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ABSTRACT  

Chronic pain has been associated with changes in forebrain regions, including the 

hippocampus and prefrontal cortex, and impairments in cognitive functions associated with 

these forebrain regions, including impairments in memory and cognitive flexibility. 

Osteoarthritis (OA) is a major public health burden, and the main symptom of OA is chronic 

pain. The impact of OA pain on cognitive function is poorly understood. By combining 

methods from pain research and behavioural integrative neuroscience, in this PhD work, the 

impact of OA-like chronic knee pain on selected cognitive functions was investigated in a 

well-characterised rodent model.  

To investigate clinically relevant cognitive deficits associated with chronic pain caused by 

knee OA, in this study the rat monosodium iodoacetate (MIA) model was combined with 

translational tests of clinically relevant cognitive tests, including of hippocampus-dependent 

everyday type memory function, recognition memory and behavioural flexibility. Previous 

studies using this model of OA pain behaviour have used juvenile albino strains, which show 

comparatively poor performance in the cognitive tests. Therefore, the first objective was to 

transfer the MIA model to young adult Lister hooded (LH) rats, a pigmented strain, which is 

suitable for these cognitive tests (chapter 3). Pain behaviour and joint pathology phenotypes 

after a standard 1 mg dose of MIA were not robust in young adult LH rats or age and weight 

matched SD rats. By contrast, injection of 3mg of MIA caused robust pain behaviour, mainly 

changes in weight-bearing, accompanied by significant cartilage damage and synovitis. MIA-

injected rats showed minor changes in locomotor activity with reduced rearing, which may 

reflect that they put less weight on their hind legs because of knee pain. This dose of MIA 

was therefore used throughout the thesis project.  

To longitudinally assess the impact of OA-related knee pain on hippocampus-dependent 

place memory, MIA LH rats were tested in the watermaze delayed-matching-to-place (DMP) 

test, which is highly hippocampus-dependent (chapter 4). There was no evidence of impaired 

hippocampal memory following induction of the MIA model. No performance parameter on 

the DMP task was affected by MIA injection up until day 93 after model induction. MIA 

injected rats showed robust pain behaviour (weight bearing asymmetry), slightly decreased 

rearing activity and features of knee joint pathology. In this chapter, MIA rats showed some 

evidence for mildly reduced prepulse inhibition (PPI) at high pulse intensities compared with 

saline control rats (although this was not replicated in chapter 5 when studied at a later time 

point following MIA injection).  
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The impact of OA-like pain on recognition memory and behavioural flexibility was also 

evaluated in the MIA LH rats (chapter 5).  This cohort of MIA injected LH rats was tested in 

the novel object recognition (NOR) test and in an automated set shifting task. Overall, there 

was no evidence of impaired recognition memory and behavioural flexibility after induction 

of chronic MIA up until day 59 after model induction. 

Other factors associated with chronic pain in humans may account for why humans 

experiencing chronic pain have memory impairments, such as the effects of treatment. To 

test this, the effects of chronic treatment with morphine (3mg/kg twice daily for 7 days) and 

subsequent withdrawal was evaluated (chapter 6).  Pilot work showed that morphine 

treatment induced an initial antinociceptive effect in LH rats, followed by tolerance and the 

development of morphine-induced hyperalgesia. Then, to evaluate the potential impact of 

chronic morphine treatment on both rapid place learning and NOR memory, MIA-injected LH 

rats were treated with morphine for 10 days (3mg/kg twice daily) or received control 

injections and were tested on the watermaze DMP task during treatment and at withdrawal.  

In addition, they were assessed in the NOR test during morphine withdrawal. Morphine had 

analgesic effects with no evidence of morphine-induced hyperalgesia in the MIA LH rats. In 

both naïve and MIA LH rats, acute morphine injection promoted hyperactivity. There was no 

evidence that repeated morphine treatment induced any impairment in rapid place learning 

performance or recognition memory in MIA-injected rats.  However, in this study, MIA-

injected LH rats did not show significant object recognition memory 49 days after model 

induction, which limits the interpretation the lack of morphine effect, but indicates that MIA-

induced pain may disrupt such memory at this stage. 

Overall, these findings suggest that hippocampus-dependent rapid place learning, NOR 

memory and behavioural flexibility are not affected by chronic OA-like knee pain in young 

adult male LH rats. Similarly, sustained treatment with morphine did not affect hippocampal 

and recognition memory in this model of OA-like knee pain. However, future investigation 

should be conducted in a wider age range and for longer periods after model induction to 

exclude the negative impacts of chronic OA pain in cognitive functions.  
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CHAPTER 1  

GENERAL INTRODUCTION 

 

 

1.1. CHRONIC PAIN  

Pain is defined by the International Association for the Study of Pain (IASP) as “an 

unpleasant sensory and emotional experience associated with, or resembling that associated 

with, actual or potential tissue damage” (Raja et al., 2020). This definition highlights the fact 

that the pain experience can be multidimensional, comprising sensation and emotion, and 

also that pain experience can occur without actual tissue damage. The pain experience is not 

necessarily proportional to the intensity of a specific pain stimulus and consequentially pain 

experience can be different between different individuals with similar tissue damage (Tracey 

and Mantyh, 2007). Pain perception is an experience of nociceptive inputs that can also be 

influenced by memories, emotional and genetic factors among others (Tracey and Mantyh, 

2007). 

Pain may also be classified as acute or chronic based upon the length of time it lasts. Acute 

pain is a survival mechanism essential in our daily life, which signals potentially damaging 

stimuli and promotes protective behaviours to prevent further injury. On the other hand, 

pain can become chronic when it lasts for a prolonged period of time, commonly defined as 

lasting more than 3-6 months in patients (Apkarian et al., 2009), thus losing the biological 

value in terms of acute survival and becoming a disease. Unfortunately, the mechanisms 

leading to the transition from acute to chronic pain are still poorly understood. 

Chronic pain has become a major health problem in many countries, with around 20% of 

the population worldwide estimated to be affected by persistent or chronic pain (Hart et al., 

2000; Treede et al., 2015) and with no effective medication available to either prevent or 

treat this disease.  Moreover, several studies have reported that chronic pain is also 

associated with a wide range of comorbidities, such as emotional (depression and anxiety) 

and cognitive impairments (Roth et al., 2005; Moriarty et al., 2011; Bushnell et al., 2013; 

McGuire, 2013).  
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Pain is the major reason chronic pain patients look for medical and health service 

assistance, however, pain-related psychological distress and possible cognitive impairments 

are increasingly recognised as having major impact upon people. Previous pain research 

focused mainly on sensation and the underlying mechanisms, with little focus to the non-

sensation components such as cognition and emotion related impacts. Even though this 

trend has changed in the last decade, the mechanisms underlying the cognitive deficits 

associated with chronic pain are poorly understood and this area receives relatively little 

attention. This thesis will be focused on the study of the potential effects of chronic pain on 

cognitive functions. 

 

1.1.1. MUSCULOSKELETAL PAIN  

In an attempt to distinguish the heterogeneous types of pain, an IASP working group had 

developed a classification system for the different subgroups of chronic pain considering not 

only the source of pain, but also etiology and affected body location: chronic primary pain, 

chronic cancer pain, chronic posttraumatic and postsurgical pain, chronic neuropathic pain, 

chronic headache and orofacial pain, chronic visceral pain, and chronic musculoskeletal pain 

(Treede et al., 2015, 2019). 

Chronic musculoskeletal pain is defined as persistent or recurrent pain, caused by 

persistent local or systemic inflammation that directly affects bones, joints, tendons or 

muscles (e.g., rheumatoid arthritis); or caused by disorders of the nervous system that are 

not linked to musculoskeletal issues themselves but which lead to their development (e.g., 

multiple sclerosis); or associated with structural changes in the musculoskeletal function 

(e.g., osteoarthritis) (Treede et al., 2015; Perrot et al., 2019). Osteoarthritis (OA) is one of the 

most common forms of chronic musculoskeletal pain. This thesis will focus on OA-associated 

chronic pain. 

 

1.1.2. OSTEOARTHRITIS  

OA is the most common form of arthritis and a major public health problem. Between 

2005 and 2015 the global prevalence of OA showed an increase of about 32.9% and it was 

ranked as the 13th highest on the list of contributors to global years lived with disability (Vos 

et al., 2016). The prevalence of OA varies due to definition/diagnostic criteria used, age 

categories, countries and study population (Palazzo et al., 2016). The estimated worldwide 
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population affected is around 250 million people and knee OA is the most common (Dulay et 

al., 2015; Hunter and Bierma-Zeinstra, 2019). OA is mostly an age-related disease, affecting 

more frequently aged people (Vos et al., 2016), but other risk factors are also associated with 

this disease, such as obesity, greater bone density or genetic predisposition (Arden and 

Nevitt, 2006; Buckwalter and Martin, 2006).  

OA is a multifactorial disease, resulting from the progressive degradation of single or 

multiple joints by an imbalance in the dynamic equilibrium between the breakdown and 

repair mechanisms of joint tissues (Dieppe and Lohmander, 2005; Egloff et al., 2012; Felson, 

2013). The disease manifests first with molecular alterations of joint tissue metabolism, 

followed by anatomic abnormalities that can lead to illness (Kraus et al., 2015); however the 

OA chronologic trajectory between molecular and anatomical abnormalities of the joint 

structure is still not completely well-described. 

OA can be divided in two groups regarding its etiology: primary (idiopathic) or secondary 

(results from trauma/injury or mechanical misalignment). There is also a substantial 

variability in the course of the disease, structural pathology and response to therapy (Deveza 

et al., 2017). The huge heterogeneity and variability in this disease have been widely 

discussed in the pain field (Cruz-Almeida et al., 2013; King et al., 2013), describing the 

different phenotypes and understanding the mechanisms behind it is necessary to improve 

the characterization of knee OA and improve target therapies.  

OA was previously considered exclusively as a degenerative disease of the cartilage, but 

is currently known as a multifactorial disease (Piperno et al., 1998; van der Kraan and van 

den Berg, 2012) whose pathogenesis involves mechanical, inflammatory and metabolic 

factors which lead to structural derangements as illustrated in Fig.1.1.  

During the OA process the composition of the cartilage changes. Cartilage is mainly 

composed of chondrocytes and an extracellular matrix of proteoglycans, collagen fibres  and 

non-collagen proteins (Goldring and Marcu, 2009). Chondrocytes can be considered the 

housekeepers of this specialized matrix, as in normal situations chondrocytes are relatively 

inactive and maintain a healthy matrix by a low turnover. In OA, these cells drastically 

increase their activity to repair the damage leading to an excess of matrix proteins and 

degradations enzymes. Altered cartilage composition increases susceptibility to disruption 

by physical forces and initial and small erosions on the surface evolve to deep fissures in the 

cartilage and later in the calcified areas (Goldring and Marcu, 2009; Hunter and Bierma-

Zeinstra, 2019). At the subchondral bone level in OA, bone remodelling and repair increases 
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and marrow lesions occur, leading to the development of bony outgrowths called 

osteophytes at joint margins (Hsia et al., 2017) (see Fig. 1.1.).  

The production of proinflammatory mediators produced by the hypertrophic chondrocyte 

activity can also affect the synovium, which consequently releases more proinflammatory 

mediators, starting a positive feedback loop (Felson, 2013). This pro-inflammatory cascade 

and its role in OA disease is not yet completely understood, but it is known that chronic 

inflammation is present in OA and that an inflammatory profile develops with the 

progression of the disease, with increased infiltration of inflammatory cells into the joint and 

pain occurrence at this stage (Mora et al., 2018).  

The classical symptoms of OA are morning stiffness, swelling, muscle weakness, reduced 

range of movement, joint instability and pain (Hunter et al., 2008). Pain is the major reason 

OA patients look for medical and health service assistance. In knee OA, pain is mainly weight-

bearing/mechanical pain. In a community cohort of knee OA patients, 97% reported 

intermittent pain and 35% reported it as “unacceptable” (Liu et al., 2014).  

 

FIGURE 1.1. – OSTEOARTHRITIS PATHOGENIC FEATURES. Healthy vs osteoarthritic knee joint showing the 

underlying structural changes in the chronic disease. Image from: (Hunter and Felson, 2006). 
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1.1.2.1. ANIMAL MODELS OF OSTEOARTHRITIS 

In order to understand the mechanisms underpinning chronic pain associated with OA, 

animal models are continuously being improved in order to mimic acute and chronic pain 

states for a more focused and direct study of the mechanism behind this health problem 

(Cohen-Solal et al., 2013; Teeple et al., 2013; Pelletier et al., 2015). Animal models provide 

important information about the mechanisms that lead to the development of a health 

problem being a crucial tool to study and characterise pathologies and to the development 

of new therapeutics.  

The animal models that better correlate to human OA physiopathology include 

spontaneous models, such as the Dunkin-Hartley guinea pigs (Wang et al., 2013). However, 

these models show slow disease progression, which means they are time consuming and 

expensive and there are no co-aged matched controls. Furthermore, besides suitable time 

frame to allow reproducible results, there are other factors that should be taken in 

consideration when selecting the animal model, including the similarity to human pathology 

and the efficacy to detect a therapeutic effect. Choosing the right animal model of OA can be 

a challenge, OA is a heterogeneous disease and no single animal model is able to reproduce 

entirely the human disease. Hence, the most commonly used models in OA studies are the 

induced models.  

OA can be chemically induced with intra-articular injections of substances which can 

cause damage to the joints, either by damaging the ligaments and tendons (collagenase), or 

inhibiting chondrocyte metabolism, such as the monosodium iodoacetate (MIA) model 

(Lampropoulou-Adamidou et al., 2014).  As discussed and justified in detail in Chapter 3, the 

MIA model is the model used in this thesis. 

 

1.2. PAIN PATHWAYS 

Pain experience can be established when a peripheral noxious stimulus, whether from 

mechanical, thermal or chemical source, is applied to the body and transduced into an action 

potential by specialized primary afferent fibres called nociceptors. Primary afferents are 

divided in three main types regarding their characteristics: 1) Aβ, large myelinated fibres  

with higher conduction velocity; 2) Aδ, medium sized myelinated fibres  with intermediate 

conduction velocity and 3) C-fibres , small unmyelinated fibres  with slow conduction velocity 
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(Millan, 1999; Devor, 2009). Primary afferents are distributed throughout the body, including 

muscles and joints. 

When peripheral nociceptors are activated following exposure to noxious stimuli, they 

transmit information to a proximal nerve terminal in the spinal cord via the primary afferent 

cell body in the dorsal root ganglion (DRG) (Fig.1.2.). When approaching the spinal cord, 

bundles of afferents carried in nerve trunks separate and penetrate the dorsal horn grey 

matter. The nociceptive information is then conducted to the dorsal horn of the spinal cord, 

where primary afferents synapse with second order neurons. The dorsal horn consists of 

organized laminae with ten layers called Rexed laminae (Craig, 2003).  

FIGURE 1.2. – PAIN PATHWAY REPRESENTATION. A peripheral activation (thermal, mechanical or 

chemical) is applied to the body and converted into action potentials by the nociceptor (transduction). 

This nociceptive information is then conducted to the dorsal horn of the spinal cord via the dorsal 

root ganglion (transmission). The nociceptive information is then transmitted via ascending pathways 

to the different supraspinal regions, where it is processed (perception). At this level, descending 

pathways modulate the nociceptive transmission from supraspinal areas to spinal dorsal horn 

(descending modulation). Image from (Bingham et al., 2009). 
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Projections from some second-order neurons ascend along the anterior and posterior 

tracts transmitting nociceptive information to the brain via the ascending pathways, 

including the spinothalamic, spinoreticular and spinomesencephalic tracts (Almeida et al., 

2004). The ascending projections in the spinothalamic tract mainly originate in layers I and V 

of the dorsal horn and this tract is organised in two main pathways, the ventral and the dorsal 

(Todd, 2010). Although they ascend separately, the two tracts merge at the medulla level. 

This tract mainly projects to thalamus, which is subsequently distributed to several cortical 

structures. Neurons in the spinoreticular tract project mainly into the lateral and dorsal 

reticular nucleus and the neurons in the spinomesencephalic tract end in the periaqueductal 

gray (PAG) (Todd, 2010). Directly or indirectly, altogether, these ascending pathways 

distribute the information to supraspinal nuclei (Tracey and Mantyh, 2007). 

The supraspinal pathways involved in the processing of pain-related information comprise 

a large matrix of regions, including cortical and subcortical regions. Brain imaging studies 

have been a crucial tool to allow a better understanding of this complex network and to 

unveil the regions involved (Apkarian et al., 2005). Areas such as somatosensory cortices, 

anterior cingulate cortex, insular cortex, thalamus and PFC are some of the most commonly 

reported to be involved in pain processing. However with the improvement of the imaging 

techniques the understanding of this complex network has been increasing and other areas 

have been found to be involved in pain processing [see for review (Brooks and Tracey, 2005; 

Ong et al., 2019)]. 

After supra-spinal processing, the brain modulates spinal cord activity through 

descending pathways to either facilitate (pronociception) or inhibit (antinociception) pain 

perception (Millan, 1999, 2002). Some of the key brain areas involved in pain processing are 

the PAG, rostral ventromedial medulla (RVM), somatosensory cortex, amygdala, insular 

anterior cingulate and prefrontal cortices, hippocampus and thalamus (Wager, 2004; 

Apkarian et al., 2005; Ochsner et al., 2006).  

 

1.3. PERIPHERAL AND CENTRAL SENSITIZATION 

After repeated and intense noxious stimuli, the nociceptive system can suffer 

sensitization and the threshold for its activation reduces and leads to an amplification of the 

subsequent inputs (Latremoliere and Woolf, 2009). Pain sensitization is often present in 

patients suffering from chronic pain, including OA patients (Soni et al., 2019), a normally non-

noxious stimulus such as walking, standing or climbing stairs can be perceived as painful 
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(Dimitroulas et al., 2014). The reasons for this sensitization are likely multi-factorial, 

representing both inflammatory and neuropathic components (Thakur et al., 2014). 

Tissue damage and the concurrent inflammation causes cellular disruption, sympathetic 

neuron discharge and activation/infiltration of immune cells (Pattison et al., 2021), which 

promote the release of a large variety of inflammatory mediators (Raoof et al., 2018). In OA, 

inflammation promotes the local release of factors such as tumor necrosis factor α (TNFα), 

interleukin 1β (IL-1β), IL-6, and IL-17, H+, prostaglandin E2, ATP and growth factors [see for 

review (Pattison et al., 2021)] (Fig.1.3.). The resulting effects of some or all these mediators 

released at the level of the damaged joint (Schaible, 2012) contribute to an “increased 

responsiveness and reduced threshold of nociceptors to stimulation of their receptive field” 

- peripheral sensitization (Loeser and Treede, 2008). In acute and normal situations, 

nociceptors are able to recover from this sensitization after the tissue heals or the 

inflammation resolves but unfortunately the acute plasticity changes do not always resolve 

and lead to chronic pain development (Loeser and Treede, 2008). The causes for these two 

possible outcomes are not yet known. Peripheral sensitization can induce an increased 

responsiveness, where a noxious stimulus can cause a stronger pain experience than under 

normal conditions (hyperalgesia) (Woolf and Salter, 2000) and can also lead to a reduced 

threshold of the nociceptors and the perception of an innocuous stimulus becomes painful 

(allodynia) (Merksey and Bogduk, 1994). 

FIGURE 1.3. – CELL-CELL INTERACTIONS IN OSTEOARTHRITIS. Image from (Pattison et al., 2021). 
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In addition, pathological neuronal inputs from the damaged tissue can also cause complex 

changes in the central nervous system leading to central sensitization. At the spinal level, 

receptive fields of neurones expand and neurones have reduced thresholds (Latremoliere 

and Woolf, 2009). The sensitized neurones can also release pro-inflammatory mediators 

further sensitizing the spinal neurones and activating microglia or astrocytes (Woolf and 

Salter, 2000). Many mechanisms can contribute to central sensitization, driven by different 

effector (such as PKA, PKC, CaMKII, and ERK1/2), changes in the threshold and activation of 

N‐methyl‐D-aspartate (NMDA) receptor and, the α‐amino‐3‐hydroxy‐5‐methyl‐4‐

isoxazolepropionic acid (AMPA) receptor, alterations in ions channels and in the release of 

GABA and glycine release occurs. Consequently, nociceptive neurons can display increased 

spontaneous activity, reduction in threshold for activation and/or enlargement of receptive 

field by conversion of nociceptive-specific neurons to wide dynamic neurons (Latremoliere 

and Woolf, 2009).  

Central sensitization is present in many chronic pain conditions and can manifest 

differently from pain conditions (Arendt-Nielsen et al., 2018). Central sensitization may 

explain why patients with OA show different features and why patients complain of more 

pain than was expected with the structural changes observed (Arendt-Nielsen et al., 2015). 

Patients at advanced stages of OA exhibit pain features consistent with central sensitization, 

including hyperalgesia at both the site of damage and remote areas from the affected joints, 

and changes in conditioned pain modulation, indicative of altered descending inhibitory pain 

mechanisms (Lluch et al., 2014).  

The peripheral and centralized pain mechanisms in OA and their developmental time 

frame still is not completely understood. A major issue associated with the lack of knowledge 

about central sensitization in OA is the impact upon the development of new therapeutic 

approaches, as traditional treatments are mainly focused on peripheral nociceptive 

mechanisms and reducing joint pain (Murphy et al., 2012). Two approaches are used to 

clinically assess pain sensitization in OA patients, questionnaires and experimental 

assessments, such as pressure and thermal pain thresholds (Arendt-Nielsen, 2017). 

Importantly, translational human OA features of sensitization have been reported, such as 

local and wide-spread hyperalgesia, central integration of repeated nociceptive inputs 

(temporal summation or central hyperexcitability) and descending modulation (Arendt-

Nielsen, 2017).   
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Central sensitization has not only spinal components, but also supraspinal components 

(Suzuki and Dickenson, 2005), for example, patients with OA exhibit altered activity in two 

important supraspinal brain areas linked with pain processing, the anterior cingulate cortex 

and rostral ventromedial medulla (Soni et al., 2019). 

 

1.4. SUPRA-SPINAL CHANGES IN CHRONIC PAIN  

Brain imaging in humans helped highlight brain areas potentially involved in pain and also 

in cognitive processing, and it is now clear that circuits responsible for the processing of 

nociceptive information are also involved in cognitive processes. This may help to understand 

the impact of chronic pain in cognitive functions. The persistent nociceptive inputs associated 

with chronic pain conditions may disrupt or compete with cognitive inputs leading to 

cognitive impairments. Imaging studies indicate that the anterior midcingulate cortex is 

involved in both cognitive and pain control (Shackman et al., 2011), an example of 

overlapping between the pain and cognition networks. 

Structural changes have been reported in patients with chronic pain in different brain 

regions, including reductions (Apkarian et al., 2004; Kuchinad et al., 2007; Valfrè et al., 2007) 

and increases in volume (Rocca et al., 2006) in specific brain regions. Self-reported pain  

assessed using sensitivity questionnaire was positively correlated with larger grey matter 

volume in the parahippocampal gyrus, extending to the hippocampus (Ruscheweyh et al., 

2018). Furthermore, volumetric reduction changes in the PFC, have been observed in 

patients with various types of chronic pain, including chronic lower back pain and 

fibromyalgia (Kelley and Domesick, 1982; Kuchinad et al., 2007; Moriarty et al., 2011). 

Importantly, ongoing spontaneous knee OA pain was reported to engage medial prefrontal-

limbic cortical areas (Parks et al., 2012).  

Clinical studies have showed altered functional network in some pain conditions, such as 

fibromyalgia (Ichesco et al., 2014), chronic widespread pain (van Ettinger-Veenstra et al., 

2019) and ankylosing spondylitis (Hemington et al., 2016). Several studies provide evidence 

that OA is associated with brain anatomical and functional alterations (Gwilym et al., 2010; 

Cottam et al., 2018; Barroso et al., 2020). Baliki and colleagues have showed that different 

chronic pain types have different “brain signatures” (Baliki et al., 2011). In knee OA patients, 

grey matter density was reported to be reduced in the insular and mid anterior cingulate 

cortex, paracentral lobule, hippocampus and regions of the inferior cortex (Baliki et al., 2011). 

Mao and colleagues have also reported a small reduction of grey matter in the hippocampus 
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of knee OA patients compared with controls (Mao et al., 2016). A recent study conducted in 

patient with chronic knee OA also reported disruption in the functional connectivity (Cottam 

et al., 2018). Brain network alteration were also shown in rats after induction of MIA model 

(Abaei et al., 2016). 

Although imaging techniques in human patients play a fundamental role in identifying 

associations between changes in brain function and chronic pain, they are limited in 

advancing understanding of the underlying mechanisms. Here, animal models have been a 

valuable tool to dissect these changes at a cellular and network level. For example, a study 

conducted in an induced neuropathic pain model in rats reported increased length and 

branching of dendrites and spine density of pyramidal neurons in acute slices of the medial 

PFC contralateral compared with control rats (Metz et al., 2009).  

Apart from the morphological changes, several studies have reported neurochemical 

changes. There is a huge number of neurotrophic factors, cytokines, enzymes and 

neurotransmitters commonly involved in both pain and cognitive processing, and disruption 

of the normal activity of these components can lead to cognitive impairments. Some 

examples are the involvement of the brain-derived neurotrophic factors (BDNF), the glial cells 

and neurotransmitter GABA. All these components have been implicated in both pain and 

cognitive functions (check review for more information (Moriarty et al., 2011)). 

 

1.5. COGNITIVE CHANGES IN CHRONIC PAIN 

Cognition is defined as acquisition, processing, storage and retrieval of information by the 

brain (Spence, 1996). Cognitive function is crucial for an independent life and is also vital for 

the engagement with and success of a therapy. Pain itself has a cognitive-evaluative 

component (requires learning, recall of past experiences and active decision making). In this 

way, pain and cognition can overlap.   

A review of the literature around cognitive deficits in chronic pain reveal there are two 

main models used to explain cognitive impairments: those that suggest cognitive 

impairments are an indirect consequence of chronic pain, and those that suggest these 

deficits are a direct consequence of chronic pain (Moriarty et al., 2011). Indirect models 

mainly attribute cognitive impairments in chronic pain patients to depression, anxiety, 

insomnia or medication (Landrø et al., 2013). Contrasting with these ideas, there is the 

emerging idea that chronic pain processing may disrupt directly brain regions with crucial 
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roles in cognitive functions and, consequently, causes cognitive deficits (Moriarty et al., 

2011). 

It has been suggested that the association of cognitive deficits and chronic pain reflects 

competition for the same neural network (Legrain et al., 2009b, 2009a; Moriarty et al., 2011). 

Processing of the nociceptive inputs in chronic pain patients is very persistent and can 

compete with other sensory inputs for processing resources, resulting in impaired cognitive 

functions. Cognitive neuroscience studies have highlighted the important roles of areas such 

as hippocampus and PFC in memory and attention. These areas as mention above, are also 

strongly associated with chronic pain conditions. It is important to note that these brain areas 

also have collateral reciprocal connections to each other and, generally, nociceptive 

information is not processed by a single and isolated brain region. 

Clinical studies have been providing evidence that cognition may be impaired in some 

chronic pain conditions. Some examples of cognitive dysfunction that have been associated 

with chronic pain patients are memory, including working, spatial, recognition and long-term 

memory (Hart et al., 2000; Dick and Rashiq, 2007; Yong Liu et al., 2017); attention (Eccleston 

et al., 1997; Dick et al., 2002; Dick and Rashiq, 2007; Oosterman et al., 2011); decision making 

(Apkarian et al., 2004; Berryman et al., 2013); and mental flexibility (Karp et al., 2006; 

Moriarty et al., 2017). 

Cognition can be greatly impacted by factors such as age and emotional states such as 

depression and anxiety, as well as by chronic pain, but the current literature is not always 

consensual on the impact of each of them or their comorbid effects. One of the major 

limitations of the clinical studies in this field is the lack of baseline measures and 

consequently the establishment of appropriate control groups. Preclinical studies on the 

other hand, allow to study and explore the mechanisms of cognition-pain interactions with 

the use of well-established animal models of chronic pain and translational neurocognitive 

tasks.  

Preclinical studies have also contributed with evidence that chronic pain has negative 

impacts on cognition in rodents (for review see (Moriarty et al., 2011)). Attention deficits in 

rodents with inflammatory pain showed lower accuracy, higher perseverative and premature 

responses comparing with control animals (Pais-Vieira et al., 2009). Also, behavioural 

flexibility was impaired in rodents with chronic pain conditions (Brown and Tait, 2014; 

Murray et al., 2015; Moriarty et al., 2016a; Cowen et al., 2018). Additionally, long-term 

potentiation (LTP), the main form of measuring the activity-dependent synaptic plasticity,   
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was impaired in the hippocampus of nerve-injured mice, suggesting pain-related reduction 

in LTP might be an important driver of cognitive impairments in chronic pain (Ji et al., 2010). 

Decision-making impairments in rodents were observed in studies using two different 

models of inflammatory chronic pain (kaolin and carrageenan model and complete Freund's 

Adjuvant (CFA) model), where pain was associated with a preference for a ‘‘high-risk’’ lever 

associated with larger but more infrequent rewards than the alternative lever (Pais-Vieira et 

al., 2009). Similar results were also observed in a model of visceral pain (Cao et al., 2016). 

Increased neuronal excitability and synaptic transmission in the basolateral amygdala was 

associated with decreased activity in the mPFC and consequently impaired decision-making 

performance in an arthritis pain rodent model. The pharmacological deactivation of the 

basolateral amygdala was able to increase activity in mPFC neurons and restore normal task 

performance in the gambling task (Ji et al., 2010). 

Cardoso-Cruz and colleagues have reported that the induction of neuropathic pain in a rat 

model impaired performance on a working memory task by disrupting PFC-hippocampus 

connectivity in a frequency-dependent memory (Cardoso-Cruz et al., 2019). They show that 

typically healthy rats exhibit higher theta frequency connectivity levels between these areas 

compared with neuropathic rats and that these levels were a good predictor of good 

performances. The interaction between the hippocampus and PFC seems also crucial for 

social memory behaviour (Sun et al., 2020). Once more, these studies provide evidence that 

pain may induce brain plasticity alterations that may be associated with cognitive 

impairments in chronic pain patients. 

Although cognitive deficits are widely acknowledged in relation to chronic pain, the 

distinct cognitive processes affected in distinct chronic pain conditions remain to be clarified. 

Furthermore, little is known about the specific effects of musculoskeletal pain on cognitive 

function, but even less is known regarding the relationship between OA pain and cognitive 

deficits. Some clinical studies conducted in groups of chronic patients with different 

conditions, including musculoskeletal pain patients have found impairments in working 

memory and verbal episodic memory performance (Oosterman et al., 2011), mental 

flexibility (Karp et al., 2006) and attention (Dick et al., 2002). However, as previously 

mentioned different chronic pain conditions can have different brain signatures (Baliki et al., 

2011) showing the importance to further address cognitive deficits in particular pain 

conditions. 
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1.6. THESIS OUTLINE  

In this thesis, we used a chemical-induced model of OA knee pain in a rodent model to test 

the hypothesis that persistent nociceptive inputs associated with chronic OA pain disrupts or 

competes with cognitive inputs leading to cognitive impairments, such as hippocampus-

dependent memory, recognition memory and cognitive flexibility. Additionally, we 

investigated how sustained opioid treatment affected memory function in this OA rodent 

model. In sum, the main objectives were: 

1) To transfer/validate the MIA model to adult Lister hooded rats.  

2) To investigate hippocampus-dependent memory in MIA-injected adult male LH rats.  

3) To study recognition memory and behavioural flexibility in MIA-injected adult male LH 

rats.  

4) To explore the possible effects of long-term morphine treatment on memory in MIA-

treated LH rats. 
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CHAPTER 2                                                                                                                                                          

GENERAL METHODS 

 

 

General methodologies and techniques are described in this chapter as are sources of 

animals, collected tissues, consumables and equipment. Techniques and procedures specific 

for any study are described in the respective chapter. 

 

2.1. ANIMALS  

All animal care and experimental procedures were conducted in accordance with the 

requirements of the UK Home Office Animals Scientific Procedures) Act (1986) and the 

International Association for the Study of Pain. Animal studies are reported in compliance 

with the ARRIVE guidelines (Kilkenny et al., 2010). 

Young adult male Lister Hooded (LH) and Sprague Dawley (SD) rats from Charles River UK 

were used in this project. Animal numbers can be found in each chapter. LH rats weighed 

between 250-275g and SD rats weighed between 275-300g (rats of both strains were 

approximately 2 months of age) at the start of the experiments. The age was an important 

consideration when planning this project, previous studies have been describing the 

behavioural phenotype changes and key brain developmental processes across comparable 

ages in humans and in rats (Semple et al., 2013), for example evidence suggests that 

GABAergic and dopaminergic systems are only fully mature in rats at 2-3 months of age (i.e., 

postnatal day 60-90). Furthermore, an old radiographic skeletal study suggests that the rat 

bone is only completely mature around 60-80 postnatal day (Hughes and Tanner, 1970). 

Rats were housed 4 per individually ventilated cages (IVC) cages under temperature-

controlled conditions and under a 12 h light-dark cycle with lights-on between 7:00am and 

7:00pm. Animals had food and water available ad libitum. First, rats had a period of 

acclimatisation following their arrival, they were habituated to handling by the experimenter 

for a few days before any experimental procedure or apparatus habituation. All behavioural 

testing was carried out during the light phase.  
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2.2. INTRA-ARTICULAR INJECTIONS   

Osteoarthritis was chemically induced with a single intra-articular injection of 

monosodium iodoacetate (MIA). For induction of MIA-induced arthritis, each rat was 

anesthetised with isoflurane (isoflurane 2.5 – 3% in 1L/min O2). Each rat was placed in a 

chamber with this volatile mixture until areflexic (confirmed by pinching of hind paws). The 

rat was then placed in a supine position and the skin around the knee joint of both legs 

shaved, the diameter of the knee joints were measured using a digital electronic calliper and, 

then, the skin of left joint was swabbed with chlorhexidine (Animal care Ltd, Dunning ton, 

York). Each rat received a single intra-articular injection of 50 µL of either MIA (1 mg/50 µL 

saline or 3 mg/50 µL saline; Sigma) or the same volume of sterile 0.9% normal saline (control 

animals) through the infra-patellar ligament of the left knee using a 30-gauge 8-mm needle 

(Guingamp et al., 1997; Bove et al., 2003; Sagar et al., 2010). The knee joint was held in 

around 90֯ flexion, then the needle was inserted through the suprapatellar ligament with the 

joint to administer the compound. 

Animals were allocated to treatment groups before the model induction based on the 

behaviour baseline measurements; treatment allocations were adjusted to match groups for 

their baseline measurements. The experimenter conducting the knee injections was blind to 

treatment. Right (un-injected) and the saline injected knee joint were used as controls. 

 

2.3. PAIN BEHAVIOUR MEASURMENTS 

Baseline measures were obtained prior to the intra-articular injections of MIA-induced 

arthritis and then repeated postoperatively at specific time points (described in each study). 

The effects of intra-articular injection of MIA/saline were assessed using two behavioural 

tests: i) weight distribution through the injured and contralateral limb using an incapacitance 

tester (Bove et al., 2003) and ii) mechanical sensitivity measuring the hindpaw withdrawal 

thresholds by application of von Frey monofilaments in the plantar surface of the paw 

(Chaplan et al., 1994; Combe et al., 2004; Sagar et al., 2011). 

 

2.3.1. WEIGHT-BEARING TEST 

The change in distribution of weight across the hind limbs associated with osteoarthritic 

knee pain was assessed by measuring changes in the weight distribution between ipsilateral 

(osteoarthritic) and contralateral paw (control). Rats were first habituated in the Perspex box 
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prior to start of the study for at least 3 days in order to get used to their surroundings and to 

reduce the stress levels during the data collection. Animals were placed in an incapacitance 

(Linton Instrumentation Diss, Norfolk, UK) tester in a way that each hind paw rested on a 

separate scaler plate to that force exerted by each limb can be measured (Fig.2.1.). The 

average of the force exerted in 3 seconds was measured in grams and the collected data 

corresponds to the mean of three consecutive readings. Changes in hind paw weight 

distribution were calculated by the following equation: 

 (𝐼𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 + 𝐼𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙⁄ ) 𝑥 100 . 

 

 

 

2.3.2. PAW WITHDRAWAL THRESHOLD TEST 

The development of mechanical allodynia was assessed using Von Frey monofilaments 

test (Fig.2.2.). Rats were first habituated to the apparatus at least 3 days before testing. On 

the first two days, animals were only placed in the chambers for approximately 30 min with 

no stimuli, on the third day of habituation, after the 30 min habituation 6g was applied to 

the plantar surface of the animals in order to habituate the animals at the presence of the 

FIGURE 2.1. – INCAPACITANCE METER USED FOR WEIGHT BEARING ASYMMETRY ASSESSMENTS. The 

incapacitance meter consists in a Perspex box with a lid to hold the animal, two transducer pads in the 

bottom allow to record weight distributed to either hind limb by the rat. The average of the force 

exerted in 3 seconds was measured in grams and the collected data corresponds to the mean of three 

consecutive readings. 
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stimuli. In each day of testing rats were placed singly into the cages 15-20 min prior to the 

assessment. Hind paw withdrawal threshold (PWT) was measured using a modified up-down 

method (Chaplan et al., 1994; Sagar et al., 2011). Von Frey monofilaments (Semmes-

Weinstein monofilaments of bending forces 0.6, 1, 1.4, 2, 4, 6, 8, 10 and 15; the force values 

are presented in grams) were applied perpendicular to the plantar surface of both paws of 

the rats for 3s period in ascending order, starting with 6g hair. If fewer than two applications 

elicited a withdrawal response, the hair with the next highest force was applied. Once a 

positive response was established, the paw was retested with the next descending Von Frey 

monofilament until no response occurred. A positive response was considered if the paw was 

sharply withdrawn or flinching or licking occurred. The lowest weight of monofilament which 

elicited a reflex was noted as a PWT.   

 

2.4. SENSORIMOTOR ACTIVITY MEASURMENTS 

The effects of intra-articular injection of MIA/saline were assessed using two behavioural 

tests: i) open-field locomotor activity test, to assess potential impairments in the locomotor 

activity and ii) startle/prepulse inhibition test to evaluate brain function. Sensorimotor 

activity measures were also obtained prior to the intra-articular injections of MIA-induced 

arthritis, and postoperatively at specific time points (described in each study). Sensorimotor 

activity measurements were conducted one day after pain behaviour measurements.   

 

FIGURE 2.2. – VON-FREY CAGES USED FOR MEASURING MECHANICAL ALLODYNIA. Rats were placed in 

Plexiglas wire bottom test cages and hindpaw withdrawal threshold was measured by applying Von-

Frey monofilaments of different forces with the up-down method. 
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2.4.1. LOCOMOTOR ACTIVITY TEST 

To assess locomotor activity rats were placed individually in the centre of Perspex 

chambers (39.5cm long x 23.5cm wide x 24.5cm deep) with metal grid lids for 30 minutes 

(Fig.2.3.). Locomotor activity was measured similar to previous studies (Pezze et al., 2014). 2 

levels of a 4x8 photobeam configuration allowed measuring the locomotor activity, the break 

of two consecutive photobeams generates a locomotor count (Photobeam Activity System; 

San Diego Instruments). The total locomotor activity was calculated for each 10 min block of 

the overall time of the test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2. STARTLE-PREPULSE INHIBITION TESTS  

Startle is a reflex evoked by sudden stimuli, which can be tactile, visual or acoustic. While, 

prepulse Inhibition (PPI) is a phenomenon in which a suppression of a startle response occurs 

when a weak stimulus (prepulse) precedes a subsequent stronger startle stimulus. Startle/PPI 

test has been used in both humans and rodents as a measure of sensorimotor gating. Brain 

areas such hippocampus, prefrontal cortex, nucleus accumbens and amygdala seem to play 

an important role in Startle/PPI (Koch, 1999).  

The measurements were conducted similar to previous studies (Pezze et al., 2014) using 

four well-lit (15W) and ventilated sound-attenuated chambers (39x38x58cm3), each one 

with a clear Perspex cylinder (8.8cm diameter, 19.5cm long) inside (Fig.2.4.). The cylinders 

FIGURE 2.3. – OPEN-FIELD CHAMBER USED TO MEASURE LOCOMOTOR ACTIVITY. Rats were placed in 

Plexiglas chambers for 30 minutes and locomotor activity was measured by break of photobeams.  
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were linked to a solid Perspex base also linked to an accelerometer to measure the individual 

whole-body startle response by a Reflex Testing software (San Diego Instruments, US). 

Centrally above the cylinders was located speakers that presented the background and 

acoustic stimuli produced by a noise generator controlled by the SR-Lab system (San Diego 

Instruments, US).  

Startle/ PPI test was divided in four main parts, the acclimatization and 3 test blocks. In 

the acclimatization rat is exposed to a 62-dB (A) background noise for a period of 5 minutes, 

the background noise continues through all the session (23 minutes). In the first block, 10 

startle pulses of 120-dB (A) of 40ms each were presented alone. In the second block, to 

measure the PPI, 5 different type of pulse (120-, 84-, 80-, 76-, 72-dB (A)) were presented 10 

times each, in pseudorandom order and with a variable interval of 10 to 20s duration. The 

percentage of PPI (%PPI) induced for each pulse intensity was calculated using the follow 

formula: %PPI = [(mean amplitude on pulse-alone trials – mean startle amplitude on 

prepulse-plus-pulse trials) / (mean startle amplitude on pulse-alone trial)] X 100. Finally, in 

the third block 5 startle pulses of 120-dB (A) completed the session. 

 

 

 

2.5. TISSUE COLLECTION AND TISSUE PROCESSING 

At the end of each study, animals were anesthetized with a lethal dose of sodium 

pentobarbitone (1-1.5 mL Euthatal, intraperitoneal), and then transcardially perfused with 

FIGURE 2.4. – STARTLE/PREPULSE INHIBITION CHAMBER USED TO MEASURE SENSORIMOTOR GATING. Rats 

were placed in a Plexiglas cylinder inside a sound-attenuated chamber. The cylinder was linked to an 

accelerometer to measure the startle response to the different pulse intensities presented during the 

test. 
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0.9% saline followed by 4% paraformaldehyde (PFA) (around 250-300 ml of each solution was 

used to perfuse each animal).  

Blood was collected during the perfusion with saline. Brains, spinal cords and DRGs were 

carefully excised and kept in the same fixative (PFA 4%) overnight and then stored in 30% 

sucrose azide solution at 4⁰C for cryprotection.  

Both ipsilateral and contralateral knees were also collected and stored in the fixative for 

72h. Knee joints were then transferred to an ethylenediaminetetraacetic acid (EDTA) + 7.5% 

polyvinylpyroolidene (PVP) solution for decalcification (5 to 6 weeks, agitated at room 

temperature). Solution was changed once a week. This process allows to soften the heavily 

mineralised tissue and consequently to obtain an adequate and satisfactory thin section for 

histological purposes.  

After decalcification, knee joints were split in a frontal plane so medial and lateral 

orientation was maintained. Knees were kept stretched with help of forceps and then, with 

a sharp razor split along the lateral ligament (medial collateral ligament) (Kraus et al., 2010). 

Both halves, anterior and posterior parts, were placed in separated cassettes. Then, the 

trimmed joints in the cassettes were processed by standard histological techniques and 

mounted in paraffin wax at King’s Mill Hospital by an experienced laboratory technician 

(Roger Hill). Twenty-four 5µm sections were cut in total from each paraffin block (from both 

anterior and posterior halves of the knee). 8 serial 5µm sections were obtained from 3 

different levels (post, medial and frontal part) and 1 section from each level were stained and 

used for scoring. Paraffin sections were cut using the microtome at City Hospital by Sara or 

by an experienced histology technician (Mohsen Seyed). 

 

2.6. HISTOLOGICAL STAINING  

Histological techniques were used to detect chemical components of cells and tissues to 

assess OA progression in the knee joints. Haematoxylin and Eosin (H&E) and Safranin-O-Fast 

Green are the most commonly used histological stain techniques to detect chemical 

components of cells and tissues to assess OA progression in the knee joints. 

H&E staining is used to assess basic structures/tissue morphology (Schmitz et al., 2010). 

Haematoxylin is basic dye with high affinity for acidic structures such as nucleus, staining 

them blue/purple, while eosin is an acidic dye that stains basic structures such as cytoplasm, 

staining them pinkish (Fig.2.5.). Areas with high proteoglycan content are stained bluish. 
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Paraffin wax sections were first dewaxed in xylene (x2) for 5 min, then rehydrated in graded 

ethanol (100% and 70%, both x2 for 5 min), and then washed in distilled water for 5 min. 

Sections were then immersed in the nuclear staining (Mayer’s haematoxylin) for 15 min, 

rinsing in running tap water until the water was discoloured and sections turned blue. 

Sections were then dipped for 30 seconds to 1 min in the second dye (eosin) to stain all other 

tissue structures and rinsing in tap water again to differentiate the staining. Sections were 

then dehydrated through graded ethanol (70% and 100%, both x2 for 5 min) and dipped into 

xylene (x2, 5 min). Finally, slides were mounted in DPX and covered using 64 mm cover glass 

and allowed to dry in the fume hood. 

Safranin-O-Fast green is highly used to study cartilage and bone structures(Schmitz et al., 

2010). Safranin-O is a cationic dye that stains proteoglycan in normal cartilage. Proteoglycans 

are stained dark pink-red and the red colour intensity is a measure of cartilage damage. Fast 

green stains the subchondral bone in blue/green (Fig.2.6.). Paraffin wax embedded sections 

were fist dewaxed in xylene (x2) for 5 min, then rehydrated in graded ethanol (100% and 

70%, both x2 for 5 min), and then washed in distilled water for 5 min. Sections were then 

immersed in the Weigert’s haematoxylin dye for 2 min, rinsing in running tap water for 1 min 

and then in acid alcohol solution for 20 sec and subsequently in tap water again for 3 min. 

FIGURE 2.5. – HAEMATOXYLIN AND EOSIN STAINED SECTION OF RAT TIBIA. Cartilage matrix – pink (bluish), 

bone, fibrotic tissue – pink to red, nuclei – blue, cytoplasm – pink to red. 



32 
 

Sections were then immersed for 5 min in the fast green, briefly dipped into acetic acid for 1 

sec and immersed in Safranin-O for 5 min. To differentiate staining, sections were submersed 

in running tap water for 5 min and then dehydrated in 100% ethanol (x2 for 5 min) and dipped 

into xylene (x2, 5 min). Finally, slides were mounted in DPX and covered using 64 mm cover 

glass and allowed to dry in the fume hood. 

 

 

2.7. HISTOPATHOLOGICAL SCORING 

After staining, images were collected using a Zeiss Axioscop50 microscope (Carl Zeiss Ltd, 

Welwyn Garden City, UK), captured using a video camera (AxioCam MRmZeiss) and analysed 

using Axiovision real 4.8 software. Experimenters were blinded to experimental group. Once 

again, scoring were carried out by Sara or by an experienced histology technician (Mohsen 

Seyed). In the first study, a reliability analysis between Mohesen's and Sara's scorings was 

carried out (intraclass correlation (ICC)>0.90, p<0.001 for all the scoring parameters).  

Microscopic scoring for OA cartilage pathology was carried out as described in Table I.  

  

 

FIGURE 2.6. – SAFRANIN-O FAST GREEN STAINED SECTION OF RAT TIBIA. Cartilage matrix – pink to red, 

underlying bone – blue/green, nuclei – dark blue/black, cytoplasm – grey green/blue. 
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TABLE I – PARAMETERS USED FOR HISTOPATHOLOGICAL SCORING OF MIA MODEL. 

 Score: 

Cartilage damage (Janusz et al., 

2002) 

0= normal 

1= minimal superficial zone only 

2= mild extends into the upper middle zone  

3= moderate well into the middle zone  

4= marked into the deep zone but not to tidemark 

5= severe full thickness degeneration to tidemark 

 

Cartilage integrity = Cartilage damage x cartilage 

damage involvement (1, 2 or 3). 

Involvement is the extent of damage in the tibial 

plateau – this area is divided in 3 equal parts along 

the surface) 

Synovial inflammation (Mapp et 

al., 2008) 

0= lining cell layer 1-2 cells thick 

1= lining cell layer 3-5 cells thick 

2= lining cell layer 6-8 cells thick and/or mild increase 

in cellularity 

3= lining cell layer >9 cells thick and/or severe 

increase in cellularity 

Osteophytes(Janusz et al., 2002) 0= no changes 

1= mild (<40 µm) 

2= moderate (40–160 µm) 

3= severe (>160 µM) 

(size is measured using an ocular micrometer) 

Chondrocytes (Pritzker et al., 

2006) 

0= present in the cartilage 

1= not present in the cartilage 

Proteoglycans (Pritzker et al., 

2006) 

0= normal 

1= mild loss 

2= moderate loss 

3= severe loss 

4= complete loss 
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CHAPTER 3                                                                                                                                                                                                                                                   

MONOSODIUM IODOACETATE-INDUCED OSTEOARTHRITIS-LIKE 

KNEE PAIN IN LISTER HOODED RATS 

 

 

3.1. INTRODUCTION   

Chronic pain is a major public health problem worldwide with no effective treatment. Pain 

is the principal reason why chronic pain patients seek medical assistance and pain research 

is mainly focused on the nociceptive / sensation components. Nevertheless there is evidence 

that this disease may also be associated with other comorbidities, including cognitive 

impairments (Moriarty et al., 2011). However, pain research has only recently started to 

focus on the non-sensation components of the disease and understanding of the relationship 

between chronic pain and cognition and underlying mechanisms is limited. Overall, 

understanding of the impact of chronic pain on cognition is variable depending upon the pain 

state, in the case of osteoarthritis (OA) it is rather limited. 

Animal models can provide important information and highlight relevant mechanisms 

that lead to the development of a health problem, and for that they are a crucial tool to study 

and characterise pathologies and for the development of new therapeutics. The selection of 

the most appropriate animal model and strain to address the study question is crucial to 

obtain the most clinically relevant information and maximise the benefits of the research.  

 

3.1.1. MONOSODIUM-IODOACETATE MODEL 

As mentioned in the general introduction, there are several animal models that replicate 

aspects of human OA physiopathology, including spontaneous, surgically- and chemically-

induced models. No single model is able to reproduce entirely the human disease, however 

the spontaneous models are widely accepted because they mimic the natural occurrence of 

OA.  However, the models most commonly used are induced models that in contrast with the 

spontaneous models allow the use of appropriate age-matched controls and exhibit less 

heterogeneity, and consequently require lower numbers of animals per group.  
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Intra-articular injection of monosodium iodoacetate MIA has been widely used to model 

the development of OA and associated pain responses, and to test potential new drug 

therapies aimed at resolving the painful symptoms (Lampropoulou-Adamidou et al., 2014). 

This model has been widely used due to the rapid timecourse in the development of joint 

pathology, the high reproducibility (Guzman et al., 2003; Marker and Pomonis, 2012; Pitcher 

et al., 2016) and it does not require any additional surgery and therefore avoids 

postoperative pain. MIA is an inhibitor of the enzyme glyceraldehyde-3-phosphate 

dehydrogenase, and therefore an inhibitor of glycolysis (Jiang et al., 2013). Intra-articular 

injection of MIA induces chondrocytic death that leads to destruction of cartilage in several 

different animals species, including rodents, rabbits and guinea pigs (Kim et al., 2018).  

 

3.1.2. FEATURES OF THE MIA MODEL 

Although the MIA model does not mimic the natural occurrence of OA in humans it is 

associated with similar features of knee pathology (Guingamp et al., 1997). OA is a 

multifactorial disease and besides cartilage degradation, synovitis (infiltration of 

inflammatory cells in the synovium space) (Dulay et al., 2015) and fibrillation is also present 

(Piperno et al., 1998). The intra-articular injection of MIA results in chrondrocyte death in the 

tibial plateaux and femoral condyles which leads to loss of cartilage integrity, osteophyte 

formation and progressive proteoglycan loss (Janusz et al., 2001, 2002; Pritzker et al., 2006). 

At later stages, cartilage fibrillation, resorption and subchondral bone degradation also occur 

(Janusz et al., 2002; Mapp et al., 2013).  

As in people with unilateral knee OA (Christiansen and Stevens-Lapsley, 2010), rodents 

with unilateral joint injury also exhibit weight bearing asymmetry (Bove et al., 2003). Weight 

bearing asymmetry is an indicator of standing pain, patients and rodents with OA tend to 

lean less or put less weight on the injured joint, being considered an indirect measurement 

of knee pain.  The MIA model is associated with pain related behaviours, such as asymmetry 

of hind paw weight distribution and lowered hindpaw withdrawal thresholds (mechanical 

allodynia) (Bove et al., 2003; Sagar et al., 2010, 2011). Measuring this pain behaviour provides 

indirect surrogate measures of alterations in the peripheral and central processing 

underlying OA-related pain, as changes in weight bearing represent changes in both 

peripheral and central processes, while lowered paw withdrawal thresholds is mainly 

centrally driven (Graven-Nielsen and Arendt-Nielsen, 2002).  
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As described in the general introduction, there are multiple lines of evidence from 

preclinical and clinical studies for central sensitization in pain processing in OA (Arendt-

Nielsen et al., 2015). Evidence for central sensitization includes the development of 

hyperalgesia, i.e., increased responses to a painful stimulus, allodynia, painful responses to 

an otherwise innocuous stimulus, and changes in spinal neuronal thresholds (Lluch et al., 

2014; Havelin et al., 2016; Soni et al., 2019). In the MIA model in rats, enhanced spinal 

responses to mechanical stimulation of the hindpaw skin were demonstrated (Sagar et al., 

2010). Changes in hindpaw mechanical thresholds may indicate referred (distal) pain 

(Arendt-Nielsen et al., 2018), and can be assed in rodents by measuring changes in 

withdrawal thresholds at remote sites to the primary injury (Nwosu et al., 2016a). 

Overall, there is strong evidence that a single intra-articular injection of MIA leads to 

histological, biochemical and pain behaviour changes. Both the extent of knee pathology and 

pain behaviour are dose and time dependent, with higher concentration of MIA leading to 

greater severity at earlier time points – Table I (Bove et al., 2003; Sagar et al., 2010; Ferreira-

Gomes et al., 2012; Mapp et al., 2013; Ogbonna et al., 2013; Aso et al., 2016; Nwosu et al., 

2016b). 

 

3.1.3. RAT STRAINS USED TO TEST COGNITIVE FUNCTION AND 

NOCICEPTIVE RESPONDING  

The main aim of this thesis was to study the potential impact of chronic OA pain on 

cognitive function and to address this several cognitive tasks were conducted. Besides 

selecting an appropriate pain model, an appropriate rat strain is also an important factor to 

consider. As mentioned before, the MIA model has been widely used to measure pain 

behaviour, including in our lab; however, previous studies have been mainly conducted in 

young albino rat strains as showed in Table I. Unfortunately, albino rats show comparatively 

poorer performances in translational tests of clinically relevant cognitive functions. A study 

conducted in several pigmented strains, such as Lister hooded (LH) rats and Long Evans rats, 

albino strains, such as SD and Wistar rats, and also wild rats has showed that pigmented and 

wild animals have significant higher visual acuity when compared to albino strains (Prusky et 

al., 2002). The poor visual acuity of the albino strains can lead to worse performances in 

specific behaviour tasks, making the strain selection a very important factor to take into 

account when vision-mediated behavioural task, such as the Morris watermaze task or other 

behavioural maze tasks are involved. Other studies showed that non-albino strain performed 
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better in visual learning and memory tasks (Yau et al., 1994; Higgins et al., 2007; Kumar et 

al., 2015).  

 

3.1.3.1. CHRONIC PAIN MODELS IN LISTER HOODED RATS 

For decades pigmented strains have been the first choice for assessment of navigation 

and memory in rodents (Clemens et al., 2014), as these animals are usually more accurate 

and faster at learning the tasks, allowing detection of impairments in specific conditions more 

precisely. In addition, LH rats show increased locomotor activity and novelty-induced 

behaviour (Clemens et al., 2014). For these reasons, LH rats were selected to be used in this 

thesis. 

Previous studies of pain conditions have been performed in LH rats, various models have 

been studied including intra-plantar injection of formalin to induce inflammation (Butler et 

al., 2011), spinal nerve ligation (Moriarty et al., 2016a), inguinal hernia repair (Bree et al., 

2016) and complete Freund's Adjuvant (Pais-Vieira et al., 2009). However, to our knowledge, 

models of OA pain have yet to be studied in LH rats.   

 

3.1.4. CHAPTER AIMS 

MIA model has been widely used to investigate pain mechanisms, associated behaviour 

and possible treatments. The intra-articular injection of this glycolysis inhibitor promotes 

characteristic pain behaviour, degradation of cartilage, as well as other OA features in several 

laboratory animals, such as rodent, rabbits and guineas pigs. Albino rat strains have been the 

most commonly used in pain laboratories, however these strains are less suitable for 

cognitive behaviour studies, due to poor performances in comparative translational tests of 

clinically relevant cognitive functions.  In this chapter, in order to overcome this drawback 

when testing our hypothesis that chronic OA pain may affect cognitive function, chronic OA-

like knee pain induced by MIA model was studied in LH rats with the objective of identifying 

a suitable dose to induce a robust pain phenotype and knee pathology in this strain of rats. 
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3.2. METHODS 

Refer to Chapter 2 for general methodology.  

 

3.2.1. ANIMALS  

A total of 48 adult male Lister hooded (LH) rats weighing between 253-283g and 24 

Sprague-Dawley (SD) weighing between 275-300g (rats of both strains were approximately 

2-3 months of age; Charles Rivers, UK) were used in this study. The age was an important 

consideration when planning this project to ensure complete brain and bone maturation, as 

discussed in chapter 2.  

 

3.2.2. PAIN BEHAVIOUR AND SENSORIMOTOR ACTIVITY 

The model of OA pain was induced with a single intra-articular injection of MIA (as 

described in 2.2.). Each rat was injected with 50 µL of MIA (1 mg/50 µL or 3 mg/50 µL saline) 

or the same volume of sterile 0.9% saline solution (control animals) through the infra-patellar 

ligament. Rats were initially allocated to the treatment groups before model induction based 

on the pain and sensorimotor activity baseline measurements to match the prospective 

treatment groups for their baseline measurements as closely as possible. In each cage, half 

of the animals received treatment and the other half saline. The experimenter (S.G.) was 

blinded to the treatment allocations throughout the data collection and analysis. 

Baseline measures of pain behaviour and sensorimotor activity were obtained prior to 

MIA-induced arthritis (Day 0) and then measures were taken at specific postoperative time 

points as described in Fig.3.1. Pain behaviour were assessed using two behavioural tests: i) 

weight distribution through the injured and contralateral limb using an incapacitance tester, 

and ii) mechanical sensitivity measurement of hindpaw withdrawal thresholds by application 

of von Frey monofilaments to the plantar surface of the paw (as described in 2.3.). Potential 

effects of the model on the sensorimotor activity were assessed using two behavioural tests: 

i) open-field locomotor activity test, to assess potential impairments in the locomotor 

activity, and ii) startle/prepulse inhibition test to evaluate brain function (as described in 2.4). 

 



40 
 

3.2.4. EXPERIMENTAL DESIGN  

Three different experiments were conducted: 

Experiment 1 – LH rats injected with 1 mg MIA: a total of 24 LH rats were used in two 

separate replicates.  Rats received a single intra-articular injection of either MIA (1 mg/50 μL; 

n=12) or the same volume of sterile saline solution (controls; n=12). After MIA injection one 

rat presented breathing difficulties and was humanely killed and excluded from the study. 

One extra rat was excluded from weight-bearing test due to intense stress when placed into 

the chamber. Pain behaviour and sensorimotor activity measurements were collected at 

baseline, and then from day 3 to day 42, twice a week until the endpoint Day 49. (Fig3.1.A). 

Experiment 2 – 20 LH and 20 SD rats were used in this experiment. Half of the rats of each 

strain were injected with 50 μL of MIA (1 mg/50 μL), the other half were injected with the 

same volume of sterile saline solution (controls). Pain behaviour measurements were 

collected at baseline, days 14 and 28 after model induction to prevent habituation to the 

tests due to repeated testing. Sensorimotor activity was assessed at baseline, days 15 and 

29. Endpoint: Day 35. (Fig.3.1.B). 

Experiment 3 – this experiment was conducted as a pilot study and all the 4 LH and the 4 

SD rats were injected with 3 mg/50 μL of MIA. Pain behaviour was assessed at baseline days 

7, 14, 21 and 28. Endpoint: Day 35. (Fig.3.1.C). 

 

At the end of each experiment, rats were anesthetized with a lethal dose of sodium 

pentobarbitone and transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde (PFA). Brains, spinal cords, DRGs and knees were carefully excised, 

preserved and stored. Knee joint sections were stained with haematoxylin and eosin- or 

safranin-O/fast green and then scored for overall joint morphology and proteoglycan loss. 

Total cartilage joint damage, osteophyte, proteoglycan loss, synovial inflammation and 

chondrocyte presence were scored to evaluate the severity of the knee joint pathology as 

described in 2.7. 

 

3.2.5. STATISTICAL ANALYSIS  

GraphPad Prism 8 and IBM SPSS Statistics 24 were used to generate the graphs and 

perform the statistical analysis. Results from the pain behaviour studies were analysed using 
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an analysis of variance (ANOVA), with group for between-subjects and time as repeated 

measures/within-subjects variable of testing day. Results from the sensorimotor behaviour 

studies were analysed using a mixed design factorial ANOVA test with testing day and task 

blocks (or pulse intensity in the PPI test) as within-subject factors and group as between-

subjects factor. Bonferroni multiple comparison was used as post-hoc testing. Knee 

pathology was analysed with Kruskal-wallis test since normality was violated.  

p<0.05 was considered to represent a significant difference and all results were expressed 

as mean ± standard error (SEM).  

  

FIGURE 3.1. – TIME COURSE OF THE MIA-INDUCED OA-LIKE KNEE PAIN IN LISTER HOODED RATS STUDY. 48 

LH rats and 24 SD rats were used in this study. Rats were first handled and habituated to the 

experimenter and pain behaviour test apparatus. Pain and sensorimotor activity baseline 

measurements were collected before model induction and then at specific time points after MIA (1mg 

or 3mg /50µl ) or saline intra-articular injection as indicated in the scheme. 3 experiments were carried 

on in this study (A, B and C). 
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3.3. RESULTS   

At this point, data from experiments 1 and 2 are presented together.  

Rats from both SD and LH strains with approximately the same age were used to ensure 

the same degree of brain and bone development. At the equivalent age, adult SD rats were 

heavier than adult LH rats (Fig.3.2.), SD MIA-injected rats showed a trend to gain less body 

weight than saline control SD, but no significant differences were observed (group: 

F(1,18)=1.45; p=0.24).  This trend was not evident in LH rats (group: F(1,18)=0.50). 

  

3.3.1. PAIN BEHAVIOUR – 1 MG MIA 

The standard dose of MIA (1 mg) was only able to induce weak pain phenotypes in both 

LH and SD rat strains, reflected by small changes in the weight bearing asymmetry and no 

significant changes in the paw withdrawal thresholds. 

LH rats injected with 1mg in the experiment 1 exhibited a decrease in weight bearing 

compared with control animals (group: F(1,19)=15.74; p=0.0008) (Fig.3.3.A), showing that MIA 

LH rats place less weight on the injured paw compared with LH saline. Bonferroni post hoc 

analysis showed this difference was only statistically significant at day 3 after model 

induction, and likely reflects an acute inflammatory response. Main effect of time was 

observed (F(11, 209)=2.22; p=0.01), however, no  interaction involving group was observed (F(11, 

209)=1.26; p=0.25). No differences in hindpaw withdrawal thresholds were observed for MIA 

versus saline injected rats (group: F(1,20)=3.22; p=0.09) (Fig.3.3.B).  Both the MIA and control 

groups showed a decrease in paw withdrawal threshold after intra-articular injection, 

reflecting habituation to the test (time: F(10,200)=2.09; p =0.27). No significant interaction 

between group and time was found(time x group: F(10, 200)=0.88). 

FIGURE 3.2. – BODY WEIGHT OF SPRAGUE-DAWLEY (SD) AND LISTER HOODED (LH) RATS AFTER 

MONOSODIUM IODOACETATE (MIA) OR SALINE INJECTIONS. Rats were injected with either 50ul of 1mg 

of MIA (□, ○) or saline (▪, ●) in the left knee (n=10 in each group). Data are presented as mean±SEM. 
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In experiment 2, a slight decrease in weight bearing was evident after MIA injection in 

both SD and LH rats (group: F(3,36)=6.57; p=0.001) (Fig.3.4.A). However, post hoc analysis 

showed that only MIA LH rats displayed a statistically significant difference in weight bearing 

compared with controls rats of the same strain, SD MIA did not statically differ from SD saline 

at any timepoint. All rats in experiment 2 showed a slight trend to reduce PWT after baseline, 

however no main effects of group and time were observed (Fig.3.4.B). The 2-away ANOVA 

using MIA group as between-subjects factor and test day as repeated-measures factor 

showed no statistically significant interaction effect between group and time for both WB 

and PWTs (time: F(1,36)=1.20; p =0.28; time x group: F(3,36)<1.31; p>0.29). 

  

 

FIGURE 3.3. – MONOSODIUM IODOACETATE (MIA) INDUCED WEAK ASYMMETRY IN (A) WEIGHT BEARING 

AND NO CHANGES IN (B) MECHANICAL ALLODYNIA IN LISTER HOODED (LH) RATS. LH rats were injected 

with either 50ul of 1mg of MIA (▪; n=10 in A and n=11 in B) or saline (●; n=11) in the left knee. Data 

are presented as mean±SEM. 2-way ANOVA with Bonferroni post hoc testing. ** p=0.002 
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3.3.2. SENSORIMOTOR ACTIVITY – 1 MG MIA 

Locomotor activity, startle response and prepulse inhibition were not affected by the 

intra-articular injection of the standard dose of MIA (1 mg) in either adult LH or SD rats. 

Neither the horizontal (group: F(1,21)=3.81; p=0.06) nor vertical (group: F(1,21)=2.69; p=0.12) 

(data not shown) activity measured were affected by 1 mg of MIA treatment in LH rats in 

experiment 1 at any timepoint.  3-way ANOVA using group as between-subjects factor and 

test day and blocks as within-subjects was run to evaluate any potential effects of MIA-

injections on locomotor activity during the time of session and time point in experiment 1, 

showed no triple interaction effect (F(28,280)=1.08; p=0.36). In addition, there were no 

impairments in startle response (group: F(1,21)=2.36; p=0.14) or prepulse inhibition (group: 

F(1,21)=0.05; p=0.83) in the LH rats following induction of the MIA model (data not showed). 

3-way ANOVA using MIA group as between-subjects factor and test day and startle amplitude 

or pulse intensity as within-subjects also showed no triple interaction effect regarding startle 

habituation (F(22,262)=1.52; p=0.06) or % prepulse inhibition (F(33,693)=0.83; p=0.73).  

In experiment 2, injection of 1 mg of MIA also did not affect the horizontal locomotor 

activity of SD or LH strains (Fig.3.5.). 3-way ANOVA showed a main effect of group (group: 

F(3,36)=3.72; p=0.02), however, post hoc analysis showed that this only reflected a difference 

between strains (LH saline > SD saline, p=0.02). The 3-way ANOVA showed no triple 

interaction effect of groups, blocks and days (F(12,144)=1.229; p=0.27). Interaction between 

FIGURE 3.4. – MONOSODIUM IODOACETATE (MIA) INDUCED ASYMMETRY IN WEIGHT BEARING IN BOTH 

LISTER HOODED (LH) AND SPRAGUE-DAWLEY (SD) RATS (A), BUT ONLY INDUCED CHANGES IN MECHANICAL 

ALLODYNIA IN SD RATS (B). Rats were injected with either 50ul of 1mg of MIA (□, ○) or saline (▪, ●) in 

the left knee (n=10 in each group). Data are presented as mean±SEM. 2-way ANOVA with Bonferroni 

as post hoc testing. ** p=0.003 
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group and blocks (F(6,72)=6.01; p<0.0001) or days (F(6,72)=3.10; p=0.01) and between blocks and 

days (F(4,144)=10.94; p<0.001) were statistically significant, which reflects a habituation to the 

apparatus during the 30min-session and to the test itself. Looking in particular to the 

locomotor activity in the first block of each session, when the rats are less habituated to the 

apparatus and show a higher exploratory activity, there was only a main effect of days in both 

horizontal (F(2,72)=48.81; p<0.0001) and vertical activity (F(2,72)=40.4; p<0.0001, data not 

shown), reflecting habituation to the arena. 
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The injection of 1 mg of MIA did not affect the startle or PPI measures when compared 

with saline-injected rats in both strains (Fig.3.6.). 3-way ANOVA showed a main effect of 

group (group: F(3,36)=19.29; p<0.001) in the startle response. However, post hoc analysis 

showed that this only reflected a difference between strains. Startle response is overall 

markedly enhanced in LH compared with SD rats (LH saline vs SD saline, p<0.0001). For this 

reason, different 3-way ANOVAs were performed to evaluate the startle response of both 

strains, no main effect of group treatment in both LH (group: F(1, 18)=0.587; p=0.45); and SD 

rats (group: F(1, 18)=0.679; p=0.42) or triple interactions between days, startle habituation 

across trials and group was observed. 

 Regarding the prepulse inhibition (%PPI), 3-way ANOVA showed a main effect of group 

(group: F(3,36)=6.52; p=0.001), however, post hoc analysis showed that this only reflected a 

difference between strains (LH vs SD, p<0.04). Similar with startle, rats exhibit habituation to 

the test across days (time: F(2, 72)=8.08; p<0.001), but no triple interaction effect of groups, 

pulse intensity and days after model induction was observed (F(18, 216)=115.36; p=0.65).  

 

FIGURE 3.5. – MONOSODIUM ACETATE (MIA) DOES NOT AFFECT THE HORIZONTAL LOCOMOTOR ACTIVITY 

IN BOTH LISTER HOODED (LH) AND SPRAGUE-DAWLEY (SD) RATS. Rats were injected with either 50ul of 

1mg of MIA (○, □) or saline (●, ▪) in the left knee (n=10 in each group). Data are presented as 

mean±SEM. 
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3.3.3. KNEE HISTOLOGY – 1 MG MIA  

Knee joints from all animals from experiment 2 were collected at day 35 after model 

induction and processed for pathology scoring to assess the knee pathology induced in both 

SD and LH rats after intra-articular injection of 1 mg of MIA (Fig.3.7. and 3.8.). This dose of 

MIA only induced some loss of cartilage integrity and synovium inflammation in a small 

number of animals, and no significant differences were observed (H<5.26, p>0.15; Fig.3.9.A 

and B). However, both proteoglycan loss (H=24.44, p<0.0001; Fig.3.9.C) and decreased 

number of chondrocytes (H=24.52, p<0.0001; Fig.3.9.D) were observed in knee joints 35 days 

after injection of 1 mg MIA. There were no osteophytes present in any rats in this study. One 

SD MIA-injected rat was not considered in this analysis because it was impossible to access 

the tibial plateau due to bad angle split during knee joint processing. 

FIGURE 3.6. – MONOSODIUM IODOACETATE (MIA) DOES NOT AFFECT THE STARTLE HABITUATION (A) AND 

THE % OF PREPULSE INHIBITION (B) IN BOTH SPRAGUE-DAWLEY AND LISTER HOODED RATS. Rats were 

injected with either 50ul of 1mg of MIA (□, ○) or saline (▪, ●) in the left knee (n=10 in each group). Data 

are presented as mean±SEM. 

A 

B 
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FIGURE 3.7. – HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN MONOSODIUM IODOACETATE (MIA) MODEL 

IN BOTH SPRAGUE-DAWLEY (SD) AND LISTER HOODED (LH) RATS. Representative coronal sections of 

medial and lateral tibial plateau stained with Haematoxylin and eosin (H&E) (A,C,E,G) and Safranin-O-

Fast green (B,D,F,H), 10x. Rats were injected with either 50ul of saline (A-D) or 1mg MIA (E-H). 1mg 

MIA was only able to induce chondrocyte loss in the cartilage (black arrows) in both SD and LH rats, 

35 days after model induction. 
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FIGURE 3.8. – HISTOLOGICAL CHANGES IN SYNOVIAL LINING LAYER THICKNESS-CELLULARITY IN THE 1 MG 

MONOSODIUM IODOACETATE (MIA) MODEL IN BOTH SPRAGUE-DAWLEY (SD) AND LISTER HOODED (LH) 

RATS. Representative coronal sections of tibial plateau haematoxylin and eosin-stained in both SD and 

LH rats, 10x. Black arrows indicate severe increase in cellularity in the synovium.  

FIGURE 3.9. – MICROSCOPIC QUANTIFICATION OF HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN 1 MG 

MONOSODIUM IODOACETATE (MIA) MODEL IN BOTH SPRAGUE-DAWLEY (SD) AND LISTER HOODED (LH) 

RATS. Average scores for medial and lateral tibial plateau. Rats were injected with either 50ul of 1mg 

of MIA (○, □) or saline (●, ▪) in the left knee (n=10 in each group). Knees were collected and processed 

for scoring at day 35 after model induction. 1 mg MIA was not able to induce cartilage damage (A) or 

synovial inflammation (B). On the other hand, proteoglycan loss (C) and chondrocytes absence (D) were 

observed in both SD and LH rats. Data are presented as mean±SEM. **p<0.01. 
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3.3.4. PAIN BEHAVIOUR AND KNEE HISTOLOGY – 3 MG MIA  

To briefly evaluate if the lack of robust pain phenotype is related to the dose of MIA used, 

a pilot study was performed. Four rats of each strain (LH and SD) were injected with 50 μL of 

3 mg MIA and tested for pain phenotype at baseline, 7, 14 and 28 after MIA injection. As our 

objective was only to ascertain whether a higher dose of MIA could induce a robust 

behavioural pain phenotype, saline controls were not included this experiment.  

In contrast with the two previous studies using the standard 1 mg dose of MIA, intra-

articular injection of 3 mg dose of MIA induced pain phenotype in both strains of rats 

(Fig.3.10), as reflected by reduced weight bearing symmetry. Both MIA-injected LH and SD 

rats showed a significant weight bearing asymmetry after model induction (time: 

F(2,12)=13.44; p=0.0009), no main effect of group or interaction between group and time were 

observed (F<13.44, p>0.5) (Fig.3.10.A). Additionally, ipsilateral hindpaw withdrawal 

thresholds were also decreased after model induction (time: F(2,12)=11.82; p=0.002) 

(Fig.3.10.B). No main effect of group, time or interaction of time x group were observed in 

the contralateral paw thresholds (F<2.54, p>0.12).  

Knee joints were again collected at day 35 after model induction and processed for 

histology. Injection of 3 mg of MIA in both LH and SD rats was associated with proteoglycan 

loss, decreased chondrocyte presence and pronounced cartilage surface damage (Fig.3.11). 
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FIGURE 3.10. – 3 MG OF MONOSODIUM ACETATE (MIA) INDUCED CHANGES IN WEIGHT BEARING (A) AND 

IN MECHANICAL ALLODYNIA IN THE IPSILATERAL PAW (B), NOT IN THE CONTRALATERAL PAW (C) IN BOTH 

LISTER HOODED (LH) AND SPRAGUE-DAWLEY (SD) RATS. SD (●, n=4) and LH (▪, n=4) were injected with 

3 mg of MIA. Data are presented as mean±SEM. 
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FIGURE 3.11. – HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN 3 MG MONOSODIUM IODOACETATE (MIA) 

MODEL IN BOTH SPRAGUE-DAWLEY (SD) AND LISTER HOODED (LH) RATS. Representative coronal sections 

of medial and lateral tibial plateau haematoxylin and eosin-stained, 35 days after model induction, 

10x. SD (A, n=4) and LH (B, n=4) rats were injected with 50ul of 3mg MIA in a pilot study. 3mg MIA was 

able to induce cartilage integrity damage (black arrows), chondrocyte loss in the cartilage (blue 

arrows) and subchondral bone changes (yellow arrows) in both SD and LH rats. 
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3.4. DISCUSSION   

The MIA model, as previously mentioned, is a well-established model for albino strains in 

our and other labs. The 1mg dose of MIA is usually enough to induce a robust pain behaviour 

and joint pathology across albino rat strains. Therefore, no problems were anticipated with 

transferring the chemical induced model to LH rats. However, the pain and joint pathology 

phenotypes after the standard 1 mg dose of MIA were not robust in LH rats or age matched 

SD rats. Increasing the dose to 3 mg MIA overcame this limitation and induced robust weight 

bearing asymmetry and knee pathology in LH and SD rats. 

 

3.4.1. PAIN BEHAVIOUR IN MIA-INDUCED LISTER HOODED RATS 

In a first study, only LH rats were tested with the dose usually used at our lab in albino 

rats (1mg) (Sagar et al., 2011; Gowler et al., 2020). 1mg MIA has been reported to induce 

weight bearing asymmetry and mechanical allodynia with reduced paw withdrawal 

thresholds during von-Frey testing in both albino strain, Sprague Dawley (Sagar et al., 2010; 

Nwosu et al., 2016b) and Wistar Han rats (Bove et al., 2003). Unexpectedly, the intra-articular 

injection of 1 mg MIA in LH rats was not associated with a robust pain phenotype. MIA 

injected rats showed a trend to have lower weight bearing asymmetry values, however it was 

not significantly different from saline-control rats.  

Similar with control rats, MIA-injected LH rats showed a decrease in the paw withdrawal 

thresholds after baseline, showing a normal habituation to the test, which remained almost 

constant across the study duration. Importantly, the baseline paw withdrawal threshold 

measures of LH rats were much lower than albino strains (Abaei et al., 2016; Gowler et al., 

2020), consistent with a previous report in LH rats (Moriarty et al., 2016b). However, different 

approaches were used between this study and Moriarty’s study, in this study “up-down” Von 

Frey was used while “percentage response” method was used in Moriarty’s study. These 

lower baseline values might be due to the fact that LH rats are naturally more inquisitive and 

curious than albino strains; during Von Frey testing measures should not be taken while 

animals are grooming and it requires exploratory behaviours to be kept to a minimum to 

avoid false negatives or positive responses (Deuis et al., 2017). In fact, during assessments 

LH rats did not show reduced activity in the Von Frey cages over the entire session. 

Additionally, a study to evaluate nociceptive sensory profiles using the Von Frey test 

conducted in 5 different strains of albino rats showed strain-dependent differences in hind 
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paw threshold in the absence of injury and different profiles after injury, results that may be 

linked with to the inherent stress profiles (Hestehave et al., 2019). 

In this study, strain was not the only difference from the previous studies conducted in 

our lab, but also the age of the rats.  Thus a second experiment was conducted comparing 

age matched SD and LH rats. At this experiment, pain behaviour was only assessed at three 

different time points, to avoid potential habituation to handling and to the test apparatus, 

since during the first study we observed that rats have more tendency to keep less still day 

after day, increasing the difficultly in assessing behavioural measures over time.  In this study, 

both SD and LH MIA-injected rats showed a trend to decrease weight bearing asymmetry, 

but this was not significantly different from control rats. Since the lack of robust results was 

comparable between pigmented and albino strains, strain does not seem the issue for this 

weak pain phenotype and mild knee pathology results.   

The age and the size of rats was another difference between this study and previous 

studies conducted in our lab.  Indeed, during the intra-articular injection it was noticeable 

that knee joints were bigger in this age of rats, than previous SD rats used. This lead to the 

question of whether the dose of MIA used was not sufficient to induce the knee joint damage 

and consequently pain behaviour features. Intra-articular injection of 3mg MIA was 

associated with a considerable increase in weight bearing asymmetry in both SD and LH rats 

from day 7 until the end of the study. This higher dose of MIA also induced a slight mechanical 

allodynia in both strains, with SD- and LH-injected rats exhibiting a decrease in the hindpaw 

withdrawal thresholds, however this effect could reflect a time effect and not pain effect so 

appropriate comparison with saline controls is needed to address this. 

 

3.4.2. SENSORIMOTOR ACTIVITY IN MIA-INDUCED LISTER HOODED RATS 

Consistent with previous studies, LH exhibited higher locomotor activity than SD rats, 

confirming previous reports that LH rats are more inquisitive and active than albino stains. 

Accordingly, Weiss and colleagues (Weiss et al., 2000) previously reported that LH rats have 

an increased locomotor activity, in comparison with two albino strains, SD and Wistar rats. 

McDermott and Kelly(McDermott and Kelly, 2008) compared locomotor activity between LH, 

SD and Wistar rats using two different methods, no differences were reported during the 5 

minutes open field session, however, LH rats showed decreased nocturnal activity and 

increased day-time activity when compared with both albino strains in the 24-hour home 

cage monitoring. In my study, startle response and prepulse inhibition were not altered 
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following induction of the MIA model in either strain of rats. However, as reported previously 

(Varty and Higgins, 1994), startle responses were higher in LH rats compared with SD rats, 

while prepulse inhibition was lower in LH than SD rats.  Nevertheless these baseline values 

were not altered by the model of OA pain. 

 

3.4.3. KNEE PATHOLOGY IN MIA-INDUCED LISTER HOODED RATS 

In line with the behavioural results, microscopic histological analysis showed limited 

morphological alterations on the affected knee joint in animals injected with 1 mg MIA. The 

absence of chondrocytes in the cartilage in the MIA-injected rats shows that MIA was 

properly delivered in the knee joint and inhibited the glycolysis, reducing the number of 

chondrocytes. However, this effect was not enough to induce the other OA features usually 

observed with 1mg MIA, i.e., cartilage damage, synovium inflammation and osteophyte 

formation. Only a small number of rats showed these features in the knee joint. 

As previously mentioned, young SD rats have been largely used in our lab, and strong and 

consistent pain phenotype and knee pathology have been reported (Guingamp et al., 1997; 

Marker and Pomonis, 2012). The major difference between the SD previously used and the 

SD rats used in this chapter is the age, here we were using young adult and not 

juvenile/young rats. Since at the same time of these studies, the same batch of MIA drug was 

being used for other researchers and robust pain behaviour and knee histology were being 

detected in those studies, the issue was not the drug.   

To test the hypothesis that 1mg of MIA was not enough to induce cartilage damage and 

consequently a robust pain phenotype possibly due to a bigger knee joint in our older 

animals, a third study was conducted. In this pilot study, adult SD and LH rats were tested for 

pain behaviour MIA injection.  

3mg MIA induced not only chondrocyte death but also substantial cartilage damage, 

subchondral bone changes and synovitis. 3mg MIA was associated with a pronounced pain 

phenotype, with decreased weight bearing asymmetry and increased hindpaw mechanical 

hypersensitivity after model induction. As previously mentioned in table I, 1 mg MIA in 

younger albino strains displays chondrocyte death, loss of cartilage integrity, osteophytes 

and synovitis (OA histologic features).  
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3.5. CONCLUSION 

The aim of this work was to transfer the MIA model of OA pain to the adult Lister Hooded 

rats.  In the first instance the transfer of the 1mg MIA model to LH rats did not result in 

significant pain behaviour or joint pathology.  This likely reflects the difference in age and 

size of LH rats required for the cognitive tests.  This was confirmed to not be strain specific 

as this was also evident in older SD rats.  Increasing the dose of MIA to 3mg produced robust 

pain behaviour and joint pathology in the LH rats.  It was therefore deemed that this dose of 

MIA was suitable for future studies in LH rats in this thesis. 
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CHAPTER 4                                                                                                                        

HIPPOCAMPUS-DEPENDENT MEMORY IN MIA-INDUCED 

OSTEOARTHRITIS KNEE PAIN IN LISTER HOODED RATS 

 

 

4.1. INTRODUCTION   

Chronic pain has been associated with a range of comorbidities, such as depression (Bair 

et al., 2003), anxiety (Gerrits et al., 2014) and cognitive impairments (Teodoro et al., 2018), 

including memory impairments.  

 

4.1.1. HIPPOCAMPUS AND MEMORY 

The hippocampus is traditionally associated with specific learning and memory functions, 

particularly aspects of place and declarative learning and memory (with ‘declarative’ 

referring to memory that can be consciously recalled and, in humans, be ‘declared’), but is 

also related with emotional, motivational and sensorimotor functions (Bast, 2007). 

Additionally, a study in healthy people showed hippocampal activation when a painful stimuli 

was applied, indicating hippocampal involvement in pain processing (Bingel et al., 2002). 

As Tulving described  “memory is many things”, and there are different memory stages - 

encoding, storage, consolidation and retrieval – and memory types, differing with respect to 

the type of information that is stored, the way it is learned (e.g., slowly or rapidly) and the 

duration for which it is stored  (Spence, 1996). The hippocampus is particularly important for 

the rapid encoding and subsequent retrieval of spatial and declarative memory (Bast, 2007).  

 

4.1.2. MEMORY IMPAIRMENTS AND CHANGES IN THE HIPPOCAMPUS IN 

CHRONIC PAIN PATIENTS 

Memory impairments have been reported by patients with chronic pain, with nearly 70% 

of chronic pain patients reporting memory deficits (Dick and Rashiq, 2007; Berryman et al., 

2013).  Some of the subjectively reported memory impairments, problems with everyday 
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type spatial memory or episodic memory (the aspect of declarative memory storing 

information about personally experienced events and their spatio-temporal context), may be 

related to hippocampal dysfunction (Bast, 2007).  

Chronic pain patients also show poor performance on tasks related with spatial, verbal 

and recognition memory and impaired perceptual motor coordination and long-term spatial 

memory, when compared with healthy people. Chronic pain patients may also be more 

susceptible to interference with memory. For example, fibromyalgia patients, when 

presented with a distraction, showed impaired short-term memory compared with healthy 

volunteers (Leavitt and Katz, 2006). 

Modern brain imaging methods allow to link hippocampal volume and connectivity 

alterations with chronic pain. One neuroimaging study conducted in older patients with no 

dementia reported a correlation between hippocampal volume and all-cause pain: severe 

acute pain and chronic pain were associated with smaller hippocampal volume (Zimmerman 

et al., 2009). Another study reported an association between chronic pain with loss of volume 

in selective hippocampal subfields, but only in female patients (Ezzati et al., 2014). 

Hippocampal volume reduction was also shown in patients with fibromyalgia (McCrae et al., 

2015). Also, altered hippocampal connectivity was associated with chronic pain. Mutso and 

colleagues followed patients with subacute back pain and back pain and reported increases 

in hippocampal connectivity  compared to controls (Mutso et al., 2014). Interestingly, they 

also reported a longitudinal reorganization of the connectivity between the hippocampus 

and medial pre-frontal cortex. No correlation between hippocampal volume and connectivity 

was observed in this study.  

 

4.1.3. MEMORY IMPAIRMENTS AND CHANGES IN THE HIPPOCAMPUS IN 

RODENT MODELS OF CHRONIC PAIN  

During the last decade several studies have reported changes in the hippocampus using 

rodent models of persistent and chronic pain. Hippocampal plasticity changes were also 

reported in rodent models of neuropathic pain. Peripheral nerve injury was not only 

associated with disruption of long-term potentiation and frequency facilitation at 

hippocampal regions, but also with working and short-term memory deficits (Ren et al., 

2011). Furthermore, in this study Ren and colleagues reported a positive correlation between 

plasticity change and memory deficits.  
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Altered hippocampal cytokine expression during chronic pain has been reported in a 

neuropathic mice model and dependent of the pain phenotype (del Rey et al., 2011). 

Peripheral nerve injury in rodents has also been associated with molecular changes in the 

hippocampus, with the alteration in the microtubules stability (You et al., 2018) and structural 

synaptic and morphological changes in the hippocampal neurons (Liu et al., 2017b).  

Neuropathic pain induced by a diabetic model caused a reduced learning rate in the 

Morris water maze (Moriarty et al., 2016b). The possible effects of inflammatory pain on the 

hippocampus and its function is less known. Acute and chronic inflammatory pain in rodents 

was associated with an increased hippocampal volume in rat models of acute and chronic 

inflammatory pain, (Duric and McCarson, 2005), the opposite to the changes reported in the 

human pain studies mentioned above.  

 

4.1.4. TRANSLATIONAL ASSESSMENT OF HIPPOCAMPUS-DEPENDENT 

MEMORY USING THE WATERMAZE DELAYED-MATCHING-TO-PLACE TASK  

Watermaze tasks are a key tool to study hippocampal place learning and memory in 

rodents. The watermaze is a circular pool containing a submerged platform, onto which the 

rodents can escape. In the standard reference memory version, the platform is fixed in the 

same location across trials and days, therefore allowing for slow incremental place learning 

(Morris, 1984). While in the delayed-matching-to-place (DMP) task, modified version of the 

watermaze, the platform location is changed daily, which allows to evaluate rapid, 1-trial, 

place learning.  

The DMP variant of the watermaze task is highly sensitive to hippocampal dysfunction 

(Bast et al., 2009; da Silva et al., 2013). More specifically, DMP performance is markedly 

impaired by disrupting hippocampal plasticity or by partial hippocampal lesions,  whereas 

these manipulations can leave performance on the standard reference place memory task in 

the watermaze relatively intact and even rats with complete hippocampal lesion can come 

to show good performance on the standard reference place memory task when overtrained 

with many trials (Morris, 1984; Steele and Morris, 1999; Bast et al., 2009; Pezze and Bast, 

2012). In this task, long-term memory consolidation is not required, and animals learn within 

one trial the daily changing place. Therefore, on the DMP task, the animal’s ability to escape 

efficiently from the water depends on the rapid acquisition of place information and its 

subsequent retrieval a few minutes later.  
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The DMP task mimics everyday problems like the car park problem. Imagine you drive to 

work and you do not have an allocated car park, so the location where you park your car 

would usually be different each day. By the end of the working day you would need to 

remember where the car is parked, but this would be a different location every day, which 

you had to learn in the morning. 

Importantly, the DMP watermaze task has also been reverse-translated into a human task, 

using a virtual environment on a computer screen (Buckley and Bast, 2018), and the task also 

appears to be closely associated with hippocampal function in human participants, individual 

differences in theta-band oscillations in a spatial memory network revealed by EEG predict 

rapid place learning (Bauer et al., 2020).  

 

4.1.5. CHAPTER AIMS 

In sum, there is evidence that chronic pain may affect significantly the hippocampus and 

cause memory impairments in both humans and rodents. However, the understanding of 

these changes and the mechanisms behind it are not completely understood and there is a 

lack of knowledge if, and how OA in particular affects this cognitive function. Some evidence 

indicates that the impact of chronic pain on the hippocampus and its functions may depend 

on the condition and, specifically, that OA may have less impact on the hippocampus than 

other chronic pain conditions (Mutso et al., 2012). 

To test if OA impacts hippocampus-dependent memory, in this chapter, MIA-injected 

adult Lister hooded (LH) rats were subjected to the watermaze DMP task (Bast et al., 2009) 

to longitudinally evaluate the impact of OA-chronic knee pain on hippocampus-dependent 

rapid place learning performance. Pain and sensorimotor testing were also assessed across 

the study. 
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4.2. METHODS 

Refer to Chapter 2 for general methodology.  

 

4.2.1. ANIMALS 

For this study, 16 (n=8 per group) adult male Lister hooded (LH) rats (Charles Rivers, UK), 

weighing between 250-280g and approximately 2-3 months old at the beginning of the 

experiment, were used. The target sample size for this study was 32 (n=16 per group), so 

group differences corresponding to an effect size of Cohen’s d=1 could be detected with a 

power of about 80%, using an independent t-test (2-tailed, p < 0.05). However, the first series 

of the experiments clearly indicated that there were no substantial group differences in the 

main memory measures, and that completion of the second series to achieve the target 

sample size would not reveal significant group differences. Therefore, the study was 

terminated due to futility after only completion of the first series (Neumann et al., 2017). 1 

rat (MIA) was excluded from the study due to a physiological abnormality, not related with 

MIA model, preventing the collection of behaviour data in the last two time points. 

 

4.2.2. PAIN BEHAVIOUR AND SENSORIMOTOR ACTIVITY 

The model of OA pain was induced with a single intra-articular injection of MIA (as 

described in 2.2.). Rats were injected with either 50 µL of MIA (3 mg/50 µL; n=8) or the same 

volume of sterile saline solution (n=8) as control. Rats were initially allocated to the 

treatment groups before model induction based on the pain and sensorimotor activity 

baseline measurements to match the prospective treatment groups for their baseline 

measurements as closely as possible. In each cage half of the animals received treatment and 

the other half saline. The experimenter (S.G.) was blinded to the treatment allocations 

throughout the data collection and analysis. 

Nociceptive pain behaviours were assessed using weight-bearing and Von-Frey tests, as 

described in 2.3., and sensorimotor measures, locomotor activity and startle/prepulse 

inhibition, were taken as described in 2.4. Rats were first handled for a few days and 

habituated to the pain test apparatus. Baseline pain behaviour and sensorimotor activity 

measurements were collected before model induction with one day apart. After MIA/saline 

injection (day 0), pain measurements were taken on day 3, 14, 28, 50 and 84; and 
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sensorimotor processes were assessed on day 15, 29, 51 and 85 after model induction as 

described in Fig.4.1.  

 

4.2.3. WATERMAZE DELAYED MATCHING-TO-PLACE TEST    

To evaluate the effects of OA-like knee pain on hippocampus-dependent memory, the 

watermaze DMP task was used in this study. Animals were pretrained for 8 consecutive days 

in this task prior to MIA induction and then tested at several time points across the study, 

using established protocols (Steele and Morris, 1999; da Silva et al., 2013; McGarrity et al., 

2016). 

 

4.2.3.1. APPARATUS 

The watermaze apparatus (Fig.4.1) consisted of an open-field circular white pool (2 m in 

diameter and 60 cm height) filled with water at 25±1°C made opaque by the addition of 

children white paint (Go Create). Four start points were equally spaced along the 

circumference of the pool (north [N], east [E], south [S], and west [W]). 

Hidden in the watermaze pool, was an escape platform (1–3 cm below the water surface), 

which rats had to find to escape from the water. Rats are naturally very good swimmers, 

however they do not particularly like water which makes them swim to escape from it. 

Therefore, watermaze tasks are an excellent test to evaluate place memory without food 

restriction. The “Atlantis platform” used can be withheld at >30 cm below the water surface 

by a computer-controlled electromagnet a predetermined time, making it unavailable to the 

rats.  

The lighting of the room was kept constant at about 200 lux at water level. The room was 

filled with spatial cues, including a traffic cone, lampshades hanging from the wall and 

different geometric 2D and 3D shapes. Cues were carefully kept in the same place during the 

study and between studies.   

The rats’ behaviour was monitored and collected by an overhead video camera connected 

to a video recorder and a computer with EthoVision XT 8.5 software in an adjacent control 

room. 

 

4.2.3.2. PROCEDURE 

Rats performed four daily trials. During trial 1, animals could rapidly learn the novel location 

of the hidden platform using the prominent visual cues on the room, and then on subsequent 
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trials they use the place memory to efficiently locate the hidden platform. To start the test, 

rats were placed into the water facing the pool walls at one of the four start positions in a 

predetermined and arbitrary sequence to prevent egocentric strategies. Egocentric 

navigation is based on direction strategies, for example, memorising routes (such as 

distances, directions and sequential turns) instead of using environmental cues. Platform 

location was changed daily, but remained constant during the four consecutive daily trials. 

Rats were tested with a novel goal location each day. Each trial had the maximum duration 

of 120 s, after which the animal was guided to the platform by the experimenter in case of 

failing to find it. Following each trial, rats were allowed 30 s on the platform before they were 

dried gently on a towel and returned to a carrier box, resulting in an inter-trial interval of 

around 10-30 s.  

Trial 2 was occasionally run as “probe trial”. During this probe, the platform was withheld 

for the first 60 s, to monitor the animals’ search preference for the zone containing the 

platform (the target zone). After the 60 s, the platform was automatically released allowing 

the animal to find and climb onto it. Between trial 1 and the probe trial the inter-trial interval 

was about 20 min, instead of 10-30 s, as this would render the task more sensitive to any 

impairment in hippocampal plasticity mechanisms (Steele & Morris, 1999). 

 

4.2.3.3. PERFORMANCE MEASURES 

The overhead video camera connected to the video recorder and the computer with the 

Ethovision tracking software captured all the trials that digitized the rats’ paths and several 

behavioral measures, including latencies and path lengths to reach the platform location, and 

times spent in the different pool zones. 

Latency and path length to reach the platform location, swim speed, the percentage time 

spent in all the zones and in the target zone are analysed. To measure search preference for 

the correct zone, eight virtual 20 cm diameter zones were considered (Bast et al., 2009). 

These extended platform zones were symmetrically arranged and positioned on virtual inner 

circle or outer ring. Percentage of time searching the correct platform position or previous 

day’s zone were calculated as: 
time in correct zone or in previous 𝑑𝑎𝑦 

total time in all the eight zones
∗  100. 

The main measure of hippocampus-dependent rapid place learning performance was the 

search preference for the correct zone during probe trials. This measure has been shown to 

be the most robust measure of hippocampal rapid place learning performance, where 

latencies and path length measures are more variable and less dependent on hippocampal 
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function (Bast et al., 2009; da Silva et al., 2013) (also see Bauer et al., 2020, for related 

findings in human participants).  

 

4.2.4. EXPERIMENTAL DESIGN  

Before model induction, rats were pre-trained for 8 consecutive days in the watermaze 

DMP task. Then, after model induction, rapid place memory was evaluated testing the rats 

for 4 consecutive days in the watermaze DMP task at week 2, 4, 7 and 12 (Fig. 4.2).  

At day 93 after MIA/saline injection, rats were anesthetized with a lethal dose of sodium 

pentobarbitone and transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde (PFA). Brains, spinal cords, DRGs and knees were carefully excised, 

FIGURE 4.1. – WATERMAZE DELAYED MATCHING-TO-PLACE (DMP) TASK. The DMP task allows to 

evaluate the “everyday” memory. Rats learn to escape from the water to a hidden platform. Platform 

is moved to a new location each day but remains in the same position during the four consecutive 

daily trials. In probe days, the platform is unavailable during the first 60 sec of the trial. Inter-trial 

interval (ITI) is generally 10-20 sec, on probe days between T1 and T2 ITI is 20 min. Performance is 

followed across many days/weeks. 



63 
 

preserved and stored. Knee joint sections were stained with haematoxylin and eosin- or 

safranin-O/fast green and then scored for overall joint morphology and proteoglycan loss. 

Total cartilage joint damage, osteophyte, proteoglycan loss, synovial inflammation and 

chondrocyte presence were scored to evaluate the severity of the knee joint pathology as 

described in 2.7. 

 

4.2.5. STATISTICAL ANALYSIS  

GraphPad Prism 8 and IBM SPSS Statistics 24 were used to prepare the graphs and the 

statistical analysis. Results from the pain behaviour studies were analysed using an analysis 

of variance (ANOVA), with group as between-subjects and time as repeated 

measures/within-subjects variable of testing day. Results from the sensorimotor behaviour 

studies were analysed using a mixed design factorial ANOVA test with testing day and task 

blocks (or pulse intensity in the PPI test) as within-subjects factors and group as between-

subjects factor. When main effect of group or interaction involving group was observed, 2-

way ANOVAs were conducted at each time point. Watermaze DMP results (search 

preference, latencies and path lengths) were analysed using a 2-way ANOVA with testing 

time points as within-subjects factors and group as between-groups factor. Bonferroni 

multiple comparison was used as post-hoc testing. 

Knee pathology was analysed with an independent t test or with Mann-Whitney test when 

D’Agostino-Pearson test showed that assumption of normality was violated. P<0.05 was 

considered to represent a significant difference and all results were expressed as 

mean±standard error (SEM). Baseline measures were not included in the ANOVA analysis, t-

tests were conducted at baseline to ensure no significant difference between groups at this 

stage.   

FIGURE 4.2. – TIME COURSE OF THE HIPPOCAMPUS-DEPENDENT MEMORY STUDY. 16 adult male LH rats 

were used in this study. Animals were either injected with MIA (3mg/50µl, n=8) or saline (n=8).  

*indicates probe days. 
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4.3. RESULTS 

 MIA injection did not cause any obvious distress to the animals, and regular weight 

measurements showed no significant difference between groups at any time point during 

the study (group: F(1,14)=1.89, p=0.19) (Fig.4.3).  

 

4.3.1. PAIN BEHAVIOUR  

Weight bearing asymmetry significantly increased after MIA injection, MIA-injected rats 

showed weight bearing asymmetry placing less weight on the injured leg compared with 

saline controls (group: F(1,13)=66.22, p<0.0001) (Fig.4.4). This effect was observed from week 

1 until the end of the study (time: F(4,52)=3.32, p<0.0001). No interaction effects were 

observed between time and group (time x group: F(4,52)=0.42, p=0.80).  

No evidence for mechanical allodynia was observed in the ipsilateral paw withdrawal 

threshold in the MIA-injected rats (group: F(1,13)=0.63, p=0.44) (Fig.4.5A). However, a 

significant effect of group was observed on the contralateral hindpaw thresholds (group: 

F(1,13)=14.78, p=0.002), with saline rats showing a lower response compared with MIA rats 

(Fig.4.5B). To explore these results, a 2-way ANOVA was performed considering the 

difference between the contralateral and the ipsilateral withdrawal threshold. While the 

control animals showed difference scores around 0, with very little fluctuations, the MIA rats 

showed a significant increase in the difference score after model induction (group: 

F(1,13)=28.4, p=0.0001) (Fig.4.5C), with the group difference tending to decrease with time 

after model induction, although there was neither a main effect of time (F(5,65)<1.74, p>0.15) 

nor an interaction of time and group (F(5,65)<1.52, p>0.21). 

FIGURE 4.3. – BODY WEIGHT OF LISTER HOODED (LH) RATS AFTER MONOSODIUM IODOACETATE (MIA) OR 

SALINE INJECTIONS. Rats were injected with either 50ul of 3mg of MIA (▪, n=8) or saline (●, n=8) in the 

left knee at week 0. Data are presented as mean±SEM. 
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FIGURE 4.5. – MONOSODIUM IODOACETATE 

(MIA) INDUCED WEAK CHANGES IN 

MECHANICAL ALLODYNIA IN LISTER HOODED 

(LH) RATS. Rats were injected with either 50ul 

of 3mg of MIA (▪; n=7) or saline (●; n=8) in the 

left knee. Data are presented as mean±SEM. 

* p<0.05, ** p<0.003, 2-way ANOVA with 

Bonferroni multiple comparisons post-hoc 

testing. 

FIGURE 4.4. – MONOSODIUM IODOACETATE (MIA) INDUCED ASYMMETRY IN WEIGHT BEARING IN LISTER 

HOODED (LH) RATS. LH rats were injected with either 50ul of 3mg of MIA (▪; n=7) or saline (●; n=8) in 

the left knee. Data are presented as mean±SEM. * p<0.05, ** p<0.004, *** p<0.0003, 2-way ANOVA 

with Bonferroni multiple comparisons post-hoc testing. 
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4.3.2. SENSORIMOTOR MEASURES 

Locomotor activity was not substantially affected by MIA model induction. No changes in 

horizontal activity were observed in MIA-injected rats, compared to control rats (group: 

F(1,13)=0.02, p=0.88)  (Fig.4.6A). However, MIA-injected rats showed less rearing than controls 

(group: F(1,13)=4.86, p=0.046) (Fig.4.6B). All animals showed habituation to the apparatus 

within the individual open field test sessions (block: F(2,26)>146.45, p<0.0001) and across test 

days (time: F(4,52)>6.05, p<0.0001). No interaction involving group was observed in the 

horizontal activity (time x block: F(4,52)=1.61, p=0.39). No interaction of block/testing day x 

group was observed in the vertical activity (block x group: F(2,26)<1.84, p>0.23), but the 

interaction block x time was significant in the vertical locomotor activity (time x block: 

F(8,104)=11.36, p<0.0001).  

Startle response was not affected by MIA injection (Fig.4.7A), but MIA-injected rats 

showed some evidence of lower PPI at higher prepulse intensities (Fig.4.7B). No main effect 

of group was observed on startle response (group: F(1,13)=0.168; p=0.69) or prepulse inhibition 

(group: F(1,13)=2.079; p=0.17). Animals showed habituation to the pulse-alone (pulse-alone: 

F(2,26)=70.45, p<0.0001) and increasing PPI with increasing prepulse intensity (pulse: 

F(3,39)=208.30, p<0.0001) during the trials within the session. In addition, main effect of day 

was observed, startle increased across days possibly reflecting that animals were getting 

bigger (time: F>11.35, p<0.0001). 3-way ANOVA using MIA group as between-subjects factor 

and test day and startle block as within-subjects factors showed no triple interaction effect 

on startle responses (group x pulse-alone x time: F(8, 104)=0.60, p=0.77). Both groups showed 

relatively comparable PPI, but there was some evidence for different PPI at some prepulse 

intensities (prepulse x group: F(3,39)=3.42; p=0.03). No interaction between prepulse intensity, 

day and group was observed (group x prepulse x time: F(12, 156)=1.20, p=0.29), however there 

was some evidence that MIA rats had a lower PPI at higher prepulse intensities (prepulse x 

day: F(12,156)=2.056; p=0.02), but not between day and group (time x group: F(4,52)=0.82; 

p=0.52).  
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4.3.3. HIPPOCAMPUS-DEPENDENT MEMORY 

To investigate the effects of OA-like chronic knee pain on hippocampal rapid place 

learning performance, MIA and saline animals were tested on the watermaze DMP task. Both 

prospective groups learned the task similar to what was reported in previous studies 

(Steele&Morris, 1999; Bast et al., 2009), showing the characteristic reductions in the latency 

to reach the hidden platform from trial 1 (encoding) to trial 2 (retrieval) and improvement 

across days (day x trial: F(21,294)=4.32; p<0.0001) (Fig.4.8.). There were no differences between 

the prospective groups (group: F(1,14)=1.08; p=0.32;  interactions involving group: F<1). Also, 

on the probes conducted on days 6 and 8 during the pretraining, no differences between the 

prospective groups were found in the time spent exploring the target zone, previous day’s 

zone, the total eight zones or in the swim speed (all p>0.22). 
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After model induction, both groups showed virtually identical performance patterns in 

terms of latencies and also of path length (Fig.4.9). There was no main effect or interaction 

involving the factor group in both latencies and path length measures (main effect of group 

and interaction involving group: all F<1). There was a significant main effect of trial, reflecting 

rapid place learning, on latency to reach the platform (trial: F(3,174)=170.70; p<0.0001) 

(Fig.4.9A) and on the path length (trial: F(3,84)=80.19; p<0.0001) (Fig.4.9B). 

FIGURE 4.8. – LATENCIES TO REACH THE PLATFORM DURING PRETRAINING. Rats were trained in the 

watermaze delayed-matching-to-place for 8 consecutive days before model induction. Data are 

presented as mean±SEM. 
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During the probe trials, when the platform was unavailable during the first 60 seconds, 

rats were tested for search preference (Fig.4.10). MIA-injected rats, compared with control 

rats, spent a similar percentage of time exploring the target zone (group: F(1,28)=1.72; p=0.20) 

(Fig.4.10A) and the previous day’s zone (group: F(1,28)<1) (Fig.4.10B) and spent a similar total 

time exploring the eight zones (group: F(1,28)=2.17; p=0.15) (Fig.4.10C). There was a main 

effect of time on the percentage of time spent exploring the previous day’s zone (F(3,84)=4.63; 

p=0.005), reflecting that both groups spent more time in the previous day’s zone at the last 

two testing time points (probably reflecting that goal locations were not fully 

counterbalanced across test days, but only across groups).  No other main effect of time and 

interaction effects were observed (F<1). 

Regarding the swim speed, overall MIA-injected rats and controls did not show significant 

differences (group: F(1,28)= 1.58; p=0.22) (Fig.4.10D). However, there was a significant 

FIGURE 4.9. – LATENCY (A) AND PATH LENGTH (B) TO REACH THE PLATFORM WERE NOT AFFECTED BY MIA 

INJECTION. Rats were injected with either 50ul of 3mg of MIA (▪, n=7) or saline (●, n=8) in the left knee. 

Rats were tested in the watermaze DMP task four times in each week, trial data are presented as 

average. Data are presented as mean±SEM. 
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interaction of group X time point (F(3,84)=8.87; p<0.0001), reflecting that MIA rats showed 

lower swim speed than control rats at the last two testing time points. More specifically, MIA 

rats showed a stable swim speed throughout the study, whereas control animals slightly 

increased their swim speed from week 7.  
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4.3.4. KNEE PATHOLOGY 

At the end of the study, knees were collected and processed for pathology scoring as 

described in section 2.7. Joints were scored for cartilage integrity (cartilage damage x 

involvement), synovial inflammation and osteophyte formation on three different levels of 

both lateral and medial tibial plateau (Fig.4.11). Results are showed as mean between medial 

and tibial plateau values, as no differences were observed between tibial parts. During the 

FIGURE 4.10. – EFFECTS OF MONOSODIUM IODOACETATE (MIA) ON THE PLACE MEMORY OF YOUNG ADULT 

LISTER HOODED RATS. Rats injected with either 50ul of 3mg of MIA (▪, n=7) or saline (●, n=8) in the left 

knee performed a hippocampus-dependent memory task. Twice per week, rats were tested in a probe 

task during the second trial when the escape platform was unavailable to evaluate the search 

preference. MIA-injected rats did not show differences in the total time exploring the target zone (A), 

the previous day’s zones (B) or the total eight zone (C) when compared with control saline. Control 

rats increased their swim speed in the last time points (D). Data are presented as mean±SEM. * p<0.05, 

2-way ANOVA with Bonferroni multiple comparisons post-hoc testing. 
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splitting process, one of the saline animals was split with the wrong angle making it 

impossible to score. 

MIA injected rats showed increases in both lateral and medial tibial plateau loss of 

cartilage integrity (Fig.4.11A; t=4.63, p=0.0005) and in synovial inflammation (Fig.4.11B; U=0, 

p=0.0003) compared with control animals. There was a trend for MIA-injected rats to show 

a higher number of osteophytes (U=14, p=0.08), with 4 out of 8 rats in the MIA group showing 

osteophytes, but not a single control rat (Fig.4.11C).  
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FIGURE 4.11. – MICROSCOPIC QUANTIFICATION OF HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN LISTER 

HOODED RATS INJECTED WITH EITHER 3 MG MONOSODIUM IODOACETATE (MIA) MODEL OR SALINE. 

Average scores for medial and lateral tibial plateu. Rats were injected with either 50ul of 3mg of MIA 

(▪, n=8) or saline (●, n=7) in the left knee. Knees were collected and processed for scoring at day 93 

after model induction. 3 mg MIA were able to induce cartilage damage (A). Data are presented as 

mean±SEM *** p<0.001.  Unpaired t-test. 3 mg MIA were also able to induce synovial inflammation 

(B) and only a few animals injected with MIA showed presence of osteophytes (C). Data are presented 

as median±IQR, ***<0.001. Mann-Whitney U test. 
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4.4. DISCUSSION   

In this study, MIA-injected LH rats were tested on the watermaze DMP task to investigate 

the impact of OA on hippocampus-dependent memory. No evidence of impaired 

hippocampal memory was found after MIA model induction. MIA injected rats showed 

robust weight bearing asymmetry, slightly decreased rearing activity and features of knee 

joint pathology. Also, there was some evidence for MIA rats to show reduced PPI at higher 

prepulse intensities compared with saline rats.  

 

4.4.1. PAIN BEHAVIOR, SENSORIMOTOR ACTIVITY AND KNEE PATHOLOGY 

Pain behaviour was assessed across this study, with MIA-injected rats showing a robust 

pain phenotype.  As in the pilot study conducted in chapter 3, 3 mg of MIA caused asymmetry 

in the weight bearing distribution and did not induce mechanical allodynia. Interestingly, the 

paw withdrawal threshold difference between paws was significantly different between MIA-

injected and control rats. Saline animals showed a similar drop across the study in both 

contralateral and ipsilateral paws, whereas, in MIA rats, the threshold only dropped in the 

ipsilateral paw. Apart from the finding that MIA did not induce mechanical allodynia 

compared with saline controls, this abnormal behaviour may reflect an extra protective and 

careful behaviour regarding the paw on the leg with the injured knee by the MIA-injected 

rats. This type of behaviour was not observed in chapter 3, or in previous studies, as far as 

we know. We found marked knee pathology at the end of the study, with MIA-injected rats 

showing similar features to chronic OA in humans, such as cartilage degradation and synovial 

inflammation. 

Sensorimotor measures were mildly affected by MIA model induction. MIA-injected rats 

did not show changes in horizontal locomotor activity, but results show that rats with an 

injured knee tend to rear slightly less than controls. Decreased rearing activity may reflect 

spontaneous ongoing pain. It is important to note that all the animals were housed in IVC 

cages with two floors, and, based on visual inspection, no rats showed marked issues in 

jumping to the top floor. MIA injection also did not affect the startle response. However, 

there was some evidence for sensorimotor gating processes, as reflected by PPI of the 

acoustic startle response, to be mildly affected by the MIA injections. PPI was mildly reduced 

in MIA-injected rats at the higher prepulse. Several forebrain areas, such as the medial PFC, 

nucleus accumbens and basolateral amygdala are involved in PPI regulation (Koch, 1999).  

Additionally, abnormal hippocampus activity has been associated with altered PPI (Zhang et 
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al., 2002). The reduced PPI observed in this study may indicate possible impacts of MIA in 

some of the forebrain regions involved in this task. Therefore more studies are needed to 

unveil areas and/or mechanisms leading to the changes observed.  

 

4.4.2. HIPPOCAMPUS-DEPENDENT MEMORY IN MIA LH RATS 

The main aim of this chapter was to evaluate if OA-like chronic pain affected 

hippocampus-dependent memory in young adult LH rats. Before induction of the chronic 

pain model, all animals were pre-trained to the watermaze DMP task. The key feature of this 

watermaze task is the fact that the platform is moved to a different location daily, allowing 

to assess “everyday”-type rapid place learning.  After MIA model induction, DMP task 

performance was assessed at different time points to evaluate if and how the progression of 

the disease affected hippocampus-dependent memory. No deficits were observed during the 

watermaze DMP task after MIA model induction in LH rats. On standard testing days, the 

latencies or path lengths to reach the platform were not altered by the MIA model at any 

time point. Rats from both groups decreased latencies and path lengths across daily trials, 

showing that MIA did not affect the rapid encoding and subsequent retrieval of place 

information.  

Search preference during the probe trial was also not affected by MIA model induction.  

MIA-injected rats spent a similar percentage of time exploring the target zone and the 

previous day’s zone compared with control animal. Animals from both groups spent a similar 

time exploring the total eight zones of the pool. Interestingly, control rats slightly increased 

the swim speed at the two last time points of the study. 

Altogether, our results suggest that OA-like chronic knee pain did not affect hippocampus-

dependent memory in young adult LH rats. A study conducted in Wistar Han rats with spared 

nerve injury reported no impairments in Morris water maze performance (Leite-Almeida et 

al., 2009). Rats of three different ages were tested (3-, 10- and 22-months old), general 

performance was not affected by chronic neuropathic pain; however, young adults only 

showed deficits during the reversal phase of the Morris watermaze. Similarly, a different 

study in young adult Sprague Dawley rats with spinal nerve ligation reported impairments in 

the reversal task of the Morris watermaze (Moriarty et al., 2016a). Moreover, no reports of 

memory impairment were reported in Lister hooded rats with diabetic neuropathic pain in 

the acquisition phase of the Morris watermaze task (Moriarty et al., 2016b); these animals 

showed deficits in spatial learning with slower acquisition of the task, as reflected by reduced 
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latency improvements across training days (which may reflect reduced swim speed), but 

memory performance during a probe trial, as reflected by search preference was not 

affected. Although these studies used different tasks, these are consistent with our findings 

in showing limited evidence for impairment of place learning and memory in the watermaze 

in rat models of chronic pain. It is important to note that these studies used neuropathic pain 

models, which have different pathological mechanisms.  

Importantly, mechanical allodynia development was reported in the studies above. In this 

chapter no evidence of mechanical allodynia were observed, so the possibility that our MIA-

injected rats do not show central sensitization should also be considered. Central nervous 

system may not be impacted and consequently not impacting the cognitive function. 

 

4.4.3. HIPPOCAMPUS-DEPENDENT MEMORY IN CHRONIC OA PAIN? 

As previously mentioned, there is some evidence that chronic pain is associated with 

changes in the hippocampus in both rodents and humans. Additionally, clinical observations 

indicate that chronic pain is associated with memory impairments (Berryman et al., 2013). 

However, no previous studies have focused on OA yet. Our findings in this chapter indicate 

that hippocampal memory is not impaired by OA-like chronic pain in the MIA model in LH 

rats. 

In order to study the impact of persistent pain on the hippocampus, Mutso and colleagues 

measured the hippocampal volume in human patients in three different pain conditions – 

chronic back pain, complex regional pain syndrome and OA (Mutso et al., 2012). In 

accordance with previous studies, they found robust decreases in the hippocampus volume 

in chronic back pain (CBP) and complex regional pain syndrome (CRPS), but not in OA 

patients, compared with controls. CBP and CRPS seem to have a higher impact on 

hippocampal volume than OA. These findings may indicate that the hippocampus may be less 

affected in OA than in other chronic pain conditions, which may explain the results obtained in 

this chapter.  

Other factors associated with chronic pain in humans may account for why chronic pain 

patients show memory impairments, but MIA-injected rats may not show these. Cognitive 

decline is most usually associated with ageing (Deary et al., 2009), a factor that can also be 

related or occur at the same time but independent of  some of the most popular chronic diseases 

such as osteoarthritis (Vos et al., 2016). Age is one of the most important factors that can be 
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influencing these reported cognitive deficits. From the human studies exploring the impacts of 

pain on cognition, only a few of them take in consideration the impact of dementia and 

medication for example. Ageing and memory loss are strongly linked, and as reported the 

majority of chronic pain conditions such as OA are more commonly find in older people. Chronic 

pain treatments, such as opioids, can also be associated with cognitive declines – this will be 

discussed in detail on chapter 6. Other factors might also be associated with cognitive/memory 

deficits reported, as for example sleep deprivation and alcohol consumption (Yeung et al., 2017; 

McCrae et al., 2018).  In fact, a relationship between alcohol consumption and hippocampus 

volume has been reported in patients with fibromyalgia (Boissoneault et al., 2017).  

Life style seems to play an important role in the implications of chronic pain.  Rheumatoid 

arthritis patients self-reported with poor memory, word finding and concentration but those 

who were physically active reported less cognitive dysfunctions (Shadick et al., 2019). Chronic 

pain patients who feel a higher sense of inclusion and engagement with others also reported 

lower impact of pain in daily life (Karayannis et al., 2019), which may result in less self-

reported comorbidities associated with chronic pain. 

 

4.5. CONCLUSION 

In sum, our results showed that hippocampus-dependent memory was not affected by 

chronic OA knee-like pain in male young adult MIA-injected Lister hooded rats.  

Previous studies have shown that changes in the hippocampus are associated with chronic 

pain in both rodents and humans. Also, clinical observations reported memory impairments 

in chronic pain conditions. However, the knowledge regarding OA and memory remains 

unclear, and even less is known regarding hippocampus-dependent memory in particular. OA 

pain may be associated with less brain changes in hippocampus than in other types of pain 

(Mutso et al., 2012) and consequently may have less impact on hippocampal functions, which 

may explain the absence of hippocampus-dependent memory impairments observed in this 

chapter.  

In accordance with findings in this chapter, rodents with different pain models and using 

a different version of the watermaze showed limited evidence of spatial memory deficits. 

However, in these models, there was some evidence for impairments in the acquisition and 

reversal phases of place learning tasks in the watermaze. These deficits in the reversal task 
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may indicate that behavioural flexibility is compromised in this condition, a possibility that 

will be addressed in the next chapter.  

Other types of memory may also be impaired, in fact recognition memory deficits were 

observed in rodents with OA (Negrete et al., 2017). This will be also addressed in the next 

chapter. 

 

  



78 
 

CHAPTER 5                                                                                                                        

COGNITIVE FLEXIBILITY AND NOVEL OBJECT RECOGNITION 

MEMORY IN LISTER HOODED RATS WITH MIA-INDUCED 

OSTEOARTHRITIS-LIKE KNEE PAIN 

 

 

5.1. INTRODUCTION   

5.1.1. RECOGNITION MEMORY 

Recognition memory is a subtype of declarative memory which allows to know or 

remember a familiar person, object or experience (Brown et al., 2010). In humans recognition 

memory is usually assessed using visual-paired comparison memory tasks, while in rodents 

the test used is the novel object recognition(NOR) test (Cohen and Stackman Jr., 2015). In 

this test, animals are presented with a familiar and a novel object, and the time exploring 

both objects is quantified and the discrimination index between objects is calculated (more 

details about the protocol in 5.2.3.) (Ennaceur and Delacour, 1988). Rodents have the innate 

tendency to explore novel items, so there is no need for extensive training or external 

motivation in this test. Animals without any impairment in recognition memory are expected 

to spend more time exploring the novel item/object.  

Preclinical studies have shown impairments in recognition memory in rodents under 

chronic pain condition. Neuropathic rats showed reduced novel exploration time in the NOR 

test after nerve injury surgery compared with controls (Moriarty et al., 2016a). Furthermore, 

a study conducted in mice induced with MIA model of OA-pain also showed that OA may be 

linked to deficits in recognition memory (Negrete et al., 2017). Negrete and colleagues 

reported that wild-type MIA mice had a lower discrimination index compared with the wild-

type saline mice in the NOR test, showing that OA pain may in fact affect this type of memory. 
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5.1.2. BEHAVIOURAL FLEXIBILITY 

Cognitive flexibility refers to the ability to switch and adapt behaviour in response to 

emergent changes in the internal or external environment. Cognitive flexibility cannot be 

directly observed; however, it is possible to observe and study the associated behavioural 

change, behavioural flexibility. Both terms are often used as synonymous (Mikhalevich et al., 

2017), but behavioural flexibility refers to the adaptive behaviour reflecting the cognitive 

change.  

Some researchers argue that cognitive flexibility involves more than one major 

component (Martin and Rubin, 1995). In a first instance the person needs to be aware that 

there is another alternative, then the individual must be willing to adjust and finally the 

individual needs to feel confident and able to adapt the behaviour (Laureiro-Martínez et al., 

2009). Altogether, this complex cognitive function involves attention, motivation and 

decision-making. 

Behavioural flexibility is commonly assessed using questionnaire measures, attentional 

shifting tests, rule switching and reversal learning (Lange et al., 2017). Standardized tests 

such as card sorting or gambling tests – such as the Wisconsin Card Sorting test, the intra-

dimensional/extra-dimensional set-shift task of the Cambridge Neuropsychological Test 

Automated Battery or the Trail-Making test have been widely used in humans (Brown and 

Tait, 2014).  

 

5.1.3. BEHAVIOURAL FLEXIBILITY ASSESSMENT IN RATS 

In rodents, to investigate the relationship between cognitive flexibility and diseases, 

reversal and set-shifting tasks have been used. Reversal learning consists in a change in 

response strategy while shifting strategy refers to a change in the stimulus dimension.  

Floresco and colleagues have developed an automated strategy shifting and reversal task 

using operant chambers that allows to test the same animals in both tasks (Brady and 

Floresco, 2015). In contrast with the digging task, a well described rodent task to assess 

attentional set-shifting (Birrell and Brown, 2000), this automated method allows to test 

several animals at the same time and, most importantly, the analysis is not manually 

controlled by the experimenter, making the test less subjective to interpretation and/or 

human error. Furthermore, Brady and Floresco have showed that similarly with previous 

digging and maze tasks, this automated task is sensitive to disruptions in the PFC and 
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subcortical circuits (Brady and Floresco, 2015). This task was used in this chapter, and more 

detail about the protocol can be found below in the methods. 

 

5.1.4. BEHAVIOURAL FLEXIBILITY IN RODENTS WITH CHRONIC PAIN 

Evidence suggests that behavioural flexibility is impaired in rodent models of chronic pain 

(Brown and Tait, 2014; Murray et al., 2015; Moriarty et al., 2016a; Cowen et al., 2018). Cowen 

and colleagues showed impairments in the cognitive flexibility induced by neuropathic pain 

in rats when tested in an operant protocol (Cowen et al., 2018). Moriarty et al, also reported 

impaired cognitive flexibility in neuropathic rats (Moriarty et al., 2016a). In this study the 

same rodent model was used, spinal nerve ligation, but this time animals were tested in a 

reversal task during the Morris watermaze. Neuropathic rats showed worse performance 

than controls in the reversals (Moriarty et al., 2016a).  

These results indicate that chronic neuropathic pain may affect and impair cognitive 

flexibility; however, there is no evidence so far that similar results would occur with other 

types of pain including OA.  

 

5.1.3.1. PREFRONTAL CORTEX, PAIN AND COGNITION 

The PFC is known for its important role in pain processing, including in knee OA pain  

(Parks et al., 2012).  Several studies conducted in both humans and animal models have been 

showing the involvement of PFC in both acute and chronic pain; structure, anatomical and 

connectivity changes in PFC have been reported in chronic pain condition (Ong et al., 2019).  

Brain imaging studies have showed significant decreases in the volume of grey matter in the 

PFC in patients with chronic pain (Kelley and Domesick, 1982; Kuchinad et al., 2007; Moriarty 

et al., 2011), and this morphological alteration was suggested to contribute to cognitive 

impairments (Luerding et al., 2008). 

Moreover, this forebrain region has also been reported to have a major role in several 

different cognitive functions (Hiser and Koenigs, 2018; Parnaudeau et al., 2018), including, in 

NOR and cognitive flexibility. While, pain processing was suggested to be more localized in 

the dorsal mPFC, cognitive processing seems to be more ventrally localized (Jahn et al., 2016). 
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Impairments in decision-making have been linked to chronic pain patients (Apkarian et 

al., 2004), decision-making deficits were correlated positively with cortical grey matter 

volume changes in chronic pain patients (Elvemo et al., 2014). 

Several studies have assessed the role of the rodent hippocampus in NOR memory, 

besides some conflicting and diverse results the hippocampus seems important for the NOR 

memory at least with a delay greater than 10 minutes between sample and testing (for 

review see (Cohen and Stackman Jr., 2015)). However, recent works have indicated that 

other areas as the perirhinal cortex (Brown and Aggleton, 2001) and the PFC have a crucial 

role in NOR (see for review (Morici et al., 2015)). 

Additionally, one key function associated with the PFC, although not exclusively, is 

cognitive flexibility (Kim et al., 2011; Brown and Tait, 2014; Brady and Floresco, 2015). There 

is evidence that pain severity negatively correlates with behavioural flexibility in patients 

with chronic pain (Karp et al., 2006). Interestingly, there is evidence that PFC pharmacological 

manipulations of both dopamine and serotonin systems altered behavioural flexibility 

(Winter et al., 2009; Nilsson et al., 2019). 

 

5.1.6. CHAPTER AIMS 

In sum, there is evidence that indicates that chronic pain may disrupt the PFC and 

consequently associated functions, including cognitive flexibility. Unfortunately, the 

knowledge behind the relationship between chronic pain and cognitive flexibility remains 

unclear, even less is known regarding if, and how OA in particular affects this cognitive 

function.  

In the previous chapter, we focused only on the possible impact of chronic OA knee pain 

on hippocampus-dependent rapid place learning performance and no significant 

impairments were detected. However, as discussed above chronic pain has been also 

associated with recognition memory deficits. Therefore, in this chapter we tested MIA-

injected LH rats in the NOR test to investigate the possible impacts of OA-chronic knee pain 

on NOR memory.  

To test if OA causes cognitive flexibility deficits, in this chapter, the same cohort of MIA-

injected adult LH rats were subjected to an automated set-shifting task (Brady and Floresco, 

2015) to evaluate the impact of OA-chronic knee pain on behavioural flexibility. 
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5.2. METHODS 

Refer to Chapter 2 for general methodology.  

 

5.2.1. ANIMALS  

A total of 32 adult male Lister hooded (LH) rats weighing between 253-283g, 

approximately 2-3 months old, (Charles Rivers, UK) at the beginning of the experiment were 

used in this study. The target sample size for this study was 32 (n=16 per group), so group 

differences corresponding to an effect size of Cohen’s d=1 could be detected with a power 

of about 80%, using an independent t-test (2-tailed, p<0.05).  

 

5.2.2. PAIN BEHAVIOUR AND SENSORIMOTOR ACTIVITY 

The model of OA pain was induced with a single intra-articular injection of MIA (as 

described in 2.2.). LH rats were injected with either 50 µL of MIA (3 mg/50 µL; n=16) or the 

same volume of sterile saline solution (n=16) as control. Rats were initially allocated to the 

treatment groups before model induction based on the pain and sensorimotor activity 

baseline measurements to match the prospective treatment groups for their baseline 

measurements as closely as possible. In each cage half of the animals received treatment and 

the other half saline. The experimenter (S.G.) was blinded to the treatment allocations 

throughout the data collection and analysis. 

Nociceptive pain behaviours were assessed using weight-bearing and Von-Frey tests, as 

described in 2.3., and sensorimotor measures, locomotor activity and startle/prepulse 

inhibition, were taken as described in 2.4.. Rats were first handled for a few days and 

habituated to the pain test apparatus. Baseline pain behaviour and sensorimotor activity 

measurements were collected before model induction with one day apart. After MIA/saline 

injection (day 0), pain measurements were taken on day 3, 14, 28, and 63; and sensorimotor 

processes were assessed on day 15, 29, and 63 after model induction.  
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5.2.3. NOVEL OBJECT RECOGNITION TEST  

To assess if NOR memory was impaired in MIA-injected LH rats, animals were submitted 

to the NOR test at  baseline, i.e. 10 days prior to model induction, and 30 days after model 

induction, adapting NOR testing procedures described in (Pezze et al., 2015). 

 

5.2.3.1. NOR APPARATUS 

Animals were tested in groups of 4. The animals were tested in individual plastic 

rectangular arenas (38 x 40 x 54 cm high walls) with an opaque plastic lid. Objects consisted 

of duplicate copies of bottles of glass or plastic with different shapes, colour and sizes. These 

objects were filled with water to make them too heavy to be displaced by the animal. Objects 

were counterbalanced across groups and placement (right or left of arena). Sessions were 

recorded using an overhead camera and later analysed. Arenas and objects were cleaned 

with 20% ethanol before each trial/session to remove odour cues.  

 

5.2.3.2. NOR PROCEDURE 

The NOR task consists of three major phases: habituation to the apparatus, sampling and 

testing phase. On the first day, animals were placed into the empty arena for 1h for 

acclimatisation (habituation). On the following day, animals were placed in the empty arenas 

for 3 min for re-acclimatisation, returned to the home cage for 30 – 45 s while arenas were 

cleaned and objects placed, and then placed in the arenas again for the sampling phase. The 

two copies of the object were placed in opposite corners of the arena as in Fig.5.1. and 

animals were then allowed to explore them for 5 min (familiar/sampling phase), after which 

the animal was returned to the home cage. 24 h after the sampling phase, animals were 

FIGURE 5.1. – NOVEL OBJECT RECOGNITION (NOR) TEST. Rats were allowed to explore two identical 

objects (sampling day) and after 24 hours one of the objects was replaced by a novel one (testing day).  
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replaced into the arena for 3 min; at this point, the arena contained one of the objects used 

in the sampling phase on the previous day (the familiar object) and one novel object (testing 

phase).  Both sampling phase and testing phase were recorded and later analysed. The 

duration of sampling and test phase were selected based on previous studies (Pezze et al., 

2015). 

Time exploring each object was defined as only direct contact/active exploring the object 

by directing the nose at the object at a distance of less than 1 cm, e.g. sniffing and or 

interacting with the object. Contact with the object, but facing it or sitting next to it was not 

scored as exploration time (Ennaceur and Delacour, 1988; Pezze et al., 2015).  The 

discrimination ratio was calculated using the following equation: 

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 𝑁𝑜𝑣𝑒𝑙 𝑂𝑏𝑗𝑒𝑐𝑡
𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 𝑁𝑜𝑣𝑒𝑙 + 𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟 𝑂𝑏𝑗𝑒𝑐𝑡⁄ . 

 

5.2.4. BEHAVIOURAL FLEXIBILITY TEST  

To assess the behavioural flexibility, an automated strategy shifting and reversal task was 

used in this study. The protocol used was based on a previously established protocol (Brady 

and Floresco, 2015). Animals were food-restricted during this test to provide better control 

of food intake. Food-restriction was gradually introduced a few days prior to the beginning 

of the pretraining. Moreover, 10-20 sugar pellets (Purified rodent tablet 5TUL, TestDiet) per 

animal were placed in the animal’s home cage to familiarise animals with the pellets on the 

day before the pretraining. The target animal weight was 85-90% of the free feeding weight; 

animals were carefully weighed every day before the task and only fed with their normal food 

after the task.   

 

5.2.4.1. APPARATUS  

The task was conducted in individual operant chambers (MED-Associate Operant 

Chambers). Each chamber was equipped with a house-light, two retractable levers, two 

stimulus lights above the levers and a reinforcement pellet dispenser located between the 

levers. Each animal was assigned to an operant chamber. Chambers were cleaned with 20% 

ethanol between tests to prevent odour cues. The stimuli presented, lever operation and 

data collection were controlled via an interface with the computer and using custom 

software (MED-PC software) (Brady and Floresco, 2015).  
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5.2.4.2. PRETRAINING  

Phase 1: Food restricted rats were initially trained to respond by lever pressing under a 

fixed-ratio (FR1) schedule of reinforcement. In this phase 1, only one lever (right or left) was 

extended and one reward pellet was delivered for each lever press. Phase 1 had the duration 

of 4 days. In the first 2 days animals were trained with only one lever (right or left) and on 

the next 2 days animals were trained on the opposite lever, with half of the animals first 

trained on the right lever and the other half on the left lever. On the first day only, two reward 

pellets were placed in the magazine cup and crushed pellets on the top of the extended lever.  

Minimum trial criterion was 50 lever presses in a maximum of 30 min.  

Phase 2: Animals were then trained on the retractable lever to familiarise them with the 

extension and retraction of the levers and the respective sound. Levers were 

pseudorandomly extended, but the same lever was not presented more than two 

consecutive times. The program started with the house-light off, then both stimulus light 

turned on, 3s after house-light came on and one of the levers extended for 10 seconds. 

Pressing the lever resulted in its retraction, release of a reward pellet and switching off of all 

lights, no lever press was considered an omission. Each session was composed of 90 trials. 

Phase 2 lasted 5 days, and on the 5th day rats should be making fewer than 5 omissions over 

the session to proceed to the next phase.  

Phase 3: On the 5th day, a side preference test was conducted immediately after the end 

of phase 2 - rats were not removed from the chamber after phase 2. Both levers were 

extended into the chamber on each trial and no light stimulus was presented during this 

phase. On the first trial  a press on either levers was rewarded with a sugar pellet, on  second 

trial ( 20 seconds after) press on the opposite lever was rewarded, choosing the same lever 

as the first trial was not rewarded. The opposite levers should be pressed 7 times, so 7 + 7 

presses in total. The test only ended after 7 pairs of rewarded trials were achieved. In the 

response phase animals were trained to press the levers opposite the one they showed 

preference during this side preference training. 

 

5.2.4.3. VISUAL CUE DISCRIMINATION  

Phase 4: This was the first testing phase. Both levers extended into the chamber and only 

one cue light was illuminated (Fig.5.2.A). To receive a reward, the animal needed to press the 
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levers with the cue light illuminated above it. The program stopped after the rat reached the 

criterion – 10 consecutive correct trials – or after a maximum of 150 trials.  

The pre-exposure to stimulus lights presented during phase 2 reduces the novelty and, 

therefore, may also reduce the salience of the stimulus lights, and consequently increase the 

difficulty and increase the number of trials required to achieve criterion performance on this 

visual cue discrimination phase (Floresco et al., 2008). Animals may require multiple days to 

learn this rule under these conditions. If rats did not reach the criterion on day 1, the rat was 

tested again on the following day up to a maximum of 3 days. Rats that did not reach the 

criterion on the 3rd day were excluded from further behavioural testing. 

 

5.2.4.4. SET SHIFT TO SPATIAL RESPONSE STRATEGY  

Phase 5: At the beginning of phase 5 and just on the first day, the program ran the first 20 

trials identical to phase 4, i.e. with responding according to the cue rule being rewarded 

(Fig.5.2.B). These trials served to measure retrieval/expression of the cue discrimination rule. 

On trial 21 the program shifted to the spatial response strategy. Either the left or right 

stimulus light was pseudorandomly illuminated for 3 s, then both levers extended into the 

chamber for 10 seconds or until a response occurred. The reward was delivered only when 

the rat pressed the opposite lever of the side bias defined during side preference training, 

independent of the position of the light. The program again stopped after the rat reached 

the criterion - 10 consecutive correct choices and only after it completed a minimum of 30 

trials - or after a maximum of 180 trials on the first set shift day and a maximum of 150 trials 

on subsequent set shift days. Rats performed 3 consecutive days of this task. A few days later, 

FIGURE 5.2. – DISCRIMINATION TASKS. A) During visual cue discrimination task (phase 4), rats are 

reinforced for a response on the lever under the illuminated stimulus light. B) During shift to response 

discrimination task (phase 5), rats are reinforced for a response on one lever (either left or right) 

regardless of the position of the stimulus light. Adapted from (Brady and Floresco, 2015). 
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a fourth day as a reminder of phase 5 was presented to the rats, to ensure robust 

performance on the spatial response task, followed, on the next day, by reversals.  

 

5.2.4.5. REVERSAL TASK  

The reversal task was run similar to phase 5. Either left or right stimulus light were 

pseudorandomly illuminated for 3 seconds, then both levers were extended into the 

chamber for 10 seconds or until a response occurred. However, here the correct response 

was ‘reversed’. So, if in phase 5 the designated lever for a particular rat was the right lever, 

now the left lever was the designated lever to receive a reward pellet, and vice versa. The 

criterion was again 10 consecutive correct responses, with maximum of 150 trials. All rats 

performed this task for 4 consecutive days, lever only changed on the first day. 

 

5.2.4.6. BEHAVIOURAL PERFORMANCE MEASURES 

The analysis of this test focused on trials to criterion, the percentage of correct responses 

and percentage of omissions. Errors were also counted and analysed during the shifting and 

reversal phases.  

Two types of errors were taken in consideration: perseverative error - when rats 

responded incorrectly, but in accordance with the rule that was correct on the previous task, 

and never-reinforced errors – when rats responded incorrectly on the task with a response 

that was not correct either according to the current or previous rule. 

 

5.2.5. EXPERIMENTAL DESIGN  

This experiment was conducted in two batches; half of the animals were in batch 1 and 

the other half in the batch 2. Both batches were ran with only 1 day of delay between them 

to facilitate the behaviour testing, so all animals could be tested during the morning. 

Study was conducted as described in Fig 5.3.. Before model induction, rats were tested 

for NOR, followed by pain behaviour and sensorimotor activity (baseline). Then, after model 

induction (day 0), pain measurements were taken on day 3, 14, 28, and 63; and sensorimotor 

processes were assessed on day 15, 29, and 63 after model induction as described in Fig.5.2.. 

NOR was also re-assessed at day 30 (sample phase) and 31 (testing phase) after model 
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induction. Then, food restriction started on the day after NOR testing animals. Pretraining of 

automated set shifting task started on day 37 after model induction. 

At day 70 after MIA/saline injection, rats were anesthetized with a lethal dose of sodium 

pentobarbitone and transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde (PFA). Brains, spinal cords, DRGs and knees were carefully excised, 

preserved and stored. Knee joint sections were stained with haematoxylin and eosin- or 

safranin-O/fast green and then scored for overall joint morphology and proteoglycan loss. 

Total cartilage joint damage, osteophyte, proteoglycan loss, synovial inflammation and 

chondrocyte presence were scored to evaluate the severity of the knee joint pathology as 

described in 2.7.  

 

 

 

5.2.6. STATISTICAL ANALYSIS  

GraphPad Prism 8 and IBM SPSS Statistics 24 were used to prepare the graphs and the 

statistical analysis.  

Results from the pain behaviour studies were analysed using an analysis of variance 

(ANOVA), with group as between-subjects factor and days from model induction as repeated 

measures/within-subjects variable. Results from the sensorimotor behaviour studies were 

analysed using a mixed design factorial ANOVA test with days from model induction and task 

blocks (or pulse intensity in the PPI test) as within-subjects factors and group as between-

subjects factor. NOR results were analysed also using an ANOVA test with testing day and 

object as within-subjects factors and group as between-subjects factor.  

FIGURE 5.3. – TIME COURSE OF THE BEHAVIOURAL FLEXIBILITY AND RECOGNITION MEMORY STUDY. 32 adult 

males Lister hooded rats were used in this study. Animals were either injected with MIA (3mg/50µl, 

n=16) or saline (n=16).  
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From the cognitive flexibility test, results of the Cue Acquisition phase were analysed 

using unpaired t-test or the Mann-Whitney when normality could not be assumed. For the 

shifting and reversal phase that involved four sessions of trials, a mixed design factorial 

ANOVA test was used with testing day as within-subjects factors and group as between-

subjects factor. 

Knee pathology was analysed with an independent t test or with Mann-Whitney test when 

normality was violated. 

P<0.05 was considered to represent a significant difference and all results were expressed 

as mean±standard error (SEM). Normality was tested using D’Agostino-Pearson test. Baseline 

measures were not included in the ANOVAS analysis, t-tests were conducted at baseline two 

ensure no significant difference between groups at this stage. Bonferroni multiple 

comparison was used as post-hoc testing. 
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5.3. RESULTS 

 

5.3.1. PAIN BEHAVIOUR 

 Rats showed weight-bearing asymmetry, placing less weight on the injured leg, after MIA 

injection, compared to saline injection (group: F(1,30)=33.89, p<0.0001) (Fig.5.4). No main 

effect of time and interaction between time and group were observed (time: F(3,90)=0.71, 

p=0.55; group x time: F(3,90)=0.21, p=0.89).  

Paw withdrawal measures did not differ between MIA and control rats (Fig.5.5). No 

differences were observed between MIA and controls in the paw withdrawal threshold of 

the ipsilateral (group: F(1,30)=1.24, p=0.27; Fig.5.5A) and the contralateral paw (group: 

F(1,30)=0.03, p=0.87; Fig.5.4B). No difference between the contralateral and the ipsilateral 

withdrawal threshold was observed as well (group: F(1,30)=0.70, p=0.41; Fig.5.5C). No main 

effect of time or interaction involving group were observed (time: F(3,90)<2.67, p>0.07; group 

x time: F(1,90)<0.43, p>0.0.33).  
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FIGURE 5.4. – MONOSODIUM IODOACETATE (MIA) INDUCED ASYMMETRY IN WEIGHT BEARING IN LISTER 

HOODED (LH) RATS. LH rats were injected with either 50ul of 3mg of MIA (▪; n=16) or saline (●; 

n=16) in the left knee. Data are presented as mean±SEM. * p<0.05, ** p<0.003, *** p<0.0006, 2-

way ANOVA with Bonferroni multiple comparisons post-hoc testing. 
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5.3.2. SENSORIMOTOR ACTIVITY  

 MIA injection did not affect horizontal locomotor activity (Fig.5.6A), however rearing 

(vertical locomotor activity) was significantly reduced in these animals compared with saline 

injected controls (Fig. 5.6B). A 3-way ANOVA of horizontal locomotor activity, using group as 

between-subjects factor, and day from model induction and 10-min blocks of testing as 

within-subjects factor, revealed no significant main effect of group (group: F(1,30)=3.65, 

p=0.07). However, MIA rats tend to be a little less active than saline, but this is likely to reflect 

a pre-existing difference, unrelated to the MIA injection, as a similar difference was already 

present at baseline. However, significant difference in the vertical activity was observed 

(group: F(1,30)=5.08, p=0.03), MIA injected rats stand on the rear paws less than controls. 

In both horizontal and vertical activity, no interactions of block or testing day with group 

were observed (time/block x group: F(2,60)<1.05, p>0.36), nor triple interaction of block, 

testing day and group (time x block x group: F(4,120)<0.92, p>0.45). For both horizontal and 

vertical activity, animals showed habituation to the apparatus within the individual open field 

test sessions, reflected by a main effect of 10-min block (block: F(2,60)=319.19, p<0.0001; 

F(2,60)=95.38, p<0.0001) and across test days, reflected by a main effect of days (time: 

F(2,60)=3.42, p=0.04; F(2,60)=3.22, p=0.047).  

FIGURE 5.5. – MONOSODIUM IODOACETATE 

(MIA) INDUCED WEAK CHANGES IN MECHANICAL 

ALLODYNIA IN LISTER HOODED (LH) RATS. Rats 

were injected with either 50ul of 3mg of MIA (▪; 

n=16) or saline (●; n=16) in the left knee. Data 

are presented as mean±SEM. Baseline Day 3 Day 14 Day 28 Day 63
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Startle response and prepulse inhibition were not affected by MIA injection (Fig.5.7). 

Animals have showed habituation to the pulse-alone (F(2.60)=113.06, p<0.0001) and pulse 

intensity (F(3,90)=320.68, p<0.0001) during the trials within the session. In addition, rats 

showed habituation to the test during the study (F(2.60)>3.20, p<0.04). MIA model induction 

did not affect the startle response (F(1,30)=2.91; p=0.10) (Fig.5.7A)  or prepulse inhibition  

(F(1,30)=2.14; p=0.15) (Fig.5.7B). No interaction effect with group was observed in the startle 

response (F(2,60)<1.88, p>0.16) and in the prepulse inhibition, also no double interaction 

(F(3,90)<1.07, p>0.38). 

 

5.3.3. RECOGNITION MEMORY  

Novel object recognition memory was not affected after MIA model induction (Fig. 5.8). 

Before model induction, exploration time was similar in both groups (group: F(1,30)=0.41, 

p=0.52) and animals from both groups showed a similar preference for the novel object, i.e. 

there was a significant main effect of object (object: F(1,30)=41.26, p<0.0001). MIA model 

induction did not affect exploration time (group: F(1,30)=0.02) and both groups showed a 

similar preference for the novel object (F(1,30)=27.26, p<0.0001).. The discrimination ratio 

between familiar and novel object was not affected by MIA injection (group: F(1,30)=2.27, 

p=0.14) compared with saline controls. No interaction effect between group and object was 

observed at baseline, post model induction or in the discrimination ration analysis (object x 

group: F(1,30)<1.03, p>0.32). 
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FIGURE 5.8. – RESULTS FROM THE TESTING PHASE FROM THE NOVEL OBJECT RECOGNITION MEMORY TEST. 

LH rats were injected with either 50ul of 3mg of MIA (▪; n=16) or saline (●; n=16) in the left 

knee. Data are presented as mean±SEM. 
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To ensure that the possible preference for the novel object did not decline rapidly over 

the 3-min  session the results were also scored and analysed in 1-min bins using object and 

bin as within-subjects and group as between-subjects (data not showed). The 3-way ANOVA 

at baseline showed decrease of exploration time over time during the 3-min session (time: 

F(2,60)=8.94, p>0.0001). Animals spent more time exploring the novel object (object: 

F(1,30)=41.3, p>0.0001), but no main effect of group (group: F(1,30)=0.42, p=0.5) or interaction 

involving group (F(1,60)<1.03, p>0.3) was observed. Similar results were obtained post model 

induction, decrease of exploration time over time session (time: F(2,60)=28.88, p>0.0001). 

Animals spent more time exploring the novel object (object: F(1,30)=27.26, p>0.0001), but no 

main effect of group (group: F(1,30)=0.02, p=0.9) or interaction with group (F(2,60)<1.15, p>0.2) 

were observed. No minute by minute alteration in object exploration over the 3-min session 

was observed by the 3-way ANOVA interaction between group, object and 1-min bins, at 

both baseline (F(2,60)=0.74, p=0.5) and post model induction (F(2,60)=2.52, p=0.09). 

 

5.3.4. BEHAVIOURAL FLEXIBILITY  

5.3.4.1. CUE ACQUISITION 

MIA did not impair acquisition of the cue discrimination task. An unpaired t-test showed 

that MIA (mean=119±34.12) and saline (mean=169.6±38.45) rats did not differ in trials to 

reach the criterion (t<1, df=30) (Fig.5.9A). No changes were also observed in terms of % of 

correct responses (t=1.35, df=30, p=0.19) (Fig.5.9B) and % of omissions (U=109.5, p=0.46) 

(Fig.5.9C) between MIA and saline controls. At this phase, 4 animals (3 saline + 1 MIA) failed 

to make streak of 10 correct responses within the three 150-trial sessions and failed to reach 

the criterion so they were excluded from further testing (signed in grey ellipses in Fig.5.9.A). 



96 
 

0

100

200

300

400

500

Tr
ia

ls
 t

o
 r

ea
ch

 c
ri

te
ri

o
n

Saline, n=16 MIA, n=16
Saline MIA

50

60

70

80

90

100

%
 c

o
rr

e
ct

 r
e

sp
o

n
se

s

Saline MIA
0

5

10

%
 O

m
is

si
o

n
s

A B C

 

 

 

5.3.4.2. SHIFT TO RESPONSE STRATEGY  

Shift from visual cue discrimination to response strategy was not affected by the MIA 

injection (Fig.5.10.). Trials to reach criterion decreased across days (time: F(3,78)=123.8, 

p<0.0001) (Fig.5.10A) and % of correct responses increased across days (F(3,78)=38.73, 

p<0.0001) (Fig.5.10B), however in both parameters there was no main effect of group (group: 

F(1,26)<1) or interaction involving group (time x group: F(3,78)>1.77, p<0.1). Omissions were 

never greater than 1 and did not differ between groups (data not shown). Perseverative 

(Fig.5.10C) and never-reinforcement errors (Fig.5.10D) decreased across days (time: 

F(3,78)=14.21, p<0.0001; F(3,78)=9.60, p<0.0001), however there was no main effect of group 

(group: F(1,26)=0.22, p=0.6; F(1,26)=0.004,p=0.9) or interaction involving group (time x group: 

F(3,78)=1.23, p=0.3; F(3,78)=0.92, p=0.4). 

 

FIGURE 5.9. - TRIALS TO CRITERION (A), % OF CORRECT RESPONSES (B) AND % OF OMISSIONS (C) ON THE 

INITIAL CUE DISCRIMINATION TASK (SET). Cue Acquisition was not affected after MIA injection 

compared with controls. Animals in the grey ellipses did not reach criterion on the 3 days of 

testing and were excluded from the further testing phases. LH rats were injected with either 

50ul of 3mg of MIA (▪; n=16) or saline (●; n=16) in the left knee. Data are presented as 

mean±SEM. 
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5.3.4.3. REVERSALS 

MIA did not impair the ability to reverse the spatial response rule (Fig.5.11). Both groups 

decreased the number of trials to reach criterion across days (time: F(3,78)=96.82, p<0.0001) 

(Fig.5.11A) and slightly increased the % of correct responses (time: F(3,78)=130.5, p<0.0001) 

(Fig.5.11B). However, in both parameters there was no main of group (group: F(1,26)<1)  or 

interaction involving group (time x group: F(3,78)>1.67, p<0.2). Omissions were never greater 

than 1 and did not differ between groups (data not shown). 

Perseverative (Fig.5.11C) and never-reinforcement errors (Fig.5.11D) decreased across 

days (time: F(3,78)=90.20, p<0.0001; F(3,78)=79.17,p<0.0001), however no main effect of group 

(group: F(1,26)=0.0.05, p=0.8; F(1,26)=4.07, p=0.054) and interaction involving group (time x 

group: F(3,78)=0.46, p=0.7; F(3,78)=0.92,p<=0.4) were observed. 

FIGURE 5.10. - TRIALS TO CRITERION (A), % OF CORRECT RESPONSES (B), % OF PERSEVERATIVE (C) AND 

NEVER-REINFORCEMENT (D) ERRORS ON THE SHIFT TO RESPONSE TASK (SHIFTING PHASE). Shift was not 

affected after MIA injection compared with controls. LH rats were injected with either 50ul of 

3mg of MIA (▪; n=13) or saline (▪; n=15) in the left knee. Data are presented as mean±SEM. 
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5.3.5. KNEE PATHOLOGY 

Knees were collected and processed for pathology scoring at the end of the study as 

described in section 2.7. Joints were scored for cartilage integrity (cartilage damage x 

involvement), synovial inflammation and osteophyte formation on three different levels of 

both lateral and medial tibial plateau (Fig.5.12). Results are shown as mean between medial 

and tibial plateau values, as no differences were observed between medial and lateral tibial 

parts. During the splitting process, one knee joint from a saline animal was split with the 

wrong angle making it impossible to score. 

MIA injected rats lost cartilage integrity (Fig.5.12A; U=24, p<0.0001), developed synovial 

inflammation (Fig.4.12B; U=48, p=0.0002) and showed a higher number osteophytes 

(Fig.5.12C; t=2.51; df=29, p=0.02), compared with control animals.  

 

FIGURE 5.11. - TRIALS TO CRITERION (A), % OF CORRECT RESPONSES (B), % OF PERSEVERATIVE (C) AND 

NEVER-REINFORCEMENT (D) ERRORS ON THE REVERSALS. Reversal task was not affected after MIA 

injection compared with controls. LH rats were injected with either 50ul of 3mg of MIA (▪; 

n=13) or saline (▪; n=15) in the left knee. Data are presented as mean±SEM. 
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FIGURE 5.12. – MICROSCOPIC QUANTIFICATION OF HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN LISTER 

HOODED RATS INJECTED WITH EITHER 3 MG MONOSODIUM IODOACETATE (MIA) MODEL OR SALINE. 

Average scores for medial and lateral tibial plateau. Rats were injected with either 50ul of 3mg of MIA 

(▪, n=15) or saline (●, n=16) in the left knee. Knees were collected and processed for scoring at day 70 

after model induction. 3 mg MIA was able to induce cartilage damage (A), synovial inflammation (B) 

and osteophyte formation (C). Data are presented as mean±SEM. **** p<0.0001; *** p<0.001; * 

p<0.05.  
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5.4. DISCUSSION 

In this study, MIA-injected LH rats were subjected to a novel object recognition test and 

to an automated set shifting task to investigate the impacts of OA on recognition memory 

and behavioural flexibility. No evidences of impaired recognition memory and behavioural 

flexibility after induction of chronic MIA were observed. 

  

5.4.1. PAIN BEHAVIOUR, SENSORIMOTOR ACTIVITY AND KNEE 

PATHOLOGY 

Pain behaviour was assessed across this study. 3 mg of MIA injected into the knee, as in 

the previous experiments (chapter 2 and 3), produced a pain phenotype, reflected by weight 

bearing asymmetry. As observed in previous chapters, there was no evidence for mechanical 

allodynia, so the possibility that our MIA-injected rats do not show central sensitization 

should also be considered. Both MIA and control animals showed a slight decrease in 

ipsilateral paw withdrawal threshold after MIA/saline injection into the knee, with values 

then remaining at this lower level throughout the rest of the study.  

Locomotor activity was slightly affected after MIA injection. As in chapter 3, in this study, 

MIA injected rats showed a significant decrease in the vertical activity compared with saline. 

As in chapter 4, there was no evidence for changes in startle response. Nevertheless, the PPI 

was mildly affected in MIA-injected rats at the higher prepulse in chapter 4, these effects 

were not observed in this chapter. 

Similarly to the knee pathology results in chapter 3 (at day 35 after MIA injection) and 4 

(at day 93), knee histology conducted at the end of this study at day 70 confirmed that MIA 

induced cartilage damage, synovial inflammation, and some animals developed osteophytes.  

 

5.4.2. RECOGNITION MEMORY  

MIA injected rats did not show impairments in novel object recognition memory 

compared with saline controls. Both sham and MIA rats spent more time exploring the novel 

object, the discrimination ratio was not affected after induction of the model, indicating that 

memory may not be affected by MIA. 

Previous studies using a neuropathic pain model in both young adult (7weeks old) (You et 

al., 2018) and mid-aged (41 weeks old) male Sprague Dawley rats (Moriarty et al., 2016a), 



101 
 

showed that chronic neuropathic pain may be associated with recognition memory deficits. 

Impaired recognition memory was also reported in MIA-induced OA model in mice (Negrete 

et al., 2017). However, in contrast with these previous findings in rodents, in this study 

chronic knee OA-like pain in adult LH rats did not affect novel object recognition memory. 

On top of the different models and animals used between studies, the principal barrier 

when comparing recognition memory results between studies is the protocol used across 

labs. First, the test is usually conducted in an open rectangular arena with high walls as in this 

study, however some labs use Y-mazes (Negrete et al., 2017). Second, in the study by Negrete 

et al. (2017), as in the present study, mice were tested 30 days after MIA induction and the 

interval time between sampling and testing phase was 24h.  

Beside the evidence previously mentioned that chronic pain may be affecting recognition 

memory, there are also a few human studies that seem to be in accordance with our finding, 

indicating a limited impact. Once more, this conflicting data shows the importance to further 

investigate this relationship. A study conducted in middle-aged male patients with 

fibromyalgia showed no impairments in recognition memory compared with pain free groups 

when tested in the Camden Topographical Recognition Memory test (Lee et al., 2010). In 

addition, chronic back pain patients also did not show deficits in recognition memory when 

tested in the Cambridge Neuropsychological Test Automated Battery test  (Schiltenwolf et 

al., 2017).  

 

5.4.3. BEHAVIOURAL FLEXIBILITY  

Behavioural flexibility was not affected in adult LH rats after induction of chronic OA like 

knee pain. Both MIA-injected rats and saline controls were able to learn and perform operant 

rules, and shift and reverse them similarly well during the automated set shifting test.   

Cowen and colleagues conducted a study in adult Sprague Dawley rats with neuropathic 

pain showing weak impairments in behavioural flexibility in an operant chamber task with 

choice testing and progressive ratio tasks (Cowen et al., 2018). Rats with spinal nerve ligation 

did not show deficits in terms of learning and motivation, however, when compared with 

controls (both naïve and sham rats) chronic pain animals were slower to adapt to a new and 

more challenging task. However, impairments may have been less specific, since the in rats 

seem to show a non-specific impairment in operant learning, rather than specific 

impairments in behavioural flexibility.  
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As previously observed in chronic pain patients that tend to stay longer on the previous 

rule even when less proficient than healthy controls (Verdejo-Garcia et al., 2009; Indart et 

al., 2017), these neuropathic rats also seem to take longer to revert to an optimal choice. 

Interestingly, these neuropathic rats pressed the lever in bursts followed by long delays. This 

unique and possible adaptive coping strategy lead the authors to hypothesize and suggest 

that chronic neuropathic pain may drive a preference for familiar situations.  

Leite-Almeida et al. showed during a spatial navigation reversal task in the watermaze test 

that only adult neuropathic rats had difficulties to shift from the old task compared with both 

young and old neuropathic Sprague Dawley rats. Furthermore, old sham rats also failed to 

adapt the behaviour to the new rule in this task, showing a relevant age-related impairment 

in behavioural flexibility (Leite-Almeida et al., 2009). This study points out once more the 

importance of considering the relationship between ageing, pain severity and cognition. In 

both human and principally in rodent studies, the age range is restricted which may be a 

translational issue for both pain and cognition research. Increasing the age range may 

increase clinical utility/relevance of the findings. 

Cognitive flexibility in chronic pain patients has been very poorly investigated. Karp and 

colleagues showed that pain severity may be associated with mental flexibility (Karp et al., 

2006), importantly, the sample of older adults appears to indicate that mental flexibility was 

more impaired as pain severity increased. Interestingly, Weiner et al (Weiner et al., 2006), 

demonstrated that older adults suffering from OA with chronic low back pain performed 

worse in a mental flexibility task compared with pain-free OA subjects. These results lead to 

hypothesise that OA by itself is not sufficient to affect neurocognitive function, but that 

chronic pain associated with OA is critical for the neurocognitive impairment. 
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5.5. CONCLUSIONS  

In sum, our results showed that in contrast with some evidence in other rodent models 

of pain, chronic OA knee-like pain in MIA-injected Lister hooded rats does not seem to be 

associated with recognition memory and behavioural flexibility deficits. 

Previous studies in rodents to investigate the impacts of pain on recognition memory and 

behavioural flexibility have been used mainly neuropathic models of chronic pain. As 

previously mentioned, OA pain may be associated with less brain changes compared with 

other types of pain (Mutso et al., 2012) and consequently has less impact in the respective 

cognitive functions which may explain the lack of cognitive impairments in our MIA model. 

However, Negrete’s study conducted a study in MIA mice and showed recognition memory 

impaired in these animals. Despite, the species and dose difference, this result difference 

was not expected since MIA is a well-established model across species due to its chemical 

induction nature.  

As briefly mention in chapter 4, another point that should be considered is the possibility 

that our MIA-injected rats do not show evidence of central sensitization. In contrast with the 

rodent studies mentioned, in this discussion including Negrete’s study, our MIA-injected rats 

did not show mechanical allodynia changes which may indicate that their central nervous 

system may not be impacted and consequently not impacting the cognitive function 

observed in the other studies. 

Several factors may mediate the relationship between chronic pain and cognitive 

functions, such as life style, age and medication. In fact, some studies have shown evidence 

that chronic pain patients under long-term opioid treatments perform worst in cognitive 

tasks than patients undergoing non-opioid treatments (Schiltenwolf et al., 2017; Richards et 

al., 2018). Opioid use for analgesics effects in patients under chronic pain states have rapidly 

escalated with wide ranging consequences. Furthermore, the long-term use of opioids can 

induce hyperalgesia (Angst and Clark, 2006), i.e. central nervous system changes and by itself 

cause cognitive function deficits. This topic will be studied and discussed in the next chapter. 
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CHAPTER 6                                                                                 

SUSTAINED OPIOID TREATMENT EFFECTS ON MEMORY IN MIA-

INDUCED LISTER HOODED RATS  

 

 

6.1. INTRODUCTION   

Chronic pain has been associated with cognitive function impairments. However, the 

relationship between osteoarthritis (OA) and such impairments remains unclear. Results in 

chapters 4 and 5 suggest that chronic OA-like pain behaviour in a rat model does not affect 

memory and cognitive flexibility. This finding may reflect the relatively short duration of OA-

like pain behaviour in the rat model compared to the clinical situation, or may reflect the 

combined impact of other factors with OA pain on cognitive function. For example, the 

development of cognitive deficits in humans is associated with life style (alcohol intake, lack 

of sleep, etc.), comorbidities (anxiety, stress, etc.), age and medication. In particular, there is 

evidence that some drugs used to treat chronic pain can contribute to cognitive deficits, such 

as opioids (Schiltenwolf et al., 2017; Richards et al., 2018).  

 

6.1.1. TREATMENTS FOR OSTEOARTHRITIS PAIN 

OA is a progressive and degenerative disease and a major public health burden. Pain is 

the main symptom of OA, but this disease is also associated with other comorbidities 

(Moriarty et al., 2011). Unfortunately, effective medication to either prevent or treat this 

disease has not been found yet, and, in order to improve the quality of life and joint mobility, 

current OA treatments are mainly focused on symptomatic relief of pain and/or 

inflammation. Surgical intervention is only indicated when pharmacological treatments do 

not work or when the degree of pathology is high (Hunter and Bierma-Zeinstra, 2019). Non-

pharmacological methods are recommended as a first key management strategy; such 

methods include exercise, weight loss if overweight, patient education and self-management 

(Hunter and Bierma-Zeinstra, 2019). Pharmacological treatments are mainly focused on 
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analgesics, such as paracetamol, opioids, duloxetine; and/or anti-inflammatory agents, such 

as non-steroidal anti-inflammatory drugs (NSAIDs) (Hunter and Bierma-Zeinstra, 2019).  

The first-line of the pharmacological treatments is focused on the use of NSAIDs (oral or 

topical administration). Although NSAIDs have beneficial effects in some people (da Costa et 

al., 2014; Bannuru et al., 2015), several adverse effects in particular in the gastrointestinal 

tract or renal effects have been reported in some patients with long-term treatment 

(Pelletier et al., 2016). Intra-articular injection of corticosteroids produces beneficial pain 

relief and improves joint mobility in knee OA in patients not responding to oral 

analgesics/anti-inflammatory agents (Hunter and Bierma-Zeinstra, 2019). Several other pain 

management therapies have been used and several new pain treatments are currently in 

study and development (Tive et al., 2019; Gowler et al., 2020). Strong opioids are prescribed 

for moderate to severe pain in patients unresponsive to NSAIDS.  

 

6.1.2. OPIOIDS AND OSTEOARTHRITIS  

The huge increase in opioid prescription, misuse and abuse has been considered as an 

epidemic, particularly in North America (Shipton et al., 2018). In England, the long-term 

prescription of opioids to manage chronic pain increased around 34% (or 127% after 

correcting for total oral morphine equivalency) between 1988 and 2016 (Curtis et al., 2019). 

Between 2016 and 2017 there was a decline in the prescription of opioids, however the 

number is still high compared with the previous decade (Curtis et al., 2019).  

Opioid drugs are a common treatment to manage OA pain despite lack of supporting 

evidence regarding its efficacy (Krebs et al., 2018). Krebs and colleagues (2018) conducted a 

randomised trial including 240 patients with moderate to severe chronic back pain or hip or 

knee pain. Half of the patients were under opioid treatment and the other half under non-

opioid analgesics. Opioids had no superior improvements in pain-related effect over non-

opioid treatments over 12 months. These recent findings demonstrated that opioids are not 

more effective than the non-opioid treatments, and recently the Osteoarthritis Research 

Society International (OARSI) updated the guidelines for the management of OA and strongly 

recommended against the use of opioids (Bannuru et al., 2019). Increasing awareness has 

been raised concerning the use and the consequences of opioids (Yip and Oettinger, 2020). 

The most common types of opioids prescribed  are codeine and its combinations, followed 

by the strong opioid tramadol, and then buprenorphine, morphine and oxycodone (Ashaye 
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et al., 2018). There are three main types of opioid receptors: mu (µ), delta (δ), and kappa (κ), 

which are G-protein coupled receptors and activate inhibitory G-proteins (Al-Hasani and 

Bruchas, 2011). µ-receptors are essential for the analgesic action of opioids (Williams et al., 

2013) and are expressed throughout the central nervous system, including both spinal cord 

and supraspinal areas (Al-Hasani and Bruchas, 2011). 

 

6.1.3. OPIOID TOLERANCE AND HYPERALGESIA 

Opioid use to manage pain has been associated with increased adverse effects related 

with gastrointestinal depression (constipation, nausea and vomiting) and respiratory 

depression (Imam et al., 2018). Opioid use also increases risk of addiction and overdose in a 

dose-dependent manner (Bedson et al., 2019). The prolonged use of opioids has additionally 

been associated with tolerance and hyperalgesia (Colvin et al., 2019).  

Opioid tolerance occurs when an increased dose is required to achieve the same amount 

of analgesic effect. Ongoing opioid exposure can lead to a reduction of the responsiveness to 

the drug, resulting in less analgesia over time (Colvin et al., 2019). Clinical loss of analgesic 

efficacy during opioid treatments may also result from a different phenomenon, known as 

opioid-induced hyperalgesia (OIH) (Chu et al., 2008).  

OIH is associated with prolonged opioid treatment and has been shown mechanistically 

to be a pronociceptive process, leading to an increase in pain sensitivity (Silverman, 2009). 

OIH was reported in both humans (Chu et al., 2008) and animal models (Araldi et al., 2015). 

Additionally, OIH has been reported following various routes of opioid administration at both 

high and ultra-low doses (Angst and Clark, 2006). Several studies have been conducted to 

investigate the mechanisms behind OIH, the majority of which have focused on peripheral 

neuronal and spinal cord mechanisms, but there is some evidence for a contribution from 

supraspinal areas (Chu et al., 2008; Chen et al., 2010; Ferrini et al., 2013; Sun et al., 2019).  

 

6.1.4. COGNITIVE IMPACT OF OPIOID ANALGESIA 

There is evidence that some analgesic drugs, including opioids, may interfere with 

cognitive function [see for review (Moriarty et al., 2011)]. µ-receptor activation inhibits GABA 

transmission in some brain areas, such as the hippocampus (Zieglgansberger et al., 1979; 

Valentino and Volkow, 2018). Also, µ-receptors activate GABA inhibition in the reward brain 

circuits, which can lead to increased dopamine release into ventral tegmental area and 
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prefrontal cortex (Bull et al., 2017; Colvin et al., 2019).  These results may suggest that opioids 

acting on µ-receptors may stimulate GABAergic inhibition and consequently this may cause 

inhibition of brain circuits involved in cognitive functions. Such (hippocampal and prefrontal) 

disinhibition may well cause cognitive impairments (Bast et al., 2017) and increased 

dopamine transmission may also disrupt some cognitive processes. 

The impact of opioid treatment for chronic pain on cognitive function is under-studied. In 

some studies of chronic pain and cognition, patients under medication are excluded or the 

medication effect is corrected (Moriarty et al., 2011). Nevertheless, there are some studies 

addressing this question. Chronic pain patients taking opioids performed worse in memory 

tasks compared with non-opioid patients (Karp et al., 2006). In this study, no correlation 

between pain severity and memory was detected and pain scores between non-opioid 

patients and patients prescribed with opioids were also not statistically different, however 

patients taking opioids had more difficulty with unprompted memory compared with non-

opioids subjects. Moreover, patients with non-malignant pain under long-term opioid 

treatment had worse spatial working memory compared with non-opioid patients (Sjøgren 

et al., 2000).  

A study including chronic back pain patients under long-term opioid treatment versus 

non-opioid treatment showed an interaction of low back pain and opioid treatment with 

cognitive deficits. Chronic back pain patients using both treatments showed impairments in 

attention and cognitive flexibility compared with controls, patients who underwent opioid 

therapy showed a trend to perform even worse in the tasks compared with healthy controls. 

Interestingly, only patients who underwent opioid therapy showed impairments in short 

term memory and working memory compared with both patients under non-opioid 

treatment and healthy controls. In this study cognitive impairments were associated with 

pain intensity (Schiltenwolf et al., 2014). 

Preclinical studies have also associated chronic opioid treatment with cognitive 

dysfunction. For example, chronic administration of morphine in naïve rats was associated 

with impaired learning during an operant chamber task (Wang et al., 2006) and in spatial 

memory during the probe trial in the Morris watermaze (Brolin et al., 2018). On the other 

hand, morphine treatment improved attention and recognition memory in a rat model of 

visceral pain (Millecamps et al., 2004).  
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6.1.5. AIMS OF CHAPTER 

Opioids are widely used to manage chronic pain despite the potential for adverse effects 

and misuse. Opioids have wide-ranging effects on neuronal function, including in brain 

regions contributing to cognition.  The impact of long-term exposure to opioids upon 

cognitive function in people suffering chronic pain is poorly understood. Evidence suggests 

that opioids may lead to an exacerbation of the pain phenotype and also cognitive 

dysfunction.   

The aim of this chapter was to investigate the effects of sustained morphine treatment 

and withdrawal from such treatment on hippocampal rapid place learning performance and 

recognition memory performance in the MIA model of OA-like knee pain in LH rats. 

To address this aim, I first investigated whether morphine treatment, following early 

acute analgesic action, induced morphine tolerance and/or OIH in LH rats following sustained 

morphine treatment and withdrawal from such treatment.  Naïve LH were chronically treated 

with morphine, and pain behaviour and locomotor activity were assessed during the 

treatment and during drug withdrawal.   

Secondly, I investigated whether sustained morphine treatment altered memory in MIA-

injected LH rats using the watermaze DMP task and the novel object recognition memory 

task. Cognitive and pain phenotypes were assessed acutely and during withdrawal from 

morphine treatment. 
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6.2. METHODS  

Refer to Chapter 2 for general methodology.  

 

6.2.1. MORPHINE DOSE – PILOT STUDY TO EXAMINE WHETHER 

MORPHINE CAUSES TOLERANCE AND HYPERALGESIA IN LISTER HOODED 

RATS 

6.2.1.1. ANIMALS  

A pilot study using 10 Lister hooded (LH) (Charles Rivers, UK) rats weighing between 250-

280g was conducted to evaluate pain behaviour changes in naïve LH rats during a sustained 

morphine treatment. Rats were housed in groups – 1 cage with 4 and 2 cages with 3 rats. The 

target sample size was calculated so group differences corresponding to an effect size of 

Cohen’s d=1 could be detected with a power of about 80%, using an independent t-test (2-

tailed, p<0.05). 

 

6.2.1.2. MORPHINE ADMINISTRATION 

Morphine (sulphate, Sigma) was dissolved in saline and administered subcutaneously 

(3mg/kg); based on previous studies (Babbini and Davis, 1972; Aguilar et al., 1998; 

Raghavendra et al., 2004; Ferrini et al., 2013; Brolin et al., 2018) and unpublished studies of 

our lab.  Rats were allocated randomly to the treatment groups, with half of the animals in 

each cage receiving treatment and the other half saline (n=5 per treatment group). Animals 

were injected twice a day, in the morning (between 9-10 am) and in the evening (between 

4-5 pm), for 7 days. Controls received an injection of saline. The experimenter (S.G.) was 

blinded to the drug treatment throughout the data collection and analysis. 

 

6.2.1.3. PAIN BEHAVIOUR AND LOCOMOTOR ACTIVITY 

Nociceptive pain behaviour was assessed using the Von-Frey test, as described in 2.3. and 

locomotor activity was assessed as described in 2.4. Rats were first handled for a few days 

and habituated to the Von-Frey test apparatus. Baseline locomotor activity measurements 

were collected one day before the treatment, and baseline pain behaviour was measured on 

the day of the treatment, 1h before the first injection.  
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6.2.1.4. EXPERIMENTAL DESIGN 

As indicated in the scheme in fig 6.1., rats were first handled and habituated to the pain 

behaviour apparatus. Then, baseline measurements were collected prior to morphine 

treatment. Animals were either injected with morphine twice a day for 7 days (sc., 3mg/kg x 

2 day, n=5) or saline (sc., x 2 day, n=5). Locomotor activity was measured one day before the 

start of the treatment and then on day 5 of the treatment (1h after the morning injection), 

and then during withdrawal, on days 10 and 15 after the first day of treatment. Pain 

behaviour was assessed using the Von-Frey test, and measures were taken 1 h before and 1 

h after the morning injections from day 1 to 4, 6 and 7 of treatment days, and then on day 8 

and 12. Von-Frey measures collected 1h before the injection on the first treatment day were 

used as baseline.  

6.2.2. EFFECTS OF SUSTAINED MORPHINE TREATMENT ON PAIN 

BEHAVIOUR AND MEMORY IN MIA-INDUCED LH RATS 

6.2.2.1. ANIMALS  

For this study, 12 (n=6 per group) adult male LH rats (Charles Rivers, UK) weighing 

between 250-280g at the beginning of the experiment were used. The target sample size for 

this study was 32 (n=16 per group), so group differences corresponding to an effect size of 

Cohen’s d=1 could be detected with a power of about 80%, using an independent t-test (2-

tailed, p < 0.05). However, the first series of the experiment clearly indicated that there were 

no substantial group differences in the main memory measures, and that completion of the 

additional series to achieve the target sample size would not reveal significant group 

differences. Therefore, the study was terminated due to futility after only completion of the 

first series (Neumann et al., 2017). 

FIGURE 6.1. – TIME COURSE OF MORPHINE PILOT STUDY. 10 adult male LH rats were used in this study. 

Animals were injected (dark blue rectangle) with either morphine twice a day (morning and evening) 

(sc., 3mg/kg x 2 per day x 7days, n=5) or saline (sc. x 2 per day x 7days, n=5). Green rectangles - 

locomotor activity. Light blue rectangle- Von-Frey test. 
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6.2.4. PAIN BEHAVIOUR AND SENSORIMOTOR ACTIVITY 

The model of OA pain was induced with a single intra-articular injection of MIA (as 

described in 2.2.). All the LH rats were injected with 50 µL of MIA (3 mg/50 µL; n=12). 

Nociceptive pain behaviours were assessed using weight-bearing and Von-Frey tests, as 

described in 2.3., and sensorimotor measures, locomotor activity and startle/prepulse 

inhibition, were taken as described in 2.4.. Rats were first handled for a few days and 

habituated to the pain test apparatus. Baseline pain behaviour and sensorimotor activity 

measurements were collected before MIA injections with one day apart. After MIA/saline 

injection (day 0), pain measurements and sensorimotor processes were then collected as 

indicated in fig 6.2. 

 

6.2.5. MEMORY ASSESSMENTS 

To assess if recognition memory was impaired in MIA-injected LH rats treated with 

morphine, animals were subjected to the novel object recognition (NOR) test as described in 

5.2.3.. Measures were collected prior to MIA injection and any morphine injection and 47-49 

days after MIA injection, i.e. 7-9 days after the end of the morphine treatment, as indicated 

in fig 6.2. 

Hippocampus-dependent rapid place learning performance was evaluated using the 

watermaze DMP task as described in 4.2.3.. Animals were pretrained for 8 consecutive days 

on this task prior to MIA injection and any morphine treatment and then tested at several 

time point across the study (before, during and after morphine treatment) as indicated in fig 

6.2. 

 

6.2.6. EXPERIMENTAL DESIGN 

Rats were first handled and habituated to the pain behaviour and NOR apparatus, then 

baseline NOR measures were collected, watermaze DMP pretraining was conducted and pain 

behaviour and sensorimotor activity baseline measurements were collected (Fig.6.2). 

The MIA model was then induced in all rats. Before the start of morphine treatment, pain 

behaviour measures were collected on days 7, 14 and 28 and the sensorimotor activity 

measures on days 8, 15 and 29. Also before the start of morphine treatment, 2 extra days of 

watermaze testing, including a probe day, was conducted to re-baseline. Morphine 
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treatment started on day 30 after MIA injection, to ensure that complete development of OA 

phenotype. Animals were either treated for 10 days with morphine (sc., 3mg/kg x 2 per day 

x 10 days, n=6) or saline (sc. x 2 per day x 10 days, n=6). During the treatment, pain behaviour 

was assessed using the Von-Frey test (days 1, 3 and 8 of treatment) or weight bearing (days 

2 and 4 of treatment); measures were taken 1h before and 1h after the morning injections. 

Also during treatment, locomotor activity was measured on day 5, 1h after the morning 

injection. Watermaze DMP performance was assessed on days 6, 7, 9 and 10 – days 7 and 10 

were probe days.   

On day 50 after MIA injection, rats were anaesthetized with a lethal dose of sodium 

pentobarbitone and transcardially perfused with 0.9% saline followed by 4% 

paraformaldehyde. Brains, spinal cords, DRGs and knees were carefully excised, preserved 

and stored. Knee joint sections were stained with haematoxylin and eosin- or safranin-O/fast 

green and then scored for overall joint morphology and proteoglycan loss. Total cartilage 

joint damage, osteophyte, proteoglycan loss, synovial inflammation and chondrocyte 

presence were scored to evaluate the severity of the knee joint pathology as described in 

2.7.  

 

 

FIGURE 6.2. – TIME COURSE OF OPIOID TREATMENT EFFECTS OF SUSTAINED MORPHINE TREATMENT ON PAIN 

BEHAVIOUR AND MEMORY STUDY. 12 adult male LH rats were injected with MIA (3mg). At day 30 post 

model induction animals were either treated with morphine (3mg/kg x 2 per day, n=6) or saline (x 2 

per day, n=6) for 10 days (dark blue rectangle). Yellow rectangles – novel object recognition test. Grey 

rectangle – watermaze delayed matching-to-place task, * indicates probe days. Light blue rectangle- 

weight bearing (W) and Von-Frey (V) test. Green rectangles - locomotor activity and startle prepulse 

inhibition. During morphine treatment days, pain behaviour measures were collected 1h before and 1 

h after the morning injection, locomotor activity and watermaze measure were collected 1h after 

morning injection. 
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6.2.7. STATISTICAL ANALYSIS  

GraphPad Prism 8 and IBM SPSS Statistics 24 were used to prepare the graphs and 

perform the statistical analysis, respectively.  

Results from the pain behaviour studies were analysed using an ANOVA, with group as 

between-subjects factor, and testing day as repeated measures/within-subjects variable.  

Results from the sensorimotor behaviour studies were analysed using ANOVA, with time 

points and task blocks (or pulse intensity in the PPI test) as within-subjects factors and 

treatment group as between-subjects factor. Unpaired t-tests were used to compare activity 

between groups on the treatment days to evaluate acute morphine effect.  Watermaze DMP 

results were analysed using ANOVA with testing time points and trials as within-subjects 

factors and group as between-groups factor.  Bonferroni multiple comparison was used as 

post-hoc testing. 

Knee pathology was analysed with unpaired t-tests or with Mann-Whitney test when 

normality was violated.  NOR results were analysed using ANOVA, with testing day and object 

(novel vs familiar) as within-subjects factors and group as between-subjects factor.  P<0.05 

was considered to represent a significant difference and all results were expressed as 

mean±standard error (SEM). Normality was tested using D’Agostino-Pearson test. Baseline 

measures were not included in the ANOVAs, but were analysed separately, using unpaired t-

tests to ensure that there were no significant difference between groups at this stage.  
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6.3. RESULTS 

6.3.1. EFFECTS OF SUSTAINED MORPHINE TREATMENT ON PAIN 

BEHAVIOR AND LOCOMOTOR ACTIVITY IN LISTER HOODED RATS 

Body weight of LH rats tended to gradually diverge during the first days of morphine 

treatment and converge again after the treatment (time x group: F(13,104)=9.16, p<0.0001), 

post hoc analysis showed significant differences between control saline and morphine rats 

only on day 9 (p=0.016) (Fig.6.3). Visual inspection indicated hyperactivity, licking of cage 

walls and digging behaviour in rats, starting within about 10 min of the morphine injection 

and lasting for about 1 to 1.5h.   
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LH rats treated with morphine for 7 days developed morphine-induced hyperalgesia, 

which was evident in the daily tests 1 h before the first daily morphine injection and during 

the tests after cessation of the morphine treatment, i.e. during withdrawal (Fig.6.4A). PWTs 

were lowered from day 2 until the end of the study in both morphine and saline treated rats, 

reflecting habituation to the test itself (time: F(6,48)=18.96, p<0.0001). Morphine group had 

numerically lower PWT values from day 4 of treatment until day 7 and during treatment 

withdrawal, post-hoc analysis showed difference between saline and morphine group on day 

12 (p=0.018), supporting development of morphine-induced hyperalgesia. Although 

inspection of the data indicates that morphine-treated rats did not show reduced PWTs 

compared to saline-injected rats before day 3 of treatment, there was only a significant main 

effect of treatment group (group: F(1,8)=7.93, p=0.02), but no group x day interaction 

(F(6,48)<1).  

FIGURE 6.3. – BODY WEIGHT OF LISTER HOODED RATS DURING SUSTAINED MORPHINE TREATMENT AND 

DURING WITHDRAWAL. LH rats were treated subcutaneously with morphine (3mg/kg, twice a day, ●; 

n=5) or saline (▪; n=5) for 7 days. Data are presented as mean±SEM. * p<0.05, 2-way ANOVA with 

Bonferroni multiple comparisons post-hoc testing 
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In the tests following 1 h after morphine treatment, acute antinociceptive effects were 

apparent, but tolerance to the drug’s antinociceptive effects developed within the 7 days of 

treatment (Fig.6.4B). Acute morphine injection increased PWTs, but this effect decreased 

across days and was not evident by the 6th day of morphine injection, reflecting a tolerance 

to the antinociceptive effect of morphine. In support of this finding, a 2-way ANOVA using 

group as between subjects factor and day of morphine treatment as repeated measures 

factor showed an interaction of group x time: F(5,40)=2.42, p=0.05 (alongside a significant main 

effect of time, F(5,40)=7.68, p<0.0001 and a trend towards a main effect of group (F(1,8)=3.82, 

p=0.09). 
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Morphine treatment only affected acutely the horizontal activity (Fig.6.5).  Main effect of 

group (group: F(1,8)=10.02, p=0.01) and time (time: F(2,16)=4.05, p=0.04) were observed in the 

horizontal activity. No interaction involving group was observed (time x group: F(2,16)=1.44, 

p=0.27). Post-hoc analysis show that on day 5 of the morphine treatment (1h after morphine 

injection), rats showed acute horizontal locomotor hyperactivity compared to saline treated 

rats (p=0.03). Vertical activity did not differ between groups (group: F(1,8)=1.79, p=0.22) no 

time and interaction effect were observed (time: F(1.6; 12.5)=2.01, p=0.17; time x group: 

F(1,8)=1.79, p=0.22). 

FIGURE 6.4. – PAW WITHDRAWAL THRESHOLD PRE-INJECTION AND WITHDRAWAL FROM MORPHINE (A) 

AND POST-INJECTION (B) OF MORPHINE/SALINE. LH rats were treated subcutaneously with morphine 

(3mg/kg, twice a day, ●; n=5) or saline (▪; n=5▪) for 7 days. Measurements were collected 1h prior (A) 

and 1h after (B) each morning injection. Data are presented as mean±SEM. * p<0.05, 2-way ANOVA 

with Bonferroni multiple comparisons post-hoc testing 
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6.3.2. EFFECTS OF SUSTAINED MORPHINE TREATMENT IN MIA-INJECTED 

LH RATS  

6.3.2.1. PAIN BEHAVIOUR  

MIA injection caused weight-bearing asymmetry in LH rats, as in the previous studies 

(chapter 3, 4 and 5): rats placed less weight on the injured limb after MIA injection reflected 

by an increase in the asymmetry after baseline (time: F(2.6,25.8)=20.62; p<0.0001). No main 

effect of group or interaction involving group was observed in the prospective groups (F<1) 

(Fig.6.6A). Morphine treatment had acute analgesic actions, i.e. antagonised the weigh 

bearing asymmetry, on day 34 (day 4 of treatment), but not day 31 (day 2 of treatment) (Fig. 

6.6B). 2X2 ANOVA of weight bearing data on day 31 and 34 revealed a significant interaction 

treatment by day (group: F(1,10)=15.95, p=0.003), as simple main effects analysis revealed 

weight bearing asymmetry was reduced in morphine treated compared to saline treated rats 

on day 34 (p<0.02), but not day 31. There was no evidence of morphine-induced 

hyperalgesia, weight bearing asymmetry did not differ between morphine and saline groups 

before morning injections on days 31 and 34 (no main effect or interaction involving group, 

F<1) or during treatment withdrawal on day 40 (t=0.38,df=10,p=0.71). 

FIGURE 6.5. – HORIZONTAL (A) AND VERTICAL (B) LOCOMOTOR ACTIVITY DURING THE FIRST 10-MIN BINS. 

Locomotor activity was assessed at baseline, 1h after morphine/saline injection on day 5 and the on day 

10 and 12 after treatment commenced. LH rats were treated subcutaneously with either morphine 

(3mg/kg, twice a day, ●; n=5) or saline (▪; n=5) for 7 days. Dashed rectangles indicate day when 

locomotor activity was assessed 1h after injection. Data are presented as mean±SEM. * p<0.05, 2-way 

ANOVA with Bonferroni multiple comparisons post-hoc testing 
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Slight reductions of PWTs were observed in ipsilateral paw (time: F(2.14,21.48)=16.86, 

p<0.0001) in the prospective treatment groups after MIA injection, reductions were also 

observed in the contralateral side (time: F(2.35,23.57)=4.62, p=0.02), which may reflect 

sensitization (Fig. 6A and B, left panels). No differences were found between prospective 

groups prior to the treatment in both contra (time x group: F(2,20)<1) and ipsilateral paw (time 

x group: F(2,20)=2.07; p=0.15). Also, in both contra and ipsilateral paw no main effect of group 

and interaction involving group were observed (F<1).  

Acute injection of morphine induced a pronounced analgesic effect across day 30, 32 and 

37 (day 1, 3 and 8 of treatment), increasing PWTs compared with saline control injection in 

both ipsilateral (F(1,10)=66.21; p<0.001) and contralateral paws (F(1,10)=23.27; p=0.0007) (Fig. 

6.6A and B, right). The analgesic effect was numerically, but no statically significant, 

attenuated across treatment days reflecting tolerance to the drug, although the interaction 

of day X group did not attain significance (ipsilateral: F(2,20)=1.55, p=0.24; contralateral: 

F(2,20)<1) and no main effect of day was observed. Additionally, no evidence of morphine-

induced hyperalgesia was found for either hindpaws (time x group: F(3,30)<1). PWTs measured 

prior to morning injection (on days 30, 32 and 37) and after the treatment was ended (on day 

40) reduced across days in both ipsilateral (F(3,30)=22.19; p<0.0001) and contralateral paws 

(F(3,30)=10.39; p=0.007), but this reduction was similar between morphine and saline treated 

rats (time x group: F<1).  

FIGURE 6.6. – WEIGHT BEARING ASYMMETRY AFTER MIA MODEL INDUCTION IN LH RATS (A) AND THE 

EFFECTS OF MORPHINE TREATMENT IN THIS PAIN BEHAVIOUR (B). (A) Weight bearing asymmetry was 

assessed at baseline and after MIA model induction in LH rats (3mg, n=12) at day 7, 14 and 28. (B) Rats 

were then treated subcutaneously with either morphine (3mg/kg, twice a day, ●; n=6) or saline (▪; n=6) 

for 10 days from day 30 post-MIA. Weight bearing was assessed 1h prior and 1 h after the morning 

injection. Data are presented as mean±SEM. * p<0.05, 2-way ANOVA with Bonferroni multiple 

comparisons post-hoc testing 
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6.3.2.2. SENSORIMOTOR FUNCTIONS 

As observed in the naïve LH rats in the pilot study, acute morphine injection numerically 

increased the horizontal locomotor activity of the MIA LH rats on day 34 (day 5 of treatment) 

(Fig.6.8A), although this was not significant (t=1.63, df=10, p=0.13). Interestingly, and 

contrasting with the findings in the naïve rats in the pilot study, morphine acutely reduced 

vertical locomotor activity (t=3.90, df=10, p=0.003) (Fig.6.8B).  

Acute morphine injection did not affect the startle response or prepulse inhibition 

(Fig.6.9). Following morphine injection on day 35 (day 5 of morphine treatment), no 

differences were observed between morphine-treated MIA rats and saline-treated MIA rats 

in both the startle response (group: F(1,10)<1) (Fig.6.9A) and prepulse inhibition (group: 

F(1,10)<1) (Fig.6.9B). Animals from both groups showed habituation to startle amplitude (time: 

F(2,20)=41.28, p<0.0001), and no pulse-alone trials x group interaction (F(2,20)<1) were 

observed. Also, animals from both treatment groups showed similar increase of % prepulse 

inhibition with the increase of pulse intensity (time: F(3,30)=74.53, p<0.0001), and there was 

FIGURE 6.7. – PAW WITHDRAWAL THRESHOLD OF IPSILATERAL (A) AND CONTRALATERAL (B) PAWS AND 

THE EFFECTS OF MORPHINE TREATMENT. (A) PWTs were assessed at baseline and after MIA model 

induction in LH rats (3mg, n=12) at day 7, 14 and 28. (B) Rats were treated subcutaneously with 

morphine (3mg/kg, twice a day, ●; n=6) or saline (▪; n=6) for 10 days from day 30 after MIA injection. 

PWTs were measured 1h prior and 1 h after the morning injection. Data are presented as mean±SEM. 

* p<0.05, ** p<0.001, 2-way ANOVA with Bonferroni multiple comparisons post-hoc testing.  
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no pulse x group interaction (F(3,30)<1). Before the start of morphine treatment, during testing 

between days 8 and 34, the prospective treatment groups did not differ in their startle 

response or prepulse inhibition (data not shown). 
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FIGURE 6.9. – STARTLE RESPONSE (A) AND PREPULSE INHIBITION (B) OF MIA-INDUCED LH RATS ON DAY 

34 AFTER MIA INJECTION – DAY 5 OF THE MORPHINE/SALINE SUSTAINED TREATMENT. LH rats were treated 

subcutaneously with either morphine (3mg/kg, twice a day, ●; n=6) or saline (▪; n=6) for 10 days from 

day 30 after MIA injection. Data are presented as mean±SEM.  

FIGURE 6.8. – HORIZONTAL (A) AND VERTICAL (B) LOCOMOTOR ACTIVITY OF MIA-INDUCED LH RATS ON 

THE FIRST 10-MIN BINS. LH rats were treated subcutaneously with either morphine (3mg/kg, twice a 

day, ●; n=6) or saline (▪; n=6) for 10 days from day 30 post-MIA. Data are presented as mean±SEM. 

Data are presented as mean±SEM. ** p<0.001, 2-way ANOVA with Bonferroni multiple comparisons 

post-hoc testing. 
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6.3.2.3. HIPPOCAMPUS-DEPENDENT MEMORY 

6.3.2.3.1. PATH LENGTHS 

At pretraining, all rats were able to learn the watermaze DMP task, no differences were 

observed between the prospective groups in the path length (effect of interaction involving 

prospective treatment group: all F<1) (data not showed). MIA model induction, as previously 

observed in chapter 4, did not affect performance of rats, path lengths did not differ from 

baseline to re-baseline on days 26 and 27 (before the sustained treatment) (day x group x 

trial: F(21,168)=1.39, p=0.13) (data not showed). 

Acute morphine treatment of MIA rats did not affect hippocampus-dependent memory 

compared with saline controls. Morphine did not affect path length of MIA LH rats across 

treatment days (days 35, 36, 37 and 38) and morphine withdrawal (days 41 to 44) (Fig.6.10). 

3-way ANOVA showed no main effect of group or interactions involving group (F<1.32, 

p>0.13). 

 

6.3.2.3.2. SEARCH PREFERENCE DURING PROBE TRIALS 

During the probe trials, no evidence of impaired hippocampus-dependent memory was 

observed following acute morphine treatment or during withdrawal (Fig.6.11). At all time 

points, following acute morphine injections (day 36 and day 39) or during withdrawal from 

that sustained treatment (day 42 and 44), morphine treated MIA rats spent a similar 

percentage of time exploring the target zone (Fig.6.11A; F(1,10)=1.33; p=0.25) and the previous 

day’s zone (Fig.6.11B; F(1,10)<1), compared with control rats. Also, no differences were 

observed between groups in the total time spent exploring the eight zones (Fig.6.11C; 

F(1,10)=0.003; p=0.96). Swim speed was not affected by morphine treatment compared with 

saline controls (Fig.6.11D; F(1,10)=0.31; p=0.59). Apart from swim speed, a main effect of time 

was observed on all parameters analysed (F(3,39)>3.98; p<0.001) and no group x time 

interaction was found (F(3,29)<0.84; p>0.27).  
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6.3.2.4. RECOGNITION MEMORY 

There was some evidence for an impaired recognition memory after MIA model induction 

and treatment, but this deficit was not associated with the sustained morphine treatment 

(Fig.6.12). Rats in both prospective treatment groups were able to recognise the novel object 

at baseline (F(1,10)=20.29; p=0.001), with no differences between prospective groups (object 

x group: F(1,10)=1.16; p=0.31).  49 days after MIA or saline injection into the knee (10 days 

after last day of morphine treatment), both groups of rats showed numerically more 

exploration of the novel object compared to the familiar object, but this preference was not 

significant (F(1,10)=1.27; p=0.29). There was no main effect of group or group x object 

FIGURE 6.11. – PLACE MEMORY IN MIA-INJECTED LH RATS SUSTAINED TREATMENT WITH MORPHINE. LH 

rats were treated subcutaneously with either morphine (3mg/kg, twice a day, ●; n=6) or saline (▪; n=6) 

for 10 days from day 30 after MIA injection. Rats were tested on probe trials during the second trial 

when the escape platform was unavailable in order to evaluate the search preference at baseline, re-

baseline and following morphine injection during the drug treatment period (day 36 and 39) and during 

drug withdrawal after the end of the sustained morphine treatment (day 42 and 44). Total time 

exploring the target zone (A), the previous day’s zone (B), the total eight zone (C) and swim speed in 

the last time points (D) were analysed. Data are presented as mean±SEM. 
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interaction (F(1,10)<1), indicating that this impairment was not associated with the morphine 

treatment. The discrimination ratio was not different between groups at baseline and day 49 

(F<1.20; p>0.30).  
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6.3.2.5. KNEE PATHOLOGY 

Knees were collected at the end of the study and processed for pathology and then scored 

as described in section 2.7. Joints were scored for cartilage integrity (cartilage damage x 

involvement), synovial inflammation and osteophytes formation on three different levels of 

both lateral and medial tibial plateau (Fig.6.12). Results are shown as mean between medial 

and tibial plateau values, as no differences were observed between medial and lateral tibial 

parts. 

Similar to the results obtained in the previous chapters, MIA model induction was 

associated with loss of cartilage integrity and synovial inflammation. In this study, MIA-

injected rats were either treated for 10 consecutive days with either morphine or saline. MIA 

morphine treated rats and controls showed similar degrees of cartilage damage (t=<1, df=10) 

(Fig.6.12A)and synovial inflammation (t=1.80, df=10, p=0.10) (Fig.6.12B), however morphine 

treated rats showed a trend for higher degree of synovitis compared with MIA saline treated 

rats. A similar degree of osteophytes were observed between morphine and control groups 

(U=17.50, p>0.99) (Fig.6.12C).  

 

FIGURE 6.12. – EXPLORATION TIMES OF THE FAMILIAR AND NOVEL OBJECTS (A) DURING THE OBJECT 

RECOGNITION TEST AND DISCRIMINATION INDEX (B) OF MIA-INDUCED LH RATS AFTER A SUSTAINED 

TREATMENT WITH MORPHINE/SALINE. LH rats were treated subcutaneously with either morphine 

(3mg/kg, twice a day, red; n=6) or saline (black; n=6) for 10 days from day 30 after MIA injection. Results 

presented correspond to the testing phase of the novel objected recognition test conducted during the 

treatment withdrawal. Data are presented as mean±SEM. 
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FIGURE 6.12. – MICROSCOPIC QUANTIFICATION OF HISTOLOGICAL CHANGES OF TIBIAL PLATEAU IN MIA-

INDUCED LH RATS AFTER A SUSTAINED TREATED WITH MORPHINE/SALINE. Average scores for medial and 

lateral tibial plateau. Rats were injected with 50ul of 3mg of MIA in the left knee. Rats were treated 

subcutaneously with either morphine (3mg/kg, twice a day, ●; n=6) or saline (▪; n=6) for 10 days from 

day 30 after MIA injection. Knees were collected and processed for scoring at day 50 after model 

induction. Cartilage damage (A), synovial inflammation (B) and osteophytes (C) were scored. Data are 

presented as mean±SEM. 
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6.4. DISCUSSION  

Morphine treatment induced antinociceptive effects in LH rats, followed by tolerance and 

development of morphine-induced hyperalgesia. Following induction of the model of OA 

pain (MIA) in LH rats, morphine had analgesic effects with no evidence of morphine-induced 

hyperalgesia. In both naïve and MIA LH rats, morphine acutely promoted hyperactivity.  

There was no evidence that the sustained morphine treatment induced any impairment in 

hippocampal or recognition memory in MIA-injected rats. However, in this study, MIA-

injected LH rats did not show significant object recognition memory 49 days after model 

induction. 

 

6.4.1. PAIN BEHAVIOUR, SENSORIMOTOR ACTIVITY AND KNEE 

PATHOLOGY 

In this study, effects of sustained morphine treatment on pain behaviour of LH rats were 

first investigated. As expected, morphine acutely induced antinociception, reflected by the 

increase in PWTs. This effect decreased within days of treatment, and by the end of 

treatment, this effect was not evident. These results indicate that the LH rats developed 

tolerance to the antinociceptive effects of morphine. These results are in accordance with 

previous findings in Sprague Dawley rats treated subcutaneously with 10mg/kg twice daily 

for 7 days (Ferrini et al., 2013). 

Morphine also induced analgesic effects in MIA LH rats, weight bearing asymmetry was 

reduced and PWT increased. Regarding the weight bearing, on the second day of treatment 

no significant analgesic effect was observed, contrasting with day 4 when analgesia was 

present. However, the analgesic effect observed in the mechanical withdrawal peaked on the 

first day of treatment, decreasing on days 3 and 8 of treatment.  

The development of morphine hyperalgesia was evaluated by assessing pain behaviour 

1h before the morning injection of morphine and during treatment withdrawal. No evidence 

of morphine-induced hyperalgesia was observed in the LH MIA rats. There was no difference 

in the weight bearing and PWTs data collected before the morning injection of morphine and 

during withdrawal between the morphine-treated rats and saline controls. An important 

consideration is that the measurement of PWT may be subject to a ceiling effect which may 

mask any further change, i.e. PWT values were already very low, so were difficult to reduce 

further and detect changes. 
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Locomotor activity was assessed half way through the sustained treatment in both naïve 

LH and MIA-injected LH rats. In both studies, acute morphine increased horizontal locomotor 

activity. Previous studies in rats have also reported that morphine at low doses, similar to the 

one used in the present study (3 mg/kg), can promote increased locomotor activity, although 

higher doses of morphine (such as 40mg/kg) can cause sedation and substantially reduce 

locomotor activity (Babbini and Davis, 1972; Zhang and Kong, 2017). Our results are in 

accordance with the locomotor hyperactivity previously observed using 3mg/kg morphine in 

mice (Murphy et al., 2008). With regards to rearing, morphine treatment did not affect 

rearing in the naïve LH rats in the pilot study, however MIA LH rats treated with morphine 

showed decreased rearing compared with MIA LH rats treated with saline. It should be noted 

that an analgesic effect of morphine would be expected to cause the opposite effect – i.e., 

increase rearing, as rats are able to put more weight on their hind legs. It is possible that the 

reduced rearing reflects that morphine-injected rats spend less time rearing because they 

showed other hyperactive behaviours caused by the morphine injection, but this does not 

explain why we found a reduction in morphine-induced rearing in MIA-injected, but not 

naïve, rats.  

Startle response and PPI were not affected by morphine treatment showing no 

impairments in sensorimotor gating. Acute morphine administration in healthy humans has 

previously been reported to increase PPI without altering startle habituation (Quednow et 

al., 2008). In rats, impaired startle was reported during morphine withdrawal (Harris and 

Gewirtz, 2004; Rothwell et al., 2009); unfortunately, in this study we did not assess startle 

habituation and PPI during this period. 

 

6.4.2. EFFECTS OF SUSTAINED MORPHINE TREATMENT ON 

HIPPOCAMPUS-DEPENDENT MEMORY 

To evaluate if the sustained treatment of MIA with morphine caused impairments in 

hippocampal memory, MIA LH rats were tested in the watermaze DMP task during and after 

morphine treatment. In chapter 4, we showed that OA chronic pain did not affect 

hippocampus-dependent memory in LH rats. So, in this chapter all animals were injected with 

MIA, and then on day 30 post-MIA half of them were either treated with morphine or saline 

as control, to examine if morphine may induce memory impairments in MIA-injected rats. 
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No changes in DMP performance were observed during and after morphine treatment. 

On standard days of DMP task, the latency to reach and path length to the platform were not 

altered by the morphine treatment at any time point. Rats from both groups decreased time 

across daily trials, showing normal evidence of rapid place learning as expected on this task.  

Search preference on probe trials of the DMP task has been suggested to be a more 

sensitive measure of hippocampus-dependent rapid place learning than latencies or path 

lengths (Bast et al., 2009; da Silva et al., 2013). The search preference during probe trials was 

also not affected by morphine treatment. Morphine did not alter the percentage of time 

exploring the target zone, the previous day’s zone and time exploring the total eight zones 

of the pool. Morphine also did not affect swim speed of MIA rats.   

Previous studies of the impact of morphine on place learning and memory in watermaze 

tasks have produced somewhat inconsistent findings.  Hippocampal LTP was shown to be 

reduced in Sprague Dawley rats chronically treated with morphine (10 mg/kg) twice daily for 

10 days (Pu et al., 2002). The same animals were then re-exposed to morphine after the 10 

days treatment and tested in the Morris watermaze task, animals who showed previous 

severe reduction in hippocampal LTP exhibited worse performances compared with controls.  

Sprague Dawley rats chronically administered morphine for 28 days (17.5 mg/kg/day by 

osmotic mini pumps) showed impaired performance during the probe trial when tested in 

the Morris water maze during treatment (Brolin et al., 2018).  Wistar rats chronically treated 

with morphine (10mg/kg, s.c.) twice per day for 12 days have also been tested in the Morris 

water maze task 1h after morning injection and 5 weeks after withdrawal. Chronic morphine 

treated rats spent less time exploring the target area compared with control, but no 

impairments were observed during task  acquisition phase (Wang et al., 2006). This previous 

study also tested the animals in an operant conditioning task and showed impaired operant 

learning, which was alleviated 5 weeks after treatment withdrawal. Altogether these studies 

suggest that sustained morphine treatment might impair operant learning, but not 

hippocampal place learning and memory. These results hint at the possibility that higher 

doses of opioids and/or a longer time of treatment may be necessary for morphine induced 

changes in hippocampal memory impairments. Therefore, it is possible that if the morphine 

treatment had lasted longer in our study LH animals would present impairments in the 

watermaze DMP task. Additionally, testing for learning impairments might also be important 

to establish possible effects of prolonged exposure to opioids. 
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To date few studies have investigated effects of chronic opioid treatments on memory of 

patients with chronic pain. In both humans and animal models the results are somewhat 

inconsistent.  However, it is really important to notice that in human studies, in some cases 

it is impossible for ethical reasons to have the appropriate control groups and in animal 

models the administration routes, strains and drug doses are not always consistent.   

Clinical studies have showed that patients with non-malignant pain (Sjøgren et al., 2000) 

and chronic low back pain (Schiltenwolf et al., 2014) under long-term opioid treatment (at 

least 3 months) showed worse spatial working memory compared with non-opioid patients. 

However, in another study, non-cancer pain patients under long-term opioid treatment 

(12months) did not show cognitive dysfunction (Tassain et al., 2003). 

 

6.4.3. EFFECTS OF SUSTAINED MORPHINE TREATMENT OF MIA LH RATS IN 

RECOGNITION MEMORY 

Regarding recognition memory, no differences were observed regarding recognition 

memory between morphine- and saline-treated rats with MIA-induced knee pain. However, 

when tested on day 49 after MIA injection, there was no evidence for significant object 

recognition memory compared to the saline controls. This may indicate that MIA itself can 

induce recognition memory deficits. However, this was not apparent in the data presented 

in chapter 5. However, in chapter 5 NOR memory was assessed on day 32 post-MIA, whereas 

in the present study NOR memory was assessed on day 49 post-MIA. These results suggest 

recognition deficits may develop at later stages in the MIA model. Further studies including 

appropriate control groups should be conducted to investigate this question further. 

Furthermore it would be interesting to assess cognition at later stages of the MIA model.  

NOR measures were not collected immediately after morphine injection, as we focused 

on the assessment of hippocampus-dependent rapid place learning performance; we only 

tested recognition memory during treatment withdrawal. Impaired recognition memory was 

previously shown in mice during morphine withdrawal, exposure to different morphine doses 

was associated with impairments in Y-maze recognition task (Ma et al., 2007). Our results did 

not speak to whether or not morphine withdrawal impairs NOR memory, because our control 

rats (saline-injected MIA rats) did not show NOR when tested during morphine withdrawal.  

Although it may be interesting to explore these questions further, it is worth noting that 

chronic low back pain patients with ongoing long-term opioid treatment did not show 
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impairments in pattern recognition memory, compared with non-opioid patients 

(Schiltenwolf et al., 2014). 

 

6.5. CONCLUSIONS 

Some studies have associated chronic pain with memory impairments or changes in the 

hippocampal morphology (Moriarty et al., 2011). However, in chapter 4 we showed that 

hippocampus-dependent memory was not affected in MIA LH rats and in chapter 5 that 

recognition memory was not affected as well. Other factors associated with chronic pain in 

humans may account for why human chronic pain conditions show memory impairments, 

such as the effects of treatment. In this chapter, we evaluated the possible impacts of 

morphine treatment in both hippocampal and recognition memory. 

Hippocampal plasticity is believed to be altered after exposure to opioids (Valentino and 

Volkow, 2018). In fact, hippocampal LTP was showed to be severely reduced after chronic 

morphine treatment in Sprague Dawley rats (Pu et al., 2002). However, the work in this 

chapter presents no evidence that the sustained treatment of morphine in MIA LH rats 

impaired the hippocampus-dependent memory.  In sum, our results indicate that a sustained 

morphine treatment of MIA LH rats was able to produce analgesia; however, this effect was 

rapidly lost due to the development of morphine tolerance. Furthermore, the sustained 

morphine treatment did not induce OIH or any impairment in hippocampal rapid place 

learning performance on the DMP task for the time period tested in this study. Interestingly, 

results in this chapter do suggest that memory impairments in the MIA rat model may 

emerge at later stages than tested herein and therefore future research should be conducted 

addressing this hypothesis. 
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CHAPTER 7                                                                                                                        

GENERAL DISCUSSION 

 

 

This thesis investigated if and how chronic OA-like knee pain in the MIA rat model affects 

cognitive function, more specifically hippocampal one-trial place memory, recognition 

memory and behavioural flexibility. Additionally, we examined the impact of sustained opioid 

treatment on pain behaviour and memory function in the MIA rat model.  

 

7.1. KNEE PATHOLOGY, WEIGHT BEARING ASYMMETRY AND REDUCED 

REARING IN MIA-INJECTED LISTER HOODED RATS 

First, we transferred the MIA model to young adult Lister Hooded (LH) rats. The MIA 

model is a well-established model of OA pain in our and other labs. As discussed in chapter 

3, The MIA model has been widely used in albino rat strains, including Sprague-Dawley (SD) 

rats, and in mice to mimic the development of OA and associated pain responses. 

Unfortunately, albino rats show comparatively poorer performances in translational tests of 

clinically relevant cognitive function compared with pigmented strains, such as LH rats. MIA-

induced pain phenotype and join pathology, are dose and time dependent.  

As described in table I in chapter 3, in young albino rats, injection of 1 mg/50 µl MIA into 

the knee induces pain behaviours, such as weight bearing asymmetry and mechanical 

allodynia, and OA-like knee damage, reflected by chondrocyte death, loss of cartilage 

integrity, osteophytes and synovitis. Therefore, no problems were anticipated with 

transferring the MIA model to LH rats. However, there were limited pain phenotype with the 

standard 1mg dose of MIA in LH rats or age matched SD rats. A point that should be 

considered is the environmental differences between the studies conducted in this thesis 

and the previous studies conducted in our lab using the MIA model. In the previous studies 

conventional cages have been used, however due to the bigger size and increased inquisitive 

behaviour of the LH rats, double decker ICV cages were used in this thesis. Some studies have 

been suggested that environmental enrichment (EE) can improve pain behaviour which may 

explain the attenuated pain phenotype observed compared with previous studies conducted 
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using conventional cages. In fact, mechanical allodynia after spared nerve injury in SD rats 

was shown to be alleviated in animals placed in EE cages after surgery compared with animals 

in standard cages (Parent-Vachon and Vachon, 2018). Similarly, EE has been shown to have 

a positive impact in SD rats after carrageenan-induced inflammatory model, mechanical 

allodynia was attenuated in animals housed in EE prior and after model induction and in 

animals housed in EE cages only prior to model induction (Gabriel et al., 2010). However, 

limited knee pathology was also observed by the dose of 1 mg. The limited pain and joint 

pathology phenotypes likely reflect the difference in age and size of LH rats required for the 

cognitive tests.  

Increasing the dose to 3mg MIA in the young adult LH rats overcame this limitation and it 

was therefore deemed that this dose of MIA was suitable for the studies involving LH rats in 

this thesis. This dose produced consistent pain behaviour and knee pathology in young adult 

LH rats across all studies in this thesis, including robust weight bearing asymmetry and knee 

pathology with a loss of cartilage integrity, synovitis and occasional osteophyte formation. 

Following induction of the MIA model, rats also exhibited decreased rearing activity across 

all studies. Reduced locomotor activity has previously been suggested as an automated test 

to measure non-stimulus evoked pain (Deuis et al., 2017). An advantage of this technique is 

that animals are unrestrained and measures are collected in a completely objective way. The 

reduction of rearing may indicate movement-provoked pain behaviour, in fact reduced 

frequency of rearing in MIA-injected Sprague Dawley rats has been reported previously 

(Nagase et al., 2012). No consistent MIA-induced changes were observed in horizontal 

locomotor activity or in the other sensorimotor processes examined in this thesis, the 

acoustic startle response and its PPI.  

 

7.2. NO EVIDENCE FOR COGNITIVE IMPAIRMENTS IN MIA-INJECTED LISTER 

HOODED RATS 

To investigate the impact of chronic OA knee pain on hippocampus-dependent rapid place 

learning performance, MIA-injected LH rats were tested on the watermaze DMP task (see 

chapter 4). Previously, changes in the hippocampus have been associated with chronic pain 

in both rodents (Duric and McCarson, 2005) and humans (Zimmerman et al., 2009), and 

clinical observations also indicate that chronic pain is associated with memory impairments 

(Berryman et al., 2013). However, the impact of chronic OA-related pain is poorly 
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understood. In this thesis, no evidence of impaired hippocampal memory was found after 

MIA model induction. Rats’ performance on the DMP task, as reflected by path length 

reductions and search preference for the correct location on probe trials, was not affected 

by MIA model induction. Interestingly, there was evidence for reduced swim speed in MIA-

injected compared to control rats at later test stages. Our findings of intact hippocampus-

dependent memory in MIA-inject rats are consistent with the finding that hippocampal 

volume was found to be intact in patients with OA, whereas patients with other chronic pain 

conditions, including chronic back pain and complex regional pain syndrome, showed 

reduced hippocampal volume (Mutso et al., 2012). 

MIA-injected LH rats were also tested on the novel object recognition test (NOR) to 

evaluate the impact of OA-chronic knee pain on recognition memory (chapter 5). MIA 

injected rats did not show impairments in NOR memory compared with saline controls. Our 

findings contrast with previous preclinical studies using different models, impaired 

recognition memory was reported in MIA-induced mice (Negrete et al., 2017), and 

associating chronic pain with recognition memory deficits (Moriarty et al., 2016a; You et al., 

2018). However, our findings of intact recognition memory in MIA-injected rats with OA-like 

knee pain are in accordance with some clinical studies conducted in chronic back pain and 

fibromyalgia patients, indicating a limited impact of chronic pain on patients’ recognition 

memory in some conditions (Lee et al., 2010; Schiltenwolf et al., 2017). 

We also investigated the impact of OA-like knee pain on behavioural flexibility, using an 

automated operant assay of set-shifting and reversal learning in MIA-injected LH rats 

(chapter 5). Behavioural flexibility was not affected in young adult LH rats after MIA injection. 

There is limited evidence concerning behavioural flexibility in chronic pain patients. However, 

a previous study, based on findings on the spatial reversal task in the watermaze, suggested 

impaired behavioural flexibility in neuropathic rodent models (Leite-Almeida et al., 2009). On 

an operant task, neuropathic rodents also adapted more slowly to new and optimal choices 

(Cowen et al., 2018). Moreover, on a task involving behavioural flexibility (the Wisconsin Card 

Sorting Test - WCST),  chronic pain patients tend to stay longer on the previous rule than 

healthy controls (Verdejo-Garcia et al., 2009; Indart et al., 2017).  A clinical study in older 

adults suggested that pain severity measured by questionnaire may be associated with 

impaired mental flexibility measured with the Trail Making Test, interestingly cognitive 

impairments seemed to correlate with pain severity (Karp et al., 2006). In fact, age-related 

impairments in behavioural flexibility have been reported in both rodent (Leite-Almeida et 

al., 2009) and human studies (Weiner et al., 2006). Ageing may affect pain and its impact on 
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cognition. Therefore, the very restricted age range in most rodent studies of chronic pain, 

including in the present study, may limit the   translational validity of these studies. Increasing 

the age range may increase the clinical relevance of the findings. It is also important to 

consider that ageing is a key factor contributing to cognitive decline (Deary et al., 2009) and 

is also associated with   osteoarthritis (Vos et al., 2016). Therefore, aging may interact with 

chronic pain to impair cognitive functions in patients with OA.   

 

7.3. IMPACT OF MORPHINE TREATMENT IN IN MIA-INJECTED LISTER 

HOODED RATS 

Other factors associated with chronic pain in humans may also account for why chronic 

pain patients show cognitive impairments, such as medication.  Drugs used to treat chronic 

pain, such as opioids, can also be associated with cognitive decline. In this thesis, we 

investigated the effects of sustained morphine treatment and withdrawal from such 

treatment on hippocampal rapid place learning performance and recognition memory in MIA 

model of OA-like knee pain in LH rats. No changes in the watermaze DMP task were observed 

during and after morphine treatment. In addition, no differences were observed in 

recognition memory between morphine- and saline-treated rats with MIA-induced knee 

pain. Interestingly, when tested on day 49 after MIA injection, there was no evidence for 

significant object recognition memory in the MIA-injected rats. As discussed in Chapter 6, 

these results may indicate that MIA itself can induce recognition memory deficits at later 

stages in the MIA model. However, further studies including appropriate control groups 

should be conducted to investigate this question.  

 

7.4. LIMITATION OF THE MIA MODEL IN LISTER HOODED RATS 

Although OA rodent models, including the MIA model,  show knee pathology and pain 

behaviour comparable to human OA, it is important bear in mind that rodent models develop 

rapidly compared to human OA, and, therefore, the pain mechanisms might differ from 

human OA development (see chapter 3). Nevertheless, preclinical studies in rodent models 

play a crucial role in improving our understanding in several aspects of a disease. In this 

specific thesis, the use of a rat model allowed us to evaluate the impact of chronic knee OA 

pain on objective measures of cognitive function, independently of confounding factors, such 

as age, comorbidities and pain medication. 
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   Importantly, pain behaviour tests can be subjective. To minimise possible bias, data 

collection and analysis were conducted blind to the treatment. The weight bearing test is 

well-suited to measure spontaneous nociception in unilateral models as the MIA model. 

However, the test requires that the animals freely adopt and then maintain for a few seconds 

the appropriate position for the measures to be taken, which can be challenging in inquisitive 

strains as LH rats. In fact, in chapter 4, one rat could not be tested in the weight bearing test 

because he did not settle into the right position. Measures in both weight bearing and von-

Frey test can be very variable between rats. Also, it is important to note that the von-Frey 

test requires some repeated stimulation, which can lead to sensitization (Deuis et al., 2017).  

An important point that should be considered is that there was very limited evidence of 

central sensitization in our MIA-injected LH rats. More specifically, there was limited 

evidence for mechanical allodynia, as indicated by reduced PWTs, which is considered an 

indication of central sensitisation (Merksey and Bogduk, 1994).  Previous studies mentioned 

across this thesis that showed cognitive impairments in rodent models of chronic pain usually 

reported central sensitisation by showing reduced paw withdrawal threshold, and this is 

likely an important factor to impact the forebrain. Previous studies in the MIA model in SD 

rats also showed central sensitisation, as reflected by reduced paw withdrawal thresholds 

(see chapter 3). In contrast, MIA-injected LH rats used across this thesis did not show 

mechanical allodynia changes, which may indicate that their central nervous system may not 

be impacted, and this may explain that we did not find impairments in cognitive function. 

However, it is also important to bear in mind that Von-Frey test may not be sensitive to the 

model of OA pain in LH rats. Complementary analysis of microglia and astrocyte activation in 

the spinal cord of these animals might be conducted to analyse these markers of central 

sensitization (Sagar et al., 2014).  

Although the LH rats are a challenging strain to work with in pain research, these 

inquisitive rats have been widely used to investigate cognitive functions, whereas albino rat 

strains are of limited use for cognitive tests (see chapter 3 and 4). In fact, in a recent study 

using nerve-injured LH rats authors reported the exclusion of one cohort of animals due to 

failure to collect von-Frey data (Phelps et al., 2021). In this study, animals were tested in a 

battery of cognitive tasks (bowl digging: reward learning and affective bias assays; sucrose 

preference and operant chamber: successive negative contrast task) and in the Von-Frey test 

(up-down method) after partial saphenous nerve injury surgery, but one cohort of animals 

failed to show reduced activity in the von-Frey cages to allow measurements to be collected.  
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7.5. SOME FUTURE DIRECTIONS 

Some others points may also be interesting to further investigate. First, some previous 

results regarding chronic opioid use hint at the possibility that higher doses of opioids and/or 

a longer time of treatment may be necessary for morphine-induced impairments in 

hippocampal memory function (see chapter 6). Therefore, it is possible that if the morphine 

treatment had lasted longer in our study LH rats would have presented impairments in the 

watermaze DMP task. 

Also, as highlighted by the absence of significant NOR memory in MIA-injected LH rats 

when tested on Day 49 after MIA injection (chapter 6), some cognitive deficits may emerge 

later in the model. This possibility may be further investigated in a study with an appropriate 

control group and appropriate sample sizes. 

 

7.5. SUMMARY/CONCLUSION 

The purpose of this thesis was to investigate, in a rat model, the impact of chronic OA-like 

knee pain on cognitive function, more specifically hippocampal and recognition memory and 

behavioural flexibility, and to investigate how sustained opioid treatment may affect memory 

function. Chronic pain has been associated with changes in forebrain regions, as well as 

impairments in related cognitive functions, and it has been suggested that this relationship 

between chronic pain and cognitive dysfunction is the reflection of the competition for the 

same neural network. However, specific evidence on the cognitive impact of chronic pain in 

patients with OA has been largely lacking. 

In this thesis, we did not find evidence for cognitive impairment in the MIA model in LH 

rats. Also, we did not find evidence that sustained morphine treatment induces any cognitive 

impairment in MIA-injected LH rats. However, future studies may examine this further in a 

wider age range and for longer periods after model induction. On the other hand, it should 

be noted that present clinical evidence in OA is mainly limited to subjective reports of 

cognitive impairments (see chapter 1), and it remains to be demonstrated if OA patients with 

chronic pain show objective impairments on translational assays similar to the ones used in 

the present study. 
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