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Abstract

Modelling vibro-acoustics is of crucial importance in many areas of mechani-

cal engineering and industry. In this PhD thesis we develop theoretical and com-

putational methods for modeling vibro-acoustics of mechanical structures. We

focus on simple structures such as flat plates and thin shells to investigate the

vibro-acoustic response of structures using a phase-space method. These sim-

ple structures will provide quantitative guidance to the analysis of the vibro-

acoustics response of complex structures.

In this thesis, an analytical model that captures wave effects using ray tracing

treatment on thin shells is used. A ray dynamics describing wave transport on

curved and smooth thin shells can be obtained from the underlying equations

of motion via the Eikonal approximation. We first analyse mid-frequency effects

near the ring frequency for thin shells consisting of a curved region smoothly

connected to two flat plates. Using classical shell theory, we treat a corresponding

ray-tracing limit derived in the short wavelength regime for bending, shear and

pressure incident waves. We show that a smooth transition from total reflection to

total transmission, along with the occurrence of resonant states, can be described

in a ray tracing approximation by extending the treatment to complex rays. We

are thus able to approximate the scattering matrix for waves incident on the bend

accounting for tunnelling mediated by resonant states and uniformly treating the

transition between the limits of totally reflected and totally transmitted waves.

v



A second contribution of this thesis is to propose a new method to model

sound radiation using the vibrational response obtained from a phase space method

such as the Dynamical Energy Analysis (DEA) method. The link between the

structural response and the acoustic field can be achieved using so-called Wigner

transform (WF) techniques. The energy density from a DEA structure-borne

sound calculation can be related to field-field correlations of the vibrational dis-

placement and then used to propagate the acoustic field using Rayleigh integral

methods. In this way we compute the intensity of the sound pressure radiated

from a flat plate. In addition to deriving an acoustic phase-space representation

in the classical ray tracing limit, the impact of boundary conditions on acoustic

radiation from vibrating flat plates, where the plate vibrations are assumed to

be diffusive, has been studied. This technique has the potential to be used for

generic complex mechanical structures.
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Chapter 1

Introduction

In this chapter, we introduce and motivate the problem that we are interested

in and provide a review of the background and existing literature. Finally, we

outline the structure of the thesis by summarising key results and ideas from

each chapter.

1.1 Motivation

This work is a joint project of the University of Nottingham and Romax Technol-

ogy, motivated by the aim of vibration and noise radiated from the gearbox cas-

ings. The casing is an essential element of a gear transmission since it covers the

mechanical components and maintains the bearings and protects both the inner

components against the working atmosphere and the environment from lubricant

emissions. It is often the cause of noise among peripheral components. In many

1



CHAPTER 1. INTRODUCTION 2

instances, vibration from a gear transmits to a casing, making it vibrate consider-

ably, resulting in acoustic-structure interaction which leads to subsequent exter-

nal sound radiation and generation of noise [2, 3]. Compared to the noise from the

friction of teeth, the frequency of sound is likely to be high. Furthermore, from

a commercial point of view, reducing noise pollution results in greater comfort

to passengers and drivers. Therefore, in the fight against environmental pollu-

tion, any dynamical study of the casing that provides insight into optimizing and

reducing the noise generated by gear transmissions is important. Usually, the

casings used around gearboxes are complex curved shell-structures see Fig. 1.1.

In the design process, the reduction of gearbox noise radiation will take place by

studying the wave dynamics of the entire casing structure. Alternatively, one can

break the entire structure into simpler substructures and study their dynamics

and the acoustic responses.

Figure 1.1: A model of a grearbox [4].
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1.2 Research scope

Structural acoustics and vibrations, also termed vibro-acoustics, can be princi-

pally defined as a multidisciplinary field of engineering and physics, usually re-

ferring to the characterization of either the vibrational response of structures ex-

cited by incident sound fields or other fluid excitation or sound power produced

by a vibrating structure subjected to external or internal dynamic excitation.

Over the past few years, much research has been conducted in the context of

vibrations and noise control of structure-borne sound. Sound propagation in and

radiation from complex vibrating mechanical built-up structures is a widely ex-

isting acoustic problem in engineering. It is important to understand the mecha-

nisms of sound radiation from realistic structures, particularly structures that dis-

play complex boundary conditions, before decisive action can be accomplished

at the design stage.

One of the main principles of studying structural vibrations and acoustic ra-

diation is to determine the sound radiation of the medium according to the vi-

brational response of the structure-borne sound. Modelling the vibro-acoustic

response of mechanical systems is a challenging task, especially for large com-

plex mechanical built-up structures in the mid-to-high frequency regime. Usu-

ally, deterministic or statistical numerical methods are adopted to analyze the

vibration of the complex structure to accomplish surface normal velocities and

then perform numerical computation such as the finite element method (FEM) or
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boundary element method (BEM) [5, 6, 7, 8, 9] to attain the radiated sound field.

At present, the numerical modelling of vibrations is usually carried out by

FEM, which is most significantly established in this application area, and by BEM

[7, 10, 11, 12, 13]. FEM is used to find solutions to differential equations that ex-

plain a broad range of physical and non-physical problems [14, 15], or to describe

them roughly. The BEM is fundamentally derived through discretising an inte-

gral equation equivalent to the original partial differential equation [16]. These

deterministic techniques can describe geometric details with sufficient accuracy

for low-frequency applications. However, high-frequency modelling requires ex-

tremely fine meshes to capture the shorter wavelengths. For this purpose, these

methods are practically restricted to low-frequency applications. Therefore, more

efficient algorithms become desirable, and in particular, high frequency approxi-

mation methods become an attractive alternative.

In order to cope with this limitation and leading to relatively small and sim-

ple models in comparison with FEM/BEM, for high-frequency modelling, some

alternative, statistical techniques such as the Statistical Energy Analysis (SEA)

[17] have been developed. In this probabilistic technique, the complex structure

is divided into simply connected subsystems and assuming diffuse wave fields

and quasi-equilibrium conditions in each of the resulting subsystems. A SEA has

found widespread applications in the aviation industry and automotive, as well

as in architectural acoustics and has been described in detail in textbooks by Lyon

and De Jong [17], Keane and Price [18] and Craik [19]. However, there are short-



CHAPTER 1. INTRODUCTION 5

comings in SEA that have been addressed by Langley [20] and more recently by

Le Bot [21, 22]. One limitation of SEA is that the underlying assumptions are of-

ten hard to verify a priori, for example determining the coupling loss factors. It

was shown in [23] that significant differences in the coupling parameters can be

caused by small variation of material properties. SEA treatment often has prob-

lems in capturing the non-trivial way in which the curved shell geometry influ-

ences the wave propagation [24] (Langley discovered that the directions of wave

propagation and energy propagation can differ substantially, and he suggested

that this result should be included in the SEA loss factor calculation).

A high-frequency method such as ray-tracing may be employed as an alterna-

tive to SEA, leading to a relaxation of SEA assumptions and works in frequency

ranges where FEM or BEM models are becoming too large. Ray-tracing can be

used in a wide range of applications such as in acoustics, electromagnetism and

optics [25, 26]. A detailed review discussing the transition from waves to rays

has been given by Tanner and Søndergaard [27]. Only recently, attempts to im-

plement ray-tracing ideas for structure-borne sound have been considered. In

particular, ray-tracing on complex built-up structures has been implemented us-

ing the so-called Dynamical Energy Analysis (DEA) [28] describing wave trans-

port in the high-frequency limit.

The DEA method has been formulated on meshes and is based on local ray-

tracing approximations in which ray trajectories move along straight lines in each

mesh segment. DEA can thus estimate the flow of vibrational energy in shell
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Figure 1.2: Systematic representation of some existing methods in modelling vi-

brational response.

structures of arbitrary complexity, such as full body-in-blue vehicles [29]. Thus,

this phase-space method based on a linear operator approach for propagating

ray densities systematically interpolates between SEA and full ray tracing with

much more freedom in sub-structuring the total system to be modelled. Figure 1.2

provides an overview of the various methods that have been used in modelling

vibrational response of a mechanical structure. DEA describes the ray dynamics

well in homogeneous, isotropic, flat plates or on curved shells at high frequencies

in the geodesic ray limit. In the case where the curvature of the shell is of the same

size as the wavelength, the situation will change as the underlying equations of

motion for the curved rays depend on the local radii of curvature. The imple-

mentation of curvature corrections in a DEA treatment based on meshed shell
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structures has been discussed in [30]. Here, the local ray dynamics is approxi-

mated using piecewise straight line segments, including back reflections, which

can lead to distortions for moderately curved shells (with radius of curvature

comparable to the wavelength). Improvements on this rather ad-hoc approach

have been reported in [31, 32]. We will revisit and extend these results in this

thesis.

The most straightforward description of an acoustic field is that of a sound

pressure field, with the sound pressure varying over the domain and over time.

The FEM [33, 34] and the BEM [35, 36, 37, 38] can model the transient acoustic

field computationally, allowing arbitrary geometry to be considered but not pro-

viding the same physical insight as analytical methods. The most likely fluid

domains for acoustic problems are air or water and, in many cases, the linear

wave equation is an appropriate model for these fluids.

In order to estimate the sound pressure and the radiated sound power from vi-

brating a complex structure, computer software must be used. However, in order

to make sure that the right models are used, the results have to be compared with

the theory. Theory exists for simple structures like flat plates; particularly com-

mon calculation are for a rectangular or a circular shapes. Therefore, the sound

radiated from plate structures, as well as the influence of boundary conditions on

the sound radiated, is studied in this thesis. Besides the fact that studying sound

radiation from vibrating plate-like structures serves as a first step to understand

and manipulate the dynamics and behaviour of sound radiated from more com-
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plex structures, plates with different sizes and aspect ratios are excessively used

as important structural components in different forms of transportation vehicles,

airplanes, industrial machinery, and as well as buildings and bridges. In many

cases, the geometry of structures such as machinery casings, car body shells, hulls

of ships, or other structural systems comprised of panels can be divided into sub-

structures which have geometries approximately described by flat plates [39], for

example see Fig. 1.3 (in this thesis, we examine sound radiation from a sim-

ple structure in order to validate our phase space method. The whole boundary

integral equation will be used to estimate sound flowing off arbitrary surfaces

in the next step). After reducing the complexity of such structures, the dynam-

ics of sound radiation can then be modelled more easily, using either analytical

or numerical approaches. Therefore, from studying an isolated plate, for many

complex structures, the determination of sound radiation can then be estimated

reasonably accurately [40].

Traditionally, acoustic radiation efficiency is evaluated for structure-borne sound.

Since the 1960s, acoustic radiation efficiency has been studied extensively, in par-

ticular for thin plates. The efficiency of acoustic radiation is typically determined

using modal summation, such that the radiation efficiency of a single-mode is

often called modal radiation efficiency. Note that both the terms ”radiation resis-

tance” and ”radiation efficiency” are used in the literature. Radiation efficiency is

essentially a normalized radiation resistance with respect to medium properties

and surface geometry. Oideon Maidanik in 1962 [41] suggested a statistical ap-
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(a) (b)

Figure 1.3: (a) Tractor model from Yanmar Co., Ltd. (b) Subsystems of the tractor

cabin [39].

proach estimating the structural vibration of ribbed panels in response to acoustic

excitation. In the entire frequency spectrum under various wavenumber regions,

the radiation resistance of the ribbed panel is studied. Even the effects of different

boundary conditions are theoretically and experimentally studied.

Wallace subsequently proposed numerical integrations in 1972 [42, 43] find-

ing approximate solutions for the single-model radiation efficiency of the baf-

fled beam and rectangular plate. In terms of the acoustic power radiated into

the far-field, the radiation resistance corresponding to individual modes is com-

puted. Approximations are specifically calculated for various modes shapes over

the whole frequency range.

Subsequently, a number of other studies focused on different aspects have

been published. Under general boundary conditions, Gomperts tested the acous-

tic radiation efficiency of a baffled rectangular plate [44]. Results show that imple-
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mentation of restrictions in edge areas may not always increase radiated acous-

tic waves into the far-field. He additionally found that the radiation efficiencies

of two-dimensional vibrating structures vary rather impressively from those for

one-dimensional vibrating structures. By using a Fourier Transform method in

wavenumber space, Heckl studied the radiation patterns of planar sources [45].

A series of asymptotic formulas were published by Leppington et al. [46] to es-

timate the radiation efficiency of different plate wavenumbers, in particular for

large structural wavenumbers and near-critical frequencies. In order to analyze

the sound power originating from planar sources, Williams [47] suggested ex-

pansion in the powers of the structural wavenumber. The Fourier transformation

of surface velocities along with its corresponding derivatives is used to derive

the mathematical model for estimating acoustic power radiating of a rectangular

baffled thin plate under different boundary conditions at low frequencies.

1.3 Objectives and Description of the work

The main objective of this thesis is to establish models for the coupling of struc-

tural vibrations calculations with the estimation of acoustic radiation using a

phase space method such as DEA.

We had two main focuses to develop: the first one, was to implement curva-

ture effects in the DEA method. The emphasis is therefore placed on a vibrating,

curved shell structures. We began by providing insight into the propagation of
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waves in curved shells. An analytical model that captures wave effects in a ray-

tracing treatment on curved plates has been proposed in Chapter 3. In addition, a

case-study for a cylindrical region smoothly connecting to two flat plates has been

proposed for three different curvature profiles of the structure. Furthermore, we

visit the one-dimensional tunnelling problem in mechanical built-up structures.

The model treats wave effects which account for resonant tunnelling using an ap-

proximation extending rays to complex rays. We allocate locations of resonance

states in the system by a driven resonant condition formula.

To validate the model, the shell’s equations of motion for the problem setting

has been solved numerically using finite difference methods for all curvature pro-

files, and the results have been compared to the model results for all of the cur-

vature profiles. The result of the model for smooth curvature profile agrees with

the numerical solution. For more sharp and flat top curvature profiles the model

formally breaks down, especially close to the transition region between reflection

and transmission ranges, although it still gives reasonable qualitative agreement

with the numerical solution.

This study provides an important opportunity to advance the understanding

of: curvature effects on wave transport and dispersion relations in the mid fre-

quency range, curved ray-tracing, resonant tunnelling in solid structure, complex

ray-tracing, resonance state condition, and best choice of curvature distribution

along the curved structure.

The second focus in this thesis has been to model sound radiation using the in-
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formation from the vibration response obtained using DEA method. DEA gives

implicit information about the phase function. To explicitly recover the phase

function, we use an inverse Wigner transform approach, which is a quasi-probability

distribution that helps analyse radiation from complex sources statistically in free

space. Using this method, the field-field correlation function in phase space can

be extracted from the energy follow density from DEA.

Plates of various dimensions and aspect ratios are commonly used in automo-

biles, aircraft, industrial equipment, buildings, and bridges as important struc-

tural components. It is helpful to understand the sound radiation from vibrating

plates for the purpose of predicting and mitigating noise from complex struc-

tures. The spatially averaged vibration velocity and radiation efficiency of the

plate are two important factors that affect the radiated sound power of a vibrat-

ing plate. Furthermore, the sound directivity and pattern also play a significant

role in evaluating sound pressure distributions for external radiation problems.

For that we use the Rayleigh integral method [48], which is a method that relates

the sound pressure (or velocity potential) at a point in a half-space to the vibra-

tion of a plate, as an operator on the field-field correlation function to compute

the intensity of sound pressure that has been radiated from the structures. There-

fore, based on this method, we extend DEA towards coupling structural vibration

calculations with estimating acoustic radiation in the surrounding fluid.

The boundary conditions of a vibrating plate, for frequencies below the critical

frequency, are known to have an important effect on its sound radiation. Then,
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having the field-field correlation function in phase space, we study the impact

of boundary conditions. To investigate this influence systematically, the average

radiated power and radiation efficiency are calculated for plate-like structures.

The objectives of this thesis are therefore summarised below:

• Implementing curvature effects in DEA method;

• Extending DEA towards coupling structural vibration calculations with es-

timating acoustic radiation;

• Recovering phase information from the phase space density of the vibrat-

ing structure using the DEA calculation (linking phase space density to the

normal surface velocity correlation function);

• Coupling between the structural wave correlation function propagating in

a vibrating element with acoustic sound radiation;

• Calculating radiation pattern;

• Capturing the effects of finite size structure along with boundary conditions

on the sound radiation field.

1.4 Outline of the thesis

A brief summary of the basic principles of vibration and acoustics that form the

basis for much of the work described in the followed chapter will be the material

provided in Chapter 2.
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In Chapter 3, an analytical model that captures wave effects in a ray-tracing

treatment on curved plates has been revisited. Furthermore, a case-study for a

cylindrical region smoothly connected to two flat plates, has been proposed for

three different curvature profiles of the structure. In addition, we visit the one-

dimensional tunnelling problem in mechanical built-up structures. We proposed

a graph model which treats the wave effects that account for resonant tunnelling

by extending classical rays to complex rays. The model has been validated with

a numerical solution of the shell’s equations of motion for all curvature profiles.

In Chapter 4, we treat the simplest case of homogeneously diffuse fields on

the vibrating structure corresponding to uniform ray densities in phase space. We

model the diffuse field explicitly as a random superposition of plane waves using

Berry’s conjecture [49], modified near edges to account for boundary conditions.

In this study, we will utilize the inverse Wigner transform approach within finite

domains, which may be regularly or irregularly shaped. The effect of boundary

conditions on sound radiation below and above the critical frequency is studied

as they form a basis for later chapter. We extend DEA towards coupling structural

vibration calculations with estimating acoustic radiation in the surrounding fluid;

the method is based on the inverse Wigner transform technique.

The effect of plate boundary conditions in the case of baffled plates is con-

sidered in Chapter 5, using the simplest case of homogeneously diffuse fields

corresponding to uniform ray densities in phase space. Due to the boundary con-

ditions, this model has been modified to provide corrections near boundaries.
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Here, we consider Dirichlet or Neumann boundary conditions. We also present

numerous approximations to calculate the radiation efficiency of finite plates as-

suming diffusive field excitation.



Chapter 2

Background and literature review

This chapter covers some foundational material for this thesis. In order to con-

structively study the theoretical results presented later, it is only necessary to un-

derstand the fundamental equations governing the vibration of the mechanical

structure, here of two types, thin plate and thin shells.

The analysis of the governing equations of the vibration of a plate highlights

the natural frequency and mode shapes. The evaluation of plate vibrations is es-

sential because the sound waves radiated are straightforwardly associated with

the geometrical and dynamical properties of the plate. The structural response,

particularly at high frequencies, is sensitive to variations within the material and

physical properties [50]. As a consequence, modelling and analysing such sit-

uations become critical in numerous acoustic and sound applications related to

larger, complicated and irregular structures.

16
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2.1 Structural vibration

The motion of the vibration varies depending on the structure’s geometry, prop-

erties, and boundary conditions. Different methods are sufficient for different

types of structures. Here, we revisit the governing equations for the propagation

of elastic waves for two of the structural types, thin plates and thin shells. The

thin plate and thin shell can be classified as objects with one of their dimensions,

thickness, being smaller than the other two (length, width). The phrase ”small”

suggests that some approximations to general elasticity equations are sufficient

to adequately describe strains and stresses ; consequently, different equations are

utilised depending on the level of accuracy required to predict the physical phe-

nomena. There are numerous theories of thin plates and shells that are based on

various assumptions and hypotheses (e.g. [51, 52, 53, 54, 55, 56, 57, 58, 59, 60]).

2.1.1 Thin plates

The plate model is a common approximate model used extensively in acous-

tic studies, particularly with regards to radiation and dispersion. A number of

vibro-acoustics models have been constructed with varying complexity to pre-

dict the sound insulation characteristics of plate structures. Although thin and

thick plates are distinguished based on the ratio of thickness to lateral dimensions

[61, 62] in structural mechanics and dynamics, such rules may not be sufficient

for vibro-acoustics calculations because they also depend on the material proper-



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

z
y

x

w
v

u

h

Figure 2.1: A nomenclature scheme for discussing the dynamics of a nominally

flat plate. In its undistorted position, the middle surface lies in the x − y plane

and particles have displacement components u, v, and w on the middle surface,

each of which varies with x and y [63].

ties of the plate. A plate would be considered ”thin” in an acoustic context if its

thickness is much smaller than the wavelength of an incident or acoustic wave in

the adjacent fluid.

Vibrational motion can be described as a wave propagation. In theory, waves

can propagate in four main modes, longitudinal (pressure) waves, shear waves,

bending (flexural) waves and evanescent bending waves depending on how the

particles oscillate. The vibration of a thin plate is governed by a differential equa-

tion of the fourth-order.

There is a tremendous amount of study regarding the free vibrations of var-

ious geometries of plates. This has emerged from the significance of the plate

structure in engineering applications. Just the briefest inclusion can be given to
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the subject here. Consider free vibrations of a thin flat plate where the plate is

oriented so that the ambient position of its middle surface aligns with the x − y

plane, see Fig. 2.1. Thus, the normal component of the displacement w is given

by [63]

ρsh
∂2w
∂t2 +

∂2

∂y2

(
B
(

∂2w
∂y2 + ν

∂2w
∂x2

))
+

∂2

∂x2

(
B
(

∂2w
∂x2 + ν

∂2w
∂y2

))
+ 2

∂2

∂x∂y

(
B(1− ν)

∂2w
∂x∂y

)
= 0, (2.1)

where B is the bending stiffness of the plate given by

B =
Eh3

12(1− ν2)
, (2.2)

and ρs is the mass density per unit area of the plate, ν is Poisson’s ratio, and E is

Young’s modulus. For plats surrounded by a fluid, an additional term pdi f f will

couple to the Eq. (2.1) to express the pressure difference on either side of the plat

[63].

This reduces to the simpler form if the plate is homogeneous, so that ν and D

are constants.

B∇4w + ρsh
∂2w
∂t2 = 0,

where∇4 =
(

∂2

∂x2 +
∂2

∂y2

)2
= ∂4

∂x4 + 2 ∂4

∂x2∂y2 +
∂4

∂y4 . For a harmonic excitation w(x, y, t) =

ŵ(x, y)e−iωt where ω = 2π f is the angular frequency and f is the natural fre-
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quency, this equation is often written in the frequency domain, as

∇4ŵ− k4
Bŵ = 0,

where kB =
(
ρshω2/B

)1/4 is the bending wavenumber, and k2
B = k2

x + k2
y, where

kx and ky are the two components of the structural wavevector kB in the x and y

directions.

The study of finite-plate vibrations is more practical than the infinite case; in

low to mid-frequencies, finite-size effects are known to be critical to sound trans-

mission problems. The literature on finite plates is comprehensive and is widely

discussed [51, 52, 53, 54, 55, 57, 50, 58, 59, 64]. Among these mechanical proper-

ties, in the low-mid frequency range, the vibroacoustic response is known to be

influenced by support conditions along the boundaries and these are of impor-

tance for noise control. Vibrational studies of structures with different boundary

conditions has been given considerable attention [50]. It is generally agreed that

there is no exact solution for classical boundary conditions, even for simple plate

structures, such as rectangular ones, except in some cases, which require specific

supports to be applied to at least one pair of opposite edges [65]. The support of

the plate along its boundaries is essential for its vibration and its radiation. Hav-

ing simple solutions that could illuminate essential concepts and validate meth-

ods to be discussed at a later stage, we focus here in particular on two types of

boundary supports called simply supported boundary conditions (what we call

pseudo Dirichlet boundary conditions in the later chapter) and guided boundary
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conditions [66] (what we call pseudo Neumann boundary conditions in the later

chapter). For example, boundary conditions for a simply supported rectangular

plate of length Lx and width Ly and height h (with h << Lx and Ly) are:

ŵ = 0,
∂2ŵ
∂x2 + ν

∂2ŵ
∂y2 = 0 at x = 0 and x = Lx,

ŵ = 0,
∂2w
∂y2 + ν

∂2w
∂x2 = 0 at y = 0 and y = Ly.

Then the normal displacement for the vibrating rectangular plates is a product of

sine functions

ŵ(x, y) = sin (kxx) sin
(
kyy
)

, (2.3)

where kx = nπ
Lx

and ky = mπ
Ly

for n, m = 1, 2, 3, ..., and with k2
n,m = k2

x + k2
y.

On the other hand, boundary conditions for a guided plate [66] are:

∂ŵ
∂x

= 0,
∂ŵ
∂x

(
∂2ŵ
∂x2 + ν

∂2ŵ
∂y2

)
= 0 at x = 0 and x = Lx,

∂ŵ
∂y

= 0,
∂ŵ
∂y

(
∂2w
∂y2 + ν

∂2w
∂x2

)
= 0 at y = 0 and y = Ly.

Then the normal displacement for the vibrating plate is a product of cosine func-

tions

ŵ(x, y) = cos (kxx) cos
(
kyy
)

, (2.4)

where kx = nπ
Lx

and ky = mπ
Ly

for n, m = 0, 1, 2, ..., with k2
n,m = k2

x + k2
y.

In the next section we present the theory of shells, which is a natural extension

of the discussion of plates
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2.1.2 Thin shell theory

In acoustics, many modern topics include shells, since man-made objects, such

as vehicles, ships, aircraft, spacecraft, and vessels containing fluid, have exterior

skins that often adhere to shell-related idealizations. In addition, practical sub-

jects in underwater radiation and dispersion usually have structures that can be

idealized as shells in the majority of cases. A shell’s fundamental conceptualiza-

tion is simply that of a curved plate, although the presence of non-zero curvature

brings to the mathematical description considerable added complexity. The the-

ory of shells goes all the way back to papers published in the 1880s by Rayleigh

[67, 68, 69], Lamb [70], and Love [71]. The focus was primarily on bell vibra-

tions and sound radiation at that time. Of course, over the years, the theory has

evolved considerably and has been the topic of hundreds of publications and

many books. In the current literature, many different shell models of different

levels of complexity are presented in [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 72], but

all more or less agree in their predictions for shells that are sufficiently thin.

Numerous thin-shell theories have been derived to determine the dynamic

and vibro-acoustic behaviour of structures. These include Donnell’s theory [73,

74, 75], Love-Timoshenko theory [76], and the work of Sanders and Flügge [77].

The acoustically thick and thin shells are distinguished in terms of shell curvature

effects on acoustic radiation behaviour. For cylindrical shells, the ring frequency

is an important parameter used to indicate the range in which curvature effects
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are important. The ring frequency is defined for the condition when the wave-

length of extensional waves in the shells is equal to the shell circumference

fring =
1

2aπ

√
E

ρs (1− ν2)
.

where a is the radius of cylindrical shell, ρs is the density of the material, E is

the Young’s Modulus and ν is the Poisson ratio. Far above the ring frequency,

the structural wavelength is so short that the structural wave propagation is very

much controlled by local stiffness. The curvature effects of the shell extremely

small, and the structure will behave like a plate. The sound radiation will as a

result be governed by the compliances between the total structural wavenumber

and the acoustic wavenumber. In this frequency range, the critical frequency

defined for the plate is of physical significance because of no dispersion effects for

the structural wavenumbers. Below the ring frequency, the curvature changes the

stiffness in the axial direction, making the structural wave speed in this direction

faster than that in circumferential direction. Then the sound radiation is primarily

determined by the behaviour of each individual mode in the total repose. In

this case, the physical significant of the critical frequency defined for the plate

becomes questionable [78].

In many ways, wave propagation on thin shells is similar to thin plates for

which uncoupled in-plane (pressure and shear) and out-plane (flexural or bend-

ing) motions are predicted by the leading order or classical approximations. Shell

curvature embodies these such that the displacement of concern is a three vector,
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and the wave mode is identical to those on thin flat plates: longitudinal, shear,

flexural and flexural evanescent. The goal here is to present as simple a model

as possible for the thin-shell limit. The model in this thesis are founded on Don-

nell’s shell theory, which is discussed in more detail by Pierce [79], and Norris

and Rebinsky [80]. It is possible, of course, to establish governing equations for

shells with an arbitrary curvature, and afterward to adapt the outcomes to a spe-

cific geometry, for example, a cylindrical-shaped shell. Therefore, the discussion

here is for shells of arbitrary form, we reduce the model to a specific geometry

of cylindrical-shaped shell jointed to a flat plate in either side later. This topic

is a key component of the overall future potential discussion of radiation and

underwater sound dispersion using DEA.

An arbitrary thinly walled shell is considered (Fig. 2.2) with density ρs, Pois-

son ratio ν and Young’s modulus E. Its wall thickness h is much less than either of

its two main curvature radii. X = (X, Y) is the coordinate system representing the

position on the shell with respect to the tangential and perpendicular direction to

the middle surface shown in Fig. 2.2 . The corresponding curvilinear coordinates

on the shell are x = (x, y), where X = X(x, y), with corresponding direction vec-

tors aα = X,α, α = 1,2, and surface normal a3 = a1
∧

a2/|a1
∧

a2|. Greek sub or

superscripts assume the values 1 or 2, and the suffix , α denotes differentiation

with respect to xα. The covariant surface metric tensor and the covariant surface

curvature tensor, both symmetric, are given by gαβ = aα · aβ and dαβ = aα · a3,β

respectively. The contravariant form of the surface metric tensor and the mixed
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Figure 2.2: Sketch of an arbitrary shell with a curvilinear coordinate scheme for

representing surface positions.
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form of the curvature tensor are gαβgαβ = δαβ, dβ
α = gαγdγβ. The displacement

vector of a point originally on the mid-surface of the shell is decomposed into

tangential and normal components thus u = [u1u2w]. The covariant differentia-

tion with respect to xα is denoted by Dα and the contravariant differentiation is

denoted by Dα = gαγDβ. The equations of motion for a shell in vacuo composed

of an isotropic material are

ρsh
∂2uα

∂2t
= Dβ

(
C
(
(1− ν)εαβ + νε

γ
γgαβ

))
, (2.5)

ρsh
∂2w
∂2t

= −DαDβ

(
B(1− ν)DαDβw

)
− DαDα

(
BνDβDβw

)
−

C
(
(1− ν)dα

βεα
β + νdα

αεα
α

)
, (2.6)

where B and C are the bending stiffness and extensional stiffness given by

B =
Eh3

12(1− ν2)
, C =

Eh
1− ν2 . (2.7)

The in-surface strains are

εαβ =
1
2
(

Dαuβ + Dβuα

)
+ dαβw. (2.8)

Later, a simplified version of this shell equation is given for a special case of a shell

being bent only along one of the axes and jointed to a flat plate in either side, see

also Søndergaard et al. [32, 31]. Vibrations that occur on the interface between

two linked bodies with varying elastic properties are known as interfacial vi-

brations. This phenomena for thin-walled structures was apparently discovered

for the first time in studies [81, 82] that investigated the analogues of Stoneley’s
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waves [83] in connected plates and half-strips. Interfacial vibrations of coupled

shells of revolution were explored using an asymptotic method in [84]. Some

of recent publications within [85] investigated the free interfacial vibrations of

infinite closed and open cylindrical shells made of two semi-infinite orthotropic

elastic cylindrical shells with differing elastic characteristics. The authors of these

works used an asymptotic technique to obtain the dispersion equations as well as

formulae for eigenfrequencies, and they discovered asymptotic links between the

dispersion equations of the problems under investigation and related problems

for joined half-strips and rectangular plates. There is a similarity between edge

and interfacial vibrations of thin plates and shells in that the modes are observed

in the form of functions exponentially decaying away from an edge or interfacial

surface for both forms of localised vibrations. The study by Lawrie and Kaplunov

[86] is recommended for a detailed history and overview of edge and interfacial

vibrations in plates and shells.

For shell surrounded by a fluid or subjected to any external dynamic loads,

additional terms corresponding to the external loadings on the shell surface per

unit area, q = [q1, q2, q3], will be coupled to the shell’s equations of motion [87]

ρsh
∂2uα

∂2t
= Dβ

(
C
(
(1− ν)εαβ + νε

γ
γgαβ

))
+ qα,

ρsh
∂2w
∂2t

= −DαDβ

(
B(1− ν)DαDβw

)
− DαDα

(
BνDβDβw

)
−

C
(
(1− ν)dα

βεα
β + νdα

αεα
α

)
+ q3. (2.9)

These loadings are the acoustic pressure, which is a function of shell displacement
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in the acoustic-structure coupling problem. In the paper by Belove et al. [87] on

fluid-structure interaction, for example, an explicit form of q can be found. If air

is the fluid medium, as it is in most mechanical noise control applications, the

acoustic load is normally fairly small and can be ignored. However, if the fluid

medium is a liquid, the acoustic radiation load can be extremely crucial and must

be considered.

Studying the interactions between structures and sound is important for as-

sessing the structure-borne sound in complex geometries, and therefore, in the

next section, we provide insight into the mechanism of interactions.

2.2 Acoustic

Sound waves are not strictly limited to the sense of hearing in the acoustic field

but are commonly characterized as small variations in the pressure, temperature,

medium density and velocity of the wave-carrying medium such as air, which is

induced by disturbances such as a solid vibrating surface or jet flows, etc. These

variations in the medium, spatially, are a sound field.

To gain an understanding of the fundamental characteristics of mechanical vi-

brations as they contribute to sound radiation and sound propagation, the simple

wave method is used. Such interactions between sound waves and solid struc-

tures’ mechanical vibrations form a very important component of engineering

vibration and noise control. All kinds of waves can be retained in structures, i.e.
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compressive (longitudinal) waves, flexural (transverse or bending) waves, shear

waves, and torsional waves, since solids can store energy in shearing and com-

pression. As fluids can store only energy in compression, only compressive (lon-

gitudinal) waves can be sustained. Flexural (bending) waves are the only form

of structural wave that plays a direct role in sound radiation and transmission,

for reasons that will become evident later in Chapter 4. At this point the main

explanation is that the bending velocity of the wave particles is perpendicular to

the direction of the wave propagation, leading to efficient energy exchange be-

tween the fluid and the structure. Besides any mechanical excitation in the solid,

which in the first instance could be the primary source of vibration, fluctuating

pressures can produce an acoustic radiation load on any arbitrary surface in close

proximity to that surface. If air is the fluid medium, as is typically the case in en-

gineering noise control, this acoustic load is usually extremely small and, from

the bending wave particle velocity of the structure surface, the sound pressure

field can be calculated in regions away from the source. If the fluid medium,

however, is a liquid, the acoustic radiation load may be extremely critical and

must be taken into account - the forces acting on the structure are modified by

the radiation load, there will be a feedback coupling between the structure and

the fluid and then the structure will be ”fluid loaded”. However, this study is

primarily concerned with structure-borne sound with air as the fluid medium.

Sometimes, these conditions reflect traditional noise control problems of the en-

gineering industry, such as plate, shell and cylinder sound radiation in industrial
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environments. As such, in this thesis, fluid-loading impacts can be neglected.

The sound pressure p at any point r = (x, y, z) in the medium radiated by a

vibrating structure satisfies the classical Helmholtz equation expressed as

∇2p(r) + k2
A p(r) = 0, (2.10)

where kA denotes the acoustic wave number and c is the velocity of sound.

The magnitude of the sound pressure in practice is evaluated as the sound

pressure level and measured on the decibel scale defined by

SPL = 10 log10
p2(r)
p2

re f
= 20 log10

∣∣∣ p(r)
pre f

∣∣∣, (2.11)

where pre f is the reference pressure of 20 µPa.

From an arbitrary vibrating body the radiation of sound can be formulated

at its most fundamental level in an integral equation containing Green’s func-

tion, which has an imposed radiation condition – that means that the radiated

sound pressure integral equation is outward travelling sound waves. In Eq.

(2.12) , Green’s function is introduced and describes solutions to the wave equa-

tion. The integral equation is attributable to Kirchhoff in its most general form,

though Helmholtz amended it for single frequency (harmonic) applications. In

the advanced literature, the derivation of the integral and a discussion about the

condition of radiation are given [88, 89]. The integral is often referred to as the

Kirchhoff-Helmholtz integral equation , and along with some examples, Fahy

[40] gives a useful discussion on its physical significance. For any arbitrary body



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 31

in the surrounding fluid, the Kirchhoff–Helmholtz integral equation relates har-

monic surface vibrational motion to the radiated sound pressure field; that is

c (r) p (r) =
∫

Ω

{
p(r′)

∂G
∂nµ

(
r′, r
)
− iωρ0w(r′)G

(
r′, r
)}

dr′, (2.12)

where r is a position vector at some receiver position in the sound field, r′ is

a position vector on the vibrating body, c (r) is the sound pressure coefficient.

When r is located outside the structure, c (r) is taken to be 1, when r is located

on the smooth structure, c (r) is taken to be 1/2. It should be noted that the

fluctuations of acoustic pressure are a function of both space and time, so p̃(r, t) =

p(r)e−iωt. The first and second terms on the right side of the equation are called

single-layer potential and double- layer potential respectively. nµ denotes the

outer normal direction of the structural surface, and the Green function G (r′, r)

in free space satisfies the following equation:

∇2G
(
r′, r
)
+ k2

AG
(
r′, r
)
= δ (x− x0) δ (y− y0) δ (z− z0) ,

where δ is Delta function, the Green function in free space is

G
(
r′, r
)
=

e−ikAR

4πR
,

where R =
√
(x′ − x)2 + (y′ − y)2 + z2 denotes the distance between (x′, y′) on

the plate and (x, y, z) in space.

It is important to note that the normal vibrational velocity of the surface and

the pressure of the surface are interconnected and not independent. In fact, the
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Green analytical functions can only be constructed for geometries such as plates,

cylinders etc, other than those reasonably represented by combinations of point

sources. In the advanced literature [88, 40], examples concerning source configu-

rations of practical interest are found. The normal derivative of the Green func-

tion can be chosen to be zero by an appropriate selection of co-ordinates (for ex-

ample, for planer structures the normal derivative of the Green function is zero),

i.e. eliminating the requirement for knowledge of surface pressure distributions,

thereby only knowledge of the surface vibrational velocity is needed. Analytical

solutions are usually not possible on arbitrary, complex, three-dimensional bod-

ies, such as large industrial machinery etc., and the standard procedure is either

to use experimental techniques to determine the Green function or to use numer-

ical techniques to solve the integral equation [40].

Sound radiation for a particular case of a planar source located in the infinite

baffle will be addressed in Chapters 4 and 5.

In the next section, we will concentrate on the interaction between wave and

ray dynamics. We begin by briefly giving insight to the short-wavelength ap-

proximations.

2.3 Wave dynamics—a ray perspective

Ray tracing in physics is a method for the estimation of the path of waves or

particles through a system with reflecting surfaces (such as a curved surface),
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absorbing properties, and areas of varying propagation velocity. Wave fronts

may change direction, reflect off surfaces, or bend, complicating analysis under

these circumstances. By repeatedly moving idealistic narrow beams called rays

through the medium by discrete quantities, ray-tracing solves the problem.

A useful guiding idea in wave propagation problems in elastodynamics and

acoustics is the concept of wave energy travelling along rays, particularly in areas

such as acoustic microscopy, underwater acoustics, or seismology [90]. In room

acoustics, the link between wave problems and the descriptions of an underly-

ing long-term ray dynamics was considered very early [91], but more systematic

studies began only in the late 1980s.

In quantum mechanics, the relationship between wave and ray dynamics be-

came a focused subject in the 1970’s. A new way forward to examine the im-

print of regular or chaotic ray dynamics on the related wave problem was intro-

duced by Gutzwiller using small wavelength approximations of the Green func-

tion in the time and frequency domains [92] and the discovery in the asymp-

totic regime of the duality between eigenfrequencies and periodic rays. This way

of thinking was picked up in the acoustic community in the early to mid 1990s

[93, 94, 95, 96, 97, 98] and is gaining growing attention in the context of engineer-

ing.

In this study, we analyse some aspects of the correspondence between rays

and waves with a motivation to establish techniques to find or approximate solu-

tions to wave problems by studying the properties of the associated system. The
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ordinary, conventional approach to this exercise is based on the wave equation’s

eikonal approximation [99, 100, 101]. The golden age of the eikonal approxima-

tion in quantum mechanics and quantum field theory dates back to the 1950s and

1960s. The eikonal approximation emerged way back in optics before it was born

in the study of quantum mechanics [102]. The key benefit offered by the eikonal

approximation is that in the language of differential equations the equations are

reduced to differential equations in a single variable.

The eikonal approximation is also known as the Wentzel, Kramers, and Bril-

louin approach (WKB), or the semiclassical or quasiclassical approximation de-

pending on the field of application. Where the wave equation under considera-

tion describes waves propagating in a medium that slowly varies in space and

time relative to the wavelength and frequency of the wave solutions of interest,

this formalism is assumed.

A WKB approach often studies processes which involve only few scattering

events such as the reflection off a multi-layered surface area [103], or the scat-

tering from obstacles such as cracks [104]. By considering ray dynamics in the

complex plane, it is possible to treat effects associated with boundaries like sur-

face waves or diffraction [105, 106, 107].

The ray solutions are in general not straight lines and may encounter turning

points or caustics: that is, the curvature profile of the shell may act as a barrier. In

a process that is analogous to tunnelling of a quantum particle through a potential

energy barrier [108], partial reflection from or transmission through such curva-
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ture barriers may arise and is similarly treated here using complex solutions of

the ray equations: calculation of such curvature tunnelling is the focus of Chapter

3. The following sections therefore concentrate on the context of tunnelling.

2.3.1 Tunnelling

Tunnelling is exemplified by a quantum phenomenon where a particle enters and

crosses a region where its potential energy exceeds its total energy. Energy con-

servation would not allow this to occur, according to classical physics, and the

particle is fully reflected by the barrier. In fact, as an important phenomenon in

the fields of physics, chemistry and biology, quantum mechanical tunnelling is

a rather interdisciplinary concept [109, 110, 111]. Along with interference, quan-

tization, resonance and non-adiabatic transformation, this represents one of the

most important quantum mechanical effects [112, 113].

There is a certain peculiarity in the calculation of probability for a classically

forbidden region from the point of view of mathematics: the idea of motion in-

evitably occurs here in imaginary time or along a complex trajectory [114, 115]. In

terms of classical trajectories the semiclassical method WKB for the probability of

tunnelling (in a static potential) can be reformulated in complex times as a simple

change of variables. In this thesis, the WKB method is used to study the effect of

curvature on curved surface scattering.
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2.3.1.1 Resonant tunnelling

A fascinating quantum phenomenon is resonant tunnelling. It demonstrates that

quantum particles are capable of moving through an opaque barrier in a semi-

bound state with high probability [116, 117]. Resonant tunnelling is commonly

defined as a one-dimensional (1D) phenomenon, but resonant tunnelling has also

been investigated in higher dimensions (see, for example, [118, 119]). However

since the key characteristics of resonant tunnelling occur in 1D, much of the study

focused on the simplest 1D systems. Thermal noise influences tunnelling and

resonant tunnelling, and the accumulation of particles in the bound state clearly

changes the potential since they are rarely stationary processes. It is well under-

stood that tunnelling can cause activation (higher energy) in the presence of an

oscillating barrier and can therefore significantly increase tunnelling potentials.

The foundations of quantum mechanics [120, 121], nanotechnology [122, 123,

124], electronics [125], and also biology and biochemistry [126, 127] have studied

this phenomenon. As energy in the incoming particle coincides with the energy

of the quasi-bound state, the resonant tunnelling effect occurs. The particle stays

within the well for an exponentially long time in the quasi-bound state if the

barrier is very opaque. Whenever the particle is trapped within the well, it does

not have time to escape from the well, thus, its state has to vary with the changes

in the well, and its energy varies with the eigenenergy of the quasi-bound state.

The delicate mechanism of these effects in a complex mechanical structure will
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be explored in the next chapter.

Since the groundbreaking work of Esaki et al. [128, 129], several authors

have theoretically and experimentally investigated the resonant tunnelling phe-

nomenon through a one-dimensional double-barrier system [130, 131, 132, 117,

133, 134]. In this thesis the resonant tunnelling condition, the reflection and the

transmission coefficients for a symmetrical mechanical structure are derived an-

alytically.

The work in [32, 31] has used thin-shell models to incorporate curvature ef-

fects in ray-tracing models, which we extend in Chapter 3 to include wave fea-

tures such as evanescent corrections and resonant tunnelling.

More often the structures to be studied have complex shapes, leading to the

fact that analytical functions can not be used to describe the primary spatial vari-

ables distribution of the vibrated system, so it is appropriate to employ numerical

methods.

2.4 Numerical methods

In this study, for a number of reasons for which main points are described below,

we are interested in a phase space method such as DEA [135] for numerically

modeling structure-borne sound and vibration in complex structures:

• DEA is applicable in the mid-to-high frequency range and is effective in

computing than conventional deterministic methods (such as FEM and BEM).
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• DEA offers more structural information compared to the traditional SEA [2]

and is less problematic with regard to subsystem division.

• In terms of (linear) transport equations, the DEA method predicts the flux of

vibrational wave energy through complex structures. Then these equations

are discretized on meshes and solved.

• In DEA, the energy flow is tracked through a mesh that can be interpreted

as ray tracing using ray densities rather than individual rays.

• DEA can use existing FEM meshes where there is no need for remodelling.

Computing time in DEA is independent of frequency.

• The mesh resolution needed does not depend on frequency and can be se-

lected to be coarser than in FEM. Only the geometry need to be resolved.

The DEA implementation on meshes is referred to as Discrete Flow Mapping. The

concept behind DFM is described briefly here, see references [135, 136, 137, 30]

for more information. With DFM vibroacoustic energy densities, including multi

modal propagation and curved surfaces, can be computed in complex structures

at high frequencies. A transfer operator is used in DFM to describe the flow of en-

ergy through the boundaries of the structure’s subsystems. The flow of energy is

expressed by a ray density ρ, i.e., the flow of energy over a given surface is given

by the surface ray density at s with direction p. The density ρ(s, p), is transported

via the boundary integral operator from one boundary to the adjacent boundary
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intersection, then the transfer operator is discretised using a set of basis functions

of the phase space. This will be explored in more detail in Chapter 4.

The study of interactions between simple structures, such as plate-type and

shell structures, and sound is important in order to gain an understanding of the

fundamental characteristics of mechanical vibrations as they contribute to sound

radiation and sound propagation using the DEA phase-space method and also to

assess structure-borne sound in more complex geometries. The following chap-

ters therefore concentrate on the context of vibro-acoustic modeling for simple

structures.

2.5 Conclusion

This chapter provided some foundational information for preparing the princi-

pal thesis material. The basic equations governing the structural vibration of the

mechanical system here, two of the structural types: thin plate and thin shell, are

revised and better understood in order to study the theoretical results discussed

in the later chapters. The evaluation of plate vibrations is essential because the

sound waves radiated are associated with the geometrical and dynamical prop-

erties of the plate. The structural response is sensitive to variations within the

material and physical properties, particularly at high frequencies. As a result, in

various acoustic and sound applications related to larger, complex and irregular

structures, modeling and analysis of such situations is important.
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In the next chapter, the resonant tunnelling condition and transmission coeffi-

cient along with reflection coefficient are derived theoretically for a symmetrical

two-dimensional complex mechanical structure.



Chapter 3

Wave transition on shell structures

3.1 Introduction

Starting from the general equations for thin shells of arbitrary curvature, a well-

known approach to describe ray dynamics for bending and in-plane waves is due

to Pierce [79], obtained by deriving a local dispersion relation for different wave

modes in the short-wavelength regime. In the special case of shells being ho-

mogeneous and thin, somewhat simpler dispersion relations have been derived

by Norris and Rebinsky [80] which will form the basis of our work. Asymptotic

techniques describing the wave dynamics in thin-walled shells have also been

discussed in a book by Mikhasev and Tovstik [85] with particular attention given

to the modified Wentzel-Kramers-Brillouin (WKB) method. Different asymptotic

regimes for the dynamics of curved shells have been considered by Kaplunov et

al. [138] as well as Babich and Kiselev [139].

41



CHAPTER 3. WAVE TRANSITION ON SHELL STRUCTURES 42

Following [80], we deduce a ray dynamics by interpreting the dispersion curves

as the contour lines of a Hamilton function from which Hamilton’s equations of

motion for the rays are obtained. These equations depend – along with material

parameters and the thickness – on the local radii of curvature. The ray solutions

are in general not straight lines and may encounter turning points or caustics:

that is, the curvature profile of the shell may act as a barrier. In a process that is

analogous to tunnelling of a quantum particle through a potential energy barrier

[108], partial reflection from or transmission through such curvature barriers may

arise and is similarly treated here using complex solutions of the ray equations:

calculation of such curvature tunnelling is the focus of the chapter.

For the sake of simplicity and following [31, 32], we will study the ray and

wave dynamics for a particular example – two plates joined by curved section

with a specified curvature profile along the circumferential direction as shown in

Fig. 3.1. This assumed geometry simplifies the analysis by making the problem

have one effective degree of freedom. We also concentrate on incident waves that

are of bending type: in the parameter regimes we consider, these do not couple

significantly to in-plane modes and, having the shorter wavelength, are more ap-

propriately treated by ray techniques. In a pure ray-tracing picture, incident rays

approaching the curved region of the plate are either totally reflected or totally

transmitted, depending on the angle of incidence. However, the solutions of the

shell’s equations of motion show a smooth, wavelength-dependent transition be-

tween total reflection or transmission, interspersed with resonance states. This
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(a) (b)

Figure 3.1: (a) A model of a wind turbine gearbox from Romax Technology; (b) a

quarter cylindrical ridge connected to flat plates on either side equivalent to the

structure considered in [32].

was also observed in [32], but not treated ray-dynamically.

In the context of quantum mechanics, such tunnelling effects are well estab-

lished [108] and can be understood using a range of approximation techniques,

based on extending ray dynamics to complex coordinates. The aim of this chap-

ter is to extend such complex ray theory to the scattering of bending waves in a

curved shell. For problems with several degrees of freedom, the use of complex

solutions of ray dynamics to treat tunnelling phenomena remains a challenging

problem that may require extension of chaotic dynamics to the complex domain

(see [140, 141], for example) or show behaviour associated with coupling between

complex orbits and chaotic [142] or resonant structures [143] typical of noninte-

grable Hamiltonian systems (see [144, 145] for other aspects of multidimensional

tunnelling). In this chapter we treat problems that are globally integrable and
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therefore the topology of complex solutions can be explicitly described, allowing

simpler analytical approximation [146] of the tunnelling features observed. How-

ever it should be noted that for more general shell geometries all the complexity

of generic multidimensional tunnelling problems [144, 145] can arise.

The chapter is structured as follows. In Sec. 3.2 we briefly introduce the dis-

persion curves used to characterise ray dynamics on a cylindrical shell, describe

the curvature profiles to be used in numerical illustrations and describe the basic

assumptions of the WKB approximation, along with defining scaled, dimensional

variables which make small and large parameters evident. In Sec. 3.3, we devise

a model for resonant tunnelling based on a graph approach, and the theory for

incorporating the relevant complex orbits into approximation of reflection and

transmission amplitudes is discussed. Explicit numerical illustrations of the the-

ory are offered in Sec. 3.4, comparing the WKB approach with full wave calcula-

tions, while conclusions are given in Sec. 3.5.

3.2 Thin shell theory, short wavelength asymptotics

and ray dynamics

Numerous thin-shell theories have been derived to determine the dynamic and

vibro-acoustic behaviour of thin-shell structures. These include Donnell’s the-

ory [147] and generalisations thereof [79, 63]; for more details also about other

approaches, see the book by Leissa [72] and a review article by Qatu [148]. The
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calculations in this chapter are based on Donnell’s shell theory, which is discussed

in more detail by Pierce [79], and Norris and Rebinsky [80]. In particular, we fol-

low Søndergaard et al. [31, 32], who have applied this approach to the case of an

isotropic, cylindrical shell. The work of [31, 32] has used thin-shell models to in-

corporate curvature effects in ray-tracing models, which we extend in this chapter

to include wave features such as evanescent corrections and resonant tunnelling.

3.2.1 Wave model for thin shells

We consider the case of a cylindrical shell extending to ±∞ in the y direction and

a varying radius of curvature R(x) in the circumferential x direction such as, for

example, shown in Fig. 3.1. The thickness of the shell is h, its (volume-) density ρs

with Poisson ratio ν and Young’s modulus E. It is assumed that the shell is thin,

so that in particular h� R (see Sec. 3.2.3 for more detail about assumed small and

large parameters). We let x = (x, y) denote curvilinear coordinates on the shell,

where y is a coordinate along the cylindrical axis of the structure and x is an arc

length perpendicular to it. The displacement of a point originally on the reference

surface within the shell is denoted by u(x, y, t) = [u(x, y, t) v(x, y, t) w(x, y, t)].

The simplified shell theory presented in [32] reduces the elastic equations to the
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following set of partial differential equations,

1
c2

P

∂2u
∂t2 =

∂2u
∂x2 +

(1 + ν)

2
∂2v

∂x∂y
+

(1− ν)

2
∂2u
∂y2 +

∂

∂x
(κ(x)w)

1
c2

P

∂2v
∂t2 =

∂2v
∂y2 +

(1 + ν)

2
∂2u

∂x∂y
+

(1− ν)

2
∂2v
∂x2 + νκ(x)

∂w
∂y

1
c2

P

∂2w
∂t2 = −B

C
∆2w− κ(x)

(
∂u
∂x

+ ν
∂v
∂y

+ κ(x)w
)

, (3.1)

where B and C are the bending and extensional stiffnesses given by Eq. (2.7), and

c2
P =

C
ρsh

=
E

ρs(1− υ2)

is the pressure wave velocity, while κ(x) denotes the local curvature in the x di-

rection.

We take advantage of the translational symmetry in the y direction to seek

wave solutions in the form

u(x, y, t) = û(x)eikyy−iωt, (3.2)

where the wavenumber component ky and the frequency ω are constants and û =

(û, v̂, ŵ)T. Substituting the ansatz (3.2) into the PDE system (3.1) and denoting

kP = ω/cP leads to the following system of ODE’s in the variable x:

d2û
dx2 +

(
k2

P −
(1− υ)

2
k2

y

)
û + iky

(1 + υ)

2
dv̂
dx

+
d

dx
(κ(x)ŵ) = 0 (3.3a)

(1− υ)

2
d2v̂
dx2 +

(
k2

P − k2
y

)
v̂ + iky

(
(1 + υ)

2
dû
dx

+ νκ(x)ŵ
)
= 0 (3.3b)

B
C

(
d4ŵ
dx4 − 2k2

y
d2ŵ
dx2 + k4

yŵ
)
+
(

κ2(x)− k2
P

)
ŵ + κ(x)

(
dû
dx

+ iνkyv̂
)
= 0 (3.3c)
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3.2.2 Eikonal approximation for thin shells

Next, we look for approximate solutions to these ODE’s in WKB form,

û(x) = a(x)eiS(x), (3.4)

where the components of a = [au, av, aw]T are the amplitudes in the in-plane

directions x and y and in the direction normal to the shell, respectively. The gra-

dient of the phase function S(x) defines a local wavenumber in the x direction

kx(x) =
dS
dx

. (3.5)

All of these amplitude and phase functions depend parametrically on ky and ω,

although these dependencies have been suppressed in our notation. Note that in

order to treat evanescence effects in the wave transport problem, we must allow

the phase function S(x) to be complex-valued as discussed in following sections.

For simplicity of notation, we have not explicitly identified a large parame-

ter in our notation so far, but the Eikonal expansion to follow assumes that the

length scale over which the curvature changes is much greater than the typical

local wavelength. We correspondingly impose that a(x) varies over these longer

length scales. Note that for simple smooth curvature profiles over which the

bending angle is O(1), this longer length scale can be effectively identified with

the minimum radius of curvature, but the Eikonal expansion fails when the cur-

vature changes rapidly, even if the radius of curvature itself remains large (for

example, if the shell’s curvature profile has sharp transitions from flat limit to

curved region).
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Substituting the ansatz (3.4) into the equations of motion (3.3) and neglect-

ing terms containing derivatives in a, (thus assuming that the amplitudes a vary

slowly along x compared to S(x)), we deduce that kx must satisfy an Eikonal

equation of the form

D(x, kx; ky, ω) = 0,

where the function D(x, kx; ky, ω) is defined by

D(x, kx; ky, ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

k2
x +

1− υ

2
k2

y − k2
P

1 + υ

2
kxky −iκ(x)kx

1 + υ

2
kxky k2

y +
1− υ

2
k2

x − k2
P −iυκ(x)ky

−iκ(x)kx −iυκ(x)ky k2
P − κ2(x)− B

C
k4

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
k2

P −
1
2

k2(1− ν)

)((
k2

P − k2
)(

k2
P −

Bk4

C

)
− k2

Pκ2(x)
)

+ (1− υ2)κ2(x)k2
y

(
k2

P −
1
2
(1− ν)k2

y

)
,

(3.6)

and k2 = k2
x + k2

y. It should be emphasized that the asymptotic treatment here

is a short wavelength approximation, that is, the local wavenumber is substan-

tially larger than the reciprocal of the length scales over which the curvature radii

change. For a treatment of the low-frequency, long wavelength asymptotics, see

[138].

The secular equation (3.6) provides a dispersion relation for modes propagat-

ing in curved plates and can be interpreted as a Hamilton function for an under-

lying ray dynamics. The method of characteristics leads to equations of motion
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of the form

ẋ =
∂D
∂kx

, (3.7a)

k̇x = −∂D
∂x

, (3.7b)

describing a ray dynamics for energy transport on curved and homogeneous

smooth thin shells.

The Hamiltonian (3.6) provided the basis for the work in [31, 32] and accounts

for ray dynamics of both bending and in-plane waves at sufficiently high frequen-

cies. For moderate curvature, each of these modes locally defines a separate level

set of D(x, kx; ky, ω) = 0 (see Fig. 3.3, discussed in Sec. 3.2.4). The ratio of radius

of curvature to plate thickness provides a second large parameter, independent

of frequency. This second large parameter can be exploited to use ray equations

for bending modes even for moderate frequencies for which the wavelength of

in-plane modes is not particularly small in comparison with the length scales of

the curved region. In this second regime we find nontrivial deflection of rays

associated with the bending mode, which is the focus of the rest of this chapter.

In order to describe the regime we need a more systematic treatment of the large

and small parameters in the problem, which we provide in the next subsection

by defining scaled variables.
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3.2.3 Scaled variables

In order to more formally identify small and large parameters behind the Eikonal

expansion, we define scaled variables. We start by choosing a length scale L char-

acteristic of the problem: a convenient choice would be the minimum radius of

curvature achieved over the curved section of the shell. Then the scaled plate

thickness

H =
h
L

(3.8)

is a natural small parameter for the problem. Note that since h � R is a nec-

essary condition for the thin shell equations (3.1) to hold in the first place, we

implicitly assume that H � 1 throughout this work. We define corresponding

scaled coordinates and curvature profile

X =
x
L

, Y =
y
L

and K(X) = Lκ(x)

along with the scaled wavenumber variables

Kx = Lkx, Ky = Lky and K = Lk.

We also define a scaled frequency

Ω =
Lω

c
,

where c =
√

E/ρs, and the following scaled wavenumbers

KP = LkP =
√

1− ν2Ω, KS =
√

2(1 + ν)Ω, KB = (12(1− ν2))1/4

√
Ω
H

,

respectively, characterising pressure, shear and bending modes in the flat limit.
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Then the Hamiltonian (3.6) can, after scaling by a constant factor, be written

in terms of these scaled parameters and variables in the following form

D′(X, Kx; Ky, Ω) =(K2 − K2
S)(K

2 − K2
P)(K

4
B − K4)

+
12
H2K

2(X)
[
K2

P(K
2 − K2

S)− (1− ν2)K2
y(K

2
y − K2

S)
]

. (3.9)

Having identified H = h/L as a natural small parameter, in terms of which K =

O(1), we concentrate in the rest of this chapter on a frequency regime such that

Ω = O(1).

Then the in-plane, scaled wavenumbers are similarly such that

KP = O(1) and KS = O(1),

while the scaled bending wavenumber

KB = O
(

1√
H

)
is a large parameter.

We also focus in the following on bending waves whose angle of incidence

is such that Ky ∼ K ∼ KB = O(1/
√

H): then there is no significant coupling to

in-plane modes through the curved section of the plate. In this case the scaled

Hamiltonian can be approximated at leading order by

D′(X, Kx; Ky, Ω) = D′′(X, Kx; Ky, Ω)

(
1 + O

(
1
H

))
,

where

D′′(X, Kx; Ky, Ω) = K4(K4
B − K4)− K

2(X)

Ω2 K4
BK4

y (3.10)
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and assuming that the scaled curvature is K(X) = O(1) in the region of maxi-

mum curvature of the plate. Then the terms remaining in D′′(X, Kx; Ky, Ω) are

both of O(K8
B) = O(1/H4) for bending waves in the curved region, so there is

significant deflection of rays there.

3.2.4 Models of shell geometry and dispersion curves

We now set out explicit examples of dispersion relations obtained from (3.9). For

illustrations of the ray picture we consider a family of curvature functions previ-

ously used in [32], albeit with different parameter values, chosen here so that the

problem behaves generically around the critical case between total transmission

and total reflection of rays. By choosing as the length scale L the minimum radius

of curvature over the curved region, these are in scaled coordinates of the form

K(X) =
f (X)

f (0)
, (3.11)

where

f (X) =
1
2

(
erf
(

X + X∗

δX

)
− erf

(
X− X∗

δX

))
, (3.12)

with the parameters X∗ and δX respectively controlling the location at which the

shell transitions from flat to curved, and the sharpness of that transition.

Fig. 3.2 shows three different curvature profiles used in this chapter, as a func-

tion of real X in part (a) and as X moves along the imaginary axis in part (b):

this latter aspect is relevant to the discussion of complex rays in later sections.



CHAPTER 3. WAVE TRANSITION ON SHELL STRUCTURES 53

(a) (b)

Figure 3.2: Curvature profiles for three different sets of parameter values used

in examples later. (a) curvature K(X) as a function of real X; in each case the

profile is scaled to have a maximum value Kmax = K(0) = 1 here. Part (b)

shows a section of the curvature profiles along the imaginary X-axis: this will be

useful to understand the dynamics of complex orbits in later sections. (Blue thick

solid curves correspond to X∗ = 0.42 and δX = 0.8136, red thin solid curves

to X∗ = 0.7776 and δX = 0.42 and black dashed curves to X∗ = 0.7853 and

δX = 0.2928).
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Going from the blue to the red to the black curve, the profile (as a function of

real X) transitions from a generic quadratic maximum, Gaussian-like in shape,

to one with sharper transition and a rather flat maximum. In all cases, we have

K(X) → 0 in the asymptotic flat regions X → ±∞ and the maximum curvature

Kmax = 1 is achieved at X = 0. The area under each of the curves in Fig. 3.2 is

the total angle over which the plate bends through the curved region. In all the

examples, the two flat regions of the plate are perpendicular to each other: that is,

all curvature profiles in Fig. 3.2 have been fixed to have an area under the curve

equal to π/2.

The curvature along the imaginary X axis, plotted in part (b) of Fig. 3.2, will

play a significant role in understanding the dynamics of complex orbits control-

ling reflection and transmission by tunnelling. For each of the three profiles

shown, there is a local minimum in the imaginary direction. In the case of the

flatter profiles shown in red and especially black, however, this local minimum

is rather shallow and the profile is seen to oscillate, with growing amplitude,

within the window plotted. (In fact even for the profile shown in blue the profile

oscillates further along the imaginary axis, outside of the window plotted.) This

feature becomes important in the treatment of complex rays in later sections.

We next describe explicit dispersion relations obtained in scaled variables, us-

ing the same material properties as in [32], that is, ν = 0.28, E = 195 GPa and ρs =

7700 kg/m3, for which c =
√

E/ρs = 5032ms−1. Then, for example, Kmax = 1

and H = 6× 10−4 is achieved for a shell with thickness 0.5mm and maximum
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radius of curvature 0.833m, while a frequency of f = ω/(2π) = 1009Hz results

in a scaled frequency Ω = 1.05.

Figure 3.3 shows corresponding level sets D′ = 0 defined in the (Kx, Ky) plane

for two fixed values of scaled curvature K and for two values of Ω: an example

with Ω > 1 is shown in (a) and an example with Ω < 1 is shown in (b). In each

case the dashed lines are for the flat limit K = 0, for which the level set consists

of three concentric circles. The outermost level curve corresponds to the bend-

ing mode, the middle level curve corresponds to shear waves and the innermost

to pressure waves. In this limit, the wave velocity of each mode is independent

of the direction of propagation and we note that, for the parameter values cho-

sen here, the bending wavenumber is significantly greater than the two in-plane

wavenumbers (see inset). As curvature increases, the circular symmetry of the

flat limit is increasingly broken and, if the curvature is large enough, the bending

component of the level set becomes non-convex. This transition corresponds to

the green curve in Fig. 3.4. The case illustrated in Fig. 3.3a, for which Ω = 1.05

and Kmax = 1, shown by solid curves, is beyond this transition. If Kmax/Ω > 1

then the dispersion curves undergo a second transition (blue curve in Fig. 3.4) as

the maximum of K(x) is approached. Here the bending curves collide with those

for the in-plane modes and the level set develops a more complex structure for

(Kx, Ky) near (0, 0), as seen in Fig. 3.3(b), for example.

In the following we restrict our attention to rays approaching the curved re-

gion in the bending mode, corresponding to the outermost level curves in Fig. 3.3.
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(a) (b)

Figure 3.3: Dispersion curves, represented by level curves D′ = 0 in the (Kx, Ky)-

plane and for fixed X are illustrated: an example with Ω > 1 is shown in (a) and

an example with Ω < 1 is shown in (b). In each case, the blue dashed curves

represent isotropic dispersion relations for the limit of a flat plate; the outer circle

corresponds to bending modes, the middle circle (see inset) to shear modes and

the smallest circle (see inset) represents pressure modes. The solid blue lines

represent dispersion relations achieved for the maximum value Kmax = 1 of the

curvature profiles in Sec. 3.2.4. In (a), we identify three regions according to how

incoming rays are reflected or transmitted by the curved region: rays with Ky ∈ I

are reflected and with those with Ky ∈ II and III are transmitted. Incident waves

in region II may experience resonant tunnelling, whereas those in region III do

not. We also identify by red dots the values of Ky connecting to fixed points of

the system as explained in more detail in Sec. 3.2.5.
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Figure 3.4: Level curves of the simplified Hamiltonian in (3.10) are plotted in

scaled coordinates for a range of values of scaled frequency Ω. These simplified

dispersion curves do not capture the more complicated structure around (0, 0), as

expanded in insets of Fig. 3.3, but provide a good description of them everywhere

else in the (Kx, Ky)-plane.
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As such rays approach the curved region, the wave vector (Kx, Ky) must stay on

the deforming level set D′ = 0, while Ky remains fixed. To understand the pos-

sible outcomes, we identify three regions for the case Kmax/Ω < 1, labelled I, II

and III, in Fig. 3.3a. A ray starting in region I does not have a compatible wave

vector at the point of maximum curvature, which is an analogue of a ”forbidden

region” in quantum-mechanical scattering. Here the value of Ky is large enough

that the corresponding ray is deflected by the curved region and reflected back

to the flat plate section from which it came. Rays starting in regions II and III

do have compatible wave vectors at the point of maximum curvature: for these

rays the value of Ky is small enough that they can reach the region of maximum

curvature and are transmitted to the other side. The difference between regions

II and III is that in region II new compatible solutions (Kx, Ky) appear as the level

set is deformed: these new solutions are not directly accessible to rays arriving

from the flat region but instead define trapped modes localised in the region of

maximal curvature. Such trapped or localized modes have been shown to exist

in elastic waveguides that have either axial width [149, 150] or axial curvature

variations [151], and they appear to exist in a wide range of elastic geometries

[85, 152]. Gridin et al. [151] showed that trapped modes exist in elastic plates

with bends, and that these modes localise their energy in the regions of maximal

curvature and decrease exponentially towards infinity. Based on simple existence

criteria dependent on Poisson’s ratio, they have provided guidance as to when

trapping occurs. This work is analogous to the asymptotic method developed by
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Kaplunov et al. [149] on localized vibrations in straight plates of varying width

with mixed stress-clamped/free boundary conditions, where trapped modes can

also exist around the places where the thickness is either a minimum or a maxi-

mum. The physical explanation of the existence of localised or trapped modes in

the literature, particularly the work of Gridin et al. [151], is similar to the physical

interpretation of the tapped modes occurrence in our study. The primary math-

ematical difference is that in our model, we employ a thin shell approximation,

and resonances appear as Ky increases, whereas in their model, they employ a

relatively thick bent plate and assume Ky = 0, so trapped modes exist around the

cut-off frequency. There is another distinction, which we will demonstrate in the

following section, in that in our method, the trapped modes decay exponentially

for a while before starting to oscillate again, allowing scattering and resonant tun-

nelling, whereas in Gridin’s work, the trapped modes exponentially decay all the

way to infinity, preventing tunnelling out the trapped modes.

In region III there are no such trapped modes. In the case Kmax/Ω > 1, illus-

trated in Fig. 3.3(b), region III has shrunk to a small gap in which all components

of the dispersion curve interact for (Kx, Ky) near (0, 0).

Our focus here is on the transition between regions I and II, where correspond-

ing incident plane waves transition from being completely reflected to being com-

pletely transmitted. Although there is near complete transmission in region II, for

some incident angles the trapped modes may locally mediate peaks in transmis-

sion in analogy to resonant tunnelling in quantum mechanics [116]. There are
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no such trapped modes in region III and therefore no resonant tunnelling. Al-

though here there is still some small fraction of incident energy reflected for rays

with |Ky| � KB, this is typically so small that it is in practical terms unimpor-

tant. Therefore, although the simplified Hamiltonian (3.10) does not capture the

structure of the dispersion curves near the origin of the (Kx, Ky) plane, as shown

in the insets of Fig. 3.3, it does give a good description of the dispersion curves

around the transition between regions I and II and can be used as a basis to under-

stand the resonant tunnelling calculations to follow. Contours of this simplified

Hamiltonian are illustrated using scaled coordinates in Fig. 3.4. Note that the ring

frequency provides a typical scale for the frequency range in which curvature ef-

fects are important: it is O(1) in the scaled variables used here. For example, for

the material parameters chosen in the illustration above, the general expression

for it, [153]

Ωring =
1√

1− ν2
,

takes the value Ωring = 1.042 .

3.2.5 Phase portrait for bending rays

In this subsection we present the phase portrait obtained in the (X, Kx) plane

from the scaled Hamiltonian in (3.9).

Figure 3.5 shows topologically distinct trajectories for the same parameter val-

ues as used in Fig 3.3. Each of these trajectories in the phase plane is a level curve
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defined by D′(X, Kx; Ky, Ω) = 0. We fix Ω throughout and vary Ky as an initial

condition to obtain different contours. Depending on Ky, rays approaching the

curved part of the plate are reflected, transmitted or approach a fixed point along

a separatrix. These correspond respectively to rays arriving from the flat limit in

regions I, II∪III or the boundary between regions I and II in Fig. 3.3.

Rays approaching the curved region with sufficiently small values of Ky, in

regions II or III in Fig. 3.3, are transmitted to the flat asymptotic region on the

other side of the bend: rays of this type are labelled A in Figure 3.5. As the

magnitude of Ky approaches a threshold value K]
y, corresponding to the boundary

between I and II in Fig. 3.3, the incident ray approaches a separatrix orbit labelled

B in the phase plane of Figure 3.5. The corresponding ray paths form the stable

and unstable manifolds of a fixed point in the phase plane. These form analogues

of dividing surfaces used in chemical reaction theory to divide reactants from

products [154]. The fixed point represents a trajectory moving along the line X =

0, see Fig. 3.5b. When |Ky| > K]
y, rays are deflected by the curved part of the plate:

these are labelled C in Fig. 3.5. When K∗y < |Ky| < K]
y, where K∗y corresponds to

the boundary between regions II and III in Fig. 3.3, there are also topologically

distinct orbits labelled D in Fig. 3.5; these orbits are closed in the (X, Kx) phase

plane. The corresponding ray paths are trapped in the region of the bend and

oscillate along it as shown in Fig. 3.5(c). They are related to trapped bending

modes to be discussed in Section 3.3, see also [151]. These trapped rays cannot be

reached from initial conditions in the flat regions of the plate. Incoming bending
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(a)

(b) (c)

Figure 3.5: (a) Ray dynamics in a phase plane corresponding to a bending mode

moving across a curved plate with the curvature profile shown in Fig. 3.2 (blue

line); the magenta curve (A) is an example of a transmitted ray crossing the

curved region; the red curve (B) corresponds to the ray approaching the fixed

point thus forming a separatrix in the phase plane; the blue curve (C) represents

a reflected ray; the closed yellow curve (D) shows a trapped ray oscillating along

the curved part of the plate. The black crosses signify the fixed points at coordi-

nates (X, Kx; Ky) = (X, K]
x; K]

y). (b), (c) Typical ray paths are shown (schemati-

cally) on the curved plate using the same colour codes as in (a).
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waves can couple into these trapped modes evanescently and these orbits play

an important role in the “resonant tunnelling” mechanisms as set out in Section

3.3.

The key dividing structures in Fig. 3.5 are thus the hyperbolic fixed points

(denoted by black crosses in Fig. 3.5a) at the threshold values Ky = ±K]
y and their

corresponding stable and unstable manifolds shown as red curves. The coordi-

nates of the fixed points (X = 0, Kx = ±K]
x) can be determined by imposing the

conditions

D′(X = 0, K]
x; K]

y, Ω) = 0 and
∂D′

∂Kx
(X = 0, Kx; K]

y, Ω)

∣∣∣∣
Kx=K]

x

= 0 (3.13)

on the scaled Hamiltonian in (3.9). Although the exact solutions of the fixed

point condition (3.13) can not be given in closed form in general, we can find

approximate solutions using the Hamiltonian (3.10). Noting that ∂D′′/∂Kx =

0⇔ ∂D′′/∂K = 0 (at fixed Ky), the second of these conditions then implies

(K]
x)

2 + (K]
y)

2 =
1√
2

K2
B

(
1 + O

(
1
H

))

while the first yields

(
K]

y

)2
=

Ω
2Kmax

K2
B

(
1 + O

(
1
H

))
.

Note, however, that the phase portrait in Fig. 3.5 has been constructed using the

full Hamiltonian D′(X, Kx; Ky, Ω) in (3.9) and not the approximate Hamiltonian

D′′(X, Kx; Ky, Ω) in (3.10).
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It is geometrically simpler to characterise incoming rays by an asymptotic an-

gle of arrival

θ0 = arcsin
Ky

KB

rather than wavenumber component Ky. We denote in particular by θ]0 the asymp-

totic angle of arrival of the separatrix orbit approaching the hyperbolic fixed

point. From the preceding discussion this can be approximated by

θ]0 = arcsin

√
Ω

2Kmax

(
1 + O

(
1
H

))
.

An analysis based solely on the presented phase portrait, the summarised steps

of the calculation are shown in Fig. 3.6, would thus suggest that waves are pre-

dominantly reflected when θ0 > θ]0 and transmitted when θ0 < θ]0. Modification

of this simple ray picture based on tunnelling effects are presented in section 3.3.

3.2.6 Transmission and reflection of bending waves: wave ap-

proach

Wave-based methods mean methods that solve the whole equations of motion for

a given geometry with given boundary conditions and thus are in principle capa-

ble of modelling all the wave’s properties, interference, dispersion, and diffrac-

tion. Their effects are most important in practice for low frequencies, where finite

difference methods (FD), FEM, and BEM are most commonly used. In this work,

we apply FD scheme as described in [32] to solve the shell’s equations of motion

(3.3) numerically.
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Start

X = X0, Kx = KX0

D′(X0, KX0 ; KY, Ω) =

0

Solve for

KY = KY0

X0, KX0 , KY0

Ẋ =
∂D′

∂KX
, K̇X = −∂D′

∂X

Solve for KX,

X

Reflected rays Transmitted rays

Done

Figure 3.6: Steps of calculating phase portrait.
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3.2.7 Wave scattering finite difference solution

The formulation of the scattering problem has been discussed in [32]. The curved

region is connected by means of interfaces with flat plates on each side. One can

formulate a scattering problem, first by imposing a set of conditions on these in-

terfaces to allow to formulate the set of ODEs 3.3 as a boundary value problem,

and afterwards, by considering the flow of incoming and outgoing wave fields on

these interfaces. Presuming that the interfaces sit in asymptotically flat regions

and, as such, the interfaces themselves do not give rise to phenomena of reflec-

tion and transmission; only the interior area between the interfaces regulates the

dispersing properties.

First, for shortness of exposure, the above ODE framework for the scaled dis-

placement vector can be composed in shorthand form

DÛ = 0,

where

Û =
û
L

.

It is assumed that each interface follows the conditions of continuity set out in

Ref. [155], i.e. continuity of displacement, rotation, friction, bending moment

and (Kirchhoff) shear force

U+ = U−, (3.14)

dU+

dX
=

dU−

dX
, (3.15)
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∂2W+

∂X2 + ν
∂2W+

∂Y2 =
∂2W−

∂X2 + ν
∂2W−

∂Y2 , (3.16)

∂3W+

∂X3 + (2− ν)
∂3W+

∂ X∂Y2 =
∂3W−

∂X3 + (2− ν)
∂3W−

∂ X∂Y2 . (3.17)

Because U is just a function of X and the material properties of the entire geome-

try are constant, the interface conditions may be simplified to the following.

U+ = U−, (3.18)

dU+

dX
=

dU−

dX
, (3.19)

d2W+

dX2 =
d2W−

dX2 , (3.20)

d3W+

dX3 =
d3W−

dX3 . (3.21)

The superscripts define each quantity as we reach the interface from either the

inner area ” -” containing the ridge, or the outer regions ” + ” within flat limits

outside the interfaces on either side of the bend. In the following, we will refer

to the internal region as D−, and to the association of the external regions as D+,

see Figure 3.7. The waves (i.e. the wave modes) in D+ that are scattered by D−,

which are essentially those of classical plate theory, will be one (or more) of bend-

ing (b), evanescent bending (e), shear (s) or pressure (p) type. In the vector Û,

Ŵ defines the sum of the bending wave contributions and a linear combination

of Û and V̂ will each give an in-plane wave type. Only bending incident modes

Ŵinc have been considered in this work, coming from the exterior flat limit D+



CHAPTER 3. WAVE TRANSITION ON SHELL STRUCTURES 68

Figure 3.7: The curvature distributions with subdivision for the numerical cal-

culation into interior D− region, a cylindrical ridge with the maximum curva-

ture Kmax, connected to exterior D+ regions, flat plates on either side, where

K(X) = 0. The D+ and D− interfaces are located within the flat regionsK(X) = 0

(which are represented by the green dashed vertical lines). The curvature in-

creases smoothly from the interfaces to K(0) = Kmax for X ∈ D−.

and being scattered by the bend in D−, but it is straightforward to extend to other

incident wave types. Plane wave scattering was considered to investigate direc-

tional properties. In addition, the notation of the location of the interface to the

right of D− is denoted by X = Xr and the interface to the left is correspondingly

denoted by X = Xl. An incident unit amplitude bending wave with associated

wavenumber Kb
x in the X -direction coming in from the left side of D− can then

be written as

Ŵinc (X) = eiKb
x(X−Xl).



CHAPTER 3. WAVE TRANSITION ON SHELL STRUCTURES 69

Also, to write the resulting scattered waves in a descriptive form, XT = X − Xr

and XR = X − Xl have been introduced. Denote the scattered wave type by

the symbols α ∈ {b, e, s, p} and indicate whether the scattered wave is reflected

(R; arising in the same side of the bend as incident wave sent in) or transmitted

(T; arising in the other side of the bend as incident wave sent in) by the symbol

β ∈ {R, T}, then the scattered wave can be written as

φα
β(X) = Aα

β(X)e±iKb
xXβ ,

where the sign ± prescribes by the value of β, positive for β = T and negative

for β = R, and Aα
β demonstrates wave amplitude. The relationship between u

and Aα
β with θ ∈ (−π/2, π/2), representing the angle between X−axis and the

scattered wave directions, can be described as follows

Ûβ(X) = ±Ap
β exp

(
±iKp

x Xβ

)
cos θ − As

β exp
(
±iKs

xXβ

)
sin θ (3.22)

V̂β(X) = Ap
β exp

(
±iKp

x Xβ

)
sin θ ± As

β exp
(
±iKs

xXβ

)
cos θ (3.23)

Ŵβ(X) = Ab
β exp

(
±iKb

xXβ

)
+ Ae

β exp
(
−Kb

x
∣∣Xβ

∣∣) . (3.24)

Therefore, the total wave field in D+ to the left and right of D− are given respec-

tively by

Ûl =
[
ÛR V̂R ŴR + Ŵinc

]′
,

Ûr =
[
ÛT V̂T ŴT

]′
,

where Ûr and Ûl play the role of Û+ on the right and left interfaces, respectively.

By connecting the plane wave ansatz in D+ for Ûl and Ûr described above with
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the interior problem for Û = Û− in D− through the interface conditions (3.18)

to (3.21), the scattering problem can then be generated. The scattering solutions

Ûl and Ûr and the scattering coefficients Aα
β, can be extracted once this scattering

problem is solved.

In the ODE system (3.3), the differential operator D involves both bending

and in-plane waves, along with the coupling between them. Using second order

accurate centered finite difference formulas on a set of equi-spaced grid points,

each of the equations in the system is discretized.

According to the conditions (3.18) to (3.21), the FD solution in D− is matched

to the scattering solution and its derivatives in D+ at the interfaces between D−

and D+. In the FD-solution in D−, derivatives that appear in the coupling con-

ditions are implemented using one-sided finite difference operators with second-

order accuracy. The incident wave in D+ produces a forcing term which drives

the finite difference model in D−. At the left interface, forward difference for-

mulae are used and backward difference formulae at the right interface are used.

Combining the interior finite difference equations with the discretized interface

coupling conditions leads to a matrix problem often form
∗ ∗ 0

∗ D ∗

0 ∗ ∗




R

Û∆

T

 =


∗

0

0
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with scattering coefficients

R =

[
Ab

R Ae
R Ap

R As
R

]T

and

T =

[
Ab

τ Ae
τ Ap

τ As
τ

]T

.

Here, the finite difference solution in the interior of Ω− is represented by

Û∆ =

[
Ûi V̂i Ŵi

]T

, i = 1, . . . , N − 1

As in the previous section, we restrict the analysis to bending excitations. This

implies that only the bending mode is active for smooth joints, with negligible

conversion to in-plane modes. Therefore, the reflection and transmission proba-

bilities become

P( Transmit ) =
∣∣∣Ab

τ

∣∣∣2 and P( Reflect ) =
∣∣∣Ab

R

∣∣∣2 .

In the next section, we compare the results of the numerical solution of the full

wave scattering problem derived and discussed here with the approximations to

be established in the following sections.

3.3 Transmission and reflection of bending waves: res-

onant tunnelling

We describe next how complex ray solutions can be used to describe transmission

and reflection near the critical angle θ]0.
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(a) (b)

Figure 3.8: The fractions of transmitted (blue and yellow) and reflected (red and

green) wave intensities are shown as a function of incident angle for a plane wave

approaching the curved region from the flat limit using (a) a linear scale and (b)

a log scale. Solid lines represent a full wave calculation as discribed in Sec. 3.2.6

using Eq. (3.3); dashed lines represent the approximations described in the text.

The critical angle here is θ]0 = 46.4◦ and the calculations have been done for the

parameter values given in Sec. 3.2.4 and for the curvature profile shown in blue

in Fig. 3.2.

3.3.1 Overview

To give an overview over the features to be described in detail later, we show

the reflection and transmission coefficients, that is, the reflected and transmitted

power as a fraction of the incident power of a plane wave arriving at the bend,

as a function of the incident angle θ0 in Fig. 3.8. The calculations are done for

the curvature profile shown as blue curves in Fig. 3.2. We compare numerical

solutions of the full wave problem (3.3) (blue and red curves) with approxima-
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tions that are to be developed in the remainder of this chapter (green and yellow

dashed curves). For the full-wave solution, we apply a finite difference scheme

as described in the previous section.

The main features are consistent with the ray-dynamical picture outlined in

the previous section. For incoming angles θ0 < θ]0 (with θ]0 = 46.4◦ here), the

transmission coefficient is close to unity and the reflection coefficient is small. In

line with Fig. 3.5, the corresponding rays (of type A) all pass over the curved

region of the shell. Above this threshold, when θ0 > θ]0, the transmitted wave

amplitude falls to zero: this is again consistent with Fig. 3.5, where the corre-

sponding rays (of type C) are all deflected by the curved region.

The results in Fig. 3.8 deviate in two important ways from the simple ray pic-

ture sketched in the previous section (the phase space based solution), however.

First, there is a transition region near the critical angle θ]0 in which the transmis-

sion and reflection coefficients change smoothly rather than discontinuously as a

function of θ0. Second, at angles below this transition region, there are sharp res-

onances which are related to resonant tunnelling facilitated by the trapped orbits

of type D in Fig. 3.5. Both of these features are explained quantitatively in the

next sections by extending the ray analysis to use complex rays.

3.3.2 A graph model using complex rays

In the following, we provide a complex-ray analysis of the transmission and re-

flection coefficients such as plotted in Fig. 3.8. In the quasi one-dimensional case
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here, this can be done most efficiently in a graph model based on the main fea-

tures of the phase-space shown in Fig. 3.5 and, including transitions due to com-

plex orbits leading to tunnelling corrections, in Fig. 3.9. The orbits shown in Fig.

3.9a are the dominant dynamical features describing the behaviour below the

critical point, for which θ0 < θ]0. Fig. 3.9b describes the behaviour for θ0 > θ]0.

The calculations in this section borrow from two approaches in the areas of

wave chaos and semiclassical approximation of quantum mechanics. The first is

the use of graph models (or ”quantum graphs”), in which wave solutions trans-

ported along networks of bonds are connected at vertices by local scattering ma-

trices. Imposing global consistency of such locally connected solutions leads to

explicit solutions for important features of the system as a whole, such as scatter-

ing matrices and resonance conditions. Reference [156] provides a good overview

of the most important results and concepts in this context. Second is the use of

uniform asymptotic approximation to characterise the connection of local WKB

solutions across hyperbolic fixed points, where primitive WKB approximation

breaks down. A detailed exposition of these so-called connection formulae that

is valid for the effectively one-dimensional context needed here can be found in

the classic review article [157] (also see Appendix C for the key principles). We

also note that this topic has had renewed attention in recent years in the context

of chemical reaction rates [154], where transport across phase space bottlenecks is

treated by similar methods, extended to more general Hamiltonians and higher

dimensions: although these reaction-rate problems are physically very distinct,
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their phase-space geometry and WKB approximation are very similar to the prob-

lem at hand [158]. We will not give a detailed re-derivation of the required results

in this chapter but simply quote the most important equations from these refer-

ences.

(a) (b)

Figure 3.9: Phase space dynamics relevant for resonant tunnelling.

Each orbit in phase space can be used to define an approximate solution of

WKB type matching plane waves as x → ±∞ with corrections due to the curved

region near x = 0. We write the full wave solution as linear combinations of these

WKB solutions in each region with corresponding amplitudes (a±, b±, c±, d±) as

denoted in Fig. 3.9. For example, a− denotes the amplitude of a wave incom-

ing from the left and a+ the amplitude of a corresponding outgoing wave to the

right following transmission, whereas d+ denotes a corresponding reflection am-

plitude.

Our aim is to calculate a scattering matrix connecting these amplitudes, de-
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fined so that  a+

d+

 =

 ttot rtot

rtot ttot


 a−

d−

 ≡ σtot

 a−

d−

 . (3.25)

The transmission and reflection coefficients such as those shown in Fig. 3.8 are

then obtained using

T = |ttot|2 and R = |rtot|2.

The scattering process can be schematically displayed in a graph model as shown

in Fig. 3.10. We find the total scattering matrix σtot by subdividing the problem

into local scattering problems and associated node scattering matrices σnode.

We first treat scattering at the nodes of the graph in Fig. 3.10 corresponding to

the region in phase space surrounding either of the two hyperbolic fixed points.

Wave amplitudes connecting local WKB solutions approaching and leaving the

upper fixed point in Fig. 3.9 can be related in the form a+

b+

 =

 tnode rnode

rnode tnode


 a−

b−

 ≡ σnode

 a−

b−

 . (3.26)

We obtain by symmetry for the lower fixed point c+

d+

 = σnode

 c−

d−

 . (3.27)

Explicit formulas can be given for the matrix elements of the node scattering ma-

trix σnode based on a uniform WKB treatment of wave propagation near a hyper-

bolic fixed point, as discussed below.



CHAPTER 3. WAVE TRANSITION ON SHELL STRUCTURES 77

σtot σnode

Figure 3.10: Schematic representation of the graph model.

Wave transport along the bonds between nodes in the graph is achieved by

applying a simple phase shift determined by the optical phase length of the corre-

sponding ray segment. By matching the local WKB solutions between the upper

and lower nodes we may write b−

c−

 =

 0 −i eiS

−i eiS 0


 b+

c+

 ≡ σX

 b+

c+

 , (3.28)

where S denotes a phase integral (or action) of an orbit passing from the upper to

the lower node or vice versa. The details of the transformation σX depends on the

phase conventions used to write each of the local WKB solutions. The factor (−i)

is due to connecting WKB solutions across turning points between nodes [157].

We can use (3.28) to eliminate the amplitudes (b±, c±) from the total scattering

problem and write (3.25) in the form

σtot = tnode I + rnodeσX
1

1− tnodeσX
rnode,

where I denotes the identity matrix. The treatment suggested here is in fact a

special case of constructing a scattering matrix for a wave dynamics on general
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graphs [156]. The total scattering matrix can also be expressed as a sum over

all possible paths between branches approaching and leaving the nodes. Written

explicitly in terms of matrix elements, this matrix equation leads to the following

relations,

rtot =
−i r2

nodeeiS

1 + t2
nodee2iS (3.29a)

and

ttot = tnode

[
1−

r2
nodee2iS

1 + t2
nodee2iS

]
= tnode

[
1 + (t2

node − r2
node)e

2iS

1 + t2
nodee2iS

]
(3.29b)

for total reflection and transmission, respectively.

Resonant tunnelling occurs when the denominator becomes small, that is,

1 + t2
nodee2iS ≈ 0.

Below the critical angle θ]0, we find that transmission across a node is almost total,

so that tnode ≈ 1 and such resonances arise near parameters for which

S =

(
n +

1
2

)
π,

where n is integer. This Bohr-Sommerfeld type quantisation condition is satis-

fied by parameter values near those supporting a trapped, resonant mode con-

fined to the region of maximum curvature and associated with orbits of type D

in Fig. 3.5. Incoming waves couple into such trapped modes at resonance and

show enhanced reflection (and correspondingly depressed transmission), as seen
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in the numerical calculation of Fig. 3.8. We show in the next section that the re-

sults described here allow a detailed quantitative comparison of such resonant

tunnelling effects.

3.3.3 Local scattering matrices

In the following, we will derive the local scattering matrices σnode and σX, start-

ing with σnode. The problem of transmission and reflection of local WKB solu-

tions around a hyperbolic fixed point has been extensively studied in the con-

text of quantum mechanics. In its simplest form, it is understood by solving the

problem of transmission across a quadratic potential barrier [157], (Appendix C

reiterates a few fundamental aspects while emphasising the necessity of WKB ap-

proximation), but can also be treated by using more general transformations of

phase-space coordinates around generic hyperbolic fixed points as we encoun-

tered here: see [154] for a discussion of phase space geometry and [158] for a

corresponding discussion from the point of view of WKB approximation, for ex-

ample.

The main ingredient is to find a complex periodic orbit γi connecting discon-

nected branches of the level curves illustrated in Fig. 3.9. This is obtained by

solving Hamilton’s equations (3.7) while letting the “time” variable run along a

contour in the complex plane. One can show that there are periodic solutions

connecting each pair of branches near a hyperbolic fixed point [158]. These are

illustrated in Figs. 3.11a-3.11b for Ky < K]
y and in Figs. 3.12a-3.12b for Ky > K]

y.
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One finds in this case that the period in complex time is in fact imaginary, and so

is the corresponding orbit action, which we denote

∮
γi

KxdX = 2iΘ, (3.30)

(where Θ is in fact a function of the parameters Ky and Ω). By choosing the

imaginary-time contour to move downwards in the complex plane, the imaginary

action Θ is negative when Ky > K]
y and positive when Ky < K]

y [158]. This leads to

near complete transmission for Ky < K]
y and near complete reflection for Ky > K]

y

as discussed in more detail below.

Note that any such complex periodic orbit is one of a continuous family of

equivalent orbits, so that collectively they define a two-dimensional manifold.

A real starting point can be displaced continuously along the (real) level curve

of the Hamiltonian function, corresponding to the blue curves in Fig. 3.9. Sub-

sequent evolution in imaginary time will generate different periodic curves on

a complexified level set D′(X, Kx; Ky, Ω) = 0 (which defines a manifold of two

real dimensions in complexified phase space), but each of these periodic curves

will have the same period and imaginary action Θ as a consequence of Cauchy’s

theorem.

With an appropriate choice of phase convention for local WKB solutions, the

local reflection and transmission coefficients can then be expressed in the forms

[157, 158]

rnode =
−ie−iδ
√

1 + e−2Θ
, (3.31a)
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(a) (b)

Figure 3.11: Real and complex (tunnelling) orbits are shown for the case Ky < K]
y.

In (a) we provide a 3D representation in which a degree of freedom correspond-

ing to the imaginary part of X is included; in (b) the corresponding projection

onto the real phase plane is shown. Red curves show examples of tunnelling

orbits of imaginary period: for these orbits, real initial conditions can be found,

indicated by green dots, from which integration in imaginary time leads to pe-

riodic evolution largely confined to Re(Kx) and Im(X). There is also a separate

real periodic orbit corresponding to the closed blue curve.
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(a) (b)

Figure 3.12: Real and complex (tunnelling) orbits for the case Ky > K]
y. The for-

mat is similar to Fig. 3.11a-3.11b except that the 3D plot is obtained by including

the imaginary part of Kx rather than of X. As with Fig. 3.11a-3.11b, the red curves

show examples of tunnelling orbits of imaginary period, but note that here dy-

namics is predominantly in components Re(X) and Im(Kx) rather than Re(Kx)

and Im(X). In contrast to Fig. 3.11a-3.11b, where symmetry of reflection in X

suggests a particular real initial condition for each tunnelling orbit, here there are

many, equally plausible real initial conditions. For example, imaginary-time evo-

lution from the turning point (X2, K2) on the right first returns to the real phase

plane at coordinates (−X1, K1), which is not a turning point. Conversely evo-

lution from (X1, K1), which is not a turning point, first returns to the real phase

plane at turning point (−X2, K2).
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and

tnode =
e−Θ−iδ
√

1 + e−2Θ
, (3.31b)

where

δ(Θ) =
Θ
π

log
∣∣∣∣ Θ
πe

∣∣∣∣+ arg Γ
(

1
2
− iΘ

π

)
. (3.32)

Note that σnode is unitary and that, in particular,

|rnode|2 + |tnode|2 = 1.

Note also that the derivation of this result assumes that the fixed point in question

is of generic hyperbolic type [154, 158] which necessitates that the maxima of

the curvature profiles in Fig. 3.2 are quadratic. This is unambiguously true for

the curvature profile represented by blue curves in Fig. 3.2. The maxima for the

other profiles in Fig. 3.2, while being also strictly quadratic, are very shallow, so

that effectively higher-order terms in a normal form representation [154] are in

practice not negligible. The problem is therefore expected to be well described

by these generic results only for extremely small values of the small parameter H

defined in (3.8). The approximations used here are therefore challenged by these

examples but we will find nevertheless that there is qualitative consistency with

the full-wave results, as described in the next section.

There is also a real periodic orbit γr, which defines a real action by

∮
γr

KxdX = 2S. (3.33)
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Below the threshold (|Ky| < K]
y), the closed orbit corresponds to the blue curves

in Fig. 3.11a-3.11b. The action S is then simply the area enclosed by the closed

orbit in the real phase plane. It is this action S that is used to define the matrix

σX in (3.28). A corresponding action can be obtained for |Ky| > K]
y by a some-

what more complicated integration path involving segments of complex evolu-

tion but having overall a net real displacement in the complex time plane. For

example, starting at the top right turning point (X2, K2) in Fig. 3.12b and evolv-

ing in negative imaginary time first returns the trajectory to the real phase plane

at (−X1, K1). From there, evolution in real time brings the orbit to the bottom left

turning point at (−X2,−K2). From here, evolution in positive imaginary time

returns the trajectory to the real phase plane at (X1,−K2) and subsequent evo-

lution in real time brings the orbit back to its starting position at (X2, K2). If the

segments of the imaginary-time evolution are in opposite directions in the com-

plex plane, the net action for this orbit is real, and defines S through (3.33). Again

as a result of Cauchy’s theorem, this real action does not change if the integration

path in the complex time plane is deformed, or alternative initial conditions are

chosen.

3.4 Results

We first test the results of the the graph model described in the previous section

for the curvature profile with a generic quadratic maximum represented by blue
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curves in Fig. 3.2a. A comparison of numerically calculated transmission and

reflection fractions against the predictions of the graph model has already been

shown in Fig. 3.8. We find in this case that there is detailed, qualitative and quan-

titative agreement between the graph models and full-wave numerical results.

This agreement includes both the smooth transition across θ0 = θ]0 and the posi-

tions and shape of resonant scattering peaks for θ0 < θ]0. Above the transition,

there is accurate reproduction of the zeros of the transmitted fraction, evident in

the log plot of part (b).

We have also compared the results of the graph model to the flatter curva-

ture profiles represented by red and black curves in Fig. 3.2, which have been

designed to challenge the assumptions of the model and to test how it might fail.

First, although these profiles have strictly-speaking quadratic maxima, these are

in practice very shallow so that approximations (3.31a-3.31b) would require ex-

tremely small values of the thickness parameter H in order to be valid. Second,

the X coordinate of the tunnelling orbit shown in Fig. 3.11, which is for incidence

below the transition angle, evolves along the imaginary axis. Therefore its dy-

namics uses the profiles shown in Fig. 3.2b. For the flatter profiles these show a

shallow local minimum and then begin to oscillate as a function of Im(X) (the

generic profile in blue also oscillates for large enough Im(X) but at scales that

do not have impact on the calculations here). We will observe that this leads

to bifurcations in the tunnelling orbit that qualitatively affect the reflection and

transmission coefficients.
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(a) (b)

Figure 3.13: Transmission and reflection coefficients shown here using the same

conventions as in Fig. 3.8 but for the intermediate curvature profile represented

by the red curve in Fig. 3.2. The agreement here is still very good, but compared

to Fig. 3.8 small deviations are noticeable especially near θ0 = θ]0 due to the be-

haviour of the curvature profile around X = 0.

For the middle curvature profile (red curve), there is reasonable agreement

across the transition region, as shown in Fig. 3.13, although this agreement is not

as close as in Fig. 3.8. For the flattest profile (black curve in Fig. 3.2), the reflec-

tion and transmission coefficients show reasonable agreement above the transi-

tion (see Fig. 3.14b), but there are significant quantitative differences across the

transition region. Here the second derivative of the curvature profile is so small

at its peak that (3.31a-3.31b) do not adequately describe the behaviour of σnode

near the transition. Far enough above the transition, however, where Θ � 1 and

δ ≈ 0, the primitive approximations rnode ≈ −i and tnode ≈ e−Θ are valid and

agreement is better.
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(a) (b)

Figure 3.14: Transmission and reflection coefficients shown here use the same

conventions as in Fig. 3.8 but for the flattest curvature profile represented by a

black curve in Fig. 3.2. Although quantitative agreement is poor across the tran-

sition region, there is qualitative similarity and features away from the transition

are well reproduced.

Below the transition (where θ0 < θ]0), there are even starker deviations, which

arise due to the oscillation of K(X) along the imaginary axis (see Fig. 3.2b). The

tunnelling orbit undergoes a bifurcation at an incident angle θ[0 below θ]0 (and in

fact θ[0 is quite near θ]0 for the flattest curvature profile). This bifurcation is illus-

trated in Fig. 3.15 for the intermediate curvature profile. In Fig. 3.15b we show a

phase portrait obtained by plotting level curves D′ = 0 of the Hamiltonian (as θ0

or Ky are varied) in a plane with axes (Kx, Im(X)) (where symmetries mean that

D′ remains real): when θ0 = θ[0 the corresponding level curves form a separatrix

dividing a short tunnelling orbit of the form seen in Fig. 3.11 from a more compli-

cated orbit with an extra lobe shown by the red curves in In Fig. 3.15a. Here the
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complex orbit with the smallest imaginary action is obtained by taking a shortcut

across the real orbit shown in green in Fig. 3.15a. It is the action of this truncated

complex orbit that dominates tunnelling rates when θ0 < θ[0.

The detailed behaviour of such complex phase portraits depends critically on

the behaviour of the curvature profile along the imaginary X axis. This behaviour

can be significantly different even for profiles that look quite similar along the real

axis. We therefore do not propose to give a systematic accounting of such addi-

tional structure in this chapter: treatment of conversion rates around the angle θ[0

at which the shortcut appears would require an analysis at least as complicated

as that behind (3.31a-3.31b) and might then need to be revisited for each new

family of curvature profiles treated, if their behaviour along the imaginary X axis

is different. Instead we simply provide a simplified calculation to demonstrate

in broad terms that such bifurcations are able to explain what is observed for the

curvature profiles in Fig. 3.2.

Far enough below the transition, where Θ is negative and large in magnitude

and δ ≈ 0, the primitive approximations rnode ≈ −ieΘ and tnode ≈ 1 are valid. In

plotting the results of the graph model in Figs. 3.13 and 3.14, we have replaced eΘ

by Re(eΘ) for θ0 < θ[0. Because Re(Θ) 6= 0 here, this is an oscillatory function of θ0

and has zeroes, for example. These oscillations and zeroes agree well with those

observed in calculations from the full wave model, seen in Figs. 3.13b and 3.14b.

Such bifircations of the complex tunnelling orbit therefore provide an means of

understanding more complex behaviour in scattering from plate bends.
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(a) (b)

Figure 3.15: Real and complex orbits for the second curvature profile (red line in

Fig. 3.2) are shown for the case Ky < K]
y. Some of the complex orbits with real

initial conditions (X = 0) change geometry due to bifurcations. In (a) the bifur-

cation occurs close to (Re(X), Im(X), Kx) = (0,±0.36, 38); here, the red curves

show examples of tunnelling orbits with imaginary action (long orbits) and the

green curves show examples of tunnelling orbits with real action. In (b), the

phase-space (Kx, Im(X)) of complex orbits with imaginary action for the second

curvature profile are shown.

3.5 Conclusion

We have provided an analysis of the transition between complete reflection and

complete transmission of bending waves incident on a curved section of a thin

shell. The analysis is based on complex ray theory and extends the treatment

based on real ray dynamics provided in [31, 32]. These results allow us to model

a smooth transition where complete transmission turns to complete reflection as
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an incidence angle increases, and also to model resonance effects where reflection

is enhanced by coupling to local modes trapped in the curved region of the plate.

For a generic curvature profile with a simple quadratic maximum, the anal-

ysis works extremely well not only in explaining the smooth transition between

complete reflection and complete transmission, but also reproduces in detail phe-

nomena such as reflection mediated by trapped resonances (resonant tunnelling).

We have also compared the predictions of the model to scattering properties

of curvature profiles with flat maxima. Here the assumptions made to derive the

model begin to fail and we observe quantitative deviations from its predictions.

Nevertheless the model succeeds in describing qualitatively the reflection and

transmission rates calculated numerically from a full wave treatment, including

resonance positions and fluctuations in reflection and transmission rates arising

due to bifurcations of the underlying complex orbit to more complicated forms.

In large build-up systems, determining the distribution of vibrational energy

also reveals apparently random fluctuations. Statistical approaches are preferred

here, which suggest certain assumptions about the underlying ray dynamics,

such as diffusive behaviour. This approach completely avoids the actual ray

dynamics and can explain the generic, universal features of wave systems; the

techniques will be addressed in more detail in the next chapter.



Chapter 4

Sound Radiation

In nature, sound radiation from irregular geometries and complex structures is

stochastic and may approach unpredictable ranges which are difficult to estimate

using conventional deterministic approaches. It is important to model these ra-

diations both in open space and in enclosures in the context of vibro-acoustics

[159]. In this context, a two-point correlation function provides the natural solu-

tion of the structural vibration problem [160]. In addition, by presenting the cor-

relation function as a Wigner function, an explicit quantitative link can be made

between the normal surface velocity correlation function and phase space den-

sities [160]. The Wigner Distribution Function (WDF) method has been created

with regard to quantum mechanics [161], and yet has provided far-reaching ap-

plications also for microwaves [162] and in optics [163, 164]. The method imple-

mented below uses a connection between the field-field correlation function (CF)

and the WDF [165, 166, 167]. Both quantities have been intensively studied in the

91
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physics and optics literatures, as well as in the context of electromagnetic waves

for a planar source [168, 169, 170, 171]. Berry’s conjecture assumes a universal

CF in the presence of ray chaos, which is similar to Gaussian random field cor-

relations [172, 49, 173]. After sufficient averaging, non-universal corrections can

be obtained by making a connection between the Green function of the system

and the CF. This conjecture establishes a connection between the underlying ray

dynamics and random wave fields [27].

In general, prior studies of sound radiation have dealt with simple rectan-

gular plates or strips [43]. Below a critical frequency (the frequency at which a

structural wavenumber matches the acoustic wavenumber) and when the modal

density is low, Berry et al. [174] studied the influence of boundary conditions on

sound radiation. It is well established that the radiation of sound through a given

mode, excited below its modal critical frequency, is due to the edges and corners

of the plate for a finite, simply supported, baffled plate [43]. While for free and

guided boundary conditions the radiation efficiency is almost the same in low

order modes, in higher modes the radiation efficiency is considerably larger than

in the guided boundary condition [175].

In this chapter, we treat the simplest case of homogeneously diffuse fields on

the vibrating structure, corresponding to uniform ray densities in phase space.

We model the diffuse field explicitly as a random superposition of plane waves

using Berry’s conjecture [49], modified near edges to account for boundary con-

ditions. Such diffuse fields are naturally characterised by a two-point correlation
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function, set out in more detail in this chapter. The WDF provides the connection

between DEA and CFs [160] which allows us to account for local variations of this

model. In this study, we will utilize the WDF approach within finite domains,

which may be regularly or irregularly shaped. Furthermore, in this chapter, we

extend DEA towards coupling structural vibration calculations with estimating

acoustic radiation in the surrounding fluid; the method is based on the WDF tech-

nique. In addition, the effect of boundary conditions on sound radiation below

and above the critical frequency is studied as they form a basis for the following

chapter. To highlight the calculation using phase-space methods, we take as an

example the simply supported and guided rectangular plate. A guided bound-

ary is introduced [66] instead of considering a clamped (or free) edge for which

the plate modes are more complicated [44]. The guided boundary has uncon-

strained displacement and zero rotation while the simply supported boundary

has unconstrained rotation but zero displacement. The effect of guided bound-

ary conditions was also explored by Yoo [175].

The objectives of this chapter using the DEA phase-space methods are sum-

marized as follows:

• recovering phase information from the phase space density of the vibrat-

ing structure using the DEA calculation (linking phase space density to the

normal surface velocity CF);

• coupling between the structural waves CF propagating in a vibrating ele-
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ment with acoustic sound radiation;

• calculating the radiation pattern;

• capturing the effects of finite size along with boundary conditions on the

sound radiation field.

A wider goal is later to modify this work to account for variations of the ray

densities described by phase space simulations obtained for example from DEA

calculations.

4.1 Theory of radiation from surfaces based on phase

space densities

4.1.1 Correlation function

Consider a flat plate occupying an area Ω ⊂ R2 as illustrated in Fig 4.2a. Denote

by w the normal surface velocity field of the plate and let kB and kA be the bend-

ing and acoustic wavenumbers respectively. Consider a source normal surface

velocity CF

ΓΩ(x, x′) =
〈
w(x)w∗(x′)

〉
, (4.1)

where 〈.〉 denotes time intervals, frequency or local spatial averaging and x, x′ ∈

Ω. After sufficient averaging, the quantity ΓΩ can be linked to phase space densi-

ties using Wigner transformation [160] as shown below. The WDF of an operator
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is defined as

WΓ(x̄, p) =
∫

e−ikAp·sΓ
(

x̄ +
s
2

, x̄− s
2

)
ds, (4.2)

where s = x− x′ and x̄ = (x + x′)/2 with inverse Wigner transformation given

by

Γ
(
x, x′

)
=

(
kA

2π

)d ∫
eikA(x−x′)·p WΓ

(
x + x′

2
, p
)

dp, (4.3)

d is the dimension of the structure. In physical shells, d = 2.

From the phase-space dynamics, in our case corresponding to a boundary

map or more generally the Poincaré map on a surface of section, one can derive

classical phase space densities ρΩ. The initial density ρ0
Ω can then be related to

a boundary ray density that arrives directly from an internal source distribution.

Mapping the subsequent reflections of the source ray density leads to the iterated

densities ρ0
Ω → ρ1

Ω → · · · ρn
Ω → · · · that can be represented in the lossless limit

[176] in terms of the (linear) integral operator B defined as,

B [ρn
Ω] (X) = ρn−1

Ω

(
ϕ−1(X)

)
=
∫

dX′δ
(
X− ϕ

(
X′
))

ρn−1
Ω

(
X′
)

, (4.4)

where X = (x̄, p) denotes the phase space coordinates on the boundary of the

surface of section ∂Ω (where x̄ ∈ Ω and p ∈ R2 denotes momentum space), and

ϕ : X′ → X is a classical map that defines the flow of trajectories after a single

reflection from the surface of the segment back to itself. The operator B is also

known as Frobenius-Perron (FP) operator [176]. For considering effects such as

absorption and mode conversion, as well as uncertainty, the integral representa-

tion in (4.4) is useful, see [137]. The stationary phase space density ρΩ (x̄, p) on
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the boundary of the plate at a given frequency ω induced by an initial boundary

distribution is then obtained using

ρΩ = BρΩ + ρ0
Ω ⇒ ρΩ =

1
1−B ρ0

Ω =
∞

∑
n=0
Bnρ0

Ω =
∞

∑
n=0

ρn
Ω. (4.5)

Effective computational tools have been developed for the calculation of ρΩ,

and thus indirectly for the mean of ΓΩ. Among these, the fast phase-space propa-

gation method, DEA, is especially applicable for complex structures, which have

been used in a variety of engineering applications, along with the DFM mesh

implementation [135, 136, 30, 39].

Although phase information has been neglected in the DEA method, phase

and interference information can be recovered by linking the phase space density

ρΩ to the normal surface velocity CF, ΓΩ, using the WDF. The classical stationary

density can then be approximated by

ρΩ ≈ 〈WΓ〉 , (4.6)

by choosing appropriate frequency averaging, local (spatial) averaging or both

[160]. Thus, using Eq. (4.6) and Eq. (4.3), the full correlation function ΓΩ can be

written as

〈
ΓΩ
(
x, x′

)〉
=

k2
A

(2π)2

∫
R2

eikAp.(x−x′)ρΩ

(
1
2
(
x + x′

)
, p
)

dp. (4.7)

4.1.2 The random wave model (RWM): Diffuse-field

In both acoustics and elastodynamics, the concept of random or diffusive wave

fields in irregularly formed reverberant bodies has played an important role [177,
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178, 179, 180]. For the sake of simplicity and to better understand the problem,

the simplest case of uniform ray densities in phase space corresponding to homo-

geneously diffuse fields is considered, here

ρΩ(x̄, p) =
4π

k2
A

δ

(
p2 −

k2
B

k2
A

)
. (4.8)

The prefactor in Eq. (4.8) selected to give normalisation in Eq. (4.9). The in-

verse Wigner transform of the phase space density in Eq. (4.8), as defined in Eq.

(4.7), gives the bulk properties of the corresponding diffuse field, which is char-

acterised by a two-point correlation function, which takes the form

Γ0(x, x′) = J0(kB
∣∣x− x′

∣∣), (4.9)

where J0 denotes the zero order Bessel function of the first kind. We assume a pla-

nar plate occupying a region Ω, with x = (x, y) and x′ = (x′, y′) denoting pairs

of points in Ω. The correlation function Γ0 represents the bulk model whenever

x, x′ are far from the boundary ∂Ω. This corresponds to Berry’s conjecture that

the individual eigenfunctions associated with classically chaotic trajectories for

confined quantum waves can be modelled statistically by a plane wave superpo-

sition with fixed wave number k which have been sampled randomly over wave

directions and phases, with average spatial correlation

Γ0(x, x′) =
〈
w(x)w∗(x′)

〉
,

where, in a random phase space model

w(x) =

√
2
N

N

∑
n=1

cos (kBx cos θn + kBy sin θn + φn) .
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Figure 4.1: A mosaic representation of the 4-D correlation function Γ0(x, x′).

The CF for a two-dimensional calculation is a four-dimensional matrix with co-

ordinates (x, y, x′, y′). It is difficult to visualize a four-dimensional matrix, and

we therefore view the CF as a mosaic representation. A mosaic plot is a graphi-

cal technique used to display data from two or more qualitative variables [181],

which shows the same information graphically in either one variable [182] or two

variables [183, 184]. It provides a summary of the data and allows the relation-

ship between different variables to be established. Here, the mosaic represen-

tation contains both (x, y) and (x′, y′) coordinates. Figure 4.1 shows a mosaic

representation of the bulk model of the CF, which is a 2D visualization.

Near boundaries, the model described in (4.9) needs to be modified to include

corrections due to the boundary conditions. In these notes, we consider pseudo

Dirichlet (Dbc) or pseudo Neumann (Nbc) boundary conditions; obviously, such

boundary conditions only apply to second order equations such as the Helmholtz
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equation and may in general serve only as simplified models representing sim-

ply supported or guided boundary conditions for bending modes in plates. Using

the simplified Dirichlet or Neumann boundary conditions serves as a proof-of-

principle demonstration that such boundary corrections dominate acoustic radi-

ation below the critical frequency.

(x, y) = xy

x

Ω

∂Ω

(x′, y′) = x′ Rx′

= (x′,−y′)

(x, y) = x

(x′, y′) = x′ Rx′

(a) (b)

Figure 4.2: (a) Local coordinates and method of images for an arbitrary domain

Ω. (b) Approximation of boundaries in terms of straight edges.

Correlation functions near a boundary, taking into account boundary condi-

tions, have been described by Berry [185] in a boundary-modified random plane-

wave model to satisfy Dbc or Nbc along a straight line. We use these results for

the case of a straight edge, which can be presented as a method-of-images addi-

tion to the bulk correlation function; that is,

ΓΩ(x, x′) = J0(kB
∣∣x− x′

∣∣)± J0(kB
∣∣x−Rx′

∣∣). (4.10)

Here, Rx′ denotes a reflection of x′ through the edge and the ± signs apply to

Nbc and Dbc, respectively. For other boundary conditions, the corrections are
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Figure 4.3: Method of images for a (4m)×(4m) rectangular plate. (0) the bulk

model of the CF is Γ0(x, x′) = J0(kB |(x− x′, y− y′)|); (1)-(4) corresponds to the

”image” of the CF at nearest edge, e.g. (1) is the ”image” of the CF at y0 = −2,

and is Γ1(x, x′) = J0(kB |(x− x′, y + y′ + 4)|); (5-8) corresponds to the ”image of

image” of the CF at nearest corner, e.g. (5) is the ”image of image” of the CF at

(x0, y0) = (−2,−2), and is Γ5(x, x′) = J0(kB |(x + x′ + 4, y + y′ + 4)|).

more complicated but can be obtained using a similar approach. The result above

is valid only for a straight edge but we adapt this to apply approximately near

general boundaries as illustrated in Fig. 4.2.

In the case of a rectangular plate, four ”image” corrections correspond to each

edge and four ”image of image” corrections correspond to each corner should

be applied to the bulk model, e.g. for the configuration in Fig. 4.3, the spatial

representation of the full correlation function, as shown in Fig. 4.3, in Eq. (4.10)
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can be written as

ΓΩ(x, x′) = Γ0(x, x′)±
4

∑
l=1

Γl(x, x′) +
8

∑
ll=5

Γll(x, x′), (4.11)

where Γl(x, x′) is a single image correction based on the distance from the near-

est straight edge and Γll(x, x′) provides higher-order corrections in the form of

”images of images” based on the distance from the nearest corner.

In the next section we give the theory of calculating acoustic pressure p(x, z)

at a point (x, z) = (x, y, z) ∈ R3 from a flat vibrating surface.

4.1.3 Sound Pressure distribution

We use as a basis for our calculation the Kirchoff-Helmholtz equation for irregu-

larly shaped vibrating bodies, which can be further simplified, for planar struc-

tures, to the well-known Rayleigh integral [48]. Using Figure 4.4 for the plate

coordinates, the pressure p at any point (x, z) = (x, y, z), radiated by a vibrating

plate set in an infinite rigid baffle, is then determined by

p(x, z) = − iρ0ω

2π

∫
Ω

w(x′)
eikAR

R
dx′, (4.12)

where R =
√
(x− x′)2 + (y− y′)2 + z2, c0 is the speed of sound in the surround-

ing medium and ρ0 is the fluid density. This can be written in the form of a

convolution [186]

p(x, z) = w(x) ∗ hg(x, z), (4.13)
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Lx

Ly

x

yz ẇ(x′)

p(x, z)

R

(x, z) = (x, y, z)

x′ = (x′, y′)

Figure 4.4: Schematic view of a rectangular plate with a length of Lx and width

of Ly; relation between surface vibration and sound pressure.

where the surface normal velocity w(x) is assumed to be zero beyond the plate

boundary, ∗ denotes a two-dimensional convolution in x (see Appendix A), and

hg(x, z) = −2iρ0ωg(x, z) = −iρ0ω
eikA
√

x2+y2+z2

2π
√

x2 + y2 + z2
, (4.14)

where g(x, z) is Green’s function for the 3D Helmholtz equation.

Taking the Fourier transforms with respect to x and y on both sides of Eq.

(4.13) with the use of Figure 4.5 for the plate coordinates in the momentum do-

main, and then applying the convolution theorem (see Appendix A) we get [186]

P(p, z) = W(p)Hg(p, z), (4.15)

where

Hg(p, z) = F
{

hg(x)
}
= ρ0c0

eikAT(p)z

T(p)
, (4.16)

where P(p, z), W(p) denote the momentum representation of the sound pressure

and the normal surface velocity respectively, z denotes the distance above the
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plate and kAp is the wave-vector component in the (x, y)-plane; Hg(p, z) is the

propagator.

x

y

z

θ

φ

p = (px, py)

T (p) = cos θ

p x
=

co
s φ

sin
θ

py = sin φ sin θ

Figure 4.5: Schematic representation of the coordinates of the plates in momen-

tum space.

In this work, the normal component of the unit wave vector is defined as

[187, 169]

T(p) =


√

1− |p|2 for |p|2 ≤ 1,

i
√
|p|2 − 1 for |p|2 > 1.

(4.17)

The case |p|2 ≤ 1 corresponds to propagation of acoustic waves, which contribute

to the far-field sound radiation, while p2 > 1 corresponds to evanescent propa-

gation, which does not contribute to the far-field sound radiation but maybe de-

tectable in the near-field. In the next section we connect the structural response

from DEA to the sound pressure and for that we need the acoustic correlation

function.
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4.1.4 Propagation of Sound radiation field

The goal of this work is to predict acoustic emissions from complex, noisily driven

vibrating structures using methods that combine well with DEA phase-space sim-

ulation methods. In this setting, we have seen that the vibration and subsequent

radiated acoustic fields are naturally described statistically in the form of field-

field correlation functions. In addition, vibrations and the associated radiation

can also be represented in momentum space due to wave phenomena. This pre-

sentation is often also extremely effective when it comes to explaining the physics

that underlies the phenomenon. Here we work with a correlation function in mo-

mentum representation, defined by

Γp(p, p′; z) =
〈

P(p, z)P∗(p′, z)
〉

, (4.18)

= GH(p, p′; z)ΓΩ(p, p′). (4.19)

where

GH(p, p′; z) =
ρ2

0c2
0

T(p)T∗(p′)
eikAz[T(p)−T∗(p′)] (4.20)

and

ΓΩ(p, p′) = F
{

ΓΩ(x, x′)
}
=
∫

Ω

∫
Ω

e−ikAp.xΓΩ(x, x′)eikAp′.x′ dx dx′, (4.21)

P(p, z) is given in Eq. (4.15) and ΓΩ(x, x′) is given in Eq. (4.7). After propagat-

ing the sound pressure field from the surface of the structure to the distance of

interest, denoted z, the inverse Fourier transformation is applied.

Γp(x, x′; z) = F−1 {Γp(p, p′; z)
}

. (4.22)
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Therefore, the amplitude of the sound pressure field at distance z far from the

planar radiator is then given by

〈
|p(x, z)|2

〉
= Γp(x, x; z). (4.23)

This approach allows us to quantify acoustic radiation from vibrating structures

being approximated by phase-space simulation methods such as DEA. It applies

to arbitrary planar shapes, but in the following we focus on rectangular plates.

y

xL

L

∆s

Lx

Ly

Figure 4.6: Schematic representation of a sampled rectangular plate set in a baffle

for the calculation of sound radiation using the FFT.
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4.2 The Fast Fourier Transform (FFT) method

By using the Fast Fourier Transform (FFT), the velocity transformation described

in Eq. (4.21) can be solved much faster. The FFT is a technique that calculates

the discrete Fourier Transform (DFT) and reduces the number of computations

needed for a data set of size N from O(N2), which arises if one use the tradi-

tional way of computing the numerical integration in the Fourier transform, to

O(N log N) [188]. Furthermore, as a built-in FFT feature is given by many pro-

gramming languages, such as MATLAB, the role of programming it is much min-

imized.

4.2.1 Steps of the calculation

The numerical evaluation of Rayleigh’s integral formula was carried out by Williams

[186] using the FFT algorithm for any shape of planar radiators with any given ve-

locity in the source plane. The main advantage of this approach is its computing

speed, which is much faster than simple two-dimensional numerical integration.

The method is intended to calculate the radiated pressure in the near-field of the

source. Here this method is expanded to provide the intensity of the sound pres-

sure field (matrix) in the near-field as well as in the far-field in order to provide

insight into the radiated sound direction.

The application of this method to compute p(x, z) with FFT can be summa-

rized in the following on the basis of the information of ρΩ(x′, p):
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py

px

dp

p2
x + p2

y = 1

(a)

dp

ΓH (p, p′)

p, p′
p = 1

pole

(b)

Figure 4.7: (a) Radiation circle with sample points in p space. (b) Poles arise when

a sample point coincides with the radiation circle.

• Calculate the inverse Wigner transform of the phase space density ρΩ(x′, p)

to obtain the normal surface velocity correlation function ΓΩ(x, x′);

• Calculate the discrete Fourier transform of ΓΩ(x, x′) using the four-dimensional

FFT algorithm to obtain ΓΩ(p, p′);

• Transform ΓΩ(p, p′) into the acoustic correlation distribution Γp(p, p′; z) us-

ing Eq. (4.19);

• Calculate the inverse discrete Fourier transform (IDFT) using IFFT to get

the acoustic propagated correlation function Γp(x, x′; z).

On each point of a baffled plate with dimensions L× L, the normal surface veloc-

ity correlation function is defined. With the sample spacing of4s, the points are
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sampled. As can be seen in Figure 4.6, the plate itself takes up a region at the cen-

tre of this baffled plate. The normal surface velocity correlation function is equal

to ΓΩ(x, x′) on the surface of the plate and is equal to zero on the rest of the baffle.

Truncation of the FFT leads to so-called replicated sources because the region be-

yond the truncated area (for example, the area beyond that shown in Figure 4.6)

is effectively periodic. L must therefore be chosen to be sufficiently large to avoid

producing a bias error in the analysis due to the pressure field p(x, z) overlapping

with that of the repeated sources.

As can be seen from Eq. (4.20), the propagator ΓH contains singularities at

T(p) = 0 or at T∗(p′) = 0. Therefore, in the evaluation of the integral in Eq.

(4.22) even though the integral value is finite, there is slow convergence when

the values of sample points of the coordinates coincide with the radiation circle

i.e |p| = 1 or |p′| = 1. Figure 4.7 shows when this occurs and a radiation circle

given by the equation |p|2 = p2
x + p2

y = 1 is described in it. The sample points

are shown in the momentum space. For the sampling points inside the radiation

circle, kz = kT(p) is real, and the dots represent the propagation of plane waves

with wave numbers kx = kpx, ky = kpy. On the other hand, kz is imaginary

for points which fall beyond the radiation circle and which represent evanescent

waves. The same is valid for the complex conjugation of kz, i.e. k∗z = kT∗(p). If

the radiation circle crosses a lattice point, our FFT results will fail. The following

strategy, while not systematic, is found to provide sufficiently accurate results.

For example, by selecting the sample points in the middle of rectangular inte-
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gration sections of length dp, the singularity can be avoided (see Fig. 4.6b). The

sample spacing dp must, of course, be selected to be small enough to achieve a

smooth outcome.

kB = 2π
λB

l ∼ O(λB)

θ
θ
2 = sin−1

(
kB
kA

)
θ
2 = tan−1

( r
h

)
r = x− x′

θ
2

z− z′ = h

l

(a) (b)

Figure 4.8: Schematic representation of radiation (a) below and (b) above the crit-

ical frequency.

4.3 Radiation pattern

The distinction between sound radiation from finite structures in the case kB < kA

and in the case kB > kA, for the CF defined in Eq. (4.10), is demonstrated in figure

4.8. The radiated sound pressure level, based on theoretical suggestions, goes to

infinity when kB = kA. In fact, of course, this is not true in reality, because every

real surface is finite in extent. In practice, it should be noted that the sound radia-

tion from finite structures at kB = kA is very large [189]. In addition, the radiated
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py

py

px

(a)

(b)

px

Figure 4.9: Mosaic representation of the 4-D surface normal velocity CF ΓΩ(p, p′)

below the critical frequency kB/kA = 2.5 (i.e. kB > kA) in the momentum space

for (a) plate with Dbcs (b) plate with Nbcs.
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sound decays with distance from the source for finite structures. The frequency

for which kA = kB is called the critical frequency and the principle of a critical

frequency is very important for finite structure sound radiation. The study in this

chapter, while being limited to finite plates, shows that if kB < kA there is very

efficient sound radiation to the surrounding medium at some angle θ, which is

determined by the respective wave vectors of the finite structure. However, un-

like infinite plates, sound radiation may also occur below the critical frequency.

This is mostly due to the presence of end or boundary conditions for mechani-

cal excitation of the structure; for acoustic excitation, it is due to both the forced

response of the structure at the frequency of excitation and the boundary con-

ditions. In the following chapter, these processes of sound radiation from finite

structures at frequencies below the critical frequency will be addressed.

4.4 Results

The results achieved using the mathematical model in the previous sections are

presented in this section. As stated earlier, it is difficult to visualize as a four-

dimensional CF matrix with (x, y, x′, y′) coordinates, and we view it as a mosaic

representation, as the mosaic representation includes both the coordinates (x, y)

and (x′, y′). Figure 4.9 shows mosaic representations of the normal surface veloc-

ity CF in momentum space obtained from Eq. (4.21) with the excitation bending

wavenumber kB = 10 m−1 and corresponding acoustic wavenumber kA = 4 m−1
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py

py

px

(a)

(b)

px

Figure 4.10: Mosaic representation of the 4-D surface normal velocity CF

ΓΩ(p, p′) above the critical frequency kB/kA = 0.7 (i.e. kB < kA) in the momen-

tum space for (a) plate with Dbcs (simply supported plate) (b) plate with Nbcs

(guided boundary conditions).
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(a)
(b)

(c) (d)

Figure 4.11: (a) The CF, Γ̃Ω(px, py, 0, 0), in momentum space for the case kB/kA =

2.5 > 1 setting (p′x, p′y) at (0, 0); (b) diagonal of CF matrix Γ̃p(p, p) in momentum

space in the case kB/kA = 2.5 > 1; (c) The CF, Γ̃Ω(px, py, 0, 0), in momentum

space for the case kB/kA = 0.7 < 1 setting (p′x, p′y) at (0, 0); (d) diagonal of CF

matrix Γ̃p(p, p) in momentum space for the case kB/kA = 0.7 < 1.
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(a) (b)

(c) (d)

Figure 4.12: The scaled acoustic intensity Γp(p, p; z)/(ρ0c0)
2 in the momentum

space below the critical frequency propagated from (a) z = 0 (b) to z = 0.2m;

above the critical frequency propagated from (c) z = 0 (d) to z = 5m.
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for a plate with dimensions given in Fig. 4.1 and having either Dbcs shown in

Fig. 4.9a or Nbcs shown in Fig. 4.9b.

In the case of kB < kA (kB/kA = 0.7), mosaic representations of the results of

the normal surface velocity CF in momentum space are also shown for both bcs

in Fig. 4.10a and Fig. 4.10b. For both boundary conditions, that is Dbcs and Nbcs,

and for both cases kB/kA < 1 and kB/kA > 1, a similar pattern can be seen for the

normal surface velocity CF in the momentum domain which is an impulse ring

at a radius of kB/kA with slightly different amplitude. These results agree with

the phase space density in Eq. (4.8).

We notice that the mosaic representation of CF is unclear, and therefore present

2D CF plots to facilitate better visualization and analysis from here onward. There

are two different ways of presenting the following CF results, even in a two-

dimensional representation. The first way to show CF is to fix (p′x, p′y) coordinates

and plot the CF as a function of (px, py) or vice versa. The coordinate points of

(p′x, p′y) are set to (0, 0) here, as shown in Fig. 4.11a and Fig. 4.11c.

The second way for a four-dimensional CF to be represented in a two-dimensional

plot is to plot the corresponding intensity obtained by setting p = p′ as shown

in Fig. 4.11b and Fig. 4.11d. Basically, this corresponds to the elements along

the diagonal of the CF matrix. The intensity graph allows us to capture the actual

power of the radiated sound pressure field. The maximum amplitude of the mea-

sured signal is provided by the radiation pattern along the CF matrix diagonal.

The plots of the acoustic intensity in the momentum space shown in Fig. 4.12 are
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Figure 4.13: The scaled acoustic intensity |p(x, z)|2/(ρ0c0)
2 below the critical

frequency kB/kA = 2.5: first column corresponds to sound radiation from the

diffuse field propagation measured at different distances; second column corre-

sponds to adding Dbcs to the diffuse field (effect of one image); third column

corresponds to the effect of image of image.
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Figure 4.14: The scaled acoustic intensity |p(x, z)|2/(ρ0c0)
2 below the critical

frequency kB/kA = 2.5: first column corresponds to sound radiation from the

diffuse field propagation measured at different distances; second column corre-

sponds to adding Nbcs to the diffuse field (effect of one image); third column

corresponds to the effect of image of image.
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obtained from Eq. (4.19) by setting p = p′.

From Fig. 4.12 we observe that in the case kB/kA > 1 the ring with radius

kB/kA corresponding to the structure vibration falls outside the radiation circle

|p| = 1. This observation means that the sound radiation of the excited plate

with a wavenumber below the modal critical wavenumber is dominated by the

evanescent components in the near field. This leads to substantial decrease in the

maximum value of sound radiation intensity as we move away from the plate,

as the maximum value of the color bar in Fig. 4.12a, Fig. 4.12b, Fig. 4.13 as well

Fig. 4.14 can be seen to decrease significantly as we step away from the source,

which corresponds to the essential contribution of the evanescent components.

Conversely the ring with the radius kB/kA corresponding to the structure vibra-

tion falls inside the radiation circle |p| = 1 for the case kB/kA < 1. This obser-

vation implies that the sound radiation of the excited plate with a wavenumber

above the critical wavenumber is dominated by the components of the propa-

gated waves and the plate effectively radiates to the far-field in a cone at some

angle θ which is defined in Fig. 4.8 and given by,

θ

2
= sin−1

(
kB

kA

)
. (4.24)

Using the steps of the calculation of sound intensity in the spatial space as defined

in the previous section, the effect of boundary conditions in both cases, that is

below and above the critical frequency, was studied and presented in Fig. 4.13,

Fig. 4.14, Fig. 4.15 and Fig. 4.16. The sound intensity CF calculated in the spatial
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Figure 4.15: The scaled acoustic intensity |p(x, z)|2/(ρ0c0)
2 above the critical

frequency kB/kA = 0.7: first column corresponds to sound radiation from the

diffuse field propagation measured at different distances; second column corre-

sponds to adding Dbcs to the diffuse field (effect of one image); third column

corresponds to the effect of image of image.
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domain Γp(x, x; z) = |p(x, z)|2 is obtained from Eq. (4.22). Below the critical

frequency, sound essentially radiates from the edges and corners of the plate,

while above the critical frequency, the entire surface of the plate radiates sound

into the air (see also Fig. 4.17). Figure 4.13 and Figure 4.14 also show that below

the critical frequency kB/kA > 1, the acoustic disturbances for a finite plate with

either Dbc (Fig. 4.13) or Nbc (Fig. 4.14), are confined to a layer near its boundary

(on the scale of the wavelengths l ' λB as described in Fig. 4.8) and decrease

rapidly with distance away from the plate. We account for boundary conditions

using a single image correction as given in Eq. (4.10) based on the distance from

the nearest straight edge. Here, using a single image correction per edge, the

normal velocity CF for the rectangular plate can be written as

ΓΩ(x, x′) = Γ0(x, x′)±
4

∑
l=1

Γl(x, x′). (4.25)

Higher-order corrections should be included in the exact treatment of boundary

conditions as given in Eq. (4.11). But these are found not to substantially affect

the outcome in the treated wavelength range in the form of ”images of images”

as can be seen in Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16.

Figure 4.17b shows that in the case of kB/kA < 1, the sound radiation intensity

has a cone pattern with an angle given by Eq. (4.24), as we stated earlier. We

have also plotted the sound radiation intensity along the line y = 0 in the case

kB/kA > 1 in Fig4.17a, as can be seen most of the contribution comes from the

edge of plate.
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The effects of both boundary conditions , i.e. Dbc and Nbc, on the sound

radiation below and above the critical frequency are compared in Fig. 4.19. This

results shows that the sound radiation intensity is relatively small and increases

as the frequency increases. Although Fig. 4.19a shows that for kB/kA > 1 the

maximum value of the color bar for the Nbc case is greater than the Dbc case

on the surface of the plate (i.e. z = 0) (this could be due to the presence of the

evanescent components in the near field.), the total radiated power for the Dbc

case is greater than the Nbc case, which is shown in the next chapter. We have

also investigated at the impact of boundary conditions in the case of kB/kA > 1

in Fig. 4.18 near one of the edge of the plate y = 2. These results indicate that

the sound radiation from plates with Nbc gives a greater contribution at z = 0,

but when we step away from the edge, plates with Dbc gives greater contribution

and the average is given by the bulk contribution.

4.5 Conclusions

The statistical properties of wavefunctions in complex or chaotic geometries are

modelled by a random superpositions of plane waves.

The propagation scheme for predicting the sound pressure from complex struc-

ture in both the near-and far-field has been developed by using DEA approxima-

tion. DEA is a phase-space approximation of the wave dynamics, which allows us

to detect the “kinetic” motion of the wave propagation and it can be used to make
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Figure 4.16: The scaled acoustic intensity |p(x, z)|2/(ρ0c0)
2 above the critical

frequency kB/kA = 0.7: first column corresponds to sound radiation from the

diffuse field propagation measured at different distances; second column corre-

sponds to adding Nbcs to the diffuse field (effect of one image); third column

corresponds to the effect of image of image.
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(a) (b)

Figure 4.17: (a) Plot of |p(x, y = 0, z = 0.2)|2/(ρ0c0)
2 with kB/kA = 2.5. (b) Plot

of |p(x, y = 0, z)|2/(ρ0c0)
2 with kB/kA = 0.7.

an analogy between the evolution of underlying ray trajectories in phase-space

and the evolution of waves in configuration space. A method based on the FFT is

proposed for the propagated sound from a baffled flat plate, the physical under-

standing of which is simple and computationally efficient. In addition, finite size

effects and boundary effects on the sound pressure field have been evaluated and

observed in the calculations.

The FFT technique is not efficient where more integration segments are re-

quired to define the baffled area. At low frequency, due to the overlapping pres-

sure, this requires a larger baffle and thus more sample points to overcome the

bias error. In addition, a finer resolution is required to provide good precision

for higher modes that are important at high frequencies. In the next chapter, we

present different ways of calculating the radiation efficiency of finite plates for

diffuse fields. An approximation is proposed for the radiation efficiency of plates
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Figure 4.18: A comparison of acoustic disturbances |p(x, y = 1.8, z = a)|2/(ρ0c0)
2

with kB/kA = 2.5 near the boundary of plates with diffuse field excitation with-

out boundary conditions ( ), with Dbc ( . ) and Nbc ( . ).
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(a)

(b)

Figure 4.19: A comparison of acoustic disturbances |p(x, y, z = a)|2/(ρ0c0)
2 near

the boundary of plates with diffuse field excitation with Dbc and Nbc (a) with

kB/kA = 2.5; (b) with kB/kA = 0.7.
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with different boundary conditions, the physical understanding of which is sim-

ple and computationally accurate. Future research will focus on the performance

of this method against the existing approaches for calculating sound radiation

and modifying the approximation for more complex structure.



Chapter 5

Radiation efficiency of a baffled plate

The purpose of this chapter is to extend the existing methods for calculating the

radiation efficiency of plate-like structures to take into account the distribution

of vibration velocities from phase-space methods such as DEA. In principle, the

radiation efficiency of a plate in the frequency range under consideration can be

obtained as a sum over eigenmodes of plate vibration [190]. The boundary condi-

tions of a vibrating plate, for frequencies below the critical frequency, are known

to affect its sound radiation. To study this effect systematically, a random wave

model (diffuse field) is used to calculate the average radiation efficiency and ra-

diated power for a planar structure set into an infinite baffle. Whereas in the

literature there are analytical expressions for simple structures such as rectangu-

lar plates with simply supported boundary conditions [43] or for edges in guided

conditions [44, 191] (these studies are based on mode shape, but our work, to our

knowledge, is the first to use random plane wave models to explore the effect of

131
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boundary conditions on the sound radiation of the structure), for other cases a

numerical approach is required. Therefore, in order to verify our findings in this

chapter, these two boundary conditions have been considered. Various methods

and approximations have also been used in this chapter to describe the effects

of boundary conditions on acoustic radiation for vibrating, flat plates, where the

plate vibrations are assumed to be diffuse. These methods are then used to obtain

the average radiation efficiency of a rectangular plate set in an infinite baffle. The

results were tested against analytical expressions for the approximation of struc-

tural vibrations using basic approximate formulas for mode shapes and natural

frequencies. Although these methods tested for rectangular plates, the underly-

ing calculation in this chapter extends to plates of arbitrary shape.

5.1 Radiation efficiency of finite plate with boundary

supports

It is essential to be able to calculate the noise radiated by a vibrating structure dur-

ing its design stage in many engineering applications. In most cases, the struc-

tures under consideration, whether industrial equipment, vehicles or civil struc-

tures, such as bridges, can be subdivided into smaller parts; thin vibrating panels

are also critical components responsible for the radiation of noise. A typical tech-

nique to evaluate the noise produced is to calculate the vibrational velocities of

each part and estimate their acoustic power levels and radiation efficiency. Study-
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ing the radiation efficiency of the elementary components is particularly useful

in order to be able to characterize the acoustic performance of the structure they

form.

For an arbitrary structure, the radiation efficiency, denoted σ, is a dimension-

less quantity. It is defined to be the sound power Π radiated from one side of

a vibrating surface, normalised by the sound power Π0 radiated by a large pis-

ton with the same surface area (in the next section, quantitative definitions of

Π and Π0 will be given). It thus describes the efficiency with which the sound

is radiated by the structure compared to a piston with the same surface area

[40, 41, 64, 192, 43] and can be written

σ =
Π
Π0

. (5.1)

The radiation efficiency Eq. (5.1) for free waves on an infinite flat plate [189]

is

σ =


0 for kB > kA,

1√
1−(kB/kA)2

for kB < kA,

(5.2)

where kB denotes structure wavenumber and kA denotes acoustic wavenumber.

Equation (5.2) shows that for a given frequency, if the wavelength of a wave on

an infinite plate is smaller than the acoustic wavelength (i.e. kB > kA) no net

sound is radiated from the plate. On the other hand, if its wavelength is larger

than the acoustic wavelength (i.e. kB ≤ kA) then the plate radiates a sound wave

into the surrounding fluid. Thus this result implies that sound radiation is only
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Figure 5.1: Schematic representation of radiation efficiency for structural vibra-

tion. For kB/kA > 1 acoustic wavelength is longer than vibrational wavelength,

so radiation is suppressed, whereas for kB/kA < 1 acoustic wavelength is shorter

than vibrational wavelength so the plate radiates a sound wave into the sur-

rounding fluid.
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nonzero for waves where its vibrational wavelength is longer than the acoustic

wavelength. If the plate structure is finite, in other words if there are disconti-

nuities, such as boundaries, change of thickness, ribs etc. then at these locations

scattering of waves will result. The Fourier transform of the scattered vibrational

field will generally contain wave components whose wavelength is longer than

the acoustic wavelength (kB < kA) even if the incident waves are such that their

wavelength are smaller than acoustic wavelength ( kB > kA ). These components

will contribute to the acoustic power and radiate acoustic energy. This concludes

that, unlike the infinite plate, the radiation efficiency of the finite plate smoothly

interpolates between kB > kA (evanescent region) and kB ≤ kA (radiation re-

gion) as a function of frequency. The difference between the radiation efficiency

of finite and infinite structures is shown in the schematic representation in Figure

5.1.

In calculations of plate radiation, simply supported boundaries are often used

because this assumption simplifies the calculations. Several authors have re-

viewed other boundary conditions for the baffled case [193, 194, 191, 174]. For

frequencies up to half the critical frequency, Maidanik [193] observed that the

radiation efficiency of a clamped plate is 3 dB higher than that of a plate which

is simply supported. Leppington et al. [194] have also proposed that below the

critical frequency the calculation of a simply supported plate should be adjusted

to approximately 3 dB for a clamped plate. An extended model for five differ-

ent kinds of edge condition, ranging from free to restrained edges has been sug-
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gested by Gomperts [191]. Simple approximations were given in this paper for

the low-frequency range. More edge-constrained plates are shown to often not

have greater radiation efficiencies than those that are less edge-constrained. It

was found that a guided plate has a lower radiation efficiency than that of a sim-

ply supported plate below the first resonance frequency [191]. A plate with a

mixture of simply supported and clamped edges was also found to have about

the same radiation efficiency (difference < 1 dB) as a plate that is simply sup-

ported. Berry et al. [174] have also suggested a formulation for general boundary

conditions. By choosing a family of trial functions matching the geometry of the

boundary conditions, a Rayleigh-Ritz technique was used. For a single forcing

location, the radiation efficiency of multi-modal responses was measured. In the

average sense, apart from the antisymmetric resonances occurring for particu-

lar cases, the radiation efficiency for clamped and simply supported plates was

found to be almost equal. In the cases of guided-guided and free-free edges, the

same phenomenon was also noticed.

As mentioned earlier, the boundary conditions of the vibrating plate are known

to influence its sound radiation for frequencies below the critical frequency. In or-

der to systematically investigate this effect, the simplest case of homogeneously

diffuse field corresponding to uniform ray densities in phase space, including

boundary conditions corrections, which have been already studied in the pre-

vious chapter, is used to calculate the average radiation efficiency and radiated

power of the planar structure set in an infinite baffle in this chapter. We also
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consider pseudo Dirichlet (Dbc) or pseudo Neumann (Nbc) boundary conditions

here, as in the previous chapter, which usually only serve as simplified mod-

els representing simply supported or guided boundary conditions for bending

modes in plates. For the purpose of simplicity, we will refer to pseudo Dirichlet

and pseudo Neumann boundary conditions as Dirichlet and Neumann boundary

conditions from now on.

We present numerous ways to calculate the radiation efficiency of finite plates

assuming diffusive field excitation in the following sections.

5.2 Sound radiation from plate-type structures

In this section, we give an overview of the main features of the derived mod-

els and approximations to be described in detail later for the clarification of the

reader.

As stated in Chapter 4, the common model of wave propagation in complex

or chaotic geometries is the Random Wave Model, in which the statistical proper-

ties of wave functions are modeled and characterised by a two-point correlation

function (diffuse field). Here we recapitulate the most important features.

Denote by w the normal displacement field of the plate. The bulk properties

of the corresponding diffuse field for a simple random superposition of plane

waves is characterised by a two-point correlation function given by

Γ0(x, x′) = J0(kB
∣∣x− x′

∣∣),
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Figure 5.2: For the case α > 1 radiation efficiency σ dominated by contributions

near boundary. In this case, general boundary shape of plates ∂Ω can locally ap-

proximated by straight edge and curvature effects are neglected at leading order.

where J0 denotes zero order Bessel function of the first kind and 〈.〉 denotes fre-

quency or spatial averaging. We assume a planar plate occupying a region Ω,

with x = (x, y) and x′ = (x′, y′) denoting pairs of points in Ω. The correlation

function Γ0 represents the bulk model whenever x, x′ are far from the boundary

∂Ω. Near boundaries, this model needs to be modified to include corrections due

to the boundary conditions.

Recall Eq. (4.10) for the normal surface velocity correlation function ΓΩ(x, x′)

including the bulk contributions with a fixed kB and edge boundary corrections

at y = 0

ΓΩ(x, x′) = J0(kB
∣∣x− x′

∣∣)± J0(kB
∣∣x−Rx′

∣∣), (5.3)

where Rx′ denotes a reflection of x′ through the edge and the ± signs apply to

Nbc and Dbc, respectively.

Radiation efficiency Eq. (5.1) can be extended to take into account the two-
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point correlation function with a more detailed derivation to be followed in Sec.

5.3.1 and Sec. 5.3.3. For a diffuse field, Eq. (5.1) can be used to find the radiation

efficiency σ based on the two-point correlation function ΓΩ inside the domain

according to

σ =
2kA

∫
Ω

∫
Ω g(x, x′)ΓΩ(x, x′) dx dx′∫

Ω ΓΩ(x, x) dx
, (5.4)

where g is the imaginary part of free space Green function in 3D; that is,

g
(
|x− x′|

)
=

sin (kA|x− x′|)
4π|x− x′| = Im G

(
x, x′

)
.

Denoting the ratio between kB and acoustic wave number kA by α , i.e.

α =
kB

kA
,

we find for α < 1, that is, above the critical frequency, that the bulk contribu-

tion dominates and the plate is a good radiator. For α > 1, the bulk contribution

to the integral in the numerator of Eq. (5.4) vanishes in the limit of large plates

(Ω → R2). The integral is then dominated by contributions near the boundary,

see Fig. 5.2, which arise from two mechanisms: (i) as the integral of the bulk con-

tribution to ΓΩ is truncated (the integration domain is finite), phase cancellations

are incomplete near the boundary; (ii) boundary corrections due to modifications

of the bulk correlation function as discussed in Eq. (5.3) – and depending on the

boundary conditions – give significant contributions. Both of these effects are of

the same order.

Interestingly — and somewhat unexpectedly— we also find that the radia-

tion efficiency for the Dirichlet case is larger than for the Neumann case below
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the critical frequency (α > 1). Given that acoustic radiation below α = 1 comes

mainly from the boundaries of a plate, one might have expected intuitively that

the Neumann case with non-zero amplitude on the boundary to be the more effi-

cient radiator in comparison to Dirichlet. Why this is not the case is not immedi-

ately clear from the integral in (5.4); the boundary corrections are oscillatory and

the sign of their net contribution is not obvious in the form given. Therefore, we

give some insight into where the different contributions come from by looking at

various approximations including a large α asymptotics of the expression (5.4).

We further approximate (5.4) in the following manner to better understand

the relative strengths of radiation from Dirichlet and Neumann boundary con-

ditions. For α > 1, we have stated earlier that the radiated power self-cancels

in the integral in the numerator of Eq. (5.4) unless x and x′ are both close to the

boundary (on the scale of the wavelength). For a general boundary shape ∂Ω,

the curvature effects are neglected in the leading order within this layer, see Fig.

5.2, and the integral in Eq. 5.4 is locally approximated by an integration over an

infinite half plane.

We now summarise the main results obtained from the calculation with a

more detailed derivation to follow in Sec. 5.4 and Sec. 5.7. The local calcula-

tion leads us to an approximation of radiation efficiency of the form

σ '
∫

∂Ω dx
A × integrals independent of geometry

=
`

kAπ2A f (α),
(5.5)
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where

f (α) =
∫ 2π

0
dφ
∫ 1

0
dpr

pr√
1− p2

r
√

α2 − p2
r cos2 φ


α2 − p2

r cos2 φ

(α2 − p2
r )

2 Dbc,

p2
r sin2 φ

(α2 − p2
r )

2 Nbc,

` is the perimeter length and A is the area of Ω. The geometry of the plate enters

the expression in Eq. (5.5) via its dependency on A and ` alone, the boundary

conditions have an effect on f (α) only.

From this calculation, we find in Sec. 5.7.2 asymptotic results for f (α) in the

limit α→ ∞ of the form

σ ' 2`
Aπk


1
α3 Dbc,

1
3α5 Nbc.

Surprisingly, the Dirchlet case has not only have a larger radiation efficiency for

α > 1, but its asymptotics differ fundamentally from the Neumann case by scal-

ing with a different power for large α.

5.3 Problem setting

Consider a plate set in an infinite baffle subject to harmonic excitation of the form

e−iωt (which is implied throughout the chapter) radiating into an air-filled half-

space, illustrated in Fig. 5.3. We aim to compute the structure’s sound-radiated

power output in terms of the correlation function of the surface velocities; doing

this instead of the more usual calculation in terms of the surface velocities itself
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Figure 5.3: Geometry of vibrating structure.

allows us to treat the more general case of disordered plate excitation. Analyti-

cal expressions, for arbitrary single-frequency excitation, for the sound radiation

from finite planar surfaces, have been provided by, for example, Junger and Feit

[88], Fahy [40] and Cremer et al [192]. Overall, these solutions are restricted to

the far-field. Theoretical expressions for near-field sound power radiated in ar-

eas near the point of excitation were also given by Cremer et al [192]. In all of

the above studies, Rayleigh’s equation (4.12) is the starting point and analytical

expressions are derived for modal radiated power and radiation efficiency.

In literature, there are two main ways of calculating sound-radiated power.

The first way is to integrate the far-field acoustic intensity over a hemisphere that

contains the source of sound

Π =
∫ 2π

φ=0

∫ π/2

θ=0

|p(r, θ, φ)|2
2ρ0c0

r2 sin θ dθ dφ, (5.6)
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where c0 and ρ0 are the speed of sound in air and the density of air respectively

and p(r, θ, φ) is the acoustic pressure at some point in the far-field which is ob-

tained using Rayleigh’s equation (see Chapter 4). The second route requires the

integration of the acoustic intensity over the surface of the vibrating structure.

This surface, denoted Ω, is finite for baffled radiators, covering only the non-

baffled field. With dx = dxdy, we have

Π =
1
2

Re
{∫

Ω
p(x, 0)w∗(x) dx

}
, (5.7)

where Re{} denotes the real part of the expression in brackets and w∗(x) is the

surface velocity at z = 0 at a location x = (x, y) on the structure, where ∗ refers to

complex conjugation. The second approach will be taken in this work, which will

eventually lead to an expression that describes total sound radiated power for a

fixed kB (or for an individual mode) as a function of frequency obtained from the

phase space method, as shown in Eq. (5.5).

In particular, we will write Eq. 5.7 in terms of surface velocity correlation

function, either in the spatial domain or in the wavenumber domain (or momen-

tum domain), because we are interested in classically chaotic systems or irregular

geometry which is best characterized by a two-point correlation function.

5.3.1 Sound radiation power in the spatial domain

For the planar structure under consideration here, the Rayleigh integral (4.12) for

the acoustic pressure p(x, z) in Eq. (5.7) produces the familiar integral for total
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sound-radiated power [64, 195],

Π =
1
2

Re

{
−iωρ0

2π

∫
Ω

∫
Ω

e−ikA|x−x′|

|x− x′| w∗(x′)w(x) dx′ dx

}
,

=
ωρ0

4π

∫
Ω

∫
Ω

sin (kA|x− x′|)
|x− x′| w∗(x′)w(x) dx′ dx,

= ωρ0

∫
Ω

∫
Ω

g
(
|x− x′|

)
w∗(x′)w(x) dx′ dx, (5.8)

where g is defined by

g
(
|x− x′|

)
=

sin (kA|x− x′|)
4π|x− x′| = Im G

(
x, x′

)
.

Equation (5.8) can be generalised for stationary random fields by taking an en-

semble average over time intervals, frequency or local spatial averaging; that is

w∗(x′)w(x)→ 〈w∗(x′)w(x)〉 ≡ ΓΩ(x, x′). (5.9)

Substituting Eq. (5.9) into Eq. (5.8), the total radiation power can next be written

as

Π = ωρ0

∫
Ω

∫
Ω

g
(
|x− x′|

)
ΓΩ(x, x′) dx′ dx. (5.10)

5.3.2 Sound radiation power in the momentum domain

An equivalent way of evaluating the total radiated power given in Eq. (5.10) is to

transform the surface velocity and the corresponding surface pressure field in Eq.

(5.7) from the spatial domain to the momentum domain via Fourier transforma-

tion. Since, in the case of a finite plate in a rigid baffle, w(x) represents the surface

normal velocity of the plate and is zero on the baffle, the surface normal velocity
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w(x) can also be expressed as an integral over the momentum domain. Refer-

ring to Appendix A for the two-dimensional inverse Fourier transformation, the

surface normal velocity can be written

w∗(x) =
k2

A
4π2

∫
R2

W∗(p)e−ikAp·x dp, (5.11)

and the surface pressure field is

p(x, 0) =
k2

A
4π2

∫
R2

P (p, 0) eikAp·x dp, (5.12)

where W(p), P (p, 0) are Fourier transformation of the surface normal velocity

and the surface pressure respectively, p = (px, py) = (sin θ cos φ, sin θ sin φ) and

dp = dpxdpy. Thus, by substituting Eq. (5.11) and Eq. (5.12) into Eq. (5.7), we

find

Π =
k4

A
32π4 Re

{∫
Ω

∫
R2

∫
R2

P (p, 0)W∗(p′)eikAp·xe−ikAp′·xdp dp′ dx
}

. (5.13)

As the surface normal velocity w(x) is assumed to be zero beyond the plate

boundary, the range of the double integration over the surface Ω can be expanded

to −∞ to ∞ and using the delta function relation (see Appendix A)

k2
A

4π2

∫
R2

eikAp·xe−ikAp′·xdx = δ
(
p− p′

)
, (5.14)

where

δ
(
p− p′

)
= δ

(
px − p′x

)
δ
(

py − p′y
)

.

Substituting Eq. (5.14) into Eq. (5.13) then yields

Π =
k2

A
8π2 Re

{∫
R2

P (p, 0)W∗(p)dp
}

. (5.15)
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At the structure–fluid interface, by using wave and boundary matching the sur-

face pressure in momentum space is related to the momentum representation of

the surface normal velocity by using Eq. (4.15) at z = z′ = 0,

P (p, 0) =
ρ0c0

T(p)
W(p), (5.16)

where T(p) is given in Eq. (4.17). Substituting Eq. (5.16) into Eq. (5.15) the

equation for power becomes,

Π =
ρ0c0k2

A
8π2 Re

{∫
R2

W(p)W∗(p)
T(p)

dp
}

=
ρ0c0k2

A
8π2 Re

{∫
R2

W(p)W∗(p)√
1− p2

dp

}
.

(5.17)

The area within the radiation circle |p| = 1 includes the radiation circle itself,

defined by Ωr, identified by

∫
Ωr

dp ≡
∫
|p|≤1

dp ≡
∫ 1

−1
dpy

∫ √1−p2
y

−
√

1−p2
y

dpx. (5.18)

As the integrand is imaginary for |p| > 1, i.e, no radiation outside of Ωr

Re
{∫

R2

W(p)W∗(p)
T(p)

dp
}
→

∫
Ωr

W(p)W∗(p)
T(p)

dp,

Therefore, the integral (5.17) can be rewritten by restricting the integration limits,

to Ωr, that is,

Π =
ρ0c0k2

A
8π2

∫
Ωr

W(p)W∗(p)
T(p)

dp. (5.19)

Also, Eq. (5.19) can be generalised to stationary random fields by taking an en-

semble average over time intervals, frequency or local spatial averaging

W(p)W∗(p) → 〈W(p)W∗(p)〉 = 〈|W(p)|2〉 = ΓΩ(p, p),
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where ΓΩ(p, p) is the diagonal of the momentum representation of surface nor-

mal velocity ΓΩ(x, x′) with x, x′ ∈ Ω. Thus Eq. (5.19) can be rewritten for random

fields as

Π =
ρ0c0k2

A
8π2

∫
Ωr

ΓΩ(p, p)
T(p)

dp. (5.20)

It is hence shown that Eq. (5.10) and Eq. (5.20) are equivalent when suffi-

cient assumptions are made and both equations lead to comparable outcomes.

Whether to use one equation or the other for a given circumstance is then a mat-

ter of computational convenience.

5.3.3 Radiation efficiency

By combining the sound power radiated Π with the sound power radiated by

a large piston Π0 with the same surface area the radiation efficiency σ (5.1) can

be eventually calculated. If Π is the sound power radiated by the structure with

angular frequency ω to a medium with a density ρ0, having area Ω and with

normal surface velocity w(x), then Π0 is defined by

Π0 =
1
2

ρ0c0

〈
|w(x)|2

〉
=

1
2

ρ0c0

∫
Ω
|w(x)|2 dx =

1
2

ρ0c0

∫
Ω

w(x)w∗(x) dx. (5.21)

Eq. (5.21) can be rewritten in terms of the surface velocity correlation function,

either in the spatial domain,

Π0 =
1
2

ρ0c0

∫
Ω

ΓΩ(x, x) dx, (5.22)
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or in the wavenumber domain (momentum domain),

Π0 =
ρ0c0k2

A
8π2

∫
R2

ΓΩ(p, p) dp, (5.23)

using the same identity as in Eq. (5.14). For this reason, the radiation efficiency

can also be rewritten in two equivalent forms, either using Eq. (5.10) and Eq.

(5.22)

σ =
2kA

∫
Ω

∫
Ω g(x, x

′
)ΓΩ(x, x

′
) dx dx′∫

Ω ΓΩ(x, x) dx
, (5.24)

or using Eq. (5.20) and Eq. (5.23),

σ =

∫
Ωr

ΓΩ(p, p)
1

T(p)
dp∫

R2 ΓΩ(p, p) dp
. (5.25)

The denominator Π0 in Eq. (5.22) for a diffuse field excitation normalised such

that ΓΩ(x, x) = 1 and is equal to

Π0 =
1
2

ρ0c0A. (5.26)

Therefore, we can rewrite Eq. (5.25) using Eq. (5.20) and Eq. (5.26) as

σ =
k2

A
4π2A

∫
Ωr

ΓΩ(p, p)
1

T(p)
dp. (5.27)

Having outlined the general process for the radiation of acoustic power from

plate like structures and the radiation efficiency, let us now carry out a more de-

tailed study by analysing some particular cases of practical interest.
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5.4 Radiation efficiency of finite plate: Diffuse-field

We now demonstrate how the normal surface velocity CF for a finite plate struc-

ture can be written in terms of a normal surface velocity CF for an infinite plane.

Let the confined plate normal surface velocity CF be

ΓΩ(x, x′) = χΩ(x)Γ(x, x′)χΩ(x′), (5.28)

where x, x′ ∈ Rd and Ω is the domain of the plate. χΩ denotes projection onto

functions supported in Ω defined in spatial space by

χΩ(x) =


1 if x ∈ Ω,

0 otherwise.

Thus

ΓΩ(x, x′) =


Γ(x, x′) if x, x′ ∈ Ω,

0 otherwise

Equation (5.3) can be rewritten as

Γ(x, x′) = Γ0(x, x′)± Γ1(x, x′), (5.29)

where

Γ0((x, x′) = J0(αkA
∣∣x− x′

∣∣),
and

Γ1(x, x′) = J0(αkA
∣∣(x− x′, y + y′)

∣∣).
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5.4.1 Correlation function in momentum space with finite-size

effects

Let us denote the Fourier transformation of the terms in Eq. (5.29) as follows.

First

H(p) =
∫

Rd
χΩ(x)e−ikp·x dx =

∫
Ω

e−ikp·x dx, (5.30)

defines a characteristic function of the domain Ω. Then define

Γ̂0(p, p′) =
∫

R2d
Γ0(x, x′)e−ikp·x+ikp′·x′ dx dx′,

=
∫

R2d
J0(αk

∣∣x− x′
∣∣)e−ikp·x+ikp′·x′ dx dx′,

(5.31)

and

Γ̂1(p, p′) =
∫

R2d
Γ1(x, x′)e−ikp·x+ikp′·x′ dx dx′

=
∫

R2d
J0(αk

∣∣(x− x′, y + y′)
∣∣)e−ikp·x+ikp′·x′ dx dx′,

(5.32)

where d denotes the space dimension (here d = 2) and k is acoustic wavenumber

(after shortening the notation; in the previous sections it is denoted by kA). We

perform a change of variables as follows:

s = x− x′, (5.33a)

x̄ =
x + x′

2
, (5.33b)

for position variables and

q = p− p′, (5.33c)

p̄ =
p + p′

2
, (5.33d)
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for momentum variables. Then Eq. (5.31) yields

Γ̂0(p̄− q/2, p̄ + q/2) =
∫

R4
J0(αk |s|)e−ikq·x̄−ikp̄·s ds dx̄

=

(
2π

k

)2

δ (q)
∫

R2
J0(αk |s|)e−ikp̄·s ds

=
16π3

k4 δ (q) δ
(

p̄2 − α2
)

. (5.34)

Thus expressing Eq. (5.34) in terms of the original variables p and p′ we get

Γ̂0(p, p′) =
16π3

k4 δ
(
p− p′

)
δ

((
p + p′

2

)2

− α2

)
. (5.35)

Similarly, we go through the same steps for Γ̂1(p, p′). We perform a change of

variables in the same way as we do in Eq. (5.33). Substituting Eq. (5.33) into Eq.

(5.32) yields

Γ̂1(p̄− q/2, p̄ + q/2) =
∫

R4
J0

(
αk
√

s2
x + (2ȳ)2

)
e−ikq·x̄−ikp̄·s ds dx̄,

=

(
2π

k

)2

δ(qx)δ( p̄y)×∫
R2

J0

(
αk
√

s2
x + (2ȳ)2

)
e−ikqy ȳ−ikp̄xsx dsx dy.

Making use of the relation [196]

J0(α
√

x2 + y2) =
1

2π

∫ 2π

0
dθ cos(α cos θx) cos(α sin θy),
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we obtain

Γ̂1((p̄− q/2, p̄ + q/2) =
2π

k2 δ(qx)δ( p̄y)
∫ 2π

0
dθ

∫
R2

dsx dȳ

× e−ikqy ȳ−ikp̄xsx cos(αksx cos θ) cos(2αkȳ sin θ),

=
2π

k2 δ(qx)δ( p̄y)
∫ 2π

0
dθ F {cos(αksx cos θ)} F {cos(2αkȳ sin θ)} ,

=
16π3

k4 δ(qx)δ( p̄y)
∫ 2π

0
dθ δ

(
p̄2

x − α2 cos2 θ
)

× δ

(
q2

y

4
− α2 sin2 θ

)
|α2 sin θ cos θ|,

=
8π3

k4 δ(qx)δ( p̄y)δ

(
p̄2

x +
(qy

2

)2
− α2

)
. (5.36)

Expressing Eq. (5.36) in terms of the original variables p and p′ we get

Γ̂1(p, p′) =
8π3

k4 δ
(

px − p′x
)

δ

(
py + p′y

2

)
δ

( px + p′x
2

)2

+

(
py − p′y

2

)2

− α2

 .

(5.37)

Now, the Fourier transformation of Eq. (5.28) results in

Γ̂Ω(p, p′) =F
{

χΩ(x)Γ̂(x, x′)χΩ(x′)
}

=

(
2π

k

)−4

H(p) ∗ Γ̂(p, p′) ∗ H̄(p′)

=A(p, p′)± B(p, p′),

where ∗ denotes convolution, H̄ represents conjugate of H, and

A(p, p′) =
(

2π

k

)−4

H(p) ∗ Γ̂0(p, p′) ∗ H̄(p′),

and

B(p, p′) =
(

2π

k

)−4

H(p) ∗ Γ̂1(p, p′) ∗ H̄(p′).
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Using the convolution theorem and Eq. (5.35) we can show that

A(p, p′) =
(

2π

k

)−4 ∫
R4

dp′′ dp′′′ H(p− p′′)Γ̂0(p′′, p′′′)H̄(p′ − p′′′)

=
1
π

∫
R4

dp′′ dp′′′ H(p− p′′)δ
(
p′′ − p′′′

)
× δ

((
p′′ + p′′′

2

)2

− α2

)
H̄(p′ − p′′′)

=
1
π

∫
R2

dp′′ H(p− p′′)δ
(

p′′2 − α2
)

H̄(p′ − p′′).

Converting p′′ = (p′′x , p′′y ) to polar coordinates pr = (pr cos θ, pr sin θ) results in

A(p, p′) =
1

2π

∫ 2π

0
dθ H(p− pα)H̄(p′ − pα) =

〈
H(p− pα)H̄(p′ − pα)

〉
, (5.38)

where pα = (α cos θ, α sin θ) and average 〈·〉 is over direction of pα.

Using similar steps to simplify B(p, p′) yields

B(p, p′) =
(

2π

k

)−4 ∫
R4

dp′′ dp′′′ H(p− p′′)Γ̂1(p′′, p′′′)H̄(p′ − p′′′)

=
1

2π

∫
R4

dp′′ dp′′′ H(p− p′′)δ(p′′x − p′′′x )δ(
p′′y + p′′′y

2
)

× δ

( p′′x + p′′′x
2

)2

+

(
p′′y − p′′′y

2

)2

− α2

 H̄(p′ − p′′′)

=
1
π

∫
R2

dp′′ H(p− p′′)δ(p′′2x + p′′2y − α2)H̄(p′x − p′′x , p′y + p′′y ).

Converting p′′′ = (p′′′x , p′′′y ) to polar coordinates pr = (pr cos θ, pr sin θ) yields

B(p, p′) =
1

2π

∫ 2π

0
dθ H(px − α cos θ, py − α sin θ)H̄(p′x − α cos θ, p′y + α sin θ),

=
1

2π

∫ 2π

0
dθ H(p− pα)H̄(p′x − α cos θ, p′y + α sin θ),

=
〈

H(p− pα)H̄(p′x − α cos θ, p′y + α sin θ)
〉

. (5.39)
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Consequently, Γ̂Ω can be written as

Γ̂Ω(p, p′) =A(p, p′)∓B′(p, p′), (5.40)

where

B′(p, p′) = −B(p, p′), (5.41)

and the ∓ signs apply to Nbc and Dbc respectively. We will demonstrate later in

the chapter that B′ is a positive quantity when structural waves have a wavenum-

ber larger than acoustic wavenumber, i.e. α > 1.

We can simplify A and B by replacing H and H̄ in Eq. (5.38) and Eq. (5.39)

respectively. Recalling Eq. (5.30) for the function H, where H̄ is given by complex

conjugate of Eq. (5.30), we obtain

A(p, p′) =
〈

H(p− pα)H̄(p′ − pα)
〉

,

=
1

2π

∫ 2π

0
dθ
∫

Ω

∫
Ω

e−ik(p−pα).xeik(p′−pα).x′ dx dx′.

Changing the variables x and x′ as in Eq. (5.33) gives

A(p, p′) =
1

2π

∫ 2π

0
dθ
∫

Ωx̄

∫
Ωs

e−ik(p−p′).x̄−ik( p+p′
2 −pα).s ds dx̄,

where Ωx̄ = {x̄ : x̄ = x+x′
2 where x, x′ ∈ Ω} and Ωs = {s : s = x− x′where x, x′ ∈

Ω}; note that Ωx̄ is essentially the domain itself Ω, i.e. Ωx̄ = Ω and Ωs depends

on x̄. Thus

A(p, p′) =
1

2π

∫ 2π

0
dθ
∫

Ωx̄
e−ik(p−p′).x̄ dx̄

∫
Ωs

e−ik( p+p′
2 −pα).s ds. (5.42)
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Similarly, B′(p, p′) can be expressed as

B′(p, p′) =−
〈

H(p− pα)H̄(p′x − α cos θ, p′y + α sin θ)
〉

,

=
−1
2π

∫ 2π

0
dθ
∫

Ω

∫
Ω

e−ik(p−pα).xeik[(p′x−α cos θ)x′+(p′y+α sin θ)y′] dx dx′.

Changing the variables x and x′ as in Eq. (5.33), we get

B′(p, p′) =
−1
2π

∫ 2π

0
dθ
∫

Ωx̄

∫
Ωs

e−ik[(px−p′x)x̄+(py−p′y−2α sin θ)ȳ]

×e−ik[( px+p′x
2 −α cos θ)sx+(

py+p′y
2 )sy] ds dx̄,

Thus

B′(p, p′) =
−1
2π

∫ 2π
0 dθ

∫
Ωx̄

e−ik[(px−p′x)x̄+(py−p′y−2α sin θ)ȳ] dx̄∫
Ωs

e−ik[( px+p′x
2 −α cos θ)sx+(

py+p′y
2 )sy] ds.

(5.43)

Now one can obtain ΓΩ(p, p) from Eq. (5.40),

ΓΩ(p, p) = A(p, p)∓B′(p, p), (5.44)

where we get from Eq. (5.42)

A(p, p) =
1

2π

∫ 2π

0
dθ
∫

Ωx̄
dx̄
∫

Ωs
e−ik(p−pα).s ds, (5.45)

and from Eq. (5.43)

B′(p, p) = − 1
2π

∫ 2π

0
dθ
∫

Ωx̄
e2ikαȳ sin θ dx

∫
Ωs

e−ik[(px−α cos θ)sx+pysy] ds. (5.46)

5.4.2 Rectangular plates

For structures having a corner, the corner correction (image of image correction)

must be added to the correlation function. For a corner joining edge x = 0 and
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y = 0

x = 0

Bulk properties Image

Image Image of image

Figure 5.4: Method of image for a 90◦ corner joining edge x = 0 and y = 0.

y = 0 as shown in Fig. 5.4 the CF can be written as

Γ(x, x′) = J0(kB
∣∣x− x′

∣∣)± J0(kB
∣∣x−Ryx′

∣∣)± J0(kB
∣∣x−Rxx′

∣∣) + J0(kB
∣∣x− R̄x′

∣∣),
(5.47)

where Rxx′ denotes a reflection of x′ through the edge x = 0, Ryx′ denotes a

reflection of x′ through the edge y = 0, R̄x′ denotes a reflection of x′ through

the corner and the ± signs apply to Nbc and Dbc, respectively. Therefore, for the

corner joining edge x = 0 and y = 0, Eq. (5.47) can be written as

Γ(x, x′) = Γ0(x, x′)± Γ1(x, x′)± Γ2(x, x′) + Γ3(x, x′), (5.48)

where Γ0 and Γ1 are given by Eq. (5.47),

Γ2(x, x′) = J0(αkA
∣∣(x + x′, y− y′)

∣∣),
Γ3((x, x′) = J0(αkA

∣∣x + x′
∣∣).
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These additional terms will subsequently be added to the momentum repre-

sentation of CF in Eq. (5.40))

ΓΩ(p, p′) =A(p, p′)∓B′(p, p′)∓C′(p, p′) + D(p, p′), (5.49)

where

C′(p, p′) =−
(

2π

k

)−2d ∫
R2d

dp′′ dp′′′ H(p− p′′)Γ̂2(p′′, p′′′)H̄(p′ − p′′′),

=−
〈

H(p− pα)H̄(p′x + α cos θ, p′y − α sin θ)
〉

,

and

D(p, p′) =
(

2π

k

)−2d ∫
R2d

dp′′ dp′′′ H(p− p′′)Γ̂3(p′′, p′′′)H̄(p′ − p′′′),

=
1
2
〈

H(p− pα)H̄(p′ + pα)
〉

.

The momentum representation C′ can be obtained using similar procedures as B′

and see Appendix D for a derivation of D.

For a rectangular plate of length Ly and width Lx, as shown in the configura-

tion Fig. 4.4, the characteristic function H in Eq. (5.30), and its complex conjugate

H̄ are products of sinc functions. Therefore, the diagonal of the momentum rep-

resentation of normal surface velocity for rectangular plate ΓΩ(p, p) to be substi-

tuted into the radiation efficiency formula Eq. (5.1) can be expressed as

ΓΩ(p, p) =A(p, p)∓2× B′(p, p′)∓2× C′(p, p) + 4× D(p, p), (5.50)

where

A(p, p) =
1

2π

∫ 2π

0

[
sinc

(
kLx(px − α cos θ)

2

)
sinc

(
kLy(py − α sin θ)

2

)]2

dθ,
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B′(p, p) = − 1
2π

∫ 2π

0

[
sinc

(
kLx(px − α cos θ)

2

)]2

sinc
(

kLy(py − α sin θ)

2

)
×sinc

(
kLy(py + α sin θ)

2

)
dθ,

C′(p, p) = − 1
2π

∫ 2π

0
sinc

(
kLx(px − α cos θ)

2

)
sinc

(
kLx(px + α cos θ)

2

)
×
[

sinc
(

kLy(py − α sin θ)

2

)]2

dθ,

and

D(p, p) =
1

4π

∫ 2π

0
sinc

(
kLx(px − α cos θ)

2

)
sinc

(
kLy(py − α sin θ)

2

)
×sinc

(
kLx(px + α cos θ)

2

)
sinc

(
kLy(py + α sin θ)

2

)
dθ.

Thus, the radiation efficiency for a fixed kB can be calculated either by substitut-

ing Eq. (5.50) into Eq. (5.27) or by directly substituting special representations

Eq. (4.11) into Eq. (5.24).

In the next section, the radiation efficiency of mode shape excitation has been

discussed to validate our results.

5.5 Radiation efficiency of finite plate: mode shape

approach

Another method of calculating radiation efficiency of plates is described in this

section and will be compared in the following sections to the methods described

in Sec. 5.4. Since plate vibrations typically include several superimposed modes,

in general, the radiation efficiency of a plate can be achieved by summing up
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all the modes that make a significant contribution to the frequency range under

consideration [197]. The modes radiate essentially independently of each other

in the weak coupling regime studied here. Thus, we approach the radiation effi-

ciency first via a single eigenmode. For convenience, simply supported plate and

guided plate boundaries will be considered.

Denote the structural vibration for an individual mode by wnm. By summing

up all the structural vibration modes of the plate, the surface velocity w(x) can

be found at any position x = (x, y) on the plate. The total power radiated in a

certain direction by a given eigenmode can then be calculated using Eq. (5.6),

which is proportional to the far-field acoustic pressure square |p(r, θ, ϕ)|2. The

radiated acoustic pressure p(r, θ, ϕ) in the fluid at large distances from the plate

is given by Rayleigh’s formula Eq. (4.12). Using the spherical coordinates shown

in Fig. 5.3 [186], we may write

p(r, θ, ϕ) = −iρ0ω
e−ikr

2πr
Ŵnm(p) (5.51)

with

p = (px, py), px = sin θ cos ϕ, py = sin θ sin ϕ,

and where Ŵnm is the Fourier transform of wnm and given by

Ŵnm(p) =
∫

Ω
wnm(x)e−ikx·p dx. (5.52)

The radiated acoustic pressure is thus directly connected to the Fourier transfor-

mation of the plate’s vibration amplitude. Physically, this means that a major role
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is played by spatial coherence effects between various points on the plate. In prac-

tice, for arbitrary plate shapes, the numerical determination of the quantity (5.51)

is a challenging issue, especially for high frequencies in which the spatial struc-

ture of the eigenmode is particularly complex, precisely because of the existence

of these subtle spatial coherence effects [198]. In the previous section, the method

used to solve this problem has been established (by writing the Fourier trans-

formation of the vibration CF of the plate in terms of its characteristic function).

Delande and Sornette have also developed a solution to this issue for arbitrary

membrane shapes [198].

Substituting Eq. (5.51) into Eq. (5.6) results in

Πnm = ρ0c0

∫ 2π

φ=0

∫ π/2

θ=0

k2|Ŵnm(p)|2
8π2 sin θ dθ dφ (5.53)

with k = ω/c0. Radiation efficiency can then be calculated for individual modes

(n, m), kn,m =

√(
nπ
Lx

)2
+
(

mπ
Ly

)2
. Referencing Eq. (5.1), the radiation efficiency

of individual modes (modal radiation efficiency) σmn can be obtained by [43]

σnm =
Πnm

Πnm
0

. (5.54)

In general, wnm is a product of the mode shape function, which depends on

the considered boundary conditions, with the modal velocity amplitude, which

depends on the frequency and the form of excitation. For a simply supported

rectangular plate of length Ly and width Lx as shown in the configuration Fig.

4.4, the mode shape function is a product of sine functions along the x and y
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(a) (b)

(c) (d)

Figure 5.5: Modal radiation efficiencies σnm of simply supported plates (2× 2 m

plate) for the mode order 1: (1,1), 2: (1,2), 3: (1,3), 4: (2,2), 5: (2,3), 6: (3,3) (a) in

a linear-log scale or (b) in a log-log scale; and for mode order 1: (8,8), 2: (1,7), 3:

(1,10), 4: (2,7), 5: (7,7), 6: (9,9) (c) in a linear-log scale or (d) in a log-log scale.
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directions and given by Eq. (2.3) (see Chapter 2). Thus

wnm(x, y) = Anm sin
(

nπx
Lx

)
sin
(

mπy
Ly

)
, (5.55)

where n, m = 1, 2, ..., Anm is the modal velocity amplitude of mode (n, m), kx =

nπ/Lx, ky = mπ/Ly and kn,m =
√

k2
x + k2

y. The corresponding modal natural

frequency is given by

ωnm =

√
B

ρsh

[(
nπ

Lx

)2

+

(
mπ

Ly

)2
]

, (5.56)

where B is the bending stiffness of the plate given by Eq. (2.2) and ρs is the

density of the plate. Thus, the eigenfrequencies for each mode are defined by

fnm = ωnm/2π. Note that kB and kn,m refer here to the structural wavenumber

and the structural modal wavenumber for each mode (n, m), respectively, where,

kB depends on the material properties of the plate and varies continuously with

the frequency,

k2
B = ω

√
ρsh
B

,

while kn,m is fixed through relation (5.55). The critical frequency is defined when

the structural wavenumber kB of a traveling bending wave in the plate is equal to

the acoustic wavenumber kA in the ambient air. In other words, when the phase

velocity of structural bending waves cp equals the speed of sound c0, the critical

frequency is defined [88]. Thus, the critical frequency is given by

ωc = c0kB = c0

√
ρsh
B

.
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(a) (b)

(c) (d)

Figure 5.6: Modal radiation efficiencies σnm of guided plates for the mode order

1: (1,1), 2: (1,2), 3: (1,3), 4: (2,2), 5: (2,3), 6: (3,3) (a) in a linear-log scale and (b) in a

log-log scale; and for mode order 1: (8,8), 2: (1,7), 3: (1,10), 4: (2,7), 5: (7,7), 6: (9,9)

(c) in a linear-log scale and (d) in a log-log scale.
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An analytical solution for Ŵnm has been provided by Wallace [43] for simply

supported rectangular plates by substituting Eq. (5.55) into Eq. (5.52), and is

given by

Ŵnm (ps) =
nmπ2Anm

LxLy

[
(−1)ne−iLxkpx − 1

] [
(−1)me−iLykpy − 1

]
[
(nπ/Lx)

2 − k2p2
x

] [(
mπ/Ly

)2 − k2p2
y

] . (5.57)

The derivation of Eq. (5.57) is given in Appendix B. Substituting Eq. (5.57) into

Eq. (5.53) gives the total power radiated by a single eigenmode for simply sup-

ported plates.

In the case of a rectangular plate with guided boundary conditions and having

the same dimensions (length Ly and width Lx), the mode shape function is a

product of cosine functions along the x and y directions and given by Eq. (2.4)

(see Chapter 2). Thus

wnm(x, y) = Anm cos
(

nπx
Lx

)
cos

(
mπy

Ly

)
, (5.58)

where n, m = 0, 1, 2, ..., kx = nπ/Lx, ky = mπ/Ly and kn,m =
√

k2
x + k2

y. As for

the simply supported plate, the corresponding modal natural frequency is given

by Eq. (5.56). In the same way, substituting Eq. (5.58) into Eq. (5.52) results in the

Fourier transformation of the velocity distribution Ŵnm given by

Ŵnm (ps) = k2px py Anm

[
(−1)ne−iLxkpx − 1

] [
(−1)me−iLykpy − 1

]
[
(nπ/Lx)

2 − k2p2
x

] [(
mπ/Ly

)2 − k2p2
y

] . (5.59)

Substituting Eq. (5.59) into Eq. (5.53) gives the total power radiated by a sin-

gle eigenmode for plates with guided boundary conditions. It is evident from
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Eq. (5.57) and Eq. (5.59) that the main difference between Wnm for the simply

supported plates and the guided plates is a prefactor.

The modal radiation efficiency σnm in Eq. (5.54) for a plate with simply sup-

ported or guided boundary conditions can be expressed as

σnm =
Πnm

ρ0c0A〈w̄2
nm〉

, (5.60)

where the spatially averaged mean-square normal velocity of the plate 〈w̄2
nm〉 is

given by [40, 43, 175]

〈w̄2
nm〉 =



|Anm|2
2

for n = 0 and m = 0

|Anm|2
4

for n = 0 or m = 0

|Anm|2
8

for n 6= 0 and m 6= 0.

It is clear from Eq. (5.53) that the radiated power is directly proportional to

|Ŵnm|2. If we compare Eq. (5.59) to Eq. (5.57), we notice that the guided plate

produces lower sound radiation than the plainly supported plate, because if α =

kn,m/k > 1, |k px py|2 < |kx ky|2, where k2
n,m = k2

x + k2
y and kx = nπ/Lx and

kx = mπ/Ly. These results will also be seen later in the numerical calculation.

The results of the modal approach discussed in this section, together with the

results of the diffusive field method developed in the previous section, will be

presented and compared in the next section.
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5.6 Comparison of the methods

This section is intended to compare the various methods of the radiation effi-

ciency calculation of plates set in an infinite baffle. In order to obtain the radiation

efficiency of the plates, the methods mentioned in Sec. 5.4 and in Sec. 5.5 are eval-

uated numerically. Before discussing the results, we need to highlight that radia-

tion efficiency depends on acoustic and vibrational wavenumber, i.e. σ(k, kB) and

modal radiation efficiency σnm is a function of (k, kn,m). To distinguish between

radiation efficiency assuming diffuse field method or modal approach, denote

σD(k, kB) for radiation efficiency assuming diffuse field.

In order to make comparisons, we first calculate modal radiation efficiencies

σnm, Eq. (5.60), of plates with simply supported and guided boundary conditions

for a subset of modes (n, m). We then evaluate Eq. (5.24) by a straightforward

numerical integration assuming a diffusive field excitation at values of kB corre-

sponds to kn,m for the same modes order (n, m), i.e. σD(k, kB = kn,m). The results

for modal radiation efficiency, which will be seen later in the section, oscillate be-

low the critical frequency and are therefore difficult to compare with the radiation

efficiency of the diffuse field with the values of kB correspond to the same kn,m,

hence the average radiation efficiency must be taken into account. Then in each

case the average radiation efficiency of the possible structural wavenumber is cal-

culated, and the average radiation efficiency for modal response can be defined
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as a summation over all modes that contribute

σ =
1
N

N

∑
m=1

N

∑
n=1

σnm. (5.61)

On the basis of the considered boundary conditions n and m start from either 0

or 1. Note that in practice ∑n,m is limited to a subset or a window of (n, m)’s. The

average radiation efficiency assuming diffuse field can then be calculated using

σ =
1
N

N

∑
m=1

N

∑
n=1

σD(k, kB = kn,m). (5.62)

In these numerical illustrations, we will always consider rectangular plates. Al-

though the purposed methods in this chapter have been tested for rectangular

plates, the underlying calculation applies to plates of arbitrary shape.

Figure 5.5 presents the results for several modes for a simply supported plate,

some of which were also given by Wallace [43]. Results for modes (n, m) of the

same order are shown in Fig. 5.6 for the guided plate, some of which were also

provided by Gompert [44, 191]. In addition, the results for a plate assuming dif-

fusive field excitation at values of kB correspond to kn,m for the same modes order

(n, m), σD(k, kB = kn,m), are shown in Fig. 5.7. The results demonstrate that, as

the frequency increases, the radiation efficiency increases and then converges to

unity above a maximum peak at k = kn,m. For a given mode order, the guided

plate is shown to have a lower radiation efficiency than those of simply supported

plates and plates with diffusive field excitation. For all three cases, however, sim-

ilar radiation efficiency is obtained at and above the modal critical frequency. It

can also be seen from Fig. 5.5, Fig. 5.6 and Fig. 5.7 that the radiation efficiency
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(a) (b)

(c) (d)

Figure 5.7: Radiation efficiencies of plates (2× 2 m plate) assuming diffuse-field

excitation, σD(k, kB = kn,m), without adding boundary corrections obtained by

numerical calculation of Eq. (5.24) at values of kB corresponding to different

modes 1: kB = kn,m = k1,1, 2: kB = k1,2, 3: kB = k1,3, 4: kB = k2,2, 5: kB = k2,3,

6: kB = k3,3 (a) in a linear-log scale and (b) in a log-log scale; and for values of kB

corresponding to 1: kB = k8,8, 2: kB = k1,7, 3: kB = k1,10, 4: kB = k2,7, 5: kB = k7,7,

6: kB = k9,9 (c) in a linear-log scale and (d) in a log-log scale.
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(a) (b)

Figure 5.8: Average radiation efficiencies of plates. (a) Linear-log scale plot for

plates assuming diffuse field excitation ( ) using Eq. (5.62), simply supported

plates (. ) using Eq. (5.61) , guided plates (. ) using Eq. (5.61), and the

mean value of average radiation efficiency of simply supported and guided plates

( ); (b) log-log scale plot.
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(a) (b)

Figure 5.9: A comparison between the average radiation efficiency using the spa-

tial space approach Eq. (5.24) shown in ( ) or the momentum space approach

Eq. (5.27) ( ) of a baffled rectangular plate assuming diffusive field excitation

(a) Linear-log scale; log-log scale plot.

below the critical frequency predominated by low order modes, i.e. increasing

modes order results in significantly smaller radiation efficiency and sharper tran-

sitions from below to above the critical frequency.

Similar results are found for the average radiation efficiency for all three cases,

as shown in Fig. 5.8. Figure 5.8 also shows that the mean value of the average

radiation efficiency of simply supported plates and the average radiation effi-

ciency of guided plates gives the average radiation efficiency of plates assuming

diffusive field excitation.

The main focus now and on words is on the calculation of the radiation effi-
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ciency of the diffuse field.

It can also be shown that the same results for radiation efficiency using the

spatial domain approach Eq. (5.24) are achieved using the momentum domain

approach Eq. (5.27), given in Fig. 5.9. In order to obtain a result with reason-

able precision, the spatial domain method requires a higher resolution of integra-

tion segments, which significantly increases the calculation time. In addition, for

higher modes that are important at high frequencies, a finer resolution is required

to provide good precision.

We account for boundary conditions using a single image correction as given

in Eq. (4.10) based on the distance from the nearest straight edge. An exact treat-

ment of boundary conditions for rectangular plates (or in general plate with cor-

ners) would need to include higher-order corrections in the form of ”images of

images”, as shown in Eq. (4.11) and Fig. 4.3, but these are found not to affect the

result significantly in the wavelength range treated. The numerical evaluation of

Eq. (5.24) is compared to an average of modal radiation efficiencies for considered

boundary conditions in Fig. 5.10.

The results of the numerical calculations of these methods are shown in Fig. 5.10

as a function of the wavenumber ratio 1/α = kA/kB. We note that the averaged

modal calculation agrees well with the diffuse field model.

We find that the radiation efficiency for the Dirichlet case is greater than for

the Neumann case below the critical frequency (α > 1). Given that acoustic ra-

diation above α = 1 comes mainly from the boundaries of a plate, one might
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Figure 5.10: Average radiation efficiency of a baffled rectangular plate under dif-

ferent boundary conditions and assuming different excitation. Assuming diffu-

sive field excitation with Dbc ( ) or Nbc consideration ( ) and assuming

eigenmode excitation for simply supported plates ( ), or guided plates ( ).

have expected intuitively that the Neumann case with non-zero amplitude on

the boundary becomes the more efficient radiator.

Since above the critical frequency α < 1 the radiation efficiency is independent

of the modal wave components, we will therefore restrict our focus to frequencies

below the critical frequency α > 1.

As stated above, radiation efficiency assuming diffusive field excitation in-

cluding boundary contributions using either Eq(5.24) or Eq(5.27) is evaluated by

numerical integration in this section and will be approximated analytically below

the critical frequency later in the chapter.
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In the next section, we give some insight into where the different contributions

come from by looking at various approximations including a large-α asymptotics

of the expression (5.24).

5.7 Boundary correction to radiated power: a local ap-

proximation

Maidanik [41] and Leppington et al. [194] have shown that below the critical

frequency α > 1, radiation from the modes of simply supported plates depends

on the corners and edges of the plate. Therefore, for a diffusive field excitation,

we also expect that the total power radiated from a finite plate also depends on

edge and corner effects.

To better understand the relative strengths of radiation from Dirichlet and

Neumann boundary conditions, we further approximate (5.10) or (5.20) in the

following way. We have stated earlier that, for α > 1, the integral in the total

power radiated self-cancels unless x and x′ are both close to the boundary (on

the scale of the wavelengths). We have also shown in the previous chapter that,

for rectangular plates in the case α > 1, the acoustic disturbances of a finite plate

are confined to a layer near its boundaries and decrease rapidly with distance

away from the plate. In addition, we have shown in the previous section that the

radiation efficiency is relatively small and increases as the frequency increases.

Thus, for general boundary shapes, curvature effects are neglected at leading or-
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Ω

∂Ω

∆x

∂Ω
x + ∆xx

Figure 5.11: Parametrisation of the boundary of an arbitrary shaped plate per unit

length.

der within this layer, see Fig. 5.2, and the integral in Eq. 5.20 can be locally

approximated by an integration over an infinite half plane.

In order to isolate this edge calculation, consider the problem of a semi-infinite

plate in the upper half plane (i.e Ω = {(x, y, z) : y > 0,−∞ < x < ∞, z = 0})

with edge at y = 0, adjoining a rigid baffle in the lower half plane (y < 0,−∞ <

x < ∞, z = 0})) with normal velocity CF given by Eq. (5.28). Recal Eq. (5.10)

Π = ωρ0

∫
Ω

∫
Ω

g
(
|x− x′|

)
ΓΩ(x, x′)dx′ dx,

where g is defined by

g
(
|x− x′|

)
=

sin (k|x− x′|)
4π|x− x′| = Im G

(
x, x′

)
.

We now perform a change of variables as in Eq. (5.33), i.e. (x, x′) → (x̄, s) and

extend Ω for an infinite edge at ȳ = 0. The calculation of the radiated power from

x̄ in a strip of width of4x, see Fig. 5.11, is

Π(x,4x) = ρ0c0k
∫ x+4x

x
dx̄
∫ ∞

0
dȳ
∫ ∞

−∞
dsx

∫ 2ȳ

−2ȳ
dsyg (|s|) ΓΩ(x̄, s). (5.63)
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Denote the radiated power and radiation efficiency per unit length by Πx and σx

respectively. We can now write the radiated power per unit length Πx in terms of

the contribution of the radiated power from a strip of width4x as

Πx =
Π(x,4x)
4x

= ρ0c0k
∫ ∞

0
dȳ
∫ ∞

−∞
dsx

∫ 2ȳ

−2ȳ
dsyg (|s|) ΓΩ(x̄, s). (5.64)

Let’s rewrite the normal surface velocity CF of the confined plate written in Eq.

(5.28) in a semi-infinite plate approximation in terms of the normal surface veloc-

ity CF for an infinite strip of width4x as follows

ΓΩ̃(x̄, s) = χΩ′(x̄, sy)Γ(x̄, s), (5.65)

where x̄, s ∈ Rd,

Ω̃ =
{
(x̄, ȳ, sx, sy) : x̄ ∈ [x, x +4x], ȳ ∈ [0, ∞), sx ∈ (−∞, ∞), and sy ∈ [−2ȳ, 2ȳ]

}
,

Ω′ =
{
(x̄, ȳ, sy) : x̄ ∈ [x, x +4x], ȳ ∈ [0, ∞), and sy ∈ [−2ȳ, 2ȳ]

}
,

and χΩ′ denotes projection onto functions supported in Ω′. Thus

ΓΩ̃(x̄, s) =


Γ(x̄, s) if x̄, sy ∈ Ω′,

0 otherwise.

Now we can rewrite Eq. (5.64) as

Πx =
ρ0c0k
4x

∫
Rd

dx̄
∫

Rd
ds g (|s|) χΩ′(x̄, sy)Γ(x̄, s), (5.66)
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where Γ is given by Eq. (5.29). Integrals in Eq. (5.66) can be further reduced as

follows.

Πx =
ρ0c0k
4x

∫
Rd

dx̄
∫

Rd
ds g(|s|)χΩ′(x̄, sy) [Γ0(x̄, s)±Γ1(x̄, s)] ,

=
ρ0c0k
4x
F
{

g(|s|)χΩ′(x̄, sy) [Γ0(x̄, s)±Γ1(x̄, s)]
} ∣∣∣

q=p̄=0
,

=
ρ0c0k
4x

H ∗ G ∗ Γ0(q, p̄)︸ ︷︷ ︸
Ã

±H ∗ G ∗ Γ1(q, p̄)︸ ︷︷ ︸
B̃

 ∣∣∣
q=p̄=0

(5.67)

where ∗ is convolution,

H(q, p̄) = F
{

χΩ′(x̄, sy)
}
=

2π

k
δ(px)Ĥ(q, p̄y),

G(q, p̄) = F {g(|s|)} = 1
4π

(
2π

k

)3

δ(q)
1

T(p̄)
,

and Γ0(q, p̄) and Γ1(q, p̄) defined in Eq. (5.35) and Eq. (5.37) respectively. For

convenience, we first solve Ã

Ã =

(
2π

k

)−8 ∫
R8

dq′ dq′′ dp′ dp′′ H(q− q′ − q′′, p̄− p′ − p′′)G(q′, p′)Γ0(q′′, p′′),

=
1

4π2

∫
R8

dq′ dq′′ dp′ dp′′ Ĥ(q− q′ − q′′, p̄y − p′y − p′′y )δ( p̄x − p′x − p′′x )δ(q
′)

1
T(p′)

δ(q′′)δ(p′′2 − α2),

=
1

4π2

∫
R4

dp′ dp′′ Ĥ(q, p̄y − p′y − p′′y )δ( p̄x − p′x − p′′x )
1

T(p′)
δ(p′′2 − α2),

=
1

8π2

∫
|p′|≤1

dp′
∫ 2π

0
dθ Ĥ(q, p̄y − p′y − α sin θ)δ( p̄x − p′x − α cos θ)

1
T(p′)

,

=
1

8π2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − ( p̄x − p′x)2[
Ĥ(q, p̄y − p′y −

√
α2 − ( p̄x − p′x)2) + Ĥ(q, p̄y − p′y +

√
α2 − ( p̄x − p′x)2)

]
.
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Therefore,

Ã
∣∣∣
q=p̄=0

=
1

8π2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x[
Ĥ(0,−p′y −

√
α2 − p′2x ) + Ĥ(0,−p′y +

√
α2 − p′2x )

]
.

Now using Eq. (5.30) for Ĥ we get

Ĥ(0,−p′y −
√

α2 − p′2x ) =4 x
∫ ∞

0
dȳ
∫ 2ȳ

−2ȳ
dsy eiksy(p′y+

√
α2−p′2x ),

=4 x
∫ ∞

0
dȳ

2 sin(2ȳk(p′y +
√

α2 − p′2x ))

k(p′y +
√

α2 − p′2x )
,

=4 x
∫ ∞

0
dȳ

sin(ȳk(p′y +
√

α2 − p′2x ))

k(p′y +
√

α2 − p′2x )
,

=
4x

2ik(p′y +
√

α2 − p′2x )

[
−1

ik(p′y +
√

α2 − p′2x )

− 1
ik(p′y +

√
α2 − p′2x )

]
,

=
4x
k2

1
(p′y +

√
α2 − p′2x )2

.

Similarly,

Ĥ(0,−p′y +
√

α2 − p′2x ) =
4x
k2

1
(
√

α2 − p′2x − p′y)2
.

Therefore,

Ã
∣∣∣
q=p̄=0

=
4x

8π2k2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x
.[

1
(
√

α2 − p′2x + p′y)2
+

1
(
√

α2 − p′2x − p′y)2

]
,

=
4x

4π2k2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x

α2 − p′2x + p′2y
(α2 − p′)2 .
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Now we can do the same procedure for B̃

B̃ =

(
2π

k

)8 ∫
R8

dq′ dq′′ dp′ dp′′ H(q− q′ − q′′, p̄− p′ − p′′)G(q′, p′)Γ1(q′′, p′′),

=
1

8π2

∫
R8

dq′ dq′′ dp′ dp′′ Ĥ(q− q′ − q′′, p̄y − p′y − p′′y )δ( p̄x − p′x − p′′x )δ(q
′)

1
T(p′)

δ(q′′x )δ(p′′y )δ(p′′2x +

(
q′′y
2

)2

− α2),

=
1

8π2

∫
R4

dp′ dp′′x dq′′y Ĥ(qx, qy − q′′y , p̄y − p′y)δ( p̄x − p′x − p′′x )
1

T(p′)

δ(p′′2x +

(
q′′y
2

)2

− α2),

=
1

8π2

∫
|p′|≤1

dp′
∫ 2π

0
dθ Ĥ(qx, qy − 2α sin θ, p̄y − p′y)δ( p̄x − p′x − α cos θ)

1
T(p′)

,

=
1

8π2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − ( p̄x − p′x)2

[
Ĥ(qx, qy − 2

√
α2 − ( p̄x − p′x)2, p̄y − p′y)

+ Ĥ(qx, qy + 2
√

α2 − ( p̄x − p′x)2, p̄y − p′y)
]

.

Thus

B̃
∣∣∣
q=p̄=0

=
1

8π2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x[
Ĥ(0,−2

√
α2 − p′2x ,−p′y) + Ĥ(0, 2

√
α2 − p′2x ,−p′y)

]
.
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Now using Eq. (5.30) for Ĥ we get

Ĥ(0, 2
√

α2 − p′2x ,−p′y) =4 x
∫ ∞

0
dȳ e2ikȳ

√
α2−p′2x

∫ 2ȳ

−2ȳ
dsy eikp′ysy ,

=4 x
∫ ∞

0
dȳ e2ikȳ

√
α2−p′2x

2 sin(2kp′yȳ)
kp′y

,

=
4x
kp′y

∫ ∞

0
dȳ eikȳ

√
α2−p′2x sin(kp′yȳ),

=
4x

2ikp′y

[
−1

ik(
√

α2 − p′2x + p′y)

+
1

ik(
√

α2 − p′2x − p′y)

]
,

=
4x
k2

−1
α2 − p′2

.

Similarly

Ĥ(0,−2
√

α2 − p′2x ,−p′y) =
4x
k2

−1
α2 − p′2

.

Therefore,

B̃
∣∣∣
q=p̄=0

=
4x

8π2k2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x
.[

−1
α2 − p′2

+
−1

α2 − p′2

]
,

=
−4 x
4π2k2

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x

1
α2 − p′2

.

Therefore after substituting Ã and B̃ back to Πx in Eq. (5.67) we get

Πx =
ρ0c0

4kπ2

∫
|p|≤1

dp′
1

T(p′)
√

α2 − p′2x[
α2 − p′2x + p′2y
(α2 − p′)2 ∓

1
α2 − p′2

]
.
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This implies

Πx =
ρ0c0

2π2k

∫
|p′|≤1

dp′
1

T(p′)
√

α2 − p′2x


α2 − p′2x

(α2 − p′2)2 Dbc

p′2y
(α2 − p′2)2 Nbc

(5.68)

Therefore, the total power radiated of a semi-infinite plate per unit length can

be written as

Πx =
ρ0c0

2π2k
f (α) (5.69)

where

f (α) =
∫ 2π

0
dφ
∫ 1

0
dpr

pr√
1− p2

r
√

α2 − p2
r cos2 φ


α2 − p2

r cos2 φ

(α2 − p2
r )

2 Dbc

p2
r sin2 φ

(α2 − p2
r )

2 Nbc

(5.70)

Recall Eq. (5.27) for the radiation efficiency per unit length

σx =
Πx

Π0
=

Πx
1
2
Aρ0c0

. (5.71)

Substituting Eq. (5.69) into Eq. (5.71) leads us to an approximation of radiation

efficiency of the form

σ =
∫

∂Ω
σx dx '

∫
∂Ω dx
A × integrals independent of geometry

=
`

kπ2A f (α),

(5.72)

where ` is the length of boundary of geometry. Note that the geometry of the

plate enters this expression via its dependency on A and ` alone, the boundary

conditions have an effect on f (α) only.

An alternative way of approximating (5.10), which is obtained by approximat-

ing (5.20) for a semi-infinite plate, is discussed in the next section.
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5.7.1 Local approximation of boundary contribution: momen-

tum space approach

The momentum domain approach is an alternative way of approximating total

radiated power for a semi-infinite plate. In this section we use it to provide a

second derivation of Eq.s (5.69), (5.71) and (5.72).

Recall Eq. (5.20) for the total radiated power in momentum space,

Π =
ρ0c0k2

8π2

∫
Ωr

ΓΩ(p, p)
T(p)

dp.

The momentum representation of the CF, ΓΩ(p, p), in Eq. (5.44) for a semi-infinite

plate with an edge at y = 0, where Ω = {(x, y, z) : y > 0,−∞ < x < ∞, z = 0}),

for a strip of width4x can be expressed as

ΓΩ̃(p, p) = A(p, p)∓B′(p, p), (5.73)

for Nbc/Dbc (+/-) respectively, A(p, p) and B′(p, p) on an infinite strip domain

Ω̃, as shown in Fig. 5.11, are given by Eq. (5.45) and Eq. (5.46) respectively, where

Ω̃ =
{
(x̄, ȳ, sx, sy) : x̄ ∈ [x, x +4x], ȳ ∈ [0, ∞), sx ∈ (−∞, ∞), and sy ∈ [−2ȳ, 2ȳ]

}
.

Thus, from Eq. (5.45) we get

A(p, p) =
1

2π

∫ 2π

0
dθ
∫ x+4x

x
dx̄
∫ ∞

0
dȳ
∫ ∞

−∞
dsx

∫ 2ȳ

−2ȳ
dsy e−ik(p−pα).s, (5.74)

and from Eq. (5.46) we get

B′(p, p) =
−1
2π

∫ 2π

0
dθ
∫ x+4x

x
dx̄
∫ ∞

0
dȳ e2ikαȳ sin θ

∫ ∞

−∞
dsx

×
∫ 2ȳ

−2ȳ
dsy e−ik[(px−α cos θ)sx+pysy]. (5.75)
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The total radiated power per unit length Πx can then be obtained from

Πx =
ρ0c0k2

8π24 x

∫
Ωr

ΓΩ̃(p, p)
T(p)

dp. (5.76)

The integrals in Eq. (5.74) and Eq. (5.75) can be further reduced as follows. Rear-

ranging Eq. (5.74) yields

A(p, p) =
4x
2π

∫ 2π

0
dθ
∫ ∞

0
dȳ
∫ ∞

−∞
dsx e−ik(px−α cos θ)sx

∫ 2ȳ

−2ȳ
dsy e−ik(py−α sin θ)sy ,

=
4x

k

∫ 2π

0
dθ δ(px − α cos θ)

∫ ∞

0
dȳ

2 sin(2kȳ(py − α sin θ))

k(py − α sin θ)
,

=
4x
k2

∫ 2π

0
dθ

δ(px − α cos θ)

py − α sin θ

∫ ∞

0
dȳ e−aȳ sin(kȳ(py − α sin θ))︸ ︷︷ ︸

Laplace transformation L

∣∣∣∣∣
a=0

As we concentrate on below the critical frequency, i.e. α > 1, and the radiation

circle corresponds to |p|2 < 1 and thus p2 6= α2. Therefore, using the fact that, for

b 6= 0

L {sin(bx)} (a)

∣∣∣∣∣
a=0

=
b

a2 + b2

∣∣∣∣∣
a=0

=
1
b

.

We further simplify the integrand as

A(p, p) =
4x
k2

∫ 2π

0
dθ

δ(px − α cos θ)

py − α sin θ

1
k(py − α sin θ)

Now using the fact that

α sin θ = ±
√

α2 − α2 cos2 θ,
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we arrive at

A(p, p) =
4x

k3
√

α2 − p2
x

1(
py −

√
α2 − p2

x

)2 +
1(

py +
√

α2 − p2
x

)2 ,

=
24 x

k3
√

α2 − p2
x

p2
y + α2 − p2

x(
p2

y − α2 + p2
x

)2 ,

=
24 x

k3
√

α2 − p2
x

p2
y − p2

x + α2

(α2 − p2)
2 . (5.77)

A similar procedure can be applied for B′(p, p). Rearranging Eq. (5.75) yields

B′(p, p) =
−4 x

2π

∫ 2π

0
dθ
∫ ∞

0
dȳ e2ikαȳ sin θ

∫ ∞

−∞
dsx e−ik(px−α cos θ)sx

∫ 2ȳ

−2ȳ
dsy e−ikpysy ,

=
−4 x

k

∫ 2π

0
dθ δ(px − α cos θ)

∫ ∞

0
dȳ e2ikαȳ sin θ

∫ 2ȳ

−2ȳ
dsy e−ikpysy ,

=
−4 x

k

∫ 2π

0
dθ δ(px − α cos θ)

∫ ∞

0
dȳ e2ikαȳ sin θ 2 sin(2kpyȳ)

kpy
,

=
−4 x

k2

∫ 2π

0
dθ

δ(px − α cos θ)

py

∫ ∞

0
dȳ eikαȳ sin θ sin(kpyȳ),

=
−4 x

2ik2

∫ 2π

0
dθ

δ(px − α cos θ)

py

∫ ∞

0
dȳ
[
eikȳ(α sin θ+py) − eikȳ(α sin θ−py)

]
,

Again in the case p2 6= α2 we obtain

B′(p, p) =
−4 x

2ik2

∫ 2π

0
dθ

δ(px − α cos θ)

py

{
1

−ik(α sin θ + py)
+

1
ik(α sin θ − py)

}
,

=
−4 x

2k3

∫ 2π

0
dθ

δ(px − α cos θ)

py

{
1

α sin θ + py
− 1

α sin θ − py

}
,

=
−4 x

2k3

∫ 2π

0
dθ

δ(px − α cos θ)

py

−2py

α2 sin2 θ − p2
y

,

using the fact that

α sin θ = ±
√

α2 − α2 cos2 θ.
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We simplify the above integral as

B′(p, p) =
24 x

k3
√

α2 − p2
x

1
α2 − p2

x − p2
y

,

=
24 x

k3
√

α2 − p2
x

1
α2 − p2 . (5.78)

It is clear from Eq. (5.78) that in the case where structural waves propagate faster

than acoustic waves α2 > p2, B′ is a positive quantity. Therefore, in the case of

p2 6= α2, substituting Eq. (5.77) and Eq. (5.78) into Eq. (5.73) yields

ΓΩ̃(p, p) =
24 x

k3
√

α2 − p2
x

[
p2

y − p2
x + α2

(α2 − p2)
2 ∓

1
α2 − p2

]
,

where ”+” corresponds to Dbc and ”−” corresponds to Nbc. This results shows

that the amplitude of CF for Dirichlet case is greater than for the Neumann case.

This leads to increased radiation power and thus increased radiation efficacy for

Dbc. We can rewrite this in the form

ΓΩ̃(p, p) =
24 x

k3
√

α2 − p2
x


p2

y − p2
x + α2 + α2 − p2

(α2 − p2)
2 Dbc,

p2
y − p2

x + α2 − α2 + p2

(α2 − p2)
2 Nbc,

(5.79)

=
24 x

k3
√

α2 − p2
x


2α2 − 2p2

x

(α2 − p2)
2 Dbc,

2p2
y

(α2 − p2)
2 Nbc,

(5.80)
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Thus, substituting ΓΩ̃ into Eq. (5.76) yields

Πx =
ρ0c0k2

8π24 x

∫
Ωr

ΓΩ̃(p, p)
T(p)

dp,

=
ρ0c0

2π2k

∫ 2π

0
dφ
∫ 1

0
dpr

pr√
1− p2

r
√

α2 − p2
r cos2 φ


α2 − p2

r cos2 φ

(α2 − p2
r )

2 Dbc,

p2
r sin2 φ

(α2 − p2
r )

2 Nbc.

(5.81)

Equation (5.81) is the same as the Eq. (5.68). We have therefore shown that the

spatial approach and the momentum approach give the same radiation efficiency

outcome.

Furthermore, in the particular case of a rectangular plate, perhaps surpris-

ingly, below the critical frequency, we find that the radiation efficiency contri-

bution from corner approximation is zero when considering either Dirichlet or

Neumann boundary conditions (see Appendix D.1 for the derivation).

In the next section, we approximate Eq. (5.68) in the limit α→ ∞.

5.7.2 Asymptotic Approximation: the large α asymptotics

We further approximate Eq. (5.69) in the high frequency regime to better under-

stand the relative strengths of radiation from Dirichlet and Neumann boundary
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conditions. The function f (α) in Eq. (5.70) becomes in the limit α→ ∞

f (α) '
∫ 2π

0
dφ
∫ 1

0
dpr

pr

α
√

1− p2
r


α2

α4 Dbc,

p2
r sin2 φ

α4 Nbc,

=2π
∫ 1

0
dpr

pr

α5
√

1− p2
r


α2 Dbc,

1
2

p2
r Nbc.

Making use of the following results

∫ 1

0
dpr

pr

α
√

1− p2
r
= 1,

∫ 1

0
dpr

p3
r

α
√

1− p2
r
=

2
3

.

Then

f (α) ' π

α5


2α2 Dbc,

2
3

Nbc.

(5.82)

Therefore the total power radiated per unit length in Eq. (5.69) becomes, in the

limit α→ ∞,

Πx '
ρ0c0

2π2k
f (α) ' ρ0c0

πk


1
α3 Dbc,

1
3α5 Nbc.

The corresponding radiation efficiency of a semi-infinite plate with an edge y = 0

in the limit of large alpha thus becomes

σx '
2
Aπk


1
α3 Dbc,

1
3α5 Nbc.
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Therefore, for general boundary shape, ∂Ω locally approximated by semi-infinite

plate, in the limit α→ ∞, the radiation efficiency σ can be calculated by

σ =
∫

∂Ω
σxdx̄ '

2
∫

∂Ω dx̄
Aπk


1
α3 Dbc,

1
3α5 Nbc.

(5.83)

For the particular case of a rectangular plate with a length of Lx and a width of

Ly, the result (5.83) can be written as

σ ' 2Lxσx + 2Lyσy =
4(Lx + Ly)

Aπk


1
α3 Dbc,

1
3α5 Nbc.

(5.84)

Equation 5.84 consists of four parts, one part for each of the two edges of length

Lx and one part for each of the two edges of length Ly.

In Fig. 5.12, these approximate and asymptotic calculations of σ are compared

with the same modal average used for comparison in Fig. 5.10. The full calcu-

lation of f (α) agrees well throughout the regime α > 1, but diverges for α → 1

(this because the ”the boundary layer” shown in Fig. 5.2 and discussed in Sec.

5.2 becomes wider and covers whole plates as α → 1). The approximation (5.82)

captures the qualitative behaviour for α > 1 and agrees quantitatively for large

α.

5.8 Conclusion

For baffled plates using the simplest case of homogeneously diffuse fields cor-

responding to uniform ray densities in phase space, the effect of plate bound-
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(a) (b)

Figure 5.12: Average radiation efficiency under various boundary conditions of

a baffled rectangular plate and assuming different excitations with different ap-

proximations (2 × 2 m plate). Assuming diffusive excitation in a semi-infinite

plate approximation considering Dbc ( ) or considering Nbc ( ), or in large

α limit considering Dbc ( ) or considering Nbc ( ),and assuming eigenmode

excitation for simply supported plates ( ), or guided plates ( ); (b) log-log

scale plot.
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ary conditions has been considered in this chapter. This model has been mod-

ified to include corrections corresponding to boundary conditions near bound-

aries. This investigation has been made only for Dirichlet or Neumann boundary

conditions, which serve as simplified models representing simply supported or

guided boundary conditions for bending modes in plates. In addition, the theo-

retical model for radiation efficiency has been developed for Dirichlet and Neu-

mann models by looking at various approximations including a large α asymp-

totics. For a given structural modal wavenumber kn,m (i.e. a given mode order

(n, m)) radiation efficiency from eigenmode of plates with the guided or the sim-

ply supported boundary conditions, and from plates assuming diffusive field ex-

citation with Dirichlet or Neumann boundary conditions have been calculated.

As a result, their corresponding average radiation efficiencies were determined

and comparisons were made. It has been shown that Neumann boundary con-

ditions on plates lowers sound radiation compared to Dirichlet boundary condi-

tions. Similar results are observed in the eigenmode approach; the guided plate

produces lower sound radiation for the baffled case.



Chapter 6

Summary

Modelling vibro-acoustic emission from a mechanical structure using phase space

methods is the primary goal of this thesis. In order to gain an understanding of

the fundamental characteristics of mechanical vibrations as they contribute to

sound radiation and sound propagation and also to assess structure-borne sound

in more complicated geometries, models for basic structures such as plates and

shell structures have been studied using a phase-space approach. The main con-

clusions of this thesis are summarised in this chapter and proposals are made for

further work.

Chapter 2 setout basic material and special functions for the preparation of

the main thesis material. The basic equations governing the structural vibration

of thin plates and thin shells, described in order to study the theoretical results

presented in later chapters. In addition, the background and governing equations

of sound radiation from an arbitrary vibrating body are given.

190
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An analysis of the transition between complete reflection and complete trans-

mission of the bending waves incident on a curved section of a thin shell was

given in Chapter 3. The study is focused on complex rays theory, extending

previous treatment based on real ray dynamics, allowing us to model a smooth

transition where transmission turns to complete reflection as the angle of in-

cidence increases and to model resonance effects when reflective reflection in-

creases through the combination of local modes trapped in the curved plate area.

The analysis not only works extremely well in describing the smooth transition

between complete reflection and complete transmission for a generic curvature

profile, but also reproduces phenomena such as reflection mediated by trapped

resonances in detail (resonant tunnelling). The model predictions for the scatter-

ing properties of curvature profiles with flat maxima have also been compared,

and quantitative deviations from its predictions and assumptions made to de-

rive the model are starting to fail. The model, however, succeeds in qualitatively

describing the numerically calculated reflection and transmission rates from the

shell equations’ treatment, including resonance positions and fluctuations in re-

flection and transmission rates resulting from bifurcations of the underlying com-

plex orbit to more complex forms.

A substantial opportunity has been given in this chapter to advance the un-

derstanding of: curvature impacts on mid-frequency wave transport and disper-

sion relationships, curved ray-tracing, solid structure resonant tunneling, com-

plex ray-tracing, and resonance conditions. Furthermore, the results of this chap-
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ter have been published in [199, 200].

The following chapters focus on the problem of sound radiation. Determin-

ing the distribution of vibrational energy in large build-up structures often shows

apparently random fluctuations, so statistical methods are preferred in this case,

which imply certain assumptions, such as diffusive behaviour, about the underly-

ing ray dynamics. A random superposition of plane waves models the statistical

properties of wavefunctions in complex or chaotic geometries. This approach

completely avoids the need for detailed ray dynamics and can clarify the general,

universal characteristics of wave systems; in Chapter 4, the techniques were dis-

cussed in detail. In addition, some of these techniques have been published in

[201]. A wider goal is later to modify this work to account for variations of the

ray densities described by phase space simulations obtained for example from

DEA calculations.

Using DEA approximation, the propagation scheme for predicting the sound

pressure from complex structures in both the near and far fields was established.

DEA is a phase-space approximation of the wave dynamics. It can be used to

make an analogy between the evolution of underlying ray trajectories and waves

in configuration space. For the sound propagated from a baffled flat plate, a

method based on the FFT is proposed, the physical understanding of which is

easy and efficient in computation. Moreover, in the calculations, finite size effects

and boundary effects on the sound pressure field were tested and observed.

In Chapter 5, the effect of plate boundary conditions is considered for baffled
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plates that use the simplest case of homogeneously diffuse fields corresponding

to uniform ray densities in phase space. In order to provide corrections corre-

sponding to boundary conditions near boundaries, this model has been modified.

This investigation has been made in detail for Dirichlet or Neumann bound-

ary conditions which usually only serve as simplified models representing sim-

ply supported or guided boundary conditions for bending modes in plates. In

addition, for Dirichlet and Neumann models, the theoretical model for radiation

efficiency has been established by looking at different approximations, including

a large asymptotic expression of α, the ratio of bending to acoustic wavenumber.

Radiation efficiency of eigenmode of plates with simply supported and guided

boundary conditions and from plates assuming diffusive field excitation with

Dirichlet or Neumann boundary conditions was calculated for a given structural

modal wavenumber kb. As a consequence, their corresponding average radiation

efficiencies were calculated and comparisons were made.

Compared to Dirichlet boundary conditions, it has been demonstrated that

considering Neumann boundary conditions for plates gives less sound radiation.

In the eigenmode approach, similar results are observed; the guided plate pro-

duces less sound radiation for the baffled case.

In special cases, it is possible to analytically solve the equations governing

vibro-acoustic problems, for instance if the equations are linear and the geome-

try is separable. Nevertheless, numerical methods provide a much more prac-

tical means of solution for realistic acoustic problems [202, 203]. The aim of fu-
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x′
y′

zy

x

Γz = |p(x, y, z)|2

Figure 6.1: Schematic representation of the method of estimating the propagation

of sound form a T-plate structure.

ture projects is to model the vibrational response of the gear-box casings due

to the mechanics inside the box and to model the noise radiated off the struc-

ture. In order to model the vibro-acoustic response of metal casings, we will use

the DEA method to work on meshed shell structures, and then use the Kirch-

hoff–Helmholtz integral equation to estimate the sound field.

Towards this goal, for example, a T-plate structure is a natural extension of

the present study and discussion of the coupling of structural vibration calcula-

tions with estimate of acoustic radiation of the plate. We have started a Yanmar

Holdings Co., Ltd-funded project to extend the methods discussed in Chapter 4

for estimating the propagated sound source using a phase-space approach from

a T-plate structure (see Fig. 6.1).

Yanmar first provided the experimental data. Figure 6.2 shows the experi-

mental setup for a T-steel plate structural with free-free boundary conditions and

a thickness of h = 1.2 mm. The width and length of the base and vertical plates
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(a)

(b)

(c)

Figure 6.2: Experiment setup; primary figure: free-free boundary condition; ac-

celeration, 5 points on each plate, and force and acceleration at excitation point.

Six individual microphones are used to measure sound pressure.
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are shown in Fig. 6.2a. A shaker vibrates the plate at the bottom.

At this point in our calculation, we divided the system into three subsystems

and calculated sound radiation for each of them using phase space methods. The

results of the subsystems were then coupled. Some of the results corresponding

with the representation in Fig. 6.1 are shown in Fig. 6.3. We further compared

the continuous sound power level obtained from our method to the experimental

data provided by Yanmar; the results are shown in Fig. 6.4. We will examine

and investigate these results first. Later, we will modify this work by taking into

account the different ray densities described in the phase-space. In addition, we

will use the actual DEA calculation on the meshed T-plate structures to estimate

the corresponding propagated sound field.

The final objective of the wider project is therefore to develop computational

tools based on phase space methods that will eventually be used in software

packages to model vibro-acoustics of any shaped structure and thus propose de-

sign strategies for mechanical architectures.
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Figure 6.3: The scaled acoustic intensity |p(x, z)|2/(ρ0c0)
2 below the critical fre-

quency: first column corresponds to sound radiation from the diffuse field prop-

agation measured for various frequencies; the second column corresponds to

sound radiation for the same frequencies measured at different distances.
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Figure 6.4: Stars are experimental data, red color for measured data from the plate

on the left side of the T-plate in Fig. 6.3 and green from those in the right side of

it; blue line is our model.



Appendix A

Preliminary and special functions

In the main part of this thesis, these identities and definitions will be used.

Definition A.0.1. Dirac delta is a distribution or generalized function which is

zero everywhere on the real line except at the origin, where it is infinite:

δ(x) =


+∞ x = 0,

0 otherwise.

Here, we will not need the formal theory behind the Delta function (The Applied

Functional Analysis by D. Griffel [204] is a good book). We will, however, make

use of the following property

• ∫ ∞

−∞
eikp(x−a)dx =

2π

k
δ(x− a)

• ∫ ∞

−∞
δ(x)dx = 1
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• ∫ ∞

−∞
f (x− a)δ(x)dx = f (a)

• ∫ ∞

−∞
δ(x− a)δ(x− b)dx = δ(a− b)

• ∫ ∞

−∞
g(x)δ( f (x))dx = ∑

i

g(xi)

| f ′(xi)|
xi’s are zeros of f (x)

•

δ(x) = δ(−x)

•

δ(ax) =
1
|a|δ(x)

•

δ(x2 − a2) =
1

2|a| [δ(x− a) + δ(x− a)]

Definition A.0.2. χΩ denotes projection onto functions supported in Ω defined

in direct space by

χΩ(x) =


1 if x ∈ Ω,

0 otherwise.

Thus

χΩ(x) f (x) =


f (x) if x ∈ Ω,

0 otherwise
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Definition A.0.3. The convolution of f and h is an operator with the symbol ∗

defined as the integral of the product of the two functions after one is reversed

and shifted

( f ∗ h)(x) =
∫

Rd
f (y)h(x− y)dy =

∫
Rd

h(y) f (x− y)dy.

Some convolution identities:

•

( f ∗ h ∗ g)(x) =
∫

Rd
f (z)g(x−y)h(y− z)dzdy =

∫
Rd

f (z)g(y)h(x−y− z)dzdy

•

( f ∗ δ)(x) = f (0)

Definition A.0.4. Fourier transformation of an integrable function g : Rd → Cd

defined as

g(p) = F {g(x)} =
∫

Rd
g(x)e−ikx.pdx,

where d is dimension, k is wave number, and p is the Fourier variables. Inverse

Fourier transformation is defined as

g(x) = F−1 {g(p)} =
(

k
2π

)d ∫
Rd

g(p)eikx.pdp.

Some identities and properties:
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• If g is a separable function of xi’s, i.e.

g(x) = g1(x1)g2(x2)...gd(xd),

then

g(p) = g1(p1)g2(p2)...gd(pd),

where

g1(p1) =
2π

k

∫
R

g1(x1)e−ikx1 p1dp1

•

F { f (x)g(x)} =
(

k
2π

)−d
( f ∗ g)(p) =

(
k

2π

)−d ∫
Rd

f (q)h(p− q)dq

•

F−1 { f (p)g(p)} =
(

k
2π

)d
( f ∗ g)(x) =

(
k

2π

)d ∫
Rd

f (y)h(x− y)dy



Appendix B

Fourier transformation of mode

shapes

B.1 Infinite structures

Fourier transformation of f (x) = cos(ax) on the real line is

f (p) =
2π

k

∫
R

cos(ax)e−ikxp dx

using the fact that

cos(ax) =
e−iax + eiax

2
,

f (p) =
π

k

∫
R

[
e−ix(kp−a) + e−ix(kp+a)

]
dx,

=
π

k
[δ(kp− a) + δ(kp + a)] ,

=
2π

k
|a|δ((kp)2 − a2).
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B.2 Finite structures

The Fourier transform of a mode V(x, y) = sin
(

nπ
Lx

x
)

sin
(mπ

b y
)

of a simply sup-

ported rectangular plate of length Lx and width Ly

V̂
(

px, py
)
=
∫ Ly

0

∫ Lx

0
e−ik[pxx+pyy] sin

(
nπ

Lx
x
)

sin
(mπ

b
y
)

dxdy.

First solve the integral w.r. to x

∫ Lx

0
e−ikpxx sin

(
nπ

Lx
x
)

dx,

=
1
2i

∫ Lx

0

[
eix( nπ

Lx −kpx) − e−ix( nπ
Lx +kk)

]
dx,

=
1
2

−nπ
Lx

[
−e−iLxkpx

[
einπ + e−inπ

]
− 2
](

nπ
Lx

)2
− k2p2

x

,

= −nπ

Lx

[
(−1)ne−iLxkpx − 1

](
nπ
Lx

)2
− k2p2

x

.

Solving the second integral for y similarly we obtain

V̂
(

px, py
)
=

nmπ2

LxLy

[
(−1)ne−iLxkpx − 1

](
nπ
Lx

)2
− k2p2

x

[
(−1)me−iLykpy − 1

]
(

mπ
Ly

)2
− k2p2

y

.

The Fourier transformation of the cosine functions for the guided boundary con-

ditions can be obtained using similar procedures.



Appendix C

WKB-approximation

In this appendix we motivate the uniform approximation of nodal reflection and

transmission coefficients given in (3.31a) and in (3.31b). These local scattering

coefficients are characteristic of WKB solutions around generic hyperbolic fixed

points as illustrated schematically in Fig. 3.10, and we justify them here by solv-

ing the simplest second order differential equation, of the form

d2ψ(X)

dX2 + χ(X)ψ(X) = 0, (C.1)

for which this topology guides WKB approximation. It can be shown for example

in [205] that solution of more general differential equations can be transformed

locally to these simpler equations. In this section, instead of using the symbol

W, we will use ψ to avoid confusion between the symbols used here and the

numerical solution in Sec. 3.2.7. To construct a local WKB solution for a tuning
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point (a nodal point), such as α in Fig. C.1, the wave function ψ(X) in (C.1) is

divided into two parts, ψ+ and ψ−, which represent the waves travelling to the

right and left of that turning point, respectively. In the classical region, this can

be expressed as

ψ(X) = ψ+(X) + ψ−(X)

= A+ eiS(X) + A−e−iS(X),

but in the classically forbidden region, the phase will be complex, therefore ψ(X)

can be described as

ψ(X) = B− e−Θ(X) + B+ eΘ(X),

where A s’ and B s’ are wave amplitudes. The phase integral S is defined as

S(X1, X) =
∫ X

X1

(χ(X))1/2 dX =
∫ X

X1

Kx dX,

and Θ is defined as

Θ(X1, X) =
∫ X

X1

(−χ(X))1/2 dX = i
∫ X

X1

Kx dX.

The phase symbol S(X) is sometimes used with a single argument, with the ar-

gument referring to the upper limit of integration and the lower limit being either

unnecessary or understood. When we wish to indicate both limits of the integra-

tion we write

S(X1, X2) =
∫ X2

X1

KXdX.
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Figure C.1: Real orbits with turning points for the case Ky > K]
y.

The exact form of the reflection and transmission coefficients for a nodal point

can be obtained using comparison method [157]. This method was used to treat

scattering in a one-dimensional well [157], and we refer to that article and the

references within for further information on the following calculation. However,

it is worth reiterating a few key principles and emphasising the importance of

flux calculations. The main points of this method is discussed in the next section.

C.1 The method of comparison equations

The uniform approximation seeks to approximate a solution to the differential

equation (C.1) in terms of known solutions Φ(ζ) to the equation

d2Φ(ζ)

dζ2 + Γ(ζ)Φ(ζ) = 0. (C.2)

Γ(ζ) is specified to be comparable to χ(X) but simpler, such that the solutions of

(C.2) are known. By choosing an equivalent pair of points ζ1 and X1, ζ(X) can be
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written implicitly as a

∫ ζ

ζ1

(Γ(ζ))1/2 dζ =
∫ X

X1

(χ(X))1/2 dX = S(X1, X),

Or ∫ ζ

ζ1

(−Γ(ζ))1/2 dζ =
∫ X

X1

(−χ(X))1/2 dX = Θ(X1, X).

The approximate solution of (C.1) is then given by

ψ(X) '
[

Γ(ζ(X))

χ(X)

]1/4

φ(ζ(X)). (C.3)

The most straightforward comparison potential for the solutions of this equa-

tion with two turning points is parabolic [157], with the choice of Γ(ζ) = ε + ζ2.

Thus

d2Φ(ζ)

dζ2 + (ε + ζ2)Φ(ζ) = 0, (C.4)

where the parameter ε is proportional to the action for the incident wave consid-

ered,

iΘ (γ, α) = i
∫ α

γ
KxdX ≡ i

∫ +
√
−ε

−
√
−ε

(
−ε− ζ2

)1/2
dζ =

iεπ

2
, (C.5)

where α and γ are the two turning points. The real mapping function ζ(X) is

given implicitly by

S (α, X) =
∫ X

α
KxdX =

∫ ζ(X)

+
√
−ε

(
ε + ζ2

)1/2
dζ. (C.6)

The parabolic cylinder functions D(iε−1)/2(ζ
√

2e−iπ/4) and D(−iε−1)/2(ζ
√

2eiπ/4),
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whose exact asymptotic behaviour is known, are the solutions of Eq. (C.4) [157],

Φ(ζ) = D(iε−1)/2(ζ
√

2e−iπ/4),

Φ(ζ) = D(−iε−1)/2(ζ
√

2eiπ/4).
(C.7)

By considering the asymptotic behaviour of an appropriate linear combina-

tion of the parabolic cylinder functions (C.7), and using uniform approximations

(C.3), the correct form of the local reflection and transmission coefficients for the

turning point α can be derived

1
(ε+ζ2(X))

1/4 e−i
∫ ζ(X)

−
√
−ε
(ε+ζ2)

1/2
dζ(X)

+ rnode

(ε+ζ2(X))
1/4 ei

∫ ζ(X)

−
√
−ε
(ε+ζ2(X))

1/2
dζ

← ψ(X)→ tnode

(ε+ζ2(X))
1/4 ei

∫ ζ(X)

+
√
−ε
(ε+ζ2(X))

1/2
dζ ,

(C.8)

where

rnode =
−ie−iδ√

1 + e−2
∫ +
√
−ε

−
√
−ε

(−ε−ζ2)
1/2 dζ

, (C.9a)

and

tnode =
e−

∫ +
√
−ε

−
√
−ε (−ε−ζ2)

1/2
dζ−iδ√

1 + e−2
∫ +
√
−ε

−
√
−ε

(−ε−ζ2)
1/2 dζ

, (C.9b)

where

δ =

∫ +
√
−ε

−
√
−ε

(
−ε− ζ2)1/2 dζ

π
log

∣∣∣∣∣∣
∫ +
√
−ε

−
√
−ε

(
−ε− ζ2)1/2 dζ

πe

∣∣∣∣∣∣+
arg Γ

1
2
−

i
∫ +
√
−ε

−
√
−ε

(
−ε− ζ2)1/2 dζ

π

 . (C.9c)
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By substituting the form of ε in (C.5) and ζ(X) in (C.6) into (C.8) and (C.9),

the exact expressions of rnode and tnode given in (3.31) can be derived. The same

technique applies to the other turning points.
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Corner correction in rectangular case

We go through steps similar to what has been done for Γ̂0(p, p′),

Γ̂2(p, p′) =
∫

R2d
Γ2(x, x′)e−ikp·x+ikp′·x′ dx dx′

=
∫

R2d
J0(αk

∣∣x + x′
∣∣)e−ikp·x+ikp′·x′ dx dx′.

Now we perform a change of variables as in Eq. (3.28)

Γ̂2(p̄− q/2, p̄ + q/2) =
∫

R2d
J0(2αk |x̄|)e−ikq·x̄−ikp̄·s ds dx̄

=

(
2π

k

)d
δ (p̄)

∫
Rd

J0(2αk |x̄|)e−ikp̄·x dx̄

=
1

4π

(
2π

k

)2d
δ (p̄) δ

(
q2

2
− α2

)
. (D.1)

Expressing this in terms of the original variables p and p′ we obtain

Γ̂2(p, p′) =
1

4π

(
2π

k

)2d
δ

(
p + p′

2

)
δ

((
p− p′

2

)2

− α2

)
. (D.2)
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D(p, p′) =
(

2π

k

)−2d ∫
R2d

dp′′ dp′′′H(p− p′′)Γ2(p′′, p′′′)H̄(p′ − p′′′)

=
1

4π

∫
R2d

dp′′ dp′′′H(p− p′′)δ
(

p′′ + p′′′

2

)
δ

((
p′′ − p′′′

2

)2

− α2

)
H̄(p′ − p′′′)

=
1

2π

∫
Rd

dp′′ H(p− p′′)δ
(

p′′2 − α2
)

H̄(p′ + p′′),

and converting p′′ = (p′′x , p′′y ) to polar coordinate pr = (pr cos θ, pr sin θ) yields

D(p, p′) =
1

2π

∫ 4π

0
dθH(p− pα)H̄(p′ + pα) =

1
2
〈

H(p− pα)H̄(p′ + pα)
〉

.

Then recalling Eq. (5.30) for the function H, and H̄ its complex conjugate, we

obtain

D(p, p′) =
1
2
〈

H(p− pα)H̄(p′ + pα)
〉

=
1

4π

∫ 2π

0
dθ
∫

Ω

∫
Ω

e−ik(p−pα)·xeik(p′+pα)·x′ dx dx′.

After performing a change of variables of x and x′ as in Eq. (3.28), we obtain

D(p, p′) =
1

4π

∫ 2π

0
dθ
∫

Ωx̄

∫
Ωs

e−ik(p−p′−2pα)·x̄−ik( p+p′
2 )·s ds dx̄.

Thus

D(p, p′) =
1

4π

∫ 2π

0
dθ
∫

Ωx̄
e−ik(p−p′−2pα)·x̄dx̄

∫
Ωs

e−ik( p+p′
2 )·sds. (D.3)

Therefore we can obtain D(p, p) from Eq.(D.3),

D(p, p) =
1

4π

∫ 2π

0
dθ
∫

Ωx̄
e2ikpα·x̄dx̄

∫
Ωs

e−ikp·sds. (D.4)
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D.1 Infinite corner approximation

Now for upper half plane edge approximation the corner correction approxima-

tion would be over a quarter plane that is

D(p, p) =
1

4π

∫ 2π

0
dθ
∫ ∞

0
dx̄
∫ ∞

0
dȳ e2ikpα·x̄

∫ 2x̄

−2x̄
dsx

∫ 2ȳ

−2ȳ
dsy e−ikp·s,

=
1

4π

∫ 2π

0
dθ
∫ ∞

0
dx̄
∫ ∞

0
dȳ e2ikpα·x̄ 4 sin (2kpx x̄) sin

(
2kpyȳ

)
k2px py

,

=
1

4πk2px py

∫ 2π

0
dθ eikpα·x̄

∫ ∞

0
dx̄

∫ ∞

0
dȳ sin (kpx x̄) sin

(
kpyȳ

)
,

=
1

2k2px py

∫ ∞

0
dx̄

∫ ∞

0
dȳ J0

(
αk
√

x̄2 + ȳ2
)

sin (kpx x̄) sin
(
kpyȳ

)
,

and converting (x̄, ȳ) to polar coordinate (r, φ) yields

D(p, p) =
1

2k2px py

∫ π/2

0
dφ

∫ ∞

0
dr J0 (αkr) sin (kpxr cos φ) sin

(
kpyr sin φ

)
,

using the fact that

sin(ax) sin(bx) =
1
2
{cos (a− b)− cos (a + b)} ,

D(p, p) =
1

4k2px py

∫ π/2

0
dφ

∫ ∞

0
dr J0 (αkr)×cos

kr
(

px cos φ− py sin φ
)︸ ︷︷ ︸

q−

− cos

kr
(

px cos φ + py sin φ
)︸ ︷︷ ︸

q+


 ,

=
1

4k2px py
∑
∓
∓
∫ π/2

0
dφ

∫ ∞

0
dr J0 (αkr) cos (krq∓) .

Making use of the relation in the book by Gradshteyn and Ryzhik [206]

∫ ∞

0
dr J0 (br) cos (ar) =


0 0 < a < b,

−a
(
a2 − b2)−3/2 0 < b < a.
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Thus, we obtain

D(p, p) =
1

4k2px py


0 |q∓| < αk,

−|q∓|
(
q2
∓ − α2k2)−3/2 |q∓| > αk.

By construction, if α > 1, |q∓| < αk, thus

D(p, p) = 0.
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