

more than 4 u-nets because of the resource limitations. The study used U-Net with the 

original structure of 5 levels and fitter numbers for each level (64, 128, 256, 512, 1024) to 

be able to compare with the original U-Net. 

The key findings of this section can be concluded into four points. 1- With image size 

256*256 the best accuracy achieved by 2 U-Nets model while the worst accuracy recorded 

with 4 U-Nets model. 2- With image size 128*128 the best accuracy recorded for 2 and 4 

U-Nets models and worst with 3 U-Nets. 3- With image size 128*128 the accuracy is always 

higher compared to the same model using image size 256*256. 4- The highest accuracy 

overall achieved by 2 U-Net models. 

In line with the hypothesis of increasing the model performance by widen the model with 

additional U-Net, the 2 U-Net stacked model shows better performance than the original one 

U-Net. The results come in line with the proposed models in [139] [16] while the study did 

not use any bridging connection between the two U-Nets that will be under more 

investigation in section 4.1.3. 

The results contradict with the hypothesis when adding a third and fourth U-Net because 

without any bridging between the u-nets. The reason is that, the loss of the features during 
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the convolutional layers and pooling with be increased and propagated from the U-Net to 

the next u-net leading to poor accuracy with 3U-Net and 4 U-Net stacked models. 

When using image size 256*256 with U-Net model, the deepest level will apply 

convolutional process over the minimum image size 16*16 because each level has 

maxpooling layer with size 2*2 which decrease the image size by 50% after each level. The 

accuracy results showed that, stacked 2U-Nets recorded the best accuracy (77.96%, 

77.95%) for (Avg_Test, and Avg_AUG_test) over the original U-Net (58.73%, 75.93%) and 

over all other structures using 3 or 4 stacked U-Nets, While using 4 stacked U-Nets 

recorded the minimum accuracy. the results indicates that, increasing the number of 

stacked U-Net that increased the number of trainable parameters can enhance the model 

accuracy until certain values which limited to 2 stacked U-Nets with around 62millions of 

parameters. increasing the number of U-Nets and parameters over 2 stacked will decrease 

the accuracy.  

Although image size 128*128 recorded accuracy higher than using 256*256 for 75% 

of the models and factors, using images with higher resolution (256*256) will produce 

better shape of the liver segmented mask in terms of edge smoothness.   

 

4.1.2.5 Recommendations for wider models based on U-Net structure 

 

Based on the results of testing the U-Net based wider models, using the U-Net with 

original structure of 5 levels with number of filters (64, 128, 256, 512, 1024) shows that: 

 In case of using image size of 128*128, the study recommend to use 4 stacked 

U-Net even if the model will have significant number of trainable parameters and 

the output mask will not be smooth because of the low resolution. 
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 The study recommend to use 25*256 image size with two stacked U-Net for 

better accuracy than the original one U-Net model even without any additional 

connections between the two U-Nets. The accuracy will be decreased with more than 

2 U-Nets. 

 It is better to keep the model structure based on two stacked 2U-Net with 256*256 

because the results are more robust than using 128*128 image size.   
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4.1.3 Bridging and Skip-Connections 
 

Based on the recommendations from the wider and deeper U-Net section and the 

original 2Bridged U-Net model for prostate segmentation [16], the first category of the 

models in this section are based on two U-Net stacked.  Each U-Net in the model will have 

the same structure as recommended in deeper model section (5 Levels with number of 

filters 64-1024 or 32-512). The two stacked U-Net will be connected by the original bridge 

and skip connections and compared with similar models structure but with different the 

bridge and skip connections called (Modified and Compound connections). The second 

category consists of three stacked U-Net with the recommended structure in addition to 

various types of skip and bridge connections between the 3 U-Nets based on the Original, 

Modified and Compound style.  

This section shows the results of the experiments that investigated the effect of 

using various connections between 2U-Nets and 3U-Nets based models on the model 

performance.  

 

4.1.3.1 Two Bridged U-Nets 

 

Three models introduced for training and testing within this section. All three models 

based on 2 Bridged U-Net structures. First model has the same structure as the Original 2D 

bridged U-Net [16] where the model have two connections to link the first and second U-

Nets. Firstly, the output feature maps from the expansion path of the first U-Net (B2) 

concatenated to the inputs of contraction path of second U-Net (B3) while the second 

connections concatenated the output feature maps from the contraction path of the first U-

Net (B1) to the inputs of the expansion path of the second U-Net (B4) Figure 4-22. The 

second model represent a Modified skip connection that replaces the bridge from B1 output 
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to B4 inputs (Red line) with a modified bridge connects between output B2 to the input of 

B4 (Green line). The third model called Compound model where it use both the connections 

from the previous models (Original and Modified). In the Compound model, the inputs of 

B4 concatenated with the output from B1 (Red) and the output from B2 (Green) in addition 

to the normal inputs based on the U-Net structure. All models used Dice Similarity 

Coefficient (DSC) as the loss function and combination of Rectified Linear Unit (ReLu) and 

Exponential Linear Unit (ELU) for activation Figure 4-22 Different types of bridged connections and 

skip connections with 2 U-Nets models. The training, validation, and Testing (Test_Avg) and 

testing using augmented data (Test_Avg_Aug) accuracies are measured using Dice 

similarity coefficient. Two types of U-Nets will be tested based on the number of filters 

applied on each level, the first U-Net with filters structure 32-512 (32, 64, 128, 256, 512, 

256, 128, 64, 32) and the second U-Net used filters structure 64-1024 (64, 128, 256, 512, 

1024, 512, 256, 128, 64) because these are the most commonly used in the literature [14], 

[16], [128], [138] 

 

Figure 4-22 Different types of bridged connections and skip connections with 2 U-Nets models 

 

Model Filters Training % Validation% Test_Avg Test_Avg_Aug 

Original 32-512 97.55% 70.65% 73.21% 60.31% 
Modified 32-512 97.85% 67.02% 79.12% 60.10% 
Compound 32-512 97.52% 90.11% 89.88% 94.42% 

Original 64-1024 97.38% 87.75% 79.89% 75.34% 
Modified 64-1024 98.12% 92.50% 81.37% 83.68% 

Compound 64-1024 98.12% 91.13% 83.03% 78.36% 

Table 4-19 Training , validation, and testing accuracy for original, Modified, and Compound models with filters structure 32-
512 and 64-1024. Highest accuracy (Green) within each group 
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 Different 2U-Net based models used model structure 32-512 

 

While the Compound model recorded the highest accuracy for validation, Test_Avg, 

and Test_Avg_Aug (90.11%, 89.88%, 94.42%), it recorded the minimum accuracy for 

training. The modified model got the highest training accuracy (97.85 %) even if the 

difference between maximum and minimum training accuracy is less than 0.5 % with values 

(97.55%, 97.85%, 97.52%) for original, Modified, and Compound model respectively. The 

modified model recorded accuracies higher than the Original Model for Training and 

Test_Avg while it recorded accuracy lower than original for validation and Test_Avg_Aug. 

Table 4-19 Figure 4-23 

 

Figure 4-23 Original, Modified, Compound models with filters structure 32-512 
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 Different 2U-Net based models used model structure (64-1024)  

 

The original model shows the lowest accuracy between the three models with all 

training, validation, Test_Avg, and Test_AVG_Aug. While Compound model recorded the 

maximum accuracy for Test_Avg (83.03%), the modified model achieved the best accuracy 

for validation and Test_Avg_Aug. Modified and Compound models have the same accuracy 

for training (98.12%). Figure 4-24 Table 4-19 

 

Figure 4-24 Original, Modified, Compound models with filters structure 64-1024 

 

 Comparing all models with filters 32-512 versus 64-1024 

 

Using the original and modified models with filters structure 64-1024 recorded higher 

accuracy than using 32-512 filters structure for all factors, training, validation, Test_Avg, 

and Test_Avg_Aug Figure 4-25 Figure 4-26. Using compound model with 32-512 filters 

structure achieved better accuracy for Test_Avg and Test_Avg_Aug while using 64-1024 
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filters recorded better accuracy for training and validation with less than 1% Figure 4-27 

Table 4-19 

 

Figure 4-25  Original Model with filters' numbers 32-512 and 64-1024 

 

 

Figure 4-26  Modified Model with filters' numbers 32-512 and 64-1024 
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Figure 4-27 Compound model filters numbers 32-512 and 64-1024 

 

4.1.3.2 Discussion of two bridged U-Nets 

 

The model with 2 bridged U-Nets contains 4 paths, contracting and expansion path 

for each U-Net. Using the compound connections allowed the model to concatenate the 

output feature maps from the first three paths to the inputs of the last expansion path (4th 

path) then apply the de-convolutional process to the result of the concatenation process. 

The concatenation of all previous outputs minimized the effect of any lost features during 

the previous convolutional process at any level of the model.  

The results in Table 4-19 can highlight the four key findings in this part of the 

research. 1- The models based on the modified connections or Compound connections 

recorded higher accuracy than the original connections with both structures 32-512 and 64-

1024. 2- Using the filter structure 64-1024 recorded higher accuracy over the filter 

structure 32-512 except for compound connections. 3- The models based on the compound 

connections recorded the best accuracy over original and modified connections for both filter 
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structures 32-512 and 64-1024. 4- The best overall accuracy for testing with and without 

augmented data recorded for compound model using 32-512 filters structure. 

The findings came in line with the main theory of U-Net that based on adding the 

global features from the contraction path of the U-Net to the feature-maps on the same 

level of the expansion path will overcome the loss of the feature that might happen during 

the convolution and pooling layers. The modified model and the compound models add 

extra bridging connections from the first U-Net to the final expansion path of the second U-

Net that shows better performance over the original model. 

Although most of the models in the literature used u-net with filter structure 32-512, 

the findings show that, using filter structure of 64-1024 recorded higher accuracy because 

the number of training parameters is higher than the parameters of the model with filters 

32-512.  

The findings shows significant enhancement of the compound model performance 

when using filters 32-512 over using filters 64-1024 although the model used less 

parameters that emphasis the high impact of using the compound connections over the 

other bridging connections. 

The study recommend the 2Bridged U-Net model with compound connections with 

filters structure 32-512 for the 5 levels U-Net over all the other structures e.g. U-Net, 

original 2Bridged U-Net , Modified 2Bridged U-Nets with any other filter structure. 
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4.1.3.3 Three Bridged U-Nets 

 

This section contains the results of testing the models based consists of 3 U-Net 

stacked with different types of connections. All the models in this section used 32-512 filter 

structure. The models divided into two main categories, first category is 3U-Net models with 

all possible connections that links first and second U-Nets then second and third U-Nets. The 

second category contains the same models as in first category with additional long 

connection between 1st and 3rd U-Nets. 

In the first category, the models based on 3 U-Nets with bridged connections have 

different types of connections, for example the model named Original-Compound means the 

bridge between first U-Net and second U-Net used Original connections and the connections 

between the second U-Net and third U-Net used compound connections Figure 4-28. The 

models in the second category have similar connections as in the first category in addition 

to a long connection between first and third U-Nets. For example, the model called 

(Original-Compound-Long) means the connection between first and second U-Net used the 

original bridged connection and the connection between the second and third U-Nets used 

the compound connections, in addition to that, there is a long connection that concatenates 

the output of contracting path from the first U-Net (B1) to the inputs of the expansion path 

in the third U-Net (B6) (Blue line) Figure 4-29  

Table 4-20 shows accuracy for Training, Validation, and Test_Avg and Test_Avg_Aug 

for 3U-Net based model with and without long bridge connections and the 2U-Net models 

based.  
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Figure 4-28 Representation for examples of models developed based on three U-Net models using the different connections 
style (Original, Modified, and Compound) 

 

 

Figure 4-29 Representation for examples of 3 U-Net models with long connections between U-Nets (1 and 3) 
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Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Original 97.55% 70.65% 73.21% 60.31% 

Modified 97.85% 67.02% 79.12% 60.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Table 4-20  Training, Validation, and testing for 3U-Net based model with and without long bridge connections, Highest 
accuracy (Green) lowest accuracy (Red) within each group 

 

 Models based on 3U-Net  

 

The Original_Modified model and the Compound_Compound model achieved the 

maximum accuracy for Test_Avg (91.52%) and Test_Avg_Aug (92.64%) respectively, while 

the maximum training and validation accuracy for Original_Original model (97.70%) and 

Modified_Modified model (87.27%) respectively. While the minimum accuracy for both 

validation (59.82%) and Test_Avg (60.416%) recorded for the Compound_modified model,  

the minimum training accuracy with 97.58% and Test_Avg_Aug (61.48%) achieved by 

Original_Modified and Original_Compound respectively. Even if the original_Modified model 
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achieved the minimum training accuracy (97.58%), it recorded the maximum testing 

accuracy with 91.52%.  Table 4-21 Figure 4-30 

Compound_Modified model recorded the lowest validation accuracy while all the 

other models recorded higher accuracy within the range from 87.27 to 84.6% Figure 4-31. 

The three models (Compound_Compound , Original_Modified , Compound_Original) 

recorded the highest 3 accuracies for Test_Avg_Aug with values 92.64%, 89.26%, 88.08%  

while the same 3 models recorded the highest 3 accuracies for Test_Avg but with different 

order(Original_Modified, Compound_Compound , Compound_Original ) with values 91.52%, 

89.76%, 87.99% in sequence Figure 4-32. The difference between the maximum and 3rd 

maximum is around 4%. For training accuracy, the difference between the maximum 

97.70% and the minimum 97.58% is 0.12%. Figure 4-33 

 

Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Table 4-21 Models based on 3U-Net, Highest accuracy (Green) lowest accuracy (Red) 
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Figure 4-30 Training accuracy for all models based on 3U-Net models 

 

Figure 4-31 Validation accuracy for all models based on 3U-Net models 
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Figure 4-32 Testing (Test_Avg) accuracy for all models based on 3U-Net models 

 

Figure 4-33 Testing using augmented data (Test_Avg_Aug) accuracy for all models based on 3U-Net models 
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 Models based on 3U-Net with long connection 

 

  The maximum Test_Avg accuracy is 93.18% and 93.29% for Test_Avg_Aug 

recorded for the same model Compound_Original_Long model. While maximum training 

accuracy (97.69%) achieved by Compound_Compound_Long model, the maximum 

validation accuracy (89.68%) recorded for Original_Compound_Long model Figure 4-34. 

The minimum accuracy for validation (62.84%) and Test_Avg_Aug recorded for the same 

model Modified_Original_Long. While the minimum Test_Avg accuracy (49.34%) recorded 

for Original_Original_Long model, the Original_Compound_Long model recorded the 

minimum training accuracy 97.56%. Table 4-22 Figure 4-36 

For training accuracy, the difference between the maximum 97.69% and the 

minimum 97.56% is 0.13%. 

The validation accuracies without the minimum value of 62.84% can be divided into 

3 groups. Group 1 recorded almost the same accuracy (89.68%, 89.59%, 89.47%) for 

models Original_Compound_Long, Modified_Compound_Long, then 

Compound_Modified_Long. Group 2 recorded difference =~ 1% (88.14%, 87.17%) for 

models Compound_Compound_Long and Modified_Modified_Long. Group 3 recorded almost 

the same accuracy (83.95%, 83.51%) for models Original_Original_Long and 

Compound_Original_Long. Group 4 contains only one model with validation accuracy 

80.35% for the Original_Modified_Long model Figure 4-35. The lowest two accuracies for 

Test_Avg and Test_Avg_Aug recorded for the same models Modified_Original_Long then 

Original_Original_Long models for Test_Avg_Aug while Original_Original_Long then 

Modified_Original_Long models for Test_Avg. Figure 4-37 
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Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-22 Models based on 3U-Net with long connections, Highest accuracy (Green) lowest accuracy (Red) 

 

 

Figure 4-34 Training accuracy for all models with Long connection 
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Figure 4-35 Validation accuracy for all models with Long connection 

 

Figure 4-36 testing (Test_Avg) accuracy for all models with Long connection 
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Figure 4-37 Testing using augmented data (Test_Avg_Aug) accuracy for all models with Long connection 

 

 Compare 3U-net models versus models with long connections 

 

The maximum accuracy for (validation, Test_Avg, and Test_Avg_Aug) for models 

with long connections (89.68%, 93.18%, 93.29%) are higher than the normal models 

(87.27%, 91.52%, and 92.64%) , while for training the maximum for normal models is 

greater than the maximum for long connection models with 0.01% (97.70% -- 97.69%) 

Table 4-23. The minimum values recorded for models with long connections (97.56%, 

49.34%, and 43.52%) are less than the minimum for the normal models (97.58%, 60.16%, 

and 61.48%) for all training, Test_Avg, and Test_Avg_Aug. The minimum of validation has 

the opposite trend where the minimum for normal models (59.82%) is lower than the 

minimum for models with long connections (62.84%).  

Comparing the models with/without long connections in Figure 4-40 and Figure 4-41 

showed that, Test_Avg and Test_Avg_Aug have the same curve behavior. 5 of 9 models 

recorded accuracy for long connections models higher than the models without long 
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connections (Original_Compound, Modified_Compound, Modified_Modified, 

Compound_Original, Compound_Modified) and the opposite for the remaining 4 models 

(Original_Modified, Original_Original, Modified_Original, Compound_Compound) where 

using long connections recorded lower accuracy. Almost a similar behavior exists for 

validation except for two models (Compound_Compound, Compound_Original) where the 

accuracy reversed Figure 4-39.  The training factors recorded the same behavior as testing 

except for 4 models having opposite behavior (Original_Modified, Original_Compound, 

Modified_Modified, Compound_Compound) Figure 4-38 

Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-23 3U-Net based models with versus without long connections, Highest accuracy (Green) lowest accuracy (Red) 
within each group 
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Figure 4-38 Training accuracies for 3U-Net models versus 3U-Net models with long connection 

 

 

Figure 4-39  Validation accuracies for 3U-Net models versus 3U-Net models with long connection 
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Figure 4-40  Testing (Test_Avg) accuracies for 3U-Net models versus 3U-Net models with long connection 

 

 

Figure 4-41  Testing using augmented data (Test_Avg_Aug) accuracies for 3U-Net models versus 3U-Net models with long 
connection 
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 Compare each model with the respective long bridge model 

 

5 of 9 models showed enhancement in the accuracy for all training, validation, 

testing, and testing using augmented data when using long connecting rather than the 

normal model. These models are Original_Compound_Long, Compound_Original_Long, 

Modified_Compound_Long, Compound_Modified_Long , and Modified_Modified_Long.  

Figure 4-42.  

All the models that contains Compound model either at the beginning or at the end 

showed better accuracy when using long connections except Compound_Compound better 

accuracy without using long connections. 

The rest 4 models showed the opposite trend, where the normal models recorded 

better performance than using long connections with all training, validation, testing, and 

testing  using augmented data. These models are Original_Modified, Modified_Original, 

Compound_Compound, and Original_Original Figure 4-43 

All models contain the same structure (original_original, Compound_Compound) 

recorded lower accuracy when using long connection except Modified_Modified which 

showed better accuracy with long connection.  

Original_modified or Modified_Original models showed that, the accuracy decreased 

when using long connections. 
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Figure 4-42  5 Models with long connection recorded better accuracy against the same models without long connections (Original-Compound, Compound-Original, Modified-
Compound, Compound-Modified, Modified-Modified) 

. 
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Figure 4-43 4 Models show better accuracy against the same models with long connections (Compound-Compound, Original-Original, Original-Modified, Modified-Original)
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 Compare 2U-Net models with 3U-Net models   

The maximum accuracy for 2U-Net models is greater than 3U-Net models except for 

Test_Avg where 2U-Net models is lower than the 3U-Net models (Compound <   

Original_Modified  ) while the minimum for 3U-Net is lower than the minimums for 2U-Net 

Figure 4-44  . Excluding the lowest value of validation for 3U-Net models, all the values for 

3U-Net models (training, validation, and Test_Avg_Aug) are lower than the maximum and 

higher than the second maximum of the 2U-Net models except for the Test_Avg accuracy. 

Table 4-24 

Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original 97.55% 70.65% 73.21% 60.31% 

Modified 97.85% 67.02% 79.12% 60.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Table 4-24 2U-Net models versus 3U-Net models, Highest accuracy (Green) lowest accuracy (Red) within each group 
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Figure 4-44 2U-Net models versus 3U-Net models 

 

 Compare 2U-Net models with 3U-Net with long bridge   

 

All 3U-Net models with long connections have the same behavior as with 3U-Net 

model. The maximum accuracy recorded for 2U-Net models always greater than the 

maximum for 3U-Net models with long connections except for Test_Avg while the minimum 

for all factors for models with long connections is lower than the minimums for 2U-Net 

models Figure 4-45. If we exclude the lowest accuracy for 3U-Net models with long 

connections for validation and the lowest two values in Test_Avg_Aug, then the training, 

validation, and Test_Avg_Aug will follow the same behavior as 3U-Net models which shows 

that, all the values recorded for 3U-Net models are in the range between the maximum and 

the second maximum accuracy for 2U-Net models for training, validation, testing, and 

testing with augmented data. Table 4-25 Figure 4-46 
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Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Original 97.55% 70.65% 73.21% 60.31% 

Modified 97.85% 67.02% 79.12% 60.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Table 4-25 2U-Net models versus 3U-Net models with long connections, Highest accuracy (Green) lowest accuracy (Red) 
within each group 

 

Figure 4-45 Training and Validation accuracies for 2U-Net models versus 3U-Net models with long connections 
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Figure 4-46 Testing and Testing using augmented data (Test_Avg, Test_Avg_Aug) accuracies for 2U-Net models versus 3U-Net 
models with long connections 

 

 Compare models with only on type of connection for the 3U-Net with 

the respective 2U-Net model and long connection 

 

In this section the effect of adding another U-Net of the same structure then adding 

long bridge connection would be investigated for the three model types. For example, the 

2U-Net model with Compound connection will be compared with 3U-Net model 

Compound_Compound and Compound_Compound_Long.  

 Original models 

Adding another U-Net with original structure to make the model Original_Original 

increased the accuracy to the maximum for all measures, training, and validation, Test_Avg, 

and Test_Avg_Aug. While the minimum accuracy for training and validation recorded for the 

Original mode, the minimum Test_Avg and Test_Avg_Aug reached when adding long 

connection for Original_Original_Long model. Figure 4-47 

 Modified models 

The accuracy of Test_Avg and Test_Avg_Aug started with minimum values when 

using 2U-Net modified model then increased by adding a third U-Net and increased to reach 

the maximum by adding long connection to the modified model. The opposite behavior 



190 
 

happened for training, where started with the maximum with 2 U-Net model (Modified) then 

decreased when adding another modified connection (Modified_Modified) to reach the 

minimum when adding long connection (Modified_Modified_Long). The validation accuracy 

started with minimum accuracy when using 2U-Net then increased to the maximum after 

adding the third U-Net then decreased again after adding the long connections. Figure 4-48 

 Compound models 

The Compound model for 2U-Net recoded the maximum accuracy for validation, 

Test_Avg, and Test_Avg_Aug while the training accuracy was minimum value. Adding a 

third U-Net then long connection decreased the accuracy to be the minimum for validation 

with Compound_Compound model and the minimum for Test_Avg and Test_Avg_Aug with 

Compound_Compound_Long. The opposite behavior recorded for training accuracy where 

started with minimum value with Compound model then increased to reach the maximum 

accuracy with Compound_Compound_Long model. Figure 4-49 

The overall results prove that the best model using original structure is 

(Original_Original) and for Modified structure is (Modified_Modified_Long) while for 

Compound structure (Compound for 2U-Net). The two models with Compound connections 

(Compound, Compound_Compound) recorded the 2 maximum accuracies over all the other 

models with similar connections with/without long connections for all factors except training. 

Table 4-26 

  



191 
 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Modified 97.85% 67.02% 79.12% 60.10% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-26 compare U-Net with the respective 3U-Net models and with long connection models, Highest accuracy (Green) 
lowest accuracy (Red) within each group 

 

 

Figure 4-47 Training, Validation, Test_Avg, and Test_Avg_Aug for all modles with only Original connections for 2U-Net and 
3U-Net and 3U-Net with long connection 
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Figure 4-48  Training, Validation, Test_Avg, and Test_Avg_Aug for all modles with only Modified connections for 2U-Net and 
3U-Net and 3U-Net with long connection 

 

Figure 4-49  Training, Validation, Test_Avg, and Test_Avg_Aug for all modles with only Compound connections for 2U-Net 
and 3U-Net and 3U-Net with long connection 
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 Compare2U-Net models versus 3U-Net models that have the same 

connections with/without long connection 

 

Table 4-27 illustrates the results of comparison between 2U-Net models and 3U-Net 

models versus 3U-Net with long connection models where the same bridge connection 

structure used between each two U-Nets. 

 

 2U-Net models 

Compound model recorded the maximum accuracy for validation, Test_Avg, and 

Test_Avg_Aug while recorded the minimum for training. The minimum accuracy for 

validation and Test_Avg_Aug recorded for modified model while minimum accuracy for 

Test_Avg recorded for Original model.   

 

     3U-Net models 

Compound_Compound model achieved the maximum accuracy for Test_Avg and 

Test_Avg_Aug, while maximum validation and maximum training recorded for 

Modified_Modified model and Original_Original model respectively. The Original_Original 

model recorded the minimum accuracy for validation and Test_Avg_Aug while minimum 

Test_Avg and minimum training recorded for Modified_Modified and Compound_Compound 

respectively. Table 4-277 Figure 4-50 

 

 3U-Net models with long connections 

The minimum accuracy for Test_Avg and Test_Avg_Aug recorded for 

Original_Original_Long model while the maximum values reached with 

Modified_Modified_long model. Training and validation accuracies recorded the maximum 
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for Compound_Compound_Long model while was minimum accuracy recorded by 

Modified_Modified_Long model and Original_Original_Long Model respectively. Figure 4-51 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Modified 97.85% 67.02% 79.12% 60.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-27 Accuracy for 2U-Net models, 3U-Net models, and 3U-Net models with long connections with same connection 
between all 3 U-Nets, Highest accuracy (Green) lowest accuracy (Red) within each group 

 

 

Figure 4-50  Training, Validation, Test_Avg, Test_Avg_Aug accuracies for 3U-Net models that used only one connection type 
between each two U-Nets 



195 
 

 

Figure 4-51 Training, Validation, Test_Avg, Test_Avg_Aug accuracies for 3U-Net models with long connection that used only 
one connection type between each two U-Nets 

 

 Compare all Models have the same start connections between the first 

and second U-Net 

In this section, the models based on 2U-Nets structure with filters 32-512 would be 

compared with all other models based on 3U-Net models where the first and second U-Nets 

having the same connections as the 2U-Net based model with/without long connections. For 

example, the 2U-Net model with Modified connections would be compared with all 3U-Net 

models started with Modified connections between first and second U-Net (Modified, 

Modified_Original, Modified_Modified, Modified_Compound, Modified_Original_Long, 

Modified_Modified_Long, Modified_Compound_Long). 

 Models start with Original connections 

 

All the models included in this section consist of 3U-Nets where the first and second 

U-Nets are connected based on the original structure while the second U-Net and third U-

Net connected with one of three structures (Original, Modified, Compound). The other 
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models have the same structure as the previous ones in addition to the Long connections. 

Table 4-28 

The Original-Modified model recorded the maximum accuracy for Test_Avg and 

Test_Avg_Aug factors while the maximum for training and validation recorded for 

Original_Original and Original_compound_Long models respectively. The minimum accuracy 

for Test_Avg and Test_Avg_Aug recorded for the Original_Original_Long model while the 

Original model recorded the minimum accuracy for Training and validation.  

For training factor, all models used Long connections recorded lower accuracy than 

the models without long connections except Original_Modified_Long that having higher 

training accuracy than Original_Modified model. Figure 4-52 Validation, Test_Avg and 

Test_Avg_Aug had the same curve behavior, the models with long connections recorded 

lower accuracies than the same model structure without long connections except for 

Original_Compound_Long model which achieved accuracy higher than Original_Compound 

model. Figure 4-53 The two U-Net based model with Original connections achieved the 

minimum accuracy over all of three U-Nets with/without long connections for Training and 

validation, while recorded the second minimum accuracy model for Test_Avg_Aug after 

Original_Original_Long model and the third minimum for Test_Avg after 

Original_Original_Long and Original_Compound models. Table 4-28 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Table 4-28 All models of three U-Nets with Original connections between the first two U-Nets and varient connections 
between the second and third U-Nets, Highest accuracy (Green) lowest accuracy (Red)  
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Figure 4-52 Training accuracy for all models of three U-Nets with Original connections between the first two U-Nets and 
variant connections between the second and third U-Nets 

 

 

Figure 4-53  Validation, Testing (Test_Avg), and testing using augmented data (Test_Avg_Aug) accuracies for all models of 
three U-Nets with Original connections between the first two U-Nets and variant connections between the second and third 
U-Nets 
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 Models start with Modified connections 

 

All the models included in this section consist of 3U-Nets where the first and second 

U-Nets are connected based on the Modified structure while the second U-Net and third U-

Net connected with one of three structures (Original, Modified, Compound). The other 

models have the same structure as the previous ones in addition to the Long connections. 

The Modified model recorded the highest accuracy for Training while the maximum 

for Test_Avg and Test_Avg_Aug achieved by Modified_Modified_Long and the maximum for 

validation recorded for Modified_Compound_Long model. The Modified_Original_Long model 

recorded the minimum accuracy for all four factors Training, Validation, Test_Avg, and 

Test_Avg_Aug and shared the same minimum accuracy for training with 

Modified_Compound model. Table 4-29 

For training factor, all models used Long connections recorded lower accuracy than 

the models without long connections except Modified_Compound_Long that having higher 

training accuracy than Modified_Compound model. Figure 4-54 

The validation accuracy using models with long connections recorded values lower 

than the models without long connections except for model Modified_Compound_Long that 

recorded accuracy higher than Modified_Compound model. Figure 4-55 

Test_Avg and Test_Avg_Aug have the same curve behavior, the models with long 

connections recorded higher accuracies than the same model structure without long 

connections except for Modified_Original_Long model that recorded accuracy lower than 

Modified_Original model. Figure 4-55 

The two U-Net based model with Modified connections achieved the best accuracy 

over all of three U-Nets with/without long connections for Training while recorded the 

second minimum accuracy after Modified_Original_Long model for Validation and 
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Test_Avg_Aug for all 3U-Net based models with/without long connections. Modified model 

using 2U-Net recorded Test_Avg accuracy higher than all 3U-Net based models structure 

without Long connections but lower than models with long connections except 

Modified_Original_Long model which is the overall minimum. Table 4-29 

Model Training Validation Test_Avg Test_Avg_Aug 

Modified 97.85% 67.02% 79.12% 60.10% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Table 4-29 All models of three U-Nets with Modified connections between the first two U-Nets and varient connections 
between the second and third U-Nets, Highest accuracy (Green) lowest accuracy (Red)  

 

 

Figure 4-54  Training accuracies for all models of three U-Nets with Modified connections between the first two U-Nets and 
variant connections between the second and third U-Nets 
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Figure 4-55  Validation, Testing (Test_Avg), and testing using augmented data (Test_Avg_Aug) accuracies for all models of 
three U-Nets with Modified connections between the first two U-Nets and variant connections between the second and third 
U-Nets 

 Models start with Compound connections 

 

All the models included in this section consist of 3U-Nets where the first and second 

U-Nets are connected based on the Compound structure while the second U-Net and third 

U-Net connected with one of three structures (Original, Modified, Compound). The other 

models have the same structure as the previous ones in addition to the Long connections. 

Compound model recorded the highest accuracy for Validation and Test_Avg_Aug 

while the maximum for Training and Test_Avg achieved by Compound_Compound_Long and 

Compound_Original_Long models respectively. The Compound_Modified model recorded the 

minimum accuracy for Validation, Test_Avg, and Test_Avg_Aug while the minimum 

accuracy for Training recorded by Compound model. Table 4-30 

For training factor, all models used Long connections recorded higher accuracy than 

the models without long connections except Compound_Original and 
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Compound_Original_Long that having the same training accuracy. Validation factor almost 

have the same behavior as training where adding Long connections achieved higher 

accuracy than the models without long connections except for Compound_Original which 

recorded accuracy higher than Compound_Original_Long. Figure 4-56 

Test_Avg and Test_Avg_Aug having the same curve behavior. The models with long 

connections recorded higher accuracies than the same model structure without long 

connections except for Compound_Compound_Long model which achived accuracy lower 

than Compound_compound model. Figure 4-57 

The two U-Net based model with compound connections achieved the best accuracy 

over all other models based on three U-Nets with/without long connections for Validation 

and Test_Avg_Aug while recorded the lowest accuracy over all models based on 3U-Nets 

with/without long connections for Training. For Test_Avg, the 2U-Net based model recorded 

the second highest accuracy after Compound_Original_Long over all 3U-Nets based model 

with/without long connections. Table 4-30  

Model Training Validation Test_Avg Test_Avg_Aug 

Compound 97.52% 90.11% 89.88% 94.42% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-30 All models of three U-Nets with Compound connections between the first two U-Nets and varient connections 
between the second and third U-Nets, Highest accuracy (Green) lowest accuracy (Red)  
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Figure 4-56 Training accuracies for all models of three U-Nets with Compound connections between the first two U-Nets and 
variant connections between the second and third U-Nets 

 

 

Figure 4-57 Validation, Testing (Test_Avg), and testing using augmented data (Test_Avg_Aug) accuracies for all models of 
three U-Nets with Compound connections between the first two U-Nets and variant connections between the second and 
third U-Nets 
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 All models start with the same connections (Original, Modified, 

Compound) 

 

In this section, the curve of the accuracies resulted from the models that start with 

the same connections between the first and second U-Net (for Ex, start with Compound 

connections) is compared with curve of results of the models stated with the other two 

connections (Original, Modified). For example, each point on any curve will be compared 

with the point of the other curves for the same models with the other starts. For example, 

the model start with Original will be compared with the respective models started with 

Modified and Compound connection (Original_Compound, Modified_Compound, 

Compound_Compound).Table 4-31 

The Training factor accuracy shows that, For The models started with Modified 

connections recorded higher training accuracy than the models started with Compound for 

all 2U-Net and 3U-Net models but reversed when adding Long connection where the Long 

connection models with modified connections recorded accuracy lower than the models 

started with compound connections. The models started with modified connections recorded 

accuracy higher than the similar models started with Original connections except for three 

models Modified_Original, Modified_Compound, Modified_Original_Long that recorded 

accuracies lower than models (Original_Original, Original_compound, Oiginal_Original_Long) 

in sequence. The models start with Original connections recorded accuracy higher than the 

similar models start with Compound connections except for 3 models Original_Modified, 

Original_Modified_Long, Original_Compound_Long this recorded accuracy lower than 

Compound_Modified, Compound_Modified_Long, Compound_Compound_Long in sequence. 

Figure 4-58 
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For Validation factor, For The models started with Compound connections recorded 

higher Validation accuracy than the models started with Modified connections for models 

except for models Compound_Original, Compound_Modified, Compond_Compound_Long 

where recorded accuracy lower than the models Modified_Original, Modified_Modified, 

Modified_Compound_Long. The models start with Compound connections recorded accuracy 

lower than the similar models start with Original connections except for 2 models 

Compound, Compound_Modified_Long this recorded accuracy higher than Original and 

Original_Modified_Long in sequence. The models started with Original connections recorded 

accuracy higher than the similar models started with Modified connections except for three 

models Original_Original, Original_Modified, Oiginal_Modified_Long) that recorded 

accuracies lower than models (Modified_Original, Modified_Modified, 

Modified_Modified_Long) in sequence. Figure 4-59 

For Testing factor (Test_Avg), For The models started with Compound connections 

recorded higher Test_Avg accuracy than both the models started with Modified and original 

connections except for models Compound_Modified and Compond_Compound_Long where 

recorded accuracy lower than both models started with Modified connections 

(Modified_Modified and Modified_Compound_Long) and models started with Original 

connections Original_Modified and Original_Compound_Long. The models started with 

Modified connections recorded accuracy higher than the similar models started with Original 

connections except for two models Modified_Original and Modified_Modified that recorded 

accuracies lower than models Original_Original and Original_Modified in sequence. 

Figure 4-60 

The Test_Avg_Aug (Testing using augmented data) shows that, For The 

models started with Compound connections recorded higher Test_Avg_Aug accuracy than 

both the models started with Modified and original connections except for models 

Compound_Modified and Compond_Compound_Long where recorded accuracy lower than 
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both models started with Modified connections (Modified_Modified and 

Modified_Compound_Long) and models started with Original connections Original_Modified 

and Original_Compound_Long. The models started with Modified connections recorded 

accuracy higher than the similar models started with Original connections except for two 

models Modified_Modified and Modified_Original_Long that recorded accuracies lower than 

models Original_Modified and Original_Original_Long in sequence. Figure 4-61 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified 97.85% 67.02% 79.12% 60.10% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound 97.52% 90.11% 89.88% 94.42% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-31 All models of three U-Nets with same connections between the first two U-Nets and variant connections between 
the second and third U-Nets, Highest accuracy (Green) lowest accuracy (Red) within each group  
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Figure 4-58 Training accuracy for all models of three U-Nets with/without long connections that start with Original Versus 
start with Modified versus start with Compound connections between the first two U-Nets and variant connections between 
the second and third U-Nets 

 

 

Figure 4-59 Validation accuracy for all models of three U-Nets with/without long connections that start with Original Versus 
start with Modified versus start with Compound connections between the first two U-Nets and variant connections between 
the second and third U-Nets 
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Figure 4-60  Testing (Test_Avg) accuracy for all models of three U-Nets with/without long connections that start with Original 
Versus start with Modified versus start with Compound connections between the first two U-Nets and variant connections 
between the second and third U-Net 

 

 

Figure 4-61 Testing using augmented data (Test_Avg_Aug) accuracy for all models of three U-Nets with/without long 
connections that start with Original Versus start with Modified versus start with Compound connections between the first 
two U-Nets and variant connections between the second and third U-Net 
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 Compare all Models have the same end connections between the 

second and third U-Net 

In this section, the models based on 2U-Nets structure with filters 32-512 would be 

compared with all other models based on 3U-Net models where the second and third U-Nets 

having the same connections as the 2U-Net based model with/without long connections. For 

example, the 2_U-Net model with Modified connections would be compared with all 3U-Net 

models end with Modified connections between the second and the third U-Net (Modified, 

Original_Modified, Modified_Modified, Compound_Modified, Original_Modified_Long, 

Modified_Modified_Long, Compound_Modified_Long). 

 

 Models end with Original connections 

All the models included in this section consist of 3U-Nets where the second and third 

U-Nets are connected based on the Original structure while the first and the second U-Net 

connected with one of three structures (Original, Modified, Compound). The other models 

have the same structure as the previous ones in addition to the Long connections.  

The Compound_Original_Long model recorded the maximum accuracy for Test_Avg and 

Test_Avg_Aug factors while the maximum for training and validation recorded for 

Original_Original and Modified_Original models respectively. The minimum accuracy for 

Validation and Test_Avg_Aug recorded for the Modified_Original_Long model while the 

Original and Original_Original_Long models recorded the minimum accuracy for Training 

and Test_Avg respectively. Table 4-32 

For Training and validation factors, all models used Long connections recorded lower 

accuracy than the models without long connections. Figure 4-62. Test_Avg and 

Test_Avg_Aug having the same curve behavior, the models with long connections recorded 
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lower accuracies than the same model structure without long connections except for 

Compound_Original_Long model which achieved accuracy higher than Compound_Original 

model. Figure 4-63 

The two U-Net based model with Original connections achieved the minimum 

accuracy over all of three U-Nets with/without long connections for Training, while recorded 

the second minimum accuracy model for Validation after Modified_Original_Long model and 

the third minimum for Test_Avg after Original_Original_Long and Modified_Original_Long 

models and third minimum for Test_Avg_Aug after Modified_Original_Long and 

Original_Original_Long in sequence. The original model recorded accuracy lower than all 3U-

Net models without long connections for Test_Avg and Test_Avg_Aug. Table 4-32 

 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Table 4-32 All models of three U-Nets with Original connections between the second and third U-Nets and variant 
connections between the first and second U-Nets, Highest accuracy (Green) lowest accuracy (Red)  
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Figure 4-62 Training accuracy for all models of three U-Nets with Original connections between the second and third U-Nets 
and variant connections between the first and second U-Nets 

 

Figure 4-63  Validation, Testing (Test_Avg), testing using augmented data (Test_Avg_Aug) accuracy for all models of three U-
Nets with Original connections between the second and third U-Nets and variant connections between the first and second 
U-Nets 

 

 Models end with Modified connections 
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All the models included in this section consist of 3U-Nets where the second and third 

U-Nets are connected based on the Modified structure while the first and the second U-Net 

connected with one of three structures (Original, Modified, Compound). The other models 

have the same structure as the previous ones in addition to the Long connections.  

The Original_Modified model recorded the maximum accuracy for Test_Avg and 

Test_Avg_Aug factors while the maximum for training and validation recorded for Modified 

and Compound_Modified_Long models respectively. The minimum accuracy for Validation 

and Test_Avg recorded for the Compound_Modified model while the Modified and 

Original_Modified models recorded the minimum accuracy for Training and Test_Avg_Aug 

respectively. Table 4-33 

For Training factor, all models with Long connections recorded higher accuracy than 

the models without long connections except for Modified_Modified_Long model which 

recorded accuracy lower than Modified_Modified model. Figure 4-64 

For Validation factor, all models with Long connections recorded lower accuracy than 

the models without long connections except for Compound_Modified_Long model which 

recorded accuracy higher than Compound_Modified model. Figure 4-65 

Test_Avg and Test_Avg_Aug having the same curve behavior, the models with long 

connections recorded higher accuracies than the same model structure without long 

connections except for Original_Modified_Long model which achieved accuracy lower than 

Original_Modified model. Figure 4-65 

The two U-Net based model with Modified connections achieved the maximum 

accuracy over all of three U-Nets with/without long connections for Training and minimum 

for Test_Avg_Aug, while recorded the second minimum accuracy model for Validation after 
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Compound_Modified model and the third minimum for Test_Avg after Compound_Modified 

and Modified_Modified models. Table 4-33 

Model Training Validation Test_Avg Test_Avg_Aug 

Modified 97.85% 67.02% 79.12% 60.10% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Table 4-33 All models of three U-Nets with Modified connections between the second and third U-Nets and variant 
connections between the first and second U-Nets, Highest accuracy (Green) lowest accuracy (Red)  

 

 

Figure 4-64 Training accuracy for all models of three U-Nets with Modified connections between the second and third U-Nets 
and variant connections between the first and second U-Nets 
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Figure 4-65 Validation, Testing (Test_Avg), testing using augmented data (Test_Avg_Aug) accuracy for all models of three U-
Nets with Modified connections between the second and third U-Nets and variant connections between the first and second 
U-Nets 

 Models end with Compound connections 

 

All the models included in this section consist of 3U-Nets where the second and third 

U-Nets are connected based on the Compound structure while the first and the second U-

Net connected with one of three structures (Original, Modified, Compound). The other 

models have the same structure as the previous ones in addition to the Long connections.  

The Compound model recorded the maximum accuracy for Validation, Test_Avg and 

Test_Avg_Aug factors while the maximum for training recorded for 

Compound_Compound_Long models. The minimum accuracy for Test_Avg_Aug and 

Test_Avg recorded for the Original_Compound model while the Compound and 

Modified_Compound models recorded the minimum accuracy for Training and Validation 

respectively.  
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For Training factors, all models used Long connections recorded higher accuracy than 

the models without long connections except for Original_Compound_Long model which 

recorded accuracy lower than Original_Compound model. For Training, all models with long 

connections recorded higher accuracy than the respective models without long connections 

except for model Original_Compound_Long that recorded accuracy lower than 

Original_Compound. Figure 4-66 

For Validation, all models with long connections recorded higher accuracy than the 

respective models without long connections. 

For Test_Avg and Test_Avg_Aug, the models with long connections recorded higher 

accuracies than the same model structure without long connections except for 

Compound_Compound_Long model which achieved accuracy lower than 

Compound_Compound model. Figure 4-67 

The two U-Net based model with Compound connections achieved the maximum 

accuracy over all of three U-Net models with/without long connections for Validation, 

Test_Avg and Test_Avg_Aug, while recorded the minimum accuracy for Training. Table 4-34 

Model Training Validation Test_Avg Test_Avg_Aug 

Compound 97.52% 90.11% 89.88% 94.42% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-34 All models of three U-Nets with Compound connections between the second and third U-Nets and variant 
connections between the first and second U-Nets, Highest accuracy (Green) lowest accuracy (Red)  
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Figure 4-66 Training accuracy for all models of three U-Nets with Compound connections between the second and third U-
Nets and variant connections between the first and second U-Nets 

 

 

Figure 4-67 Validation, Testing (Test_Avg), testing using augmented data (Test_Avg_Aug) accuracy for all models of three U-
Nets with Compound connections between the second and third U-Nets and variant connections between the first and 
second U-Nets 
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 All models end with the same connections (Original, Modified, Compound) 

 

In this section, the curve of the accuracies resulted from the models that ended with 

the same connections between the second and third U-Net (for Ex, ended with Compound 

connections) is compared with curve of results of the models ended with the other two 

connections (Original, Modified). For example, each point on any curve will be compared 

with the point of the other curves for the same models with the other ends. For example, 

the model ends with Original will be compared with the respective models ended with 

Modified and Compound connection (Compound_Original, Compound_Modified, 

Compound_Compound). 

The Training factor accuracies show that, the models ended with Original 

connections recorded higher training accuracy than the models ended with Compound for 

the two U-Net model and 4 of 6 models based on 3U-Net while the remaining 2 models 

(Modified_Original_Long, Compound_Original_Long) recorded accuracy lower than the same 

models ended with Compound ( Modified_Compound_Long, Compound_Compound_Long). 

The models ended with Original connections have a slightly different behavior when 

compared with the models ended with Modified connections where the models ended with 

original connections recorded higher accuracy with 3 of 6 models based on 3U-Net while 

recorded same accuracy with the model (Modified_Original = Modified_Modified) but 

recorded accuracy with the remaining 2 models (Modified_Original_Long, 

Compound_Original_Long ) lower than (Modified_Modified_Long, 

Compound_Modified_Long) as in the comparison with the models ended Compound models. 

The Original Model recorded accuracy lower than the Modified Model when using 2U-Net 

mode. Figure 4-68.  
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The models ended with Modified connections recorded accuracy higher than 4 of 7 of 

the similar models ended with Compound connections including the 2U-Net based model 

same accuracy with model (Modified_Modified_Long and Modified_Compound_Long) while 

the accuracy for the  models Original_Modified, Compound_Modified_Long were lower than 

models (Original_Compound and Compound_Compound_Long) in sequence.  

For Validation factor, for 5 of 7 models including the 2U-Net based models, the 

models ended with Compound connections recorded higher Validation accuracy than both 

the models ended with Modified and Original connections except for models 

Modified_Compound where the accuracy was lower than both (Modified_Original, 

Modified_Compound) and model Compound_Compound_long where the accuracy was Lower 

than the model Compound_Modified_long and higher than the model 

Compound_Original_long. Figure 4-69.  

The models ended with Modified connections recorded accuracy higher than 4 of 6 of 

the similar models ended with Original connections while recorded lower accuracy for the 

remaining 2 of 6 models and the model based on 2U-Net where the models Modified, 

Compound_Modified, and Original_Modified_Long recorded accuracy lower than the models 

Original, Compound_Original, Original_Original_Long in sequence.  

For Testing factor (Test_Avg), The models ended with Compound connections 

recorded higher Test_Avg accuracy than the models ended with Original connections except 

for models Original_Compound and Compond_Compond_Long where recorded accuracy 

lower than the models Original_Original and Compond_Original_Long.  The models ended 

with Compound connections recorded accuracy lower than the models ended with Modified 

connections except for the models Compound, Compound_Compound, 

Original_Compound_Long where the accuracies are higher than the models Modified, 

Compound_Modified, Original_Modified_Long. Figure 4-70.  
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The models ended with Modified connections recorded accuracy higher than the 

similar models ended with Original connections except for two models Compound_Modified 

and Compound_Modified_Long where the recorded accuracies lower than models 

Compound_Original and Compound_Original_Long in sequence.  

The Test_Avg_Aug (Testing using augmented data) shows that, The models 

ended with Compound connections recorded higher Test_Avg_Aug accuracy than the models 

ended with Original connections except for models Original_Compound and 

Compond_Compond_Long where recorded accuracy lower than the models Original_Original 

and Compond_Original_Long.   

The models ended with Compound connections recorded accuracy Higher than the 

models ended with Modified connections except for the models Original_Compound and 

Compond_Compond_Long and where the accuracies are lower than the models 

Original_Modified and  Compound_Modified_Long in sequence. Figure 4-71 

The models ended with Modified connections recorded accuracy higher than the 

similar models ended with Original connections except for two models Compound_Modified 

and Compound_Modified_Long where the recorded accuracies lower than models 

Compound_Original and Compound_Original_Long in sequence while the original model 

slightly higher than the Modified model with accuracy 60.31% and 60.10% respectively. 

Table 4-35 

Model Training Validation Test_Avg Test_Avg_Aug 

Original 97.55% 70.65% 73.21% 60.31% 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 
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Modified 97.85% 67.02% 79.12% 60.10% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound 97.52% 90.11% 89.88% 94.42% 

Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Table 4-35 All models of three U-Nets with the same connections between the second and third U-Nets and variant 
connections between the first and second U-Nets, Highest accuracy (Green) lowest accuracy (Red) within each group 

 

 

Figure 4-68 Training accuracy for all models of three U-Nets with/without long connections that end with Original Versus end 
with Modified versus end with Compound connections between the second and third U-Nets and variant connections 
between the first and second U-Nets 
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Figure 4-69 Validation accuracy for all models of three U-Nets with/without long connections that end with Original Versus 
end with Modified versus end with Compound connections between the second and third U-Nets and variant connections 
between the first and second U-Nets 

 

Figure 4-70 Testing (Test_Avg) accuracy for all models of three U-Nets with/without long connections that end with Original 
Versus end with Modified versus end with Compound connections between the second and third U-Nets and variant 
connections between the first and second U-Nets 
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Figure 4-71 Testing using augmented data (Test_Avg_Aug) accuracy for all models of three U-Nets with/without long 
connections that end with Original Versus end with Modified versus end with Compound connections between the second 
and third U-Nets and variant connections between the first and second U-Nets 

4.1.3.4 Compare all models  

 

The Training accuracy for all models is very close and varies from 97.85% to 

97.52% Table 5.2. While the Compound model achieved the maximum Test_Avg_Aug 

(Testing using augmented data) (94.42%) and maximum Validation (90.11%), Compound 

model also got the minimum Training accuracy (97.52%).  

The modified model recorded the maximum Training accuracy (97.85%), while the 

maximum Test_Avg recorded for the Compound_Original_Long model (93.18%). The 

minimum accuracy for validation (59.82%), minimum Test_Avg (49.34%), and minimum 

Test_Avg_Aug (43.52%) are recorded for Compound_Modified model, 

Original_Original_Long model, and Modified_Original_Long model respectively. Table 4-36 

Model Training Validation Test_Avg Test_Avg_Aug 

Original_Original 97.70% 84.62% 82.42% 67.22% 

Original_Modified 97.58% 85.45% 91.52% 89.26% 
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Original_Compound 97.64% 86.84% 69.09% 61.48% 

Modified_Original 97.67% 84.87% 76.36% 68.83% 

Modified_Modified 97.67% 87.27% 78.99% 70.67% 

Modified_Compound 97.59% 80.71% 78.08% 78.13% 

Compound_Original 97.65% 84.60% 87.99% 88.08% 

Compound_Modified 97.63% 59.82% 60.16% 62.77% 

Compound_Compound 97.59% 85.39% 89.76% 92.64% 

Original_Original_Long 97.67% 83.95% 49.34% 59.73% 

Original_Modified_Long 97.59% 80.35% 80.01% 74.08% 

Original_Compound_Long 97.56% 89.68% 81.91% 78.19% 

Modified_Original_Long 97.59% 62.84% 66.02% 43.52% 

Modified_Modified_Long 97.63% 87.17% 85.95% 80.10% 

Modified_Compound_Long 97.63% 89.59% 82.84% 79.89% 

Compound_Original_Long 97.65% 83.51% 93.18% 93.29% 

Compound_Modified_Long 97.68% 89.47% 87.56% 85.41% 

Compound_Compound_Long 97.69% 88.14% 78.30% 74.07% 

Original 97.55% 70.65% 73.21% 60.31% 

Modified 97.85% 67.02% 79.12% 60.10% 

Compound 97.52% 90.11% 89.88% 94.42% 

Table 4-36 All models of 2U-Nets, 3U-Nets, and 3U-Nets with long connection. Max accuracy (Green), Min accuracy (Red) 

For the Training Factor, The training accuracy for all models with the range of 

0.33% between 97.85% and 97.52%. The 2U-Net model using Modified connection 

recorded the maximum accuracy 97.85% while the compound and Original recorded the 

minimum and second minimum over all the models. All 3U-Net based models recorded 

accuracy higher than Original and Compound model. While the maximum three models 

based on 3U-Nets are Original_Original, Compound_Compound_Long, and 

Compound_Modified_Long(97.70, 97.69, 79.68) in sequence, the minimum 2 accuracies 

recorded for Original_Compound_Long, and Original_modified (97.56%, 97.58%)in 

sequence. The remaining models categorized into 3 groups, Group 1 contains the next best 

3 models with same accuracy (97.67%) (Modified_Original, Modified_Modified, 

Original_Original_Long). Group2 contains 6 models (Compound_Original, 

Compound_Original_Long, Original_Compound, Compound_Modified, 

Modified_Modified_Long, Modified_Compound_Long) with accuracies (97.65%, 97.65%, 
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97.64%, 97.63%, 97.63%, 97.63%), Group3 contains 4 models with the same accuracy 

97.59% (Modified_Compound, Compound_Compound, Original_Modified_Long, 

Modified_Original_Long). Figure 4-72 

 

Figure 4-72 Training accuracy for all models 
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Figure 4-73  Validation accuracy for all models 

 

The validation accuracy shows that, the compound model recorded the maximum 

accuracy (90.11%) while the modified and Original models recorded the third and fourth 

minimum (67.02%, 70.65%) respectively. 

 For the 3U-net based models, the first and second minimum recorded for 

Compound_Modified and Modified_Original_Long with values 59.82% and 62.84% which are 

the two minimums over all models while the first three maximum validation accuracies 

recorded for the models Original_Compound_long, Modified_Compound_Long, and 

Compound_Modified_Long with values 89.68%, 89.59%, and 89.47% respectively. The 

remaining models can be categorized into two groups based on the accuracy. Group 1 

contains 3 models with accuracies within the range 88% to 86%, these models are 

(Compound_Compound_Long, Modified_Modified, Modified_Modified_Long, 

Original_Compound) with accuracies 88.14%, 87.27%, 87.17%, 86.84% in sequence while 

Group2 contains 7 models where the accuracies within the range from 85% to 83%, the 
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models are (Original_Modified, Compound_Compound, Modified_Original , Original_Original 

, Compound_Original , Original_Original_Long , Compound_Original_Long) with the 

respective accuracy ( 85.45%, 85.39%, 84.87%, 84.62%, 84.60%, 83.95%, 83.51%). 

Figure 4-73 

 

 

Figure 4-74 Testing accuracy for all models 

The Testing accuracy for all models shows that, for the models based on 2U-Net, 

Compound, Original, and Modified reached the 3rd maximum, 5th minimum, and 10th 

minimum respectively with values (89.88%, 73.21%, and 79.12%). The overall maximum 

four accuracies recorded of the models The models Compound_Original_Long, 

Original_Modified, Compound, and Compound_Compound with values 93.18%, 91.52%, 

89.88% and 89.76% respectively while the minimum five accuracies recorded for models 

Original_Original_Long, Compound_Modified, Modified_Original_Long, Original_Compound, 

and Original with values 49.34%, 60.16%,66.02%,69.09%, and 73.21% respectively. The 

remaining models can be categorized to 3 groups. Group1 contains the models 

Compound_Original ,Compound_Modified_Long with accuracies 87.99% ,87.56% while 
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Group2 contains 5 models with accuracy in range from 80% to 86% 

Modified_Modified_Long, Modified_Compound_Long , Original_Original, 

Original_Compound_Long, Original_Modified_Long, 85.95%, 82.84%, 82.42%, 81.91%, 

80.01%). Group3 contains 5 models where the accuracy range between 79% and 76% 

(Modified, Modified_Modified, Compound_Compound_Long, Modified_Compound, 

Modified_Original 79.12%, 78.99%, 78.30%, 78.08%,76.36%) respectively. Figure 4-74 

 

Figure 4-75 Testing with augmented data accuracy for all models 

For Test_Avg_Aug, the 2U-Net models Compound, Modified and Original recorded 

the maximum accuracy and the 3rd and 4th minimum over all the models with values 

94.42%, 60.10%, and 60.31% respectively while the 1st and 2nd minimum recorded for 

Modified_Original_Long and Original_Original_Long with values 43.52% and 59.73% 

respectively.For the 3U-Net based models, the maximum 3 accuracies over 90% recorded 

for models Compound_Original_Long, Compound_Compound with values 93.29%, 92.64%. 

The remaining models could be categorized based on accuracy range with 5% step from 

60% to 90% into 6 groups. Group1 contains 2 models Original_Modified, 

Compound_Original with accuracies 89.26%, 88.08%. Group2 contains 2 models 
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Compound_Modified_Long, Modified_Modified_Long with accuracies 85.41%, 80.10% 

respectively. Group3 consists of 3 models Modified_Compound_Long, 

Original_Compound_Long, Modified_Compound with values 79.89%, 78.19%, 78.13% 

respectively. Group4 contains 3 models Original_Modified_Long, 

Compound_Compound_Long , Modified_Modified with values 74.08%, 74.07%, 70.67% 

respectively. Group5 consists of 2 models Modified_Original Original_Original with 

accuracies 68.83%, 67.22%. Group6 contains 2 models Compound_Modified, 

Original_Compound with values 62.77%, 61.48% respectively. Figure 4-75 

For the models based on 2U-Net, The validation accuracy recorded 1 of 3 the 

models >= 90% and 1of 3 between 70% and 80% and 1 of 3 between 60% and 70% while 

for Testing 1 of 3 models between 80 and 90% and 2of 3 models between 70% and 80%. 

Testing using augmented data recorded 1 of 3 models > 90% and 2 of 3 models between 

60%and 70%. Table 4-37 

For 3U-Net models, the validation accuracy recorded 88.88% of the models 

recorded accuracy between 80% and 90% for both with/without long connections while 

11.11% with accuracy from 50% to 60% with long connection and 11.11% of the models 

with accuracy 60% to 70% without long connection. The Testing Factor,  44.44% of the 

3U-Net models recorded accuracy >= 80% including 11.11% of them > 90% while the 

remaining models divided into 33.33% with accuracy between 70% and 80% and 22.22% 

between 60% and 70%. Using 3U-Net models with long connection showed better 

performance for 66.66% of the models >80%  including 11.11% > 90% while the 

remaining models recorded accuracy within ranges (from 40% to 50%) and (from 60% to 

70%) and (from 70% to 80%) with 11.11% of the models for each of them. The accuracies 

for Test_Avg_Aug (Testing using augmented data) shows that,  33.33% of the 3U-Net 

models recorded accuracy > 80% including 11.11% > 90% while 22.22% of the models 

with accuracy between 70% and 80% and 44.44% of the models with accuracy between 
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60% and 70%. 33.33% of the model based on 3U-Net with long connection recorded 

accuracy > 80% including 11.11% > 90% (same as the models without long connections) 

while 44.44% of the models recorded accuracy between 70% and 80% and 11.11%  

recorded accuracy in both ranges(from 50% to 60%) and (from 40% to 50%). Table 4-37 

 

Accuracy Range Models type Number of Models   

  Validation Test_Avg Test_Avg_Aug 

Accuracy >= 90% 3U-Net 0 1 1 

 3U-Net Long 0 1 1 

 2U-Net 1 0 1 

90% > Accuracy >= 80% 3U-Net 8 3 2 

 3U-Net Long 8 5 2 

 2U-Net 0 1 0 

80% > Accuracy >= 70% 3U-Net 0 3 2 

 3U-Net Long 0 1 4 

 2U-Net 1 2 0 

70% > Accuracy >= 60% 3U-Net 0 2 4 

 3U-Net Long 1 1 0 

 2U-Net 1 0 2 

60% > Accuracy >= 50% 3U-Net 1 0 0 

 3U-Net Long 0 0 1 

 2U-Net 0 0 0 

50% > Accuracy >= 40% 3U-Net 0 0 0 

 3U-Net Long 0 1 1 

 2U-Net 0 0 0 

Table 4-37 number of models versus the accuracy ranges for Validation, Test_Avg, Test_Avg_Aug for all models (2U-Net, 3U-
Nets, 3U-Nets with long connection) 
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4.1.3.5 Discussion for skip connections 

 

This section will focus on the discussion of the findings for the results of the 

experiments related to the models based on 3 connected U-Nets with/without long 

connections while the 2U-Net models discussed in more details in section  4.1.3.2 

The study of the 3U-Net based models can concluded the findings into, 1- 3U-Nets 

model with/without long connections have higher performance than the 2U-Nets models 

with original and Modified. 2- All 3U-Net models started with Compound recorded better 

performance with/without long connections. 3- The 3U-Net model with Compound 

connections between the three U-Nets achieved the best accuracy without long connections.  

4- All the models that contains Compound model either at the beginning or at the 

end showed better accuracy when using long connections except Compound_Compound. 5- 

All models contain the same structure e.g. Compound_Compound recorded lower accuracy 

when using long connection. 6- Adding long connection to the 3U-Net models did not show 

specific pattern on the performance in terms of increasing or decreasing.  

The findings illustrate the correlation between the model accuracy and the existing of 

the Compound connections where 90% of the models that contain compound connections 

got higher accuracy over the other models. A similar correlation exists when using 3U-Net 

models with/without long connections where it shows higher accuracy than the Original and 

Modified 2U-Net models. 

The results in line with the hypotheses of adding the compound connections to the 

models based on 2U-Nets and 3U-Nets will minimize the loss that might happen during the 

convolutional and pooling layers. The compound model contains 3 bridging connections 

between the 2U-Nets while the original and modified models contain only two bridges. In a 
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similar way, the 3U-Net model with compound connections will contain 6 bridges while the 

models using original or modified connections will contain only 4 bridges.  

The unexpected results appeared while adding the long connections with the 3U-Net 

model where not all the models recorded better performance by adding the long connection. 

Adding a long connection recorded the best performance with the models started with 

compound connection between the 1st and 2nd U-Nets. The reason of that is because the 

global features maps that generated from the high levels of the first U-Net have less effect 

when added once to the last expansion path of the 3rd U-Net with Original or modified 

connections between the first two U-Nets, while with the compound connections these 

feature-maps added three times in accumulative style and two convolutional processes 

cycles applied on it during the second and third U-Net plus the final concatenation to the 

last expansion path  through the long connection.  

The study could not exceed 3 U-Net especially with image size 256*256 or more 

because of the significant number of parameters and the limitations of the computational 

resources.  

4.1.3.6 Recommendations for bridge and skip connections 

 

Based on the analysis of the results, the following recommendation would be useful for 

designing the U-Net based model for liver segmentation. 

 When using only 2Bridged U-Net, avoid using the original connections. The 

compound connections model is the first recommended model and the modified 

connections come in the second place.  

 The 2U-Net bridge model with compound connections is the best when using the 

recommended structure of 5 levels start with 64 filters and end with 1024 filters at 

the deepest level for image size 256*256. 
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 3U-Net models with/without long connections are recommended over 2U-Net with 

original or modified connections. 

 When using 3U-Net based models, it is recommended to use compound connections 

between 1st and 2nd U-Nets or modified connections will be the second 

recommended. 

  When using 3U-Net based models, it is recommended to use compound or modified 

connections between 2nd  and 3rd  U-Nets, but better to use original connections 

between 2nd and 3rd U-Net in case long connection between 1st and 3rd U-Nets will be 

used. 

 In case of using 3U-Net with long connections, the Compound_Original_Long model 

is the most recommended. 

 In case of using 3U-Net without long connections, the Compound_Compound model 

is the most recommended then Original_Modified model in the second place. 

 Using long connection between 1st and 3rd U-Net is not recommended when using 

3U-Net model while the connection between the 1st and 2nd U-Net is the same as the 

2nd and 3rd U-Net e.g. Original_Original 

 With 3U-Net models using Compound connection at the beginning (Between 1st and 

2nd U-Net) or at the end (between 2nd and 3rd U-Net), it is recommended to use long 

bridge connection between 2st and 3rd U-Net. 

According to the previous recommendations and the results, the most 

recommended model is (Compound_Original_Long) then 2U-Net with compound 

connections, and Compound_Compound and Original_modified ranked at the 3rd 

and 4th place.  
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4.2 Loss functions to solve the flipping issues 
Based on all the previous recommendations, the recommended model that will be 

used in this section is 2U-Net with compound connections. The model consists of 2U-Net 

stacked with 32 filters applied at the first level and 512 filters applied at the deepest 5th 

level (32-512) using 256*256 image size. The model used the compound bridge connection 

to connect the 2 U-Nets. The detailed structure of the model explained in a previous section. 

(3.4.2 3.4.2 Bridge-Net) 

This section will explain the results of the experiments conducted to solve the new 

examined flipping issue. Using augmented data based on rotation and flipping techniques 

increased the number of available samples that needed to train the models, while the 

results of testing showed that, the liver detected in both sides of the image at the same 

time for significant number of testing samples. Two groups of new loss functions introduced 

to solve the issue. The first group implemented a new Centroid distance between the plops 

and the second function and integrated it with Dice Similarity coefficient function. The 

second group based on Deep-supervision approach with integrated DSC and Centroid 

functions. 

4.2.1 Regression Loss functions 
In this section, two loss functions (DSC, Centroid) are implemented and integrated in 

order to solve the flipping issue. 

4.2.1.1 Dice Similarity Coefficient (DSC)   
The main loss function in the model is Dice Similarity Coefficient (DSC) that measure 

the percentage of difference between the predicted mask and the ground truth in terms of 

the absolute values of the intersection between the prediction and ground truth over the 

summation. 

DSC = 
   |     |

|  |   |  |
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Model Filters Training % Validation% Test Aug - Test 

Original 32-512 97.55% 70.65% 73.21% 60.31% 
Modified 32-512 97.85% 67.02% 79.12% 60.10% 
Compound 32-512 97.52% 90.11% 89.88% 94.42% 

Original 64-1024 97.38% 87.75% 79.89% 75.34% 
Modified 64-1024 98.12% 92.50% 81.37% 83.68% 
Compound 64-1024 98.12% 91.13% 83.03% 78.36% 
Table 4-38 Training, Validation, Testing (Test_Avg) and testing using augmented data (Test_Avg_Aug) accuracies for all 2U-
Net models with Dice Similarity coefficient (DSC) loss function 

The flipping issue appeared with all models U-Net, 2U-Net with Original and Modified 

connections. Although the Compound model enhanced the overall testing accuracy for the 

model from 60.31% to 94.42% using DSC loss function and the issue is partially decreased, 

the issue still exists and need extra enhancement Table 4-38 Figure 4-76. 

The compound W-Net model recorded significant enhancement toward solving the 

flipping issue because the additional bridging connections from each level of the first U-Net 

to the second U-Net concatenated the out features maps from the contraction path of the 

first U-Net with inputs of the expansion path of the second U-Net which leads to minimize 

the features that might be lost during the convolutions and pooling operations on the 

contraction paths. Figure 4-76. 
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Figure 4-76 The results for U-Net, Bridge U-Net and 2U-Nets with Compound connection. Compound model have the best 
performance for (P20) and enhanced the flipping issue for P5 

 

4.2.1.2 Weighted sum of DSC and Centroid functions 
The Centroid distance loss function calculates the distance between the center of mass 

of each plop and working to minimize the distance. The new function calculates the total 

loss as the sum of both DSC and Centroid distance with different weights for each function.  

The experiment repeated 9 times to find the best weights combination for each function.  

All the weights where DSC is less than Centroid recorded almost the same low accuracy 

for all factors including 14.8%, 18.23% for test_Avg and Test_Avg_Aug respectively.  

Patient 20 (P20) recorded higher accuracy than Patient 5 (P5). In general the constant 

weights ratio of (3: 1) for (DSC: Centroid) recorded the highest accuracy with 88.20%, 

87.58%, 90.23%, 87.89% for (P5, P20, P20_Aug, Average (Test)) respectively. While (2:1) 

is better for validation, p5_Aug, Average (Aug_Test) Table 4-39. The Dice: Centroid weights 

with (3:1) recorded the best accuracy for 4 of 6 factors and followed by second and third 

best accuracy for (5:1) and (2:1) in sequence.  
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Although using Dice:Centroid percentage with (3:1) enhanced the output mask for the 

flipping issue with number of slices e.g. (100, 104, 106) and solved the issue for significant 

number of images e.g.(121, 125, 128), the issue still exists. While 5:1 for the Dice:Centroid 

ratio enhanced the issue more than 3:1 for number of samples e.g. (100, 104, 106), the 

ratio 3:1  recorded much better performance for other samples e.g. (121, 125, 128). Using 

weighted loss function for DSC and Centroid distance enhanced the output to solve the issue 

and the output mask is significantly improved. Figure 4-77 

The results indicated that, the DSC function should have higher weight over the 

centroid function because it works to increase the intersection between the prediction and 

the ground truth for all samples while the centroid function mainly activated when the 

predicted output contains more than on plop. If the predicted output contains only one plop, 

the distance between the center points will evaluated to zero as x1 = x2 and y1 = y2 and 

the total loss will equal to the DSC only. 

Dist = (√(     )
  (     )

 )       

                        

 

Where (x1, y1) and (x2, y2) are the x and y coordinates of the centroid points of blob 1 and 

blob 2 respectively.  L  is the total loss, DSC is Dice Similarity Coefficient; Dist. is the 

distance between centroid points of the blobs, β1 and β2 are constant weights for DSC and 

Dist respectively.  
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Weights 
(DSC-
Centroid) 

P5 P20 P5_Aug P20_Aug Training  Validation Test_Avg Test 
_Avg 
_Aug 

1--2 1.41% 28.19% 28.19% 14.56% 0.01% 0.01% 14.80% 21.38% 
1--3 1.41% 28.19% 21.90% 14.56% 0.00% 0.00% 14.80% 18.23% 
1--4 1.41% 28.19% 21.90% 14.56% 0.00% 0.00% 14.80% 18.23% 
1--5 1.41% 28.19% 21.90% 14.56% 0.00% 0.00% 14.80% 18.23% 

1--1 83.10% 93.39% 54.37% 85.99% 97.21% 74.14% 88.25% 70.18% 

2--1 83.56% 84.02% 87.32% 71.42% 97.54% 80.38% 83.79% 79.37% 

3--1 88.20% 87.58% 66.89% 90.23% 97.54% 70.99% 87.89% 78.56% 
4--1 74.52% 70.26% 84.47% 66.98% 97.52% 76.18% 72.39% 75.72% 
5--1 82.15% 86.09% 59.50% 74.05% 97.53% 85.24% 84.12% 66.77% 

Table 4-39 Different weights for DSC and Centroid distance function showed the best ratio is (DSC:Centroid) is (3:1), then 2:1 
then 5:1 
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Figure 4-77 Using (DSC : Centroid) weights with 5:1recorded accuracy better than 3:1 for the first half of samples while for 
the second half the accuracy decreased even worse than using DSC loss function 

 

4.2.2 Deep- supervision with different loss functions 
Deep- supervision approach is based on applying loss function on deeper levels of the 

model not only at the last level to add more constraints to the learning process. Two 

different types of deep-supervision introduced to enhance the model performance with the 

flipping issue. The first approach used the ground truth masks with its original resolution 

256*256 with DSC loss function while the second approach used different resolution masks 

according to the supervision level. 
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4.2.2.1 Deep supervision with De-Convolution using DSC loss function 

 

In this approach, a single scale mask with the original resolution 256*256 will be used 

within the DSC loss function. Because the size of the feature maps is increased by 50% 

from the deeper level to the higher level until reach the original size at the topmost level, a 

number of De-Convolutional processes applied to the output feature maps from each level 

to increase the size to the original mask size. The number of De-Convolutional process 

applied at each level depends on the size of the feature maps at this level  e.g. at level1 ( 

The deepest level of U-Net with 32-512 filter and image size 256*256) feature maps size 

after applying the original concatenation and up-sampling of the U-Net will be 32*32, then 

three De-Convolution processes will be applied to increase the feature maps size to reach 

the original image size (32*32  64*64) , (64*64  128*128), (128*128  256*256) . 

The number of De-Convolutional process needed to resize the feature maps to the original 

size will be decreased with the higher levels of U-Net. The loss function will be calculated at 

each level of the 4 levels of the expansion path of second U-Net. The total loss is calculated 

as the weighted sum of all 4 loss functions.  

Loss = ∑   
  
    

 

   
 

Where n is the number of levels in the model, w is the constant weight for each loss function, L is the 

loss at level i. 

The best accuracy recorded for the weights combination (10:2:2:10) for all 4 outputs 

of the U-Net levels where the output organized from deeper to final level ( L1, L2, L3, L4) 

L4 represent the final output at the topmost level of the 2nd U-Net. Figure 4-79  Test_Avg is 

the average for all samples in P5 and P20 where patient number 5 (P5) contains most of the 

images with the flipping issue. Table 4-40 
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The deep-suppression approach with De-convolutional process showed accuracy 

higher than the Compound model with DSC and higher than the model using DSC and 

Centroid distance loss functions (3:1) because it added loss functions (DSC) on each deeper 

level of the model to the total loss. The flipping issue minimized for most of the images 

although the issue appeared in some images that solved using Centroid function e.g. (128, 

130) because the deep-supervision implemented only DSC as a loss function. Figure 4-78 

we assume that, integrating Centroid loss with DSC loss within the deep-supervision will 

enhance the model accuracy and minimize the flipping. 

Weights of 4 outputs P5 P20 Training  Validation Test_Avg 

OUT_1-1-1-1 73.69% 93.45% 97.29% 87.81% 83.57% 
OUT_1-2-3-10 78.15% 96.89% 96.79% 90.32% 87.52% 
OUT_10-2-2-10 80.37% 95.99% 97.34% 89.33% 88.18% 
Table 4-40 Deep-Supervision approach using De-Convolutional layers with DSC loss function showed that the best 
performance recorded for the weight combination (10:2:2:10 for the four outputs of the model. 
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Figure 4-78 Deep-Supervision using De-Convolutional layers with DSC loss function achieved accuracy better than the 
Compound model, and better than the centroid function with 3:1 ratio for the first half of samples for (P5) but the Centroid 
function is better for the second half of the samples. 



241 
 

 

Figure 4-79 sample output for Compound model with Deep-Supervision approach using De-Convolutional layers and loss 
function is sum of weighted loss of the four outputs using DSC function. Predicted mask at left, mapped ground truth (green) 
and predicted mask (Red) at right 

 

4.2.2.2 Deep supervision with multi-resolution mask using DSC loss function 

 

 The second approach of Deep-Supervision used multiple resolution versions of the 

same mask and feed it to the loss functions at different levels with the respective mask 

version the De-Convolutional process is NOT needed anymore. In the experiment with 

256*256 image size and 2U-Net with filters applied 32-512, the four levels of 2-Unet ( L1, 

L2, L3, L4) will use a different mask resolution (32*32, 64*64, 128*128, 256*256) 

respectively.  The maximum accuracy for Testing is recorded with the weights combination 

(10:2:2:10) for loss function (L1, L2, L3, L4) respectively while the total loss is the sum of 

weighed loss. 

Similar to the results of Deep-Supervision with De-Convolutional processes, The 

Deep-Supervision using Multi-Resolution masks recorded the best accuracy for weights 

combinations (10:2:2:10) for the four outputs Table 4-41. The model with weights ration 

(10:2:2:10) recorded the highest accuracy for Training, Testing for P5 and P20 (90.04% for 
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testing) while the best validation recorded with model with output weights (1:1:3:5) 

Figure 4-81.  

Deep-supervision with Multi-resolution masks model showed significant improvement 

on the model accuracy over all the previous approaches (Compound with DSC, compound 

with DSC and Centroid, and compound with Deep-Supervision using De-convolutions using 

DSC) although the flipping issue is not solved completely. Using multi-resolution masks 

instead of applying multiple de-convolution processes to increase the size of the feature 

maps to be equal to the original mask enhanced the accuracy and decreased the flipping as 

showed in images (40, 104, 105, 128) in Figure 4-80. The results indicated that, there 

might be some lost features due to applying multiple de-convolutional processes on the 

feature-maps at each level when using deep-supervision with de-convolution approach. 

Weights of 4 outputs P5 P20 Training % Validation% Test_Avg 

OUT_1-1-1-1 78.06% 94.07% 97.47% 63.19% 86.07% 
OUT_1-2-3-10 76.99% 91.62% 97.27% 77.12% 84.31% 
OUT_10-2-2-10 83.82% 96.27% 97.40% 82.93% 90.04% 
OUT_7_1_1_1 82.56% 95.06% 97.11% 87.53% 88.81% 
OUT_1_1_1_7 80.31% 95.08% 97.32% 86.60% 87.69% 
OUT_1_1_3_5 81.38% 95.12% 97.36% 89.12% 88.25% 
OUT_4_1_1_4 76.75% 94.73% 97.22% 86.30% 85.74% 

Table 4-41 Deep-Supervision using Multi-Resolution masks showed the best accuracy recorded for the output weights 
(10:2:2:10) 

              



243 
 

 

Figure 4-80 Deep-Supervision using Multi-Resolution masks with output weights (10:2:2:10) using the loss function DSC 
recorded the best output over Deep-Supervision using De-Convolutional layers, and better than compound model with 
Centroid function with weight (3:1) in the first half while the accuracy become lower during the second half of the samples. 
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Figure 4-81 Example for Deep-Supervision using Multi-Resolution masks. Predicted mask (Left), mapping the predicted mask 
(red) and Ground truth (Green) on the original image 

 

4.2.2.3 Deep supervision with De-Convolution using DSC and Centroid loss functions  
This approach used a hybrid approach using Deep-Supervision with De-Convolutional 

approach and the loss function is the weighted loss of DSC and Centroid with weight ratio 

(3:1). Using the weighted loss function of DSC and Centroid with weighted ratio (3:1) 

achieved the best accuracy over the other ratios of (2:1 and 5:1) Table 4-42. The model used 

the weights ratio between the 4 outputs of the model that recorded the best accuracy 

(10:2:2:10) with values (0.4166, 0.0833, 0.0833, 0.4166).  

The model with DSC:Centroid Ratio equal (3:1) recorded accuracy 89.14% that is 

higher than the model used only Centroid function and higher than the model used Deep-

supervision with DSC where the accuracies were (88.18% and 87.89%) respectively while 

the model with ratio (2:1) ranked in the 2nd place with accuracy (88.34%) Table 4-42. 

Although the model enhanced the output mask for significant number of images over e.g. 

(40, 50, 95, 100, 104, 105, 106, 132) while the out mask was worse than the other models 

for small number of images e.g. (121,125,128).Figure 4-82 
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The result of applying deep-supervision using de-convolution and weighted loss 

function of DSC and centroid proved that combining the indicators from section 4.2.1.2 and 

section 4.2.2.1 will increase the accuracy and enhance the solution of the flipping issue, 

where the first indicator from section 4.2.1.2 stated that, combining DSC and Centroid loss 

functions in one weighted loss function with weighted ratio (3:1) for DSC and Centroid 

enhanced the model performance rather than using only one loss function while section  

4.2.2.1 illustrated that, integrating deep-supervision approach with the model increased the 

model accuracy more than the compound model. The best DSC:Centroid functions ration is 

3:1 the 5:1 based on the empirical experiments, the same with the ratio between the four 

outputs of the deep-supervision within the total loss where 10:2:2:10 is the best empirical 

results which gives more weight to the loss at the deepest and highest level in the model. 

Weights of 4 outputs P5 P20 Training % Validation% Test 

OUT-10-2-2-10 83.71% 83.71% 97.35% 78.35% 83.71% 

(3—1) 78.38% 96.51% 97.24% 92.06% 87.44% 

 78.72% 94.40% 97.31% 91.79% 86.56% 

 81.40% 96.88% 97.25% 91.66% 89.14% 

Average (3--1) 80.55% 92.87% 97.30% 87.40% 86.71% 

5—1 79.21% 91.58% 97.29% 81.68% 85.40% 

2—1 81.12% 95.55% 97.32% 91.10% 88.34% 

Table 4-42 Deep-Supervision with De-Convolutional layers using weighted outputs (10:2:2:10) using weighted loss function 
for (DSC:Centroid) equal (3:1) , Highest accuracy (Green) lowest accuracy (Red) within each group         
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Figure 4-82 Deep-Supervision with De-Convolutional layers using weighted outputs (10:2:2:10) using weighted loss function 
for (DSC: Centroid) equal (3:1). The model recorded the best accuracy for the first half samples over all the previous loss 
functions while for the second half it recorded the worst accuracy over all the previous proposed loss functions 

 

4.2.2.4 Deep supervision with multi-resolution mask using DSC and Centroid loss 

functions 
This approach used a hybrid approach based on Deep-Supervision with Multi-

Resolution masks approach with weighted loss function of DSC and Centroid with weighted 
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ratio in (2:1, 3:1, 5:1). The model used the weights ratio between the four outputs of the 

model that recorded the best accuracy (10:2:2:10) with values (0.4166, 0.0833, 0.0833, 

0.4166).  

The model with DSC:Centroid ratio equal (3:1) recorded accuracy 88.05% that is 

lower than the compound model used Centroid function and lower than the model used 

Deep-supervision with multi-Resolution and DSC loss function where the accuracies were 

(88.18% and 90.04%) respectively but higher than using for DSC:Centroid ratio (2:1 or 

5:1) Table 4-43.  

When the model used only DSC as the loss function, it recorded output better than 

the models (Compound, and compound with Centroid function) for most of the samples 

except for samples (121, 125, and 128) where the centroid model was better. Replacing the 

DSC loss function for the Deep-Supervision with Multi-Resolution masks by the weighted 

loss function of DSC and Centroid with weights ratio (3:1 and 2:1) decreased the accuracy 

of the model while using DSC:Centroid ration of (5:1) recorded almost the same accuracy 

as the same model with only DSC. The results indicated that the DSC:centroid ratio should 

be higher equal or higher than 5:1 in order to get better accuracy than the model using only 

DSC which is comply with the same indicator from sections 4.2.1.24.2.2.2and 4.2.2.2.  The 

model shows output masks almost the same the models used Deep-Supervision with De-

convolutional (using DSC, using DCS + Centroid). Figure 4-83 

Weights (DSC-Centroid) P5 P20 Training % Validation% Test 

OUT-10-2-2-10 78.17% 95.02% 97.29% 88.78% 86.60% 

(3—1) 81.02% 95.07% 97.34% 70.93% 88.05% 

 75.16% 96.10% 97.29% 89.97% 85.63% 

Average(3—1) 78.11% 95.40% 97.31% 83.23% 86.76% 

5--1 80.99% 95.10% 97.34% 75.65% 88.04% 

2--1 81.96% 93.51% 97.35% 62.73% 87.73% 
Table 4-43 Deep-Supervision using Multi-Resolution masks with weighted outputs (10:2:2:10) and loss function is weighted 
loss for (DSC:Centroid) functions with weights (3:1), Highest accuracy (Green) 
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Figure 4-83 All models using Deep-Supervision with de-convolution and Multi-Resolution masks with weighted outputs (10:2:2:10) and loss functions are DSC and  weighted loss for 
(DSC:Centroid) functions with weights (3:1), (2:1) and (5:1)
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4.2.3 Results Summary 
 

Using DSC and Centroid function with weights (3:1) solved the flipping issue for 50% 

of the samples that contains the issue and enhanced the remaining 50% of the samples ~ 

20% than the compound model. 

Using Deep-Supervision with de-convolution approach using DSC as a loss function 

enhanced the output of the first half of the samples than using Centroid but the last half of 

the samples that solved by Centroid started to get 10% of flipping issue to appear again. 

While replacing the DSC function with the combined DSC and Centroid loss functions with 

3:1 weight to the deep-supervision model enhance the overall output masks over Centroid 

alone and DSC with deep-Supervision using de-convolution, the flipping issue still exists 

with a very small size in a small number of samples. The weighted loss for (DSC:Centroid ) 

equal to (3:1) recorded the best accuracy over the other two ratios (2:1 and 

5:1).Table 4-44  

The model based on Deep-Supervision with Multi-Resolution masks using DSC as a 

loss function recorded significant improving in the output masks where the size of the 

duplicate plops got smaller than all the previous models. Although the model started to 

detect the liver at slice number 34 while the ground truth detected it at slice 19, it is 

considered as the best performance of all models where it detected the liver starting from 

slices number 40 and 50.  Replacing the DSC loss function with the weighted DSC and 

Centroid loss function with weights (3:1 or 2:1 or 5:1) decreased the overall accuracy of the 

model. Using weighted DSC and Centroid loss function showed the flipping issue again for 

the last half of the slices with larger size than the models (Bridge with Centroid, Deep-

supervision with De-convolution and DSC, Deep-supervision with De-convolution and 

Centroid, Deep-supervision with Multi-Resolution and DSC). For the first half of slices, Deep-

Supervision with Multi-Resolution masks using DSC and Centroid (3:1) loss function almost 



252 
 

has similar accuracy as Deep-Supervision with De-Convolutional model but lower than the 

models (Deep-Supervision with Multi-Resolution masks using DSC, and , Deep-Supervision 

with De-Convolution using DSC and Centroid) in sequence. Table 4-44 

Model Outputs 
ratio 

DSC:Centroid 
ratio P5 P20 Training  Validation Test_Avg 

Compound N/A N/A 85.98% 93.79% 97.52% 90.11% 89.88% 

Centroid N/A 3:1 88.20% 87.58% 97.45% 70.99% 87.89% 

Deep-Supervision 
with De-Convolution 

10:2:2:10 N/A 

80.37% 95.99% 97.34% 89.33% 88.18% 

Deep-Supervision 
with De-Convolution  

10:2:2:10 3:1 
81.40% 96.88% 97.25% 91.66% 89.14% 

Deep-Supervision 
with De-Convolution 

10:2:2:10 2:1 
81.12% 95.55% 97.32% 91.10% 88.34% 

Deep-Supervision 
with De-Convolution 

10:2:2:10 5:1 
79.21% 91.58% 97.29% 81.68% 85.40% 

Deep-Supervision 
with Muti-
Resolution  

10:2:2:10 N/A 

83.82% 96.27% 97.40% 82.93% 90.04% 

Deep-Supervision 
with Muti-
Resolution  

10:2:2:10 3:1 

81.02% 95.07% 97.34% 70.93% 88.05% 

Deep-Supervision 
with Muti-
Resolution  

10:2:2:10 2:1 

81.96% 93.51% 97.35% 62.73% 87.73% 

Deep-Supervision 
with Muti-
Resolution  

10:2:2:10 5:1 

80.99% 95.10% 97.34% 75.65% 88.04% 
Table 4-44 The accuracy for all loss functions used to solve the flipping issue with different approachs and multiple ouput 
weights and DSC:Centroid weights, highest accuracy (Green)  

 

4.2.4 Qualitative analysis for flipping issue’s proposed solutions 
 

This section covers the qualitative metric that had been used to rank the proposed solutions 

for the flipping issue. The approach based on the comparison between the segmentation 

output mask from each model for the same image. The study compares the output of 13 

models over 139 images that belong to the patient number 5 (P5) where most of the 

flipping issue exists. 
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Evaluations steps: 

1- List the models‘ names in a tabular style 

2- List the output masks from all models for on image together with the ground truth 

for comparison.  

3- Figure 4-84 

4- Rank the models based on the existence and size of the flipping issue ( 113) 

5- Multiply the rank by fixed weight for each rank. Figure 4-85 

6- Calculate the summation of the total weight over all images for each model. 

7- Ranking the models based on the total weights. Figure 4-86 

Results: 

 Deep-Supervision with multi-resolution masks with weighted loss function 

Dice:Centroid ratio 5:1 share the first rank with Deep-Supervision with de-

convolution masks with weighted loss function Dice:Centroid ratio 3:1 

 Deep-Supervision with de-convolution masks with DSC loss function achieved the 3rd  

rank 

 Deep-Supervision with de-convolution masks with weighted loss function 

Dice:Centroid ratio 5:1 came in the 4th place 

 Deep-Supervision with multi-resolution masks with DSC loss function  achieved the 

5th place 

 The model with weighted loss function Dice:Centroid ratio 5:1 came in the 6th place 

And the full list in Figure 4-86 and A full datasheet and ranking for all models over the 

images in details in section 6.5 
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Figure 4-84  Example of models' output comparison 

 

 

Figure 4-85 Calculating the weights and total weights for each model over all the images 

 

 

Figure 4-86 calculating the final ranking for the models based on the total weights 
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4.2.5 Discussion for flipping issue 
 

The results of the proposed approaches to solve the flipping issue highlighted the 

following key findings. 1- The proposed model of 2 U-Net with compound bridged 

connections suffers from the flipping issue with low percentage than U-Net or original 

bridged U-Net. 2- Using the weighted loss function of DSC and Centroid loss function 

enhanced the models performance, even if the weights ratio is empirical. 3- Integrating the 

deep-supervision approaches with the Compound connection model significantly helps to 

minimize the flipping issue. 4- Integrating the weighted loss function with the deep-

supervision approaches with the compound model achieved a significant improvement on 

the model performance to solve the flipping issue. 5- The weights for the loss functions and 

the weights for the different outputs of the deep-supervision need more investigation to find 

a standard formula. 

The study highlights the correlation between the performance and the weights of the 

loss functions where the DSC loss function should have equal or higher weight than the 

Centroid function because DSC is working over all the image pixels to minimize the 

difference in predictions where the centroid only work when there is more than one 

predicted blob to minimize the distance between the centers of mass.  

The compound model has 5 levels of convolutional processes that lead to have 4 sub-

outputs when integrate the deep-supervision approach. The total output loss is the weighted 

sum of the outputs. The empirical study emphasize that the first and last output should be 

at least 3 times weight of the middle ones because the last output work over the final up-

sampled features which is the final predictions and increase its weight will add more 

constrained to minimize the loss and the same for the first output at the deepest level 

where it works on the smallest size of the feature-maps before any propagated loss. 



256 
 

The results in line with the hypotheses mentioned in the methodology section where 

assumed that, the centroid function as a new novel contribution with the deep-supervision 

will enhance the model accuracy. The results came in line with the previous studies of 

implementing deep-supervision with de-convolution where it enhances the models 

performance[115] [223] [216] [150]. 

The literature shows some studies implementing deep-supervision with de-convolutional 

and some other studies used weighted loss functions but or study proposed a novel 

approach where it integrate a newly introduced Centroid loss function and newly modified 

deep-supervision approach with multi-resolution masks together with Dice Similarity 

coefficient (DSC ) loss function. The approach integrates the deep-supervision with the 

weighted loss functions to the novel Compound 2U-Nets model.  

The solution achieved high liver segmentation accuracy with minimized effect of flipping 

due to augmentation techniques while the computation cost is equal to the normal 2 

stacked U-Net even with shorter training time compared to the large training dataset. 

The study could not formulate the ratio of the weights between the loss function and 

the multiple outputs of the deep-supervision but only used fixed weights based on the 

empirical experiments. Formulation of the weights would be an important part of the future 

study. 

 

4.2.6 Flipping issue recommendations 
 

 To decrease the flipping issue effect, it is highly recommended to use one of the 

deep- supervision approaches. 

 Two recommended model can solve the flipping issue with almost 93%. The first 

model is 2Bridged U-Net with deep-supervision based on multi-resolution masks 
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using weighted loss function combined DSC and Centroid loss with ratio (5:1) and 

the weighted loss for the 4 output of the deep supervision is (10:2:2:10). 

  The second recommended model based on deep supervision using de-convolution 

and weighted loss ratio for DSC and Centroid is (3:1). 

 The 3rd recommended model is the same as the first recommended model except 

that it used DSC alone as the loss function. 

 The last recommended model is the same as the first model except that it use 

DSC:Centroid ratio equal (3:1). 

 For the images where the liver size is very small, the 2U-Net with compound bridge 

connection using withed loss function combined DSC and centroid by ratio (3:1) has 

the same recommendation as the first with deep-supervision based on multi-

resolution masks and weighed loss function (3:1) for DSC and centroid.  
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4.3 Segmentation results validation by Institut Kanser Negara 

(IKN)  
 

The research for liver segmentation that included within the thesis is part of a 

collaboration project between University of Nottingham, Monash University and (IKN). IKN 

provided data samples of CT scans for 15 patients with total number of 26,948 DICOM 

image. The images can‘t be used for model training because it didn‘t contain any annotated 

masks for the liver. Our proposed model for liver segmentation trained and tested using the 

public dataset (3Dircadb1). In order to verify our model accuracy, the trained model tested 

using IKN dataset which is completely different dataset in terms of the source scanning 

machine and setting with different image intensity range and resolution and some images 

are scanned during the treatment procedure which make it not suitable for testing because 

the metal needles inside the image caused a lot of noise, distortion, very light spots (high 

intensity needle) and very dark region around the needle. Figure 4-87 

 

  

Figure 4-87 Examples of IKN dataset, images with treatment needle appeared as a light beam in addition to black line (left 
top and left bottom), patient lies down on the left side (right) 
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4.3.1 Validation guidelines and criteria 
 

The tested samples had been sent to IKN with a suggested validation criteria.  Only 

patients (CTY02, CTY03, CTY05, CTY06, CTY07) had been tested, Some images are 

excluded because it doesn‘t contain liver, or it is very dark, or it is scanned during the 

treatment procedure. The total tested samples are 1549 image. Three types of images 

are supplied as in Figure 4-88 , original image (right), generated liver mask (middle), 

mask mapped on the original image in red (left). 

 

Validation criteria: 

 The accuracy of the model could be the accumulation of the accuracy of all slides of 

the same patient, and then accumulated over all patients. 

 Ideally, the accuracy of liver segmentation of a particular slide is the ratio of the 

overlapping area between the detected liver region and the real liver region, to the 

area of real liver region. This would require a domain expert to delineate the true 

liver region slide by slide. 

 However, if step-2 is not viable at this stage, a comprised choice is to determine the 

accuracy per slide based on a range rather than a specific value. For example, the 

accuracy could be as follow: 

o between 0% to 20% 

o from 21% to 40% 

o from 41% to 60% 

o from 61% to 75% 

o more than 75% 
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Figure 4-88  Example of tested data for IKN validation, original image (right), generated liver mask (middle), mask mapped on 
the original image in red (left). 

 

4.3.2 IKN Validation results 
 

The results based on IKN verifications show that, 95.93% of the images recorded more than 

75% accuracy while 2.969% with accuracy between 61 and 75% and only 17 images (~1%) 

recorded accuracy less than 60% Table 4-45. The results indicated that, the model succeeded 

to segment the liver for most of the images with high accuracy although the model was 

trained on different dataset. The proposed model for compound connections between two U-

Nets with deep-supervision and weighted loss function can be used for transfer learning 

between different datasets. According to the validation results, the accuracy could be more 

90% for significant number of images but it will be time consuming for the clinical experts 
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from IKN to carry out this fine detailed validation or generating a manual annotated mask 

for the dataset.  

Patient CTY02 CTY06 CTY07 CTY03 CTY05 Total Images % 

Accuracy More than 75% 564 8 233 292 389 1486 95.9329% 

Accuracy From 61 to 75% 16 0 21 1 8 46 2.9697% 

Accuracy From 41 to 60% 3 0 0 6 2 11 0.7101% 

Accuracy From 21 to 40% 0 0 0 2 2 4 0.2582% 

Accuracy From 0 to 20% 0 0 0 1 1 2 0.1291% 

        

Total images 583 8 254 302 402 1549  
Table 4-45 statistical results based on IKN validation 
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5 Chapter 5: Conclusions and Future work 
 

Deeper models 

The To-Down and Bottom-up approaches are alternatives to each other‘s as they 

represent the same U-Net based models with different approach of sorting and grouping. In 

90% of the models, going deeper with the models inhanced the accuracy until certain levels 

then the accuracy will start to decrease.  Over all maximum values for Validation, Test_Avg, 

Test_Avg_Aug factors recorded for models (32-512, 8-512, 64-2048) with values (98.00%, 

78.56%, 80.39%) while the maximum accuracy for Training is (97.81%) that achieved 

using 2 models (64-204, 128-1024). The model (64-2048) recorded the maximum accuracy 

for 2 of 4 factors (Training, Test_Avg_Aug). The maximum accuracy for all 4 factors 

(Training, Validation, Test_Avg, Test_Avg_Aug) over all the 27 models recorded for models 

that ended with number of filters at the deepest level are one of three values( 512, 1024, 

2048) and the topmost levels started with number of filters (8,16, 32, 64). From 24 

maximum values achieved for 4 factors, the recommended model depth could be (4, 5, 6, 

and 7) levels with minimum image size at the deepest level are (32*32, 16*16, 8*8, 4*4). 

Wider Models 

When using image size 256*256 with U-Net model, the deepest level will apply 

convolutional process over the minimum image size 16*16 because each level has 

maxpooling layer with size 2*2 which decrease the image size by 50% after each level. The 

accuracy results showed that, stacked 2U-Nets recorded the best accuracy (77.96%, 

77.95%) for (Avg_Test, and Avg_AUG_test) over the original U-Net (58.73%, 75.93%) and 

over all other structures using 3 or 4 stacked U-Nets, While using 4 stacked U-Nets 

recorded the minimum accuracy. the results indicates that, increasing the number of 

stacked U-Net which increased the number of trainable parameters can enhance the model 

accuracy until certain values which limited to 2 stacked U-Nets with around 62millions of 
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parameters. increasing the number of U-Nets and parameters over 2 stacked will decrease 

the accuracy. Train stacked U-Net based models using image size 128*128 will decrease the 

image size at the deepest level to 8*8 which shows instability of the accuracy results 

compared with image size 256*256. The results indicate that, original U-Net achieved 

maximum accuracy for validation and testing (91.91%, 77.20%) and minimum for training, 

while 4 U-Nets recorded the maximum in training and Avg_AUG_Test (97.21%, 87.00%). 

Skip connections variations 

The two bridged U-Net model with the Compound skip connections proved 

enhancement of the model accuracy over the U-Net model and higher accuracy than 

Original and Modified skip connections. the Compound model concatenate the output 

feature maps from all previous 3 paths of the two U-Nets to the inputs of the last expansion 

path of the second U-Net before the de-convolution process. The concatenation minimizes 

the loss of features that may happen during the previous convolutions and de-convolutions 

processes.  

Adding a third U-Net and adding long connection between the 1st and 3rd U-Net 

didn’t reach the maximum accuracy recorded by the 2U-Net compound model but 

in general recorded better accuracy than Original and Modified 2U-Net for model 

of the 3U-Net based models. 

The maximum accuracy for 2U-Net models is greater than 3U-Net models except for 

Test_Avg  where 2U-Net models is lower than the maximum of 3U-Net models ( Compound  

<   Original_Modified  ) while the minimum for 3U-Net is lower than the minimums for 2U-

Net. All 3U-Net models with long connections have the same behavior as with 3U-Net 

model. The maximum accuracy recorded for 2U-Net models always greater than the 

maximum for 3U-Net models with long connections except for testing while the minimum 
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for all factors for models with long connections is lower than the minimums for 2U-Net 

models. 

Adding Long connections to the 3U-Net models slightly increased the accuracy for 5 

of 9 models for all training, validation, testing, and testing using augmented data. These 

models are Compound_Modified_Long, Modified_Compound_Long, 

Original_Compound_Long, Compound_Original_Long, and Modified_Modified_Long. The rest 

4 of 9 models showed the opposite trend, where the normal models recorded better 

performance than using long connections with all training, validation, testing, and testing  

using augmented data. These models are Original_Modified, Modified_Original, 

Compound_Compound, and Original_Original. All the models that contains Compound model 

either at the beginning or at the end showed better accuracy when using long connections 

except Compound_Compound better accuracy without using long connections. All models 

contain the same structure (original_original, Compound_Compound) recorded lower 

accuracy when using long connection except Modified_Modified which showed better 

accuracy with long connection. Original_modified or Modified_Original models showed that, 

the accuracy decreased when using long connections. 

Adding Long connections to the 3U-Net models slightly increased the overall 

maximum accuracies. The maximum accuracy for (validation, testing, and testing using 

augmented data) for models with long connections (89.68%, 93.18%, 93.29%) are 

higher than the normal models (87.27%, 91.52%, and 92.64%) , while for training the 

maximum for normal models is greater than the maximum for long connection models with 

0.01% (97.70% -- 97.69%).  

For both Test_Avg and Test_Avg_Aug factors, most of the models started with 

Compound connections recorded higher accuracy than both the models started with 

Modified and original connections. The models started with Modified connections recorded 

accuracy higher than the similar models started with Original connections. 
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For both Test_Avg and Test_Avg_Aug factors, most of the models ended with 

Compound connections recorded higher accuracy than the models ended with Original 

connections .The models ended with Modified connections recorded accuracy higher than 

the similar models ended with Original connections. While Test_Avg_Aug factor for the 

models ended with Compound connections recorded accuracy Higher than the models ended 

with Modified connections, for Test_Avg the models ended with Compound connections 

recorded accuracy lower than the models ended with Modified connections. 

The Training accuracy for all models is very close and varies from 97.85% to 

97.52%. While the Compound model achieved the maximum Test_Avg_Aug (Testing using 

augmented data) (94.42%) and maximum Validation (90.11%) and second maximum for 

Test_Avg (89.88%), Compound model also got the minimum Training accuracy (97.52%).  

 

Loss Function for flipping issue 

Using centroid function with weight (3:1) solved the flipping issue for 50% of the 

samples that contains the issue and enhanced the remaining 50% of the samples ~ 20% 

than the compound model. 

Using deep-Supervision with de-convolution approach using DSC as a loss function 

enhanced the output of the first half of the samples than using Centroid but the last half of 

the samples that solved by Centroid started to get 10% of flipping issue to appear again. 

While replacing the DSC function with the combined DSC and Centroid loss functions with 

3:1 weight to the deep-supervision model enhance the overall output masks over Centroid 

alone and DSC with deep-Supervision using de-convolution, the flipping issue still exists 

with a very small size in a small number of samples. 

The model based on Deep-Supervision with Multi-Resolution masks recorded significant 

improving in the output masks where the size of the duplicate plops got smaller than all the 
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previous models. Although the model started to detect the liver at slice number 34 while the 

ground truth detected it at slice 19, it is considered as the best performance of all models 

where it detected the liver starting from slices number 40 and 50. Replacing the DSC loss 

function with the weighted DSC and Centroid loss function with weights (3:1) decreased the 

overall accuracy of the model. Using weighted DSC and Centroid loss function showed the 

flipping issue again for the last half of the slices with larger size than the models (Bridge 

with Centroid, Deep-supervision with De-convolution and DSC, Deep-supervision with De-

convolution and Centroid, Deep-supervision with Multi-Resolution and DSC).  

Loss functions can be ordered based on the percentage of solving the flipping issue to, 

1- Deep-Supervision with Multi-Resolution masks using weighted loss function combining 

DSC and centroid with ratio (5:1). 2- Deep-Supervision with De-Convolution using weighted 

loss function for DSC and Centroid with ratio (3:1), 3- Deep-Supervision with De-

Convolution using DSC loss function, 4- Deep-Supervision with Multi-Resolution masks using 

weighted loss function of DSC and centroid with ratio (3:1). 5- W-Net with compound 

bridged connection using weighted loss function DSC and Centroid (3:1). 
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Future work 

There are some topics I could not explore and I wish I have the chance to make research 

related to it. 

 Applying image pre-processing on the training data to enhance the model 

performance for segmentation. 

 Build a model the catch the advantages from both deeper and wider model in a 

new ensemble models. 

 Extend the compound model connections to catch all the missing features during 

all the convolutional layers on the previous U-Net paths to enhance the 

segmentation accuracy. 

 Design a theoretical formula for the weighted loss functions ratio and the 

weighted multiple output of the deep-supervision. 

 Apply my new model (compound bridged 2 U-Net) for other organs e.g. kidney, 

tumors and mandible, I started that but the result is not good enough yet. 

 Designing a model that can segment multiple organs at the same time with high 

speed performance and hopefully it can be instantly using a visual technology like 

hologram.   
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6 Appendices 

6.1 The implemented U-Net model 
 

def  get_model(optimizer, loss_metric, metrics, lr=1e-4):  

    Inputs = Input ((IMG_WIDTH, IMG_HEIGHT, IMG_CHANNELS))   

################################################# 

    conv1 = Conv2D (64, (3, 3), activation='relu', padding='same') (inputs)   

    conv1 = Conv2D (64, (3, 3), activation='relu', padding='same') (conv1) 

    pool1 = MaxPooling2D (pool_size= (2, 2))(conv1) 

    drop1 = Dropout (0.5) (pool1) 

    ################################################# 

    conv2 = Conv2D (128, (3, 3), activation='relu', padding='same') (drop1) 

    conv2 = Conv2D (128, (3, 3), activation='relu', padding='same') (conv2) 

    pool2 = MaxPooling2D (pool_size= (2, 2))(conv2) 

    drop2 = Dropout (0.5) (pool2) 

################################################# 

    conv3 = Conv2D (256, (3, 3), activation='relu', padding='same') (drop2) 

    conv3 = Conv2D (256, (3, 3), activation='relu', padding='same') (conv3) 

    pool3 = MaxPooling2D (pool_size= (2, 2))(conv3) 

    drop3 = Dropout (0.5) (pool3) 

    ################################################# 

    conv4 = Conv2D (512, (3, 3), activation='relu', padding='same') (drop3) 

    conv4 = Conv2D (512, (3, 3), activation='relu', padding='same') (conv4) 

    pool4 = MaxPooling2D (pool_size= (2, 2)) (conv4) 

    drop4 = Dropout (0.5) (pool4) 

    ################################################# 

    conv5 = Conv2D (1024, (3, 3), activation='relu', padding='same') (drop4) 
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    conv5 = Conv2D (1024, (3, 3), activation='relu', padding='same') (conv5) 

################################################# 

    up6 = concatenate ([Conv2DTranspose (512, (2, 2), strides= (2, 2), padding='same') 

(conv5), conv4], axis=3) 

    conv6 = Conv2D (512, (3, 3), activation='relu', padding='same')(up6) 

    conv6 = Conv2D (512, (3, 3), activation='relu', padding='same')(conv6) 

    conv6 = Dropout (rate=0.4) (conv6) 

################################################# 

    up7 = concatenate ([Conv2DTranspose (256, (2, 2), strides=(2, 2), padding='same') 

(conv6), conv3], axis=3) 

    conv7 = Conv2D (256, (3, 3), activation='relu', padding='same') (up7) 

    conv7 = Conv2D (256, (3, 3), activation='relu', padding='same') (conv7) 

    conv7 = Dropout (rate=0.4) (conv7) 

    ################################################# 

    up8 = concatenate ([Conv2DTranspose (128, (2, 2), strides= (2, 2), padding='same') 

(conv7), conv2], axis=3) 

    conv8 = Conv2D (128, (3, 3), activation='relu', padding='same') (up8) 

    conv8 = Conv2D (128, (3, 3), activation='relu', padding='same') (conv8) 

    conv8 = Dropout (rate=0.4) (conv8)     

################################################# 

    up9 = concatenate ([Conv2DTranspose (64, (2, 2), strides= (2, 2), padding='same') 

(conv8), conv1], axis=3) 

    conv9 = Conv2D (64, (3, 3), activation='relu', padding='same') (up9) 

    conv9 = Conv2D (64, (3, 3), activation='relu', padding='same') (conv9) 

    conv9 = Dropout (rate=0.4) (conv9) 

    conv10 = Conv2D (1, (1, 1), activation='sigmoid')(conv9) 

    Model = Model (inputs= [inputs], outputs= [conv10])  

    model.compile (optimizer=Nadam (lr=1e-5), loss=dice_coef_loss, metrics= [dice_coef]) 

    Return model 
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6.2 The implemented 2 bridged U-Net with original connection 
 

def  get_model(optimizer, loss_metric, metrics, lr=1e-4):  

    Inputs = Input((IMG_WIDTH, IMG_HEIGHT, IMG_CHANNELS))   

######################################################### 

    conv1 = Conv2D (32, (3, 3), activation='elu', padding='same') (inputs)   

    conv1 = Conv2D (32, (3, 3), activation='elu', padding='same') (conv1) 

    pool1 = MaxPooling2D (pool_size= (2, 2))(conv1) 

    drop1 = Dropout (0.5) (pool1) 

     ################################################# 

    conv2 = Conv2D (64, (3, 3), activation='elu', padding='same') (drop1) 

    conv2 = Conv2D (64, (3, 3), activation='elu', padding='same') (conv2) 

    pool2 = MaxPooling2D (pool_size= (2, 2)) (conv2) 

    drop2 = Dropout (0.5) (pool2) 

  ################################################# 

    conv3 = Conv2D (128, (3, 3), activation='elu', padding='same') (drop2) 

    conv3 = Conv2D (128, (3, 3), activation='elu', padding='same') (conv3) 

    pool3 = MaxPooling2D (pool_size= (2, 2)) (conv3) 

    drop3 = Dropout (0.5)(pool3) 

  ################################################# 

    conv4 = Conv2D (256, (3, 3), activation='relu', padding='same') (drop3) 

    conv4 = Conv2D (256, (3, 3), activation='relu', padding='same') (conv4) 

    pool4 = MaxPooling2D (pool_size= (2, 2))(conv4) 

    drop4 = Dropout (0.5) (pool4) 

  ################################################# 

    conv5 = Conv2D (512, (3, 3), activation='relu', padding='same') (drop4) 

    conv5 = Conv2D (512, (3, 3), activation='relu', padding='same') (conv5) 
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  ################################################# 

    up6 = concatenate ([Conv2DTranspose (256, (2, 2), strides= (2, 2), padding='same') 

(conv5), conv4], axis=3) 

    conv6 = Conv2D (256, (3, 3), activation='elu', padding='same') (up6) 

    conv6 = Conv2D (256, (3, 3), activation='elu', padding='same') (conv6) 

    conv6 = Dropout (rate=0.4) (conv6) 

  ################################################# 

    up7 = concatenate ([Conv2DTranspose (128, (2, 2), strides= (2, 2), padding='same') 

(conv6), conv3], axis=3) 

    conv7 = Conv2D (128, (3, 3), activation='elu', padding='same') (up7) 

    conv7 = Conv2D (128, (3, 3), activation='elu', padding='same') (conv7) 

    conv7 = Dropout (rate=0.4) (conv7) 

  ################################################# 

    up8 = concatenate ([Conv2DTranspose (64, (2, 2), strides= (2, 2), padding='same') 

(conv7), conv2], axis=3) 

    conv8 = Conv2D (64, (3, 3), activation='elu', padding='same') (up8) 

    conv8 = Conv2D (64, (3, 3), activation='elu', padding='same') (conv8) 

    conv8 = Dropout (rate=0.4) (conv8) 

  ################################################# 

    up9 = concatenate ([Conv2DTranspose (32, (2, 2), strides= (2, 2), padding='same') 

(conv8), conv1], axis=3) 

    conv9 = Conv2D (32, (3, 3), activation='elu', padding='same') (up9) 

    conv9 = Conv2D (32, (3, 3), activation='elu', padding='same') (conv9) 

    conv9 = Dropout (rate=0.4) (conv9) 

 

        

##################### Second U-Net ############# 

    conv10 = Conv2D (32, (3, 3), activation='elu', padding='same') (conv9) 

    conv10 = Conv2D (32, (3, 3), activation='elu', padding='same') (conv10) 
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    pool10 = MaxPooling2D (pool_size= (2, 2)) (conv10) 

    drop10 = Dropout (0.5) (pool10) 

  ################################################# 

    bridge_1 = concatenate ([(drop10), conv8], axis=3) 

    conv11 = Conv2D (64, (3, 3), activation='elu', padding='same') (bridge_1) 

    conv11 = Conv2D (64, (3, 3), activation='elu', padding='same') (conv11) 

    pool11 = MaxPooling2D (pool_size= (2, 2))(conv11) 

    drop11 = Dropout (0.5) (pool11) 

      ################################################# 

    bridge_2 = concatenate ([(drop11), conv7], axis=3)     

    conv12 = Conv2D (128, (3, 3), activation='elu', padding='same') (bridge_2) 

    conv12 = Conv2D (128, (3, 3), activation='elu', padding='same') (conv12) 

    pool12 = MaxPooling2D (pool_size= (2, 2))(conv12) 

    drop12 = Dropout (0.5)(pool12) 

  ################################################# 

    bridge_3 = concatenate ([(drop12), conv6], axis=3)     

    conv13 = Conv2D (256, (3, 3), activation='relu', padding='same') (bridge_3) 

    conv13 = Conv2D (256, (3, 3), activation='relu', padding='same') (conv13) 

    pool13 = MaxPooling2D (pool_size= (2, 2))(conv13) 

    drop13 = Dropout (0.5) (pool13)     

  ################################################# 

    bridge_4 = concatenate ([(drop13), conv5], axis=3)     

    conv14 = Conv2D (512, (3, 3), activation='relu', padding='same') (bridge_4)   

    conv14 = Conv2D (512, (3, 3), activation='relu', padding='same') (conv14) 

  #################################################    

    up15 = concatenate ([Conv2DTranspose (256, (2, 2), strides= (2, 2), padding='same') 

(conv14), conv13, conv4], axis=3) 
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    conv15 = Conv2D (256, (3, 3), activation='elu', padding='same') (up15) 

    conv15 = Conv2D (256, (3, 3), activation='elu', padding='same') (conv15) 

    conv15 = Dropout (rate=0.4) (conv15) 

  ################################################# 

    up16 = concatenate ([Conv2DTranspose (128, (2, 2), strides= (2, 2), padding='same') 

(conv15), conv12, conv3], axis=3) 

    conv16 = Conv2D (128, (3, 3), activation='elu', padding='same') (up16) 

    conv16 = Conv2D (128, (3, 3), activation='elu', padding='same') (conv16) 

    conv16 = Dropout (rate=0.4) (conv16) 

  ################################################# 

    up17 = concatenate ([Conv2DTranspose (64, (2, 2), strides= (2, 2), padding='same') 

(conv16), conv11, conv2], axis=3) 

    conv17 = Conv2D (64, (3, 3), activation='elu', padding='same') (up17) 

    conv17 = Conv2D (64, (3, 3), activation='elu', padding='same') (conv17) 

    conv17 = Dropout (rate=0.4) (conv17) 

  ################################################# 

    up18 = concatenate ([Conv2DTranspose (32, (2, 2), strides=(2, 2), padding='same') 

(conv17), conv10 , conv1 ], axis=3) 

    conv18 = Conv2D (32, (3, 3), activation='elu', padding='same') (up18) 

    conv18 = Conv2D (32, (3, 3), activation='elu', padding='same') (conv18) 

    conv18 = Dropout (rate=0.4) (conv18) 

  ################################################# 

    conv19 = Conv2D (1, (1, 1), activation='sigmoid') (conv18) 

    Model = Model (inputs= [inputs], outputs=[conv19])    

    model.compile (optimizer=Nadam (lr=1e-5), loss=dice_coef_loss, metrics= [dice_coef]) 

    Return model 
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6.3 Models summary 

6.3.1 2 Bridge U-Net with Original connections 
 

Layer (type)  Output Shape Parameter      Connected to    

input_1 (InputLayer)  (None, 256, 256, 1) 0        

conv2d_1 (Conv2D) (None, 256, 256, 32) 320 input_1[0][0]    

conv2d_2 (Conv2D)   (None, 256, 256, 32) 9248 conv2d_1[0][0]    

max_pooling2d_1 (MaxPooling2D)  (None, 128, 128, 32) 0 conv2d_2[0][0]       

dropout_1 (Dropout) (None, 128, 128, 32) 0 max_pooling2d_1[0][0]  

    

conv2d_3 (Conv2D)    (None, 128, 128, 64) 18496 dropout_1[0][0]    

conv2d_4 (Conv2D)   (None, 128, 128, 64) 36928 conv2d_3[0][0]     

max_pooling2d_2 (MaxPooling2D) (None, 64, 64, 64) 0 conv2d_4[0][0]     

dropout_2 (Dropout)  (None, 64, 64, 64) 0 max_pooling2d_2[0][0]  

    

conv2d_5 (Conv2D)  (None, 64, 64, 128) 73856 dropout_2[0][0]   

conv2d_6 (Conv2D)    (None, 64, 64, 128) 147584 conv2d_5[0][0]    

max_pooling2d_3 (MaxPooling2D)  (None, 32, 32, 128) 0 conv2d_6[0][0]     

dropout_3 (Dropout)    (None, 32, 32, 128) 0 max_pooling2d_3[0][0]   

    

conv2d_7 (Conv2D)  (None, 32, 32, 256) 295168 dropout_3[0][0]    

conv2d_8 (Conv2D)  (None, 32, 32, 256) 590080 conv2d_7[0][0]    

max_pooling2d_4 (MaxPooling2D) (None, 16, 16, 256) 0 conv2d_8[0][0]     

dropout_4 (Dropout) (None, 16, 16, 256) 0 max_pooling2d_4[0][0]   

    

conv2d_9 (Conv2D)  (None, 16, 16, 512) 1180160 dropout_4[0][0]    

conv2d_10 (Conv2D)  (None, 16, 16, 512) 2359808 conv2d_9[0][0]      

    

conv2d_transpose_1 (Conv2DTrans (None, 32, 32, 256) 524544 conv2d_10[0][0]    

concatenate_1 (Concatenate) (None, 32, 32, 512) 0 conv2d_transpose_1[0][0] 

   conv2d_8[0][0]     

conv2d_11 (Conv2D)   (None, 32, 32, 256) 1179904 concatenate_1[0][0]   

conv2d_12 (Conv2D)   (None, 32, 32, 256) 590080 conv2d_11[0][0]   

dropout_5 (Dropout)  (None, 32, 32, 256) 0 conv2d_12[0][0]   

    

conv2d_transpose_2 (Conv2DTrans  (None, 64, 64, 128) 131200 dropout_5[0][0]  

concatenate_2 (Concatenate) (None, 64, 64, 256) 0 conv2d_transpose_2[0][0]   

   conv2d_6[0][0]     

conv2d_13 (Conv2D)         (None, 64, 64, 128) 295040 concatenate_2[0][0]  

conv2d_14 (Conv2D)         (None, 64, 64, 128) 147584 conv2d_13[0][0]   

dropout_6 (Dropout)        (None, 64, 64, 128) 0 conv2d_14[0][0]  

    

conv2d_transpose_3 (Conv2DTrans (None, 128, 128, 64) 32832 dropout_6[0][0]   

concatenate_3 (Concatenate)  (None, 128, 128, 128) 0 conv2d_transpose_3[0][0]  
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   conv2d_4[0][0]   

conv2d_15 (Conv2D)         (None, 128, 128, 64) 73792 concatenate_3[0][0]   

conv2d_16 (Conv2D)         (None, 128, 128, 64) 36928 conv2d_15[0][0]     

dropout_7 (Dropout)        (None, 128, 128, 64) 0 conv2d_16[0][0]   

    

conv2d_transpose_4 (Conv2DTrans  (None, 256, 256, 32) 8224 dropout_7[0][0]   

concatenate_4 (Concatenate)    (None, 256, 256, 64) 0 conv2d_transpose_4[0][0]  

   conv2d_2[0][0]    

conv2d_17 (Conv2D)           (None, 256, 256, 32) 18464 concatenate_4[0][0]   

conv2d_18 (Conv2D)            (None, 256, 256, 32) 9248 conv2d_17[0][0]     

dropout_8 (Dropout)           (None, 256, 256, 32) 0 conv2d_18[0][0]    

    

conv2d_19 (Conv2D)           (None, 256, 256, 32) 9248 dropout_8[0][0]    

conv2d_20 (Conv2D)           (None, 256, 256, 32) 9248 conv2d_19[0][0]     

max_pooling2d_5 (MaxPooling2D)  (None, 128, 128, 32) 0 conv2d_20[0][0]     

dropout_9 (Dropout)     (None, 128, 128, 32) 0 max_pooling2d_5[0][0]  

    

concatenate_5 (Concatenate)  (None, 128, 128, 96) 0 dropout_9[0][0]   

   dropout_7[0][0] 

conv2d_21 (Conv2D)        (None, 128, 128, 64 55360 concatenate_5[0][0]   

conv2d_22 (Conv2D)        (None, 128, 128, 64) 36928 conv2d_21[0][0]     

max_pooling2d_6 (MaxPooling2D)  (None, 64, 64, 64) 0 conv2d_22[0][0]       

dropout_10 (Dropout)       (None, 64, 64, 64) 0 max_pooling2d_6[0][0]   

    

concatenate_6 (Concatenate)   (None, 64, 64, 192) 0 dropout_10[0][0]    

   dropout_6[0][0]  

conv2d_23 (Conv2D)      (None, 64, 64, 128) 221312 concatenate_6[0][0]   

conv2d_24 (Conv2D)          (None, 64, 64, 128 147584 conv2d_23[0][0]      

max_pooling2d_7 (MaxPooling2D) (None, 32, 32, 128) 0 conv2d_24[0][0]       

dropout_11 (Dropout)       (None, 32, 32, 128) 0 max_pooling2d_7[0][0]   

    

concatenate_7 (Concatenate)   (None, 32, 32, 384) 0 dropout_11[0][0]   

   dropout_5[0][0] 

conv2d_25 (Conv2D)       (None, 32, 32, 256) 884992 concatenate_7[0][0]   

conv2d_26 (Conv2D)         (None, 32, 32, 256) 590080 conv2d_25[0][0]      

max_pooling2d_8 (MaxPooling2D) (None, 16, 16, 256) 0 conv2d_26[0][0]     

dropout_12 (Dropout)     (None, 16, 16, 256) 0 max_pooling2d_8[0][0]   

    

concatenate_8 (Concatenate)  (None, 16, 16, 768) 0 dropout_12[0][0]   

   conv2d_10[0][0]  

conv2d_27 (Conv2D)        (None, 16, 16, 512) 3539456 concatenate_8[0][0]  

conv2d_28 (Conv2D)         (None, 16, 16, 512) 2359808 conv2d_27[0][0]    

    

conv2d_transpose_5 (Conv2DTrans (None, 32, 32, 256) 524544 conv2d_28[0][0]    

concatenate_9 (Concatenate)  (None, 32, 32, 768) 0 conv2d_transpose_5[0][0]   

   conv2d_26[0][0]   
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   conv2d_8[0][0]      

conv2d_29 (Conv2D)        (None, 32, 32, 256) 1769728 concatenate_9[0][0]               

conv2d_30 (Conv2D)         (None, 32, 32, 256) 590080 conv2d_29[0][0]   

dropout_13 (Dropout)        (None, 32, 32, 256) 0 conv2d_30[0][0]    

    

conv2d_transpose_6 (Conv2DTrans  (None, 64, 64, 128) 131200 dropout_13[0][0]   

concatenate_10 (Concatenate)  (None, 64, 64, 384) 0 conv2d_transpose_6[0][0]   

   conv2d_24[0][0] 

   conv2d_6[0][0]    

conv2d_31 (Conv2D)        (None, 64, 64, 128) 442496 concatenate_10[0][0]    

conv2d_32 (Conv2D)       (None, 64, 64, 128) 147584 conv2d_31[0][0]      

dropout_14 (Dropout)      (None, 64, 64, 128) 0 conv2d_32[0][0]    

    

conv2d_transpose_7 (Conv2DTrans (None, 128, 128, 64) 32832 dropout_14[0][0]    

concatenate_11 (Concatenate)  (None, 128, 128, 192) 0 conv2d_transpose_7[0][0]   

   conv2d_22[0][0]   

   conv2d_4[0][0]   

conv2d_33 (Conv2D)       (None, 128, 128, 64) 110656 concatenate_11[0][0]    

conv2d_34 (Conv2D)        (None, 128, 128, 64) 36928 conv2d_33[0][0]     

dropout_15 (Dropout)       (None, 128, 128, 64) 0 conv2d_34[0][0]      

    

conv2d_transpose_8 (Conv2DTrans (None, 256, 256, 32) 8224 dropout_15[0][0]     

concatenate_12 (Concatenate)  (None, 256, 256, 96) 0 conv2d_transpose_8[0][0]  

   conv2d_20[0][0] 

   conv2d_2[0][0] 

conv2d_35 (Conv2D)        (None, 256, 256, 32) 27680 concatenate_12[0][0]  

conv2d_36 (Conv2D)          (None, 256, 256, 32) 9248 conv2d_35[0][0]    

dropout_16 (Dropout)        (None, 256, 256, 32) 0 conv2d_36[0][0]     

    

conv2d_37 (Conv2D)         (None, 256, 256, 1) 33 dropout_16[0][0]   

    

Total params: 19,444,737   

Trainable params:  19,444,737   

Non-trainable params:  0   
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6.4 Analysis of all deeper models based on the number of filters 

applied at the deepest level  
In this section, all models included in deeper U-Net experiments will be compared 

and full dataset in Table 6-1 

Name Test_Av
g 

Test_Av
g_Aug 

Training Validation Parameters Levels 
 
  

Min 
 Image 
 size 

Batch  
size 

256--2048 0.00% 0.00% 0.00% 0.00%  N/A 3 32 N/A 
128--2048 69.61% 74.63% 97.51% 87.99% 124,107,393 4 16 4 

64--2048 60.24% 80.39% 97.81% 93.68% 124,361,025 5 8 8 
32--2048 68.59% 64.62% 97.27% 86.96% 124,424,353 6 4 16 

16--2048 45.36% 67.05% 93.24% 85.31% 124,440,145 7 2 32 

8--2048 74.50% 73.20% 82.54% 82.93% 142,444,073 8 1 32 

256--1024 53.23% 70.20% 95.75% 83.64% 29,761,793 3 64 4 

128--1024 60.98% 66.26% 97.81% 88.82% 30,776,961 4 32 8 

64--1024 58.73% 75.93% 97.40% 91.50% 31,030,593 5 16 16 

32--1024 66.42% 70.45% 96.91% 92.72% 31,093,921 6 8 32 
16--1024 69.81% 70.80% 95.07% 90.23% 31,109,713 7 4 32 
8--1024 34.82% 29.09% 82.09% 57.89% 31,113,641 8 2 32 

256--512 28.74% 41.02% 86.78% 78.33% 6,427,393 2 128 4 
128--512 50.86% 52.50% 94.88% 85.72% 7,442,561 3 64 8 

64--512 49.96% 44.23% 96.15% 83.52% 7,696,193 4 32 16 

32--512 46.49% 60.07% 96.50% 98.00% 7,759,521 5 16 16 

16--512 40.79% 39.95% 93.00% 77.85% 7,775,313 6 8 32 
8--512 78.56% 73.89% 86.32% 89.89% 7,779,241 7 4 32 

64--256 45.57% 39.25% 89.33% 72.55% 1,861,697 3 64 32 

32--256 41.84% 34.11% 89.73% 64.30% 1,925,025 4 32 32 
16--256 52.60% 67.13% 84.59% 85.00% 1,940,817 5 16 32 
8--256 42.16% 46.11% 56.25% 76.52% 1,944,745 6 8 32 

32--128 45.08% 38.81% 84.54% 80.05% 465,953 3 64 32 
16--128 40.41% 54.83% 83.97% 78.58% 481,745 4 32 32 

8--128 34.09% 22.44% 74.82% 48.72% 485,673 5 16 32 

16--64 44.47% 35.87% 82.01% 71.83% 116,753 3 64 32 
8--64 41.33% 36.97% 76.61% 75.02% 120,681 4 32 32 
Table 6-1 All models with same start and different number of levels compared with all possible starts 
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Figure 6-1 Training accuracy for all models based on the deepest layer filters 

For training factor, 4 of 6 categories of models that started with filters (256, 512, 

1024, 2048) at the deepest level increased the accuracy with increasing the depth (number 

of levels on top of the deepest level) to reach the maximum at the top most applicable 

model with filters (32, 32, 128, 64) in sequence. The remaining 2 of 6 categories that start 

with filters (64, 128) started with the maximum accuracy at models (16-64, 32-128) and 

decreased with increasing the depth of the model.   

The highest 5 maximum values achieved for models (128-1024, 64-2048, 128-2048, 

64-1024, 32-2048) in sequence while the 5 minimum values achieved for models are (8-

256, 8-12, 8-64, 16-64, 32-2048)in sequence. The number of models achieved the 
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maximum accuracy divided into 1 model with 16 filters at the top level, 3 models with 32 on 

the top level, 1 with 64 and 1 with 128 filters on the top level Figure 6-1 Table 6-1. 

 

Figure 6-2 Validation accuracy for all models based on the deepest layer filters 

For Validation factor, 2 of 6 categories that ended with filters (2048, 1024)at the 

deepest level increased with the models getting deeper to reach the maximum with models 

(64-2048, 32-1024)then decreased while the models getting deeper. The next 2 categories 

that ended with filters (256,512) also increased with the models getting deeper to reach the 

maximum at models (16-256, 32-512) then decreased while these two categories had a 

drop in the accuracy during the increasing at models (32-256, 64-512) in sequence. The 

category of models that ended with filters 128 at the deepest level started with the 

maximum accuracy at model (32-128) then decreased while the remaining category ended 
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with 64 filters at the deepest level recorded only increasing of the accuracy with deeper 

models and reached the maximum at model (8-64). The highest 5 maximum values 

achieved for models (32-512, 64-2048, 32-1024, 64-1024, 16-1024) in sequence while the 

5 minimum values achieved for models (8-12, 8-1024, 32-256, 16-64, 64-256)in sequence. 

The number of models achieved the maximum accuracy divided into 1 model with 8 filters 

at the top level, 1 model with 16 on the top level, 3 with 32 and 1 with 64 filters on the top 

level Table 6-1 Figure 6-2 

 

Figure 6-3 Testing accuracy for all models based on the deepest layer filters 

For Testing (Test_Avg) factor, 2 of 6 categories that ended with filters (1024, 

215)at the deepest level increased with the models getting deeper to reach the maximum 

with models (16-1024, 16-256)then decreased while the models getting deeper while these 

two categories had a drop in the accuracy during the increasing at models (64-1024, 8-256) 
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in sequence. The 2 categories of models that ended with filters 64 and 128 at the deepest 

level started with the maximum accuracy at model (16-64, 16-128) then decreased. The 

remaining 2 categories ended with 512 and 2048 filters at the deepest level recorded 

fluctuation of the accuracy with deeper models until reached the maximum at deepest 

models (8-512, 8-2048). The highest 5 maximum values achieved for models (8-512, 8-

2048, 16-1024, 128-2048, 32-2048) in sequence while the 5 minimum values achieved for 

models (256-512, 8-128, 8-1024, 16-128, 16-512)in sequence. The number of models 

achieved the maximum accuracy divided into 2 models with 8 filters at the top level and 4 

models with 16 on the top level Figure 6-3 Table 6-1. 

 

Figure 6-4 Testing using augmented data (Test_Avg_Aug) accuracy for all models based on the deepest layer filters 
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For Testing using augmented data (Test_Avg_Aug) factor, for 2 of 6 categories 

that ended with filters (2048, 128) at the deepest level, the accuracy increased with the 

models getting deeper to reach the maximum with models (64-2048, 16-128) then 

decreased with the models are going deeper while one category that ended with 64 filters 

increase with deeper models to reach the maximum with model (8-64). The 2 categories of 

models that ended with filters ( 1024, 256) at the deepest level increased with the models 

are getting deeper to reach the maximum at models (64-1024, 16-256) then decreased 

with deeper models and had one drop at models (128-1024, 32-256)during the increasing 

while the category of models ended with 512 filters at the deepest level recorded two drops 

during the increasing at models (64-512, 16-512) before reaching the maximum at the 

deepest model (8-512).The highest 5 maximum values achieved for models (64-2048, 64-

1024, 128-2048, 8-512, 8-2048) in sequence while the 5 minimum values achieved for 

models (8-128, 8-1024, 32-256, 16-64, 8-64)in sequence. The number of models achieved 

the maximum accuracy divided into 2 models with 8 filters at the top level and 2 models 

with 16 on the top level and 2 models with 64 filters at the top level. Table 6-1 Figure 6-4 
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6.5 Qualitative analysis for flipping issue’s proposed solutions 
 

 

 

 Model 1   2   3   4   5   6   7   8   9   10   11   12   13 
 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

3 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

4 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

5 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

6 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

7 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

8 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

9 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

10 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

11 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

12 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

14 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

15 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

16 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

17 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

18 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

19 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

20 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

21 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

22 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 
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23 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

24 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

25 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

26 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

27 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

28 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

29 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

30 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

31 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

32 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

33 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

34 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

35 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

36 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

37 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

38 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

39 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

40 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

41 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

42 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

43 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

44 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

45 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

46 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

47 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

48 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

49 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

50 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

51 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 13 1 1 13 1 13 1 13 1 13 

52 1 13 1 13 1 13 1 13 1 13 1 13 13 13 1 13 12 2 1 13 1 13 1 13 1 13 



285 
 

53 1 13 1 13 1 13 1 13 1 13 1 13 13 13 1 13 1 13 1 13 1 13 1 13 1 13 

54 1 13 12 2 1 13 1 13 1 13 1 13 13 13 1 13 1 13 1 13 1 13 1 13 1 13 

55 1 13 13 1 1 13 1 13 1 13 1 13 12 13 1 13 1 13 1 13 1 13 1 13 1 13 

56 1 13 13 1 1 13 1 13 1 13 1 13 12 13 1 13 1 13 1 13 1 13 1 13 1 13 

57 1 13 13 1 1 13 1 13 1 13 1 13 12 13 1 13 1 13 1 13 1 13 1 13 1 13 

58 1 13 13 1 1 13 1 13 1 13 1 13 12 13 1 13 1 13 1 13 1 13 1 13 1 13 

59 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

60 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

61 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

62 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

63 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

64 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

65 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

66 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

67 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

68 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

69 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

70 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

71 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

72 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

73 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

74 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

75 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

76 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

77 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

78 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

79 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

80 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

81 1 13 13 1 1 13 1 13 12 2 1 13 1 13 12 2 1 13 1 13 1 13 1 13 1 13 

82 1 13 13 1 1 13 1 13 12 2 1 13 1 13 12 2 1 13 1 13 1 13 1 13 1 13 
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83 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

84 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

85 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

86 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

87 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

88 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

89 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

90 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

91 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

92 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

93 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

94 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

95 1 13 13 1 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

96 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

97 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

98 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

99 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

100 1 13 13 1 1 13 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

101 1 13 13 1 12 2 11 3 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 

102 1 13 13 1 12 2 11 3 10 4 8 6 1 13 10 4 1 13 1 13 1 13 1 13 1 13 

103 6 13 13 1 11 3 12 2 8 6 10 4 1 13 8 6 9 5 1 13 1 13 1 13 1 13 

104 1 13 13 1 11 3 12 2 8 6 9 5 1 13 8 6 10 4 1 13 6 8 1 13 1 13 

105 4 13 13 1 12 2 11 3 7 7 9 5 2 12 7 7 10 4 3 11 6 8 1 13 5 9 

106 5 13 13 1 12 2 11 3 5 9 8 6 1 13 5 9 10 4 3 11 4 10 2 12 9 5 

107 3 13 13 1 12 2 11 3 3 11 3 11 8 6 3 11 10 4 2 12 3 11 1 13 9 5 

108 3 13 13 1 12 2 11 3 4 10 8 6 7 7 4 10 10 4 1 13 6 8 2 12 9 5 

109 1 13 13 1 12 2 9 5 2 12 6 8 5 9 2 12 12 2 2 12 8 6 7 7 10 4 

110 1 13 13 1 11 3 8 6 2 12 5 9 2 12 2 12 12 2 5 9 5 9 9 5 10 4 

111 1 13 13 1 12 2 7 7 2 12 6 8 8 6 2 12 11 3 6 8 6 8 9 5 10 4 

112 1 13 13 1 7 7 4 10 2 12 4 10 4 10 2 12 12 2 8 6 9 5 10 4 11 3 
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113 1 13 13 1 2 12 5 9 2 12 6 8 7 7 2 12 12 2 8 6 10 4 11 3 9 5 

114 1 13 13 1 5 9 12 2 2 12 6 8 4 10 2 12 9 5 6 8 6 8 10 4 11 3 

115 1 13 13 1 4 10 7 7 1 13 11 3 12 2 1 13 5 9 5 9 9 5 10 4 8 6 

116 1 13 13 1 1 13 6 8 1 13 7 7 5 9 1 13 10 4 8 6 9 5 10 4 10 4 

117 5 9 13 1 1 10 7 7 2 12 6 8 2 12 2 12 10 4 9 5 8 6 11 3 12 2 

118 5 9 13 1 2 12 8 6 2 12 5 9 2 12 1 13 9 5 10 4 7 7 11 3 12 2 

119 11 3 13 1 1 13 6 8 4 10 1 13 1 13 4 10 6 8 10 4 8 6 8 6 12 2 

120 10 4 13 1 4 10 3 11 6 8 1 13 5 9 6 8 1 13 11 3 9 5 8 6 12 2 

121 5 9 13 1 7 7 6 8 11 3 1 13 9 5 10 4 1 13 8 6 1 13 4 10 12 2 

122 2 12 13 1 10 4 9 5 5 9 2 12 11 3 5 9 5 9 5 9 1 13 4 10 12 2 

123 5 9 12 2 3 11 1 13 11 3 4 10 6 8 10 4 9 5 8 6 7 7 2 12 13 1 

124 9 5 7 7 4 10 1 13 10 4 1 13 12 2 10 4 8 6 6 8 5 9 3 11 13 1 

125 13 1 7 7 4 10 1 13 9 5 1 13 9 5 8 6 11 3 6 8 5 9 3 11 12 2 

126 13 1 12 2 5 9 1 13 9 5 1 13 11 3 6 8 6 8 3 11 8 6 4 10 10 4 

127 12 2 13 1 5 9 1 13 9 5 4 10 7 7 6 8 8 6 3 11 11 3 1 13 10 4 

128 12 2 13 1 6 8 1 13 8 6 5 9 4 10 8 6 10 4 1 13 1 13 3 11 7 7 

129 12 2 13 1 7 7 1 13 9 5 4 10 5 9 9 5 11 3 1 13 8 6 3 11 6 8 

130 12 2 13 1 6 8 1 13 8 6 4 10 7 7 9 5 10 4 3 11 11 3 5 9 1 13 

131 12 2 13 1 6 8 1 13 8 6 7 7 2 12 8 6 10 4 3 11 11 3 3 11 5 9 

132 13 2 12 2 11 3 1 13 9 5 8 6 2 12 6 8 10 4 4 10 7 7 3 11 5 9 

133 13 1 12 2 11 3 1 13 9 5 4 10 1 13 7 7 10 4 6 8 4 10 3 11 7 7 

134 13 1 12 2 5 9 1 13 4 10 8 6 1 13 6 8 7 7 11 3 10 4 1 13 8 6 

135 13 1 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 11 3 10 4 1 13 1 13 

136 13 1 12 2 1 13 1 13 1 13 8 6 1 13 1 13 1 13 10 4 9 5 1 13 11 3 

137 13 1 12 2 1 13 1 13 1 13 7 7 1 13 1 13 8 6 10 4 9 5 1 13 11 3 

138 13 1 12 2 1 13 1 13 1 13 1 13 1 13 1 13 1 13 10 4 9 5 1 13 11 3 
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