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Abstract
The human brain is a highly complex organ that integrates functionally specialised
subunits. Underpinning this complexity and functional specialisation is a network
of structural connections, which may be probed using diffusion tractography, a
unique, powerful and non-invasive MRI technique. Estimates of brain connec-
tivity derived through diffusion tractography allow for explorations of how the
brain’s functional subunits are inter-linked to subsequently produce experiences
and behaviour.

This thesis develops new diffusion tractography methodology for mapping
brain connectivity, both across individuals and also across species; and explores
frameworks for discovering associations of such brain connectivity features with
behavioural traits. We build upon the hypothesis that connectional patterns can
probe regions of functional equivalence across brains. To test this hypothesis
we develop standardised and automated frameworks for mapping these patterns
in very diverse brains, such as from human and non-human primates. We de-
velop protocols to extract homologous fibre bundles across two species (human
and macaque monkeys). We demonstrate robustness and generalisability of these
protocols, but also their ability to capture individual variability. We also present
investigations into how structural connectivity profiles may be used to inform us of
how functionally-related features can be linked across different brains. Further, we
explore how fully data-driven tractography techniques may be utilised for similar
purposes, opening the door for future work on data-driven connectivity mapping.

Subsequently, we explore how such individual variability in features that probe
brain organisation are associated with differences in human behaviour. One ap-
proach to performing such explorations is the use of powerful multivariate statis-
tical techniques, such as canonical correlation analysis (CCA). After identifying
issues in out-of-sample replication using multi-modal connectivity information, we
perform comprehensive explorations into the robustness of such techniques and
devise a generative model for forward predictions, demonstrating significant chal-
lenges and limitations in their current applications. Specifically, we predict that
the stability and generalisability of these techniques requires an order of magni-
tude more subjects than typically used to avoid overfitting and mis-interpretation
of results. Using population-level data from the UK Biobank and confirmations
from independent imaging modalities from the Human Connectome Project, we
validate this prediction and demonstrate the direct link of CCA stability and gen-
eralisability with the number of subjects used per considered feature.

i



Acknowledgements

This PhD was supported by a Medical Research Council (MRC IMPACT DTP)

PhD Studentship (MR/N013913/1). An additional grant supported a visit to Yale

University to undertake a collaborative project described in Chapter 6: University

of Nottingham Graduate School Medical Research Council student flexible funding

(MR/K501360/1). I would like to thank the MRC IMPACT DTP leads, particularly

Karen Robinson at Nottingham, and our Cohort Training Officer, Vikki Harrison,

who have delivered a brilliant and supportive course, and continue to support me

as I transition to becoming an independent researcher.

Much of the computations described in this thesis were performed using the

University of Nottingham’s Augusta HPC service and the Precision Imaging Beacon

Cluster, which provide High Performance Computing service to the University’s re-

search community. If these systems (specifically the GPUs on the HPC) were not in

place, tractography for the HCP cohort would still be running. As such, I am very

grateful to the IT department and cluster support staff at the University of Not-

tingham. MRI data were provided in part by a) The Human Connectome Project,

WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugur-

bil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support

the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for

Systems Neuroscience at Washington University and b) The UK Biobank Resource

under Application Number 43822.

I would like to thank my supervisors Dr Stam Sotiropoulos and Prof. Theo

Kypraios. Stam, your support, guidance and advice at every stage of my PhD has

been invaluable. I am deeply grateful for the opportunities you have helped me

explore, and for your patience. I would also like to thank Dr Paul Morgan, who

trained me in MRI physics, for guiding me through the very early stages of my

career.

ii



Thank you to all of my collaborators who contributed their expertise and time

to various aspects of my thesis. I would like to express my gratitude towards col-

laborators in Oxford University, in particular Katherine Bryant, Rogier Mars and

Saad Jababdi, who contributed significantly to the development of XTRACT and

its tractography protocols - the anatomical expertise provided by Katherine Bryant

and Rogier Mars underpins XTRACT.

I would like to thank Alan Anticevic at Yale University who hosted me for a two-

month research placement. The time I spent in Yale had a significant impact on my

training, gave me fresh perspectives on neuroscience research and led to successful

collaborative projects. This gratitude extends to the whole of the Anticevic Lab,

and to John Murray and Markus Helmer for their collaborative efforts in Chapter

6.

Thank you to everyone in the office who I’ve shared so many coffee breaks with

and who have endured my grumpy face. A special thanks goes to fellow “Stamite”,

Dr Ellie Thompson, who paved the way as the lab’s first PhD student, setting a

high bar in the process, and has always been available for the occasional venting of

PhD stress.

Most of all, I would like to thank my family: my Mum and Dad, my brother and

sister Alex and Lyndsey, my wife Dr Kayleigh Warrington, and my cat Monty. Mum

and Dad, you have always been supportive and helped whenever you can - thank

you. Monty, thanks for the fluff, head bumps and awkward, but much appreciated,

mid-work cuddles during lockdown. To Kayleigh - I wouldn’t and couldn’t have

done this without you - thank you for being with me every step of the way, from

A-levels to PhD, infinity and beyond.

iii



List of Publications

Journals

• Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-
Ballester, M., Douaud, G., Jbabdi, S., Mars, R. B., and Sotiropoulos, S. N.
“XTRACT - Standardised protocols for automated tractography in the human
and macaque brain”, NeuroImage, 217:116923, 2020

• Helmer, M., Warrington, S., Ji, L.J., Howell, A., Rosand, B., Anticevic, A.,
Sotiropoulos, S.N., Murray, J.D. “On stability of Canonical Correlation Analy-
sis and Partial Least Squares with application to brain-behavior associations”,
bioRxiv, 2020 DOI: 10.1101/2020.08.25.265546v1

• Schilling, K.G., Rheault, F., Petit, L., Hansen, C.B., Nath, V., Yeh, F.-C.,
Girard, G., Barakovic, M., Rafael-Patino, J., Yu, T., Fischi-Gomez, E., Pizzo-
lato, M., Ocampo-Pineda, M., Schiavi, S., Canales-Rodriguez, E.J., Daducci,
A., Granziera, C., Innocenti, G., Thiran, J.-P., Mancini, L., Wastling, S., Co-
cozza, S., Petracca, M., Pontillo, G., Mancini, M., Vos, S.B., Vakharia, V.N.,
Duncan, J.S., Melero, H., Manzanedo, L., Sanz-Morales, E., Pena-Melian, A.,
Calamante, F., Attye, A., Cabeen, R.P., Korobova, L., Toga, A.W., Ambili
Vijayakumari, A., Parker, D., Verma, R., Radwan, A., Sunaert, S., Emsell,
L., De Luca, A., Leemans, A., Bajada, C.J., Haroon, H., Azadbakht, H.,
Chamberland, M., Genc, S., Tax, C.M.W., Yeh, P.-H., Srikanchana, R., Mck-
night, C., Yang, J.Y.M., Chen, J., Kelly, C.E., Yeh, C.-H., Cochereau, J.,
Maller, J.J., Welton, T., Almairac, F., Seunarine, K.K., Clark, C.A., Zhang,
F., Makris, N., Golby, A., Rathi, Y., O’Donnell, L.J., Xia, Y., Baran Aydogan,
D., Shi, Y., Fernandes, F.G., Raemaekers, M., Warrington, S., Michielse, S.,
Ramirez-Manzanares, A., Concha, L., Aranda, R., Rivera Meraz, M., Lerma-
Usabiaga, G., Roitman, L., Fekonja, L.S., Calarco, N., Joseph, M., Nakua, H.,
Voineskos, A.N., Karan, P., Grenier, G., Haitz Legarreta, J., Adluru, N., Nair,
V.A., Prabhakaran, V., Alexander, A.L., Kamagata, K., Saito, Y., Uchida,
W., Andica, C., Masahiro, A., Bayrak, R.G., Gandini Wheeler-Kingshott,
C.A.M., D’Angelo, E., Palesi, F., Savini, G., Rolandi, N., Guevara, P., Houe-
nou, J., Lopez-Lopez, N., Mangin, J.-F., Poupon, C., Roman, C., Vazquez,
A., Maffei, C., Arantes, M., Andrade, J.P., Silva, S.M., Raja, R., Calhoun,
V.D., Caverzasi, E., Sacco, S., Lauricella, M., Pestilli, F., Bullock, D., Zhan,
Y., Brignoni-Perez, E., Lebel, C., Reynolds, J.E., Nestrasil, I., Labounek, R.,
Lenglet, C., Paulson, A., Aulicka, S., Heilbronner, S., Heuer, K., Anderson,

iv

https://www.sciencedirect.com/science/article/pii/S1053811920304092
https://www.sciencedirect.com/science/article/pii/S1053811920304092
https://www.sciencedirect.com/science/article/pii/S1053811920304092
https://www.sciencedirect.com/science/article/pii/S1053811920304092
https://www.biorxiv.org/content/10.1101/2020.08.25.265546v1


A.W., Landman, B.A., Descoteaux, M. “Tractography dissection variability:
what happens when 42 groups dissect 14 white matter bundles on the same
dataset?”, bioRxiv, 2020 DOI: 10.1101/2020.10.07.321083v1

• Tewarie, P., Meier, J., Prasse, B., Mandke, K., Warrington, S., Stam, C.J.,
Brookes, M.J., Van Mieghem, P., Sotiropoulos, S.N., Hillebrand, A. “Predict-
ing time-resolved electrophysiological brain networks from structural eigen-
modes”, Under review

Conferences

• Warrington, S., Helmer, M., Ji, L.J., Mohammadi-Nejad, A.-R., Anticevic, A.,
Murray, J.D. Sotiropoulos, S.N. “Exploring the stability of canonical correla-
tion analysis between imaging and non-imaging datasets”, Organization for
Human Brain Mapping Annual Meeting, June 2020.

• Rafipoor, H., Warrington, S., Bryant, K., Sotiropoulos, S.N., Cottaar, M.,
Mars, R.B., Jbabdi, S. “Cross-species parcellation of the corpus callosum using
joint embedding of connectivity blueprints”, Organization for Human Brain
Mapping, June 2020

• Helmer, M., Warrington, S., Ji, L.J., Howell, A., Rosand, B., Anticevic, A.,
Sotiropoulos, S.N., Murray, J.D. “Reliable estimation of Canonical Correla-
tion Analysis (CCA) and Partial Least Squares (PLS) with application to
brain-behavior associations”, Organization for Human Brain Mapping Annual
Meeting, June 2020.

• Howell, A., Warrington, S., Ji, J.L., Kolobaric, A., Adkinson, B., Fonteneau,
C., Sotiropoulos, S.N., Murray, J.D., Anticevic, A. “Exploring the topography
of structure-function mappings across cortico-thalamic systems”, Organization
for Human Brain Mapping, June 2020

• Rafipoor, H., Warrington, S., Bryant, K. L., Sotiropoulos, S. N., Cottarr M.,
Mars, R. B., Jbabdi, S. “Cross-species parcellation of the corpus callosum
using joint embedding of connectivity blueprints”, Organization for Human
Brain Mapping Annual Meeting, June 2020.

• Howell, A., Warrington, S., Ji, J.L., Adkinson, B., Sotiropoulos, S.N., Mur-
ray, J.D., Anticevic, A. “Defining Targeted Projection Patterns in Thalamus
Using Diffusion Weighted Imaging”, Biological Psychiatry 87(9):S380, DOI:
10.1016/j.biopsych.2020.02.973, 2020

• Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-
Ballester, M., Douaud, G., Jbabdi, S., Mars, R. B., and Sotiropoulos, S. N.

v

https://www.biorxiv.org/content/10.1101/2020.10.07.321083v1


“Standardised protocols for automated tractography and connectivity blueprints”,
MRC IMPACT DTP Student Symposium, 2019 - Awarded 1st Place in the
poster competition

• Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-
Ballester, M., Douaud, G., Jbabdi, S., Mars, R. B., and Sotiropoulos, S. N.
“Standardised protocols for automated tractography and connectivity blueprints”,
Organization for Human Brain Mapping Annual Meeting, June 2019.

• Howell, A.M., Warrington, S., Ji, J.L., Adkinson, B., Sotiropoulos, S.N., Mur-
ray, J.D., Anticevic, A. “Characterizing higher-order thalamo-cortical projec-
tion patterns in humans”, Society for Neuroscience, October 2019

• Ganjgahi, H., Bijsterbosch, J., Daw, E.W., Donohue, B., Fieremans, E., Gahn,
D., Glasser, M., Harms, M., Hodge, M., Jbabdi, S., Kochunov, P., Mar-
chini, J., Novikov, D., Smith, S., Sotiropoulos, S., Van Essen, D., Veraart,
J., Warrington, S., Winkler, A., Nichols, T. “Genetics of the Young Adult
Human Connectome Project”, Organization for Human Brain Mapping, June
2018

Publicly-released Software

• XTRACT, along with periphery tools xtract_viewer and xtract_stats, have
been freely and publically released in FMRIB’s Software Library (FSL)
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT

• WM tract atlases for the human (HCP) have been released in FSL, and equiv-
alent atlases for the macaque brain and derived from the UK Biobank are
available via GitHub (https://github.com/SPMIC-UoN/XTRACT_atlases).
Atlases of the connectivity blueprints for the human and macaque brain are
also available under the same location.

• Microstructural diffusion atlases, “HCP1065 standard-space DTI templates”,
derived from the “WU-Minn” Human Connectome Project, have also been
released is FSL. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

• gemmr - Generative Modeling of Multivariate Relationships (led by Markus
Helmer). A python-based package to estimate the required sample sizes for
Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS), gen-
erate synthetic datasets and perform CCA and PLS analyses.
https://github.com/murraylab/gemmr

vi

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT
https://github.com/SPMIC-UoN/XTRACT_atlases
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://github.com/murraylab/gemmr


Contents

Abstract i

Acknowledgements ii

List of Publications iv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Layout of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Publicly-released Software . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Computing Infrastructure and Software . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Introduction to MRI Physics . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Spins, Precession and Relaxation . . . . . . . . . . . . . . . . 12

2.1.2 Imaging and k-space . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Spin Echo and Echo Planar Imaging . . . . . . . . . . . . . . 21

2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Introduction to Diffusion MRI . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 The Basics of dMRI . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Diffusion Modelling - The Diffusion Tensor . . . . . . . . . . . 27

2.2.3 Beyond The Diffusion Tensor . . . . . . . . . . . . . . . . . . 31

2.2.4 Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Introduction to Resting-State Functional MRI . . . . . . . . . . . . . 43

2.3.1 The Basics of fMRI . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Estimating Functional Connectivity Using fMRI . . . . . . . . 44

2.4 Summary and Thesis Context . . . . . . . . . . . . . . . . . . . . . . 48

3 Big Data and Large-Scale Neuroimaging Projects 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The Human Connectome Project . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Cohort Overview . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



CONTENTS viii

3.2.2 Non-Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.4 The HCP Minimal Preprocessing Pipeline (MPP) . . . . . . . 56

3.3 The UK Biobank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Cohort Overview . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Non-Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Imaging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.4 Preprocessing Pipeline . . . . . . . . . . . . . . . . . . . . . . 62

3.4 HCP Structural Connectivity Features and Atlases . . . . . . . . . . 64

3.4.1 White Matter Microstructural Atlases . . . . . . . . . . . . . 65

3.4.2 Structural Connectomes . . . . . . . . . . . . . . . . . . . . . 67

3.5 Summary and Thesis Context . . . . . . . . . . . . . . . . . . . . . . 70

4 Standardised and Automated Tractography for Deriving Connec-
tivity Features 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 XTRACT and the Tractography Protocols . . . . . . . . . . . 76

4.2.2 Data and Preprocessing . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Fibre Orientation Estimation and Tractography . . . . . . . . 90

4.2.4 Connectivity Blueprints . . . . . . . . . . . . . . . . . . . . . 90

4.2.5 Atlas Generation . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.6 Protocol Evaluation and Validation Methods . . . . . . . . . . 92

4.2.7 Capturing Inter-Subject Variability . . . . . . . . . . . . . . . 95

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Atlases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.2 The Effect of Sample Size on Atlas Generation . . . . . . . . 98

4.3.3 Robustness Against Datasets . . . . . . . . . . . . . . . . . . 99

4.3.4 Reflecting Known Anatomy . . . . . . . . . . . . . . . . . . . 101

4.3.5 Capturing Inter-Subject Variability . . . . . . . . . . . . . . . 107

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



CONTENTS ix

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Summary of the Tractography Protocols Previously Defined

in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.2 XTRACT User-Guide . . . . . . . . . . . . . . . . . . . . . . 118

4.6.3 Summary of the Tract Lateralisation Literature . . . . . . . . 122

4.6.4 The Effect of Resolution on Connectivity Blueprints . . . . . 123

5 Building and Mapping Onto Common Connectivity Spaces 124

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Cross-species Mapping onto Connectivity Spaces . . . . . . . . . . . . 128

5.2.1 Connectivity Blueprints . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Joint-Spectral Embedding . . . . . . . . . . . . . . . . . . . . 129

5.2.3 Projecting Myelin Maps Across Species . . . . . . . . . . . . . 131

5.2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Building Connectivity Spaces using Data-Driven Methods . . . . . . 135

5.3.1 Myelin Map Predictions . . . . . . . . . . . . . . . . . . . . . 140

5.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.6.1 Landmark regions-of-interest . . . . . . . . . . . . . . . . . . 148

5.6.2 Landmark connectivity . . . . . . . . . . . . . . . . . . . . . . 149

6 Multivariate Statistical Approaches for Brain-Behaviour Associa-
tions 150

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 CCA Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Prior Work using CCA . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Evaluating CCA Stability Against Multi-modal Data . . . . . . . . . 160

6.4.1 Feature Extraction: Imaging Features . . . . . . . . . . . . . 163

6.4.2 Feature Extraction: Non-Imaging Features . . . . . . . . . . . 165



CONTENTS x

6.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.5 CCA with Known Ground-Truths . . . . . . . . . . . . . . . . . . . . 169

6.5.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . 169

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6 CCA Applied to Large Samples . . . . . . . . . . . . . . . . . . . . . 174

6.6.1 Feature Extraction: Imaging Features . . . . . . . . . . . . . 174

6.6.2 Feature Extraction: Non-Imaging Features . . . . . . . . . . . 175

6.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.6.4 Results: Overall Stability . . . . . . . . . . . . . . . . . . . . 176

6.6.5 Results: Correspondence Between Modes . . . . . . . . . . . . 177

6.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.7.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 186

6.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.9.1 Double-dipping and CCA . . . . . . . . . . . . . . . . . . . . 192

6.9.2 Behavioural Measures used in CCA - HCP Analyses . . . . . 194

6.9.3 Behavioural Measures used in CCA - UK Biobank Analyses . 196

6.9.4 UK Biobank CCA top Non-imaging Loadings . . . . . . . . . 200

7 Conclusions and Future Directions 203

7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.1.1 The Standardisation of Tractography . . . . . . . . . . . . . . 205

7.1.2 Using Connectivity to Map Brain Diversity . . . . . . . . . . 206

7.1.3 Brain-Behaviour Associations . . . . . . . . . . . . . . . . . . 207

Bibliography 208

Acronyms 235



List of Tables

3.1 Summary demographics of the HCP cohort . . . . . . . . . . . . . . . 52

3.2 Summary subject health and family history of the HCP cohort . . . . 54

3.3 MRI acquisition parameters for the HCP . . . . . . . . . . . . . . . . 55

3.4 Summary demographics of the UK Biobank cohort . . . . . . . . . . 60

3.5 MRI acquisition parameters for the UK Biobank . . . . . . . . . . . . 62

4.1 WM tracts supported in XTRACT . . . . . . . . . . . . . . . . . . . 76

4.2 A review of the tractography protocols previously defined in the lit-

erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3 WM tract lateralisation results . . . . . . . . . . . . . . . . . . . . . 122

6.1 Summary of the CCA literature . . . . . . . . . . . . . . . . . . . . . 161

xi



List of Figures

1.1 Neurons as sketched by Cajal and imaged via electron microscopy . . 3

2.1 The simple MRI experiment . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The spatial localisation of signal in MRI and the gradient echo sequence 20

2.3 The spin echo and echo planar imaging sequences . . . . . . . . . . . 22

2.4 Schematics of the neuron and examples of diffusion in the three main

brain tissue types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The Stejskal-Tanner pulsed gradient spin echo sequence . . . . . . . . 26

2.6 Examples of diffusion weighted images of the brain . . . . . . . . . . 29

2.7 Microstructural feature maps derived from diffusion MRI . . . . . . . 32

2.8 Examples of diffusion tensor ellipsoids . . . . . . . . . . . . . . . . . 32

2.9 The issue of multiple fibre bundles . . . . . . . . . . . . . . . . . . . 33

2.10 A schematic of tractography . . . . . . . . . . . . . . . . . . . . . . . 39

2.11 A simple comparison of deterministic and probabilistic tractography . 40

2.12 The BOLD effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 The HCP cohort-averaged FA map . . . . . . . . . . . . . . . . . . . 66

3.2 An enhanced view of the HCP group-averaged first eigenvector map . 67

3.3 Cohort-averaged orientation dispersion index and intra-cellular vol-

ume fraction maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 The group averaged structural connectomes derived from the HCP . . 69

4.1 The XTRACT processing pipeline . . . . . . . . . . . . . . . . . . . . 78

4.2 Schematic of the construction of connectivity blueprints . . . . . . . . 92

4.3 Schematic of the calculation of the KL divergence between hemispheres 95

4.4 WM tract atlases for the human and macaque brain . . . . . . . . . . 97

4.5 Connectivity blueprint atlases for the human and macaque brain . . . 98

4.6 Comparison of atlases for varying sample sizes . . . . . . . . . . . . . 99

4.7 Summary of inter-cohort robustness . . . . . . . . . . . . . . . . . . . 100

4.8 Comparisons of the tract volumes across cohorts . . . . . . . . . . . . 101

xii



LIST OF FIGURES xiii

4.9 Summary of the WM tract lateralisation . . . . . . . . . . . . . . . . 102

4.10 The minimum KL divergence between hemispheres . . . . . . . . . . 103

4.11 Examples of the WM tract contribution of the KL divergence . . . . 104

4.12 Parcel-averaged tract contributions to a subset of the cortex . . . . . 106

4.13 Comparisons of tract similarity considering familial structure . . . . . 107

4.14 Examples of XTRACT in cases of atypical anatomy . . . . . . . . . . 110

4.15 The XTRACT command-line user interface. . . . . . . . . . . . . . . 118

4.16 Comparisons of the connectivity blueprints across resolutions . . . . . 123

5.1 Summaries of the myelin map prediction approaches . . . . . . . . . 132

5.2 The Kullback-Leibler divergence between the macaque and human

cortical termination maps . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 The joint-similarity matrix and embedded components . . . . . . . . 136

5.4 Predictions of the macaque myelin map . . . . . . . . . . . . . . . . . 137

5.5 Absolute difference between the predicted and measured macaque

myelin maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6 The extraction of WM and GM components through NMF . . . . . . 139

5.7 Examples of the NMF components . . . . . . . . . . . . . . . . . . . 142

5.8 Predicting myelin across subjects using data-driven tractography . . . 143

5.9 The homologous landmarks used in deriving the joint-embedded com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.10 The tract contribution to each of the homologous landmarks . . . . . 149

6.1 Schematic of the CCA equation . . . . . . . . . . . . . . . . . . . . . 155

6.2 Schematic of a typical permutation testing scheme . . . . . . . . . . . 157

6.3 Schematic of the CCA subsampling scheme . . . . . . . . . . . . . . . 162

6.4 Schematic of the imaging-data preprocessing for CCA . . . . . . . . . 164

6.5 Plots of the CCA stability using the HCP data . . . . . . . . . . . . 168

6.6 Schematic of the CCA simulation framework . . . . . . . . . . . . . . 170

6.7 Simulation framework sanity checks . . . . . . . . . . . . . . . . . . . 172

6.8 The stability of the canonical correlations and canonical weights with

known ground-truths . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



6.9 The stability of CCA at the population-level . . . . . . . . . . . . . . 177

6.10 The stability of canonical correlations considering the top 10 compo-

nents using the UK Biobank cohort . . . . . . . . . . . . . . . . . . . 178

6.11 Correlation matrices showing the correspondence between canonical

modes derived from the UK Biobank CCA analysis . . . . . . . . . . 178

6.12 The top non-imaging contributors to each canonical mode for the UK

Biobank CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.13 CCAs reported in the population neuroimaging literature might often

be unstable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.14 Sample sizes required for sparse CCA compared to classic CCA. . . . 189

6.15 The consequence of double-dipping in CCA . . . . . . . . . . . . . . 193

6.16 The top non-imaging contributors to each canonical mode for the UK

Biobank CCA with 20k subjects . . . . . . . . . . . . . . . . . . . . . 202

xiv



Chapter 1

Introduction

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Layout of This Thesis . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Publicly-released Software . . . . . . . . . . . . . . . . . . . 9
1.4 Computing Infrastructure and Software . . . . . . . . . . 10

1



Chapter 1. Overview 2

1.1 Overview

Understanding the human brain and how it gives rise to behaviour and eventually

cognition is one the most compelling challenges of our time. Early investigations

into the anatomy and organisation of the brain, and its relationship to function, were

speculative and often founded on misguided conceptions of what the brain actually

is. In the 17th century, the Danish anatomist Nicolaus Steno argued for a move

towards a more methodical approach to understanding the brain. Considering the

brain as a machine, Steno argued that not only should we describe the component

parts of the brain, we should seek to understand the global consequence of those

components and their individual function (Steno, 1669; Cobb, 2020). Of course,

this is not a simple task and the general principles that Steno argued for still guide

current neuroscience research.

Through the 17th-19th centuries, developments in our understanding of elec-

tricity, the finding that nerve fibres transmit signals, the consensus that all biological

tissues are composed of discrete cells, and the development of histological cell stain-

ing led to the conception of the neuron doctrine. This defined the nervous system

as a collection of individual cells based on the works of Santiago Ramón y Cajal and

others (Figure 1.1a). Although in line with the consensus on other biological tissues

and winning the Nobel Prize for Physiology or Medicine in 1906, the neuron doctrine

was disputed by some until the definitive observations made via electron microscopy

in the 1950s which depicted neuronal cells separated by the synapse (Figure 1.1b)

(Palade, 1954).

Still to this day, our understanding of how the brain works is in general terms

- we can measure activity and relate it to external events and stimuli; we can define

subdivisions of the brain based on the differences in anatomical structure; and we

can precisely measure the electrical activity of neurons, yet, these concepts, and

others, lack a comprehensive description and unification in how matter gives rise to
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Figure 1.1: a. An example of Cajal’s drawings of pyramidal cells. b. Early
electron microscope images of neurons, showing clear boundaries - the synapse -
between two neurons. The arrows indicate the synapse with the neurons labelled a
and b. Edited from López-Muñoz et al. (2006).

human behaviour. We are not yet at the stage of unifying models of coarse brain-

behaviour relationships and neuronal activity. To progress towards this end-goal,

further developments in our understanding of all aspects of the brain are required.

Two approaches to understanding the brain are of particular interest in this work,

both of which consider the coarse, global features of the brain. The first relates to the

structural architecture of the brain and how mapping this architecture may inform

our understanding of brain function, even across non-human primate species. The

second is towards a better understanding of the relationships between the architec-

ture of the brain and human behaviour. Such investigations have become possible

in recent decades through the rapid development of medical imaging techniques,

computational power and large-scale neuroscience efforts.

The advances and frameworks presented in this thesis are based on magnetic

resonance imaging (MRI) - a widely used clinical and research imaging modality.

Since its clinical adoption, MRI has reformed diagnostic imaging and led to signifi-



Chapter 1. Overview 4

cant advancements in our understanding of the normal and abnormal structure and

function of the human body (Haacke et al., 1999; McRobbie et al., 2005; Edelman,

2014; Lui et al., 2016; Lerch et al., 2017; Beek et al., 2019; Sarubbo and Petit,

2019). Most notably, MRI has propelled forward the field of neuroscience, which

previously relied on poor tissue contrast methods such as x-ray imaging techniques

or field-of-view limited and time consuming post-mortem methods, such as light-

imaging techniques, microscopy, anatomical tracing and histology. MRI allows for

safe, non-invasive, high-soft-tissue-contrast imaging of the human brain with useful

spatial resolution and full brain coverage. This makes MRI ideal for investigating

the underlying nature of the brain, albeit at the macroscale. More specifically, in

neuroscience, MRI has advanced our understanding of large-scale brain anatomy,

the functional specialisation and organisation of the brain, and has afforded us the

opportunity the measure brain changes during disease progression non-invasively.

Several MRI based techniques - modalities - have been developed which are

capable of providing unique information with regard to the structure and physiology

of the brain. Two MRI modalities are of focus in this research: diffusion MRI (dMRI)

and functional MRI (fMRI). dMRI and fMRI seek to understand the structural and

functional architecture of the brain respectively.

Structural architecture may be explored at a range of scales. High-spatial reso-

lution imaging methods, such as electron microscopy, aim to understand the brain at

a ultra-structural/neuronal level (DeFelipe, 2010) by probing brain tissue structure

at a microscale level. These methods are time consuming and limited in their field-

of-view. MRI-based methods are capable of probing brain connectivity on a global

level by seeking to reconstruct macroscale connections in relatively short acquisition

times. However, measuring brain connectivity through MRI is limited by the fact

that measurements are indirect. Modelling is used to estimate quantities of interest

and, in part, overcome some of the limitations associated with MRI (Jbabdi et al.,

2015). Although limited, MRI is capable of providing in vivo semi-quantitative mea-
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sures of brain connectivity on a scale and level of detail not achieved by any other

imaging modality (Jbabdi et al., 2015).

Brain connectivity may be summarised by constructing connectivity adjacency

matrices. In analogy to the term used in the study of the genome - genomics -

the term connectomics has been coined to encapsulate the study of brain connec-

tivity matrices, or “connectomes” (Sporns et al., 2005). A connectivity matrix, or

connectome, is derived by mapping the functional co-activation of brain regions

or the structural connections (fibre pathways) between brain regions (Rubinov and

Sporns, 2010). Such data may be acquired using an array of multi-modal tech-

niques such as functional and diffusion MRI, electroencephalography (EEG) and

magnetoencephalography (MEG). The connectome is defined by the connections

(edges) between pairs of regions/vertices (nodes) and aims to mathematically repre-

sent complex real-world problems (Rubinov and Sporns, 2010). These connectomes

allow us to study brain connectivity on a local and global level through a number

of summary measures (for instance node degree and strength, community structure

and modularity, network efficiency and topology) (Rubinov and Sporns, 2010) or

regional patterns of connections (“connectivity fingerprints”) (Passingham et al.,

2002; Jbabdi et al., 2015; Mars et al., 2018b).

The two types of connectome, functional and structural, are closely related. The

functional specialisation of brain regions is well-documented through history (Fin-

ger, 2009) with recent work dividing the brain into hundreds of specialised regions

(Glasser et al., 2016). Underpinning this functional localisation and specialisation is

the extremely complex network of axonal fibres, which carry signals between brain

regions. It is the architecture of this vast network that constrains brain function.

It is the patterns of connections that define functional territories; they com-

prise a signature of brain organisation (Jbabdi and Behrens, 2012; Passingham et

al., 2002). As such, it is the unique variation in structural architecture that un-

derpins the individual mind. Therefore, we can gain insight into the brain and its
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function/dysfunction by understanding its structural architecture.

“A mechanism may operate before us without our recognizing the exact rela-
tion between its function and its architecture. But, on the other hand, if we
are acquainted with the principles upon which this mechanism operates, we
may infer its function from its structure, regarding the former as the natural
outcome of the latter.” - Meynert (1885), pg. 156

In the era of modern - 21st century - neuroscience, there is an abundance of

data that can assist in understanding the brain (Fan et al., 2014; Sejnowski et al.,

2014; Vu et al., 2018; Smith and Nichols, 2018; Bzdok et al., 2019). Neuroscience

has learnt from and progressed beyond observations of individual brains and now

relies on large-scale and population-based studies. Recent neuroimaging projects,

unprecedented in scale, make it possible to study the links between the structural ar-

chitecture of the brain and function at the population-level. At the time of writing,

the UK Biobank has recruited half a million subjects, approximately forty-thousand

of whom have brain MRI data available. Further, significant advancements in ac-

quisition technology and techniques have led to a vast pool of superb quality data.

The “WU-Minn” Human Connectome Project (HCP) pushed the boundaries of data

acquisition and quality, producing the highest-quality multi-modal MRI data avail-

able for a large cohort of subjects. These advancements are promising in seeking to

unravel the associations between structure and function. However, the methodology

to utilise this data lags behind and new techniques are required.

In this thesis, we present approaches that are linked to these two challenges.

First we develop methodology for mapping brain connectivity from diffusion MRI

and extract patterns of connectivity in a way that is generalisable even in the absence

of geometric similarities, across human and non-human primates. We then demon-

strate how these patterns can used to probe functional organisation and similarities,

even across very diverse brains.
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Second, we use inter-individual variability of connectivity features to explore

links with behavioural traits. We demonstrate challenges and issues of existing tech-

niques and propose solutions for robust data-driven brain-behaviour associations.

1.2 Layout of This Thesis

This thesis focuses on the development of tools for robustly mapping structural

connectivity features across individuals and species and relating those measures to

functionally-relevant features, ultimately human behaviour. As such, Chapter 2

introduces the basic concepts behind magnetic resonance imaging (MRI), focusing

on diffusion and touching on functional MRI. A brief overview of the physics of

MRI is provided, followed up by the background to diffusion MRI data, modelling

and tractography, specific to the development of automated tractography pipelines,

in Chapter 4. In addition, an overview of the physics governing fMRI and how

such techniques may be used to estimate functional connectivity are also presented.

Chapter 3 provides overviews of the HCP and UK Biobank cohorts, which are the

main sources of data for this thesis, and summarises the extraction of key connec-

tivity feature maps used throughout this thesis or in side-projects associated with

this thesis.

Chapter 4 presents the development of a standardised and automated cross-

species tractography toolbox (XTRACT). This includes comprehensive descriptions

of a library of standardised tractography protocols, the automated tractography

pipeline, and the validation of said protocols and pipeline. The utility of the toolbox

is demonstrated by reconstructing major white matter bundles in the human brain

using varying quality data, and their homologous bundles in the non-human primate

(macaque) brain. For the human brain, these bundles are used to explore inter-

hemispheric differences in structural connectivity relating to functional specialisation

and lateralisation.
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Chapter 5 furthers the work presented in Chapter 4 to explore how such meth-

ods can be used to extract connectivity patterns and define a common connectivity

space for probing functional similarity, even across very diverse brains, such as those

from different primate species. We compare two approaches for identifying corre-

spondence between human and macaque brains, using the tractography patterns

derived in Chapter 4 and employing a) statistical similarity of connection patterns,

b) joint-embedding of connectivity. Furthermore, we extend these ideas and explore

how fully data-driven approaches for mapping connection patterns (as opposed to

using a predefined and limited set of manually-devised tractography protocols) can

be also used for similar purposes.

Chapter 6 focuses on the application of multivariate statistical techniques in

exploring the associations between brain connectivity and behavioural traits, as

captured by non-imaging measures, such as lifestyle, physical health and cognition.

Multivariate statistical techniques, such as canonical correlation analysis (CCA) and

partial least squares (PLS), are powerful techniques which, recently, have been used

to reveal latent associations in large dimensionality data, often with few subjects.

Chapter 6 performs comprehensive investigations into the robustness of such tech-

niques, focusing on CCA, and demonstrates significant challenges and limitations

in their application when not enough data are available. Issues with regard to the

number of subjects compared to the number of features are identified, which lead to

significant overfitting and the potential mis-interpretation of results. These results

challenge the definition of “large” datasets in the context of multidimensional brain-

behaviour association studies. Using data from the UK Biobank, we demonstrate

that, in order to obtain robust patterns, tens of thousands of subjects are needed

when 50-100 imaging/non-imaging features are explored, suggesting that an order

of magnitude more subjects are needed than used in similar (under-powered) studies

before.

Finally, conclusions and future directions are presented in Chapter 7. The works
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presented in this thesis are discussed in terms of their limitations, utility, and their

impact and wider context.

1.3 Publicly-released Software

This thesis develops, or contributes to, several publicly released software. The first

of which is XTRACT. This is a tool for the standardised and automated extraction

of major white matter fibre bundles in the human and non-human primate brain

(see Chapter 4 for full details). It was publicly released in September 2019 as a

part of one of the most commonly used neuroimage processing software packages,

FMRIB’s Software Library (FSL, v6.0.2).

A set of white matter tract atlases and a set of diffusion microstructural atlases,

both derived from the HCP cohort, have also been publicly released in FSL (see

Chapter 4 for full details). The white matter tract atlases were derived by applying

XTRACT to each HCP subject and averaging across the cohort. Equivalent atlases

for the non-human primate (macaque) brain and from the UK Biobank, and atlases

of the connectivity blueprints for both the human and macaque brain have also been

made available via GitHub (github.com/SPMIC-UoN/XTRACT_atlases).

Chapter 6, which is concerned with investigations into the use of multivariate

statistical techniques, was a collaborative project with colleagues from the Murray

Lab and Anticevic Lab at Yale University. Led by Markus Helmer, a python-based

tool to calculate the required sample sizes for such techniques was developed: GEM-

MER - Generative Modeling of Multivariate Relationships. The details of this pack-

age may be found in the associated manuscript (Helmer et al., 2020) and through

GitHub (github.com/murraylab/gemmr).

https://github.com/SPMIC-UoN/XTRACT_atlases
https://github.com/murraylab/gemmr
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1.4 Computing Infrastructure and Software

The primary processing system in the early stages of this work was an 80 core

computing server (Intel Xeon CPU E5-2698 v4, 2.20 GHz) CentOS Linux v7 (630

GB total memory). Importantly, the server has four graphical processing units

(GPUs) available (NVIDIA Tesla K80, 11.5 GB memory per GPU). GPUs allow

for extensive and rapid data processing by employing parallel processing on a large

scale (Hernandez-Fernandez et al., 2019).

From year two of this work and onwards, the primary processing system was

the “Imaging Beacon” partition of the University of Nottingham High-Performance

Computer (HPC). This partition consists of 600 cores with memory specifications

ranging from 192 GB to 1536 GB depending on the node and 10 high-end GPUs (6

Nvidia Tesla V100 and 4 Nvidia Tesla P100).

Statistical analysis were performed using the Python programming language

(version 3.7.2) (Python Software Foundation, https://www.python.org) along with

several community-developed python libraries (mainly NumPy, SciPy, pandas, Ni-

Babel and Matplotlib) and MATLAB 2018a (The MathWorks, Inc., Natick, Mas-

sachusetts, United States). Visualisation and processing of surface data was com-

pleted using the Connectome Workbench (version 1.3.2; Van Essen Laboratory,

Washington University). General image processing were completed using the FM-

RIB software library, FSL (version 5.0.11 and beyond) (Jenkinson et al., 2012).

https://www.python.org
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2.1 Introduction to MRI Physics

2.1.1 Spins, Precession and Relaxation

Magnetic resonance imaging (MRI) is an imaging technique that uses powerful mag-

netic fields and radio frequency (RF) fields to measure distributions of protons in

biological samples. Most commonly, these protons are bound in water and fatty

tissues. Protons, as with all subatomic particles, possess the quantum mechanical

property known as spin, which describes the particle’s angular momentum. The spin

(i.e. spin quantum number) of a proton is s = 1/2, in dimensionless units, corre-

sponding to the quotient of the spin angular momentum (S, units of kgm2s−1) and

the reduced Planck constant }. Given this non-zero spin and the magnetic and mass

properties of protons, we can deduce the spin magnetic moment µs as µs = γS,

where S = }
2
for a proton and γ is the gyromagnetic ratio. The gyromagnetic ra-

tio (with units of rads−1T−1 but often reported as MHzT−1) is fundamental in the

understanding and workings of MRI. It describes the ratio between the magnetic

moment and the angular momentum of a particle. The proton has a gyromagnetic

ratio of 42.57 MHzT−1. Importantly, from the gyromagnetic ratio, we can see that

the angular momentum of a proton is not only dependent on its own properties, but

also on any external magnetic field.

When an external static magnetic field B0 is introduced, as in MRI, protons

within that field experience a torque, the size of which is dependent on the strength of

the magnetic field. This torque forces the protons towards alignment/anti-alignment

(known as spin-up and spin-down) with the magnetic field. Given a distribution of

protons, the ratio of the number of protons in the spin-up state compared to the

spin-down state is given by Boltzmann’s distribution, Nup

Ndown
≈ 1 + γ}B0

kBT
, where kB

is the Boltzmann constant and T is the temperature of the sample (e.g. in the field

of MRI, this is most commonly body temperature).
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On average, in the typical case where the temperature of a biological sample

is approximately 300 Kelvin, there is a greater number of protons in the spin-up

state compared to the spin-down state by a few parts per million. This slightly

greater favouring to the spin-up state leads to a non-zero net magnetisation M0

caused by the averaging of the magnetic fields carried by the protons. It is this

net magnetisation that MRI seeks to quantify. However, due to the tiny magnitude

of the net magnetisation compared to the main magnetic field B0, to be able to

observe it, we must rotate its direction with respect to the external magnetic field

of the net magnetisation. A simple choice, and one in which the observable signal

is maximised, is to rotate the axis of the net magnetisation M0 such that the net

magnetisation and the main magnetic field B0 are orthogonal, i.e. M0⊥B0. In

fact, the axis of the net magnetisation may be rotated by any angle, however, the

observable signal is limited to the component of the vector of the net magnetisation

along the plane orthogonal to the main magnetic field. From this we may define a

set of axes x, y, z. We will consider the main magnetic field B0 and, initially, the net

magnetisation M0 as being along the z-axis. We can refer to this net magnetisation

as Mz = |M0| and net magnetisation in the x − y plane as Mxy which, initially, is

zero. Before discussing the effect of rotating the plane of the net magnetisation, we

must understand an important aspect of the interaction between the protons and

the main magnetic field.

Due to the spin angular momentum of the proton, protons exposed to an ex-

ternal magnetic field cannot align exactly to the magnetic field. Instead, their axis

is offset. Therefore, they start to precess about the main axis of the magnetic field.

The frequency of this precession is known as the Larmor frequency and is determined

by the magnetic field strength and the gyromagnetic ratio, given by Equation 2.1.

ω0 = γ|B0| (2.1)
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where B0 (units of Tesla, T ) is used to denote the magnetic field strength of

the main magnetic field in MRI.

By applying an RF electromagnetic field pulse (with a magnetic field strength

of B1) at the resonant/Larmor frequency, and thus meeting the resonance condition,

it is possible to rotate the axis about which the protons precess, thus altering the

direction of the net magnetisation with reference to the main magnetic field’s axis

(the z-axis). Typically, the RF field is applied such that the net magnetisation

axis is rotated 90◦ compared to the main axis. This may be thought as providing

enough energy at the resonant frequency such that the distribution of proton spin

states becomes equalised, i.e. there is no net magnetisation in the axis of the main

magnetic field. Mathematically, this may be summarised as Mz = |M0|,Mxy = 0
α⇒

Mz = 0,Mxy = |M0| where α = 90◦ RF pulse. This concept may be extended

to considering various angles of rotation. For example, a 180◦ rotation may be

considered as flipping the spin state of each proton such that the net magnetisation

is now anti-parallel to the main magnetic field.

In addition to the effect of rotating the axis about which the protons precess,

the RF field also enforces phase coherence on to the collection of protons. Whereas

before, when precessing about the main magnetic field’s axis, the protons were out

of phase with each other, and thus there was zero net magnetisation about any

axis other than the main magnetic fields axis (i.e. Mx = My = 0), there is now a

relatively strong, phase coherent net magnetisation in the plane of the new B1 field

which is still precessing about the main magnetic field B0. We refer to this new

plane, when a 90◦ RF pulse has been applied, as the transverse plane (the x − y

plane).

Using a wire coil1 tuned to the Larmor frequency, via electromagnetic induction

described by the Maxwell-Faraday equation, it is possible to measure the electrical
1In fact, two coils are used in quadrature, recording two signals: a real (<) and an imaginary

(=) signal, that are 90◦ out of phase. The subsequent averaging of these signals (
√
<2 + =2) boosts

the signal-to-noise ratio (SNR)
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voltage induced in the coil by the oscillating/precessing transverse plane net mag-

netisation. Over time, the protons lose phase coherence and return to their original

spin-state via proton-proton and proton-environment interactions respectively. In

other words, the net magnetisation in the transverse plane reduces back to zero and

the net magnetisation in the main magnetic field axis returns to its original magni-

tude (i.e. Mz
T1⇒ |M0|, Mxy

T2⇒ 0, where T1 and T2 are the decay times described

below). The time taken for these processes to occur is governed by the frequency

with which the proton-proton and proton-environment interactions (and additional

interactions not covered here) occur.

Commonly, the process of proton de-phasing is referred to as transverse relax-

ation and is described by the T2 time constant. Additional relaxation, caused by

local inhomogeneities in the main magnetic field, also occurs, giving rise to the T2∗

time constant. This is due to the Larmor frequency being dependent on the mag-

netic field strength. Imperfections in the external magnetic field and local changes

in sample susceptibility result in small changes in the Larmor frequency of pro-

tons. Therefore, relative to neighbouring protons, protons affected by local inhomo-

geneities will precess at a slightly different rate, thus causing loss of phase coherence

at a greater rate.

The process of the orientation of the net magnetisation returning to the axis

of the main magnetic field (the z-axis) is referred to as longitudinal relaxation and

is described by the T1 time constant. It is during this relaxation, or decay, that

we may measure the voltage, or signal, produced by the proton distribution. The

processes discussed above are the basic principles of the generation and measurement

of signal in MRI and are summarised in Figure 2.1.

2.1.2 Imaging and k-space

Further to the precession and relaxation processes, we may refine the signal we

observe by embedding spatial information. We have mentioned that the Larmor
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Figure 2.1: Schematics of the basic processes included in producing an observable
signal in a simple MRI experiment, including the application of external magnetic
and radiofrequency fields to a pool of protons, the process of proton relaxation, in
which protons return to their equilibrium states following radiofrequency excitation,
and the overall observed signal observed as a combination of the two main types of
proton relaxation and spin precession. 1. A pool of protons at equilibrium. The net
magnetisation M0 produced by the protons is approximately zero. 2. An external
magnetic field B0 is applied to the pool of protons along the z-axis, causing the protons
to move to parallel or anti-parallel orientations, in accordance with the Boltzmann
distribution. There is now a non-zero net magnetisation. 3. The protons precess
about the z-axis (as indicated by the dashed blue line) at the Larmor frequency ω0

with a M0 parallel to the B0 field. 4. An RF electromagnetic field (carrying the
associated magnetic field B1) is applied to the system, flipping the B0 from the z-axis
into the x − y plane and forcing phase coherence on the protons, denoted as Mxy.
Caption continued on the following page.
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Figure 2.1: 5. Following the RF electromagnetic field pulse, the protons are
initially in-phase with a maximum possible Mxy = |M0| amplitude. With time,
governed by the transverse relaxation Bloch equation with time constant T2, the
protons begin to lose phase, thus decreasing Mxy, until completed loss of coherence
where Mxy = 0. 6. Also immediately following the RF electromagnetic field pulse,
the Mz net magnetisation has been flipped into the x-y plane (as shown in panel 4.),
leaving zero net magnetisation in along the z-axis (i.e. Mz = 0) at the end of the
90◦ RF pulse. Over time, governed by the longitudinal relaxation Bloch equation
with time constant T1, the protons begin to return to their pre-RF pulse equilibrium
and Mz increases until equaling |M0|. 7. The exponential decay and growth of Mxy

and Mz respectively following a 90◦ RF pulse (top-right). The decay of Mxy, i.e.
de-phasing of protons, combined with the precession of the spins induces a sinusoidal
voltage in a wire coil (the ‘Signal’ axis) decreasing in amplitude over time. This
signal is known as the free induction decay (FID). The envelope of the FID, shown
by the green line corresponds to the T2 decay curve. Note: panels 1-3. are visualised
from a stationary frame of reference. As is common in the MRI community, panel
4. and beyond are viewed within a rotating frame of reference in order to ease
visualisation, indicated by the blue curved arrow in panel 4. (the frame of reference
is rotating at the Larmor frequency).

frequency is dependent on the external magnetic field (Equation 2.1), giving rise to

spin precession and, due to inhomogeneities, loss of phase coherence. This concept

may be applied in a controlled manner to take advantage of these effects for spatial

localisation.

Using an additional external spatially-varying magnetic field, we can adjust the

Larmor frequency of the protons in a sample. Then, by applying an RF pulse at

the adjusted Larmor frequency, we can excite protons in, and observe signal from, a

given region. For example, we may apply the additional magnetic field Gz = f(z),

where f(z) is a linear function of z, such that there is a gradient in the magnetic field

strength along the z-axis. In turn, this gives us a gradient of Larmor frequencies

along the z-axis. During the application of the additional magnetic field, referred

to as gradient magnetic fields, the RF pulse excites a spatially localised collection

of the protons. This principle may be extended to three dimensions through the use

three orthogonal gradient magnetic fields Gx, Gy, Gz. These fields may be applied

in combination to extract signal for a specific three-dimensional confined space, i.e.

a volume element - voxel (typically around 1− 10 mm3 volume). Typically, the Gz
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gradient is used to restrict proton excitement to a given slab/slice of the sample

(Figure 2.2 - panels 1-2). Hence, it is referred to as the slice selection gradient

(GSS). The location (z) of the slice along the GSS gradient, and therefore along the

sample, is controlled by the central frequency (referred to as ω here) of the applied

RF pulse, and slice thickness (∆z) is controlled by the bandwidth (∆ω) (Equations

2.2-2.3). The Gx and Gy gradients are then used to sample the select slice.

ω = γ(B0 + z ·GSS) (2.2)

∆ω = γ ·GSS ·∆z (2.3)

In reality, MRI acquisitions happen in what is referred to as k-space, also known

as the spatial frequency domain: the Fourier transform of the spatial domain. Here,

we acquire information regarding the spatial frequencies of the signal in a two dimen-

sional plane kx, ky, which are traversed by the Gx and Gy gradients. As discussed,

a slice of the sample is selected using the slice selection gradient GSS along with

an initial RF pulse. The Gx (referred to as the frequency-encoding gradient GFE)

and Gy (referred to a the phase-encoding gradient GPE) are then used to restrict

the signal sampling to a location in k-space (each ‘location’ in k-space represents a

spatial frequency). More specifically, the phase-encoding gradient GPE controls the

which row ky of k-space is being sampled (k is the temporal integral of the given

gradient, e.g. ky = γ
2π

∫ t

0
GPE(t

′)dt′) and the frequency-encoding gradient GFE is

used to move along that row (i.e. along kx). By selecting a row of k-space ky and

sampling along kx, a single line of k-space is acquired. The process is repeated

whilst adjusting the GPE gradient to move through k-space along the ky axis, each

time applying GFE to collect data along the columns kx. The combination of the

frequency- and phase-encoded measurements allows for the extraction of the con-

tribution from unique signal frequencies: multiple measurements at different phases
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(along ky) of signals with equal frequencies (along kx) allows for the separation of

said signals, which otherwise would be represented as the sum of all signals at a

given kx location.

The central points in k-space, i.e. low frequencies, provide high contrast infor-

mation but lack edge detail. The peripheral points, i.e. high frequencies, provide

edge detail in the final image. This may be conceptualised by considering the high

contrast information as low frequency signal undulations and the edge information

as sharp, high frequency, changes in signal. Therefore, to obtain high-quality spa-

tial information (i.e. an image with high contrast and edge detail), we must sample

both the centre and periphery of k-space. Ideally, we would sample k-space infinitely,

both in terms of the frequency resolution (i.e. an infinitely small difference between

sampled k-space locations) and peripheral reach (i.e. sampling infinitely high fre-

quencies). Of course, this is not possible and we must reach a compromise between

the required field of view (FOV) in the spatial domain, the spatial resolution and the

acquisition time. The required FOV in the spatial domain is generally well-defined

and there is limited room for compromise as, for example, we must cover the whole

brain. We then seek to maximise the spatial resolution whilst maintaining a feasible

acquisition time. These spatial domain features (FOV and spatial resolution) relate

inversely to the sampling of the frequency domain. The FOV of is controlled by the

frequency resolution (∆k, i.e. the space between sampled locations) and the spatial

resolution ∆w (i.e. pixel width) is controlled by the range of k-space sampled (kFOV

i.e. how far into the periphery we sample) (Equations 2.4-2.5).

FOV =
1

∆k
(2.4)

∆w =
1

kFOV
(2.5)

Therefore, we seek to sample k-space with a small enough∆k such that our FOV
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covers the sample of interest, and far enough into the periphery of k-space to obtain

useful spatial resolution in a feasible acquisition time. Advancements in k-space

sampling schemes and image reconstruction aid in maximising spatial resolution and

FOV whilst reducing acquisition time, however, details of such techniques are beyond

the scope of this thesis. Once k-space has been filled (i.e. all ky and kx locations

within the desired kFOV have been sampled) for a single slice of the sample, the

Fourier transform is applied, giving a two dimensional image. A three-dimensional

image is obtained by repeating the k-space scheme whilst adjusting the slice selection

gradient GSS. The application of RF pulses and gradient magnetic fields to sample

k-space may be described schematically using sequence design diagrams, the most

simple of which is a gradient echo (GE) sequence. Schematics of the process of slice

selection, acquisition of k-space data and an example GE sequence are provided in

Figure 2.2.

Figure 2.2: Schematics of the use of gradient magnetic fields, acquiring data in k-
space and a basic gradient echo (GE) sequence diagram. 1. With an applied gradient
magnetic field Gz, the Larmor frequency becomes dependent on spatial location. At
the central point, where there is zero contribution from Gz, ω = ω0 which is the
carrier frequency, i.e. Larmor frequency. Caption continued on the following page.



Chapter 2. Introduction to MRI Physics 21

Figure 2.2: 2. The process of applying a gradient magnetic field (in this example,
in the z-axis Gz) to extract a slice of a sample. A brain is placed in an external
magnetic field B0 (left). If we were to acquire signal now, there would be no spatial
localisation of said signal. We would therefore have an indication of proton density
for the whole sample with little useful information. By applying Gz and an RF pulse
to select a slice of the brain (middle), we are able to spatially localise the signal and
produce a two dimensional image (right). 3. The process of acquiring information
about the spatial frequencies in k-space. The row ky is selected using the phase-
encoding gradient (indicated with the blue dashed line) and then we acquire data
whilst moving along the kx axis, using the frequency-encoding gradient (indicated
with the green dashed line) (left). The process is repeated until the whole of k-space
has been filled (middle). The Fourier transform of the k-space data gives a two
dimensional image of the selected slice. 4. A schematic of the basic GE sequence
with radio frequency (RF), slice select gradient GSS, frequency-encoding gradient
GFE and phase-encoding gradient GPE and data acquisition (Acq). For each row
ky of k-space, the sequence is repeated, as indicated by the orange arrow, and the
amplitude of GPE is adjusted (green arrow).

2.1.3 Spin Echo and Echo Planar Imaging

The principles of the GE sequence may be extended to more complex sequences.

The spin echo (SE) sequence (Figure 2.3 - panels 1 and 2) is a common alternative

to the GE sequence. The basic GE sequence is adapted to include a second RF

pulse with a flip angle of 180◦. This second RF pulse flips the spin state of the

protons, reversing the precession phase in the process. The protons now start to

regain the phase they lost in the time between the 90◦ RF pulse and the second

pulse, thus increasing the observable signal. These two sequences, and variations of

them, form the basis for many MRI imaging protocols. Most of important of which,

with respect to the work presented here, is the echo planar imaging (EPI) sequence

(Mansfield, 1977; Mansfield, 2007). The EPI sequence is an extension of the simple

k-space sampling scheme described in Figure 2.2. However, rather than acquiring

a single line of k-space per sequence repetition, in EPI, we acquire many lines of

k-space: typically the whole of the subspace being sampled is acquired per sequence

repetition. Using EPI it is possible to acquire a series of slices (e.g. covering the

entire brain) in a few hundred of milliseconds. This significantly reduces artefacts
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caused by subject motion but comes at the cost of relatively poor signal-to-noise

ratio (SNR) and increased sensitivity to artefacts caused by local changes in the

sample’s magnetic susceptibility. Figure 2.3 (panels 3 and 4) shows the k-space

sampling and corresponding sequence diagram used in the GE EPI sequence.

Figure 2.3: Schematics of the spin echo (SE) and echo planar imaging (EPI)
sequences. 1. The SE sequence diagram. The sequence is similar to the gradient
echo (GE) sequence with the addition of the 180◦ RF pulse in combination with a
second application of the Gss magnetic field, restricting the RF excitation to the
proton sample of interest. 2. The combination of the 90◦ and 180◦ RF pulses re-
phases the protons (indicated by the dotted green line), thus increasing the observable
signal. Note however, that the signal does not return to its maximum amplitude due
to T1 and T2∗ decay. 3. The EPI sequence diagram. Typically, a relatively small
flip angle is used, α ≤ 90◦. Initially, a slice is selected. The phase-encoding gradient
is “blipped” on intermittently whilst the frequency-encoding gradient continuously
flips from positive to negative. 4. The frequency- and phase-encoding gradients are
initially used to move to a starting k-space location, as indicated by the orange dashed
arrow. The frequency-encoding gradient moves along the kx axis until reaching a
pre-specified limit. At this point the phase-encoding gradient “blips” to move to the
next ky position. The now negative amplitude frequency-encoding gradient moves
back along kx and the process repeats until the kx, ky plane is filled. The sequence
is repeated to acquire many kx, ky planes (as indicated by the series of k-space
trajectories on the right), thus forming a three dimensional image.
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2.1.4 Summary

These descriptions provide the basic underpinnings of MRI leading to the specific

techniques used in this thesis, which is concerned with the extraction of brain con-

nectivity. Most commonly in MRI, connectivity is probed using functional MRI or

diffusion MRI data (both of which use EPI), representing the functional co-activation

of brain regions and the structural links between those regions respectively. Typi-

cally, functional connectivity is derived by observing the co-activation of brain re-

gions: regions that activate together, or their activation correlates, during a given

cognitive task are said to belong to a functional network. Structural connectivity

is derived by tracking the connections - axons - between brain regions. Although

limited in their indirect natures, each method provides useful and unique informa-

tion regarding how the brain works and how it is organised, allows us to probe the

relationships between the brain’s function and structure, and ultimately between

brain organisation and behaviour. The following sections provide overviews of the

basics of how dMRI and fMRI work, with a focus on dMRI, as this is the main MRI

modality this thesis is concerned with.
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2.2 Introduction to Diffusion MRI

2.2.1 The Basics of dMRI

Diffusion MRI (dMRI) is a magnetic resonance technique designed to be particularly

susceptible to a molecular transport process known as diffusion, more specifically,

to the diffusion of water molecules. Referred to as Brownian motion, and first

observed by Robert Brown in 1827 (Brown, 1827) and later described in detail

by Albert Einstein in 1905 (Einstein, 1905), the translational motion, or diffusion,

of molecules (water molecules in this case) is random when in a free environment

with the diffusion distance being zero on average, but the variance of the diffusion

displacements being given by

〈r2〉 = 2D∆ (2.6)

where 〈r2〉 is the mean-squared diffusion distance, D is the diffusion coefficient

and ∆ is the diffusion time. In a barrier-free environment, this random motion is

isotropic with equal variance of these displacements in all orientations. In a non-free

environment, such as a biological tissue sample, molecular motion is dependent on

its environment’s structure. Within the brain, diffusion of water is influenced by the

presence of various microstructures, such as membranes and myelin sheaths, parts

of neuronal (Figure 2.4a) and/or glial cells, which pose barriers to free motion (Le

Bihan, 2014).

These barriers can cause different diffusion scatter patterns within different tis-

sue types, dependent on their overall microstructures. In cerebrospinal fluid (CSF)-

filled areas, the diffusion of water molecules is almost similar to that in a barrier-free

medium, it is therefore isotropic. The grey matter (GM), forming the cortex around

the outside of the brain and the subcortical structures, consists primarily of the

cell bodies and axon terminals. Diffusion of water molecules in GM is hindered,
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but equally likely to be so in all directions due to the lack of systematic structure,

resulting in low magnitude, roughly isotropic diffusion profiles. The white matter

(WM), forming the majority of the volume of the brain, consists of the axonal fibres.

Diffusion in WM is more free along the long axis of a bundle of axons compared

to across their cross-section. In other words, the diffusion of water molecules along

axons, and therefore in WM, is anisotropic as there is preference for diffusion to-

wards certain orientations. The neuron, forming the basis of these tissues, and the

diffusion of water molecules in these tissues is summarised in Figure 2.4b.

Figure 2.4: A schematic of the neuron and of the diffusion of water molecules in
the brain tissues: cerebrospinal fluid (CSF), white matter (WM), and grey matter
(GM). a. The neuron, the basic functional unit of the brain, consists of the cell
body, axon and axon terminals, each supporting the building and transmission of
action potentials. b. The diffusion of water molecules is dependent on the structure
of the tissue. In WM, diffusion prefers the long axis of the axon, i.e. is anisotropic,
whereas in GM and CSF, diffusion is isotropic with the magnitude modulated by the
relative hindrance of the structure. Created with BioRender.com

This difference in the observed diffusion patterns for different underlying mi-

crostructure forms the basis of dMRI, which uses the measured diffusion pattern to

indirectly inform us about the microstructure. The Stejskal-Tanner pulsed gradient

spin echo (PGSE) MRI sequence (Figure 2.5) aims to measure signal changes due

to water diffusion (Stejskal and Tanner, 1965). A 90◦−180◦ spin-echo RF pair with

two high and equal amplitude diffusion-sensitising gradients either side of the 180◦

RF pulse is used probe diffusion and introduce relevant contrast to the MRI signal.

The first diffusion-sensitising gradient offsets the Larmor frequency ω(t) =
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Figure 2.5: A schematic of the diffusion-weighting section of a Stejskal-Tanner
pulsed gradient spin echo (PGSE) sequence diagram (not including spatial localisation
gradients). The top line represents the applied radiofrequency fields, the middle line
represents the diffusion-sensitising magnetic fields and the bottom line represents
the observed signal during sampling. δ is the duration of the gradient magnetic field
(pulse width) in milliseconds; G is the gradient magnetic field (GMF) amplitude in
mT/m and ∆ is the diffusion “mixing time”. These factors control the b-value as
shown in Equation 2.11.

γG(t), where G(t) is the gradient. For a given spin at position x0, this results

in a phase shift according to Equation 2.7

φ1 = −
∫ ∞

0

ω(t)dt = − γx0

∫ ∞

0

G(t)dt (2.7)

The net phase shift considering each gradient pulse and the phase reversing

effect of the −180◦ RF pulse may be given by

φ = φ2 − φ1 = − q · (x1 − x0) (2.8)

where x1 is the position of the spin at the application of the second diffusion-

sensitising gradient and q = γ
∫∞
0

G(t)dt is the “diffusion weighting”. In the case of

a non-diffusing molecule/spin, or where ∆ → 0 (∆ is the “mixing time”), there is no

spin displacement (i.e. x1 = x0) and, therefore, the encoded phase will be reversed
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and nulled by the application of the −180◦ RF pulse and the second diffusion-

sensitising gradient, i.e. φ = −q · (x1 −x0) = 0. In the case of diffusing spins, spin

displacement during ∆ results in a net phase shift given by Equation 2.8.

The net phase shift is dependent on the orientation of diffusion relative to the

orientation of the applied diffusion gradients, the average diffusion path length and

the sequence parameters. If the diffusion-sensitising gradient’s orientation matches

the preferred diffusion orientation (e.g. along the axon) there will be maximal phase

shift as the displacement of spins is maximal (i.e. x1 −x0 > 0). If, for example, the

gradient orientation is perpendicular to the preferred orientation of water diffusion,

no diffusion-induced phase shift occurs. The signal loss caused by these phase shifts

may be described by Equation 2.9.

E(q, τ) =
∫

P (r, τ) · exp(−iq · r)dr (2.9)

This equation is reached by considering the signal attenuation as a function

of q: E(q) = S(q)/S(0), where S(q) is the signal for a given q and S(0) is the

signal if no diffusion sensitising gradient were applied (i.e. q = 0). Through Fourier

transform, this signal attenuation equation may then be related to the diffusion

propagator P (r, τ), which describes the probability of a spin having a displacement

of r due to diffusion over time τ (Stejskal and Tanner, 1965). It should also be noted

that in these descriptions, it is assumed that the application time of the diffusion

sensitising gradients is negligible compared to the the mixing time (i.e. δ << ∆).

A full derivation of Equation 2.9 is available elsewhere (Kuchel et al., 2012).

2.2.2 Diffusion Modelling - The Diffusion Tensor

Using the PGSE sequence, the signal loss observed with the application of diffusion-

sensitising gradients can be measured. Considering a simple diffusion experiment

in which molecules are free to diffuse and with a constant diffusion coefficient D, it
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is the case that the diffusion propagator P takes the form of a zero-mean Gaussian

profile (according to Einstein’s equation). The signal attenuation (Equation 2.9)

may then be simplified and, by substituting this simplified expression into the signal

attenuation as a function of q, Equation 2.10 is obtained (Stejskal and Tanner, 1965).

S(q, τ) = S(0) · exp(−q2Dτ) (2.10)

This is typically further simplified and re-written to take the form of Equation

2.11 where S(b) is the measured signal and b is the “b-value” which describes the

diffusion weighting introduced by the experimental parameters relating to the dif-

fusion sensitising gradients in units of s/mm2 (Stejskal and Tanner, 1965). b = 0

indicates no diffusion weighting.

S(b) = S(0) · exp(−bD), where b = γ2G2δ2
(
∆− δ

3

)
. (2.11)

First applications of the PGSE experiment and the calculation of voxel-wise

diffusion coefficients in the human brain were reported in 1986 (Le Bihan et al.,

1986). The term “apparent diffusion coefficient” (ADC) was introduced; this ac-

counts for the fact that our measurements of the self-diffusion coefficient of water

are perturbed by the presence of microstructures in the tissue which hinder and

restrict diffusion. The ADC is not only dependent on the tissue environment but

also on the acquisition parameters, namely the diffusion time ∆.

From Equation 2.11, it is clear that by varying the sequence parameters one may

obtain a series of images with varying diffusion weighting. By repeating the PGSE

experiment and iteratively adjusting the orientation of the diffusion-sensitising gra-

dients, it is possible to build a picture of the signal loss related to the directionality

of diffusion in three dimensions. A series of diffusion-weighted MR images are ex-

ampled in Figure 2.6, highlighting the gradient direction dependence and the use of

b-values to enhance the effect of signal loss due to diffusion. This enhanced signal
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loss associated with higher b-values improves the angular contrast in the estimation

of diffusion orientation but suffers from poor SNR.

Figure 2.6: Examples of the directionally and b-value dependent signal loss in
diffusion weighted imaging (DWI). The first image represents the anatomy with no
diffusion-weighting, i.e. b = 0. A series of b = 2000 images with varying gradient
directions, as indicated by the vec(x, y, z) values and the white arrow, demonstrate
how signal loss is gradient direction dependent. From these examples, it is possible
to begin to understand how certain features may be extracted from this information.
For example, the splenium of the corpus callosum (indicated by the yellow arrow)
becomes more or less visible depending on the gradient direction. The final two
images (bottom-right) provide examples of how the overall signal changes with respect
to the selected b-value. Lower b-values (b = 1000) provide less diffusion weighting
but offer greater signal-to-noise ratio. The higher b-value b = 3000 offers highly
diffusion-weighted information but suffers from a relatively low of signal-to-noise
ratio.

The Diffusion Tensor

The concept of a scalar (isotropic) diffusion coefficient (e.g. the ADC) was ex-

tended to incorporate multiple orientations (therefore diffusion anisotropy) and a

new diffusion-based imaging method was introduced (Basser et al., 1994): diffusion

tensor imaging (DTI). DTI is a method for estimating the diffusion tensor D, which

describes the average water displacement profile, and therefore WM tract orienta-
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tion, in three dimensional space. In practical terms, the diffusion tensor is an array

of diffusion coefficients, each representing the diffusion in a specified orientation.

Typically, the diffusion tensor is a symmetric 3× 3 array, with six unique elements,

represented in a Cartesian (x, y, z) coordinate system:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.12)

where Dx,y,z are the diffusion coefficients in the (x, y, z) orientations respec-

tively. The tensor is derived by solving a modified version of Equation 2.11 whilst

considering sufficient signal measurements at various gradient directions. It is typ-

ically estimated by log-transforming the observed signal attenuation and then per-

forming linear regression (Basser et al., 1994). As we need only consider the six

unique elements of the symmetric tensor, through log-transformation, the mea-

sured signal is related to the tensor elements as ln(S(b)
S(0)

) = −
∑3

i=1

∑3
j=1 bijDij =

−(bxxDxx + 2bxyDxy + 2bxzDxz + byyDyy + 2byzDyz + bzzDzz). By measuring S(0)

and S(b) and defining each b element, we may calculate each element of the tensor

as the gradient of the slope in a plot between ln(S(b)
S(0)

) and each b-value: i.e. we

may perform linear regression. In order to calculate each unique tensor element,

we therefore require at least six unique measurements of S(b), a measurement per

tensor direction (xx, xy, xz, yy, yz, zz), plus a measurement of the signal without

any diffusion-induced attenuation S(0).

Through eigen-decomposition of the tensor, it is possible to derive descriptive

terms such as principal diffusivities, corresponding to the eigenvalues λ, and prin-

cipal diffusion directions, corresponding to the eigenvectors v (Basser et al., 1994).

These values may be used to simply describe the local diffusion profile, relative to

the anatomy, and provide insight into microstructure. The eigenvalues and eigenvec-

tors may be used to derive further descriptive terms. For example, the translational
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displacement profile and scalar invariant measures of anisotropy: the trace of the

diffusion tensor (closely related to the mean diffusivity (MD), Equation 2.13), the

fractional anisotropy (FA) (a measure of the degree of diffusion anisotropy, defined

in Equation 2.14) and a measure of the principal diffusivities distribution relative

(or skewness) to their mean (Basser, 1997b).

MD =
1

3
(λ1 + λ2 + λ3) (2.13)

where λ1,2,3 are the tensor eigenvalues.

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

(2.14)

These properties are calculated at the voxel level, giving maps of the microstruc-

tural features derived from diffusion imaging. Examples of typical FA, MD and the

first eigenvector, describing the principle diffusion direction, are presented in Figure

2.7.

The tensor may also be visually depicted as a three-dimensional ellipsoid, the

“diffusion ellipsoid”. Typically, diffusion ellipsoids are constructed from the tensors

on a voxel-by-voxel basis such that the polar axis of the ellipsoid represents the fibre

orientation (Basser et al., 1994), as exampled in Figure 2.8.

2.2.3 Beyond The Diffusion Tensor

Although the diffusion tensor is a useful model, it is limited in its ability to rep-

resent specific features of the true underlying anatomy, in particular with respect

to multiple fibre populations and complex fibre architecture. In DTI, each voxel

is represented by a single tensor, i.e. a single Gaussian profile. Given the scale
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Figure 2.7: Examples of the microstructural maps derived from the diffusion tensor,
corresponding to the fractional anisotropy (FA), mean diffusivity (MD) and the first
eigenvector (v1). v1 brightness is modulated by the FA map, highlighting regions of
high FA, i.e. areas corresponding to fibre populations.

Figure 2.8: Examples of the voxel-wise tensor description of diffusion colour-coded
in the standard diffusion MRI community way such that left-right directions are
red, anterior-posterior directions are green and superior-inferior directions are blue.
Three regions are highlighted demonstrating the tensor geometry for the primary
brain tissues: highly directional, prolate tensors in the corpus callosum genu (i.e. in
WM), low-magnitude omnidirectional tensors in GM, and omnidirectional, spherical
tensors in the cerebrospinal fluid in the ventricles.
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of neurons and axons (micrometer range) relative to typical MRI voxel sizes (mil-

limeter range), this means that a single diffusion tensor represents the average over

tens to hundreds of thousands of cells/axons. In highly heterogeneous regions where

large bundles of parallel WM fibres are found, such as the midline of the corpus

callosum, this averaging provides a useful, although limited, approximation of dif-

fusion/fibre direction. In reality, the contents of a single voxel is complex: neurons

are not perfectly packed and, therefore, “free”-space is present, voxels may average

over tissue borders (e.g. between WM and CSF) and multiple fibre populations may

be present, giving rise to crossing, merging, fanning and kissing fibres. Figure 2.9

examples these complications schematically.

Figure 2.9: Schematic of fibre structures containing two fibre bundles. In a small
example region of the brain, crossing, kissing and merging/fanning fibres are ob-
served. Examples depicting how the observed diffusion direction may comprise of
multiple compartments are shown. Created with BioRender.com

These limitations prompted the development of more sophisticated diffusion

modelling techniques which seek to model multiple types of diffusion within a voxel,

relating the presence of differing diffusion profiles (e.g. isotropic and anisotropic)

and multiple fibre bundles. Many diffusion modelling approaches exist and a full

review is out of the scope of this thesis (see Alexander et al., 2017). One model of
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particular relevance in this work, the “ball and stick” model, was first introduced in

Behrens et al. (2003b) and furthered by Behrens et al. (2007), Jbabdi et al. (2012),

and Sotiropoulos et al. (2016).

The “ball and stick” model is a multi-compartment model which seeks to de-

scribe intravoxel diffusion whilst considering the consequences of partial-volume ef-

fects. In the most simple form, it consists of two compartments which separately

model diffusion in the fibre orientation (e.g. diffusion within axons) and the diffusion

of free water (e.g. in extracellular space or due to partial volume with GM or CSF).

The anisotropic diffusion associated with the fibre bundle is defined to be perfectly

anisotropic, and is therefore represented as a delta-like function, or “stick”. The

isotropic diffusion compartment is represented by a perfect sphere, or “ball”. The

ability to represent multiple fibre populations may be achieved by considering more

“stick” components in the model, representing each population as a separate stick.

The signal S(g) is then given as a function of N (the number of fibre populations

being modelled) compartments (Behrens et al., 2003b; Behrens et al., 2007):

S(g) = S(0)

 (1− N∑
i=1

fi

)
exp(−bd) +

N∑
i=1

fi exp
(
−bd (g · vi)

2)  (2.15)

where fi is the volume fraction for the given compartment, d is the diffusivity,

vi is the orientation of the i-th fibre population and g and b define the sequence

parameters: b is the b-value as before and g is the gradient direction. The ball

compartments, with their isotropic diffusion profiles, are described by the term in

Equation 2.15 highlighted in red and the stick compartments, with their signal

component dependent on the gradient direction relative to the fibre orientation, by

the term highlighted in blue.

An issue now presents in determining how many intravoxel fibre orientations

there are and, therefore, how many compartments should be included in the model,
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i.e. determining how complex the model should be. Automatic relevance determina-

tion (ARD) (Mackay, 1995) is a stochastic model selection technique which may be

employed to select a data-driven number of compartments. In cases where the most

simple model (e.g. a single compartment/stick) is strongly supported by the data,

further complexity is not required and therefore higher compartments are forced to

zero. If the data supports additional intravoxel fibre orientations, model complexity

is allowed to increase. This model selection approach proved effective in determin-

ing the number of fibres in the underlying data, particularly benefiting regions of

crossing fibres, aiding in the estimation of global connectivity (Behrens et al., 2007).

The ball and stick model increases the complexity of the solution compared to

the diffusion tensor: we now have three unknown variables (the volume fractions

fi, the diffusivity d and the fibre orientations vi) for each modelled compartment.

Further, we wish to not only estimate the most likely solution, but to also esti-

mate the uncertainty associated with these parameters. Thus, instead of solving

our model analytically, a Bayesian framework is employed to estimate the param-

eters and to provide measures of uncertainty. The basic principle is to guess each

parameter based on prior distributions, model the signal, and compare the modelled

signal to the measured signal. If the modelled signal fits the measured signal, the

parameter choices are accepted. In fitting the signal in the ball and stick model, a

mathematical framework based on Markov Chain Monte Carlo (MCMC) sampling

is used to estimate the parameters by preferentially sampling prior distributions

in areas of high probability. Through this sampling scheme, many acceptable so-

lutions (i.e. combinations of our unknown parameters) are found and each model

parameter is described as a probability density function (PDF), capturing each of

the acceptable solutions, which represents the uncertainty in dMRI data (Behrens

et al., 2003b). Modelling uncertainty in this way becomes particularly useful in the

use of tractography to define global connectivity later.

The ball and sticks model was furthered to take advantage of multi-shell, i.e.



Chapter 2. Introduction to Diffusion MRI 36

multiple b-values, dMRI data in Jbabdi et al. (2012). As previously mentioned,

higher b-values allow for higher angular diffusion contrast, which is particularly

beneficial for crossing fibre estimation. However, an additional complexity arises.

For high b-values (> 1500 s/mm2) the signal no longer exhibits mono-exponential

decay as we become sensitive to, and therefore sample, the exchange of intracel-

lular and extracellular pools of water. This sampling of mixed pools results in a

more complex decay profile: a non-mono-exponential decay. Therefore, the pre-

vious mono-exponential approach to estimating diffusion (i.e. the exp(−bd) and

exp
(
−bd (g · vi)

2) components of Equation 2.15 which describe a single diffusion

coefficient d) is no longer valid and its application to data acquired with higher

b-values may lead to overfitting, resulting in more fibre populations being estimated

than expected. Jbabdi et al. (2012) proposes a solution to this issue, introducing

a continuous distribution of diffusion coefficients to Equation 2.15 in the form of a

gamma distribution with a shape parameter α and scale 1
β
(which describe the mean

and variance of the distribution of the diffusion coefficients):

S(bk,g) = S(0)

[(
1−

N∑
i=1

fi

)(
β

β + bk

)α

+
N∑
i=1

fi

(
β

β + bk(g · vi)2)

)α
]

(2.16)

This model now considers multiple fibre populations whilst accounting for ef-

fects of non-mono-exponential signal decay due to higher b-values, improving our

ability to utilise multi-shell diffusion data which improves angular resolution and,

therefore, crossing fibre estimation.

Returning to the issue of model selection, ARD may be employed once again to

determine the number of compartments to be used. In the case of Equation 2.16, a

shrinkage prior is placed on the standard deviation (
√

α
β
) of the diffusivities which

forces the distribution variance to 0 if the data does not support the model and

reduces model complexity towards a single-compartment. In practice, a maximum
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complexity is defined based on prior expectations (typically a maximum of three

compartments).

Using this non-mono-exponential model with ARD, Jbabdi et al. (2012) re-

ports improved performance compared to the mono-exponential form. Specifically,

overfitting (i.e. the inclusion of too many compartments) is significantly reduced,

particularly in the presence of partial volume effects. Although limited in its find-

ings, Leuze et al. (2021) provides some histiological validation of this model in the

estimation of fibre orientations. This model is the one used in this thesis for estimat-

ing fibre orientations and is a prerequisite of probabilistic tractography as performed

in this thesis and described in the following section.

2.2.4 Tractography

By applying field vector calculus concepts to fibre orientations extracted from dMRI

datasets it is possible to computationally produce reconstructions of fibre trajectories

(i.e. to perform tractography) (Basser, 1997a). Fibre trajectories, r(s), can be

defined as a curve with arc length s tangent to the vector field of voxel-wise fibre

orientations, v1:

dr(s)
ds

= v1(r(s)) (2.17)

This may be solved numerically to estimate the progress of the track, i.e. to

estimate r(si), in the most simple case, employing Euler’s method (Basser et al.,

2000):

r(si+1) = r(si) + αstepv1(r(si)) (2.18)

where αstep is the step length and r(si) is the position of the track at the i-th

step with r(s0) being the starting/seed point (Conturo et al., 1999; Mori et al.,

1999).
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Tracking commences from a seed point and the direction is taken to be the

direction of least-hindered diffusivity, representing the major fibre orientation. The

track (or “streamline”) follows that direction until reaching the next position (as

defined by the chosen step length) where it then follows an interpolated orientation.

These interpolated orientations can be obtained using nearest-neighbour interpola-

tion (e.g. FACT - Jones et al. (1999)) to more advanced (e.g. trilinear) interpolation

approaches, reducing interpolation errors (Conturo et al., 1999). This process is re-

peated until an end-criterion is reached, for example, reaching a pre-specified FA

threshold or a pre-defined ‘stop’ region. Thus, the streamline is defined as a series

of positions r(s) with associated orientations.

Mori et al. (1999) demonstrated this approach by estimating known fibre bun-

dles in an ex vivo rat brain, including the corpus callosum, anterior commissure,

fornix and more. These methods later became known as tractography, and, the

addition of anatomical priors allowed for “in vivo interactive dissection” (Catani et

al., 2002; Mori et al., 2005). The general principle of tractography (seeding a track

from a given region, following the principal direction across voxels, and terminating

tracking at a given criteria) is depicted in Figure 2.10.

An inherent limitation of these first tractography methods is the inability to

deal with the noisy nature of diffusion data: as discussed, the echo planar imaging

(EPI) sequence used in the collection of dMRI data suffers from reduced SNR com-

pared to conventional MRI sequences. Tractography algorithms are quick to produce

false positives when small changes due to noise lead to the fibre orientation being

misrepresented (Basser et al., 2000; Jones, 2003). Methods discussed so far may be

referred to as deterministic tractography where a single curve is reconstructed per

starting point, effectively representing point-estimates of the underlying pathway.
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Figure 2.10: A schematic of the principles of tractography. Tractography is seeded
from a starting voxel and the local fibre orientations (depicted by the coloured lines
and representing the first eigenvector of the diffusion tensor) are used to guide a
streamline, or pathway. Tractography is terminated once the streamline reaches
pre-defined criteria, which, in this case, is the “end”/termination voxel.

Probabilistic Tractography

An alternative to deterministic estimation of tracts is a statistical estimation, where

the spatial distribution of tracts arising from a seed is estimated given uncertainties

in the data and the models employed to analyse them. Probabilistic tractography

approaches offer such a route. By repeating the tracking algorithm from the same

starting point and stochastically sampling the modelled fibre orientation distribu-

tion, it is possible to build a spatial distribution of streamlines, representing the

uncertainty in estimation, e.g. the probability with which a reconstructed fibre

pathway passes through a given voxel. Whereas previously, in deterministic trac-

tography, results were essentially a maximum likelihood pathway with no measure of

uncertainty, repeated estimates allow for a greater understanding of the confidence

in the results (Behrens et al., 2003b).

Probabilistic tractography was introduced, in part, in an attempt to overcome

the poor performance of tractography in brain regions which typically have poorly

defined fibre orientation due to, for example, low FA (Behrens et al., 2003b). Such
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regions are poorly represented by conventional deterministic methods, as these meth-

ods stop propagating into regions with high uncertainty in their fibre orientation.

Using the ball and stick model as describe above we can build probability density

functions (PDFs) which represent the uncertainty in the dMRI data. By repeat-

edly sampling the PDFs and seeding streamlines with each sample, the tracking

process is repeated with slightly different starting parameters, representing the un-

certainty in the data. That way, propagation can continue even in regions with high

uncertainty, which, however, is reflected in the final results as reduced confidence

in going through certain regions. Figure 2.11 provides a schematic comparison of

deterministic and probabilistic tractography.

Figure 2.11: A simple schematic of the differences between deterministic (left)
and probabilistic (middle) tractography. Four seed points are used, indicated by the
circles in the anterior-right portion of the frontal lobe. In each case, streamlines are
commenced from their respective seeds and follow the primary direction of diffusion,
indicated by a color coded map of the principal eigenvector. In the deterministic
case, there is no preferred pathway whereas in the probabilistic case the genu of the
corpus callosum is preferred. Right: An example of the spatial distribution of the
reconstructed streamlines from probabilistic tractography. Brighter regions indicate
greater confidence in the presence of a fibre bundle.
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The Utility of Tractography

Although the voxel-by-voxel values reported in probabilistic tractography are not

necessarily an absolute measure of the probability that a given fibre passes through

a voxel, it is a useful metric when interpreting tractography results as it allows us

to assign relative confidence to the connectivity between two regions via the re-

constructed curve (Behrens and Johansen-Berg, 2005; Jbabdi and Johansen-Berg,

2011). As such, tractography has been applied widely to investigating brain cir-

cuitry and connectivity. The application of tractography may be divided into three

main applications depending on the primary aim of the study: the segmentation

of GM structures, the construction of connectivity matrices/networks, and the seg-

mentation of WM.

Probably the most common application of tractography, and one of primary in-

terests in this thesis, is to perform “virtual dissection” of WM fibre bundles (Catani

et al., 2002; Mori et al., 2005). Here, the focus is on the main body of the WM fibre

bundles, i.e. how the axons traverse through the deep WM. This application has

been utilised widely in diseased cohorts (Johansen-Berg and Behrens, 2006; Yamada

et al., 2009; Lipp et al., 2020), for surgical planning (Johansen-Berg and Behrens,

2006; Berman, 2009; Panesar et al., 2019; Ashmore et al., 2020), to better under-

stand cross-species differences in brain connectivity (as in this thesis) (Thiebaut de

Schotten et al., 2012; Hecht et al., 2013; Mars et al., 2018c; Eichert et al., 2020),

and in healthy cohorts to better understand the relationships between connectivity

and behaviour (as in this thesis) (Thiebaut de Schotten et al., 2011b; Thiebaut de

Schotten et al., 2011c; Howells et al., 2018; Madden et al., 2012; Wang et al., 2018c;

Reginold et al., 2016).

Tractography may be used to define connectivity profiles between GM struc-

tures and to define functional boundaries within GM by exploring changes in these

connectivity profiles. In other words, tractography may be used to perform brain
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segmentation/parcellation. Such studies may be focused on specific brain regions or

cover the whole-brain GM. The segmentation of subcortical structures is exampled

in early tractography work where global connectivity maps were applied to esti-

mate thalamo-cortical connectivity allowing for connectivity based segmentation of

the thalamic nuclei (Behrens et al., 2003a). This segmentation was later repro-

duced and extended following similar approaches (Traynor et al., 2010; Plantinga

et al., 2018; Patriat et al., 2018; Akram et al., 2018) and by using functional and

anatomical approaches (Johansen-Berg et al., 2005), demonstrating that subcorti-

cal segmentations based on structural connectivity can be robust and align across

modalities. Changes in structural connectivity profiles may also be used to identify

cortical boundaries (Johansen-Berg et al., 2004; Beckmann et al., 2009; Mars et al.,

2012; Thiebaut de Schotten et al., 2014b). In these examples, the structural connec-

tivity between a given GM region and the rest of the brain (or some other region)

is estimated. Spatial gradients in this connectivity matrix are then used to define

sub-divisions of that region which are often reported to closely relate to functionally

specialised regions.

Connectivity matrices/networks may be built at the regional or whole-brain

level by seeding from each constituent voxel and, for example, counting the number

of streamlines passing through/to the rest of the region of interest. This allows for

the construction of whole-brain connectivity matrices, or connectomes, for example

(Hagmann et al., 2007; Tymofiyeva et al., 2014; Sotiropoulos and Zalesky, 2017).

Further, network representation allows for the derivation of simple network connec-

tivity metrics, such as node strength and community structure which may relate to

functional connectivity, measures of cognition and disease (Bassett and Bullmore,

2009; Rubinov and Sporns, 2010; Heuvel and Sporns, 2013; Wang et al., 2018b;

Bohlken et al., 2014; Yeh et al., 2020).
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2.3 Introduction to Resting-State Functional MRI

2.3.1 The Basics of fMRI

While diffusion MRI probes the structure and microstructure of brain tissue, func-

tional MRI (fMRI) probes neuronal activity. fMRI is sensitive to the inherent mag-

netic properties of blood flow during physiological processes. More specifically, fMRI

is sensitive to the variation of blood-oxygenation levels, accompany neuronal firing,

and can therefore be used as an indirect proxy for brain activity. Oxyhaemoglobin

is diamagnetic, whereas deoxyhaemoglobin is paramagnetic (Pauling, 1977). As is

well documented, the magnetic properties of media may heavily affect the signal

obtained during MR image acquisition (Morelli et al., 2011). Diamagnetic materials

have little consequence on the final signal. However, ferromagnetic and, to a lesser

extent, paramagnetic materials have a significant effect on the final signal. These

effects are commonly referred to as the BOLD (blood oxygen level dependent) effect

and may be capitalised on to probe neuronal activation (Ogawa et al., 1992).

During neuronal activation, there is an increased demand for oxygen. Neuronal

oxygen uptake increases and oxyhaemoglobin levels in the passing blood decrease.

This results in a greater concentration of deoxyhaemoglobin in the blood vessel ex-

iting the activated region and, therefore, increased paramagnetism. This leads to

increased local magnetic field distortions and reduced MR signal. In response to the

reduced oxyhaemogloin concentration and a remaining demand for oxygen, heart

rate increases and, more importantly, vasodilation occurs, leading to increased cere-

bral blood flow (CBF) and cerebral blood volume (CBV). Increases in CBF and

CBV are much greater than the increase in oxygen demand, resulting in an “over-

shoot”: much more oxyhaemoglobin is delivered than is required. These neuronal

activation-induced vascular changes are termed the haemodynamic response and

may be mathematically described by the haemodynamic response function (HRF)
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(Buxton et al., 2004).

The excess in oxyhaemoglobin alters the blood oxygen concentration, leaving a

smaller fraction of deoxyhaemoglobin. This concentration shift reduces the overall

paramagnetic nature of blood, reduces the local magnetic field distortions (and hence

the local T2 and T2* relaxation times) and increases local MR signal. A schematic

representation is presented in Figure 2.12. These principles form the basis of fMRI.

Figure 2.12: A schematic representation of the variation in oxy/deoxy-haemoglobin
during neuronal activation and the canonical signal response function (or HRF). a.
Top: increased oxygen demand results in a reduced oxyhaemoglobin concentration in
veins beyond the neurons, reducing the MR signal. Bottom: following the haemody-
namic response, the concentration of oxyhaemoglobin in the veins increases due to
an overshoot effect, increasing the MR signal. b. An example of a haemodynamic
response function (HRF) showing typical signal changes with time. The stimulus is
presented and is followed by a short lag, an initial signal dip and then a the signal
increase due to the overshoot effect. Created in part with BioRender.com

By rapidly, and repeatedly, measuring the fMRI signal using EPI techniques

(Mansfield, 1977; Mansfield, 2007), it is possible to observe signal variance related

to neuronal activity (Biswal et al., 1995) with relatively high temporal resolution.

From such a series of images, time courses of the signal fluctuations may be derived

which may then be used to identify regions of (co-)activation.

2.3.2 Estimating Functional Connectivity Using fMRI

The BOLD effect may be applied in the case of task-induced neuronal activation to

extract information regarding the localisation of activation and how it relates to an

external stimulus or task, thereby revealing regional brain specialisation. For exam-
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ple, the regional specialisation of the production and/or comprehension of language

may be probed by measuring fMRI signal fluctuations during stimulus paradigms

(Agarwal et al., 2019). Such studies have allowed for the non-invasive localisation

of a range of functions, including memory (Henson, 2005; Rajah and D’Esposito,

2005), vision (Kashou, 2012; DeYoe and Raut, 2014), object recognition (Grill-

Spector, 2009), motor control (Toma and Nakai, 2002; Biswal et al., 1995) and

much more (Yarkoni et al., 2011).

These methods are referred to as task-fMRI and are not the focus of this thesis.

However, similar image acquisition and analysis methods may be applied during

task-free periods to observe the constant low frequency fluctuations of neuronal

activity while the brain is at “rest” (Biswal et al., 1995). Here, rest refers to the

subject remaining inactive, i.e. not actively engaged in any specific task. Whilst

at rest, spontaneous co-activation between functionally related brain regions occurs

(Smith et al., 2013b). This method is known as resting-state fMRI (RS-fMRI).

By comparing (e.g. correlating) voxel-wise, or regional, time courses of sig-

nal fluctuations, these functionally related brain regions may be identified. The

“functional” connectivity may be estimated by measures of synchrony between pairs

of fMRI time-courses, providing another indirect measure of “brain connections”,

complementary to those derived from dMRI. At a whole-brain level, this can be

represented as functional networks or as matrices (functional connectivity matrix),

comprised of nodes and edges where nodes represent each voxel, or region, and the

edges represent the correlation, or connectivity, between two nodes. In the case of

RS-fMRI, these networks are referred to resting state networks (RSNs): the most

common example, i.e. that which is most readily identifiable and reported/used

extensively in the literature, of which is the default mode network (DMN), first de-

scribed using positron-emission tomography (PET) (Raichle et al., 2001) and later

using fMRI (Greicius et al., 2003). The DMN, and several other RSNs, have since

become well-established characteristics of brain function and organisation (Cole et
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al., 2010; Lee et al., 2013).

Estimating Co-activation

The most typical measures of co-activation for defining functional connectivity are

correlational measures, e.g. Pearson’s correlation coefficient or partial correlation

(Smith et al., 2013a). Partial correlation aims to represent direct connections more

accurately by considering the association of two nodes after first regressing out

the recorded activity of all other nodes. For example, in a three-node system, the

partial correlation between two nodes is estimated by first regressing out the third

node, thus reducing indirect correlations, and therefore indirect connections. Seed-

based fMRI analysis, which includes the pre-selection of a region of interest (ROI),

or “seed”, may be used to estimate the functional connectivity between the given

seed and the rest of the brain (Biswal et al., 1995). Since its introduction, seed-

based analysis has been widely implemented as it allows for relatively quick analysis.

However, the requirement of a priori assumptions about the data and the carefully

considered selection of seeds limits its application (Lee et al., 2013).

More recently, data-driven methods for extracting functional co-activation maps

have proved beneficial. In fMRI, we measure signal fluctuations at the voxel level

and seek to understand how said signals relate to the task at hand. However, these

signals are composed of multiple sources of variation, including task-related activa-

tion, physiological signal changes and artefactual signal changes. Therefore, we wish

to separate unwanted signal variation (e.g. from head motion) from signal varia-

tion of interest (that due to neuronal activation). Independent component analysis

(ICA) is an exploratory multivariate analysis method which is capable of estimat-

ing multiple signal sources (independent components) in a mixed-signal dataset by

maximising statistical independence between said components (Jutten and Herault,

1991; Comon, 1994). The mixed-signal dataset X, containing the measured fMRI

signal, is decomposed into source signals (i.e. independent components) S, rep-
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resenting various sources of signal fluctuations, through the estimation of mixing

coefficients W such that X = WS. W is estimated whilst seeking to maximise

the statistical independence of the estimated components, under the assumption

that the measured signal is a linear combination of the source signals. It may be

considered as seeking to find the primary axes of a dataset, i.e. low-dimensional pro-

jections of the data, which, in the case of ICA are defined such that each projection

is statistically independent.

ICA was first applied to fMRI with the aim of separating task-fMRI data into

independent components (McKeown et al., 1998). These components included task-

related activation, physiological signal changes and artefactual signal changes. Com-

ponent separation allows for the exclusion of unwanted signal (e.g. head motion) and

therefore improves interprebility (McKeown et al., 1998). ICA may also be applied

to investigating cerebral vasculator related signal changes (Kiviniemi et al., 2003),

demonstrating the capability of ICA to separate resting-state neuronal activity from

other sources. ICA is limited by the need for user-selection of the independent com-

ponents. As mentioned, ICA provides an output of independent components, which

could be interesting signal changes due to neuronal activation or uninteresting signal

changes due to motion, physiological noise or MRI artefacts, but it does not specify

which components are which. Aspects of this process may be automated but require

sufficient data quality and quantity (Salimi-Khorshidi et al., 2014; Griffanti et al.,

2014; Pruim et al., 2015).
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2.4 Summary and Thesis Context

This chapter introduces the basic concepts of MRI and the two key MRI techniques

used in this thesis: diffusion MRI and functional MRI. As discussed, both dMRI

and fMRI are unique tools for probing brain connectivity in vivo and non-invasively

and they provide complementary information. fMRI allows us to estimate functional

activation in the brain relating to stimuli or at when at rest, and subsequently, infer

regions of co-activation and functional networks. dMRI allows us to estimate the

anatomical connections through white matter between brain regions. Combined,

these modalities provide unique insight into how the brain is organised.

Both modalities are used in this thesis, although dMRI is the focus. Chapter

4 capitalises on the developments in diffusion MRI and tractography to introduce

a new, cross-species, automated and standardised tractography toolkit. Chapter

5 builds on this to explore how measures of structural connectivity carry whole-

brain architectural information that can be used to project functionally-relevant

information across diverse brains. Finally, Chapter 6 uses multi-modal connectivity

measures to explore brain-behaviour associations and, specifically, to explore the

stability of typically used approaches in the field. The following chapter introduces

large neuroimaging efforts which provide the data used in this thesis. They acquire

both dMRI and fMRI data for large cohorts of subjects and allow for the estimation

of brain connectivity, either using high-quality data or data at the population-level.
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3.1 Introduction

Significant advancements in the field of neuroscience have been made in recent

decades, driven in part by MRI studies. As in other modern sciences (Sagiroglu

and Sinanc, 2013; Hansen et al., 2014; Leonelli, 2019; Pal et al., 2020), neuroscience

and neuroimaging have entered the era of “big data”. This transition is necessary

if, one day, we are to fully understand the intricate detail of the brain and how it

varies across the population and gives rise to cognition. “Big data” is a broad term

relating generally to the richness of data available. Specific to neuroimaging, big

data encapsulates boundary pushing resolution (Edlow et al., 2019; Wang et al.,

2020a), both temporal and spatial, and number of samples, for example, subjects

(Jack et al., 2008; Thompson et al., 2014; Miller et al., 2016; Casey et al., 2018) or

brain coverage. A prime example of big data in neuroscience is in the development

of the most complete brain connectome to date: that of the adult Drosophila cen-

tral brain, which represents 25,000 neurons and 20 million synapses (Scheffer et al.,

2020). We are not yet at the stage of such mapping in the human brain. However,

several groundbreaking neuroimaging efforts have focused on acquiring high-quality

brain MRI data from large cohorts of subjects. This thesis capitalises on data from

two such efforts: the “WU-Minn” Human Connectome Project (HCP) (Van Essen

et al., 2012; Van Essen et al., 2013) and the UK Biobank imaging study (Miller et al.,

2016; Alfaro-Almagro et al., 2018; Sudlow et al., 2015). The following sections pro-

vide overviews of these cohorts, highlighting the diffusion MRI, functional MRI and

behavioural data available. We also describe our early efforts in high-throughput

analysis of such datasets that led to some diffusion MRI microstructure atlases, now

publicly released in FMRIB’s Software Library (FSL).
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3.2 The Human Connectome Project

The “WU-Minn” Human Connectome Project (HCP)1 was a ground-breaking re-

search project with the aim of pushing image acquisition and processing technology

to probe the human connectome in unprecedented ways. The collected datasets com-

prise of high-quality anatomical, functional and diffusion MRI data for a relatively

large (1,200 subjects) family-structured (twins and non-twin siblings) healthy co-

hort. In addition to MRI data, the HCP also provides a broad range of behavioural

and demographic data, genetic data and, for a sub-cohort, magnetoencephalography

(MEG) data. MRI data have been quality controlled, preprocessed (as discussed in

the following sections) and all MRI, behavioural and genetic data have been made

publicly available. The HCP data forms the basis of this research. This section

summarises the data available via the HCP and describes briefly the HCP Minimal

Preprocessing Pipeline (MPP).

3.2.1 Cohort Overview

In total, the HCP recruited 1,206 subjects aged 21-35 years, including males and

females and a range of ethnic backgrounds (to reflect the ethnic diversity of the

United States population). The HCP subject cohort is based on a family and twin

structure - families with at least four siblings or two twins (both monozygotic and

dizygotic twins) within the age range were eligible to be recruited. The purpose

of this is to boost power with regard to genetic associations, to aid in analysing

heritability and to distinguish between genetic and environmental influences (Van

Essen et al., 2013). In total, 457 families were recruited. Behavioural data was

acquired from all subjects; genetic data was acquired for 1,142 subjects; a total of

1,113 subjects were scanned at 3-Tesla (T) (1,065 subjects with diffusion MRI data),

184 at 7 T and 95 subjects were studied using MEG. Cutting-edge MRI scanning
1https://www.humanconnectome.org/

https://www.humanconnectome.org/
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protocols were devised to push spatial and temporal resolution (Uğurbil et al., 2013).

Subject demographics are centered around the young-healthy adult United

States population and are summarised in terms of age, race, ethnicity, handed-

ness, employment and education in Table 3.1 (considering only the 1,065 subjects

with dMRI data). Further descriptors include twin status, family structure, data

completeness and the release in which the data was included (accounting for slight

variance in data acquisition and processing between releases).

Demographic Measure Summary
Gender 575 (54%) female, 490 (46%) male
Age in Years Mean = 28.75 (standard deviation = 3.67)
Race 803 (75%, White), 150 (14%, Black or African Amer-

ican), 65 (6.1%, Asian/Native American, Hawai-
ian/Other Pacific Island), 27 (2.5%, More than one),
20 (1.9%, Unknown or Not Reported)

Handedness Mean = 66 (standard deviation = 44.01)
Employment Status 155 (14.5%, Not Working), 187 (17.6%, Part-time Em-

ployment), 722 (67.8%, Full-time Employment)
Years of Education Mean = 14.94 (standard deviation = 1.79)

Table 3.1: Summary demographics of the HCP subjects. Handedness scale is
-100 (left) to +100 (right). For Year of Education, if the value is less than
11 or more than 17, it is reported as 11 and 17 respectively. For comparison,
US population demographics: 51% male, 49% female (aged 24-54); 75% White,
12.7% Black or African American, 6.4% Asian/Native American, 3.1% More than
one; 3.7-6.2% unemployed. Statistics taken from wikipedia.org/wiki/Demograph-
ics_of_the_United_States#Race_and_ethnicity

3.2.2 Non-Imaging Data

A broad range of behavioural and cognitive tests and questionnaires were completed

and demographic and lifestyle data collected. In total, 476 measures of behaviour,

cognition, family history, demographics, physical health and lifestyle were collected.

Many of these measures are derived from tests included in the NIH Toolbox (for

the Assessment of Neurological and Behavioural Function) (Gershon et al., 2013)

(see http://www.nihtoolbox.org) and the “Penn Neuropsychological Battery” (PNB)

(Gur et al., 2001; Gur et al., 2010). A brief description of the relevant tests and

https://en.wikipedia.org/wiki/Demographics_of_the_United_States#Race_and_ethnicity
https://en.wikipedia.org/wiki/Demographics_of_the_United_States#Race_and_ethnicity
http://www.nihtoolbox.org for full details
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measures is provided here. For a full descriptions, see the HCP data dictionary2.

Health and family history were captured through a series of physical body

measures and questionnaires. Physical body measures include the subject’s height,

weight, body mass index (BMI), self-reported heaviest historical BMI and results

of blood test measurements of hematocrit, thyroid stimulating hormone (TSH) and

hemoglobin A1C (i.e. percentage glycated hemoglobin). Physical health and mo-

tor skills were also measured by assessing cardiovascular endurance (2-minute walk

test and gait speed), manual dexterity (9-hole pegboard test) and grip strength.

Self-reported history of hyper/hypo-thyroidism, any other endocrine problems and,

where applicable, regularity of menstrual cycle and any birth control are given.

Family history was self-reported and covers a range of psychiatric disorders for both

the subject’s mother and father. Summaries of these measures of subject health and

family history are given in Table 3.2.

Further behavioural measures capture cognitive ability, personality, mental

health, social well-being and more. More specifically, measures span from: cog-

nitive tasks; psychological well-being; measures of psychiatric and life functioning;

illicit substance, alcohol and tobacco use; and blood samples for DNA sequencing.

Cognition was assessed using an array of established tests, including the mini-mental

state examination (MMSE), probing overall cognitive status, (Folstein et al., 1975)

and a reduced version of Raven’s Progressive Matrices (Raven, 2000), capturing

fluid intelligence. Further, the NIH toolbox and the PNB capture several aspects of

cognitive ability (e.g. overall intelligence, memory), psychological well-being (e.g.

emotion processing) and personality. Psychiatric health, life functioning and illicit

substance, alcohol and tobacco use were assessed through self-report questionnaires.

Illicit substance, alcohol and tobacco use at the point of data acquisition was further

assessed through screening testing. Full descriptions of these behavioural measures
2Full list available at:

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-
+Updated+for+the+1200+Subject+Release

https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release
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Measure Summary
Height (Inches) Mean = 67.5 (standard deviation = 3.9)
Weight (Pounds) Mean = 171.7 (standard deviation = 38.9)
BMI Mean = 26.4 (standard deviation = 5.1)
Blood Pressure Mean Systolic = 123.4 (standard deviation =

13.8), Mean Diastolic = 76.5 (standard devia-
tion = 10.5)

Family History (Mental Disor-
ders)

279 reported

Family History (Drugs and Al-
cohol)

176 reported

Family History (Neurological
Conditions)

19 reported

Family History (None) 912 (Mother), 852 (Father)

Table 3.2: Summary subject health and family history of the HCP subjects. Healthy
BMI is 18.5–24.9, average BMI in the United States is 26.6 for men and 26.5
for women (https://www.cdc.gov/nchs/data/nhanes/databriefs/adultweight.pdf).
Healthy systolic and diastolic blood pressure is below 120 and below 80 respectively.
For family history, “Mental Disorders” includes schizophrenia, depression, bipolar
disorder and anxiety; “Neurological Conditions” includes Alzheimer’s disease and
Parkinson’s disease; and “None” indicates that the subject reported no family his-
tory of the above conditions for their Mother or Father. For “Mental Disorders”,
“Drugs and Alcohol” and “Neurological Conditions”, the total is given across condi-
tions and parents.

are available in Barch et al. (2013). A full list of the behavioural measures used in

this thesis is available in the Appendix of Chapter 6 (Section 6.9.2).

3.2.3 Imaging Data

Scanner Details

Imaging data were acquired at 3 T, while a subset of the cohort was scanned at 7

T as well. This thesis uses the 3 T data and so will focus on these. The customised

3 T Siemens Skyra (Siemens AG, Erlanger, Germany) scanner, coined the 3 T

“Connectom Skyra”, at Washington University was used for all image acquisition.

This scanner is customised to be able to achieve a maximum gradient strength of

100 mT/m (a significant improvement over the standard 40 mT/m) and maximum

slew rate of 91 mT/ms. This is used in combination with a 32-channel Siemens head

https://www.cdc.gov/nchs/data/nhanes/databriefs/adultweight.pdf
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RF receive coil and a separate Siemens body RF transmission coil. This improved

gradient magnetic field system performance, which is particularly beneficial during

the acquisition of dMRI data (Uğurbil et al., 2013; Sotiropoulos et al., 2013a).

Data

The HCP acquired anatomical, diffusion and functional MRI brain data (Uğurbil

et al., 2013). The main protocol details of all MRI modalities are shown in Table 3.3.

The anatomical data consist of high-resolution T1-weighted (T1w) and T2-weighted

(T2w) scans.

T1w T2w dMRI RS-fMRI
Sequence 3D MPRAGE 3D T2-SPACE Spin-Echo EPI Gradient-Echo

EPI
TR (ms) 2400 3200 5520 720
TE (ms) 2.14 565 89.5 52
Voxel Size
(mm)

0.7 isotropic 0.7 isotropic 1.25 isotropic 2.0 isotropic

iPAT, MB 2,- 2,- -,3 -,8
# Volumes 270 4800
b-values
(s/mm2)

- - 1000, 2000,
3000

-

Acquisition
time (mins)

16 16 60 60

Table 3.3: Summary of image acquisition parameters for the HCP cohort. TR =
Repetition Time, TE = Echo Time, iPAT = In-Plane Acceleration, MB = MultiBand
factor

fMRI (specifically resting-state) data in the HCP were acquired in four blocks,

each containing 1,200 volumes over 15 minutes with flipped phase-encoding direction

(left-right and right-left) and a spatial resolution of 2.0 mm, totalling to 1 hour of

RS-fMRI data. Repeated acquisitions and flipped phase-encoding directions reduce

signal dropout and allows for distortion correction (Smith et al., 2013b).

As previously mentioned, the HCP scanner was significantly upgraded prior

to data acquisition. These upgrades had great benefit with respect to dMRI data

quality. A monopolar Stejskal–Tanner diffusion-encoding scheme spin-echo EPI se-
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quence was used in combination with multiband acceleration. Three b-value shells,

each with 90 non-collinear directions were acquired twice with the phase-encoding

flipped between acquisitions (allowing for distortion corrections described later) with

a spatial resolution of 1.25 mm (total scan time ∼ 60 min per subject) (Sotiropoulos

et al., 2013a).

3.2.4 The HCP Minimal Preprocessing Pipeline (MPP)

Prior to public release (and use in this thesis), all HCP data is preprocessed us-

ing a processing pipeline developed by the HCP consortium (Glasser et al., 2013;

Sotiropoulos et al., 2013a). These minimal processing pipelines (MPP) are applied

to all data (anatomical, diffusion and functional) with six key goals:

1. Removal of spatial artefacts and distortions

2. The generation of cortical surfaces, segmentations and myelin maps

3. Ease data visualisation by making the data compatible with the Connectome

Workbench visualisation software (Marcus et al., 2013)

4. To generate precise cross-modal registration

5. To generate spatial normalisation warp fields for volume and surface spaces

6. To generate and make available spatially normalised “grayordinate”3 data

Anatomical MRI processing: Following image data acquisition, scan quality

was graded (Marcus et al., 2013), images were anonymised (including defacing) and

the images were converted from DICOM (Digital Imaging and Communications in

Medicine) image file type to NIfTI file format4. Anatomical data processing includes

distortion and bias field corrections, co-registration of the T1w and T2w images, and
3Grayordinate: the term used to describe the grouping of cortical surface vertices and subcortical

voxels
4For details on the NIfTI (Neuroimaging Informatics Technology Initiative) image file format,

see: https://nifti.nimh.nih.gov/.

https://nifti.nimh.nih.gov/


Chapter 3. The Human Connectome Project 57

spatial normalisation to the MNI152 co-ordinate system5 (Grabner et al., 2006).

Spatial normalisation to the MNI152 co-ordinate system was achieved through an

initial affine registration followed by a non-linear registration (Andersson et al., 2007;

Jenkinson et al., 2012), giving two sets of subject data: one in the subject’s native

T1w space and one in the MNI152 co-ordinate system.

FreeSurfer (Fischl, 2012) and its outputs were used to segment the anatomical

images, producing pial, WM and cortical myelination surface maps, used through-

out this thesis to generate connectivity features. A subset of the FreeSurfer-based

brain segmentation (the subcortical volumes) were combined with a downsampled

standard brain surface meshes to produce a standard grayordinate CIFTI file6, al-

lowing for the standardised visualisation and analysis of brain connectivity data.

These CIFTI files contain 91,282 grayordinates consisting of approximately 32,000

vertices per hemisphere surface mesh and approximately 30,000 voxels for the 2mm

isotropic resolution subcortical grey matter (GM) volumes.

Resting-state Functional MRI processing: Temporal and spatial preprocessing

were completed on the RS-fMRI data. Spatial preprocessing included correction for

spatial distortions, motion correction and registration to standard space. Temporal

preprocessing included minimal highpass frequency filtering and ICA based classifi-

cation of “good” (i.e. true functional networks) and “bad” (artefacts and other un-

wanted signal sources) components using FSL’s MELODIC (Beckmann and Smith,

2004) and FIX (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014). These com-

ponents are aligned to the standard grayordinate space, covering both the cortical

vertices and subcortical voxels, allowing further analysis to be completed in either

space - in this thesis, connectomes obtained from the surface vertices are used. At

this stage the RS-fMRI data is made publicly available (as the minimally processed

data) (Smith et al., 2013b). However, the option to download further processed
5See http://nist.mni.mcgill.ca/?p=858 for details
6For details on the CIFTI (Connectivity Informatics Technology Initiative) image file format,

see: https://www.nitrc.org/projects/cifti/.

http://nist.mni.mcgill.ca/?p=858
https://www.nitrc.org/projects/cifti/
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data is available.

The data used in this research (in Chapter 6) comes from the parcellated net-

work matrices (“netmats”). A group averaged dense connectome is derived using

group-PCA (Smith et al., 2014). Group-ICA is applied to the group averaged dense

connectome to produce group-level parcellations (with a range of dimensionalities:

15-300). Each parcel (component) represents a functional node. Via dual-regression,

nodes are then used to extract subject-specific timeseries and further dual regres-

sion provides subject-specific parcellations. Full and partial correlation connectivity

matrices (netmats) are then derived (Smith et al., 2013a). The parcellations, time-

series and netmats are available for the full “S1200” HCP data release and are used

in this research. The netmats are, simply put, symmetric matrices representing the

functional connectivity between two brain regions. Thus, in this work, we are only

interested in the unique entries corresponding to the upper (or lower) triangle of

the matrix giving d(d−1)/2 (where d is the group-level parcellation dimensionality)

unique functional connectivity features.

Diffusion MRI processing: Diffusion data preprocessing includes the correc-

tion of susceptibility-induced and eddy-current-induced distortions as well as head

motion correction (Andersson et al., 2003; Andersson et al., 2016; Andersson and

Sotiropoulos, 2016). Following this, spatial distortion induced by gradient non-

linearities were corrected for (Sotiropoulos et al., 2013a). In addition to the previ-

ously described spatial normalisation, the diffusion data were registered to the T1w

space through a rigid-body transform and the diffusion gradient vectors were rotated

accordingly. Finally, the crossing fibre model described in Jbabdi et al. (2012) was

applied. This is a parametric spherical deconvolution model that accounts for the

non-monoexponential decay of the dMRI signal with higher b-values. Up to three

fibre orientations were estimated in each voxel along with their uncertainty. This

modelling is a precursor to the tractography performed in this thesis.
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3.3 The UK Biobank

The UK Biobank7 is a large cohort, multi-modal, multi-site epidemiological study.

Simply, the wealth of data available through the UK Biobank is unprecedented, with

approximately half a million subjects in the cohort. Such a large cohort was achieved

by inviting approximately 9.2 million individuals to take part (with 5.45% of those

invited agreeing to take part) (Fry et al., 2017). Data is collected using a broad range

of diagnostic tools, including MRI. One of the aims of the UK Biobank imaging

study is to collect brain MRI data for 100,000 healthy subjects whilst tracking their

health over the following decades. The following sections summarise the cohort

demographics, non-imaging data and imaging data relevant to this thesis. Full

descriptions are provided elsewhere: for brain imaging data, see Miller et al. (2016);

for subject demographics, see Fry et al. (2017); for a general overview of the project,

see Sudlow et al. (2015); for in-depth details on all measures, see the UK Biobank

Data Showcase (https://biobank.ctsu.ox.ac.uk/crystal/index.cgi).

3.3.1 Cohort Overview

In total, the UK Biobank has recruited 503,317 subjects, 37,848 of whom have fMRI

data at the time of writing. Subjects are aged between 40–69 years and live within

25 miles of one of 22 assessment centers located throughout England, Wales, and

Scotland. The cohort is considered generally healthy at the point of recruitment but

one of the key aims of the project is to track subject health, thus affording researchers

the opportunity to identify early signs of disease. Although impressive in scale, it

should be noted that the UK Biobank cohort suffers significantly from recruitment

biases: the cohort is healthier and less socioeconomically deprived compared to

the UK population (Fry et al., 2017). Table 3.4 provides a summary of the key

demographics of these subjects.
7https://www.ukbiobank.ac.uk/

https://biobank.ctsu.ox.ac.uk/crystal/index.cgi
https://www.ukbiobank.ac.uk/
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Demographic Mea-
sure

Summary

Gender 20,122 (53%) female, 17,722 (47%) male
Age in Years Mean = 54.8 (standard deviation = 7.5)
Ethnicity 34,506 (91.17%, White British), 38 (0.10%, White and Black

Caribbean), 271 (0.72%, Indian), 129 (0.34%, Caribbean),
917 (2.4%, White Irish), 21 (0.05%, White and Black
African), 59 (0.16%, Pakistani), 103 (0.27%, African), 1139
(3.01%, Any other white background), 57 (0.15%, White and
Asian), 6 (0.02%, Bangladeshi), 2 (0.01%, Any other Black
background), 54 (0.14%, Any other mixed background), 58
(0.15%, Any other Asian background)

Handedness 33,698 (right-handed), 3,538 (left-handed), 591 (both
equally)

Employment Status 428 (1.13%, Unemployed), 9,159 (24.20% Retired), 26,317
(69.53%, Employed), 997 (2.63%, Looking after home/fam-
ily), 407 (1.08%, Unable to work because of sickness/disabil-
ity), 181 (0.48%, Unpaid/voluntary work)

Age completed full-
time education

Mean = 17.2 (standard deviation = 2.4)

Table 3.4: Summary demographics of the UK Biobank subjects. Notes: age is
recorded at recruitment; ethnicity is reported using a hierarchical structure where
participants select “White” and “British”, for example. For comparison, UK popu-
lation demographics: 51% female, 49% male (aged 40-69); 91.3% White, 2.4% Black
or black British, 0.8% Mixed, 1.9% Indian, 1.0% Pakistani, 0.3% Bangladeshi, 0.5%
Chinese, 1.0% Other Asian, 0.6% Other ethnic group Fry et al. (2017)

3.3.2 Non-Imaging Data

Subject data is extensive, consisting of lifestyle, family and medical history ques-

tionnaires; physical and cognitive measures; blood, urine and saliva samples; and ge-

netic data. In the current work, a subset of these measures are used. These include

self-report questionnaires on diet, lifestyle, family and medical history; summary

measures of physical and cardiac health derived from non-MRI modalities (e.g. ul-

trasound bone densitometry, electrocardiograms) and body impedance analysis; and

scores from a range of cognitive tests. The measures broadly capture information

similar in nature to that provided in the HCP. Data is available locally for 39,696

subjects (under UK Biobank project number 43822): those without fMRI data have

been removed, leaving 37,848 subjects. A full list of the behavioural measures used



Chapter 3. The UK Biobank 61

in this thesis is available in the Appendix of Chapter 6 (Section 6.9.3).

3.3.3 Imaging Data

Imaging data in the UK Biobank is acquired using various techniques and modal-

ities. For a cohort of this size, this is both a benefit and hindrance: the time and

cost associated with acquiring these data are huge with each minute of MRI data

acquisition costing approximately £1 million (Miller et al., 2016; Alfaro-Almagro

et al., 2018). Therefore, MRI data quality is more typical of a clinical setting rather

than the very high quality data of the HCP.

Scanner Details

MRI brain data is acquired at three dedicated imaging centers using Siemens Skyra

3 T scanners with standard Siemens 32-channel RF receive head coils. Hardware

and software are kept consistent across sites and software is maintained at a single

version throughout the study.

Data

The MRI modalities of interest here are the anatomical, diffusion, and functional

MRI. Although the anatomical data is not used directly in this work, as in the HCP

preprocessing, it is used in the processing of the diffusion and functional data prior

to public release. Table 3.5 provides a summary of the key acquisition parameters

for the MRI data8. Briefly, anatomical data consists of T1w and T2w scans with a

resolution of 1.0 mm.

The functional data (RS-fMRI) was acquired over 490 timepoints with an

isotropic spatial resolution of 2.4 mm and a multisclice acceleration factor of 8 (∼ 6

minutes of data acquisition).
8See http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf for complete protocol details.

http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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The diffusion data was acquired using monopolar Stejskal-Tanner diffusion-

encoding scheme spin-echo EPI sequence with an isotropic spatial resolution of 2.0

mm and diffusion weighting of b = 0, 1000, 2000. Each b > 0 shell is made up of

50 non-collinear diffusion-encoding directions, giving 100 non-collinear directions in

total. Flipped phase-encoding data was also acquired to allow for the calculation of

fieldmaps and to perform geometric distortion correction.

T1w T2w dMRI RS-fMRI
Sequence 3D MPRAGE 3D T2-SPACE Spin-Echo EPI Gradient-Echo

EPI
TR (ms) 2000 5000 3600 735
TE (ms) 2.01 395 92 39
Voxel Size
(mm)

1.0 isotropic 1.05× 1.0×1.0 2.0 isotropic 2.4 isotropic

iPAT, MB 2,- 2,- -,3 -,8
# Volumes 100 490
b-values
(s/mm2)

- - 1000, 2000 -

Acquisition
time (mins)

5 6 7 6

Table 3.5: Summary of image acquisition parameters for the UK Biobank cohort.
TR = Repetition Time, TE = Echo Time, iPAT = In-Plane Acceleration, MB =
MultiBand factor

3.3.4 Preprocessing Pipeline

Anatomical MRI processing: The preprocessing pipeline is similar to that de-

scribed for the HCP MMP (Alfaro-Almagro et al., 2018). However, one major

difference is that the UK Biobank do not yet provide analysis in the previously

discussed grayordinate system and, therefore, surface analysis is not possible. The

general principles for the anatomical data are to perform gradient distortion cor-

rection, spatial normalisation to the standard MNI152 coordinate system (as in the

HCP MPP) and brain segmentation. In addition, automated quality control (QC)

is performed on the data. This is achieved by training a machine learning classifier

on what constitutes a good or bad image based on the anatomical T1w scans. This
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pipeline results in the identification of usable data within the cohort with 81% of

the datasets (across all modalities) deemed suitable for use (Alfaro-Almagro et al.,

2018).

Further registration warp fields were generated for the functional and diffusion

data. Specifically, warp fields for the diffusion data were generated through non-

linear alignment to the standard space (MNI152 co-ordinate system) FA FMRIB58

atlas9 based on FA maps, allowing for standard space analysis (e.g. standardised

tractography).

Diffusion MRI processing: Fieldmaps, to correct susceptibility-induced geomet-

ric distortions in EPI data, are generated based on the phase-encoding pair (AP

- PA) of b = 0 diffusion data using FSL’s topup (Andersson et al., 2003). Sub-

sequently, susceptibility-induced distortions and eddy-current and head motion in-

duced distortions are corrected for using FSL’s eddy (Andersson et al., 2016; An-

dersson and Sotiropoulos, 2016). The UK Biobank processing pipeline extends the

diffusion data processing further by; applying diffusion models including the dif-

fusion tensor, neurite orientation dispersion and density imaging (NODDI, Zhang

et al. (2012)) and the crossing fibre model (Jbabdi et al., 2012) to the data; ex-

tracting tract-based spatial statistics (TBSS, Smith et al. (2006)); and performing

ROI-based tractography (Groot et al., 2013; Hernandez-Fernandez et al., 2019).

These processing steps are used to generate microstructural feature maps and a set

of image-derived phenotypes (IDPs), summarising structural connectivity features

(not used in this thesis).

Resting-state Functional MRI processing: Functional data preprocessing closely

follows that of the HCP volumetric preprocessing pipeline. In summary, EPI un-

warping (using the previously estimated fieldmaps), gradient distortion correction,

motion correction, intensity normalisation and highpass temporal filtering were ap-

plied using FSL’s MELODIC (Beckmann and Smith, 2004). Structured artefacts
9FA FMRIB58 atlas: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA
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were removed using FSL’s FIX (Beckmann and Smith, 2004; Salimi-Khorshidi et

al., 2014; Griffanti et al., 2014): this utilises independent component analysis (ICA)

and manual training to classify components as (non-)artefactual.

Resting-state networks are first defined at a group level based on the data from

4,100 subjects. This is achieved by performing group-level principle component

analysis (PCA) with MIGP (MELODIC’s Incremental Group-PCA) (Smith et al.,

2014), giving a group-averaged dense connectome. The resultant 1,200 components

were then further reduced through spatial-ICA, i.e. parcellated, at two dimension-

alities (25 and 100) using FSL’s MELODIC. The 100-dimensional set is used in this

thesis. Of the 100 components, 45 were identified as artefactual, leaving 55 com-

ponents. These group-wise components were then dual-regressed back onto each

subject’s timeseries, giving a timeseries per component, per subject. These data are

used to extract partial correlation connectivity matrices (netmats) using FSLNets

(Smith et al., 2013b). This results in a final d = 55 symmetric connectivity matrix

per subject with d
2
(d− 1) = 1485 unique entries.

3.4 HCP Structural Connectivity Features and

Atlases

As part of early projects in this thesis and in setting-up high-throughput analysis

pipelines, we used the HCP dMRI data and standard tools to obtain high-quality

white matter atlases and connectivity features. These have led directly to publicly

available data (some of them available already in FSL10) or have contributed signif-

icantly to this thesis and to projects other than those presented in this thesis and

they are briefly presented here.
10HCP1065 standard-space DTI templates https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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3.4.1 White Matter Microstructural Atlases

A number of high-resolution microstructure feature maps have been generated using

all subjects in the HCP cohort (1,065 subjects). These include quantitative maps

from the diffusion tensor model and the neurite orientation dispersion and density

imaging (NODDI) model (Zhang et al., 2012).

These feature maps have been further used to generate atlases of these fea-

tures. Diffusion tensors were fitted in each subject, using the b = 1000 s/mm2

data and accounting for gradient non-linearities. Each tensor was transformed to

the standard MNI152 space using the subject-specific non-linear transformations,

after appropriate re-orientation of the tensor elements (Alexander et al., 2001). The

standard-space tensors were averaged and the averaged diffusion tensor was then

decomposed into its eigenvectors and eigenvalues, giving rise to average fractional

anisotropy (FA) and mean diffusivity (MD) maps. Figure 3.1 shows the HCP cohort-

averaged FA map (“FSLHCP1065_FA”) and compares this averaging approach to

a simplistic map averaging (simply transforming the subject-wise FA maps to the

standard space and taking the cohort mean) and the current average FA map avail-

able in FSL (the “FMRIB58_FA” map). Vast improvements in detail are observed

when comparing the new FA map (bottom row) or the simple average (middle row)

to the FMRIB58_FA map (top row). Clear improvements in image sharpness are

still achieved in the new map when compared to the simple average. The level of

detail achieved in this map will be greatly beneficial in image registration, for ex-

ample, and was particularly useful in the development of the tractography protocols

developed in Chapter 4.

To truly appreciate the level of detail achieved, an enhanced region correspond-

ing to the splenium of the corpus callosum is displayed in Figure 3.2. The direction

of the first principal eigenvector of the diffusion tensor is displayed in the standard

colour-coding format. Each line represents the direction of the eigenvector in a given
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Figure 3.1: Sagittal, coronal and axial views of the group-averaged fractional
anisotropy (FA) map (FSLHCP1065_FA, bottom row) and, for comparison, the
simple mean FA map (middle row) and the FMRIB58_FA map (top row).

voxel with an isotropic spatial resolution of 1 mm and the brightness modulated by

the underlying FA values. These microstructural atlases are freely available within

FMRIB’s Software Library11.

Further cohort-averaged microstructural feature maps were obtained from NODDI12

11See “HCP1065 standard-space DTI templates” at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
for details

12NODDI modelling was completed using the CUDA Diffusion Modelling Toolbox (cuDIMOT)
toolbox: https://users.fmrib.ox.ac.uk/ moisesf/cudimot/index.html (Hernandez-Fernandez et al.,
2019).

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://users.fmrib.ox.ac.uk/~moisesf/cudimot/index.html
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Figure 3.2: The group-averaged first eigenvector map (modulated by FA) with the
standard colour coding. A exemplar region of the brain (the splenium of the corpus
callosum), highlighting the superb quality achieved by averaging over a large cohort
of high-quality data.

modelled data, using all 3 shells of the HCP data, shown in Figure 3.3. In the case of

the orientation dispersion map (top row), lower intensities indicate regions in which

the angular variation of neurites is lower, i.e. diffusion is strongly directional. The

intra-cellular volume fraction map (bottom row) describes the fraction of the voxel

bound by neurite membranes.

3.4.2 Structural Connectomes

Multiple “flavours” of structural connectomes have also been calculated at the

subject-level and subsequently averaged. One of which describes the connectivity be-

tween the whole-brain grey matter (GM) (actually the white-grey matter boundary

(WGB)) and whole-brain white matter (WM) used in the calculation of connec-

tivity blueprints in Chapter 4 (shown in Figure 3.4a). Another is the whole-brain

GM to GM connectivity matrix. Here, tractography is seeded from each WGB sur-

face vertex (approximately 60,000 vertices). The same WGB surface is taken as a

termination mask and streamlines are allowed to pass through whole-brain WM. In

addition, the streamlines are allowed to enter and propagate through the subcortical

structures but terminate upon exiting. In addition, in order to avoid gyral jumping

(falsely passing through the boundaries between neighbouring gyri), the pial sur-
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Figure 3.3: Examples of the microstructure measures obtained from the group-
averaged HCP diffusion NODDI modelled data. Top row: orientation dispersion
map. Bottom row: intra-cellular volume fraction map.

face is used as a termination mask. The seeding approach used here is preferred

over seeding at each voxel as reductions in inherent biases are observed (Donahue

et al., 2016). The number of streamlines reaching each WGB vertex is recorded

and normalised by the total number of valid streamlines. This produces a dense

connectivity matrix 60k × 60k describing the connectivity between a given cortical

vertex and the rest of the cortex, i.e. the GM to GM connectome (Figure 3.4b).
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Figure 3.4: Group average structural connectomes derived from the HCP cohort.
a. the white-grey matter boundary (WGB, with N ≈ 60k vertices) to white matter
(WM, with M ≈ 120k voxels) connectome averaged across 100 subjects. b. the grey
matter (GM) to GM connectome, represented by N surface vertices averaged across
the whole HCP cohort (1022 subjects).
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3.5 Summary and Thesis Context

This chapter introduces the primary datasets used in this thesis. As described, the

“WU-Minn” Human Connectome Project provides superb quality MRI data for a

relatively large cohort of subjects with substantial behavioural data. The UK

Biobank provides population-level MRI data of quality more typical of a good-

quality data in a clinical setting but makes this available for forty thousands sub-

jects.

This chapter also described the derivation of structural connectomes and at-

lases of diffusion microstructural features. The diffusion microstructural atlases

are available in FSL (version 6.0.1 and later). The structural connectomes provide

a valuable resource for exploring the associations between structural brain connec-

tivity and other, imaging or non-imaging, features in future work - these have also

been utilised in side-projects (Tewarie et al., 2020).

The diffusion MRI data from both datasets is utilised in the development of

XTRACT in Chapter 4 and for its applications shown in Chapter 5. The unique

family structure of the HCP allowed for the investigation of WM tract similarity

within twin and non-twin groups, providing evidence that our protocols reflect the

underlying anatomical variation across subjects. The scale and quality of the HCP

data also allowed for the calculation of high quality WM tract atlases, as well as

the diffusion microstructural feature map atlases described in Section 3.4. The

availability of a dataset more similar in quality to that of a clinical scenario (the

UK Biobank) allowed us to investigate the generalisability of XTRACT across data

quality. This is particularly useful in ensuring that, as a publicly released tool,

tract reconstructions are representative of the true anatomy despite significant

differences in data quality.

Finally, both the imaging and non-imaging data from the HCP (diffusion and

functional MRI) and UK Biobank (functional MRI) are vital in the investigations

presented in Chapter 6. The availability of brain imaging data and the wide array

of behavioural data for these large cohorts allows for the exploration of the stability

of brain-behaviour association techniques in a robust manner.
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Foreword

Tractography is a powerful and unique technique but, traditionally, is a time-

consuming and subjective process. It is used by the neuroscience community to

localise and reconstruct white matter tracts which connect brain regions. These

representations may be used to derive features, to construct networks and for in

vivo neuroanatomy explorations, potentially across large groups of individuals. The

application of tractography for these purposes requires standardisation and automa-

tion.

This chapter describes the development of a toolbox for the standardised and

automated extraction of 42 major white matter bundles. A special feature of our ap-

proach is that the devised tractography protocols are generalisable not only across

individuals, but also across non-human species (macaque). The toolbox, called

XTRACT (cross-species ‘X’ tractography ‘TRACT’), has been released in the FM-

RIB Software Library (FSL).

In the following sections, the background to standardised and automated trac-

tography is presented and the development of the toolbox and tractography protocols

are discussed. The toolbox is applied to the HCP, UK Biobank and to a macaque

dataset, and white matter tract atlases are generated, along with representations of

the cortical termination points of the tracts. The approach is evaluated in a number

of ways. We indirectly validate: a) through the assessment, and comparison to the

literature, of the hemispheric lateralisation of the resultant tracts, both in volume

space and on the cortical surface and b) by demonstrating generalisability across

datasets of different data quality and demographics. In addition, despite the stan-

dardisation of the process, we illustrate that individual variability in reconstructing

tracts is preserved by exploring the similarity of tracts in the context of family

structure (twins and siblings), as well as in cases of structural brain abnormalities.
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4.1 Introduction

Diffusion tractography is a unique tool for extracting white matter (WM) pathways

non-invasively and in vivo. The virtual dissection of major WM tracts enables the

study of brain organisation (Catani et al., 2013; Jbabdi et al., 2015) and offers a

probe to brain development (Huppi and Dubois, 2006) and WM pathology (Cic-

carelli et al., 2008; Griffa et al., 2013). It further allows explorations of individual

variations (Assaf et al., 2017) and cross-species variations (Mars et al., 2018c) in

anatomy and connectivity. This information has functional relevance, as the pat-

tern of extrinsic WM connections of each functional brain subunit to the rest of the

brain are unique (Passingham et al., 2002; Mars et al., 2018b).

To be able to reliably study individual variability in WM pathways, tractog-

raphy approaches often utilise protocols to extract a pre-defined set of WM tracts.

Such protocols typically comprise of regions of interest (ROIs) and respective rules

on using them (for instance as seed, exclusion and termination masks). They re-

flect prior anatomical knowledge used to guide and constrain curve propagation,

reducing the chance of false positives (Catani et al., 2002; Wakana et al., 2004).

Tractography protocols must be robust and reproducible, allowing reconstruction of

WM tracts in a consistent manner across subjects, whilst respecting the underlying

anatomical variation and individual differences. One approach that may be used

is to define subject-specific tractography protocols (Conturo et al., 1999), consid-

ering the specific variations in individual anatomy. However, defining masks on a

subject-wise basis is time-consuming and subjective (Jones, 2008; Nucifora et al.,

2012), while for large cohorts these limitations become prohibitive. The alternative

to this manual approach is to define a set of standardised masks in template space,

which are then registered to the individual geometry and used in a consistent and

automated manner for each subject.

These automated region of interest (ROI) -based tractography approaches have

proven powerful in the extraction of a range of tracts (Thiebaut de Schotten et al.,

2011b; Catani et al., 2012; Makris et al., 2013; Menjot de Champfleur et al., 2013;

Hecht et al., 2015; Nowell et al., 2016; Hau et al., 2016; Zhao et al., 2016; Takemura
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et al., 2017; Howells et al., 2018; Maffei et al., 2019; Eichert et al., 2019). They have

further allowed for the application to large cohorts for development of tract-specific

atlases (Archer et al., 2018; Chenot et al., 2019) and extraction of tract-specific

features (Miller et al., 2016).

In this chapter, a new approach is presented. We devise a library of standardised

tractography protocols for the automated extraction of WM tracts, both in the

human and the macaque brain. Prior anatomical knowledge for the human and

non-human primate brain is translated to a set of species-equivalent tractography

rules in order to extract homologous reconstructions for a range of WM tracts. Such

equivalence can provide unique possibilities for comparative neuroanatomy and the

identification of functionally equivalent cortical regions between different species, in

the absence of any geometrical similarity (Mars et al., 2018c).

This work builds on and extends previous efforts that developed libraries of trac-

tography protocols in the human brain (Wakana et al., 2007; Catani and Thiebaut

de Schotten, 2008; Zhang et al., 2008; Hua et al., 2008; Thiebaut de Schotten et al.,

2011b; Groot et al., 2013; Wassermann et al., 2016) (see Table 4.2 in the Appendix

for a summary). A set of standard-space masks for the extraction of 20 tracts was

developed by Wakana et al. (2007). They reported high inter- and intra-rater repro-

ducibility and suggested that some tracts may display left-right asymmetry. In Hua

et al. (2008), the authors extended this work to generate probabilistic tract atlases

for 22 tracts (11 left/right) and exampled their use by investigating tract-specific

abnormalities in multiple sclerosis. Zhang et al. (2008) applied these standardised

masks to 10 subjects and reported high agreement between automated and manual

tract segmentation approaches.

Similarly, Catani and Thiebaut de Schotten (2008) defined standard-space masks

for the reconstruction of 19 tracts (7 left/right, 5 commissural) and assessed the re-

producibility of their protocols. This work was furthered by Thiebaut de Schotten

et al. (2011b) through the extension of the tractography protocols to 31 tracts (14

left/right, 3 commissural), where good correspondence between their automated

tractography technique and histological atlases was reported.

In Groot et al. (2013), standardised protocols for probabilistic tractography
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were used to reconstruct 27 tracts (12 left/right, 3 commissural) in two datasets

with varying quality. More recently, Wassermann et al. (2016) proposed a frame-

work for describing WM anatomy and tracts which uses subject-wise anatomical

segmentation, clustering and a query language (the white matter query language -

WMQL) to extract 57 (25 left/right, 7 commissural) tracts from whole-brain trac-

tography and a grey matter (GM) parcellation. This approach reduces the definition

of tracts to sets of logical rules with reference to the tract position and termination,

the tract route and its spatial relationship to given brain parcels.

Despite the great potential of all previous developments, none of these have

targeted multiple species, which is the aim of this study. The presented approach is

also complementary to non-ROI-based methods for WM tract reconstruction, such as

unsupervised clustering-based, e.g. O’Donnell and Westin (2007), Garyfallidis et al.

(2012), and Siless et al. (2018), or supervised methods (Wasserthal et al., 2018). The

former are “data-driven”, whereas in the current study, prior anatomical knowledge

is imposed in order to reduce false positives in tractography. The latter can be

benefitted during training from new approaches, such as the one presented here,

that aim to reconstruct anatomically known tracts in a consistent and reproducible

manner.

The work in this chapter extends these previous efforts in devising an extended

set of ROI-based tractography protocols and an automated tractography toolbox.

The contribution of this chapter is as follows: 1) tractography protocols for 42

tracts are designed and their robustness against data quality is illustrated, using

high-resolution data from the HCP (Sotiropoulos et al., 2013b) and more typical

data from the UK Biobank (Miller et al., 2016) (see Sections 3.2 and 3.3 for more

details), 2) the generalisability of the tractography protocols to the macaque brain

is illustrated, 3) high-quality tract atlases are derived using these protocols both for

the human brain (1000 HCP subjects) and the macaque brain (high-resolution, ex

vivo datasets from 6 animals), 4) indirect validation is performed by assessing later-

alisation of the extracted tracts (in humans), 5) it is illustrated that, despite being

template-driven, reconstructed tracts preserve individual variability as assessed via

twinship analysis, and 6) an open-source flexible framework for publicly exchang-
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ing tractography protocols is made available within FSL. New standard space WM

tractography protocols may be defined and “plugged into” the toolbox, allowing

for further expansion and tract exchange, contributing to open science and repro-

ducibility of results.

4.2 Methods

4.2.1 XTRACT and the Tractography Protocols

Tractography protocols for 42 WM tracts (19 bilateral and 4 commissural) were

devised in a generalisable manner that allows equivalent mask definitions to ap-

ply to both the human and the macaque brain. The full list of tracts that are

currently supported is presented in Table 4.1. Further, a new cross-species trac-

tography (XTRACT) toolbox, capable of reading the standard space tractography

protocols and performing probabilistic tractography (Behrens et al., 2007), with the

option of GPU acceleration (Hernandez-Fernandez et al., 2019) was developed and

implemented.

Tract Abbreviation Left/Right? Seeding Strategy

Association

Fibres

Arcuate Fasciculus AF Yes Reverse-seeding
Frontal Aslant Tract FA Yes Single-ROI
Inferior Longitudinal Fasciculus ILF Yes Reverse-seeding
Inferior Fronto-Occipital fasciculus IFO Yes Reverse-seeding
Middle Longitudinal Fasciculus MdLF Yes Reverse-seeding
Superior Longitudinal Fasciculus I SLF1 Yes Single-ROI
Superior Longitudinal Fasciculus II SLF2 Yes Single-ROI
Superior Longitudinal Fasciculus III SLF3 Yes Single-ROI
Uncinate Fasciculus UF Yes Single-ROI
Vertical Occipital Fasciculus VOF Yes Reverse-seeding

Commissural

Fibres

Anterior Commissure AC No Reverse-seeding
Forceps Major FMA No Reverse-seeding
Forceps Minor FMI No Reverse-seeding
Middle Cerebellar Peduncle MCP No Reverse-seeding

Limbic

Fibres

Cingulum subsection: Dorsal CBD Yes Single-ROI
Cingulum subsection: Perigenual CBP Yes Single-ROI
Cingulum subsection: Temporal CBT Yes Single-ROI
Fornix FX Yes Single-ROI

Projection

Fibres

Acoustic Radiation AR Yes Reverse-seeding
Anterior Thalamic Radiation ATR Yes Single-ROI
Corticospinal Tract CST Yes Single-ROI
Optic Radiation OR Yes Reverse-seeding
Superior Thalamic Radiation STR Yes Single-ROI

Table 4.1: The list of reconstructed WM tracts, their corresponding tract type and
the seeding strategy used.

XTRACT is effectively a wrapper command-line tool which requires users, in
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the most basic implementation, to provide a single subject’s diffusion modelled data

and their registration fields between the native diffusion space and the standard

space for the given species. In addition, users may develop and apply their own

protocols using XTRACT. XTRACT is built on pre-existing FSL tools, primarily

utilising the registration tools (applywarp) and the probabilistic tractography tool

(probtrackx). Figure 4.15 illustrates the main stages in XTRACT to reconstruct a

given tract:

Step 1.) each tract is reconstructed using a unique combination of binarised

masks (i.e. tractography protocols), defined in standard space (MNI152 for humans

and F99 for macaques) using a combination of hand-drawn regions and atlas-based

masks developed and agreed upon by multiple experts1. The masks include seeds,

targets/waypoints, exclusions and stop/termination regions. Seed masks provide

the starting points of the tractography streamlines. Target/waypoint masks are re-

gions through which a streamline should pass in order to be valid. Exclusion masks

serve to reject any streamline running through them and stop/termination masks

stop any streamline running through them. Step 2.) using a non-linear registration

warp field defining the transform between the standard space and the subject’s na-

tive space, XTRACT warps the protocols to the subject’s native space, and step 3.)

performs probabilistic tractography in the subject’s native space. XTRACT has the

option to store the tractography results in either the subject’s native diffusion space

or, steps 4-5.) in the standard space in which the protocols are stored (its default

and most commonly used behaviour). In this default usage, following tractography,

results are directly resampled to the standard space using the inverse non-linear

registration warp field, allowing between-subject geometrical correspondence, nec-

essary in certain contexts (e.g. atlasing). Appendix 4.6.2 provides further details

on the requirements, usage and output of XTRACT.
1Protocol masks developed by Rogier Mars, Katherine Bryant (led the macaque protocols),

Shaun Warrington, Gwenaëlle Douaud and Stamatios Sotiropoulos (led the human protocols).
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Figure 4.1: Schematic of the stages for automated tractography, as implemented
in XTRACT, with an example of the left arcuate fasciculus (AF) for the human
brain. 1.) Tractography protocol masks are defined in standard space with seed
(green), exclusion (black), waypoint (blue) and termination (orange) masks. 2.)
The protocol masks are warped to the subject’s native space using the subject-specific
non-linear warp fields. 3.) Probabilistic tractography is performed in the subject’s
native space using the crossing fibre modelled diffusion data. 4.) Notice that results
are mapped directly into standard space, leading to a single interpolation step. 5.)
The resultant tract stored in standard space, overlaid on the FSL_HCP1065 FA
atlas.
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Protocol Definitions

The sections below describe in detail the protocol for each tract in consideration

in the case of human tractography and any adjustments for the macaque brain.

With the exception of the brainstem and commissural tracts all protocols include

the midline sagittal plane as an exclusion mask to restrict fibres to the ipsilateral

hemisphere.

XTRACT supports two seeding strategies: a) a standard single-ROI seed and b)

a “reverse-seeding” approach, where a pair of seed-target masks exchange roles and

the final path distributions are added. In cases where the reverse-seeding strategy

is used, this is to improve the robustness of the reconstruction and to ensure that

the whole bundle is represented in the final reconstruction. Where possible, in order

to reduce processing time, the single-ROI seed approach is used. Details of seeding

strategy for each protocol are provided in Table 4.1.

In general, protocols were defined/guided based on anatomical priors from the

literature. Adjustments and additional masks, compared to those described in the

literature, were included to increase tract reconstruction success rate, improve tract

coverage and reduce false positives (here, ‘false positives’ refers to the inclusion of

streamlines that do not belong to a given fibre bundle) based on trial and error.

Details of this trial and error approach are not provided in full. In brief, a protocol

was tested on a small subset of subjects (tens of subjects in the human data) and

tract quality was assessed considering the tract volume in each subject’s tract recon-

struction and by visual assessment of cohort average tracts. For each protocol, an

example visualisation of the resultant tract is provided for the human and macaque

brain.

Association Fibres

Superior Longitudinal Fasciculus (SLF) 1/2/3: The three branches of the superior

longitudinal fasciculus are reconstructed using an extension of the approach taken

by Thiebaut de Schotten et al. (2011a). In each case a coronal plane in the region

of the central sulcus within the frontal/parietal cortex is used as a seed along with
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two target masks. Frontally, target masks for the first, second, and third branches

of the SLF were coronal sections through the superior, middle, and inferior frontal

gyri, respectively, placed at the level of the posterior end of the genu of the corpus

callosum. Posteriorly, a large coronal target mask in the superior parietal lobule,

immediately posterior to the margin of the cingulate gyrus is used for SLF1. For

SLF2 and SLF3, the second target masks are placed in the angular gyrus and supra-

marginal gyrus respectively. In each case, seed placement reflects the placement of

the second target whilst being moved anteriorly into the region of the central sulcus.

For each protocol, an axial exclusion mask was placed underneath the parietal cortex

and one blocking subcortical areas prevented leaking into ventrally oriented fibres.

A final coronal exclusion mask through subcortical areas posterior to the caudal end

of the genu of the corpus callosum prevented leaking into ventral longitudinal tracts.

Arcuate Fasciculus (AF): The arcuate fasciculus forms part of the system of dorsal

longitudinal fibres, but in the human brain is distinguished by its posterior curve

ventrally into the temporal cortex. The human AF was reconstructed with a seed in

the supramarginal gyrus (SMG), a temporal target mask was in the WM encompass-

ing the superior temporal gyrus (STG) and middle temporal gyrus (MTG), and an

anterior target at the level of the ventral premotor cortex, posterior to the inferior

frontal gyrus (IFG) and anterior to the precentral sulcus. Following the observation

in the macaque that this tract runs along the fundus of the circular insular sulcus

(Petrides et al., 2012), a seed mask was placed there, just posterior to the level of

the central sulcus. An axial target mask was placed in the parietal-temporal WM

posterior to the caudal end of the Sylvian fissure. An additional axial plane was

placed in the IFG. This protocol was validated by Eichert et al. (2019).
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Middle/Inferior Longitudinal Fasciculus (MdLF, ILF): Three tracts that course along

the temporal lobe were reconstructed (MdLF, ILF, IFO). The middle and inferior

longitudinal tracts stay within the lateral posterior cortex. The MdLF was seeded

in the anterior part of the superior frontal gyrus (SFG) (Makris et al., 2009); the

ILF in the middle and inferior temporal gyri to account for the expansion of the

temporal cortex in the human brain compared to the macaque (Latini et al., 2017;

Roumazeilles et al., 2020). For the MdLF, large axial and coronal planes covering

the WM in the temporo-parietal-occipital junction were used as targets, based on

anatomical descriptions from Makris et al. (2009). For the ILF, a coronal plane in

middle and inferior temporal gyrus is used as a target. For both protocols, exclu-

sion masks were placed axially through the brainstem, coronally through the fornix,

axially through the cingulum bundle posterior to the corpus callosum and through

the entire frontal cortex. In addition, the seed mask of MdLF served as an exclusion

mask for the ILF and vice versa, and the ILF target mask was used as an exclusion

mask in the MdLF. Additionally, for the ILF, a coronal exclusion mask was placed

in the in the centrum semiovale and an axial exclusion mask covering the WM of

the SMG was used.

Inferior Fronto-Occipital Fasciculus (IFO): In contrast to MdLF and ILF, the infe-

rior fronto-occipital fasciculus, also termed the extreme capsule fibre complex (Mars
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et al., 2016a), runs more medially and courses into the frontal cortex through the

extreme capsule. Extending the recipe of Wakana et al. (2007), the seed was a

coronal plane through the anterior part of the occipital cortex, the target a coronal

plane through the frontal cortex anterior to the genu of the corpus callosum. An

exclusion mask just behind the anterior commissure excluded all fibres except those

running through the extreme capsule.

Uncinate Fasciculus (UF): The bottom part of the extreme capsule contains fibres

belonging to the uncinate fasciculus, curving from the inferior frontal cortex to the

anterior temporal cortex. The tract was reconstructed using a seed in the STG at the

first location where temporal and frontal cortex are separated, a target through the

ventral part of the extreme capsule, and an exclusion mask layer between the seed

and the target to force the curve. An additional coronal exclusion mask prevented

accidental leaking into the fibres running longitudinally through the temporal lobe.

Frontal Aslant Tract (FA): The frontal aslant is a short tract running in the frontal

lobe between the posterior part of the inferior and superior frontal gyri (Catani

et al., 2012). The seed was placed sagittally in the WM of the IFG, the target

axially in that of the SFG. A posterior coronal exclusion mask prevented leakage

into longitudinal fibres.
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Vertical Occipital Fasciculus (VOF): The VOF runs in a predominantly dorsal-

ventral orientation in the occipital lobe. We used an adapted version of the recipe

described by Takemura et al. (2017). An axial seed mask was placed in the lateral

part of the ventral occipital WM posterior to the anterior occipital sulcus (Petrides

et al., 2012). A larger axial target mask was placed dorsally at the level of the lateral

occipital sulcus. A coronal plane just posterior to the corpus callosum served as an

exclusion mask to prevent leakage into anterior-posterior tracts.

Commissural Fibres

Middle Cerebellar Peduncle (MCP): The MCP was seeded in the cerebellar WM

with a target in the opposite hemisphere (and their inverses). Exclusion masks were

placed sagitally along the cerebellar midline and axially through the thalamus.

Corpus Callosum Splenium (FMA) & Genu (FMI): We reconstructed callosal con-
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nections to the occipital lobe via the splenium of corpus callosum (forceps major,

FMA) and to the frontal lobe via the genu of corpus callosum (forceps minor, FMI)

using recipes based on those defined by Wakana et al. (2007). Seed and target masks

(and their inverse) for the FMA were defined as coronal sections through the occip-

ital lobe at the posterior end of the parietal-occipital sulcus. The sagittal exclusion

mask was confined to the occipital cortex and the subcortex. Additional exclusion

masks though the inferior fronto-occipital WM and a coronal plane through the

pons prevented leakages to longitudinal fibres. Seed and target masks (and their

inverse) for the FMI were defined as coronal sections through the frontal lobe at the

anterior end of the pregenual cingulate sulcus. The midsagittal exclusion mask was

interrupted at the level of the anterior third of the corpus callosum and an additional

coronal exclusion mask at the same level prevents posterior projections.

Anterior Commissure (AC): The anterior commissure connects the temporal lobes

of the two hemispheres across the midline. It was seeded in the left-right oriented

fibres on the midline, with a target mask covering the WM lateral to the globus

pallidae. Stop masks were placed directly underneath and lateral to the two amyg-

dalae. A large axial exclusion mask was placed dorsal to the seed through the entire

subcortex.
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Limbic Fibres

Cingulum subsections (CBT, CBP, CBD): Recently, Heilbronner and Haber (2014)

proposed a segmentation of the cingulum bundle into distinct sections based on the

presence of fibres connecting specific cingulate, non-cingulate frontal, and subcor-

tical targets. Therefore, protocols for three distinct subsections of the cingulum

bundle were created. The temporal part (CBT) was seeded in the posterior part of

the temporal lobe at a section where the fibres of the cingulum are mostly oriented in

the anterior-posterior direction. The target was placed posteriorly to the amygdala

and stop masks were placed posteriorly and anteriorly to the seed and target masks,

respectively. An exclusion mask prevented leaking into the fornix. The dorsal seg-

ment (CBD) was seeded just above the posterior part of the corpus callosum and had

a target at the start of the genu of the corpus callosum. A sagittal exclusion mask in

the anterior limb of the internal capsule prevented leakage into the temporal lobe.

Finally, the peri-genual part of the cingulum bundle (CBP) was seeded anteriorly

above the corpus callosum and a target placed below the sub-genual callosum with

a stop mask placed inferior and anterior to the target. A callosal plane at the level

of the rostral end of the Sylvian fissure prevented leakage into the CBD.

Fornix (FX): The fornix connects the hippocampus with the mammillary bodies,

the anterior thalamic nuclei, and the hypothalamus (Catani et al., 2013). The tract

was reconstructed using a seed in the body of the fornix at the level of the middle of

the corpus callosum and a target in the hippocampus. A callosal plane at the ante-

rior end of the occipital cortex prevented leakage into posterior tracts and bilateral

sagittal planes around the midline, at the level of the anterior tip of the thalamus

prevented lateral propagation to the anterior limb of the internal capsule. To pre-
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vent leakage into the cingulum, an axial exclusion mask posterior to the splenium of

the corpus callosum and a small axial exclusion covering the parahippocampal gyrus

region of the cingulum are also used. We should point out that due to the relatively

small size of the stria terminalis and its close proximity to the fornix, the fornix

tracking may leak into the stria terminalis. This is a common issue in diffusion

tractography and is yet to be overcome using approaches in line with those used in

the current study (Mori and Aggarwal, 2014; Kamali et al., 2015; Mori et al., 2017;

Pascalau et al., 2018).

Projections Fibres

Corticospinal Tract (CST): The corticospinal, or pyramidal, tract extends from the

spinal cord through the midbrain and distributes to motor cortex, premotor cortex

and somatosensory cortex. The tract is seeded from the pons with a large target

covering the motor, premotor and somatosensory cortices. An axial exclusion mask

is used to restrict tracking to the cerebral peduncle of the midbrain. In addition,

the exclusion mask includes two coronal planes, anterior and posterior to the target,

to exclude tracking to the prefrontal cortex and occipital cortex respectively and a

plane preventing leakage into the cerebellar peduncles.

Anterior and Superior Thalamic Radiations (ATR, STR): The anterior and supe-

rior thalamic radiations connect the thalamus to the frontal lobe and pre-/post-
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central gyrus respectively. The anterior thalamic radiation is seeded using a coronal

mask through the anterior part of the thalamus (Wakana et al., 2007) with coronal

target mask at the anterior thalamic peduncle. In addition, the exclusion mask con-

tains an axial plane covering the base of the midbrain, a coronal plane preventing

leakage via the posterior thalamic peduncle and a coronal plane preventing leakage

via the cingulum. A coronal stop mask covers the posterior part of the thalamus,

extending from the base of the midbrain to the callosal sulcus. The superior tha-

lamic radiation is seeded using a mask covering the whole thalamus and a target

axial plane covering the superior thalamic peduncle. An axial plane is used as a stop

mask ventrally to the thalamus. The exclusion mask includes two coronal planes,

anterior and posterior to the target, to exclude tracking to the prefrontal cortex and

occipital cortex respectively.

Acoustic Radiation (AR): The acoustic radiation connects the medial geniculate

nucleus (MGN) of the thalamus to the auditory cortex. It was seeded from the

transverse temporal gyrus with a target covering the MGN of the thalamus. The

exclusion mask consists of two coronal planes, anterior and posterior to the thala-

mus, and an axial plane superior to the thalamus. In addition, the exclusion mask

contains the brainstem and a horizontal region covering the optic tract.

Optic Radiation (OR): The optic radiation consists of fibres from the lateral genic-
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ulate nucleus (LGN) of the thalamus to the primary visual cortex. It was seeded

in the LGN and the target mask consisted of a coronal plane through the anterior

part of the calcarine fissure. Exclusion masks consisted of an axial block of the

brainstem, a coronal block of fibres directly posterior to the LGN to select fibres

that curl around dorsally, and a coronal plane anterior to the seed to prevent leaking

into longitudinal fibres.

Adjustments for the Macaque Brain

Although the protocols described above are such that they allow for equivalent defi-

nitions in the macaque brain, some adjustments were required to ensure anatomical

accuracy. For all macaque protocols, the reverse-seeding method was used, as this

was found to increase robustness in the resulting tracts. In addition, the AF and

MdLF protocols were adjusted to reflect the macaque brain. In the case of the AF, a

seed is placed in the caudal STG, a target directly above the principal sulcus extend-

ing posterior to 8Ad (based on the tract-tracing data of Schmahmann and Pandya

(2006)). In addition, a target placed in the caudal STG, immediately inferior and

posterior to the seed ensured tracking occurred via caudal end of the lateral fissure.

For the MdLF, a single axial plane in the posterior part of the STG was used as a

target.

4.2.2 Data and Preprocessing

To assess robustness across varying data quality, very high-quality diffusion MRI

data from the HCP (Sotiropoulos et al., 2013a; Van Essen et al., 2013) (multi-shell

data, 1.25 mm isotropic spatial resolution, 570 dMRI volumes, 1 hour of scanning)

and data from the UK Biobank (Miller et al., 2016), which have overall quality
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(2 mm isotropic resolution data, 100 dMRI volumes, 7 mins of scanning) closer

to that typically available through clinical scanners, were utilised. For the HCP

data 44 subjects with identified anatomical abnormalities were removed from the

statistical comparisons and group atlases (see the HCP quality control website for

details2), leaving a total of 1,021 subjects from the 1,065 subjects with diffusion

data. For both the HCP and UK Biobank, the pre-processed dMRI data was used

(see Sections 3.2 and 3.3 for details). Non-linear registration warp fields between

the subject’s diffusion space and the MNI152 standard space are provided by the

HCP and UK Biobank for each subject. Details on their derivation are provided in

Sections 3.2.4 and 3.3.4.

To ensure generalisability of the protocols across species, we also utilised dif-

fusion MRI data from the macaque brain. This data consisted of an extended set

of animals used in Eichert et al. (2020) and Mars et al. (2018b). Post-mortem data

were acquired locally on a 7 T magnet with an Agilent DirectDrive console (Agilent

Technologies, Santa Clara, CA, USA) using a 2D diffusion-weighted spin-echo proto-

col with single line readout (DW-SEMS, TE/TR: 25 ms/10 s; matrix size: 128×128;

resolution: 0.6 × 0.6 mm; number of slices: 128; slice thickness: 0.6 mm; diffusion

data were acquired over the course of 53 hours). 16 non-diffusion-weighted (b = 0

s/mm2) and 128 diffusion-weighted (b = 4000 s/mm2) volumes were acquired with

diffusion directions distributed over the whole sphere. The brains were soaked in

PBS before scanning and placed in fomblin or fluorinert during the scan. These data

are available via PRIME-DE (Milham et al., 2018). Using FSL’s FNIRT (Andersson

et al., 2007; Jenkinson et al., 2012), estimations of the nonlinear transformations

to standard space (F99) (Van Essen, 2002) were obtained based on the fractional

anisotropy (FA) maps3.
2HCP quality control website -

https://wiki.humanconnectome.org/pages/viewpage.action?pageId=88901591
3Macaque registrations to the F99 atlas are performed using a custom configuration file. The

F99 atlas volumes and surfaces are distributed within XTRACT, along with the custom configu-
ration file.



Chapter 4. Methods 90

4.2.3 Fibre Orientation Estimation and Tractography

Prior to XTRACT, the crossing fibre model described in Jbabdi et al. (2012), and

previously discussed in Section 2.2.3, was applied to the diffusion data and used to

estimate orientations to inform tractography. Up to three fibre orientations were

estimated in each voxel along with their uncertainty. The XTRACT toolbox read

the standard space tractography protocols and performed probabilistic tractography

(Behrens et al., 2007; Hernandez-Fernandez et al., 2019). As discussed before, trac-

tography protocols were defined for each bundle using a unique combination of seed,

target, exclusion and stop masks, along with a seeding strategy (see Table 4.1).

A number of default tractography termination criteria were also used in all pro-

tocols (curvature threshold: ±80 degrees, max streamline steps: 2000, subsidiary

fibre volume threshold: 1%, randomly sampled initial fibres in case of fibre crossings

in a seed location, no minimum length constraint, loop-checking and termination)

(Behrens et al., 2003b; Behrens et al., 2007). A step size of 0.5 mm and 0.2 mm were

used for human and macaque tractography respectively. The protocols described

above have been developed using these tractography criteria and, therefore, devia-

tion from these criteria may result in non-optimal performance. As shown in Figure

4.15, the masks were warped to the subject’s native space and, after tractography,

the results are directly resampled to standard space. The resultant distributions

are normalised with respect to the total number of valid streamlines generated (i.e.

streamlines that have not been rejected by inclusion/exclusion mask criteria).

4.2.4 Connectivity Blueprints

Tractography estimates discussed in the previous section focus mostly on the route

of fibre bundles through deep WM, i.e. the main body of the tracts. A number

of potential approaches exist for representing the cortical connectivity mediated

by these bundles using structural connectomes (Sotiropoulos and Zalesky, 2017).

One method of particular interest is the “connectivity blueprint”, that allows us to
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estimate the “cortical termination”4 map of each tract (Mars et al., 2018c).

This is achieved by first building a whole brain connectivity matrix, seeding

from every white-grey matter boundary (WGB) location (with 2,000 streamlines

initiated per seed) and counting the number of visitations to the whole WM5, giving a

WGB×WM connectivity C1 matrix (exampled in Figure 3.4a). The tracts obtained

using the tractography protocols (see Table 4.1)6 were vectorised and concatenated

into a single WM × tracts C2 matrix. Multiplying the two matrices provides the

connectivity blueprint, i.e. a CB = C1×C2 (WGB×tracts) matrix. This process is

shown schematically in Figure 4.2. Columns of this matrix represent the termination

points of the corresponding tract on the WGB surface, while rows illustrate the

connectivity pattern of each cortical location (i.e. how each tract contributes to

the overall connectivity of each cortical location). This process was performed for

the human (HCP) and macaque subjects, providing termination maps for all tracts

across both species.

4.2.5 Atlas Generation

For each HCP (1,065), UK Biobank (1,000) and macaque (6) subject, tractography

as described above was used to extract estimates of 42 the WM tracts. For each

cohort, WM tract atlases are produced. This was achieved by binarising the nor-

malised WM tract reconstructions at a threshold value. These binarised tract masks

were then cohort-averaged to produce, per tract, a distribution of the probability

of a given tract being present for each voxel. In addition to the WM tract atlases,

an atlas representing the average connectivity blueprint for the HCP and macaque

cohort were generated. For both human cohorts, the effect of sample size on the

generation of WM tract atlases was investigated. To do this, tract atlases were gen-

erated using 10, 100, 200, 500 and 1,000 subjects. In each case, each tract atlas was
4Here, when referring to the cortical surface, this actually refers to the boundary surface between

white matter and grey matter (as depicted in Figure 4.2). This is to overcome the limitations of
diffusion MRI when used in grey matter.

5The WM volumetric data was downsampled to a resolution of 3 mm, see Appendix 4.6.4 for
details.

6The middle cerebellar peduncle (MCP) is excluded from this process as the cerebellum is not
usually included in the cortical surface representations.
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Figure 4.2: A schematic of the construction of connectivity blueprints. Tractog-
raphy is seeded from the white-grey matter boundary (WGB), represented by the
purple outline, and then counting the number of visitations to the whole white mat-
ter (WM), giving C1 (N ∼ 60k by M ∼ 58k). Columns of this matrix represent
vertex-wise connectivity profiles. Next, the tractography reconstructions produced
using XTRACT are vectorised and stacked to give a WM by tracts matrix, C2 (M
by T = 41). Multiplying the two matrices gives the connectivity blueprint, CB (N
by T ). Columns represent maps of tract termination on the WGB surface; rows
represent WGB connection profiles and reflect the contribution of each tract to the
connection pattern of each WGB vertex.

correlated to the corresponding 1,000 subject atlas to asses how well lower sample

sizes capture the population variance.

4.2.6 Protocol Evaluation and Validation Methods

Robustness Against Datasets

One of the aims of these standardised tractography protocols is to be generalisable

across datasets. Section 4.2 describes how WM tract reconstructions are obtained

from the HCP and UK Biobank. To explore robustness against varying data quality,

reconstructions across the datasets were compared. First, the population percent

tract atlases were compared by correlating tracts across datasets.
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Next, within- and across-cohort comparisons were made at the subject level by

correlating random subject pairs. To avoid possible family structure-induced bias in

the HCP, we restricted our subjects to the 339 unrelated subjects. To match this,

the same number of gender-matched UK Biobank subjects were randomly chosen.

Within-cohort correlations were performed by correlating a random HCP subject

with another random HCP subject. The same was repeated for the UK Biobank

cohort. Across-cohort comparisons were made by correlating a random HCP subject

with a random UK Biobank subject.

Reflecting the Known Anatomy - Hemispheric Lateralisation

It is well known that certain functional brain regions are represented to a greater

or lesser extent compared to their corresponding contralateral region, i.e. they are

lateralised. For example, functional regions associated with language are typically

lateralised (Hiscock and Kinsbourne, 2008). Given this functional lateralisation,

it may be expected that the underlying structural architecture also be lateralised.

Indeed, this is the case (Thiebaut de Schotten et al., 2011a; Menjot de Champfleur

et al., 2013; Hecht et al., 2015; Nowell et al., 2016; Hau et al., 2016; Panesar et al.,

2018; Howells et al., 2018) (see Table 4.3 for a summary).

WM Tract Lateralisation

Therefore, in order to demonstrate whether our protocols produce tracts repre-

sentative of the anatomical expectations, tract lateralisation using a large number

of subjects was investigated. We assessed tract lateralisation using tract volume.

Specifically, lateralisation (L) was calculated as the relative right-left volume (VR

and VL) difference, after binarising the normalised tracts at 0.5% and taking the

voxel count (Equation 4.1), in line with the literature on calculating tract lateral-

isation (O’Donnell et al., 2010; Propper et al., 2010; Thiebaut de Schotten et al.,

2011b).

L =
VR − VL

VR + VL

(4.1)
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where VR and VL are the volumes for the right and left tracts respectively.

Inter-Hemispheric Differences Using Connectivity Blueprints

Further to the WM tract lateralisation investigations, inter-hemispheric differences

in the cortical termination maps were also explored. A connectivity blueprint CBL,

including only the left-hemisphere tracts/columns and CBR, including only the

right-hemisphere tracts/columns, were obtained. Both matrices were row-normalised

so that the sum of all elements in each row was equal to 1. Subsequently, following

similar approach to Mars et al. (2018c), the symmetric Kullback-Leibler divergence

(KL divergence, Equation 4.2) between every pair of CBR and CBL rows was cal-

culated (Kullback and Leibler, 1951).

KLij =
∑
t

CBRit log2
CBRit

CBLit

+
∑
t

CBRjt log2
CBRjt

CBLit

(4.2)

where KLij is the KL divergence matrix, i indexes the vertices on the right

cortex, j indexes the vertices on the left cortex and t indexes the tracts. KL diver-

gence, or relative entropy, is a measure of statistical dissimilarity between discrete

probability distributions where a value of zero indicates that two probabilities are

identical and larger values indicate relative divergence. Using this approach allows

us to probe the similarity in connectivity patterns to all fibre bundles between the

connectivity blueprints. The right-left similarity in connectivity patterns in every

hemispheric location i was obtained between all possible pairs using the minimum

KL divergence value, i.e. min(CBRi, CBLj), with j spanning all N WGB locations.

This process is shown schematically in Figure 4.3.

By selecting a vertex on a given hemisphere, the minimum KL divergence and

the corresponding contralateral hemisphere vertex may be identified. It is expected

that regions that are similar across hemispheres, i.e. have a relatively small minimum

KL divergence, will have a contralateral vertex close, in distance, to the vertex of

interest. To investigate this, vertices in regions of varying dissimilarity on the right

hemisphere were selected and the contribution of the WM tracts to that vertex

were compared to the corresponding contralateral (left hemisphere) minimum KL
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Figure 4.3: Schematic of the calculation of Kullback-Leibler divergence. The con-
nectivity blueprint is split into their respective matrices to give (CBL,CBR), con-
taining their respective tracts and the commissural tracts T with N vertices. i and
j represent the vertices in two blueprints (CBR,CBL) respectively and t represents
the tract number. i.e. the probability that a vertex i in CBR is connected to a tract
t is given by the value in CBRi. Entropy between each distribution (CBRi,CBLj)
is calculated for each element (i, j). The KL divergence equation provides a sym-
metric dissimilarity measure and dissimilarity may be represented as the vertex-wise
minimum (along i for example).

divergence vertex.

4.2.7 Capturing Inter-Subject Variability

Respecting Similarities Stemming from Twinship

Whilst we aimed for the automated tractography protocols to be robust against data

quality, be reproducible and generalisable between species, it was further tested

whether they could respect features stemming from the inherent individual vari-

ability in WM anatomy across subjects. To demonstrate this, the similarity of

tract reconstructions within twin and non-twin sub-groups in the HCP cohort was

explored. It is anticipated that monozygotic twin pairs will illustrate larger similar-

ities than dizygotic twins and non-twin siblings, and subsequently than unrelated

subject pairs, in line with the literature on the heritability of structural connections

(Bohlken et al., 2014; Shen et al., 2014; Jansen et al., 2015) and as may be expected
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from the literature on sulcal similarities in twinship (Amiez et al., 2019). Using

the 72 pairs of monozygotic twins available in the HCP cohort, 72 randomly cho-

sen pairs of dizygotic twins, 72 randomly chosen pairs of non-twin siblings and 72

randomly chosen pairs of unrelated subjects, correlations between tract reconstruc-

tions were performed and used to assess whether the automated protocols respect

the underlying tract variability across individuals. We subsequently compared these

distributions between the different groups.

Respecting Individual Differences due to Atypical Anatomy

A subset of subjects with gross anatomical abnormalities were identified using the

HCP quality control manual. These subjects were removed from statistical analy-

sis and atlas generation, however, they afford the opportunity to investigate how

XTRACT performs in the presence of small anatomical abnormalities. XTRACT

was applied in the same manner as for all other subjects and the individually gener-

ated tracts were visually compared to cohort-averaged tracts. The cohort-averaged

tracts used here are simple averages across subjects, i.e. not the population per-

cent atlases - this allows for a consistent probability threshold to be applied in the

individual and averaged tracts for visualisation.

4.3 Results

4.3.1 Atlases

Human and Macaque WM Tract Atlases

As described in Section 4.2.5, tract-specific atlases were generated for the HCP, UK

Biobank and macaque subjects. Figure 4.4 provides maximum intensity projection

representations of the WM tract atlases for each cohort.
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(a) The HCP cohort (b) The UK Biobank cohort

(c) The macaque subjects (threshold = 0.5%) (d) The macaque subjects (threshold = 0.1%,
display range = 30%-100%)

Figure 4.4: Axial, sagittal and coronal maximum intensity projections of the popula-
tion percentage tract atlases. Varying maximum intensity projection window lengths
are applied to different tracts for visualisation purposes. Individual tract threshold
= 0.5% and display range = 5%-100% unless otherwise specified.
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Tract Termination Atlases

Connectivity blueprints were also derived for each HCP and macaque subject and

averaged to obtain atlases for the tract terminations. Examples of columns of the

average connectivity blueprints are shown in Figure 4.5, representing atlases of ter-

mination points of each tract on the WGB surface.

(a) Examples from the HCP cohort (b) Examples from the macaque subjects

Figure 4.5: white-grey matter boundary (WGB) endpoints for a subset of tracts (i.e.
columns of the average connectivity blueprint) derived from the HCP and macaque
cohorts.

4.3.2 The Effect of Sample Size on Atlas Generation

The effect of sample size on atlas creation was investigated in both human cohorts

(restricted to 1,000 subjects in each case). Figure 4.6 shows the distributions of

the tract-wise correlations (i.e. the average correlation across subjects per tract) for

each of the sample size atlases. The top plot includes an atlas set with a sample

size of 10 subjects which, whilst already showing high correlations (> 0.9), performs

relatively poorly compared to using a sample size of 100 or greater (> 0.98), i.e.

the average correlation obtained from a sample size of 10 is considerably lower than

that obtained from a sample size of 100 or greater.
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Figure 4.6: Summary of atlas sample size comparisons. The top plot includes the
10-subject atlas and the bottom plot shows the distributions without the 10-subject
atlas to allow for improved visualisation of the other distributions. σ is the mean of
the correlations across tracts and subject pairs. p is the p-value obtained from the
Mann-Whitney U test, summarising the differences across comparisons.

4.3.3 Robustness Against Datasets

To explore robustness against varying data quality, tract atlases and inter-subject

variability of the tract reconstructions within and across cohorts were compared.

To compare atlases, each tract from the HCP atlas set was cross correlated with

its corresponding UK Biobank tract atlas (population threshold of 30% applied to

each tract atlas). The average correlation across tracts was 0.80 (standard deviation

= 0.07).

Inter-subject correlations were obtained by cross correlating random subject

pairs tract-wise (i.e. correlating the normalised path distributions in MNI space for

each tract) and averaging the correlation across tracts for each subject pair. This was
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Figure 4.7: Summary of inter-cohort robustness. Plots of the correlations between
339 subject pairs within and across cohorts. σ is the mean of the correlations across
tracts and subject pairs. p is the p-value obtained from the Mann-Whitney U test,
summarising the differences across comparisons.

repeated for many subject pairs within and across cohorts using the 339 unrelated

HCP subjects and the gender-matched UK Biobank subjects. The across-cohort

comparison was made by correlating a random subject in the unrelated HCP subject

pool with a random UK Biobank subject, giving a distribution of 339 correlations per

tract. Within-cohort comparisons gave average correlation values of 0.51 (standard

deviation= 0.03) and 0.54 (standard deviation= 0.03) for the HCP and UK Biobank

respectively (p = 8×10−46) (Figure 4.7). Across-cohort comparison gave an average

correlation of 0.41 (standard deviation = 0.03) which is lower than within-cohort

comparisons (p = 1×10−110 and 2×10−110), yet it is comparable enough, particularly

given the differences in data quality and the age difference of subjects in the two

cohorts (HCP: 22-35 years old, UK Biobank: 40-69 years old, mean age for our

chosen subjects in HCP = 28.6 (standard deviation = 3.7) and UK Biobank = 62.6

(standard deviation = 7.5)).

Indeed, we have found that tract volumes are, on average, larger in the HCP

cohort compared to the UK Biobank cohort (6.5%±11.3% larger in the HCP cohort),

which is in line with the literature on age-related changes in WM volume (Westlye et

al., 2010; Lebel et al., 2012; Rathee et al., 2016). Figure 4.8 shows the distributions

of tract volumes for each tract reconstructed for the HCP and UK Biobank cohorts.
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Figure 4.8: Comparisons of the cohort-averaged volumes of each tract for the HCP
(green) and UK Biobank (orange). Volume is taken as the sum of non-zero voxels
following the binarisation of the waytotal normalised tract density maps (threshold of
0.5%). Percentages indicate the percent difference between the average tract volume
in the HCP cohort compared to the UK Biobank cohort, relative to the HCP cohort,
i.e. 100× VHCP−VBio

VHCP
.

4.3.4 Reflecting Known Anatomy

WM Tract Lateralisation

Lateralisation was assessed using both of the human cohorts. As shown in Figure

4.9, the AF is left-lateralised and IFO, MdLF and SLF3 are right-lateralised in both

the HCP and the UK Biobank cohorts. SLF1 is symmetric in the HCP cohort but

reaches rightward significance in the UK Biobank cohort. SLF2 is also variable

across cohorts with left-lateralisation in the HCP and right-lateralisation in the UK

Biobank.

Inter-Hemispheric Differences Using Connectivity Blueprints

In addition to volume-based measures of lateralisation, inter-hemispheric differences

on connectivity patterns were also assessed on the WGB surface using the tracts-
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Figure 4.9: Summary of WM tract lateralisation for the arcuate fasciculus (AF),
inferior fronto-occipital fasciculus (IFO), middle longitudinal fasciculus (MdLF)
and the superior longitudinal fasciculi (SLFs) using the HCP (top) and UK Biobank
(bottom) data. L is the cohort median WM tract lateralisation, p is the p-value
obtained from the Mann-Whitney U test and σ is the variance for the given WM
tract lateralisation. A threshold value of 0.5% has been used to binarise tracts and
obtain their volume. Corrected p-value is 0.05/12 = 0.0042.

derived connectivity blueprints. As explained in Section 4.2.6, KL divergence was

calculated to explore connectivity similarity between the two hemispheres of the hu-

man brain. For every location on the right hemisphere surface, the minimum KL di-

vergence value assesses the most similar connectivity pattern on the left hemisphere.

In doing so, we can probe cortical locations that demonstrate dissimilar connection

patterns between left and right hemispheres and assess which tracts are contributing

to these dissimilarities. In areas of high minimum KL divergence, we would expect
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to observe differences in the tract contribution profiles between the corresponding

vertices. Figure 4.10a shows the minimum KL divergence values obtained for all

WGB surface locations, overlaid with a subset of the Glasser parcellation (Glasser

et al., 2016). From Figure 4.10a we can see that regions of the temporal junction and

prefrontal/frontal cortices are dissimilar across hemispheres. Many of the regions

highlighted are associated with language, a function known to be associated with

lateralised brain regions (Hiscock and Kinsbourne, 2008).

Figure 4.10: a.) The minimum Kullback-Leibler divergence between the right and
left hemispheres plotted on the surface of the right hemisphere. A subset of the
Glasser parcellation (Glasser et al., 2016) is used to highlight regions of dissimi-
larity. The display range has been set to highlight regions with low- to mid-range
dissimilarity. b.) A threshold of 0.3 has been applied to highlight regions of higher
dissimilarity in the frontal cortex.

Figure 4.11 gives examples of the tract contribution to the connection pattern

of specific white-grey matter boundary locations on the right hemisphere and how

these compare with the connection patterns of the best matching location on the

left hemisphere. In regions of high dissimilarity, the corresponding minimum KL

divergence vertices drift apart and the underlying tract contributions diverge. For

example, there is very little difference between the right and left profiles of the tract

contribution to a vertex in the 4th visual area (V4) resulting in a very low minimum
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KL divergence.

Figure 4.11: Examples of the contribution of the WM tracts to vertex connectivity
across the two hemispheres. The plots show the normalised tract contributions to
the vertex on the right (blue line) and left (black line) hemispheres for the vertices
indicated by the white and black circles respectively. The white circle shows the
selected right hemisphere vertex. The black circle shows the corresponding minimum
KL divergence left hemisphere vertex.



Chapter 4. Results 105

A small dissimilarity is also observed in a vertex in the 2nd visual area (V2),

primarily driven by the IFO. An example vertex in the temporo-parietal-occopital

junction area 1 (TPOJ1), an area associated with high-order functions such as lan-

guage, visuo-spatial recognition and more (De Benedictis et al., 2014), highlights

small differences in the contributions from AF and SLF3. The relatively low dissim-

ilarity in a vertex in the anterior cingulate motor cortex (24dd), an area associated

mostly with autonomic functions and motor control (Paus, 2001; Jumah and Dos-

sani, 2019), is driven by minor differences in the contributions of the CBD, FA and

STR.

Interhemispheric differences, primarily in the IFO, leads to a relatively small

dissimilarity in an example vertex in the medial orbital frontal cortex (OFC): a rel-

atively poorly understood area thought to be functionally involved in monitoring,

learning and memory of the reward value of reinforcers (Kringelbach, 2005). The

anterior ventral insular area (AVI), an area associated with affective processes (Ud-

din et al., 2017), shows greater dissimilarity driven by differences in the ATR, IFO,

SLF3 and UF.

The inferior frontal sulcus (IFSa), an area associated with language processing

and speech production (forming a part of Broca’s area), and surrounding areas

(45, p45r, IFSp, p9-46v and FOP5) show strong interhemispheric dissimilarity. An

example vertex in the IFSa reveals that differences in the AF, FA and SLFs drive this

dissimilarity. These examples highlight that, in general, in cases where dissimilarity

is observed, the tracts contributing to said dissimilarity are those known to relate

to lateralised functions.

Figure 4.10b presents the minimum KL divergence surface map after apply-

ing a threshold, highlighting the greater dissimilarity mostly confined the to frontal

cortex. To further investigate the dissimilarity in the frontal cortex, the cohort av-

eraged connectivity blueprint and minimum KL divergence map were parcellated

using the Glasser parcellation (Glasser et al., 2016): in each case, the mean and

standard deviation for a given parcel was calculated. Next, for each parcel in the

frontal cortex, the mean minimum KL divergence is reported along with plots of the

tract contribution to the given parcel. Figure 4.12 presents these results, demon-
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strating that interhemispheric dissimilarity is primarily driven by tracts known to

be lateralised, for example, the right-lateralised SLF3.

Figure 4.12: Tract contributions for the regions highlighted in Figure 4.10b for the
right (blue) and left (black) hemispheres, including regions in the inferior frontal
sulcus (IFSa and IFSp), a central portion of the dorsolateral prefrontal cortex (p9-
46v), area 45, the region posterior to area 47 (p47r), and an area in the frontal
operculum (FOP5) parcels.
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4.3.5 Capturing Inter-Subject Variability

Respecting Similarities Stemming from Twinship

To explore whether the tractography protocols preserved individual variability in

WM anatomy, we compared tract reconstructions for 72 pairs of monozygotic twins,

dizygotic twins, non-twin siblings and unrelated subjects from the HCP. Figure 4.13

shows the distributions of the average tract-wise correlations (i.e. average across

tracts for each subject pair) for each twin/non-twin group. As shown, monozy-

gotic twin pairs, on average (median), have a higher correlation (0.588, standard

deviation = 0.036) with their corresponding twin compared to dizygotic twin pairs

(0.545, standard deviation = 0.031), non-twin sibling pairs (0.543, standard devi-

ation = 0.034), and unrelated subject pairs (0.507, standard deviation = 0.029).

A Kruskal-Wallis test demonstrates statistically significant differences between sub-

group medians: χ2 = 122.3, p = 2× 10−26. These results agree with a priori expec-

tations stemming from the heritability of WM structure (Bohlken et al., 2014; Shen

et al., 2014) and demonstrate that our protocols can preserve biological variability.

Figure 4.13: Twin/non-twin WM tract similarity using 72 subject pairs per group.
Correlations are performed on normalised tract density maps with a threshold of
0.5%. µ is the group median across tracts and subjects and σ is the standard
deviation. A Kruskal-Wallis test is used to determine whether the groups come from
the same median: χ2 = 122.3, p = 2 × 10−26, mean ranks = 222.6 (monozygotic),
145.1 (dizygotic), 134.4 (non-twin siblings) and 69.9 (unrelated).
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Respecting Individual Differences due to Atypical Anatomy

In addition to exploring the similarity of tract reconstructions in twins, we further

investigated whether the automated tractography respected individual variability in

the case of anatomical abnormalities. A subset of subjects with gross anatomical

abnormalities were identified using the HCP quality control. Figure 4.14 gives ex-

amples of anatomically atypical subjects and highlights the difference between the

cohort-averaged tracts and the individual subject tractography results, which reflect

the presence of cavernomas, cysts and developmental venous anomalies in WM. Al-

though the abnormalities are small, the individual tractography results clearly de-

viate from the cohort-average results, suggesting that XTRACT does respect these

abnormalities.

4.4 Discussion

This chapter presents a new toolbox (XTRACT) for automated probabilistic trac-

tography along with standardised protocols for extracting white matter bundles in

the human and the macaque brain. We have demonstrated that the protocols are

robust when applied to data of varying image quality and to data from a non-human

primate species. Human WM tract atlases using an order of magnitude more data

than previous efforts, as well as macaque atlases using a small number of, how-

ever high-quality ex vivo, datasets have been generated. Indirect validation based

on tract lateralisation has been performed, illustrating that reconstructed tracts

are left/right asymmetric, when they are expected to be based on prior literature.

It has also been demonstrated that despite automatically generating tracts using

standard-space protocols, the protocols respect the underlying individual variability,

as reflected in twinship-induced similarities and in respecting anatomical abnormali-

ties. The toolbox, tractography protocols and atlases are freely and openly available

as a part of FMRIB’s software library (FSL) (version 6.0.2 and later).

A current issue in the field of tractography is that protocol definitions in the

literature often lack detail or are designed without data-sharing in mind. Here,
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(a) 1.) a cyst in the right parietal lobe affecting the MdLF. 2.) a small cavernoma in the brain
stem affecting the MCP. 3.) a small cavernoma in the right parietal lobe affecting the CST. 4.) a
developmental venous anomaly (DVA) in the right frontal lobe affecting the ATR. 5.) a cavernoma
in the left occipital lobe affecting the OR.
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(b) 6.) a small cavernoma in the right parietal lobe (same subject as Figure 4.14a, panel 2.)
affecting the MdLF. 7.) a DVA in the right parietal lobe affecting the MdLF. 8.) a cavernoma in
the left occipital lobe (same subject as Figure 4.14a, panel 5.) affecting the FMA and IFO.

Figure 4.14: Examples of tractography results for a subset of the subjects found to
have anatomical abnormalities, demonstrating that cohort-averaged tracts do not re-
spect underlying anatomical abnormalities. In each case the anatomical abnormality
(as described on the HCP quality control website) is given and indicated by the white
arrows, and affected tracts are presented. Both the individual subject’s extracted
tract (indicated by “S”) and the corresponding cohort-averaged tract (indicated by
“A”) are overlaid on a zoomed in individual T1-weighted scan (the orange boxes
show the zoomed regions). Tracts are displayed with a threshold of 0.1%.
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we offer a platform for direct sharing of standardised protocol masks and tract at-

lases, allowing for the standardisation of tractography protocols across studies and

aiding reproducibility. Moreover, we made the protocol definitions generalisable

across species to directly facilitate comparative anatomy studies. Anatomists/trac-

tographers may exchange their tract definitions/methods and hopefully converge on

consensus protocols, as is the focus of a current multi-centre consortium on defining

and standardising WM tractography (cf. Schilling et al. (2020b)). We believe that

XTRACT can contribute to these efforts.

A platform for tractography protocol definitions is also presented in Wasser-

mann et al. (2016), where a white matter query language (WMQL) is devised. Our

approach uses a similar logic to WMQL, in the sense that it also relies on masks and

Boolean operations on streamlines going through those masks. However, our proto-

cols are generalisable and their utility in both the human and non-human primate

brain as has been demonstrated here. Also, a main conceptual difference is that we

don’t rely on an automated grey matter (GM) parcellation, such as WMQL, but

instead on hand-defined WM masks. WMQL relies on seeding in WM and defining

cortical endpoints through subject-wise brain parcellations. Using this approach for

tracking into GM has challenges; bottlenecks exist in the cortical gyrus, after which

fibres fan out, and most tractography algorithms have issues resolving this fanning

(Maier-Hein et al., 2017). To mitigate these issues, our protocols are not dependent

on GM masks. We instead focus on reconstructing the main body of the tracts of

interest using ROIs mostly in WM. In order to obtain cortical termination points of

WM tracts, we take the opposite approach of tracking from the GM surface towards

the WM, thus following the direction in which the fibres are expected to merge,

rather than to fan out. We then multiply the surface-to-WM tractrogram with that

of the body of the tract to create the WM by GM surface projections of the tract

(connectivity blueprint). This avoids some of the major problems associated with

tracking towards the surface (Mars et al., 2018c; Eichert et al., 2020).

We reconstructed tracts using imaging datasets of different quality and we

generated atlases for both the HCP and the UK Biobank cohorts. Comparisons

of tract reconstructions within and across the human cohorts demonstrate that the
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method and protocols are robust across subjects and against data quality. The

HCP and UK Biobank cohorts provide examples of high-quality data and more

typical quality data respectively. Within cohort comparisons reveal similar inter-

subject tract correlations across the varying quality data, with greater inter-subject

tract correlations observed in the UK Biobank. This may reflect a reduced level

of detail in the lower resolution UK Biobank data compared to the HCP data,

but also differences in the mean age of subjects in the two cohorts. In addition,

we have generated atlases using a smaller cohort of macaques. To compensate

for the small number of subjects, we used high-quality and high-resolution ex vivo

data. The respective results demonstrate the generalisability of our method to

the macaque brain. Recent efforts to obtain macaque data from larger cohorts

(HCP-style protocols) are ongoing (Milham et al., 2018; Autio et al., 2019) and

the XTRACT toolbox will be a useful resource for these new initiatives for the

non-human primate brain (Thiebaut de Schotten et al., 2019).

As a means to indirectly validate the presented results, left-right tract laterali-

sation was investigated. Lateralisation results were compared to a priori knowledge

from the literature. For both human cohorts (HCP and UK Biobank), it was found

that reconstructed AF is strongly left-lateralised, while SLF3, IFO and MdLF were

right-lateralised, as expected from the literature (Thiebaut de Schotten et al., 2011a;

Hecht et al., 2015; Nowell et al., 2016; Hau et al., 2016; Zhao et al., 2016; Panesar et

al., 2018; Eichert et al., 2019). Results were less clear-cut for SLF1 and SLF2, where

prior studies (with much fewer numbers of subjects) are inconclusive (Thiebaut de

Schotten et al., 2011a; Hecht et al., 2015; Howells et al., 2018). This may be due to

the large variance observed (in the case of SLF2), perhaps reflecting some underlying

interaction, such as handedness (Howells et al., 2018).

Further sanity checks were performed by investigating lateralisation using the

connectivity blueprint obtained from the reconstructed tracts. By using the KL

divergence between connectivity patterns to assess inter-hemispheric dissimilarity,

we identified that regions associated with lateralised functions, such as language

(Hiscock and Kinsbourne, 2008), have dissimilar connectivity patterns across the

two hemispheres (Figures 4.10 and 4.11).
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Whilst being a robust automated method for the consistent reconstruction

of tracts, XTRACT also respects the underlying anatomical variation. This was

demonstrated by assessing inter-subject tract similarity in monozygotic twins, dizy-

gotic twins, non-twin siblings and unrelated subject pairs. The results show greater

similarity in twin pairs compared to unrelated pairs, as would be expected from the

heritability literature (Bohlken et al., 2014; Shen et al., 2014).

We further demonstrated that the automated method respects underlying anatom-

ical variation by exploring how tractography results differ from the cohort-averaged

results in the case of subjects with anatomical abnormalities. In the presented cases,

we show that the toolbox is capable of respecting atypical anatomy. These example

cases are of course not exhaustive but offer insight into how the toolbox performs in

the presence of relatively small anatomical abnormalities, induced by pathology. We

should point out however that our approach is registration-based, therefore tracking

performance in the presence of geometrical malformations is likely to depend on the

extent and location of the abnormality and the influence it has to registration (Zhang

et al., 2008). Smaller malformations, such as focal WM abnormalities/hyperintensi-

ties, are less likely to reduce reliability, particularly given the use of inclusive ROIs

in our protocol definitions, as demonstrated in Figure 4.14 and in agreement with

similar findings in recent studies that used tract-derived features (Ressel et al., 2018;

Horbruegger et al., 2019). For larger malformations (such as tumours, oedema), even

if some compensation can be achieved by performing conditional registration (i.e.

by masking out large malformations in the computation of the warp fields), reduc-

tions in tracking accuracy may occur and case-specific alternatives may need to be

considered (Fekonja et al., 2019). Nevertheless, a range of pathologies do not induce

geometrical malformations (for instance the spectrum of psychiatric/neurodevelop-

mental/mental health disorders) and we expect our approach for delineating major

WM tracts to be robust in such cases.

As mentioned, XTRACT and its success is reliant on image registration, specif-

ically on the accuracy of registration warp fields between a subject’s native diffusion

space and the standard (i.e. protocol) space. That is, in order to ensure success-

ful tract reconstruction, the anatomical priors must be accurately translated to the
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subject’s native space. Non-linear registration between the native and standard

space is therefore essential to ensure the matching of anatomy at the local level

(e.g. matching gyri geometry). Such registration techniques are mostly accurate

(Klein et al., 2009; Groot et al., 2013; Ou et al., 2014; Andersson et al., 2019),

particularly when considering the use of inclusive ROIs in our protocol definitions,

which alleviates minor inaccuracies in registration. Although we do not provide an

evaluation of XTRACT tract reconstruction success in relation to registration ac-

curacy, XTRACT has been applied to thousands of datasets and appears robust in

the absence of significant registration errors.

4.5 Concluding Remarks

The development and validation of a set of robust and standardised tractogra-

phy protocols for the automated cross-species delineation of white matter bundles,

along with a platform to use them, has been presented. The demonstrated toolbox

(XTRACT) is freely available along with the tractography protocols and human

tract atlases as a part of FMRIB’s software library (FSL version 6.0.2 and later).

Given the benefits with regards to data and protocol sharing, we expect that this

toolbox will aid reproducibility in the field of tractography and facilitate compara-

tive neuroanatomy studies.

The framework and connectivity features presented here are utilised in Chap-

ters 5 and 6. In Chapter 5, the XTRACT tracts and connectivity blueprints from

the HCP and macaque subjects are used to explore cross-species prediction of myeli-

nation maps, linking closely to functional specialisation. These are then compared

to a newly developed framework for extracting homologous connectivity patterns.

In Chapter 6, the connectivity blueprints derived from the HCP cohort (Figure

4.5) are used as structural connectivity features in explorations of the stability of

multivariate statistical techniques.



Chapter 4. Concluding Remarks 115

Contributions

This chapter describes the development and validation of the XTRACT toolbox

along with a library of standardised protocols for the human and macaque brain.

The works presented were a collaborative effort that I led. I would like to extend

my gratitude to all contributors. The XTRACT toolbox was written and developed

by me, Stamatios Sotiropoulos and Saad Jbabdi. Macaque data were acquired by

Jerome Sallet, Rogier Mars and Alexandr A. Khrapitchev. Protocol masks were

developed by me, Gwenaëlle Douaud and Stamatios Sotiropoulos (led the human

protocols), and Rogier Mars, Katherine Bryant (led the macaque protocols). My

contributions cover all aspects of data processing, analyses and visualisations and

further protocol refinement and assessment (spanning both species).

Software

XTRACT and the associated tractography protocols were developed using FMRIB’s

Software Library (FSL, v5.0.11 onwards) (Jenkinson et al., 2012). Statistical analy-

ses and plotting were performed in MATLAB 2018a (The MathWorks, Inc., Natick,

Massachusetts, United States) and Python (version 3.7.2) (Python Software Foun-

dation, https://www.python.org). Volume-space and surface-space visualisations

were performed using FSL’s FSLeyes and Connectome Workbench (version 1.3.2;

Van Essen Laboratory,Washington University) respectively.
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4.6 Appendix

4.6.1 Summary of the Tractography Protocols Previously

Defined in the Literature

Wakana1 Catani2 Hua3 Zhang4 Thiebaut de

Schotten5

Yendiki6 de

Groot7

Wassermann8

N=4 N=12 N=28 N=10 N=40 N=67 N=60 N=97

Acoustic Radiation X

Anterior Commis-

sure

X X

Anterior Thalamic

Radiation

X X X X X

Arcuate Fasciculus X X* X

Cingulum subsec-

tion: Dorsal

X

X

X X

X

X X

X

Cingulum subsec-

tion: Peri-genual

X X X X X

Cingulum subsec-

tion: Temporal

Corpus Callosum

X X

X§

Corpus Callosum:

Forceps Major

X X X X X X

Corpus Callosum:

Forceps Minor

X X X X X X

Cortico-Ponto-

Cerebellar

X

Corticospinal Tract X X X X X X X

Extreme Capsule X

Fornix X X

Inferior Cerebellar

Peduncle

X

Inferior Fronto-

Occipital Fascicu-

lus

X X X X X X X

Inferior Longitudi-

nal Fasciculus

X X X X X X X X

Internal Capsule/

Corona Radiata

X X

Medial Lemniscus X

Middle Cerebellar

Peduncle

X X

Middle Longitudi-

nal Fasciculus

X

Optic Radiation/

Posterior Thalamic

Radiation

X X X

Spino-Cerebellar

Tract

X

Striato-Fronto-

Orbital

X
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Striato-Prefrontal X

Striato-Premotor X

Striato-Precentral X

Striato-Postcentral X

Striato-Parietal X

Striato-Occipital X

Superior Cerebellar

Peduncle

X X

Superior Longitudi-

nal Fasciculus I X+ X+ X+ X+ X

X

Superior Longitudi-

nal Fasciculus II

X

Superior Longitudi-

nal Fasciculus III

X

Superior Thalamic

Radiation

X

Thalamo-

Prefrontal

X

Thalamo-Premotor X

Thalamo-

Precentral

X

Thalamo-

Postcentral

X

Thalamo-Parietal X

Thalamo-Occipital X

Uncinate Fasciculus X X X X X X X X

Total: 20 19 22 22 31 18 27 57

Table 4.2: A brief review of the protocols previously defined in the literature. * - Arcuate
and anterior, long and posterior segments. § - Rostrum, rostral body, anterior midbody,
posterior midbody, isthmus. + - SLF and the temporal component of the SLF.
1Wakana, S., et al., 2004. Fiber Tract–based Atlas of Human White Matter Anatomy. Radiology.
2Catani, M. & Thiebaut de Schotten, M., 2008. A diffusion tensor imaging tractography atlas for
virtual in vivo dissections. Cortex.
3Hua, K., et al., 2008. Tract probability maps in stereotaxic spaces: Analysis of white matter
anatomy and tract-specific quantification. NeuroImage.
4Zhang, W., et al., 2008. Automated fiber tracking of human brain white matter using diffusion
imaging. NeuroImage.
5Thiebaut de Schotten, M., et al., 2011. Atlasing location, asymmetry and inter-subject variability
of white matter tracts in the human brain with MR diffusion tractography. NeuroImage.
6Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zöllei, L., Augustinack, J., et al., 2011.
Automated probabilistic reconstruction of white-matter pathways in health and disease using an
atlas of the underlying anatomy. Front. Neuroinform.
7de Groot, M., et al., 2013. Improving alignment in Tract-based spatial statistics: Evaluation and
optimization of image registration. NeuroImage.
8Wassermann, D., et al., 2016. The white matter query language: a novel approach for describing
human white matter anatomy. Brain Struct. Funct.



Chapter 4. Appendix 118

4.6.2 XTRACT User-Guide

XTRACT is a command line tool available within FSL which can be used to auto-

matically extract a set of carefully dissected tracts in humans and macaques. It can

also be used to define one’s own tractography protocols where all the user needs to

do is to define a set of masks in standard space (e.g. MNI152). XTRACT reads the

standard space protocols and performs probabilistic tractography (probtrackx2) in

the subject’s native space. Resultant tracts may be stored in either the subject’s

native space or in standard space. The user must provide the crossing fibres fitted

data (bedpostx) and diffusion to standard space registration warp fields (and their

inverse).

Figure 4.15: The XTRACT command-line user interface.
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Running XTRACT

In the most basic implementation of XTRACT, you must provide a subject’s crossing

fibres fitted data diffusion and the standard space registration warp fields (and their

inverse). In the terminal window:

xtract -bpx dMRI.bedpostX -stdwarp std2diff.nii.gz diff2std.nii.gz -out xtract

-species HUMAN

This command call would run XTRACT using its default settings for all 42 hu-

man brain tractography protocols (Warrington et al., 2020). The option of GPU

acceleration may be used by adding the “-gpu” flag. Additional tractography op-

tions (probtrackx options) and a specified tract resolution may also be supplied

to XTRACT using the “-ptx_options” and “-res” arguments. In the most recent

release, tracts may be stored in any reference space by providing the warp fields

between the protocol space, the reference space and the diffusion space using the

“-stdwarp <std2diff> <diff2std>” and “-ref <refimage> <diff2ref> <ref2diff>” ar-

guments.

Outputs of XTRACT

XTRACT will produce a subdirectory for each tract containing the resultant tract

image and some other useful information. They key files are summarised below.

Output directory structure:

• “logs” - directory containing the probtrackx log files

• “tracts” - directory containing tractography results

– “<tractName>” - directory per tract, each containing:

∗ “waytotal” - txt file containing the number of valid streamlines

∗ “densityNorm.nii.gz” - NIFTI file containing the waytotal normalised

fibre probability distribution. This is the main output of XTRACT.
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Pre-processing

Prior to running XTRACT, you must complete the FDT processing pipeline (see

FSL wiki page: FDT User Guide), including

1. Brain extraction using BET

2. Susceptibility distortion correction using topup (only if spin-echo fieldmaps

have been acquired - if you don’t have these, skip to step 3)

3. Eddy current distortion and motion correction using eddy

4. Fit the crossing fibre model using bedpostx

5. Non-linear registration (FNIRT) to standard space (MNI152 for human data)

Adding your own tracts

Users may define their own tractography protocols following a similar design to those

provided in XTRACT and use XTRACT to reconstruct said tract. Protocols consist

of a combination of seed, target/waypoint, stop and exclusion masks. Seed masks

provide the starting points of the tractography streamlines. Target/waypoint masks

are regions through which a streamline should pass in order to be valid. Exclusion

masks serve to reject any streamline running through them and stop/termination

masks stop any streamline running through them. The minimum requirement in the

construction of a protocol is to define a seed mask, however, if the intention is to

reconstruct a well-defined fibre bundle, it is more than likely that the protocol will

need to contain at least one target/waypoint mask and exclusion mask to prevent

leakage into neighbouring fibre bundles.

Suppose you want to create an automated protocol for a tract called ‘mytrack’.

First you need to create a folder called ‘mytrack’ which you can add e.g. in the

protocols folder. Then create the following NIFTI files (with this exact naming)

and copy them into ‘mytrack’:

Compulsory:

• seed.nii.gz : a seed mask
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Optional:

• stop.nii.gz : a stop mask

• exclude.nii.gz : an exclusion mask

• one of the following:

– target.nii.gz : a single target mask

– target1.nii.gz, target2.nii.gz, etc. : a number of targets, in which case

streamlines will be kept if they cross all of them

• invert : an empty file to indicate that a seed->target and target->seed run

(i.e. the inverse seeding strategy) will be added and combined. If such an

option is required, a single “target.nii.gz” file is also expected.

The latest version of XTRACT allows the user to define these protocols in any space,

as long as the registration warp field is to the same space. Next, make a structure

file using the format <tractName> <nsamples> per line and call XTRACT using

-species <SPECIES> -str <file> -p <folder>, pointing to your new protocols folder

‘mytrack’.
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4.6.3 Summary of the Tract Lateralisation Literature

Tract Thiebaut de
Schotten1

Menjot de
Champfleur2 Hecht3 Nowell4 Hau5 Panesar6 Howells7

N=20 N=4 N=64 N=57 N=60 N=30 N=51

AF

- Left (FA),
Right (#s)§

- Left (vol)* - - -

ILF

- Left (FA, #s)§ - - - Left (vol) -

IFO

- Left (FA),
Right (#s)§

- - Right
(vol)

- -

MdLF

- Left (FA),
Right (#s)§

- - - - -

SLF1

Sym (vol) - - Sym (vol) - - Left for right-handed, right for
left-handed (vol)

SLF2

Right trend
(vol)*

Right trend
(vol)*

- - - - Right for right-handed*, Sym
for left-handed (vol)

SLF3

Right (vol) Right (vol) - - - - Right for right- and left-handed
(vol)

Table 4.3: Summary of WM tract lateralisation as reported in the literature. Sym =
symmetric, #s = total number of streamlines generated, vol = voxel count following
binarisation, FA = mean fractional anisotropy. * reported trend is not significant.
§ significance is not reported.
1Thiebaut de Schotten, M., et al., 2011. Atlasing location, asymmetry and inter-subject variability
of white matter tracts in the human brain with MR diffusion tractography. NeuroImage.
2Menjot de Champfleur, N., et al., 2013. Middle longitudinal fasciculus delineation within lan-
guage pathways: a diffusion tensor imaging study in human. Eur. J. Radiol. 82, 151–157.
3Hecht, E.E., et al., 2015. Virtual dissection and comparative connectivity of the superior longitu-
dinal fasciculus in chimpanzees and humans. Neuroimage 108, 124–137.
4Nowell, M., et al., 2016. Meyer’s loop asymmetry and language lateralisation in epilepsy. J.
Neurol. Neurosurg. Psychiatry 87, 836–842.
5Hua, K., et al., 2008. Tract probability maps in stereotaxic spaces: Analysis of white matter
anatomy and tract-specific quantification. NeuroImage.
6Panesar, S.S., et al., 2018. A quantitative tractography study into the connectivity, segmentation
and laterality of the human inferior longitudinal fasciculus. Front. Neuroanat. 12.
7Howells, H., et al., 2018. Frontoparietal tracts linked to lateralized hand preference and manual
specialization. Cerebr. Cortex 28, 2482–2494.
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4.6.4 The Effect of Resolution on Connectivity Blueprints

Connectivity blueprints were reconstructed for a subset of 5 HCP subjects using

varying WM mask resolutions: 2 mm, 3 mm, and 4 mm. Figure 4.16 shows ex-

amples of minor differences across these resolutions in a subset of tracts for one of

those subjects. The connectivity blueprint columns (i.e. tracts) were compared, via

Pearson’s correlation, across resolutions to the 2 mm case. The average correlation

(across tracts and subjects) between the 3 mm and 2 mm results was 0.993± 0.0008

and between the 4 mm and the 2 mm results was 0.986±0.0019. In other words, the

resolution, within these ranges, makes little difference to the final result, however, a

lower resolution reduces the required computational power, time and storage space.

Reducing resolution to 3 mm saves 10 minutes of processing time and 4800 MB of

storage space per subject compared to the 2 mm case. Over the entire HCP co-

hort, this saves approximately a week of processing time and 5 TB of storage space.

Connectivity blueprints were therefore calculated using a resolution of 3 mm.

Figure 4.16: Comparisons of the connectivity blueprints across WM mask reso-
lutions for a subset of tracts, including the acoustic radiation (AR) (left column),
inferior fronto-occipital fasciculus (IFO) (middle column) and superior longitudinal
fasciculus (SLF) 3 (right column) for three different resolutions: 2 mm (top row), 3
mm (middle row), and 4 mm (bottom row).
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Foreword

There is a strong yet complex relationship between the structural and functional

architecture of the brain, and the precise nature of this relationship is yet to be

resolved. However, the idea of connectivity fingerprinting has been a basic tenet in

neuroscience and computational neuroanatomy; the pattern of extrinsic connections

of a brain region is linked to its functional specialisation and is therefore unique.

Here we extend and test this idea for probing regions of functional equivalence across

diverse brains using connections, building upon the cross-species developments from

the previous chapter.

Firstly, we use the XTRACT protocols developed in the previous chapter to

define connectivity patterns of cortical areas to white matter bundles. And we use

similarity in these patterns across diverse brains to probe functional similarity. Given

that the white matter bundles are defined analogously in both humans and monkeys,

we treat them as a “common reference space” and we anticipate that functionally-

homologous areas across diverse brains will carry similar connection patterns to

these bundles, i.e. will exhibit similarity in that common space. Specifically, we

explore and compare the efficacy of two recently-introduced approaches for utilising

such common spaces at a whole-brain level. We map diverse brains onto the spaces

and use them to link brains by projecting scalar feature maps between them.

Secondly, we explore alternative ways for building such a common connectivity

space. Alternatively to manually-defined tractography protocols for a limited set of

major white matter bundles (as in XTRACT), more recent data-driven approaches

can be used for a more complete representation of connectivity patterns. As such, we

apply non-negative matrix factorisation to tractography data to extract structural

connectivity components and use these to define connectivity patterns and probe

functionally-similar features.
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5.1 Introduction

The functional specialisation and organisation of the brain is underpinned by a

complex network architecture, mediated by long-range connections through white

matter (WM) (Passingham et al., 2002; Jbabdi and Behrens, 2012; Mars et al.,

2018b). Diffusion tractography is a powerful and unique technique which may be

used to probe these structural connections in vivo and non-invasively. With the

application of well-informed priors, tractography can be robust and anatomically

accurate (Wakana et al., 2007; Groot et al., 2013; Maier-Hein et al., 2017; Schilling et

al., 2020a). Additionally, connectivity patterns derived from diffusion tractography

can be relevant for probing the brain’s functional organisation.

The set of extrinsic connections of a given cortical region to other brain regions

is unique and directly linked to the functional role and specialisation of that region

(Passingham et al., 2002; Jbabdi and Behrens, 2012). Often referred to as the

connectivity fingerprint, it has been demonstrated to be predictive of functional

boundaries between cortical regions (Johansen-Berg et al., 2004; Beckmann et al.,

2009; Mars et al., 2011; Cerliani et al., 2012; Thiebaut de Schotten et al., 2014b)

and subcortical volumes (Behrens et al., 2003a; Draganski et al., 2008; Tziortzi et

al., 2014). These patterns have been also shown to be predictive of the shape and

location of stimulus-induced (task) functional activation (Saygin et al., 2012; Osher

et al., 2016; Saygin et al., 2016).

These principles hold and can be extended even in the case of very diverse

brains, such as across species (Vincent et al., 2007; Sallet et al., 2013; Neubert et al.,

2014; Neubert et al., 2015; Mars et al., 2016b; Mars et al., 2018c; Mars et al., 2018a;

Eichert et al., 2020; Benn et al., 2020). Mars et al. (2018c) introduced the idea of

an abstract space of structural connectivity patterns (through WM), which can be

used to project, link and compare different brains and grey matter (GM) regions.

A key benefit of this “common connectivity space” approach is that similarity in

brain organisation can be probed even in the absence of any geometrical similarity.

In the Mars et al. (2018c) study, the pattern of connections were defined through

homologous WM fibre bundles across two species (humans and macaques), allowing
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functional resemblance to be expressed through these patterns, i.e. using these

homologous WM fibre bundles as reference. Statistical measures can then be used

to assess similarity, e.g. the Kullback-Leibler divergence. A number of more recent

studies have mapped different brains to that common space of connectivity patterns

and have used similarity in these patterns as a proxy of functional similarity (Mars

et al., 2018c; Mars et al., 2018a; Eichert et al., 2020; Benn et al., 2020). Extending

this to the whole-brain provides a way to project and link functionally-relevant

features across very diverse brains, for instance, projecting scalar cortical myelin

maps between mammalian brains using connections (Mars et al., 2018c; Mars et al.,

2018a; Eichert et al., 2020; Benn et al., 2020).

In this chapter we evaluate the XTRACT protocols and demonstrate their

ability to be used for mapping human and monkey brains into the common space,

defined by Mars et al. (2018c). We also explore and compare to a different recent

approach for mapping diverse brains, based on joint-spectral embedding. Xu et al.

(2020) applied this approach to cross-species resting-state fMRI data. They defined

functional connectivity in relation to homologous landmarks in GM (i.e. a finite set

of cross-species homologous cortical regions) and extracted homologous patterns of

functional connectivity in a common space, allowing for comparison. These were

then used to perform multi-modal surface matching (MSM) (Robinson et al., 2014)

and identify warp fields driven by (and therefore aligning) these joint components.

They then used these MSM warps to project the human cortical myelin map to the

macaque cortex with strong predictive power. Here, we apply this idea to structural

patterns (as derived from XTRACT) and compare it with the Mars et al. (2018c)

approach.

Further, apart from exploring options for mapping into this common space, we

also devise new ways for building such a space. To overcome the limitations arising

from the limited set of manually-defined homologous WM tracts or GM landmarks as

in the above approaches, we explore a recent fully data-driven approach (Thompson

et al., 2020) for mapping structural connectivity components and use those to define

connectivity patterns. This approach uses non-negative matrix factorisation (NMF)

to decompose whole-brain tractography data to GM networks and their underlying
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WM connections. It provides an alternative to a limited set of manually-defined

tractography protocols and may therefore provide a more complete representation

of connectivity patterns. As a proof of concept, we use NMF to extract components

of structural connectivity and demonstrate that these measures may also be used

across brains from the HCP to define the common connectivity space of Mars et al.

(2018c) in a data-driven manner.

To summarise, in this chapter we devise and explore ways for building and

mapping connectivity spaces. We first define a connectivity space using a finite

set of reference bundles (XTRACT protocols) and further project these to a new

common space (Xu et al., 2020), and compare two approaches (Mars et al., 2018c;

Xu et al., 2020) for mapping diverse brains into these spaces. As an exemplar, we

utilise very different brains from different primate species (humans and macaque

monkeys). Subsequently, we demonstrate an alternative way of building such con-

nectivity patterns in a completely data-driven way, using NMF rather than spe-

cific tractography protocols. We show that the more complete representation of

patterns obtained through the NMF approach offers improved predictive power of

functionally-relevant features (cortical myelin maps) from structural connections,

providing a different way for defining connectivity spaces.

5.2 Cross-species Mapping onto Connectivity Spaces

We explore and assess two approaches for constructing and mapping onto connec-

tivity spaces across two species: humans and macaque monkeys. We use the white

matter (WM) bundles defined homologously in the previous chapter to define con-

nectivity blueprints (patterns of connections through WM for each cortical location)

for different brains. We then use two different approaches for linking brains through

these features, a) a statistical similarity of the connectivity patterns, as described in

(Mars et al., 2018c) and b) a joint-embedding (i.e. non-linear similarity) approach

(Xu et al., 2020), driven by the connectivity blueprints.

We assess the efficacy of these two approaches in functionally aligning diverse

brains by their success of projecting scalar features maps across species. As an
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example, we demonstrate projections of cortical myelin maps (Glasser and Van Es-

sen, 2011; Glasser et al., 2014) from humans to macaques through the connectivity

spaces. Myelin maps are proxies of cortical hierarchy (Demirtaş et al., 2019), as

heavily myelinated areas correspond to sensory areas and less myelinated areas to

higher-order association regions. Below, we present the approaches utilised here and

compared: 1) the connectivity blueprints derived through XTRACT (Mars et al.,

2018c) and 2) the joint-embedding approach introduced by Xu et al. (2020), driven

by the connectivity blueprints.

5.2.1 Connectivity Blueprints

Connectivity blueprints were constructed independently in each species by first

building whole-brain connectivity matrices, seeding from every white-grey matter

boundary (WGB) location and counting the number of visitations to the whole

WM, giving the WGB × WM connectivity matrix for each species. XTRACT

tracts (T number of tracts, see Table 4.1) were estimated for each species and sub-

sequently vectorised and concatenated into a single WM × tracts matrix. The

connectivity blueprint (WGB × tracts) was then obtained through the multiplica-

tion of these matrices (see Figure 4.2 in Chapter 4). Columns of the connectivity

blueprint represent the distribution of cortical terminations for each tract and each

row (normalised so that row-sum is 1) represents the connectivity pattern for a given

cortical location considering each of the tracts. This was performed for a number of

human and macaque subjects and then averaged within species, providing connec-

tivity blueprints for both (H and M).

5.2.2 Joint-Spectral Embedding

The connectivity blueprints (H and M) were further mapped through joint-spectral

embedding as in Xu et al. (2020). Spectral embedding seeks to remove redundan-

cies in data by projecting the data onto a low-dimensional non-linear manifold,

resulting in series of independent components. By performing joint-embedding on

both species simultaneously using homologous landmarks, components remain inde-
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pendent within species (i.e. they represent independent modes of variation across

components) but are linked across species (i.e. corresponding components represent

equivalent modes of variation across species).

In order to ensure like-for-like comparison of connectivity patterns across species,

we used a set of homologous cortical landmarks (Xu et al., 2020). These consisted

of l = 27 cortical regions, functionally homologous in the human and macaque

brain (see Appendix 5.6.1). For each of these landmarks, the average connectivity

blueprint pattern across the constituent vertices was calculated, giving a landmark

connectivity matrix for each species LH and LM with l = 27 landmarks (rows) and

T tracts (columns). Each row (i.e. vertex) of the connectivity blueprints (H and

M) were then compared through cosine similarity to each of the landmark profiles

(LH and LM), giving a vertex by landmark similarity matrix for each species (HL

and ML). These two matrices were concatenated row-wise and the joint 2N ∗ l

matrix was cross-correlated (via non-linear cosine similarity) to produce a 2N ∗ 2N

joint similarity matrix (Figure 5.1). In other words, for every vertex, the similarity

with every other vertex was calculated for the human and macaque brain, within

(H2H and M2M) and across species (H2M and M2H). Each quadrant of this

joint-similarity matrix was globally demeaned and the joint-similarity matrix was

decomposed using spectral embedding (Belkin and Niyogi, 2002), giving a set of

low-dimensional components (He and Me). These embedding steps were performed

separately for each hemisphere.

The joint-similarity matrix used is symmetric across species, with a the diag-

onal containing within species entries which provide the overall structure for the

components, i.e. they provide the component correspondence across species. The

off-diagonal entries, informed by the homologous landmarks, capture the across-

species coupling. Therefore, these components represent, jointly across the two

species, whole-brain maps of regions that exhibit similar connectivity patterns (as

captured by the blueprints) to the patterns of homologous cortical landmarks.
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5.2.3 Projecting Myelin Maps Across Species

In order to evaluate and example these connectivity spaces, we compared them across

species by projecting myelin maps from the human brain to the macaque brain using

two approaches. First, following Mars et al. (2018c), we applied Kullback-Leibler

divergence (KL divergence) to the connectivity blueprints. Here, KL divergence was

applied to calculate the dissimilarity between the macaque and human structural

connectivity features and subsequently used to project the human myelin map to

the macaque brain. The KL divergence between the connectivity blueprint of vertex

i in the macaque brain and that of vertex j in the human brain was first calculated

using Equation 5.1 (Kullback and Leibler, 1951):

KLij =
∑
t

Mit log2
Mit

Hit

+
∑
k

Mjt log2
Mjt

Hit

(5.1)

where KLij is the KL divergence matrix, M is the macaque connectivity blueprint

with each row representing the normalised probability distribution, H is the human

connectivity blueprint, i indexes the macaque vertices, j indexes the human vertices

and t indexes the tracts. This dissimilarity index was then used to transform the

human myelin map hi to give a prediction of the macaque myelin map pj using

Equation 5.2:

pj =

∑
KLγ

jihi∑
KLγ

ji

(5.2)

with γ = −4 (as in Mars et al. (2018c)). This predicted myelin map is then

compared to the macaque myelin map.

Another way of “aligning” brains using connectivity patterns is to use MSM,

a flexible framework for registering cortical surfaces (Robinson et al., 2014), to

drive the alignment through the joint-embedding structural components and use

the resulting warp field to register the myelin maps across species, as in Xu et al.

(2020). MSM was configured to perform data variance normalisation and used 3-

level discrete (Pearson’s correlation) alignment on the components derived above. In

addition, we used the medial wall masks as additional features to avoid misalignment
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in the medial wall across species.

Finally, we further used MSM to warp the human myelin map, this time driving

the alignment using the connectivity blueprints themselves instead of the joint em-

bedding components. In summary, we assessed three methods for projecting myelin

maps across species using these connectivity spaces: 1) KL divergence applied to

the connectivity blueprints, 2) MSM applied to the connectivity blueprints, and 3)

MSM applied to the joint-embedding components (summarised in Figure 5.1).

Figure 5.1: Summaries of the construction of the joint-embedding components
and myelin map prediction approaches. Connectivity blueprints (H and M) were
constructed: example columns (i.e. tract cortical termination maps) are shown
on the left for both species. Further, joint-embedding was applied to extract joint-
components of structural connectivity (path 3). Connectivity spaces are then com-
pared and used to project the human myelin map h to predict the macaque myelin map
p using three different approaches. 1) By calculating the KL divergence between the
two connectivity blueprints. 2) By performing multi-modal surface matching (MSM)
between the human and macaque connectivity blueprints. 3) As in 2, but using the
landmark-based joint-spectral embedding components to drive the alignment.
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Assessing Prediction Performance

Myelin map predictions using these average connectivity patterns were compared

to an average measured macaque myelin map through Spearman’s correlation and

mean absolute difference (E = |pj − mj|, where p is the predicted myelin map and

m is the measured). Calculations of the Spearman’s correlation and mean absolute

difference did not include the medial wall.

5.2.4 Data

We used diffusion MRI data for the human and macaque brain. Human data consists

of 20 randomly chosen subjects from the “WU-Minn” Human Connectome Project

(HCP) cohort (Sotiropoulos et al., 2013a; Van Essen et al., 2013), as described in the

previous chapters. The macaque data utilised are as in Chapter 4, from 6 animals.

Cortical surfaces for the human brain, including the pial, white-grey matter

boundary (WGB) and myelin1, are provided through the HCP preprocessing pipeline

(Glasser et al., 2013). Cortical surface data are provided in the standard space,

obtained through cortical folding-based surface registration (Glasser and Van Essen,

2011). Further, non-linear volumetric registration warps fields between the subject’s

native diffusion space and the MNI152 standard space are also provided, allowing for

tractography to be run in the subject’s native space yet stored in the standard space,

as is required for inter-subject comparison and averaging. For the macaque brain,

surfaces were obtained through the non-linear registration of a single macaque brain

surface model, derived through Freesurfer surface reconstruction (Dale et al., 1999;

Fischl, 2012), to each other macaque. Subsequently, these were registered to the F99

standard space. All surface data, structural and myelin maps, were downsampled

to approximately 2,000 vertices per hemisphere (N = 3, 924 vertices in total) to

reduce computational times. XTRACT was ran on all brains to reconstruct WM

homologous bundles and the connectivity blueprints were estimated for each subject

and subsequently averaged. Here, we pre-selected tracts such that each hemisphere
1Cortical myelin maps were estimated by dividing the T1w and T2w surface maps (Glasser and

Van Essen, 2011).
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contains ipsilateral and commissural tracts only, i.e. we remove right tracts from the

left hemisphere and visa versa, leaving two connectivity matrices for each species

representing the left and right hemispheres, each with T = 22 columns/tracts (see

Chapter 4: Table 4.1 for details). For the myelin map predictions and comparisons,

we used averaged connectivity blueprints and myelin maps for the 20 human subjects

and the 6 macaques.

5.2.5 Results

The calculated vertex-wise KL divergence matrix of connectivity blueprints across

human and macaque vertices is shown in Figure 5.2, demonstrating an overall di-

agonal trend and indicating overall similarity across species. The vertex-wise joint

similarity matrix was calculated within and across species (Figure 5.3a) using the

homologous cortical landmarks. Figure 5.10 in Appendix 5.6.1 provides compar-

isons of the average tract contribution to each of the used landmarks. From this,

low-dimensional components were extracted using spectral embedding, keeping the

top 10 components (99.8% of the original data variance explained based on principal

component analysis). Examples of these components for the human and macaque

brain are shown in Figure 5.3 (b-c), highlighting that homologous landmarks cluster

across species in the embedded space.

Myelin Map Predictions

The human myelin map was projected to the macaque cortical surface using the

three approaches, described in Methods. Results are presented in Figure 5.4. The

prediction using KL divergence and the connectivity blueprints was strongly corre-

lated with the measured macaque myelin map (i.e. the average over the 6 macaques)

with r = 0.731 and a mean absolute difference of E = 0.074. Using MSM, the cor-

relations between the predicted and measured macaque myelin maps were r = 0.703

and r = 0.642 and the mean absolute differences were E = 0.085 and E = 0.094

for the connectivity blueprint and joint-embedding component driven alignments re-

spectively. Figure 5.4 shows the measured myelin map for the human and macaque
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Figure 5.2: The Kullback-Leibler divergence between the macaque and human cor-
tical termination maps. Each row represents the KL divergence between a given
macaque vertex and all of the human vertices. Likewise, each column represents the
KL divergence between a given human vertex and all of the macaque vertices. Dark
banding is a consequence of the inclusion of the medial wall.

brain and the obtained predictions, as well as scatter plots between the predicted

and measured maps for each approach. Figure 5.5 plots the absolute difference

between the predicted and measured myelin maps for each approach.

5.3 Building Connectivity Spaces using Data-Driven

Methods

The above approaches offer promising ways for functionally-aligning very diverse

brains using structural connectivity information. Yet, they are limited in that they

rely on a finite set of manually-defined landmarks, either in WM (through homolo-

gous fibre bundles) or in GM. Hence, we explored a different approach for building

connectivity spaces that overcomes this limitation. We used data-driven method-

ology for extracting connectivity patterns, specifically through non-negative matrix

factorisation (NMF) of whole-brain tractography data (Thompson et al., 2020).

NMF is an unsupervised dimensionality reduction method which, when applied

to whole-brain tractograms (e.g. cortical GM to whole-brain WM connectivity), is
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Figure 5.3: The joint-similarity matrix and embedded components for the right
hemisphere. a.) The joint-similarity matrix within and across species. Each quad-
rant reflects a similarity matrix: the within human similarity (top-left, H2H), the
within macaque similarity (bottom-right, M2M), and the cross-species similarity ma-
trix (bottom-left, M2H) and its transpose (top-right, H2M). Prior to joint-embedding,
each quadrant is globally demeaned. b.) Examples of the joint-embedding compo-
nents derived for the human and macaque brain visualised on the cortical surfaces,
demonstrating the cross-species structure. c.) The first two components visualised
in the joint-embedding space with homologous landmarks (area 3, area 9m, area
MT, the primary auditory area (A1), and the primary visual area (V1)) highlighted,
demonstrating that these landmarks have been projected similarly: plus and cross
markers represent the human and macaque landmarks respectively.
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Figure 5.4: Myelin map predictions. a.) The measured and predicted myelin maps.
From top to bottom: the human myelin map - this is transformed using the described
approaches, the measured macaque myelin map, the predicted macaque myelin map
based on KL divergence, the predicted macaque myelin map based using the cortical
termination maps to drive MSM, and the predicted macaque myelin map using the
embedded components to drive MSM. b.) Scatter plots between the predicted and
measured myelin maps for each approach.
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Figure 5.5: Absolute difference between the predicted and measured macaque myelin
maps. From top to bottom, the difference between the predicted myelin map and the
measured myelin map based on: KL divergence, using the cortical termination maps
to drive MSM, and using the embedded components to drive MSM.

capable of extracting representations of the WM bundles and their corresponding

cortical termination maps (GM networks/nodes) (Figure 5.6). Importantly, NMF

results in non-negative weights, vital in the interpretation of structural connectivity,

employs sparsity parameters, resulting in pseudo-independent tract-like components

and allows for the extraction of WM fibre bundles without the need for pre-defined

tractography protocols. The GM spatial maps derived through NMF represent

the cortical terminations of the corresponding WM spatial maps and may be used

similarly to define connectivity blueprints and hence a common connectivity space

in a fully data-driven manner. Here, to demonstrate feasibility of the approach, we

extract NMF components on human data from the HCP at the group and individual

level and use the KL divergence of data-driven connectivity blueprints to predict an

“unseen” subject’s myelin map.

NMF is best applied to group-averaged GM × WM (N × M) whole-brain

matrices (Figure 5.6) which may then be dual-regressed back to the individual-

level2. As such, we performed tractography in a group of HCP subjects and then

averaged the whole-brain tractography matrices across the group.
2Full details of the NMF procedure may be found elsewhere: Thompson et al. (2020) and

github.com/ethompson93/Data-driven-tractography.

https://github.com/ethompson93/Data-driven-tractography
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Figure 5.6: The extraction of WM and GM components through NMF. The whole-
brain connectivity matrix is reduced via non-negative matrix factorization (NMF),
resulting in equivalent sets of WM components in the volume space and GM compo-
nents on the cortical surface.

Prior to tractography, crossing fibre modelling (Jbabdi et al., 2012) was applied

to the data in order estimate fibre orientation (with up to three fibres estimated per

voxel) and inform tractography. Whole-brain probabilistic tractography was used

to obtain connectivity matrices (Behrens et al., 2007; Hernandez-Fernandez et al.,

2019) as required in order to perform NMF (Thompson et al., 2020). Briefly, for each

subject, tractography was seeded from each white-grey matter boundary (WGB)

surface vertex and the subcortical structures, including the amygdala, caudate, tha-

lamus, putamen and hippocampus, with 5,000 streamlines per seed. A whole-brain

mask, excluding the ventricles, was used as a target with the pial surface acting

as a termination mask to prevent streamlines from crossing gryi boundaries. For

each seed point, the visitation count, weighted by path length, was calculated as

the number of streamlines between the given seed point and each of the whole-brain

mask voxels. Volume masks (subcortical and whole-brain masks) were downsampled

to 2.5 mm, reducing computation time. Prior to tractography, volume and surface

masks were transformed to the subject’s native space, where tractography was per-

formed. Subsequently, the resultant fibre density maps were resampled to standard

space to allow for group-averaging.

Group-averaged (N×M) connectivity matrices were calculated by first normal-

ising the individual connectivity matrices by the total number of valid streamlines
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and then averaging across the group. Next, NMF was applied to the group-averaged

data, extracting the top k = 200 components. The N × k GM spatial maps of these

components (the transpose of GM in Figure 5.6) (i.e. each column is a component

GM spatial map) were used to define data-driven connectivity patterns; in an analo-

gous manner as in the previous section, where a N×T tracts matrix was considered

the connectivity blueprint. A similar assessment of connectivity similarity as before

could then be performed using the KL divergence.

5.3.1 Myelin Map Predictions

To demonstrate in principle that these data-driven features may also be used to de-

fine connectivity spaces and probe functional features (as in Section 5.2), we sought

to predict an unseen subject’s myelin map from the group through the connectivity

space (Equation 5.2). Data-driven connectivity blueprints, derived via NMF, were

extracted at the group-level as described (matrix H in Equation 5.1). Next, the

NMF components were dual-regressed to an individual (out-of-group) subject, pro-

viding a set of components for this subject which are informed by the individual

anatomy yet structured as in the group-data (i.e. component correspondence be-

tween the subject and the group-average is maintained). That formed matrix M in

Equation 5.1. The unseen subject’s myelin map was then predicted using KL diver-

gence (Equations 5.1-5.2). Prediction performance was assessed through correlation

(Spearman’s) and the mean absolute difference between the predicted and measured

myelin map for that subject. For comparison, the prediction was repeated using the

XTRACT-derived connectivity blueprints, as performed in the previous section.

NMF Based Predictions

Due to the arbitrariness in the selection of NMF decomposition order (k), we sought

to reduce the NMF components to those that represent fibre bundles with strong

cortical connectivity. This removes components representing tracts of no interest, for

example the middle cerebellar peduncle (MCP) which would have little/no contri-

bution to cortical connectivity. To achieve this, we selected the top 100 components
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with the largest mean values (considering only the surface vertex entries) based on

the group-averaged data. Prior to making predictions, we smoothed the compo-

nents (using a Gaussian smoothing kernel with a standard deviation of 4 mm). This

reduces the sparsity inherent in these components, which would otherwise intro-

duce issues in the calculation of the KL divergence. The connectivity patterns were

normalised so that their row-sum was 1.

XTRACT Based Predictions

Connectivity blueprints were calculated using the XTRACT-derived tracts for each

subject and averaged across the group. Prior to myelin predictions, and as in the

cross-species explorations, tracts were sub-selected so that the left hemisphere con-

tains only left and commissural tracts, and visa versa for the right hemisphere. In

addition, we performed a third prediction in which we smoothed the connectivity

blueprints as in the NMF case.

5.3.2 Data

For these explorations we use 100 randomly chosen HCP subjects: 99 of these were

used to generate group-averaged structural connectivity features and the remaining

subject was used as the unseen subject. A group-average myelin map was generated

by taking the mean across the 99 subjects. All surface data were downsampled (after

feature generation) to approximately 2,000 vertices per hemisphere as before.

5.3.3 Results

NMF Components

We performed whole-brain tractography and extracted the top k = 200 NMF com-

ponents. Examples of the WM and GM components for the group-averaged data

are shown in Figure 5.7.



Chapter 5. Discussion 142

Figure 5.7: Examples of the WM and GM NMF components derived from the
100 subject group-averaged data. Example components capture known major WM
fibre bundles, for example a.) cingulum bundles, b.) the uncinate fasciculus (UF),
c.) the second branch of the superior longitudinal fasciculus (SLF), d.) the ar-
cuate fasciculus (AF), e.) the middle longitudinal fasciculus (MdLF), f.) tempo-
ral cingulum/fornix fibre bundles, g.) the anterior thalamic radiation (ATR), h.)
sensory-motor connections, and i-j.) commissural bundles (splenium and genu of
the corpus callosum)

Myelin Map Predictions

The unseen subject’s cortical myelin map was predicted through KL divergence using

three sets of features: the connectivity blueprints, the top 100 NMF components,

and, for comparison, the connectivity blueprints also spatially smoothed with the 4

mm kernel. The group-average, measured and predicted myelin maps are shown in

Figure 5.8. The correlations and mean absolute differences between the predicted

and measured myelin maps were r = 0.739 and E = 0.109 (XTRACT), r = 0.777

and E = 0.104 (smoothed XTRACT) and r = 0.791 and E = 0.100 (data-driven

NMF). Regions of notable difference are indicated in Figure 5.8 by the white arrows,

where it can be seen that the MT area and the general ‘C’-shape of the cingulum

are better preserved when using the data-driven connectivity blueprints, however,

the increased myelin in the hippocampal area is underestimated compared to the

XTRACT-derived connectivity blueprint. Generally, the lateral frontal region is

variable across predictions with the predictions using the data-driven connectivity

blueprints reflecting the group-average myelin map more so.
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Figure 5.8: The measured and predicted myelin maps. From top to bottom: the
group-averaged myelin map, the measured unseen subject myelin map, the predicted
myelin map using the XTRACT-based connectivity blueprints, the predicted myelin
map using the smoothed XTRACT-based connectivity blueprints, and the predicted
myelin map using the smoothed data-driven connectivity blueprints. Arrows mark
regions of notable difference across predictions. MT: Area MT, PC: Posterior Cin-
gulate, Hipp: Hippocampus.

5.4 Discussion

This chapter presents explorations into using brain connectivity to probe functional

similarities and to align similar features across diverse brains. We use structural

connectivity patterns to define common connectivity spaces between brains. We

assess two methods for building such structural connectivity patterns (connectivity

blueprints and joint-embedding) and example their use through the projection of

myelin maps across species. Each space provides a set of features - tracts/columns

of the connectivity blueprint or components of the joint-embedding space - which are

homologous, i.e. they represent equivalent variance in connectivity for each species

but respect the individual species anatomy and which may be compared across very
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diverse brains in the absence of geometrical correspondence.

Three approaches to performing projections of myelin maps were compared,

allowing for the comparison of the two connectivity spaces: 1) using the KL diver-

gence between the connectivity blueprints, 2) using multi-modal surface matching

(MSM) with the connectivity blueprints as features, and 3) using MSM with the

joint-embedding components as features. Each approach was predictive of corti-

cal myelination as measured by MRI, in-line with expectations from the literature

(Mars et al., 2018c; Xu et al., 2020; Eichert et al., 2020), suggesting that each

connectivity space captures useful variation in structural connectivity in a common

space which may be used to probe functional similarities. Figure 5.4 reveals that

each approach, to some extent, captures the expanded and more lateral visual area

and more anterior motor region in the macaque brain compared to the human brain.

Although medial wall masks were used as a feature in the MSM-based surface align-

ments, there still appears to be some misalignment in the medial wall, particularly

in the third approach. These predictions demonstrate that comparisons of structural

connectivity features, derived through standardised cross-species tractography, can

drive functional alignment of different brains, as suggested by the literature (Mars

et al., 2018c; Eichert et al., 2020).

The application of these methods in these data may be limited by the already

low-dimensionality of the data (22 tracts), reducing our ability to capture whole-

brain connectivity profiles in their entirety. Further, in the joint-embedding ap-

proach, it should be noted that, due to the downsampling of the cortical surfaces

and the already relatively small size of the landmark ROIs, some of the landmark

connectivity profiles were the average of very few cortical locations (i.e. vertices,

Figure 5.10 in Appendix 5.6.2). However, we demonstrated that joint-embedding

captures components of unique variance which are structured across species: the

component maps capture homologous variance in structural connectivity (Figure

5.3b) and homologous landmark regions cluster together in the embedded space

(Figure 5.3c). The ability to compare structure and probe functional organisation

across brains may benefit from the inclusion of a broader array of structural con-

nectivity features.
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Towards this, we adapted a recently developed data-driven feature extraction

technique (Thompson et al., 2020) to the adult human brain and demonstrated that

structural connectivity patterns derived through this approach can also be used to

build a common space and perform predictions of cortical myelination. The NMF

components extracted represent a diverse set of WM connections (Figure 5.7) whilst

allowing for the extraction of features not defined in some protocol-driven methods

(i.e. in XTRACT). We used KL divergence to compare group-averaged GM NMF

components to those from an unseen subject, making a prediction of the unseen

subject’s myelin map with similar, although higher in the data-driven approach,

predictive power across approaches. A limitation in this approach is that, in order to

avoid issues in the calculation of the KL divergence, we performed smoothing on the

data, reducing the inherent sparsity of the data. This increased the overall similarity

between the group-average and unseen subject data, which, in the XTRACT-based

connectivity blueprint case, led to an apparent improvement in predictive power.

Future work will build upon this feasibility study.

NMF for the extraction of WM fibre bundles has previously been demonstrated

to be robust and generalisable across stages of neonatal brain development (Thomp-

son et al., 2020). Such techniques could be adapted to performing tractography in

multiple species which would overcome the limitations in the traditional cross-species

tractography approach, where time-consuming tractography protocols must be de-

veloped in order to extract structural homologues. Using this data-driven method,

we can extract any number of components which may capture fibre bundles not yet

defined in the traditional approach, thus providing a more complete representation

of structural connectivity patterns.

Although data-driven approaches are attractive in their ability to capture tracts

not yet defined in XTRACT, and in their flexibility in being applied to any brain in

principle, they do have limitations compared to anatomically driven tractography.

Anatomically driven tractography is able to robustly extract well-defined reconstruc-

tions of fibre bundles with few false positives (i.e. not including other fibre bundles).

Further, by restricting our explorations to known and well-defined fibre bundles, in-

terpretation is eased: understanding the contribution of a fibre bundle is simple,
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whereas, understanding the contribution of a component (potentially containing as-

pects of several distinct fibre bundles) is more complex. Additionally, to explore

changes in connectivity profiles across diverse brains, well-defined fibre bundles (ho-

mologous in the case of cross-species studies) are particularly useful. In order to

utilise data-driven tractography approaches in such cases, anatomically driven trac-

tography provides a useful comparator against which data-driven tractography may

be assessed.

5.5 Concluding Remarks

Investigations into the use of structural connectivity features to build common con-

nectivity spaces have been presented. We example, on a cross-species basis, that

connectivity patterns derived through protocol-driven tractography may be com-

pared in the absence of geometrical alignment, can drive alignment of diverse brains

in connectivity space, are predictive of cortical myelination and, therefore, probe

functional specialisation. Further, we adapted a recently developed method for

the data-driven estimation of structural connectivity patterns and demonstrated,

in principle, that such features may be used to build common connectivity spaces

and perform such comparisons. This opens the door to a data-driven cross-species

tractography framework, potentially overcoming the limitations discussed.
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5.6 Appendix

5.6.1 Landmark regions-of-interest

Figure 5.9: The 27 homologous landmarks used in deriving the joint-embedded
components. 10r: Ventro-Medial Prefrontal Cortex, p32: Area 32, 9m: Area 9
medial, 9-46d: Area 9/46 dorsal, 8Av and FEF: Area 8A and Frontal Eye Field,
PFop: Area PFop, AIP: Anterial Intraparietal, VIP: Ventral Intraparietal Area,
LIPd and LIPv: Mid-Intraparietal Sulcus, PFm: Mid-Inferior Parietal Lobule, 6v
and 6r: Area 6 ventral and Area 6 dorsal, IFSp and IFSa: Inferiro Frontal Sulcus,
IFJp and IFJa: Inferiro Frontal Junction, 44: Area 44 ventral, 45: Area 45, 47l:
Area 47, 47s: Operculum Frontale, 46: Area 46, 10d: Mid-Inferior Parietal Lubule,
V1: Area V1, V2d: Area V2 dorsal, V2v: Area V2 ventral, A1: Area A1 (Auditory),
MT: Area MT, 3a and 3b: Area 3, 4: Area 4, Hipp: Are Hippocampus). Regions
were provided by Xu et al. (2020).
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5.6.2 Landmark connectivity

Figure 5.10: The average and normalised tract contributions to each of the
homologous landmarks for the human (blue) and macaque (orange) brains. For
each cortical landmark, the top contributors for each species are shown, defined as
have a contribution of greater than 0.05 (following sum-normalisation to 1). The
number of vertices included in each landmark are given.
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Foreword

One of primary goals of neuroscience is to reveal the links between observable fea-

tures of the brain and human behaviour. One approach to revealing these associ-

ations is discovering relationships through a large set of features that characterise

this brain-behaviour parameter space. Brain features can be extracted through neu-

roimaging, such as using the approaches presented in the previous chapters and

behavioural traits can be probed using behavioural data. Multivariate techniques

can then be used to explore latent relationships. Canonical correlation analysis

(CCA) is a powerful multivariate statistical technique used to reveal associations

between multiple, typically large dimensionality, datasets. In recent years, CCA has

been applied widely in the field of neuroimaging. However, issues with regard to the

stability of CCA have been demonstrated in a general context.

This chapter performs comprehensive investigations into the stability of CCA

in the context of neuroimaging, specific to brain-behaviour associations. Using data

from the “WU-Minn” Human Connectome Project and UK Biobank, and through

a generative simulation framework, we demonstrate that results obtained through

CCA are heavily dependent on the number of subjects, the number of features and

the true underlying between-set association.

Specifically, we demonstrate that linear multivariate brain-behaviour associa-

tions need about 50 samples per considered feature to achieve stability, an order

of magnitude more data than that used before. We show that latent associations

revealed with HCP data (∼ 1,000 subjects) can be highly unstable, while associa-

tions revealed with UK Biobank data (∼ 20,000 subjects) are stable. We therefore

caution the interpretation of these associations when the ratio of samples per feature

is small.
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6.1 Introduction

A plethora of techniques, including those introduced in this thesis, have been devel-

oped that use MRI to estimate measures of brain connectivity. One of the primary

goals in estimating brain connectivity is to better understand how human behaviour

and cognition, in the healthy and diseased brain, are related to variations in brain

connectivity. Studies on the associations between disease effects and brain con-

nectivity have advanced our understanding of disease mechanisms, for example, in

schizophrenia (Liu et al., 2008; Fornito et al., 2012; Collin et al., 2014; Bohlken et

al., 2016), Alzheimer’s disease (He et al., 2009; Lo et al., 2010; Oxtoby et al., 2017;

Córdova-Palomera et al., 2017), attention deficit hyperactivity disorder (ADHD)

(Oldehinkel et al., 2016; Silberstein et al., 2016), and lesions (Thiebaut de Schotten

et al., 2014a; Corbetta et al., 2015; Boes et al., 2015; Vaidya et al., 2019; Thiebaut

de Schotten et al., 2020). In order to reveal features capable of identifying early

markers of disease or to understand normal cognition and behaviour in great detail,

studies must be highly sensitive. This is achieved by utilising large cohorts, robust

image processing and powerful statistical methods (Miller et al., 2016; Smith and

Nichols, 2018; Marek et al., 2020; Gong et al., 2020).

Canonical correlation analysis (CCA) is one such statistical method (Hotelling,

1936). It is used widely to reveal latent associations between datasets. In the field

of neuroscience, CCA has been applied to exploring the associations within and

across image modalities, and between imaging and non-imaging features. The latter

is the focus of this chapter, where such techniques are applied to revealing latent

relationships between image-derived features, such as brain connectivity, and be-

havioural traits, as captured by non-imaging measures, such as lifestyle, physical

and psychological health, and cognition. In other words, to reveal brain-behaviour

associations. These investigations use large dimensionality datasets: typically hun-

dreds to thousands of image-derived features and tens to hundreds of behavioural

trait features. CCA is used to reveal low dimensional representations of each dataset

which are maximally correlated across the modalities. These latent representations

- or “modes” - may then be related back to the original feature space to allow for
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visualisation and interpretation.

Although widely utilised in the field of brain-behaviour associations (Smith

et al., 2015; Miller et al., 2016; Drysdale et al., 2017; Bijsterbosch et al., 2018;

Wang et al., 2018a; Xia et al., 2018; Mihalik et al., 2019; Li et al., 2019; Becker

and Hervais-Adelman, 2019; Rodríguez-Cruces et al., 2020; Han et al., 2020; Wang

et al., 2020b; Lv et al., 2020), limitations of CCA in general have been reported

(Thorndike and Weiss, 1973; Barcikowski and Stevens, 1975; Thorndike, 1976;

Barcikowski and Stevens, 1976; Weinberg and Darlington, 1976; Thompson, 1990;

Strand and Kossman, 2000; Lee, 2007; Leach and Henson, 2014) and, less-so, spe-

cific to brain-behaviour associations (Dinga et al., 2019; Yang et al., 2019; Wang

et al., 2020b). These studies typically use small sample sizes to illustrate instabili-

ties in CCA solutions, caused by overfitting in the solution, which, in turn, leads to

inflated correlations (Weinberg and Darlington, 1976; Thompson, 1990; Lee, 2007).

This may lead to marked differences between the reported between-set correlation

and cross-validation performance. Dinga et al. (2019) illustrates this issue with re-

gard to a specific study from the literature (Drysdale et al., 2017). This discrepancy

is also observed in Smith et al. (2015), where the reported between-set correlation

is 0.87 and the out-of-sample predictive performance is 0.25, suggesting potential

overfitting. Furthermore, less work has focused on the stability of the actual CCA

modes. Without fully understanding the limitations of CCA in the context of brain-

behaviour associations, the generalisability of the technique and its solutions are

severely limited.

This chapter performs comprehensive investigations into the robustness of CCA

specific to brain-behaviour studies. Data from the HCP and UK Biobank are utilised

to demonstrate significant challenges and limitations in the application of multivari-

ate techniques when not enough data are available. In the following sections, the

mathematical principles of CCA and a review of the brain-behaviour literature are

presented. Following this, several investigations into the stability of CCA are pre-

sented: 1) CCA is explored using structural connectivity features and behavioural

traits derived from the HCP cohort, revealing issues in the application of CCA in

cases where the number of subjects is comparable to the number of features; 2)
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reported instabilities are confirmed not to be specific to the type of feature used

by repeating the previous explorations using functional connectivity features and

behavioural traits derived from the HCP cohort; 3) a simulation framework is de-

veloped in order to explore these limitations in cases where the ground-truth is

known; and 4) CCA is applied to the largest neuroimaging cohort available, the UK

Biobank, to demonstrate the extent to which instabilities in reported CCA results

occur.

Although the work presented in this chapter is specific to CCA, equivalent

analyses have been performed using a similar approach, partial least squares (PLS),

and in variants of CCA (sparse CCA) (Helmer et al., 2020). The work presented

in Helmer et al. (2020) was a collaborative effort, benefiting from the studies pre-

sented here. Empirical analyses presented here were performed using the GEMMER

package1.

6.2 CCA Theory

The aim of classical CCA is to produce low-dimensional linear combinations of the

columns of two datasets such that those low-dimensional representations are maxi-

mally correlated (Hotelling, 1936). Let us define two data matrices X = (x1, ...,xp)

and Y = (y1, ...,yq), each with equal number of rows representing observations (e.g.

subjects) n, where p and q are the respective number of features (columns) in each

dataset (e.g. imaging and behavioural features), thus xi and yi are column vec-

tors representing the features for each subject for each dataset respectively. CCA

seeks to find two unmixing matrices (canonical weights) WX = (wX1, ...,wXp)
T and

WY = (wY 1, ...,wY q)
T , where T denotes the transpose and wXi and wY i are row

vectors representing the contribution (or weighting) of a given feature to each of k

modes, which, when multiplied with X and Y respectively, produce the canonical

variates U and V such that column pairs are maximally correlated (Figure 6.1), i.e.

ρ = corr(XWX ,YWY ) = [corr(ui,vi)], i = 1...k (6.1)
1See https://github.com/murraylab/gemmr

https://github.com/murraylab/gemmr
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such that

WX ,WY = argmax corr(XWX ,YWY ) (6.2)

where corr means Pearson correlation and ρ is the vector of correlations between

each pair of canonical variates, known as the canonical correlations.

Figure 6.1: A schematic representation of the CCA equation. a.) Columns of
the two modalities X and Y, representing the imaging and non-imaging data, are
projected to low dimensional space (columns of U and V) through the multiplication
of the mixing matrices WX and WY . b.) The mixing matrices are such that the
correlation between the canonical variates ui and vi is maximised, thus revealing the
latent mode of variation.

The canonical variates describe the weighted-composite features of the original

data. In other words, U and V are the low dimensional projections of X and Y

respectively. A pair of canonical variates (e.g. u1 and v1, uk and vk) is known as a

canonical mode, which describes how the two datasets correlate across samples for a

given linear combination of features. A maximum of k = min(p, q) canonical modes

may be generated under the conditions that ρ1 ≥ ρ2 ≥ ... ≥ ρk, corr(u1,u2...k) = 0

and corr(v1,v2..k) = 0.

In practice, CCA is often performed via singular-value decomposition of the

between-set covariance matrix as in Equation 6.3.

CCCA
XY = C−1/2

XX CXY C−1/2
Y Y (6.3)

where CXX = 1/(n − 1)X′X (p × p) is the covariance matrix of X, CY Y =
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1/(n−1)Y′Y (q×q) is the covariance matrix of Y and CXY = 1/(n−1)X′Y (p×q)

is the covariance matrix of X,Y. The correlations between pairs of canonical vectors

(known as the canonical correlations) are the singular values of CCCA
XY : CCCA

XY =

Udiag(ρ)VT , where ρ are the canonical correlations as in Equations 6.1-6.2. The

corresponding weights WX and WY are given by C− 1
2

XXU and C− 1
2

Y Y V.

Typically, the statistical significance of the canonical correlations is found via

permutation testing (Figure 6.2). This process usually includes shuffling one of

the datasets (e.g. Y′ = permute(Y)) such that the order of subjects no longer

matches between the datasets, performing CCA and repeating Np times. This

process allows for the construction of a null distribution of canonical correlations

ρnull = [ρ1, ..., ρNp ]. The true, i.e. unshuffled, canonical correlation between the

first pair of canonical variates (ρ1) may then be compared to the null to assess

the probability of the correlation being spurious. This is typically performed via

family-wise error correction where each mode is considered significant if the p-value

= 1
Np

(1 +
∑

(ρnull ≥ ρi)) is less than a desired threshold (ρi is the correlation for

a given canonical mode). The lowest p-value obtainable is then governed by the

reciprocal of Np, typically Np = 1, 000− 100, 000. If the first mode ρ1 is found not

to be spurious, i.e. statistically significant, the subsequent modes are then compared

to the same null distribution.

Following the assessment of the statistical significance of modes, visualisation

and interpretation is typically performed by correlating the canonical variates ui

and vi, corresponding to the significant modes, with the columns of the input data

X and Y respectively, giving two sets of loading vectors lX and lY . These describe

the contribution of the input features to the given canonical mode in the original

feature space (i.e. p or q features). In practice, this correlational analysis is often

performed between the canonical variates and the original, pre-PCA, input data - the

application of PCA prior to CCA is common practice and aims to reduce overfitting,

i.e. improve solution stability and reduce correlation inflation, and/or overcome the

issue of rank deficiency. Returning the CCA solution back to the original feature

space, i.e. deriving the loading vectors, overcomes issues in interpretation, allowing

for direct visualisation in the original feature space, e.g. on the cortical surface or
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Figure 6.2: A schematic representation of permutation testing. a.) First, CCA is
performed on the original datasets X and Y, and the canonical correlations ρ for
each mode are stored. b.) Next, one of the datasets, for example the non-imaging
dataset Y, is permuted (i.e. shuffled) in the subject dimension so that there is no
longer correspondence between modalities, giving Y′. c.) CCA is repeated using
the original X and the permuted Y′ and the canonical correlation for the top mode
is stored ρnull. Steps b.) and c.) are repeated Np times, thus constructing a null
distribution of correlation values ρnull against which the non-permuted correlation
value ρi may be compared.

in terms of meaningful behavioural measures. Higher loadings indicate a greater

contribution to the canonical mode.

Although this chapter is concerned with the application of conventional CCA

to exploring brain-behaviour associations, many similar techniques and variants ex-

ist which one should be aware of. Zhuang et al. (2020) provides a comprehensive

overview of the CCA variants. Common variants of CCA include constrained/sparse

CCA (Witten et al., 2009). Both impose penalties/constraints (e.g. non-negativity)

and/or regularisation parameters (most commonly L1-norm) on the canonical co-

efficients with the intention of improving model performance, e.g. generalisability.

Constrained and sparse CCA aim to reduce overfitting by imposing constraints on

the canonical coefficients, pushing low value entries to exactly zero through L1 regu-

larisation in the case of sparse CCA. As well as seeking to reduce overfitting, sparse

CCA also allows for CCA to be applied in cases where the number of subjects n does

not exceed the number of features p + q (this condition must be met for classical

CCA solutions to be mathematically sound).
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A similar approach to CCA is partial least squares (PLS). Here, rather than

seeking to maximise the correlation between low-dimensional projections as in CCA,

PLS maximises the covariance. Mathematically, this is very similar to the descrip-

tion of CCA: CV1 = cov(XWX ,YWY ) = cov(u1,v1)) such that WX ,WY =

argmax cov(XWX ,YWY ), where CV1 is the covariance between the first pair of

modes.

6.3 Prior Work using CCA

Initial studies using CCA in the field of neuroimaging focused on the source sep-

aration of brain activity signals (Friston et al., 1995; Friston et al., 1996; Friman

et al., 2001). In recent years, CCA has been applied to exploring the associations

between imaging-derived measures (X), such as brain connectivity, and non-imaging

behavioural measures (Y), such as measures of intelligence and clinical diagnostic

measures. A summary of key literature is provided in Table 6.1.

A number of studies have focused on CCA between functional connectivity, as

derived from resting-state functional MRI, and behavioural traits. Amongst the first,

Smith et al. (2015) applied CCA in such datasets using 461 subjects from the HCP.

Prior to CCA, principle component analysis (PCA) was used to reduce the imaging

features from 19,800 (the unique edges of a 200 by 200 functional connectome) to

the top 100 principal components and the behavioural data from approximately

160 to the top 100 principal components. Therefore, the input into CCA was two

datasets X and Y with dimensions of n = 461 and p = q = 100, and, therefore,

the subject-feature ratio is 2.3. A single significant canonical mode was reported,

capturing a “positive-negative” mode of population variance in the behavioural data

that is associated with known functional networks, for example the default mode

network, and with overall connectivity.

The analysis and findings presented in Smith et al. (2015) have since been repli-

cated (Bijsterbosch et al., 2018; Goyal et al., 2020; Han et al., 2020) and the same ex-

plorations have been performed with other fMRI-derived features (Marquand et al.,

2017; Bijsterbosch et al., 2018; Li et al., 2019), measures of cortical thickness (Han
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et al., 2020), and magnetoencephalography (MEG)-derived functional connectivity

(Becker and Hervais-Adelman, 2019) using the healthy HCP cohort. In addition,

similar approaches have been applied in other healthy cohorts to explore latent as-

sociations between connectivity and cognition/behaviour (Wang et al., 2018a; Wang

et al., 2020b). Further, CCA has been applied to exploring brain-behaviour asso-

ciations in clinical cohorts, including in depression (Drysdale et al., 2017; Mihalik

et al., 2019; Dinga et al., 2019), temporal lobe epilepsy (Rodríguez-Cruces et al.,

2020), schizophrenia (Lv et al., 2020), and in a neurodevelopmental cohort (Xia

et al., 2018).

It should be noted that the analysis and results presented in Drysdale et al.

(2017) have since been brought into question (Dinga et al., 2019) (however, see

Grosenick et al. (2019) and Mihalik et al. (2020)). In brief, Drysdale et al. (2017)

suggests that subjects with depression may be sub-typed, and therefore treatment

may be better targeted, based on the latent associations between functional con-

nectivity and clinical measures revealed via CCA and subsequent clustering. Dinga

et al. (2019) fails to robustly replicate these findings in an independent cohort and

argues that permutation testing should be applied at the feature-selection level to

avoid overfitting and instabilities. In the case of Drysdale et al. (2017), imaging fea-

tures are sub-selected through a mass univariate association (MUA) where features

passing a pre-defined p-value threshold are kept. Appendix 6.9.1 provides a brief

investigation into the use of MUA as a feature-selection procedure prior to CCA

and we argue that such “double-dipping” should be avoided.

Despite the potential suggested from the literature, previous work has high-

lighted issues with regard to the stability of CCA (Barcikowski and Stevens, 1975;

Thorndike and Weiss, 1973; Barcikowski and Stevens, 1976; Weinberg and Darling-

ton, 1976; Thorndike, 1976; Thompson, 1990; Strand and Kossman, 2000; Lee, 2007;

Leach and Henson, 2014; Yang et al., 2019; Dinga et al., 2019; Wang et al., 2020b),

which may lead to unrealistic canonical correlations (ρ > 0.9) (Drysdale et al., 2017;

Becker and Hervais-Adelman, 2019; Dinga et al., 2019; Rodríguez-Cruces et al.,

2020) and potentially erroneous conclusions. Here, using data from the HCP and

UK Biobank, and through a simulation framework, instabilities in canonical weights
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and correlations are demonstrated when using data dimensionalities typical of that

found in the literature (see Table 6.1 for a summary). Specifically, the importance of

the subject-feature ratio (SFR = n/(p+ q)) is highlighted which, as demonstrated

in Table 6.1, ranges from 0.15 to 6.1 in the literature.

6.4 Evaluating CCA Stability Against Multi-modal

Data

In this section, the stability of CCA is assessed in terms of the estimated canonical

correlations, describing the overall correlation between the latent space modes, and

canonical weights, which define said latent modes. In each case presented below,

a set of samples (i.e. subjects) ns were defined with two modalities of data Xns

and Yns , which correspond to the imaging and non-imaging features respectively.

Explorations with two sources of imaging features are performed (i.e. two separate

matrices Xns) obtained from independent modalities: from dMRI data and fMRI

data in the HCP. Brain connectivity features are extracted from these modalities and

CCA is performed independently between each of these two neuroimaging modalities

and HCP behavioural measures.

The stability of the estimated canonical weights for each modality and the

canonical correlations was explored against sample size. CCA was repeated on sub-

sets of the data (Xn and Yn) for n < ns whilst maintaining the feature dimensions

p and q, i.e. reducing subject-feature ratio (SFR). For each iteration, the canoni-

cal correlations ρn and canonical weights Wn were compared to the ones obtained

from the original set (here, we use W to refer to the weights for each data set X

and Y). ρn are plotted as a function of SFR and inflation (percentage increase)

was calculated. Weight stability/error was calculated as 1− the absolute value of

cosine similarity between the subsampled Wn and full-sample Wns weights. This

was calculated for each data set X and Y and the greater of the two is taken:

∆Wn = max
j∈X,Y

(1− | cossim(Wn,Wj
ns
) |) (6.4)
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Cohort Img (X) Non-Img (Y) Reduction
(X, Y if
different)

#Subs
(n)

#Feats
(p, q)

SFR
(n/(p+q))

Smith 2015 HCP WB-func § PCA 461 100, 100 2.3
Drysdale
2017

Depression
cohort

WB-func Clinical de-
pression scores

MUA (to re-
duce imaging
features)

220 178, 17 1.1

Marquand
2017

HCP Corticostri-
atal fMRI
connectivity

§ Polynomial
fit, Gaussian
elimination

466 9, 174 2.5

Bijster-
bosch 2018

HCP Various fMRI
connectomes
and spatial
configuration

§ PCA 819 100, 100 4.1

Wang 2018 Nathan Kline
Institute-
Rockland
sample

WB-func Cognitive
“resting-state”
test

Sparse CCA 258 1,596,
31

0.15

Xia 2018 Philadelphia
Neurode-
velopmen-
tal Cohort
(PNC)

WB-func Psychiatric
symptoms

Percentile
thresholding
and Sparse
CCA

663 3,410,
111

0.19

Mihalik
2019

Adolescent
and young
adult depres-
sion cohort

Whole-brain
functional
connectivity

Mental health,
cognitive tests
and demo-
graphics

PCA 306 25, 25 6.1

Li 2019 HCP Global signal,
fMRI connec-
tivity

§ PCA 1,094 100, 100 5.5

Dinga 2019 Depression
cohort

WB-func Clinical de-
pression scores

MUA (to re-
duce imaging
features)

187 150, 17 1.1

Becker 2019 HCP MEG func-
tional con-
nectivity, 5
frequency
bands

§ PCA 89 22, 22 2.0

Rodriguez-
Cruces
2020

Temporal
lobe epilepsy
cohort

Whole-brain
structural
connectivity

Cognitive,
clinical scores

Regularised
CCA

34 NR NR

Han 2020 HCP WB-func and
cortical thick-
ness

§ PCA 818 100, 100 4.1

Wang 2020 Healthy co-
hort

WB-func Cognitive
scores

Top 5%
functional
features and
Sparse CCA

178 247, 13 0.69

Lv 2020 Schizophrenic
cohort

Cortical thick-
ness and
fractional
anisotropy

AAI and la-
tent cognitive/
behaviour
scores

N/A and ICA 322 116, 1
and 4

2.8 and
2.7

Table 6.1: Summary of the canonical correlation analyses performed in the liter-
ature showing the types of imaging and non-imaging measures used, dimensionality
reduction methods and number of subjects and features used. WB-func = Whole-
brain fMRI connectivity; § = Cognitive, lifestyle, family history, physical health; NR
= Not Reported; PCA = Principal Component Analysis; MUA = Mass Univariate
Association; HCP = “WU-Minn” Human Connectome Project
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where

cossim(Wn,Wns) =
Wn · Wns

‖Wn‖ ‖Wns‖
(6.5)

The weight error was then plotted as a function of SFR. Further, 5-fold cross-

validation was used to estimate the out-of-sample canonical correlation at each sam-

ple size. The CCA solution was estimated with 80% of the data (training set) and

the resulting canonical weights Wtrain were applied to the remaining 20% of the data

(test set, Xtest) to obtain test canonical variates Utest by Utest = Xtest × Wtrain for

the imaging modality for example. The Pearson correlation was calculated between

the test variates and averaged across the 5 folds. Various cross-validation strategies

are available and may be used to assess CCA performance. The 5-fold scheme used

here is not only a convenient choice is also well-suited to model performance assess-

ment (Varoquaux et al., 2017; Scheinost et al., 2019, also see Helmer et al. (2020),

Supplementary Figure S7). The general framework used is presented in Figure 6.3.

Figure 6.3: A schematic of the CCA subsampling scheme. CCA was performed on
the full-sample datasets Xns and Yns and the canonical weights Wns and canonical
correlations ρns are obtained. Next, CCA was repeated on subsets Xnj

and Ynj
for

n < ns, storing the canonical weights Wnj
and canonical correlations for comparison

ρnj
. In addition, at each sample size, 5-fold cross-validation is performed (not

shown).

The following describes feature extraction and preparation and the trends ob-
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served through the comparison of subsampled n < nS CCA to the full set n = nS

CCA using the multi-modal HCP data.

6.4.1 Feature Extraction: Imaging Features

Imaging features were derived using the dMRI and fMRI data from the HCP co-

hort and CCA was performed using each of these imaging modalities against the

behavioural measures. The following sections describe both imaging feature sets

and the behavioural data.

dMRI HCP Data

First, we used the diffusion MRI data from the HCP cohort, utilising the struc-

tural connectivity features extracted in Chapter 4 and performed CCA against be-

havioural features. In line with the HCP recommendations, a set of 44 subjects

identified as having anatomical abnormalities were removed from the dataset. In

addition, one further subject was removed during data preprocessing (see below),

leaving ns = 1, 020 subjects.

Here, the subject-wise connectivity blueprints described in Section 4.2.4 were

used as structural connectivity features. The connectivity blueprints represent the

cortical termination maps for 41 major white matter (WM) fibre bundles. The

blueprint matrices (∼ 60k vertices by T = 41 tracts) were parcellated along rows, i.e.

each column parcellated individually, into 68 regions using the Desikan-Killany atlas

(Desikan et al., 2006) with each parcel representing the median of the constituent

vertices. The parcellated connectivity blueprints (68× 41) were then vectorised and

stacked subject-wise, giving the imaging dataset Xns (1, 020× 2, 788).

fMRI HCP Data

In addition, we also use measures derived from the HCP resting-state functional

connectivity data. For these analyses, an extended set of the imaging features

as used in Smith et al. (2015) were used. Following subject removal (see below),

ns = 775 subjects remained.
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Figure 6.4: A schematic of the imaging-data preprocessing. 1.) XTRACT was
used to reconstruct 41 major WM fibre bundles in each of ns = 1, 020 HCP subjects.
The tracts were vectorised and stacked tract-wise to give the matrix C2 (M voxels by
T tracts). 2.) The white-grey boundary (N vertices) to WM (M voxels) connectivity
matrix is constructed for each subject, giving the C1 matrix. 3.) The multiplication
of C1 and C2 gives the connectivity blueprint CB with N rows, corresponding to
the white-grey boundary vertices, and T rows, corresponding to tracts. 4.) The
blueprints, visualised on the cortex here, were parcellated using the Desikan-Killany
atlas (Desikan et al., 2006), reducing the dimensionality from N ≈ 60k to P = 68.
5.) The parcellated blueprints were vectorised and stacked subject-wise to give a
subject ns by imaging feature p = P ×T = 2, 788 matrix. This matrix will be reduced
via principal component analysis prior to CCA.
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The data contains parcellated functional connectomes at multiple dimensional-

ities. These were obtained by applying group-ICA (Smith et al., 2014) to the pre-

processed fMRI data described in Section 3.2.3. The parcellated connectomes with

a dimensionality of 200 were used in this analysis. The upper triangle of each sub-

ject’s connectome, representing the unique entries of a symmetric matrix, were then

vectorised and stacked subject-wise, giving the imaging dataset Xns (775×19, 900).

Imaging Feature Preprocessing

Imaging features in both cases were first z-scored and, separately, feature-wise nor-

malised (by division of the absolute feature mean). These were concatenated, giv-

ing 2 × 2, 788 and 2 × 19, 900 features for the dMRI and fMRI data sets respec-

tively. Subsequently, the features were de-confounded as Xdecon = X − Cβ where

X represents each imaging data set, C are the confounds (described below) and

β = C+X = (CTC)−1CTX. Finally, the imaging datasets were reduced via PCA

to the top k principal components, giving the final input dataset Xns (ns × k).

6.4.2 Feature Extraction: Non-Imaging Features

The set of 158 behavioural measures used in Smith et al. (2015) were used here,

giving a non-imaging matrix Yns (ns × 158) (for a full list of the behavioural mea-

sures, see Appendix 6.9.2). Broadly, this includes measures of cognitive ability (e.g.

fluid intelligence, working memory), psychological well-being (e.g. general life sat-

isfaction, feelings of sadness), family history (e.g. history of depression, history of

drugs/alcohol), alcohol and substance use (e.g. testing positive for THC, typical

alcohol consumption), tobacco and alcohol dependence, and physical measures (e.g.

dexterity, use of corrective eyeglasses).

The features were transformed through a rank-based inverse normal transforma-

tion and z-scored (Beasley et al., 2009). Next, the subject-wise covariance matrix

was calculated (ns × ns) across features whilst only considering subject pairs for

whom data was available for each subject. This was subsequently projected to the

nearest positive definite matrix (Seabold and Perktold, 2010), avoiding the need for
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data imputation in cases of missing entries. Finally, features were reduced via PCA

to the top k principal components, giving the final input dataset Yns (ns × k).

Confounds

Similarly to Smith et al. (2015), a set of confound measures were defined which were

regressed out of both the imaging and non-imaging datasets. Confound measures

include height, weight, intracranial volume and brain volume. In addition, volume

measures were raised to the power of 1/3 and the square-terms of height, weight and

motion were included in the confound matrix. In the fMRI analysis, head motion

during functional MRI data acquisition and software version were used as additional

confounds. Missing values were set to 0 (3% and 5% for the fMRI and dMRI analyses

respectively) and features were z-scored across subjects.

6.4.3 Analysis

CCA was performed using n ≤ ns and the canonical correlations (ρns and ρn) and

canonical weights (Wns and Wn) were compared. Weight stability, the estimated

canonical correlation and the cross-validation correlation were plotted as a function

of SFR and inflation was calculated relative to ρns . CCA was performed at the full

cohort sample size and at 5 logarithmically spaced subsample-sizes between 202 (to

avoid rank deficiency) and 80% of the full sample size.

Statistical significance was assessed via permutation testing. For the HCP co-

hort, the permutation matrix was defined using FSL’s PALM (Winkler et al., 2015)

such that the family structure inherent in the HCP is respected and maintained.

For these analyses, Np = 1, 000 permutations were used. In cases where permuta-

tion indices were not returned, the corresponding subjects were excluded from the

analysis: 3 subjects in the fMRI analysis and 1 subject in the dMRI analysis.

6.4.4 Results

The CCA subsampling scheme was performed using the top k = 100 principal com-

ponents in both the dMRI and fMRI cases. These components explained 98.6%
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of the non-imaging (Y) data and 94.9% and 28.9% of the dMRI and fMRI data

respectively. In each case, at least one significant mode (p < 0.001) was identified

at the full-sample n = ns. For both modalities, the observed canonical correlation

increases as the number of subjects, and therefore SFR, decreases with a maximum

inflation of 9.65% whilst remaining statistically significant: orange curves in the left

column plots in Figure 6.5. The cosine similarity between the subsampled canonical

weights (Wn) and the full-sample weights (Wns) reduces as SFR decreases to as

low as 0.33 whilst remaining statistically significant: right column plots in Figure

6.5. Further, the out-of-sample correlations obtained via cross-validation are consid-

erably lower than the in-sample estimates whilst decreasing further with reducing

SFR, demonstrating lack of generalisability: red curves in the left column plots in

Figure 6.5. Interestingly, all these trends are very similar for both cases. Two very

different and independent set of features obtained from different imaging modalities

(dMRI and fMRI) return almost equivalent profiles and trends, which seem to be

governed by the SFR ratio.

6.4.5 Summary

The trends observed demonstrate that the canonical correlation inflates, the weight

stability reduces and the cross validation performance decreases as the SFR de-

creases. This suggests that the canonical correlation values reported in the litera-

ture may be dependent on the data dimensionality. Further, given the relationship

between weight stability and SFR, it suggests that importance assigned to a given

feature depends on the SFR: a particular feature may be assigned high importance

in one case but may be assigned low importance in another simply by changing the

number of subjects. This has further consequences when considering the original

(pre-PCA) feature space loading vectors.

Overall trends suggest that CCA results are sensitive to the SFR. Further,

these results confirm the trends observed are not unique to a particular modality

but generalise across common modalities. We also tried the analysis with a different

number of PCA components, i.e. k varying from 50 to 150, with the overall trends
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Figure 6.5: The estimated canonical correlation and weight stability with reducing
numbers of subjects (i.e. SFR) for the HCP multi-modal data: dMRI top row, fMRI
bottom row. Left: the relationship between the canonical correlation and SFR. The
orange line shows the increasing correlation ρ with decreasing SFR with the light-
orange area showing the null-distributions. The red line indicates cross-validation
estimated correlation. The circle and triangle symbols correspond to in-sample and
out-of-sample canonical correlations, respectively, when the full dataset is considered.
Right: the relationship between weight stability and SFR. The yellow line shows
the pairwise cossine similarity between the full-sample ns weight vectors and the
subsampled weight vectors. Analysis was performed using the top k = 100 principal
components.

being similar for corresponding SFRs. However, these analyses are limited in their

interpretation as we are considering the n = ns case as the ground-truth, which

is not the case. The n = ns case may already suffer from overfitting. In order to

formally quantify these instabilities, the ground-truth must be known.
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6.5 CCA with Known Ground-Truths

As discussed, trends observed in the real-data examples suggest a strong sensitivity

to the SFR. To further explore these behaviours in a robust manner, a simulation

framework was devised to generate sets of input data with known ground-truth

between-set correlations.

6.5.1 Simulation Framework

The framework generates sets of features (X and Y) with known ground-truth

canonical correlations ρ and weights WX and WY . This was achieved by generating

an ns by 2 × k matrix Q of random values drawn from a Normal distribution. Q

was then globally demeaned and variance normalised before being orthonormalised

via Gramm-Schmidt orthonormalisation (Schmidt, 1907; Chen, 2020), ensuring that

each column of Q is orthogonal to each other column. This was then split equally

into two, giving two matrices with dimensions of ns by k = p = q representing the

canonical variates U and V (step 1 in Figure 6.6).

To introduce the canonical correlations, columns of V (vi) were rotated with

respect to columns of U (ui). Vector rotation was achieved by first calculating the

required rotation angle as θi = cos−1(ρi), where ρi is the desired canonical correlation

for a given canonical mode and θi is the required rotation. vi was then rotated with

respect to ui: vi = vi+( 1
tan(θi)

×ui), thus forming a canonical mode (step 2 in Figure

6.6). To ensure that the rotation has been successful, the correlation between the

rotated vectors (vi and ui) was compared to the desired ρi. For these purposes,

the top canonical correlation ρ1 is user-defined and the canonical correlations for

the following k − 1 modes were calculated as ρn = ρn−1 − 0.05, n = 2, ..., k. This

produces a set of correlations which reduce across mode number in a manner not

too dissimilar to typical CCA results.

Next, the canonical weights WX and WY were generated (step 3 in Figure

6.6). This was achieved by first drawing k samples from a Gamma distribution.

This vector represents the column-wise standard deviation for a given canonical
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Figure 6.6: Schematic of the simulation framework used to generate input data X
and Y with known ground-truth CCA solutions.

weight matrix. These standard deviations were then used to construct columns of

the canonical weights using wXi = µi +
√
σi × δi, where µi represents the column

mean (µ = 0), σi is the standard deviation and δi is a “noise” parameter drawn from

a Gaussian distribution.

Finally, the canonical weights (WX and WY ) and canonical variates (U and V)

were used to calculate the data matrices X and Y as X = UW−1
X and Y = VW−1

Y

(step 4 in Figure 6.6).

Prior to analysis, in order to ensure that the selected ns is large enough and cap-

tures converged trends, the simulation framework was used to investigate canonical

correlation inflation for a single predefined correlation value and various magnitudes

of ns. The results from this investigation inform the selection of ns. Sanity checks

were also performed to ensure that canonical weight properties were as intended and

that canonical modes obey the CCA criteria (ρ1 ≥ ρ2 ≥ ... ≥ ρk, corr(u1,u2...k) = 0

and corr(v1,v2...k) = 0).

Following these sanity checks, the framework was used to generate sets of input

data Xns and Yns with varying ground-truth canonical correlations ρns . As in the

real-data example, CCA was performed on Xn and Yn with n < ns to estimate the
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subsampled canonical correlation ρn and canonical weights WXn and WY n which

were then compared to the ground-truth parameters (ρns , WXns , WY ns).

6.5.2 Results

CCA input matrices X and Y were generated with k = 100 features each and

ns = [1 × 103, 1 × 104, 1 × 105, 1 × 106, 1 × 107] and a ρ1 of 0.7. Figure 6.7a shows

cross-correlation matrices within and across the canonical variates U and V, i.e. the

column-wise correlation corresponding to the correlation between column pairs. The

diagonal of the cross correlation matrix in the left-hand plot (corr(U,V)) represents

the the canonical correlation values, starting at 0.7 and descending across the modes,

fulfilling the CCA criteria ρ1 ≥ ρ2 ≥ ... ≥ ρk. The middle and right-hand plots show

the correlation within the canonical variates (corr(U,U) and corr(V,V)) which

take the form a identity matrices. In accordance with the CCA criteria, the off-

diagonal entries for each of the three plots are zero, indicating that each variate

(e.g. v1) is orthogonal to all other variates except for the corresponding variate

from the second modality (e.g. u1), i.e. corr(vn,un) = ρn, corr(un,uj) = 0 and

corr(vn,vj) = 0 with n = 1...k, j 6= n.

Figure 6.7b depicts the column-wise mean and standard deviation of the canon-

ical weights WX and WY , showing that each distribution of mean values is centered

around zero and the standard deviation follows a positive Gamma-like distribution.

Figure 6.7c shows how the estimated canonical correlation changes with SFR for

each of the generated input datasets with a ground-truth of ρ1 = 0.7. It can be seen

that in each case of ns, the overall trend is consistent apart from when ns = 1×103.

In other words, 1,000 subjects is insufficient to represent the converged trend in

these simulations. With ns ≥ 1× 104, the trend is consistent. Based on these obser-

vations, a sample size ns of 1× 105 was selected, erring on the cautious side whilst

significantly reducing the computation expenditure associated with larger ns. With

k = p = q = 100, this gives a SFR of 500, orders of magnitude larger than any used

in the literature.

Input data Xns and Yns were then generated using first mode canonical corre-
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Figure 6.7: Results from the simulation framework sanity checks. a.) The corre-
lation matrices within and between the generated canonical variates (U and V). b.)
Histograms of the mean and standard deviation of the generated canonical weights
WX and WY . c.) Plots of the increasing ρ with SFR for varying samples sizes
ns with a ground-truth ρ = 0.7, demonstrating overall trend correspondence when
ns ≥ 1× 104.

lation values in the range of ρ1 = 0.1− 0.99 with ns = 1× 105 and k = p = q = 100.

CCA was performed using n ≤ ns. The difference between the estimated and

ground-truth canonical correlations (ρn − ρns) and the correlation between the

ground-truth and estimated weights (corr(Wns ,Wn)) are plotted for the top canon-

ical mode (Figure 6.8). Statistical significance is determined via permutation testing

(Np = 100, 000) with modes surviving significance testing (p ≤ 0.001) highlighted

in the grey region of Figure 6.8.

6.5.3 Summary

In each simulated case, canonical correlation inflation and weight instabilities were

observed whilst remaining statistically significant. For lower correlation values (<
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Figure 6.8: Plots of the difference between the estimated and ground-truth canonical
correlations (ρ, left) and the correlation between the ground-truth and estimated
canonical weights (W, right), i.e. stability, with SFR (top canonical mode only) for
various ground-truth ρ values.

0.2), these effects were more extreme, however, significance was lost more rapidly.

This occurs due to a lack of power. The sample size was not sufficient to detect true

underlying associations at the given data dimensionality, i.e. false negatives were

reported. For very high correlation values (> 0.8), there is little room for inflation

and the weights remain relatively stable until reaching low SFR, at which point

the correlation inflates and weight instability is observed. For mid-range correlation

values (0.3 − 0.6), which are likely to represent more likely scenarios in true data,

inflation is in the order of 0.2 and weight stability is within a range of 0.1− 0.3 for

SFR ≈ 4 (typical of the literature). Lower values of SFR become underpowered

and false negatives are reported. For canonical correlations of 0.3 and above, to

detect statistically significant correlations and keep the weight error to less than

10%, we need at least 50 subjects per feature, corresponding to a weight stability

greater than 0.82. This is a much larger SFR than that found in much of the

literature. These simulations demonstrate the dependencies between the observed

canonical correlation and the true underlying canonical correlation, the number of

samples/subjects, and the number of features.

We may conclude from this that the application of CCA may be more appro-
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priate to data with either low numbers of features or with large sample sizes. Given

that CCA seeks to find low dimensional representations of high dimensional data, it’s

usefulness and applicability would be reduced if the number of features is very low.

Therefore, applying CCA in large cohorts may be optimal. To this end, the following

section describes the application of CCA to one of the largest neuroimaging cohorts

available, the UK Biobank, with which we can actually achieve the SFRs suggested

above and confirm their validity by exploring stability. A similar exploration to that

presented in the current and previous sections is first presented, followed by a closer

inspection and interpretation of the consequences of the described instabilities.

6.6 CCA Applied to Large Samples

In order to assess these trends at the population-level, we used the largest neu-

roimaging dataset available to date, the UK Biobank. The UK Biobank contains a

wide range of subject measures (Sudlow et al., 2015) and multi-modality imaging

data, including fMRI data, allowing for similar brain-behaviour associations previ-

ously studied to be explored on a large scale (≈ 40k subjects). Due to computational

limitations, a subset of ns = 20, 000 subjects with complete data (i.e. with both

imaging and non-imaging data and ≥ 50% complete entries in the non-imaging data)

were randomly selected from the full cohort.

6.6.1 Feature Extraction: Imaging Features

The pre-processed resting-state fMRI data were utilised for these analyses (Miller

et al., 2016; Alfaro-Almagro et al., 2018). These data include partial correlation

parcellated connectomes with a dimensionality of 55×55, with nodes obtained from

ICA analysis. The connectomes were z-score transformed and the upper triangle

vectorised to give 1,485 functional connectivity features per subject, for each of the

20,000 subjects. Following this, the imaging features were preprocessed as in the

HCP analyses, including normalisation, de-confounding and dimensionality reduc-

tion via PCA to the top k = 100 components, giving the final imaging dataset Xns
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(p× k = 20, 000× 100).

6.6.2 Feature Extraction: Non-Imaging Features

The UK Biobank contains a wide range of subject measures (Sudlow et al., 2015),

including physical measures (e.g. weight, height), food and drink, cognitive pheno-

types, lifestyle, early life factors and sociodemographics. A subset of 389 cognitive,

lifestyle and physical measures, as well as early life factors were hand-selected whilst

considering data completeness (measures that had missing values in more than 50%

of subjects or measures that had identical values in at least 90% of subjects were not

selected). For categorical items, negative values were replaced with 0, as in Miller

et al. (2016). Such negative values encode mostly “Do not know”/“Prefer not to

answer”. Measures with multiple visits were then averaged across visits, reducing

the number of measures to 226. A redundancy check was then performed. Specifi-

cally, if the correlation between any two measures was > 0.98, one of the two items

was randomly chosen and dropped. This procedure removed 2 measures, resulting

in a final set of 224 behavioural measures. Finally, confound regression and dimen-

sionality reduction via PCA were performed giving the non-imaging dataset Yns

(p× k = 20, 000× 100).

Confounds

The following items were used as confounds: acquisition protocol phase (due to

slight changes in acquisition protocols over time), scaling of T1 image to MNI atlas,

brain volume normalized for head size (sum of GM and WM), fMRI head motion,

fMRI signal-to-noise ratio, age, sex. In addition, similar to Miller et al. (2016) we

used the squares of all non-categorical items (i.e. T1 to MNI scaling, brain volume,

fMRI head motion, fMRI signal-to-noise ratio and age), as well as age × sex and

age2× sex. Altogether, these were 14 confounds. Finally, we imputed 0 for missing

values (6% of entries) and z-scored all items.
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6.6.3 Analysis

The CCA subsampling scheme was applied as in the HCP analyses, including com-

parisons of the estimated canonical correlation, weight stability and 5-fold cross-

validation performance with the SFR.

Further analyses were then performed to assess the implications of the observed

instabilities during interpretation of the behaviour data. This was achieved by di-

rectly comparing the non-imaging loading vectors lY describing how each of the

non-imaging features (in their original feature space) contribute to the canonical

modes. CCA was performed using n = [20, 000, 5, 000, 1, 000] and the top 10 modes

were extracted. The loading vectors were obtained by correlating the weight vectors

(WY ) with the deconfounded original 224 non-imaging features, as is common prac-

tice in the literature. The subsequent loading vectors were correlated across sample

sizes, comparing each of the subsampled cases n = [5, 000, 1, 000] to the full-sample

case n = 20, 000. Finally, the loading vectors were summarised using the top con-

tributors in a positive-negative distribution and the correspondence of behavioural

feature importance was assessed.

6.6.4 Results: Overall Stability

Both the imaging and non-imaging datasets were reduced to the top k = 100 prin-

cipal components, explaining 63.3% and 96.5% of the original variance respectively.

With k = p = q = 100, the maximum SFR in these analyses is 20,000
100+100

= 100,

surpassing the previously recommended SFR of 50.

Figure 6.9 shows the effect of SFR on the canonical correlation, out-of-sample

performance and weight stability for the UK Biobank. As expected from the HCP

and simulation results, the correlation increases (by as much as 31.6%) and the

weight stability decreases (to as low as 0.31) with decreasing SFR, reinforcing the

conclusion that CCA becomes unstable in the case of even large-sized cohorts. We

find that when approaching the full UK Biobank cohort, there is near identical

correspondence between weight vectors (weight similarity ≈ 1). In addition, the



Chapter 6. CCA Applied to Large Samples 177

Figure 6.9: The canonical correlation and weight stability plotted against the num-
ber of subjects (i.e. SFR). Left: the relationship between the canonical correlation
and SFR. The orange line shows the increasing correlation with decreasing SFR
with the light-orange line showing the null-distributions. The red line indicates
cross-validation performance with SFR. Right: the relationship between weight sta-
bility and SFR. The yellow line shows the pairwise cossine similarity between the
full-sample ns = 20, 000 weight vectors and the subsampled weight vectors.

correlation curve flattens, indicating that there is little/no inflation at larger sample

sizes, and the cross-validation performance and correlation curves converge, suggest-

ing that the in-sample and out-of-sample canonical modes are robust, i.e. there is

no overfitting.

6.6.5 Results: Correspondence Between Modes

Figure 6.10 shows the observed canonical correlations for the full sample and each of

the subsampled analyses for the top 10 canonical modes. In the n = 20, 000 subject

analysis, all ten modes are statistically significant, as assessed via permutation test-

ing with Np = 10, 000. This reduces to 7 and 2 significant modes for the n = 5, 000

and n = 1, 000 analyses respectively.

Mode correspondence was assessed by correlating each of the n = 20, 000 load-

ing vector sets with each of the loading vector sets from n = [20, 000, 5, 000, 1, 000],

building a correlation matrix, shown in Figure 6.11. In cases where the sign of

the mode has been arbitrarily flipped in the CCA solution (with respect to the

n = 20, 000 case), the loading vector was multiplied by −1. In the within n = 20, 000

comparison (left correlation matrix, Figure 6.11), a diagonal is observed with low-
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Figure 6.10: The observed canonical correlations for each of the top 10 canonical
modes across sample sizes. Statistical significance is indicated by * and the grey
violin plots depict the null-distributions built via permutation testing with 10,000
permutations.

level correlation values (r ≤ 0.3) in the off-diagonal, as would be expected.

When comparing the n = 20, 000 and n = 5, 000 loading vectors (middle corre-

lation matrix, Figure 6.11), a general diagonal trend is observed, indicating overall

correspondence between equivalent modes. However, the overall correlation (i.e.

correspondence) decreases across the modes and, in some cases, modes appear to be

mixed or swapped. For example, modes 3 and 4 from n = 20, 000 correlate similarly

to modes 3 and 4 from n = 5, 000, suggesting that these modes are mixed in the

n = 5, 000 case. The first two modes are strongly correlated across sample sizes

(r1 = 0.94, r2 = 0.84).

Figure 6.11: Correlation matrices showing the correspondence between canonical
modes derived from the n = 20, 000 case and each subsampled analysis. Loading
vectors from the n = 20, 000 (y − axis) are correlated with each loading vector from
the n = 20, 000 (left), n = 5, 000 (middle) and n = 1, 000 (right), shown on the
x− axes.
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When comparing the n = 20, 000 and n = 1, 000 loading vectors (right correla-

tion matrix, Figure 6.11), the diagonal is much less prominent. The correspondence

between the first modes is weak with a correlation of r = 0.44 and there is apparent

mixing with the second mode. The second mode from the n = 1, 000 case is weakly

correlated (r = 0.16) to the second mode from n = 20, 000. Beyond this, a very

weak diagonal may be observed, however, the n = 1, 000 modes are non-significant

(p > 0.1).

To assess how these instabilities effect interpretation, the loading vectors for

the behaviour data are visualised. The top 15 positive2 (blue) and negative (red)

contributors for each of the ten canonical modes from the n = 20, 000 analysis are

presented in Appendix 6.9.4. Interpretation of these robust modes is challenging

(see Section 6.7 “Data encoding”) although we may draw some conclusions with

caution. The first mode seems to capture associations of socioeconomic status and

overall mental health, including measures of depression, social relationships and in-

telligence. The second mode describes associations primarily of mental and physical

health, including measures of exercise, sleep quality and stress. Mode three also de-

scribes associations of mental health specific to happiness, regular exercise and social

relationship quality. The fourth mode describes associations between mental and

physical health, including body mass index (BMI), smoking history and measures

of poor mental health.

For comparing across sample sizes, a minimum of the top 15 positive and 15

negative contributors were considered, matching the lower loading value threshold

across subsampled analyses for a given mode (Figure 6.12). As before, the sign of

the modes is matched across analyses to allow for comparison. The top contributors

from the subsampled cases were then compared to the n = 20, 000 case with cor-

respondence (green-highlighting) and anti-correspondence (red-highlighting) high-

lighted, i.e. in the case where loading vectors match perfectly across sample sizes,

each feature would be highlighted in green.

2Here, the terms “positive” and “negative” simply refer to the sign of the loading for the given
feature. This does not imply positive or negative aspects of behaviour.
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(a) Top contributors for the first canonical mode. In the n = 20, 000 case, the mode describes the
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(b) Top contributors for the second canonical mode. In the n = 20, 000 case, the mode describes
the relationship between measures of mental health and socioeconomic status.
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(c) Top contributors for the third canonical mode. In the n = 20, 000 case, the mode primarily
describes the relationship between measures of mental health and socioeconomic status.

Figure 6.12: The top non-imaging contributors for each subsampled analysis for
the top three canonical modes. A minimum of the top 15 positive and negative con-
tributors are shown in each case, matching the lower positive and negative threshold
values across subsampled analyses for a given mode. The n = [5, 000, 1, 000] anal-
yses are compared to the n = 20, 000 case. Green highlighting indicates that the
contributor appears in the n = 20, 000 case, i.e. contributor correspondence. Red
highlighting indicates that the contributor appears on with a flipped sign, i.e. anti-
correspondence.
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For the first mode (Figure 6.12a), strong correspondence is observed between

the n = 5, 000 and n = 20, 000 cases, as suggested by Figure 6.11. This reduces

when comparing the n = 1, 000 and n = 20, 000 cases: many of the top positive

contributors are present however the negative contributors are no longer consid-

ered as “top contributors”, due to instabilities in the CCA weights. The issue of

reduced overall correspondence and anti-correspondence becomes more apparent in

the second and third modes (Figure 6.12b-c). In the n = 1, 000 case, the sign of

a non-imaging measures have been flipped, for example the “Sleepiness/insomnia”,

“Some to take to the doctor...” and the “Recent worrying too much...” measures in

the second mode. This demonstrates that, even when statistically significant, the

stability of such visualisations may lead to conclusions that do not represent true

underlying relationships.

6.6.6 Summary

As in the previous explorations with the diffusion and functional MRI connectivity

features from the HCP cohort and through the simulation framework, the limita-

tions of CCA have been demonstrated. The canonical correlations and canonical

weights are strongly dependent on the ratio between the number of subjects and

the number of features. Further, investigations into how these instabilities effect the

interpretation of the CCA results have been presented, highlighting how erroneous

conclusions may be reached. The results suggest that in order to achieve robust so-

lutions, high SFR values are required, orders of magnitude higher than what used

before.
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6.7 Discussion

This chapter presents investigations into the stability of the multivariate statistical

technique canonical correlation analysis (CCA), a popular method used to reveal

latent associations in brain-behaviour datasets (Smith et al., 2015; Drysdale et al.,

2017; Marquand et al., 2017; Bijsterbosch et al., 2018; Wang et al., 2018a; Dinga

et al., 2019; Li et al., 2019; Becker and Hervais-Adelman, 2019; Han et al., 2020;

Wang et al., 2020b; Lv et al., 2020). The focus of these studies is to interpret

the canonical weights in a biologically meaningful way by first extracting the low

dimensional canonical modes, typically from dimensionality reduced input data,

and then relating those modes back to the original data-space to obtain a set of

loading vectors. However, we have shown that the stability of CCA, and therefore

the loading vectors and their interpretation, is directly linked to the subject-feature

ratio and the true canonical correlation.

We have shown that these concerns generalise across modalities, using connec-

tivity features extracted from diffusion MRI and functional MRI; across data-quality

and cohorts, using data from the HCP and UK Biobank cohorts; and in simulated

data with known ground-truths. We have applied CCA to one of the largest neu-

roimaging cohorts available, the UK Biobank, and show that very-large cohorts are

required in order to avoid overfitting when using feature dimensionalities typical of

the literature. The observed correlation inflation is much higher in our UK Biobank

analysis compared to the HCP cohort analyses. This is likely to reflect the already

inflated estimated correlations when using the full HCP cohort.

Instabilities in the loading vectors relating to the subject-feature ratio have

been demonstrated. Using the UK Biobank cohort, loading vectors were extracted

and compared for a range of sample sizes. The subsampled cases provide sample

sizes in the more typical range of 1,000 subjects used in previous studies. More

importantly, the subject-feature ratio in these cases is larger than, or typical of, the

literature (see Table 6.1). The full sample case, with 20,000 subjects (SFR = 100),

is, as far as we are aware, the largest study of its kind and is demonstrably robust -

the observed canonical correlation converges with the cross-validation performance
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in Figure 6.9.

These findings indicate that sample sizes much larger than those typically used

in the literature are required in order to avoid overfitting and the associated instabil-

ities. For true canonical correlations in the order of 0.3 (believed to be typical of the

true underlying canonical correlation in the literature - see Figure 6.13 and Helmer

et al. (2020)), we suggest a subject-feature ratio of 50. This agrees with previous

literature (not specific to neuroimaging) where it is argued that at least 10-70 sam-

ples should be used per feature to ensure that the solutions are robust (Barcikowski

and Stevens, 1975; Thompson, 1990; Leach and Henson, 2014). The reviewed CCA

literature, although not an exhaustive review, falls short of this. Interestingly, the

effect of the subject-feature ratio is strong enough that canonical correlations re-

ported in the literature may be estimated based on the subject-feature ratio alone

(Figure 6.13 and Helmer et al. (2020)).

Figure 6.13: Canonical correlations and the number of samples per features are
extracted from the literature (each dot is a canonical correlation reported in the liter-
ature) and overlaid on predictions from a generative model. Many studies employed
a small number of samples per feature and reported a large canonical correlation.
These studies fall in the top-left corner of the plot. The reported canonical cor-
relation can be predicted from the used number of samples per feature alone using
linear regression (R2 = 0.83). We also estimated the weight error (encoded in the
colourbar) for each reported CCA. The farther away a CCA lies from the predictions
for permuted data the lower the mean-estimated weight error. As can be seen, the
majority of studies fall between 0.1 < rtrue < 0.5, suggesting that the true underlying
canonical correlation is likely in this range. (reproduced from Helmer et al. (2020))
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6.7.1 Recommendations

CCA and other multivariate association techniques are powerful and potentially

useful tools. However, we have demonstrated limitations associated with the subject-

feature ratio. Various steps may be taken to reduce the risk of overfitting, focusing

on the subject-feature ratio or on the applied technique. As mentioned, we suggest

a subject-feature ratio of at least 50. There are two approaches to achieving this:

increasing the number of subjects or decreasing the number of features.

Data Dimensionality

Substantially increasing the number of subjects is not easily achieved in the ma-

jority of neuroimaging studies. Large cohort, multimodal datasets may be used to

maximise the number of subjects, for example the HCP (Van Essen et al., 2013),

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008), the UK

Biobank (Miller et al., 2016; Alfaro-Almagro et al., 2018), the Adolescent Brain Cog-

nitive Development (ABCD) (Casey et al., 2018), and the Enhancing NeuroImaging

Genetics through Meta-Analysis (ENIGMA) Consortium (Thompson et al., 2014).

Recent advancements in the harmonisation of data across studies (Yamashita et al.,

2019; Pinto et al., 2020; Pomponio et al., 2020; Garcia-Dias et al., 2020) supports

the move towards large-scale data sharing and merging (Poline et al., 2012; Eickhoff

et al., 2016; Nichols et al., 2017).

The number of features used may be reduced to circumvent the risk of over-

fitting. In its most simple form, this would include being highly-selective in the

features of interest, however, typical multivariate neuroimaging studies are seeking

associations between a broad array of features. When considering the imaging fea-

tures, dimensionality is typically very large: brain connectivity is often calculated

at the global level. Even with parcellation, i.e. considering the connectivity between

brain regions rather than voxels/vertices, brain connectivity is typically represented

by hundreds to thousands of features. In some cases, brain connectivity features may

be sub-selected, for example in cases where the connectivity between given brain re-

gions is of interest, but this is only suitable in studies with such specific questions.
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The non-imaging features, e.g. behavioural traits, may also be sub-selected but is

again limited to the question at hand.

An alternative to sub-selecting features is to remove redundancies in the data

through data dimensionality reduction techniques, such as principle component anal-

ysis (PCA). This is a commonly used approach in CCA studies. The application of

PCA should be carefully considered however, as the between-set correlations may

be affected if the features driving the associations are not preserved. An approach

which combines PCA and CCA has been developed (Song et al., 2016). Here, PCA

is performed as a pre-processing step to CCA whilst considering the between-set

correlation in order to optimise the number of components extracted from the PCA

step.

Significance Testing in CCA

The statistical significance of CCA results is typically assessed by comparison to a

null-distribution built through permutation testing. However, we have demonstrated

here that, even in cases where statistical significance is achieved, the stability of CCA

is limited. Therefore, we recommend that statistical significance should not be used

to indicate that results are robust. It should be noted that in these works we use a

simple permutation testing scheme typical of the literature, however, a recent study

suggests that such testing is inadequate (Winkler et al., 2020).

Clarity in Reporting

Section 6.3 reviews the literature using CCA to explore brain-behaviour associations.

It is often difficult to understand exactly how analysis was performed and how many

subjects and features were used. In some cases, the canonical correlations are not

reported. We recommend to always explicitly state the used sample size, number of

features in both datasets, and observed canonical correlations.
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Data Encoding

An issue observed in the application of CCA to the datasets used in this thesis lies

in the nature of the non-imaging data. These consist of behavioural traits from

a broad array of behavioural and cognitive tests, lifestyle questionnaires, medical

history and more. They are a mix of variable types, including categorical, continuous

and discrete variables, and use complex coding schemes. For example, in the UK

Biobank data, the coding used in the “Able to pay rent/mortgage as an adult”

measure follows a 0-4 scale with 0 being “Never true” and 4 being “Very often true”.

Here, higher values would be interpreted more favourably. However, the same coding

scale is used for questions such as “Physically abused by family as a child” where,

of course, higher values may indicate serious childhood problems.

Further, again in the UK Biobank, negative values in categorical variables typ-

ically indicate a lack of data or a no response preference. In one study (Miller et al.,

2016), and as used here, negative categorical variables are set to zero. However, in

some scales, a negative value indicates the extreme of the scale. For example, for

the question “At what age did you complete your continuous full time education?”,

a response of “Never went to school” is coded as -2 and no response/do not know

also as negative values. The use of complex behavioural trait data without careful

consideration of the coding of said data and their variable type may lead to difficul-

ties in interpretation and conclusions prone to error. Beaton et al. (2019) introduces

partial least squares-correspondence analysis-regression (PLS-CA-R) which seeks to

overcome the issues associated with the mixing of variable types by re-coding and

transforming data. Similar methods could be adapted to CCA.

Alternatives to CCA

Alternatives to CCA, both univariate and multivariate, should also be considered.

These include the standard variants of CCA such as sparse, constrained and kernel

CCA (Zhuang et al., 2020). In some cases, these variants may reduce the subject-

feature ratio requirement, however Helmer et al. (2020) suggests that the benefits of

sparse CCA are limited. In a similar exploration to those presented in this thesis,
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Helmer et al. (2020) explores (albeit in a limited capacity) how sparsity may reduce

overfitting. They used 5-fold cross-validation to find optimal sparsity parameters

and determine required sample sizes to avoid overfitting. By comparison to classical

CCA, it is possible to determine when sparse CCA may be beneficial (Figure 6.14).

Helmer et al. (2020) report that sparse CCA is favoured, i.e. improves solution

stability, in cases of many features and low true underlying between-set correlations.

Figure 6.14: The relative difference between the required sample size for classical
and sparse CCA for a range of between-set correlation values in simulated data. The
required sample size is defined such that a set of solution validity criterion must
be met. Criterion include 90% statistical power (i.e. ability to identify an exist-
ing between-set association) and at most 10% error for the between-set association
strength, weight, score and loading error. Blue colours indicate sparse CCA performs
better compared to classical CCA. (reproduced from Helmer et al. (2020))

Further to these findings, and in the context of the overfitting reported in this

thesis, it is often the case that sparse CCA, and similar variants, are used to overcome

the issue of rank deficiency in the classical CCA solution where there must be more

subjects than combined features. This allows for the application of multivariate

approaches in cases where the number of subjects is much less than the number of

features, i.e. the SFR is much less than one, as is indicated by the literature (Table

6.1). This is likely to lead to overfitting in the solution and opens the door to the

widespread application of multivariate techniques in very small cohorts.
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Alternatively, univariate approaches may be used, however, they are subject to

similar issues with regard to the number of samples (Button et al., 2013; Schönbrodt

and Perugini, 2013; Marek et al., 2020) and, as such, should be applied with a

similarly cautious approach. The combination of carefully applied dimensionality

reduction, univariate association techniques, cross-validation and external validation

may be a particularly useful approach (Ji et al., 2020).

6.8 Concluding Remarks

Investigations into the stability of CCA results as applied to reveal brain-behaviour

associations, have been presented. We have demonstrated that stability is strongly

dependent on the number of subjects, the number of features and the underlying

between-set correlation. Real-data examples from the HCP cohort demonstrate that

even cohorts considered large (≈ 1, 000 subjects) are insufficient when considering

the number of features typically used in the literature. The development and ap-

plication of a simulation framework revealed, in a robust manner, the dependencies

between the observed canonical correlation and the subject-feature ratio and un-

derlying between-set correlation. Further investigations utilising the UK Biobank

cohort have demonstrated the scale required to achieve stable results in the case of

real-data. These analyses inform the recommendations on how CCA should be used

in practice.
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Contributions

The works presented in this chapter were a collaborative effort that I co-led with

the Murray and Anticevic Labs at Yale University. As such, I would like to extend

my gratitude to both the Murray and Anticevic Labs. The sub-sampling analy-

sis framework was conceptualised and designed by me, Markus Helmer, Stamatios

Sotiropoulos, John Murray and Alan Anticevic. I developed, and performed anal-

ysis using, the simulation framework presented in this thesis, which is independent

from the framework presented in the associated manuscript (Helmer et al., 2020)

(although both follow similar ideas and draw similar conclusions). I performed

all real-data analyses presented (using the gemmr toolbox developed by Markus

Helmer). I developed scripts (i.e. external to the gemmr toolbox) and performed

analysis for the results presented in Section 6.10.

Software

Real-data analyses (Sections 6.4 and 6.6) were performed in Python (version 3.7.2)

(Python Software Foundation, https://www.python.org) using the gemmr toolbox

(https://github.com/murraylab/gemmr). The simulation framework presented in

Section 6.6 was developed, and analysis was performed, using MATLAB 2018a.
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6.9 Appendix

6.9.1 Double-dipping and CCA

As briefly discussed in Section 6.3, in some cases, a feature pre-selection step prior

to CCA is performed, and this can be circular if not performed with caution. An

example of this is in Drysdale et al. (2017), where mass univariate association

(MUA) was used to sub-select imaging features prior to feeding them to CCA.

MUA was performed between the 33,154 imaging features and 17 behaviour fea-

tures. Imaging features which had a statistically significant correlation (p < 0.005)

with any behaviour feature were then kept for CCA between this imaging feature

subset and the set of all 17 behavioural features.

To explore the consequence of this pre-selection approach, we applied MUA as

a feature selection technique prior to CCA. Two analyses were performed: 1) CCA

between functional connectivity features and behaviour data, and 2) CCA between

data drawn randomly from a Normal distribution and behaviour data. The general

processing principles remain as throughout the work presented in this thesis, with

the extra MUA step added in both cases. Both analyses utilise the HCP cohort

and use a subset of behavioural traits (q = 39) more closely matched to the fea-

tures used in Drysdale et al. (2017), including summary alcohol and substance use

(SSAGA), summary psychiatric health measures (DSM-V), psychological health

measures (NIH negative affect survey) and family history.

The first analysis, with functional connectivity features, uses the 200-dimensionality

connectomes as described in Section 6.4.1, giving 19,900 imaging features (Xfunc:

n = 772, 19,900 features). In the second analysis, the “imaging” dataset consists of

an array of entries drawn from a Normal distribution with the same dimensions as

in the first analysis (Xnoise: n = 772, 19,900 features). The datasets are demeaned

and normalised as before. Confound regression is not applied to imaging data, as

to avoid any potential introduction of between-set associations.

MUA between these imaging features and the behaviour data was used to

sub-select imaging features. Drysdale et al. (2017) uses a p-value threshold of <

0.005. In the current case, this threshold results in so many functional connectivity
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features (3,579 from Xfunc) that the CCA solution would be rank deficient (i.e.

more features than samples) - this may be due to the fact that we use more

behavioural trait features here compared to Drysdale et al. (2017). Therefore, a

lower p-value threshold is chosen (< 0.0001), giving p = 121 functional connectivity

features. In the noise-data case, this same approach extracts p = 81 features.

The final input matrices are therefore Xfunc with n = 772 and p = 121, Xnoise

with n = 772 and p = 81, and Y with n = 772 and q = 39. Permutation testing is

used to assess statistical significance with 10,000 iterations and whilst considering

the family structure inherent in the HCP cohort (Winkler et al., 2015). We report

results for the top mode only.

CCA revealed that the top canonical mode had a correlation of ρ = 0.697 (p-

value = 0.0001) for the Xfunc data and ρ = 0.605 (p-value = 0.0001) for the Xnoise

data. These are plotted with reference to the respective null-distributions (built

through the permutation scheme) in Figure 6.15. This highlights the consequence

of using MUA to reduce data dimensionality as a preprocessing step in CCA. The

proposed permutation scheme in Dinga et al. (2019) helps alleviate these issues by

incorporating the feature sub-selection into the permutation scheme.

Figure 6.15: The canonical correlations, and null-distributions, obtained through
CCA with functional connectivity features and “noise” data reduced via mass uni-
variate association with behavioural trait measures as a preprocessing in CCA.
a.) The functional connectivity Xfunc case, b.) the noise data Xnoise case. The
histogram represents the null-distribution built through permutation testing. The
green line shows the canonical correlation for the top mode with its value and
significance annotated.
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6.9.2 Behavioural Measures used in CCA - HCP Analyses

Note: In many cases, raw and age and sex-adjusted scores are provided. Both are used in

the analyses presented, but, for brevity, they are not listed here.

Physical

Dexterity, Regional Taste Intensity, Electronic Visual Acuity, Mars Final Contrast Sensi-

tivity Score, Mars Contrast Sensitivity Score, Eyeglass correction, Odor Identification

Family History

Family history of drugs and alcohol, No Father family history of drugs and alcohol, No

Mother family history of drugs and alcohol, Mother history of depression, Father history

of depression

Cognitive

Picture Vocabulary, Mini Mental State Examination (MMSE), Fluid intelligence cor-

rect responses (Penn progressive matrices), Delay Discounting $200, Delay Discounting

$40,000, Flanker Inhibitory Control and Attention Test, Working memory (list sorting),

Dimensional Change Card Sort Test, Oral Reading Recognition Test, Short Penn Con-

tinuous Performance Test: Specificity and Sensitivity, Episodic memory (picture sequence

memory), Pattern Comparison Processing Speed Test, Penn Word Memory Test: Total

Number of Correct Responses, Variable Short Penn Line Orientation: Total Number Cor-

rect, Total Positions Off for All Trials and Median Reaction Time Divided by Expected

Number of Clicks for Correct

Psychological Well-Being, Health and Scores

General life satisfaction, Pittsburgh Sleep Quality Index (overall score), Pain Interference

Survey, Negative Affect: Anger Aggression, Anger Hostility, Fear and Anger, Friend-

ship Survey, Sadness Survey, Instrumental Support Survey, Fear-Somatic Arousal Survey,
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Self-Efficacy Survey, Loneliness Survey, Meaning and Purpose Survey, Perceived Stress

Survey, Emotional Support Survey, Perceived Rejection, Positive Affect Survey, Perceived

Hostility, ER Test: Number of Correct Anger Identifications, Number of Correct Sad

Identifications, Number of Correct Neutral Identifications, Number of Correct Fearful

Identifications and Number of Correct Responses

Tobacco, Alcohol and Substance Use

Tested positive for Tetrahydrocannabinol (THC), Average weekday any tobacco over past

7 days, Number days used any tobacco over past 7 days, Total any tobacco over past 7

days, Average weekday cigarettes over past 7 days, Average weekend any tobacco over

past 7 days, Total cigarettes over past 7 days, Average weekend cigarettes over past 7

days, Times used any tobacco today, Number days drank over past 7 days, Total beer

wine/cooler over past 7 days, Average weekday wine over past 7 days, Average weekend

beer/wine/cooler over past 7 days, Total drinks over past 7 days, Total wine over past 7

days, Average weekday drinks over past 7 days, Average weekday beer/wine/cooler over

past 7 days, Average weekend drinks over past 7 days, Total hard liquor over past 7 days,

Average weekend wine over past 7 days, Average weekend hard liquor over past 7 days

Personality Five Factor Model (NEO-FFI)

Neuroticism, Agreeableness, Openness to Experience, Extraversion, Conscientiousness

Achenbach Adult Self-Report (ASR) and Diagnostic and Statistical Man-

ual of Mental Disorders (DSM)

Rule Breaking Behaviour, Thought Problems, Critical Items, Externalising Problems,

Other Problems, Total Problems, Sum of Thought, Attention, and Other Problems,

Somatic Complaints, Withdrawn, Aggressive Behaviour, Internalising Problems, Anx-

ious/Depressed, Attention Problems, Intrusive Thoughts, Antisocial Personality Prob-

lems, Anxiety Problems, Depressive Problems, Somatic Problems, Avoidant Personality

Problems, Hyperactivity Problems, AD/H Problems, Inattention Problems
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Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA)

Times used stimulants, Times used illicit substances, Times used illicit opiates, Times

used illicit sedatives, Times used illicit hallucinogens, Times used marijuana, Ever used

marijuana?, Marijuana Dependence, Times used cocaine, Whether age last smoked is

current age, Whether age last smoked is current age, Smoking history, Childhood conduct

problems, Suffered from possible agoraphobia, Panic Disorder, Major Depressive Episode,

Number Depressive Symptoms, Max drinks in a single day in past 12 months, Age at

first alcohol use, Frequency drunk in past 12 months, Drinks per drinking day in past

12 months, Frequency drunk in heaviest 12-month period, Drinks per day in heaviest 12-

month period, Lifetime max drinks in single day, Alcohol Abuse number of symptoms,

Alcohol Abuse Criteria Met, Number of DSM4 Alcohol Dependence Criteria Endorsed,

Frequency of drinking 5+ drinks, heaviest 12-month period, Frequency of any alcohol use,

heaviest 12-month period, Frequency of drinking 5+ drinks in past 12 months, Frequency

of any alcohol use in past 12 months

6.9.3 Behavioural Measures used in CCA - UK Biobank

Analyses

Physical

Frequency of walking for pleasure in last 4 weeks, Frequency of other exercises in last 4

weeks, Duration walking for pleasure, Forced expiratory volume in 1-second: Best measure,

Body mass index (BMI), Comparative height size at age 10, Comparative body size at

age 10, Impedance of whole body, Handedness (chirality/laterality), Duration of walks,

Number of days/week of vigorous physical activity 10+ minutes, Pulse rate, Usual walking

pace, Hand grip strength (right), Hand grip strength (left), Ankle spacing width (left),

Snoring, Number of days/week of moderate physical activity 10+ minutes, Duration of

moderate activity, Number of days/week walked 10+ minutes, Duration of other exercises,

Duration of vigorous activity, Frequency of stair climbing in last 4 weeks, Diastolic blood

pressure, Systolic blood pressure, Heel bone mineral density, Forced vital capacity
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Family History

Father’s age at death, Maternal smoking around birth, Illnesses of mother, Father still

alive, Mother still alive, Mother’s age at death

Cognitive

Mean time to correctly identify matches, Duration screen displayed, Time first key touched,

Time last key touched, Time elapsed, Maximum digits remembered correctly, Digits en-

tered correctly, Total errors traversing numeric path (trail #1), Number of incorrect

matches in round, Number of rounds of numeric memory test performed, Duration to en-

tering value, Total errors traversing alphanumeric path (trail #2), Duration to complete

alphanumeric path (trail #2), FI8: chained arithmetic, FI7: synonym, FI6: conditional

arithmetic, FI5: family relationship calculation, FI4: positional arithmetic, FI3: word

interpolation, Prospective memory result, Number of puzzles correctly solved, Number

of puzzles correct, PM: initial answer, Number of fluid intelligence questions attempted

within time limit Duration to complete numeric path (trail #1), Interval between previous

point and current one in numeric path (trail #1), Fluid intelligence score, Duration spent

answering each puzzle, Time to complete test (for each cognitive test included), Number of

symbol digit matches attempted, Number of correct matches in round, Number of symbol

digit matches made correctly

Psychological Well-Being, Health and Scores

Repeated disturbing thoughts of stressful experience in past month, General happiness

with own health, Recent restlessness, Sleeplessness/insomnia, Fed-up feelings, Ever seen

an un-real vision, Ever thought that life not worth living, Been in a confiding relation-

ship as an adult, Frequency of tiredness / lethargy in last 2 weeks, Been involved in

combat or exposed to war-zone, Miserableness, Ever sought or received professional help

for mental distress, Sexual interference by partner or ex-partner without consent as an

adult, Tense/‘highly strung’, Ever had prolonged loss of interest in normal activities, Ever

had period of mania/excitability, Work/job satisfaction, Neuroticism score, Recent feel-
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ings of inadequacy, Recent changes in speed/amount of moving or speaking, Ever believed

in un-real communications or signs, Frequency of depressed mood in last 2 weeks, Felt

loved as a child, Ever unenthusiastic/disinterested for a whole week, Suffer from ‘nerves’,

Ever had prolonged feelings of sadness or depression, Recent worrying too much about

different things, Frequency of tenseness / restlessness in last 2 weeks, Avoided activities or

situations because of previous stressful experience in past month, Ever highly irritable/ar-

gumentative for 2 days, Sensitivity / hurt feelings, Health satisfaction, Recent trouble

concentrating on things, Physical violence by partner or ex-partner as an adult, Mood

swings, Family relationship satisfaction, Ever addicted to any substance or behaviour,

Trouble falling or staying asleep, or sleeping too much, Ever heard an un-real voice, Re-

cent feelings of depression, Felt hated by family member as a child, Ever contemplated

self-harm, Recent easy annoyance or irritability, Recent thoughts of suicide or self-harm,

Risk taking, Ever believed in an un-real conspiracy against self, Irritability, Frequency of

friend/family visits, Worry too long after embarrassment, Physically abused by family as

a child, Ever suffered mental distress preventing usual activities, Ever worried more than

most people would in similar situation, Recent feelings or nervousness or anxiety, Felt very

upset when reminded of stressful experience in past month, Guilty feelings, Friendships

satisfaction, Recent trouble relaxing, Ever self-harmed, Loneliness, isolation, Belittlement

by partner or ex-partner as an adult, Ever felt worried, tense, or anxious for most of a

month or longer, Victim of sexual assault, Recent poor appetite or overeating, General

happiness, Ever had period extreme irritability, Recent feelings of foreboding, Recent feel-

ings of tiredness or low energy, Worrier / anxious feelings, Happiness, Ever depressed for

a whole week, Frequency of unenthusiasm / disinterest in last 2 weeks, Sexually molested

as a child, Recent inability to stop or control worrying, Victim of physically violent crime,

Someone to take to doctor when needed as a child, Financial situation satisfaction, Recent

lack of interest or pleasure in doing things, Able to confide, Diagnosed with life-threatening

illness, Been in serious accident believed to be life-threatening, Witnessed sudden violent

death, Seen doctor (GP) for nerves, anxiety, tension or depression
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Tobacco, Alcohol and Substance Use

Smoked cigarette or pipe within last hour, Alcohol usually taken with meals, Average

weekly beer plus cider intake, Average weekly champagne plus white wine intake, Tobacco

smoking, Smoking status, Alcohol intake versus 10 years previously, Average weekly intake

of other alcoholic drinks, Past tobacco smoking, Ever smoked, Exposure to tobacco smoke

outside home, Amount of alcohol drunk on a typical drinking day, Average weekly fortified

wine intake, Average weekly red wine intake, Frequency of consuming six or more units of

alcohol, Smoking/smokers in household, Frequency of drinking alcohol, Ever had known

person concerned about, or recommend reduction of, alcohol consumption, Ever taken

cannabis, Ever been injured or injured someone else through drinking alcohol, Average

weekly spirits intake, Alcohol intake frequency

Qualifications, Income and Employment

Qualifications, Age completed full time education, Year ended full time education, Own or

rent accommodation lived in, Number of vehicles in household, Able to pay rent/mortgage

as an adult, Average total household income before tax, Length of working week for main

job, Current employment status, Distance between home and job workplace, Job involves

heavy manual or physical work, Noisy workplace, Job involves shift work, Frequency of

travelling from home to job workplace, Job involves mainly walking or standing

Other Lifestyle

Difference in mobile phone use compared to two years previously, Ever had same-sex

intercourse, Weekly usage of mobile phone in last 3 months, Lifetime number of sexual

partners, Time spent outdoors in winter, Frequency of light DIY in last 4 weeks, Duration

of light DIY, Length of time at current address, Childhood sunburn occasions, Time

spent using computer, Time spent watching television (TV), Nap during day, Hands-free

device/speakerphone use with mobile phone in last 3 month, Drive faster than motorway

speed limit, Usual side of head for mobile phone use, Age first had sexual intercourse,

Morning/evening person (chronotype), Number of older siblings, Getting up in morning,
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Private healthcare, Place of birth in UK - east co-ordinate, Place of birth in UK - north co-

ordinate, Number in household, Number of full brothers, Number of full sisters, Breastfed

as a baby, Sleep duration, Length of mobile phone use, Time spend outdoors in summer,

Daytime dozing / sleeping (narcolepsy), Loud music exposure frequency

6.9.4 UK Biobank CCA top Non-imaging Loadings

The top 15 positive and negative non-imaging loading variables for the ten canonical

modes extracted from the UK Biobank CCA analysis with 20,000 subjects. Each

mode is statistically significant (at p = 0.0001), as assessed through permutation

testing.
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Figure 6.16: The top non-imaging contributors for each subsampled analysis for
the top ten canonical modes.



Chapter 7

Conclusions and Future Directions

This thesis has been an exciting journey and offers new methodology for mapping

structural connectivity of the brain, across individuals and primate species, and ex-

ploring its associations with functional features, and ultimately human behaviour.

Diffusion tractography is a unique tool used to estimate the structural architecture

of the brain by probing the diffusion of water molecules. One of the primary goals

of diffusion tractography is to extract the major white matter (WM) fibre bundles,

which connect functionally specialised brain regions. To achieve this in a robust

and generalisable manner, it is vital that tractography be standardised. Further, to

understand the associations between brain connectivity and behaviour, the statis-

tical techniques we apply to probe said associations must be robust. To this end,

this thesis presents frameworks for the extraction of homologous WM fibre bun-

dles across species, explores ways for using structural connectivity patterns to probe

functional similarities of diverse brains and performs investigations into the stability

of a commonly used brain-behaviour association technique.

Chapter 4 presents a new tool for the automated and standardised estimation of

a set of 42 major WM fibre bundles, equivalent in the human and non-human primate

(macaque) brain. The tool (XTRACT) is shown to be robust and generalisable

across species and data-quality. We demonstrated this by applying XTRACT to

very-high-quality data from the HCP and closer to typical quality data, using the

UK Biobank datasets. We built high-quality atlases of the WM fibre bundles for

the human brain, using an order of magnitude more data than previous efforts, and

a corresponding atlas for the macaque brain, using a small although high-quality

ex vivo dataset. Tractography protocols were indirectly validated in a number of

ways: a) by comparing measures of tract lateralisation to the literature, b) by

demonstrating that, although the tractography is generalisable and automated, the
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resultant tracts reflect the underlying individual variability, as assessed through

twinship and in respecting anatomical abnormalities, c) by using the tracts to devise

common connectivity spaces for mapping and linking diverse brains (Chapter 5).

XTRACT was released publicly as a part of FMRIB’s software library (FSL)

(version 6.0.2 and later) and has since been widely applied. For example, to ex-

plore associations between tract features and epilepsy symptoms (Jungilligens et

al., 2020); to measure the long-term neurological impact of COVID-19 (Qin et al.,

2021); to uncover links between structure and function specific to the temporal

association cortex (Blazquez Freches et al., 2020); to explore expansion and laterali-

sation in the connectivity of the inferior parietal lobule in the macaque, chimpanzee

and human brain (Cheng et al., 2021); and to generate atlases of WM fibre bun-

dles (Hansen et al., 2020). In addition to these applications, colleagues have also

developed XTRACT compatible tractography protocols for the chimpanzee (Bryant

et al., 2020), pig (Benn et al., 2020) and human neonate (Thompson, 2020) brains.

Chapter 5 furthers the work presented in Chapter 4 to show that we can use

measures of structural connectivity to build common connectivity spaces. In these

spaces, connectivity patterns may be compared in the absence of geometrical align-

ment, even across species, and used to project brains and map features from one

brain to the other, relying on the assumption that regions with similar connection

patterns define similar functional regions across brains. We example this by project-

ing scalar maps of cortical myelination from the human brain to the macaque brain

based on comparisons/similarities of connectivity patterns to homologous landmarks

(either in WM or in GM). Such comparisons may be performed in a number of ways,

exampled using two previously introduced approaches, yet the basic principles hold,

showing robustness of the above ideas. Further, these ideas may be extended to in-

corporate connectivity patterns derived through fully data-driven approaches (such

as non-negative matrix factorisation of tractography data), opening new avenues

for exploring them in ways that are less reliant on prior assumptions and manual

definitions.

Finally, Chapter 6 focuses on linking brain connectivity features and their vari-

ability across individuals with variability in behavioural traits. We explore the
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application and stability of multivariate statistical techniques, specifically canonical

correlation analysis (CCA), and demonstrate significant challenges and limitations

in its application. We identify that the ratio between the number of subjects avail-

able compared to the number of features used can have a significant effect on the

robustness of the identified latent associations and their out-of-sample generalisabil-

ity. Through forward predictions by a generative model, we show that, in order

to achieve robust solutions, much larger (an order of magnitude higher) subject-to-

feature ratios are required than previously used in the literature. We confirm these

predictions by using 20,000 subjects from the UK Biobank and demonstrate sta-

ble associations between whole-brain connectivity features and behavioural/lifestyle

traits that include measures of socioeconomic status, cognition and mental, psychi-

atric and physical health. Chapter 6 ends with a set of recommendations on the

application of such techniques, arguing for greater transparency in the reporting of

results and the careful consideration of alternative techniques.

7.1 Future Directions

The methods and explorations presented in this thesis enable exciting new oppor-

tunities and research questions, as briefly discussed in the following sections.

7.1.1 The Standardisation of Tractography

Even though tractography approaches have been around for the last 20 years, there

are still multiple sources of variability, which deem standardisation of tractography

protocols a vital requirement for future advances. Key sources of variability relate

to the definition and nomenclature of tractography protocols and WM anatomy,

differences in data acquisition and processing, and a lack of detail in and sharing

of tractography protocols. These result in significant variability in the definitions

and subsequent estimations of fibre bundles (Schilling et al., 2020b). These issues

are augmented when the ontogenic (across ages) and phylogenic (across species)

dimensions of brain connectivity are also considered.
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This thesis contributes towards this by providing a flexible framework through

which tractography protocols may be developed and shared in a standardised man-

ner. Protocols may be developed in any space and may contain combinations of

hand-drawn, atlas-based and segmentation-based regions of interest. An initial set

of protocols have been devised here, which are already unique in their cross-species

equivalence.

Efforts to fully standardise and reach consensus in tractography are ongoing.

For example, Schilling et al. (2020b) (to which we are contributing) seeks to first

quantify, and then suggest remediations for, variability in tractography. These ef-

forts are likely to be required for sometime.

7.1.2 Using Connectivity to Map Brain Diversity

One of the most under-appreciated features of the brain is its diversity, in its size,

complexity and organisation. To reveal and understand these relationships we must

be able to map features which are diverse across brains in a robust and consistent

manner. As shown in this thesis, we can map structural connectivity and use this

to study and link diverse brains, allowing us to identify similarities and divergence

in their functional organisation.

This can unlock new ways in studying the brain and answering fundamental

questions. For instance, exploring the brain throughout the lifespan - from early

development to ageing (Betzel et al., 2014; Zhao et al., 2015), across evolutionary

pathways (Assaf et al., 2020), or between health and disease (Thiebaut de Schotten

et al., 2020). Each of these research areas will contribute to the understanding of

the brain, be it in terms of human brain development and how variation across

individuals leads to differences in behaviour; the re-organisation of the brain across

species and how this leads to language and social behaviours for example; or in

disease mechanisms - how a given disease leads to behavioural/cognitive impairment.

Connections provide a different way of “aligning” the cortex across brains, which

is not driven by geometry and morphology, as these alone are not necessarily pre-

dictive of differences in functional organisation (Glasser et al., 2016). They provide
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a direct link to the functional specialisation of the brain (Passingham et al., 2002;

Jbabdi and Behrens, 2012), which can be probed using MRI, and compared across

cortical regions, across individuals, across species and between health and disease.

7.1.3 Brain-Behaviour Associations

With the advent of big data in neuroscience, both in terms of the number of samples

and the number of features, the opportunities to explore the brain are endless.

Projects such as the ENIGMA consortium (Thompson et al., 2014) and the UK

Biobank capture measures from a broad array of modalities; from behavioural traits,

to physical measures, to brain MRI and genetic data, at the population-level. This

allows for explorations on the associations between the brain and behaviour, body,

genetics and more. However, as in many of the big data sciences, methods to utilise

such data are under-developed, leading to limitations in current applications and

open challenges (Sejnowski et al., 2014; Fan et al., 2014; Gandomi and Haider,

2015; Smith and Nichols, 2018; Bzdok et al., 2019). This thesis highlights some of

those challenges specific to brain-behaviour associations, identifies solutions for best

use of such approaches and seeks to reinforce the Peter Parker principle1.

The opportunities to explore the relationships between measures of structural

connectivity and behaviour, and relationships between structural and functional

connectivity, on such a scale is an exciting prospect. Further, identifying links be-

tween brain organisation and behavioural/cognitive mechanisms in health allows for

the development of robust image-derived phenotypes, which may generalise to other

cohorts, for example disease-specific cohorts in mental health. Such population-level

explorations and discoveries can also lead to novel normative modeling approaches

for brain connectivity, characterising typical variability in the population and paving

the way for the quantitative mapping of individuals in such normative distributions.

1S. Lee, J. Kirby, S. Ditko. Amazing Fantasy Vol 1 #15 - “With great power there must also
come - - Great responsibility!”, 1962, Marvel Comics
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AC anterior commissure. 84

ADC apparent diffusion coefficient. 28, 29

AF arcuate fasciculus. 80, 88, 101, 102, 105, 112, 142

AR acoustic radiation. 87, 123

ATR anterior thalamic radiation. 86, 105, 109, 142

BOLD blood oxygenation level dependent. 44

CBD cingulum bundle: dorsal. 85, 105

CBP cingulum bundle: peri-genual. 85

CBT cingulum bundle: temporal. 85

CCA canonical correlation analysis. i, 8, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 162, 163, 164, 166, 167, 169, 170, 171, 172, 173, 174, 176, 177, 183,
184, 185, 186, 187, 188, 189, 190, 192, 193, 200, 205

CSF cerebrospinal fluid. 24, 25, 33, 34

CST corticospinal tract. 86, 109

dMRI diffusion magnetic resonance imaging. 4, 23, 24, 25, 35, 36, 37, 38, 40, 45,
48, 52, 55, 58, 64, 88, 89, 160, 163, 165, 166, 167, 168

DTI diffusion tensor imaging. 29, 31

DWI diffusion weighted imaging. 29

EPI echo planar imaging. 21, 22, 23, 38, 44, 55, 62, 63

FA fractional anisotropy. 31, 32, 38, 39, 63, 65, 66, 67, 78, 89

FA frontal aslant tract. 82, 105

FMA forceps major. 83, 84, 110

FMI forceps minor. 83, 84

fMRI functional magnetic resonance imaging. 4, 7, 23, 43, 44, 45, 46, 47, 48, 55,
59, 60, 127, 158, 160, 163, 165, 166, 167, 168, 174, 175

FX fornix. 85

GE gradient echo. 20, 21, 22
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GM grey matter. 24, 25, 32, 34, 41, 42, 57, 67, 68, 75, 111, 126, 127, 135, 138, 140,
141, 142, 145, 175, 204

HCP “WU-Minn” Human Connectome Project. ii, vi, xi, 6, 7, 9, 50, 51, 52, 53,
54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 75, 78, 88, 89, 91,
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133, 138, 141, 151, 153, 154, 158, 159, 160, 161, 163, 164, 166, 168, 174, 176,
183, 184, 186, 190, 192, 193, 203

ICA independent component analysis. 46, 47, 64

IDP image-derived phenotype. 63

IFO inferior fronto-occipital fasciculus. 81, 101, 102, 105, 110, 112, 123

ILF inferior longitudinal fasciculus. 81

KL divergence Kullback-Leibler divergence. 94, 95, 102, 103, 104, 105, 112, 127,
131, 132, 134, 137, 138, 140, 141, 142, 144, 145

MCP middle cerebellar peduncle. 83, 109, 140

MD mean diffusivity. 31, 32, 65

MdLF middle longitudinal fasciculus. 81, 88, 101, 102, 109, 110, 112, 142

MRI magnetic resonance imaging. i, 3, 4, 6, 7, 12, 13, 14, 15, 16, 18, 21, 23, 25,
32, 33, 38, 43, 47, 48, 50, 51, 55, 56, 57, 58, 59, 61, 62, 63, 70, 88, 91, 133,
144, 152, 158, 163, 166, 183, 184, 207

NMF non-negative matrix factorisation. 125, 127, 128, 135, 138, 139, 140, 141,
142, 145, 147, 204

NODDI neurite orientation dispersion and density imaging. 63, 65, 66, 68

OR optic radiation. 87, 109

PCA principle component analysis. 64, 156, 158, 165, 166, 167, 174, 175, 187

PGSE pulsed gradient spin echo. 25, 27, 28

PLS partial least squares. 8, 154, 158

RF radio frequency. 12, 14, 16, 17, 18, 20, 21, 22, 25, 26, 27, 55, 61

ROI region of interest. 46, 63, 73, 75, 79, 114, 144

RS-fMRI resting-state fMRI. 45, 55, 57, 61

SE spin echo. 21, 22
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SLF superior longitudinal fasciculus. 79, 80, 101, 102, 105, 106, 112, 123, 142

SNR signal-to-noise ratio. 14, 22, 29, 38

STR superior thalamic radiation. 86, 105

UF uncinate fasciculus. 82, 105, 142

VOF vertical occipital fasciculus. 83

WGB white-grey matter boundary. 67, 68, 91, 92, 94, 98, 101, 103, 129, 133, 139

WM white matter. vi, 25, 29, 32, 33, 41, 48, 57, 67, 70, 72, 73, 74, 75, 76, 80, 82,
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