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Abstract 

Microvascular damage results from ischaemia-driven production of pro-
angiogenic vascular endothelial growth factor (VEGF). Proximally spliced 
VEGF is upregulated in the ischemic diabetic retina and has been implicated 
as the principal driver of the pathological growth and leakage of blood vessels 
during diabetic retinopathy (DR). Serine-Arginine Rich protein kinase-1 
(SRPK1) regulates splicing of VEGF, and inhibition of this kinase with small 
molecular weight inhibitors has been shown to inhibit choroidal 
neovascularization (CNV) in mice by decreasing pro-angiogenic and increasing 
anti-angiogenic VEGF isoforms. These isoforms have previously been 
described to inhibit increased vascular permeability with protective effects 
against DR-induced pathology. SRPK1 inhibitors such as SPHINX31 may 
therefore switch splicing in DR and prevent increased vascular permeability. 
 
Retinal pigment epithelial cells were exposed to hyperglycaemia (HG) and 
hypoxia (Hx) and treated with SPHINX31. SRSF1 localisation in the nuclear 
speckles, SRPK1 activity and monolayer permeability were assessed by 
immunofluorescence and Electrical Cell Impedance Sensing. In a rodent model 
of type 1 diabetes fluorescein fundus angiography (FFA) and optical coherence 
tomography (OCT) was performed weekly from day 0 to 28. Animals received 
twice daily topical eye drops with eye formulation control buffer or SPHINX31. 
On day 1 animals received a single dose of streptozotocin to induce type I 
diabetes. FFA was quantified using ImageJ; the intensity of sodium fluorescein 
in the retinal interstitial area and the retinal vessels were measured and the 
permeability assessed from this relationship. An FFA and OCT time course was 
used to determine an estimate of permeability and retinal thickness. Retina 
petals were stained with IB4 and for junctional proteins to deduce vascular 
density.  
 
HG and Hx induced a significant increase (p<0.05) in SRSF1 nuclear 
localisation, which was blocked by SPHINX31. HG induced a release of SRSF1 
from the nuclear speckles (p=0.002). Inhibition of SRPK1 decreased RPE 
monolayer permeability (p<0.05). The increase in retinal permeability on days 
14-28 seen in the diabetic eye formulation only control cohort (n=8) was 
stabilised following topical treatment of diabetic animals with SPHINX31 (n=9) 
for 28 days (p<0.0001). Mean retinal thickness increased in diabetes (p<0.05) 
and this increase appeared to be blocked following SPHINX31 treatment.   
 
SPHINX31 protected the retinal barrier from hyperglycaemia-associated loss of 
integrity in RPE cells in vitro and in diabetic rats in vivo. SPHINX31 may 
therefore be a potential topical therapeutic for DR. 
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1.1 Diabetic retinopathy  

1.1.1 Epidemiology of diabetic retinopathy  

Diabetes mellitus is recognised as a major global epidemic, with the number of 

diagnosed cases increasing in all countries, most discernibly in middle income 

countries. Adult diabetic patients made up 8.5% of the global population in 

2014, a number projected to increase to 9.9% in 2045, reflecting the rise in the 

number of obese or overweight people worldwide. Diabetes, and its associated 

complications, has a marked impact on the economy of most countries directly, 

due to the costs incurred by patients and healthcare organisations to treat the 

chronic illness, and also indirectly, due to the impact of time away from work 

(Ezzati, 2016). Thus, there is a major requirement for novel treatment strategies 

to combat this chronic disease. 

The disease can be divided into either type I or type II diabetes. Type I diabetes 

is typically characterised as an immune or autoimmune-mediated condition 

(Atkinson, 2014); loss of pancreatic b-cells incapable of regeneration as a 

consequence of T-cell destruction results in a lack of insulin secretion and thus 

an impaired ability to control blood glucose levels (Devendra et al., 2004). Type 

II diabetes, formerly known as adult-onset diabetes due to its association 

obesity and aging, results from both a lack of insulin production and an insulin 

resistance (Donath & Shoelson, 2011). To compensate for this loss, there is an 

increase in b-cell number to enhance insulin secretion. However, over time this 

mechanism is no longer sufficient resulting in an incapability of cells to uptake 

glucose in an insulin-mediated manner and thus persistent hyperglycaemia 

(Donath & Shoelson, 2011; Rydén et al., 2013). The disease has widespread 

clinical complications, primarily affecting the vascular systems. Patients 

experience a myriad of macrovascular complications, immune dysfunctions and 

microvascular complications, affecting multiple organs (DeFronzo et al., 2015). 

Those with long-term elevated glycated haemoglobin (HbA1C), a marker for 

plasma glucose concentration are most at risk of developing microvascular 

complications (Cheung et al., 2010). One of the most devastating consequence 

of diabetes, with regards to the largest impact on a patient’s quality of life, is 

diabetic retinopathy (DR). This ocular disorder arises as a secondary 
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microvascular complication of both type I and II diabetes mellitus, and remains 

the leading cause of blindness across the working population of the western 

world (Sivaprasad et al., 2012). DR has been estimated to be the cause of 2.6 

million cases of visual impairment or blindness globally in 2015, a number 

projected to rise to 3.2 million in 2020 (Flaxman et al., 2017). In higher income 

countries, the incidence of vision threatening cases have been reduced, despite 

the high number of diabetes cases, which has been attributed to the improved 

therapies and diabetes management, however this is not the case for lower and 

middle income countries (Liew et al., 2017). Clinical retinopathy will be present 

at some level, in 90% of type I and 60% of type II diabetic patients after twenty 

years with the disease (Klein, 2007). DR occurs in approximately one third of 

diabetic patients (Cheung et al., 2010) and whilst the disease doesn’t appear 

to discriminate between sexes, onset is affected by race and socioeconomic 

status (Olivares et al., 2017). 

Despite being classically described as a disease of the microvasculature, DR 

manifests itself with both a number of neuroglial and microvascular 

abnormalities. The pathologies have a synergistic effect, exacerbating their 

damage to the eye, and ultimately leading to vision impairment. Loss of tight 

regulation of blood-glucose concentration in diabetes appears to be the major 

contributing factor to DR, and prevalence correlates with duration of diabetes 

(Nentwich, 2015). However, the exact molecular mechanisms with which 

hyperglycaemia and hypoxia induces its effect on the retinal tissue remain to 

be elucidated (Crawford et al., 2009). 

1.1.2 Physiopathogenesis of diabetic retinopathy 

DR can be classified as one of two forms, non-proliferative diabetic retinopathy 

(NPDR) and proliferative diabetic retinopathy (PDR). Type I diabetics are at 

greater risk of developing PDR compared to type II patients, however the 

converse is true for diabetic macular oedema (DMO) (Nentwich, 2015). DR 

diagnosis and grading can be assessed non-invasively through fundus 

examinations and can be subdivided according to PDR and DMO, the primary 

causes of vision loss (Fig 1.1.1). Haemodynamically, there is a loss of blood 

perfusion before the onset of DR (Curtis et al., 2009). NPDR, the earliest DR 
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stage, involves microvascular changes that are predominately asymptomatic, 

even at the more advanced state (Sivaprasad & Pearce, 2018).. DR initially 

manifests through weakening of vessel walls, small haemorrhages and 

microaneurysms. As the disease progresses, there is more extensive leakage 

as more vessels are prone to rupture and closure of capillaries. The lack of 

sufficient perfusion can result in areas of ischaemia within the retina (Gardner 

et al., 2011).  

Figure 1.1.1 summarises the conventional microvascular-associated clinical 

assessments of DR progression, however pre-clinical studies have also 

described the role of the ‘dis-integration’ of the neurovascular unit in DR. This 

occurs prior to vasculopathy in both the inner and outer retina, and is reflected 

by disturbed neurotransmitter signalling, of both glutamate and dopamine 

(Aung et al., 2014). Neuroprotective peptides, somatostatin, pigment 

epithelium-derived factor and erythropoietin, are all reduced in the diabetic 

retina. Furthermore, dendritic fields are altered and there is a reduction in 

proteins associated with synapses. This includes connexin, which leads to 

astrocyte loss. Prolonged uncontrolled diabetes can lead to apoptosis of 

neurons and changes in activation of glial cells. This is evidenced by impaired 

interconversion of glutamate and glutamine, alterations in potassium channels 

followed by expression of glutamate-aspartate transporter, glial fibrillary acidic 

protein (GFAP) and other intermediary filament proteins (Ou et al., 2020).  

Breakdown of the blood retinal barriers (BRB) due to the loss of tight junctions 

between the retinal endothelial or epithelial cells, allows extravasation of fluid 

into the extracellular space of the macula (Hosoya & Tachikawa., 2013). The 

result is a net change in hydrostatic and oncotic pressures, favouring further 

fluid extravasation, leading to the development of a DMO (Wenick & Bressler, 

2012). Clinically, DMO often results in the presence of hard exudates; lipid and 

protein deposits accumulated from the fluid leakage of the vessels. Additionally, 

“cotton wool spots” are the result of damage to the nerve fibre layer (Antonetti 

et al., 2012).. PDR is characterised by angiogenesis on the surface of the retina. 

The newly formed blood vessels are tortuous, leaky and chaotic in nature, with 

weak vessels walls allowing fluid to leak out (Ved et al., 2017). Contrasting 
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NPDR, the adverse effects of PDR are not contained to the retina, but branch 

out through the surface of the retina to invade the surrounding space (Crawford 

et al., 2009). In the later stages of the disease, there is a laying down of fibrotic 

tissue from the retina to the vitreous cavity. This tissue can contract and cause 

the detachment of the retina, causing blindness (Caldwell et al., 2003).  

 
Figure 1.1.1: The pathogenesis of diabetic retinopathy can be described in four 
stages: mild, moderate (which can contribute to the formation of oedema), 
severe nonproliferative retinopathy and proliferative retinopathy. 
Hyperglycaemia induced ischaemia causes vessels to swell and break-down 
causing a leakage of fluids into the retina. As the condition advances, macula 
oedema can form and abnormal neovascularisation can occur on the surface 
of the retina, which can lead to scarring. Fibrotic tissue can contract, causing 
retinal detachment and ultimately blindness. Images adapted from the text in 
(Perrin et al., 2005). Clinical images from (Wong et al., 2016). 
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1.1.3 Mechanisms associated with DR 

DR, in short, is a multi-stage disease progressing through the manifestation of 

multiple biochemical, morphological and functional changes in the retinal 

capillaries (Mandarino, 1992) and neurovascular unit. Morphological changes 

include the structural changes to retinal capillaries through the thickening of the 

basement membrane and loss of pericytes. The ratio of endothelial cells to 

pericytes is increased from approximately 1:1 to 4:1 due to this loss (Robison 

et al., 1985). Functional changes include an increase in vascular permeability 

and breakdown of BRBs. The biochemical effects occur as a result of multiple 

interconnecting pathways including those relevant in this thesis: poly-ol 

pathway; accumulation of advanced glycation end products (AGEs); increased 

activation of protein kinase C (PKC); hexosamine pathway (see Figure 1.1.2) 

(Gologorsky et al., 2012).  

 

Figure 1.1.2: Schematic of pathways contributing to DR pathogenesis. Glucose 
is taken into cells via glucose transporters causing activation of poly-ol 
pathway, accumulation of AGEs and PKC activation. The net result is an 
increase in vessel permeability, thickening of basement membrane and 
pericyte loss. Image adapted from the text in (Abcouwer, 2013). 
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The retina is highly metabolically active and has the highest oxygen uptake and 

glucose oxidation relative to any other tissue. As such, this tissue is highly 

susceptible to hyperglycaemia-induced oxidative stress (Anderson et al., 1984). 

Due to uncontrolled glucose levels in diabetes, the extracellular environment is 

hyperglycaemic. Retinal cells are unable to effectively adapt glucose transport 

rates in this environment leading to increased intracellular glucose (Kaiser et 

al., 1993). Within the cell, glucose is metabolised through the tricarboxylic acid 

(TCA) cycle and electron transport chain resulting in the generation of oxygen-

derived molecules: reactive oxygen species (ROS), including superoxide and 

hydrogen peroxide. Under physiological conditions, ROS production supports 

cell function and cell signalling, before undergoing detoxification through 

scavenging. The balance of production and removal of ROS is paramount for 

healthy cell function, however the diabetes-induced increase in intracellular 

glucose can cause hyperactivity of electron transport chain and overproduction 

of ROS. Cells are unable to compensate for this increase by clearing ROS at 

the same rate as it is produced, leading to a shift towards the pro-oxidative state 

known as oxidative stress (Farnoodian et al., 2016). Consequentially, biological 

macromolecules such as lipids, proteins, carbohydrates and DNA are 

damaged, cellular homeostasis is disrupted and further ROS is generated 

(Cutler, 2005). Additionally, oxidative stress activates metabolic pathways 

associated with DR pathogenesis which feedback and mediate oxidative stress 

creating an interrelated connection further amplifying tissue damage (Kowluru 

& Chan, 2007).  

Intracellular glucose is reduced to sorbitol via the poly-ol pathway through 

aldose-reductase. In conjunction with this reaction, NADPH is converted to 

NADP+ (Obrosova & Kador, 2011). Sorbitol is impermeable to cell membranes 

and thus accumulates within the cell (Kinoshita, 1990). Pericytes are affected 

by the increased output of sorbitol, disabling their primary ability to regulate 

retinal capillaries and inhibit proliferation of endothelial cells in the retina. This 

loss of function leads to a weakness and protrusion of capillary walls known as 

saccular outpouching, or microaneurysm (Crawford et al., 2009). Sorbitol can 

be oxidised to fructose through the action of sorbitol dehydrogenase, which 

leads to NADH production (Obrosova & Kador, 2011). Hyperactivity of poly-ol 
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pathway in diabetes results in a depletion of NADPH, a molecule vital for the 

production of nitric oxide (NO) and the ROS scavenger, glutathione. As such, 

ROS is not cleared as efficiently and accumulates further, promoting oxidative 

stress (Kowluru & Chan, 2007). NO regulates ocular blood flow, vascular tone, 

and contributes to vasodilatation. Reduction of NO bioavailability causes 

haemodynamic alterations in an already poorly perfused retina, which may 

exacerbate microvascular tortuosity and enhance tissue injury (Toda & 

Nakanishi-Toda, 2007). 

Non-enzymatic attachment of sugars to free proteins, lipids and nucleic acids 

to form AGEs occurs endogenously at a slow rate. In diabetes, due to the 

availability of glucose and various other sugars, including fructose from the 

poly-ol pathway, the production of AGEs is increased (Vlassara & Uribarri, 

2014). AGE accumulation occurs gradually, resulting in the dysfunction of 

tubulin and proteins in the basement membrane of blood vessels, promoting 

breakdown of inner BRB (iBRB). Disruption of this barrier is further enhanced 

by AGE-induced breakdown of tight junction complexes between endothelial 

cells (Kandarakis et al., 2014). Additionally, AGEs interact with collagen to 

initiate cross-linking between the fibres, altering ocular blood flow (Brownlee, 

2001). AGEs act on their appropriate receptors (RAGEs) to stimulate the 

release of tumour necrosis factor-α (TNF-α) and other proinflammatory 

cytokines from monocytes and macrophages (Shanmugam et al., 2003), as 

well as elevating ROS. Multiple cells of the retina express RAGEs including 

pericytes, retinal pigment epithelial cells (RPE) and retinal endothelial cells 

(REC), and thus are sensitive to AGE formation (Hammes et al., 1999). RAGE 

activation is associated with enhanced permeability of retinal vasculature, 

increased expression of vascular endothelial growth factor (VEGF) and 

postulated to induce breakdown of the outer BRB (oBRB) (Kandarakis et al., 

2014).  

PKC is activated due to the release of TNF-α and increased production of its 

endogenous activator diacylglycerol (DAG) because of hyperactivation of the 

glycolysis pathway. The kinase exists as one of 11 isoforms, subdivided into 

typical (α, βI, βII and γ), novel (δ, ε, η and θ) or atypical (ζ and λ). DAG is 
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capable of activating both typical and novel PKC isoforms, whilst Ca2+ only 

activates typical isoforms (Parekh et al., 2000). Atypical isoforms are unique in 

that they are not dependant on DAG or Ca2+ concentration and instead are 

activated by lipid components (Omri et al., 2013). DAG expression is increased 

in the retina due to elevated intracellular glucose (Koya & King, 1998), 

postulated to be formed de novo (Brownlee, 2001). Upregulation of DAG is 

additionally a result of aberrant hyperglycaemia-induced ROS expression, 

which triggers the formation of the DAG precursor, triose phosphate (Shiba et 

al., 1993). Activation of PKC results in a number of pathophysiological 

consequences, including leukocyte dysfunction and a release of pro-angiogenic 

factors (Kim et al., 2010). Leukocytes attach to vessel walls, in a process known 

as leukostasis, blocking the capillaries and therefore obstructing blood flow. 

This leukocyte adhesion appears to be mediated by intracellular adhesion 

molecule-1 (ICAM-1), upregulated because of the release of TNF-α activating 

the transcription factor nuclear factor kappa-B (NF-κB), the expression of which 

is increased in response to PKC activation (Rahman et al., 2000). Furthermore, 

vascular occlusion occurs as a result of PKC-induced expression of 

transforming growth factor-b (TGFb), which increases collagen and fibronectin 

synthesis and activity (Brownlee, 2001). PKC activation has also been 

described to reduce expression of NO and endothelial nitric oxide synthase, 

further compromising retinal microvasculature (Toda & Nakanishi-Toda, 2007). 

PKC acts by phosphorylating proteins at the serine or threonine residue, 

however in diabetes this phosphorylation has been described to occur on tight 

junction proteins of cells of BRBs, resulting in a disruption of the tight junction 

complex and thus a reduction in barrier integrity (Harhaj et al., 2006). PKCb1 

and PKCb2 are the most extensively characterised in DR, as they are 

hypothesised to be the most sensitive of all PKC isozymes to glucose 

concentration (Donnelly et al., 2004). PKC-a, -g and -d are also upregulated in 

the diabetic retina, though to a lesser extent (Idris et al., 2001). VEGF-induced 

mitogenic activity is predominately regulated through PKCb and PKC also 

increases VEGF expression in RPE in hyperglycaemic conditions (Poulaki et 

al., 2002). Moreover, use of PKCb inhibitors LY33531 and ruboxistaurin 

resulted in a reduction in both VEGF-induced retinal permeability (Aiello, 2002) 
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and endothelial cell activation (Xia et al., 1996) suggesting a PKCb mediation. 

Despite the emphasis placed on PKCb, other PKC isoforms are also impactful 

in DR. PKCd is overexpressed in the diabetic retina and induces pericyte 

apoptosis and formation of acellular capillaries in a ROS and NF-kB-mediated 

manner (Geraldes et al., 2009). Furthermore, PKCd is evidenced to promote 

VEGF secretion in hypoxic RPE in vitro whilst PKCz triggers VEGF expression 

in hyperglycaemic RPE (Young et al., 2005).  

Intracellular glucose is converted to glucose-6-phosphate and subsequently to 

fructose-6-phosphate. In diabetic conditions, there is an accumulation of 

intracellular fructose-6-phosphate due to increased cellular glucose uptake. 

Consequentially, the hexosamine biosynthesis pathway is highly activated in 

order to consume excess fructose-6-phosphate by converting it to N-

acetylglucosamine-6-phosphate in a glutamine fructose-6-phosphate 

amidotransferase-mediated manner (Brownlee, 2001). The dominant end 

product of the pathway is uridine diphosphate N-acetylglucosamine, which acts 

to catalyse O-linked N-acetylglucosamine glycosylation (O-GlcNAc) of protein 

serine and threonine residues (Coucha et al., 2015). Levels of O-GlcNAc have 

been found to be increased in hyperglycaemic pericytes impairing their 

migration (Gurel et al., 2013) and promoting their apoptosis (Gurel et al., 2014).  

1.1.4 Current therapies  

Current therapies against DR are at both the systemic and local level. Systemic 

efforts aim to prevent or delay DR onset, or reverse early DR symptoms. The 

regulation of blood glucose and blood pressure have been confirmed by 

multiple studies to offer a protective role against DR (Amoaku et al., 2020). 

Intensive glycaemic control via extensive insulin therapy has been shown to 

reduce the risk for DR development and progression (Rajalakshmi et al., 2016), 

a 10% reduction in H1bAc resulted in a 43% reduction in the risk of retinopathy 

progression. Moreover, cells exhibit a metabolic memory which allows for long-

term benefits of tight glucose control, even after glycaemic levels are not 

maintained (Nathan & DCCT/EDIC Research Group, 2014). Localised 

treatments focus on remedying the later stages of DR; DMO and PDR, and 
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include focal laser photocoagulation, intravitreous injections of anti-VEGF and 

steroidal agents and surgical intervention (Duh et al., 2017). Pan-retinal 

photocoagulation (PRP) involves inducing multiple burns of 500μm diameter 

across the retina by heating to 57-67°C with an argon laser. This is the 

treatment of choice for early stage PDR, targeting the ischaemic retina. The 

resultant ablation of ischaemic tissue reduces the metabolic demand of the 

outer retina, increasing oxygen availability to the inner retina from choroidal 

circulation (The Diabetic Retinopathy Study Research Group., 1981). Whilst 

this has been reported to decrease DR risk factors (Kozak & Luttrull, 2015), 

destroying retinal tissue induces a number of side effects, such as defects in 

peripheral vision, reduced night and colour vision and a decrease in the 

sensitivity of phase contrast (Royle et al., 2015). Despite this PRP remains a 

viable treatment option, as studies have shown it reduces the risk of blindness 

by at least 50% (The Diabetic Retinopathy Study Research Group., 1981). 

Depending on the localisation of the oedema, one therapy for DMO includes 

intravitreal injections of macromolecules targeting the potent mitogen pro-

angiogenic VEGF, which are also found to be highly effective in regressing 

neovascularisation in PDR (Duh et al., 2017). They require monthly or 8-weekly 

intravitreal injections, for the rest of the patient’s life (Shah et al., 2017) . Primary 

treatments include bevacizumab (Avastin, Genentech, San Francisco), a 

humanised, recombinant monoclonal pan-VEGF-A antibody, ranibizumab 

(Lucentis, Genentech, San Francisco), a fragment antibody against pan-VEGF-

A and a soluble VEGF receptor fusion protein, aflibercept (Eyelea, Regeneron, 

NY, USA), which binds to all VEGF-A isoforms, VEGF-B and additionally a 

pleiotropic cytokine, placental growth factor. Intravitreal VEGF-binding activity 

79-days post single 1.15mg Aflibercept injection has been found to be 

comparable to ranibizumab at 30 days, thus reducing the current frequency of 

injections (Stewart, 2012). Whilst an effective course of treatment for some 

patients, 50% of patients are non-responsive and affected by a number of side 

effects due to constant tissue damage from the needle leading to intraocular 

inflammation and potentially infectious endophthalmitis (Falavarjani & Nguyen, 

2013). DR pathogenesis is also attributed to non-VEGF dependent 

inflammatory pathways, thus steroidal agents are considered (Bolinger & 

Antonetti, 2016). Steroids are administered through the intravitreal route, either 
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through peribulbar, intravitreal injection or intravitreal implant, and benefits 

include reduction in DMO and stabilisation of vision (Amoaku et al., 2020). 

Triamcinolone acetonide, dexamethasone (Stewart et al., 2016) and 

fluocinolone acetonide (Boyer et al., 2014; Campochiaro et al., 2012) are the 

agents currently recommended for use particularly for DMO cases where VEGF 

therapies offer no benefit, or have conditions contraindicated for anti-VEGFs, 

for example a recent myocardial event (Tabakci & Ünlü, 2017). Furthermore, 

recent studies have addressed disruption to the neurovascular unit alongside 

microvascular complications. Neuropeptide Y has been found to offer a 

potential protective role in DR, promoting vascular integrity whilst inhibiting glial 

cell apoptosis (Ou et al., 2020). Despite some success of these 

pharmacological interventions, the issue of non-responders remain, and 

multiple promising pre-clinical candidates have failed to translate clinically 

(Rodrigues et al., 2018). Thus, there is an urgent need to develop drugs against 

novel targets with different modes of entry, with multiple research groups have 

identified potential targets (Batson et al., 2017; Bolinger & Antonetti, 2016; Kern 

et al., 2010). Where pharmacological interference and PRP has failed, a 

vitrectomy is necessary to treat later stage PDR. This surgery can be performed 

with or without peeling of the internal limiting membrane of the retina to treat 

DMO. Although vitrectomies do effectively treat retinal thickening, only 30% of 

patients report visual improvements, and actually 20-30% of patients 

experience visual loss (Newman, 2010).  

1.2 Blood-Retina Barrier 

Retinal homeostasis is regulated by two BRBs: iBRB and oBRB. The inner 

barrier is formed through the cell-cell tight junctions of capillary endothelium. 

The formation of the outer barrier is also due to tight junctions, however these 

are formed between RPE cells across the outer edge of the retina, separating 

it from the choroid (see Figure 1.2) (Desjardins et al., 2016). These barriers 

protect the neural retina from retinal and choroidal circulation, controlling the 

flux of fluid and molecules across cells. DR results in the breakdown of both of 

these barriers, although emphasis in the literature has been placed on iBRB 

(Marneros et al., 2005). Additional support to the BRB is provided by astrocytes 
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and Müller cells, the primary site of nutrient storage. Müller cells support both 

the retinal blood vessels and neurons through uptake and recycling retinoic acid 

compounds, ions and neurotransmitters such as glutamate and g-aminobutyic 

acid. Furthermore, they aid metabolism through supply of nutrients, help 

regulate blood flow through expression of vasodilators and vasoconstrictors 

and support BRB maintenance via secretion of anti-angiogenic factors including 

pigment epithelium-derived factor (PEDF) and thrombospondin-1 (Eichler et al., 

2004). Astrocytes are also supportive, they provide nutrients and physical 

support for neurons, whilst their foot processes envelop endothelial cells to 

maintain BRB integrity. Their role as a secretome involves expression of growth 

factors such as TGFb, glial-derived neurotrophic factor, angiopoietin-1 and 

basic fibroblastic growth factor. Importantly for the BRB, astrocytes express 

sonic hedgehog, which enhances barrier properties whilst decreasing 

inflammation (Ly et al., 2011).  

 

Figure 1.2: Schematic of blood-retinal barriers (BRBs). The retina is made up 
of a number layers, including the ganglion cell layer (GCL), inner (INL) and 
outer nuclear layers (ONL), which are maintained by the inner and outer BRBs. 
The inner BRB surrounds the retinal circulation and is comprised of tight 



 34 

junctions between endothelial cells of retinal vasculature, and supported by 
pericytes and glial cells. The outer BRB protects the neural retina from the 
highly vascularised and fenestrated choroidal circulation through tight junctions 
between retinal pigment epithelial cells. 

1.2.1 Inner Blood-Retina Barrier 

The retinal vasculature is divided into three plexuses, the superficial, 

intermediate and deep plexus which provide nourishment and removal of waste 

products to the inner two thirds of the retina to maintain a constant milieu 

(Morimoto, 1998). Junctional complexes, known as tight junctions, exist on the 

basal lamina of vessel RECs, regulating the selectively permeable barrier. The 

iBRB is also described as a glio-vascular unit due to the presence of glial cells 

(primarily Müller cells, but also astrocytes) supporting the endothelial cells 

alongside pericytes (Hosoya & Tachikawa, 2013). The tight junction unit 

consists of transmembrane, scaffolding and signalling proteins. Occludin, 

claudin and junctional adhesion molecule (JAM) are the predominant 

transmembrane proteins. Cytoplasmic tails of the former two are linked to the 

cytoskeleton via accessory proteins, such as ZO-1. Supporting tight junctions, 

adherens junctions composed of vascular endothelial-cadherin (VE-Cadherin) 

and catenins act to maintain barrier integrity (Shakib & Cunha-Vaz, 1966). 

Pericytes induce the expression of ZO-1 and occludin mRNA and protein in 

their associated REC in normoxic conditions to support junctional maintenance. 

Moreover, pericytes are able to partially ameliorate hypoxia-induced loss of ZO-

1 and occludin (Wang et al., 2007). Exposure to NO, ROS and VEGF-A, such 

as that in DR, disrupts junctional complexes inducing an increase in vascular 

permeability. In particular relevance to this thesis, VEGF-A has been described 

to induce rapid phosphorylation of ZO-1 and occludin, increasing REC 

monolayer permeability (Antonetti et al., 1999). As such, ZO-1 is a useful 

marker for BRB permeability. VEGF secreted from Müller cells promotes iBRB 

breakdown (Wang et al., 2010), however RECs also secrete VEGF in hypoxic 

conditions to autonomously regulate the iBRB (Aiello et al., 1995). 

1.2.2 Outer Blood-Retina Barrier 

The oBRB is formed from the tight junctions between cells of the RPE 

monolayer, which separates the neural retina and fenestrated choroidal 
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capillaries. The barrier is responsible for the nourishment of only a third of the 

retina, primarily photoreceptors, from the blood supply of the choroid, despite 

supplying 80% of the blood circulation to the retina (Cunha-Vaz, 1979). 

Choroidal vessel fenestration allows the transport of larger molecules such as 

fatty acids and glucose from the circulation, a supply vital for neural activity. 

However, the large leaky blood supply risks the retina being exposed to 

potentially deleterious macromolecules, thus the integrity of oBRB is crucial for 

protection and maintenance of retinal function (Simó et al., 2010). RPEs 

manage the bi-directional flow of ions and nutrients to the highly metabolically 

active photoreceptors, removal of waste material and maintain an ionic gradient 

for phototransduction (Shakib & Cunha-Vaz, 1966). They transport glucose via 

GLUT1 and GLUT3 channels. Furthermore, these cells have a role in the 

absorption of light to protect against photooxidation, and regulate the visual 

cycle, through the exchange of 11-cis retinal and all-trans-retinol (Scoles et al., 

1997). Polarity is an important property of RPEs, vital to their function, and is 

present due to tight junction localisation to the apical side of cells. In addition, 

the apical surface contains villi-like structures that intercalate with the lipid-rich 

outer segment disks of rod and cone photoreceptors. These structures facilitate 

the phagocytosis of photoreceptors, of which approximately 10% are renewed 

daily (Young & Bok, 1969). Polarisation of RPE defines their role as a 

secretome; they emit various cytokines and inflammatory mediators apically by 

the NaKATPase channel, or on the basal side through anion channels (Strauss, 

2005). Pro- and anti-angiogenic factors are expressed from RPE, including 

VEGF, whose secretion occurs both apically and basolaterally in healthy cells, 

predominately on the basal side to maintain choroidal endothelium and 

fenestrae. (Kannan et al., 2006). Inflammatory cytokines and chemokines are 

also secreted, protecting against damage to the neural retina,  (Ponnalagu et 

al., 2017). In addition to this, RPE protects against oxidative stress through anti-

oxidant, including superoxide dismutase, production (Kowluru & Chan, 2007).  

DR results in a switch in directionality of VEGF secretion, it is excessively 

secreted on the apical side of RPE (Kannan et al., 2006). Apical expression of 

VEGFR2 has been associated with diabetes-induced breakdown of tight 

junction complexes and increase in oBRB permeability (Desjardins et al., 
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2016). oBRB barrier disruption occurs concomitantly with hyperglycaemia, 

even in early DR, as fluorescent dye leakage has been observed across RPE 

monolayer in a diabetic in vivo model. Furthermore, large breakpoints and 

intensive fluorescent dye flux across RPE was observed an in oxygen-induced 

retinopathy model, highlighting the impact of hypoxia on oBRB integrity (Xu et 

al., 2011). They have also been reported to secret a pro-angiogenic protein: 

angiopoietin-like protein 4 (ANGPTL4) in response to hyperglycaemia 

(Yokouchi et al., 2013). With regards to DMO formation, breakdown of RPE 

monolayer has also been implicated, as RPE are unable to sufficiently clear 

fluid leakage from blood and excessive water. Whilst this view could be 

described as  simplistic as DMO is not solely the result of protein and water 

leakage, the general consensus is that sufficient evidence exists to conclude 

RPE barrier breakdown is involved in oedema formation (Xia & Rizzolo, 2017). 

Non-angiogenic factors such as IL-6, IL-8 and MCP-1 are upregulated in the 

diabetic eye (Ponnalagu et al., 2017). These inflammatory markers have been 

proposed for use as biomarkers for DR progression, as they have a strong 

correlation with DR staging (Crane et al., 2000; Dong et al., 2012). This 

highlights the potential of therapeutically targeting RPE for DR and DMO 

treatment. In fact, proteomic studies have implicated multiple proteins involved 

in membrane dynamics, cell metabolism, cytoskeleton adhesion, junctional 

complex and cell survival secreted from RPE in DR progression (Decanini et 

al., 2008). The level of anti-oxidants are also reduced in hyperglycaemic RPE, 

leaving the retina susceptible to oxidative stress (Kowluru & Chan, 2007).  

With regards to glial cells, Müller cells are sensitive to glucose concentration 

but able to withstand shifts in oxygen levels so long as the glucose 

concentration is maintained, which is indicative of their dependence on 

glycolysis rather than oxidative phosphorylation for ATP production (Winkler et 

al., 2000). DR results in a decrease in neurotransmitter and potassium uptake 

early on in the disease, contributing to glutamate toxicity within the retina. 

Hyperglycaemia also induces Müller cell activation, indicated through 

expression of GFAP, promoting the release of growth factors, cytokines and 

chemokines including VEGF, IL-b, IL-6 and tumour necrosis factor-a (TNF-a), 

driving BRB breakdown and DR progression (Coughlin et al., 2017). Astrocytes 
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however exhibit reduced GFAP, attributed to early cell loss, as well as a 

reduction in gap junction protein expression. These changes in DR have been 

linked to neuronal dysfunction of the retina, with astrocyte loss occurring prior 

to Müller cells (Ly et al., 2011).  

1.3 VEGF and Diabetic Retinopathy 

The retina has played a pivotal role in the discovery of vascular endothelial 

growth factors (VEGFs) characteristics and function. The idea of pathological 

angiogenesis being stimulated by a secreted factor was first proposed by Isaac 

Michaelson in 1948, who discovered a mystery angiogenic factor ‘Factor X’ in 

the ischaemic retina (Michaelson, 1948). Following his ground-breaking 

discovery and, after forty years of pioneering research from different groups, 

this mystery factor was named vascular endothelial growth factor or VEGF  

(Ferrara & Henzel, 1989). Over the ensuing thirty years, there have been a 

plethora of findings amassed, implicating VEGF with a multitude of roles in 

growth, development, cancer and diabetes, amongst others. The impact of this 

protein is to such an extent, that a Nature review published in 2017 described 

the gene encoding the VEGF protein as the fourth most researched gene of the 

human genome (Dolgin, 2017). VEGFs are part of a superfamily of growth 

factors whose members include VEGF-A (hereafter known as VEGF) VEGF-B, 

VEGF-C VEGF-D, and placenta growth factor (PGF). The family is unique in 

their additional role in vascular permeability alongside angiogenesis. VEGF 

acts upon its cell surface receptors: VEGFR1, VEGFR2, neuropilin-1 and 

neuropilin-2 to mediate many intracellular pathways (Ferrara et al., 2003).  

1.3.1 VEGF expression in the diabetic retina 

The principal pro-angiogenic factor in DR is VEGF, present at high 

concentrations in vitreous and aqueous fluids of patients due to the consistent 

upregulation in retinal neovasculature, predominately in retinal pigmented 

epithelial cells (Adamis et al., 1993), glial cells and intravitreal fibroblasts 

(Malecaze et al., 1994). Expression is correlated with glucose availability and 

has been shown in differing cell lines to increase in response to both hypo- and 

hyperglycaemia (Caprnda et al., 2017). In vitro studies have confirmed that high 
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glucose (18.5 or 30mM) increases VEGF secretion in retinal endothelial cells, 

retinal pigment epithelial cells and human retinal pericytes, although glucose 

deprived conditions induced a pro-angiogenic phenotype in retinal endothelial 

cells compared to high glucose (Caprnda et al., 2017). In Müller  cells however, 

30mM glucose reduced VEGF secretion compared to 5mM glucose. PKC 

activation induces VEGF release (Koya & King, 1998; Williams et al., 1997), 

which, through a positive feedback loop, causes further activation of PKC and 

mediates its pro-angiogenic effects (Xu et al., 2008). Vascular occlusion is 

suggested to be the primary reason for hypoxia, however this is still up for 

debate. Another hypothesis is that increased flux through the poly-ol pathway 

generates an imbalance between the levels of pyruvate and lactate, causing a 

pseudohypoxia (Williamson et al., 1993).  

In the ischaemic retina, VEGF is upregulated due to the formation of hypoxia-

inducible factor-1 (HIF-1), a heterodimer responsible for orchestrating the 

cellular response to oxygen saturation, consisting of alpha and beta subunits 

(Ozaki et al., 1999). HIF-1α is ubiquinitated and degraded under normoxic 

conditions, due to dihydroxylation by a prolyl hydroxylase. During hypoxia, such 

as that seen in DR, there is an inactivation of prolyl hydroxylase causing an 

accumulation of HIF-1α. This leads to the formation of HIF-1, as accumulating 

alpha subunits bind HIF-1β. Newly formed HIF-1 translocates to the nucleus, 

binding hypoxia response element (HRE) based in the promoter region of the 

VEGF gene, transactivating it together with a multitude of other genes. Thus, 

VEGF, alongside the several other HIF-1 regulated gene products, produces 

the characteristic retinal neovascularisation phenotype seen in PDR 

(Campochiaro et al., 2016).  

1.3.2 VEGF and permeability 

Permeability of a vessel can be defined by the ability of a vessel wall to impede 

movement of solutes between the intravascular and extravascular spaces. 

However, flux of a solute is determined not just by the properties of the vessel 

wall, but by a number of physical variables, such as hydrostatic and osmotic 

pressures; electrical and chemical gradients; transport aids like vesicles and 

channels; and the properties of the fluid itself (Dejana, 2004). Angiogenesis,  
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the formation and growth of new blood vessels from pre-existing vessels, is 

often coupled with an increase in vascular permeability (Eliceiri et al., 1999). 

Vascular growth requires endothelial cells to migrate and proliferate, weakening 

junctional strength and causing an increase in vascular permeability (Corada et 

al., 2002). The mechanism of action with which VEGF mediates vascular 

permeability is complex and not completely understood, perhaps due to the 

contribution of other factors such as erythropoietin, angiotensin-1 (Abcouwer, 

2013), and FAK (Chen et al., 2012). Activation of the PI3K-Akt pathway (Fig 

1.3) in DR downregulates the expression of GLUT1, impeding nutrient uptake 

of photoreceptors (Kim et al., 2007). The fact that vascular permeability 

increase is a net result of the interplay between several signalling pathways 

(see Fig 1.3) makes it difficult to pinpoint one specific mechanism (Bates, 2010). 

However, it is clear that a major part of the permeability increase is due to 

phosphorylation and reorganisation of specific junctional proteins. 
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Figure 1.3: Schematic of some permeability-inducing intracellular signalling 
pathways. VEGFR2 activation in response to plasma or serum VEGF and 
inflammatory stimulation on cell-cell junctions. Additionally VEGF bound to 
extracellular matrix or secreted from pericytes and glia also initiate signalling 
pathways. VEGFR2 interacts αv integrins, inducing signalling to cell-matrices 
and actin cytoskeletonwith Adherens, tight and gap junctions are disrupted 
through activation of protein tyrosine phosphatases (PTPs) and Src. Protein 
kinase C (PKC) activation phosphorylates tight junction proteins disrupting 
complexes and weakening cell-cell junctions. Release of nitric oxide induces 
vasorelaxation. Image adapted from text in (Weis & Cheresh, 2005) and 
(Bolinger & Antonetti, 2016) . 

VEGF is able to exert its action through tyrosine kinase receptors. Activation of 

VEGFR1, causes different effects, depending on the pathophysiological 

environment. In the diabetic retina, activation of VEGFR1 by placental growth 

factor (PlGF) promotes angiogenesis and survival of cells in the hypoxic 

environment (Shih et al., 2003). Inhibition of this receptor prevented vascular 

leakage, leukostasis and junctional breakdown in a rat model of diabetes, 

however the full extent of VEGFR1 involvement in DR are as yet unknown (He 

et al., 2015). Activation of VEGFR2 induces a cascade of a number of inter-

linking downstream pathways (summarised in Fig 1.2.1). The primary effects 

are phosphorylation of junctional proteins, cell proliferation through the 

activation of mitogen-activated protein (MAP) (Unemori et al., 1992) and cell 

migration by matrix metalloproteinase (MMP)-mediated degradation of 

basement membrane. Interestingly, HIF-1 upregulates gene expression for 

VEGFR1, the higher affinity VEGF receptor, but not VEGFR-2, perhaps as a 

protective measure against the toxic hypoxic environment (Gerber et al., 1997).  

Reports of solute permeation across a tight junction are still highly varied, but 

the general consensus is that movement occurs via two pathways, distinct by 

their selectivity to electrostatic characteristics and size (Itallie & Anderson, 

2006). Solutes with a diameter below 8-9Å pass through claudin pores, with the 

ability to discriminate by charge, along an electrochemical gradient. The second 

pathway is speculated to involve a breakage and subsequent sealing of tight 

junctions to allow larger solutes through (Itallie et al., 2009). Tight junctions are 

primarily comprised of two types of transmembrane proteins, occludins and 

claudins, which span the membrane four times. The proteins are cross-linked 

with zonula occludin-1 (ZO-1) on the cytoplasmic surface of the plasma 
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membrane (Itoh et al., 1999). ZO-1 is a 210kDa membrane-associated 

guanylate kinase required for the assembly of tight and adherens junctions 

(Stevenson et al., 1986). It is the founding member of the TJ-MAGUK family, 

alongside ZO-2 and ZO-3, all with roles associated with tight junctions. The 

family is defined by the presence of an actin binding region, acidic domain and 

a region homologous to guanylate kinase (GUK), a Src homology-3 (SH3) 

domain and three post-synaptic density/discs-large/ZO-1 (PDZ) domains 

(Beatch et al., 1996). ZO-1 is essential for growth, development and 

morphogenesis, as knockout of the gene is embryonically lethal (Katsuno et al., 

2008), the expression of ZO-1 in endothelial cells is inversely proportional to 

blood-retinal barrier permeability (Choi et al., 2007). VEGF-induced PKC 

pathway results in the phosphorylation of ZO-1 and another tight junction 

protein, occludin. Phosphorylation leads to the formation of  abnormal 

relationships with other proteins of the junctional complex and therefore a 

weakness in cell-cell contacts, increasing vascular permeability (Antonetti et 

al., 1999; Pedram et al., 2002).  

1.3.3 VEGF-A165b 

The human vegf gene is 14kb long containing eight exons alongside seven 

introns. Exons are alternatively spliced at exons six and seven from pre-RNA 

to produce at least seven isoforms: the major VEGF189, VEGF121 and VEGF206 

and the minor VEGF183, only found in the iris;  VEGF145  VEGF148 and VEGF165 

(Ferrara et al., 2003). In 2002, an additional event of alternative splicing of 

VEGF pre-mRNA was discovered, resulting in an anti-angiogenic phenotype 

due to the expressed protein (Bates et al., 2002). An alternative splice site 

coding for 6 different amino acids (CDKPRR to SLTRKD) at the distal end of 

VEGF gene results in two families of isoforms with opposing functionality, 

VEGFxxxa and VEGFxxxb respectively. The ‘a’ isoforms, henceforth named 

VEGFxxxa, are spliced at the proximal end and have proangiogenic properties, 

with the ability to increase vascular permeability. Conversely, the ‘b’ isoforms, 

henceforth named VEGFxxxb, are the result of distal splicing and are 

antiangiogenic and protective against vascular leakage (Perrin et al., 2005). In 

1998, Koya and King identified a C-G polymorphism at the 5’ untranslated 

region (UTR) of VEGF gene as a DR risk factor, emphasising the importance 
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of transcriptional regulation or splicing events in DR (Koya & King, 1998). 

VEGFxxxb isoforms retain receptor binding and dimerisation domains, thus are 

able to bind to receptors, competing with VEGFxxxa isoforms at a one-to-one 

ratio (Varey et al., 2008). However, binding to the receptor does not stimulate 

its activation, conversely, it inhibits the downstream cascade usually triggered 

by VEGFxxxa isoforms. The effect is predicted to be due to the loss of net postive 

charge between ‘a’ and ‘b’ isoforms, as positively charged arginine is replaced 

by neutral leucine and aspartic acid. Currently, only four VEGFxxxb variants 

have been described in further detail: VEGF111b VEGF121b, VEGF165b and 

VEGF189b. VEGF121b has been found to inhibit tumour neovascularisation and 

tumour growth in an in vivo tumour mouse model, but requires further 

investigation to elucidate its properties (Rennel et al., 2009). VEGF165b is the 

most investigated of the ‘b’ family and has been shown to decrease migration 

and proliferation of cultured endothelial cells through its action on VEGFR2. 

VEGF165b is unable to bind to heparan sulphate or neuropilin-1, a VEGFR2 co-

receptor (Suarez et al., 2006). In addition, VEGF165b has been shown to 

modulate VEGFR1-STAT3 signalling, decreasing perfusion in peripheral 

arterial disease (Ganta et al., 2017). However, VEGF165b has also been 

hypothesised to induce transient increases in vessel permeability in pre-

eclampsia which can be reversed with neutralising antibodies targeted against 

the isoform (Bills et al., 2011). Expression of VEGF165b is decreased in the 

diabetic retina, whilst being preferentially expressed over VEGF165a in non-

diabetics. Thus, this apparent ‘switch’ in splicing from anti- to pro- angiogenic 

isoforms of VEGF could be a contributing factor to the development of DR 

(Perrin et al., 2005). Furthermore, VEGF165b appears to prevent diabetes-

induced and thus VEGF165a-induced breakdown of tight junctions, vascular 

permeability and growth within the retina, and thus provides a potential target 

for DR therapy (Ved et al., 2017).  

1.4 SRPK1 

1.4.1 SR Proteins 

The role of splicing: the removal of introns from precursor mRNA, in gene 

expression, cellular differentiation and our overall biological complexity is 
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paramount. Splicing of pre-mRNA occurs during transcription and is regulated 

by the splicesome, a macromolecular complex consisting of five small nuclear 

ribonucleo-proteins (snRNPs): U1, U2, U5 and base-paired U4/U6, and over 100 

auxiliary proteins (Yang et al., 2007). The complex is important for recognition 

of 5’ and 3’ splice sites and catalyses exonic binding and intron removal 

thorough transesterification. Cis-acting RNA sequence elements and trans-

acting RNA binding proteins (RBPs) are essential for pre-mRNA recruitment to 

the splicesome. Serine-rich (SR) proteins are a family of RBPs, that interact 

with the splicesome (Naro & Sette, 2013). They modulate the binding of exonic 

and intronic splicing enhancers and silencers, selecting splice sites. The 

importance of phosphorylation (and de-phosphorylation) of SR proteins is 

paramount for the efficient assembly of the spliceosome and catalysis of 

splicing reactions. Their structure is characterised by the inclusion of one or two 

RNA binding domains and an RS domain within the C-terminus. The RS domain 

functions as a nuclear localisation signal stimulating transport of the splicing 

factors into the nucleus and nuclear speckles to induce their effect (Kataoka et 

al., 1999). In addition, the phosphorylation of this domain is vital for binding to 

the C-terminus of RNA polymerase II, thus co-ordinating splicing (Gonçalves & 

Jordan, 2015). Within the nucleus, SR proteins tend to accumulate within the 

nuclear speckles, however they require release in order to form their action in 

transcriptional regulation. Their release is modulated through phosphorylation 

(Kim et al., 2016). 

1.4.2 SRPK1 

The Serine-rich protein kinase (SRPK) family of enzymes, are responsible for 

the modulation of a highly conserved family of splicing factors, SR proteins. 

Their primary role, along with Cdc-like 2 kinases (CLKs), is to phosphorylate 

dipeptide Arginine-Serine (RS) repeats thus inducing structural changes within 

proteins. The inclusion of an RS domain within different proteins vary in location 

and number of repeats, and modifications to this domain could induce changes 

in interactions with other proteins or RNA molecules (Voukkalis et al., 2016). 

Whilst CLKs have additional phosphorylation targets, such as lysine, SPRKs 

retain a remarkable specificity to RS (Aubol et al., 2013). Their structure is 

characterised by the inclusion of a unique spacer sequence splitting the 



 44 

catalytic domain in two. This spacer has no effect on the functionality of the 

protein but instead its cellular location due to the inclusion of a cytoplasmic 

retention signal (Zhong et al., 2009). SRPK1, the prototypical member of the 

SRPK family, is a ubiquitous and has been proposed to be constitutively active 

kinase. SRPK1 binds centrally to RS domains and then proceeds 

phosphorylating in the direction of the N-terminus (Aubol et al., 2013). The 

protein is regulated via its cellular localisation mediated by the spacer rather 

than activity (Gonçalves & Jordan, 2015). Within the cytoplasm, SRPK1 

interacts with heat-shock proteins (Hsp) Hsp70/Hsp90 via their co-chaperones 

Aha1/Hsp40. This complex assists with folding of SRPK1 to its active state and 

protects against degradation. Stress signalling can abrogate binding of the 

complex and induce nuclear shuttling of SRPK1. CLK-1 assists movement of 

SRPK1 across the nuclear pores by reversibly binding to SRPK1. 

Phosphorylation of SRPK1, causes hyperphosphorylation of SR proteins during 

cellular stress induced by sorbitol, like that seen in DR (Aubol et al., 2013). 

 

Figure 1.4: Schematic of what is currently known of the mechanism of SRPK1-
SRSF1 axis in VEGF alternative splicing. Image adapted from the text in 
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(Batson et al., 2017; Manetti et al., 2011; Mavrou et al., 2015; Nowak et al., 
2008; Nowak et al., 2010; Wang et al., 2016; Zhou et al., 2012). 

Role in VEGF splicing  

There is still much to be discovered about alternative slicing of VEGF, 

especially with regards to VEGFxxxb isoforms, however, SR proteins: SRSF6 

(SRp55), SRSF1, SRSF2 and perhaps SRSF5, have been recognised to play 

a role (Biselli-Chicote et al., 2017). Nowak et al found SRSF1 and SRSF5 

potential binding sites next to the proximal splice site on the 3’ end of the VEGF 

gene. Despite the putatative binding site, SRSF5 had no effect on VEGF 

expression. Distal splice site selection could be attributed to SRSF6, due to the 

discovery of cluster of SRSF6 binding sites near the distal site (Nowak et al., 

2008). A striking positive correlation between VEGF165b expression and SRSF6 

expression was discovered in skin cells. In addition, this correlation was also 

observed between VEGF165b and cytokine, transforming growth factor-β 

(TGFβ), thus acting as a contributing factor to VEGF165b expression. The two 

together could be the cause of an increased expression of VEGF165b in these 

cells (Manetti et al., 2011). As mentioned previously in section 1.1.3, there is 

activation of PKC and increased TNF-α levels in the diabetic retina, both of 

which have been attributed to proximal splice site selection (Nowak et al., 2008; 

Nowak et al., 2010). SRSF2 has been described to have a unique role in 

transcriptional activation and elongation and is the only SR protein to be 

constantly present within the nucleus. SRPK1 has no interaction with SRSF2, 

whose phosphorylation is mediated by SRPK2 (Wang et al., 1998). SRPK1 

phosphorylates the first 12 serine residues within SRSF1 RS domain, enabling 

the SR protein to bind to transportin-SR2, a nuclear import factor. Thus, SRSF1 

is shuttled to the nucleus where it is phosphorylated further by SRPK1 or CLK-

1 in the distal RS domain. The complete phosphorylation of the RS domain 

instigates a dispersion of SRSF1 where it accumulates in the nuclear speckles, 

associating with the splicesome via RNA polymerase II (Gonçalves & Jordan, 

2015). Here, it stimulates the selection of the proximal splice site of VEGF pre-

mRNA, leading to the production of the VEGFxxxa isoform. Stimulation of 

HEK293 cells by IGF-1 induces an increase in pro-angiogenic VEGF isoforms, 

which could be impeded by blocking PKC or SRPK1, providing clear evidence 



 46 

for the role of this SRPK1 in VEGF gene splicing (Nowak et al., 2010). 

Furthermore, knockdown of SRPK1 induced an increase in VEGF165b 

expression in melanoma and colon cancer cell lines (Mavrou et al., 2015). Thus, 

inhibition of the SRPK1-SRSF1 axis may be a useful treatment option for DR. 

1.4.3 SPHINX31 

Small molecule SRPK1 inhibitors are currently in development from multiple 

groups (Fukuhara et al., 2006; Morooka et al., 2015; Székelyhidi et al., 2005). 

Whilst they successfully inhibit SRPK1, some also target SRPK2 and other 

closely related kinases, and lack potency. The 3-(trifluoromethyl)anilide scaffold 

SPHINX31 has excellent potency and selectivity for SRPK1. The group utilised 

the crystal structure of SRPK1 to develop an inhibitor to target unique structural 

features of SRPK1, resulting in a highly potent and selective inhibitor. The 

compound has an IC50 of 5.9nM, and occupies the binding pocket of SRPK1 

exploiting an unusual helical insert close to the kinase hinge region inducing a 

backbone flip. Differential scanning fluorimetry to screen SPHINX31 against 

SRPK1 and 50 other closely related kinases revealed high interaction with 

SRPK1. SRPK2 affinity to SPHINX31 was approximately 50-fold less than 

SRPK1, same as CLK-1, whilst CLK-4 had 100-fold less binding affinity. The 

inhibitor is ATP-competitive and has been described to induce a switch in 

splicing in RPE cells from VEGF-Axxxa to VEGF-Axxxb. Excitingly, the compound 

reaches the back of the eye through topical administration (Batson et al., 2017). 

SPHINX31 will be used over the course of this study to inhibit SRPK1 kinase 

activity. 
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Figure 1.5: Chemical structure of SPHINX31. Left graph is radioactive SRPK1 
kinase assay dose response with SPHINX31. Right graph is isothermal 
calorimetry of SPHINX31 binding to SRPK1 (Batson et al., 2017). 

1.5 Hypothesis and Aims 

Pro-angiogenic, permeability inducing VEGF-A has been clearly implicated in 

the progression of DR. The alternative VEGF-Axxxb isoform family offers 

protection against DR-induced pathologies in vitro and in animal models as this 

restores of VEGF-Axxxa: VEGF-Axxxb ratio. I will test the hypothesis that SRPK1 

inhibition may be a novel, more advantageous approach of restoring isoform 

balance because it may induce a cellular ‘switch’ in splicing of VEGF-A from 

the pro- to anti-angiogenic isoform to physiological levels. Topical 

administration of ocular drugs offer benefits against the more popular 

intravitreal route as it results in fewer inflammatory side-effects, thus I also 

hypothesise that topical SPHINX31 therapy is a novel approach to treating DR. 

Furthermore, I hypothesise that the oBRB is involved in DR progression and 

targeting this barrier will successfully treat diabetes-induced pathology.  

I will test these hypotheses with a number of experiments aiming to: 

1. Develop a reproducible model of RPE monolayer of the oBRB in vitro 

and determine the effects of diabetic-mimicking conditions on VEGF-A 

isoform expression and monolayer permeability. 

 

2. Establish the role of SRPK1 in response to hyperglycaemic and hypoxic 

conditions in this in vitro model.  

 
3. Inhibit SRPK1 in this in vitro model and determine changes in VEGF-A 

expression, SRPK1 activity and monolayer permeability.  

 
4. Assess whether a four-week in vivo model of type-1 diabetes will induce 

changes in retinal permeability and thickness and, if so, evaluate the 

response to topical administration of an SRPK1 inhibitor.  
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5. Determine changes in vascular parameters and acellular capillary 

formation in this in vivo model, if any, and assess the response to 

SRPK1 inhibition.  

 
6. Compare the impact of SRPK1 inhibition in each BRB via use of a REC 

monolayer to establish how in vivo retinal changes, if any, are occurring.  
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2.1 Cell culture 

2.1.1 Routine cell culture 

All cell culture was performed in sterile conditions using a class II 

microbiological safety cabinet (Walker, Glossop) and incubated at 37°C, 5% 

CO2 (MCO-5AC-UV-PE, Panasonic). All solutions were heated to 37°C before 

use on cells using a water bath. The immortalised cell line, ARPE-19s, were 

purchased from ATCC and cultured in a 1:1 mixture of Dulbecco’s modified 

Eagle Medium (DMEM) low glucose (Sigma Aldrich) and Ham’s F12 nutrient 

mixture (Gibco Life Technologies) supplemented with 10% (v/v) fetal bovine 

serum (FBS) (Sigma Aldrich). The medium contained 7.5mM glucose, this was 

the basal level of exposure for cells. All cells were routinely grown in T175 or 

T225 cell culture flasks (Costar) depending on the cell number required. The 

plasticware was not coated with any attachment aiding solutions as this 

provides a better representation of the native retinal pigmented epithelia (Tian 

et al., 2004). Cells were routinely passaged once they had reached 

approximately 80% confluency within the flask. The media was removed and 

cells were initially washed with Dulbecco’s phosphate buffered saline (PBS) 

(Sigma Aldrich). The PBS was removed and replaced with 5mL or 8mL of 1x 

trypsin (Sigma Aldrich) for T175 and T225 flasks respectively. The flasks were 

incubated at 5% CO2, 37°C for approximately 5-7 minutes to allow the cells to 

detach from the flask. Flasks were agitated by gently hitting the sides to aid cell 

dissociation which was confirmed by observing the cells under a microscope. 

The reaction was quenched by the addition of 200% (v/v) of media to trypsin 

and one fifth of the total volume of solution in the flask was added to a fresh 

flask containing 10mL or 23mL of media (for T175 or T225 flasks respectively). 

2.1.2 Primary retinal pigment epithelial cell culture 

The primary cell lines, human primary retinal pigment epithelial cells (hpRPEs) 

were cultured in a separate, primary culture specific hood. hRPEs were cultured 

using DMEM:F12 media with GlutaMAXTM supplement (Gibco Life 

Technologies, UK) with the addition of 10% (v/v) FBS and 1% (v/v) penicillin 

streptromycin (Sigma Aldrich) containing 17.5mM glucose. Flasks were coated 
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with neat attachment factor (Sigma Aldrich), incubated at 37°C for 30 min and 

then removed before adding cells. One week prior to experimental study, 

hpRPEs were transferred to the 7.5mM glucose medium used for ARPE-19s to 

ensure they were not hyperglycaemic.  

2.1.3 iBREC Culture 

All experiments involving iBRECs were performed in Dr Heidrun Deißler’s 

laboratory in the University of Ulm. These cells had previously been isolated 

from a bovine source and immortalised using hTERT (Deissler et al., 2005) 

Monthly proteomic profiling was performed from the Deißler lab on these cells 

to ensure the cell line remained endothelial. As with experiments performed in 

Nottingham, all cell culture was performed under sterile conditions using a 

Class II microbiological safety cabinet. To ensure sterility, cabinets were 

exposed to UV radiation for 1h prior and post use. Solutions were warmed to 

37°C in a water bath before being exposed to cells. Flasks (Greiner) were 

washed with 5mL PBSd (PBS minus Ca2+/Mg2+), coated with 3mL 0.1mg/mL 

(w/v) fibronectin (Corning) and incubated for 1h at 37°C 5%CO2 to allow the 

fibronectin to bind. Fibronectin solution was collected and stored at 20°C 

(reused 3 times before disposing) and replaced with VMnHC media, consisting 

of the solutions stated in the table below. Inclusion of gentamycin in media was 

paramount to guarantee activity of hTERT. Flasks were incubated again for 1h 

at 37°C 5% CO2 to allow the media to equilibrate before cells were added, this 

was confirmed by the media turning from pink to orange. Whilst media was 

equilibrating, cells were detached from flasks after they achieved at least 70% 

confluence across a surface area. This was achieved through removal of 

culture medium, and washing cells twice with PBSd. Accutase (Sigma) was 

warmed to 37°C for 5 min, but not longer to avoid denaturing the enzyme, and 

1mL was added to flasks. Cells were incubated for 5 min at 37°C 5%CO2 

followed by physical agitation of the flasks to promote cell detachment, this was 

confirmed through observation of detached cells under the microscope. 

Protease reaction was quenched through the addition of at least 3mL of pre-

warmed VMnHC, and culture surface was washed with cell suspension to yield 

any remaining attached cells. Cell suspension was transferred to a 15mL falcon 

tube which was placed in a Multifuge X1R, Haraeus and span at 1,200rpm for 
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7 min at room temperature to pellet the cells. Supernatant was carefully 

removed and pellets were resuspended in 6mL VMnHC, pipetting up and down 

multiple times to ensure single cell suspension. Fibronectin-coated flasks 

containing equilibrated culture medium were removed from the incubator, and 

1mL of cell suspension was added to each flask. The following day, cells were 

observed through microscopy to confirm attachment and medium was 

replaced. 

Table 1 

VMnHC 
Volume (v/v) Solution Source 
500mL Endothelial Cell Growth Medium Promocell 
3mL  Geneticin (50mg/mL) Invitrogen 
25mL FBS Promocell 
2mL Endothelial Cell Growth Supplement Promocell 
500µL Humanised endothelial growth factor 

(0.1µg/mL) 
Promocell 

500µL Hydrocortison (1mg/mL) Promocell 
   

2.1.4 Cell storage 

Cells were stored for future use at -150°C in FBS with 10% (v/v) dimethyl 

sulfoxide (DMSO). This was achieved by detaching the cells from a T175 flask 

as described in 2.1.1. and spinning the cell suspension in a 15mL falcon at 

12,000rpm for 5 minutes. The resultant pellet was resuspended in 3mL FBS 

10% DMSO and aliquoted into three cryovials. The vials were stored in Mr. 

FrostyTM freezing container at -80°C overnight before transferring to -150°C for 

long term storage. Upon use, one cryovial was rapidly thawed followed by the 

swift addition of 5mL of media to dilute out the remaining DMSO. The 

suspension was decanted into a T25 flask (Costar) and incubated at 5% CO2, 

37°C to allow cell-cell adhesion to occur. 

2.1.5 Cell counting 

Cell detachment as described in 2.1.1. was performed and the resulting 

suspension was span at 12,000 rpm for 5 minutes in a 15mL falcon. The pellet 

was resuspended in 1mL of media, mixing thoroughly by pipette to ensure a 

single cell suspension. A glass coverslip was moistened by breath and fixed to 
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a haemocytometer. The presence of Newton refraction rings under the 

microscope was observed to confirm coverslip adhesion. 10uL of cell 

suspension was added to the haemocytometer by capillary action and the cells 

sixteen squares of each of the four corner squares (yellow boxes in the figure 

below) are counted, avoiding those that cross the top and right lines. The 

concentration of cells is calculated using the formula below:  

 

 

Figure 2.1: Formula for calculating cell number 

2.2 Isolation of primary cells 

Posterior segments of human eyes were received from the Manchester Eye 

Bank under appropriate ethics. All dissection equipment was sterilised with 

70% (v/v) denatured ethanol. Firstly, there was a severing of remaining optic 

nerve. Pupil and lens was removed and discarded. The thick, gel-like vitreous 

humour was gathered using forceps and any attached retinal tissue was 

scraped from the surface in order to be harvested. Once completely free of 

retina, the vitreous was discarded. The retina remained attached to the choroid 

in the centre of the petals, thus a small incision was used to separate the two 

layers and retina was harvested in a 6-well plate containing sterile PBS. The 

choroid was peeled away from the sclera and placed in a separate well 

containing sterile PBS. Tissue was cut into small sections, decanted into a 

15mL falcon and centrifuged at 2,000rpm for 5 minutes. This was followed by 

disposal of supernatant, and the tissue was washed by resuspending in 3mL 

PBS, mixing through gentle agitation and centrifuging at 2,000rpm for 5 

minutes. These steps were repeated twice. After removal of supernatant, tissue 

was resuspended in 0.1% (w/v) collagenase (Sigma Aldrich) and incubated at 

37°C for 1 hour, agitating every 10 minutes. At this stage, 500μL FBS was 

Number of cells/mL 

 = average cell count per mm2 ´ 104 ´ dilution factor 

Counting chamber of 
haemocytometer 
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added to choroid suspension and decanted into a T25 flask containing 

DMEM:F12 with GlutaMAXTM supplement coated with attachment factor 

(Thermo Fisher).  

 

Figure 2.2: Schematic summarising the steps to isolate primary cells 

2.3 Protein extraction 

2.3.1 RPE Cell lysis 

Cells were washed with ice-cold PBS and kept on ice. NP40, consisting of 

150mM NaCl, 50mM Tris (pH 8.0) and 1% TritonX100 (Sigma Aldrich) with 

protease and phosphatase inhibitors PMSF (1mM), NaVO3 (1mM), NaF 

(50mM) and 2% (v/v) Roche protease inhibitor cocktail (Sigma Aldrich) was 

made up, and 100uL was added to each plate. Plates were left to incubate on 

ice for 10 minutes with the complete lysis buffer. Cells were detached using cell 

scrapers (Greiner) and aspirated into 1.5mL eppendorfs. Cells suspensions 

were vortexed and mixed via pipetting, to ensure all protein had been detached, 

and then centrifuged at 14,800rpm for 15 minutes to pellet the cell debris. 

Supernatant was transferred to a fresh eppendorf and stored at -80°C until 

required.  
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2.3.2 Tissue lysis 

Retinae excised from eyecups (isolation method described in section 2.6.2) 

were collected into 2mLscrew cap Beadbug™ tubes filled with 3 acid washed 

stainless steel beads. 300μL ice-cold NP40 (recipe in 2.3.1) were added and 

tissue was mechanically homogenised for 3 min at speed 300 using the 

Beadbug™. Samples were then centrifuged at 12,000g for 10 min and the 

supernatant collected and transferred to a fresh Eppendorf tube. 

2.3.3 iBREC lysis 

Flasks were removed from the incubator and placed on a freeze board, cells 

were washed twice with ice-cold PBSd 1M MgCl2, followed by addition of 5mL 

PBSd 1M MgCl2. Cell scrapers were used across flasks to detach cells and the 

suspension collected into a 15mL falcon. A final wash of the flask with PBSd 

1M MgCl2 allowed collection of remaining cell suspension, which was pooled 

with the initial suspension. Centrifugation at 3,200rpm for 7min at 4°C in 

Multifuge X1R, Haraeus followed, with disposal of supernatant and re-

centrifugation of the pellet under the same conditions as previous. Remaining 

supernatant was carefully removed via pipetting and the pellet was left to dry 

on ice for 10min. Pellets were resuspended thoroughly in 300µL commercial 

lysis buffer (Bio-Techne, R&D) supplemented with 0.1% 5mg/mL (v/v) Aprotinin 

pH 7.4 (Biorad), 0.4% 2.5mg/mL (v/v) Pepstatin (Sigma), 0.2% 5mg/mL (v/v) 

Leupeptin (Sigma), 0.5% Phosphatase-inhibitor cocktail (Sigma). Cell lysate 

was transferred into a 1.5mL pre-cooled Eppendorf and incubated on ice for 

30min on a rotator before being centrifuged at 14,800 rpm for 30min at 4°C in 

Eppendorf-Centrifuge, Fresco 21. Supernatants were stored at -80°C before 

use. 

2.3.4 Protein quantification 

A Bradford assay was used to determine the protein concentration of samples. 

Bovine serum albumin (BSA) was diluted in PBS to a concentration of 1mg/mL 

and then serially diluted 1:1 with PBS to obtain concentrations of 500µg/mL, 

250µg/mL, 125µg/mL, 62.5µg/mL, 31.25µg/mL and 15.625µg/mL. Samples 

were diluted 1:10 in PBS and loaded into a 96 well plate alongside the BSA 
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standards (10µL/well). Wells containing just PBS were included to use as 

blanks. Bio-Rad protein assay dye was diluted 1:5 with distilled H2O (dH2O) and 

200µL was loaded per well. The plate was agitated for 10 seconds before the 

absorbance was read at 620nm using a plate reader. The BSA standards 

produced a standard curve of which the sample protein concentrations could 

be calculated from on Microsoft Excel™.  

2.4 Western Blot 

2.4.1 RPE 

Cell lysates diluted with dH2O and 1X Laemmli (BioRad) were heated to 95°C 

for 5 minutes and loaded onto 4-20% or 10% Mini-PROTEAN® TGXTM Precast 

Protein gels alongside 4µL molecular weight marker (PrecisionPlus dual colour 

standard, BioRad). A current of 180V was imposed onto gels submerged in  

running buffer (25mM Tris 192mM Glycine 0.1% SDS pH 8.3) using the ‘Mini-

PROTEAN Tetra Cell 1-D vertical gel electrophoresis’ system in order to 

separate out the proteins within the sample by their molecular weight. Proteins 

were transferred onto methanol activated polyvinylidene fluoride (PVDF) 

membrane using the Trans-Blot® TurboTM Transfer system (BioRad) and 

Transfer buffer (Biorad) 10% methanol. Membranes sub-sequentially blocked 

in blocking buffer; 5% (w/v) BSA tris-buffered saline (TBS) 1% Tween20 

0.22µm filtered, for 2 hours at room temperature on a roller. Primary antibody 

was diluted to the appropriate concentration (see table below) in blocking buffer 

and incubated at 4°C with the membranes overnight on a roller.  

Table 2 

 Antibody Dilution (1/x) Source 

Primary 
antibodies 

Rabbit anti-ZO-1 1,000 Invitrogen 
Mouse anti-actin 400 Invitrogen 
Rabbit anti-SRSF1 2,000 Abcam 
Mouse anti-phosphoSR 500 Merck millipore 

Secondary 
antibodies 

IRDye® 800CW Donkey 
anti-Mouse IgG 

5,000 Licor 

IRDye® 680RD Donkey 
anti-Rabbit IgG 

5,000 Licor 
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Post incubation, membranes were washed three times in quick succession with 

TBS 1% Tween20 (TBS-T) followed by three, longer, 15 min washes with TBS-

T at room temperature on a roller. Secondary antibodies were diluted to the 

appropriate concentration (see table above) in blocking buffer same as the 

primaries and incubated in the dark with the membranes for 1 hour with gentle 

agitation. The membranes were washed again same as previously and imaged 

using Licor system. The results were analysed using ImageJ software with FIJI 

update. 

2.4.2 iBREC 

Cell lysates were thawed, and spiked with 4x Laemmli sample buffer (Biorad) 

1M DTT to 1x concentration. Solutions were heated to 100°C for 5min to reduce 

protein followed by centrifugation for 5min at 13,000rpm at room temperature. 

Mini Protean TGX 4-20% gels (Biorad) were rinsed with running buffer and each 

individual well was washed by pipetting. Samples were loaded into wells, 

alongside a protein ladder and proteins were separated by gel electrophoresis 

(200V, 0.4A) for approximately 45min. Proteins were transferred to methanol 

activated PVDF membranes using Trans-Blot® Semi-Dry system (Biorad) and 

Transfer Buffer (Biorad) 10% methanol. To promote protein transfer, both 

membrane and gel were submerged in transfer buffer before running at 20V, 

0.16A for 90min. Following transfer, membranes were rapidly immersed in 

PBS-T to avoid the membrane drying out and washed twice in the buffer. 

Blocking steps were achieved using a polymer based blocking buffer (1:100 

ROTI®Block (Carl Roth) PBST), incubating on a rotator for 15min at room 

temperature followed by a further 15min at room temperature or overnight at 

4°C. Membranes were washed twice for 3min with PBS-T and exposed to 

7.5mL primary antibody for 90min at room temperature. Another two 3min 

washes in PBS-T followed, and membranes were immersed in 7.5mL 

secondary antibody for 30min. A final wash step of four 3min washes in PBS-T 

occurred prior to developing blots using ECLPlus Western Blotting Detection 

Kit (Pierce). Membranes were exposed in the dark at room temperature for 

5min to ECLPlus reagent and imaged at various exposure times using FUSION 

Pulse TS system (Vilber). Blots were exported into ImageJ for analysis.  
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Table 3 

 Antibody Dilution (1/x) Source 

Primary 
antibodies 

Rabbit anti-ZO-1 400 Invitrogen 
Mouse anti-Actin 5,000 Novus 
Rabbit anti-Claudin-1 3,000 Invitrogen 
Rabbit anti-Claudin-5 1,250 Invitrogen 
Rabbit anti-VECadherin 1,000 Cell Signalling 

Secondary 
antibodies 

Goat anti-Mouse-HRP 30,000 Biorad 
Goat anti-Rabbit-HRP 30,000 Biorad 

2.5 Immunoprecipitation 

Proteins were isolated and precipitated out of solution with the use of a specific 

antibody bound to magnetic protein A/G beads (PureProteome, Merck, UK). A 

magnetic rack was used to immobilise the beads at each step whilst the 

supernatant was removed. All steps were performed on ice. Initially, the 

magnetic beads were washed three times with TBS-T. The beads were blocked 

by incubating with 0.1% (w/v) BSA TBS-T, rotating for 1 hour at 4°C. Cell 

lysates were diluted in 500µL NP40 buffer (recipe in 2.3.1) to the appropriate 

protein concentration and pre-cleared with the blocked beads on a rotator for 

an hour at 4°C and washed as previously. This step was required to reduce 

non-specific binding thus decreasing the background signal and improving the 

signal to noise ratio. Pre-cleared lysate was incubated with 1µg mouse anti-

SRSF1 antibody and blocked magnetic beads overnight at 4°C on a rotator. A 

control set of beads and lysate was incubated with mouse anti-IgG2 antibody 

in order to detect any non-specific binding to IgG. The following day, the lysate 

was removed and the beads washed as previously. The protein was 

disassociated from the antibody-bound beads by heating to 95°C with 10µL 2x 

laemmli buffer for 5 minutes. The supernatant was loaded onto a gel and a 

western blot was performed as described in 2.4.1. with the only deviation being 

the gel was run at 4°C. An additional western blot was performed alongside the 

precipitated protein samples of the input lysate with 10% of the protein used in 

the immunoprecipitation.  
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2.6 Immunofluorescence 

2.6.1 Immunocytochemistry 

RPE cells were stained with specific fluorescent antibodies in order to find the 

expression and localisation of particular proteins. Cells were seeded in a 96 

well imaging plate (Sigma Aldrich) and allowed to adhere to the surface 

overnight. The following day, they were exposed to a particular condition for a 

set amount of time. The density at which cells were seeded was as such that 

they achieved a monolayer but would not become over-confluent and grow on 

top of one another. The media was changed every other day in order to 

maintain the treatment concentration. Post-treatment, the media was removed 

and cells were washed with PBS, making sure at this step and going forward to 

pipette down the side of the plate so as not to disturb the cell monolayer. At no 

point during the staining procedure were the cells exposed to air for a prolonged 

period of time and allowed to dry out. The fixative, paraformaldehyde (PFA) 

was diluted in PBS to 4% (v/v) and added to each well for 10 minutes at room 

temperature. This was then washed out with PBS-T for 3 minutes, repeating a 

further two times to ensure all the PFA was removed. Cells were then 

permeabilised with 0.2% (v/v) TritonX100 for a period of 5 minutes at room 

temperature before washing again as previously. In order to ensure specific 

binding of the antibodies, cells were incubated with a blocking buffer; 1% (w/v) 

BSA 0.1% (v/v) TritonX100 PBS, 0.22µm filtered to avoid albumin aggregation, 

for 1 hour at room temperature. The cells were washed again in PBS-T before 

being incubated overnight at 4°C with primary antibody diluted to the 

appropriate concentration (see table below) with blocking buffer.  
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Table 4 

 Antibody Dilution (1/x) Source 
Primary 
antibodies 

Rabbit anti-ZO-1 400 Invitrogen 
Mouse anti-SRSF1 100 Clone 96; Santa Cruz 
Rabbit anti-SRSF2 500 Abcam 
IgG control 2,500 21903; Pierce 

Secondary 
antibodies 

Goat anti-mouse 555 400 Invitrogen 
Goat anti-rabbit 488 400 Invitrogen 
Goat anti-rabbit 555 400 Invitrogen 

Stain Hoechst 10,000 Thermo Fisher 

Secondary antibodies and Hoechst were diluted in blocking buffer to the 

appropriate concentration (see table above). The cells were washed as stated 

previously and incubated with the secondary antibody mixture for one hour at 

room temperature in the dark. This was followed by an additional wash step 

and cells were stored in PBS. In order to get a 3-D image of the emitted 

fluorescence across the entire cell monolayer, 2-D images of slices were taken 

using a confocal microscope. Nuclear staining was used in order to find the top 

of the cell, and images were captured at 2μm depths through the cell until there 

was no further staining. The images were collated together to form a Z-stack, 

and analysed using FIJI software. 

2.6.2 Immunohistochemistry 

Rats were culled using Schedule 1 inhalation of carbon dioxide followed by a 

cardiac puncture. Upon euthanasia confirmation, eyes were extracted from 

Norway-Browns using Dumont curved forceps (World Precision Instruments 

(WPI)) and immediately placed in 4% PFA for 30min. Eyes were transferred to 

PBS and stored at 4°C until ready for dissection. A petri dish was filled halfway 

with PBS, an eye was placed in the solution and visualised under a dissection 

microscope. Remaining attached connective tissue surrounding the eyes was 

removed using scissors and an incision was made anterior to the ora serrata 

with a microsurgical knife (WPI). Microdissection vannas scissors were inserted 

into the incision and cut along the ora serrata around the circumference of the 

eye to remove the iris, lens and cornea. The optic nerve was dissected away 

and four cuts were made in the eye cup, approximately 70% deep at 90° angles 

to each other. Tissue was carefully pulled back to reveal the retina and choroid 
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and vitreous was gently removed. One quartile of retina was lifted and fine 

curved tip scissors were inserted underneath to detach the retina away from 

the choroid. This was repeated across all four quartiles until retinae were 

successfully isolated and transferred to 0.5% PBLEC (PBS (pH 6.8), 0.1mM 

MgCl2, 0.1mM CaCl2, 0.01mM MnCl2, 0.1% TritonX100). Retinae were blocked 

in 500µL 1% BSA PBLEC for 1h at room temperature followed by 500µL 

primary antibody for a further hour on a rocker. Antibody was washed away with 

10min washes in triplicate of PBLEC before addition of 500µL secondary 

antibody. Retinae were incubated with secondary antibody for 1h in room 

temperature on a rocker prior to being washed three times with PBLEC for 

10min. The tissue was removed from solution, placed on a microscopic slide 

(Fisher) and a single drop of Vectashield mounting medium containing DAPI 

(Vectorlabs) was administered. A coverslip was carefully placed on top of the 

retina under the dissection microscope to remove tissue folds. Fluorescence 

was captured using a 20x objective on Leica SPE confocal microscope; IB4 

staining was used to determine the lowermost point of retinal vasculature, and 

a Z-stack of images were produced from this point, upwards in steps of 10µm, 

until staining was no longer detected. Stacks were exported to Imaris or Image 

J software for analysis.  

Table 5 

 Antibody Dilution (1/x) Source 
Primary 
antibodies 

Isolectin B4 (biotin 
conjugated) from 
Bandeiraea 
simplicifolia 

400 Sigma 

Mouse anti-collagen 100 Abcam 
Secondary 
antibodies 

Streptavidin 488 400 Invitrogen 
Goat anti-mouse 555 400 Invitrogen 

2.7 ELISA 

Cells were lysed and protein concentration measured as per section 2.3.1 and 

2.3.4 respectively. Tissue was lysed as per section 2.3.2. Due to the high-

sensitivity of the assay, all buffers and solutions were made with ultra-pure 

water (UPW) thereby reducing background signal. In addition, all steps were 
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performed at room temperature. High-binding 96 well clear microplates were 

coated with 100µL capture antibody (see table 6), sealed with parafilm and 

incubated with agitation overnight. The following day, wells were washed three 

times with a wash buffer consisting of 0.05% (v/v) Tween20 PBS. After each 

wash, plates were inverted and firmly tapped onto blotting paper to ensure 

removal of all buffer and reduce carry-over. Plates were blocked with blocking 

buffer; 100µL/well 1% (w/v) BSA PBS 0.22µm filtered, and incubated for 2 hours 

on a shaker. VEGF-A165a and VEGF-A165b recombinant protein was diluted in 

blocking buffer to 500pg/mL followed by 1:1 serial dilution to obtain a 10-point 

standard curve down to 3.9pg/mL. Samples were to be loaded in duplicate wells 

with 250µg protein per well, and thus diluted in blocking buffer accordingly. A 

single sample of VEGF-A165a and VEGF-A165b was also made up to 500pg/mL. 

Post blocking, the wash step was repeated as stated previously and 100µL of 

VEGF-A165a and VEGF-A165b standards and samples were loaded into the 

corresponding wells in duplicate. The inclusion of a VEGF-A165a and VEGF-

A165b standard was in order to detect any inappropriate binding of the capture 

antibody to the splice variant. As previously, plates were sealed in parafilm and 

incubated with agitation for 2 hours.  

Table 6 

 Antibody Conc Source 
Capture 
Antibody 

anti-human VEGF-A165a  0.25µg/mL DY293B DuoSet ELISA 
kit, R&D systems 

VEGFxxxb 56/8 10 µg/ml In house 
Detection 
Antibody 

anti-human pan-VEGF 100ng/mL DY293B DuoSet ELISA 
kit, R&D systems 

 Streptavidin-horseradish 
peroxidase 

1:200 Thermo Fisher 

Detection antibody (see table 6) diluted in blocking buffer was added to each 

well (100µL) following another wash. The plates were incubated, sealed, for 

another 2 hours on the shaker. Plates were washed again and 100µL of 

streptavidin conjugated to horseradish peroxidase (see table 6) diluted in 

blocking buffer was added to each well. For this step, plates were sealed and 

incubated for only 30 minutes away from direct contact with light. Post-

incubation, plates were washed a final time and 100µL substrate solution 
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(DY999, DuoSet ELISA kit, R&D systems) was loaded into each well initiating 

a colour change. The plates were incubated in the dark until the colour change 

reached an appropriate intensity, before saturation and precipitation of proteins. 

The reaction was quenched by the addition of 50µL per well 1M HCl and shaken 

for 10 seconds to ensure thorough mixing. A spectrophotometer was used to 

determine the relative optical densities at 450nm. The data was exported onto 

Microsoft Excel and analysed using GraphPad Prism software.  

2.8 NanoBRET 

Nano-BRET (bioluminescence resonance energy transfer) is a proximity based 

assay that allows the quantitative characterisation of protein-protein 

interactions in real-time. ARPE-19 cells were transfected with two fusion 

proteins: SRPK1 conjugated to Nanoluc; a bright luciferase, and SRSF1 tagged 

with HaloTag. If both proteins come to close proximity to one another, energy 

will be transferred from the Nanoluc donor to the HaloTag acceptor causing it 

to fluoresce (Fig 2.8). 

 

Figure 2.8: Schematic of Nano-BRET principle 

2.8.1 Plasmid Preparation 

Bacterial clones expressing plasmids were amplified from glycerol stocks, 

SRPK1-Nanoluc has chloramphenicol resistance whilst SRSF1-halotag has 

kanamycin. Lysogeny broth (LB)(Sigma) was prepared (20g in 1L dH2O) and 

autoclaved for 15min at 121oC. A sterile pipette tip was used to scape glycerol 

stocks to inoculate 10mL LB at 37oC, and the solution was transferred to a 

SRPK1 SRSF1

NanoLuc® HL

+ substrate

HT

Fluorescence
HL: HaloTag® NanoBRET™  HT: HaloTag® protein

618 Ligand
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shaker where it was incubated for 4h at 37oC. Starter culture was decanted into 

200mL LB at 37oC containing the appropriate antibiotic, 50µg/mL kanamycin 

(Sigma) or 25µg/mL chloramphenicol (Sigma). Solutions were again incubated 

at 37oC in a shaker for at least 16h. Bacterial cultures were aliquoted into 50mL 

falcons and centrifuged for 10min at 5,000g at 4oC. Supernatants were 

discarded and pellets were resuspended in 12mL Suspension Buffer plus 

RNAse (Genopure Maxiprep Kit, Roche) followed by an addition of 12mL Lysis 

Buffer (Genopure Maxiprep Kit, Roche). Falcons were gently inverted 6-8 times 

to ensure solutions were mixed and incubated at room temperature for 3min. 

This was followed by addition of 12mL pre-chilled Neutralisation Buffer 

(Genopure Maxiprep Kit, Roche) and another gentle mixture via inverting until 

a homogeneous suspension was formed. Falcons were incubated on ice for 

5min as the solutions became cloudy and a flocculent precipitate formed. 

Lysates were cleared through filtration with 6mL Equilibration Buffer (Genopure 

Maxiprep Kit, Roche) and plasmids eluted in 15mL Elution buffer (50°C), 

columns emptied via gravity flow. 11mL isopropanol was added to the 

flowthrough to precipitate the eluted plasmid DNA and immediately centrifuged 

for 90min at 10,000g, 4°C. Plasmid DNA was washed with 4mL 70% (v/v) 

ethanol at 4°C followed by centrifugation for 30min at 10,000g at 4°C. Ethanol 

was removed carefully so as not to disturb the pellet, ahd air-dried for 10min at 

room temperature. Pellet was resuspended in 200µL dH2O and concentrations 

and quality of DNA was measured using a Nanodrop 2000 spectophotometer 

(Thermofisher Scientific).  

2.8.2 NanoBRET assay 

ARPE-19s were seeded onto 10cm dishes at a density of 3x106 cells in 

DMEM:F12 plus Glutamax® and incubated overnight at 37°C, 5% CO2 to allow 

cells to recover and adhere to dish. The following day, cells were washed with 

PBS and media exchanged for Opti-MEM™ I Reduced Serum Medium, no 

phenol red (Sigma). Transfection mixtures consisting of 6µg SRSF1-Halotag 

plasmid; 0.06µg SRPK1-Nanoluc; 300µL Opti-MEM™ and 24µL FuGENE® HD 

transfection reagent (Promega) were incubated for 10min at room temperature 

before 300µL was administered to each 10cm dish, mixed via gently swirling 

plates. Plates were incubated overnight at 37°C, 5% CO2 to allow proteins to 
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be expressed, alongside Corning® 96 Well White Polystyrene Microplates 

(Sigma), coated with 50µL/well poly-L-lysine (Sigma). Transfected cells were 

removed from dishes through addition of 1mL Trypsin and incubation at 37°C, 

5% CO2 for 5min. Reactions were quenched with 2mL Opti-MEM™ and 

transferred to a 15mL falcon, centrifuged at 1,700g for 7min. Media was poured 

away and pellets resuspended in 2mL Opti-MEM™. Cell density was calculated 

as in section 2.1.5 and adjusted to 4.4x105 cells/mL. Cells were divided into two 

stocks; a ‘no-ligand’ stock consisting of 3.2mL cells with 3.2µL 100% DMSO 

(Sigma) and a ‘ligand’ stock with 6.4mL cells with 6.4µL 618-ligand 

(NanoBRET™ Nano-Glo® Detection System 1000 Assays, Promega). Poly-L-

lysine solution was removed from wells and replaced with 90µL cells, one 

column of no-ligand stock was followed by two columns of ligand stock. 

Treatments were made up to 10x the required concentration and 10µL was 

added to each well. Plates were incubated at 37°C, 5% CO2 for as long as the 

treatment was necessary. NanoBRET™ Nano-Glo® Substrate in Opti-MEM® I 

Reduced Serum Medium, no phenol red was made up at a 5x concentration in 

2.5mL and 25µL was loaded into each well. Within 10min of substrate addition, 

plates were shaken for 30secs and emission at 460nm and 660nm were 

measured using CLARIOstar Microplate Reader (BMG Labtech) to determine 

donor and acceptor signals respectively. Results were exported to Microsoft 

Excel™ and the BRET ratio was calculated using the equation below: 

"#$%&'(
)"*%&'(

= 𝑅𝑎𝑤	𝑁𝑎𝑛𝑜𝐵𝑅𝐸𝑇67𝑅𝑎𝑡𝑖𝑜 = 𝐵𝑈  𝐵𝑈	 × 	1,000 = 𝑚𝐵𝑈 

𝑀𝑒𝑎𝑛	𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙	𝑚𝐵𝑈 − 𝑀𝑒𝑎𝑛	𝑛𝑜	𝑙𝑖𝑔𝑎𝑛𝑑	𝑐𝑜𝑛𝑡𝑟𝑜𝑙	𝑚𝐵𝑈
= 𝑀𝑒𝑎𝑛	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝑚𝐵𝑈	 

2.8.3 NanoBRET Imaging 

ARPE-19s were transfected with nano-BRET constructs as per section 2.8.2. 

The following day, cells were detached using Trypsin and resuspended in 

phenol-free DMEM:F12. 7x105 cells were seeded into each quartile of a 4-well 

glass-bottomed imaging dishes. Halotag-618 ligand (1:1,000 (v/v)) was added 

to 3 quartiles, whilst an equivalent volume of 100% DMSO was added to the 4th 

quartile, acting as the no-ligand control. Media was supplemented with either 

+30mM D-mannitol or +30mM D-glucose and incubated at 37°C, 5% CO2 for 
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three days. The Olympus LV200 inverted microscope was used for imaging; 

with a double-layered chamber type incubator for 35 mm dish to maintain the 

environment at 37°C, 5% CO2. Initially a brightfield image was taken of the cell 

monolayer so as to establish the optimal focus. 5µL Nanoluc substrate was 

added to a quartile and the resulting luminescence imaged. Brightness, 

contrast, positioning and focus was adjusted within 10min after addition of 

furimazine. A 30min video was taken of bioluminescence and fluorescence 

under BRET Cy5 filter (663 - 739nm) at one frame per second, with exposure 

fixed at 60s and gain at 400 in order to localise the SRSF1:SRPK1 interaction 

within the cell. Videos were exported into Image J for analysis.  

2.9 Electric Cell-substance Impedance Sensing 

The permeability across a monolayer of cells in response to hyperglycaemia 

was measured over real-time using electrical cell-substance impedance 

sensing, or ECIS. This system can be used to measure cytoskeleton mediated 

changes in the cell, such as cell morphology and migration (Wegener et al., 

2000). Cells were grown directly onto gold-coated ECIS microarrays (8W10, 

Applied BioPhysics) and stimulated with a small alternating current at a range 

of frequencies from the bottom of the well. The short distance between the gold-

coated electrodes and the cells means that this system is capable of measuring 

cellular changes from the micrometer down to the sub-nanometer range 

(Applied BioPhysics | Quantifying Cell Behavior, 2017). The application of the 

current results in a measurable change in potential across the electrodes. 

Ohm’s law can be expanded when dealing with alternating current so that 

impedance (Z) = potential (V) / current (I), thus the impedance can be 

calculated by the ECIS software. At lower frequencies, below 40kHz, cells act 

as insulators prohibiting current movement across the cell, forcing the flow 

around and between cells through paracellular pathways. At higher 

frequencies, above 40kHz, current is able to flow capacitatively across the cell 

along transcellular pathways (see Figure 2.9)(Benson et al., 2013).  
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Figure 2.9: Current flow at low and high frequencies. At lower frequencies (red 
arrows), cells act as an insulating barrier and the majority of flow moves around 
the cells around tight junctions through the paracellular pathway. Thus, 
impedance measured is primarily a result of the surrounding elements of the 
cells. At higher frequencies, current is able to pass through the cells via the 
transcellular pathway across cell membranes (image adapted from (Applied 
BioPhysics | Quantifying Cell Behavior, 2017)). 

All steps were performed in a microbiological safety cabinet with great care to 

ensure everything remained sterile. ECIS arrays were initially washed in 10mM 

cysteine followed by three washes with dH2O. The wells were then coated with 

sterile 0.1% (v/v) gelatine and incubated for 90 minutes at 37°C. A second wash 

with dH2O was performed and the array allowed to air dry for 15 minutes. Wells 

were filled with 300µL of cell medium, the array slotted into the ECIS adaptor 

and the stabilisation program on ECIS software was performed. The array was 

removed from the adaptor and cells were seeded at the appropriate density in 

a volume of 450µL into each well. The array was placed at 37°C for 20 minutes 

to allow the cells to settle before placing it back into the adaptor. Current was 

applied at multiple frequencies and the resultant impedance was measured 

every ten minutes and monitored. Once the impedance reached approximately 

1,500Ω and appeared to stabilise over at least six hours, the system was 

paused, as cells were concluded to be confluent. The appropriate treatment 

was made up at 8x the required concentration and 50µL was added slowly to 
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the side of each well, to not disturb the cell monolayer, under the hood before 

continuing with the experiment. Media was changed every other day carefully 

to not disrupt monolalyers, to ensure the cells were exposed to the correct 

concentration of treatment. Data was exported onto Microsoft Excel™ and 

analysed using GraphPad Prism software. 

2.10 XCelligence 

The XCelligence system follows the same principles as ECIS: application of an 

electrical current causes movement of electrons through an electrical 

conductive solution (cell media) from the negative to positive electrode that can 

be impeded by presence of adhered cells. Electronic microtiter plates (E-

Plates®) (ACEA Biosciences Inc., San Diego) contain interdigitating strand 

electrodes which cover 70-80% of surface area of the well. An E-plate® 

contains two columns of eight wells, and 3 plates can be run simultaneously. 

Impedance is presented as unitless parameter, cell index (CI) calculated using 

the formula below. CI can fluctuate in response to changes in cell number, 

morphology, cell-cell attachment quality and cell-substrate attachment quality. 

By ensuring cell confluence and reducing physical disruption to monolayer, this 

method can be used to determine changes in monolayer permeability.  

𝐶𝐼	 = 	
𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑝𝑜𝑖𝑛𝑡	𝑛	– 	𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒	𝑖𝑛	𝑡ℎ𝑒	𝑎𝑏𝑠𝑒𝑛𝑐𝑒	𝑜𝑓	𝑐𝑒𝑙𝑙𝑠

𝑛𝑜𝑚𝑖𝑛𝑎𝑙	𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒	𝑣𝑎𝑙𝑢𝑒  

E-plates® are highly sensitive to physical disruption and the electrodes can be 

easily contaminated by environmental particles such as dust. As such, great 

care was taken whilst handling the plates, and a specific aluminium platform 

was used to place to the E-plates on whilst adding or removing solutions. 

iBRECs were detached from a confluent T25 flask using 500µL Accutase™ 

(STEMCELL Technologies) following two washes with PBSd (Invitrogen). The 

solution was suspended in 2.5mL VMnHC media. 150µL VMnHC 

supplemented with 2% fibronectin was added to each well of an E-plate under 

the hood with the exception of one control well where 200µL was added 

instead. E-plates were docked into the xCELLigence® RTCA DP instrument at 

37°C 5% CO2 and an initial background reading was taken which would be 
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subsequently subtracted from later measurements. 50µL of cell suspension 

was added to each well except for the control well under the hood before E-

plates were again placed in the instrument. CI was recorded over 72h as cells 

reached confluence within the wells. Once confluence was confirmed (Table 7: 

Step 4), 195µL was removed from each well, taking care not to touch the bottom 

of the well with the pipette tip and replaced with 180µL of SHMnHC (VMnHC 

with no FBS) with 1% fibronectin. 20µL of appropriate conditioned media was 

added to wells, at least 3 wells per condition. Wells were assessed visually for 

bubbles before re-docking in the instrument and continuing CI measurements 

(Table 7: Step 5). Following completion of the study, CI’s were normalised to 

the point prior to treatment addition and averaged between wells of the same 

condition. Data was exported to Microsoft Excel™ and further analysed using 

GraphPad Prism software. The table below summarises the settings used for 

CI measurements.  

Table 7 

Step 1: Pre-installed background reading *System paused, cell suspension 
added 

Step 2: Sweep every 15min (100x)   
Step 3: Sweep every 30min (100x)  
Step 4: Sweep every 1h (100x) *System paused, treatment added 

Step 5: Sweep every 15min (250x)  
Step 6: Sweep every 2min (90x)  
Step 7: Sweep every 5min (750x)  
Step 8: Sweep every 15min (250x)  
Step 9 Sweep every 1h (100x)  

2.11 In vivo work 

Rats were housed and maintained at University of Nottingham Biological 

Services Unit (BSU). All procedures were performed in accordance to the 

ARVO statement for Use of Animals in Ophthalmic and Vision Research, and 

under a UK Home Office licence (PPL 30/3184). An initial pilot study was 

conducted with 3 animals before the larger study with 24 animals. Data was 

collated together from both studies. 
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2.11.1 Topical administration of SPHINX31 

Male Brown Norway rats were purchased from Charles River and housed until 

they reached at least 250g in weight. Eighteen animals received twice-daily eye 

drops, approximately 6h apart, of 20µL 200µg/mL SPHINX31 in both eyes from 

day 0 until termination of the study. A control cohort of 9 animals received 20µL 

eye formulation control buffer in both eyes at the same frequency as SPHINX31 

group. 

2.11.2 Streptozocin-induced Type I Diabetic Model  

Due to potential carcinogenic, mutagenic and teratogenic properties of 

streptozocin (STZ), Tyvek® (DuPont) suits were worn until STZ was completely 

excreted alongside double gloves and shoe covers. Housing rooms were 

bleached in the morning and evening of study days, STZ treated animals were 

isolated and cages were cleaned with bleach upon diabetic confirmation. All 

procedures and cleaning were performed by myself to avoid exposure to BSU 

staff. Some protocols require an overnight fast before diabetic-induction as it 

minimises competition between STZ and dietary glucose for low-affinity GLUT2 

transporters on β-cells of pancreas. However, previous work from other 

members of our group have found evidence of acute toxicity to STZ, animals 

display a rapid drop in weight, occasionally above the threshold stipulated in 

the licence (>20%), alongside polyuria and dehydration. On the other hand, 

lack of fasting risked animals not becoming diabetic (~10%) but avoided acute 

toxicity symptoms. As such, 18 animals (9 from SPHINX31 cohort, 9 from 

control cohort) were not fasted, weighed and 50mg/kg STZ (Sigma) was 

administered by intraperitoneal (i.p.) injection. To ensure STZ activity, the 

solution was freshly made up in 0.1M citrate buffer in a foil-wrapped bijoux and 

injected within 30min. Nine control rats who were treated with SPHINX31 were 

given equivalent volumes of saline via i.p. Animals were closely monitored 

across three days for weight fluctuations and overall health before blood 

glucose was measured from a bolous of blood extracted from the tail vein and 

assayed using an Accu-Chek monitor. The nape of those animals with 

>15mmol/L blood glucose were shaved, sterilised with chlorohexidine and one 

third of an insulin pellet (LinShin) was implanted subcutaneously using a 16 
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gauge trocar (LinShin) approximately 1.5cm along neck midline under 

isofluorane anaesthesia (3-5%). The 7mm by 2mm implant undergoes gradual 

erosion upon implantation to slowly release a set basal dose of insulin hourly, 

the effects of which can be measured within an hour. As such, animals do not 

experience glucosuria or ketonuria. Animals with <15mmol/L blood glucose 

were re-injected with 50mg/kg STZ i.p. as previously and assessed for blood 

glucose after three days. At this point, 1 rat was not diabetic and as such was 

removed from the study.  

2.11.3 Optical Coherence Tomography 

Once a week, rats were anaesthetised with an i.p. of ketamine (30mg/kg, 

Ketaset, Zoetis) and medetomidine hydrochloride (0.25mg/kg, Sedastart, 

Animalcare Group). Rats were placed on an image cradle fitted with a heat mat. 

Topical applications of 5% phenylephrine (Bausch & Lomb) and 0.8% 

tropicamide (Bausch & Lomb) were administered to dilate the pupil followed by 

a carbomer 980 gel (Viscotears, Bausch & Lomb) to prevent corneal 

dehydration. Reveal Optical Coherance Tomography (OCT)™ software was 

opened and a white paper was placed in front of the Micron™ IV 

ophthalmoscope with Image-guided OCT2 attachment (Phoenix Research 

Labs) lens to adjust white balance. The ophthalmoscope was advanced 

towards the left eye at a right angle, orientation and focus was adjusted until 

the optic disk was visualised and centred in the field of view. The reference arm 

was adjusted to position the retinal scan to the top third of the frame. At this 

point, focus and polarisation were fine-tuned to obtain the crispest, brightest 

image possible. A circular scan around the optic nerve at a rate of 13,000 A-

scans per second was captured, followed by a line scan through the optic nerve. 

Scans were exported into Insight™ software for analysis. The automatic 

segmentation tool was used to isolate the retinal layers. However, whilst this 

proved accurate for choroidal and ganglion cell layers, the algorithm was 

unable to accurately segment between inner and outer nuclear layers, and 

differentiate RPE/Bruch’s membrane layers from photoreceptor layers. As 

such, the manual tool was utilised which involved placing markers at short 

intervals along the layer border. Following this, the software drew a line along 
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the retinal layer which could be adjusted if the line appeared to deviate from the 

border. Upon visual confirmation of accuracy of segmentation, the software 

measured the thickness of each layer every 3µm along and expressed this as 

a mean.  

2.11.4 Fundus Fluorescein Angiography 

The Image-guided OCT2 laser attachment was unplugged from the Micron™ 

IV and Discover software was opened. With animals still under anaesthesia, 

adjustments to brightness and contrast were made to display a sharp image of 

retinal vessels. A brightfield image was captured to assess for any 

abnormalities. The green filter was selected, brightness increased to maximum 

and an i.p. of sodium fluorescein (NaFl) was administered to the right peritoneal 

cavity by carefully lifting the right leg, so as to not disturb the alignment of the 

ophthalmoscope. Immediately, a 3min video was captured with a gain of 11 at 

15 frames per second to monitor perfusion of the small molecular fluorescent 

tracer across the retina. Animals were recovered with an i.p. of atipamezole 

hydrochloride (1mg/mL, Sedastop, Animalcare), transferred into a heated 

recovery cage with absorbance pads and monitored until righting reflex was 

restored. To aid recovery, animals were fed mash the following day before 

restoration of their normal diet. 

Angiograms were imported as avi files into Fiji software. A box was drawn in a 

major retinal vessel (Box 1) and a secondary in nearby tissue (which includes 

unresolved capillaries – Box 2) (Fig 2.11.A). Boxes were checked to make sure 

they remained within the region of interest for the whole video, as there was 

small movement of the eye during video capture. Once this was confirmed, the 

mean intensity within each box was measured every frame up to 2400 frames. 

A time course was plotted (Fig 2.11.B) and only the region where there was 

detectable tissue fluorescence but no major vessel saturation was used for 

analysis. In addition, tissue intensity over vessel intensity was calculated and 

plotted over time (Fig 2.11.B black trace). The gradient of the curve at the 

steepest point (Fig 2.11.B green section) was calculated and used as 

permeability coefficient. Before the large in vivo study assessing retinal 

permeability in diabetic rats was conducted, a smaller study on three non-
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diabetic rats was completed in order to optimise the methodology (Fig 2.11.C). 

There is a variability between different rats, even when permeabilities were 

normalised to day 0 (Fig 2.11.D), therefore an n=9 was decided for the larger 

study. 

 

Figure 2.11: Analysis of retinal permeability through FFA. 

Fundus angiograms were analysed to determine retinal permeability by 
measuring the fluorescence intensity over time in a box drawn in a retinal vessel 
and a secondary box drawn over nearby tissue (A). B: Mean intensities within 
these boxes were plotted over time, alongside the tissue/vessel intensity. The 
gradient of the steepest point of the curve (green box) determined the 
permeability co-efficient. C: Changes in permeability in 3 non-diabetic Norway 
browns over 28 days. D: Data from (C) normalised to day 0.  

2.12 Data Analysis 

All in vitro data was analysed using a mixture of Microsoft Excel™ and 

GraphPad Prism with the exception of western blots and immunofluorescence, 

where FIJI or Imaris software was used. The former had the intensity of the 

bands quantified using gel analysis tools within the software. The latter was 

analysed as detailed below:  
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2.12.1 SRSF1 localisation 

Images of SRSF1 staining were analysed using FIJI software in order to 

quantify the cytoplasmic to nuclear stain. The total staining of SRSF1 was 

measured from the image. The channel containing DAPI staining was 

thresholded using the automatic function, and the background adjusted to 

black. This was followed by converting the image to a mask and an inversion 

of look up table. The plug in: ‘Analyze Particles; size: 25.00’ was run in order to 

determine the number of nuclei and size of each. This mask was selected and 

pasted onto the image containing SRSF1 stain. Thus, the intensity and volume 

of staining within the nuclei could be measured, expressed as average staining 

per nuclei. This number was subtracted from the total staining in order to find 

the level of SRSF1 within the cytoplasm, which was divided by the total number 

of cells (determined by the number of nuclei), in order to find the average per 

cell. The final value was expressed as a ratio of nuclear to cytoplasmic staining.  

2.12.2 Integrity of tight junction as determined by ZO-1 

Prior to determining the changes in integrity of tight junctions in response to 

hyperglycaemia and hypoxia, the analysis methods used in order to produce 

quantitative data from the staining required optimisation. ZO-1 intensity across 

a tight junction was quantified using FIJI software. Although images were taken 

using confocal microscopy, a single plane was chosen that displayed cell-cell 

junctions. A particular cell at random was chosen and zoomed towards. 

Intensity of staining within the cell was measured. The value of mean staining 

plus three standard deviations was subtracted from the image. A freehand line, 

with a width of 5 pixels, was drawn around the cell, along the staining of ZO-1 

and the profile of this line was plot to give the frequency of staining along the 

line. Counting, either manually or using an Excel™ array formula ensued of the 

number of peaks within the profile to calculate the number of gaps within the 

staining. In addition, the total staining along the line could be calculated from 

this profile. Both these values were divided by distance of line. To ensure the 

results were representative of the staining, three cells from each image were 

analysed, and three images were taken per well, with three wells per condition, 

thus for one condition a total of 27 cells were analysed. This was time 
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consuming and unsuitable for a high throughput assay, therefore the range and 

distribution of the results per image and well were assessed.  

Each well represents a different condition, so the distribution is determined by 

the error bars. Peak number/distance variability between each well (Fig 2.12.2-

A) is quite small, however the results for intensity fluctuates. Figure 2.12.2-B 

shows that the results within each well remain quite close together, for both 

peak number and intensity. Thus, it was decided that one image per well would 

be analysed, but there would be three wells per condition, hence a total of nine 

analyses. With regards to the optimal median filter to use, the values given with 

background included decrease steadily as the filter number increases (Fig 

2.12.2-C). However, when background is removed, the results drop quite 

dramatically after 2-3 pixel filter and then appear to level off. Figure 2.12.2-D is 

a 5-day NG timecourse analysed both with and without subtracting the 

background. Without subtracting the background, the peak number hardly 

changes with each treatment, possibly due to the fluctuations in the profile of 

background staining. On the other hand, there is no difference in intensity with 

and without background, except for the exact values. Thus, due to the 

combined results of Figure 2.12.2-C & -D, a median filter of 2 pixels was 

imposed with background subtraction for one cell per well and three wells per 

condition. 
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Figure 2.12.2: Optimisation of ZO-1 staining analysis protocol 

A: ZO-1 analysis of peak number and fluorescence intensities over distance in 
3 RPE cells across different wells. B: ZO-1 analysis as previous in 6 RPE within 
one well. C: ZO-1 analysis as previous comparing median filters from 0-10 with 
and without background. D: ZO-1 analysis as previous of background vs. no 
background at 1, 3 and 5 days 30mM D-Mannitol treatment.  
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2.12.3 Quantification of SRSF1:SRSF2 co-localisation 

RPE cells were stained for DAPI to visualise the nucleus, SRSF2 to demarcate 

nuclear speckles and SRSF1. A Leica SPS confocal microscope was used with 

63x magnification (oil-immersed) to take Z-stack images of cell nuclei (Gain: 

DAPI: 600; SRSF2: 700; SRSF1: 650). Z-stacks were imported into FIJI for 

image analysis. Initially, channels were split (Fig 2.12.3-A), the wand tool used 

on the DAPI channel to delineate the nucleus. This tracing was exported as a 

region of interest and imposed on both SRSF2 and SRSF1 channels (Fig 

2.12.3-B). XY co-ordinates of staining within the mask were recorded and 

exported into Microsoft Excel™. Intensities of both channels at each pixel were 

plotted against one another (Fig 2.12.3-C), any points equating to 255 ( 

saturated pixels) were deleted (Fig 2.12.3-D). Interquartile ranges of each 

channel was calculated and the number of pixels within the upper quartile of 

both channels was counted (Orange box of Fig 2.12.3-E). The number of pixels 

in the upper quartile of both channels was taken as a percentage of total 

number of pixels to determine the percentage co-localisation (Co-L) (Fig 2.12.3-

F). 
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Figure 2.12.3: Summary of image analysis to determine Co-Localisation 

A: Staining of RPE nuclei with nuclear marker DAPI, anti-SRSF2 and anti-
SRSF1. B: Singular channel images post nuclear tracing and removal of 
staining outside the nucleus. C: Intensity in each pixel of both channels plotted 
against each other. D: Intensity plot after removal of saturated pixels. E: 
Number of pixels within orange quartile determines Co-L. F: Formula for Co-L. 

2.12.4 Measurement of vascular parameters  

Retinae isolated from the eyedrop study were stained for IB4 and imaged using 

a Leica SPS confocal. A 20x objective was used to generate z-stacks of retinal 

vasculature staining. Z-stacks were exported into Image J with FIJI plugin for 

analysis. A singular plane was chosen that appeared to showcase the middle 

of each plexus was chosen, and the freehand line tool was utilised to trace 

along all retinal vessels within that plane. This tracing was measured in order 

to determine total vessel length; and divided by the image area to calculate total 

vessel density per image. A grid was applied to the image, and within a 

particular square, chosen from a number generated randomly by a tool,  
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diameter of vessels was measured using the straight line tool. Diameters were 

measured within 10 squares of the image, and averaged to determine the mean 

diameter.  

Z-stacks of IB4 staining were also imported into Imaris software, and a 3-D 

rendering of retinal vasculature across 3 plexuses were generated. The 

filament tracer tool was repurposed to determine vascular parameters. The fully 

automatic tool was used to trace vessels, with diameter of vessels set at 3µm. 

To threshold the image, the ‘no-loops’ algorithm was utilised, and the threshold 

adjusted until the trace filled the vessels, fill cavities was checked. The number 

of dendrite seed points were adjusted, and seed points around starting points 

were removed. Upon visual confirmation that the trace accurately represents 

the retinal vasculature (Fig 2.12.4), the minimal ratio of branch radius to trunk 

radius was set at 1.5. Finally, the function was performed to determine the 

number of dendrite branches, vascular diameter and volume.  

 

Figure 2.12.4: Calculation of vessel parameters using Imaris software 
(www.bitplane.com)  

Frame of Imaris analysis software after addition of trace over vessels. 

2.12.5 Acellular capillary number 

Following termination of the SPHINX31 eyedrop study, retinae were isolated, 

whole-mounted and stained for IB4, collagen IV and DAPI. Fluorescence was 

captured using confocal microscopy as described in section 2.6.2. Z-stacks 

were imported into Image J software with FIJI plug-in. An acellular capillary was 
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defined as a capillary positively stained for collagenIV but lacking IB4. This was 

manually counted through the retinal section across three planes, leaving 

enough space between each plane to ensure a capillary was not counted twice 

and placing a grid on top of the image to ensure no area was missed. The 

number was expressed per mm2. This was repeated for 10 images per retina 

and the average number was expressed.  
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3 CHAPTER 3 
   

 

 

SRPK1 activity in an in vitro model of the 
RPE monolayer of the outer blood retinal 
barrier 
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3.1 Introduction 

The retina is the most metabolically active tissue in the eye, with glucose being 

the primary source of energy for these cells. In vivo glucose is supplied to the 

inner retina; consisting of retinal ganglion, Müller glial and amacrine cells, via a 

branched microvascular network derived from the central retinal artery. The 

endothelial lining of these vessels, termed inner blood retinal barrier (iBRB), 

exert a protective role to the ocular cells, preventing passive diffusion of 

cytokines, glucose and inflammatory factors from the blood (Duke-Elder, 1956). 

Glucose transport to outer retinal cells, including photoreceptors and retinal 

pigment epithelial cells (RPEs), is provided by a dense fenestrated vessel 

network in the choroid; termed choriocapillaries (Shakib & Cunha-Vaz, 1966). 

The tortuous, leaky nature of this capillary bed allows passive diffusion to the 

surrounding tissue, across the thin acellular lamina of the Bruch’s membrane 

to the RPEs. However, at this point, movement is restricted due to interepithelial 

junctional complexes, including tight junctions, known as the outer blood retinal 

barrier (oBRB). Emphasis in literature has been placed on disruption of the 

iBRB with regards to the development of DR and DMO, as the majority of their 

pathological features; such as acellular capillary and exudate formation, arise 

due to a loss of iBRB integrity (Harhaj & Antonetti, 2004). However, changes to 

the oBRB are observed in DR, even in early stage disease (Xu & Le, 2011).  

The selectivity and permeability of the oBRB is defined by RPEs. Through the 

action of tight junction and transporter proteins, RPEs are able to nourish the 

photoreceptors with metabolic products such as glucose and remove waste 

material (Ponnalagu et al., 2017). These cells are highly polarised, a feature 

important for their function, and is present due to tight junctional complexes 

consisting of claudins, occudin and zonula occludens (ZO) protein families. 

Cellular stress, imposed by hyperglycaemia or hypoxia for example, can induce 

breakdown of RPE barrier (Weinberger et al., 1995), through intracellular 

trafficking of tight junction proteins away from cell membrane complexes 

(Farnoodian et al., 2016). Once internalised, the junctional complex is 

disrupted, increasing paracellular flux which can potentially accumulate in the 

sub-retinal space, leading to oedema formation if unimpeded.  
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RPEs also act as a secretome, supplying VEGF-A, which prevents endothelial 

cell apoptosis, maintains the neural retina and stabilises the high permeability 

of choriocapillary fenestrations (Marneros et al., 2005). VEGF-A expression is 

non-polarised, but predominantly secreted by the basolateral membrane. 

However, under diabetic conditions, the reverse occurs and VEGF expression 

is dominantly on the apical side (Kannan et al., 2006). Although the mechanism 

for this is not known. DR can lead to areas of ischaemia, which can be due to 

leaky vasculature failing to provide adequate perfusion to retinal tissue. 

Resultant hypoxia promotes an overexpression of proximately spliced VEGF-

A, which negatively feedbacks by enhancing retinal permeability across both 

iBRB and oBRB (Aiello et al., 1995). SRPK1 regulates alternative splicing of 

VEGF, via phosphorylation of a splicing factor SRSF1. Inhibition of this kinase 

has been shown to inhibit choroidal neovascularization in mice by decreasing 

proximately spliced VEGF-A whilst increasing distally spliced VEGF-A isoforms 

(Gammons et al., 2013). The distally spliced isoform, VEGF-A165b has also 

previously been described to inhibit diabetes-induced vascular permeability in 

vivo (Ved et al., 2017), and thus may offer therapeutic potential for DR. 

Hyperglycaemia alone is sufficient to initiate diabetic-like retinopathies in 

rodents and canines (Engerman & Kern, 1984; Kador et al., 1990). and 

numerous studies have demonstrated that therapies reducing hyperglycaemic 

exposure to the eye can inhibit retinopathy development (Engerman et al., 

1977; Nathan et al., 1993). Thus multiple pathways associated with 

hyperglycaemia have been implicated with the pathogenesis of DR. The retina 

receives 60-80% of glucose through the transport system provided by RPEs, 

and the percentage of glucose entering the retina in diabetes has been found 

to be larger across the RPE barrier than the retinal vasculature, highlighting the 

importance of RPEs in responding to the high glucose retinal requirements 

(Decanini et al., 2008). Despite this, the direct action of glucose on RPEs 

remains elusive. There have been a plethora of studies attempting to 

understand the impact of hyperglycaemia and VEGF-A on in vitro RPE barrier 

integrity and function, however they have produced conflicting results 

(Ablonczy et al., 2011; Kim et al., 2014; Villarroel et al., 2009). Contradictory 

data in this field are due to a number of factors; differences in RPE cultures, 
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passage number, lack of cell polarisation, amongst others (Xia & Rizzolo, 

2017). This highlights the need for a robust, reliable, representative in vitro 

model of the oBRB to delineate the impact of diabetic conditions and VEGF-A 

alternative splicing.  

Dysfunction of the oBRB has been implicated in DR, and especially in DMO 

formation. I aim to establish an in vitro model of the RPE, which is 

representative of the RPE monolayer in the in vivo oBRB. I will impose 

diabetes-mimicking conditions (hyperglycaemia and hypoxia) to my model, and 

determine the impact, if any, on VEGF-A isoform expression and barrier 

integrity, in particular ZO-1. In this way, not only will I further understand the 

impact of DR on the RPE barrier but I will also be able validate my model 

against published literature. Furthermore, I aim to elucidate changes to SRPK1 

activity in these conditions, indirectly, through observing the effects on SRSF1 

expression and localisation, and directly with the use of a nano-BRET.  

  



 85 

3.2 Methodology 

The following experiments were carried out in ARPE-19 cells or human primary 

retinal pigment epithelial cells (hpRPE) isolated from human donor eyes. Cells 

were cultured in media with a basal concentration of 7.5mM glucose. In order 

to mimic normoglycaemia and hyperglycaemia, media was supplemented with 

30mM D-mannitol or D-glucose respectively. These concentrations were 

chosen because RPE cells cultured with no glucose were difficult to maintain 

and produced a non-representative phenotype. Cells used in hypoxic 

experiments were also subjected to 1% pO2 by being placed in a sealed 

hypoxia chamber. VEGF-A isoform expression was determined in RPE in each 

condition via an ELISA. In order to determine changes to RPE monolayer 

integrity, expression and distribution of ZO-1 was visualised using 

immunofluorescence. Furthermore, impedance measurements were taken 

across the monolayer using electrical cell impedance sensing. Cells were 

assayed for SRSF1 protein expression, phosphorylation and localisation using 

western blot, immunoprecipitation and immunofluorescence. All replicates are 

technical repeats, unless otherwise stated. All methods are described in more 

detail in Chapter 2.   
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3.3 Results  

3.3.1 VEGF-A165 isoform expression in response to 
hyperglycaemia and hypoxia in RPEs 

To assess the effects of hyperglycaemia (HG) and hypoxia (Hx) on the oBRB, 

human primary RPEs (hpRPEs) were subjected to five days exposure to 

+30mM D-mannitol (NG) or +30mM D-glucose (HG) or three days exposure to 

1% pO2 (Hx) as a positive control. The cell lysate was assayed for expression 

of VEGF-A165 alternative isoforms using an ELISA (See Chapter 2: Materials 

and Methods for further detail). To validate the specificity of the assay, 

recombinant VEGF-A165a protein was probed against αVEGF-A165b antibody 

and vice versa (Fig 3.3.1.C). Each antibody was found to have high specificity 

for their target, producing no signal for the alternative isoform. VEGF-A165a 

expression was increased in response to both HG and Hx (Fig 3.3.1.D) despite 

having no effect on VEGF-A165b expression (Fig 3.3.1.E). However, when 

assessed as a ratio of VEGF-A165b/VEGF-A165a expression, I found that both 

HG and Hx  reduced this ratio by approximately four-fold.  
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Figure 3.3.1: HG and Hx significantly increase VEGF-A165a expression and 
reduce VEGF-A165b expression relative to VEGF-A165a  

A+B: Standard curves of VEGF-A165a and VEGF-A165b respectively. C: 
Assessment of antibody isoform specificity using 50pg/mL recombinant VEGF-
A165a and 500pg/mL VEGF-A165b proteins. Both antibodies were highly specific 
for their target isoform. D: VEGF-A165a expression is increased (p<0.05) by HG 
and Hx whilst VEGF-A165b levels (E) do not significantly change in these 
conditions. F: The ratio of VEGF-A165b to VEGF-A165a expression significantly 
reduced (p<0.01) in response to HG and Hx. Error bars represent mean plus 
standard error. Statistical analysis via one-way analysis of variance, Bonferroni 
post-hoc. (n=5) ns=not significant, *p<0.05, **p<0.01.  
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3.3.2 Changes to permeability of the outer blood-retinal barrier 
in hyperglycaemia and hypoxia.  

It is well documented that increased VEGF-A expression results in a disruption 

in tight-junction integrity in retinal endothelial cells (Antonetti et al., 1999) and 

epithelial cells (Ved et al., 2017). Thus in order to evaluate whether this is the 

case in my model of the oBRB, ZO-1 localisation was determined using 

immunofluorescence and optimised Image J analysis (explained in further 

detail in Chapter 2: Materials and Methods). In short, a profile of ZO-1 staining 

along the cell membrane was plotted (Fig 3.3.2-1A) after images were 

subjected to a median filter of 2 and the background staining was subtracted. 

The number of peaks in the plotted profile were counted in order to determine 

the ‘gaps’ in the staining, and the total cumulative sum of the plot gave the 

staining intensity. The immortalised RPE cell line, ARPE-19 is commonly used 

as an alternative to hpRPEs, as they are dependable and easier to culture and 

maintain (Samuel et al., 2017). However, use of ARPE-19s as a model for 

barrier function is controversial as the cells have been found to form an inferior 

monolayer compared to the primary equivalent (Ablonczy et al., 2011). 

Nevertheless, I compared ZO-1 staining in HG and Hx for both ARPE-19s and 

hpRPEs (Fig 3.3.2-1B). With regards to the peak number (Fig 3.3.2-1C-D), 

there was no difference between NG and HG in both cell lines, but a reduction 

in number of peaks in hypoxia in hpRPE. Surprisingly, ZO-1 staining increased 

in HG compared to NG in ARPE-19s but not in Hx (Fig 3.3.2-1E). Thus, moving 

forward, this analysis method will not be used as a measure of ZO-1 integrity. 

The intensity of staining over distance was found to significantly decrease in 

HG and Hx in hpRPEs (Fig 3.3.2-1F).  
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Figure 3.3.2-1: Barrier localisation of tight junction protein ZO-1 is 
reduced in HG and Hx in hpRPE monolayers but not ARPE-19s.   

A: Analysis method to determine ZO-1 peak number and intensity along a cell 
membrane. B: ZO-1 staining of an individual ARPE-19 cell in NG, HG and Hx 
and an individual hpRPE cell in NG, HG and Hx. Scale bar = 10µm. C: Peak 
number did not change in ARPE-19s in response to HG and Hx compared to 
the NG control. D: HG produced no change in peak number in hpRPEs, 
however Hx significantly reduced the number of peaks (p<0.01). E: Intensity of 
ZO-1 staining significantly increased in HG (p<0.05) compared to NG but not 
Hx. F: HG and Hx induced a significant reduction in ZO-1 staining intensity 
(p<0.0001) in hpRPEs. Confocal images taken with 40x lens. Error bars 
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indicate mean + standard error. Statistical analyses performed using a one-way 
analysis of variance, post-hoc Tukey’s test. *p<0.05, **p<0.01, ****p<0.0001 
(n=9).  

The observed changes in the junctional expression of ZO-1 in hpRPEs could 

be due to degradation or an internalisation of the protein. To determine changes 

to ZO-1 total protein in the oBRB, HG hpRPE cell lysate were immunoblotted 

for ZO-1 (Fig. 3.3.2-2A) and the loading control actin. HG over the course of 

five days caused no changes in ZO-1 expression compared to the osmotic 

control (NG) or basal media alone (Fig. 3.3.2-2B). Thus, potentially this could 

mean that the HG results of Fig. 3.3.2.1F are due to an internalisation of ZO-1 

away from the cell membrane, rather than a degradation. ZO-1 expression 

decreased in response to Hx (Fig. 3.3.2-2C-D) over the course of three days, 

corroborating with what was observed in Fig. 3.3.2-1F. Due to this result, I 

decided that 3 days in Hx would be the optimal time point for future 

experiments.  
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Figure 3.3.2-2: Expression of tight junction protein ZO-1 is reduced in Hx 
but not HG in hpRPEs.   

A: Immunoblot for ZO-1 and actin of hpRPE lysates treated with basal media 
only, 5d D-mannitol (NG) or 1, 3 or 5d D-glucose (HG) B: ZO-1 expression 
relative to actin is unchanged in HG conditions compared to basal media and 
NG. C: Immunoblot of hpRPE lysate treated with » 20%pO2 (Nx) or 1%pO2 (Hx) 
for ZO-1 and actin D: Hx induced a reduction in ZO-1 expression after two days 
exposure (p<0.05). Error bars indicate mean + standard error. Statistical 
analyses performed using a one-way analysis of variance, post-hoc Tukey’s 
test. *p<0.05, (n=5).  

A loss of tight junction proteins in vivo is indicative of increased barrier 

permeability. To deduce whether this translates to my in vitro model of the RPE 

monolayer, RPEs were grown to confluence on gold-coated ECIS array plates 

and impedance measurements across the monolayer were taken continuously. 

A permeability co-efficient was gained by plotting 1/impedance over the course 

of 15 hours post treatment artefact (see Chapter 2: “Material and Methods”). 

The use of ARPE-19s were again evaluated for their use as a permeability 
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model of the oBRB. In agreement with Fig. 3.3.2-1C, HG induced no change to 

monolayer permeability compared with NG (Fig. 3.3.2-3A-B). Consequently, 

moving forward I decided to not use ARPE-19s as a model for the RPE layer. 

Use of the primary cells proved to be a better model, as HG was found to 

increase monolayer permeability as evidenced by the higher trace for HG (Fig. 

3.3.2-3C) and also the larger area under the curve value. These results confirm 

those of Fig. 3.3.2-1 and also agree with published literature (Yokouchi et al., 

2013). 

 

Figure 3.3.2-3: Monolayer permeability is increased due to HG in hpRPEs 
but not ARPE-19s    

A: ARPE-19s were grown to monolayer and impedance was measured over 
time using ECIS. 1/impedance was plotted to give a measure of monolayer 
permeability. B: HG had no effect on ARPE-19 monolayer permeability (n=4) 
C: Permeability values of hpRPE monolayers subjected to NG or HG treatment 
over the course of 15 hours post addition of treatment and resulting artefact. D: 
HG monolayers have increased permeability (AUC: 15.6±0.089) compared to 
that of NG monolayers (AUC: 15.3±0.056) (n=9). Error bars of A and C indicate 
mean± standard error, B and D indicate mean + standard error. Statistical 
analyses of area under the curves performed using a t-test. *p<0.05.  
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3.3.3 SRSF1 expression in HG and Hx hpRPEs 

Alternative splicing of VEGF-A has been attributed to the action of SR proteins, 

in particular SRSF1, which has been found to have a binding site next to the 

proximal splice site of the 3’ end of VEGF-A exon 8 (Nowak et al., 2010). 

Therefore, I assumed that the expression of SRSF1 would be increased in 

response to HG and Hx in hpRPEs, due to their differential VEGF-A isoform 

expression (see Fig. 3.3.1). To test this hypothesis, HG and Hx hpRPE lysate 

was immunoblotted against SRSF1 and a loading control, actin (Fig 3.3.3-1A). 

The expression of SRSF1 in HG remained unchanged compared to that of NG, 

however Hx cells had significantly reduced expression (p<0.05)  (Fig 3.3.3-1B).  

 

Figure 3.3.3-1: Hx but not HG reduces SRSF1 expression in hpRPEs    

A: Western blot of NG, HG and Hx hpRPE cell lysate probed for SRSF1 and 
actin. B: SRSF1 expression relative to actin was unaffected by 5 days in HG 
but significantly reduced in response to 3 days in Hx (0.76±0.67) compared to 
NG (1.62±0.53) Error bars indicate mean + standard error. Statistical analysis 
performed using a one-way analysis of variance with Bonferonni post-hoc. 
*p<0.05, (n=3).  

The results of Fig 3.3.3-1 were surprising, as it went against the hypothesis that 

SRSF1 expression would be increased to mediate VEGF-A165a expression. 

However, the function of SRSF1 is highly dependent on the localisation within 

the cell. SRSF1 is a shuttling protein, that moves from the cytoplasm to the 

nucleus depending on its phosphorylation state (Gonçalves & Jordan, 2015). 

Within the nucleus, it is then free to bind VEGF-A pre-mRNA and promote 

proximal splice site selection (Nowak et al., 2010). Therefore, it is perhaps more 

important to evaluate the localisation of SRSF1 within the cell as a property of 

its function, rather than expression. To assess changes in SRSF1 localisation 

in response to HG, hpRPEs were cultured to between passage 4-6, in order to 
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remove the autofluorescing pigments, and grown to confluent monolayers on 

imaging plates. Cells were stained for ZO-1, to visualise cellular edges, DAPI, 

to see the nucleus and SRSF1. Image J analysis was performed in order to 

obtain the ratio of nuclear to cytoplasmic expression of SRSF1 (see Chapter 2: 

Materials and Methods for full detail). Cells treated with HG showed a steady 

increase in nuclear localisation of SRSF1 to 3.3 over the five-day treatment, 

whilst the values for NG and basal media remained between 1.8 and 2.3 (Figure 

3.3.3-2B). This correlates with what was visualised under the microscope; the 

red signal in the nucleus intensified the longer the cells were exposed to 

glucose, highlighted by the red arrows in Figure 3.3.3-2A. This difference 

between HG and the two controls at 5 days was determined as statistically 

significant. Cells that were initially HG, but exposed to NG media for 5 days 

exhibited a statistically significant decrease in the nuclear to cytoplasmic ratio 

of SRSF1 expression from 3.3 to 2.3, matching that of the controls. This is 

represented by the white arrows in Figure 3.3.3-2A, displaying areas of 

cytoplasmic SRSF1 localisation. Thus, the changes in the cell were due to the 

presence of the glycaemic stimulus. Additionally, this could suggest that the 

effects of hyperglycaemia on SRSF1 may be reversible. 
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Figure 3.3.3-2: HG induces increased nuclear SRSF1 localisation, 
reversed by removal of glycaemic stimulus.    

A: Overlay images of DAPI, ZO-1 and SRSF1 staining in response to the 
different conditions. White arrows highlight cytoplasmic SRSF1 staining, red 
arrows highlight nuclear SRSF1 staining. Scale bar = 25μm. B: SRSF1 
localisation expressed as a ratio of nuclear to cytoplasmic. Nuclear SRSF1 
expression increased in response to prolonged HG exposure compared to NG 
or untreated cells. Removal of HG back to 7.5mM glucose after 5 days resulted 
in a reversal in nuclear expression similar to that seen in NG and untreated 
cells.  Confocal images taken with 40x objective. Error bars indicate mean ± 
standard error. Data was analysed by a two-way analysis of variance corrected 
by Bonferroni, ** p=0.0048 (n=3) 

The phosphorylation state of SRSF1 is the primary determinate of its 

localisation within the cell. SRPK1 phosphorylates the first 12 serine residues 

within the SRSF1 RS domain, enabling the SR protein to bind to transportin-

SR2, a nuclear import factor (Gonçalves & Jordan, 2015). This allows SRSF1 

to shuttle to the nucleus where it is able to regulate VEGF-A alternative splicing. 

Due to the increased expression of VEGF-A165a in HG and Hx hpRPEs (Fig 
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3.3.1), I hypothesised that HG and Hx would result in increased SRSF1 

phosphorylation. Thus, SRSF1 was immunoprecipitated out of NG, HG and Hx 

hpRPE lysate and immunoblotted against SRSF1 and phosphoSR (P-SR). This 

was run alongside the total lysate which was probed for the same as the 

precipitate (Fig. 3.3.3-3A). Bands for phosphorylated SR developed as a 

smear, perhaps due to the presence of various splice isoforms or post-

translational modifications. To gain a measure of phosphorylation, the intensity 

of P-SR band at approximately 33kDa was taken as a percentage of the SRSF1 

band. No difference was found in phosphorylation between NG and HG or Hx 

for the immunoprecipitation (Fig 3.3.3-3B). However, HG induced elevated 

SRSF1 phosphorylation (12.6±0.46) compared to NG (9.21±0.95) in the lysate. 

No change in phosphorylation occurred in response to Hx (6.89±0.71).  

 

Figure 3.3.3-3: SRSF1 phosphorylation is unchanged in HG and Hx in 
hpRPEs.  

A: Immunoblot (IB) of SRSF1 and P-SR of hpRPE lysate immunoprecipitated 
(IP) against SRSF1 and lysate alone. B: P-SR bands expressed as a 
percentage of SRSF1 pull-down. No change was observed in the extent of 
SRSF1 phosphorylation in response to HG or Hx. C: Percentage 
phosphorylation of SR proteins was increased in HG but not Hx when evaluated 
through total lysate. Error bars indicate mean + standard error. Data was 
analysed by a one-way analysis of variance corrected by Bonferroni, * p<0.05 
(n=6) 
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The impact of SPHINX31 on SRPK1 activity in diabetic mimicking conditions 

has been assessed in RPE indirectly through SRSF1 cellular localisation. 

However, several protein kinases have been described to be capable of 

phosphorylating SR proteins on serine residues, such as SRPK2 (Gui et al., 

1994), CLK (Colwill et al., 1996) and DNA topoisomerase I (Rossi et al., 1996). 

Therefore, to confirm that the spatial differences in SRSF1 are due to the 

activity of SRPK1, I performed a nano-BRET to determine SRSF1:SRPK1 

complex formation in response to HG. For these experiments, ARPE-19 cell 

line was utilised due to the increased transfection efficiency compared to a 

primary line. Dr Elizabeth Stewart performed a pull-down of SRSF1 and found 

that SRPK1 exists in a complex with SRSF1 (Fig 3.3.3-4A) in unstimulated 

ARPE-19s. Stimulating the cells with 100nM IGF caused a disassociation of 

SRPK1:SRSF1 complex reversed with the addition 10µM SPHINX31. This was 

confirmed by densitometry analysis (Fig 3.3.3-4B). Following her result, I co-

transfected ARPE-19 cells with SRPK1-NanoLuc® and SRSF1-Halotag® 

constructs and cultured them with Opti-MEM™ supplemented with +30mM D-

glucose or +30mM D-mannitol for three days. The reasoning for reduced 

exposure time compared to previous experiments in this chapter was due to 

using Opti-MEM™ media instead of DMEM:F12. Opti-MEM™ was required for 

successful transfection and fluorescence measurements but contains less 

additives than DMEM:F12, thus cells were beginning to die after 3 days 

exposure, hence the shorter exposure time. In order to determine the assay is 

working correctly, the signal at 450nm (Fig 3.3.3-4C) and 600nm (Fig 3.3.3-4D) 

was measured with and without ligand. The BRET ratio was calculated from 

these values (Fig 3.3.3-4E) and found to be 25% larger with ligand than without. 

The addition of mannitol appeared to have no effect on the BRET ratio when 

compared to media alone, however hyperglycaemia induced a reduction in 

BRET ratio, indicating an increase in SRPK1 activity (Fig 3.3.3-4F). 
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Figure 3.3.3-4: HG induces an increase in SRPK1 activity which causes a 
disassociation of the SRPK1-SRSF1 complex.   

A: SRPK1 co-precipitates with SRSF1 in unstimulated RPEs. Stimulation of 
SRPK1 activity with 100nM IGF caused a loss of the SRPK1 band. 10µM 
SPHINX31 restored co-immunoprecipitation. B: Quantification of mean grey 
levels of immunoprecipitation (n=2). C: Average RLU is unchanged with the 
presence of ligand at 450nm. D: Average RLU is increased with halotag-618 
ligand compared to no-ligand at 600nm. E: Calculated BRET ratio is increased 
with halotag-618 ligand. F: Mannitol induces no change in BRET ratio 
compared to basal media alone, however HG triggers a decrease in mean 
BRET ratio. Error bars indicate mean + standard error. Statistical analyses were 
performed using a one-way analysis of variance. *p<0.05, **p<0.01 (n=6). 

Whilst Figure 3.3.2 shows that SRSF1 translocates to the nucleus in response 

to glycaemic insult, cellular stress has also been found trigger the movement of 

SRPK1 into the nucleus (Aubol et al., 2013). In order to determine where 

SRPK1 complexes with SRSF1, ARPE-19s were transfected with nano-BRET 
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constructs as previously. Opti-MEM™ media was exchanged for phenol-free 

DMEM:F12 as cells were plated onto 4-well imaging dishes. The change in 

media was due to the fact that cells would not adhere to imaging dishes in opti-

MEM™, despite trailing different attachment factors. Cells were treated in NG 

or HG for three days. Nanoluc substrate was administered to cells, and a 

brightfield image on the Olympus LV200 was taken to assess cell morphology. 

Microscope parameters were adjusted to ensure optimal imaging within 10 min 

of addition of substrate and a 30min video was taken of bioluminescence and 

fluorescence (663-739nm) (see Chapter 2: Materials and Methods – 2.8.3 for 

full detail). NG cells appeared to have SRSF1:SRPK1 complexes across the 

whole cell (Fig 3.3.3-5A) whilst HG cells only appeared to have these 

complexes within the nucleus (Fig 3.3.3-5B). Videos were exported to FIJI for 

analysis, and fluorescent intensity within a cell was measured in all frames. This 

value was plotted over time. HG cells appeared to have higher BRET signal 

across 30min compared to that of NG. 
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Figure 3.3.3-5: HG appears to induce translocation of SRSF1:SRPK1 
complexes to RPE nuclei  

A: RPE monolayers transfected with nano-BRET constructs. Brightfield image 
shows a healthy cell monolayer. In NG, bioluminescence imaging displays 
nanoluc construct across entire cell. BRET-Cy5 signal; fluorescence emitted 
from halotag-618 ligand due to excitation of luciferase, appears across entire 
cell. Mean intensity of bioluminescence within a cell plotted over time. BRET-
Cy5 fluorescent intensity within a cell was normalised to bioluminescence and 
plotted over time. B: In HG, cell monolayers appear healthy when assessed 
through brightfield imagery. Bioluminescence and fluorescence appeared to the 
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localised within cell nuclei. Fluorescence intensity appeared to be higher in HG 
than NG (n=1). 

Yoon et. al., 2014 found that the hypoxic environment decreases expression of 

post-transcriptional regulator microRNA miR-9, which led to an increase in 

SRPK1 transcription and thus a shift in alternative splicing to the proangiogenic 

isoform of VEGF (Yoon et al., 2014). Cells exposed to hypoxic conditions 

express significantly higher VEGF-A165a protein compared to normoxic cells 

(see Fig 3.3.1). Thus, I hypothesised that these cells will also have an increase 

in SRSF1 nuclear expression, similar to that which is seen in Fig 3.3.3-2. Cells 

were grown to a confluent monolayer and treated with 1% pO2 between one 

and five days. In addition, a subset of hpRPEs were exposed to +30mM D-

glucose and hypoxia. Cells were stained for SRSF1, a nuclear stain DAPI and 

ZO-1 to visualise cell edges (Fig 3.3.3-6A). The ratio of nuclear to cytoplasmic 

SRSF1 expression was plotted over the course of five days (Fig 3.3.3-6B) and 

found to increase in response to HG as previously. Corroborating with previous 

experiments, nuclear SRSF1 expression in NG remains static across five days. 

Interestingly, Hx caused SRSF1 nuclear localisation to increase even further to 

that seen in HG conditions (Fig 3.3.3-6C). The timecourse was extended further 

to 10 days, to elucidate the effects of long-term HG, keeping Hx exposure to 

72h as hpRPEs began to die if exposed for longer. The cells were seeded at a 

density to ensure they formed a monolayer with tight cell junctions and not grow 

on top of one another (Fig 3.3.3-6D). After ten days of glucose treatment, HG 

cells exhibited an increase in nuclear SRSF1 localisation which was not 

statistically significant despite the extended exposure time (Fig 3.3.3-6E). Hx 

was able to induce a statistically significant rise (p=0.0335) in nuclear 

localisation, similar to that seen at the 5-day point (Fig 3.3.3-6F). However, after 

ten days in culture, the cell morphology looked altered and inconsistent with 

previous RPE monolayers in normoxia. There were areas of cell death and 

areas of overconfluence. In addition, after 10 days, the dynamic range between 

treated and control cells was much lower than that of 5 days, which will have 

an impact for later experiments where I will try to manipulate splicing. Thus, I 

decided that for future experiments, HG treatment would be concluded after 5 

days.  
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Figure 3.3.3-6: Hx induces nuclear localisation of SRSF1    

A: Overlay images of DAPI, ZO-1 and SRSF1 staining in response NG, HG and 
Hx. Scale bar = 50μm. B: Five day timecourse of SRSF1 localisation expressed 
as a ratio of nuclear to cytoplasmic. C: After 5 days, nuclear SRSF1 expression 
increased in response to prolonged HG and Hx exposure compared to NG. D: 
Representative images of hpRPEs cultured for 10 days and stained with DAPI, 
ZO-1 and SRSF1 overlaid. 25μm scale bar. E: Ten day timecourse of ratio of 
nuclear to cytoplasmic SRSF1 expression F: Nuclear localisation appears 
greatest in Hx cells, whereas the prolonged exposure to HG has no effect. 
Confocal images taken with 40x lens. Data analysed using a two-way analysis 
of variance. Error bars of B and E indicate mean ± standard error, C and F 
represent mean + standard error. Data was analysed by a two-way analysis of 
variance corrected by Bonferroni, *p<0.05, **p<0.01, ***p<0.001. (n=3).  
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Previous experiments of this chapter have established that cellular stress 

through HG or Hx induces nuclear localisation of SRSF1, and the literature 

confirms that function of SRSF1 is spatially regulated (Gonçalves et al., 2014). 

However, functions of splicing factors can be further understood through 

realising their sub-nuclear localisation. The mammalian nucleus is organised 

into multiple domains with various functionalities generally characterised by 

their protein and RNA content. Nuclear speckles are dynamic structures 

concentrated with transcription and pre-mRNA factors, and splicing factors 

appear to accumulate within these speckles when inactive (Tripathi et al., 

2012). Complete phosphorylation of the RS domain of SRSF1 instigates a 

dispersion of the splicing factor out of the nuclear speckles where it is able to 

interact with the splicesome via RNA polymerase II (Gonçalves & Jordan, 

2015). The splicing factor SRSF2 (SC35) accumulates within the nuclear 

speckles, thus can be used as a nuclear speckle marker.  

To determine the localisation of SRSF1 within the nucleus, initially it was 

necessary to optimise staining. To validate the antibody, ARPE-19 cells were 

fixed and stained with an antibody against SRSF2 alongside two cancer cell 

lines for comparison. Confocal microscopy using a 63x oil immersed objective 

was used to image the nuclei (Fig 3.3.3-7A). Whilst the staining in the cancer 

cell nuclei was quite widespread and diffuse, with no apparent specific 

localisation of SRSF1 or SRSF2, the RPE staining, although less intense, was 

of a more speckled nature, especially apparent with SRSF1. There was also 

some evidence of staining within the cytoplasm, not seen in the cancerous cells. 

To gain a quantitative measure of SRSF1, SRSF2 co-localisation, Image J 

analysis was performed (Fig 3.3.3-7B). Both SRSF1 and SRSF2 are dispersed 

across the z-plane of the nucleus, as evidenced in a zoomed in image of an 

RPE cell. DAPI staining generated a mask of the nucleus. Within the mask, the 

intensity of the SRSF1 stain and SRSF2 stain was plotted against each other. 

(See Chapter 2: “Materials and Methods).  
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Figure 3.3.3-7: Optimisation of SRSF1 and SRSF2 staining and analysis      

A: 63x oil-immersed lens images of DAPI, SRSF2 and SRSF1 staining in RPE, 
HCT 116 and MDA MB231 cell lines. Scale bar = 25μm. B: Confocal imaging 
of a zoomed in RPE cell. Z-plane images find SRSF1 and SRSF2 located 
throughout the whole nucleus in a speckle formation. Co-localisation plot 
generated by FIJI showing intensity of SRSF1 stain against SRSF2.  

This methodology was used on hpRPE cells treated for five days with +30mM 

D-mannitol or D-glucose in order to elucidate the impact of HG on subnuclear 

localisation of SRSF1. HG exposure produced nuclei that appeared more red 

in colour compared to the ‘yellow’ nuclei in NG cells (Fig 3.3.3-8A). The yellow 

colour is a result of an overlay of the red SRSF1 and green SRSF2 channels, 

thus this could potentially mean that SRSF1 localisation against SRSF2 is 

reduced by HG compared to NG. Analyses confirmed this observation (Fig 
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3.3.3-8B), which could mean that SRSF1 is released from the nuclear speckles 

in response to HG.  

 

Figure 3.3.3-8: SRSF1 is released from nuclear speckles in HG RPEs 

A: 63x oil-immersed lens images of SRSF2 and SRSF1 staining in hpRPE. 
Scale bar = 10μm. Intensity of SRSF1 and SRSF2 staining in each pixel was 
plotted against each other to determine the correlation of staining. B: HG 
induces a reduction in SRSF1:SRSF2 co-localisation co-efficient (Co-L) after 5 
days. *p<0.05, n=4, statistical analysis performed using t-test.   
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3.4 Discussion 

3.4.1 hpRPEs provide a better model of in vitro outer blood-
retinal barrier in comparison with ARPE-19s 

A lot of the research surrounding DR focuses on the iBRB, and the impact of 

VEGF-A on the retinal endothelial cells has been widely accepted. However, 

the RPE cell layer that contributes to the oBRB are not only disrupted in DR 

and DMO, but also act as a VEGF-A secretome and could potentially be 

manipulated in order to treat this disease (Ponnalagu et al., 2017). I generated 

an in vitro model of the oBRB RPE cell layer to study this, trialling the 

immortilised ARPE-19 cell line and hpRPEs isolated from donor eyes. With 

regards to barrier integrity, ARPE-19s were found to be a poor model. ZO-1 

intensity on cell membranes in ARPE-19s appeared to increase in response to 

HG (Fig 3.3.2-1), although this did not translate functionally as there was no 

difference in permeability across the monolayer (Fig 3.3.2-3). Increase in 

membrane ZO-1 expression would suggest tighter cell-junctions, thus  

reduction in permeability and so these results contradict one another. Occludin 

was initially used as the marker of tight junctions when optimising experiments 

performed in section 3.3.2, but staining was weak in ARPE-19s, highly 

dispersed and did not appear to be localised to the tight junctional area. This 

result was also seen in the Ablonczy et. al. paper, and furthermore TER values 

were lower suggesting that ARPE-19 cells form weaker tight junctions 

compared to human primary cell lines (Ablonczy et al., 2011). Despite the 

issues described with ARPE-19s as a model for barrier integrity, trends in 

VEGF-A isoform expression and SRSF1 nuclear localisation remained the 

same as hpRPEs, just to a smaller extent. Thus, the cell line was useful for 

optimising experiments whilst waiting for primary cell lines.  

3.4.2 Hyperglycaemia and hypoxia upregulates VEGF-A165a 
expression and disrupts RPE monolayer properties 

hpRPEs exhibited increased VEGF-A165a expression in response to 

hyperglycaemia and hypoxia, and although VEGF-A165b levels remained 

unchanged, the ratio of VEGF-A165b/VEGF-A165a was reduced (Fig 3.3.1) 
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consistent with published data in diabetic human vitreous (Perrin et al., 2005). 

In addition, Kim et. al. found that the hyperglycaemic environment is stimulatory 

for VEGF-A expression, however this expression did not cause angiogenesis 

(Kim et al., 2002). Barrier integrity was measured in multiple ways, one being 

ZO-1 membrane localisation (Fig 3.3.2-1). Two methods of analysis were 

tested, total intensity and ‘peak’ number. The number of peaks in the staining 

profile represents the number of ‘gaps’ in tight junctions, thus the higher the 

peak number, the weaker the barrier. This method proved to be 

unrepresentative as no change was seen in response to HG despite reduction 

in TER (Fig 3.3.2-3). Total intensity values were concluded to be the optimal 

measurement of membrane ZO-1 expression as this decreased in response to 

hyperglycaemia and hypoxia, corroborating with that observed in vivo (Xu & Le, 

2011). ZO-1 protein expression remained static in hyperglycaemic conditions 

(Fig 3.3.2-2), which could suggest intracellular trafficking, but not degradation 

of ZO-1. However in hypoxia, ZO-1 levels were significantly reduced, an 

observation also seen in endothelial cells in response to HIF-1a (Hu et al., 

2019).  

3.4.3 SRPK1 activity increases in response to hyperglycaemia 
and hypoxia 

The SRPK1-SRSF1 axis has been implicated in regulating VEGF-A isoform 

expression. SRPK1 phosphorylates SRSF1 causing it to translocate from the 

cytoplasm to the nucleus where it is able to interact with VEGF-A pre-mRNA 

(Nowak et al., 2010). Thus, the activity of SRPK1 can be indirectly monitored 

through determining the localisation of SRSF1 within the cell. Hyperglycaemia 

induced an increase in nuclear SRSF1 over the course of five days compared 

to media only and an osmotic control. Reversion of glucose concentration back 

to 7.5mM post 5 days 37.5mM treatment restored SRSF1 localisation, 

highlighting the dependence of SRSF1 translocation on a glycaemic stimulus 

(Fig 3.3.3-2). After 10 days, the ratio of nuclear to cytoplasmic SRSF1 was also 

increased, but not to a statistically significant effect, (Fig 3.3.3-6) perhaps due 

to over-confluency of the cells and improper formation of the monolayer. 

Despite differential nuclear localisation, there was no difference in overall 

SRSF1 expression (Fig 3.3.3-1). The amplified SRSF1 nuclear shuttling 
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suggests an increase in its phosphorylation by SRPK1. However this wasn’t 

reflected in the immunoprecipitation results (Fig 3.3.3-3), which could 

potentially be due to the P-SR band developed as a smear. An increase in P-

SR was seen in the immunoblot of total lysate, suggesting that there is an 

increase in phosphorylation of SR proteins in HG, just not specifically in SRSF1. 

Rather than indirectly measuring SRPK1 activity through SRSF1 localisation 

and phosphorylation, a proximity based assay, nano-BRET was performed. 

Aubol et al found that SRPK1 affinity for SRSF1 increases five-fold when the 

splicing factor is unphosphorylated, which potentially explains why SRPK1 was 

found to exist in a complex with SRSF1 in unstimulated cells (Fig 3.3.3-4) 

(Aubol et al., 2016). Treatment with IGF-1, a known SRPK1 stimulator, causes 

a disassociation of this complex. Glycaemic and not osmotic shock was found 

to decrease SRSF1:SRPK1 complex formation in RPEs thus suggesting an 

increase in SRPK1 activity. At the time of writing this thesis, this appears to be 

the first time SRPK1 activity has been described to increase in HG through a 

direct assay. Osmotic stress has been found to trigger SRPK1 movement into 

the nucleus, but SRPK1:SRSF1 complexes were found across the entire cell 

when treated with mannitol (Ma et al., 2009). It is only after glycaemic insult, 

where SRPK1:SRSF1 appeared to translocate to the nucleus. This result, 

although exciting, requires further work to robustly conclude the translocation. 

The brightfield image was faint due to limitations of this microscope, but did 

show a monolayer of ARPE-19 cells. Despite this, only one or two cells 

appeared to be successfully transfected with the nano-BRET constructs. 

Transfection efficiency has been described to be greater in dividing cells 

compared to non-dividing, due to the repeated breakdown of nuclear 

membrane during cell division (Bettinger et al., 2001; Maury et al., 2014), and 

RPEs within a monolayer will display contact inhibition thus not be actively 

dividing (Stern & Temple, 2015). Had I decreased the seeding density, I may 

have achieved a higher transfection efficiency. The apparent poor transfection 

efficiency did not appear to be an issue for the nanoBRET assay as 

measurements were taken across the entire cell monolayer with a 

spectrophotometer. Furthermore, although the BRET-Cy5 signal in HG cells 

appears more rounded, however this is not conclusive proof that the complex 

is existing with the nucleus. Live cells could have been stained with the nuclear 
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marker, Hoechst, to confirm localisation of the nucleus and deduce whether the 

BRET-Cy5 signal overlays the stain. Another interesting experiment would 

have been to administer glucose to cells already expressing the nano-BRET 

constructs, and imaging the BRET-Cy5 signal. Through this, it would be 

possible to solve the time it takes for the complex to translocate to the nucleus.  

HG mobilises SRSF1 to move into the nucleus, however, in order to further 

understand its function, it is necessary to visualise SRSF1 within subnuclear 

domains. Pre-mRNA splicing machinery are known to assemble into nuclear 

speckles and thus proteins which localise within the subnuclear storage sites 

are implicated in pre-mRNA processing (Kim et al., 2016). Transcriptionally 

active genes are commonly localised adjacent to these speckles, previously 

termed SC35 domains due to the high concentration of SRSF2 within them 

(Hall et al., 2006). Thus, immunofluorescence was performed to determine 

whether SRSF1 co-localises with SRSF2 within the nucleus. SRSF1 staining 

produces punctate foci within the nucleus (Fig 3.3.3-8). SRSF1 appears to be 

released out of the nuclear speckles in hyperglycaemic conditions.  

Generally, hypoxia produced similar results to that of hyperglycaemia, just to a 

larger extent. An exception was SRSF1 expression, that reduced in hypoxic 

conditions but not in hyperglycaemia (Fig 3.3.3-1). This was surprising as 

elevated SRSF1 expression has been found in PC3 prostate cancer cells 

(Bowler et al., 2018). As mentioned previously, the function of SRSF1 is 

spatially regulated, and cells exposed to hypoxia for three days exhibited 

increased nuclear SRSF1 compared to normoxic cells (Fig 3.3.3-6). This 

suggests an elevation in SRPK1 activity, thus we would assume this would 

correspond with more SRSF1 phosphorylation. However, the 

immunoprecipitation and immunoblots did not support this hypothesis (Fig 

3.3.3-3), which could potentially be due to the antibody used to detect P-SR or 

another assay error. This experiment underwent several rounds of optimisation, 

but the results remained inconclusive, thus I decided that this assay would not 

be used moving forwards to assess SRPK1 activity.  
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3.5 Summary 

An optimal in vitro model of the oBRB in diabetes was generated, requiring 

hRPEs grown to form a monolayer and then treated with +30mM D-glucose for 

five days to represent hyperglycaemic conditions or 1% pO2 for three days to 

represent hypoxia. A control of +30mM D-mannitol will always be included 

alongside to determine the impact of osmotic shock.  

The evidence suggests that hyperglycaemia exhibits increased nuclear 

localisation of SRSF1 and SRSF1:SRPK1 complex, an increase in SRPK1 

activity, where it is released from the nuclear speckles and able to bind to 

VEGF-A pre-mRNA. Thus, VEGF-A165a levels are amplified resulting in a 

decrease in barrier integrity and overall increase in monolayer permeability. 

Hypoxia also induced increased SRSF1 nuclear localisation, despite a 

reduction in overall expression, which corresponded with upregulated VEGF-

A165a expression. There was a loss of cell membrane localisation of tight 

junction protein ZO-1 alongside a complete reduction in overall protein 

expression.  
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4.1 Introduction 

Differential inclusion of VEGF-A terminal exon 8a or 8b results in production of 

alternative VEGF-A isoforms, VEGF-Axxxa or VEGF-Axxxb. Both isoforms bind 

to their cognate receptor VEGFR2 with equal affinity, and VEGF-A165a can 

additionally bind to VEGFR2 co-receptor, NP-1 (Kawamura et al., 2008). 

Binding of VEGF-A165a to VEGFR2 and NP-1, results in a conformational 

change in VEGFR2, inducing receptor dimerization and an internal rotation of 

the intracellular domain. The resulting tyrosine autophosphorylation is followed 

by VEGFR2 internalisation where downstream pathways enhancing 

permeability and promoting cell survival, amongst others, are activated (Ford 

et al., 2011; Harper & Bates, 2008). VEGF-A165b is distinct from its sister 

isoform as it is unable to fully stabilise NP-1 binding and does not completely 

activate VEGFR2 when bound. VEGFR2 is only partially phosphorylated, and 

thus elicits weaker downstream effects (Harper & Bates, 2008). Perrin et al. 

discovered the existence of both families of isoforms in the adult vitreous, 

confirming their requirement for ocular function. Diabetes elicits a switch in 

splicing which results in an abundance of VEGF-A165a such that VEGF-A165b 

percentage in the vitreous decreases approximately five-fold compared with 

healthy eyes (Perrin et al., 2005). Thus, in the diabetic eye, there is an 

increased activation of VEGFR2 resulting in increased angiogenesis and 

permeability. Recombinant VEGF-A165b ameliorates pathologies in vivo in 

experimental models of choroidal neovascularisation (Hua et al., 2010) and DR 

(Ved et al., 2017). In addition, this isoform is also protective in vitro against 

VEGF-A165a- and hyperglycaemia induced breakdown of the RPE monolayer 

(Ved et al., 2017). Thus, VEGF-A165b may offer therapeutic potential in the 

treatment of DR.  

The splicing factor SRSF1 and its kinase SRPK1 regulates alternative splicing 

of VEGF-A (Nowak et al., 2008). When activated, SRPK1 phosphorylates the 

first twelve serine residues within the N-terminal portion RS domain (RS1) of 

SRSF1 (Aubol et al., 2013), enabling the SR protein to bind to a nuclear 

transport factor, transportin-SR2 (Kataoka et al., 1999). This complex shuttles 

into the nucleus where SRSF1 is stored as nuclear speckles, its release 
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facilitated by CLK-1 through a hyperphosphorylation of the remaining serine 

residues. Here, SRSF1 can mediate splicing reactions through interacting with 

splicing regulatory elements on pre-mRNA (Naro & Sette, 2013) including 

promoting proximal splice site selection of VEGF-A exon 8 and thus 

upregulating VEGF-Axxxa expression (Nowak et al., 2010). Within the 

cytoplasm, SRPK1 exists in a complex with heat-shock proteins and their co-

chaperones. Cellular stress can disrupt this complex and induce nuclear 

shuttling of SRPK1 (Aubol et al., 2013). Within the nucleus, SRPK1 is able to 

complex with CLK-1, an interaction that enhances CLK-1 ability to 

hyperphosphorylate  SRSF1, promoting release from the nuclear speckles 

(Aubol et al., 2016). SRPK1 has an additional role in the nucleus, where it 

mediates disassociation of phospho-SRSF1 and CLK-1. Binding of SRPK1 

increases five-fold to unphosphorylated SRSF1 in comparison to phospho-

SRSF1, in addition, after phosphorylation of the first eight residues of RS1, 

SRPK1 affinity for SRSF1 decreases (Aubol et al., 2016). Inhibition of SRPK1 

promotes VEGF-A165b/reduces VEGF-A165a expression in multiple tissues, 

particularly within the eye, without harming cell function (Batson et al., 2017). 

PKC involvement is both upstream and downstream of VEGF-A. Diabetes 

induces increases in DAG levels and PKC activity in many vascularised tissues 

including the retina (Shiba et al., 1993). Multiple pathways have been 

implicated in PKC activation in response to diabetes. Hyperglycaemia 

stimulates synthesis of DAG de novo from glycolytic intermediates, and also an 

increase in oxidants such as H2O2. Oxidants are able to activate PKC activity 

directly (Konishi et al., 1997) and indirectly through increasing DAG production 

(Nishikawa et al., 2000). Diabetic induced changes in PKC activity is also 

isoform specific, PKC isoenzymes -a, -bI, -bII and -e are all reported to increase 

in the retina membrane and cytosol of diabetic rats (Konishi et al., 1997). The 

mechanisms as to why there is selectivity to diabetes-induced changes to PKC 

isoform activity remains unclear, however it is hypothesised to be due to 

subcellular location (das Evcimen & King, 2007). PKC isozymes -a, -bI, -bII and 

-g are characterised as conventional isozymes possessing tandem C1A and 

C1B domains capable of binding to DAG. Isozymes PKCδ, -ε, -θ, -η are 

described as novel, and also contain DAG-binding C1A and C1B domains, but 
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the affinity of C1B domain for DAG is 100-fold higher than that of conventional 

PKC isozymes (Wu-Zhang & Newton, 2013). SRPK1 can be activated via PKC, 

thus promoting expression of VEGF-Axxxa isoforms (Nowak et al., 2010). It is 

through this process that PKC is able to feedback on itself, as VEGFR2 

activation by VEGF-A stimulates PKC activation via PLCg mediated manner 

(Xia et al., 1996). Notably, PKC activation in response to hyperglycaemia has 

been found to increase VEGF-A levels in RPE (Poulaki et al., 2002). 

Small molecular weight inhibitors of SRPK1 have been developed. The 3-

(trifluoromethyl)anilide scaffold SPHINX31 has excellent  potency and 

selectivity for SRPK1. The compound has an IC50 of 5.9nM, and occupies the 

binding pocket of SRPK1 inducing a backbone flip in the hinge region of the 

pocket (Batson et al., 2017). SPHINX31 will be used over the course of this 

study to inhibit SRPK1 kinase activity. 

SRPK1 inhibitors are touted to have the potential to act as a therapeutic agent 

for a number of ocular diseases (Batson et al., 2017). In this chapter I aim to 

elucidate the impact of inhibiting SRPK1 in diabetes-mimicking conditions: 

hyperglycaemia and hypoxia, in a model of the RPE monolayer of the oBRB. 

SRPK1-SRSF1 axis has been implicated in VEGF-A terminal exon 8a or 8b 

selection (Gammons et al., 2014; Nowak et al., 2010), thus I will deduce how 

inhibiting this axis influences VEGF-A isoform expression. I also aim to evaluate 

the potential of SRPK1 inhibition as a blocking agent against increases in RPE 

monolayer permeability caused by diabetes mimicking conditions. 

Furthermore, the direct effect of topical agent SPHINX31 on SRPK1 activity will 

be determined through a nano-BRET assay, and indirectly through establishing 

its impact on SRSF1 localisation. Finally, to further understand differential 

SRPK1 activity in diabetes, PKC inhibitors will be utilised in assays of SRPK1 

activity. 
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4.2 Methodology 

The work described in this chapter was performed using human primary retinal 

pigmented epithelial (hpRPE) cells isolated from human donors or in the 

immortalised ARPE-19 cell line. Hyperglycaemia (HG) assays required the use 

of DMEM:F12 media, with a basal concentration of 7.5mM, supplemented with 

30mM D-glucose. All experiments were carried out alongside a 

normoglycaemic (NG) control, where cells were exposed to DMEM:F12 

supplemented with 30mM D-mannitol; a non-reactive sugar with the same 

osmolarity as D-glucose. Hypoxic conditions of 1%pO2 was achieved using a 

sealed hypoxia incubator. SRPK1 inhibitor, SPHINX31, and PKC inhibitors 

BIM-1 and Go6976 were initially dissolved in 100% DMSO before diluted in 

media to a final concentration of 1% DMSO to treat cells. These experiments 

were performed alongside a vehicle only (1% DMSO) control. An ELISA 

determined VEGF-A165 isoform expression in treated cells. To elucidate 

changes in RPE monolayer barrier properties, ZO-1 localisation was 

established using immunofluorescence. This was supported by impedance 

measurements across the monolayer via electrical cell impedance sensing. 

SRSF1 localisation studies were performed using immunofluorescence and 

confocal microscopy. Protein expression was determined using western blot. 

Cells were assayed for SRPK1 activity using nano-BRET in different conditions. 

Unless otherwise stated, all repeats are technical repeats. All methods are 

described in detail in Chapter 2: “Materials and Methods”.  

  



 116 

4.3 Results 

4.3.1 Changes in VEGF-A165 isoform expression in response to 
SRPK1 inhibition in hyperglycaemia and hypoxia 

The RPE monolayer restricts the movement of fluid across the oBRB, however, 

these cells are also a major contributor to VEGF-A expression within the eye 

(Marneros et al., 2005). Administering recombinant VEGF-A165b has been 

found to have protective effects in models of diabetic retinopathy in vivo (Ved 

et al., 2017), thus it is postulated that switching VEGF-A splicing in RPE holds 

therapeutic potential for DR. The impact of inhibiting SRPK1 in RPE in VEGF-

A isoform expression in diabetes-mimicking conditions was measured. An 

ELISA (previously validated in Chapter 3.3.1) was performed on cell lysate of 

RPEs treated with +30mM D-glucose (HG) for 5 days or 1%pO2 for 3 days (Hx), 

with +30mM D-mannitol (NG) included as an osmotic control (see Chapter 2: 

Materials and Methods for further detail). Concentrations of VEGF-A165a was 

determined using the standard curve (Fig 4.3.1.A) and as previously in Chapter 

3.3.1, HG and Hx induced an increase in VEGF-A165a expression but not NG 

(Fig 4.3.1.B). 3µM SPHINX31 blocked this increase (p<0.05) in both conditions 

whilst having no effect in NG. VEGF-A165b concentrations measured from a 

standard curve (Fig 4.3.1.C) did not significantly change in response to either 

condition or SRPK1 inhibition (Fig 4.3.1.D). When VEGF-A expression was 

assessed as a ratio, SPHINX31 restored VEGF-A165b/VEGF-A165a ratios in HG 

and Hx to NG levels (Fig 4.3.1.E).  
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Figure 4.3.1: SRPK1 inhibition ameliorates hyperglycaemia- and hypoxia-
induced changes in VEGF-A165 isoform expression 

A+C: Standard curves of VEGF-A165a and VEGF-A165b respectively. B: 3µM 
SPHINX31 (X31) had no impact in VEGF-A165a levels in NG but reduced VEGF-
A165a in both HG (from 160±16.81pg/mL to 98.3±3.5pg/mL) and Hx (from 
154.4±19.4pg/mL to 96.1±5.5pg/mL) D: VEGF-A165b expression was not 
significantly impacted in response to X31 in any condition. E: VEGF-A165b 
relative to VEGF-A165a was increased in HG (from 0.80±0.14pg/mL to 
1.41±0.12pg/mL) and Hx (from 0.34±0.02pg/mL to 1.05±0.09pg/mL) in 
response to X31. (n=3) ns=not significant, *p<0.05, **p<0.01. Statistical 
analyses performed using one-way analysis of variance with Bonferroni post 
hoc. Error bars represent mean plus standard error. 
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4.3.2 Impact of SRPK1 inhibition on integrity of RPE monolayer 

Work from the previous chapter resulted in a reliable model of the RPE 

monolayer of the oBRB which was disrupted in response to the diabetes- 

mimicking conditions, HG and Hx. Loss in barrier integrity in these conditions 

is potentially due to the shift in VEGF-A165 isoform expression where VEGF-

A165a levels overwhelm VEGF-A165b. SRPK1 inhibition has been found to block 

this shift, returning VEGF-A165 ratio to NG levels. Thus, in order to elucidate 

how this affects tight junction complexes within the RPE monolayer, hpRPEs 

were treated as 4.3.1 and ZO-1 expression was visualised using 

immunofluorescence and confocal microscopy (Fig 4.3.2-1A). FIJI analysis 

determined the intensity of ZO-1 expression along the cell membranes (for 

further detail of analysis method, see Chapter 2: “Materials and Methods”). As 

previously in Chapter 3, HG and Hx reduced ZO-1 intensity compared to NG. 

Excitingly, 3µM SPHINX31 increased ZO-1 intensity in both of these conditions 

compared to a vehicle only (1% DMSO) control (Fig 4.3.2-1B). An interesting 

observation was that Hx cells appeared to be larger in size than NG and HG, 

and this was not changed by SPHINX31 treatment (Fig. 4.3.2-1A).  
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Figure 4.3.2-1: Loss of barrier localisation of ZO-1 in HG and Hx is 
ameliorated by SRPK1 inhibition. 

A: 40x images of ZO-1 staining of hpRPE monolayers imaged using confocal 
microscopy. B: Fiji analysis of staining to determine ZO-1 intensity over 
membrane distance. Dotted line represents ZO-1 intensity in NG. Both HG and 
Hx reduced ZO-1 intensity compared to NG. 3µM SPHINX31 significantly 
increased ZO-1 intensity in HG (from 106.4±3.4 to 238.1±23.1) and also Hx 
(from 36.5±8.0 to 290.6±35.3) compared to vehicle only control. (n=3) *p<0.05, 
***p<0.001. Statistical analyses performed using one-way analysis of variance 
with Bonferroni post hoc. Error bars represent mean plus standard error. 

Differential ZO-1 expression across cell-cell contacts in hpRPEs suggested an 

overall change in total monolayer permeability. In order to test this hypothesis, 

hpRPEs were grown to confluence on gold coated ECIS microarrays and 

impedance measurements in response to an electrical potential were taken 

non-invasively. Curves were plotted 1/impedance to gain a measure of 

permeability. Cells were treated with HG or an equivalent concentration of NG 

and co-treated with 3µM SPHINX31 or 1% DMSO control. Additionally, to 

deduce whether any changes in impedance in response to SRPK1 inhibition is 

due to VEGF-A165 isoform expression, cells were exposed to 5nM aVEGF-A165b 
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antibody. This concentration was chosen as it has been previously published 

as an optimal concentration for RPE cells to neutralise VEGF-A165b effects 

(Kataoka et al., 1999). Finally, an IgG control was included to eliminate the non-

targeting effects of an antibody (Chapter 2: “Materials and Methods” for full 

protocol). In NG (Fig 4.3.2-2A), SPHINX31 had no effect on monolayer 

permeability, whilst aVEGF-A165b caused a slight increase in permeability, 

although not to a significant extent. Non-targeting IgG did not influence 

monolayer permeability (Fig 4.3.2-2B). In HG the effects of SPHINX31 were 

more impactful than in NG, inhibiting SRPK1 blocked the HG -induced increase 

in monolayer permeability. Notably, this change appeared to be mediated 

through VEGF-A165b expression, as co-treatment with aVEGF-A165b and 

SPHINX31 nullified the effects of SPHINX31 alone, evidenced by the curve 

overlaying the NG curve (Fig 4.3.2-2C) and similar area under the curve values 

(Fig 4.3.2-2D).  
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Figure 4.3.2-2: SPHINX31 blocks HG-induced increases in RPE monolayer 
permeability potentially through a VEGF-A165b mediated manner 

A: 1/impedance curves plotted over 15h in NG hpRPE monolayers treated with 
1% DMSO (+Veh) or 5nM aVEGF-A165b and/or 3µM SPHINX31 or 5nM IgG. 
B: Area under the curves (AUC) for each treatment. Co-treatment with 
SPHINX31 and aVEGF-A165b induced a slight (not significant) increase in 
permeability but no other treatment induced any changes. C: 1/impedance 
curves for HG hpRPEs. D: AUC values for each treatment. HG increased 
permeability of RPE monolayer which was blocked by SPHINX31. Addition of 
aVEGF-A165b antibody reversed effects of SPHINX31 alone. (n=9) *p<0.05, 
****p<0.0001. Statistical analyses performed using one-way analysis of 
variance with Tukeys post hoc. Error bars of A & C represent mean ± standard 
error. B & D represent mean + standard error.  
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4.3.3 SRPK1 activity in HG and Hx RPEs in response to 
SPHINX31 

Chapter 3.3.3 describes how SRPK1 activity increases in response to HG and 

Hx, and results in the nuclear shuttling of its associated splicing factor SRSF1. 

Once within the nucleus, HG is able to induce the release of SRSF1 from the 

nuclear speckles, allowing it to mediate splicing activities. I have established 

that inhibiting SRPK1 resulted in a shift in VEGF-A165 isoform expression in 

favour of VEGF-A165b, and hypothesised that this effect is due to spatial 

changes of SRSF1. Thus, to elucidate how inhibiting SRPK1 would affect the 

cellular localisation of SRSF1, hpRPEs were treated with HG and Hx and co-

treated with 1µM or 3µM SPHINX31 or 1% DMSO. Cells were stained with a 

nuclear stain DAPI, SRSF1 and additionally ZO-1 to delimit the cell membrane 

(Fig 4.3.3-1A). Ratio of nuclear to cytoplasmic SRSF1 was calculated using FIJI 

analysis and plotted as the difference from day 1 (See Chapter 2: Materials & 

Methods). SPHINX31 treatment in NG had no effect on nuclear localisation 

SRSF1 (Fig 4.3.3-1B), however it blocked the HG-induced increase with both 

concentrations (Fig 4.3.3-1C). Hx also increases nuclear shuttling of SRSF1 

and inhibition of SRPK1 activity in these conditions (Fig 4.3.3-1D).  
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Figure 4.3.3-1: SRPK1 inhibition blocks nuclear localisation of SRSF1 in 
hyperglycaemia and hypoxia but not normoglycaemia.  

A: Representative images of DAPI, ZO-1 and SRSF1 staining overlaid imaged 
via confocal microscopy with 40x objective. Scale bar 50μm. B: Ratio of nuclear 
to cytoplasmic SRSF1 in NG expressed as the difference from the ratio in day 
1 NG cells (dotted line). Nuclear localisation is unchanged by SPHINX31. C: 
HG elevates nuclear localisation of SRSF1 which is blocked by 1µM and 3µM 
SPHINX31. D: Both concentrations of SPHINX31 also blocked Hx-induced 
increase in SRSF1 nuclear localisation. Error bars represent mean + standard 
error. A two-way analysis of variance with Bonferonni adjustment was 
performed for statistical analysis. NG&HG n=6 Hx n=3 *p<0.05 **p<0.01. 

Partial phosphorylation of SRSF1 by SRPK1 is known to trigger cytoplasmic to 

nuclear shuttling of SRSF1 (Kataoka et al., 1999)where it compartmentalises 

within nuclear speckles in an inactive state. SRPK1 has additionally been 

implicated in facilitating the release of SRSF1 from the speckles through 

complexes with CLK-1 and promoting its activity (Aubol et al., 2016). Thus, I 

hypothesised that inhibiting SRPK1 activity would not only decrease nuclear 

SRSF1 concentration, but would also reduce SRSF1 release from the speckles. 

To elucidate whether this was the case, hpRPEs were treated with +30mM D-

glucose or +30mM D-mannitol and co-treated with 3µM SPHINX31 or 1% 

DMSO. Cells were stained with DAPI to generate a nuclear mask, for SRSF1 

and a nuclear speckle marker SRSF2 and high power images were obtained 
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using confocal microscopy with a 63x oil-immersed objective (Fig 4.3.3-2A). 

Analysis was performed using FIJI to obtain measure of co-localisation (Co-L) 

(for further detail about analysis method, see Chapter 2: ‘Materials and 

Methods”). Co-L significantly reduced in response to HG, corroborating with 

data from Chapter 3, thus we can assume SRSF1 is being released from the 

nuclear speckles. SPHINX31 had no effect on Co-L in NG, however reversed 

the reduction in Co-L in HG (Fig 4.3.3-2B), therefore suggesting that SRSF1 

remains inactive within the speckles in this condition. To clarify whether the 

difference in Co-L is due to a change in localisation or differential expression of 

SRSF1 and SRSF2, a western blot was performed on the cell lysate (Fig 4.3.3-

2C). No condition had any effect in SRSF1 or SRSF2 expression relative to the 

loading control actin (Fig 4.3.3-2D-E).  
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Figure 4.3.3-2: SPHINX31 ameliorates HG-induced SRSF1 release from 
nuclear speckles.  

A: 63x oil-immersion objective images of SRSF1 and SRSF2 staining overlaid 
images. DAPI staining was used to create mask of nuclei (grey outline). Scale 
bar 10μm. B: FIJI analysis determined co-localisation (Co-L) extent of SRSF1 
and SRSF2. In NG, Co-L value was not affected by SPHINX31. HG induced an 
decrease in Co-L C: Immunoblots against SRSF1, SRSF2  and actin of cell 
lysate from NG or HG hpRPEs co-treated with SPHINX31 or 1% DMSO (Veh). 
D: Density analysis from bands determined that SRSF2 expression did not 
differ in response to any condition. E: SRSF1 expression across all conditions 
did not significantly vary. Error bars represent mean + standard error. A two-
way analysis of variance with Tukey post hoc was performed for statistical 
analysis. (n=3) *p<0.05. 
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In addition, cells were exposed to 3µM SPHINX31 or 1% DMSO control for 

three days. Following addition of Nano-Luc® substrate, if the two constructs 

are in close proximity with each other, energy will be transferred from luciferase 

to Halotag-618 ligand causing it to fluoresce (Fig 4.3.3-3C). Resultant emission 

can be converted to a BRET ratio (see Chapter 2: Materials and Methods for 

full detail) to gain a measure of SRPK1 complexing with SRSF1. SPHINX31 

induced no change in BRET ratio in NG, however increased BRET ratio in HG 

(Fig 4.3.3-3D). Thus, it can be assumed that SRSF1:SRPK1 complexes are 

increased in response to SPHINX31 reflecting a reduction in SRPK1 activity in 

HG.  

 

Figure 4.3.3-3: HG induces an increase in SRPK1 activity which causes a 
disassociation of the SRPK1-SRSF1 complex and increase in BRET ratio. 

A: SRPK1 co-precipitates with SRSF1 in unstimulated RPEs. Stimulation of 
SRPK1 activity with 100nM IGF causes a loss of the SRPK1 band thus a 
disassociation of SRSF1/SRPK1 complex. 10µM SPHINX31 restores this 
complex as the SRPK1 band remains B: Quantification of mean grey levels of 
immunoprecipitation (n=2). C: Schematic of principle underlying NanoBRET 
assay. SRPK1 is conjugated to NanoLuc® whilst SRSF1 is attached to a 
Halotag associated to 618 ligand. D: HG induces a decrease in mean bret ratio 
which is blocked by SPHINX31. Error bars indicate mean + standard error (n=6) 
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Statistical analyses were performed using a two-way analysis of variance. 
*p<0.05 A&B: data courtesy of Dr. Elizabeth Stewart.   

4.3.4 Determining the impact of PKC on SRPK1 activity in 
hyperglycaemia 

PKC has been shown to be both activated by HG (Omri et al., 2013) and also 

to stimulate SRPK1 activity (Harper & Bates, 2008). To elucidate how HG is 

activating SRPK1, I performed a SRSF1 nuclear localisation assay in the 

presence of a PKC inhibitor that inhibits the a, b1, b2, g, d, e isoforms: 

bisindolylmaleimide I (10µM BIM-1). Due to the presence of a dye in BIM-1 

which was captured by remaining pigment in hpRPE cells (Fig 4.3.4-1A) 

interfering with immunofluorescence, I had to use ARPE-19 cells for this 

experiment. ARPE-19s were grown to confluence and treated with NG or HG  

and SPHINX31 or a vehicle control as previously. In addition, a dose response 

of BIM-1 was imposed on cells (Fig 4.3.4-1B). In HG, as previously discussed, 

there is an evident increase in SRSF1 nuclear shuttling. However blocking 

PKCa-e abrogated this increase to the same level as SPHINX31 (Fig 4.3.4-1C). 

In NG, inhibiting SRPK1 with SPHINX31 induced no change in SRSF1 

localisation. Interestingly, we discovered that pan-PKC inhibition blocked 

nuclear localisation of SRSF1 without a glycaemic stimulus, suggesting 

SRPK1-independent PKC-mediated nuclear shuttling of SRSF1. The co-

inhibition of PKCa-e and SRPK1 in HG conditions produced an insignificant 

reduction in SRSF1 nuclear localisation. (Fig 4.3.4-1D).  
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Figure 4.3.4-1: Blocking PKCa-e isoforms increases cytoplasmic SRSF1 
localisation in normo- and hyperglycaemia  

A: hpRPEs treated with 10µM BIM-1 imaged with confocal microscopy. Drug 
colouring is captured by remaining pigment in cells and so primary cells were 
determined to be inappropriate for use. Scale bar = 25µm B: ARPE-19 cells 
were treated with either 30mM D-mannitol (NG) or 30mM D-glucose (HG) with 
and without 3µM SPHINX31 (X31) for 5 days. In addition a dose-response with 
PKC inhibitor BIM-1 was performed. Cells stained for DAPI, SRSF1 and ZO-1 
and imaged using confocal microscopy with 40x objective. Scale bar = 50µm. 
C: BIM-1 dose response curves. FIJI analysis was performed to determine the 
ratio of nuclear to cytoplasmic expression of SRSF1. Dotted line denotes value 
at 0µM BIM-1. Error bars indicate mean ± standard error. D: SRSF1 
nuclear:cytoplasmic ratios at 10µM BIM-1. Nuclear localisation significantly 
reduced in all conditions except HG+X31. Error bars indicate mean + standard 
error. Statistical analysis performed with two-way analysis of variance with 
Tukeys post-hoc. ns=non-significant, **p<0.01, ***p<0.001, ****p<0.0001 (n=3). 
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To determine the impact of PKC inhibition on SRPK1 activity, ARPE-19 cells 

were treated with either +30mM D-mannitol (NG) or +30mM D-glucose (HG) for 

two days following a co-transfection with SRPK1-Nanoluc® and SRSF1-

Halotag® constructs. Alongside this, cells were treated for 24h with a 10µM of 

an inhibitor specific for a, b1, b2, g, d, e isoforms of PKC, BIM-1, or an inhibitor 

specific for only a, b1, b2 PKC isoforms, Go6976 with and without 3µM 

SPHINX31 (X31). The nano-BRET assay was performed as stated in Chapter 

2: Materials and Methods. Pan-PKC inhibition completely abrogated the 

change in BRET ratio under HG conditions, producing results similar to 

SPHINX31. This is evidenced by the similar mean corrected BRET ratios (Fig 

4.3.4-2A) and when the data is expressed as a difference in BRET ratio in 

response to HG (Fig 4.3.4-2B). However, blocking only PKCa-b2 specific 

isoforms failed to attenuate the HG-induced increase in BRET ratio, thus did 

not have any impact on SRPK1 activity. Furthermore, the co-treatment of 

SPHINX31 and PKCa-b2 inhibitor completely reversed the change in BRET 

ratio under HG conditions. These results indicate that HG stimulates SRPK1 

activation through activation of PKCg, d and/or e isoforms. 

 

Figure 4.3.4-2: Inhibition of PKCa-e isoforms blocks HG-induced 
increases in SRPK1 activity  

A: Mean corrected BRET values. B: Difference in BRET ratio in HG as 
compared to NG. HG induced an increase in BRET signal which was blocked 
by 3µM SPHINX31 and 10µM BIM-1 but not 10µM Go6976. Co-treatment of 
cells with SPHINX31 and Go6976 resulted in a reduction of the BRET signal. 
Dotted line shows no change. Error bars indicate mean + standard error. 
Statistical analyses were performed using a two-way or one-way analysis of 
variance. *p<0.05, **p<0.01, ***p<0.001 (n=6). 
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4.4 Discussion 

4.4.1 SRPK1 inhibition attenuates differential VEGF-A165 
isoform expression in response to hyperglycaemia and 
hypoxia restoring barrier properties of RPE monolayer 

VEGF-A has been described to act as a survival factor for both vascular and 

non-vascular tissues, as such its blockade contributes to the treatment of many 

pathologies, particularly those of the eye (Ford et al., 2011). However, the 

majority of these therapeutics fail to discriminate between alternatively spliced 

VEGF-A isoforms, which is hypothesised to be one reason why some patients 

are non-responders, as well as the fact that they do not target non-VEGF 

pathways which contribute to DR (Stitt et al., 2016). Consistent with work from 

Chapter 3 and published literature (Fig 3.3.1), VEGF-A165a expression 

increased in response to diabetic mimicking conditions in hpRPEs (Fig 4.3.1-

1B) (Brownlee, 2001). Use of type I kinase inhibitor of SRPK1, SPHINX31 

ameliorated this increase whilst having no effect on VEGF-A165b expression, 

but reducing VEGF-A165a expression. This was surprising as inhibition of 

SRPK1 has been previously shown to promote VEGF-A distal splice site 

selection in colorectal cancer (Walter et al., 2018), prostate cancer (Ferguson 

& Gray, 2018) and notably neovascular eye disease (Yang et al., 2018). 

However, when expressed as a ratio, VEGF-A165b expression almost doubled 

in response to SPHINX31 in HG and tripled in Hx. This is encouraging, as Perrin 

et al found that VEGF-Axxxb isoforms makes up two-thirds of total VEGF-A in 

normal vitreous, thus we are potentially seeing a restoration of healthy VEGF-

A levels due to SPHINX31 (Perrin et al., 2005).  

It is widely accepted that HG insult is followed by a reduction in tight junction 

expression and increase in permeability. I have found this in my model of the 

RPE monolayer of the oBRB in Chapter 3, through both loss of ZO-1 expression 

and reductions in cellular impedance. However, it is relatively unknown what 

the impact of SRPK1 inhibition will be on RPE permeability. Excitingly, I found 

that SPHINX31 increased ZO-1 expression in hpRPEs with a diabetic insult 

(Fig 4.3.2-1) which also was seen functionally as the monolayer permeability 

did not change relative to NG hpRPEs (Fig 4.3.2-2). I also describe for the first 

time how the effect of SRPK1 inhibition with regards to RPE monolayer 
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permeability is mediated by VEGF-A165b expression, as co-inhibition of SRPK1 

and endogenous VEGF-A165b negated the effects of SRPK1 alone. This is 

supported by recombinant VEGF-A165b preventing tight junction disruption 

triggered by VEGF-A165a  or HG in RPEs (Ved et al., 2017). 

4.4.2 SPHINX31 abrogates nuclear shuttling of SRSF1 and 
release from nuclear speckles potentially through 
restoration of SRPK1:SRSF1 complexes in diabetic-
mimicking conditions 

SRPK1 is inextricably linked to the nuclear shuttling of SRSF1. Depletion of 

SRPK1 from HT29 cells were found to have increase cytoplasmic 

concentrations of SRSF1 (Gonçalves & Jordan, 2015). SRPIN40, another 

selective SRPK1 inhibitor prevents IGF-1 stimulated nuclear localisation of 

SRSF1 in podocytes (Nowak et al., 2010). Specifically in the RPE, SRPIN40 

was found to reduce EGF induction of SR-protein phosphorylation (Gammons 

et al., 2013). My results corroborate with that of existing literature, as in hpRPEs 

HG-induced nuclear shuttling of SRSF1 was abrogated by both 1µM and 3µM 

SPHINX31 (Fig 4.3.3-1C). SPHINX31 also reduced release of its cognate 

splicing factor from nuclear speckles in response to HG insult (Fig 4.3.3-2). As 

described in section 4.1, cytoplasmic SRPK1 hypo-phosphorylates SRSF1 

causing it to translocate to the nucleus and compartmentalise within the nuclear 

speckles (Kataoka et al., 1999). It is only after the remaining SR residues are 

phosphorylated by CLK-1 that SRSF1 is released from the speckles and able 

to bind pre-mRNA. SRPK1 facilitates this hyper-phosphorylation through 

complexing with CLK-1 (Aubol et al., 2016). This is potentially explain the 

results of Fig 4.3.3-2, as SPHINX31 blocks formation of SRPK1:CLK-1 

complexes and thus reduces the efficiency of SRSF1 hyperphosphorylation. 

Unlike its complexing with CLK-1, SPHINX31 actually promotes SRPK1:SRSF1 

complexes within the cytoplasm in HG as SRSF1 is unable to be 

phosphorylated and released from SRPK1 (Fig 4.3.3-3). Thus SPHINX31 was 

able to prevent SRPK1 hyperactivity whilst not affecting basal kinase activity. 

This is in line with the nuclear localisation assay results: a higher cytoplasmic 

concentration of SRSF1 due to SPHINX31. Furthermore, an increased 

sequestering of SRSF1 in the nuclear speckles offers an explanation as to why 
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VEGF-A165a expression is decreased in response to SPHINX31 these 

conditions, as the splicing factor is unable to bind to VEGF pre-mRNA whilst 

sequestered.  

With regards to hypoxia, SPHINX31 ameliorated the increase in nuclear 

localised SRSF1 at both 1µM and 3µM (Fig 4.3.3-1D). Another SRPK1 inhibitor 

SRPIN340 is evidenced to have protective effects in an oxygen-induced 

retinopathy model, inhibiting pre-retinal neovascularisation and reducing 

VEGF-A165a isoforms (Gammons et al., 2013). This could potentially be due to 

a loss of nuclear SRSF1 localisation in hypoxia, such as that which is seen in 

Fig 4.3.3-1D.  

NG cells, those that had been treated with 30mM mannitol, were not responsive 

to SPHINX31 with respect to SRSF1 subcellular localisation (Fig 4.3.3-1&2) or 

SRPK1 activity (Fig 4.3.3-3). Mannitol has been included as a control in all 

experiments to account for the effects of osmotic change, and it has been 

described SRSF1 can be spatially regulated by changes in osmolarity, as an 

osmotic shock can cause the factor to migrate into stress granules in the 

cytoplasm (Twyffels et al., 2011). However, in our experiments, mannitol 

appears to have no effect, thus suggesting that observed changes in HG 

experiments are specifically due to glycaemic stimulus. In addition, the fact that 

SPHINX31 has no effect in NG conditions attests to its potential power as a 

therapeutic for DR, as it suggests that it will exclusively act on cells with HG-

insult without affecting ‘healthy’ cells.  

4.4.3 Pan-PKC inhibition blocks HG-induced increases in 
SRPK1 activity and SRSF1 nuclear shuttling 

Diabetes stimulates PKC activity in the retina through a number of pathways 

(Shiba et al., 1993) where it phosphorylates serine or threonine residues of 

intracellular proteins (Harhaj & Antonetti, 2004). PKC can indirectly regulate 

VEGF-A isoform expression through its activation of SRPK1. Therapeutically 

inhibiting PKC has been found to block IGF-stimulated VEGF-Axxxa expression 

in podocytes but has no effect in unstimulated cells (Nowak et al., 2010). 

Activation of IGF receptor stimulates SRPK1 activity which in turn mediates 
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VEGF-A isoform expression (Amin et al., 2011), highlighting PKC involvement 

in SRPK1 activity. I found that blocking PKCa-e isozymes ameliorated HG-

induced increase in SRSF1 nuclear localisation, a potential explanation for the 

increase in VEGF-A165a expression reported in Nowak et al., 2010. The 

reduction in SRSF1 nuclear:cytoplasmic ratio was actually below that of direct 

inhibition of SRPK1 with SPHINX31 (0.96±0.03 vs 1.32±0.09) (Fig 4.3.4-1D) 

which was surprising as I hypothesised that the effect of PKC on SRSF1 was 

through SRPK1 activation. However, in NG conditions, which I have previously 

found not to stimulate SRPK1 activity, PKCa-e isozyme blockade also induced 

a reduction in nuclear localisation of SRSF1 to approximately the same extent 

as in HG. This suggests that there is an SRPK1-independent action of PKC on 

SRSF1. Furthermore, inhibition of PKCa-e isozymes blocked SRPK1 activity in 

HG but induced no change in NG (Fig 4.3.4-2A) supporting the hypothesis that 

although PKC modulates SRSF1 cellular localisation through SRPK1 activity, 

there is an additional pathway independent of SRPK1 involvement. The 

literature surrounding this hypothesis is lacking, but a recent paper has found 

that SRSF1 does feedback on PKC in chronic myeloid leukaemic cells as the 

kinase activity is reduced in SRSF1-depleted cells (Sinnakannu et al., 2020). In 

addition, PKCb2 promotes expression of transcription factor c-myc in HG 

pancreatic b cells (Kaneto et al., 2002) which could trigger upregulation of 

SRSF1 expression (Das et al., 2012). This could potentially explain how PKC 

affects SRSF1 outside the SRPK1-SRSF1 axis but it is clear that more research 

would need to be done in order to confirm these ideas. However, PKC actions 

are isoform specific. The role of PKCb1 and PKCb2 are perhaps the most well 

described in DR, as they are hypothesised to be the most sensitive to glucose 

concentration (Donnelly et al., 2004). PKC-a, -g and -d are also upregulated, 

albeit to a lesser extent (Idris et al., 2001). The impact of PKCβ in DR is so 

significant, that a number of therapeutics are in development to block its action 

(Poulaki et al., 2002). Consequentially, it was surprising that specifically 

inhibiting PKC isozymes a, b1 and b2 did not change SRPK1 activity (Fig 4.3.4-

2), rather implying that it is through PKCg, PKCd or potentially PKCe that SRPK1 

hyperactivity in response to HG is mediated.  
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4.5 Summary 

This chapter focused on the impact and activity of SRPK1 in a diabetic in vitro 

model of the RPE monolayer and evaluated the therapeutic potential of SRPK1 

inhibitor, SPHINX31.  

SPHINX31 blocked HG- and Hx-induced increases in VEGF-A165a expression, 

and restored VEGF-A165a: VEGF-A165b levels to that which is seen in NG. With 

regards to RPE monolayer integrity, SPHINX31 ameliorated barrier disruption 

caused by both HG and Hx insult by elevating ZO-1 localisation along cell-cell 

junctions. Moreover, SPHINX31 restored HG-induced increases in total RPE 

monolayer permeability perhaps through a VEGF-A165b-mediated manner. 

SRSF1, the associated splicing factor of SRPK1, exhibits a reduction in nuclear 

shuttling in response to SPHINX31 in both HG and Hx conditions. Furthermore, 

its release from the nuclear speckles in response to HG is also reduced. Thus, 

not only is nuclear SRSF1 expression reduced due to SPHINX31, but that 

which is within the nucleus is less able to mediate VEGF-A alternative splicing 

events.  

Complexing of SRSF1 with SRPK1 in response to HG was also assessed in 

this chapter. SPHINX31 caused an increase in SRPK1:SRSF1 complex 

formation, a direct reduction in SRPK1 activity as SRSF1 is not phosphorylated 

and released from SRPK1, in HG.  

To understand why SRPK1 activity is increased in response to diabetic insult, 

the impact of PKC activity was also determined. Pan-PKC inhibition induced a 

reduction in SRSF1 localisation in the nucleus in both NG and HG conditions. 

HG-induced PKC action on SRPK1 was established to be isozyme specific, 

with PKCg, PKCd and PKCe implicated as potential targets.  

Excitingly, all SPHINX31 effects were either HG or Hx specific and had no 

impact on NG cells. This is encouraging, as suggests less side-effects 

associated with the drug because the only responders are those with SRPK1 

hyperactivity. 
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5 CHAPTER 5 
   

 

 

Inhibiting SRPK1 activity in an in vivo 
model of Type I diabetes  
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5.1 Introduction 

In the UK, guidelines currently stipulate no ocular treatment for background 

retinopathy, and recommend management of diabetes to reduce the risk of 

advancement of retinopathy (The Royal College of Ophthalmologists Diabetic 

Retinopathy Guidelines, 2012). For the later, proliferative stage of DR, 

clinicians are recommended to use pan retinal laser photocoagulation (PRP), 

which focuses light on RPE and underlying choroid to produce thermal burns 

and localised retinal cell death. This ameliorates retinal hypoxia and restores 

oxygen levels, but results in a loss of photoreceptors, formation of scar tissue 

and the benefits to visual acuity are highly variable between patients (Royle et 

al., 2015).  

Prolonged HG triggers multiple signalling pathways resulting in areas of 

ischaemia within retinal tissue. Expression of HIF-1a has been found to 

correlate temporally and spatially with VEGF-A expression (Ozaki et al., 1999). 

As such, anti-VEGF-A therapies are a widely investigated area of research for 

treating DR. However, anti-VEGF-As are limited with their effectiveness, only 

50% of patients respond positively (Duh et al., 2017). They are administered 

through intravitreal injection, a process that necessitates a trained professional, 

requires continuous repetition over monthly or 8-weekly periods and is 

associated with inflammatory side effects (Falavarjani & Nguyen, 2013). 

Aberrant VEGF-A expression is targeted to treat DMO and another ocular 

visually-impairing disorder, wet-AMD, much more successfully than in DR. 

Despite the positivity surrounding anti-VEGF-As, the issue of non-responders 

remain. One hypothesis is that this is due to the fact that the current drugs on 

the market are not able to discriminate between VEGF-A alternative isoforms. 

As such, they block global VEGF-A action, including the protective effects 

offered by VEGF-Axxxb isoforms. Furthermore, these drugs only target the 

VEGF-mediated effects of DR. The benefits of VEGF-A165b exposure in 

reducing DR pathologies in animal models have been previously described 

(Ved et al., 2017), however a potentially more advantageous approach would 

be to restore cellular expression of VEGF-A alternative isoforms to 

physiological levels. SRPK1 inhibitors are currently in development, and whilst 

some lack the required specificity and potency, a kinome screen has found 
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SPHINX31 is highly specific for SRPK1 (Batson et al., 2017) and thus is a 

promising candidate for the treatment of DR.  

To confidently and robustly evaluate a novel therapeutic agent against DR, a 

reproducible and representative model is required. Diabetes (type I and II) can 

be induced in rodents in a number of different ways; by induction or genetic 

insult. Generation of a genetic model tends to be more time-consuming and 

expensive than environmental induction (Lai & Lo, 2013). Streptozotocin (STZ)-

induced model is the most commonly used model of type I diabetes, due to its 

fast rate of disease development and heavily characterised disease phenotype. 

STZ, synthesised from Streptomycetes achromogenes is a broad-spectrum 

antibiotic with a particular selective toxicity to insulin-producing b-cells of the 

pancreas (Junod et al., 1967). Following uptake via GLUT2 low-affinity glucose 

transporters, STZ causes cell necrosis through alkylation and fragmentation of 

DNA. HG is observed two hours after injection, followed by hypoglycaemia 6 

hours later due to a sharp rise in blood insulin. Eventually, blood insulin levels 

reduce and HG is achieved (Szkudelski, 2001). HG (>15mmol/L glucose) can 

be transient, thus requires monitoring, but can remain for 20 weeks (Rungger-

Brändle et al., 2000). Rats are much more susceptible to STZ toxicity compared 

to mice, thus require a lower dose and have a higher success rate of diabetic 

induction. Crucially for this present study, BRB breakdown is observed in STZ 

rats two weeks after diabetes onset (Rungger-Brändle et al., 2000; Zhang et 

al., 2008). However, acute toxicity is a major side effect of STZ exposure 

potentially leading to animal death (Wang-Fischer & Garyantes, 2018). To 

counteract this, animals can be chronically exposed to low-dose insulin to avoid 

ketoacidosis whilst maintaining HG (Luippold et al., 2016). Unfortunately, there 

is no animal model of DR that can completely encompass the entire 

pathophysiological progressions observed in humans, however the STZ model 

does address the early stage symptoms such as increased BRB permeability 

(Olivares et al., 2017). 

Breakdown of both BRBs has been implicated in the pathogenesis of DR 

(Gillies et al., 1997). The iBRB is maintained by tight junction complexes 

between retinal endothelial cells (RECs), who restrict diffusional permeability to 
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the order of 0.14 x 10-5 cm s-1 for sodium fluorescein (Cunha-Vaz & Maurice, 

1969). HG damages the iBRB through disruption of these complexes (Vitale et 

al., 1995) similar to the oBRB. PKC isoform activation; overactivity of 

hexosamine and poly-ol pathway; increased advanced glycation products 

(AGEs) formation and increased expression of AGE receptors (RAGEs) results 

in the generation of reactive oxygen species (ROS) (Brownlee, 2005). Retinal 

vascular changes in DR are described to be caused and aggravated by VEGF-

A and non-VEGF-A inflammatory mediators (Gupta, 2013). Thus, anti-VEGF-

As and anti-inflammatory agents are a widely researched area for the treatment 

of DR. Whilst Müller cells, astrocytes and RPE produce the bulk of VEGF-A in 

the eye, RECs also express VEGF-A which can feedback and alter REC 

phenotype (Aiello et al., 1995). There are difficulties associated with isolating 

and propagating primary RECs from human donor eyes: they have a limited 

life-span; may potentially be contaminated with pericytes or other ocular cells; 

have a low yield and each isolation is not always successful. In addition, due to 

the low yield, tissues tend to be pooled together, and thus there is higher 

heterogeneity in the isolated cells. A well-established model of retinal 

endothelial cells is telomerase-immortalised bovine RECs (iBRECs) (Deissler 

et al., 2005). The ribonucleoprotein telomerase is expressed in germline not 

somatic cells and synthesises TTAGG/CCTAA repeats at 3’ end of telomeres. 

These repeats are shortened with each cell division, pushing cells into 

senescence (Zvereva et al., 2010). The core enzyme of telomerase, telomerase 

reverse transcriptase (TERT), can immortalise a variety of cell types whilst 

maintaining cell cycle control, contact inhibition, anchorage dependence, 

possess a normal karyotype and still require growth factors for cell proliferation 

(Ouellette et al., 2000). Ectopic expression of human TERT in bovine cells show 

no significant change to cellular processes, but have an extended life-span (up 

to 90 passages) and are free of contaminating cells (Deissler et al., 2005). 

Moreover, endothelial marker proteins are highly conserved between human 

and bovine homologues and are sensitive to VEGF-A isoforms (Deissler et al., 

2013),  thus iBRECs can be used to model human RECs.  

Previous work in this thesis has established that inhibition of SRPK1, through 

SPHINX31, is protective against diabetic insult on the RPE monolayer of oBRB. 
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In view of these findings, I hypothesised that inhibition of this kinase could 

impact retinal barrier in vivo. To investigate this, and understand the therapeutic 

potential of SRPK1 inhibition in DR further, in this chapter I will topically 

administer SPHINX31 on a streptozotocin-induced type-I diabetic model. 

Changes in retinal permeability can be monitored non-invasively in the same 

animal over time (Allen et al., 2020), thus this technique will be used to elucidate 

the impact of SPHINX31 on retinal permeability. DR induces thickening of the 

retina, which could be an early clinical sign of oedema (Hee et al., 1998). I will 

determine whether my in vivo model of DR is sufficient to observe this clinical 

symptom, and establish the effect, if any, of SPHINX31. Changes in retinal 

vasculature are a characteristic pathology associated with DR, thus I will 

determine changes in retinal vasculature in vivo and with an in vitro model of 

RECs, the cells lining retinal blood vessels.  
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5.2 Methodology 

Twenty-seven male Norway-Brown rats (220-300g) received twice-daily topical 

eye drops (20µL) of eye formulation control buffer or 200µg/mL SPHINX31 in 

both eyes. FFA and OCT was performed in order to determine baseline levels 

of permeability and retinal thickness. Eighteen rats were given an 

intraperitoneal (i.p.) injection of 50mg/kg streptozotocin (STZ) in citrate buffer 

pH 4.5. Nine control rats were given an equivalent volume of saline i.p. 

Following three days of close monitoring, glucose levels were measured using 

an Accucheck blood glucose monitor and a tail vein blood sample. Those with 

levels >15mmol/L were deemed hyperglycaemic. Hyperglycaemic animals 

were anaesthetised with 2-5% isoflurane, hair removed from the back of the 

neck and sterilised with chlorhexidine solution. The animal was scruffed at the 

back of the neck and a 16-gauge needle was inserted subcutaneously 

approximately 1.5cm along the midline of the neck. The needle was 

subsequently removed and replaced with a trocar containing one-third of a 

sustained release insulin implant. A plunger was used to deposit the pellet into 

the neck cavity and the animals were recovered. Rats injected with STZ that 

were not hyperglycaemic on day 4 were re-injected with 50mg/kg STZ and the 

above process repeated. Those that were not hyperglycaemic at this point were 

excluded from the study. Animals were monitored weekly for retinal 

permeability and thickness with FFA and OCT. FFA avi files were imported to 

FIJI for analysis (Allen et al., 2020). OCT files were analysed using Insight™ 

software. Following a four-week period, animals were culled, enucleated and 

retinae mounted and stained for endothelial cell markers. Imaris software was 

used to examine vascular parameters in each treatment group. VEGF-A165b 

expression in the corresponding eye was assayed using an ELISA.  

iBRECs were grown to confluence on gold microelectrodes and exposed to HG 

or an equivalent concentration of mannitol as an osmotic control for 3d. Cells 

were co-treated with 50ng/mL recombinant VEGF-A165 isoforms for 24h. 

Furthermore, cells were subjected to different concentrations of SPHINX31. 

The impedance of the monolayer in response to an electrical potential was 

measured using xCelligence system. Western blots were performed in order to 

deduce changes in junctional proteins in these conditions. 
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Unless otherwise stated, all repeats are technical repeats. All methods are 

described in further detail in Chapter 2: “Materials and Methods”.  
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5.3 Results 

5.3.1 Impact of topical administration of SPHINX31 on retinal 
permeability in an in vivo model of DR 

Before a large in vivo study assessing retinal permeability in diabetic rats was 

conducted, a smaller study was completed in order to optimise the methodology 

and determine the variability. FFA was performed on three non-diabetic Norway 

Brown rats treated twice daily with SPHINX31 eye drops (200µg/mL). FFA and 

OCT was performed weekly over the course of 28 days (Results detailed in 

Chapter 2: Materials and Methods). Following completion of the primary study, 

type I diabetes was successfully induced in Norway Brown rats following a 

single dose of 50mg/kg STZ, confirmed by glucose measurements three days 

post STZ injection (NDb+X31: 5.67±0.20; Db+Veh: 27.6±1.27; Db+X31: 

25.6±1.39) (Fig 5.3.1-1A). To maintain animal health for a long term study, an 

insulin bolus was implanted subcutaneously. Due to the severity of the model, 

animal health was monitored and weights were continuously taken over the 

course of the study. Diabetic animals untreated with SPHINX31 had 

significantly lower weights compared to non-diabetic (Db+Veh :+32±7.30g; 

NDb+X31: +67.5±2.45g). Although diabetics treated with SPHINX31 trended 

with lower weights than non-diabetics, the difference was not significant 

(+38.06±7.44g) (Fig 5.3.1-1B). Following final FFA and OCT measurements at 

28 days, glucose measurements were taken again to confirm HG (NDb+X31: 

6.57±0.23; Db+Veh: 22.5±1.52; Db+X31: 21.1±2.25) (Fig 5.3.1-1A). Animals 

that maintained >15mmol/L glucose were enucleated for further analysis. 

Retinae were isolated from eyes using a dissection microscope and 

homogenised with lysis beads. VEGF-A165b isoform expression was assayed 

using an ELISA (previously validated in Chapter 3.3.1) and found to significantly 

decrease in response to diabetes. Topical SPHINX31 treatment increased 

VEGF-A165b expression although not to a statistically significant extent (Fig 

5.3.1-1C).  
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Figure 5.3.1-1: SRPK1 inhibition increased VEGF-A165b isoform 
expression in diabetic retinae 

A: STZ increased in blood glucose above 15mmol/L three days post injection. 
Equivalent dosing with saline did not induce HG. This STZ-induced increase in 
blood glucose was maintained until day 28 whilst saline-injected animals 
retained NG. B: Animal weights taken over the course of the study. All cohorts 
increased weights across the study. NDb animal weights increased significantly 
over the increase in Db+Veh animals. Db+X31 weights increased although not 
significantly different from the other two cohorts. C: VEGF-A165b expression 
was significantly reduced in the diabetic retina (measured by ELISA). Twice-
daily SPHINX31 eye-drops slightly increased VEGF-A165b expression. NDb: 
n=9; Db+Veh: n=8; Db+X31: n=9. *p<0.05. Statistical analysis of B performed 
using two-way analysis of variance with Tukey’s post hoc; statistical analysis of 
C performed using a one-way analysis of variance with Tukey’s post hoc . Error 
bars of A highlight min to max; B represent mean ± standard error; C: mean 
plus standard error. 
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The results from previous chapters indicate that inhibiting SRPK1 ameliorates 

the HG-induced changes in the oBRB. In view of these findings, we 

hypothesised that inhibiting this kinase could impact retinal barrier integrity in 

vivo. To test this hypothesis, FFA was performed on the left eyes of Norway-

Brown rats in each treatment group weekly. Rats were intra-peritoneally 

injected with small molecular tracer, NaFl, pupils were dilated using topical 

applications of 5% phenylephrine and 0.8% tropicamide and the Phoenix 

Micron IV retinal imaging microscope using a green filter was used to take 

videos of NaFl perfusion across the retina (Fig 5.3.1-2A). Angiograms were 

imported as avi files into Fiji software and mean fluorescence intensity was 

measured individually in major retinal vessel and a region of nearby tissue 

every 200 frames from the point of detectable fluorescence to just prior to 

saturation. These were plotted over time course alongside tissue over vessel 

ratios (Fig 5.3.1-2B). The region of detectable fluorescence to just prior to 

saturation (green highlighted area of Fig 5.3.1-2B) was used to calculate the 

permeability coefficient (further detail of this experiment in Chapter 2: Materials 

and Methods). Permeability coefficients were plotted over time to map the 

changes in permeability in response to diabetes and twice-daily topical 

administration of SPHINX31 (Fig 5.3.1-2C). To account for biological variability 

between each animal, permeability values were normalised to day 0. STZ-

induced diabetes caused a significant increase in retinal vascular permeability 

from days 14 (3.19±1.19) -28 (3.54±1.19) compared to non-diabetic control 

animals (day 14: 0.65±0.17; day 28: 0.69±0.16). Excitingly, this increase was 

ameliorated through twice-daily topical administrations of 200µg/mL SPHINX31 

after day 14 and continued to day 28 (day 14: 0.53±0.21; day 28: 0.66±0.18) 

(Fig 5.3.1-2D).  
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Figure 5.3.1-2: SPHINX31 blocks increases in retinal permeability in 
diabetic Norway-Browns.  

A: In a streptozotocin-induced rodent model of type 1 diabetes or non-diabetic 
control group, fluorescein fundus angiography (FFA) was performed over 28 
days. Animals received twice daily topical eye drops with eye formulation 
control buffer or 200µg/mL SPHINX31. B: FFA was quantified using the ratio 
of interstitial to vascular fluorescence.  The shaded green area indicates the 
section of the slope that was used to calculate the permeability coefficient. C: 
Permeability coefficient plotted over time for three cohorts. D: Diabetes induced 
an increase in retinal permeability from day 14 through day 28 compared to 
non-diabetic animals. SPHINX31 blocked the diabetic-induced increase. Error 
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bars indicate mean ± standard error. NDb: n=9; Db+Veh: n=8; Db+X31: n=9. 
Statistical analysis performed using two-way analysis of variance plus Dunnets 
post-hoc. ***p<0.001, ****p<0.0001. 

5.3.2 Impact of inhibiting SRPK1 on retinal thickness in a type-
I diabetic model  

Clinically, retinal thickening can be an early sign of a macula oedema, which is 

a primary cause of vision loss in diabetic patients. Although not all patients with 

increased retinal thickness will progress to form oedema, it is recommended 

that these patients are monitored closely and follow up tests are performed 

(Sánchez-Tocino et al., 2002).Typically a longer term study (16 weeks) is used 

to study DMO, however electron micrographs have shown that RPE 

microstructure drastically changes only three-weeks after STZ-induction of 

diabetes (Blair et al., 1984; Grimes & Laties, 1980). Thus, I was interested to 

learn whether I would observe any changes in my model. Alongside FFA, OCT 

was performed using Phoenix Micron™ Image-guided OCT2 system to 

measure retinal thickness (see Chapter 2: Materials and Methods for full detail). 

A fundus image was taken in order to assess ocular health and align the eye to 

take a circular scan around the optic nerve (Fig 5.3.2-1A). A high resolution 

image of the retinal layers was obtained, exported into Insight™ software and 

total retinal thickness was measured (highlighted by black arrow in Fig 5.3.2-

1A). An interesting observation was in some, but not all, diabetic plus vehicle 

animal images, there appeared to be evidence of potential oedema (choroidal 

separation from the retina), which was surprising as this is a relatively short 

term model (Fig 5.3.2-1B red arrow). In contrast, no signs of choroidal 

separation was observed in non-diabetic or diabetic plus SPHINX31 treated 

animals (Fig 5.3.2-1B). Diabetes induced a significant increase in mean total 

retinal thickness 28-days after STZ injection (NDb+X31: 176±1.65µm; Db+Veh: 

192±4.89µm). SPHINX31 topical administration blocked this increase to a 

significant extent (178±4.9µm) (Fig 5.3.2-1C).   
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Figure 5.3.2-1: Retinal thickness is increased in STZ-induced type-I 
diabetic rats which is ameliorated by SPHINX31.  

A: Alongside a non-diabetic group, type I diabetes was successfully induced in 
Norway Brown rats and topical treatment of 200µg/mL SPHINX31 or control 
eye formulation buffer was administered twice-daily. Optical coherence 
tomography was performed using the Phoenix OCT2. Images were assessed 
for retinal thickness by measuring the distance between the black arrows B: 
Representative OCT scan of each treatment. Red arrow indicates potential 
formation of oedema. C: Mean retinal thickness, measured every 3μm across 
the image automatically using InSight software, was found to increase in 
diabetic plus vehicle rats compared to non-diabetic rats but was blocked by 
SPHINX31 treatment after 28 days. Error bars indicate mean + standard error. 
NDb: n=9; Db+Veh: n=8; Db+X31: n=9. Data was analysed via a one-way 
analysis of variance with Bonferroni adjustment (*p<0.05). 

To disseminate where the increase in retinal thickness is localised, 

segmentation of retinal layers were characterised manually using Insight™ 

software (Fig 5.3.2-2A). Initially, the automatic segmentation tool was utilised 

but the manual tool was found to be more accurate. Fig 5.3.2-2B highlights the 

detail in a slice of an OCT image and how each of the layers was segmented. 
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There was no difference in thickness in response to diabetes or SPHINX31 in 

ganglion cell (Fig 5.3.2-2C); inner nuclear (Fig 5.3.2-2D); outer nuclear (Fig 

5.3.2-2E) and photoreceptor layers (Fig 5.3.2-2F). In contrast, the RPE and 

Bruch’s membrane layer was thickened in response to diabetes plus vehicle 

NDb+X31: 14.4±1.08µm; Db+Veh: 20.09±0.70µm) but not in the diabetes plus 

SPHINX31 treatment group (13.04±0.80µm) (Fig 5.3.2-2G).  
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Figure 5.3.2-2: RPE and Bruch’s membrane retinal layer thickness is 
increased in STZ-induced type-I diabetic rats and blocked by SPHINX31.  

A: Optical coherence tomography was performed using the Phoenix OCT2 28-
days post control saline injection or STZ-injection to induce type I diabetes. 
Animals received twice daily topical treatment of 200µg/mL SPHINX31 or 
control eye formulation buffer. B: Retinal layers were measured every 3µm 
between each of the segments highlighted in the figure. Diabetes nor 
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SPHINX31 induced any difference in mean thickness in the ganglion cell layer 
(C), inner nuclear layer (D), outer nuclear layer (E) or photoreceptor layer (F). 
G: RPE and Bruch’s membrane thickness increased in diabetic rats compared 
to non-diabetic rats. SPHINX31 treatment blocked this increase in thickness in 
diabetic animals. NDb: n=9; Db+Veh: n=8; Db+X31: n=9. Error bars indicate 
mean + standard error. Data was analysed via a one-way analysis of variance 
with Bonferroni adjustment (*p<0.05). 

5.3.3 Assessment of vascular parameters in response to STZ-
induced diabetes and SRPK1 inhibition 

DR can be characterised as a major microvascular complication of both type-I 

and II diabetes. Prolonged hyperglycaemia can lead to a multitude of vagaries 

to retinal microvessels, such as impaired perfusion, increased vascular 

permeability and endothelial cell-mediated leukostasis (Cheung et al., 2010). 

Vasculature within the retina exists as three plexuses: superficial (upper); 

intermediate; deep (lower) capillary plexus and visualising morphological 

changes could help further understand the pathogenesis of the disease 

(Morimoto, 1998). Following completion of the eye-drop study, eyes were 

enucleated, retinae excised and stained with a specific endothelial cell marker, 

isolectin B4 (IB4). Retinae were whole-mounted and imaged with a 10x objective 

on a confocal microscope to obtain z-stacks (Fig 5.3.3-1A). This technique 

allowed for segmentation of both the upper and lower capillary plexus, however 

the middle plexus was not distinct from other plexuses. As such, I decided to 

only measure properties from the upper and lower plexuses. Z-stacks were 

exported into FIJI and total vessel density was measured manually across one 

plane using a tracer tool. Diabetes slightly reduced vessel density in the upper 

plexus although not to a significant extent (NDb+X31: 2653±247µm; Db+Veh: 

1925±203µm). Vessel density in diabetic animals was unchanged by 

SPHINX31 treatment (2088±72.9µm) (Fig 5.3.3-1B). In the lower plexus, 

diabetes nor SPHINX31 had any effect on the total vessel density (Fig 5.3.3-

1C). These observations were not only interesting for determining disease 

pathology, but also supported our method of non-invasively measuring retinal 

permeability in vivo (section 5.3.1). To reiterate, mean intensity of NaFl was 

measured over time in one primary retinal vessel and also in an area of 

surrounding tissue. The associated formula used the assumption that there 

would be no significant differences in vascular density, as the area of 
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surrounding tissue would also include capillaries unable to be resolved by the 

imaging system. The lack of significant differences supports the idea that  mean 

intensity measured in the surrounding tissue is due to dye leakage out of retinal 

vessels, and not increased number of unresolved capillaries in this area. 

Venous beading is a clinical sign of DR severity, and widening of the retinal 

vessels can be a potential sign of disease progression to the vision threatening 

proliferative stage (Wong, 2011). To determine this parameter in my model of 

DR, retinal vessel diameter was measured using the freehand tool of FIJI on a 

singular plane of IB4 stained retina. There was no significant difference in retinal 

diameter in the upper plexus in response to diabetes or SPHINX31 treatment 

(Fig 5.3.3-1D) nor in the lower plexus (Fig 5.3.3-1E).  
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Figure 5.3.3-1: STZ-induced diabetes or SPHINX31 does not change total 
vessel density and mean diameter in the upper and lower plexuses of the 
retina after 28-days.   

A: Retinae excised from scleral/choroidal cups of non-diabetic or type-I diabetic 
rats treated with SPHINX31 or control eye formulation buffer were whole-
mounted and stained with endothelial cell marker IB4 followed by Alexafluor-
488-streptavidin. Confocal microscopy was performed to obtain z-stacks of 
retinal vasculature with defined upper and lower retinal plexuses. Scale bar = 
50µm B: Fiji analysis determined total vessel density in the upper plexus and 
was slightly decreased in diabetic+veh group compared to the non-diabetic 
group. SPHINX31 induced no change in total vessel density. C: No changes 
were observed in total vessel density in the lower plexus. Mean diameter was 
unchanged in all conditions in both upper (D) and lower (E) plexuses. NDb: 
n=9; Db+Veh: n=8; Db+X31: n=9. Error bars indicate mean + standard error. 
Data was analysed via a one-way analysis of variance with Tukey’s post hoc. 
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Analysing the confocal stacks using FIJI software meant that I was able to 

measure vascular parameters in each individual plexus by choosing the plane 

which appeared to optimally resolve each plexus. The filament tracer tool from 

Imaris can be repurposed to measure properties from a complete 3-D rendering 

of the z-stack (Fig 5.3.3-2A). The number of dendrite branches may be 

indicative of new vessel formation to increase vascular surface area (Geraldes 

et al., 2009). I hypothesised that there would be no difference in the number of 

branch points, as a 4-week model is not long enough to see evidence of 

neovascularisation. There was a very slight increase in the number of dendrite 

branches in response to diabetes treated with and without SPHINX31, but this 

difference was not statistically significant (Fig 5.3.3-2B). Vascular diameter 

measured using the Imaris tool rather than FIJI did appear to show a trend. 

Diabetes appeared to induce an increase in vascular diameter (NDb+X31: 

6.86±0.59µm; Db+Veh: 9.62±1.34µm) which was blocked by SPHINX31 

(6.99±0.28µm). Although these changes were not statistically significant, the 

numbers suggest that it may have been if the n numbers were increased (Fig 

5.3.3-2C). Another interesting point to note is that vessels measured using 

Imaris have a vascular diameter of between 5-11µm, whilst FIJI analysis 

determined vascular diameter to be between 10-18µm (Fig 5.3.3-1D&E). 

Vascular volume appeared to have a similar trend to changes in vascular 

diameter, increasing in response to diabetes, and decreasing with the 

administration of SPHINX31 (NDb+X31: 19.7±2.38µm3x105; Db+Veh: 

54.3±15.5µm3x105; Db+X31: 26.75±4.31µm3x105) (Fig 5.3.3.-2D). However 

again, these differences were not statistically significant but were perhaps 

unsurprising as vascular volume is calculated from vascular diameter.  
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Figure 5.3.3-2: The number of dendrite branches, vascular diameter and 
volume of retinal vasculature are unaffected by STZ-induced diabetes or 
SPHINX31 after 28-days. 

A: Retinae were whole-mounted and stained for IB4 followed by Alexafluor-488-
streptavidin following excision from scleral/choroidal cups of non-diabetic or 
type-I diabetic rats treated with SPHINX31 or control eye formulation buffer. 
Confocal microscopy was performed to obtain z-stacks of retinal vasculature 
and imported into Imaris software to obtain a 3-D rendering. B: Imaris filament 
tracer tool measured number of dendrite branches and determined no 
differences in response to diabetes or SPHINX31 compared to the non-diabetic 
group. C: Vascular diameter non-significantly increased in response to diabetes 
compared to non-diabetic rats. SPHINX31 somewhat blocked this increase 
(6.99±0.28) but without statistical power. D: Diabetes appeared to increase 
retinal vascular volume compared to non-diabetic retinae. SPHINX31 reduced 
this increase but both of these changes were not to a statistically significant 
extent. NDb: n=9; Db+Veh: n=8; Db+X31: n=9. Error bars indicate mean + 
standard error. Data was analysed via a one-way analysis of variance with 
Tukey’s post hoc. 

Diabetes can trigger apoptosis of endothelial cells in the retina through 

expression of PKC-d (Geraldes et al., 2009). Consequentially, acellular 

capillaries or ghost vessels can irreversibly form reducing perfusion across the 

retina, promoting retinal ischaemia (Yoon et al., 2016). To assess differential 

formation of acellular capillaries in my model, following termination of the in vivo 

study and ocular dissection, retinae were isolated from the eyecups and whole 
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mounted onto slides. Retinal sections were stained for nuclear marker, DAPI, 

endothelial cell marker, IB4, and collagen IV to delineate the basement 

membrane. Sections were imaged using a Leica TCS SPE confocal 

microscope with a 20x objective to produce z-stacks. Image stacks were 

exported into FIJI for analysis and an acellular capillary was defined as a vessel 

with only collagen IV but without IB4 staining (highlighted by white arrows in Fig 

5.3.3-3A). Number of acellular capillaries were counted across the three central 

planes. Diabetes resulted in an increase in the formation of acellular capillaries 

which was ameliorated by a 28-day course of twice-daily 200µg/mL SPHINX31 

topical administration (NDb+X31: 33.1±5.15; Db+Veh: 92.0±13.7; Db+X31: 

48.4±8.08) (Fig 5.3.3-3B).  
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Figure 5.3.3-3: SPHINX31 inhibits diabetes induced increase in acellular 
capillary formation. 

A: Norway Brown rats were given a single dose of streptozotocin (50mg/kg) to 
induce Type I diabetes alongside a non-diabetic saline control group. Rats were 
treated with twice-daily topical eyedrops of 200µg/mL SPHINX31 or control eye 
formulation buffer. Rats were enucleated at day 28 and whole retinas were 
mounted and stained with DAPI, IB4 and collagenIV. The tissue was imaged 
using 20x objective. The number of capillaries positively stained for collagenIV 
but lacking IB4 (white arrows) were counted across three planes B: Acellular 
capillaries expressed per mm3 increased in response to diabetes compared to 
non-diabetic retina. SPHINX31 blocked this diabetes-induced increase. 
**p<0.01, *p<0.05. NDb: n=9; Db+Veh: n=8; Db+X31: n=9. Error bars indicate 
mean + standard error. Data was analysed via a one-way analysis of variance 
with Tukey’s post hoc. 

5.3.4 Effects of hyperglycaemia, VEGF-A165b and SRPK1 
inhibition on retinal endothelial cell permeability 

Chapter 3 and 4 of this thesis has focused on the impact of diabetic conditions 

and SRPK1 inhibition on the oBRB, as RPEs produce a large quantity of VEGF-

A in the eye. However, one of the primary factors contributing to the 

pathogenesis of DR is breakdown of the iBRB (Aiello et al., 1995). I had 

previously tried to isolate primary RECs from human donor eyes, but was 
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unable to yield a quantity to successfully perform permeability experiments. In 

addition, those that were isolated had very limited propagating potential and 

were contaminated with other cell types, despite use of CD31 beads to isolate. 

As such, I established a collaboration with Dr Heidrun Deißler of University of 

Ulm who has developed and characterised an immortalised bovine REC 

(iBREC) line. With the use of her protocols, to ensure non-differentiation of 

cells, the impact of glucose of iBREC monolayer permeability was determined 

by seeding iBRECs on a fibronectin coated xCelligence plate. Confluence of 

monolayers Cells were treated with 0-50mM D-glucose and impedance (cell 

index) was measured non-invasively using the xCelligence system over 72 

hours. Cell index was normalised to the point after treatment addition and 

plotted over time (Fig 5.3.4-1A). The area under the curve, inversely 

proportional to permeability, reduced in response to increasing concentrations 

of glucose (Fig 5.3.4-1B). There appeared to be a negative trend in response 

to glucose concentration with cell index, thus suggesting that the higher the 

concentration of glucose, the lower the cell index, therefore the higher the 

permeability of the monolayer (Fig 5.3.4-1C). This experiment was important to 

determine the optimal concentration of glucose moving forward, which was 

concluded to be 30mM. Although this concentration did not increase 

permeability by the greatest extent out of those tested, cell morphology 

appeared to be healthier in this state (not shown, as I was unable to capture 

images due to electrodes on plate) and this concentration correlated with 

models used in published literature (Caprnda et al., 2017).  



 158 

 

Figure 5.3.4-1: Permeability increases in response to glucose in a dose-
dependent manner. 

A: iBRECs were seeded onto fibronectin-coated xCelligence arrays, grown to 
confluence and treated with 0, 10, 20, 30, 40 or 50mM D-glucose. Impedance 
(cell index) measurements were taken over the course of 72h and normalised 
to cell index value after treatment addition. B: AUC decreased in response to 
10mM glucose (75.21±0.10), 20mM glucose (75.14±0.15), 30mM glucose 
(75.06±0.08), 40mM glucose (71.65±0.22) and 50mM (70.06±0.16) compared 
to basal media only (76.88±0.17). C: Mean 62-72h AUC decreased in response 
to increasing concentrations of glucose; third order polynomial curve. **p<0.01, 
***p<0.001, ****p<0.0001. Error bars of A&B indicate mean + standard error. 
Error bars of C mean ± standard error. Data was analysed via a one-way 
analysis of variance with Bonferroni’s post-hoc (n=5). 

HG is known to induce an increase in permeability in RECs through a disruption 

of cell-type specific transmembrane proteins (Shin et al., 2014). To elucidate 

through which particular proteins iBREC monolayer permeability is increased 

in response to HG, iBRECs were grown to confluence on T75 flasks and treated 

with 30mM, 40mM and 50mM D-glucose. Cells were lysed, proteins separated 

by electrophoresis and transferred onto PVDF membranes. Blot were probed 

for membrane proteins implicated in REC barrier integrity: Claudin-1, Claudin-

5 and ZO-1. In addition, actin expression was determined as a loading control 

(Fig 5.3.4-2A). Claudin-1 slightly decreased in response to increased glucose 

(Fig 5.3.4-2B) but not to a significant extent. However, as this experiment was 
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only an n=2, there may potentially be a significant difference if the n numbers 

were increased. 30mM and 40mM glucose but not 50mM glucose reduced 

expression of Claudin-5 (Fig 5.3.4-2C). Expression of ZO-1 did not change in 

response to differing glucose concentrations (Fig 5.3.4-2D). I observed that at 

50mM glucose, expression of all assayed junctional proteins appeared to be 

somewhat increased. The changes observed in the junctional proteins, coupled 

with the results from figure 5.3.4-1 validated my decision to continue with 30mM 

glucose as the optimal glucose concentration for further experiments. 

 

Figure 5.3.4-2: Claudin-5 expression is decreased in iBRECs exposed to 
30mM and 40mM glucose. 

A: T75s were coated with fibronectin were seeded with iBRECs, grown to 
confluence and treated with 0, 30, 40 or 50mM D-glucose for 3 days. Western 
blots were performed on cell lysates to assess for Claudin-1, ZO-1, Claudin-5 
and actin expression B: Claudin-1 expressed relative to actin slightly decreased 
in response to 30mM (0.21±0.014), 40mM (0.15±0.0067) and 50mM glucose 
(0.26±0.013) compared to basal media (0.81±0.39). C: Claudin-5 expression 
significantly decreased in 30mM glucose (0.23±0.092) and 40mM glucose 
(0.25±0.065) but not 50mM glucose (0.53±0.034) compared to basal media 
(0.93±0.18). D: ZO-1 expression was not significantly changed from basal 
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media (0.29±0.24) in 30mM (0.17±0.11), 40mM (0.17±0.021) or 50mM 
(0.55±0.040). Error bars indicate mean + standard error (n=2). 

Work in this thesis has established that inhibition of SRPK1 has protective 

effects against diabetic-insult in RPE monolayer of oBRB and in an in vivo 

model of DR. Previous results have shown that endothelial cells can produce 

VEGF-A, so if this was down to endothelial VEGF-A production, inhibition of 

SRPK1 would protect against HG-induced increase in permeability in iBRECs. 

To test this hypothesis, iBRECs were seeded on xCelligence arrays, incubated 

until confluent (confirmed by observing consistent cell index across 12h), and 

treated with or without 30mM D-glucose, in conjunction with 1% DMSO, 1µM 

or 3µM SPHINX31. Cell index was measured over 72h and plotted normalised 

prior to addition of treatment (Fig 5.3.4-3A). As in section 5.3.4-1, 30mM 

glucose induced a reduction in cell index. However 1µM and 3µM SPHINX31 

also caused a statistically significant reduction in cell index in iBRECs exposed 

to both basal media and 30mM glucose (Fig 5.3.4-3B).  

 

Figure 5.3.4-3: SPHINX31 induces a reduction in iBREC monolayer 
impedance in both basal media and HG conditions. 

A: xCelligence arrays were coated with fibronectin and iBRECs were seeded, 
grown to confluence and treated with 0 or 30mM D-glucose in conjuction with 
1% DMSO, 1µM or 3µM SPHINX31. Impedance (cell index) measurements 
were taken over the course of 72h and normalised to cell index value after 
treatment addition. B: AUC decreased in response to 1µM SPHINX31 
(79.53±0.09) and 3µM SPHINX31 (77.28±0.08) in basal media group 
(88.72±0.1). In addition, AUC reduced in response to 1µM SPHINX31 
(67.51±0.08) and 3µM SPHINX31 (71.6±0.08) compared to 30mM glucose 
(76.56±0.11). ****p<0.0001. Error bars indicate mean + standard error. Data 
was analysed via a one-way analysis of variance with Bonferroni’s post-hoc 
(n=4). 
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These results indicate that SPHINX31 was inducing an increase in iBREC 

monolayer permeability. However, whilst variances in impedance could be due 

to fluctuations in permeability, cell death can also cause large changes in 

impedance. In order to determine whether SPHINX31 affects permeability of 

iBREC monolayer, cells were grown to confluence in T75 flasks and treated 

with 30mM D-glucose, 30mM D-mannitol or basal media only. In addition cells 

were exposed to 1% DMSO or 1µM SPHINX31. 3 days after treatment 

administration, cells were lysed and assayed for ZO-1, Claudin-1, VE-Cadherin 

and actin expression (Fig 5.3.4-4A). Expression of tight junction protein ZO-1 

was not significantly changed in response to osmotic (mannitol) or 

hyperglycaemic insult, nor SRPK1 inhibition (Fig 5.3.4-4B). Claudin-1 

expression also did not significantly change in response to any treatment (Fig 

5.3.4-4C). Adherens junction protein, VE-Cadherin, also does not significantly 

differ in response to 30mM mannitol, 30mM glucose nor 1µM SPHINX31. Thus 

suggesting that the SPHINX31-induced change in cell index (Fig 5.3.4-3) was 

not due to permeability shifts. However, it is important to consider when 

evaluating these results that they consist of a small n number (1% DMSO n=2; 

1µM SPHINX31 n=1) and thus may not be representative of the true 

relationship and follow up work is required. 
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Figure 5.3.4-4: SRPK1 inhibition, osmotic and hyperglycaemic insult has 
no significant effect on ZO-1, Claudin-1 and VE-Cadherin in iBRECs. 

A: Fibronectin coated T75s were seeded with iBRECs, grown to confluence 
and treated for 3 days with 0, 30mM D-mannitol or 30mM D-glucose in 
conjunction with 1% DMSO or 1µM SPHINX31. Western blots were performed 
on cell lysates to assess for Claudin-1, ZO-1, Claudin-5 and actin expression. 
B: ZO-1 expression did not significantly change in the 1% DMSO group (basal 
media: 0.414±0.00; mannitol: 0.151±0.06; glucose: 0.176±0.10) nor the 
SPHINX31 group (basal media: 0.032; mannitol: 0.046; glucose: 0.09). C: 
Claudin-1 expressed relative to actin was not significantly changed in response 
to 1% DMSO 30mM mannitol (0.39±0.01), 1% DMSO 30mM glucose 
(0.25±0.04) compared to 1% DMSO basal media (0.57±0.11). Nor was 
expression significantly altered in response to SPHINX31 (basal media: 0.233; 
mannitol: 0.517; glucose: 0.205). D: VE-Cadherin expression was not 
significantly altered in 1% DMSO (basal media: 0.383±0.14; mannitol: 
0.286±0.03; glucose: 0.577±0.0) or SPHINX31 (basal media: 0.596; mannitol: 
0.237; glucose: 0.132). Error bars indicate mean + standard error. Data was 
analysed via a one-way analysis of variance with Dunnet’s post-hoc (1% 
DMSO: n=2; 1µM SPHINX3:1 n=1). 

These results suggest SPHINX31 has no effect on iBREC permeability, which 

indicate that the inhibition of SRPK1 that results in the protection against DR-
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induced changes in permeability and vascular parameters in vivo is not an 

effect of SPHINX31 on the endothelial cells directly. iBRECs produce negligible 

amounts of endogenous VEGF-A, a concentration of which is unlikely to cause 

a disturbance in permeability (Deissler et al., 2011). However, substantial 

elevation of primary or immortalised BREC monolayer permeability is caused 

by exposure to exogeneous VEGF-A165a (Antonetti et al., 1999; Deissler et al., 

2010; Harhaj et al., 2006). The impact of VEGF-A alternative isoforms on this 

cell line was therefore undertaken. Fibronectin-coated arrays were seeded with 

iBRECs. Impedance measurements were taken to confirm confluence and 

treated with either 30mM D-mannitol or 30mM D-glucose. In order to disrupt 

iBREC monolayer integrity, cells require exposure to a minimum of 25ng/mL 

recombinant VEGF-A165a (Deissler et al., 2011), thus 25ng/mL VEGF-A165a or 

above was used for this experiment. To elucidate the impact of VEGF-A165b on 

VEGF-A165a-induced barrier disruption, cells were also treated with 25ng/mL or 

50ng/mL recombinant VEGF-A165b. Cell index measurements were taken 

across 72h and plotted normalised to just prior to treatment addition (Fig 5.3.4-

5A). Cell index values were normalised to 30mM mannitol (Fig 5.3.4-5B). Within 

the first 20h, there was a clear downward drift in those cells exposed to VEGF-

A165a, consistent which was what is seen in published literature (Deissler et al., 

2008, 2010, 2011). 50ng/mL VEGF-A165a exposure triggered a reduction in 

AUC compared to mannitol control (Fig 5.3.4-5C). 25ng/mL VEGF-A165b by 

itself appeared to also induce a decrease in AUC, although to not the same 

extent as VEGF-A165a. However, 25ng/mL VEGF-A165b actually abrogated the 

disruption to monolayer layer induced by 50ng/mL VEGF-A165a in NG 

conditions. Interestingly, equivalent concentrations of VEGF-A165a and VEGF-

A165b completely blocked the reduction induced by VEGF-A165a. To elucidate 

the impact of VEGF-A alternative isoforms on iBREC monolayer permeability, 

cell index values were normalised against 30mM glucose only (Fig 5.3.4-5D). 

Importantly, 30mM D-glucose reduced AUC compared to 30mM D-mannitol, 

thus confirming that glucose-induced changes are due to glycaemic stimulus 

and not osmotic shock. VEGF-A165a in HG decreased AUC compared to NG, 

but not more so than HG alone. VEGF-A165b (25ng/mL) alone did not change 

AUC compared to HG, even when cells were co-treated with VEGF-A165a. 

Excitingly, both hyperglycaemic and VEGF-A165a mediated disruption of iBREC 
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monolayer was ameliorated by exposure to 50ng/mL VEGF-A165b (Fig 5.3.4-

5E).  

  

Figure 5.3.4-5: VEGF-A165b ameliorates VEGF-A165a-induced disruption in 
iBREC monolayer permeability in normo- and hyperglycaemia. 

A: iBRECs were grown to confluence on fibronectin coated xCelligence arrays 
and treated with either 30mM D-mannitol or D-glucose. In addition, 25ng/mL or 
50ng/mL recombinant VEGF-A165a was administrated with and without 
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25ng/mL VEGF-A165b. Impedance (cell index) measurements were taken over 
the course of 72h and normalised to cell index value after treatment addition. 
B: Cell indexes normalised to 30mM mannitol. C: AUC decreased in response 
to rhVEGF-A165a (69.33±0.07), rhVEGF-A165b (70.88±0.08) and 50ng/mL 
rhVEGF-A165a with 25ng/mL rhVEGF-A165b (67.64±0.08) compared to mannitol 
only (71.62±0.06) whilst 25ng/mL rhVEGF-A165a and rhVEGF-A165b caused an 
increase in AUC (72.65±0.08). D: Cell index values normalised to 30mM 
glucose. E: Glucose induced a decrease in AUC (71.62±0.03) compared to 
mannitol only (74.48±0.05). rhVEGF-A165a or rhVEGF-A165b had no significant 
effect on AUC compared to glucose (71.44±0.05 and 71.38±0.06 respectively). 
50ng/mL rhVEGF-A165a with 25ng/mL rhVEGF-A165b (71.01±0.05) triggered a 
decrease whilst 25ng/mL rhVEGF-A165a and rhVEGF-A165b caused an increase 
in AUC (74.71±0.07). ***p<0.001, ****p<0.0001, ns=not significant. Error bars 
of C&E indicate mean + standard error. Error bars of A,B&D mean ± standard 
error. Data was analysed via a one-way analysis of variance with Bonferroni’s 
post-hoc (n=4). 
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5.4 Discussion  

5.4.1 Retinal permeability can be deduced non-invasively 
through fundus fluorescein angiography 

Evans blue (EB) dye perfusion assay is often remarked as the ‘gold standard’ 

in assessing permeability across the BRB. EB is a 961Da dye with a high affinity 

for albumin (66.5kDa), thereby becoming a high molecular weight tracer that 

remains predominately in the blood circulation. Disruption to barriers through 

pathologies such as DR will result in a flux of EB out of the circulation into 

surrounding tissues (Xu et al., 2001). Absorbance at 620nm can be assayed in 

these surrounding tissues in order to gain a measure of permeability (Uyama 

et al., 1988). However, this assay is not a true measure of permeability but 

rather solute flux and dye movement can be influenced by other factors, not 

only barrier properties. These include, but are not limited to: haemodynamic 

parameters; presence of EB dye in circulation un-bound to albumin (Moos & 

Møllgård, 1993); tissue clearance rates and EB dye binding to additional 

plasma and tissue proteins (Allen & Orahovats, 1950). Moreover, this technique 

is invasive and requires animals to be culled in order to gain measurements, 

thus cannot be paired, an issue especially apparent when monitoring 

permeability over a period of time. Each animal has particular biological 

variabilities, such as heart rate and blood pressure, which will impact EB dye 

flux regardless of treatment conditions, which must be taken into account when 

making conclusions from a time-course experiment (Saunders et al., 2015). 

Sodium fluorescein (Na-Fl) is a small molecular weight tracer (376Da) 

commonly used for fundus fluorescein angiography (FFA); a clinical diagnostic 

procedure to visualise changes in retinal vasculature and neuronal tissue (Gass 

et al., 1967). The technique is non-invasive and latest advances in wide-field 

fluorescein angiography have allowed for the detection of subtle changes in the 

peripheral BRB (Shoughy et al., 2015). A mathematical formula based on Fick’s 

Law coupled with FFA has been recently described to non-invasively quantify 

retinal permeability in a diabetic rat model (Allen et al., 2020). The technique 

involves intra-peritoneally injecting Na-Fl into a rat and monitoring retinal 

perfusion using a Phoenix Micron IV fluorescent ophthalmoscope. Angiograms 

are analysed to determine mean fluorescence intensity in a retinal vessel and 
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nearby surrounding tissue. A mathematical variation of Fick’s Law is used to 

determine retinal permeability from intensity gradients. As such, this offers a 

method to accurately and non-invasively monitor retinal permeability over time 

in the same animal (Allen et al., 2020). Moreover, in comparison with EB dye 

assay, this technique is more cost-effective, sensitive, less toxic and requires 

substantially less animals, in concordance with NC3Rs guidelines (NC3Rs, 

2019). 

Assessment of retinal permeability in vivo, be that by EB assay (Xu et al., 2001) 

or immunofluorescence (Scheppke et al., 2008), typically require sacrificing the 

animal and performing analysis on collected tissue. As such, monitoring 

permeability over time will require multiple animals with the resulting data 

unpaired. I used a novel non-invasive method of calculating retinal permeability 

that we have recently described in (Allen et al., 2020) to demonstrate that the 

STZ model of diabetes triggers an increase in retinal permeability trending on 

day 7 and significantly by day 14 and continues through to day 28 (Fig 5.3.1-

2D). This corroborates with the published technique (Allen et al., 2020) and also 

where retinal permeability has been assessed through invasive measures (Ved 

et al., 2017; Xu et al., 2001). An important caveat of this model is it does not 

take into account the impact of blood pressure. As my study is a timecourse, 

and I normalise to day 0, biological variations of blood pressure between the 

animals should not influence the results. Retinal blood flow, venous diameter 

and velocity is not significantly changed in response to STZ after 4 or even 6 

weeks, however systemic blood pressure is decreased after 4 weeks from 

101±18 mmHg to 79±23 mmHg (Bunag et al., 1982). If the systemic blood 

pressure translates to the ocular vasculature, this may mean that our 

quantification of retinal permeability is actually an underestimate. Reduction in 

blood pressure will decrease the flux of molecules into the vessels, which 

according to Fick’s Law should reduce permeability. There is currently no 

method to measure ocular blood pressure non-invasively, to do so would 

require sophisticated optical imaging techniques and tracers that were 

unavailable to me, but would have resulted in a more detailed understanding of 

permeability shifts. Despite this limitation, our model showed a characteristic 
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increase in retinal permeability in response to STZ-induced diabetes, and as 

such could be used for further experiments.  

5.4.2 SRPK1 inhibition ameliorates DR-induced increase in 
retinal permeability in an in vivo model of Type-I diabetes 

There are three primary routes of administration for ocular drugs: topical, 

periocular and systemic. Each route poses particular challenges, primarily due 

to the number of static and dynamic barriers the drugs will need to overcome 

to target a particular area of tissue. Whilst systemic drugs tend to be more 

patient compliant than the other routes, they have reduced bioavailability, could 

cause major side effects elsewhere in the body and need to cross both BRB 

and blood-aqueous barriers (Gaudana et al., 2010). Periocular routes include 

intravitreal injection, allow higher dosing to specific areas of the eye, in 

particular the posterior segment. However, as mentioned previously, this 

requires a trained professional, has low patient compliance and could lead to 

side effects that damage vision, such as haemorrhaging, endophthalmitis or 

even retinal detachment. Anti-VEGF-As could potentially pass into the systemic 

circulation through this route of administration, due to an impaired oBRB, they 

could be especially unfavourable in diabetic patients as it could exacerbate 

diabetic symptoms including hypertension, proteinuria and impaired wound 

healing (Simó & Hernández, 2008). Topical administration, primarily eyedrops, 

are typically employed to target the anterior segment of the eye due to the 

impermeability of the layers of cornea and the presence of efflux pumps limiting 

drug penetrance to posterior areas (Gaudana et al., 2010). However, this route 

is more patient compliant, non-invasive and will have negligible cross-over into 

the systemic circulation. As such, topical drug delivery to the eye is regarded 

by some as the ‘holy grail’ of ocular drug delivery. Despite success in pre-

clinical studies, many candidate drugs fail to translate clinically (Rodrigues et 

al., 2018). Excitingly, a few groups have developed agents able to permeate to 

the back of the eye in animal models when delivered topically (Batson et al., 

2017; de Cogan et al., 2017; Simó et al., 2019). With regards to SPHINX31, the 

SRPK1 inhibitor used throughout my study, approximately 24% of a 0.05µg 

dose to a mouse eye was measured in the retina 4 hours after dosing, and this 

remained fairly constant across 24 hours. At this dose, SPHINX31 was able to 
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reduce choroidal neovascularisation, highlighting its anti-angiogenic properties 

(Batson et al., 2017). Given its high specificity and potency for SRPK1, 

SPHINX31 offers potential as a therapeutic for DR, however its impact on 

retinal permeability remains to be elucidated.  

Currently, the recommended treatment for PDR, aside from management of 

diabetes, is PRP (The Royal College of Ophthalmologists Diabetic Retinopathy 

Guidelines, 2012), a destructive method that results in the formation of scar 

tissue. Due to the pivotal role of VEGF-A in the pathogenesis of the disease, 

there have been a number of clinical trials aiming to repurpose anti-VEGF 

therapeutics commonly used to treat wet-AMD (Beaulieu et al., 2016; Bhavsar 

et al., 2013; Gross et al., 2018). There is also positivity surrounding use of anti-

inflammatories, such as dexamethasone (Stewart et al., 2016) and 

fluocinolone, especially with regards to non-chemokine driven DMO (Boyer et 

al., 2014; Campochiaro et al., 2012). However, there are a large proportion of 

patients who are unresponsive to the various treatments currently on the 

market (Duh et al., 2017). In addition, routes of administration of these 

therapeutics are often unpleasant for the patient and require a clinical 

professional. Lack of responsiveness to anti-VEGF-As has been hypothesised 

to be due to the failure of these treatments to discriminate between alternative 

VEGF-A terminal exon 8 inclusions (Batson et al., 2017). This hypothesis, 

coupled with my data from Chapter 4 where I found inhibition of SRPK1 resulted 

in an amelioration of HG-induced changes in VEGF-A alternative isoform 

expression, led me to hypothesise that SPHINX31 could be an effective 

treatment in an in vivo model of DR.  

Norway Browns are a highly pigmented strain, which have been commonly 

used to study vascular abnormalities in response to diabetes, including BRB 

breakdown (Schroder et al., 1991; Wanek et al., 2014). As such, use of these 

rats allows comparison with a large body of literature. Additionally, this strain 

developed sustained retinal vascular hyperpermeability across 16 weeks, 

compared to 3-10 days after diabetes onset before reversal in albino Sprague-

Dawleys. This is potentially due to enhanced retinal VEGF mRNA and protein 

levels in Norway Brown compared to Sprague-Dawleys (Zhang et al., 2005). 
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As my study focuses on the impact of VEGF-A isoforms, this strain dependant 

elevated VEGF-A facilitates experimental manipulation. Albino rats are also 

described to have abnormal neural connections between the brain and eye, 

resulting in poor vision (Taylor et al., 1986). Norway Browns treated with STZ 

and insulin supplementation exhibited increased blood glucose concentrations 

three days after STZ injection (Fig 5.3.1-1A). It has been reported that HG can 

be spontaneously reversed in STZ models, however the diabetic cohort 

maintained HG across the 4 weeks. This cohort also had characteristic lower 

weights compared to the saline control group (Fig 5.3.1-1B). Interestingly, 

although the diabetic + vehicle group had statistically significantly lower weights 

than the non-diabetic group, the diabetic + SPHINX31 group just trended lower. 

As SPHINX31 was administered topically, and negligible amounts have been 

found in the systemic circulation, it is very unlikely that this is because 

SPHINX31 is affecting another organ. Contact time between the two groups 

were similar, as both groups received twice-daily eyedrops, were weighed 

almost daily, and underwent the same imaging procedures at the same 

frequency. One could speculate the weight difference is due to the SPHINX31 

group having improved eyesight compared to diabetic animals treated with eye 

formulation control buffer, thus animals are more comfortable and more likely 

to eat and gain weight. However, behavioural studies would be required to 

confirm this. VEGF-A165b expression was found to reduce in response to STZ-

induced diabetes, consistent with published literature of the human diabetic 

vitreous (Jiang et al., 2020; Perrin et al., 2005). SPHINX31 ameliorated this 

decrease slightly, which may be significant had I increased n numbers, as 

topical SPHINX31 has been previously found to increase retinal VEGF-A165b 

expression in mice (Batson et al., 2017) Gammons et. al., found that topical 

SPHINX31 did not alter expression of VEGF-A165b in laser CNV model, and 

hypothesised that the reduction neovascularisation they observed was primarily 

due to decreased VEGF-Axxxa expression (Gammons et al., 2013). However, 

they assessed VEGF-A165b expression through western blot, rather than an 

ELISA, which is more sensitive and potentially able to identify smaller shifts in 

expression. Nevertheless, I would have also liked to assay the tissue for VEGF-

A165a, however due to poor protein yield I was unable to.  
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Perhaps the most significant finding of this thesis is that SPHINX31 blocked 

diabetes-induced increase in retinal permeability and capillary loss after 14 

days over 28 days (Fig 5.3.1-2D). A pilot study found that SPHINX31 eyedrops 

induced protective effects against retinal permeability in STZ treated Norway-

Browns after only 7 days (Allen et al., 2017). However, these rats were not 

supported with an insulin bolus, thus the diabetic-insult was harsher. In rats, 

morphological and functional studies suggest that STZ only models early DR 

phenotype (Lai & Lo, 2013). Supporting this, angiograms from STZ rats in my 

study did not show evidence of developing microaneurysms, the earliest clinical 

sign of retinopathy (Fig 5.3.1-2A).  However, although microaneurysms have 

been detected in humans 4-7 years before clinical diabetes (Harris et al., 1992), 

in STZ rats microaneurysms are less likely to develop, with the earliest 

detection at 18 months if they maintain a persistent hyperglycaemia (Kato et 

al., 2003). Another SRPK1 inhibitor, SRPIN340 has also been suggested to be 

a potential therapeutic for neovascular eye diseases (Gammons et al., 2011). 

SRPIN340 is a SRPK1/2 inhibitor that has been shown to prevent VEGF-A165b 

downregulation in response to IGF-1 stimulation in podocytes, which was 

confirmed through overexpression studies to be a SRPK1-mediated effect 

(Nowak et al., 2010). However, SPHINX31 is 50-fold more selective for SRPK1 

over SRPK2, limiting the off-target effects. Especially important for my study; 

SPHINX31 is 50-fold more selective for SRPK1 over CLK1 and 100-fold against 

CLK4 (Batson et al., 2017), both these kinases have the capacity to 

phosphorylate SRSF6 promoting VEGF-A exon 8 distal splice site selection and 

VEGF-A165b expression (Nowak et al., 2008). Thus inhibition of these kinases 

could reduce VEGF-A165b levels and disrupt VEGF-A165b:VEGF-A165a ratio. 

Ved et al., found that administration of recombinant VEGF-A165b prevented 

diabetes induced EB extravasation in the same animal model used in my study 

(Ved et al., 2017). This could explain the reduction in retinal permeability in 

response to SPHINX31, as inhibiting SRPK1 induces a switch in splicing that 

leads to increased exposure of VEGF-A165b (Fig 5.3.1-1C) and protects against 

diabetic challenges to retinal permeability. Over recent years, there have been 

a number of candidate eye drops targeting ocular vasculature. Cyclosporine A 

eye drops reduce EB dye leakage in a Type-I allergic conjunctivitis mouse 

model (Shii et al., 2009). Peptidomimetic that selectively binds VEGFR1 and 
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NRP-1, Vasotide, inhibits pathological angiogenesis in a laser-induced monkey 

model of AMD (Sidman et al., 2015). PEDF bioactive peptide derivatives 

reduced BSA-FITC extravasation across the retina in a diabetic Ins2Akita mouse 

(Liu et al., 2012). Despite the success of these pre-clinical studies, most fail at 

the clinical trial stage (Rodrigues et al., 2018).  

5.4.3 STZ-induced increase in retinal thickening is localised to 
the RPE-Choroid layer and ameliorated by SPHINX31. 

A clinical feature of DR that may occur is retinal thickening, which can occur 

due to vitreo-macular traction, intra-retinal cysts or oedema, glycation of the 

layers of nerve fibers and accumulation of sub-retinal fluid (Hee et al., 1998). 

These manifestations can be non-invasively monitored clinically with optical 

coherence tomography (OCT), a tool which revolutionised the identification of 

macular oedema. The operation is analogous to ultrasound imaging, except 

light is utilised rather than acoustic waves to provide highly detailed 

tomographic images (Chauhan & Marshall, 1999). Diabetes-associated issues 

in vision arise primarily due to DMO and monitoring retinal thickness may allow 

for early detection of DMO. Mean retinal thickness did increase in the diabetic 

cohort treated with control eye drops after 28 days, and there appeared to be 

some evidence of retinal separation from the choroid in four of the eight animals 

(Fig 5.3.2-1). Furthermore, this increase appeared to be localised specifically 

at the RPE and Bruch’s membrane layer (Fig 5.3.2-2). Twice-daily topical 

administration of SPHINX31 blocked this increase. Increase in total retinal 

thickness corroborates with that seen in human eyes, patients with NPDR and 

PDR had greater macula thickness compared to normal eyes, although not to 

a statistically significant extent. However, when specifically measuring foveal 

thickness, they found statistically significant increases in thickness in diabetic 

patients (Sánchez-Tocino et al., 2002). Additionally, in Sprague-Dawley rats, 

total retinal thickness was increased in STZ treated male rats, when measured 

high resolution manganese-enhanced MRI (Berkowitz et al., 2007). The 

relationship between retinal thickness and visual acuity remains dubious, with 

some groups finding a correlation between retinal thickness and a decrease in 

visual acuity (Diabetic Retinopathy Clinical Research Network et al., 2007) and 

others finding a paradoxical increase in visual acuity (Sánchez-Tocino et al., 
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2002). Despite this, evaluation of retinal thickness via OCT remains a valuable 

diagnostic tool, especially for DR, as changes, even subclinical, in retinal 

thickness can be indicative of disease progression or management (Virgili et 

al., 2011). To build upon this work further, I would have liked to localise where 

the thickness is with regards to the fovea. This could have been completed by 

obtaining 3D volumes rather than 2D scans and analysing spatially where 

increases in thickness are centralised.  

5.4.4 STZ and SPHINX31 induces slight, but not significant 
changes in vessel parameters after 28-days 

The Phoenix Micron IV was a useful tool for assessing retinal health, imaging 

retinal perfusion and guiding OCT imaging. However, the ophthalmoscope is 

limited in its resolution to 6µm for rats and has an imaging depth of 20µm. Thus, 

it is not possible from angiograms to deduce total vascular parameters, 

particularly of smaller capillaries. This was an important assessment to make, 

as our permeability quantification is based on a measurement of fluorescence 

intensity from tissue which may or may not contain capillaries below the 

detection limit of the Micron IV, and if this vascular network was amplified or 

reduced in response to diabetic insult, it could skew the data. In addition, 

evaluating vascular parameters offers insight to DR pathogenesis. Therefore, 

following termination of the eyedrop study, retinae were isolated from eyecups, 

whole-mounted and stained for IB4 as an endothelial marker. Both FIJI and 

Imaris tools were used to evaluate vascular properties. Diabetes appeared to 

induce a slight reduction in vessel density in the upper plexus of the retina which 

was unaffected by SRPK1 inhibition when evaluated by FIJI (Fig 5.3.3-1B). 

Vascular density within the lower plexus was unchanged in response to diabetic 

insult or SRPK1 treatment, and no significant differences with regards to vessel 

diameter was measured across both plexuses. However, this method of 

analysis is unable to accurately segment the middle plexus, which has been 

described to be distinctly affected in DR, with decreased parafoveal vascular 

density and flow index (Zhang et al., 2016). OCT angiography (OCTA), as the 

name suggests, combines angiography with OCT techniques to map retinal 

vasculature three-dimensionally and is able to segment the retinal vasculature 

to obtain an accurate image of the middle capillary plexus (Onishi et al., 2018). 
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A recent paper used swept-source OCT angiography to take multiple volume 

scans to obtain a highly detailed montage of the retinal vasculature across all 

three plexuses in healthy human eyes (Lavia et al., 2020). As of yet, they have 

not expanded their research to include diseased eyes, and their sample size 

was small (10 patients; mean age 31.8 ± 3.4yrs), however this is a useful 

technique that could be exploited to further scrutinise total retinal vasculature. 

I used Imaris software to generate a 3D rendering of total IB4 stained retinal 

vasculature from z-stacks and the filament tracer tool was repurposed to 

analyse vessel networks. In this way, I was able to analyse changes across all 

three plexuses, but was not able to segment them. Dendrite branches, a 

potential marker for neovascularisation (Geraldes et al., 2009), were 

unchanged in my model of diabetes or in response to SPHINX31 (Fig 5.3.3-

2B). Unlike individual plexuses, vascular diameter and volume trended an 

increase in response to diabetes, and reduced due to topical SPHINX31 (Fig 

5.3.3-2C&D). The fact that there were no significant changes in retinal 

vasculature was not surprising as my model is of a relatively short duration. 

Gross vascular remodelling in response to STZ-induced diabetes are observed 

8 months after diabetic induction (Lai & Lo, 2013). Some groups use genetic 

models such as nonobese diabetic (NOD) mice which spontaneously develop 

type-I diabetes owing to a CD4+ and CD8+ responsive destruction of pancreatic 

b-cells. These mice have been described to have vascular abnormalities such 

as vasoconstriction and degeneration 4 months after hyperglycaemia onset 

(Shaw et al., 2006). The more popular Ins2Akita mouse model, who carry a point 

mutation in insulin2 gene resulting in accumulation of the protein within 

pancreatic b-cells and ultimately cell death, are reported to display retinal 

vascular abnormalities with 26 weeks of hyperglycaemia (Wright et al., 2012). 

However, the primary focus of my study was permeability, and breakdown of 

BRB has been reported in this model after 2 weeks of hyperglycaemia 

(Rungger-Brändle et al., 2000; Zhang et al., 2008), justifying my decision to use 

this model.  
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5.4.5 SRPK1 inhibition protects against diabetes-induced 
acellular capillary formation 

Loss of cellular components, pericytes and endothelial cells, are a 

characteristic early feature of DR. Due to the lack of primary human retinal 

samples from the primary stages of DR, the exact sequence with which the 

cells are lost remains debateable. However, animals models have established 

a pericyte dropout occurs before endothelial cell death leaving a basement 

membrane sleeve (Hammes et al., 2004). Collagen IV staining was used as a 

marker of basement membrane and IB4 to stain endothelial cells. An acellular 

capillary was defined as one which contained basement membrane but no 

endothelial cells. STZ induced a significant increase in acellular capillary 

formation, which was blocked by SPHINX31 (Fig 5.3.3-3B). Administration of 

SPHINX31 increased VEGF-A165b expression in this study (Fig 5.3.1-1C). 

VEGF-A165b is a cytoprotective agent which is described to reduce cytotoxicity 

induced by Na butyrate and H2O2 in RPE. In the human umbilical vein 

endothelial cells, VEGF-A165b was also found to be cytoprotective. 

Furthermore, exposure to a neutralising VEGF-A165b antibody increasing 

cytotoxicity in both cell lines (Magnussen et al., 2010). As such, this offers an 

explanation for the reduction in acellular capillaries in the diabetic + SPHINX31 

cohort, as the increased expression of VEGF-A165b is protecting retinal 

endothelial cells from death in response to hyperglycaemic conditions. The 

formation of acellular capillaries after 28 days was surprising as acellular 

capillaries typically are not observed in this model until at least 8 months after 

onset (Duan et al., 2013; Lai & Lo, 2013). Elevated numbers of acellular 

capillaries were found in STZ-induced diabetic rats 6 months after diabetes 

induction, but not after 3 months in the same study (Luo et al., 2012). However, 

these studies assess acellular capillaries though trypsin digestion of the retina 

and haematoxylin and Periodic Acidic-Schiff stain. Basement membrane 

thickening especially through upregulated synthesis of collagen IV is an 

addition distinctive feature of early DR (Cai & Boulton, 2002), which may 

account for the increased collagen IV staining in diabetic rats. This could also 

suggest that SPHINX31 is protecting against increases in basement 

membrane. The number of acellular capillaries were not quantified at the 
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beginning of the study, which may exist in different numbers in different animals 

and could potentially skew the results. However, there is currently no robust 

method to non-invasively detect acellular capillaries, thus I was unable to make 

this assessment. Residual basement membrane tubes that have fused, 

shrunken or collapsed have been described in the retina (Archer et al., 1991). 

Pericytes survive within the walls of these tubes a while after loss of endothelial 

cells (Brown, 2010). Had I stained for pericytes, I would have been able to 

assess for presence of these string vessels.  

5.4.6 VEGF-A165b ameliorates VEGF-A165a-induced disruption 
in iBREC monolayer permeability in normo- and 
hyperglycaemia 

The previous chapters of this thesis have focused on the oBRB, and the impact 

of SRPK1 inhibition on the RPE monolayer of this barrier. However the increase 

in retinal vascular permeability in DR is a direct result of the breakdown of the 

iBRB (Klaassen et al., 2013). Thus, I aimed to generate an in vitro model of the 

iBRB, determine the impact of HG and assess the effects of SPHINX31. Initially, 

I trialled isolating primary RECs from human donor patient eyes by extracting 

retinae from posterior segments, collagenase treating the tissue and sorting the 

resultant lysate with CD31 magnetic beads to capture endothelial cells. This is 

a protocol that has been used successfully (Saker et al., 2014; Stewart et al., 

2016), however I was unable to emulate their results. Cell yield was poor and 

failed to propagate, adhere to plates or survive for multiple passages. To solve 

this issue, I tried different sized magnetic beads to ensure the cells were not 

internalising them; different cell attachment factors with varying concentrations 

of fibronectin and reducing the wash steps. Due to rising costs and the 

timeframe of the study, I eventually decided to look for alternative cell lines that 

could match primary RECs. Dr Heidrun Deißler has established an 

immortalised bovine REC (iBREC) line displaying the distinct cobblestone 

morphology up to passage 90.  iBRECs are sensitive to VEGF-A isoforms 

(Deissler et al., 2013; Deissler et al., 2005) and anti-VEGF-A therapeutics 

(Deissler et al., 2011, 2019). HG increased iBREC monolayer permeability in a 

dose dependent manner after three days exposure (Fig 5.3.4-1C). This 

corroborates with existing literature (El-Remessy et al., 2013; Eshaq & Harris, 
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2020; Jiao et al., 2019; Stewart et al., 2016). The optimal concentration moving 

forward for HG assay was determined to be 30mM D-glucose, despite the fact 

that 50mM D-glucose increased permeability to the highest extent. Cells 

exposed to 40mM and 50mM D-glucose appeared unhealthy, furthermore 

50mM glucose causes glucose-induced toxicity resulting in cell death and 

expression of oxidative stress markers (Shokrzadeh et al., 2016). Effects of 

glucose on cell monolayer permeability has not been previously researched in 

this cell line. Although it has been found that HG in conjunction with TGF-b 

causes transdifferentiation into a-SMA expressing mesenchymal cells, 

contributing to DR pathogenesis (Deissler et al., 2006). Additionally, HG 

stimulates cell migration, regulated by tetraspanin CD9 (Kuhn et al., 2008). This 

increase in permeability appeared to mediated through loss of Claudin-1 and 

Claudin-5, as the expression trended lower than in basal media alone (Fig 

5.3.4-2). However this data is preliminary thus further work would be required 

to draw robust conclusions, although loss of Claudin-5 has previously been 

described in response to HG-insult (Stewart et al., 2016). Loss of PECAM-1 

has also been implicated in HG-induced increase in REC permeability (Eshaq 

& Harris, 2020), as well as occludin and JAM-A (Stewart et al., 2016).   

Chapter 4 describes how SPHINX31 can  reduce RPE monolayer permeability 

in HG conditions, possibly mediated through a switch in VEGF-A splicing from 

VEGF-A165a to VEGF-A165b isoforms. Additionally retinal permeability in 

response to diabetic-insult is decreased in an in vivo model due to topical 

SPHINX31 (Fig 5.3.1-2) potentially through an increase in VEGF-A165b (Fig 

5.3.1-1). RECs are described to express VEGF-A (Aiello et al., 1995), which 

offers an explanation as to why iBREC permeability is increased in response to 

HG. As such, I hypothesised that SPHINX31 would protect against increases 

in iBREC permeability in HG conditions. However, this was not the case, and 

SPHINX31 actually slightly elevated monolayer permeability in both NG and 

HG (Fig 5.3.4-3). This was surprising as Wt1 induced activation of SRPK1 has 

previously been found to trigger angiogenic VEGF-A164 expression in lung 

endothelial cells (Wagner et al., 2019). However, my measure of permeability 

is actually a measure of impedance, which can be impacted by cell proliferation, 

morphological changes and death as well as disruption to tight junctions. The 
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fact that SPHINX31 impacted cell index in NG conditions suggests that the 

disruption is not HG-mediated. iBRECs are sensitive to FBS concentration, and 

thus whilst measuring cell index, they are exposed to reduced serum media. 

SPHINX31 binds partially to FBS, and so the low concentration of FBS may 

expose cells to larger, potentially toxic concentrations of SPHINX31. VEGF-A 

expression in iBRECs is low (Deissler et al., 2011) and SRPK1 activity in these 

cells is not currently defined, so it is difficult to deduce what the impact of VEGF-

A splicing would be, if at all.  

Targeting endogenous VEGF-A did not appear to protect REC monolayer 

permeability in NG or HG. However, previous work from the Deißler group has 

discovered that iBRECs are sensitive to exogenous VEGF-A isoforms (Deissler 

et al., 2008, 2011, 2013). Recombinant VEGF-A165a induced an increase in 

REC monolayer permeability in NG conditions, however the dual exposure to 

this isoform and HG did not increase permeability further than HG alone. This 

suggests that HG is disrupting REC monolayer through a pathway independent 

of VEGF-A expression. A number of non-VEGF-A dependent pathways have 

been implicated in REC monolayer permeability in diabetes, as it has been 

reported that diabetic eyes have increased aqueous levels of IL-6, IL-8, IP-10, 

TNF-a and MCP-1 alongside VEGF-A (Joussen et al., 2004; Koch et al., 1995; 

Lu et al., 1999; Roh et al., 2009; Yoshimura et al., 2009). Moreover, the co-

transmitter, neuropeptide Y, has been found to inhibit VEGF-A induced 

increases in permeability in an in vivo diabetic model (Ou et al., 2020). Further 

work would be required to pinpoint through which inflammatory cytokine iBREC 

permeability is being increased in HG. Recombinant VEGF-A165b alone also 

appeared to disrupt monolayer integrity in NG but induced no change in HG 

when compared to HG alone. Dual exposure to both VEGF-A isoforms again 

increased REC monolayer permeability when VEGF-A165a concentration 

exceeded VEGF-A165b. However, equimolar concentrations of VEGF-A 

alternative isoforms decreased permeability in NG and crucially protected 

against HG-induced barrier disruption (Fig 5.3.4-5) potentially because VEGF-

A isoforms bind to VEGFR2 at a one-to-one ratio (Varey et al., 2008).   
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Diabetes-induced ocular complications, DR and DMO, remains the dominant 

cause of blindness in the western world across the working population, 

projected to rise as the obesity crisis continues. Current therapies are not 

effective in a subset of patients, thus necessitates the development of novel 

therapeutics. The present thesis explores the potential of manipulating VEGF-

A alternative splicing to treat DR-induced pathologies. Additionally, this work 

highlights the impact of oBRB in DR progression and treatment. Furthermore, 

novel insights are gained in the activity and role of SRPK1 and associated 

proteins in RPE. 

6.1 COVID-19 Impact Statement 

The abrupt closure of the university in response to the COVID-19 pandemic has 

meant that some experiments I had planned to validate my results and further 

explore SRPK1 activity in RPE had to be terminated. In addition, due to the 

increased difficulty of transporting material during the COVID-19 pandemic, I 

have had to delay further work with our collaborative partner, Dr Heidrun 

Deißler, to increase the n number and build upon the research in RECs. These 

disruptions and delays were of particular significance as our lab group had 

moved buildings over November 2019 through to January 2020, thus I was 

unable to perform molecular biology experiments over this time. I will describe 

my planned experiments below. 

6.2 SRPK1 and hyperglycaemia  

The current literature surrounding SRPK1 in RPE is limited, especially with 

regards to hyperglycaemia. It is known that SRPK1 phosphorylates SRSF1 in 

activated RPE, inducing a translocation of the splicing factor to the nucleus, 

where it will promote proximal splice site selection of VEGF-A (Gammons et al., 

2013). Previous published work in RPE has involved activating SRPK1 through 

EGF stimulation, however the present work in this thesis describes SRSF1 

nuclear translocation as a result of HG- or Hx-insult highlighting its significance 

in DR.  SRPK1 phosphorylates other splicing factors alongside SRSF1 and has 

additionally been implicated in mRNA maturation, chromatin reorganisation, 

cell cycle and p53 regulation and metabolic signalling in other cell types 

(Giannakouros et al., 2011). The complete downstream cascade associated 
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with SRPK1 activation is not fully elucidated as of yet, which could mean that 

my results of SRPK1 inhibition (Chapter 4 & 5) occurs in a process independent 

of the SRPK1-SRSF1 axis. Interestingly, the combination of HG and Hx does 

not activate SRPK1 when assessed through SRSF1 nuclear localisation 

(Appendix D&E) whilst each condition alone does, highlighting the necessity for 

further research in this area. RNA-seq analysis and subsequent validation of 

hits would confirm SRPK1 inhibition effects on permeability are due to 

increased distal splice selection of VEGF, as well as identify other potential DR 

biomarkers. Whilst this experiment would be interesting, I believe the ECIS data 

where aVEGF-A165b neutralises the effects of SPHINX31 (Chapter 4) is 

sufficient evidence that increased VEGF-A165b expression has a dominant role. 

Long non-coding RNA MALAT1 binds and regulates the phosphorylation of 

SRSF1, and also directly binds to SRPK1 (Hu et al., 2016). MALAT1 expression 

is increased in Hx cells (Liu et al., 2019) and HG cells. Interestingly, MALAT1 

depletion also up-regulates VEGF-A165b expression (Yang et al., 2018). This 

could point to an intermediary step between SRPK1 and SRSF1 where 

MALAT1 is involved. However, my direct measurement of SRPK1 activity via a 

nano-BRET: based on SRPK1 proximity with its cognate splicing factor, SRPK1 

was described for the first time to activate in response to HG (Chapter 3). 

However, this requires repeating in Hx to determine whether increased SRSF1 

nuclear localisation occurs as a direct affect of SRPK1. Although I hypothesised 

that SRPK1:SRSF1 complexes are more concentrated in the nucleus as a 

result of HG-insult, I believe the transfection efficiency would need to be 

improved and further repeats performed before concluding this. Furthermore, 

the addition of a positive control, a construct expressing both Nanoluc® and 

Halotag® moieties alongside would help optimise the imaging parameters and 

validate my results. In addition, longer term imaging could be performed on 

euglycemic RPE dosed with D-glucose, to determine the time it takes for the 

translocation to occur.  

PKC is known to activate SRPK1 in IGF-1 stimulated cells (Harper & Bates, 

2008). Furthermore, HG activates PKC in RPE, resulting in an upregulation in 

VEGF (Poulaki et al., 2002). However, RPE exposure to 35mM glucose 

resulted in a decrease in expression of IGF-1 (Kang et al., 2018), thus is not 
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the pathway associated with PKC activation in HG. In diabetes, PKC activation 

is a result of oxidative stress (Konishi et al., 1997), and DAG production 

(Nishikawa et al., 2000). I believe this is the first time that PKC activation in HG 

RPE has been reported to activate SRPK1 and induce nuclear localisation of 

SRSF1 (Chapter 4). Furthermore, this activation appeared to be specific to 

PKCg, PKCd or potentially PKCe isoforms and not PKC-a, -b1 or -b2. 

Expression of the former three isoforms has been attributed to DAG as they 

contain DAG-binding C1B domains, however PKCd and PKCe are potentially 

more sensitive to DAG concentration as their C1B domains have a 100-fold  

higher affinity for DAG than conventional isoforms (Wu-Zhang & Newton, 

2013). Additionally, intravitreal VEGF injection in rats results in activation of 

PKCd. With regards to PKCg, it has also been reported to activated in 

hyperglycaemia (Idris et al., 2001). The literature surrounding PKC isoform 

specificity in SRPK1 activation is lacking, and I believe that my experiments are 

the first to describe this notion. However, I am cautious to draw conclusions as 

I think these studies could have been built upon with PKC isoform-specific 

silencing RNAs to pinpoint which isoforms are involved. Additionally, an 

immunoprecipitation against SRPK1 and SRSF1 probed for PKC isoforms 

would determine whether PKC is acting directly on SRPK1 and SRSF1, or if 

there are intermediary components. 

6.3 Dual effects of hypoxia and hyperglycaemia on RPEs 

Hyperglycaemia coupled with hypoxia produced different results to each 

condition alone (See Appendix). The nuclear localisation of SRSF1 did not 

increase in these conditions, and actually appeared to be below that of basal 

level (Appendix D&E). There was a lot of discussion about the necessity of 

subjecting the cells to both hyperglycaemia and hypoxia, as this may not 

actually occur in DR due to the dropping off and occlusion of capillaries 

reducing tissue perfusion and thus exposure to glucose in the blood. However, 

cells may exhibit an epigenetic memory of hyperglycaemia even after they lose 

exposure to high glucose, so may actually be both hyperglycaemia and hypoxic 

at the same time. On the other hand, diffusion of both glucose and oxygen 

across retinal tissue has been found to be different in animal models and human 
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diabetic retina compared to healthy controls, which may refute the possibility of 

hypoxic and hyperglycaemic areas (Tang et al., 2000, Wangsa-Wirawan and 

Linsenmeier, 2003). Nevertheless, the result is interesting, as the two 

conditions appeared to cancel each other out, whereas we hypothesised the 

effects seen in hyperglycaemia would be aggregated in hypoxia, due to an 

increased expression of glucose transporters such as GLUT-1 (Ozaki et al., 

1999). Lafosse et. al. reported similar findings in dermal fibroblasts exposed to 

the same conditions. The results are likely due to changes in cellular 

metabolism, however further work is required. Expression of VEGF-A165a is 

increased under oxidative stress with glucose, but not to a significant amount 

like that which is seen in each condition separately (Appendix A). This is likely 

due to the lack of nuclear SRSF1 localisation, but VEGF is still upregulated, 

suggesting other mechanisms in play. VEGF-A165b reduces compared to 

normoglycemia in hyperglycaemic plus hypoxic conditions, but not significantly, 

and when expressed as a ratio over VEGF-A165a, the decrease is the same as 

with each condition alone (Appendix B-C). ZO-1 staining reduces to the same 

extent as seen in hypoxia alone (Appendix F&G). In addition, the peak number 

and thus number of gaps in the tight junction also decreases to the same extent 

as hypoxia. In order to target the research of this thesis, at this point it was 

decided that we would no longer explore the dual effects of hyperglycaemia 

plus hypoxia, thus I removed it from the primary thesis data.  

6.4 Targeting the outer BRB for DR therapy 

DR manifestation and progression is attributed to breakdown of BRB. However, 

the majority of work in this field has been focused on the impact of the iBRB. 

This is especially apparent in my review of the literature, where a lot of 

publications use ‘BRB’ to describe the iBRB, neglecting to consider the oBRB 

completely. The contribution and importance of oBRB in DR pathogenesis, 

especially with regards to DME  is now beginning to be understood over recent 

years. Perhaps the reason as to why the oBRB has been overlooked is due to 

issues generating an in vitro model. I describe in the discussion of chapter 3 

the difficulties in establishing a representative model of the RPE monolayer, 

and conclude that primary cells are beneficial over ARPE-19s to assess oBRB 

integrity and VEGF-A expression. I think it is a fair interpretation that the 
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increase in retinal permeability as determined by FFA is predominately a result 

of iBRB breakdown. The imaging depth of the ophthalmoscope is not sufficient 

to visualise down to the RPE layer. However, this does not mean the oBRB is 

not involved in the increase in retinal permeability. The increase in retinal 

thickness is due to breakdown of both BRBs and fluid leakage (Xia & Rizzolo, 

2017). The choroidal circulation makes up 80% of the total retinal circulation 

and RPE are continually exposed to this. As such, one could speculate that 

high blood glucose will affect RPE more than REC, due to their increased 

exposure. Furthermore, choroidal endothelial cell-cell junctions are disrupted in 

response to HG (Saker et al., 2014), exacerbating choroidal leakiness in 

already fenestrated vessels. In healthy eyes, VEGF-A is secreted dominantly 

from the apical side of RPE, but also through the basal lamina, to the choroidal 

vasculature. Diabetes results in a reversal of this, and the basal lamina 

becomes the dominant site for VEGF-A secretion, which could impact the 

choroidal circulation (Kannan et al., 2006). This leads me to speculate that 

SPHINX31 treatment on RPE would result in an increase in VEGF-A165b 

secretion from the basal lamina and thus into the choroidal circulation. Further, 

this could be assessed by culturing RPE on transwells, treating with SPHINX31 

and measuring VEGF-A isoform expression in the upper and lower chambers. 

The results from ECIS were promising, as it suggested inhibition of SRPK1 

protects against HG-induced increase in permeability (Chapter 4). However, 

this method of determining permeability is limited in that impendence 

fluctuations are additionally caused by cell death, changes in cell morphology 

and proliferation. RPE cells are polarised and in healthy monolayers carry a 

trans-epithelial potential of difference of 3.5mV. As such, they give rise to high 

trans-epithelial resistance values to preserve the ionic gradient (Cao et al., 

2018). This was reflected in the high impedance values observed and 

maintained for several hours as the cells appeared to be a confluent monolayer. 

Thus, I would assume that the impedance was reflective of permeability shifts 

and not cell proliferation or death, which would have resulted in large dips in 

the trace. Furthermore, any changes in cell morphology would have been 

observed through the associated immunofluorescent experiments (Chapter 3 & 

4). Notably, despite the report from ibidi (the company supplying the ECIS 
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system) that measurement of impedance at low or high frequencies would 

differentiate between paracellular and transcellular flow respectively, in practice 

I observed no differences across frequencies. A particular caveat of this 

technique is the lack of an anterior chamber allow solute flux across. Whilst 

measuring solute flux with a tracer compound could potentially disrupt barrier 

integrity and the transport process, resistance measurements taken using 

chopstick electrodes in a chamber above and below cells grown on a semi-

permeable membrane would have potentially been more representative of the 

oBRB in vivo. However, ECIS is more sensitive than the chopstick method and 

the data achieved from the ZO-1 immunofluorescence corroborates with the 

ECIS results, thus giving me confidence in the results. Additionally, due to the 

use of a primary cell line with more biological variability than an immortalised 

line, I repeated the ECIS experiments ~ 6 times, and consistently found the 

same result, validating my observations.  

Disruption of the oBRB has been implicated in oedema formation in diabetic 

eyes (Xia & Rizzolo, 2017). As rats do not possess a macula, they are limited 

in their ability to accurately model DMO formation. However, characteristic early 

DMO features such as retinal thickening and altered RPE fluid transport has 

been independently observed in my model 4 weeks post-STZ administration 

(Desjardins et al., 2016), and therefore this model, although not perfect, does 

allow for some assessment of DMO. Furthermore, the largest DMO patient 

cohort are classified as having diffusible DMO: localised thickening of the ONL, 

which again has been previously modelled in rats (Xu et al., 2011). OCT is a 

powerful tool, able to produce high resolution images of the retinal layers, 

allowing for the non-invasive assessment of oedema formation. Despite the 

benefits associated with this technique, it is limited in addressing RPE health.  

Spectral-domain OCT, a more sensitive approach than OCT, observes 

particular RPE phenotypes such as atrophy and disassociation (Curcio et al., 

2017), however I do not believe improved sensitivity would offer any benefit 

answering the questions posed in this thesis. On the other hand, there has been 

development in a technique combining OCT with fluorescence molecular 

imaging, using a dye with a far-red emission spectrum, Cy5 (Yuan et al., 2010). 

This exploits the OCT capability to capture infrared light. Further work in this 
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technique would allow observations to be made of solute flux across RPE in 

response to SPHINX31, however this would take some time to develop and 

confirm robustness of analysis. The majority of my results from OCT scans are 

quantitative, based on measurements made of the retinal layers, rather than 

qualitative observations made from the scans. Perhaps with clinical 

assessments from a clinical advisor, I would have gained to deeper insight into 

retinal health in my model. I had attempted to determine changes to visual 

function in response to SPHINX31 in this model, by performing 

electroretinograms. Unfortunately, I was unsuccessful in this technique, due to 

equipment malfunctions and the timings, however as DR can result in blindness 

I believe this would have been a useful assessment to make. However, 

SPHINX31 has previously been reported in healthy mice to not change 

electroretinograms compared to untreated animals, which leads me to assume 

that SPHINX31 should not have a detrimental effect on visual function in my 

DR model (Batson et al., 2017). Additionally, I could have performed visual 

behavioural studies, such as the startle reflex, orientation, maze or optokinetic 

test, to determine changes in visual function.  

I am hesitant to interpret that a 4-week model of type-I diabetes to predict gross 

changes to retinal vasculature, despite the trends observed (Chapter 5). The 

literature describes detectable blood vessel changes 8-months after STZ-

injection, thus my model appears to be too short (Lai & Lo, 2013). As the focus 

of this PhD was permeability and not neovascularisation, I deem termination of 

the study at 4-weeks to be the correct decision, as BRB breakdown occurs at 

the 2 weeks after diabetes onset (Rungger-Brändle et al., 2000; Zhang et al., 

2008), and after four weeks I was able to move my focus to other permeability 

associated research areas rather than prolonging the study unnecessarily. 

However, the trends do offer promise that SPHINX31 would be impactful 

against retinopathy induced vascular remodelling. The data offered from the 

iBREC study: exogeneous VEGF-A165b protecting against HG-induced 

permeability, supports this hypothesis as well as the literature (Gammons et al., 

2013a; Gammons et al., 2013b). Further work in a longer term model would 

confirm these thoughts.   
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6.5 SPHINX31 mechanism of action  

Recombinant VEGF-A165b is a promising candidate for the treatment DR, as it 

has proven benefit, reducing permeability in an in vivo DR model and in vitro 

RPE (Ved et al., 2017). However, the half-life is smaller than the current gold 

standard anti-angiogenic drugs in use whilst the route of administration is the 

same. Thus, this would necessitate intravitreal injections more frequently than 

a four-week period, increasing the risk of inflammatory associated effects. Use 

of SPHINX31 may be advantageous as it is able to reprogram cell expression 

of a factor promoting DR progression to a protective expression profile. Thus, 

the VEGF-A165b concentration in the retina will be generated ‘in house’ so to 

speak and not from an external source, coupled with a decrease in pro-

angiogenic VEGF-A expression. Furthermore, as previously stated, the 

SPHINX31 route of administration is far more compliant than recombinant 

VEGF-A165b and associated with less side effects. Although eye-drops would 

need to be given more frequently than injectables due to decreased permeance 

and increased clearance, I still believe the benefits of the topical route outweigh 

the drawbacks, as patients would prefer an eyedrop over an injection.  

SPHINX31 has excellent potency for SRPK1 and of the published SRPK1 

inhibitors, has the highest specificity for SRPK1. However, it also binds to 

SRPK2 and CLK-1 at 50-fold less affinity than SRPK1 with an enzyme IC50 of 

128nM and 191nM respectively. As such, SRPK2 and CLK-1 could be partially 

inhibited by SPHINX31 when used at 3µM. SRPK2 is associated with 

phosphorylation of SRSF2 and not SRSF1 (Wang et al., 1998). However CLK-

1 hyperphosphorylates SRSF1 to induce its release from the nuclear speckles 

(Aubol et al., 2016). Therefore, its inhibition could potentially explain why HG-

induced release of SRSF1 from nuclear speckles is ameliorated by SPHINX31 

(Chapter 4).  

That SPHINX31 did not offer any protective benefit to iBREC permeability 

(Chapter 5) was intuitively disappointing, as the breakdown of the iBRB is 

primarily responsible for the vasculopathies associated with the diabetic retina. 

This suggests that in diabetes, SPHINX31 permeates through the retina to act 

on RPE cells, triggering a switch in splicing from VEGF-A165a to VEGF-A165b. 
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Heightened exogenous expression of VEGF-A165b over VEGF-A165a could act 

upon RECs of the retinal vasculature to protect against disruption to tight 

junction complexes and thus increase in vascular permeability (Jiang et al., 

2020; Ved et al., 2017). This idea is supported from a co-culture of ARPE-19s 

and RECs, where VEGF expression in ARPE-19 was silenced through 

interfering RNA resulting in a reduction in REC proliferation (Ma et al., 2011). 

This highlights the capabilities of RPE to influence REC behavior. I had also 

aimed to confirm this hypothesis by treating iBRECs with media collected from 

RPE exposed to HG and SPHINX31, as well as increasing the n number for the 

current experiments performed for the iBRECs, Furthermore, I would have liked 

to perform co-culture experiments with iBRECs and another cell type that 

produces large quantities of VEGF-A, Müller cells. Additionally, the protective 

effect that SPHINX31 offered against increased retinal thickness in diabetic rats 

suggests that SPHINX31 does reach and affect RPE function when 

administered as an eyedrop, especially as I observed evidence of RPE-

choroidal separation and probable oedema in diabetic rats untreated with 

SPHINX31 but not in the SPHINX31 cohort. This notion is supported by topical 

application of SRPK1 inhibitors reducing choroidal neovascularisation in laser-

induced choroidal lesions (Gammons et al., 2013).  

A consistent finding throughout this thesis was that VEGF-A165b expression 

was changed relative to VEGF-A165a, but unchanged when measured directly 

in RPE (Chapter 3 and 4), corroborating with published findings (Gammons et 

al., 2013). Whilst the literature agrees that activation of the SRPK1:SRSF1 axis 

results in proximal splice site selection, this does not necessarily mean that 

SRPK1 inhibition will induce distal splice site selection. In fact, SRSF6 has been 

associated with distal splice selection (Nowak et al., 2010). Thus SPHINX31 

may be working through impeding proximal splice site selection. However, this 

effect may be RPE-specific as retinal tissue isolated from SPHINX31-treated 

diabetic Norway-Browns exhibited increased VEGF-A165b expression (Chapter 

5). Challenging this result, Nowak et al., found that VEGF-A165b expression did 

not change in response to SRPK1 inhibition in laser-induced CNV mouse 

retinae (Gammons et al., 2013). Retinal tissue includes other VEGF-A secreting 

cells as well as RPE, including pericytes, astrocytes, Müller cells. The impact 
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of SPHINX31 has as of yet to be elucidated in these cell types but may offer 

explanation. However, an important caveat to consider when interpreting 

results from the VEGF-A isoform ELISA is the α-VEGF-A165a antibody used 

also binds to VEGF-A121a. VEGF-A121 has been detected in human and rat 

retinae and makes up 24% of the total VEGF-A secretion from RPE  

(Gerhardinger et al., 1998; Saint-Geniez et al., 2006). VEGF-A121 has lower 

mitogenic potential compared to VEGF-A165a, due to a lower affinity for 

VEGFR2, thus the phenotypes reported in DR are more likely due to VEGF-

A165a expression. Moreover, VEGF-A121 is associated with the maintenance of 

homeostasis of retinal neurones and vessels rather than in a pathological 

context (Nishijima et al., 2007). Western blots probed with α-VEGF-A165a  of 

RPE lysates treated with SPHINX31 related SRPK1 inhibitors (allowing 

separation of the isoforms) found significant differences in VEGF-A165a and not 

VEGF-A121 expression (correspondence with Dr Elizabeth Stewart).  

6.6 Summary 

The results from this present thesis highlight the potential of SPHINX31 as a 

novel treatment for DR and DMO. Through experiments performed, I conclude 

that SPHINX31 is permeating to the back of the eye and acting upon the RPE 

cells to increase VEGF-A165b expression relative to VEGF-A165a. VEGF-A165b 

acts in both an autocrine and paracrine fashion, protecting against DR-induced 

disruptions to tight-junctions in RPE and REC respectively. The schematic 

below summarises these ideas, and describes the proposed pathways 

associated with SRPK1 in DR relevant to this thesis. 
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Figure 6: Schematic of proposed mechanism for SPHINX31 in diabetic 
retinopathy 

Increased blood-glucose results in hyperglycemic RPE and REC. 
Hyperglycaemia activates PKCg/d/e isoforms which in turn activate SRPK1 in 
RPE. In addition, hyperglycaemia-induced hypoxia also activates SRPK1. 
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Activation of SRPK1 hypophosphorylates SRSF1, causing a translocation to 
the nucleus where it accumulates within the nuclear speckles. PKCg/d/e 
isoforms appear to also induce the nuclear translocation of SRSF1 
independently of SRPK1. SRPK1 complexing with CLK-1 in the nucleus 
hyperphosphorylates SRSF1 inducing its release from the nuclear speckles, 
where it is able to bind to VEGF pre-mRNA promoting proximal splice site 
selection and the expression of pro-angiogenic and pro-permeable VEGF-Axxxa 
isoforms. These isoforms act on VEGFR2, causing a dimerisation and 
phosphorylation of the receptor to activate downstream pathways resulting in 
the phosphorylation tight junctions proteins and disrupt the complex, increasing 
outer blood retinal barrier permeability. In a similar way, hyperglycaemia can 
result in hypoxia in RECs, triggering expression of VEGF-Axxxa isoforms, 
activation of VEGFR2, phosphorylation of tight junction proteins and breakdown 
of the inner blood retinal barrier. Additionally prolonged hyperglycaemia can 
induce apoptosis of RECs resulting in formation of acellular capillaries. 
SPHINX31 acts upon RPE to inhibit the activation of SRPK1. Thus the kinase 
is no longer able to phosphorylate SRSF1 and remains complexed with it in the 
cytoplasm. Within the nucleus, SPHINX31 inhibits SRPK1 and potentially CLK-
1 to block the release of SRSF1 from nuclear speckles. Consequentially, 
SRSF1 is unable to promote proximal splice site selection and RPE express 
larger quantities of alternative VEGF isoform VEGF-A165b. This isoform acts in 
an autocrine manner, binding to VEGFR2 resulting in a partial, transient 
VEGFR2 phosphorylation. This prevents phosphorylation of tight junction 
proteins and protects against hyperglycaemia and hypoxia induced breakdown 
of the outer blood retinal barrier. VEGF-A165b additionally acts in a paracrine 
manner, on RECs, also binding to VEGFR2 but not activating it. This protects 
against increases in inner blood retinal barrier permeability and appears to 
protect against cell death. Dotted arrows = pathways that would be activated if 
not for SRPK1 inhibition. Black inhibition arrows = inhibition via SPHINX31. 
Black inhibition dotted arrows = hypothesised inhibition via SPHINX31. Red 
inhibition arrows = actions caused by VEGF-A165b.   
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Figure 8: The impact of hyperglycaemia coupled with hypoxia on hpRPE 
VEGF-A alternative isoform expression, SRSF1 localisation and ZO-1 
barrier localisation 

Day 5 
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A: Hyperglycaemia (HG) and hypoxia (Hx) alone increase VEGF-A165a isoform 
expression compared to normoglycemia (NG). When conditions are coupled 
(HG Hx), VEGF-A165a also increases, although not to the same extent as each 
condition alone. B: HG Hx decreases VEGF-A165b expression compared to  
further than HG or Hx alone, but not statistically significantly lower than NG. C: 
The ratio of VEGF-A165b to VEGF-A165a expression is significantly reduced 
(p<0.01) in response to HG and Hx and HG Hx. D: SRSF1 localisation 
expressed as a ratio of nuclear to cytoplasmic over a 5 day timecourse. E: Day 
5 nuclear SRSF1 expression increased in response to prolonged HG or Hx 
exposure compared to NG. HG Hx caused a reduction in nuclear SRSF1 
expression. F: Peak number/distance of ZO-1 expression reduced in response 
to Hx alone and HG Hx but not HG. G: Intensity/distance of expression reduced 
in response to HG, Hx and also in HG Hx compared to NG. Error bars indicate 
mean + standard error except for D where is indicates mean ± standard error. 
Statistical analysis for all except D performed using a one-way analysis of 
variance with Bonferonni post-hoc. Two way analysis of variance with 
Bonferonni post-hoc performed for D. *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 (n=3).  

 

 

 
 

 


