
University of Nottingham

Move Acceptance in Local Search
Metaheuristics for Cross-domain

Heuristic Search

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

May 2021

Author: Supervisors:

Warren G. Jackson Dr Ender Özcan

Prof Robert I. John

Abstract

Many real-world combinatorial optimisation problems (COPs) are computationally hard problems

and search methods are frequently preferred as solution techniques. Traditionally, an expert with

domain knowledge designs, and tailors the search method for solving a particular COP. This process

is usually expensive, requiring a lot of effort and time and often results in problem specific algorithms

that can not be applied to another COP. Then, the domain expert either needs to design a new

search method, or reconfigure an existing search method to solve that COP. This prompted interest

into developing more general, problem-domain-independent high-level search methods that can be

re-used, capable of solving not just a single problem but multiple COPs. The cross-domain search

problem is a relatively new concept and represents a high-level issue that involves designing a single

solution method for solving a multitude of COPs preferably with the least or no expert intervention.

Cross-domain search methods are algorithms designed to tackle the cross-domain search problem.

Such methods are of interest to researchers and practitioners worldwide as they offer a single off-the-

shelf go-to approach to problem solving. Furthermore, if a cross-domain search method has a good

performance, then it can be expected to solve ‘any’ given COP well and in a reasonable time frame.

When a practitioner is tasked with solving a new or unknown COP, they are tasked with a decision-

making dilemma. This entails the decision of what algorithm they should use, what parameters

should be used for that algorithm, and whether any other algorithm can outperform it. A well

designed cross-domain search method that performs well and does not require re-tuning can fulfil

this dilemma allowing practitioners to find good-enough solutions to such problems. Researchers on

the other hand strive to find high-quality solutions to these problems; however, such a cross-domain

search method provides them with a good benchmark to which they can compare their solution

methods to, and should ultimately aim to outperform.

In this work, move acceptance methods, which are a component of traditional search methods,

such as metaheuristics and hyper-heuristics, are explored under a cross-domain search framework. A

survey of the existing move acceptance methods as a part of local search metaheuristics is conducted

based on the hyper-heuristic literature as solution methods to the cross-domain search problem.

Furthermore, a taxonomy is provided for classifying them based on their design characteristics.

The cross-domain performance of existing move acceptance methods, covering the taxonomy, is

compared across a total of 45 problem instances spanning 9 problem domains, and the effects

of parameter tuning versus choice of the move acceptance method are explored. A novel move

2

acceptance method (HAMSTA) is proposed to overcome the shortcomings of the existing methods

to improve the cross-domain performance of a local search metaheuristic. HAMSTA is capable

of outperforming the cross-domain performances of existing methods that are re-tuned for each

domain, despite itself using only a single cross-domain parameter configuration derived from tuning

experiments that considers 2 instances each from 4 domains; hence, HAMSTA requires no expert

intervention to re-configure it to perform well for solving multiple COPs with 37 problem instances

unseen by HAMSTA, 25 of which are from unseen domains. HAMSTA is therefore shown to have

the potential to fulfil the aforementioned decision-making dilemma.

Contents

1 Introduction 2

1.1 No Free Lunch Theorem . 6

1.2 Research Motivation and Contributions . 7

1.3 Academic Output . 9

1.4 Structure of Thesis . 10

1.5 Summary . 11

2 Local Search Metaheuristics and Cross-domain Search 12

2.1 Introduction . 12

2.2 Related Work . 13

2.2.1 Methods for Solving Cross-domain Search . 14

2.2.2 Parameter Tuning for Cross-domain Search 14

2.2.3 Comparisons of Move Acceptance Methods 15

2.3 A Taxonomy for Move Acceptance Methods . 15

2.3.1 Classification of the Accept/Reject Decision 16

2.3.2 Classification of the Algorithmic Parameter Setting 17

2.3.3 Example Classification using Simulated Annealing 18

2.4 A Survey of Existing Methods . 19

2.4.1 All Moves (AM) . 20

2.4.2 Only Improving (OI) . 20

2.4.3 Improving or Equals (IE) . 22

2.4.4 Näıve Acceptance (NA) . 23

2.4.5 Adaptive Acceptance (AA) . 24

2.4.6 Threshold Accepting (TA) . 25

2.4.7 Backtracking Adaptive Threshold Accepting (BATA) 25

2.4.8 Step Counting Hill Climbing (SCHC) . 26

2.4.9 Iteration Limited Threshold Accepting (ILTA) 26

2.4.10 Adaptive Iteration Limited Threshold Accepting (AILTA) 27

2.4.11 Record-to-record Travel (RRT) . 28

2.4.12 Great Deluge (GD) . 29

2.4.13 Flex Deluge (FD) . 31

2.4.14 Non-linear Great Deluge (NLGD) . 32

2.4.15 Extended Great Deluge (EGD) . 33

2.4.16 Linear Monte Carlo (LMC) . 34

2.4.17 Exponential Monte Carlo (EMC) . 35

2.4.18 Exponential Monte Carlo with Counter (EMCQ) 36

2.4.19 Simulated Annealing (SA) . 37

2.4.20 Simulated Annealing with Reheating (SARH) 40

2.4.21 Late Acceptance (LA) . 41

2.4.22 Late Acceptance with Initial Threshold Accepting (LAIT) 42

2.4.23 n-Top List (n-TL) . 43

2.4.24 n-Best List (n-BL) . 43

2.4.25 Adaptive Iteration Limited List-based Threshold Accepting with a Fixed

Limit (AILLA-F) . 44

2.4.26 Adaptive Iteration Limited List-based Threshold Accepting (AILLA) 44

2.4.27 An overview of existing methods . 45

2.5 Summary . 48

3 Methodologies and Experimental Setup 49

3.1 Introduction . 49

3.2 Experimental Framework . 49

3.3 Problem Domains . 53

3.3.1 One-Dimensional Bin Packing (BP) . 53

3.3.2 Permutation Flow Shop (FS) . 55

3.3.3 Personnel Scheduling (PS) . 56

3.3.4 Maximum Satisfiability (SAT) . 59

3.3.5 Euclidean Travelling Salesman Problem (TSP) 60

3.3.6 Vehicle Routing with Time Windows (VRPTW) 61

3.3.7 0-1 Knapsack Problem (KP) . 63

3.3.8 Max Cut Problem (MAC) . 65

3.3.9 Quadratic Assignment Problem (QAP) . 66

3.4 Methods of Analysis . 68

3.5 Parameter Tuning . 70

3.5.1 Approaches to Parameter Tuning . 70

3.5.2 Tuning Methodologies . 71

3.6 Move Acceptance Methods . 73

3.6.1 Adaptive Iteration Limited List-based Threshold Accepting (AILLA) 74

3.6.2 Adaptive Iteration Limited Threshold Accepting (AILTA) 74

3.6.3 Great Deluge (GD) . 75

3.6.4 Improving or Equal (IE) . 77

3.6.5 Näıve Acceptance (NA) . 77

3.6.6 Simulated Annealing (SA) . 78

3.6.7 Simulated Annealing with Reheating (SARH) 79

3.6.8 Threshold Accepting (TA) . 81

3.7 Summary . 82

4 On the Cross-domain Performance of Move Acceptance Methods 84

4.1 Introduction . 84

4.2 An analysis of the performance of move acceptance methods for cross-domain search 85

4.2.1 Bin Packing . 85

4.2.2 Flow Shop . 89

4.2.3 Personnel Scheduling . 91

4.2.4 Maximum Satisfiability . 92

4.2.5 Travelling Salesman Problem . 93

4.2.6 Vehicle Routing with Time Windows Problem 95

4.2.7 0-1 Knapsack Problem . 96

4.2.8 Max Cut Problem . 97

4.2.9 Quadratic Assignment Problem . 98

4.2.10 Per-domain Performance Observations . 99

4.2.11 Cross-domain Results and Observations . 103

4.3 On the Effectiveness of Parameter Tuning versus Choice of Move Acceptance Method

for Cross-domain Search . 105

4.3.1 Results for Parameter Tuning Effects . 106

4.3.2 Results for Choice of the Move Acceptance Method Effects 107

4.3.3 Observations of parameter tuning and choice of the move acceptance method

effects . 107

4.4 Summary . 109

5 The History-based Adaptive Multi-Stage Threshold Accepting Algorithm 111

5.1 Introduction . 111

5.2 History-based Adaptive Multi-Stage Threshold Accepting 112

5.2.1 HAMSTA Parameters . 114

5.2.2 IE Stage . 115

5.2.3 AM Stage . 116

5.2.4 HTA Stage . 117

5.2.5 History-based Threshold Accepting . 119

5.2.6 Parameter Adaptation . 126

5.3 Experimentation . 131

5.3.1 Cross-Domain Parameter Tuning . 131

5.4 Experimental Results . 134

5.5 Trace Analysis . 137

5.6 A Comparison to the State-of-the-Art . 148

5.7 Summary . 151

6 Conclusions and Future Work 153

6.1 Context . 153

6.2 Summary of Work . 154

6.2.1 Local Search Metaheuristics and Cross-domain Search 154

6.2.2 On the Cross-domain Performance of Move Acceptance Methods 155

6.2.3 The History-based Adaptive Multi-Stage Threshold Accepting Algorithm . . 155

6.3 Future Work . 156

Appendices 183

A Online Supplementary Data . 184

B Results and Pairwise Comparisons of HAMSTA to the Benchmark Move Acceptance

Methods . 184

List of Figures

1.1 Illustration of a cross-domain search method solving different COPs without the need

for expert intervention. 4

2.1 A taxonomy for move acceptance methods based on the natures of the accept/reject

mechanism and how the internal algorithmic parameters are set. 16

2.2 Venn diagram illustrating the information used by each algorithmic parameter setting

mechanism to decide on the settings of the parameters of the move acceptance method. 18

3.1 Illustration of the local search metaheuristic framework with the move acceptance

component being highlighted. The move acceptance method itself, emphasised in

yellow, is the interchangeable method which is investigated in these studies. 52

3.2 Per-domain (PS) performance of the different parameter configurations of SARH

as determined by the Taguchi DOE for the per-domain tuning approach. The best

parameter configuration chosen in this case is: χ0 = 0.01(1%), χn = 0.9999(99.99%),

and wait time = 1.0× 10−6. 73

4.1 fnorm(s) values obtained by each move acceptance method using per-domain param-

eter configurations over all 31 trials for all 5 instances for each of the Bin Packing,

Flow Shop, Personnel Scheduling, and Maximum Satisfiability problem domains. ‘+’

marks symbolise statistical outliers according to either fnorm(s) > q3+1.5×(q3−q1)

or fnorm(s) < q1− 1.5× (q3− q1) where q1 and q3 are the 25th and 75th sample data

percentiles. 86

4.2 fnorm(s) values obtained by each move acceptance method using per-domain pa-

rameter configurations over all 31 trials for all 5 instances for each of the Travelling

Salesman, Vehicle Routing, Knapsack, Max Cut, and Quadratic Assignment prob-

lem domains. ‘+’ marks symbolise statistical outliers according to either fnorm(s) >

q3 + 1.5× (q3 − q1) or fnorm(s) < q1 − 1.5× (q3 − q1) where q1 and q3 are the 25th

and 75th sample data percentiles. 87

4.3 Objective function value traces of accepted and current best solutions given a 10

nominal minute computational budget for: IE solving (a) instance 11 of the Bin

Packing problem, (b) instance 11 of the Flow Shop problem, and (c) instance 8 of the

Travelling Salesman Problem, and AILLA (d) solving instance 3 of the 0-1 Knapsack

Problem, and NA (e) solving instance 9 of the Personnel Scheduling problem. Note

that the threshold values have been disabled for AILLA due to frequent switching

between accepting all moves, and moves proportional to the best in the current stage

causing the plot to be illegible. 100

4.3 Objective function value traces of accepted solutions, current best solutions, and

acceptance thresholds given a 10 nominal minute computational budget for: SARH

solving (f) instance 5 of the MAX-SAT Problem and (g) solving instance 5 of the

Max-Cut Problem, and TA solving (h) instance 6 of the Vehicle Routing with Time-

Windows problem, with (i) being zoomed in to illustrate the difference between the

accepted solution fitness and threshold values, and TA also solving (j) instance 0 of

the Quadratic Assignment Problem. 101

4.4 The fnorm(s) scores calculated over all eight “move acceptance method - parameter

tuning approach” pairs showing the cross-domain performance differences between

each move acceptance method at the same parameter tuning approach level, and be-

tween each move acceptance method using both cross-domain (top) and per-domain

(bottom) tuning approaches. ‘+’ marks symbolise statistical outliers according to

either fnorm(s) > q3 + 1.5× (q3− q1) or fnorm(s) < q1− 1.5× (q3− q1) where q1 and

q3 are the 25th and 75th sample data percentiles. 109

5.1 Diagram illustrating the transitions between the different stages of HAMSTA, and

mechanisms to determine the termination of each stage. Note that there is no pre-

defined end state since the algorithm can terminate during any stage according to

the prescribed time-based/iteration-based computational budget. Arrows which pass

into stage boundaries include a stage initialisation procedure as defined in their re-

spective stage descriptions. Dashed borders indicate a move acceptance strategy

with IE, AM, and HTA stages being discussed in Sections 5.2.2, 5.2.3, and 5.2.4, re-

spectively. Processes filled in grey follow their descriptions from the literature where

present (IE and AM), and HTA and the adaptation of η and ω are explained in

Sections 5.2.5 and 5.2.6, respectively. Tcurrent and Tbest are the current time and

time that the best solution was found respectively. i represents an iteration count

such that ibest and istart is the iteration that the best solution was found and the

iteration count at the start of the preceding HTA stage. 114

5.2 Illustration of the calculation of the threshold value (τi) according to the History-

based Threshold Accepting algorithm (HTA) using a memory of objective function

values of the best solutions (f(sbest)) and current solutions (f(s)) from the current

iteration, i, to those L iterations previous, i− L. 122

5.3 Accepted and best solution values for the HTA algorithm solving; (a) instance ID

#3 of the MAX-SAT problem, (b) instance ID #0 of the Max Cut problem, and

(c) instance ID #7 of the Quadratic Assignment problem with three different list

initialisation procedures. 124

5.3 Accepted and best solution values for the HTA algorithm solving; (a) instance ID

#3 of the MAX-SAT problem, (b) instance ID #0 of the Max Cut problem, and

(c) instance ID #7 of the Quadratic Assignment problem with three different list

initialisation procedures. 125

5.4 Boxplots of the objective values of accepted solutions illustrating the convergence of

HTA over three characteristically different problem domains. ‘+’ marks symbolise

statistical outliers according to either f(s) > q3 + 1.5× (q3− q1) or f(s) < q1− 1.5×

(q3 − q1) where q1 and q3 are the 25th and 75th sample data percentiles. 127

5.5 Comparison of the accepted solution values for the HTA algorithm using a HAMSTA-

style list initialisation strategy for solving instance ID #3 of the MAX-SAT problem

compared to IE, LA, and RRT. The list length for LA is equal to that used in HTA

which is equal to ∆max. Both HTA and IE have a faster convergence than LA and

RRT with HTA outperforming IE, and while also finding better quality solutions

given the 3 minute computational budget. 128

5.6 Annotation of the stages in an execution of the HAMSTA algorithm where; α is the

initial IE stage (Lines 4-8 of Algorithm 2), β is an AM HTA stage (Lines 10-15 of

Algorithm 2), and γ is an HTA stage (Lines 19-24 of Algorithm 2). Note that the

yellow trace represents the threshold value, which is infinite during an AM stage,

the blue trace represents the objective value of the current solution, and the orange

trace represents the objective value of the best solution found so far. 129

5.7 Annotation of the algorithmic parameters of an actual execution of the HAMSTA al-

gorithm where; δ is the number of iterations to find the best solution in the IE stage,

ε is the amount of time that should pass after finding the best solution in the IE stage

before entering the AM stage, and η is the maximum consecutive non-improving list

repetitions value dependant on the η0 parameter and internal adaptation mecha-

nisms. Note that the yellow trace represents the threshold value, which is “infinite”

during an AM stage, the blue trace represents the objective value of the current so-

lution, and the orange trace represents the objective value of the best solution found

so far. 130

5.8 Results of tuning the parameters of HAMSTA for cross-domain search using the

Taguchi DOE with a 4-factor 5-level L25 Orthogonal Array. 132

5.9 An empirical cumulative distribution function using the fnorm(s) values from all

1395 trials spanning 45 instances from 9 problem domains, illustrating the cross-

domain performance of each cross-domain tuned move acceptance method, and where

possible re-tuned for each problem domain. An ideal cross-domain search algorithm

will obtain the best solution for each problem being solved; the objective in this case

is therefore to maximise the cumulative distribution while minimising the µnorm

values. Solid lines represent cross-domain tuned move acceptance methods, whereas

dashed lines represent those tuned per-domain. Each move acceptance method is

ordered in the legend based on their cross-domain performance as the area under the

respective frequency curve. 137

5.10 Boxplots showing the distribution of fnorm(s) scores (lower is better) for all move

acceptance methods, including those tuned per-domain (blue) and cross-domain

(black) across all 1395 trials from the 45 instances spanning the 9 benchmark prob-

lem domains. Move acceptance methods are ordered by their mean fnorm(s) scores

where smaller is better. ‘+’ marks symbolise statistical outliers according to either

fnorm(s) > q3 + 1.5 × (q3 − q1) or fnorm(s) < q1 − 1.5 × (q3 − q1) where q1 and q3

are the 25th and 75th sample data percentiles. 139

5.11 Progress traces of HAMSTA tuned cross-domain (top), and per-domain (bottom),

solving an instance from each of the problem domains from the benchmark suite

where; (a) is HAMSTA solving instance #10 from the BP domain, and (b) is HAM-

STA solving instance #10 of the FS domain. 141

5.11 Progress traces of HAMSTA tuned cross-domain (top), and per-domain (bottom),

solving an instance from each of the problem domains from the benchmark suite

where; (c) is HAMSTA solving instance #5 from the PS domain, and (d) is HAMSTA

solving instance #11 of the SAT domain. 142

5.11 Progress traces of HAMSTA tuned cross-domain (top), and per-domain (bottom),

solving an instance from each of the problem domains from the benchmark suite

where; (e) is HAMSTA solving instance #6 from the TSP domain, and (f) is HAM-

STA solving instance #6 of the VRPTW domain. 143

5.11 Progress traces of HAMSTA tuned cross-domain (top), and per-domain (bottom),

solving an instance from each of the problem domains from the benchmark suite

where; (g) is HAMSTA solving instance #0 from the MAC domain, and (h) is

HAMSTA solving instance #7 of the QAP domain. 145

5.11 Progress traces of HAMSTA tuned cross-domain (top), and per-domain (bottom),

solving an instance from each of the problem domains from the benchmark suite

where; (i) is HAMSTA solving instance #8 from the KP domain. 146

5.12 Progress trace of HAMSTA tuned per-domain solving; (a) instance #0 of the MAC

domain, and (b) instance #5 of the PS domain, highlighting the adaptation of η

(cyan) throughout the search process. 148

5.13 Progress trace of HAMSTA tuned per-domain solving; (a) instance #0 of the MAC

domain, and (b) instance #5 of the PS domain, highlighting the adaptation of ω

(cyan) throughout the search process. 149

6.1 An iterative multi-stage search framework based on the strategies used by the HAM-

STA move acceptance method where mexploit is a move acceptance method used to

rapidly improve the solution-in-hand, mexplore is a move acceptance method which

allows an exploration of the search space, and mbalanced is a move acceptance method

which is designed to balance appropriately its exploitation and exploration abilities

based on the local search landscape region. 160

List of Tables

2.1 COPs solved using All Moves (AM) move acceptance. 21

2.2 COPs solved using Only Improving (OI) move acceptance. 22

2.3 COPs solved using Improving or Equals (IE) move acceptance. 23

2.4 COPs solved using Näıve Acceptance (NA) move acceptance. 24

2.5 COPs solved using Adaptive Acceptance (AA) move acceptance. 24

2.6 COPs solved using Record-to-record Travel (RRT) move acceptance with the settings

used for DEVIATION. 29

2.7 COPs solved using Great Deluge (GD) move acceptance with the parameter settings

for the initial threshold value τ0 and final threshold values qualityLB. 30

2.8 COPs solved using Non-linear Great Deluge (NLGD) move acceptance. 33

2.9 Parameter settings used for NLGD in [1] based on the size of the instance being solved. 33

2.10 COPs solved using Extended Great Deluge (EGD) move acceptance. τ0 and decay rate

were set to f(s0) and 50% of the remaining computational budget respectively for

all domains. The settings for wait for non-improvement (wni), post-reheat decay rate

(prdr), and post-reheat boundary (prb) are specified below where CB is short for

computational budget. 34

2.11 COPs solved using Exponential Monte Carlo (EMC) move acceptance. 35

2.12 COPs solved using Exponential Monte Carlo with Counter (EMCQ) move acceptance. 36

2.13 COPs solved using Simulated Annealing (SA) move acceptance. 38

2.14 COPs solved using Simulated Annealing with Reheating (SARH) move acceptance. . 40

2.15 COPs solved using Late Acceptance (LA) move acceptance. 41

2.16 Overview and classification of move acceptance methods as used in the scientific

literature. If a move acceptance method has been used with a different algorithmic

parameter setting nature compared to their original descriptions, references of the

earliest occurring paper using those alternative mechanisms are given in their respec-

tive column(s) and stylised in italic. A key can be found in Table 2.17 mapping the

abbreviations of each move acceptance method to their given names. 46

2.17 Key of move acceptance method abbreviations . 47

3.1 One-Dimensional Bin Packing Instances. 55

3.2 Permutation Flow Shop Instances. 57

3.3 Personnel Scheduling Instances. 59

3.4 Maximum Satisfiability Instances. 60

3.5 Travelling Salesman Problem Instances. 61

3.6 Vehicle Routing with Time Windows Instances. 63

3.7 0-1 Knapsack Problem Instances. 65

3.8 Max Cut Problem Instances. 66

3.9 Quadratic Assignment Problem Instances. 67

3.10 Training problem instance ID#’s used for parameter tuning experiments. 71

4.1 Per-domain scores for each move acceptance method over the 9 problem domains,

calculated as explained in Section 3.2, with the best general-purpose method for each

problem domain stylised bold. The final column shows the cross-domain score for

each move acceptance method, calculated as the sum of per-domain scores. 85

4.2 Kruskal-Wallis One-way ANOVA comparing the performance of the move accep-

tance methods for each problem domain with n0 that all results are from the same

distribution at CI = 95%. The values are the mean ranks (lower is better) of the

aforementioned test with the best move acceptance method, and those which do not

statistically significantly differ from the best, for each domain being stylised bold. . . 88

4.3 Percentage of each type of move based on the acceptance decision and move delta

as improving, equal, and worsening when using the best general move acceptance

method for solving an instance, as used in the objective function value traces, of

the respective problem domain. Note that no move acceptance mechanism has the

ability to reject improving moves. Percentages are reported to 1 decimal place - GD

accepted a few moves but these were very rare; hence the reported values of 0.0% . . 88

4.4 Percentage of accepted and rejected moves based on improving, equal, and worsening

move deltas when using the best general move acceptance method for solving an

instance, as used in the objective function value traces, of the respective problem

domain. Note that no move acceptance mechanism has the ability to reject improving

moves. For TSP, there was a total of 68 accepted improving moves and 380 accepted

equal moves compared to 4908905 rejected worsening moves; hence, the apparent

0.0% of accepted improving and equal moves. 89

4.5 Comparison of per-domain tuning versus cross-domain tuning effects on the cross-

domain performance of move acceptance methods under a local search metaheuristic

framework. Note that µnorm and νnorm scores cannot be compared between different

move acceptance methods as they are re-calculated for each (per-domain - cross-

domain) move acceptance pair. 107

4.6 Friedman test comparing the cross-domain performance of the move acceptance

methods using cross-domain and per-domain parameter tuning configurations with

n0 that all results are from the same distribution at CI = 95%. The values are the

mean ranks (lower is better) of the aforementioned test. The best move acceptance

method (as chosen as that with the lowest mean rank), and those which do not

statistically significantly differ from the best, for each domain being stylised bold. . . 108

5.1 Parameter configuration of HAMSTA tuned per-domain across each of the nine

benchmark problem domains using 1 small and 1 large selected instance for tun-

ing of each domain. 133

5.2 νnorm and µnorm scores and standard deviations of fnorm(s) values for each move

acceptance method compared for each problem domain and finally cross-domain for

both per-domain tuned and cross-domain tuned move acceptance methods where

HAMSTA is tuned cross-domain in both comparisons. 135

5.3 Areas under each move acceptance method’s ECDF plot representing their cross-

domain performance (higher is better). 138

5.4 Comparison of the number of IE, AM, and HTA stages, the list lengths (δ) and initial

settings for the maximum number of consecutive non-improving list repetitions (η)

used during an execution of HAMSTA given a 10 nominal minute computational

budget using its cross-domain and per-domain parameter settings across a randomly

selected instance from each problem domain. 144

5.5 Friedman test comparing the cross-domain performance of HAMSTA to state-of-the-

art methods with n0 that all results are from the same distribution at CI = 95%.

The values are the mean ranks (lower is better) of the aforementioned test. The best

search method (as chosen as that with the lowest mean rank), and those which do

not statistically significantly differ from the best, for each domain being stylised bold.150

5.6 Cross-domain µnorm results comparing the cross-domain performance of HAMSTA-

LSM-R to state-of-the-art methods. 151

1 Results and pairwise comparisons using Wilcoxon Signed Rank test (CI = 95%) for

each problem instance of HAMSTA (cross-domain tuned) to the cross-domain tuned

move acceptance methods. 185

2 Results and pairwise comparisons using Wilcoxon Signed Rank test (CI = 95%) for

each problem instance of HAMSTA (cross-domain tuned) to the per-domain tuned

move acceptance methods. 190

Acknowledgements

First and foremost I would like to take this opportunity to thank my supervisors Dr. Ender Özcan

and Professor Robert I. John for their continued time, effort, and patience throughout my doctoral

research. I would also like to give Dr. Ender Özcan a special mention as he inspired me to become

involved in the field of optimisation during my undergraduate studies while at the University of

Nottingham.

I express great appreciation to my examiners Dr Jonathan Thompson and Professor Dario

Landa-Silva for their feedback and criticism of my research presented in the thesis for they have

undoubtedly allowed me to strengthen my research for which I am grateful.

Recognition goes out to fellow colleagues within the Computational Optimisation and Learning

(COL) lab (previously the ASAP research group) for their support and encouragement, and to the

School of Computer Science itself.

I would also like to express gratitude to my parents Glenn and Sheila Jackson and to my

significant other Chidchanok Sakdapanichkul for their support and encouragement throughout my

doctorate.

1

Chapter 1

Introduction

The search methodologies used for tackling real-world combinatorial optimisation problems (COPs)

[2], such as Examination Timetabling [3], High School Timetabling [4], and Vehicle Routing [5]

are of interest to researchers and practitioners. Metaheuristics imposing ‘a set of guidelines or

strategies’ based on a heuristic search framework [6] can be preferred over exact methods; while

exact methods can find optimal solutions, their computational efforts (memory usage, flops, etc)

can sometimes be orders of magnitude higher than heuristic methods. This is mainly due to the

fact that many real-world problems are computationally hard to solve [7, 8] and exact methods can

fail to produce acceptable solutions in a reasonable time frame. For example, a review of heuristic

and exact algorithms [9] for solving the Quadratic Assignment Problem (QAP) emphasises this,

stating that QAP instances most often discussed in the literature cannot be solved to optimality by

exact methods when the problem sizes approach 30-40, whereas the heuristic search techniques can

rapidly find high quality solutions. More recent work has gone into providing relaxed models for

QAP stating that problem sizes over 30 are still not solvable by exact methods in any reasonable

CPU time [10, 11].

Metaheuristics are classified in [6] into three categories; local search (e.g. Guided Local Search,

Iterated Local Search, Late Acceptance, Record-to-record Travel, Simulated Annealing, and Tabu

Search), constructive (e.g. GRASP and Ant-colony Optimisation), and population-based (e.g. Evo-

lutionary Algorithms, Genetic Programming and Memetic Algorithms) [12]. Metaheuristics were

categorised in [13] based on several distinctions; trajectory methods versus discontinuous methods,

population-based versus single-point search, memory usage versus memoryless methods, one versus

multiple neighbourhood structures, dynamic versus static objective function, and the difference be-

tween nature-inspired and non-nature inspired methods. A very similar categorisation is provided

2

CHAPTER 1. INTRODUCTION 3

in [14]. The work in this thesis focuses on a subset of single-objective local search metaheuristics

embedding move acceptance methods under a single point based search framework, an outline of

which is given in Algorithm 1. In the scientific literature, some of such local search metaheuristics

can also be referred to as stochastic local search methods [15], reactive search methods [16], trajec-

tory methods [14] or hyper-heuristics [17]. From this point onward, we will refer to them solely as

local search metaheuristics for consistency.

Algorithm 1: Outline of a Local Search Metaheuristic embedding Move Acceptance.

1 s0 ← generateInitialSolution();
2 sbest ← s0;
3 i = 0;
4 H← ∅;
5 while termination criteria not met do
6 h← random ∈ H;

7 s
′

i ← apply(h, si);

8 (si+1,Hi+1)← acceptRejectDecision(f(si), f(s
′

i), i,Hi);
9 if f(s

′

i).isBetterThan(f(sbest)) then

10 sbest ← s
′

i;
11 end
12 i← i+ 1;

13 end
14 return sbest;

A local search metaheuristic iteratively makes changes (perturbations) to a complete solution

(si) at each iteration of the search (i) to produce a single neighbouring solution (s
′

i) by applying a

random perturbation move operator, also referred to as a heuristic (h), to it (Line 7 of Algorithm 1).

The resulting solution is then accepted or rejected for use as the solution in the next iteration (si+1)

based on the decision of the embedded move acceptance method (Line 8 of Algorithm 1). The move

acceptance method itself can maintain an internal history (H), but can only do this by storing the

objective values of previously visited solutions. The move acceptance method itself does not have

access to domain, instance, or solution specific details.

Finally, when the algorithm terminates, the best solution found so far (sbest) is returned. The

objective (evaluation, fitness, cost) function (f(.)) measures the quality of a solution and guides the

search. The behaviour of a local search metaheuristic, and hence its ability to find good quality

solutions, is determined by its neighbourhood and solution acceptance strategy, as defined by the

move operators and its move acceptance method respectively.

A well-known weakness of local search is their tendency to get stuck in local optima. They

therefore require some mechanism to counteract such situations during the search process, enabling

the algorithm to explore other regions of the search landscape, potentially leading to solutions

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Illustration of a cross-domain search method solving different COPs without the need
for expert intervention.

with better quality [15]. Hence, the use of a method accepting worse quality solutions as such a

mechanism is a common strategy. There are many different previously proposed local search meta-

heuristics making use of a variety of move acceptance methods, such as Simulated Annealing [18],

and Great Deluge [19].

Traditionally when practitioners are faced with solving a problem (even those from within the

same domain), in addition to choosing suitable move operators and objective functions, they also

have to choose a suitable move acceptance method to use alongside them in order for the overall

algorithm to perform well. The state-of-the art in metaheuristic design is a trial-and-error process,

involving tailoring the algorithmic components to the problem domain in hand, which are often not

reusable when the same components are to be used for solving other problems [17]. For existing

problems, the move acceptance method is usually chosen based on whichever worked well in the

past, or which has received the most attention in the respective field. The choice of move acceptance

method is, however, most often left unjustified. Moreover, the correct choice of move acceptance

method becomes an even greater issue when the problem to be solved is new or unknown because

the practitioner is then left with a dilemma for choosing the best move acceptance method for

solving that problem without previous experience, knowledge, or guidance. An emerging area of

research concerns the development of high-level, general-purpose search methodologies known as

cross-domain search methods. An illustration of a cross-domain search method is shown in Fig-

CHAPTER 1. INTRODUCTION 5

ure 1.1 where a single cross domain search method is used to solve travelling salesman, high-school

timetabling and bin packing problems without a need for any change in algorithmic components at

the high level. Cross-domain search [20] is the term used to describe the high-level issue of devising

a single search method which is able to solve multiple characteristically different COPs to a high

quality given a pre-defined computational budget with the least, but preferably without, expert

intervention or modification.

When a researcher or practitioner is tasked with solving a new or unknown (unseen) computa-

tionally hard COP, many questions arise concerning the decision-making process for choosing and

designing the right search method. Three of the frequently asked questions are “Which algorithm

should I use to solve my problem?”, “What parameter settings/configuration should I use for my

chosen algorithm?”, and “Is there another algorithm which will produce better results than the

one I have chosen?”. The researchers and practitioners might have different goals for solving that

unseen problem. Regardless of those goals, the decision-making questions can be combined into a

single decision-making dilemma to “Is there a single algorithm that does not need to be re-tuned to

perform at least as-good-as the existing algorithms that are themselves re-tuned for optimal per-

formance to solve a given unseen problem?”. Both practitioners and academics would benefit from

answering that question. Using an off-the-shelf ‘cheap’ to apply and maintain algorithm, practition-

ers would save a lot of time and effort by not going through the standard trial-and-error process of

developing a search method as a reasonable solution to their particular problem, requiring certain

expertise. Such search methods would be of interest to many small to medium enterprises due to

the high cost of developing tailored solutions. As for researchers, rather than customising an algo-

rithm to solve the new problem, they can initially use the general-purpose search algorithm, again

saving time and effort to form a benchmark of solutions for those instances of the new problem.

Then they can investigate other tailored search methods using the results from the general-purpose

search algorithm as basis for performance comparison to detect the best algorithm for the problem

with the best configuration.

If an optimisation algorithm has a good cross-domain performance on a characteristically diverse

set of known problems, then it can be reasonably expected to also perform well when solving new

and unknown problems given that the algorithm is not a non-repeating algorithm [21] meaning

that the search method never evaluates a search point more than once. Hence, the decision-making

dilemma can be answered by using the current state-of-the-art cross-domain search method. As

for the question “Is there another algorithm which will produce better results than the one I have

chosen?”, the answer will undoubtedly always be “yes” as researchers endeavour to produce higher

CHAPTER 1. INTRODUCTION 6

and higher quality algorithms; but to obtain high-quality solutions to new or unknown problems

at the present which are good enough in practise, and that are found in a reasonable time frame,

the state-of-the-art cross-domain search method can be used.

COPs will perhaps always be solved better using exact methods or heuristic methods that

are meticulously designed and re-designed for solving each problem and their variants. The issue

however is that exact methods can sometimes fail to produce a solution in a reasonable time frame,

and the financial investment and human cost of researching specialised problem solvers for every

new problem can sometimes significantly outweigh that of an off-the-shelf (cross-domain search)

algorithm which can be used as-is to produce solutions that are “good-enough”.

Ever since the term “cross-domain search” was first used in 2011 [22], hyper-heuristics have

been at the centre of attention in this area of research; perhaps in part because they were promoted

as the solution to the cross-domain search problem as part of the Cross-domain Heuristic Search

Challenge (CHeSC 2011). Hyper-heuristics have therefore emerged as solution methods to the

cross-domain search problem and are formed of two components; a heuristic selection strategy, and

a move acceptance criterion. Hyper-heuristic research has traditionally focused on investigating

different heuristic selection strategies to improve their cross-domain performance, but this means

that the move acceptance method is frequently neglected. The state-of-the-art hyper-heuristics

combine some form of move acceptance method that is designed to inter-operate with a new heuristic

selection strategy to achieve better cross-domain performance.

1.1 No Free Lunch Theorem

The No Free Lunch Theorem (NFLT) is a particular concern in the field of optimisation due to its

implications on the design of algorithms for solving different problems. Broadly, the NFLT states

that the performance of two algorithms when averaged over all cost functions is the same. At first

glance, the NFLT appears to suggest that for all algorithms, there does not exist another algorithm

that performs differently on average across all problems [21]. However, the original formulation of

NFLT for optimisation discussed in [23] makes the following key assumptions:

• The search method is deterministic and non-repeating.

• The performance of each algorithm is evaluated across all cost functions.

Some heuristic search algorithms, such as those dealt with in this work, make use of neighbour-

hood/move operators that perform indiscriminate stochastic changes to the solution-in-hand to

CHAPTER 1. INTRODUCTION 7

generate a candidate solution. That is, that candidate solutions are not chosen systematically

from the set of unvisited candidate solutions, but rather generated stochastically to produce any

candidate solution in the neighbourhood of the current solution; hence, it is entirely possible that

an algorithm over time will re-evaluate and revisit the same candidate solutions previously visited.

Without the use of additional data structures to remember each and every previously visited state,

which is memory expensive, heuristic algorithms cannot guarantee that previous states are not

revisited.

Another paper [24] discusses several definitions of the NFLT and the circumstances under which

they cannot be applied to metaheuristics. The Sharpened NFLT extends the original NFLT by

stating that the performance of algorithms are averaged across any set of objective functions which

are closed under permutation (CUP).

The goal of cross-domain search methods is to design a single solution method which can be used

’off-the-shelf’ to solve multiple real world COPs. These problems make use of different objective

functions which are not contained in a single CUP set of objective functions as is the case in this

study where the domains are limited to real-world COPs.

1.2 Research Motivation and Contributions

Research into selection hyper-heuristics as cross-domain search methods has typically focused on

designing state-of-the-art heuristic selection strategies. Move acceptance methods have not been

studied in-depth on their own before in the context of cross-domain search. A small scale study was

performed in [25] comparing the performances of several move acceptance methods; however, that

study used an adaptive large neighbourhood search framework and compares the move acceptance

method to three problems, and not in the cross-domain context. This is despite it being suggested

that the choice of move acceptance method has more effect on the cross-domain performance of

a hyper-heuristic than that of a heuristic selection strategy in an initial study by [26] where a

small number of simple low-level heuristics are applied for solving a set of benchmark function

optimisation problems using binary representation.

The motivation for the work in this PhD comes from the fact that metaheuristics are sensitive

to their parameter settings which leads to their performance for solving different COPs, and even

instances from the same problem, to vary significantly. Parameter tuning is a common method used

to improve the performance of metaheuristics for solving COPs. The very nature of metaheuristics

means that their parameters are sometimes re-tuned even at the level of each instance for a variety

CHAPTER 1. INTRODUCTION 8

of COPs such as the use of instance-specific parameter tuning of Guided Local Search for solving

instances of the Travelling Salesman Problem [27] and “empirical” tuning of the parameters of Late

Acceptance for solving instances of the Examination Timetabling problem [28]. It is stated in [29]

that approximately 90% of the time required to design new heuristic methods and metaheuristics

is expended on tuning their parameters. More recently, automated parameter tuning methods [30]

have been developed which aim to produce a single parameter configuration that improves the

performance of the search method. These tuning methods however are usually applied for multiple

instances from the same problem domain, and hence would be re-ran when using the search method

for solving different problems. These include ParamILS [31] which was used to tune the parame-

ters of Simulated Annealing with Tabu Search for solving instances of the Quadratic Assignment

Problem [32], and irace [33] which was used to tune the parameters of Iterated Local Search and an

Iterated Greedy Algorithm for solving permutation and non-permutation flow shop problems [34].

Furthermore, different move acceptance methods are used for solving different COPs in the

literature such as Simulated Annealing for solving Travelling Salesman problems [35], Late Accep-

tance for solving Examination Timetabling problems [28], and Record-to-Record Travel for solving

heterogeneous fleet vehicle routing problems [36]. This highlights that different metaheuristics are

more suited to solving specific problems and this is an issue for the design of a single general-purpose

high-performance cross-domain search method.

Designing move acceptance methods that perform well across different COPs but independent

of instance-specific and problem-specific features and parameter tuning efforts would provide a

positive step forward for research into cross-domain search by contributing high-level strategies

that have the potential to fulfil the aims of cross-domain search, and hence the decision-making

dilemma - that is that a single solution method that can solve all COPs to a high quality, and

without the need for expert intervention.

To highlight the point that the move acceptance methods used and designed in this work are

targeted towards solving new and unknown problems, when a practitioner may want to find a

quick and easy to obtain solution to a COP, and with only little knowledge or understanding of

the domain, a (small subset of) simple perturbative operator(s) may only be implemented. In

that case, the framework used in this work is ideal since it does not require the implementation of

clever heuristics that exploit the properties and features of the underlying problem. This contrasts

with the efforts of a researcher who will create many heuristics exploiting the problem features in

which case solving such problems under a hyper-heuristic framework combining heuristic selection

with move acceptance might outperform the single point-based stochastic local search metaheuristic

CHAPTER 1. INTRODUCTION 9

method used in this study.

Restricting the scope of this work to investigate the effects of move acceptance on only local

search metaheuristics has the benefit of eliminating potential confounding factors from related areas

including, but not limited to, for example, population size and the strategy to maintain population

diversity in population-based metaheuristics, the strategies to prohibit moves and tabu list length

in Tabu Search, and the effects of heuristic selection within hyper-heuristics. The aim of this work

is therefore to identify the various move acceptance methods used within local search metaheuristics

as presented previously in Algorithm 1, investigate their cross-domain performance, and design a

strategy for move acceptance that is able to improve the cross-domain performance of local search

metaheuristics.

The contributions of the work carried out in this thesis are three-fold. First, in Chapter 2, a thor-

ough survey on move acceptance methods within local search metaheuristics has been performed

and a taxonomy is proposed for classifying move acceptance methods based on the characteris-

tics of their mechanism for how the objective value of a candidate solution is used to determine

whether it is accepted or rejected, and the nature of how their internal parameters are set. Sec-

ondly, in Chapter 4, the cross-domain performance of existing move acceptance methods, with one

being chosen from each classification from the taxonomy, used under a local search metaheuristic

framework is compared using an empirical study, and the effects of parameter tuning versus choice

of the move acceptance method on the cross-domain performance of local search metaheuristics is

explored. Finally, in Chapter 5, a novel move acceptance method (HAMSTA) is designed which

has a cross-domain performance that is better than the existing methods under a single-point based

stochastic local search metaheuristic framework despite HAMSTA using a single parameter config-

uration, requiring no expert intervention, for solving the given COPs whereas the existing methods

utilise different parameter configurations for each problem domain.

1.3 Academic Output

The following lists itemises the articles and conference papers that were produced as a result of

this research:

Journal Articles

• Warren G. Jackson, Ender Özcan and Robert I. John. Move Acceptance in Local Search

Metaheuristics for Cross-domain Search Expert Systems with Applications, pp. 131-151,

CHAPTER 1. INTRODUCTION 10

vol. 109, 2018.

Conference Papers

• Warren G. Jackson, Ender Özcan and Robert I. John. Tuning a Simulated Annealing

Metaheuristic for Cross-domain Search 2017 IEEE Congress on Evolutionary Compu-

tation (CEC), pp. 1055-1062, 2017.

In Production

• Warren G. Jackson and Ender Özcan. The History-based Adaptive Multi-stage Thresh-

old Accepting Algorithm.

1.4 Structure of Thesis

The structure of the remainder of this thesis is as follows. Chapter 2 provides a thorough survey on

move acceptance methods within local search metaheuristics and a taxonomy is proposed for clas-

sifying local search metaheuristics based on the characteristics of their embedded move acceptance

methods. An overview of the existing move acceptance methods is conducted with each method be-

ing classified based on the taxonomy. It is evident that there are a large number of move acceptance

methods in the literature, and which have been used for solving many different COPs, either as

components of metaheuristics or hyper-heuristics. Chapter 3 explains the local search metaheuris-

tic framework used in this work alongside the problem domains, approaches to parameter tuning,

move acceptance methods, methods of analysis, and the experimental designs. Chapter 4 provides a

comparison of the cross-domain performance of existing move acceptance methods, with one being

chosen from each classification from the taxonomy, used under a local search metaheuristic frame-

work. From the investigation, which re-tunes the move acceptance methods for solving problems

from different domains to show a best-case scenario of the move acceptance method’s cross-domain

performance, it is clear that some move acceptance methods perform better than others. More-

over, when comparing them based on the taxonomy, it is evident that adaptive move acceptance

methods generally perform better than dynamic and static methods. Sometimes however, this is

not always the case in the cross-domain context as some move acceptance methods have inherently

poor designs which causes them to be inflexible for solving different problems, especially when the

same parameter configuration is used. Furthermore, while increased parameter tuning efforts sig-

nificantly improves the cross-domain performance of the local search metaheuristics, the choice of

CHAPTER 1. INTRODUCTION 11

move acceptance method itself can have a significant effect on the cross-domain effectiveness of such

algorithms. Therefore, rather than trying to overcome the parameter setting issue by designing a

parameter tuning or control system for adapting the parameters of the existing move acceptance

methods for cross-domain search, which would only lend an incremental improvement if the wrong

acceptance is used, a novel move acceptance method is designed which attempts to perform as-

good-as the existing move acceptance methods that are re-tuned for each domain being solved,

but without itself requiring such expert intervention. Thus, eliminating the need for practitioners

to have to decide which move acceptance they should use, and being able to be used off-the-shelf

without the requirement to perform additional parameter tuning for each new problem they may

come across for it to perform well. Researchers on the other hand are then able to use this move

acceptance method in their own studies as a baseline target for comparison, enabling them to focus

their time on developing specialised methods. Chapter 5 thus proposes a novel move acceptance

method (HAMSTA) as a component of a local search metaheuristic for cross-domain search, and

Chapter 6 concludes the thesis along with some future research directions being suggested which

could potentially further improve the cross-domain performance of search algorithms based on the

research into their move acceptance methods as conducted in this work.

1.5 Summary

Previous works in the area of cross-domain search have focused on improving heuristic selection

strategies within hyper-heuristics. This is despite [26] suggesting that the choice of move acceptance

method in a selection hyper-heuristic (as one classification of a cross-domain search method) has

more effect on the performance of hyper-heuristics compared to their embedded heuristic selection

method. In this work, a step back from the traditional research direction of improving heuristic

selection in hyper-heuristics for cross-domain search is taken to gain an understanding of the in-

fluence of move acceptance. To be able to observe the effects of move acceptance specifically, a

single-point based stochastic local search metaheuristic framework is used which is capable of ab-

stracting away the confounding factors of heuristic selection strategies within hyper-heuristics and

other related areas such as population-based search methods and tabu search. The investigation

into the cross-domain performance of move acceptance methods in local search metaheuristics in

the context of cross-domain search has not been done before, so the next chapter provides a critical

review of such move acceptance methods and proposes a taxonomy for classifying them based on

two of their design characteristics.

Chapter 2

Local Search Metaheuristics and

Cross-domain Search

2.1 Introduction

This chapter, forming the literature review, contains an overview of related work on cross-domain

search, a taxonomy for classifying move acceptance methods based on the natures of their internal

parameter setting mechanisms and how the objective value of the candidate solution is compared

to inform the accept/reject decision, and a comprehensive survey of the existing move acceptance

methods. Cross-domain heuristic search is a term first used in [22] to describe the high-level issue

of designing a single general-purpose heuristic search method which can be used to solve multiple

characteristically different COPs to a high quality given a predefined computational budget and

with the least, but preferably without, expert intervention. Since the first Cross-domain Heuris-

tic Search Challenge in 2011, hyper-heuristics have emerged as methods for solving cross-domain

search. Hyper-heuristics have existed in various forms since the 1960s [17], although the mod-

ern definition of hyper-heuristics as “heuristics to choose heuristics” was introduced forty years

later [37]. Hyper-heuristics were then defined as a “search method or learning mechanism for se-

lecting or generating heuristics to solve computational search problems” [17], and more recently

in [38] as “a hyper-heuristic is an automated methodology for selecting or generating heuristics to

solve computational search problems.”. Selection hyper-heuristics are formed of two key compo-

nents; a heuristic selection strategy, and a move acceptance method. It was suggested in [26] that

the choice of move acceptance method in a selection hyper-heuristic has more effect on the perfor-

12

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 13

mance of hyper-heuristics compared to the embedded heuristic selection method. Despite this, the

research trend for cross-domain search since then has focused on improving the heuristic selection

components, e.g. in [39, 40, 41]. In this thesis, the effects that move acceptance methods have on

the cross-domain performance of a local search metaheuristic are therefore studied as this has not

been done before with the emphasis on the context of cross-domain search. This thesis focuses on

move acceptance methods as components of a subset of metaheuristics classified in [14] as single-

point based metaheuristics with a static objective function, or as single-point trajectory methods

with a static objective function in [42] - for consistency, such metaheuristics will be referred to as

local search metaheuristics herein. The reason for focusing on move acceptance methods under a

local search metaheuristic framework is to be able to observe the effects that move acceptance has

on a cross-domain search method, as local search metaheuristics do not use any form of learning for

selecting neighbourhood operators (as present in a hyper-heuristic framework), and as a single-point

based search framework, does not require the configuration of the parameters of population-based

metaheuristics such as population size and replacement strategy, and does not need to be concerned

by tabu tenures in Tabu Search based methods and its strategies for exploring the neighbourhood

of solutions. This focus allows for the reduction of as many experimental factors as possible, thus

removing any possible confounding factors in this work; hence, the observations made in this work

are due to the move acceptance methods themselves rather than any other decisions made within

the experimental design.

The previous reviews on metaheuristics cover a variety of approaches, either conceptually, or in

the context of specific problems [14, 43, 42, 12, 44, 45]. No distinction is made by the existing tax-

onomies for the embedded move acceptance method. In the remainder of this chapter, a taxonomy

is therefore firstly provided for classifying move acceptance methods based on their characteristics

in Section 2.3. A comprehensive survey of move acceptance methods from single-point based local

search methods is performed in Section 2.4 with each move acceptance method also being classified

based on the proposed taxonomy. The chapter is concluded in Section 2.5.

2.2 Related Work

In this section, the literature is discussed that relates to solving cross-domain search and papers that

investigate the performances of move acceptance methods for solving combinatorial optimisation

problems.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 14

2.2.1 Methods for Solving Cross-domain Search

Cross-domain search has been tackled in the scientific literature mainly by the hyper-heuristic

methods [17]. Hyper-heuristics were first described in [37] as heuristics to choose heuristics. Hyper-

heuristics are high-level search methods which, unlike traditional methods such as meta-heuristics

and genetic algorithms, search the space of low-level heuristics rather than the search space of

solutions. Hyper-heuristics can therefore be applicable across different problem domains since the

domain specific knowledge and expertise is embedded into their respective domains. There are two

types of hyper-heuristics, selection hyper-heuristics where a heuristic selection mechanism chooses

from a pre-defined set of low-level heuristics, and generation hyper-heuristics which use genetic

programming to construct the heuristics [38]. Selection Hyper-heuristics have been previously

decomposed into two key components; a heuristic selection mechanism, and a move acceptance

criteria [26]. Under a traditional search framework, the heuristic selection mechanism is used to

choose which heuristic(s) should be used to apply to the solution-in-hand to generate a candidate

solution, determining the solution neighbourhood, and the move acceptance method is used to

decide whether a candidate move is accepted or rejected, guiding the search. The operation of a

selection hyper-heuristic iterates between these two components. Hyper-heuristics are also classified

based on the learning mechanism used in the heuristic selection in [38] as either online learning,

offline learning and no learning. A review of the selection and generation approaches are also

discussed in [38]

Hyper-heuristics can be classified as single point-based or population-based. The move accep-

tance methods used in single point-based hyper-heuristics are reviewed in the following section.

Here the population-based methods are discussed. A genetic and memetic algorithm (GA and MA)

was used in a hyper-heuristic [46] for solving a trainer scheduling problem. [47] uses a GA for solving

a Software Project Scheduling Problem using a hyper-heuristic framework. Steady-state Memetic

Algorithms and Multimeme Memetic algorithms were used in a hyper-heuristic framework in [48]

and were evaluated across six different COPs however the results showed that the performance

of such population-based methods were outperformed by single-point approaches for cross-domain

search.

2.2.2 Parameter Tuning for Cross-domain Search

While there has been significant efforts in the literature for devising automated parameter tun-

ing methods, to date, there has only been one study which investigates parameter tuning with

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 15

an emphasis on cross-domain search. A steady state memetic algorithm (SSMA) was tuned for

cross-domain search in [49] where they used the Taguchi method to tune the population size and

tournament size of the SSMA along with two domain-depend low-level heuristic parameters con-

trolling the intensity of mutation and depth of search. The result of cross-domain parameter tuning

revealed equal tour and population sizes, effectively turning SSMA into Iterated Local Search.

2.2.3 Comparisons of Move Acceptance Methods

There have been some studies in the literature where the performance of hyper-heuristics are

evaluated using different move acceptance methods; however, such studies are limited with respect

to cross-domain search.

A study [50] evaluated pairings of heuristic selection criteria and move acceptance methods;

however, that study was limited to evaluating their performance across a variety of CVRP problem

instances. What they found was that the best hyper-heuristic for solving all instances included the

Näıve Acceptance strategy as the move acceptance method accepting all non-worsening moves, and

worse moves with a fixed 50% probability.

Another study [25] compared the performances of several move acceptance methods; however,

this was under an adaptive large neighbourhood search framework, and while they evaluate the

performance of each method across three COPs, there was no emphasis or conclusions given on

the general performance of each method across the three domains as a whole given a cross-domain

search context. The findings of their work was that, in contrast to [50], Simulated Annealing

performed the best for solving CVRP problems, and Record-to-record Travel performed the best

for solving CMST and QAP problems when their parameters are re-tuned for each domain.

2.3 A Taxonomy for Move Acceptance Methods

In this section, a taxonomy is given for classifying move acceptance methods. While the work in this

thesis focuses on a particular local search metaheuristic framework embedding move acceptance and

stochastic perturbative move operators, this same taxonomy can be applied to other single-point

based search frameworks that use such methods to determine the acceptance of a candidate solution.

A classification for move acceptance methods is shown in Figure 2.1 and distinguishes them based

on two features as indicated by the dashed arrows. Firstly (left), the nature of the accept/reject

decision, as indicated by the acceptRejectDecision() procedure in Line 8 of Algorithm 1, which can

be found in Chapter 1, is considered which takes into account what type of value the objective

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 16

MemoryMemoryless

Move Acceptance Method

Nature of the

accept/reject decision

Nature of how the algorithmic

parameters are set

Stochas�c Non-stochas�c

Basic Threshold

Sta�c Dynamic Adap�ve

Figure 2.1: A taxonomy for move acceptance methods based on the natures of the accept/reject
mechanism and how the internal algorithmic parameters are set.

value of the candidate solution is compared to, and the resulting probability of acceptance that

is returned. The second part of the classification (right) considers the nature of how the internal

algorithmic parameters are set within the move acceptance method. The mechanism(s), if any, to

update the settings of the internal parameters are employed within the move acceptance methods

themselves; hence, this taxonomy can also be applied to move acceptance methods within other

local search frameworks.

2.3.1 Classification of the Accept/Reject Decision

The first part of the classification concerns whether the acceptance of a solution in any given move

is deterministic or not. There are two fundamental mechanisms for accepting or rejecting non-

improving solutions. On one hand, the acceptance mechanism accepts or rejects a solution outright

by using a binary operator to compare the objective value of the candidate solution to some accep-

tance threshold value. These methods are what we call as non-stochastic move acceptance methods.

On the other hand, the acceptance mechanism can accept a solution probabilistically, either directly

by assigning a probability that the move acceptance should accept a solution, or indirectly by sub-

jecting the parameter(s) affecting the value of the acceptance threshold to randomness. These

methods are what we call as stochastic move acceptance methods.

There are two strategies used to calculate the values used for the acceptance threshold in non-

stochastic basic move acceptance methods. The taxonomy therefore includes a secondary level

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 17

to further classify such methods. The first strategy, called as non-stochastic basic, reuses the

objective values of previously encountered solutions for the accept/reject decisions. These either

use the objective value of the current solution, or maintain a memory of objective values of visited

solutions to decide on an appropriate value for the acceptance threshold at a given point during

the search. The second strategy on the other hand, called as non-stochastic threshold, uses any real

value as the value of the acceptance threshold. The values of the acceptance threshold are therefore

not guaranteed to correspond to the objective value of any solution to the problem being solved.

The overall classification of a move acceptance method based on the nature of the accept/reject

decision follows a trivial precedence. If the mechanism deciding whether to accept or reject a solu-

tion uses, or is influenced by parameters utilising, stochastic nature then it is stochastic, irrespective

of the acceptance threshold. If the acceptance mechanism is non-stochastic but uses acceptance

thresholds during any point of the search which are not objective values of previous solutions, then

it is non-stochastic threshold. Otherwise, if the acceptance mechanism only uses objective values

of previous solutions for the acceptance threshold, then it is non-stochastic basic. This can be

summarised by the following precedence order relationship (x ≺ y : x precedes y).

stochastic ≺ non-stochastic threshold ≺ non-stochastic basic

2.3.2 Classification of the Algorithmic Parameter Setting

The second part to the classification concerns the nature of the parameter settings and the mecha-

nisms used to control them. These are broken down into three classifications, static, dynamic, and

adaptive. A similar classification exists for parameter control in the context of multi-point search

methods, namely evolutionary algorithms (EAs) such as those put forward in [51, 52]. Our tax-

onomy abstracts upon those classifications by only considering whether parameter tuning is based

on what they refer to as a non-iterative control method (static) or an iterative control method

(adaptive). Moreover, ours extends their view on iterative control methods by considering whether

an algorithmic parameter setting mechanism relies on the overall number of iterations/time budget,

along with the current step/elapsed time (dynamic), and/or acts upon search history (adaptive).

If a move acceptance method has multiple algorithmic parameter settings, then the final clas-

sification of the move acceptance method based on the nature of the parameter settings and the

mechanisms used to control them is determined by the following precedence relation:

adaptive ≺ dynamic ≺ static

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 18

• Initial settings

• Current Solution

• Candidate Solution

ADAPTIVE

DYNAMIC

• Current Iteration

• Elapsed Time

• Search History/

Memory

STATIC

Figure 2.2: Venn diagram illustrating the information used by each algorithmic parameter setting
mechanism to decide on the settings of the parameters of the move acceptance method.

The overall classification based on the algorithmic parameter setting mechanisms can be de-

termined using the descriptions below. This can be encapsulated as a Venn diagram as shown in

Figure 2.2.

Static algorithmic parameter setting mechanisms A move acceptance method is classified

as having a static nature of how the algorithmic parameters are set if given the same candidate and

current solutions, the acceptance threshold or acceptance probability would be the same irrespective

of the current elapsed time or iteration count and search history.

Dynamic algorithmic parameter setting mechanisms A move acceptance method is clas-

sified as having a dynamic nature of how the algorithmic parameters are set if given the same

candidate and current solutions at the same current elapsed time or iteration count, the acceptance

threshold or acceptance probability would be the same irrespective of search history.

Adaptive algorithmic parameter setting mechanisms A move acceptance method is clas-

sified as having an adaptive nature of how the algorithmic parameters are set if given the same

candidate and current solutions at the same current elapsed time or iteration count, the acceptance

threshold or acceptance probability is not guaranteed to be the same as one or more components

depend on search history.

2.3.3 Example Classification using Simulated Annealing

Here we provide a breakdown of the classification of Simulated Annealing (SA), a very popular

move acceptance method employed in local search metaheuristics. Starting with the nature of

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 19

the accept/reject mechanism, Simulated Annealing would be classified as having a stochastic ac-

cept/reject mechanism. Despite accepting non-worsening moves outright, worse quality moves are

accepted based on an acceptance probability determined by the Metropolis criterion. All non-

reheating cooling schedules, such as geometric cooling and Lundy and Mees’s cooling, contain

mechanisms to reduce an internal temperature setting over time. In some cases, these mechanisms

are not affected by search history and depend only on the elapsed duration of the search, although

various implementations exist which, for example, reduce this temperature after a certain number

of accepted moves. Such mechanisms are therefore either dynamic or adaptive depending on their

implementations. All other parameters, such as α for geometric cooling, and β for Lundy and

Mees’s cooling, remain fixed, hence these are static. The acceptance probability, given an elapsed

duration, will therefore always be the same given the same current and candidate solution objec-

tive values. Hence, the classification for the nature of Simulated Annealing’s algorithmic parameter

setting mechanisms is dynamic. In conclusion, Simulated Annealing, depending on its particular

implementation can either be a dynamic stochastic move acceptance method, or adaptive stochastic

move acceptance method.

2.4 A Survey of Existing Methods

Local search metaheuristics are composed of two main components; a neighbourhood structure as

defined by the move operators, and a move acceptance method which is used to guide the search.

A survey of the move acceptance methods that have been used for solving various single-objective

COPs are discussed below including the targeted problems and the parameter configurations that

were used by the authors for solving each problem. Some of these move acceptance methods

were used within a hyper-heuristics that embeds multiple move acceptance methods in a single

execution and are denoted by the subscript M . This is the case for all multi-stage and genetic

programming-based hyper-heuristics. The review is restricted to those move acceptance methods

used as components of single point-based heuristic search methods, both those used for solving a

targeted problem, and those with a focus on solving multiple problems (cross-domain). Hyper-

heuristics were proposed as the solution method for solving the cross-domain search problem and

the state-of-the-art cross-domain search methods are hyper-heuristics. Hence, it would be interest-

ing to see if the move acceptance methods that are utilised within hyper-heuristics may provide

some clues/information as to which move acceptance strategy(ies) perform well, theoretically or in

practice, for solving the cross-domain search problem.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 20

Table 2.16 forms a succinct overview of the existing move acceptance methods from the literature

and classifies them based on the taxonomy given in Section 2.3. The abbreviations used for each

move acceptance method are summarised in Table 2.17.

2.4.1 All Moves (AM)

While in the literature, all moves [37] is used as an ‘acceptance’ strategy, it in fact does nothing

to restrict any move from being accepted and is not really a move acceptance method. The review

of AM is therefore only included for completeness. AM accepts all moves, unconditional of the

candidate solutions objective value, as shown in Equation 2.1. AM is parameter-free meaning that

it does not contain any parameters; hence, the same configuration is, by definition, used for solving

all problems. AM has been used for solving a variety of COPs, as well as for solving the cross-

domain search problem, such as those shown in Table 2.1. In fact, other move acceptance methods

classified as non-stochastic threshold and stochastic can be transformed into AM by manipulating

their parameter settings to extreme values. For example, Threshold Accepting 2.4.6 could be used

with a very high setting for tau, Great Deluge 2.4.12 can have a very high target value (though some

moves at the beginning may be restricted if not set high enough), and Simulated Annealing 2.4.19

given sufficiently high start and end temperature settings.)

si+1 ← s
′

i (2.1)

While AM is primitive and perhaps näıve, it should be noted that the papers accepting all

moves do so with the intent of observing the effects of a proposed heuristic selection strategy under

a selection hyper-heuristic framework, hence its apparent popularity.

2.4.2 Only Improving (OI)

Only Improving acceptance [37], sometimes referred to as Improving Only, is a static non-stochastic

basic move acceptance method which only accepts moves of improving quality, as shown in Equa-

tion 2.2.

si+1 ←

 s
′

i f(s
′

i) < f(si)

si otherwise
(2.2)

OI is parameter-free meaning that it does not contain any parameters; hence, the same config-

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 21

Table 2.1: COPs solved using All Moves (AM) move acceptance.

Problem Domain (COP) Source(s)

Benchmark function optimisation [53]
[26]
[54]

Capacitated Vehicle Routing Problem [55]
Channel assignment problem [56]
Component Placement Sequencing For [57]
Multi Head Placement Machine
Eternity II Puzzle [58]
Exam Timetabling [53]

[55]
Generalised Assignment Problem [59]
High-school timetabling [60]
Maintenance scheduling [61]
Nurse rostering [62]

[63]
P-Median Problem [64]
Permutation flow shop [65]
Personnel scheduling [63]
Project presentation scheduling [63]

[66]
[67]

Sales Summit Scheduling [68]
[37]
[63]

Shelf Space Allocation [69]
Short-term electrical power [70]
generation scheduling problem
Sports Scheduling [71]
University Course Timetabling [62]

Cross Domain Search (CHeSC 2011 domains) [72]
[39]
[73]
[74]
[75]
[76]M

[41]M

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 22

uration is, by definition, used for solving all problems. OI has been used for solving a variety of

COPs, as well as for solving the cross-domain search problem, such as those shown in Table 2.2.

Table 2.2: COPs solved using Only Improving (OI) move acceptance.

Problem Domain (COP) Source(s)

Benchmark function optimisation [53]
[26]
[54]

Capacitated Vehicle Routing Problem [55]
Channel assignment problem [56]
Component Placement Sequencing For [57]
Multi Head Placement Machine
Exam Timetabling [53]

[77]
[55]

Generalised assignment problem [59]
High-school timetabling [60]
Maximum satisfiability [78]
Multidimensional 0-1 knapsack problem [79]

[80]
Nurse rostering problem [63]

[81]
One-dimensional bin packing [78]
P-Median Problem [64]
Patient admission scheduling problem [81]
Permutation flow shop [65]

[78]
Personnel scheduling [63]

[78]
Project presentation scheduling [67]

[63]
[66]

Sales Summit Scheduling [37]
[68]
[63]

Shelf Space Allocation [69]
Short-term electrical power [70]
generation scheduling problem
Unit Commitment Problem [82]
University course timetabling [77]

Cross Domain Search (CHeSC 2011 domains) [41]M

2.4.3 Improving or Equals (IE)

Improving or equals acceptance is a static non-stochastic basic move acceptance method which

accepts moves of non-worsening quality only, as shown in Equation 2.3.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 23

si+1 ←

 s
′

i f(s
′

i) ≤ f(si)

si otherwise
(2.3)

IE is parameter-free; hence, the same configuration is, by definition, used for solving all prob-

lems. IE has been used for solving a variety of COPs, as well as for solving the cross-domain search

problem, such as those shown in Table 2.3.

Table 2.3: COPs solved using Improving or Equals (IE) move acceptance.

Problem Domain (COP) Source(s)

Benchmark function optimisation [53]
[26]
[83]1

Eternity II Puzzle [58]
Exam Timetabling [53]

[28]
[84]

Home care scheduling [85]
Nurse rostering problem [81]
Patient admission scheduling problem [81]
Personnel routing and rostering [86]
Ready-mixed concrete delivery problem [87]
Short-term electrical power [70]
generation scheduling problem
Sports Scheduling [71]

Cross Domain Search (CHeSC 2011 domains) [88]
[73]
[74]
[40]

2.4.4 Näıve Acceptance (NA)

Näıve Acceptance [89] is a static stochastic move acceptance method which accepts all non-worsening

moves, and worse moves based on a fixed probability which is by definition set to 50%, as shown

in Equation 2.4.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ random ∈ [0, 1] < 0.5

si otherwise
(2.4)

NA has been used for solving a variety of COPs, as well as for solving the cross-domain search

problem, such as those shown in Table 2.4. Although any percentage could be used for näıvely

1IE acceptance was used alongside a greedy solution acceptance strategy; hence, is in a strict sense, it is greedy
with IE acceptance.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 24

accepting worse moves, this was set as 50% (as shown as 0.5 in Equation 2.4) by all [89, 90, 55, 74,

40, 41].

Table 2.4: COPs solved using Näıve Acceptance (NA) move acceptance.

Problem Domain (COP) Source(s) P

Capacitated Vehicle Routing Problem [55] 0.5
Exam Timetabling [55] 0.5
Maximum satisfiability [90] 0.5
One-dimensional Bin Packing [89] 0.5

[90] 0.5
Permutation Flow Shop [89] 0.5

[90] 0.5
Personnel Scheduling [89] 0.5

[90] 0.5

Cross Domain Search (CHeSC 2011 domains) [74] 0.5
[40] 0.5
[41]M 0.5

2.4.5 Adaptive Acceptance (AA)

Adaptive Acceptance [89] is an adaptive stochastic move acceptance method which accepts all non-

worsening moves, and accepts worse moves based on a probability, acceptanceRate, which is initially

set to 0%, but increased (decreased) by a fixed amount for every period of time that has elapsed

without improving the solution (without generating worse moves). The mechanism for accepting a

move using AA is shown in Equation 2.5 where acceptanceRate is controlled adaptively based on

“whether the search is thought to be progressing or stuck in a local optimum” [89] and as discussed

below. This is different to Simulated Annealing, see Section 2.4.19, where the ’acceptance rate is

determined based on the move delta and system temperature as controlled by an internal cooling

schedule.’. AA has been used for solving a variety of COPs such as those shown in Table 2.5.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) ∨ random ∈ [0, 1] < acceptanceRate

si otherwise
(2.5)

Table 2.5: COPs solved using Adaptive Acceptance (AA) move acceptance.

Problem Domain (COP) Source(s)

Capacitated Vehicle Routing Problem [55]
Exam Timetabling [55]
One-dimensional Bin Packing [89]
Permutation Flow Shop [89]
Personnel Scheduling [89]

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 25

The increment was set to 5% with a time period of 0.1 seconds in [89]. The same 5% incre-

ment was used in [55] alongside an unspecified number of consecutive non-improving iterations for

increasing acceptanceRate, and reducing acceptanceRate whenever a solution is accepted.

2.4.6 Threshold Accepting (TA)

Threshold Accepting [91] is originally a dynamic non-stochastic threshold move acceptance method

which accepts all moves whose solution value is not worse than a threshold value which is calculated

as the sum of the current solution, and a non-negative offset, T , as shown in Equation 2.6.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) + T

si otherwise
(2.6)

A single parameter, T , controls the acceptance threshold. Two definitions of TA exist in the

literature which spans the static and dynamic “nature of how the algorithmic parameters are set”

classifications, as used in [55] and [91] respectively. Both definitions have a non-stochastic threshold

“nature of the accept/reject decision”. Note that while [91] proposed TA, they do not use it as a

component of a hyper-heuristic framework but is built around the problem instance(s) being solved,

and therefore their method for updating T cannot be reasonably translated as a move acceptance

component for cross-domain search. TA was used in [55] as the move acceptance method of a

hyper-heuristic for solving both the Capacitated vehicle routing and Exam timetabling problems

where T was fixed as 0.03.

2.4.7 Backtracking Adaptive Threshold Accepting (BATA)

Backtracking Adaptive Threshold Accepting [5] is an adaptive non-stochastic threshold move ac-

ceptance method which accepts all non-worsening moves, and moves whose objective value does

not exceed a threshold value equal to the sum of the current solution, and a parameter τ such

that τ > 0. τ is reduced such that it is decreased after a fixed number of iterations iters, but is

increased (“backtracked”) to a value close to the previous threshold value if no solution is accepted

during the previous iters iterations, as shown in Equation 2.7.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) + τ

si otherwise
(2.7)

BATA was used in [5] under a random choice hyper-heuristic framework for solving the Het-

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 26

erogeneous fixed fleet vehicle routing problem, and they found that BATA performs at its best

if the backtracked threshold setting is still less than the previous setting. The initial value of τ

was empirically determined for each problem instance in the range [11, 76] such that the settings

were different for each instance; however, the setting for Tb remained at the same 0.98 value for all

problem instances.

2.4.8 Step Counting Hill Climbing (SCHC)

Step Counting Hill Climbing [92] is an adaptive basic move acceptance method which is a novel

extension of one of the most basic move acceptance methods - IE (see Section 2.4.3). In SCHC,

non-worsening moves are always accepted, and worse moves are accepted if the objective value of

the candidate solution is (strictly) less than a threshold boundary equal to the objective value of

the current steps initial solution, where each step lasts for a number of iterations, as defined by

the counting strategy. The acceptance mechanism of SCHC is shown in Equation 2.8 where B is

the objective value of the initial solution of the current stage whose length is determined based on

various strategies as discussed below.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ f(si) < B

si otherwise
(2.8)

SCHC can use different counting strategies to adaptively determine the length of each “step”.

[92] investigated three of such strategies called as; SCHC-acp, SCHC-imp, and SCHC-all. These

strategies count the number of; accepted moves, improving moves, and all moves respectively. Once

the counting strategy exceeds a target value, Lc, the acceptance threshold, B, is updated as the

objective value of the current solution and the counter is reset.

SCHC was used in [92] under a random choice hyper-heuristic framework for solving the Univer-

sity course timetabling problem and set Lc = 200 for solving all problem instances. Furthermore,

they investigated the effect of varying this parameter on the performance of SCHC with Lc being

chosen randomly from the range [0, 65000].

2.4.9 Iteration Limited Threshold Accepting (ILTA)

Iteration Limited Threshold Accepting [93] is an adaptive non-stochastic threshold move acceptance

method which accepts all non-worsening moves, and accepts worsening moves, after a consecutive

number of worse candidate moves are generated, whose objective value does not exceed a threshold

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 27

value calculated as a factor of the objective value of the best solution found so far. The accep-

tance strategy for ILTA is shown in Equation 2.9, where ε is fixed to a pre-defined value that

is used to calculate a threshold value based on the objective value of the best solution found so

far. w iterations is a counter which is updated at each iteration to track the current number of

consecutively generated worse moves, and k is a fixed value which is defined to control when the

threshold part of the acceptance strategy is used by comparison with w iterations. That is, when

the number of consecutive number of worse generated moves (w iterations) exceeds an upper limit

(k), the threshold based acceptance strategy is enabled.

Note that the original acceptance strategy only worked for problem domains with objective

functions that returned positive values; hence, the version displayed here has been corrected for use

in all objective value ranges.

si+1 ←

s
′

i f(s
′

i) ≤ f(si)∨

w iterations ≥ k ∧ f(s
′

i) ≤ f(sbest) + |f(sbest)× ε|

si otherwise

(2.9)

ILTA was used in [93], [85], and [58] as the move acceptance method of a hyper-heuristic for

solving the Travelling tournament problem, Home care scheduling problem, and Eternity II puzzle

respectively. [93] set ε depending on the instance being solved and associated time limit with the

smallest setting being 0.01 and the largest setting being 0.20. Larger settings were used for those

instances with shorter computational budgets whereas smaller settings were used for those instances

with longer computational budgets. Despite some instances having the same computational budget,

their settings for ε were not always the same. k was fixed as 100 for all problem instances. [85]

set ε as both 0.003 and 0.004 during separate evaluations of all instances, and fixed k = 100 for all

problem instances. [58] used an ε value of 0.4 for solving the Eternity II puzzle, and with k fixed

to 500 iterations for all problem instances. This is despite the instances varying in size, and the

larger instances having a larger (time-based) computational budget.

2.4.10 Adaptive Iteration Limited Threshold Accepting (AILTA)

Adaptive Iteration Limited Threshold Accepting [85] is an adaptive non-stochastic threshold move

acceptance method which accepts all non-worsening moves, and accepts worsening moves whose

objective value does not exceed a threshold value calculated as an adaptively updated factor of the

cost of the best solution found so far, as shown in Equation 2.10, where ε is chosen from an ordered

list of pre-defined real values such that the value of ε is increased over time as AILTA fails to improve

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 28

the best solution found. w iterations and k are both control parameters for enabling/disabling the

threshold part of the acceptance strategy and are the same as when used in ILTA (described above

in Section 2.4.9).

si+1 ←

s
′

i f(s
′

i) ≤ f(si)∨

w iterations ≥ k ∧ f(s
′

i) ≤ f(sbest) + |f(sbest)× ε|

si otherwise

(2.10)

AILTA was used in [85] as the move acceptance method of a hyper-heuristic for solving the

Home care scheduling problem where ε was incremented after a fixed 5000 consecutive moves where

the best solution is not improved, and they investigated using different sets of values for ε such that

either:

1. ε ∈ {1.003, 1.004, 1.005, 1.006, 1.007, 1.008, 1.009, 1.010}

2. ε ∈ {1.003, 1.004, 1.005, 1.006, 1.007}

3. ε ∈ {1.004, 1.005, 1.006, 1.007}

In all cases, the values of ε increase by 0.001 each time it is incremented. The performance of AILTA

with the different sets of parameter values varied depending on the instance of the HCSP that was

being solved. As instance sizes decreased, there was no clear correlation between the parameter

value sets and performance of AILTA. AILTA with ε ∈ {1.003, 1.004, 1.005, 1.006, 1.007, 1.008,

1.009, 1.010} performed the best on the two largest, and two smallest HCSP instances, whereas

ε ∈ {1.004, 1.005, 1.006, 1.007} allowed AILTA to perform better on the two intermediate sized

instances.

2.4.11 Record-to-record Travel (RRT)

Record-to-record Travel [19] is an adaptive non-stochastic threshold move acceptance method which

accepts all non-worsening moves, and accepts worse moves whose candidate solution’s objective

value is not worse than a threshold value equal to the cost of the best solution found so far f(sbest)

added to an offset parameter, known as the DEVIATION parameter, as shown in Equation 2.11.

si+1 ←

 s
′

i f(s
′

i) ≤ f(sbest) + DEVIATION where DEVIATION > 0

si otherwise
(2.11)

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 29

RRT has been used for solving a variety of COPs, as well as for solving the cross-domain search

problem, such as those shown in Table 2.6.

Table 2.6: COPs solved using Record-to-record Travel (RRT) move acceptance with the settings
used for DEVIATION.

Problem Domain (COP) Source(s) DEVIATION

Channel assignment problem [56] 2
High-school timetabling [60] 0.5

Cross Domain Search (CHeSC 2011 domains) [76]M 30 OR 30 + ‘decimal’ (adaptive)
[94] ε× f(sbest)

RRT was used as the move acceptance method of a hyper-heuristic for solving a single problem

in [56] and [60] where DEVIATION was fixed equal to 2 and 0.5 respectively. [76] and [94] used RRT

as the move acceptance method of a hyper-heuristic for solving the cross-domain search problem

(CHeSC domains) where [76]M used a hidden Markov model for finding and associating sequences

of heuristics with either RRT or AM move acceptance methods, and set DEVIATION proportional to

the objective function value such that if f(s
′

i) > 0, then DEVIATION = 30, otherwise, DEVIATION is

set such that “30 is added to the decimal part of the objective value” [76]. Moreover, the DEVIATION

setting is reduced by 2 upon successive periods (15 seconds) of non-improvement. [94] proposed a

stage-based variant of RRT where instead of calculating the acceptance threshold value from the

best solution found so far, the objective value of the best solution found during the current stage is

used according to DEVIATION = ε× f(sbest) where ε is calculated as
blog(f(sbest))c+ ci

f(sbest)
such that

ci is a circular list of values containing the objective values of a number of best solutions found.

2.4.12 Great Deluge (GD)

Great Deluge [19] is a dynamic non-stochastic threshold move acceptance method which accepts all

moves whose solution value is either not worse than that of the current solution, or not worse than

a threshold value, τi, which is linearly decreased over time from an initial value to a target value

as shown in Equation 2.12.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), τi)

si otherwise
(2.12)

The threshold value, τi, can be calculated such that is linearly decreased over time from an initial

threshold value, τ0, to a value equal to the lower bound, qualityLB. The time-based calculation is

given in Equation 2.13 whereas the iteration-based calculation is given in Equation 2.14 such that i

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 30

is the current iteration, and n is the maximum iterations as defined by the computational budget.

τi = qualityLB + (τ0 + qualityLB)×
(

1− Telapsed
Ttotal

)
(2.13)

τi = qualityLB + τ0 ×
(

1− i

n

)
(2.14)

In the literature, the initial threshold value is exclusively set to be equal to the objective value

of the current solution, τ0 = f(s0), however multiple strategies exist for determining the final

threshold value. Moreover, multiple control methods for updating the threshold value are present

in the literature, and these form distinct Great Deluge variants, Extended Great Deluge and Flex

Deluge, and these are covered in their respective sections 2.4.15 and 2.4.13.

There is also an adaptive non-stochastic threshold definition of GD, as used in [95] which consid-

ers the objective value of the candidate solution to update the threshold value at each step, and the

threshold value is decreased exponentially over time, rather than the traditional and more widely

used linear decrease rate explained previously. GD has been used for solving a variety of COPs, as

well as for solving the cross-domain search problem, such as those shown in Table 2.7.

Table 2.7: COPs solved using Great Deluge (GD) move acceptance with the parameter settings for
the initial threshold value τ0 and final threshold values qualityLB.

Problem Domain (COP) Source(s) τ0 qualityLB

Benchmark function optimisation [53] f(s0) Not stated
[26] f(s0) 0
[84] f(s0) Not stated

Capacitated Vehicle Routing Problem [55] f(s0) ‘estimated lower bound’
Channel assignment problem [96] f(s0) ‘best solution cost from literature’
Eternity II Puzzle [58] f(s0) Not stated
Exam timetabling [53] f(s0) Not stated

[97] f(s0) ‘lower bound of objective function’
[55] f(s0) ‘estimated lower bound’

Grid Scheduling [98] f(s0) Not stated
High-school timetabling [60] f(s0) Not stated
Nurse rostering problem [81] f(s0) 0
One-dimensional bin packing [89] f(s0) ‘expected final objective value’
Patient admission scheduling problem [81] f(s0) 0
Permutation flow shop [89] f(s0) ‘expected final objective value’
Personnel routing and rostering [86] f(s0) 0
Personnel scheduling [89] f(s0) Not stated
Ready-mixed concrete delivery problem [87] f(s0) 0
Short-term electrical power [70] f(s0) Not stated
generation scheduling problem
Sports scheduling [71] f(s0) Not stated
University course timetabling [92] f(s0) ‘varied randomly’

Cross Domain Search (CHeSC 2011 domains) [88] f(s0) Not stated

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 31

The target threshold value for Great Deluge, qualityLB, from papers solving problems from

a single domain set qualityLB as either zero [84, 87, 86], the objective value of the best known

solution from the literature [96], or the lower bound of the objective function [97]. [92] randomly

varied qualityLB as an investigation of a few move acceptance method’s performance for solving

the targeted problem. Those papers which solve more than one problem, but not as cross-domain

search set qualityLB as either the expected final objective value/estimated lower bound [89, 55],

or zero [81] for all domains. [88] applied GD for solving the cross-domain search problem but they

did not specify the parameter settings that were used. The parameter configurations were either

not stated, or said to be empirically determined, in [53, 98, 26, 71, 58, 60].

2.4.13 Flex Deluge (FD)

Flex Deluge [99] is a potential adaptive non-stochastic threshold move acceptance method that

accepts all non-worsening moves, and worse moves whose objective value is not worse than a

threshold value. FD is similar to Great Deluge (see Section 2.4.12), but where the acceptance

threshold value is adjusted between the current threshold value and the objective value of the

current solution using a coefficient kf such that 0 ≤ kf ≤ 1 as shown in Equation 2.15.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) ∧ f(s
′

i) ≥ τi ∨ f(s
′

i) ≤ f(si) + kf (τi − f(si)) ∧ f(s
′

i) ≤ τi

si otherwise
(2.15)

The mechanism for controlling τ is identical to that used in the original Great Deluge and is

therefore covered in Section 2.4.12. FD has been used in both [99] and [100] for solving the Exam

timetabling problem. The settings for τ0 and qualityLB, where stated, are all in line with the

settings that were used for the standard Great Deluge algorithm with both [99] and [100] using the

objective value of the initial solution (f(s0)) as the initial threshold value for all problem instances,

and [100] using a setting of zero for the target threshold value (qualityLB) for all problem instances.

No setting was given for the target threshold value in [99].

While FD was proposed in [99], no mechanism was given for how to control kf other than stating

that “By varying kf , it is possible to obtain an algorithm with characteristics of both the original

Great Deluge (kf = 1) and Greedy Hill-Climbing (kf = 0).”. It can only be presumed that the

addition of a coefficient parameter was meant to be adaptively controlled based on the search state

- hence FD was stated above to be potentially adaptive. In contrast, [100] fixed the coefficient value

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 32

to 0.5 for all problem instances constituting a dynamic non-stochastic threshold variant of FD.

2.4.14 Non-linear Great Deluge (NLGD)

Non-linear Great Deluge [1] is an adaptive stochastic move acceptance method which accepts all

non-worsening moves, and worse moves that do not exceed a threshold value which is generally

decreased at a non-linear rate as shown in Equation 2.16. While NLGD initially appears as an

adaptive non-stochastic threshold move acceptance method, it is actually classified as adaptive

stochastic due to the use of a random number generator which is used to determine the rate at

which the threshold, B, is reduced at each step.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), Bi)

si otherwise
(2.16)

The threshold value, B, is reduced non-linearly over time by multiplying the current setting with

a randomised value. In addition, NLGD contains a strategy to increase the value of B whenever the

search is thought to be about to converge. The iteration-based calculation is given below such that β

is set to the target threshold value, and min and max are lower and upper bounds which determine

the rate at which B decreases, and Bmin and Bmax determine upper and lower bounds for a random

value that is added on to B when the search is thought to be stuck. isLargeOrSmallInstance is

a problem specific variable which signals to NLGD whether the problem being solved is a small

instance or large instance, but not a medium sized instance. flow is a value which is used in an

attempt to detect whether the search state is stuck in a local optima such that B can be increased.

Bi+1 ←

Bi + random ∈ [Bmin, Bmax] Bi − f(s
′

i) < 1∧

(isLargeOrSmallInstance ∨ f(sbest) < flow)

Bi + 2 Bi − f(s
′

i) < 1∧

!isLargeOrSmallInstance ∧ f(sbest) ≥ flow)

Bi ×
(
e−δ(random∈[min,max])

)
+ β otherwise

NLGD has been used for solving timetabling problems such as those shown in Table 2.8.

All studies set the target threshold value, β, to 0 as the lower bound of the objective function.

[1] set the remaining parameters based on the size of the instance being solved as summarised in

Table 2.9. [101] set δ = 5 × 10−7 for all instances, whereas the settings for min and max were

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 33

Table 2.8: COPs solved using Non-linear Great Deluge (NLGD) move acceptance.

Problem Domain (COP) Source(s)

Exam Timetabling [100]
University Course Timetabling [1]

[101]

set according to the cost of the current solution such that min = 80, 000 and max = 90, 000 when

f(s) > 20, and min = 20, 000 and max = 30, 000 when f(s) ≤ 20. Bmin and Bmax were set to

0.85 and 1.5 respectively for small and medium sized instances, whereas large size instances use

the respective settings of 1 and 5. [41] set δ = 5 × 10−10, Bmin = 100, 000, and Bmax = 300, 000;

however, no settings are reported for the parameters min or max. In summary, all studies except

that in [41] re-configure NLGD’s parameters based on the size of the instance being solved and

would suggest that NLGD is especially sensitive to its parameter settings.

Table 2.9: Parameter settings used for NLGD in [1] based on the size of the instance being solved.

Instance Size
Parameter Small Medium Large
δ 5× 10−10 5× 10−8 5× 10−9

min 10, 000 100, 000 100, 000
max 20, 000 300, 000 300, 000
Bmin 2 1 1
Bmax 5 4 3

2.4.15 Extended Great Deluge (EGD)

Extended Great Deluge [102] is an adaptive non-stochastic threshold move acceptance method which

is similar to the standard GD, accepting all non-worsening moves and worse moves that are not

worse than a threshold value, τi, but with the inclusion of a “reheat” mechanism for the threshold

value and subsequent decay rate which is activated after a period of non-improvement, as shown

in Equation 2.17.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), τi)

si otherwise
(2.17)

In addition to the standard GD, EGD contains multiple additional parameters which dictates

how τi is controlled throughout the search.

• A decay rate determines what percentage of the computation budget should be used for

reducing the initial threshold value to the target threshold value.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 34

• A wait for non-improvement parameter decides what percentage of the computational budget

should elapse without improving the solution before τi should be “reheated”.

• A post-reheat boundary decides the setting of τi after the reheat has occurred.

• A post-reheat decay rate decides what percentage of the remaining computational budget

should elapse to reduce τi from its reheated value to the target threshold value. Dashes

denote a lack of information in the literature.

EGD has been used for solving timetabling problems such as those shown in Table 2.10.

Table 2.10: COPs solved using Extended Great Deluge (EGD) move acceptance. τ0 and decay rate
were set to f(s0) and 50% of the remaining computational budget respectively for all domains.
The settings for wait for non-improvement (wni), post-reheat decay rate (prdr), and post-reheat
boundary (prb) are specified below where CB is short for computational budget.

Problem Domain (COP) Source(s) wni prdr prb

Exam Timetabling [103] 25% total CB 50% remaining CB f(si)
[100] 25% total CB 50% remaining CB f(si)

University course timetabling [104] - 25% remaining CB -

τ0 was set equal to the cost of the initial solution, the decay rate and post-reheat decay rate

as 50% of the remaining computational budget, the wait for non-improvement to 25% of the total

computational budget, and the post-reheat boundary to be equal to the cost of the current solution

at that point of the search in [103] and [100]. τ0 was also set to be equal to the cost of the initial

solution, and the decay rate to 50% of the total computational budget in [104]. The post-reheat

decay rate is however set to be equal to 25% of the remaining computational budget. The settings

for “wait for non-improvement” was not stated.

2.4.16 Linear Monte Carlo (LMC)

Linear Monte Carlo [57] is a static stochastic move acceptance method which accepts non-worsening

moves, and randomly accepts worse moves such that a given move is accepted if a random num-

ber generated between 0 and 100 does not exceed a value equal to the change in objective value

subtracted from a fixed setting M , M −
(
f(s

′
)− f(s)

)
.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ random ∈ [0, 100] < M − (f(s
′

i)− f(si))

si otherwise
(2.18)

LMC was used in [57] as the move acceptance method of a hyper-heuristic for solving the

Component placement sequencing for multi head placement machine problem where they fixed the

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 35

parameter setting of M to be equal to 5 for solving all problem instances, and was chosen based

on what obtained the best result during preliminary testing.

2.4.17 Exponential Monte Carlo (EMC)

Exponential Monte Carlo [57] is a static stochastic move acceptance method which is the same as

the Metropolis algorithm [105]. EMC is different from Simulated Annealing (SA) in that there is

no temperature parameter (T) to reduce the probability that worse moves are accepted over time;

hence, EMC is a static variant of the better known SA move acceptance method. EMC also has

an adaptive stochastic definition as proposed in [73] where the inclusion of a re-scaling parameter,

shown as an optional parameter k in Equation 2.19, where as k = 1/T × µimpr where µimpr is

decreased at each improving iteration according to there is no tendency to decrease this over time,

hence it is not qualified as an adaptive variant of SA. That is, for the static versions of EMC, k = 1.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ random ∈ [0, 1] < e−(f(s
′
i)−f(si))k

si otherwise
(2.19)

Some studies report to use “Metropolis Acceptance”, but it is identical to EMC; hence, they

are merged in this survey under EMC as this name was the first occurrence for its usage as a move

acceptance method of a hyper-heuristic. EMC has been used for solving a variety of COPs, as well

as for solving the cross-domain search problem, such as those shown in Table 2.11.

Table 2.11: COPs solved using Exponential Monte Carlo (EMC) move acceptance.

Problem Domain (COP) Source(s) k

Capacitated Vehicle Routing Problem [55] 1
Component Placement Sequencing For [57] 1
Multi Head Placement Machine
Exam Timetabling [55] 1
One-dimensional bin packing [106] 1
Personnel scheduling [106] 1

Cross Domain Search (CHeSC 2011 domains) [73] 1
T×µimpr

[74] 1
T×µimpr

[41]M Not stated

EMC was originally used in [57] for solving the component placement sequencing for multi-head

placement machine problem where they did not use any scaling factor, i.e. k = 1. Further studies

were performed [107, 106] where EMC was used as the move acceptance method of a hyper-heuristic

for solving two different problems. Both approaches did not utilise a scaling factor. EMC has since

been used for solving the cross-domain search problem where [73] proposed the use of a scaling

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 36

parameter (µimpr) which equates to the moving mean average improvement of previous moves.

This scaling parameter is used to re-scale δ across the different domains such that k = 1
T×µimpr .

This same approach is used in the subsequent studies using EMC for solving the cross-domain

search problem including [74] and [41]. The effects of using different settings for T was performed

in [73] where T ∈ {10−7, 10−6, ..., 107}; however, they did not report the best setting as used in

their final algorithm. T was set and fixed to 0.5 for all problem domains in [74] and [41]. In

conclusion, while the standard static stochastic definition of EMC is used for solving one or two

problems, in the literature the adaptive stochastic variant is used by all those approaches tackling

the cross-domain search problem.

2.4.18 Exponential Monte Carlo with Counter (EMCQ)

Exponential Monte Carlo with Counter [57] is an adaptive stochastic move acceptance method

which accepts all non-worsening moves, and worse moves probabilistically such that the larger the

objective value change is the less likely it is to be accepted, as shown in Equation 2.20, where δ

is the change in solution quality (f(s
′
) − f(s)), t is the elapsed computational time, and Q is the

“counter” parameter which increases as the number of consecutive non-improving moves increases.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ random ∈ [0, 1] < e−
δt
Q

si otherwise
(2.20)

EMCQ is an extension of EMC such that the probability that a given worse move is accepted

in EMCQ increases as the number of consecutive non-improving moves increases. EMCQ has been

used for solving a variety of COPs such as those shown in Table 2.12.

Table 2.12: COPs solved using Exponential Monte Carlo with Counter (EMCQ) move acceptance.

Problem Domain (COP) Source(s) t

Benchmark function optimisation [26] inverse of the expected range
of maximum fitness change

Component Placement Sequencing For [57] computation time
Multi Head Placement Machine
Exam timetabling [108] elapsed time in minutes

All papers from the literature that use EMCQ as the move acceptance component of a hyper-

heuristic are applied for solving a single problem. Generally, EMCQ can be seen as a parameter-free

move acceptance method; however, the elapsed computational time (t) can be specified in different

ways. Both [57] and [108] use EMCQ with t representing the elapsed computation time in minutes.

The configuration for t used in [26] is equal to the inverse of the expected range of maximum fitness

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 37

change. Rather than counting improving moves, Q in [26] is equal to the remaining number of

iterations.

2.4.19 Simulated Annealing (SA)

Simulated Annealing [18] is a dynamic stochastic move acceptance method which accepts all non-

worsening moves, and worse moves based on a probability that decreases both in time as the search

progresses, as controlled by the temperature parameter (T), and as the move delta increases (−δ),

such that δ = f(s
′

i)− f(si), as shown in Equation 2.21. While SA is the oldest example of a move

acceptance method (or as referred to in the literature as a metaheuristic), it can be seen as an

extension of EMC (see Section 2.4.17) where the scaling factor k as 1
T is increased (T is decreased)

over the duration of the search.

si+1 ←

 s′i f (s′i) ≤ f (si) ∨ random ∈ [0, 1] < e−δ/T

si otherwise
(2.21)

There are multiple cooling schedules for reducing T as used in the literature such as the geometric

cooling schedule as used in [63] where T is reduced at each step by multiplying it with a fixed value,

α, where 0 < α < 1, Lundy and Mees’s cooling schedule as used in [109] where the temperature

is reduced as shown in Equation (2.22) where 0 < β < 1, and a linear descent cooling schedule as

used in [110] where the temperature is linearly reduced from an initial temperature at the start of

the search, to a final temperature which is to be reached at the end of the search.

Ti+1 =
Ti

1 + βTi
(2.22)

An adaptive stochastic definition of SA also exists where a scaling parameterised version of the

linear descent cooling schedule is used, and the initial temperature is reduced in time proportional

to the cost of the best solution found so far [111].

SA has been used for solving a variety of COPs, as well as for solving the cross-domain search

problem, such as those shown in Table 2.13.

In this review of the parameter settings used for SA, the studies are grouped based on their

cooling schedules in order of; geometric cooling, Lundy and Mees’s cooling, and linear descent

cooling, with cross-domain configurations being discussed towards the end of the review. Those

studies which lack any explanation are omitted for conciseness.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 38

Table 2.13: COPs solved using Simulated Annealing (SA) move acceptance.

Problem Domain (COP) Source(s)

Capacitated vehicle routing problem [55]
Eternity II puzzle [58]
Exam timetabling [108]

[84]
[55]

High-school Timetabling [112]
[60]

Multidimensional 0-1 knapsack problem [79]
[80]

Nurse rostering problem [110]
[81]

Patient admission scheduling problem [81]
Personnel routing and rostering [86]
Personnel scheduling [63]
Ready-mixed concrete delivery problem [87]
Sales summit scheduling [63]
Shelf space allocation [69]

[109]
Sports Scheduling [71]
University Course Timetabling [111]

[92]

Cross Domain Search (CHeSC 2011 domains) [111]
[112]
[88]
[74]
[41]M

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 39

Geometric Cooling The geometric cooling schedule was used in [63, 55, 92] where both [63] and

[55] set α equal to 0.85 and the initial temperature is set to half of the objective value of the initial

solution. [92] set the initial temperature such that 85% of worse moves are initially accepted and

vary the setting for α, comparing its “reliability” to other move acceptance methods.

Lundy and Mees’s Cooling Lundy and Mees’s Cooling was used in [69, 109] where; [69] set the

initial temperature to 30% of the objective value of the initial solution, and the final temperature

to 0.1. [109] set the initial temperature such that around 85% of worse moves are accepted, and

the final temperature such that only 1% of inferior moves are accepted. β was calculated in both

[69, 109] based on an estimated run time of each iteration such that the cooling schedule can be

used under a time contract algorithm. A detailed explanation and derivation of the equation can

be found in [69].

Linear Descent Cooling The linear cooling schedule was used in [108, 84, 112, 80, 60]. Except

where stated, a final temperature setting of 0 was used. The initial temperature was either set

as; the objective value of the initial solution [108], or the difference between the objective values

of an initially generated solution, and a solution obtained by solving an LP-relaxed version of the

targeted problem [80]. [111, 112, 60] sets and updates a scaling factor (∆F) to “a factor of the

cost of the best solution in hand”. This scaling parameterised version of the linear descent cooling

schedule is shown in Equation 2.23 where ∆F is the scaling factor, i is the current iteration/elapsed

time, Telapsed is the elapsed time budget, Ttotal is the total/maximum time budget, and T is the

maximum number of iterations/time limit. For this variant of the linear descent cooling schedule,

[111] sets ∆F as 0.01× f(sbesti), and [112, 60] sets ∆F depending on whether the solution in hand

violates any hard constraints to make the acceptance of infeasible solutions less likely such that

[112] uses settings of 0.1 and 0.0001 for ∆F when the solution in hand violates any hard constraint

or does not violate any hard constraints respectively, and [60] sets ∆F to 0.01 and 1.00 in the

respective scenarios. In contrast, a parameter-free approach was taken in [87, 86, 81, 84] with

T representing the remaining computational budget such that T is calculated as
Tremaining
Ttotal

and

T ∈ [0, 1]. A similar approach was used in [110] but they parameterised this mechanism such that

the initial temperature was set to 1.002 and reduced to 0.002.

p = e
−δ

∆F (1−T) where T =
Tremaining
Ttotal

(2.23)

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 40

Cross-domain Configurations SA based hyper-heuristics have been used for solving the cross-

domain search problem, as composed of the CHeSC 2011 competition domains. The configurations

of each usage of SA as applied to the cross-domain search problem all use the same scaling pa-

rameterised version of the linear descent cooling schedule, but with different settings/mechanisms

to determine the scaling factor. [111] and [112] set the scaling factor, ∆F , at each iteration i as

0.01× f(sbesti). [74] use a modified scaling factor (µimpr) which equates to twice the moving mean

average improvement of all previous improving moves, and [41] uses the same modified scaling fac-

tor but where µimpr equates to the moving mean average improvement of all previous improving

moves (not twice).

2.4.20 Simulated Annealing with Reheating (SARH)

Simulated Annealing with Reheating [113] is an adaptive stochastic move acceptance method which

accepts all non-worsening moves, and worse moves based on a probability that decreases both in

time as the search progresses, as controlled by the temperature parameter (T), and as the move

delta increases (−δ = −(f(s
′

i) − f(si))). The acceptance mechanism for SARH is the same as for

SA as shown in Equation 2.21 but T can be both decreased or increased depending on the state of

the search.

SARH is a variant of SA where the temperature setting is directly increased based on a reheating

mechanism. This is in contrast to other adaptive variants of SA such as Very-fast Simulated Re-

annealing (VFR) where the algorithmic parameters affecting the temperature setting are controlled

to allow the temperature to increase/decrease continually over time - VFR was designed for solving

“real-world nonlinear physical problems” [114], but has not been used as the move acceptance

method component of a hyper-heuristic before. SARH has been used for solving a variety of COPs

such as those shown in Table 2.14.

Table 2.14: COPs solved using Simulated Annealing with Reheating (SARH) move acceptance.

Problem Domain (COP) Source(s)

Exam timetabling [108]
Nurse rostering [115]
One-dimensional bin packing [116]

[115]
Shipper rationalisation problem [117]
Travelling tournament problem [118]
University course timetabling [115]

The mechanisms for when to re-heat and how to re-heat often vary from one study to another.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 41

[118] used SARH under a random choice hyper-heuristic framework for solving the Travelling tour-

nament problem where the geometric cooling schedule was used and the temperature re-heated to

twice the value of the temperature setting that was in use at the time of the best solution being

found after a consecutive number of moves where the best solution was not improved. [117] use

Lundy and Mees’s cooling for solving the Shipper rationalisation problem but employ a strategy

where the temperature is reduced upon accepting a move, but increase the temperature if the move

is rejected. [116] and [108] use the same approach as [115] as discussed below. [115] used SARH

under a hyper-heuristic framework for solving three different problems where they take a different

approach. They use two temperature control strategies; an annealing phase is used to reduce the

temperature as usual according to Lundy and Mees’s cooling, and a reheating phase which increases

the temperature at each step. This reheating phase is activated after the ratio of accepted moves

falls below a pre-defined threshold where the temperature setting is set to that used when the

improvement was made, and remains active until a further improvement can be made.

2.4.21 Late Acceptance (LA)

Late Acceptance [28] is an adaptive non-stochastic basic move acceptance method which accepts

all non-worsening moves, and worse moves whose candidate solution’s objective value is not worse

than the solution that was current L iterations previous (si−L), as shown in Equation 2.24.

si+1 ←

 s
′

i f(s
′

i) ≤ max (f(si), f(si−L))

si otherwise
(2.24)

LA has been used for solving a variety of COPs, as well as for solving the cross-domain search

problem, such as those shown in Table 2.15.

Table 2.15: COPs solved using Late Acceptance (LA) move acceptance.

Problem Domain (COP) Source(s) L

Exam Timetabling [28] L ∈ [100, 120000]
[119] 500
[84] 500 or 10000

High-school timetabling [60] 500
Multidimensional 0-1 knapsack problem [79] 500

[80] 500
Personnel routing and rostering [86] 10
Ready-mixed concrete delivery problem [87] 500
University course timetabling [92] L varied randomly to investigate effects

Cross Domain Search (CHeSC 2011 domains) [88] Not stated

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 42

LA has been used as the move acceptance component of a hyper-heuristic for solving either a

single problem, or for solving the cross-domain search problem. A list length of L = 500 was used

in [28, 119, 84] for solving the Toronto benchmark instances for Exam timetabling. [28] used an

additional approach, again for solving the Toronto benchmark instances, using different settings

of L for each instance with the shortest list length being 100, and the longest list length being

120000, such that the settings are empirically determined to produce an approximate run-time of

10 minutes. [84] additionally applied LA for solving the KAHO benchmark instances where L

was fixed as 10000. A list length of 500 was also used in [79] and [80] for solving the MKP, and

also in [87] for solving the Ready-mixed concrete delivery problem and [60] for solving High-school

timetabling problems. A shorter list length of 10 was used in [86] for solving the Personnel rostering

and routing problem. [92] varied L in separate trials to study the reliability of LAHC compared

to their newly proposed SCHC move acceptance method. The cross-domain search problem was

tackled in [88] where they compared their proposed approach to other hyper-heuristics, including

one using LA, however the list length setting was not stated. To summarise, a list length of 500 is

most often used for LA irrespective of the problem being solved; however, various studies, such as

[28] and [86], found it beneficial to use different settings for L.

2.4.22 Late Acceptance with Initial Threshold Accepting (LAIT)

Late Acceptance with Initial Threshold Accepting [74] is an adaptive non-stochastic threshold move

acceptance method which is identical to Late Acceptance but with the inclusion of an initial period

where worse moves whose solution’s objective value are not worse than the initial solution (s0) are

accepted for the first Twait period of time of the search as shown in Equation 2.25. LAIT was

called as “Accept Late” in [74], however its synonymy with Late Acceptance with the inclusion of

an initial threshold accepting strategy, warrants this proposed change in identification - LAIT.

si+1 ←

 s
′

i Telapsed ≤ Twait ∧ f(s
′

i) ≤ f(s0) ∨ f(s
′

i) ≤ max (f(si), f(si−L))

si otherwise
(2.25)

LAIT was used in [74] as the move acceptance method of a hyper-heuristic for solving the cross

domain search problem (CHeSC 2011 domains) where they set the list length (L) to be equal to

10, 000 for solving the problems from all six domains.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 43

2.4.23 n-Top List (n-TL)

n-Top List [74] is an adaptive basic move acceptance method which accepts all moves that are not

worse than the nth best solution found so far. Here, n is a fixed parameter which determines the

number of best solution values to keep track of, and best solutions is an array/list which holds the

n best solution costs found so far throughout the search.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), f(best solutions[n]))

si otherwise
(2.26)

[74] used the n-TL move acceptance method under a hyper-heuristic framework for solving

the cross-domain search problem (CHeSC 2011 domains) composed of six problem domains; One-

dimensional bin packing, Permutation flow shop, Personnel scheduling, Maximum satisfiability,

Travelling salesman problem, and Vehicle routing with time windows. In their paper, they used a

setting of n equal to 20 for solving all problems and their instances.

2.4.24 n-Best List (n-BL)

n-Best List [74] is an adaptive basic move acceptance method which accepts all moves that are

not worse than the nth best solution found so far where different solutions of equal quality are not

included in the list. That is, n-BL is different to n-TL (see Section 2.4.23) such that solutions of

equal quality to the best solution do not displace a record in the current list. Objective values of

solutions are only added to the list if they improve over the current best. As with n-TL, n is a

fixed parameter which determines the number of best solution values to keep track of, but in this

case the best solution values are unique. best solutions is an array/list which holds the n unique

best solution costs found so far throughout the search.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), f(unique valued best solutions[n]))

si otherwise
(2.27)

[74] used the n-BL move acceptance method under a hyper-heuristic framework for solving

the cross-domain search problem (CHeSC 2011 domains) composed of six problem domains; One-

dimensional bin packing, Permutation flow shop, Personnel scheduling, Maximum satisfiability,

Travelling salesman problem, and Vehicle routing with time windows. In their paper, they used a

setting of n equal to 10 for solving all problems and their instances.

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 44

2.4.25 Adaptive Iteration Limited List-based Threshold Accepting with

a Fixed Limit (AILLA-F)

Adaptive Iteration Limited List-based Threshold Accepting with a Fixed Limit [87] is an adap-

tive non-stochastic basic move acceptance method. AILLA-F accepts all non-worsening moves. A

counter for the number of continuously generated worse solutions (w iterations) is used to en-

able/disable a threshold accepting-based acceptance strategy based on a fixed parameter k which

decides the maximum allowed w iterations before the threshold accepting-based acceptance strat-

egy is enabled. Once w iterations falls below this boundary, the threshold accepting-based accep-

tance strategy is disabled. The threshold accepting-based acceptance strategy maintains a list of

n best solutions found where n is a parameter value which is fixed. The list only accepts a new

best solution value if the previously found best solution is improved; hence, it is not necessarily the

n absolute best solutions found and depends on the order in which they are visited as to whether

they are added or not. A control strategy determines which value, N th
best, in this list is used for the

threshold value. After a number of iterations where the best solution found is not improved (K),

which is a parameter that is fixed, N th
best is incremented such that the threshold value being used

is increased to allow more worse moves to be accepted. When the best solution found is improved,

this control strategy is reset such that N th
best is 1stbest found (i.e. the solution just found).

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) ∨
(
f(s

′

i) ≤ f
(
sNthbest

)
∧ w iterations ≥ k

)
si otherwise

(2.28)

AILLA-F was used in [87] as the move acceptance method of a hyper-heuristic for solving the

Ready-mixed concrete delivery problem and they fixed the parameter settings of AILLA-F to be

the same for all problem instances where k = 5,K = 125, n = 10.

2.4.26 Adaptive Iteration Limited List-based Threshold Accepting (AILLA)

Adaptive Iteration Limited List-based Threshold Accepting [120] is an adaptive non-stochastic basic

move acceptance method which expands upon AILLA-F from Section 2.4.25 by introducing a re-

initialisation strategy, and two control mechanisms for controlling the iteration limit, k, and best

solution record length, N , respectively. The re-initialisation strategy is enabled for the first 50% of

the computational budget and is activated when n == N . The iteration limit, k, is controlled as

shown in Equation 2.29 where i is the number of iterations currently performed, and cw is a ratio

between the number of elapsed iterations and the current setting for k such that cw = bi/kc, and

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 45

tf is the amount of time remaining scaled between 0 (end) and 1 (start).

k =

 ((N − 1)× k + i)/N if cw == 0

((N − 1)× k +
∑cw
x=0 k × 0.5x × tf)/N otherwise

(2.29)

The list length N is reduced over time according to Equation 2.30 where N0 is the initial list length,

Nfinal is the target final list length, and tf is the amount of time remaining scaled between 0 (end)

and 1 (start).

N = Nfinal + (N0 −Nfinal + 1)× tf3 (2.30)

The fundamental acceptance strategy of AILLA is shown in Equation 2.31.

si+1 ←

sre-init n == N

s
′

i f(s
′

i) ≤ f(si) ∨
(
f(s

′

i) ≤ f(snthbest) ∧ w iterations ≥ k
)

si otherwise

(2.31)

AILLA move acceptance method was used in [88] under a hyper-heuristic framework for solving

the cross-domain search problem (CHeSC domains). They used a single parameter configuration

for all domains with N0 = 10 and Nfinal = 5, however the rest of the parameter settings were not

stated.

2.4.27 An overview of existing methods

There are, to date, 26 different move acceptance methods that have been used under a single-

point based hyper-heuristic framework. These move acceptance methods are evenly spread across

the different natures of the accept/reject decision from the taxonomy given in Section 2.3. The

traditional (older) methods, such as; Simulated Annealing (in 1983), Great Deluge (in 1993), and

Record to Record Travel (also in 1993) are classified as either stochastic or non-stochastic threshold.

More recently, non-stochastic basic methods have emerged with the earliest of such (excluding

those simplistic methods - IE, OI, and AM) being Late Acceptance in 2008, and Step Counting

Hill Climbing being introduced as recent as 2016. As can be seen by classifying the existing

methods, there are no move acceptance methods which utilise a dynamic algorithmic parameter

setting mechanism in combination with a non-stochastic basic acceptance strategy. It is in fact not

possible to design a move acceptance method which would be classified as dynamic non-stochastic

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 46

Table 2.16: Overview and classification of move acceptance methods as used in the scientific
literature. If a move acceptance method has been used with a different algorithmic parameter
setting nature compared to their original descriptions, references of the earliest occurring paper
using those alternative mechanisms are given in their respective column(s) and stylised in italic.
A key can be found in Table 2.17 mapping the abbreviations of each move acceptance method to
their given names.

Nature of Acceptance
Nature of the Parameter Setting

Static Dynamic Adaptive
AM [37] - LA [28]

Non-stochastic OI [37] AILLA-F [87]
Basic IE [53] AILLA [120]

n-BL [74]
n-TL [74]
SCHC [92]

TA [55] TA [91] RRT [19]
GD [19] GD [95]

FD [100] FD [99]
Non-stochastic BATA [5]

Threshold EGD [102]
ILTA [93]

AILTA [85]
EMC [57] SA [18] SA [114]
LMC [57] EMCQ [57]
NA [89] EMC [73])

Stochastic SARH [113]
NLGD [1]
AA [89]

LAIT [74]

basic since to change one of the static methods into dynamic, one would require the use of the current

iteration/time. Without using memory (adaptive), the only possibility is to switch between the

existing static non-stochastic basic move acceptance methods (for example AM to IE). However, this

would then constitute a multi-stage algorithm with two static non-stochastic basic move acceptance

methods - rather than a new move acceptance method itself. The majority of the approaches tend

towards those with adaptive algorithmic parameter setting mechanisms, with 17 (+4) out of the 26

move acceptance method either defined originally as adaptive, or (as denoted in parenthesis) having

an adaptive variant. This is in contrast to the 6 (+1) with a static algorithmic parameter setting

mechanism, and the 3 (+1) with a dynamic algorithmic parameter setting mechanism. This is

unsurprising since it is known that parameter control over parameter tuning is one key prerequisite

for improving the performance of evolutionary algorithms [51].

Some of the move acceptance methods from the literature employ strategies to adaptively de-

termine the number of iterations (or amount of time) that a particular setting should be used

for, or to activate a different acceptance mechanism. These strategies keep a count of some event

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 47

Table 2.17: Key of move acceptance method abbreviations

Abbreviation Name
AA Adaptive Acceptance
AILLA Adaptive Iteration Limited List-based Threshold Accepting
AILLA-F Adaptive Iteration Limited List-based Threshold Accepting

with a Fixed Limit
AILTA Adaptive Iteration Limited Threshold Accepting
AM All Moves
BATA Backtracking Adaptive Threshold Accepting
EGD Extended Great Deluge
EMC Exponential Monte Carlo
EMCQ Exponential Monte Carlo with Counter
FD Flex Deluge
GD Great Deluge
IE Improving or Equals
ILTA Iteration Limited Threshold Accepting
LA Late Acceptance
LAIT Late Acceptance with Initial Threshold Accepting
LMC Linear Monte Carlo
NA Näıve Acceptance
NLGD Non-linear Great Deluge
n-BL n-Best List
n-TL n-Top List
OI Only Improving (sometimes referred to as Improving Only)
RRT Record-to-record Travel (also stylised RTR)
SA Simulated Annealing
SARH Simulated Annealing with Reheating
SCHC Step Counting Hill Climbing
TA Threshold Accepting

for which when it exceeds a target value/limit, the settings of the move acceptance method are

updated. Examples of such strategies include counting the consecutive number of non-improving

moves (AILLA, AILLA-F, AILTA, ILTA), the number of accepted moves (SCHC), and the number

of improving moves (SCHC). Some move acceptance methods, such as EMCQ, embed these coun-

ters as parameters of the algorithm itself, where the consecutive number of non-improving moves

is used to directly influence the probability to accept worse moves.

Selection hyper-heuristics are made up of two key components which are invoked successively;

heuristic selection, and move acceptance. Despite the emergence of hyper-heuristics as methods

for solving the cross-domain search problem (being reusable and effectively applicable to multi-

ple domains), there are no move acceptance methods in the literature that have been developed

specifically for solving this problem - only to complement the heuristic selection process in selection

hyper-heuristics. The papers targeting the cross-domain search problem emphasise the design of

new heuristic selection techniques over the move acceptance method(s) that they are paired with.

This finding is interesting as it is suggested in [26] that the choice of move acceptance method in

CHAPTER 2. LOCAL SEARCH METAHEURISTICS AND CROSS-DOMAIN SEARCH 48

a selection hyper-heuristic, which commonly takes the form of a local search metaheuristic, has

more effect on the performance of hyper-heuristics compared to the embedded heuristic selection

method.

2.5 Summary

In this chapter, a taxonomy was provided for classifying move acceptance methods distinguishing

them based on two mechanisms; first, the nature of the accept/reject decision, and secondly the

nature of the control of the internal algorithmic parameter setting(s). A survey of move acceptance

methods was then conducted where a total of 26 distinct methods were identified. A classification of

these methods using the proposed taxonomy reveals that the majority of move acceptance methods

have been designed with an adaptive nature of the algorithmic parameter settings, and, to date,

no move acceptance method exists which has the classification of dynamic non-stochastic basic.

With an overwhelming number of move acceptance methods, and no extensive analysis of these

methods for cross-domain search, a study is needed to assess their performance as a component

of a cross-domain search method. In the following chapter, the methodologies and experimental

setup is explained for the subsequent studies where one move acceptance method is chosen from

each categorisation of the taxonomy and its cross-domain performance is evaluated under the local

search metaheuristic framework.

Chapter 3

Methodologies and Experimental

Setup

3.1 Introduction

In this chapter, the experimental framework and the methodologies that are used in the subsequent

studies to investigate the cross-domain performance of move acceptance methods under a local

search metaheuristic framework are defined. The experimental framework is firstly explained in

Section 3.2, and the problem domains, problem instances, and their associated move operators

are given in Section 3.3. The methods of analysis that are used to evaluate and compare the

move acceptance methods are given in Section 3.4, and the parameter tuning approaches and their

methodologies are described in Section 3.5. The move acceptance methods that are used in these

studies are detailed in Section 3.6, along with their parameter configurations, and this chapter is

summarised in Section 3.7.

3.2 Experimental Framework

The studies in this thesis evaluate and compare the cross-domain performance of move acceptance

methods. The move acceptance methods are evaluated under a single-point based perturbative local

search metaheuristic framework such that as many confounding factors are eliminated as possible

from the experimental design that can influence the cross-domain performance of the overall search

methods. That is, the move acceptance methods were chosen to be evaluated under a local search

49

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 50

metaheuristic framework because:

1. Local search metaheuristics operate at a high-level and hence do not require problem specific

knowledge to be able to solve them to a high quality.

2. Local search metaheuristics can aspire to the ultimate goal of cross-domain search methods;

that is, that they can be used to solve multiple COPs without the need for expert intervention.

3. Local search metaheuristics do not use any form of learning for selecting neighbourhood

operators (as present in a hyper-heuristic framework).

4. Local search metaheuristics being single-point based do not require the configuration of the

additional parameters that are present in population-based metaheuristics, such as population

size and replacement strategies.

5. Local search metaheuristics do not need to be concerned by tabu tenures present in Tabu

Search based methods, and the embedded move acceptance method will not be affected by

differing neighbourhood exploration strategies.

A local search metaheuristic as used in this thesis is of that as defined in Chapter 1, and as

outlined by Algorithm 1. The local search metaheuristic framework is made from the HyFlex Frame-

work Java API [20], which was used for the Cross-domain Heuristic Search Challenge (CHeSC) 2011

competition [22]. The HyFlex framework is designed such that the search is performed over the

search space of complete and feasible solutions. Where necessary, the low-level heuristic setting

intensity of mutation, which affects the number of times a heuristic perturbs a solution in a single

application, was set to perform a single perturbation of the solution. Some move operators were

modified such that the selected move operators are only applied a single time where their imple-

mentations did not allow for this using the intensity of mutation setting. That is, for each iteration

of the local search metaheuristic, a single perturbation is performed to the solution-in-hand before

employing the move acceptance strategy. The problem domains and their instances that are used

in this thesis are given in Section 3.3.

An illustration of the framework is shown in Figure 3.1. In keeping with the syntax used in the

definition of a local search metaheuristic defined in Chapter 1, a local search metaheuristic using

the framework operates as follows. A layer of abstraction called the domain barrier separates the

domain specific details from the high-level local search metaheuristic, allowing them to be used

to solve any COP without the need to modify the algorithm. This domain barrier allows a few

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 51

abstract details to pass through it, allowing the local search metaheuristic to communicate and

invoke methods on the problem domain. A minimal set of perturbative heuristics (hs) are provided

in each problem domain which can be applied to modify the solution in hand (s), producing a

candidate solution (s
′
). An objective function (f) is used to evaluate the quality of a solution from

the solution memory, and the solution memory stores three incumbent solutions; a current solution

(s), a candidate solution (s
′
), and the best solution (sbest). Finally, each problem domain contains

a set of problem instances and a single procedure to provide an initial solution (s0). During the

execution of a local search metaheuristic, the following steps are taken with their respective calls

across the domain barrier. Firstly, a solution is initialised by signalling to the problem domain to

initialise a solution (s ← s0). A heuristic is then selected uniformly at random (if there are more

than one perturbative heuristic), and the heuristic is “applied” to the solution in hand (s
′ ← h(s))

by signalling to the problem domain to apply the chosen heuristic. The move acceptance method

is then queried along with the objective values of the current and candidate solutions. If the move

acceptance method informs the local search metaheuristic to accept the candidate solution, then the

problem domain is told to accept this move by replacing the current solution with the candidate

solution (s ← s
′
). Depending on whether the computational budget has been exceeded or not,

the search will either terminate, returning the best solution found (returnsbest), or the search will

continue the iterative process of perturbing the solution-in-hand, and querying the move acceptance

method which solution should be carried forward to the next iteration.

The move acceptance method can easily be interchanged with any other move acceptance

method that can operate under a local search metaheuristic framework and it is this component

that is the focus of this work and that is replaced in the subsequent studies.

The performance and behaviours of the move acceptance methods are compared and contrasted

under the local search metaheuristic framework with the aim of observing both the per-domain and

cross-domain effectiveness of different move acceptance methods based on the taxonomy given in

Section 2.3. To achieve this, a number of methods of analysis are used as discussed in Section 3.4,

and different approaches to parameter tuning are utilised as discussed in Section 3.5. This seeks

to compare the effectiveness of two “more general” parameter tuning approaches than per-instance

tuning for solving various COPs.

The taxonomy proposed in Section 2.3 gives a total of 9 distinct classifications for move accep-

tance methods. However, to date, those from the literature fall into only 8 of these. To compare

the performance of the existing move acceptance methods for cross-domain search, a single move

acceptance method is chosen from each of these by choosing one whose move acceptance method

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 52

Domain Barrier

Problem Domain – e.g. 1D Bin Packing

Set of problem
instances

𝐼1, 𝐼2,… , 𝐼𝑛

Objec�ve
Func�on

𝑓 ∶ 𝑠 → ℝ
Minimal set of perturba�ve
heuris�cs (ℎ𝑠)– ℎ ∶ 𝑠 → 𝑠′

ℎ1 ℎ2 ℎ𝑛…

Solu�on memory

𝑠𝑏𝑒𝑠𝑡𝑠′𝑠

P
ro

b
le

m
 D

o
m

a
in

(H
yF

le
x)

Lo
ca

l S
ea

rc
h

 M
et

a
h

eu
ri

s�
c

START

ℎ ← 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ ℎ𝑠;
𝑠𝑖
′ ← 𝑎𝑝𝑝𝑙𝑦 ℎ, 𝑠𝑖 ;

Move Acceptance

MEMORY
{ 𝑓 𝑠0 … 𝑓 𝑠𝑖−1 }

𝑓 𝑠𝑖

𝑓 𝑠𝑖
′

Reject

Accept

𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑑
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

𝐵𝑢𝑑𝑔𝑒𝑡

𝑠 ← 𝑠0
𝑖 = 0

𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑏𝑒𝑠𝑡 ;

𝑓 𝑠𝑖
′ < 𝑓 𝑠𝑏𝑒𝑠𝑡

𝑠𝑖+1 ← 𝑠𝑖
′ ;

𝑠𝑏𝑒𝑠𝑡 ← 𝑠𝑖
′ ;

Yes

No

Yes

No

𝑖++;

Figure 3.1: Illustration of the local search metaheuristic framework with the move acceptance
component being highlighted. The move acceptance method itself, emphasised in yellow, is the
interchangeable method which is investigated in these studies.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 53

has previously been used for solving the cross-domain search problem where appropriate, otherwise

a well known method is chosen. The chosen move acceptance methods are detailed in Section 3.6.

3.3 Problem Domains

The cross-domain search problem entails having to solve multiple characteristically different COPs.

For this reason, all nine available HyFlex compatible problem domains, which to date are still of sci-

entific interest, are used to compare the cross-domain performance of the move acceptance methods

in this work. Six of these domains were used within the Cross-domain Heuristic Search Challenge

(CHeSC) 20111 and are part of the original HyFlex framework [20]. These are, along with references

to some recent studies on them, the One-Dimensional Bin Packing Problem (BP) [121, 122], Permu-

tation Flow Shop Problem (FS) [123, 124], Personnel Scheduling Problem (PS) [125, 126, 127], Max-

imum Satisfiability Problem (SAT) [128, 129], Travelling Salesman Problem (TSP) [130, 131, 132],

and the Vehicle Routing Problem (VRP) [133, 134]. The remaining three domains were recently

introduced [135] to the HyFlex Framework as a HyFlex Extension (HyFlext). These are the 0-1

Knapsack Problem (KP) [136, 137, 138], Max Cut Problem (MAC) [139, 140, 141], and Quadratic

Assignment Problem (QAP) [142, 143]. Previous studies on cross-domain search targeted minimi-

sation COPs where the objective function is quick to evaluate, in other words, they are not inverse

optimisation problems. Therefore the problems considered below are minimisation problems with

non-inverse objective functions. The problem domains, objective functions (denoted as f(x), where

x is a given solution to the problem), initialisation methods, move operators, and problem instances

that are used in the subsequent studies are detailed below.

3.3.1 One-Dimensional Bin Packing (BP)

The One-Dimensional Bin Packing (BP) problem is part of the HyFlex framework and was devel-

oped by [144].

Objective Function

The objective of the BP problem is to minimise the number of bins required to pack all pieces

from a set of pieces where each piece j has a weight wj , and each bin has a capacity C, subject to

the capacity of each bin not being exceeded, and each piece is contained in exactly one bin. The

objective function used is as follows:

1The Cross-domain Heuristic Search Challenge 2011 http://www.asap.cs.nott.ac.uk/external/chesc2011

http://www.asap.cs.nott.ac.uk/external/chesc2011

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 54

f(x) = 1−
(∑n

i=1(fullnessi/C)2

n

)
such that

fullnessi =

nbi∑
j=1

wbi,j

where

n denotes the number of bins,

C denotes the bin capacity,

bi,j denotes the jth piece in bin i,

nbi denotes the number of pieces in bin bi, and

wbi,j is the weight of the jth piece in bin i.

Initialisation

BP uses as its initialisation procedure a randomised first fit algorithm [145] whereby the pieces are

ordered randomly before a first-fit algorithm iteratively packs each piece into the next available bin

that it fits into.

Operators

The set of move operators used as the local search metaheuristic framework are restricted to swap,

split, and destroy.

• Swap - selects two pieces at random and, space permitting, places them into each others bin.

If one of the pieces that was selected cannot fit into the other bin, then a new bin is created

where it is then inserted.

• Split - selects a bin with a higher than average number of pieces, creates a new and empty

bin, and then inserts half of the number of pieces into the new bin.

• Destroy - randomly selects the lowest or highest filled bin and uses the best-fit algorithm to

repack the pieces from the selected bin into the remaining bins. If a piece cannot fit into

any of the remaining bins, then a new bin is created containing the pieces that could not be

re-packed.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 55

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. The details of these instances can be found in Table 3.1

Table 3.1: One-Dimensional Bin Packing Instances.

Instance ID# Instance Name Ref.
1 falkenauer/u1000-01 [146]
9 testdual7/binpack0 [146]
11 testdual10/binpack0 [146]
7 triples2004/instance1 [147]
10 50-90/instance1 [147]

3.3.2 Permutation Flow Shop (FS)

The Permutation Flow Shop (FS) problem is part of the HyFlex framework and developed by [148].

Objective Function

The objective of the FS problem is to find a permutation, π, of a given number of jobs, n, which

are to be processed in-order on a set of machines, m, in a pre-defined machine ordering whereby

the makespan, Cmax, is minimised. Each job is processed by each machine, M , in the order

[M0,M1, ...,Mm−1]. Once a job is available to be processed, any given machine must start processing

that job and should not remain idle unless there are no jobs for the machine to process. The

objective function used is as follows:

f(x) = Cmax

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 56

where

pi,j is the processing time of the job i on machine j,

π is the permutation of n jobs,

π(q) is the index of the job in the qth position in the permutation π,

Cπ(q),j is the completion time of the job π(q) on machine j,

Cπ(0),0 = pπ(0),0,

Cπ(q),0 = Cπ(q−1),0 + pπ(q),0 for q > 0,

Cπ(0),j = Cπ(0),j−1 + pπ(0),j for j > 0,

Cπ(q),j = pπ(q),j +max{Cπ(q−1),j , Cπ(q),j−1} for q > 0 ∧ j > 0,

Cmax = Cπ(n−1),m−1.

Initialisation

FS uses as its initialisation procedure the randomised NEH algorithm [149] whereby a list containing

a random permutation of jobs is created. Each job is taken in order from this list and added to a

new schedule in the position which generates a partial solution with the smallest makespan.

Operators

The solution of an instance from the FS domain is represented using a permutation representation.

Therefore, the only move operator required for the local search metaheuristic framework is a swap

operator.

• Swap - randomly selects two (unique) jobs from the permutation and swaps their positions.

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. These instances were taken from [150], and the HyFlex instance ID#’s and instance

names can be found in Table 3.2:

3.3.3 Personnel Scheduling (PS)

The Personnel Scheduling (PS) problem is part of the HyFlex framework and developed by [151].

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 57

Table 3.2: Permutation Flow Shop Instances.

Instance ID# Instance Name
1 20x5/2
3 100x20/4
8 500x20/2
10 200x20/1
11 500x20/3

Objective Function

The objective of the PS problem is to assign each employee from a group of employees a set of

shifts over a specified planning horizon subject to several coverage and employee working objectives

and constraints. The constraints can be classified as hard and soft constraints, where the hard

constraints have to be satisfied, while soft constraints represent preferences, i.e. the employee

working objectives. The set of problems covered by Personnel Scheduling are diverse, each with

different objectives and constraints. The implementation of the domain in this framework was

therefore implemented as a general case domain with all objectives and constraints built-in where

all constraints are converted to highly weighted objectives, and the weights of objectives adjusted

depending on the particular instance being solved. In general, the overall objective function can be

defined as shown below summing up all constraint violations to be minimised, where the weights

are changed based on the particular characteristics of the instance.

f(x) =

G∑
i=1

wigi(x)

where

G is the number of constraints,

gi measures the degree of the violation(s) of the ith constraint, and

wi is the weight for gi

These constraints are described below, and the formulations are presented in detail in [151]:

• The minimum and maximum number of hours worked.

• The minimum and maximum number of days on or off.

• The minimum and maximum number of consecutive working days.

• The minimum and maximum number of consecutive days off.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 58

• The minimum and maximum number of consecutive working weekends.

• The minimum and maximum number of consecutive weekends off.

• The minimum and maximum number of shift of a certain type; e.g. night shifts.

• The minimum and maximum number of consecutive shifts of a certain type.

• Shift rotations; e.g. an early shift should be avoided after a night shift.

• Satisfying employee requests such as specific days or shifts on or off.

Initialisation

A solution in the PS domain is initialised using the ‘new’ local search operator [151]. The solution

initially consists of no assignments of employee shifts to days. Shifts are removed and assigned to

employees for each day in the planning period of increasing length, where length is the number

of consecutive days worked on the same shift type, iteratively. It does this by trying increasing

shift lengths for each employee, day, and then shift type, by changing the assignment of a block

of consecutive shifts of size equal to the current shift length being considered, irrespective of shift

type, for the current employee being tried, to the current shift type being tried. If this results in

an improvement in the roster, then the change in assignment is kept, otherwise it is reverted. This

process is repeated until all swaps (changes in shift type assignments) have been tried.

Operators

The PS problem uses a specialised solution representation. In order to satisfy the local search meta-

heuristic framework, the required operators are new swap, vertical swap, and random unassign2.

• New Swap - A local search operator which introduces or removes a shift-block to the roster.

• Vertical Swap - Swaps a shift pattern of length l where l← random ∈ {x | x ∈ Z, 1 ≤ x ≤ 5}

between two employees.

• Random Unassign - Unassigns a random shift from the roster but while maintaining solution

feasibility.

2Thanks to Tim Curtois for his expertise in the implementation of this domain and for providing us with the
information relating to the required move operators.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 59

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. The details of these instances can be found in Table 3.3

Table 3.3: Personnel Scheduling Instances.

Instance ID# Instance Name Ref.
5 Ikegami-3Shift-DATA1.2 [152]
8 ERRVH-B [153]
9 MER-A [153]
10 BCV-A.12.1 [153]
11 ORTEC01 [153]

3.3.4 Maximum Satisfiability (SAT)

The Maximum Satisfiability (SAT) problem is part of the HyFlex framework and developed by [154].

Objective Function

The objective of the SAT problem is to assign a truth value to each variable, v, within a set of

variables which, given a set of clauses, c, minimises the total number of unsatisfied clauses as

represented in conjunctive (clause) normal form. That is, each clause contains at least one variable,

and each variable is contained in at least one clause. The objective function is as follows:

f(x) =

N∑
i=1

ci

where

N is the total number of clauses, and ci =

 0 if the ith clause evaluates to true

1 otherwise

Initialisation

SAT, being represented as a binary string, generates a random binary string as its initialisation

procedure such that each variable in the SAT problem has a random truth value.

Operators

The solution of an instance from the SAT domain is represented as a binary string. Therefore, the

only move operator required for the local search metaheuristic framework is a flip operator.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 60

• Flip - randomly selects a single variable and negates its current truth value.

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. The details of these instances can be found in Table 3.4

Table 3.4: Maximum Satisfiability Instances.

Instance ID# Instance Name Ref.
3 parity-games/instance-n3-i3-pp [155]
4 parity-games/instance-n3-i3-pp-ci-ce [155]
5 parity-games/instance-n3-i4-pp-ci-ce [155]
10 jarvisalo/eq.atree.braun.8.unsat [156]
11 highgirth/3sat/hg-3sat-v300-c1200-4 [157]

3.3.5 Euclidean Travelling Salesman Problem (TSP)

The Euclidean Travelling Salesman Problem (TSP) is part of the HyFlex framework. There is no

official documentation for the TSP domain implementation, but the reader is referred to [158] for

general information on the TSP problem itself.

Objective Function

The objective of the TSP problem is to find a closed route between a set of cities such that each

city is visited exactly once, and the route returns to the starting city whereby the total distance is

minimised. More specifically, for the current formulation, the objective is the find a permutation,

π, of cities, c, whereby the total distance between all adjacent cities, including the first and final

cities, d(i, j), are minimised. The distance function d(i, j) calculates the non-rounded Euclidean

distance between the cities ci and cj , where xcoord and ycoord are the coordinates representing the

location of a given city. The objective function used is as follows:

f(x) = d(π(n− 1), π(0)) +

N−2∑
i=0

d(π(i), π(i+ 1))

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 61

where

N is the total number of cities,

π(l) is the index of the city in the permutation index l for 0 ≤ l < N,

d(i, j) =
√

(ci.xcoord − cj .xcoord)2 + (ci.ycoord − cj .ycoord)2 for 0 ≤ i, j < N.

Initialisation

TSP, being represented using a permutation representation, generates a random permutation of

cities as its initialisation procedure such that the order in which the cities are visited is randomised.

Operators

Similar to the FS domain, the only move operator required for the local search metaheuristic

framework of a solution with permutation representation is a swap operator.

• Swap - randomly selects two (unique) cities from the permutation and swaps their positions.

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. These instances were taken from [159], and the HyFlex instance ID#’s and instance

names can be found in Table 3.5:

Table 3.5: Travelling Salesman Problem Instances.

Instance ID# Instance Name
0 pr299
2 rat575
6 d1291
7 u2152
8 usa13509

3.3.6 Vehicle Routing with Time Windows (VRPTW)

The Vehicle Routing with Time Windows (VRPTW) problem is part of the HyFlex framework and

was developed by [160, 161].

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 62

Objective Function

The objective of the VRPTW problem is to find one or more routes, each serviced by a delivery

vehicle, which between them are able to visit a set of customers exactly once subject to time-window

and vehicle capacity constraints, whilst minimising the number of vehicles required, and the total

distance travelled. Each route starts and ends at the same location which is defined as the depot

location and visits at least one customer location. Each customer must be serviced within their

time window, and the capacity of each vehicle should not be exceeded. Note that these constraints

are handled by the low-level heuristics to maintain solution feasibility. The objective function used

is as follows:

f(x) = 1000v +

v−1∑
i=0

|routei|−1∑
j=0

d(routei(j), routei((j + 1) mod |routei|)

where

v is the number of vehicles (routes),

routei is the route for the ith vehicle,

|routei| is the length of the route routei,

routei(j) is the jth location in route routei,

d(m,n) is the Euclidean distance between locations m and n

Initialisation

The initialisation method is a randomised constructive approach which uses a metric which contains

a stochastic element which considers the distance and time of each customer to the most recently

inserted customer to sequentially select a customer and insert them into the partial solution until

all customers have been feasibly scheduled. If it is not possible to insert any more customers into

the current route (corresponding to a single vehicle), then a new route is generated.

Operators

There are two parts to the representation of a solution for this domain. The first is the routes

themselves, and within each route, a permutation of customers which are unique across all routes.

That is, no customer should belong to more than one route. Two operators are required to be able

to reach all possible solutions within the local search metaheuristic framework; 2-opt mutation to

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 63

change the order of a single route, and shift mutation to swap customers between routes.

• 2-opt mutation - swaps two adjacent customers within a route subject to time window con-

straints.

• Shift mutation - Removes a single customer, c, from a randomly chosen route, r, and tries to

place them into another route, r′ where r′ 6= r, subject to time window and vehicle capacity

constraints. The customer is tried in all positions in the new route in a random order until

the first feasible solution is found. If the move cannot result in a feasible solution, then a new

route is created with the customer as a single delivery.

Instances

A total of five instances are chosen from the available set of instances as those used in the CHeSC

competition. These instances were taken from [162], and the HyFlex instance ID#’s and instance

names can be found in Table 3.6:

Table 3.6: Vehicle Routing with Time Windows Instances.

Instance ID# Instance Name
1 Soloman/RC/RC207
2 Soloman/RC/RC103
5 Homberger/RC/RC2-10-1
6 Homberger/R/R1-10-1
9 Homberger/C/RC1-10-8

3.3.7 0-1 Knapsack Problem (KP)

The 0-1 Knapsack (KP) problem was introduced as part of the HyFlex extension set (HyFlext) and

developed by [163].

Objective Function

The objective of the KP problem is to find a subset, s ∈ S, of a set of items, where each item

has an associated weight, w, and profit, p, which maximises the total profit while adhering to the

capacity constraint, V , of the knapsack. The following objective function used formulating KP as

a minimisation problem.

f(x) =
1∑

i∈s p(i) + α

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 64

where

s ⊆ S,

V is the volume of the knapsack, V > 0,∑
i∈s

w(i) < V,

w(i) is the weight of item i for w > 0, w ∈ R,

p(i) is the profit of item i for p > 0, p ∈ R,

α is a fixed small value of 1× 10−64 to prevent cases of division by 0.

Initialisation

A greedy procedure is used which iteratively packs the next most valuable item into the knapsack

until no more items can be inserted.

Operators

In the 0-1 knapsack problem, a set of items are given. Each item is either assigned to be in, or to

not be in, the knapsack. Two operators are required to be able to reach all possible solutions within

the local search metaheuristic framework; pack random, and remove random. These operators are

each used with a 50% probability by the local search metaheuristic framework such that an item is

either added to or removed from the knapsack with equal chance.

• Pack random - chooses a random item from the set of items which are both not already in

the knapsack and can fit into the knapsack, and packs it into the knapsack.

• Remove random - removes a random item from the knapsack.

Instances

A total of five instances are chosen randomly from the available set of instances such that there are

a mixture of small, medium, and large sized instances. These instances were taken from [164], and

the HyFlex instance ID#’s and instance names can be found in Table 3.7:

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 65

Table 3.7: 0-1 Knapsack Problem Instances.

Instance ID# Instance Name
0 1K-15-12
1 2K-1-13
3 2K-5-17
5 5K-1-24
8 5K-5-28

3.3.8 Max Cut Problem (MAC)

The Max Cut (MAC) problem was introduced as part of the HyFlex extension set (HyFlext) and

was developed by [165].

Objective Function

MAC is a set-partitioning problem where the objective is to find a partition (p1 and p2) of a set of

vertices, V , from a weighted connected graph, G, with edges E, each of which has a weight, w, that

maximises the sum of the weights of the edges that cross the partition. The following minimising

objective function is used in this study.

f(x) =
1∑

e∈Ep1,p2
w(e) + α

where

p1 ⊆ V, p2 ⊆ V, p1 ∪ p2 = V, and p1 ∩ p2 = ∅,

Ep1,p2
is the set of edges that connect vertices which are not in the same partition,

w(e) is the weight of edge e,

α is a fixed small value of 1× 10−64 to prevent cases of division by 0.

Initialisation

A greedy randomised constructive procedure is used in which each vertex is selected at random and

iteratively inserted into the partition that maximises the cost of the cut between the two disjoint

sub-graphs of the partial solution.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 66

Operators

In the max cut problem, there are a set of vertices which must be partitioned into two disjoint

subsets. A single move operator, swap random, is required to reach all possible solutions within

the local search metaheuristic framework.

• Swap random - moves a randomly selected vertex from one partition to the other.

Instances

A total of five instances are chosen randomly from the available set of instances such that there are

a mixture of small, medium, and large sized instances. The details of these instances can be found

in Table 3.8

Table 3.8: Max Cut Problem Instances.

Instance ID# Instance Name Ref.
0 g3-8 [166]
2 g14 [167]
5 g22 [167]
7 g55 [167]
9 pm3-15-50 [166]

3.3.9 Quadratic Assignment Problem (QAP)

The Quadratic Assignment (QAP) problem was introduced as part of the HyFlex extension set

(HyFlext) and developed by [168].

Objective Function

QAP is an assignment problem where the objective is to find an assignment of n facilities, F , to a

set of n locations, L where each facility is assigned to a unique location, such that the sum of the

products of the distance, d, and flows (weights), w, between all facilities are minimised.

f(x) =
∑
∀a,b∈F

(w(a, b)× d(la, lb))

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 67

where

w(a, b) calculate the weight (flow) between two facilities a and b,

li is the location for the facility i ∈ F,

d(la, lb) returns the distance between two locations, la and lb

Initialisation

In the Quadratic Assignment problem, a set of n facilities are to be assigned to a single and distinct

location from a set of m locations such that the sum of the distances multiplied by the flows between

each location and facility is minimised. The initialisation of a solution involves uniformly randomly

assigning one of the facilities to a location such that each facility has a single associated location,

and each location has either one or no associated facilities.

Operators

A single move operator, swap random, is required to reach all possible solutions within the local

search metaheuristic framework.

• Swap random - chooses two facilities at random (a, b) with locations (la, lb) and exchanges

their assigned locations such that a’s location becomes lb and b’s location becomes la.

Instances

A total of five instances are chosen randomly from the available set of instances such that there are

a mixture of small, medium, and large sized instances. These instances were taken from [169], and

the HyFlex instance ID#’s and instance names can be found in Table 3.9:

Table 3.9: Quadratic Assignment Problem Instances.

Instance ID# Instance Name
0 sko100a
6 tai150b
7 tai256c
8 tho150
9 wil100

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 68

3.4 Methods of Analysis

To evaluate the cross-domain performance of each move acceptance method throughout the work

in this thesis, a separate local search metaheuristic embedding each of the move acceptance meth-

ods (and their configurations) is used to solve a total of 45 problem instances, 5 instances from

each of the 9 problem domains as covered above in Section 3.3. The local search metaheuristics,

embedding each move acceptance method, are evaluated 31 times on each problem instance where

the termination criteria for each run (evaluation) is equal to 10 nominal minutes. This is equivalent

to 415 seconds on our machine, as determined by the official benchmark tool3, using an Intel Core

i7-3820 processor at 3.60GHz with 16GB of memory running Windows 10 and Java 1.8.0 40-b26.

The number of trials and computational budget are set in line with those used in the CHeSC 2011

competition. This allows us to not only compare the different move acceptance methods under

the local search metaheuristic framework to each other, but also to the results of the existing

state-of-the-art methods.

There are two general strategies (approaches to parameter tuning) that are used to compare the

cross-domain performance of each move acceptance method; the first strategy considers how they

perform when their parameters have been re-tuned for each problem being solved, and the second

strategy considers how they perform when their parameters have been tuned a single time and the

parameter configuration used for solving problems from all domains. These strategies are called

by their tuning approaches of per-domain tuned, and cross-domain tuned. These are more-general

than more involved tuning methods known as instance-specific, or per-instance, tuning methods

where the search method is re-tuned for each and every problem instance [27], where either an

expert is involved in the re-tuning process, or time is taken to for each problem instance to perform

automated tuning on them. Without having to perform computationally expensive parameter

tuning experiments for all problem instances, and while reducing the expert intervention efforts,

the per-domain tuning approach aims to show the “best-case” cross-domain performance of each

move acceptance method. The ultimate goal in cross-domain search research however is to eliminate

the need for expert intervention entirely. Cross-domain tuning is therefore used as an approach

which does not require an expert to re-tune the parameters of the move acceptance methods as it

uses a single parameter configuration determined from a subset of the training instances. The cross-

domain tuning approach is used to show the cross-domain performance of each move acceptance

method when used as a cross-domain search method in its expected use case - without expert

3HyFlex benchmarking tool available online: http://www.asap.cs.nott.ac.uk/external/
chesc2011/benchmarking.html

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 69

intervention. These approaches to parameter tuning (referred to as tuning strategies) are described

in further detail in Section 3.5.

The work in this thesis aims to observe the cross-domain performance of the local search methods

embedding the characteristically different (based on our taxonomy) move acceptance methods. One

of the problems faced when comparing general-purpose search methods over multiple domains (and

even problem instances) is that the different problem domains and instances have a different range

of objective values. When comparing their performance using their “raw” results, the problem

instance(s) with the highest magnitude of objective values dominate those with values of lower

magnitudes. In order to be able to compare the performances of the move acceptance methods

across different domains, the results are normalised following the scheme used in [72], and as shown

in Equation (3.1) where f(s) is the result being normalised, and f(sbest) (f(sworst)) is the best

(worst) solution obtained by all algorithms over the same problem instance. The normalised results

are thereby linearly scaled between 0 (best result) and 1 (worst result) for each problem instance.

fnorm(s) =
f(s)− f(sbest)

f(sworst)− f(sbest)
(3.1)

The cross-domain performance of each move acceptance method is calculated as the sum of

the normalised results (fnorm(s)) from all 45 problem instances and their trials, equating to 1395

results per move acceptance method, and this metric is referred to as its µnorm score [135]. The

benefit of using µnorm scores over ranking methods, such as the Formula 1 ranking mechanism used

in the CHeSC 2011 competition is that the normalised fnorm(s) result proportionally represents the

performance of each move acceptance method compared to each other move acceptance method.

For example, consider three hypothetical algorithms A1, A2, and A3 with normalised results of 0.10,

0.15, and 0.85 respectively. Ranking would only show that A1 outperforms A2 and A3, and A2

outperforms A3. The normalisation metric additionally shows that A2 does not perform much worse

than A1, but much better than A3. The µnorm metric is therefore chosen as a more meaningful and

reflective cross-domain performance score for comparing the cross-domain performance of the move

acceptance methods to each other. In addition, a per-domain performance score is used to compare

the performance of each move acceptance method across multiple problem instances over the same

problem domain. This score is calculated as the sum of normalised fnorm(s) scores across all 5

instances of the respective problem and we call this as its νnorm(d) score where d is the problem

domain; that is, 155 results per move acceptance method.

Lilliefors test was performed on the computational results to test for normality and showed that

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 70

they do not always come from a normal distribution. The move acceptance methods in this thesis are

therefore compared using non-parametric statistical tests. All statistical tests are performed using

a confidence interval of 95%. To compare the statistical significance between the performances of

two algorithms, the Wilcoxon signed rank test is used on the fnorm(s) results that are re-calculated

over both algorithms. To compare the statistical significance between the performance of more than

two algorithms, Kruskal-Wallis one-way ANOVA test was initially used before learning of a more

suitable statistical test, the Friedman test, which was used in [170] for comparing evolutionary

algorithms across a set of problems, and additionally considers repeated measures (in this case,

multiple trials for the same problem instance). The post-hoc tests of both Kruskal-Wallis one-

way ANOVA and Friedman tests were conducted using Bonferroni-Dunn’s correction procedure, as

suggested by [170]. Both multiple comparison tests are able to be applied on the actual results,

rather than requiring normalised results, and hence these values are used directly and without

adjustment for such testing.

3.5 Parameter Tuning

3.5.1 Approaches to Parameter Tuning

Since one of the objectives of cross-domain research is to reduce/eliminate the need for the expert

role to design and re-configure solution methods for solving different COPs, two ‘more-general’

parameter tuning configurations are evaluated in this work. That is to say, per-instance parameter

tuning is not considered in this work due to the necessity to have to re-tune each search method

for each and every problem and their instances. This approach to parameter tuning is not a

common practice in the development of search methods even considering a single domain. The two

parameter tuning approaches that are used are per-domain tuning and cross-domain tuning. In per-

domain tuning, the parameters of the move acceptance methods are re-tuned for solving each of the

nine problem domains, and each instance within that problem is solved using the same parameter

configuration. That is to say, that the same parameter configuration is used to solve all instances

of the same problem. Parameter tuning is performed on a subset of problem instances, 1 small

and 1 large sized instance per domain, as defined in Table 3.10. The parameter configuration that

is obtained is used by the move acceptance method for solving all five instances of the respective

problem domain. In cross-domain tuning, the parameters of the move acceptance methods are

tuned a single time on a set of eight problem instances, 1 small and 1 large from four domains.

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 71

They are the same instances as used for per-domain tuning, but from only the problem domains;

BP, FS, PS, and SAT. These domains were chosen for cross-domain tuning as they were the tuning

domains used in the HyFlex competition. That is, the remaining five domains remain “unseen” -

maintaining a key ideology of cross-domain search methods in that they can be used to solve new

and unseen problems to a high quality. This parameter configuration is used by the respective

move acceptance method for solving all instances from all problem domains from the cross-domain

search benchmark.

Table 3.10: Training problem instance ID#’s used for parameter tuning experiments.

Domain Training Instance ID#’s
Bin Packing 1, 11
Flow Shop 1, 11
Personnel Scheduling 5, 9
Maximum Satisfiability 5, 11
Travelling Salesman Problem 2, 8
Vehicle Routing Problem 1, 6
0-1 Knapsack Problem 0, 8
Max Cut Problem 0, 9
Quadratic Assignment Problem 0, 9

3.5.2 Tuning Methodologies

There are multiple requirements for parameter tuning of the move acceptance methods that are

used in these studies. Some move acceptance methods contain no parameters (i.e. IE and NA) and

are hence used as-is. Others were designed such that they do not have parameters that are meant

to be tuned (i.e. AILLA and AILTA). That is, their parameters are designed to be internal to

the algorithm and were previously configured for the CHeSC 2011 competition which has the same

computational budget as that used in these studies; hence, their default and intended parameter

configurations were reused.

The remaining move acceptance methods either contain 1 (TA, GD), 2 (SA), 3 (SARH), or 4

(HAMSTA) parameters.

A discrete parameter space was considered for the parameter tuning experiments due to the

complexity and computational expense of a continuous parameter space. This is especially exac-

erbated by the 10 nominal minute evaluation time required for each trial. For move acceptance

methods that have 1 or 2 parameters, a full factorial design of experiments (DOE) is used. The

Taguchi design of experiments [171] is used for tuning the parameters of move acceptance methods

that contain more than 2 parameters. The Taguchi DOE has been used previously for parameter

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 72

optimisation such as in [172] where the parameters of PSO were tuned for benchmark function

optimisation, and in [49] where the parameters of a steady-state memetic algorithm were tuned for

cross-domain search.

Each move acceptance method is tuned by performing 31 trials on each training instance for a

total of 10 nominal minutes per trial (in line with the CHeSC 2011 competition) for each parameter

configuration. The results obtained from all parameter configurations are then normalised using

the fnorm(s) metric and analysed based on the respective parameter tuning experiment. For the

full factorial DOE, the best parameter configuration is chosen as the one which resulted in the

lowest µnorm score across the training instances. For per-domain tuning, this is the sum of the

fnorm(s) results across the two training instances for the respective domain as shown in Table 3.10.

For cross-domain tuning, this is the sum of the fnorm(s) results across the eight BP, FS, PS, and

SAT training instances (1 small and 1 large instance from each domain).

For the Taguchi DOE, an additional step has to be taken to evaluate the estimated perfor-

mance of all the possible parameter configurations across all the parameters being tuned. The

Taguchi DOE is based on orthogonal arrays (OA) which reduces the computational budget of the

experiments by considering a fractional factorial DOE. A number of factors (parameters) and levels

(possible configurations for each parameter) first have to be identified and the respective OA design

is used. For example, SARH uses an L25 OA design which is able to tune 3 factors (parameters),

with 5 levels (settings) per factor. Since the Taguchi DOE is a fractional design, only a fraction of

possible parameter configurations need to be evaluated. In the case of SARH, the computational

budget for per-domain tuning for all 9 domains is reduced from 125 configurations (53) equivalent

to a computational expense of 11,625 nominal hours (≈484 days) to a more feasible budget of 2,325

hours (≈97 days) using the L25 OA. In order to tune the move acceptance methods for the best

cross-(per-)domain performance, fnorm(s) scores are calculated for each of the tested parameter

configurations considering all configurations of the same move acceptance method for each instance.

For each configuration of each parameter, the sum of fnorm(s) scores are used to judge their per-

formance. The configuration used for move acceptance methods with three parameters are the

parameter settings that yielded the lowest sum of fnorm(s) scores across the two (eight) training

instances for per-domain (cross-domain) tuning. An example plot showing the performance of each

factor and level of SARH for per-domain parameter tuning on the Personnel Scheduling problem

is shown in Figure 3.2. There are three factors in this design, the initial temperature calculated

as the percentage of accepted worsening moves, χ0, the final temperature also calculated as the

percentage of accepted worsening moves, χn, and the factor of the total computational budget,

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 73

wait time, which should elapse after the best solution is found (or since the previous re-heat)

before the temperature is re-heated. Each parameter contains five levels. The lower the mean

fnorm(s) score, the better that level performed on average over all tuning experiments. The best

parameter configuration from these results are hence chosen as that with the lowest mean fnorm(s)

score from each parameter (factor).

Figure 3.2: Per-domain (PS) performance of the different parameter configurations of SARH as
determined by the Taguchi DOE for the per-domain tuning approach. The best parameter config-
uration chosen in this case is: χ0 = 0.01(1%), χn = 0.9999(99.99%), and wait time = 1.0× 10−6.

The parameter configurations that were obtained for each of the move acceptance methods are

detailed alongside their move acceptance methods in Section 3.6.

3.6 Move Acceptance Methods

A total of eight move acceptance methods are chosen for comparison based on the different natures

of the accept/reject decision, and natures of the algorithmic parameter settings, covering each part

of the taxonomy in Section 2.1, and as classified in Table 2.16. A single move acceptance method

was chosen from each classification within the taxonomy based on which was used in the literature

for tackling the cross-domain search problem or based on their popularity. These move acceptance

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 74

methods are detailed in alphabetical order along with their per-domain and cross-domain parameter

configurations as obtained by the parameter tuning experiments detailed in the above Section 3.5.

3.6.1 Adaptive Iteration Limited List-based Threshold Accepting (AILLA)

AILLA [120] is an adaptive non-stochastic basic move acceptance method. AILLA maintains a list

of length L recording the objective values of the L best solutions found. Whenever the current

best solution is improved during the search, the worst objective value is removed from the list

and replaced with that of the new best solution. AILLA also incorporates a restart mechanism

to reinitialise the current solution depending on several factors of the current search state and is

explained in detail in [120]. AILLA accepts a candidate solution as the current solution in the next

iteration, as shown in Equation (3.2), if its objective value is not worse than the current solution,

or if it is not worse than the ith objective value in the list, as detailed in [120], since the last re-

initialisation, and a number of non-improving iterations have passed which is dynamically reduced

from 10 to 5 as the search progresses. Note that by sithbest, we are referring to the parameter i in

the paper for AILLA and not the current iteration.

si+1 ←

s
′

i f(s
′

i) ≤ f(si) ∨
(
f(s

′

i) ≤ f(sithbest) ∧ w iterations ≥ k
)

sre-init (see [120])

si otherwise

(3.2)

Parameter Configuration

The implementation and parameter settings for AILLA were taken from [120]. All parameters

and adaptation methods used are set to their default settings since AILLA was designed as a

parameter-less move acceptance method for solving the cross-domain search problem and uses the

same termination criterion as in this work. Moreover, it was used as the move acceptance component

of the winning hyper-heuristic from the CHeSC 2011 competition, which to date remains one of

the best cross-domain search procedures.

3.6.2 Adaptive Iteration Limited Threshold Accepting (AILTA)

AILTA [85] is an adaptive non-stochastic threshold move acceptance method. It is similar to AILLA

but with one key difference. AILTA calculates a threshold value based on an ordered list of factors

of the best solution, rather than reusing the objective values of the L best solutions found. AILTA

accepts a candidate solution as the current solution in the next iteration if the objective value of

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 75

the candidate solution is not worse than the current solution, or if a certain number of consecutive

rejected moves have occurred and the objective value of the candidate solution is less than an

acceptance threshold calculated as a factor of the cost of the best solution found so far as shown

in Equation (3.3).

si+1 ←

s
′

i f(s
′

i) ≤ f(si)∨

w iterations ≥ k ∧ f(s
′

i) ≤ f(sbest) + |f(sbest)× ε|

si otherwise

(3.3)

Parameter Configuration

The original equation for calculating the threshold from [85] works only for problems whose objective

functions return non-negative values. The equation was therefore modified from f(sbest) + (1× ε)

to f(sbest) + |f(sbest)× ε| to allow it to work over all objective value ranges.

The ε parameter controls how much worse a solution is allowed to be before it is rejected, and k

determines how many continuous rejected moves should elapse before switching from the improving

or equal acceptance strategy to the threshold accepting strategy. In this work, the setting for k was

the same as used in [85] which was 100. The ε parameter is incremented according to a number

of consecutive non-improving moves exceeding a parameter max iter and reset to its initial value

upon accepting an improving move. In that paper, this was set to 5000 however it was used

exclusively for the homecare scheduling problem taking approximately 62500 iterations. Due to

the variable iteration count encountered in cross-domain search, if the total number of iterations

does not exceed 62500, then max iter is set proportional to an estimated number of iterations for

each problem instance based on pre-experimental analysis as shown in Equation (3.4) rounded to

the nearest integer value. Upon exceeding this limit, ε is incremented from its initial setting of

0.003 by 0.001 up to a maximum setting of 0.010. As these parameters are internal to the move

acceptance method, these settings are used for both the per-domain and cross-domain algorithm

configurations.

max iter = min

(
5000× total iterations

62500
, 5000

)
(3.4)

3.6.3 Great Deluge (GD)

GD [19] is a dynamic non-stochastic threshold move acceptance method. A dynamic time-based

version of GD from [97] is used in this work assuming a fixed computational budget of Ttotal to run

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 76

the algorithm. GD accepts a candidate solution as the current solution if the objective function

value of the candidate solution (f(s′i)) is not worse than the current solution (f(si)), or if it is

not worse than a threshold value (τi). This threshold value is linearly decreased considering the

elapsed time (Telapsed) between the objective function value of the initial solution (f(s0)) and some

target value (qualityLB), as shown in Equation (3.5) where the acceptance threshold is calculated

as in [97] shown in Equation (3.6).

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), τi)

si otherwise
(3.5)

τi = qualityLB + (f(s0) + qualityLB)×
(

1− Telapsed
Ttotal

)
(3.6)

Parameter Configurations

GD contains a single parameter (qualityLB). This parameter should be set as the expected (or

known) final objective value such as the lower bound of the problem being solved [97]. In this

study, the focus is on investigating the cross-domain performance of different move acceptance

methods with the aim of producing a move acceptance method that can be used for solving new

and unknown problems with little expert knowledge. In those cases, such lower bounds or optimal

values may not be known; therefore, qualityLB is tuned for each problem domain as described in

Section 3.5. The range of values used for tuning were between 1× 10−10 and 1× 1013, including 0,

with intervals of an increasing order of magnitude.

Per-domain Parameter Configuration The parameter settings for qualityLB determined

from the per-domain tuning approach are given in Table 3.11.

Table 3.11: Values of qualityLB that were used for each problem domain using the Great Deluge
move acceptance method.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
qualityLB 1×10−9 1×1010 100 1 1×105 1×105 0 1×10−7 100

Cross-domain Parameter Configuration Given the cross-domain parameter tuning approach,

a single parameter setting should be determined for qualityLB. In this work, the move acceptance

methods are evaluated on problems that are minimisation, and that have objective functions that

return non-negative values. The value for qualityLB is a target value which should be aimed for

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 77

when solving a problem, and for the case of solving minimisation-based COPs, this target value is

set to 0 as an ideal solution penalty.

3.6.4 Improving or Equal (IE)

IE is a static non-stochastic basic move acceptance method. IE accepts a candidate solution as

the current solution in the next stage if and only if the objective function value of the candidate

solution is not worse than the current solution as shown in Equation (3.7).

si+1 ←

 s
′

i f(s
′

i) ≤ f(si)

si otherwise
(3.7)

Parameter Configuration

IE does not contain any parameters that can be configured; hence, IE is used in its original form

for both per-domain and cross-domain configurations.

3.6.5 Näıve Acceptance (NA)

NA [89] is a static stochastic move acceptance method. NA accepts a candidate solution as the

current solution in the next iteration if the objective function value of the candidate solution

is strictly better than the current solution, else it accepts the candidate solution with a fixed

probability as shown in Equation (3.8).

The only parameter in NA is the probability to accept equal or worse quality solutions. Previous

studies mostly fixed this value to be 0.5 as is the case in [89] which evaluated NA for cross-domain

search, hence we use this value in this work for both the per-domain and cross-domain tuning

variants.

si+1 ←

 s
′

i f(s
′

i) < f(si) ∨ random ∈ [0, 1] < 0.5

si+1 otherwise
(3.8)

Parameter Configuration

NA contains a single parameter which determines the (fixed) probability that a non-improving

solution is accepted. This probability however is mostly used as 0.5 in the literature as the näıve

approach accepting half worse moves and rejecting the other half. Moreover, [89] used NA for

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 78

the cross-domain search with this same configuration. For both per-domain and cross-domain

configurations, this probability is therefore fixed at 0.5.

3.6.6 Simulated Annealing (SA)

SA [18] is a dynamic stochastic move acceptance method. SA accepts a candidate solution if its

quality is better than or equal to the cost of the current solution, or if a random number in the

range [0, 1] is less than some probability P determined by the metropolis criterion [105] as shown in

Equation (3.9). The metropolis criterion has a single parameter. This is the system temperature,

T , and is decreased in time by an accompanying annealing schedule. Annealing schedules from the

literature include linear cooling, geometric cooling and Lundy and Mees cooling [173]. The cooling

schedule and procedure for setting the initial and final temperatures of SA are those from [174] and

uses a time-based formulation of the geometric cooling schedule, and temperatures are calculated

using a sample from the search space of worse moves such that a given percentage of worse moves

are accepted. This percentage is denoted as χ.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) ∨ random ∈ [0, 1] < e−δ/T

si otherwise
(3.9)

Parameter Configurations

A full factorial DOE was used for tuning the parameters χ0 and χn of SA. Usually, a high temper-

ature setting is required at the start of the search, and is normally decreased to a small value close

to 0. For both per-domain and cross-domain tuning, the parameter settings that were evaluated

initially were χ0 ∈ {90%, 92%, 94%, 96%, 98%} and χn ∈ {0.0625%, 0.125%, 0.25%, 0.5%, 1%}. In

the case that one of the extreme values were determined by the tuning methodology, the values of

χ0 and/or χn were expanded in the appropriate direction until a setting was found that was not on

a limit. For example if chin was tuned to 0.0625%, then the tuning experiments were performed

again with χn ∈ {0%, 0.015625%, 0.03125%, 0.046875%, 0.0625%}. In the case that χn was tuned

to 0% or the next largest value, a new tuning range was established to test between these values.

Per-domain Parameter Configuration The parameter settings used for χ0 and χn for each

domain, as determined from the tuning methodology, are shown in Table 3.12.

Cross-domain Parameter Configuration Performing the full factorial DOE parameter tuning

experiments on the cross-domain training instances, the cross-domain parameter configuration that

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 79

Table 3.12: Values of χ0 and χn that were used for each problem domain for Simulated Annealing.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
χ0 92% 92% 99.99999999% 92% 40% 60% 80% 92% 70%
χn 0% 0% 70% 1

64% 0% 1
64% 1

32% 0% 1
64%

was obtained was with χ0 = 98% and χn = 1.5625× 10−13%.

3.6.7 Simulated Annealing with Reheating (SARH)

SARH [113] uses an adaptive stochastic move acceptance method. SARH extends upon the tradi-

tional definition of Simulated Annealing by periodically increasing the temperature of the system

during the search to either prevent it from becoming stuck or to escape from local optima. There

are multiple approaches in the literature for deciding the value of the reheated temperature setting,

how the cooling schedule operates after reheating, and when a reheat should occur. Such ways in

which the reheated temperature is set includes a function of the temperature when the maximum

specific heat occurs [175], the initial temperature setting [176], and some factor of the temperature

setting when the best solution was found, for example 1.0 × Tbest or 2.0 × Tbest in [113] and [118]

respectively. After performing a reheat, the cooling schedule can either be left to operate as is,

decreasing the temperature over time [175], or disabled such that the temperature is fixed at the

reheat temperature for the remainder of the search [113]. Note that reheating is not the same as

re-annealing [114] where the parameters affecting the temperature setting are controlled to gradu-

ally decrease and increase the temperature over time depending on the search features. Strategies

for deciding when to perform the reheat include doing so when the maximum specific heat occurs

in the system [175], by keeping track of when the last improvement was made, reheating the tem-

perature after a predefined number of continuous non-improving moves have occurred [113], and

after a predefined number of moves since the best solution was last improved [118].

In this work, we use the earliest example of such mechanism for deciding when to perform

reheating as it can be seen in other adaptive approaches within the literature to signal an adaptation

event such as in AILLA and AILTA. For the reheat temperature, we chose to use the approach used

in [118] where the temperature is set to twice that when the best solution was found as preliminary

testing showed this to be more effective. After performing a reheat, the cooling schedule is allowed

to continue for the remainder of the search. SARH as used in this work contains three parameters;

the initial temperature, T0, the final temperature, Tfinal, and the time since the last improving

move was made before applying reheating, wait time. The temperature settings are derived in the

same way as for the dynamic version of Simulated Annealing (Section 3.6.6 by using the tuned

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 80

percentage of worse moves to accept parameters χ0 and χn. The value α, which is used my

the cooling schedule to control the rate of cooling is calculated initially and upon each reheat as

Tfinal/T0 and Tfinal/(2× Tbest) respectively. The wait duration is calculated as a product of the

computational time budget and the wait time parameter where wait time ∈ [0, 1], exclusive and

inclusive.

The mechanism for move acceptance is the same as that used by SA in Equation (3.9). The

adaptation procedure for dealing with reheating of the system temperature is shown in Algorithm 2

and an updated version of the cooling schedule to deal with the reheating capability and time-based

termination criterion is shown in Equation (3.10).

Algorithm 2: process2() for Simulated Annealing with Reheating.

1 if move was accepted then
2 if f(s′).isBetterThan(f(s)) then
3 time reheat← wait duration+ time elapsed;
4 end
5 if f(s′).isBetterThan(f(sbest)) then
6 tbest ← ti;
7 end

8 else if time elapsed > time reheat then
9 t0 ← tbest × 2;

10 time reheat← wait duration+ time elapsed;
11 time previous reheat← time elapsed;
12 α← tfinal/t0;

13 return sbest;

T = T0 × α
time elapsed− time previous reheat

time total (3.10)

Parameter Configurations

The Taguchi DOE method used for tuning the parameters of SARH used an L25 orthogonal

array which is a 3 factor with 5 level design. The parameter setting ranges used initially for

χ0, χn, and wait in the Taguchi DOE were as follows: χ0 ∈ {90%, 92%, 94%, 96%, 98%}, χn ∈

{1%, 0.5%, 0.25%, 0.125%,%0.0625}, and wait ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Per-domain Parameter Configuration The parameter settings obtained for each domain us-

ing the per-domain parameter tuning approach are given in Table 3.13.

Cross-domain Parameter Configuration The cross-domain parameter configuration that was

obtained by the Taguchi DOE using the same setup as the per-domain tuning methodology and

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 81

Table 3.13: Values of χ0, χn, wait time that were used for each problem domain in the Simulated
Annealing with Reheating move acceptance method.

Parameter BP FS PS SAT TSP VRPTW KP MAC QAP
χ0 70% 96% 99.99% 50% 80% 60% 80% 94% 60%
χn 0.015625% 0% 1% 0.0015625% 0% 0.015625% 0.25% 0.000015625% 0.015625%
wait 0.80 0.60 0.000001 0.90 0.40 1.0 0.9999 0.9999 0.20

was χ0 = 96%, χn = 0.0625%, and wait = 0.50.

3.6.8 Threshold Accepting (TA)

TA [91] is a static non-stochastic threshold move acceptance method. TA accepts a candidate

solution as the current solution in the next iteration if and only if the objective function value of the

candidate solution is not worse than an acceptance threshold calculated as the sum of the objective

function value of the current solution and a threshold parameter, T , as shown in Equation (3.11).

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) + T

si otherwise
(3.11)

TA has a single parameter, T , which defines how much worse than the current solution a

candidate solution is allowed to be before being rejected. A static definition of TA from [55] is used

in this work, which they incorrectly identify as record-to-record travel. This variant was used for

solving multiple problems including examination timetabling and the capacitated vehicle routing

problem. As a general-purpose search method however, the setting for T must be set appropriately

for the problem being solved. The objective function values of different problem domains, and even

problem instances, return a different range of values meaning that a single setting would not be

effective. The threshold parameter is therefore calculated as a factor (k) of the cost of the initial

solution as shown in Equation (3.12). This approach for calculating a threshold setting has been

seen in related non-stochastic threshold move acceptance methods such as AILTA, albeit that their

threshold values are calculated adaptively.

T = k × f(s0) (3.12)

Parameter Configurations

TA as used in this work contains a single parameter (k) that is used to determine the threshold value

as a factor of the cost of the initial solution. The initial testing range for k was between 0.05% and

20% such that k ∈ {0.0075, 0.0050, 0.0025, 0.0010, 0.0005, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7, 1×

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 82

10−8}. In the event that k was tuned to the lowest (1E − 8) or highest (0.0075) values, extended

ranges of k were considered in the ranges [0.0, 0.0005] and [0.0075, 1× 1010] respectively.

Per-domain Parameter Configuration The parameter settings for k for the per-domain tun-

ing approach are given in Table 3.14. For solving Bin Packing problems, a setting of k = 0 was far

superior to very small values of k. This is a particularly interesting observation, since it shows that

on certain problems, certain move acceptance methods can be changed into other methods based

on extreme values of their parameter. In this case, TA is converted into IE with the parameter

setting of k = 0. A similar phenomenon is also observed for solving Knapsack problems where the

value of k was tuned to 1 × 108 which is so high that no moves are ever rejected; TA in this case

turns into the accept all moves method.

Table 3.14: Values of k that were used to calculate the threshold parameter T for each problem
domain for the Threshold Accepting move acceptance method.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
k 0.0 1E-4 0.8 1E-3 1E-3 1.5E-4 1E8 5E-4 1.5E-4

Cross-domain Parameter Configuration Using the settings of k ∈ {0.0005, 0.0010, 0.0025,

0.0050, 0.0075, 0.0100, 0.0500, 0.1000, 0.1500, 0.2000}, the cross-domain parameter configuration ob-

tained for TA was with k = 0.0010.

3.7 Summary

This chapter served to explain the local search metaheuristic framework that is used in the subse-

quent studies in this thesis to evaluate the move acceptance methods. The nine problem domains,

forty-five problem instances, and the perturbative move operators that are used to evaluate the

move acceptance methods under the local search metaheuristic framework were then also detailed.

The methods of analysis that are used to compare the cross-domain performance of the move ac-

ceptance methods are also discussed and how the normalisation of results can be used to perform

parameter tuning despite the issue faced with tuning across the characteristically different problem

domains and instances. Finally, the eight existing move acceptance methods are explained along

with their per-domain and cross-domain tuned parameter configuration(s). Some observations are

also discussed alongside the reporting of the parameter configurations concerning when they have

been tuned to extreme values. The following chapter evaluates the cross-domain performance of

the move acceptance methods discussed in this chapter, each based on a different “nature of the

CHAPTER 3. METHODOLOGIES AND EXPERIMENTAL SETUP 83

accept/reject decision” and “nature of how the algorithmic parameters are set” pair as defined in

the taxonomy under the proposed local search metaheuristic framework.

Chapter 4

On the Cross-domain Performance

of Move Acceptance Methods

4.1 Introduction

In this chapter, the performance and behaviours of eight existing move acceptance methods under

a local search metaheuristic framework are compared and contrasted. The aim of this comparison

is to observe the per-domain and cross-domain effectiveness of the move acceptance methods based

on their classification in the taxonomy proposed in Chapter 2.3. The experimental setup and the

explanations and configurations of the move acceptance methods can be found in the previous

chapter. The move acceptance methods in Section 4.2 use the parameter configurations obtained

from the per-domain parameter tuning approach such that their potential as a general-purpose

search method, as if a parameter configuration oracle existed, can be observed. Section 4.2 discusses

the results from evaluating each move acceptance method across all instances from the same problem

domain (per-domain performance) in Section 4.2.1 to Section 4.2.9. A summary of the move

acceptance methods per-domain performance is discussed in Section 4.2.10, and their cross-domain

performance is discussed in Section 4.2.11.

84

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 85

4.2 An analysis of the performance of move acceptance meth-

ods for cross-domain search

This section covers the results and analysis of the local search metaheuristics embedding different

move acceptance methods for cross-domain search. Sections 4.2.1 to 4.2.9 discuss the results for the

move acceptance methods solving each problem domain individually (per-domain comparison) using

a higher-level per-domain parameter configuration. These discussions include respective parameter

settings for each move acceptance method, and analysis of the progress plots (Figure 4.3) and

move acceptance statistics (Table 4.3 and Table 4.4) for the best general move acceptance method

for each of the nine problem domains. The progress plots are presented to gain insight into the

behaviours of each move acceptance method which allows them to solve each problem well. The

per-domain and cross-domain scores are given in Table 4.1 and boxplots of the normalised results

from all 5 instances per domain are given in Figure 4.1 and Figure 4.2. Results from the Kruskal-

Wallis one-way ANOVA tests performed for each problem domain can be found in Table 4.2.

The non-normalised results for each problem instance from the experimentation can be found

online at: http://dx.doi.org/10.13140/RG.2.2.15671.14245. A summary of the results is given

in Section 4.2.10, and the cross-domain performance of the move acceptance methods are then

discussed in Section 4.2.11.

Table 4.1: Per-domain scores for each move acceptance method over the 9 problem domains, calcu-
lated as explained in Section 3.2, with the best general-purpose method for each problem domain
stylised bold. The final column shows the cross-domain score for each move acceptance method,
calculated as the sum of per-domain scores.

BP FS PS SAT TSP VRPTW KP MAC QAP Cross-domain
IE 0.09 0.52 3.63 0.54 1.98 0.50 5.00 0.55 0.50 13.31
AILLA 0.85 0.56 2.54 0.08 2.15 3.43 1.98 4.23 0.20 16.03
TA 0.39 0.64 0.77 0.54 2.69 0.17 4.92 2.29 0.16 12.56
GD 3.35 2.92 1.56 3.61 2.83 3.33 4.91 3.12 3.60 29.23
AILTA 0.77 2.52 3.62 0.54 2.73 0.24 5.00 0.69 0.29 16.40
NA 3.26 3.88 0.58 3.55 3.13 4.5 4.24 4.24 4.06 31.44
SA 0.36 0.68 0.67 0.09 2.49 0.92 2.54 0.56 0.34 8.62
SARH 3.02 0.68 0.70 0.05 2.45 0.92 2.49 0.24 0.34 10.88

4.2.1 Bin Packing

The best move acceptance method for solving Bin Packing (BP) problems according to the per-

domain scores was IE. A boxplot comparison of the performance of the move acceptance methods

for solving BP instances can be found in Figure 4.1. The results of performing an ANOVA test on

http://dx.doi.org/10.13140/RG.2.2.15671.14245

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 86

0 0.2 0.4 0.6 0.8 1

norm
 score

P
ro

bl
em

 D
om

ai
n

&
 M

ov
e

A
cc

ep
ta

nc
e

M
et

ho
d

SAT

PS

FS

BP

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

Figure 4.1: fnorm(s) values obtained by each move acceptance method using per-domain parameter
configurations over all 31 trials for all 5 instances for each of the Bin Packing, Flow Shop, Personnel
Scheduling, and Maximum Satisfiability problem domains. ‘+’ marks symbolise statistical outliers
according to either fnorm(s) > q3 + 1.5× (q3 − q1) or fnorm(s) < q1 − 1.5× (q3 − q1) where q1 and
q3 are the 25th and 75th sample data percentiles.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 87

0 0.2 0.4 0.6 0.8 1

norm
 score

P
ro

bl
em

 D
om

ai
n

&
 M

ov
e

A
cc

ep
ta

nc
e

M
et

ho
d

QAP

MAC

KP

VRP

TSP

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

SARH
SA
NA
AILTA
GD
TA
AILLA
IE

Figure 4.2: fnorm(s) values obtained by each move acceptance method using per-domain parameter
configurations over all 31 trials for all 5 instances for each of the Travelling Salesman, Vehicle
Routing, Knapsack, Max Cut, and Quadratic Assignment problem domains. ‘+’ marks symbolise
statistical outliers according to either fnorm(s) > q3+1.5×(q3−q1) or fnorm(s) < q1−1.5×(q3−q1)
where q1 and q3 are the 25th and 75th sample data percentiles.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 88

Table 4.2: Kruskal-Wallis One-way ANOVA comparing the performance of the move acceptance
methods for each problem domain with n0 that all results are from the same distribution at CI
= 95%. The values are the mean ranks (lower is better) of the aforementioned test with the best
move acceptance method, and those which do not statistically significantly differ from the best, for
each domain being stylised bold.

Problem IE AILLA TA GD AILTA NA SA SARH χ2(7) p
BP 354.3 593.5 431.3 822.3 550.4 903.1 417.4 891.8 420.4 1.03E-86
FS 529.2 536.8 550.3 718.8 729.4 786.5 555.8 557.1 93.7 2.10E-17
PS 796.5 715.2 530.0 606.5 796.1 486.2 515.8 517.7 143.5 9.35E-28
SAT 714.7 259.7 714.7 1022.3 714.7 1080.0 281.6 176.5 1018.0 1.54E-215
TSP 572.4 583.8 621.5 649.0 618.6 675.2 622.7 620.9 9.0 2.51E-01
VRPTW 506.9 774.8 481.6 738.6 491.3 834.6 568.1 568.1 166.7 1.23E-32
KP 666.4 543.9 656.6 657.5 666.4 624.4 573.7 575.1 20.9 4.00E-03
MAC 554.5 717.9 617.5 668.2 593.9 714.5 556.0 541.4 43.6 2.53E-07
QAP 648.0 553.4 541.0 709.0 591.3 707.0 609.5 604.8 34.0 1.73E-05

Table 4.3: Percentage of each type of move based on the acceptance decision and move delta as
improving, equal, and worsening when using the best general move acceptance method for solving
an instance, as used in the objective function value traces, of the respective problem domain. Note
that no move acceptance mechanism has the ability to reject improving moves. Percentages are
reported to 1 decimal place - GD accepted a few moves but these were very rare; hence the reported
values of 0.0%

Domain BP FS PS SAT TSP VRP KP MAC QAP
Best Method IE IE NA SARH IE TA AILLA SARH TA
Accept δ < 0 0.6% 0.0% 26.9% 10.5% 0.0% 7.8% 34.5% 26.0% 0.3%
Reject δ < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ = 0 22.9% 3.5% 40.3% 15.0% 0.0% 36.3% 15.5% 4.6% 0.0%
Reject δ = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ > 0 0.0% 0.0% 16.3% 10.5% 0.0% 8.2% 3.1% 26.0% 0.4%
Reject δ > 0 76.5% 96.5% 16.5% 64.0% 100.0% 47.6% 46.8% 43.4% 99.2%

the normalised results of all BP instances shows that IE is the best general method with a mean

rank of 354.3 and that the results of the move acceptance methods do not come from the same

distribution. This means that IE must perform significantly better than at least one other move

acceptance method.

Post-hoc analysis shows that IE performed significantly better than all other methods apart

from TA and SA. This is not surprising since the per-domain tuning setting for TA was k = 0.0

meaning that the threshold was set at each iteration as f(si) + 0.0× f(s0) = 0.0 which is the same

mechanism as IE, albeit with a slight computational overhead leading to a reduced performance.

Similarly, the per-domain tuned setting for SA has the final temperature set to 0.0 meaning that

the cooling schedule reduces the temperature to 0.0 after the first iteration. This again causes SA

to behave the same as IE after the first iteration but with the computational overhead.

Since the best move acceptance method for solving instances of the Bin Packing problem was

IE, there is not much that can be deduced by way of how the natures of the move acceptance

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 89

Table 4.4: Percentage of accepted and rejected moves based on improving, equal, and worsening
move deltas when using the best general move acceptance method for solving an instance, as used
in the objective function value traces, of the respective problem domain. Note that no move
acceptance mechanism has the ability to reject improving moves. For TSP, there was a total of 68
accepted improving moves and 380 accepted equal moves compared to 4908905 rejected worsening
moves; hence, the apparent 0.0% of accepted improving and equal moves.

Domain BP FS PS SAT TSP VRP KP MAC QAP
Best Method IE IE NA SARH IE TA AILLA SARH TA
Accept δ < 0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Reject δ < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ = 0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Reject δ = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ > 0 0.0% 0.0% 49.6% 14.1% 0.0% 14.7% 6.3% 37.5% 0.4%
Reject δ > 0 100.0% 100.0% 50.4% 85.9% 100.0% 85.3% 93.8% 62.5% 99.6%

method mechanisms from the taxonomy affect the performance of the local search metaheuristic.

The only observation that can be made is that only move acceptance methods that can be manip-

ulated into emulating IE through parameter tuning will perform similar to IE, but with increasing

computational overheads negatively affecting their performance.

The progress plot for Bin Packing, shown in Figure 4.3a, shows IE continually improving upon

the current solution and finding the best solution at the last step. The progress plot illustrates

that the search does not prematurely converge and does not have large plateau regions; hence, IE is

most suitable for solving Bin Packing problems, and that methods employing exploration strategies,

accepting worsening moves, are unlikely to outperform IE. Observing the acceptance statistics from

Table 4.3, we can see that the majority of candidate solutions proposed by the local search method

are worsening compared to the solution-in-hand with only 0.6% of moves improving, and 22.9% of

moves of equal cost. In conclusion, for solving BP problems under the given framework, it does not

appear to be necessary to employ a strategy accepting moves of worsening quality since IE already

runs to completion and without converging.

4.2.2 Flow Shop

The best move acceptance method for solving Flow Shop (FS) problems according to the per-

domain scores was IE. A boxplot comparison of the performance of the move acceptance methods

for solving FS instances can be found in Figure 4.1. The results of performing an ANOVA test on

the normalised results of all FS instances shows that IE is the best general method and that AILLA,

TA, SA and SARH do not perform significantly different from IE. Similarly to the observations made

for solving Bin Packing problem instances, TA, SA, and SARH when tuned per-domain have their

settings set such that they behave the same as the IE move acceptance method. AILLA on the other

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 90

hand only employs a strategy to accept worse quality moves after a period of non-improvement and

then reverts back to accepting improving or equal quality moves after an improvement is made.

This means that AILLA will accept only a few worse moves for the entire search process due to

the ability of the move operators to find better quality solutions most of the time; hence, AILLA

on the whole behaves the same as IE.

Likewise, as with Bin Packing, the fact that IE was the best move acceptance method, there is

not much that can be said with respect to the natures of the move acceptance methods from the

taxonomy and their ability to solve FS problem instances. Move acceptance methods that assume

some degree of exploration is necessary to solve a COP and that do not have adaptive parameter

control mechanisms that can detect and disable these mechanisms are unlikely to perform well for

solving FS given a cross-domain parameter configuration that does not allow for their parameters to

be set to extreme values from the start of the search. Hence, from a cross-domain perspective, move

acceptance methods with static and dynamic natures of the parameter setting should be avoided,

and those with adaptive control mechanisms preferred.

Figure 4.3b shows the progress plot for IE solving the Flow Shop problem. IE is able to

improve the best solution found throughout the search; however, the search landscape has many

shoulder/plateau regions. The percentage of accepted/rejected moves depending on the move delta

are given in Table 4.3. It can be observed that there are much more worse moves being generated

using the simple swap neighbourhood operator than there are equal quality moves, and a negligible

number of moves resulting in solutions with improved cost. Considering that improving solutions

are found after large periods of searching over plateau regions, and the relatively high percentage

of equal cost moves that are accepted compared to improving cost moves, a mechanism is needed

at the meta-search level, rather than at the move acceptance level, to explore the neighbouring

solutions of the solution-in-hand; either to find any potentially improving neighbouring solution(s),

or to prevent cycles from occurring on plateau regions.

Looking into the best move acceptance methods for solving each of the FS instances, AILLA

was able to find a better solution than IE for 67 out of 155 trials. Taking into account of the

mechanism used by AILLA as discussed above, AILLA is able to escape some of these plateau

regions faster than IE by chance after accepting a worse quality move. The instantaneous switch

back to accepting only equal of improving moves by AILLA means that it is able to outperform

other move acceptance methods which employ strategies to accept worse moves of varying degrees

throughout the search. In summary, move acceptance methods under the local search metaheuristic

framework solving different instances of FS problems benefit from either accepting no to very few

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 91

worse moves similarly to Bin Packing.

4.2.3 Personnel Scheduling

The best move acceptance method for solving Personnel Scheduling (PS) problems according to

the per-domain scores was NA. A boxplot comparison of the performance of the move acceptance

methods for solving PS instances can be found in Figure 4.1. The results of performing an ANOVA

test on the normalised results of all PS instances shows that NA is the best method for solving

instances from this problem performing slightly, but not significantly, better than SA, SARH,

TA, and GD when re-tuned per-domain. Looking at the progress plot in Figure 4.3e, we can

see that the search performs a random-walk of the search space. The acceptance statistics, given

in Table 5.11, shows that the ratio of improving, equal, and worse candidate solutions are fairly

balanced at 26.9%, 40.3%, and 32.8% respectively. Analysing the parameter configurations of the

move acceptance methods that did not perform significantly different to NA, we can see that:

• SARH - uses a large (99.99%) setting for χ0 and initiates a reheat after 1
1000000 of the total

computational budget, effectively allowing all moves to be accepted.

• SA - in contrast to SARH uses both high initial and final temperature settings due to the

lack of a mechanism to increase the system temperature. SA uses χ0 = 99.99999999% and

χ0 = 70% causing it to accept at least 70% of all worse moves for the duration of the search.

• TA - uses a relatively large threshold value of 0.8 × f(s0) causing it to accept most worse

moves.

• GD - uses a setting for qualityLB = 100. For smaller instances, this causes GD to accept

all moves and performs well, whereas for larger instances less worse moves are accepted and

does not perform as good; hence, on average GD performs not significantly worse than NA.

Clearly here, an instance-specific parameter tuning method is required for GD to perform

well across all instances of the PS domain.

The other move acceptance methods are far more restrictive. IE trivially does not allow worse

moves to be accepted and is the worst method for solving PS problem instances. AILLA, and

other non-stochastic basic move acceptance methods only allow for solutions to be accepted if their

objective values are not worse than the objective values of previously visited solutions. Therefore,

AILLA is restricted to accepting solutions that are not worse than the objective value of the initial

solution and is hence sensitive to initialisation of the search. Furthermore, AILLA reverts to an

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 92

accept improving or equal strategy after a number of worse moves which is evidently not beneficial

for solving PS problem instances.

Non-stochastic threshold move acceptance methods allow worse moves to be accepted based on

a threshold that can be calculated in different ways, most commonly with respect to the current

solution, or best solution found. AILTA uses the latter strategy, however its internal mechanism

for determining these threshold values does not allow it to generate threshold values that are high

enough to accept much-worse solutions. AILTA also employs the same strategy as AILLA, reverting

to an accept equal or improving moves strategy after improvement is made.

All stochastic move acceptance methods evaluated on the PS domain are tuned per-domain to

accept the majority of worse moves and perform statistically similar. Since the apparent strategy

for solving PS instances is to accept all (or most) moves, the nature of the algorithmic parameter

setting mechanism is not useful in determining the success of the move acceptance method when they

have been re-tuned per-domain. In the cross-domain perspective however, an adaptive mechanism

is needed to control the internal parameters of the move acceptance methods in such a way that

worse moves are accepted most of the time.

Due to the implementation of the Personnel Scheduling problem maintaining solution feasibility

at all times, it requires the use of a specialised local search move operator to swap shift patterns in

the roster which allows for the solution-in-hand to be improved at each iteration. Thus, large and

frequent acceptance of worse moves are needed to allow the search to escape regions of optima. In

conclusion, a local search metaheuristic simply needs a näıve move acceptance strategy accepting

most or all worse moves for solving such problems under the given framework.

4.2.4 Maximum Satisfiability

The best move acceptance method for solving Maximum Satisfiability (SAT) problems according to

the per-domain scores was SARH. A boxplot comparison of the performance of the move acceptance

methods for solving SAT instances is provided in Figure 4.1. The results of performing an ANOVA

test on the normalised results of all SAT instances shows that SARH is the best general method,

and that SA and AILLA are equally as good at solving SAT problems. The results show that the

nature of the algorithmic parameter setting mechanism has a strong effect on the effectiveness of the

move acceptance method to solve MAX-SAT problem instances with the move acceptance methods

utilising a static algorithmic parameter setting mechanism performing poorly on this problem. The

nature of the accept/reject decision did not have much of an effect on the per-domain performance

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 93

of algorithms to solve SAT problems.

SA and SARH use initial and final temperature settings of χ0 = 92%, χ0 = 1/64% and

χ0 = 50%, χn = 1/640% respectively. The difference in parameter settings is despite the wait time

setting of SARH being as high as 90% of the total search time and can be attributed to the sen-

sitivity of interactions between parameters with a fractional DOE. This leads to SARH appearing

to outperform SA, although in practice both algorithms behave the same when wait time is suffi-

ciently large. AILTA is the only method to break this pattern because of its internal mechanism for

calculating threshold values not allowing it to use threshold values large enough for this problem.

AILTA could therefore not accept worse moves, leading to its inferior performance and similarity in

performance to IE. Neither IE, TA, nor AILTA could accept worse moves and it is evident from the

results that this causes them to perform poorly. NA accepts far too many worse moves resulting in

overall performance much worse than those that accept no worse moves. The performance of GD

is extremely variable. This is due to the more-general per-domain parameter tuning which leads

it to perform well on some instances but bad on other instances where a reasonable target value

(qualityLB) is different to that determined from the tuning procedure.

The progress plot, shown in Figure 4.3f, shows SA(RH) solving a Maximum Satisfiability prob-

lem. The behaviour shown is characteristic of Simulated Annealing algorithms, initially accepting

many worse moves, and reducing them over time to converge on a good quality solution towards

the end of the search. In this scenario, SARH behaves the same as SA (without reheating) with the

setting of 90% for the wait time parameter used for solving this problem effectively disabled the

reheat mechanism. The acceptance statistics, given in Table 5.11, shows that the number of worse

candidate solutions is high at 74.5% with only 10.5% of all candidate solutions being improving, and

the remaining 15.0% equal cost. In conclusion, a strategy to accept some worse moves is needed for

solving Maximum Satisfiability problems, however this needs to be controlled appropriately, either

as a dynamically or adaptively, as the näıve acceptance method performs the worst out of the move

acceptance methods investigated.

4.2.5 Travelling Salesman Problem

The best move acceptance method for solving Travelling Salesman (TSP) problems according to

the per-domain scores was IE. A boxplot comparison of the performance of the move acceptance

methods for solving TSP instances can be found in Figure 4.2. The results of performing an ANOVA

test on the normalised results of all TSP instances shows that IE is the best general method, but

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 94

with all other move acceptance methods performing not significantly different. While it would

appear that nothing much can be said about the effectiveness of the different move acceptance

methods, we must consider the parameter settings and control mechanisms used in the evaluated

move acceptance methods.

• TA - the threshold was set to f(si) + 0.001 × f(s0) meaning that very few worse moves are

accepted for large problem instances, and no worse moves are accepted for smaller instances.

• GD - qualityLB = 100, 000. With respect to some larger problem instances, this is very

small meaning that GD behaves like IE after a number of iterations, whereas for some smaller

instances this is too high causing GD to behave as an accept all moves strategy. This means

that GD performs well for solving larger instance sizes, accepting IE moves, but relatively

poorly for smaller instances where GD turns in to random walk.

• SA - The final temperature was tuned to χn = 0% causing SA to behave the same as IE.

• SARH - The final temperature was tuned to χn = 0% causing SARH to behave the same as

IE.

Both AILLA and AILTA only accept worse quality solutions if there is a period of no improvement

and immediately return to accept equal or improving moves after an improvement is made; hence,

their performance is not too dissimilar from IE given the computational overhead of their adaptation

mechanisms. While NA does not perform significantly worse than IE, it is the worst performing

move acceptance method. This can be due to the differences between the problem instances meaning

that those tuned to accept no worse moves perform poorly on other problem instances. Hence, in

retrospect, NA is able to solve such instances better due to its ability to accept worse moves.

Figure 4.3c provides the progress plot for IE solving a TSP problem. It can be seen that the

solution-in-hand is improved over time along with the best solution found suggesting that no strat-

egy for accepting worse moves is need for solving TSP instances well. This observation is made

based on the improved per-domain performance scores when using IE over strategies that always

use exploration strategies such as GD and NA, despite the differences being insignificant. The

acceptance statistics, given in Table 5.11, shows that the ratio of improving, equal, and worse

candidate solutions are extremely skewed to worse candidate solutions, generating (to one decimal

place) 100.0% of all solutions. Note that there were actually 68 improving candidate solution gener-

ated compared to 4908905 worse candidate solutions. In conclusion, while statistically insignificant

for solving TSP problems, the same observations are made as with Bin Packing and Flow Shop

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 95

Scheduling problems where a move acceptance method should accept no (or very few) worse moves

for it to perform better than other methods.

4.2.6 Vehicle Routing with Time Windows Problem

The best move acceptance method for solving Vehicle Routing (VRPTW) problems according to

the per-domain scores was TA. A boxplot comparison of the performance of the move acceptance

methods for solving VRPTW instances is shown in Figure 4.2. The ANOVA test on the normalised

results of all VRPTW instances shows that TA is the best general method, with TA, AILTA, IE,

SA, and SARH performing not significantly different.

The progress plot shown in Figure 4.3h shows TA’s ability to improve the best solution over

time, and without accepting worse moves of large magnitude which would otherwise cause the

search to worsen over time. The acceptance statistics, given in Table 5.11, shows that only 7.8%

of all candidate solutions are improving with over half of all candidate solutions having worse

objective quality. IE, accepting no worsening moves, also performs well on this domain, although

its performance on the whole is worse than TA suggesting IE becomes stuck in a local optima. SA

and SARH are tuned per-domain such that their final temperatures are set very small, χn = 1/64%

for SA and χn = 0% for SARH which causes both methods to either very quickly, or instantly reduce

the system temperature such that no worse moves can be accepted. This means that SA and SARH

perform similarly to IE but with reduced performance due to their computational overhead. AILTA

on the other hand performs better than IE, and only slightly worse than TA. AILTA only accepts

improving or equal moves until a given computational budget has passed without improving the

solution, at which point, it uses an internal mechanism to calculate a threshold value (similar to

TA but with respect to the best solution rather than the solution-in-hand). Similarly to the above

problem domains, the performance of NA is very bad, accepting too many worse moves when such

an aggressive exploration method is not needed; furthermore, the performance of GD is extremely

variable due to the more-general per-domain tuning method giving a target threshold which is not

specific to each instance being solved.

The nature of the accept/reject decision has the most significant effect on the algorithm’s per-

formance with non-stochastic threshold methods performing well due to their ability to allow a

number of worsening moves with small move deltas to be accepted. This is in contrast to non-

stochastic basic methods which can only re-use the objective values of previously visited solutions

as threshold values which may be too high. In conclusion, an acceptance strategy needs to be able

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 96

to accept worse moves to most effectively solve VRPTW problems, but the threshold values used

to determine acceptance of such moves need to be carefully determined since if they are too high,

the search may not converge, and if they are too low, they will perform on par with IE.

4.2.7 0-1 Knapsack Problem

The best move acceptance method for solving 0-1 Knapsack problems (KP) according to the per-

domain scores was AILLA. A boxplot comparison of the performance of the move acceptance

methods for solving KP instances can be found in Figure 4.2. The results of performing an ANOVA

test on the normalised results of all KP instances shows that AILLA is the best general method,

with SA, SARH, NA, TA, and GD performing equally as well. To understand the behaviour of

the move acceptance methods for solving KP problem instances, we must observe their per-domain

tuned parameter settings:

• SA - SA uses χ0 = 80% and χn = 1/32% which means it is able to accept a large number of

worse moves throughout the search, reducing over time.

• SARH - Similar to when SARH was used for solving SAT problems, the wait time parameter

setting is set very high (0.9999) meaning that the reheat mechanism will never be activated

and is not useful in this case. The initial temperatures were tuned to the same χ0 = 80%

however the final temperature was set slightly higher at χn = 0.25 due to the fractional DOE.

The behaviour of SARH is therefore the same as SA.

• TA - The threshold value for TA was set to be τ = 1 × 108 which is higher than the upper

bound of the objective function for KP (1) meaning that all moves are accepted.

• GD - The target value of the threshold for GD was set to be qualityLB = 0, and this is equal

to the lower bound of the objective function for KP. In practice, this allows for the search

to accept many worse moves, but decreases the magnitude of those accepted linearly towards

the end of the search, behaving similar to SA.

NA by definition accepts 50% of all worse moves. The progress plot for AILLA solving an

instance of the KP problem is illustrated in Figure 4.3d. Here, we can see that AILLA is in

fact allowing many worse moves to be accepted, appearing to behave like a random walk. The

acceptance statistics, given in Table 5.11, shows that the ratio of improving and equal to worse

candidate solutions are fairly balanced at 50% each. AILLA accepts all equal and improving

moves, accepting 6.3% of all worse moves, and rejecting the remaining 93.8% of them. Both move

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 97

acceptance methods which perform significantly worse are IE and AILTA. IE is unable to accept

any worse moves, whereas AILTA is unable to accept moves worse enough to benefit the search.

The nature of the accept/reject decision of the move acceptance method clearly has a signifi-

cant effect on the effectiveness of a local search metaheuristic with all stochastic move acceptance

methods performing well with the adaptation mechanism within AILLA allowing it to perform well

also. Complete randomness of the acceptance of worse moves results in a degraded performance of

the move acceptance method, and we can see that in general dynamic and adaptive natures of the

parameter setting mechanisms perform better than those with static methods since they can control

the degree to which worse moves are accepted. It should be noted that the greedy initialisation

procedure used in this domain means that it is an absolute requirement that moves worse than

the initial solution are accepted under such framework as the search starts from a local optimum.

Moreover, the simple heuristic operators pack random and remove random means that once the

knapsack becomes too full to add any other items, an item must be removed before another can

be added. This however means that the objective quality of the solution-in-hand must worsen (in-

crease) before another item can be packed to improve the solution. Hence, the observations made

here are not unsurprising. In conclusion, a move acceptance method must accept a high number of

worse moves initially, but must decrease over time to perform well with move acceptance methods

tuned to accept all moves performing relatively poorly, and those which by design accept no worse

moves performing significantly worse.

4.2.8 Max Cut Problem

The best move acceptance method for solving Max Cut problems (MAC) according to the per-

domain scores was SARH. A boxplot comparison of the performance of the move acceptance meth-

ods for solving MAC instances can be found in Figure 4.2. The results of performing an ANOVA

test on the normalised results of all MAC instances shows that SARH is the best general method,

with SA, IE, TA, and AILTA performing equally as well. The ranks from the ANOVA test shows

that SARH only very slightly outperforms IE and SA. Due to the setting of χn = 0 for SA, SA

behaves the same as IE after the first iteration with computational overheads, thus both perform

similarly as well. SARH however does not have a zero final temperature and allows it to behave

in the traditional way. The same as with other domains where SARH performs well, the frac-

tional DOE means that the final temperature is different between both SA and SARH despite the

wait time parameter of SARH being set sufficiently high to disable the reheat mechanism. This

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 98

allows for SARH to accept worse moves, as expected by SA methods, and is shown in Figure 4.3g

for solving MAC instance #5. We can see that for solving this instance, SA(RH) accepts a large

number of worse moves and is unable to improve the best solution until the last 1/4 of the compu-

tational budget. It should be noted though that a high setting for χn in one instance may not be

as beneficial for solving a different instance of the same problem. Hence, the resulting parameter

settings using the more-general per-domain tuning approach can result in substandard settings for

unseen problem instances. The acceptance statistics, given in Table 5.11, shows that the majority

of candidate solutions are of worse quality, constituting 69.4% of all candidate solutions. 26.0%

of all candidate solutions are of improving quality. SA(RH) accepts 37.5% of all worsening moves

throughout the search process which is approximately twice as high as than for solving SAT problem

instances, but comparing the ratio of improving candidate solutions between MAC and SAT, MAC

also produces 2.5 times as many improving candidate solutions. TA and GD both use relatively

high/low threshold settings of τ = 5× 10−4 and qualityLB = 1× 10−7 respectively for solving the

instances of the MAC problem. This again is due to the per-domain level of tuning and shows that

per-instance tuning is required by these methods for them to perform well.

The nature of the algorithmic parameter settings had a marked effect on the effectiveness of the

move acceptance methods for solving this problem with dynamic and adaptive parameter control

methods performing better in general than static methods. In conclusion, while IE performs fairly

well for solving MAC problem instances, a move acceptance method needs a mechanism to be able

to accept some worse moves to perform better, but accepting too many worse moves with a high

delta value has a detrimental affect on the performance of a local search metaheuristic embedding

the move acceptance method to perform well.

4.2.9 Quadratic Assignment Problem

The best move acceptance method for solving Quadratic Assignment (QAP) problems according to

the per-domain scores was TA. The results of performing an ANOVA test on the normalised results

of all QAP instances shows that TA is the best general method, with IE, AILLA, AILTA, SA, and

SARH performing equally as well. Figure 4.3j shows TA solving instance #0 of the QAP problem.

We can see that the threshold, τ , is only slightly higher than the solution-in-hand and this allows

for enough worse moves to be accepted such that the best solution is continually improved over

time without descending into a random walk of the search space. The acceptance statistics, given in

Table 5.11, shows that the majority of candidate solutions are of worse quality (99.6%), compared

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 99

to just 0.3% of all candidate solutions that are improving. On the whole, TA accepts only 0.4% of all

generated worse candidate solutions. IE is the worst performing move acceptance method of those

that do not perform significantly different to TA and illustrates that some degree of acceptance

of worse moves is required for a move acceptance method to perform well. Such mechanisms are

present in AILLA and AILTA where worse moves are accepted after a period of non-improvement

before returning to accepting equal or improving moves. SA and SARH both have sensible settings

for their initial (χ0 = 70% and 60% respectively) and the same final temperature (χn = 1/64%)

with SARH using a sensible wait time setting which allows for the re-heating mechanism to be

activated.

NA permits too many worse moves and does not discriminate them based on the magnitude

of how worse the moves are leading to consistently poor performance. GD, using its per-domain

parameter configuration, has the opposite problem where the threshold value is decreased so fast,

that it quickly is unable to accept any worse moves, and due to its definition, accepts only improving

moves that have objective values greater than the current threshold value. This means that in this

case, GD is unable to accept equal quality moves lending to its poor performance.

The nature of the parameter settings and nature of the accept/reject decisions did not signifi-

cantly affect the ability of a move acceptance method to perform well for solving QAP instances.

In conclusion, the determining factor for a move acceptance method to perform well in this domain

was for it to be able to accept equal moves, and worse moves with small delta values with those

methods permitting large moves deltas performing significantly worse.

4.2.10 Per-domain Performance Observations

To observe the best move acceptance method(s) for solving each type of problem, a Wilcoxon

Signed Rank test is performed between the best general move acceptance method, as determined

by the best per-domain score, and the remaining methods for each problem using the normalised

set of results from all 5 instances. There are some domains where a single move acceptance method

performs statistically significantly better than all other methods, and some domains where multiple

move acceptance methods perform not significantly different from the best general method, hence

a set of such methods are said to perform equally as well. Bin Packing (IE), Personnel Scheduling

(NA), MAX-SAT (SARH), Vehicle Routing with Time Windows (TA), 0-1 Knapsack (AILLA),

Max Cut (SARH), and Quadratic Assignment (TA) are all solved best by a single move acceptance

method as indicated in parenthesis. For these cases, it is interesting to see that the different move

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 100

Iterations #10
5

0 1 2 3 4

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

0

0.02

0.04

0.06

0.08

0.1

Accepted Solution

Current Best Solution

Best Solution Found

(a)

Iterations #10
7

0 0.5 1 1.5 2

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

#10
4

2.66

2.67

2.68

2.69

2.7

2.71

2.72

2.73

Accepted Solution

Current Best Solution

Best Solution Found

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Iterations 106

2.48

2.49

2.5

2.51

2.52

2.53

2.54

2.55

2.56

2.57

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

107

Accepted Solution
Current Best Solution
Best Solution Found

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iterations 106

3

4

5

6

7

8

9

10

11

12

13

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

10-6

Accepted Solution
Current Best Solution
Best Solution Found

(d)

0 100 200 300 400 500 600 700 800 900

Iterations

5

5.5

6

6.5

7

7.5

8

8.5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

104

Accepted Solution
Current Best Solution
Best Solution Found

(e)

Figure 4.3: Objective function value traces of accepted and current best solutions given a 10
nominal minute computational budget for: IE solving (a) instance 11 of the Bin Packing problem,
(b) instance 11 of the Flow Shop problem, and (c) instance 8 of the Travelling Salesman Problem,
and AILLA (d) solving instance 3 of the 0-1 Knapsack Problem, and NA (e) solving instance 9 of
the Personnel Scheduling problem. Note that the threshold values have been disabled for AILLA
due to frequent switching between accepting all moves, and moves proportional to the best in the
current stage causing the plot to be illegible.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 101

0 1 2 3 4 5 6

Iterations 106

0

50

100

150

200

250

300

350

400

450

500

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
Accepted Solution
Current Best Solution
Best Solution Found

(f)

0 0.5 1 1.5 2 2.5

Iterations 107

7.5

8

8.5

9

9.5

10

10.5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

10-5

Accepted Solution
Current Best Solution
Best Solution Found

(g)

0 1 2 3 4 5 6 7 8 9 10

Iterations 106

0.5

1

1.5

2

2.5

3

3.5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

105

Accepted Solution
Current Best Solution
Threshold Value
Best Solution Found

(h)

5.3 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38 5.39 5.4

Iterations 106

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

104

Accepted Solution
Current Best Solution
Threshold Value
Best Solution Found

(i)

0 0.5 1 1.5 2 2.5

Iterations 107

1.5

1.55

1.6

1.65

1.7

1.75

1.8

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

105

Accepted Solution
Current Best Solution
Threshold Value
Best Solution Found

(j)

Figure 4.3: Objective function value traces of accepted solutions, current best solutions, and accep-
tance thresholds given a 10 nominal minute computational budget for: SARH solving (f) instance
5 of the MAX-SAT Problem and (g) solving instance 5 of the Max-Cut Problem, and TA solving
(h) instance 6 of the Vehicle Routing with Time-Windows problem, with (i) being zoomed in to
illustrate the difference between the accepted solution fitness and threshold values, and TA also
solving (j) instance 0 of the Quadratic Assignment Problem.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 102

acceptance methods come from each classification of the accept/reject nature from the taxonomy,

and that the settings of their parameters were sensible rather than extreme values that cause their

intended search strategy to be lost. Flow Shop (IE, AILLA), and Travelling Salesman (IE, AILLA)

are all best solved by a group of move acceptance methods given in parenthesis proceeding the

respective domains. The set of move acceptance methods which best solves each problem are all

from the basic setting of the nature of the accept/reject decision. Here, IE does not perform

significantly better than AILLA since the mechanism for AILLA to accept worse moves depends on

a consecutive number of non-improving iterations to be performed. AILLA does however perform

better than IE on some Flow Shop and Travelling Salesman problem instances, and this is due to IE

spending a significant amount of its time on plateau regions in the search space, potentially getting

stuck at local optima. During this time, AILLA allows a worse move to be accepted allowing the

search to escape such regions.

In summary, move acceptance methods with different natures of the accept/reject decision are

needed for solving different COPs. Some problems, such as BP, FS, and TSP, are solved well

by accepting only improving or equal cost moves, whereas other problems require worse moves to

be accepted. Some problems benefit from accepting worse moves with small differences between

the objective values of the current and candidate solutions, including VRPTW and QAP, whereas

others prefer accepting large and frequent worse cost moves, such as PS and KP. The SAT and

MAC problems required a balance between accepting large and small move deltas, reducing the

magnitude of worse moves that are accepted in time. Some of these preferences can be attributed

to the relationship between the solution representation and move operators being used and their

objective functions, even under such a single point-based stochastic local search metaheuristic

framework. KP, for example, uses a binary representation with two move operators to remove or

add items from or into the Knapsack. Once the knapsack is full, clearly items must be removed

from it to try other items; however, this is not possible without accepting solutions that have worse

cost since removing an item will result in a worse profit. SAT is similar in that the representation

used is the same, however the move operator is just a simple bit-flip operator, negating the truth

value of a random variable. Once an assignment is reached such that no further single bit flips can

improve the cost of the solution-in-hand, the search will become stuck; hence, worse moves need to

be accepted. The nature of the SAT problem however means that one single bit flip can affect the

truth value of multiple clauses; hence, several bit flips after accepting a worse move may be needed

to improve the solution, or even consecutive bit flips may be able to improve the solution-in-hand.

Therefore, accepting worse moves should not be indiscriminate.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 103

Another interesting observation to make is that the best move acceptance method changes

between each domain depending on the ratio of improving, equal, and worse candidate solutions

generated from the solution-in-hand. Domains that generate a high number of worse candidate

solutions and low number of improving candidate solutions (BP, FS, TSP, VRPTW, and QAP)

were best solved using either IE, or TA with a small but non-zero setting for τ . Domains that

generated a comparatively high ratio of improving candidate solutions (PS, SAT, KP, and MAC)

were solved well using stochastic move acceptance methods.

If a local search metaheuristic is sought for solving problems from a particular domain under the

local search metaheuristic framework, then the respective move acceptance method is recommended

to be used. If a new or unknown problem is to be solved by a practitioner who may want a cheap

and fast solution to their problem, and they have time to re-tune its parameters, we showed that

out of those tested, Simulated Annealing was the most effective method in general with the best

cross-domain µnorm score and is therefore recommended for such scenarios. SA has the ability

when tuned to behave very differently based on its parameter settings allowing for it to accept no

worse moves at all (χn = 0), all or most worse moves when the initial and final temperatures are set

high, or a balance between the two when the initial temperature is high and the final temperature

is small (but not equal to 0). In turn, this allows for the practitioner to only need to consider

the single move acceptance method since it can exhibit all required behaviours for solving different

problems when re-tuned.

4.2.11 Cross-domain Results and Observations

The cross-domain scores for the local search metaheuristic embedding the different move acceptance

methods are shown in the final column of Table 4.1 as the sum of per-domain scores over nine

problem domains. Each per-domain has a theoretical minimum and maximum score of 0 and 45

(9 domains × 5 instances per domain) respectively (lower is better). The results show that most

move acceptance methods, with GD tuned per-domain and NA being the exception, perform better

than the theoretical average; that is, obtaining scores less than 22.5. IE as a move acceptance

method represents a standard hill climbing local search approach with no mechanism for accepting

worse moves, and methods failing to surpass its performance being deemed poor for solving the

cross-domain problem. Moreover, IE is parameter free meaning that no expert intervention is

required to reconfigure it for solving different problems. TA, SA, and SARH all improved over

IE’s cross-domain performance when re-tuned per-domain whereas AILLA, AILTA, GD, and NA

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 104

performed worse under the given local search metaheuristic framework using the high-level per-

domain parameter configurations.

No move acceptance method could consistently perform the best across all problems, despite

their parameters being re-tuned for each problem domain where necessary. Moreover, different move

acceptance methods were able to outperform each other when solving different problem instances

for some of the domains. This result highlights the trade-off between requiring and selecting from

multiple algorithms which perform exceptionally for solving a few problems each, and having a

single algorithm which performs sufficiently well for solving all problems.

The cross-domain performance of SARH closely followed that of SA with scores of 10.88 and

8.62 respectively. An important factor in the design of general-purpose search methods is the

ideological goal of eliminating the need for an expert to reconfigure them when aimed at solving

different problems. That is, once the search method has been designed, it can be used as-is for

solving any other problem. In this study, the parameters of the move acceptance methods were re-

tuned for each problem domain to show their potential as a general-purpose search method requiring

no expert intervention to re-tune them for solving different instances of the same problem.

Generally, it can be observed that using algorithmic parameter setting mechanisms which are not

static improves the cross-domain performance of the algorithms at the same accept/reject nature

level. For static methods, use of a non-stochastic basic algorithmic parameter setting mechanism

has a clear advantage over a non-stochastic threshold mechanism which in turn outperforms a

stochastic mechanism since there is no way for them to adapt to different characteristics of different

instances from the same problem. This is no surprise since static parameter setting mechanisms

have no functionality to reduce the number of accepted worse moves if too many are being accepted.

In contrast, this is now possible given dynamic or adaptive parameter setting mechanisms where

threshold and stochastic mechanisms can improve over move acceptance methods using only static

control methods. It is extremely important to carefully consider the design of adaptive algorithmic

parameter setting mechanisms. Just because a move acceptance method controls their internal

parameters does not necessitate that it will perform well across different problems. As an example,

AILLA and AILTA are classified as adaptive, and their adaptation mechanisms are quite similar

acting upon a set of values which are used directly to determine the acceptance threshold. AILTA

acts upon a set of threshold values (ε) which are multiplied with the cost of the best solution found

so far whereas AILLA acts upon a set of previous best solution values. The significant difference

between AILTA and AILLA is that the set of threshold values used by AILTA are themselves fixed

within the logic of the control mechanism whereas AILLA uses a set of previous best solution values

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 105

that depend on maintaining a memory of the search history and hence reflect feasible and useful

threshold values as learnt from the problem instance being solved. For this reason, AILTA has a

poor cross-domain performance compared to AILLA. This observation is important in the context

of cross-domain search since the ranges of objective values from different objective functions and

problem instances can vary significantly. Threshold values in move acceptance methods using a

non-stochastic nature of the accept/reject decision must be derived from the instance being solved

rather than being defined as a part of the algorithm design process.

4.3 On the Effectiveness of Parameter Tuning versus Choice

of Move Acceptance Method for Cross-domain Search

It is well known that the parameters of metaheuristics require tuning for them to perform well - even

at a per-instance level. Hence, parameter tuning algorithms exist that operate on a per-instance

basis, such as instance specific parameter tuning methods [27] that suggest parameter settings

based on specific characteristics/features of the problem instance being solved. The ultimate aim

of cross-domain search is to devise a single high-level search method that does not require an

expert to re-configure it to perform well for solving real-world COPs; that is, in the absence of such

parameter tuning algorithms/algorithm configuration methods after the search method has been

designed.

One of the goals of cross-domain search is to reduce and preferably eliminate the need for an

expert to configure search methods for them to perform well. The per-domain tuning approach can

be seen as reducing the requirement for expert intervention of an algorithm’s configuration, while the

cross-domain approach eliminates the requirement for such expert intervention after the algorithm’s

design phase. Since the focus of this work is on cross-domain parameter tuning, the influence of

two different “more-general” tuning approaches (per-domain vs. cross-domain at the high level)

with the goal of reducing the overall expert intervention are compared. There has not been a study

before which investigates the effectiveness of these parameter tuning approaches under a cross-

domain search framework, and hence the effects that these approaches have on the cross-domain

performance of the local search metaheuristic framework is explored using the move acceptance

methods. Considering that the cross-domain performance of the local search metaheuristic is also

significantly affected depending on the choice of move acceptance method, in this section the cross-

domain effectiveness of parameter tuning using the two parameter tuning approaches considered

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 106

for cross-domain search methods is compared to that of the choice of the move acceptance method

itself.

The cross-domain performance of the four move acceptance methods that have both per-

domain and cross-domain parameter configurations are used in this work. That is, Threshold

Accepting, Great Deluge, Simulated Annealing, and Simulated Annealing with Reheating. Sec-

tion 4.3.1 discusses the results comparing the effects of the parameter tuning approaches on the

cross-domain performance of the local search metaheuristic embedding each move acceptance

method. Section 4.3.2 compares the significance in the difference in cross-domain performance

of the local search metaheuristic based on the choice of the move acceptance method consid-

ering both per-domain and cross-domain parameter configurations. The full set of results for

each move acceptance method — parameter tuning configuration pairs is available online at:

http://dx.doi.org/10.13140/RG.2.2.14307.99364 along with their associated fnorm(s) values

for the parameter tuning effects and boxplots.

4.3.1 Results for Parameter Tuning Effects

A one-tailed Wilcoxon Signed Rank test (α = 0.95) was performed on each per-domain and cross-

domain tuned move acceptance method pairs using their fnorm(s) scores calculated for each pair

of move acceptance method tuning approaches from all 45 problem instances. The results, given

in Table 4.5, show that for the TA and SARH move acceptance methods, per-domain tuning

statistically significantly improved its cross-domain performance compared to cross-domain tuning

with p-values of 2.444 × 10−204, and 0. On the other hand, cross-domain tuning significantly

improved the performance of SA compared to per-domain tuning (p = 0.01038). One reason why

this could be the case is due to over-tuning of SA’s parameter settings on certain tuning instances

which then perform poorly for characteristically different instances from the same problem. The

cross-domain level of parameter tuning is obtained from tuning SA on instances from multiple

domains and hence a general parameter configuration is produced which is not over-tuned to a

particular problem instance. There is no significance between the two parameter tuning levels for

GD since the setting for qualityLB needs to be derived specific to each instance. Any general

setting for this is bound to lend to poor performance overall due to changes in objective functions

and problem instance characteristics.

The implications that these results have is that for some of the existing move acceptance meth-

ods, increased expert intervention in the form of parameter tuning is required to improve their

http://dx.doi.org/10.13140/RG.2.2.14307.99364

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 107

cross-domain performance, whereas other move acceptance methods can benefit from more-general

tuning approaches such that they are not over-tuned to specific instances of a given problem to

be solved. A purely cross-domain tuning approach, i.e. a single parameter configuration which is

re-used for each problem domain and instance, which is essential for eliminating the need for expert

intervention, significantly reduces the cross-domain performance of the local search metaheuristic

using some of the existing move acceptance methods.

Table 4.5: Comparison of per-domain tuning versus cross-domain tuning effects on the cross-domain
performance of move acceptance methods under a local search metaheuristic framework. Note that
µnorm and νnorm scores cannot be compared between different move acceptance methods as they
are re-calculated for each (per-domain - cross-domain) move acceptance pair.

Move Acceptance
∑
νnorm Mean Std. Sgn. µnorm Mean Std. p-value

Method per-domain cross-domain
TA 422.27 0.303 0.328 < 1028.64 0.737 0.290 2.444× 10−204

GD 875.37 0.628 0.389 ≤ 876.75 0.628 0.387 3.163× 10−1

SA 697.55 0.500 0.316 > 651.21 0.467 0.340 1.038× 10−2

SARH 439.84 0.315 0.262 < 909.61 0.652 0.249 0

4.3.2 Results for Choice of the Move Acceptance Method Effects

The cross-domain performance of the move acceptance methods that are tuned cross-domain (and

in a second test that are tuned per-domain) were evaluated using a Friedman test with repeated

measures (reps=31, n=45) at a confidence interval of 95%. The results of both cross-domain

and per-domain tests can be found in Table 4.6. The results shows that there is no statistically

significant difference in the cross-domain performance of a single point-based stochastic local search

metaheuristic depending on the chosen move acceptance method, both when tuned cross-domain

(p = 0.205, χ2 = 4.58), and per-domain (p = 0.150, χ2 = 5.31).

These results therefore show that when using higher-level parameter tuning methods, either

per-domain or cross-domain, the choice of move acceptance method does not significantly affect the

cross-domain performance of a local search metaheuristic. Hence, the design of a move acceptance

method, and its non-reliance on instance specific parameters, is important if we want to be able to

use if for cross-domain search.

4.3.3 Observations of parameter tuning and choice of the move accep-

tance method effects

The results of the parameter tuning effects and the choice of the move acceptance method effects

experimentation shows while it is possible to tune the move acceptance methods for cross-domain

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 108

Table 4.6: Friedman test comparing the cross-domain performance of the move acceptance methods
using cross-domain and per-domain parameter tuning configurations with n0 that all results are
from the same distribution at CI = 95%. The values are the mean ranks (lower is better) of the
aforementioned test. The best move acceptance method (as chosen as that with the lowest mean
rank), and those which do not statistically significantly differ from the best, for each domain being
stylised bold.

Parameter Configuration TA GD SA SARH χ2(3) p
Cross-domain 2817.9 2846.0 2724.0 2774.1 4.58 2.05× 10−1

Per-domain 2770.7 2875.7 2750.9 2764.6 5.31 1.50× 10−1

search, their cross-domain performance can vary significantly depending on the exact move ac-

ceptance method. Rather than the tuning of parameters being important, at the perspective of

cross-domain search, the design of the move acceptance methods themselves become important.

A boxplot of the fnorm(s) scores for both parameter tuning approaches for all four move accep-

tance methods can be found in Figure 4.4. The boxplot illustrates that while not significant, the

differences in the cross-domain performance of each move acceptance method at the same parameter

tuning level (i.e. cross-domain tuning and per-domain tuning) varies, albeit not significantly, and

that with the exception of SA, the cross-domain performance of per-domain tuned move acceptance

methods can improve slightly over the cross-domain tuning approach for the same move acceptance

method.

The findings from these experiments would therefore suggest that the design of a more effective

move acceptance should have a higher research priority over parameter tuning, at least in the

context/field of cross-domain search, for the following three main reasons:

1. The existing move acceptance methods are extremely sensitive to parameter configurations,

irrespective of whether they have a good or poor cross-domain performance, meaning that it

is unlikely for an existing method to perform well as a cross-domain search method without

significant parameter tuning efforts - this goes against a key goal of cross-domain search which

is to eliminate the need for expert intervention after such a search method has been designed.

2. The choice of move acceptance method has a significant effect on the cross-domain perfor-

mance of a local search metaheuristic.

3. Move acceptance methods that have been re-tuned for each domain can perform significantly

worse than “better” move acceptance methods that have only been tuned cross-domain, and

vice versa.

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 109

0 0.2 0.4 0.6 0.8 1

f
norm

(s) values

M
ov

e
A

cc
ep

ta
nc

e
M

et
ho

d
an

d
P

ar
am

et
er

 T
un

in
g

S
tr

at
eg

y
P

er
-d

om
ai

n

 C
ro

ss
-d

om
ai

n

SARH

SA

GD

TA

SARH

SA

GD

TA

Figure 4.4: The fnorm(s) scores calculated over all eight “move acceptance method - parame-
ter tuning approach” pairs showing the cross-domain performance differences between each move
acceptance method at the same parameter tuning approach level, and between each move ac-
ceptance method using both cross-domain (top) and per-domain (bottom) tuning approaches.
‘+’ marks symbolise statistical outliers according to either fnorm(s) > q3 + 1.5 × (q3 − q1) or
fnorm(s) < q1 − 1.5× (q3 − q1) where q1 and q3 are the 25th and 75th sample data percentiles.

4.4 Summary

In this chapter, an empirical study was conducted to investigate the effects that move accep-

tance methods, as components of single-point based stochastic local search metaheuristics, have on

the cross-domain performance of such algorithms for solving multiple combinatorial optimisation

problems. The experimental results across a benchmark of nine different computationally hard

problems highlight the shortcomings of existing and well-known methods for use as components

of cross-domain search methods, despite being re-tuned for solving each domain. These include

such methods that rely on their parameters to be set specific to the instance being solved, such as

qualityLB for GD, the inability for non-stochastic basic move acceptance methods to accept solu-

tions whose objective values are worse than the initial solution, the assumption of some methods

that exploration is a requirement for good performance when in some cases (BP, FS, TSP) this

is not the case under the given framework, for example all static and dynamic move acceptance

methods with a non-stochastic threshold or stochastic nature of the accept/reject decision embed a

CHAPTER 4. ON THE CROSS-DOMAIN PERFORMANCE OF MOVE ACCEPTANCE
METHODS 110

strategy to allow worse moves that cannot be disabled on-the-fly by an adaptive control mechanism.

The work in this chapter was then extended to observe the effects of parameter tuning versus

the choice of the move acceptance method on the cross-domain performance of a local search

metaheuristic. The results of which showed that both parameter tuning approaches, and the choice

of the move acceptance method have a significant effect on the cross-domain performance of a

local search metaheuristic, but at the cross-domain level of parameter tuning, the effects of using

different move acceptance methods becomes more significant that at the per-domain tuning level.

As one of the goals of cross-domain search is to design a single solution method that does not

require expert intervention to perform well, it is evident that a single point-based stochastic local

search metaheuristic that makes use of the move acceptance methods evaluated in this study are

unlikely to perform well unless their parameters are re-tuned for each and every problem instance.

The outcome of this study suggests that to advance the cross-domain performance of single

point-based stochastic local search metaheuristics, new ideas need to be generated for the design

of efficient move acceptance methods which are both operable, and effective for solving problems,

across multiple domains well using only a single cross-domain parameter configuration. The follow-

ing chapter proposes a new move acceptance method that is designed to be used for cross-domain

search using a single parameter configuration while having a cross-domain performance that is

as-good-as the existing move acceptance methods that are re-tuned for each problem domain.

Chapter 5

The History-based Adaptive

Multi-Stage Threshold Accepting

Algorithm

5.1 Introduction

In the previous chapter, the performance of existing move acceptance methods based on their

characteristics, as classified in the proposed taxonomy from Section 2.3, across multiple instances

from a single domain, and across multiple problem domains (cross-domain) was investigated. Two

high-level approaches to parameter tuning were compared for configuring the parameters of the

move acceptance methods; per-domain where a configuration is found for each domain, and cross-

domain where a single configuration is used across all problem domains. The results highlight the

shortcomings of the existing designs of move acceptance methods with different move acceptance

methods solving some problem domains better than others but do not solve problems from other

domains as well as the other move acceptance methods which can outperform them. Moreover,

the results showed that the parameter sensitivity of existing move acceptance methods means that

when tuned cross-domain, their cross-domain performance is significantly worse than if they had

been re-tuned, even at the per-domain level, and this poses a significant obstacle to the design of

a cross-domain search method that does not require expert intervention to perform well.

The existing move acceptance methods as discussed in the literature review use a single search

strategy. In order for their performance to be improved for solving characteristically different

111

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 112

problems, their parameters need to be re-tuned. This is a problem for the design of high-level

general-purpose search methods as an expert needs to be involved in the decision-making process

for the existing move acceptance methods to achieve a good cross-domain performance. Some of

the existing move acceptance methods employ a parameter control method to adapt the behaviour

of their strategies used to adapt the search trajectory. In other cases, mechanisms are employed

to instigate a partial restart, such as in SARH, to explore different regions of the search space. In

all cases however, their fundamental search strategies remain largely the same and this limits the

ability of existing move acceptance methods to perform well across characteristically different prob-

lems. In this chapter, a novel move acceptance method called History-based Adaptive Multi-stage

Threshold Accepting (HAMSTA) is proposed which is designed to combine and exploit multiple

search strategies to overcome the issues of the existing designs. Moreover, one of these strategies

employ a newly designed move acceptance method (HTA) that was designed as a component of

HAMSTA which maintains a history of previously accepted solutions such that it is able to adapt

the search trajectory to that of the local search landscape.

The HAMSTA move acceptance method is explained in Section 5.2. Section 5.3 revisits the

experimental design for evaluating its cross-domain performance when compared to the existing

move acceptance methods studied in the previous chapter under the local search metaheuristic

framework. The results are discussed in Section 5.4, and this chapter is summarised in Section 5.7.

5.2 History-based Adaptive Multi-Stage Threshold Accept-

ing

When used as a move acceptance method for cross-domain search, those investigated in the previous

chapter highlighted some key shortcomings of the existing methods. These include:

1. The move acceptance method should have a mechanism to allow it to accept only equal or

improving moves if this proves to be beneficial.

2. The move acceptance method should have a mechanism to allow a random walk of the search

space accepting a large number of worse cost moves if this proves to benefit the search.

3. Internal parameters that are used to guide the search should be adapted with respect to

the problem instance being solved, rather than relying on parameter settings being supplied

through instance or domain specific tuning processes. This includes for example any threshold

values that should be proportional to actual move delta values.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 113

4. The move acceptance method should not disallow equal cost moves.

History-based Adaptive Multi-Stage Threshold Accepting (HAMSTA) is an iterative multi-

stage move acceptance method based on a unique three stage design and is designed to address

the aforementioned shortcomings. Each stage uses a different underlying move acceptance method,

each either chosen or designed based on a different search strategy. An exploitation stage, IE [53], is

used to improve an initial solution, accepting improving or equal moves and rejecting worse quality

moves, until the search becomes stuck in a local optimum. An exploration stage, AM [37], is used to

allow a number of indiscriminate perturbations to be made to the solution-in-hand, by accepting all

moves, with the aim of reaching a solution in a different region of the search landscape. A further

stage, HTA — a new move acceptance method as proposed as a component of the HAMSTA move

acceptance method and as explained in Section 5.2.5, is used which aims to balance exploitation

and exploration based on the search history to find the best solution amongst the current region

of possibly multiple local optima. A flow-diagram showing the determination of the termination of

each stage and the transitions between them is shown in Figure 5.1. The move acceptance strategies

and parameter adaptation procedures are shown in the flow-diagram as grey blocks; these and any

associated stage initialisation are detailed in subsections 5.2.2 through 5.2.6. The acceptance of

moves under the HAMSTA move acceptance method for each stage are shown in Equation 5.1,

assuming f(.) is a minimising objective function, and where τi is a threshold value calculated by the

history-based threshold accepting algorithm, δ is an estimate of the maximum number of iterations

required to encounter a local optimum derived during the IE stage, f(sbesti) is the objective value of

the best solution found so far, f(si−δ+1) is the objective value of the solution-in-hand δ−1 iterations

previously, equivalent to the objective value of the solution accepted δ iterations previously (and

this includes those accepted during the AM stage(s)), f(sbesti−δ) is the objective value of the best

solution that was found up until δ iterations previously.

si+1 ←

s
′

i STAGE == IE ∧ f(s
′

i) ≤ f(si) ∨

STAGE == AM ∨

STAGE == HTA ∧ f(s
′

i) ≤ max(f(si), τi)

si otherwise

where τi = f(sbesti) + f(si−δ+1)− f(sbesti−δ)

(5.1)

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 114

𝛿 > 0

Adapt 𝜂 and 𝜔

HTA

𝑐𝑛𝑖𝑙𝑟 < 𝜂

𝑖 − 𝑖𝑠𝑡𝑎𝑟𝑡% 𝛿 == 0

𝑓 𝑠𝑙𝑖𝑠𝑡𝐵𝑒𝑠𝑡 <
𝑓 𝑠𝑝𝑟𝑒𝑣𝐿𝑖𝑠𝑡𝐵𝑒𝑠𝑡

𝑐𝑛𝑖𝑙𝑟 = 0;

𝑐𝑛𝑖𝑙𝑟++;

IE

START

INPUT: 𝜖,𝜔0,Θ, 𝜂0

𝛿 = 0;
𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ;

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤
𝑇𝑏𝑒𝑠𝑡 + 𝜖 × 𝑇𝑡𝑜𝑡𝑎𝑙

𝛿 ← 𝑖𝑏𝑒𝑠𝑡 − 𝑖𝑠𝑡𝑎𝑟𝑡 ;
𝜂 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝜂();

𝜔 ← 𝜔0;

AM

𝑓 𝑠𝑖
′ < 𝑓 𝑠𝑗||

𝑤𝑜𝑟𝑠𝑒𝑀𝑜𝑣𝑒𝑠 ≥ 𝜔

IE
 S

ta
g

e

A
M

 S
ta

g
e

H
TA

 S
ta

g
e

Y

N

N

Y

YN

Y

N

Y

N

Y

N

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝜂();

𝜂 =
𝜂0 × 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 × 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝐼𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝛿 × 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝐼𝑒𝑇𝑖𝑚𝑒

Figure 5.1: Diagram illustrating the transitions between the different stages of HAMSTA, and mech-
anisms to determine the termination of each stage. Note that there is no predefined end state since
the algorithm can terminate during any stage according to the prescribed time-based/iteration-
based computational budget. Arrows which pass into stage boundaries include a stage initialisation
procedure as defined in their respective stage descriptions. Dashed borders indicate a move accep-
tance strategy with IE, AM, and HTA stages being discussed in Sections 5.2.2, 5.2.3, and 5.2.4,
respectively. Processes filled in grey follow their descriptions from the literature where present
(IE and AM), and HTA and the adaptation of η and ω are explained in Sections 5.2.5 and 5.2.6,
respectively. Tcurrent and Tbest are the current time and time that the best solution was found
respectively. i represents an iteration count such that ibest and istart is the iteration that the best
solution was found and the iteration count at the start of the preceding HTA stage.

5.2.1 HAMSTA Parameters

HAMSTA is designed in a way such that its parameters should not need to be re-tuned beyond the

design stage. That is, they should not need to be changed in order for HAMSTA to perform well for

solving different real-world COPs as the internal control mechanisms all adapt in a meaningful way

throughout any given search procedure - this is essential for the design of a cross-domain search

method. HAMSTA has four parameters; ε, ω0, ω
+ and η0, and these are defined as below:

• ε - The amount of time (or iterations) as a factor of the overall computational budget that is

allocated as a wait time setting to determine the termination of an IE stage.

ε ∈ {x | x ∈ R, 0.0 ≤ x ≤ 1.0}

• η0 - The computational budget (time or iterations), as a factor of the overall computational

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 115

budget, which is used to calculate an initial target number of non-improving list repetitions,

η. This in turn is used to determine the termination of an HTA stage, (see Section 5.2.6).

η0 ∈ {x | x ∈ R, 0.0 ≤ x ≤ 1.0}

• ω0 - The target number of worse moves (δ > 0) that should be accepted before an AM stage

is allowed to terminate. ω0 ∈ {x | x ∈ Z, x > 0}

• ω+ - An increment value for ω in the event of non-improvement of the best solution during

an HTA stage, (see Section 5.2.6). ω+ ∈ {x | x ∈ Z, x ≥ 0}

5.2.2 IE Stage

HAMSTA starts with an IE stage which is used initially with two purposes; first to improve the

initial solution as best it can without the need for accepting worse moves. This resolves shortcoming

#1 as explained at the start of this chapter. Secondly, this stage is able to gain an estimate for the

maximum number of iterations of the search that are required to reach a locally optimal solution.

As shown in Figure 5.1, there are two transitions into the IE stage; first as the entry point to

HAMSTA, and the second from an AM stage. HAMSTA maintains five variables in its memory

during an IE stage; Ti, Tbest, istart, and ibest. The variables used in the IE stage and their initial

values are as follows:

• Tcurrent is the record of the current time (or iteration).

• Tstart is the elapsed time when the current stage began.

• Tbest records the time (or iteration) that the best solution was found during the current IE

stage, and is initialised as the current time or iteration, Tbest ← Ti at the start of each IE

stage.

• istart is the iteration count when the most recent IE stage began.

• ibest is the iteration count when the best solution was found during the current IE stage.

The pseudo-code for the operation of an IE stage is shown in Algorithm 3. An IE stage iteratively

improves a single solution by accepting improving or equal cost moves only, as shown in the IE

Stage block of Figure 5.1, until an amount of time (ε×Ttotal) has passed without further improving

the best solution found during the current IE stage. At the start of an IE stage, the current solution

is recorded to allow the best solution found during the current stage to be tracked (sbest ← si), the

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 116

current iteration recorded which is used to track the number of iterations taken to find the best

solution (ibest ← istart ← i), and the current elapsed time recorded for use by the initialisation of

η to estimate the time per iteration (Tbest ← Tstart ← Ti). The IE move acceptance method is

then applied (Lines 10 to 14) until an amount of time has passed without further improving the

best solution found during the current IE stage (Line 4), and while keeping track of the iteration

and time that the best solution was found (Lines 6 to 9). After the IE stage terminates, the

number of iterations taken to find the best solution (δ) is recorded for use in the History-based

Threshold Accepting algorithm in the HTA stage, and η can be calculated using the elapsed time

and iterations during the IE stage. By recording and using δ in subsequent stages, the need for a

wait time parameter in the HTA stage(s) is eliminated allowing more time to be spent exploring

the search space rather than being stuck in local optima waiting to see if the solution can possibly

improve any further.

Algorithm 3: Outline of the IE stage of HAMSTA where; i is the current iteration count,
si is the current solution-in-hand, ε is from the parameter configuration, Ti is the current
elapsed time at iteration i, and Ttotal is the total computational budget.

Input: si, ε, i, Ti, Ttotal
1 sbest ← si;
2 ibest ← istart ← i;
3 Tbest ← Tstart ← Ti;
4 while Ti ≤ Tbest + ε× Ttotal do

5 s
′

i ← random ∈ N(si);

6 if f(s
′

i) < f(si) then
7 ibest ← i;
8 Tbest ← Ti;

9 end

10 if f(s
′

i) ≤ f(si) then

11 si+1 ← s
′

i;
12 else
13 si+1 ← si;
14 end
15 i++;

16 end
17 elapsedIeIterations = i− istart;
18 elapsedIeT ime = Ti − Tstart;
19 δ = ibest − istart;
20 return (si, δ, elapsedIeIterations, elapsedIeT ime);

5.2.3 AM Stage

In HAMSTA, an AM stage follows each IE stage and HTA stage which is when the search is thought

to be stuck in a region of optima. The AM stage is used to perform a number of perturbations to

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 117

the solution-in-hand by accepting all moves with the aim of finding a solution in a different region

of the search landscape. A parameter ω is used to control the number of worse moves (δ > 0) that

are accepted in any given AM stage, allowing HAMSTA to either escape a region of local optima

with lower settings of ω, or the surrounding region of poor-quality optima with higher settings. The

setting of ω is adapted after each HTA stage as described in Section 5.2.6. The idea of counting the

number of worse moves rather than total moves in each AM stage is that it is possible to generate

moves of equal or improving quality. If the search is stuck on a plateau/neutral region of the search

landscape, then it is possible that the target ω is reached without accepting any worse moves and

therefore is unable to move to a different region of the search space.

There are two transitions into the AM stage, as shown in Figure 5.1. Upon transition from an

IE stage, the settings of η and ω are initialised to their default values as defined by η0 and ω0. If

the AM stage is transitioned from an HTA stage, then these parameters are set by the parameter

adaptation mechanism invoked preceding each HTA stage. HAMSTA maintains three parameters

during the AM stage; j, ω, and worseMoves. The parameters used in the AM stage, and their

initialisation, are as follows:

• j is the iteration that the current stage started and is initialised as the current iteration,

j ← i.

• ω is the target number of worse all-moves moves to be accepted and is either initialised to ω0

if transitioned from an IE stage, otherwise it is left to the parameter adaptation mechanism

to control (see Section (5.2.6).

• worseMoves is the current total of worse all-moves moves that have been accepted and is

reset to 0 at the start of each AM stage.

Pseudo-code for the operation of an AM stage is shown in Algorithm 4.

5.2.4 HTA Stage

In HAMSTA, the HTA stage follows each AM stage and aims to improve the solution to the best

quality solution in the current region of the search space by using search history to balance ex-

ploitation and exploration. The HTA stage uses an underlying History-based Threshold Accepting

algorithm, as explained in Section 5.2.5, to determine an acceptance threshold (τ) where a move is

accepted if the cost of the candidate solution is not worse than the worst of the current solution and

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 118

Algorithm 4: Outline of the AM stage of HAMSTA where; si is the current solution-in-
hand, i is the current iteration count, and ω is the target number of worse all-moves moves
to be accepted before terminating the AM stage.

Input: si, i, ω
1 sinit ← si;
2 worseMoves = 0;
3 while worseMoves < ω ∧ f(si) ≥ f(sinit) do

4 s
′

i ← random ∈ N(si);

5 if f(si) > f(s
′

i) then
6 worseMoves++;
7 end

8 si+1 ← s
′

i;

9 end
10 return si;

a threshold value, τ . The acceptance of moves under the HTA algorithm is illustrated in Equation

5.2 and incorporated into the above HAMSTA acceptance in Equation 5.1.

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), τi)

si otherwise
(5.2)

HAMSTA maintains in memory during an HTA stage the parameters δ, and η, from which δ is

derived from the IE stage, and η is controlled by the parameter adaptation mechanism of HAMSTA.

In addition, HAMSTA also maintains the variables; istart, cnilr, f(slistBest), and f(sprevListBest).

The parameters and variables used in the HTA stage, and their initialisation, are as follows:

• δ is the record of the estimated maximum number of iterations required to find a local

optimum, as derived from the IE stage as the number of iterations taken to find the best

solution and determines the length of the threshold history list.

• η is the target number of consecutive non-improving repetitions of the threshold history list

and is controlled by the parameter adaptation mechanism of HAMSTA. When cnilr == η,

the HTA stage terminates.

• istart keeps a record of the iteration count when the HTA stage began and is initialised as,

istart ← i. It is used by HTA to determine when a full repetition of the threshold history list

has been achieved.

• cnilr maintains a record of the number of consecutive non-improving repetitions of the thresh-

old history list, initialised as cnilr ← 0, and is used by HAMSTA to determine when the HTA

stage should end.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 119

• f(slistBest) keeps track of the objective value of the best solution found during the current

repetition of the threshold history list within the HTA algorithm and is re-initialised at the

start of each list repetition as f(slistBest)← f(si).

• f(sprevListBest) keeps track of the objective value of the best solution found during the pre-

vious repetition of the threshold history list within the HTA algorithm and is re-initialised at

the start of each list repetition as f(sprevListBest)← f(slistBest).

• The roles of f(slistBest) and f(sprevListBest) are to allow the HTA algorithm to detect whether

the current repetition of the threshold history list was improving or non-improving, and hence

supports the cnilr parameter.

The operation of a HTA stage and HTA algorithm is as follows, and as shown using pseudo-code

in Algorithm 5. A random perturbation is made to the solution-in-hand to produce a neighbouring

solution, s
′

i. A threshold τi is calculated according to the HTA algorithm as τ = f(sbesti) +

f(si−δ+1)− f(sbesti−δ) from which the move is either accepted (f(s
′

i) ≤ max(f(si), τ)) or rejected

(f(s
′

i) > max(f(si), τ)) where; f(sbesti) is the objective value of the best solution found so far,

f(si−δ+1) is the objective value of the current solution accepted δ − 1 iterations previous (the

objective value of the accepted solution δ iteration previous), and f(sbesti−δ) is the objective value

of the best solution δ iterations previous. That is, the threshold value tracks with the objective

value of the best solution to promote higher exploitation effects as the best solution continues to be

improved. If the best solution has been improved, then it is updated as the candidate solution, and

the bestFound flag updated. At this step, the best solution found during the current list repetition

is also updated. This process repeats until a number of iterations has passed which is a multiple of

δ (a full list repetition has been performed), at which point the maxCnilrToBest is updated with

the help of two other tracking variables f(slistBest) and f(sstageBest), and the current value of cnilr

is updated depending on whether the current list repetition found a solution which improved the

best solution found so far during the current HTA stage (cnilr = 0), or not (cnilr++). The HTA

stage continues until a consecutive number of non-improving list repetitions (cnilr) has elapsed

that exceeds an upper limit (η).

5.2.5 History-based Threshold Accepting

The history-based threshold accepting algorithm (HTA algorithm) is an adaptive non-stochastic

threshold move acceptance method that is synonymous to that of Late Acceptance (LA) [28], but

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 120

Algorithm 5: Outline of the HTA stage of HAMSTA where; si is the current solution-in-
hand, i is the current iteration count, δ is the estimated maximum number of iterations
required to encounter a local optimum (as derived from the IE stage), and η is the maxi-
mum number of consecutive non-improving list repetitions permitted before the HTA stage
should terminate.

Input: si, i, δ, η
1 istart ← i;
2 cnilr = 0;
3 maxCnilrToBest = 0;
4 bestFound = false;
5 slistBest ← si;
6 sprevListBest ← si;
7 sstageBest ← si;
8 while cnilr < η do

9 s
′

i ← random ∈ N(si);
10 τ = f(sbesti) + f(si−δ+1)− f(sbesti−δ);

11 if f(s
′

i) ≤ max(f(si), τ) then // Accept

12 si+1 ← s
′

i;
13 else // Reject

14 si+1 ← si;
15 end

16 if f(s
′

i) < f(sbest) then // Update best

17 sbest ← s
′

i;
18 bestFound = true;

19 end

20 if f(s
′

i) < f(slistBest) then // Update list best

21 slistBest ← s
′

i

22 end
23 if (i− istart) mod δ == 0 then // Adapt cnilr after each full list repetition

24 if f(slistBest) < f(sstageBest) then
25 maxCnilrToBest = max(cnilr,maxCnilrToBest);
26 sstageBest ← slistBest;
27 cnilr = 0;

28 else
29 cnilr++;
30 end
31 sprevListBest ← slistBest;
32 slistBest ← si+1;

33 end
34 i++;

35 end
36 return (si, bestFound,maxCnilrToBest);

with the addition of a mechanism that promotes higher exploitation effects whenever the best

solution is improved. This stage is designed in such a way that shortcomings #3 and #4 are

addressed. That is, that threshold values are proportional to the problem instance being solved,

as they are learnt during the search, and that no equal cost moves are disallowed by restricting

acceptance to improving moves only. Furthermore, due to the combination of HTA as described

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 121

below, and the adaptation of the number of list repetitions with respect to how well the search

is progressing, shortcoming #2 is also addressed. In this section, the HTA algorithm is outlined,

and various list initialisation strategies are explored — illustrating the performance and range of

behaviours that can be achieved by HTA, including that that is ultimately used when used as the

move acceptance method for the exploration/exploitation stage within HAMSTA.

HTA Definition

The acceptance mechanism of the HTA algorithm is shown in Equation 5.3. Like all non-stochastic

threshold move acceptance methods from the literature, a move is accepted if the objective value

of the candidate solution is not worse than the maximum (worst) of the current solution, and a

threshold value. That is, f(s
′

i) ≤ max (f(si), τi).

si+1 ←

 s
′

i f(s
′

i) ≤ max(f(si), τi)

si otherwise

where τi = f(si−L+1)− f(sbesti−L) + f(sbesti)

(5.3)

The HTA algorithm combines strategies used by Late Acceptance (LA) and Record-to-record

Travel (RRT) to exploit the features of characteristically different search spaces using only a single

algorithm whereby; a list of fixed length containing the objective values of the L previously accepted

solutions is maintained for calculating a threshold value based on the objective value of the solution

accepted a number of iterations prior to the current iteration (as used by LA). The idea behind

maintaining a memory of solution values is that the HTA algorithm can, when combined with a

suitable list length, “learn” the landscape feature(s) present in the problem being solved which

can then aid a more effective search process. Moreover, a secondary list of the same nature is

maintained, but contains the objective values of the best solution found at the given iteration.

This allows HTA to reduce the threshold values over time whenever the best solution is improved

(as used by RRT). The idea behind employing this strategy is that if a search procedure is in an area

of the search landscape region where the best solution is being improved, then exploitation should

be favoured over exploration. That is, the number of worse moves accepted should be decreased in

time and irrespective of the move operator employed. Thus, one of the advantages that HTA has

over LA is that the threshold values used by HTA have the ability to change as the best solution is

improved (adapt to the current search state); hence, the threshold values are decreased proportional

to any improvement in the best solution found so far and promoting stronger exploitation effects

when compared to the standard LA. If the search does not enforce the solution to be improved over

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 122

𝑓 𝑠௦௧

𝑓 𝑠

𝑖 − 5 𝑖 − 4 𝑖 − 3 𝑖 − 2 𝑖 − 1

Memory 𝐿 = 5

𝑖 − 5 𝑖 − 4 𝑖 − 3 𝑖 − 2 𝑖 − 1

𝜏 = 𝑓 𝑠ିାଵ − 𝑓 𝑠௦ షಽ
+ 𝑓 𝑠௦௧

where
𝑓 𝑠ିାଵ is the solution accepted 𝐿 iterations previously.
𝑓 𝑠௦௧షಽ

is the best solution found as of 𝐿 iterations previously.
𝑓 𝑠௦௧

 is the current best solution.

𝑖

𝑖

Current state

Figure 5.2: Illustration of the calculation of the threshold value (τi) according to the History-based
Threshold Accepting algorithm (HTA) using a memory of objective function values of the best
solutions (f(sbest)) and current solutions (f(s)) from the current iteration, i, to those L iterations
previous, i− L.

time, such as with TA and NA as explored in the previous chapter, then problems which have move

operators that generate a high number of worse candidate moves are unlikely to perform well. This

method of exploitation exploits the chance that if we are in an area of the search landscape region

where the best solution can be improved, then we should favour exploitation over exploration. If

the search is in a region of the search space where the best solution is not being improved, then this

exploitation is naturally scaled back, since the objective value of the best solution is not improving,

and allows the search to escape from some regions of local optima which it would otherwise become

trapped, and is then equivalent to LA.

In the HTA algorithm, the threshold value τi is calculated at iteration i based on a fixed

length (L) memory of the objective values of; the accepted solution a number of iterations previous

(f(si−L+1)), the best solution found as of the same number of iterations previous (f(sbesti−L)), and

the current best solution found (f(sbesti)). The calculation of the threshold value is illustrated in

Figure 5.2 and highlights the memory indices (with respect to the current iteration) that are used

for both the histories of the best and current solutions.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 123

List Initialisation Strategies

There are two design choices to be made for the design of the HTA algorithm. First is the length

of the list, and the second is the list initialisation strategy. As HTA is synonymous to LA, the

effects of the setting of the list length parameter is the same as in LA where a small (large) list

length provides a fast (slow) convergence time, but a relatively poor (good) quality solution as a

result [177]. Since HTA is designed for use in HAMSTA to provide a well performing search strategy

by exploiting the search space features, the list length is set equal to the number of iterations taken

to encounter the local optimum from the initial solution. That is, an estimate for the maximum

number of iterations required to encounter a local optima. The second design choice is the list

initialisation strategy, and multiple strategies are compared below.

Three strategies are explored for the list initialisation strategy. The first two are simple strategies

where all elements of the list are set to the same value; first, the maximum move delta (∆max)

over the first L iterations is used, and the second is to set all values to zero, and this simulates IE

move acceptance. An infinite strategy was also explored but preliminary analysis showed this to

perform significantly worse than the strategies explored herein; hence, traces using such strategy

are omitted for brevity. The third strategy that is explored follows the style of the values that

eventually populate the HTA list under the HAMSTA move acceptance method due to the use of

the All-Moves stage, and this causes the values in the list to decrease over the length of the list.

For the sake of comparison, this is emulated by initialising the values in the list such that they

linearly decrease from an initial value equal to ∆max (as previous) to zero; however, in practise,

these values will follow the terrain of the local search landscape region.

Figures 5.3a, 5.3b, and 5.3c show the accepted and best solution values for the three list ini-

tialisation strategies for solving an instance of MAX-SAT, Max Cut, and Quadratic Assignment

problems respectively. The zero-ing strategy, equivalent to the IE move acceptance method, has

a superior convergence rate when compared to the HAMSTA-style and ∆max strategies; however,

always obtains inferior solutions. The HAMSTA-style and ∆max list initialisation strategies outper-

form the zero-ing (IE) strategy, except for the case of ∆max when solving the MAX-SAT problem

instance. In all cases, the HAMSTA-style strategy can find high quality solutions faster than ∆max,

but ∆max can eventually outperform the HAMSTA-style strategy at larger computational budgets.

This however could be due in part to the HAMSTA-style list initialisation using emulated values

rather than ones that have been “learnt” from the search space of the problem that it is solving

itself; as mentioned before, such investigation is however left for future studies.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 124

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations (8.4 milliseconds) 105

0

20

40

60

80

100

120

140

160

180

200

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Hamsta Style --- Accepted
Hamsta Style --- Best
Maximum delta in L iterations --- Accepted
Maximum delta in L iterations --- Best
Zeroed --- Accepted
Zeroed --- Best

(a) HTA solving instance ID #3 of the MAX-SAT problem. While zero-ing
(equivalent to IE) is superior to initialising the list using ∆max, a HAMSTA-
style initialisation proves superior to the zero-ing strategy in this case.

0 2 4 6 8 10 12

Iterations (1.5 milliseconds) 104

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

Hamsta Style --- Accepted
Hamsta Style --- Best
Maximum delta in L iterations --- Accepted
Maximum delta in L iterations --- Best
Zeroed --- Accepted
Zeroed --- Best

(b) HTA solving instance ID #0 of the Max Cut problem. Both ∆max and
a HAMSTA-style initialisation perform superior to the zero-ing strategy with
the former finding a better quality solution, but in a longer time frame.

Figure 5.3: Accepted and best solution values for the HTA algorithm solving; (a) instance ID #3
of the MAX-SAT problem, (b) instance ID #0 of the Max Cut problem, and (c) instance ID #7 of
the Quadratic Assignment problem with three different list initialisation procedures.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 125

0 1 2 3 4 5 6 7 8 9 10

Iterations (3.0 minutes) 106

4.48

4.5

4.52

4.54

4.56

4.58

4.6

4.62

4.64

4.66

4.68

4.7

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

Hamsta Style --- Accepted
Hamsta Style --- Best
Maximum delta in L iterations --- Accepted
Maximum delta in L iterations --- Best
Zeroed --- Accepted
Zeroed --- Best

(c) HTA solving instance ID #7 of the Quadratic Assignment problem. Both
∆max and a HAMSTA-style initialisation perform superior to the zero-ing
strategy. While both the HAMSTA-style and ∆max strategies perform simi-
larly, the HAMSTA-style strategy is able to find a high quality solution much
faster than the latter, and at a rate not too dissimilar from the zero-ing strat-
egy.

Figure 5.3: Accepted and best solution values for the HTA algorithm solving; (a) instance ID #3
of the MAX-SAT problem, (b) instance ID #0 of the Max Cut problem, and (c) instance ID #7 of
the Quadratic Assignment problem with three different list initialisation procedures.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 126

Convergence plots of the HTA algorithm using a HAMSTA-style list initialisation strategy using

objective values of the accepted solutions are shown in Figure 5.4. Figures 5.4a, 5.4c, and 5.4e

illustrate the convergence of HTA for solving an instance of the SAT, MAC, and QAP problems

respectively over a 3-minute computational budget. Figures 5.4b and 5.4d are focused versions of

5.4a and 5.4c respectively, focusing on the time period to convergence. All plots indicate that HTA

runs to convergence, but presents a peculiar case when solving an instance of the SAT problem

where a high-quality solution is found early-on, but the search diversifies slightly before converging

on a sub-optimal solution. When solving MAC instance #0, HAMSTA finds a high quality solution

early on which is not able to be improved.

Figure 5.5 compares the progress plots of HTA with HAMSTA-style list initialisation to its

derivatives, Late Acceptance (LA) and Record-to-record Travel (RRT), as well as IE for complete-

ness. The list lengths for HTA and LA are set equally to the number of iterations required to find

the best solution using an IE search strategy. The threshold value for RRT, and the starting value

for the HAMSTA-style list initialisation of HTA, is set as ∆max. The progress plots illustrate that

the novel hybridisation of LA and RRT to form HTA has a superior performance compared to its

derivatives in this case.

5.2.6 Parameter Adaptation

The ability of HAMSTA to search across characteristically different search spaces is aided by the

adaptation of its internal parameters η and ω. After each HTA stage has been completed, these

parameter settings are adapted based on the search history to optimise the internal mechanisms

that guide the search process by controlling the magnitude of the exploration (ω), and minimising,

where appropriate, the exploration budget for any given HTA stage (η).

Initial setting of η

The first time that the HTA stage is used, η is set according to η0, and δ from the IE stage, and

is equal to the number of list repetitions (rounded up) that can be achieved in a predefined com-

putational budget of the total search budget. If HAMSTA is using an iteration-based termination

criterion, then η can be calculated as shown in Equation 5.4. Otherwise, if HAMSTA is using a

time-based termination criterion, then the elapsed time from the most recent IE stage and number

of iterations executed in the most recent IE stage are used to estimate the time taken for each

iteration such that η can be calculated as shown in Equation (5.5).

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 127

(a)

Search Period x [1,50] (18 seconds)
0

50

100

150

200

250

300

350

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Convergence Plot of Accepted Solutions for HTA Solving SAT Instance #3
with Hamsta-style List Initialisation

(b)

Search Period x [1,50] (3 minutes)

-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

-3.3

-3.2

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

Convergence Plot of Accepted Solutions for HTA Solving MAC Instance #0
with Hamsta-style List Initialisation

(c)

Search Period x [1,50] (1.5 milliseconds)

-3.9

-3.8

-3.7

-3.6

-3.5

-3.4

-3.3

-3.2

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

Convergence Plot of Accepted Solutions for HTA Solving MAC Instance #0
with Hamsta-style List Initialisation

(d)

Search Period x [1,50] (3.0 minutes)

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

Convergence Plot of Accepted Solutions for HTA Solving QAP Instance #7
with Hamsta-style List Initialisation

(e)

Figure 5.4: Boxplots of the objective values of accepted solutions illustrating the convergence of
HTA over three characteristically different problem domains. ‘+’ marks symbolise statistical outliers
according to either f(s) > q3 + 1.5 × (q3 − q1) or f(s) < q1 − 1.5 × (q3 − q1) where q1 and q3 are
the 25th and 75th sample data percentiles.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 128

Figure 5.5: Comparison of the accepted solution values for the HTA algorithm using a HAMSTA-
style list initialisation strategy for solving instance ID #3 of the MAX-SAT problem compared to
IE, LA, and RRT. The list length for LA is equal to that used in HTA which is equal to ∆max.
Both HTA and IE have a faster convergence than LA and RRT with HTA outperforming IE, and
while also finding better quality solutions given the 3 minute computational budget.

η =

⌈
η0 × iterationLimit

δ

⌉
(5.4)

η =

⌈
η0 × timeLimit× elapsedIeIterations

δ × elapsedIeT ime

⌉
(5.5)

Adaptation of η

The purpose of η is to control the number of consecutive non-improving list repetitions before

terminating a HTA stage. If this setting is too high, then a high proportion of the computational

budget is wasted searching in the same local optimum; however, if this setting is too low, then

it is possible that the HTA stage is prematurely ended meaning that better quality solutions are

left undiscovered. It is therefore desirable to start with a high-enough setting for η such that

high quality solutions are not missed in most search spaces, but to control η such that its setting

converges on a value over time that is better suited for the search space of the problem being solved.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 129

The parameter adaptation mechanism requires three parameters which are used to determine

the setting for η; η, ηbest, bestFoundInCurrentStage, and ηlb where η is the current setting, ηbest is

the setting of η when the best solution was found, bestFoundInCurrentStage shows whether the best

solution found was found in the current HTA stage, and ηlb is the maximum number of consecutive

non-improving list repetitions that were required to find the best solution in the current HTA stage

- an estimate for the lower bound for η. η is adapted based on the scheme shown in Equation (5.6).

η ←

⌈
η + ηlb

2

⌉
bestFoundInCurrentStage

ηbest otherwise

(5.6)

Figure 5.6: Annotation of the stages in an execution of the HAMSTA algorithm where; α is the
initial IE stage (Lines 4-8 of Algorithm 2), β is an AM HTA stage (Lines 10-15 of Algorithm 2),
and γ is an HTA stage (Lines 19-24 of Algorithm 2). Note that the yellow trace represents the
threshold value, which is infinite during an AM stage, the blue trace represents the objective value
of the current solution, and the orange trace represents the objective value of the best solution
found so far.

Adaptation of ω

The purpose of ω is to control the number of worse all-moves moves that are accepted in each

AM stage and hence decide the termination of each AM stage. When HAMSTA becomes stuck in

a local optimum or region of optima, and the HTA stage is unable to escape it/them, it is then

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 130

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Figure 5.7: Annotation of the algorithmic parameters of an actual execution of the HAMSTA
algorithm where; δ is the number of iterations to find the best solution in the IE stage, ε is the
amount of time that should pass after finding the best solution in the IE stage before entering
the AM stage, and η is the maximum consecutive non-improving list repetitions value dependant
on the η0 parameter and internal adaptation mechanisms. Note that the yellow trace represents
the threshold value, which is “infinite” during an AM stage, the blue trace represents the objective
value of the current solution, and the orange trace represents the objective value of the best solution
found so far.

necessary to accept some worse moves. In the HAMSTA algorithm, the AM stage is used to escape

such regions of local optima. By accepting a higher number of worse moves, the search can reach

different regions of the search space. If HAMSTA, however, is in a promising region of the search

space, then it is favourable to accept only a few worse moves in an attempt to find a better quality

region of the search space close to that of the solution-in-hand. By adapting ω, the aim is to control

this exploration phase of the search by exploiting the history from the HTA stage.

The parameter adaptation mechanism requires three parameters which are used to determine

the setting for ω; ω, ω+, and a boolean bestFoundInCurrentStage which shows whether the

current HTA stage was able to improve the best solution found. ω is adapted based on the scheme

shown in Equation (5.7).

ω ←

 ω0 bestFoundInCurrentStage

ω + ω+ otherwise
(5.7)

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 131

5.3 Experimentation

The aim of the work in this chapter is to contribute a novel move acceptance method which, as a

component of a local search metaheuristic, has a cross-domain performance that is as-good-as the

existing move acceptance methods that are re-tuned for each problem domain, but without itself

requiring re-tuning beyond its design stage. That is to say HAMSTA uses a single cross-domain

parameter configuration. The cross-domain performance of HAMSTA, as the proposed method,

tuned only cross-domain is therefore compared to the eight other move acceptance methods that

were investigated in the previous chapter, and that are themselves tuned both cross-domain (πxd),

and per-domain (πd) where plausible, across the full set of 45 problem instances spanning 9 problem

domains as used previously under a single-point based local search metaheuristic framework. The

experimental framework and move acceptance method configurations follow those as detailed in

the methodology given in Section 3. The parameter configuration used for HAMSTA is given in

Section 5.3.1 along with the results of the respective parameter tuning experiments.

In cohesion with the work in the previous chapter, the cross-domain performance of the move

acceptance methods are compared using their µnorm scores. A non-parametric variant of the one-

way ANOVA with repeated measures test in the form of the Friedman’s test is also used to compare

the statistical significance between the performance of each of the move acceptance methods.

In addition to boxplots of the fnorm(s) scores being used to illustrate the performance of

each move acceptance method, an experimental cumulative distribution function (ECDF) plot

is proposed as a more illustratively descriptive statistic of the comparative cross-domain per-

formance of multiple algorithms. The ECDF plot uses the fnorm(s) scores from each trial to

form a cumulative distribution of them, and such distribution is plotted for each move acceptance

method. The area under the ECDF shows the cross-domain performance of a given move accep-

tance method, m, and this area is inversely proportional to the the respective µnorm score such

that
∫ 1

0
ecdf(m)dm = 1− µnorm(m)

n
where n is the total number of trials.

5.3.1 Cross-Domain Parameter Tuning

As with previous move acceptance methods that were tuned cross-domain, HAMSTA is tuned on a

subset of domains and instances. This means that the remaining 5 domains are completely unseen

and hence HAMSTA is evaluated without any additional expert intervention. HAMSTA, containing

four parameters, is tuned for cross-domain search using the Taguchi Design of Experiments method

as used previously for tuning move acceptance methods with three or more parameters. The

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 132

parameters of HAMSTA were tuned using a 4-factor 5-level L25 Orthogonal Array design where;

ε ∈ {0.01, 0.02, 0.05, 0.10, 0.20}, ω0 ∈ {0.01, 0.02, 0.05, 0.10, 0.20}, ω+ ∈ {1, 2, 3, 4, 5}, and η0 ∈

{0, 1, 2, 3, 4}.

Figure 5.8: Results of tuning the parameters of HAMSTA for cross-domain search using
the Taguchi DOE with a 4-factor 5-level L25 Orthogonal Array. Reported means are
mean µnorm values from the 8 training instances computed over all 25 parameter config-
uration experiments. Parameter values at each level for each parameter are as follows;
ε [{1, 2, 3, 4, 5} 7→ {0.01, 0.02, 0.05, 0.10, 0.20}], η0 [{1, 2, 3, 4, 5} 7→ {0.01, 0.02, 0.05, 0.10, 0.20}],
ω0 [{1, 2, 3, 4, 5} 7→ {1, 2, 3, 4, 5}], and ω+ [{1, 2, 3, 4, 5} 7→ {0, 1, 2, 3, 4}].

The results of performing tuning show that the best settings to use for cross-domain search

is πHAMSTA
xd = {ε = 0.10, ω0 = 0.01, ω+ = 1, η0 = 1}. The results also highlight the importance

of having a sufficiently large waiting time (ε) with smaller settings having a detrimental affect on

HAMSTA’s cross-domain performance. When used as a search method for cross-domain search,

HAMSTA benefits from small settings of η0, ω0, and ω+. η0, affecting the permissible number of

consecutive non-improving list repetitions before an HTA stage is terminated, has the best setting

equal to the smallest tested (0.01) meaning that if the time since the best solution found during

the current HTA stage exceeds 1% of the total computational budget, then the HTA stage is

terminated. The general trend apparent from the results in Figure 5.8 for improved performance at

smaller settings would also suggest that further improvement in the cross-domain performance of

HAMSTA may be possible if further tuning is conducted at even lower settings. The initial number

of worse all-moves moves (ω0) is required to be at least 1 in order to both utilise an AM stage,

and populate the list of move deltas within the HTA algorithm. ω0 was therefore tuned with the

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 133

Table 5.1: Parameter configuration of HAMSTA tuned per-domain across each of the nine bench-
mark problem domains using 1 small and 1 large selected instance for tuning of each domain.

Domain ε η0 ω0 ω+

BP 0.20 0.01 1 1
FS 0.20 0.20 1 1
PS 0.02 0.02 2 2
SAT 0.01 0.05 1 1
TSP 0.20 0.20 1 1
VRPTW 0.01 0.10 4 3
KP 0.02 0.01 1 0
MAC 0.01 0.10 5 2
QAP 0.01 0.10 1 0

values ω0 ∈ {1, 2, 3, 4, 5} and the best setting for cross-domain search was equal to 1. ω+ on the

other hand determines the value by which ω is incremented, as decided by one of the parameter

adaptation mechanisms of HAMSTA. For tuning, the possibility to disable this mechanism was also

explored, essentially causing ω to be fixed for the duration of the search, and was hence tuned with

the settings ω+ ∈ {0, 1, 2, 3, 4}. The results of tuning ω+ showed that disabling this mechanism

(ω+ = 0) caused the cross-domain performance of HAMSTA to deteriorate with the best setting

being ω+ = 1 when tuned for cross-domain search.

To allow the behaviours of HAMSTA to be compared across solving characteristically different

COPs in the form of progress plot analysis, additional tuning was performed at a per-domain level

to gain insights into its behaviour; the results of which are summarised in Table 5.1.

The presence of different parameter settings for different problem domains shows that while

HAMSTA is designed for cross-domain search, inevitably and unsurprisingly its performance is still

sensitive to its parameter values. With the exception of the Personnel Scheduling and 0-1 Knapsack

problem domains, some domains require the smallest setting for ε to achieve the best performance

whereas for others, the largest setting was favoured. Looking back at the results from Section 4.2,

the domains that preferred the highest setting for ε correlate to those domains that were best solved

by the IE move acceptance method, but there is no other obvious correlation with respect to the

lower settings of ε. Comparison of the progress plots for such domains, irrespective of the parameter

tuning approach, highlights the differences in their search landscapes and hence the requirement for

such parameter settings in each case. The settings for η0 do not seem to follow any trends however

a higher setting can be seen to aid those domains where few worse moves are required to achieve

best performance. The settings for ω0 and ω+ appear to be inter-linked with low settings of ω0

corresponding to low settings of ω+ and vice-versa for higher settings. In 2 out of the 9 domains,

KP and QAP, disabling the strategy of incrementing ω proved beneficial to the performance of

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 134

HAMSTA for solving those domains. Comparison of the progress plots for these domains shows

a significant change in behaviour of HAMSTA going from a seeming random-walk when using the

cross-domain parameter configuration πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1} to a more

reasonable search trajectory using their per-domain parameter configurations, πHAMSTA
d (KP) =

{ε = 0.02, η0 = 0.01, ω0 = 1, ω+ = 0} and πHAMSTA
d (QAP) = {ε = 0.01, η0 = 0.10, ω0 = 1, ω+ = 0}

for KP and QAP respectively.

5.4 Experimental Results

The results comparing HAMSTA to the existing move acceptance methods are shown in Table 5.2.

The top portion of the table shows the results for comparing HAMSTA (πxd) to the existing move

acceptance methods that are also tuned for cross-domain search. The bottom portion of the table

shows the results for comparing HAMSTA (πxd) to the existing move acceptance methods that can

be re-tuned for each problem domain.

The cross-domain tuned comparison shows that HAMSTA has the best cross-domain perfor-

mance with a µnorm score of 254.19, and with the 2nd best move acceptance method being SA

with a µnorm score of 360.82. The results of performing a Friedman’s test shows that there

is a significant performance difference between the tested cross-domain tuned move acceptance

methods
(
p = 0.00, χ2(8) = 3232.93

)
. Post-hoc analysis shows that while HAMSTA has the best

cross-domain performance, it does not statistically significantly differ from SA, IE, or AILLA with

µnorm scores of 360.82, 416.61, and 500.64 respectively. The per-domain tuned comparison, where

HAMSTA is still tuned only cross-domain, also shows that HAMSTA has the best cross-domain

performance with a µnorm score of 236.98, and with the 2nd best per-domain tuned move accep-

tance method being SA with a µnorm score of 253.76. The results of performing a Friedman’s

test on the per-domain tuned move acceptance methods including HAMSTA shows that there

is a significant performance difference between the tested cross-domain tuned move acceptance

methods
(
p = 0.00, χ2(8) = 2660.64

)
. Post-hoc analysis shows that while HAMSTA has the best

cross-domain performance, it does not statistically significantly differ from SA, SARH, AILLA, or

IE with respective µnorm scores of 253.76, 323.70, 382.70, and 405.74. Furthermore, performing a

Friedman’s test and post-hoc analysis for each problem domain, showing the significance in perfor-

mance difference between move acceptance methods for solving each domain independently, shows

that HAMSTA does not perform significantly worse than any other move acceptance method for

any of the tested problem domains - both for cross-domain and per-domain tuned comparisons.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 135

T
ab

le
5.

2:
ν
n
o
r
m

a
n

d
µ
n
o
r
m

sc
o
re

s
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
o
f
f
n
o
r
m

(s
)

v
a
lu

es
fo

r
ea

ch
m

o
v
e

a
cc

ep
ta

n
ce

m
et

h
o
d

co
m

p
a
re

d
fo

r
ea

ch
p

ro
b

le
m

d
o
m

a
in

a
n

d
fi

n
a
ll
y

cr
o
ss

-d
o
m

a
in

fo
r

b
o
th

p
er

-d
o
m

a
in

tu
n

ed
a
n

d
cr

o
ss

-d
o
m

a
in

tu
n

ed
m

o
v
e

a
cc

ep
ta

n
ce

m
et

h
o
d

s
w

h
er

e
H

A
M

S
T

A
is

tu
n

ed
cr

o
ss

-d
o
m

a
in

in
b

o
th

co
m

p
a
ri

so
n

s.
ν
n
o
r
m

a
n

d
µ
n
o
r
m

sc
o
re

s
a
re

st
y
li
se

d
b
o
ld

to
in

d
ic

a
te

th
a
t

a
m

o
v
e

a
cc

ep
ta

n
ce

m
et

h
o
d

d
o
es

n
o
t

p
er

fo
rm

st
a
ti

st
ic

a
ll
y

si
g
n

ifi
ca

n
tl

y
d

iff
er

en
t

(w
o
rs

e)
th

a
n

th
e

b
es

t
p

er
fo

rm
in

g
m

o
v
e

a
cc

ep
ta

n
ce

m
et

h
o
d

fo
r

ea
ch

p
ro

b
le

m
d

o
m

a
in

(a
n

d
fi

n
a
ll
y

cr
o
ss

-d
o
m

a
in

)
b

a
se

d
o
n

a
F

ri
ed

m
a
n

te
st

(C
I

=
9
5
%

)
w

it
h

p
o
st

-h
o
c

a
n

a
ly

si
s

b
a
se

d
o
n

th
e

B
o
n

fe
rr

o
n

i
co

rr
ec

ti
o
n

p
ro

ce
d

u
re

.
T

h
e
χ
2

a
n

d
p

v
a
lu

es
a
re

th
e

re
su

lt
s

o
f

p
er

fo
rm

in
g

su
ch

F
ri

ed
m

a
n

te
st

.
T

h
e

cr
o
ss

-d
o
m

a
in
µ
n
o
r
m

is
th

e
su

m
o
f
ν
n
o
r
m

sc
o
re

s
o
v
er

a
ll

p
ro

b
le

m
d

o
m

a
in

s,
a
n

d
th

e
cr

o
ss

-d
o
m

a
in

st
a
n

d
a
rd

d
ev

ia
ti

o
n

is
th

e
st

a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

th
e

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s
o
v
er

a
ll

d
o
m

a
in

s.

C
ro

ss
-d

o
m
a
in

T
u
n
e
d

B
P

F
S

P
S

S
A
T

T
S
P

V
R
P

K
P

M
A
C

Q
A
P

C
ro

ss
-d

o
m
a
in

IE
(π

x
d
)

ν
n
o
r
m

2
.6

6
1
6
.1

2
1
1
2
.0
6

1
6
.7

4
6
1
.5

3
1
5
.4

9
1
5
5
.0
0

2
0
.6

8
1
6
.3

3
4
1
6
.6

1
S
td

.
0
.0
1
6
2

0
.0
5
3
6

0
.2
3
7
8

0
.0
4
1
5

0
.1
9
8
3

0
.0
6
8
5

0
.0
0
0
0

0
.0
5
9
0

0
.0
4
4
6

0
.3
4
2

A
IL

L
A

(π
x
d
)

ν
n
o
r
m

2
6
.3

9
1
7
.3

2
7
8
.0

2
2
.5

1
6
6
.7

3
1
0
6
.5
4

6
2
.1

0
1
3
3
.7
9

7
.2

4
5
0
0
.6

4
S
td

.
0
.0
6
1
3

0
.0
6
1
3

0
.2
9
6
0

0
.0
1
4
0

0
.2
4
0
3

0
.2
5
1
8

0
.3
8
8
1

0
.0
8
9
3

0
.0
3
3
8

0
.3
4
6

T
A

(π
x
d
)

ν
n
o
r
m

8
4
.5
1

9
1
.6

4
1
1
2
.0
6

1
6
.7

5
8
2
.6

4
3
8
.4

1
1
5
5
.0
0

1
1
0
.8
9

6
4
.6
6

7
5
6
.5
8

S
td

.
0
.1
5
5
2

0
.2
4
0
7

0
.2
3
7
8

0
.0
4
1
4

0
.2
0
9
8

0
.1
6
1
9

0
.0
0
0
0

0
.3
5
5
0

0
.2
1
4
4

0
.3
2
5

G
D

(π
x
d
)

ν
n
o
r
m

1
0
4
.5
7

9
0
.0

6
4
8
.0

3
1
1
1
.6
0

8
7
.8

8
1
0
3
.2

8
1
5
2
.5
1

9
9
.8
0

1
1
1
.0
5

9
0
8
.7
9

S
td

.
0
.3
7
7
3

0
.3
0
3
7

0
.3
2
7
8

0
.3
9
2
4

0
.2
1
0
2

0
.3
7
5
4

0
.0
5
3
6

0
.3
3
7
5

0
.3
9
2
6

0
.3
6
5

A
IL

T
A

(π
x
d
)

ν
n
o
r
m

2
3
.8

8
7
8
.0

0
1
1
1
.8
1

1
6
.7

4
8
4
.6

1
7
.4

9
1
5
5
.0
0

2
4
.9

5
9
.8

0
5
1
2
.2
9

S
td

.
0
.0
4
5
8

0
.2
2
3
5

0
.2
3
8
8

0
.0
4
1
5

0
.2
3
2
7

0
.0
5
6
5

0
.0
0
0
0

0
.0
7
8
3

0
.0
2
6
8

0
.3
5
0

N
A

(π
x
d
)

ν
n
o
r
m

1
0
1
.0
4

1
2
0
.2
6

1
5
.6

5
1
0
9
.5
2

9
6
.9

8
1
3
9
.7
0

1
3
1
.0

2
1
3
4
.2
2

1
2
5
.7
8

9
7
4
.1
6

S
td

.
0
.1
5
6
6

0
.1
0
0
8

0
.1
2
0
7

0
.0
2
0
8

0
.1
8
2
8

0
.0
7
8
0

0
.2
2
0
7

0
.0
7
6
3

0
.0
6
5
9

0
.2
6
3

S
A

(π
x
d
)

ν
n
o
r
m

8
7
.4
4

5
3
.0

8
2
7
.1

1
2
.3

4
8
9
.3

6
1
3
.0

5
8
4
.4

1
2
.6

0
1
.4

2
3
6
0
.8

2
S
td

.
0
.0
9
8
7

0
.0
8
6
3

0
.1
9
6
8

0
.0
0
9
6

0
.2
0
1
3

0
.0
5
4
2

0
.3
5
3
2

0
.0
1
0
3

0
.0
0
6
4

0
.2
8
4

S
A
R
H

(π
x
d
)

ν
n
o
r
m

9
5
.2
9

1
2
0
.0
3

2
4
.9

9
4
.4

9
9
6
.7

1
3
7
.8

3
8
0
.6

5
5
4
.6

7
1
5
.5

9
5
3
0
.2
5

S
td

.
0
.0
9
0
2

0
.0
9
8
2

0
.1
8
6
1

0
.0
1
3
3

0
.1
8
1
1

0
.1
6
7
5

0
.3
3
8
5

0
.1
3
6
1

0
.0
2
3
0

0
.2
9
9

H
A
M

S
T
A

(π
x
d
)

ν
n
o
r
m

5
.9

8
1
9
.5

2
3
2
.0

0
6
.4

1
6
1
.5

7
8
.0

3
1
0
3
.6

3
1
3
.6

2
3
.4

3
2
5
4
.1

9
S
td

.
0
.0
2
9
8

0
.0
6
1
4

0
.2
6
0
9

0
.0
2
3
6

0
.1
9
7
2

0
.0
5
7
5

0
.3
5
8
2

0
.0
5
9
7

0
.0
0
9
4

0
.2
6
4

χ
2
(8

)
1
0
6
4
.7
5

1
0
4
3
.9
1

9
6
6
.8

1
1
9
0
.0
6

2
3
1
.7
6

9
5
3
.1
6

8
2
2
.7
9

9
8
4
.3
8

1
1
6
4
.9
7

3
2
3
2
.9
3

p
-v
a
lu
e

1
.5
7
×
1
0
−

2
2
4

4
.9
5
×
1
0
−

2
2
0

2
.1
8
×
1
0
−

2
0
3

1
.3
5
×
1
0
−

2
5
1

1
.2
5
×
1
0
−

4
5

1
.9
2
×
1
0
−

2
0
0

2
.5
2
×
1
0
−

1
7
2

3
.5
0
7
×
1
0
−

2
0
7

3
.5
5
×
1
0
−

2
4
6

0

P
e
r-
d
o
m
a
in

T
u
n
e
d

B
P

F
S

P
S

S
A
T

T
S
P

V
R
P

K
P

M
A
C

Q
A
P

C
ro

ss
-d

o
m
a
in

IE
(π

d
)

ν
n
o
r
m

2
.6

6
1
5
.8

7
1
1
2
.5
0

1
6
.8

8
5
4
.5

4
1
5
.3

7
1
5
5
.0

0
1
7
.1

7
1
5
.7

6
4
0
5
.7

4
S
td

.
0
.0
1
6
2

0
.0
5
4
1

0
.2
3
6
4

0
.0
4
2
0

0
.2
0
7
2

0
.0
6
7
9

0
.0
0
0
0

0
.0
5
6
8

0
.0
4
6
3

0
.3
4
2
9

T
A

(π
d
)

ν
n
o
r
m

1
2
.0

9
1
9
.6

1
2
3
.6

8
1
6
.8

8
7
6
.8

2
5
.2

7
1
5
2
.2

0
7
0
.9

3
5
.2

2
3
8
2
.7

0
S
td

.
0
.0
7
2
4

0
.0
6
2
3

0
.1
5
4
6

0
.0
4
2
0

0
.2
3
4
6

0
.0
3
2
9

0
.0
5
8
9

0
.3
8
4
4

0
.0
2
1
5

0
.3
4
0
6

G
D

(π
d
)

ν
n
o
r
m

1
0
3
.7
3

9
0
.5

5
4
8
.2

0
1
1
1
.9
2

8
2
.8

9
1
0
3
.2

7
1
5
2
.1

9
9
7
.1

7
1
1
1
.5
9

9
0
1
.5
1

S
td

.
0
.3
8
6
9

0
.3
0
2
0

0
.3
2
6
1

0
.3
9
2
4

0
.2
1
9
7

0
.3
7
2
3

0
.0
6
6
3

0
.3
3
9
8

0
.3
9
1
9

0
.3
6
7
5

N
A

(π
d
)

ν
n
o
r
m

1
0
1
.0
9

1
2
0
.2
1

1
7
.8

6
1
0
9
.9
9

9
2
.8

4
1
3
9
.5
5

1
2
9
.0

6
1
3
2
.1
3

1
2
5
.8
8

9
6
8
.6
1

S
td

.
0
.1
5
6
4

0
.1
0
0
9

0
.1
2
6
4

0
.0
1
9
2

0
.1
8
8
1

0
.0
7
9
2

0
.2
4
0
7

0
.0
6
8
7

0
.0
6
7
5

0
.2
6
1
1

S
A

(π
d
)

ν
n
o
r
m

1
1
.0

2
2
0
.6

9
2
0
.5

1
2
.6

7
7
2
.8

1
2
8
.3

1
6
9
.4

4
1
7
.3

6
1
0
.9

5
2
5
3
.7

6
S
td

.
0
.0
6
2
6

0
.0
6
4
8

0
.1
4
9
1

0
.0
0
8
6

0
.2
2
1
7

0
.1
2
8
8

0
.3
8
7
3

0
.0
5
6
2

0
.0
1
6
8

0
.2
2
7
2

S
A
R
H

(π
d
)

ν
n
o
r
m

9
3
.5
3

2
0
.9

5
2
1
.5

1
1
.5

7
7
1
.4

4
2
8
.3

1
6
8
.1

4
7
.4

7
1
0
.7

8
3
2
3
.7

0
S
td

.
0
.0
8
6
8

0
.0
5
9
2

0
.1
5
7
8

0
.0
0
7
1

0
.2
2
1
7

0
.1
2
8
8

0
.3
8
5
3

0
.0
3
7
5

0
.0
1
5
8

0
.2
6
1
4

H
A
M

S
T
A

(π
x
d
)

ν
n
o
r
m

5
.9

8
1
9
.2

8
3
3
.1

2
6
.5

2
5
4
.4

9
7
.9

3
9
7
.0

0
9
.8

9
2
.7

7
2
3
6
.9

8
S
td

.
0
.0
2
9
8

0
.0
6
1
8

0
.2
6
7
1

0
.0
2
4
0

0
.2
0
7
5

0
.0
5
6
0

0
.4
0
0
2

0
.0
4
9
1

0
.0
1
0
2

0
.2
6
0
8

χ
2
(6

)
8
2
8
.8
5

5
3
7
.9
8

4
5
2
.6
4

9
4
4
.6
4

1
6
2
.0
3

6
1
0
.8
2

5
7
4
.4
1

6
1
2
.5
7

8
7
7
.6
4

2
6
6
0
.6
4

p
-v
a
lu
e

8
.9
7
×
1
0
−

1
7
6

5
.5
0
×
1
0
−

1
1
3

1
.3
3
×
1
0
−

9
4

8
.4
0
×
1
0
−

2
0
1

2
.2
0
×
1
0
−

3
2

1
.0
8
×
1
0
−

1
2
8

7
.6
9
×
1
0
−

1
2
1

4
.5
2
×
1
0
−

1
2
9

2
.5
7
×
1
0
−

1
8
6

0

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 136

Looking at the performance of HAMSTA compared to the other move acceptance methods tested

for each of the problems, HAMSTA is the only move acceptance method from the cross-domain

tuned comparison that does not perform significantly worse than any other method over all 9 do-

mains. HAMSTA is closely followed by SA; however, SA performs significantly worse than the best

method for solving instances from the Bin Packing problem. When HAMSTA is compared to the

per-domain tuned move acceptance methods, HAMSTA is also able to perform not significantly

worse than the best method over all 9 domains. This is also true for SA and TA, however, as

discussed above, their relative cross-domain performance, despite being re-tuned for each problem,

is not as good as HAMSTA tuned cross-domain.

An empirical cumulative distribution function (ECDF) plot is given in Figure 5.9 and shows the

cross-domain performance of the per-domain and cross-domain tuned move acceptance methods,

and with HAMSTA being shown by the green line. The ECDF plot shows the cumulative frequency

of fnorms(s) values obtained by each move acceptance method calculated from the entire set of

results including both per-domain and cross-domain results configurations. The area under each

line (
∫ 1

0
ecdf(m)dm where m is the move acceptance method) thus represents the cross-domain

performance of each move acceptance method where the ultimate method (u), finding the best

solution at each trial, would have an area of
∫ 1

0
ecdf(u)du = 1.0000. The area under each line is

inversely proportional to the µnorm score of each respective move acceptance method such that∫ 1

0
ecdf(m)dm = 1 − µnorm(m)

n
where n is the total number of trials. Note that the values given

for the area under the lines for the ECDF plot in this study is calculated as the lower Darboux

integral with a sub-interval width of 1.00× 10−6.

While HAMSTA has the best cross-domain performance,
∫ 1

0
ecdf(HAMSTA)dHAMSTA = 0.8170,

the ECDF plot also shows that SA (πxd) can obtain a higher frequency of the highest quality

solutions, although across the full spectrum of results HAMSTA has the clear best cross-domain

performance. The ecdf areas are given in Table 5.3 which shows the cross-domain performance of

each move acceptance method when compared to each of the other methods. HAMSTA is the best

performing move acceptance method,
∫ 1

0
ecdf(HAMSTA(πxd))dHAMSTA(πxd) = 0.8170, despite being

tuned only cross-domain, with per-domain tuned variants of SA,
∫ 1

0
ecdf(SA(πd))dSA(πd) = 0.8047,

and SARH
∫ 1

0
ecdf(SARH(πd))dSARH(πd) = 0.7542 coming 2nd and 3rd respectively. HAMSTA

outperforms the first existing cross-domain tuned move acceptance method, SA, which is 4th with∫ 1

0
ecdf(SA(πxd))dSA(πxd) = 0.7400.

Figure 5.10 also show the fnorms(s) values obtained by each move acceptance method calculated

from the entire set of results including both per-domain and cross-domain results configurations in

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 137

0 0.2 0.4 0.6 0.8 1

f
norm

(s) values

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

HAMSTA
SA(D)
SARH(D)
SA
TA(D)
IE
AILLA
AILTA
SARH
TA
GD(D)
GD
NA

Figure 5.9: An empirical cumulative distribution function using the fnorm(s) values from all 1395
trials spanning 45 instances from 9 problem domains, illustrating the cross-domain performance of
each cross-domain tuned move acceptance method, and where possible re-tuned for each problem
domain. An ideal cross-domain search algorithm will obtain the best solution for each problem
being solved; the objective in this case is therefore to maximise the cumulative distribution while
minimising the µnorm values. Solid lines represent cross-domain tuned move acceptance methods,
whereas dashed lines represent those tuned per-domain. Each move acceptance method is ordered
in the legend based on their cross-domain performance as the area under the respective frequency
curve.

boxplot form. The black boxplots indicate that the respective move acceptance method uses its

cross-domain tuned parameter configuration whereas the blue boxplots indicate that the respective

move acceptance method uses its per-domain tuned parameter configurations. Each move accep-

tance method and configuration is ordered from worst (top) to best (bottom) by their mean average

fnorm(s) values and shows that HAMSTA is the only cross-domain tuned move acceptance method

to outperform all other per-domain tuned move acceptance methods.

5.5 Trace Analysis

The plots shown in Figure 5.11 show the progress traces for HAMSTA when using the cross-

domain parameter configuration (top) and domain-specific parameter configurations (bottom) on

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 138

Table 5.3: Areas under each move acceptance method’s ECDF plot representing their cross-domain
performance (higher is better).

Move Acceptance Method (m) Tuning Approach
∫ 1

0
ecdf(m)dm

HAMSTA πxd 0.8170
SA πd 0.8047
SARH πd 0.7542
SA πxd 0.7400
TA πd 0.7192
IE πxd 0.7012
AILLA πxd 0.6419
AILTA πxd 0.6327
SARH πxd 0.6191
TA πxd 0.4590
GD πd 0.3498
GD πxd 0.3487
NA πxd 0.3015

an instance chosen from each of the benchmark problem domains. With the exception of the

Quadratic Assignment problem, the behaviour of HAMSTA guiding the search of the search space of

each problem does not differ significantly between the cross-domain and per-domain configurations.

Comparing the behaviours of HAMSTA using its cross-domain parameter configuration to show its

versatility for solving characteristically different COPs shows how well it can adapt to the problem

being solved.

Bin Packing, Flow Shop and Travelling Salesman problems were shown to be solved the best

using IE move acceptance in the work from Section 4.2, and the plots for HAMSTA to solve these

instances, Figures 5.11a, 5.11b, and 5.11e respectively, illustrate this behaviour in general. Note

that while the search appears to be stuck in plots 5.11a and 5.11e, this is not the case as the relative

differences between each solution are very small compared to the initial improvements made towards

the start of the search. For solving flow shop on the other hand, Figure 5.11b illustrates the scenario

where a local optima is reached (as indicated by the best solution found marker) and after a period

of non-improvement, HAMSTA enters the AM stage to force exploration of the search space. The

plots however show that in this case, the search stays in the same optima and subsequent HTA

stages converge on the same solution.

Personnel Scheduling problems on the other hand were shown to be solved best by a Näıve

Acceptance strategy, and the relevant plot for HAMSTA, shown in Figure 5.11c, shows this expected

search trajectory. In this plot, it can be seen that the initial number of iterations to find the best

solution are very small (7), and this leads to HAMSTA in the subsequent HTA stages to frequently

switch to AM stages throughout the search after a small number of non-improving iterations. The

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 139

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f
norm

(s) values

HAMSTA

SA

SARH

SA

TA

IE

AILLA

AILTA

SARH

TA

GD

GD

NA

M
ov

e
A

cc
ep

ta
nc

e
M

et
ho

d

Figure 5.10: Boxplots showing the distribution of fnorm(s) scores (lower is better) for all move
acceptance methods, including those tuned per-domain (blue) and cross-domain (black) across all
1395 trials from the 45 instances spanning the 9 benchmark problem domains. Move acceptance
methods are ordered by their mean fnorm(s) scores where smaller is better. ‘+’ marks symbolise
statistical outliers according to either fnorm(s) > q3+1.5×(q3−q1) or fnorm(s) < q1−1.5×(q3−q1)
where q1 and q3 are the 25th and 75th sample data percentiles.

mechanism to determine threshold values as the difference between the accepted solution and the

best solution found in the current HTA stage also helps to promote exploration of the search space

since the difference in objective values between the best solution found in previous stages, and that

in the AM stage is very large. Together, both mechanisms promote a random walk behaviour of

HAMSTA when solving the Personnel Scheduling problem.

The progress trace for HAMSTA solving Max Cut and SAT problems, shown in Figures 5.11g

and 5.11d, shows an interesting search trajectory and demonstrates how the HTA stages allow the

search to maintain an adequate level of exploration while promoting exploitation while the best

solution found in the given stage is being improved. Furthermore, between different HTA stages,

the adaptation of η can be observed by variable lengths of individual HTA stages.

The progress plot for HAMSTA solving the QAP problem highlights the importance of having

an increased setting for η0 with the cross-domain plot (η0 = 0.01) not allowing enough time to

converge on a good solution and frequently revisiting AM stages, and with the per-domain plot

(η0 = 0.10) taking ≈ 60% of the total search time before revisiting the AM stage for the second

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 140

time.

Previous chapters in this work showed that KP instances benefit from frequently accepting a

single indiscriminate worse move and improving from that point in the search space. HAMSTA

replicates this behaviour as highlighted by the abundance of “infinite” threshold values (τi) relating

to the high number of AM stages (1976 and 3611 for cross-domain and per-domain configurations),

though these values are clipped in the plots.

Over all the domains, HAMSTA is able to demonstrate its ability to adapt to solving different

problems. When beneficial, HAMSTA is able to sustain the acceptance of improving or equal

moves. Even when tuned cross-domain, it is apparent that the majority of moves are equal or

improving only and this allows HAMSTA to perform well for solving BP, FS, TSP and VRPTW

problems. For other domains where acceptance of indiscriminate worse moves are beneficial such

as for PS and KP, HAMSTA can adapt to solving these problems by having a large setting for

cnilr and high threshold values due to the values learnt between the AM and HTA stages allowing

for HAMSTA to behave as a random walk. For other problems where a balance is needed between

exploitation and exploration, HAMSTA can be seen to adapt its internal parameters very differently

and use meaningful threshold values throughout the search to improve the best solution over time

by increasing exploitation of the search when the best solution can be improved, and facilitation

exploration when the best solution cannot be improved. Furthermore, the threshold values learned

online from the instances being solved means that they are never too high that the search gets lost

exploring the search space in a random walk, and is never too low that subsequent HTA stages

cannot improve the best solution.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 141

0 2 4 6 8 10 12

Iterations (10 minutes) 105

0.105

0.11

0.115

0.12

0.125

0.13

0.135

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

HAMSTA solving Bin Packing Instance #10
Cross-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

0 2 4 6 8 10 12

Iterations (10 minutes) 105

0.105

0.11

0.115

0.12

0.125

0.13

0.135

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Per-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

(a)

0 0.5 1 1.5 2

Iterations (10 minutes) 107

1.135

1.14

1.145

1.15

1.155

1.16

1.165

1.17

1.175

1.18

1.185

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

104

HAMSTA solving Flow Shop Instance #10
Cross-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

0 0.5 1 1.5 2

Iterations (10 minutes) 107

1.135

1.14

1.145

1.15

1.155

1.16

1.165

1.17

1.175

1.18

1.185

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

104 Per-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

(b)

Figure 5.11: Progress traces of HAMSTA tuned cross-domain (top),(
πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and per-domain (bottom), solv-

ing an instance from each of the problem domains from the benchmark
suite where; (a) is HAMSTA solving instance #10 from the BP domain(
πHAMSTA
d (BP) = {ε = 0.20, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and (b) is HAMSTA solving instance

#10 of the FS domain
(
πHAMSTA
d (FS) = {ε = 0.20, η0 = 0.20, ω0 = 1, ω+ = 0}

)
.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 142

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations (10 minutes)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

HAMSTA solving Personnel Scheduling Instance #5
Cross-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations (10 minutes)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Per-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

(c)

0 2 4 6 8 10 12

Iterations (10 minutes) 106

0

5

10

15

20

25

30

35

40

45

50

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

HAMSTA solving SAT Instance #11
Cross-domain tuned

i

f(s_i)
f(s_best_i)
Best solution found

0 2 4 6 8 10 12

Iterations (10 minutes) 106

0

5

10

15

20

25

30

35

40

45

50

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Per-domain tuned

i

f(s_i)
f(s_best_i)
Best solution found

(d)

Figure 5.11: Progress traces of HAMSTA tuned cross-domain (top),(
πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and per-domain (bottom),

solving an instance from each of the problem domains from the bench-
mark suite where; (c) is HAMSTA solving instance #5 from the PS domain(
πHAMSTA
d (PS) = {ε = 0.02, η0 = 0.02, ω0 = 2, ω+ = 2}

)
, and (d) is HAMSTA solving instance

#11 of the SAT domain
(
πHAMSTA
d (SAT) = {ε = 0.01, η0 = 0.05, ω0 = 1, ω+ = 1}

)
.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 143

0 0.5 1 1.5 2

Iterations (10 minutes) 107

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

104

HAMSTA solving Travelling Salesman Instance #6
Cross-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

0 0.5 1 1.5 2

Iterations (10 minutes) 107

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

104 Per-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

(e)

0 1 2 3 4 5 6 7 8 9 10

Iterations (10 minutes) 106

1

1.5

2

2.5

3

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

105

HAMSTA solving Vehicle Routing with Time Windows Instance #6
Cross-domain Tuned

i

f(s
i
)

f(s
best(i)

)

Best solution found

0 1 2 3 4 5 6 7 8 9

Iterations (10 minutes) 106

1

1.5

2

2.5

3

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

105 Per-domain tuned

i

f(s
i
)

f(s
best(i)

)

Best solution found

(f)

Figure 5.11: Progress traces of HAMSTA tuned cross-domain (top),(
πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and per-domain (bottom), solv-

ing an instance from each of the problem domains from the benchmark
suite where; (e) is HAMSTA solving instance #6 from the TSP domain(
πHAMSTA
d (TSP) = {ε = 0.20, η0 = 0.20, ω0 = 1, ω+ = 1}

)
, and (f) is HAMSTA solving instance

#6 of the VRPTW domain
(
πHAMSTA
d (VRPTW) = {ε = 0.01, η0 = 0.10, ω0 = 4, ω+ = 3}

)
.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 144

Table 5.4: Comparison of the number of IE, AM, and HTA stages, the list lengths (δ) and initial
settings for the maximum number of consecutive non-improving list repetitions (η) used during an
execution of HAMSTA given a 10 nominal minute computational budget using its cross-domain and
per-domain parameter settings across a randomly selected instance from each problem domain.

Domain Instance ID Tuning IE Stages AM Stages HTA Stages δ ηinit

BP 10 πxd 1 0 0 - -
BP 10 πd 1 0 0 - -

FS 10 πxd 1 3 3 5742245 1
FS 10 πd 1 3 3 5742245 1

PS 5 πxd 1 179 179 7 12
PS 5 πd 1 140 140 7 22

SAT 11 πxd 1 25 25 227164 1
SAT 11 πd 1 14 14 64001 11

TSP 6 πxd 1 4 4 4831558 1
TSP 6 πd 1 2 2 8989696 1

VRPTW 6 πxd 1 2 2 3571521 1
VRPTW 6 πd 1 1 1 2314027 1

KP 8 πxd 2 1976 1974 61 70
KP 8 πd 2 3611 3610 63 69

MAC 0 πxd 1 4 4 522480 5
MAC 0 πd 1 10 10 984355 1

QAP 7 πxd 1 28 28 134852 2
QAP 7 πd 1 6 6 123681 18

Run-time data for HAMSTA was recorded alongside the above progress traces tracking the

number of IE, AM, and HTA stages. These are summarised in Table 5.4. Between each problem

domain, the adaptability of HAMSTA can be seen by the variation in the number of stages, δ

(the estimated number of iterations to encounter a local optima), and ηinit (the initial target for

the consecutive number of list repetitions where the best solution found during a given HTA stage

has not improved before the stage terminates and transitions to an AM stage) given an identical

parameter configuration (πxd). The setting of ε influences when HAMSTA believes the search is

stuck in a local optimum during the IE stage and this can influence the value that is found for

δ. HAMSTA encounters settings of δ which are orders of magnitudes different between different

domains and instances, and depending on the time taken to find the local optimum, this can also

effect the initial setting of η which can also vary by orders of magnitude between domains and their

instances.

When comparing HAMSTA between each parameter tuning approach for the same domains,

the different parameter configurations between the cross-domain configuration (πHAMSTA
xd = {ε =

0.10, ω0 = 0.01, ω+ = 1, η0 = 1}) and per-domain configurations, as shown in Table 5.1, HAMSTA

can be seen to have varied outcomes on the values found for δ. Increasing the setting for ε (for

these instances) sometimes did not affect the value of δ, such as in FS, and this indicates that

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 145

0 0.5 1 1.5 2

Iterations (10 minutes) 107

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

10-8

HAMSTA solving Max Cut Problem Instance #0
Cross-domain Tuned

i

f(s
i
)

f(s
best(i)

)

Best solution found

0 0.5 1 1.5 2

Iterations (10 minutes) 107

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

10-8 Per-domain tuned

i

f(s
i
)

f(s
best(i)

)

Best solution found

(g)

0 0.5 1 1.5 2

Iterations (10 minutes) 107

4.48

4.49

4.5

4.51

4.52

4.53

4.54

4.55

4.56

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

HAMSTA solving Quadratic Assignment Instance #7
Cross-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations (10 minutes) 107

4.48

4.49

4.5

4.51

4.52

4.53

4.54

4.55

4.56

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107 Per-domain tuned

_i
f(s_i)
f(s_best_i)
Best solution found

(h)

Figure 5.11: Progress traces of HAMSTA tuned cross-domain (top),(
πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and per-domain (bottom), solv-

ing an instance from each of the problem domains from the benchmark
suite where; (g) is HAMSTA solving instance #0 from the MAC domain(
πHAMSTA
d (MAC) = {ε = 0.01, η0 = 0.10, ω0 = 5, ω+ = 2}

)
, and (h) is HAMSTA solving instance

#7 of the QAP domain
(
πHAMSTA
d (QAP) = {ε = 0.01, η0 = 0.10, ω0 = 1, ω+ = 0}

)
.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 146

(i)

Figure 5.11: Progress traces of HAMSTA tuned cross-domain (top),(
πHAMSTA
xd = {ε = 0.10, η0 = 0.01, ω0 = 1, ω+ = 1}

)
, and per-domain (bottom), solving an in-

stance from each of the problem domains from the benchmark suite where; (i) is HAMSTA solving
instance #8 from the KP domain

(
πHAMSTA
d (KP) = {ε = 0.02, η0 = 0.01, ω0 = 1, ω+ = 0}

)
.

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 147

even different instances from the same domain can behave differently. That is, at least one other

instance must have benefited from an increased ε setting resulting in a higher value of δ. Increasing

the setting for ε also resulted in much higher values, such as in TSP and illustrates the expected

behaviour. Decreasing ε on the other hand has the advantage of reducing the time waiting in a local

optimum, but with the trade off of potentially ending prematurely resulting in decreased values

for δ. The values for δ for PS and VRP instances remained the same whereas for KP, MAC and

QAP, the values for δ were slightly decreased. For SAT on the other hand, the value for δ was

significantly less, and this is despite the setting of ε being the same for SAT, VRP, KP, MAC and

QAP. For all domains but VRP, an equal or increased initial value for η, either facilitated directly

by an increased η0 setting or decreased value for δ, was used when HAMSTA was tuned per-domain

when compared to its cross-domain configuration. In the case of the VRP instance, an equal setting

of η0 and equal value of δ for both cross-domain and per-domain configurations indicates that the

variation of ηinit is due to the variation in the time taken to reach the best solution found during the

IE stage. Referring back to the trace for the QAP problem instance in Figure 5.11h, the increase

of ηinit can be seen to have a significant effect on the search trajectory, with almost 2/3rds of the

computational budget elapsing before the second AM stage. A similar effect is seen for solving

the MAC problem instance in Figure 5.11g where the search goes from being a random walk to an

effective search trajectory where exploitation can take over to reach regions of local optima.

HAMSTA adapts to the search landscapes by adapting η throughout the search process, and

this effects the total number of AM and HTA stages given the pre-defined computational budget.

At one end of the spectrum, BP constantly improves the solution-in-hand over time since the local

search metaheuristic framework requires no exploration to find a high quality solution and thus no

AM or HTA stages are ever executed. On the other hand, HAMSTA when tuned cross-domain for

solving the KP problem executes a total of 11657 AM stages, and 11655 stages. Given a per-domain

tuning approach, these values are one order of magnitude higher. With the exception of the KP

domain, all other domains were solved more effectively when using a lower number of AM and HTA

stages when compared to HAMSTA’s cross-domain configuration. An example of where HAMSTA

begins and ends with a high η value is with the per-domain tuned MAC problem instance. Initially,

η is calculated to be 196. Within the first HTA stage, the best solution is improved and requires

82 list repetitions to reach it. Thus, in the second HTA stage, η is set to 114. In this stage, the

best solution is improved again using 42 list repetitions and set to 72 in the subsequent stage. The

next stage is unable to improve the best solution found so far, and so η takes its previous value of

72. This process continues and the adaptation of η throughout the search process can be observed

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 148

0 0.5 1 1.5 2 2.5 3

Iterations 107

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

0

20

40

60

80

100

120

140

160

180

200

(a)

0 1000 2000 3000 4000 5000 6000 7000

Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

0

5

10

15

20

25

(b)

Figure 5.12: Progress trace of HAMSTA tuned per-domain solving; (a) instance #0 of the MAC
domain, and (b) instance #5 of the PS domain, highlighting the adaptation of η (cyan) throughout
the search process.

in Figure 5.12a. A further example, as shown in Figure 5.12b, shows the values of η converge on

1 over time as HAMSTA solves the PS problem instance which appears to favour a random walk

search trajectory.

Examples of the adaptation of omega (ω) are shown in Figure 5.13a and Figure 5.13b for

HAMSTA solving MAC instance #0 and PS instance # 5. For solving the MAC instance, ω can be

seen to increase at each HTA stage to higher values before the search is able to find a good quality

region in the search landscape. In some cases, this is not as good as the best solution found so

far, and ω continues to increase before finding other feasibly good regions. Eventually, this region

is good enough such that the best solution found so far is improved, and ω is reset to its initial

value. For solving the PS instance, ω initially increases to small values (up to 10) for the first

1000 iterations. From then on, higher ω values are required to escape the current search landscape

region to find better quality solutions. ω can then be seen to increase to 36 and 48 to find better

quality solutions, before ω seemingly increases for the foreseeable future while a random walk of

the search space is performed in an attempt to find better quality solutions in other regions of the

search space.

5.6 A Comparison to the State-of-the-Art

In this work, the cross-domain performance of move acceptance methods have been evaluated

under a single point-based stochastic local search metaheuristic framework. Over the years, hyper-

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 149

0 0.5 1 1.5 2 2.5 3

Iterations 107

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

107

0

20

40

60

80

100

120

om
eg

a

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

0

50

100

150

om
eg

a

(b)

Figure 5.13: Progress trace of HAMSTA tuned per-domain solving; (a) instance #0 of the MAC
domain, and (b) instance #5 of the PS domain, highlighting the adaptation of ω (cyan) throughout
the search process.

heuristics have emerged as the go to state-of-the-art search method for solving the cross-domain

search problem. In this section, the performance of HAMSTA under the local search metaheuristic

framework as defined in Chapter 3 (denoted LSM-R for the restricted set of heuristics) is com-

pared to the current state-of-the-art hyper-heuristic search methods (denoted HH) for cross-domain

search. Two other local search metaheuristics are included for completeness operating on the same

local search metaheuristic framework, but with access to the full set of low-level operators (LSM-F)

including mutation, local search, and ruin-recreate.

It should be noted here that the move acceptance method from the best hyper-heuristic method

from the CHeSC 2011 competition (AdapHH) was used in the above studies under the local search

metaheuristic framework as AILLA. The results below are obtained from comparing HAMSTA-

LSM-R to the top-three hyper-heuristics that utilise elaborate heuristic selection methods for cross-

domain search from different search frameworks, and two other local search metaheuristic methods

which make use of all non-crossover heuristics. These include AdapHH [120], a single point-based

selection hyper-heuristic that applies either one or two low-level heuristics in succession to gen-

erate a candidate solution, EPH [178], a population-based search method based on evolutionary

programming embedding co-evolution of the solutions and settings for low-level heuristics, and

SSHH [60], a single point-based hyper-heuristic that uses a hidden Markov model to construct

and apply sequences of low-level heuristics. The two local search metaheuristic methods that have

access to the full set of heuristics include AM-LMS-F and IE-LSM-F, and both select a low-level

heuristic at random using the AM and IE move acceptance methods, respectively. AM-LSM-F ac-

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 150

cepts all candidate moves whereas IE-LSM-F accepts all non-worsening moves. In the performance

comparisons, the six CHeSC 2011 benchmark problem domains are used [20].

The results from performing a Friedman test, as shown in Table 5.5, on HAMSTA-LSM-R and

the other methods shows that the best cross-domain search methods are all three hyper-heuristics

embedding heuristic selection mechanisms (χ2(7) = 3038.58; p = 0). Observation of the mean ranks

would suggest that having a set of specialised low-level heuristics allows such search methods to

perform better than a local search metaheuristic framework containing a minimal set of perturbative

operators with IE-LSM-F and IE-LSM-R having ranks of 134.1 and 140.2 respectively. A Wilcoxon

Signed Rank test comparing these two methods only shows that IE-LSM-F significantly outperforms

IE-LSM-R with a one-tailed test showing a significant result (p = 2.722× 10−34). The mean ranks

also suggest that while HAMSTA-LSM-R under the local search metaheuristic framework is not

able to perform as well as the hyper-heuristic methods employing heuristic selection strategies, it

does perform better than both local search metaheuristics that contain the full set of heuristics.

Subsequent Wilcoxon Signed Rank test shows that actually, HAMSTA-LSM-R is able to outperform

AM-LSM-F (p = 7.335×10−11) but IE-LSM-F actually outperforms HAMSTA-LSM-R (p = 1.719×

10−4).

Table 5.5: Friedman test comparing the cross-domain performance of HAMSTA to state-of-the-art
methods with n0 that all results are from the same distribution at CI = 95%. The values are the
mean ranks (lower is better) of the aforementioned test. The best search method (as chosen as that
with the lowest mean rank), and those which do not statistically significantly differ from the best,
for each domain being stylised bold.

Search Method AdapHH SSHH EPH AM-LSM-
F

IE-LSM-F HAMSTA-
LSM-R

IE-LSM-R χ2(7) p

Framework HH HH HH LSM-F LSM-F LSM-R LSM-R
Cross-domain ranks 59.5 50.4 75.5 173.9 136.3 126.3 141.1 3038.58 0

The cross-domain µnorm scores are shown in Table 5.6 and are indicative of the test statistics

discussed above. What these results show is that while increasing the number of low-level heuristics

does improve the cross-domain performance of the search method using them, there must be some

form of move acceptance for them to perform well. That is, the local search metaheuristics with

a full heuristic set accepting all moves (AM-LSM-F) performs worse than both HAMSTA-LSM-R

and IE-LSM-R under the local search metaheuristic framework with the restricted set of operators.

Furthermore, the results show that all hyper-heuristic methods with heuristic selection mechanisms

(SSHH, AdapHH, and EPH) significantly outperform all random choice search methods (IE-LSM-F,

HAMSTA-LSM-R, IE-LSM-R, and AM-LSM-F), irrespective of their move acceptance method.

HAMSTA, as the move acceptance method of a local search metaheuristic, is shown here that it

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 151

Table 5.6: Cross-domain µnorm results comparing the cross-domain performance of HAMSTA-LSM-
R to state-of-the-art methods.

Search Method Framework µnorm
SSHH HH 76.22
AdapHH HH 82.26
EPH HH 115.89
IE-LSM-F LSM-F 290.52
HAMSTA-LSM-R LSM-R 310.20
IE-LSM-R LSM-R 421.12
AM-LSM-F LSM-F 591.33

cannot perform as good as the state-of-the-art hyper-heuristics. This is despite the reference to [26]

claiming that the choice of “move acceptance method significantly affects the performance compared

to heuristic selection”. On reflection of the study in [26], their work makes this observation using

a small number of simple low-level heuristics and the various hyper-heuristic methods were only

applied to solve benchmark function optimisation problems using a binary representation. Later

studies, such as [53], made use of a larger set of low-level heuristics, some of which are specialised

operators for solving a particular problem. Concerning hyper-heuristics used for solving the cross-

domain search problem, real world optimisation problems are tackled, each of which makes use

of various representations and specialised low-level heuristics. In those cases, heuristic selection in

combination with move acceptance becomes influential on the performance of the overall algorithm.

In conclusion, the choice of move acceptance method does significantly affect the cross-domain

performance of a heuristic search method. More importantly, the cross-domain performance im-

provement of a well designed heuristic selection strategy in combination with a move acceptance

method significantly outweighs that of the move acceptance method alone when used under a

hyper-heuristic framework with a rich set of low-level operators.

5.7 Summary

In this chapter, a novel move acceptance method was sought which when used as a component

of a local search metaheuristic, could perform as-good-as the existing move acceptance methods

for solving multiple characteristically different COPs, and perform well without requiring expert

intervention, such as re-tuning of its parameter settings when solving different problems and their

instances. The proposed move acceptance method, called as “HAMSTA” was explained and its

cross-domain performance was evaluated and compared to the existing move acceptance methods

under the single point-based local search metaheuristic framework. The experimental results show

CHAPTER 5. THE HISTORY-BASED ADAPTIVE MULTI-STAGE THRESHOLD
ACCEPTING ALGORITHM 152

that the cross-domain performance of HAMSTA is not only as-good-as the existing move acceptance

methods but is able to outperform them. This is despite HAMSTA utilising a single “cross-domain”

parameter configuration whereas those move acceptance methods that were compared to were tuned

per-domain and cross-domain, giving them a theoretical advantage over HAMSTA. The outcome

and hence the contribution of the work in this chapter is the introduction of a new move acceptance

method which is called as “HAMSTA” which is able to outperform the existing move acceptance

methods across a set of characteristically different COPs, and without the requirement for expert

intervention in the form of parameter tuning after the design stage of the move acceptance method.

Revisiting the decision-making dilemma faced by researchers and practitioners when tasked with

solving new or unknown COPs, as discussed in Section 1, “Is there a single algorithm that I can

use to solve any given problem, but that does not need to be re-tuned to perform at least as-good-

as the existing algorithms?”, the performance of HAMSTA across a wide range of COPs using a

single parameter configuration would suggest that HAMSTA can eliminate this dilemma from the

decision-making process as HAMSTA is shown to perform better than existing move acceptance

methods, and can do so without the need for re-tuning of its parameters. Hence, HAMSTA should

be the move acceptance method of choice for practitioners when solving new and unknown problems

as it is empirically shown to produce higher quality solutions on average compared to the existing

methods, and can be used by researchers to form benchmarks for their target problems. Moreover,

HAMSTA is the only move acceptance method which can outperform the move acceptance methods

that are re-tuned for each problem being solved while itself requiring no such efforts. In the following

chapter, the work that was conducted in this thesis is concluded. The future research directions

based on the contributions of this work are then discussed as well as how these can be further

extended, as well as future research focuses that are needed to resolve some criticisms of the

broader research area.

Chapter 6

Conclusions and Future Work

6.1 Context

The search methodologies used for tackling real-world combinatorial optimisation problems (COPs)

have always been of interest to researchers and practitioners. Metaheuristics imposing ‘a set of

guidelines or strategies’ based on a heuristic search framework can be preferred over exact methods

due to the fact that many real-world problems are computationally hard to solve and exact methods

can fail to produce acceptable solutions in a reasonable time frame. The choice of a suitable move

acceptance method to use within a given search framework is important and can significantly affect

the performance of the search method being used. When a problem to be solved is new or unseen,

this task is more difficult since a researcher or practitioner will initially not have previous experience,

knowledge, or guidance for solving the given problem. Three questions that are frequently asked

by researchers and practitioners when given the task of solving a new or unseen problem include

“Which algorithm should I use to solve my problem?”, “What parameter settings should I use for

my chosen algorithm?”, and “Is there another algorithm which will produce better results than the

one I have chosen?”. An area of research concerns the development of high-level, general-purpose

search methodologies known as cross-domain search methods. Cross-domain search is the term used

to describe the high-level issue of devising a single search method which is able to solve multiple

characteristically different COPs to a high quality given a pre-defined computational budget with

the least, but preferably without, expert intervention or modification. State-of-the-art cross-domain

search methods that do not depend on re-tuning of their parameters can thus be used as a single

reusable approach that does not need to be re-tuned to perform well for solving any given problem.

The existing research relating to cross-domain search has focused on developing improved heuristic

153

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 154

selection (generation) components of selection (generation) hyper-heuristics as such cross-domain

search methods, and this is despite the suggestion that the move acceptance component of a selection

hyper-heuristic having more effect on its performance than the heuristic selection. The focus of

this work was therefore on the move acceptance method component as these have not been studied

in-depth before in the context of cross-domain search with the aim of designing an improved move

acceptance method to improve the cross-domain performance of optimisation methods, but without

the need for an expert to intervene and re-tune its parameters when tasked with solving problems

new and unknown as previously unseen during its training phase of development.

6.2 Summary of Work

The work presented in this thesis provides a thorough survey of move acceptance methods as used

in single-point based hyper-heuristics, and classifies them based on a taxonomy that is proposed for

classifying them based on the characteristics of their move acceptance methods. The cross-domain

performance of existing move acceptance methods, with one being chosen from each classification

from the taxonomy, used under a local search metaheuristic framework was compared using an

empirical study, and the effects of parameter tuning versus the choice of the move acceptance

method was explored. A novel move acceptance method (HAMSTA) was then proposed which

has a cross-domain performance that improves over the existing methods despite HAMSTA using

a single parameter configuration, requiring no expert intervention, for solving all COPs whereas

the existing methods HAMSTA was compared to utilise different parameter configurations for each

problem domain.

6.2.1 Local Search Metaheuristics and Cross-domain Search

This section of the thesis started with a discussion of the related scientific literature. After which,

a taxonomy for classifying move acceptance methods based on their different natures was proposed

and a survey of these algorithms used in local search methods was performed and classified based

on the taxonomy. This was done since the existing taxonomies for local search metaheuristics

do not go any further than that to say that they are single-point based single-objective heuristic

search methods and no emphasis is made on the characteristics of their embedded move accep-

tance methods. The taxonomy was proposed with the aim of being able to classify different move

acceptance methods, and to be able to observe the performance of different methods for solving

different COPs. The outcome of the survey showed that even in the scope of studying single-point

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 155

based single-objective move acceptance methods, there is a vast number of existing methods. The

majority of these methods use an adaptive nature of the algorithmic parameter settings; however,

there was no tendency for these methods to use a particular nature of the accept/reject decision

component.

6.2.2 On the Cross-domain Performance of Move Acceptance Methods

The investigation into the cross-domain performance of move acceptance methods in local search

metaheuristics in the context of cross-domain search has not been done before. This meant that

when a researcher or practitioner was tasked with solving a new or unknown problem, they are left

with a dilemma for choosing the best move acceptance method for solving that problem without

previous experience, knowledge, or guidance. In this chapter, an empirical study comparing the

performance of move acceptance methods, one from each of the possible classifications, was carried

out comparing their performance across 9 characteristically different COPs under a single point-

based search local search metaheuristic framework, representing the cross-domain search problem.

The empirical study on the existing move acceptance methods suggests that if a practitioner is

seeking guidelines for which move acceptance method to use for solving a new, unknown, or existing

problem that is not covered in this study, then Simulated Annealing is recommended since it has the

best performance over the cross-domain benchmark. If the problem to be solved however is known

and covered in this study, and a simple single point-based stochastic local search metaheuristic

framework is preferred, then the move acceptance method recommended for use is that which has

the best per-domain performance, as stylised bold in Table 4.1, for that problem domain.

6.2.3 The History-based Adaptive Multi-Stage Threshold Accepting Al-

gorithm

This chapter proposed a novel move acceptance method (HAMSTA) which aims to perform as-

good-as the move acceptance methods which are tuned per-domain, but without itself requiring

such expert intervention. The work in this chapter therefore contributes a single move acceptance

method (HAMSTA) that is capable of solving most COPs to a high-quality without the need for

expert intervention in the form of parameter tuning, and is shown to outperform the existing move

acceptance methods that are re-tuned for each problem domain under a local search metaheuristic

framework. In doing so, the decision-making dilemma faced by researchers and practitioners when

solving a new or unknown problem can be eliminated from the decision-making process as; (1)

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 156

HAMSTA having the best cross-domain performance is proposed as the algorithm of choice for

solving new and unknown problems, (2) HAMSTA outperforming the existing move acceptance

methods from the study using only a single parameter configuration does not need to be re-tuned

for it to perform well - this is despite the existing move acceptance methods being re-tuned for each

domain, and (3) HAMSTA having the best cross-domain performance means that it reasonable

to expect that, at this point in time, HAMSTA can outperform the move acceptance methods

from this study for use with a local search metaheuristic framework. While it can be argued that

higher-level algorithmic frameworks such as hyper-heuristics may perform better, using HAMSTA

under a local search metaheuristic framework also has the advantage that a when a practitioner

is tasked with solving a new or unknown problem, or a researcher wants a baseline solution to a

problem, they not only gets to use an off-the-shelf algorithm that performs well and does not need

to be re-tuned, but they are only required to design a simple perturbative move operator for the

given problem; there is no need for them to design a portfolio of specialised heuristics which can

be up-front time consuming and costly in itself.

6.3 Future Work

Cross-domain Search

The trend since research into solving the cross-domain search problem began in 2011 focuses on

creating search methods that are able to solve real-world COPs well using a fixed computational

budget of 10 nominal minutes - the time as defined by the Cross-domain Heuristic Search Challenge

(CHeSC 2011) competition. One of the criticisms that cross-domain search receives is that these

algorithms are designed to work well for a fixed time period. A future research direction for

cross-domain search, which resolves this controversy of the existing problem definition, is that the

cross-domain performance of a cross-domain search method should be evaluated over a range of

computational budgets. Moreover, the aim of cross-domain search research to produce a high-level

problem solver is of little use if the solution method requires expert intervention such as parameter

tuning for it to perform well when tasked with solving multiple problems. Thus, a proposition is

made to extend the current definition of cross-domain search to:

Proposed Definition: Cross-domain search is the high-level issue of designing a single

general-purpose optimisation method which can be used to solve multiple characteristically

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 157

different optimisation problems to a high quality given any pre-defined computational budget

and without the need for expert intervention beyond their design and training phases, and

irrespective of any additions or changes to the problems or computational budgets that they

may solve.

For example, a related area of research concerns the anytime behaviour [179, 180] of optimi-

sation algorithms. This has a similar goal of solving a problem to a high quality but where the

computational budget is not known in advance; hence, these algorithms are designed to produce

high-quality solutions irrespective of the computational budget. The outputs from those studies

could therefore be used to design algorithms that can solve problems to a high quality given a range

of pre-defined computational budgets but without the need for expert intervention to re-configure

them.

Furthermore, the problems that are studied as part of the cross-domain search problem to

date are only single objective optimisation problems and involve “traditional” COPs where the

computational expense of their objective functions are not much of a concern. Multi-objective op-

timisation problems are those where the problem includes multiple conflicting and incommensurable

objectives that need to maximised or minimised and requires specialised algorithms to solve them

such as NSGA-II [181], SPEA2 [182] and IBEA [183]. Many-objective optimisation problems are

multi-objective optimisation problems that contain four or more conflicting and incommensurable

objectives [184] and the algorithms designed for solving multi-objective optimisation problems can

very quickly become overwhelmed with the additional complexity. Refinements to, and additional

algorithms, such as MOEA/D [185] and MOEA/DD [186] were therefore proposed for solving such

problems and other extensive works were conducted [187] comparing the components of existing

MO/MaO algorithms on MaOPs. Another area of research called inverse combinatorial optimi-

sation, includes such problems where the cost of evaluating the objective value of a solution is

significantly greater than the time taken by the move operators [188, 189, 190, 191]. Thus, com-

bining COPs that are characteristically different in the nature of their objective functions into

the set of benchmark problems could be explored such as the traditional and inverse COPs, and

single/multi/many objective COPs. This makes sense from the point of view of generalising cross-

domain search methods as general-purpose optimisation methods, but a mixture of these problem

characteristics and objectives would pose a significant challenge for a single algorithm and possibly

warrants a new research area of its own.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 158

HAMSTA Beyond the Local Search Metaheuristic Framework

The work in this thesis focuses on a local search metaheuristic framework as provided in Algorithm 1,

perturbing a solution and then making an accept/reject decision for the new solution. This was

done in order to remove as many confounding factors as possible from the effects of the move

acceptance methods on the cross-domain performance of an optimisation method. HAMSTA, as

the move acceptance method, is shown to improve the cross-domain performance of a local search

metaheuristic while making use of only a single parameter configuration for solving all problems,

but other search frameworks exist that could benefit from using HAMSTA as its sole or one of

its multiple move acceptance methods. While the work in this thesis compares move acceptance

methods using a single-point based stochastic local search metaheuristic framework, the work that

is presented is still of value to the wider community since this experimentation can be generalised

and extended to other local search frameworks and their hybrids [192]. For example, an Iterated

Local Search framework [193] perturbs and then applies hill climbing on an incumbent solution, can

be investigated using various move acceptance methods. The concept of applying such acceptance

criteria is discussed in [193], referring to Better, RW, and LMSC as such strategies.

As another example, Tabu Search, one of the very well-known approaches, that was not consid-

ered in this study due to differences in the way in which it operates compared to the local search

metaheuristic framework as described in Chapter 1. Tabu Search [194, 195] also carries forward a

single solution from one pass of the algorithm to the next as a single-point search method, however

its neighbourhood structure is very different. In Tabu Search, the basic principle is to choose the

best solution from the current solution’s neighbourhood that is not prohibited by a tabu list which

prevents the search from re-tracing its previous steps. Tabu Search therefore has to evaluate all

neighbouring solutions as defined by its neighbourhood operator, and chooses the best one to pro-

ceed, si+1 ← bestAdmissible ∈ (s). In the local search metaheuristic framework explained prior

on the other hand, a single neighbouring solution is chosen completely at random by performing a

perturbative change to the solution-in-hand. There are studies which hybridise these single-point

based search metaheuristics within the Tabu Search framework such as in [196] where Tabu Search

is used to find a candidate solution from the solution neighbourhood, but where the acceptance of

the candidates solution is determined by Simulated Annealing. Another trivial research direction

would be to investigate the performance of different move acceptance methods studied in this thesis

under the framework suggested by [196].

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 159

Abstracting an Iterative Multi-stage Search Framework from HAMSTA

Perhaps unsurprisingly, preliminary testing of the HAMSTA-based local search metaheuristic shows

that it does not have as good of a cross-domain performance when compared to the state-of-the-art

hyper-heuristics. In this work, the groundworks are laid for future research directions of move

acceptance methods as components of heuristic optimisation methods. It is evident that even

for a local search metaheuristic, which uses a single perturbative operator, more complex move

acceptance methods than the existing ones are required for them to perform well under a cross-

domain setting. They are most often designed to balance exploitation and exploration throughout

the search process by controlling their algorithmic parameters. For example, the temperature in

SA is reduced over time to favour exploitation in the latter stages compared to exploration in the

earlier stages, GD maintains a threshold which is reduced over time to initially allow many worse

moves but over time such worse moves are only accepted if their quality is satisfactory given the

remaining computational budget of the search.

A general iterative multi-stage search framework can be extracted from the design of HAMSTA

as shown in Figure 6.1. This framework is composed of three stages; exploitation, exploration,

and a stage which balances these such that at first an exploitation stage is executed, followed

by an iterative application of an exploration stage, and the stage that balances exploitation and

exploration. HAMSTA uses IE, AM and HTA for each of these stages respectively.

An optimisation algorithm under the proposed iterative multi-stage search framework would

start by initialising its internal parameters/adaptation mechanisms as shown by InitialisationPro-

cedure 1();. Then, the exploration stage is invoked and ran until its termination criterion is met.

The variables and mechanisms can then be set up for the subsequent stages, as shown by Initi-

laisaitonProcedure 2(); and the first exploration stage can then ran. This exploration stage then

continues until its termination criterion is met, and the subsequent stage is decided based upon

whether the previous exploration stage was able to improve its initial solution or not. Subsequent

to an improving exploitation stage, the framework then enters an iterative process of applying the

balanced exploitation and exploration stage followed by the exploration stage. Upon the com-

pletion of the balanced exploitation and exploration stage, an adaptation mechanism should be

employed to reconfigure the algorithmic parameters of each stage based on the search history as

shown by AdaptationProcedure();. An algorithm under the search framework terminates at any

point subject to the computational budget.

The difference that is meant between the exploitation and balanced move acceptance strategies

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 160

𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑔𝑒
𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝐴𝑑𝑎𝑝𝑡𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒();

𝑚ௗ

𝑠𝑡𝑎𝑔𝑒𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑚௫௧

START

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒_1();

𝑠𝑡𝑎𝑔𝑒𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒_2();

𝑚௫

𝑠𝑡𝑎𝑔𝑒𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

Ex
pl

oi
ta

tio
n

St
ag

e

Ex
pl

or
at

io
n

St
ag

e

Ba
la

nc
ed

 E
xp

lo
ita

tio
n

an
d

Ex
pl

or
at

io
n

St
ag

e

N

Y

N

Y

YN

N

Y

Figure 6.1: An iterative multi-stage search framework based on the strategies used by the HAMSTA
move acceptance method where mexploit is a move acceptance method used to rapidly improve the
solution-in-hand, mexplore is a move acceptance method which allows an exploration of the search
space, and mbalanced is a move acceptance method which is designed to balance appropriately its
exploitation and exploration abilities based on the local search landscape region.

is that the exploitation stage exploits the search neighbourhood by only accepting non-worsening

moves to improve the solution-in-hand, whereas the balanced strategy exploits the search history

to allow both non-worsening and worse moves in a balanced and controlled manner to improve the

solution-in-hand over time.

The existing hyper-heuristics make use of iterated single-stage algorithms or sequential multi-

stage algorithms for their move acceptance method, but the use of iterative multi-stage move

acceptance methods has not been explored. HAMSTA, as a move acceptance method which employs

an internal adaptive iterative multi-stage mechanism, improves over the existing move acceptance

methods under a local search metaheuristic framework. Hyper-heuristics operate at a higher-

level than metaheuristics and contain a set of low-level heuristics of various types such as: local

search, mutation (perturbation), crossover, and ruin-recreate. Hyper-heuristics shift the focus away

from the search space of solutions, and instead centre on the search space of the heuristics. If a

simple heuristic search framework, i.e. local search metaheuristics, requires specially designed move

acceptance methods for improving their cross-domain performance, then more advanced methods

combining multiple neighbourhood operators such as hyper-heuristics should also benefit from the

design of such move acceptance methods. Given the success of HAMSTA, it is reasonable to

expect that some form of iterative multi-stage algorithm can improve the cross-domain performance

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 161

of a heuristic-based algorithm further. Therefore, a future research direction should include the

investigation of iterative multi-stage move acceptance methods under a hyper-heuristic framework

to advance the current state-of-the-art cross-domain search methods - this has not been previously

explored.

Further studies could include the investigation of the effects of using different move acceptance

components under the iterative multi-stage framework where, for example, HTA could be replaced

with other methods for the mbalanced stage such as Simulated Annealing or Great Deluge, or even

HAMSTA. Moreover, machine learning techniques could be embedded into the search framework

such that the move acceptance method used for mbalanced could be selected at each mbalanced

stage from a set of move acceptance methods. Furthermore, ensemble methods such as group

decision-making could also be employed to mix multiple move acceptance methods during the same

stage. The results of previous studies have shown the advantages of using ensembles such as group

decision-making for combining the decisions of multiple move acceptance methods [197], and more

recently they have been investigated for solving Bin Packing problems [198] where it was found

that randomly constructed ensembles can outperform ensembles of high-performance methods.

Using a similar strategy to mix multiple move acceptance methods for the “balanced” stage within

the iterative multi-stage framework could also prove beneficial to its cross-domain performance,

especially considering that an algorithm for cross-domain search acts on characteristically different

COPs where some move acceptance methods may perform well, whereas others may not. Moreover,

online learning strategies have been used under a hyper-heuristic framework [97] to decide the best

heuristic to apply from a set of low-level heuristics. Similar online learning strategies could be

employed to choose which move acceptance method to use during the exploitation-exploration

stage of HAMSTA.

The Role of Move Acceptance for Cross-domain Search

The level of generality at which search methods can act have been raised through the use of hyper-

heuristics in the past, allowing them to solve problems from different domains without modification.

Realistically however, their effectiveness for solving problems well from different domains is not as

good as they should be and remains in the focus of current research. Since the design of AdapHH in

2011 [199], only a few methods have been able to improve upon its cross-domain performance. This

was either achieved using machine learning techniques for improving heuristic selection [94], or by

using accidental complexity analysis which aims to optimise the existing design of AdapHH (GIHH)

[200] by simplifying its design by removing unnecessary mechanisms built into the algorithm by the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 162

human expert. In this work, we have shown that even under a simple local search metaheuristic

framework, the choice of move acceptance method can have a significant effect on the cross-domain

performance of such search methods. The variation in performance of each of the move acceptance

methods can even be seen across each of the problem domains despite performing parameter tuning

for solving each problem. Considering these outcomes, a future research direction to improve the

effectiveness of general purpose search methods should focus on improving the move acceptance

components by designing them specifically for solving the cross-domain search problem - one of such

methods is successfully presented in this work as HAMSTA; however, further ideas are presented

below which could have the potential to further improve the performance of cross-domain search

methods through new approaches for move acceptance.

One approach could involve the use of multi-stage algorithms which utilise different move accep-

tance methods throughout the search. This has the advantage of being able to mix such methods

which are, with respect to our taxonomy, characteristically different. In theory, such search methods

could then use search history to adapt the search process by changing between each of them as re-

quired to effectively solve the problem in hand. A multi-stage approach was under a hyper-heuristic

framework in [94] employing two move acceptance strategies, greedy and threshold acceptance; how-

ever, at each stage the greedy strategy is invoked stochastically, employing threshold acceptance

in the case that greedy is not chosen. There is a lack of the use of an exploration stage in and

there is no explicit strategy to enforce an iterative application of its stages. HAMSTA on the other

hand is an example of a move acceptance method under an iterative multi-stage search frame-

work and internally uses three move acceptance method coming from each non-stochastic basic and

non-stochastic threshold classifications and shows promising potential for further work under this

framework.

Another possibility is to select a single move acceptance method, or use the decisions, from

a set of move acceptance methods where the move acceptance methods should span the different

natures of the accept/reject decision from the taxonomy presented in this work. Previous work has

involved the mixture of move acceptance criteria. Tensor analysis, as an advanced machine learning

technique, was used in [40] to associate a set of move operators with two move acceptance methods

within a hyper-heuristic. Each move acceptance method was used in a phase based approach where

each subsequent phase employed the opposite move acceptance method to the one currently used.

Group decision-making was used in [197], and is a technique used to collaboratively arrive at a

decision to accept or reject a move based on several independent move acceptance methods. Each

move acceptance method within a group decision-making strategy can be assigned a weight to

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 163

change the influence that each move acceptance method has in the overall decision. Furthermore,

adaptation of these weights based on the nature of the accept/reject decision of the move acceptance

methods can be used to increase the influence that each has based on the state of the search. These

are just some of the ways in which move acceptance methods using different natures of accept/reject

decisions can be used together under the same search method.

References

[1] D. Landa-Silva and J. H. Obit, “Great deluge with non-linear decay rate for solving course

timetabling problems,” in Intelligent Systems, 2008. IS ’08. 4th International IEEE Confer-

ence, vol. 1, pp. 8–11, Sept 2008.

[2] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-

ity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1982.

[3] S. Petrovic, Y. Yang, and M. Dror, “Case-based selection of initialisation heuristics for meta-

heuristic examination timetabling,” Expert Systems with Applications, vol. 33, no. 3, pp. 772–

785, 2007.

[4] L. N. Ahmed, E. Özcan, and A. Kheiri, “Solving high school timetabling problems worldwide

using selection hyper-heuristics,” Expert Systems with Applications, vol. 42, pp. 5463–5471,

Aug. 2015.

[5] C. D. Tarantilis, C. T. Kiranoudis, and V. S. Vassiliadis, “A threshold accepting metaheuristic

for the heterogeneous fixed fleet vehicle routing problem,” European Journal of Operational

Research, vol. 152, no. 1, pp. 148–158, 2004.

[6] K. Sörensen and F. W. Glover, “Metaheuristics,” in Encyclopedia of Operations Research and

Management Science, pp. 960–970, Springer US, 2013.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1990.

[8] G. Ausiello, P. Crescenzi, and M. Protasi, “Approximate solution of {NP} optimization prob-

lems,” Theoretical Computer Science, vol. 150, no. 1, pp. 1–55, 1995.

164

REFERENCES 165

[9] Z. Drezner, P. M. Hahn, and É. D. Taillard, “Recent advances for the quadratic assignment

problem with special emphasis on instances that are difficult for meta-heuristic methods,”

Annals of Operations Research, vol. 139, pp. 65–94, Oct 2005.

[10] P. Hahn, Y.-R. Zhu, M. Guignard-Spielberg, W. Hightower, and M. Saltzman, “A level-3

reformulation-linearization technique-based bound for the quadratic assignment problem,”

INFORMS Journal on Computing, vol. 24, pp. 202–209, 2012.

[11] W. Adams and L. Waddell, “Linear programming insights into solvable cases of the quadratic

assignment problem,” Discrete Optimization, vol. 14, pp. 46 – 60, 2014.

[12] Z. Beheshti and S. M. Shamsuddin, “A review of population-based meta-heuristic algorithm,”

International Journal of Advances in Soft Computing and its Applications, vol. 5, no. 1, 2013.

[13] M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp, “Classification of metaheuristics

and design of experiments for the analysis of components,” tech. rep., Intellektik Darmstadt

University of Technology, Darmstadt, Germany, 2001.

[14] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and concep-

tual comparison,” ACM Computing Surveys, vol. 35, pp. 268–308, September 2003.

[15] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations & Applications. San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[16] R. Battiti, M. Brunato, and F. Mascia, Reactive Search and Intelligent Optimization, vol. 45

of Operations Research/Computer Science Interfaces. Springer Verlag, 2008.

[17] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu, “Hyper-

heuristics: A survey of the state of the art,” Journal of the Operational Research Society,

vol. 64, no. 12, pp. 1695–1724, 2013.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, no. 4598, pp. 671–680, 1983.

[19] G. Dueck, “New optimization heuristics: The great deluge algorithm and the record-to-record

travel,” Journal of Computational Physics, vol. 104, no. 1, pp. 86–92, 1993.

[20] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker, M. Gendreau,

G. Kendall, B. McCollum, A. Parkes, S. Petrovic, and E. K. Burke, HyFlex: A Benchmark

REFERENCES 166

Framework for Cross-Domain Heuristic Search, pp. 136–147. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012.

[21] C. Igel, No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics, pp. 1–23.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

[22] G. Ochoa and M. Hyde, “The cross-domain heuristic search challenge (chesc 2011).” [Online].

Available: http://www.asap.cs.nott.ac.uk/external/chesc2011, 2011. Accessed: 11-05-

2019.

[23] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans-

actions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[24] J. McDermott, “When and why metaheuristics researchers can ignore “no free lunch” theo-

rems,” SN Computer Science, vol. 1, Jan 2020.

[25] A. Santini, S. Ropke, and L. M. Hvattum, “A comparison of acceptance criteria for the

adaptive large neighbourhood search metaheuristic,” Journal of Heuristics, vol. 24, pp. 783–

815, October 2018.

[26] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis of hyper-heuristics,”

Intelligent Data Analysis, vol. 12, pp. 3–23, Jan 2008.

[27] J. Ries, P. Beullens, and Y. Wang, Instance-specific parameter tuning for meta-heuristics,

pp. 136–170. IGI Global, 9 2012.

[28] E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing for exam timetabling

problems,” in Proceedings of the International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2008), (Montreal, Canada), p. Extended Abstract, 2008.

[29] B. Adenso-Diaz and M. Laguna, “Fine-tuning of algorithms using fractional experimental

designs and local search,” Operations Research, vol. 54, no. 1, pp. 99–114, 2006.

[30] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning methods for meta-

heuristics,” IEEE Transactions on Evolutionary Computation, vol. 24, no. 2, pp. 201–216,

2020.

[31] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: an automatic algorithm

configuration framework,” Journal of Artificial Intelligence Research, vol. 36, pp. 267–306,

2009.

http://www.asap.cs.nott.ac.uk/external/chesc2011

REFERENCES 167

[32] L. Lindawati, Generic Instance-Specific Automated Parameter Tuning Framework. PhD the-

sis, Singapore Management University, Singapore, 2014. Available: https://ink.library.

smu.edu.sg/etd_coll/100.

[33] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle, “The

irace package: Iterated racing for automatic algorithm configuration,” Operations Research

Perspectives, vol. 3, pp. 43 – 58, 2016.

[34] A. J. Benavides and M. Ritt, “Iterated local search heuristics for minimizing total completion

time in permutation and non-permutation flow shops,” in Proceedings of the Twenty-Fifth In-

ternational Conference on International Conference on Automated Planning and Scheduling,

ICAPS’15, pp. 34–41, AAAI Press, 2015.

[35] B. L. Golden and C. C. Skiscim, “Using simulated annealing to solve routing and location

problems,” Naval Research Logistics Quarterly, vol. 33, no. 2, pp. 261–279, 1986.

[36] F. Li, B. Golden, and E. Wasil, “A record-to-record travel algorithm for solving the het-

erogeneous fleet vehicle routing problem,” Computers & Operations Research, vol. 34, no. 9,

pp. 2734 – 2742, 2007.

[37] P. I. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach to scheduling a sales

summit,” in Selected Papers from the Third International Conference on Practice and Theory

of Automated Timetabling III, PATAT ’00, (London, UK, UK), pp. 176–190, Springer-Verlag,

2001.

[38] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. R. Woodward, “A classifi-

cation of hyper-heuristic approaches: Revisited,” in Handbook of Metaheuristics, pp. 453–477,

Springer, 2019.

[39] J. H. Drake, E. Özcan, and E. K. Burke, “An improved choice function heuristic selection for

cross domain heuristic search,” in Parallel Problem Solving from Nature - PPSN XII (C. A. C.

Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, eds.), (Berlin, Heidelberg),

pp. 307–316, Springer Berlin Heidelberg, 2012.

[40] S. Asta and E. Özcan, “A tensor-based selection hyper-heuristic for cross-domain heuristic

search,” Information Sciences, vol. 299, pp. 412–432, 2015.

[41] S. S. Choong, L.-P. Wong, and C. P. Lim, “Automatic design of hyper-heuristic based on

reinforcement learning,” Information Sciences, vol. 436-437, pp. 89 – 107, 2018.

https://ink.library.smu.edu.sg/etd_coll/100
https://ink.library.smu.edu.sg/etd_coll/100

REFERENCES 168

[42] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “Hybrid metaheuristics in combinatorial

optimization: A survey,” Applied Soft Computing, vol. 11, no. 6, pp. 4135–4151, 2011.

[43] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, “A survey on metaheuristics

for stochastic combinatorial optimization,” Natural Computing, vol. 8, pp. 239–287, Jun 2009.

[44] E. Hopper and B. C. H. Turton, “A review of the application of meta-heuristic algorithms to

2d strip packing problems,” Artificial Intelligence Review, vol. 16, no. 4, pp. 257–300, 2001.

[45] R. Lewis, “A survey of metaheuristic-based techniques for university timetabling problems,”

OR Spectrum, vol. 30, no. 1, pp. 167–190, 2008.

[46] P. Cowling, G. Kendall, and Limin Han, “An investigation of a hyperheuristic genetic al-

gorithm applied to a trainer scheduling problem,” in Proceedings of the 2002 Congress on

Evolutionary Computation. CEC’02 (Cat. No.02TH8600), vol. 2, pp. 1185–1190 vol.2, 2002.

[47] X. Wu, P. Consoli, L. Minku, G. Ochoa, and X. Yao, “An evolutionary hyper-heuristic for

the software project scheduling problem,” in Parallel Problem Solving from Nature – PPSN

XIV (J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and B. Paechter, eds.),

(Cham), pp. 37–47, Springer International Publishing, 2016.

[48] E. Özcan, J. H. Drake, C. Altıntaş, and S. Asta, “A self-adaptive multimeme memetic algo-

rithm co-evolving utility scores to control genetic operators and their parameter settings,”

Applied Soft Computing, vol. 49, pp. 81 – 93, 2016.

[49] D. B. Gümüş, E. Özcan, and J. Atkin, “An investigation of tuning a memetic algorithm for

cross-domain search,” in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 135–

142, July 2016.

[50] R. J. Marshall, M. Johnston, and M. Zhang, “Hyper-heuristic operator selection and accep-

tance criteria,” in Evolutionary Computation in Combinatorial Optimization (G. Ochoa and

F. Chicano, eds.), (Cham), pp. 99–113, Springer International Publishing, 2015.

[51] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algo-

rithms,” Evolutionary Computation, IEEE Transactions on, vol. 3, pp. 124–141, Jul 1999.

[52] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyzing evolutionary

algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 19–31, 2011.

REFERENCES 169

[53] B. Bilgin, E. Özcan, and E. E. Korkmaz, “An experimental study on hyper-heuristics and

exam timetabling,” in Practice and Theory of Automated Timetabling VI, (Berlin, Heidel-

berg), pp. 394–412, Springer Berlin Heidelberg, 2007.

[54] I. Maden, Ş. Uyar, and E. Özcan, “Landscape analysis of simple perturbative hyper-

heuristics,” in Mendel 2009: 15th International Conference on Soft Computing, pp. 16–22,

2009.

[55] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Grammatical evolution hyper-heuristic for

combinatorial optimization problems,” Evolutionary Computation, IEEE Transactions on,

vol. 17, pp. 840–861, 2013.

[56] G. Kendall and M. Mohamad, “Channel assignment optimisation using a hyper-heuristic,”

in Cybernetics and Intelligent Systems, 2004 IEEE Conference on, vol. 2, pp. 791–796, Dec

2004.

[57] M. Ayob and G. Kendall, “A monte carlo hyper-heuristic to optimise component placement

sequencing for multi head placement machine,” in Placement Machine, INTECH’03 Thailand,

pp. 132–141, 2003.

[58] T. Wauters, W. Vancroonenburg, and G. Vanden Berghe, “A guide-and-observe hyper-

heuristic approach to the eternity ii puzzle,” Journal of Mathematical Modelling and Al-

gorithms, vol. 11, no. 3, pp. 217–233, 2012.

[59] B. Kiraz and H. Topcuoglu, “Hyper-heuristic approaches for the dynamic generalized assign-

ment problem,” in Intelligent Systems Design and Applications (ISDA), 2010 10th Interna-

tional Conference on, pp. 1487–1492, Nov 2010.

[60] A. Kheiri and E. Keedwell, “A hidden markov model approach to the problem of heuristic

selection in hyper-heuristics with a case study in high school timetabling problems,” Evolu-

tionary Computation, vol. 25, no. 3, pp. 473–501, 2017. PMID: 27258841.

[61] S. M. Pour, J. Drake, and E. Burke, “A choice function hyper-heuristic framework for the

allocation of maintenance tasks in danish railways,” Computers and Operations Research,

vol. 93, pp. 15–26, 2018.

[62] E. K. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic for timetabling and

rostering,” Journal of Heuristics, vol. 9, no. 6, pp. 451–470, 2003.

REFERENCES 170

[63] E. Soubeiga, Development and application of hyperheuristics to personnel scheduling. PhD

thesis, University of Nottingham, 2003.

[64] Z. Ren, H. Jiang, J. Xuan, and Z. Luo, “Ant based hyper heuristics with space reduction: A

case study of the p-median problem,” in Proceedings of the 11th International Conference on

Parallel Problem Solving from Nature: Part I, PPSN’10, (Berlin, Heidelberg), pp. 546–555,

Springer-Verlag, 2010.

[65] D. Ouelhadj and S. Petrovic, “A cooperative distributed hyper-heuristic framework for

scheduling,” in Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Con-

ference on, pp. 2560–2565, Oct 2008.

[66] E. K. Burke, G. Kendall, D. Landa Silva, R. O’Brien, and E. Soubeiga, “An ant algorithm hy-

perheuristic for the project presentation scheduling problem,” in Evolutionary Computation,

2005. The 2005 IEEE Congress on, vol. 3, pp. 2263–2270 Vol. 3, Sept 2005.

[67] P. Cowling, G. Kendall, and E. Soubeiga, “Hyperheuristics: A tool for rapid prototyping

in scheduling and optimisation,” in Applications of Evolutionary Computing (S. Cagnoni,

J. Gottlieb, E. Hart, M. Middendorf, and G. R. Raidl, eds.), (Berlin, Heidelberg), pp. 1–10,

Springer Berlin Heidelberg, 2002.

[68] P. I. Cowling, G. Kendall, and E. Soubeiga, “A parameter-free hyperheuristic for scheduling a

sales summit,” in Proceedings of the 4th Metaheuristic International Conference, MIC 2001,

pp. 127–131, 2001.

[69] R. Bai and G. Kendall, “An investigation of automated planograms using a simulated

annealing based hyper-heuristics,” in Progress as Real Problem Solver - (Operations Re-

search/Computer Science Interface Series, Vol.32, pp. 87–108, Springer, 2005.

[70] A. Berberoğlu and A. c. Uyar, “Experimental comparison of selection hyper-heuristics for the

short-term electrical power generation scheduling problem,” in Applications of Evolutionary

Computation, vol. 6625 of Lecture Notes in Computer Science, pp. 444–453, Springer Berlin

Heidelberg, 2011.

[71] J. Gibbs, G. Kendall, and E. Özcan, “Scheduling english football fixtures over the holiday

period using hyper-heuristics,” in Parallel Problem Solving from Nature, PPSN XI (R. Schae-

fer, C. Cotta, J. Ko lodziej, and G. Rudolph, eds.), vol. 6238 of Lecture Notes in Computer

Science, pp. 496–505, Springer Berlin Heidelberg, 2010.

REFERENCES 171

[72] L. Di Gaspero and T. Urli, “Evaluation of a family of reinforcement learning cross-domain

optimization heuristics,” in Learning and Intelligent Optimization, Lecture Notes in Computer

Science, pp. 384–389, Springer Berlin Heidelberg, 2012.

[73] S. Adriaensen, T. Brys, and A. Nowé, “Fair-share ils: A simple state-of-the-art iterated

local search hyperheuristic,” in Proceedings of the 2014 Annual Conference on Genetic and

Evolutionary Computation, GECCO ’14, (New York, NY, USA), pp. 1303–1310, ACM, 2014.

[74] S. Adriaensen, T. Brys, and A. Nowé, “Designing reusable metaheuristic methods: A

semi-automated approach,” in 2014 IEEE Congress on Evolutionary Computation (CEC),

pp. 2969–2976, July 2014.

[75] J. H. Drake, E. Özcan, and E. K. Burke, “A modified choice function hyper-heuristic con-

trolling unary and binary operators,” in 2015 IEEE Congress on Evolutionary Computation

(CEC), pp. 3389–3396, May 2015.

[76] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic utilising a hidden

markov model,” in GECCO 2015 - Proceedings of the 2015 Genetic and Evolutionary Com-

putation Conference, pp. 417–424, Association for Computing Machinery, Inc, 7 2015.

[77] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A graph-based hyper-

heuristic for educational timetabling problems,” European Journal of Operational Research,

vol. 176, no. 1, pp. 177 – 192, 2007.

[78] E. K. Burke, M. Gendreau, G. Ochoa, and J. D. Walker, “Adaptive iterated local search for

cross-domain optimisation,” in Proceedings of the 13th Annual Conference on Genetic and

Evolutionary Computation, GECCO ’11, (New York, NY, USA), pp. 1987–1994, ACM, 2011.

[79] J. H. Drake, E. Özcan, and E. K. Burke, “Controlling crossover in a selection hyper-

heuristic framework,” School of Computer Science, University of Nottingham, Tech. Rep.

No. NOTTCS-TR-SUB-1104181638-4244, 2011.

[80] J. H. Drake, E. Özcan, and E. K. Burke, “A case study of controlling crossover in a selec-

tion hyper-heuristic framework using the multidimensional knapsack problem,” Evolutionary

Computation, vol. 24, no. 1, pp. 113–141, 2016. PMID: 25635698.

[81] B. Bilgin, P. Demeester, M. Mısır, W. Vancroonenburg, and G. Vanden Berghe, “One hyper-

heuristic approach to two timetabling problems in health care,” Journal of Heuristics, vol. 18,

no. 3, pp. 401–434, 2012.

REFERENCES 172

[82] A. Berberoğlu and A. c. Uyar, “A hyper-heuristic approach for the unit commitment prob-

lem,” in Applications of Evolutionary Computation, vol. 6025 of Lecture Notes in Computer

Science, pp. 121–130, Springer Berlin Heidelberg, 2010.

[83] E. Özcan, Ş. E. Uyar, and E. K. Burke, “A greedy hyper-heuristic in dynamic environments,”

in Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Com-

putation Conference: Late Breaking Papers, GECCO ’09, (New York, NY, USA), pp. 2201–

2204, ACM, 2009.

[84] P. Demeester, B. Bilgin, P. De Causmaecker, and G. Vanden Berghe, “A hyperheuristic ap-

proach to examination timetabling problems: benchmarks and a new problem from practice,”

Journal of Scheduling, vol. 15, no. 1, pp. 83–103, 2012.

[85] M. Mısır, K. Verbeeck, P. De Causmaecker, and G. V. Berghe, “Hyper-heuristics with a dy-

namic heuristic set for the home care scheduling problem,” in IEEE Congress on Evolutionary

Computation, pp. 1–8, July 2010.

[86] M. Mısır, P. Smet, K. Verbeeck, and G. Vanden Berghe, “Security personnel routing and

rostering: a hyper-heuristic approach,” in the 3rd International Conference on Applied Oper-

ational Research (ICAOR’11), vol. 3, pp. 193–205, 2011.

[87] M. Mısır, W. Vancroonenburg, K. Verbeeck, and G. V. Berghe, “A selection hyper-heuristic

for scheduling deliveries of ready-mixed concrete,” in Proceedings of the Metaheuristics In-

ternational Conference (MIC 2011), pp. 289–298, 2011.

[88] M. Mısır, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “A new hyper-heuristic as a

general problem solver: an implementation in hyflex,” Journal of Scheduling, vol. 16, pp. 291–

311, Jun 2013.

[89] E. K. Burke, T. Curtois, M. Hyde, G. Kendall, G. Ochoa, S. Petrovic, J. Vázquez-Rodŕıguez,

and M. Gendreau, “Iterated local search vs. hyper-heuristics: Towards general-purpose search

algorithms,” in Evolutionary Computation (CEC), 2010 IEEE Congress on, pp. 1–8, 2010.

[90] E. Özcan and A. Kheiri, “A hyper-heuristic based on random gradient, greedy and domi-

nance,” in Computer and Information Sciences II (E. Gelenbe, R. Lent, and G. Sakellari,

eds.), pp. 557–563, Springer London, 2012.

REFERENCES 173

[91] G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization algorithm

appearing superior to simulated annealing,” Journal of Computational Physics, vol. 90, no. 1,

pp. 161–175, 1990.

[92] Y. Bykov and S. Petrovic, “A step counting hill climbing algorithm applied to university

examination timetabling,” Journal of Scheduling, vol. 19, pp. 479–492, Aug 2016.

[93] M. Mısır, T. Wauters, K. Verbeeck, and G. Vanden Berghe, “A new learning hyper-heuristic

for the traveling tournament problem,” in Proceedings of the 8th Metaheuristic International

Conference (MIC09), 2009.

[94] A. Kheiri and E. Özcan, “An iterated multi-stage selection hyper-heuristic,” European Journal

of Operational Research, vol. 250, no. 1, pp. 77–90, 2016.

[95] M. Sinclair, “Comparison of the performance of modern heuristics for combinatorial opti-

mization on real data,” Computers & Operations Research, vol. 20, no. 7, pp. 687–695, 1993.

[96] G. Kendall and M. Mohamad, “Channel assignment in cellular communication using a great

deluge hyper-heuristic,” in Networks, 2004. (ICON 2004). Proceedings. 12th IEEE Interna-

tional Conference on, vol. 2, pp. 769–773 vol.2, Nov 2004.

[97] E. Özcan, M. Mısır, G. Ochoa, and E. K. Burke, “A reinforcement learning - great-deluge

hyper-heuristic for examination timetabling,” International Journal of Applied Metaheuristic

Computing, vol. 1, no. 1, pp. 39–59, 2010.

[98] S. M. S. Bhanu and N. P. Gopalan, “A hyper-heuristic approach for efficient resource schedul-

ing in grid,” International Journal of Computers Communications & Control, vol. 3, pp. 249–

258, 2008.

[99] E. K. Burke and Y. Bykov, “Solving exam timetabling problems with the flex-deluge algo-

rithm,” in Proceedings of the International Conference on the Practice and Theory of Auto-

mated Timetabling (PATAT 2006), pp. 370–372, 2006.

[100] E. S. Sin and N. S. M. Kham, “Hyper heuristic based on great deluge and its variants for

exam timetabling problem,” International Journal of Artificial Intelligence & Applications

(IJAIA), vol. 3, no. 1, pp. 149–162, 2012.

[101] J. H. Obit, D. Landa-Silva, M. Sevaux, and D. Ouelhadj, “Non-linear great deluge with rein-

forcement learning for university course timetabling,” in Metaheuristics: Intelligent Decision

REFERENCES 174

Making (M. Caserta and S. Voss, eds.), no. 50 in Operations Research/Computer Science

Interfaces Series, New York: Springer, 2011.

[102] B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Abdullah, “An extended

great deluge approach to the examination timetabling problem,” in 4th Multidisciplinary

International Conference on Scheduling: Theory and Applications, 2009, pp. 424–434, 2009.

[103] E. S. Sin, “Reinforcement learning with egd based hyper heuristic system for exam timetabling

problem,” in Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International

Conference on, pp. 462–466, Sept 2011.

[104] P. McMullan, “An extended implementation of the great deluge algorithm for course

timetabling,” in Computational Science – ICCS 2007 (Y. Shi, G. D. van Albada, J. Don-

garra, and P. M. Sloot, eds.), vol. 4487 of Lecture Notes in Computer Science, pp. 538–545,

Springer Berlin Heidelberg, 2007.

[105] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation

of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21,

no. 6, pp. 1087–1092, 1953.

[106] A. S. Ferreira, R. A. Gonçalves, and A. T. R. Pozo, “A multi-armed bandit hyper-heuristic,”

in 2015 Brazilian Conference on Intelligent Systems (BRACIS), pp. 13–18, Nov 2015.

[107] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Automatic design of a hyper-heuristic frame-

work with gene expression programming for combinatorial optimization problems,” Evolu-

tionary Computation, IEEE Transactions on, vol. 19, pp. 309–325, June 2015.

[108] E. K. Burke, G. Kendall, M. Mısır, and E. Özcan, “Monte carlo hyper-heuristics for exami-

nation timetabling,” Annals of Operations Research, vol. 196, no. 1, pp. 73–90, 2012.

[109] R. Bai, E. K. Burke, and G. Kendall, “Heuristic, meta-heuristic and hyper-heuristic ap-

proaches for fresh produce inventory control and shelf space allocation,” Journal of the Op-

erational Research Society, vol. 59, pp. 1387–1397, 2007.

[110] B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, G. Vanden Berghe, and T. Wauters,

“A hyper-heuristic combined with a greedy shuffle approach to the nurse rostering competi-

tion,” in The 8th international conference on the practice and theory of automated timetabling

(PATAT’10)–the nurse rostering competition, PATAT’10, 2010.

REFERENCES 175

[111] M. Kalender, A. Kheiri, E. Ozcan, and E. K. Burke, “A greedy gradient-simulated anneal-

ing hyper-heuristic for a curriculum-based course timetabling problem,” in Computational

Intelligence (UKCI), 2012 12th UK Workshop on, pp. 1–8, Sept 2012.

[112] M. Kalender, A. Kheiri, E. Özcan, and E. K. Burke, “A greedy gradient-simulated annealing

selection hyper-heuristic,” Soft Computing, vol. 17, no. 12, pp. 2279–2292, 2013.

[113] D. Connolly, “General purpose simulated annealing,” The Journal of the Operational Research

Society, vol. 43, no. 5, pp. 495–505, 1992.

[114] L. Ingber, “Very fast simulated re-annealing,” Mathematical and Computer Modelling, vol. 12,

no. 8, pp. 967–973, 1989.

[115] R. Bai, J. B lażewicz, E. K. Burke, G. Kendall, and B. McCollum, “A simulated annealing

hyper-heuristic methodology for flexible decision support,” 4OR, vol. 10, no. 1, pp. 43–66,

2012.

[116] H. Jiang, S. Zhang, J. Xuan, and Y. Wu, “Frequency distribution based hyper-heuristic for the

bin-packing problem,” in Evolutionary Computation in Combinatorial Optimization (P. Merz

and J.-K. Hao, eds.), vol. 6622 of Lecture Notes in Computer Science, pp. 118–129, Springer

Berlin Heidelberg, 2011.

[117] K. A. Dowsland, E. Soubeiga, and E. K. Burke, “A simulated annealing based hyperheuristic

for determining shipper sizes for storage and transportation,” European Journal of Opera-

tional Research, vol. 179, no. 3, pp. 759–774, 2007.

[118] A. Anagnostopoulos, L. Michel, P. V. Hentenryck, and Y. Vergados, “A simulated annealing

approach to the traveling tournament problem,” Journal of Scheduling, vol. 9, pp. 177–193,

Apr. 2006.

[119] E. Özcan, Y. Bykov, M. Birben, and E. Burke, “Examination timetabling using late accep-

tance hyper-heuristics,” in Evolutionary Computation, 2009. CEC ’09. IEEE Congress on,

pp. 997–1004, May 2009.

[120] M. Mısır, K. Verbeeck, P. De Causmaecker, and G. Vanden Berghe, An Intelligent Hyper-

Heuristic Framework for CHeSC 2011, pp. 461–466. Springer Berlin Heidelberg, 2012.

[121] R. Sridhar, M. Chandrasekaran, P. Sriramya, and S. Raja, “A review on application of 1d,

2d and 3d bin packing techniquies,” Journal of Advanced Research in Dynamical and Control

Systems, vol. 2017, no. Special Issue 4, pp. 165–169, 2017.

REFERENCES 176

[122] G. Scheithauer, “One-dimensional bin packing,” International Series in Operations Research

and Management Science, vol. 263, pp. 47–72, 2018.

[123] V. Fernandez-Viagas, R. Ruiz, and J. Framinan, “A new vision of approximate methods

for the permutation flowshop to minimise makespan: State-of-the-art and computational

evaluation,” European Journal of Operational Research, vol. 257, no. 3, pp. 707–721, 2017.

[124] V. Fernandez-Viagas, J. Valente, and J. Framinan, “Iterated-greedy-based algorithms with

beam search initialization for the permutation flowshop to minimise total tardiness,” Expert

Systems with Applications, vol. 94, pp. 58–69, 2018.

[125] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff scheduling and rostering: A review

of applications, methods and models,” European Journal of Operational Research, vol. 153,

no. 1, pp. 3–27, 2004.

[126] S. Asta, E. Özcan, and T. Curtois, “A tensor based hyper-heuristic for nurse rostering,”

Knowledge-Based Systems, vol. 98, pp. 185–199, 2016.

[127] H. Santos, T. Toffolo, R. Gomes, and S. Ribas, “Integer programming techniques for the

nurse rostering problem,” Annals of Operations Research, vol. 239, no. 1, pp. 225–251, 2016.

[128] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva, “Iterative and core-guided

maxsat solving: A survey and assessment,” Constraints, vol. 18, no. 4, pp. 478–534, 2013.

[129] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, “Maxsat by improved instance-specific

algorithm configuration,” Artificial Intelligence, vol. 235, pp. 26–39, 2016.

[130] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem:

A Computational Study, vol. 40. Princeton University Press, 2011.

[131] J. Escario, J. Jimenez, and J. Giron-Sierra, “Ant colony extended: Experiments on the

travelling salesman problem,” Expert Systems with Applications, vol. 42, no. 1, pp. 390–410,

2015.

[132] A. El-Shamir Ezugwu, A. Adewumi, and M. Fr̂ıncu, “Simulated annealing based symbiotic

organisms search optimization algorithm for traveling salesman problem,” Expert Systems

with Applications, vol. 77, pp. 189–210, 2017.

REFERENCES 177

[133] C. Lin, K. Choy, G. Ho, S. Chung, and H. Lam, “Survey of green vehicle routing problem:

Past and future trends,” Expert Systems with Applications, vol. 41, no. 4 PART 1, pp. 1118–

1138, 2014.

[134] J. Montoya-Torres, J. López Franco, S. Nieto Isaza, H. Felizzola Jiménez, and N. Herazo-

Padilla, “A literature review on the vehicle routing problem with multiple depots,” Computers

and Industrial Engineering, vol. 79, pp. 115–129, 2015.

[135] S. Adriaensen, G. Ochoa, and A. Nowé, “A benchmark set extension and comparative study

for the hyflex framework,” in Evolutionary Computation (CEC), 2015 IEEE Congress on,

pp. 784–791, IEEE, 2015.

[136] A. Fréville, “The multidimensional 0-1 knapsack problem: An overview,” European Journal

of Operational Research, vol. 155, no. 1, pp. 1–21, 2004.

[137] Y. Zhou, X. Chen, and G. Zhou, “An improved monkey algorithm for a 0-1 knapsack prob-

lem,” Applied Soft Computing Journal, vol. 38, pp. 817–830, 2016.

[138] T. Lim, M. Al-Betar, and A. Khader, “Taming the 0/1 knapsack problem with monogamous

pairs genetic algorithm,” Expert Systems with Applications, vol. 54, pp. 241–250, 2016.

[139] M. Etscheid and H. Röglin, “Smoothed analysis of local search for the maximum-cut prob-

lem,” pp. 882–889, 2014.

[140] W. Ben-Ameur, A. R. Mahjoub, and J. Neto, “The maximum cut problem,” in Paradigms of

Combinatorial Optimization, ch. 6, pp. 131–172, John Wiley & Sons, Ltd, 2014.

[141] Y. Zhou, X. Lai, and K. Li, “Approximation and parameterized runtime analysis of evolution-

ary algorithms for the maximum cut problem,” IEEE Transactions on Cybernetics, vol. 45,

no. 8, pp. 1491–1498, 2015.

[142] T. Dokeroglu and A. Cosar, “A novel multistart hyper-heuristic algorithm on the grid for the

quadratic assignment problem,” Engineering Applications of Artificial Intelligence, vol. 52,

pp. 10–25, 2016.

[143] F. Hafiz and A. Abdennour, “Particle swarm algorithm variants for the quadratic assignment

problems - a probabilistic learning approach,” Expert Systems with Applications, vol. 44,

pp. 413–431, 2016.

REFERENCES 178

[144] M. Hyde, G. Ochoa, T. Curtois, and J. A. Vazquez-Rodriguez, “A hyflex module for the

one dimensional bin packing problem,” tech. rep., School of Computer Science, University of

Nottingham, 2010.

[145] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case perfor-

mance bounds for simple one-dimensional packing algorithms,” SIAM Journal on Computing,

vol. 3, pp. 299–325, 1974.

[146] ESICUP, “European special interest group on cutting and packing benchmark data sets.,”

2011.

[147] M. R. Hyde, “One dimensional packing benchmark data sets,” 2011.

[148] J. A. Vazquez-Rodriguez, G. Ochoa, T. Curtois, and M. Hyde, “A hyflex module for the

permutation flow shop problem,” tech. rep., School of Computer Science, University of Not-

tingham, 2010.

[149] M. Nawaz, E. Emory Enscore Jr., and I. Ham, “A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1, pp. 91–95, 1983.

[150] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal of Operational

Research, vol. 64, no. 2, pp. 278–285, 1993.

[151] T. Curtois, G. Ochoa, M. Hyde, and J. A. Vazquez-Rodriguez, “A hyflex module for the

personnel scheduling problem,” tech. rep., School of Computer Science, University of Not-

tingham, 2010.

[152] A. Ikegami and A. Niwa, “A subproblem-centric model and approach to the nurse scheduling

problem,” Mathematical Programming, vol. 97, no. 3, pp. 517–541, 2003.

[153] T. Curtois, “Staff rostering benchmark data sets,” 2009.

[154] M. Hyde, G. Ochoa, T. Curtois, and J. A. Vazquez-Rodriguez, “A hyflex module for the max-

imum satisfiability (max-sat) problem,” tech. rep., School of Computer Science, University of

Nottingham, 2010.

[155] CRIL, “Sat competition 2009 benchmark data sets.,” 2009.

[156] CRIL, “Sat competition 2007 benchmark data sets,” 2007.

REFERENCES 179

[157] J. Argelich, C.-M. Li, F. Manya, and J. Planes, “Maxsat evalulation 2009 benchmark data

sets,” 2009.

[158] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem: A survey,” Operations

Research, vol. 16, no. 3, pp. 538–558, 1968.

[159] G. Reinelt, “Tsplib, a library of sample instances for the tsp.,” 2008.

[160] J. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “A vehicle routing domain for the hyflex

hyper-heuristics framework,” in Proceedings of Learning and Intelligent Optimization (LION

2012), vol. 7219, pp. 265–276, 2012.

[161] J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle routing and adaptive

iterated local search within the hyflex hyper-heuristic framework,” in Learning and Intelligent

Optimization, (Berlin, Heidelberg), pp. 265–276, Springer Berlin Heidelberg, 2012.

[162] SINTEF, “Vrptw benchmark problems, on the sintef transport optimisation portal,” 2011.

[163] S. Adriaensen and G. Ochoa, “A hyflex module for the 0-1 knapsack problem,” March 2015.

[164] D. Pisinger, “A more advanced generator for 0-1 knapsack problems,” 2015.

[165] S. Adriaensen and G. Ochoa, “A hyflex module for the max cut problem,” March 2015.

[166] DIMACS, “7th dimacs implementation challenge,” 2015.

[167] G. Rinaldi, “Rudy graph generator,” 2015.

[168] S. Adriaensen and G. Ochoa, “A hyflex module for the quadratic assignment problem,” March

2015.

[169] R. E. Burkard, S. E. Karisch, and F. Rendl, “Qaplib - a quadratic assignment problem

library,” Journal of Global Optimization, vol. 10, no. 4, pp. 391–403, 1997.

[170] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-parametric tests

for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005 special

session on real parameter optimization,” Journal of Heuristics, vol. 15, p. 617, May 2008.

[171] R. K. Roy, A primer on the Taguchi method. Society of Manufacturing Engineers, 2010.

[172] H. Wang, Q. Geng, and Z. Qiao, “Parameter tuning of particle swarm optimization by us-

ing taguchi method and its application to motor design,” in 2014 4th IEEE International

Conference on Information Science and Technology, pp. 722–726, April 2014.

REFERENCES 180

[173] M. Lundy and A. Mees, “Convergence of an annealing algorithm,” Mathematical Program-

ming, vol. 34, no. 1, pp. 111–124, 1986.

[174] W. G. Jackson, E. Özcan, and R. I. John, “Tuning a simulated annealing metaheuristic

for cross-domain search,” in 2017 IEEE Congress on Evolutionary Computation (CEC),

pp. 1055–1062, June 2017.

[175] D. Abramson, M. Krishnamoorthy, and H. Dang, “Simulated annealing cooling schedules

for the school timetabling problem,” Asia-Pacific Journal of Operational Research, pp. 1–22,

1999.

[176] K. Sim, “Ksats-hh: A simulated annealing hyper-heuristic with reinforcement learning

and tabu-search,” Entry in the Cross-domain Heuristic Search Challenge available from

http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html, June, 2011.

[177] E. K. Burke and Y. Bykov, “The late acceptance hill-climbing heuristic,” European Journal

of Operational Research, vol. 258, no. 1, pp. 70 – 78, 2017.

[178] D. Meignan, “An evolutionary programming hyper-heuristic with co-evolution for chesc11,”

in The 53rd Annual Conference of the UK Operational Research Society (OR53), vol. 3, 2011.

[179] S. Zilberstein, “Using anytime algorithms in intelligent systems,” AI Magazine, vol. 17, no. 3,

pp. 73–83, 1996.

[180] M. L.-I. nez and T. Stützle, “Automatically improving the anytime behaviour of optimisation

algorithms,” European Journal of Operational Research, vol. 235, no. 3, pp. 569 – 582, 2014.

[181] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182–197,

April 2002.

[182] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto evolutionary

algorithm,” TIK-report, vol. 103, 2001.

[183] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective search,” in International

Conference on Parallel Problem Solving from Nature, pp. 832–842, Springer, 2004.

[184] R. C. Purshouse and P. J. Fleming, “Evolutionary many-objective optimisation: an ex-

ploratory analysis,” in The 2003 Congress on Evolutionary Computation, 2003. CEC ’03.,

vol. 3, pp. 2066–2073 Vol.3, Dec 2003.

REFERENCES 181

[185] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on decompo-

sition,” IEEE Transactions on Evolutionary Computation, vol. 11, pp. 712–731, Dec 2007.

[186] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-objective optimization al-

gorithm based on dominance and decomposition,” IEEE Transactions on Evolutionary Com-

putation, vol. 19, pp. 694–716, Oct 2015.

[187] L. Mart́ı, E. Segredo, N. Sánchez-Pi, and E. Hart, “Selection methods and diversity preserva-

tion in many-objective evolutionary algorithms,” Data Technologies and Applications, vol. 52,

no. 4, pp. 502–519, 2018.

[188] D. Marc and M. Jérôme, An Introduction to Inverse Combinatorial Problems, ch. 17, pp. 547–

586. Wiley-Blackwell, 2014.

[189] C. Heuberger, “Inverse combinatorial optimization: A survey on problems, methods, and

results,” Journal of Combinatorial Optimization, vol. 8, pp. 329–361, Sep 2004.

[190] E. D. Nino-Ruiz, C. Ardila, and R. Capacho, “Local search methods for the solution of

implicit inverse problems,” Soft Computing, pp. 1–14, 2017.

[191] S. Malcolm and M. Klaus, “Monte carlo methods in geophysical inverse problems,” Reviews

of Geophysics, vol. 40, no. 3, pp. 3–1–3–29, 2002.

[192] E.-G. Talbi, A Unified Taxonomy of Hybrid Metaheuristics with Mathematical Programming,

Constraint Programming and Machine Learning, pp. 3–76. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013.

[193] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” International Series

in Operations Research and Management Science, vol. 57, pp. 321–354, 01 2003.

[194] F. Glover, “Future paths for integer programming and links to artificial intelligence,” Com-

puters & Operations Research, vol. 13, no. 5, pp. 533 – 549, 1986. Applications of Integer

Programming.

[195] F. Glover and M. Laguna, Tabu search: effective strategies for hard problems in analytics and

computational science, vol. 21. 2013.

[196] I. H. Osman and N. Christofides, “Capacitated clustering problems by hybrid simulated

annealing and tabu search,” International Transactions in Operational Research, vol. 1, no. 3,

pp. 317 – 336, 1994.

REFERENCES 182

[197] A. Kheiri, M. Mısır, and E. Özcan, Ensemble Move Acceptance in Selection Hyper-heuristics,

pp. 21–29. Springer International Publishing, 2016.

[198] E. Hart and K. Sim, “On constructing ensembles for combinatorial optimisation,” Evolution-

ary Computation, vol. 26, pp. 67–87, 2018. REF compliant 29/11/2016 LG.

[199] M. Mısır, P. De Causmaecker, G. Vanden Berghe, and K. Verbeeck, “An adaptive hyper-

heuristic for chesc 2011,” 2011.

[200] S. Adriaensen and A. Nowé, “Case study: An analysis of accidental complexity in a state-

of-the-art hyper-heuristic for hyflex,” in 2016 IEEE Congress on Evolutionary Computation

(CEC), pp. 1485–1492, July 2016.

Appendices

183

184

A Online Supplementary Data

• The complete set of results for comparing move acceptance methods (re-tuned per domain)

under a local search metaheuristic framework as used in Chapter 4.2 — [http://dx.doi.

org/10.13140/RG.2.2.18709.37605].

• The complete set of results for the cross-domain comparison of parameter tuning approaches

vs choice of the move acceptance method as used in Chapter 4.3 — [http://dx.doi.org/

10.13140/RG.2.2.14307.99364].

• The complete set of results for comparing HAMSTA tuned cross-domain to the existing

move acceptance methods as used in Chapter 5 — [https://www.doi.org/10.13140/RG.

2.2.28146.56004/1].

B Results and Pairwise Comparisons of HAMSTA to the

Benchmark Move Acceptance Methods

The following tables report the best, mean average, and standard deviation of results of HAMSTA

tuned cross-domain and each of the benchmark move acceptance methods tuned cross-domain and

per-domain where feasible. Results of pairwise tests are included for completeness in the form of

a Wilcoxon Signed Rank (non-parametric and paired) with CI = 95%. The complete set of results

are available online here: https://www.doi.org/10.13140/RG.2.2.28146.56004/1.

http://dx.doi.org/10.13140/RG.2.2.18709.37605
http://dx.doi.org/10.13140/RG.2.2.18709.37605
http://dx.doi.org/10.13140/RG.2.2.14307.99364
http://dx.doi.org/10.13140/RG.2.2.14307.99364
https://www.doi.org/10.13140/RG.2.2.28146.56004/1
https://www.doi.org/10.13140/RG.2.2.28146.56004/1
https://www.doi.org/10.13140/RG.2.2.28146.56004/1

185

Table 1: Results and pairwise comparisons using Wilcoxon Signed Rank test (CI = 95%) for each
problem instance of HAMSTA (cross-domain tuned) to the cross-domain tuned move acceptance
methods where < (>) denotes that HAMSTA performs better (worse) than the associated move
acceptance method, ≤ (≥) denotes that HAMSTA does not perform statistically significantly dif-
ferent from the associated method, but performs on (mean) average better (worse). ≡ denotes that
HAMSTA and the associated algorithm have equivalent performance.

(a) Results of HAMSTA and pairwise comparison to IE.

HAMSTA IE
P. Inst. Best Mean std. Best Mean Std. vs.

BP

1 3.394 × 10−03 5.258 × 10−03 1.719 × 10−03 3.392 × 10−03 4.450 × 10−03 1.526 × 10−03 >
7 5.781 × 10−03 8.543 × 10−03 9.380 × 10−04 5.720 × 10−03 7.994 × 10−03 7.724 × 10−04 >
9 0.0144 0.0157 7.918 × 10−04 0.0123 0.0137 6.505 × 10−04 >
10 0.1086 0.1091 6.849 × 10−04 0.1085 0.1088 5.215 × 10−04 >
11 0.0263 0.0276 9.894 × 10−04 0.0225 0.0244 9.532 × 10−04 >

FS

1 6250.00 6280.06 17.15 6236.00 6279.00 23.81 ≥
3 6310.00 6352.65 21.37 6319.00 6345.90 19.50 ≥
8 26754.00 26820.19 33.91 26750.00 26804.32 33.62 >
10 11352.00 11414.68 37.48 11320.00 11385.68 32.93 >
11 26591.00 26649.32 43.30 26555.00 26638.87 33.82 ≥

PS

5 38.00 49.68 6.00 688.00 1223.42 364.82 <
8 43562.00 48469.23 2050.65 58640.00 60041.94 885.82 <
9 63518.00 83842.81 6045.60 93131.00 99145.97 3507.66 <
10 1520.00 1653.94 65.48 2165.00 3036.16 713.04 <
11 415.00 513.74 55.94 1805.00 4550.13 1403.64 <

SAT

3 7.00 13.61 3.87 21.00 30.10 5.64 <
4 4.00 13.94 6.10 17.00 40.42 7.46 <
5 7.00 23.81 12.54 44.00 54.94 5.88 <
10 6.00 11.06 2.98 22.00 27.65 3.89 <
11 7.00 10.13 1.36 9.00 12.81 2.04 <

TSP

0 56845.65 60849.40 2773.94 58241.52 61397.45 2654.51 <
2 7806.49 8013.44 136.49 7806.49 8015.58 137.54 ≤
6 57843.55 59683.69 1073.44 57783.36 59660.40 1080.48 >
7 74894.97 76674.23 697.67 74837.82 76636.78 703.42 >
8 24787330.82 25046171.88 142593.00 24766167.28 25027169.31 142422.07 >

VRP

1 20672.57 20868.33 382.43 22763.06 24089.92 877.80 <
2 12283.32 13382.69 505.43 14552.51 16155.79 652.04 <
5 195424.25 205064.48 4191.12 195424.25 205237.19 4229.97 ≤
6 107792.49 112929.04 3195.38 107791.35 113050.05 3229.83 <
9 161371.90 165137.43 2594.57 161714.36 165420.08 2437.13 <

KP

0 1.034 × 10−05 1.034 × 10−05 5.166 × 10−21 1.034 × 10−05 1.034 × 10−05 5.166 × 10−21 ≡
1 2.673 × 10−06 3.206 × 10−06 1.648 × 10−07 3.349 × 10−06 3.349 × 10−06 1.722 × 10−21 <
3 4.163 × 10−06 4.315 × 10−06 7.118 × 10−08 5.202 × 10−06 5.202 × 10−06 8.610 × 10−22 <
5 8.160 × 10−07 8.160 × 10−07 4.305 × 10−22 8.160 × 10−07 8.160 × 10−07 4.305 × 10−22 ≡
8 1.139 × 10−06 1.153 × 10−06 6.587 × 10−09 1.298 × 10−06 1.298 × 10−06 6.458 × 10−22 <

MAC

0 2.416 × 10−08 2.439 × 10−08 1.702 × 10−10 2.536 × 10−08 2.620 × 10−08 4.732 × 10−10 <
2 3.274 × 10−04 3.284 × 10−04 6.104 × 10−07 3.288 × 10−04 3.300 × 10−04 6.429 × 10−07 <
5 7.547 × 10−05 7.591 × 10−05 1.745 × 10−07 7.562 × 10−05 7.604 × 10−05 2.311 × 10−07 <
7 9.910 × 10−05 9.946 × 10−05 2.452 × 10−07 9.916 × 10−05 9.952 × 10−05 2.227 × 10−07 ≤
9 3.383 × 10−04 3.408 × 10−04 1.274 × 10−06 3.374 × 10−04 3.408 × 10−04 1.440 × 10−06 ≥

QAP

0 152152.00 152442.45 183.71 153496.00 154560.39 555.83 <
6 501575938.00 504059733.39 1076615.21 510503407.00 514628544.29 2557557.14 <
7 44847954.00 44889564.58 19558.50 44898282.00 44949685.10 43215.42 <
8 8150552.00 8172331.68 12316.38 8260506.00 8314086.58 32473.82 <
9 273066.00 273538.45 223.66 274800.00 275459.68 582.77 <

186

Table 1

(b) Results and pairwise comparison of HAMSTA to AILLA (cross-domain tuned) and HAMSTA to TA (cross-domain
tuned).

AILLA TA
P. Inst. Best Mean std. vs. Best Mean Std. vs.

BP

1 0.0120 0.0175 4.777× 10−03 < 0.0399 0.0409 1.254× 10−03 <
7 0.0198 0.0304 5.717× 10−03 < 0.0766 0.0803 2.737× 10−03 <
9 0.0201 0.0234 1.255× 10−03 < 0.0397 0.0443 1.978× 10−03 <
10 0.1089 0.1126 2.217× 10−03 < 0.1261 0.1276 2.733× 10−04 <
11 0.0338 0.0374 1.805× 10−03 < 0.0595 0.0646 2.552× 10−03 <

FS

1 6238.00 6271.19 17.77 > 6374.00 6390.65 6.73 <
3 6323.00 6356.48 17.72 ≤ 6410.00 6424.65 8.98 <
8 26739.00 26800.03 39.63 > 27196.00 27303.35 56.86 <
10 11335.00 11400.23 37.99 > 11685.00 11731.81 17.42 <
11 26575.00 26646.26 44.04 ≥ 26948.00 27076.84 68.58 <

PS

5 379.00 928.87 334.87 < 688.00 1223.42 364.82 <
8 53408.00 56430.29 1846.62 < 58640.00 60041.94 885.82 <
9 85903.00 97238.45 4352.57 < 93131.00 99145.97 3507.66 <
10 1659.00 2186.68 503.07 < 2165.00 3036.16 713.04 <
11 385.00 1884.45 1186.78 < 1805.00 4550.13 1403.64 <

SAT

3 3.00 6.77 1.86 > 21.00 30.10 5.64 <
4 2.00 6.23 1.84 > 17.00 40.48 7.38 <
5 6.00 14.42 7.99 > 44.00 54.94 5.88 <
10 2.00 4.87 1.84 > 22.00 27.65 3.89 <
11 7.00 7.77 0.76 > 9.00 12.84 2.03 <

TSP

0 54383.60 57731.16 2554.68 > 55135.94 59136.21 2682.78 >
2 7506.15 7765.92 171.21 > 7851.89 8077.42 162.08 <
6 59207.47 61460.80 1304.44 < 59784.43 61878.83 1299.80 <
7 76440.29 78715.32 837.89 < 76940.24 79086.41 829.82 <
8 24802030.05 25064938.08 140462.39 < 24807166.51 25074146.64 139687.77 <

VRP

1 31513.36 32043.03 479.92 < 20866.39 20956.42 268.24 <
2 19351.94 20901.10 576.16 < 13569.79 14607.16 276.69 <
5 561560.43 579930.26 8576.51 < 330085.32 348607.34 8178.32 <
6 263589.77 269296.82 2783.49 < 174754.74 181754.88 3415.29 <
9 380550.51 391457.03 6913.66 < 231780.28 240570.19 4942.75 <

KP

0 1.016× 10−05 1.027× 10−05 5.000× 10−08 > 1.034× 10−05 1.034× 10−05 5.166× 10−21 ≡
1 2.494× 10−06 2.679× 10−06 7.107× 10−08 > 3.349× 10−06 3.349× 10−06 1.722× 10−21 <
3 3.917× 10−06 4.001× 10−06 3.543× 10−08 > 5.202× 10−06 5.202× 10−06 8.610× 10−22 <
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡ 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.119× 10−06 1.126× 10−06 3.451× 10−09 > 1.298× 10−06 1.298× 10−06 6.458× 10−22 <

MAC

0 3.150× 10−08 3.340× 10−08 1.077× 10−09 < 2.403× 10−08 2.420× 10−08 1.207× 10−10 >
2 3.464× 10−04 3.483× 10−04 1.359× 10−06 < 3.441× 10−04 3.484× 10−04 1.983× 10−06 <
5 8.033× 10−05 8.102× 10−05 3.175× 10−07 < 8.064× 10−05 8.094× 10−05 2.124× 10−07 <
7 1.087× 10−04 1.093× 10−04 3.961× 10−07 < 1.085× 10−04 1.094× 10−04 3.074× 10−07 <
9 4.562× 10−04 4.738× 10−04 6.511× 10−06 < 4.566× 10−04 4.725× 10−04 7.390× 10−06 <

QAP

0 152178.00 152861.16 564.60 < 160296.00 160816.77 223.02 <
6 505536415.00 511318577.84 3434527.65 < 530734376.00 533404490.61 1211399.48 <
7 44812768.00 44863273.16 27230.70 > 45112580.00 45205163.48 45724.22 <
8 8153134.00 8207670.32 32794.51 < 8875552.00 8936440.90 20031.93 <
9 273336.00 273895.03 401.01 < 285808.00 286387.35 262.84 <

187

Table 1

(c) Results and pairwise comparison of HAMSTA to GD (cross-domain tuned) and HAMSTA to AILTA (cross-domain
tuned).

GD AILTA
P. Inst. Best Mean std. vs. Best Mean Std. vs.

BP

1 3.554× 10−03 0.0695 0.0409 < 0.0170 0.0178 2.152× 10−04 <
7 8.434× 10−03 0.1373 0.0818 < 0.0194 0.0215 1.425× 10−03 <
9 0.0199 0.0469 0.0164 < 0.0210 0.0219 7.019× 10−04 <
10 0.1086 0.1235 9.136× 10−03 < 0.1104 0.1128 1.076× 10−03 <
11 0.0315 0.0782 0.0282 < 0.0337 0.0362 1.242× 10−03 <

FS

1 6268.00 6486.94 137.41 < 6342.00 6365.26 10.45 <
3 6316.00 6523.29 120.23 < 6387.00 6406.00 7.19 <
8 26752.00 27164.52 224.76 < 27188.00 27273.94 34.88 <
10 11359.00 11663.26 167.62 < 11555.00 11595.32 16.39 <
11 26619.00 26959.81 204.57 < 26948.00 27045.90 42.35 <

PS

5 46.00 442.19 647.91 < 688.00 1207.00 363.83 <
8 44875.00 52466.45 5148.52 < 58640.00 60041.94 885.82 <
9 41155.00 69440.35 20640.20 > 93131.00 99145.97 3507.66 <
10 1555.00 2043.06 718.90 < 2165.00 3036.16 713.04 <
11 406.00 1728.84 2072.18 < 1805.00 4550.13 1403.64 <

SAT

3 20.00 178.35 96.60 < 21.00 30.10 5.64 <
4 19.00 190.13 98.60 < 17.00 40.42 7.46 <
5 45.00 265.84 137.81 < 44.00 54.94 5.88 <
10 19.00 236.90 136.05 < 22.00 27.65 3.89 <
11 11.00 80.16 43.28 < 9.00 12.81 2.04 <

TSP

0 58245.37 62601.91 2617.32 < 54217.61 57590.58 2033.13 >
2 7853.79 8208.88 169.00 < 8042.55 8274.93 130.09 <
6 58320.84 61319.59 1609.35 < 59784.43 61871.75 1295.11 <
7 75845.86 78406.90 1346.79 < 76940.24 79086.82 829.38 <
8 24790295.78 25068524.73 141123.48 < 24807166.51 25074153.26 139700.45 <

VRP

1 22808.65 37146.26 8984.29 < 20682.28 20706.17 11.76 ≥
2 14522.18 26915.35 7327.28 < 12342.36 13248.17 291.27 ≥
5 195424.25 470794.60 172724.15 < 250893.36 258435.16 3578.63 <
6 108747.20 266081.34 100237.43 < 69874.24 74217.61 1683.97 >
9 162830.24 325426.90 104611.01 < 162347.78 166383.05 1730.67 <

KP

0 1.027× 10−05 1.033× 10−05 1.836× 10−08 > 1.034× 10−05 1.034× 10−05 5.166× 10−21 ≡
1 3.349× 10−06 3.349× 10−06 1.722× 10−21 < 3.349× 10−06 3.349× 10−06 1.722× 10−21 <
3 4.969× 10−06 5.152× 10−06 7.870× 10−08 < 5.202× 10−06 5.202× 10−06 8.610× 10−22 <
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡ 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.298× 10−06 1.298× 10−06 6.458× 10−22 < 1.298× 10−06 1.298× 10−06 6.458× 10−22 <

MAC

0 2.537× 10−08 3.096× 10−08 3.085× 10−09 < 2.417× 10−08 2.433× 10−08 1.085× 10−10 ≥
2 3.291× 10−04 3.433× 10−04 8.754× 10−06 < 3.298× 10−04 3.308× 10−04 4.405× 10−07 <
5 7.569× 10−05 7.942× 10−05 2.305× 10−06 < 7.616× 10−05 7.624× 10−05 6.780× 10−08 <
7 9.930× 10−05 1.065× 10−04 4.514× 10−06 < 1.005× 10−04 1.008× 10−04 1.277× 10−07 <
9 3.399× 10−04 4.356× 10−04 6.117× 10−05 < 3.571× 10−04 3.598× 10−04 1.365× 10−06 <

QAP

0 154048.00 166397.87 7648.67 < 153258.00 153472.71 95.99 <
6 510736883.00 585264322.32 46495690.44 < 501964419.00 503384010.29 762676.56 >
7 44926378.00 47850726.45 1880866.58 < 44982122.00 45030656.65 22561.41 <
8 8258620.00 9113265.55 515023.69 < 8245986.00 8259894.32 7525.70 <
9 274982.00 287382.58 7887.73 < 274574.00 274763.87 94.78 <

188

Table 1

(d) Results and pairwise comparison of HAMSTA to NA (cross-domain tuned) and HAMSTA to SA (cross-domain
tuned).

NA SA
P. Inst. Best Mean std. vs. Best Mean Std. vs.

BP

1 0.0537 0.0577 2.308× 10−03 < 0.0539 0.0602 3.133× 10−03 <
7 0.1787 0.1820 1.412× 10−03 < 0.0890 0.0998 4.907× 10−03 <
9 0.0342 0.0368 8.457× 10−04 < 0.0319 0.0356 1.631× 10−03 <
10 0.1270 0.1272 7.674× 10−05 < 0.1257 0.1272 3.088× 10−04 <
11 0.0633 0.0656 1.185× 10−03 < 0.0602 0.0646 2.270× 10−03 <

FS

1 6488.00 6576.29 43.62 < 6330.00 6360.00 17.41 <
3 6525.00 6611.55 41.42 < 6389.00 6409.94 12.34 <
8 27196.00 27303.77 56.89 < 26943.00 27014.42 43.57 <
10 11685.00 11768.61 47.88 < 11509.00 11541.71 19.51 <
11 26948.00 27076.84 68.58 < 26718.00 26822.68 43.34 <

PS

5 42.00 47.77 3.61 ≥ 36.00 52.94 5.59 <
8 45775.00 48672.52 1638.52 ≤ 43421.00 49034.87 2356.03 ≤
9 43290.00 51132.55 4611.09 > 53979.00 70554.10 7434.28 >
10 1495.00 1612.23 62.27 > 1530.00 1684.81 89.19 ≤
11 410.00 455.26 30.17 > 430.00 562.39 222.60 ≤

SAT

3 165.00 171.74 3.49 < 2.00 6.87 2.62 >
4 170.00 180.61 4.55 < 2.00 4.42 1.48 >
5 246.00 255.06 4.07 < 4.00 7.97 3.18 >
10 228.00 237.03 3.73 < 5.00 8.61 2.14 >
11 79.00 82.90 1.70 < 7.00 8.55 1.06 >

TSP

0 59561.29 63039.82 2480.25 < 56352.90 59627.33 2125.51 >
2 8042.55 8279.75 131.14 < 8042.55 8279.75 131.14 <
6 59784.43 61888.08 1299.22 < 59784.43 61888.08 1299.22 <
7 76940.24 79086.89 829.40 < 76940.24 79086.89 829.40 <
8 24807166.51 25074153.26 139700.45 < 24807166.51 25074153.26 139700.45 <

VRP

1 37828.93 42973.44 1831.25 < 20821.33 20959.15 316.39 <
2 28730.33 31213.79 973.30 < 14626.95 14696.52 202.41 <
5 561560.43 580589.07 8618.93 < 242985.46 259613.09 9390.93 <
6 310641.97 328147.37 6404.38 < 72934.36 81755.23 3345.95 >
9 380645.18 391475.87 6840.35 < 177305.28 184750.88 3726.94 <

KP

0 1.015× 10−05 1.028× 10−05 4.283× 10−08 > 1.026× 10−05 1.032× 10−05 2.729× 10−08 >
1 3.349× 10−06 3.349× 10−06 1.722× 10−21 < 2.585× 10−06 2.807× 10−06 1.035× 10−07 >
3 4.501× 10−06 4.593× 10−06 4.197× 10−08 < 4.094× 10−06 4.240× 10−06 4.379× 10−08 >
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡ 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.298× 10−06 1.298× 10−06 6.458× 10−22 < 1.128× 10−06 1.149× 10−06 6.763× 10−09 >

MAC

0 3.174× 10−08 3.387× 10−08 1.204× 10−09 < 2.405× 10−08 2.425× 10−08 1.109× 10−10 >
2 3.463× 10−04 3.490× 10−04 1.745× 10−06 < 3.266× 10−04 3.271× 10−04 3.068× 10−07 >
5 8.030× 10−05 8.086× 10−05 2.627× 10−07 < 7.488× 10−05 7.498× 10−05 9.174× 10−08 >
7 1.083× 10−04 1.092× 10−04 3.433× 10−07 < 9.746× 10−05 9.767× 10−05 1.134× 10−07 >
9 4.587× 10−04 4.709× 10−04 6.018× 10−06 < 3.358× 10−04 3.381× 10−04 1.097× 10−06 >

QAP

0 167756.00 168563.55 287.79 < 152026.00 152144.13 88.02 >
6 594728166.00 598287549.65 1383469.74 < 501112629.00 502515063.61 751228.99 >
7 47701294.00 47927420.00 107547.32 < 44843748.00 44886308.52 20954.23 ≥
8 9242016.00 9280370.39 14140.28 < 8142722.00 8151401.10 4453.25 >
9 288942.00 289552.26 238.53 < 273048.00 273145.87 93.19 >

189

Table 1

(e) Results and pairwise comparison of HAMSTA to SARH (cross-domain
tuned).

SARH
P. Inst. Best Mean std. vs.

BP

1 0.0586 0.0654 4.162 × 10−03 <
7 0.1137 0.1244 5.582 × 10−03 <
9 0.0333 0.0366 1.882 × 10−03 <
10 0.1276 0.1277 7.678 × 10−05 <
11 0.0632 0.0672 2.294 × 10−03 <

FS

1 6488.00 6575.55 41.96 <
3 6525.00 6609.06 34.43 <
8 27196.00 27303.77 56.89 <
10 11685.00 11768.61 47.88 <
11 26948.00 27076.84 68.58 <

PS

5 39.00 51.94 5.16 ≤
8 45419.00 49514.90 2398.62 <
9 46985.00 65881.16 8632.22 >
10 1540.00 1657.55 70.98 ≤
11 375.00 491.45 47.50 >

SAT

3 7.00 12.00 2.59 >
4 5.00 8.10 1.40 >
5 9.00 15.29 6.81 >
10 6.00 10.94 2.00 ≥
11 7.00 9.26 1.24 >

TSP

0 59561.29 62918.06 2358.57 <
2 8042.55 8279.75 131.14 <
6 59784.43 61888.08 1299.22 <
7 76940.24 79086.89 829.40 <
8 24807166.51 25074153.26 139700.45 <

VRP

1 22043.00 23988.25 638.97 <
2 12272.87 12469.71 387.51 >
5 362890.27 380664.68 8103.15 <
6 129738.02 136064.05 4072.01 <
9 239703.99 254366.27 6435.73 <

KP

0 1.016 × 10−05 1.030 × 10−05 3.754 × 10−08 >
1 2.449 × 10−06 2.811 × 10−06 1.095 × 10−07 >
3 4.112 × 10−06 4.232 × 10−06 3.378 × 10−08 >
5 8.160 × 10−07 8.160 × 10−07 4.305 × 10−22 ≡
8 1.138 × 10−06 1.148 × 10−06 5.050 × 10−09 >

MAC

0 2.519 × 10−08 2.550 × 10−08 1.328 × 10−10 <
2 3.351 × 10−04 3.364 × 10−04 6.044 × 10−07 <
5 7.672 × 10−05 7.706 × 10−05 1.428 × 10−07 <
7 1.024 × 10−04 1.029 × 10−04 2.076 × 10−07 <
9 4.102 × 10−04 4.152 × 10−04 1.900 × 10−06 <

QAP

0 153744.00 154040.97 144.36 <
6 506229031.00 508054332.48 1064190.32 <
7 45224240.00 45344817.74 54257.52 <
8 8282630.00 8299738.26 9292.22 <
9 274924.00 275122.90 148.15 <

190

Table 2: Results and pairwise comparisons using Wilcoxon Signed Rank test (CI = 95%) for each
problem instance of HAMSTA (cross-domain tuned) to the per-domain tuned move acceptance
methods where < (>) denotes that HAMSTA performs better (worse) than the associated move
acceptance method, ≤ (≥) denotes that HAMSTA does not perform statistically significantly dif-
ferent from the associated method, but performs on (mean) average better (worse). ≡ denotes that
HAMSTA and the associated algorithm have equivalent performance.

(a) Results of HAMSTA and pairwise comparison to IE.

HAMSTA IE
P. Inst. Best Mean std. Best Mean Std. vs.

BP

1 3.394× 10−03 5.258× 10−03 1.719× 10−03 3.392× 10−03 4.450× 10−03 1.526× 10−03 >
7 5.781× 10−03 8.543× 10−03 9.380× 10−04 5.720× 10−03 7.994× 10−03 7.724× 10−04 >
9 0.0144 0.0157 7.918× 10−04 0.0123 0.0137 6.505× 10−04 >
10 0.1086 0.1091 6.849× 10−04 0.1085 0.1088 5.215× 10−04 >
11 0.0263 0.0276 9.894× 10−04 0.0225 0.0244 9.532× 10−04 >

FS

1 6250.00 6280.06 17.15 6236.00 6279.00 23.81 ≥
3 6310.00 6352.65 21.37 6319.00 6345.90 19.50 ≥
8 26754.00 26820.19 33.91 26750.00 26804.32 33.62 >
10 11352.00 11414.68 37.48 11320.00 11385.68 32.93 >
11 26591.00 26649.32 43.30 26555.00 26638.87 33.82 ≥

PS

5 38.00 49.68 6.00 688.00 1223.42 364.82 <
8 43562.00 48469.23 2050.65 58640.00 60041.94 885.82 <
9 63518.00 83842.81 6045.60 93131.00 99145.97 3507.66 <
10 1520.00 1653.94 65.48 2165.00 3036.16 713.04 <
11 415.00 513.74 55.94 1805.00 4550.13 1403.64 <

SAT

3 7.00 13.61 3.87 21.00 30.10 5.64 <
4 4.00 13.94 6.10 17.00 40.42 7.46 <
5 7.00 23.81 12.54 44.00 54.94 5.88 <
10 6.00 11.06 2.98 22.00 27.65 3.89 <
11 7.00 10.13 1.36 9.00 12.81 2.04 <

TSP

0 56845.65 60849.40 2773.94 58241.52 61397.45 2654.51 <
2 7806.49 8013.44 136.49 7806.49 8015.58 137.54 ≤
6 57843.55 59683.69 1073.44 57783.36 59660.40 1080.48 >
7 74894.97 76674.23 697.67 74837.82 76636.78 703.42 >
8 24787330.82 25046171.88 142593.00 24766167.28 25027169.31 142422.07 >

VRP

1 20672.57 20868.33 382.43 22763.06 24089.92 877.80 <
2 12283.32 13382.69 505.43 14552.51 16155.79 652.04 <
5 195424.25 205064.48 4191.12 195424.25 205237.19 4229.97 ≤
6 107792.49 112929.04 3195.38 107791.35 113050.05 3229.83 <
9 161371.90 165137.43 2594.57 161714.36 165420.08 2437.13 <

KP

0 1.034× 10−05 1.034× 10−05 5.166× 10−21 1.034× 10−05 1.034× 10−05 5.166× 10−21 ≡
1 2.673× 10−06 3.206× 10−06 1.648× 10−07 3.349× 10−06 3.349× 10−06 1.722× 10−21 <
3 4.163× 10−06 4.315× 10−06 7.118× 10−08 5.202× 10−06 5.202× 10−06 8.610× 10−22 <
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.139× 10−06 1.153× 10−06 6.587× 10−09 1.298× 10−06 1.298× 10−06 6.458× 10−22 <

MAC

0 2.416× 10−08 2.439× 10−08 1.702× 10−10 2.536× 10−08 2.620× 10−08 4.732× 10−10 <
2 3.274× 10−04 3.284× 10−04 6.104× 10−07 3.288× 10−04 3.300× 10−04 6.429× 10−07 <
5 7.547× 10−05 7.591× 10−05 1.745× 10−07 7.562× 10−05 7.604× 10−05 2.311× 10−07 <
7 9.910× 10−05 9.946× 10−05 2.452× 10−07 9.916× 10−05 9.952× 10−05 2.227× 10−07 ≤
9 3.383× 10−04 3.408× 10−04 1.274× 10−06 3.374× 10−04 3.408× 10−04 1.440× 10−06 ≥

QAP

0 152152.00 152442.45 183.71 153496.00 154560.39 555.83 <
6 501575938.00 504059733.39 1076615.21 510503407.00 514628544.29 2557557.14 <
7 44847954.00 44889564.58 19558.50 44898282.00 44949685.10 43215.42 <
8 8150552.00 8172331.68 12316.38 8260506.00 8314086.58 32473.82 <
9 273066.00 273538.45 223.66 274800.00 275459.68 582.77 <

191

Table 2

(b) Results and pairwise comparison of HAMSTA to TA (per-domain tuned) and HAMSTA to GD (per-domain
tuned).

TA GD
P. Inst. Best Mean std. vs. Best Mean Std. vs.

BP

1 3.483× 10−03 6.307× 10−03 1.557× 10−03 < 3.532× 10−03 0.0693 0.0417 <
7 8.364× 10−03 0.0106 1.929× 10−03 < 8.489× 10−03 0.1373 0.0818 <
9 0.0155 0.0190 2.995× 10−03 < 0.0147 0.0460 0.0179 <
10 0.1086 0.1095 7.022× 10−04 < 0.1086 0.1235 9.224× 10−03 <
11 0.0263 0.0348 5.220× 10−03 < 0.0273 0.0778 0.0290 <

FS

1 6236.00 6288.23 28.73 < 6268.00 6494.16 133.66 <
3 6319.00 6350.29 19.32 ≥ 6319.00 6524.42 119.67 <
8 26748.00 26811.74 27.92 ≥ 26751.00 27164.45 225.25 <
10 11354.00 11418.19 32.73 ≤ 11359.00 11663.39 166.80 <
11 26564.00 26651.48 36.94 ≤ 26609.00 26959.90 204.60 <

PS

5 36.00 47.74 5.34 ≥ 46.00 442.45 647.75 <
8 44875.00 49445.65 2023.05 < 44875.00 52466.45 5148.52 <
9 36483.00 53895.10 7559.25 > 38413.00 66373.32 22189.62 >
10 1435.00 1904.84 354.74 < 1555.00 2046.06 717.18 <
11 406.00 513.16 61.47 ≥ 406.00 1723.97 2075.02 <

SAT

3 21.00 30.10 5.64 < 22.00 177.42 96.41 <
4 17.00 40.42 7.46 < 15.00 188.68 99.43 <
5 44.00 54.94 5.88 < 50.00 266.55 136.67 <
10 22.00 27.65 3.89 < 21.00 236.55 135.24 <
11 9.00 12.81 2.04 < 11.00 80.48 42.91 <

TSP

0 55135.94 59130.90 2690.62 > 58245.37 62600.29 2620.74 <
2 7836.62 8099.48 152.40 < 7853.79 8208.75 168.79 <
6 59784.43 61878.83 1299.80 < 58320.84 61319.59 1609.35 <
7 76940.24 79086.41 829.82 < 75736.09 78400.29 1358.42 <
8 24807166.51 25074146.64 139687.77 < 24787330.82 25067737.25 141473.46 <

VRP

1 20662.90 20821.67 340.44 ≥ 22801.07 37096.93 8800.84 <
2 12279.21 12731.89 505.48 > 15542.93 27049.66 7048.68 <
5 218239.66 231251.98 5907.40 < 195425.01 470794.62 172724.12 <
6 71088.61 75107.91 2195.05 > 108747.20 266082.40 100235.70 <
9 166317.05 170089.49 2119.39 < 162819.53 325424.46 104614.93 <

KP

0 1.026× 10−05 1.033× 10−05 1.917× 10−08 > 1.024× 10−05 1.033× 10−05 2.367× 10−08 >
1 3.349× 10−06 3.349× 10−06 1.722× 10−21 < 3.349× 10−06 3.349× 10−06 1.722× 10−21 <
3 4.969× 10−06 5.142× 10−06 8.699× 10−08 < 4.897× 10−06 5.160× 10−06 8.750× 10−08 <
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡ 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.298× 10−06 1.298× 10−06 6.458× 10−22 < 1.298× 10−06 1.298× 10−06 6.458× 10−22 <

MAC

0 2.431× 10−08 2.492× 10−08 3.463× 10−10 < 2.574× 10−08 3.084× 10−08 3.096× 10−09 <
2 3.358× 10−04 3.368× 10−04 4.526× 10−07 < 3.292× 10−04 3.429× 10−04 8.402× 10−06 <
5 8.065× 10−05 8.105× 10−05 2.370× 10−07 < 7.579× 10−05 7.954× 10−05 2.297× 10−06 <
7 1.089× 10−04 1.094× 10−04 3.400× 10−07 < 9.918× 10−05 1.065× 10−04 4.620× 10−06 <
9 3.401× 10−04 3.442× 10−04 1.783× 10−06 < 3.383× 10−04 4.357× 10−04 6.178× 10−05 <

QAP

0 152088.00 152249.10 108.56 > 154522.00 166450.77 7410.60 <
6 503773903.00 506671553.06 1496768.06 < 506662705.00 585301816.26 46006089.58 <
7 44849624.00 44894702.52 22110.41 ≤ 44893236.00 47878937.16 1913438.65 <
8 8201886.00 8215772.52 6785.94 < 8252552.00 9117550.06 526932.34 <
9 274006.00 274177.29 75.83 < 275188.00 287469.48 7556.39 <

192

Table 2

(c) Results and pairwise comparison of HAMSTA to NA and HAMSTA to SA (per-domain tuned).

NA SA
P. Inst. Best Mean std. vs. Best Mean Std. vs.

BP

1 0.0537 0.0577 2.308× 10−03 < 3.479× 10−03 6.200× 10−03 1.627× 10−03 <
7 0.1787 0.1820 1.412× 10−03 < 8.068× 10−03 9.943× 10−03 1.398× 10−03 <
9 0.0342 0.0368 8.457× 10−04 < 0.0147 0.0185 2.004× 10−03 <
10 0.1270 0.1272 7.674× 10−05 < 0.1085 0.1097 1.668× 10−03 <
11 0.0633 0.0656 1.185× 10−03 < 0.0247 0.0324 3.474× 10−03 <

FS

1 6488.00 6576.29 43.62 < 6247.00 6301.16 21.98 <
3 6525.00 6611.55 41.42 < 6310.00 6348.48 21.00 ≥
8 27196.00 27303.77 56.89 < 26745.00 26821.45 42.07 ≤
10 11685.00 11768.61 47.88 < 11323.00 11405.71 38.68 ≥
11 26948.00 27076.84 68.58 < 26587.00 26664.39 41.61 <

PS

5 42.00 47.77 3.61 ≥ 44.00 50.87 4.19 ≤
8 45775.00 48672.52 1638.52 ≤ 43421.00 49406.19 2365.76 <
9 43290.00 51132.55 4611.09 > 41412.00 52587.00 7238.96 >
10 1495.00 1612.23 62.27 > 1490.00 1658.97 95.04 ≤
11 410.00 455.26 30.17 > 430.00 497.81 40.06 ≥

SAT

3 165.00 171.74 3.49 < 4.00 7.52 1.95 >
4 170.00 180.61 4.55 < 2.00 5.32 1.76 >
5 246.00 255.06 4.07 < 6.00 8.81 1.82 >
10 228.00 237.03 3.73 < 4.00 8.84 2.75 >
11 79.00 82.90 1.70 < 7.00 8.39 0.99 >

TSP

0 59561.29 63039.82 2480.25 < 59561.29 62968.50 2467.50 <
2 8042.55 8279.75 131.14 < 8042.55 8271.40 136.30 <
6 59784.43 61888.08 1299.22 < 57783.36 60044.79 1293.20 <
7 76940.24 79086.89 829.40 < 74909.60 76915.97 863.09 <
8 24807166.51 25074153.26 139700.45 < 24790896.18 25061207.86 143130.85 <

VRP

1 37828.93 42973.44 1831.25 < 21954.89 22821.99 456.43 <
2 28730.33 31213.79 973.30 < 12266.70 12520.83 438.75 >
5 561560.43 580589.07 8618.93 < 320333.52 340477.58 7654.09 <
6 310641.97 328147.37 6404.38 < 114355.45 120760.65 3181.84 <
9 380645.18 391475.87 6840.35 < 222240.82 228243.70 4196.11 <

KP

0 1.015× 10−05 1.028× 10−05 4.283× 10−08 > 1.023× 10−05 1.030× 10−05 3.153× 10−08 >
1 3.349× 10−06 3.349× 10−06 1.722× 10−21 < 2.608× 10−06 2.797× 10−06 8.210× 10−08 >
3 4.501× 10−06 4.593× 10−06 4.197× 10−08 < 4.146× 10−06 4.216× 10−06 2.520× 10−08 >
5 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡ 8.160× 10−07 8.160× 10−07 4.305× 10−22 ≡
8 1.298× 10−06 1.298× 10−06 6.458× 10−22 < 1.138× 10−06 1.146× 10−06 4.263× 10−09 >

MAC

0 3.174× 10−08 3.387× 10−08 1.204× 10−09 < 2.559× 10−08 2.620× 10−08 3.929× 10−10 <
2 3.463× 10−04 3.490× 10−04 1.745× 10−06 < 3.277× 10−04 3.303× 10−04 8.836× 10−07 <
5 8.030× 10−05 8.086× 10−05 2.627× 10−07 < 7.563× 10−05 7.604× 10−05 1.819× 10−07 <
7 1.083× 10−04 1.092× 10−04 3.433× 10−07 < 9.905× 10−05 9.943× 10−05 2.024× 10−07 ≥
9 4.587× 10−04 4.709× 10−04 6.018× 10−06 < 3.390× 10−04 3.408× 10−04 1.128× 10−06 ≤

QAP

0 167756.00 168563.55 287.79 < 153192.00 153509.23 128.69 <
6 594728166.00 598287549.65 1383469.74 < 504241335.00 506315153.74 1043454.22 <
7 47701294.00 47927420.00 107547.32 < 45091456.00 45203476.90 43572.62 <
8 9242016.00 9280370.39 14140.28 < 8244208.00 8262139.42 6028.39 <
9 288942.00 289552.26 238.53 < 274392.00 274563.74 100.85 <

193

Table 2

(d) Results and pairwise comparison of HAMSTA to SARH (per-domain
tuned).

SARH
P. Inst. Best Mean std. vs.

BP

1 0.0499 0.0633 3.935 × 10−03 <
7 0.1040 0.1125 5.236 × 10−03 <
9 0.0354 0.0378 1.596 × 10−03 <
10 0.1274 0.1276 8.616 × 10−05 <
11 0.0637 0.0673 2.277 × 10−03 <

FS

1 6260.00 6290.19 21.18 <
3 6319.00 6355.52 15.71 ≤
8 26751.00 26822.81 37.09 ≤
10 11359.00 11411.71 34.13 ≥
11 26580.00 26666.74 41.61 <

PS

5 43.00 50.97 4.79 ≤
8 45495.00 49897.23 2215.78 <
9 39787.00 53399.94 7501.88 >
10 1509.00 1639.97 74.10 ≥
11 416.00 493.16 37.41 >

SAT

3 2.00 5.19 1.85 >
4 2.00 3.58 1.12 >
5 3.00 6.13 1.57 >
10 2.00 6.45 2.31 >
11 7.00 7.94 0.89 >

TSP

0 59561.29 63039.82 2480.25 <
2 8032.09 8257.63 120.76 <
6 58320.84 60288.30 1513.36 <
7 74837.82 76672.56 707.29 ≥
8 24787319.65 25044391.34 141843.72 ≥

VRP

1 21954.89 22821.99 456.43 <
2 12266.70 12520.83 438.75 >
5 320333.52 340477.58 7654.09 <
6 114355.45 120760.65 3181.84 <
9 222240.82 228243.70 4196.11 <

KP

0 1.014 × 10−05 1.029 × 10−05 5.173 × 10−08 >
1 2.668 × 10−06 2.807 × 10−06 6.519 × 10−08 >
3 4.095 × 10−06 4.225 × 10−06 3.568 × 10−08 >
5 8.160 × 10−07 8.160 × 10−07 4.305 × 10−22 ≡
8 1.133 × 10−06 1.145 × 10−06 4.433 × 10−09 >

MAC

0 2.460 × 10−08 2.483 × 10−08 1.080 × 10−10 <
2 3.272 × 10−04 3.282 × 10−04 3.867 × 10−07 ≥
5 7.505 × 10−05 7.517 × 10−05 8.421 × 10−08 >
7 9.816 × 10−05 9.836 × 10−05 1.143 × 10−07 >
9 3.529 × 10−04 3.553 × 10−04 1.275 × 10−06 <

QAP

0 153238.00 153486.19 118.43 <
6 504846786.00 506413442.23 824052.44 <
7 45049522.00 45191973.23 45339.33 <
8 8250384.00 8261080.06 6368.08 <
9 274242.00 274525.87 112.64 <

	Introduction
	No Free Lunch Theorem
	Research Motivation and Contributions
	Academic Output
	Structure of Thesis
	Summary

	Local Search Metaheuristics and Cross-domain Search
	Introduction
	Related Work
	Methods for Solving Cross-domain Search
	Parameter Tuning for Cross-domain Search
	Comparisons of Move Acceptance Methods

	A Taxonomy for Move Acceptance Methods
	Classification of the Accept/Reject Decision
	Classification of the Algorithmic Parameter Setting
	Example Classification using Simulated Annealing

	A Survey of Existing Methods
	All Moves (AM)
	Only Improving (OI)
	Improving or Equals (IE)
	Naïve Acceptance (NA)
	Adaptive Acceptance (AA)
	Threshold Accepting (TA)
	Backtracking Adaptive Threshold Accepting (BATA)
	Step Counting Hill Climbing (SCHC)
	Iteration Limited Threshold Accepting (ILTA)
	Adaptive Iteration Limited Threshold Accepting (AILTA)
	Record-to-record Travel (RRT)
	Great Deluge (GD)
	Flex Deluge (FD)
	Non-linear Great Deluge (NLGD)
	Extended Great Deluge (EGD)
	Linear Monte Carlo (LMC)
	Exponential Monte Carlo (EMC)
	Exponential Monte Carlo with Counter (EMCQ)
	Simulated Annealing (SA)
	Simulated Annealing with Reheating (SARH)
	Late Acceptance (LA)
	Late Acceptance with Initial Threshold Accepting (LAIT)
	n-Top List (n-TL)
	n-Best List (n-BL)
	Adaptive Iteration Limited List-based Threshold Accepting with a Fixed Limit (AILLA-F)
	Adaptive Iteration Limited List-based Threshold Accepting (AILLA)
	An overview of existing methods

	Summary

	Methodologies and Experimental Setup
	Introduction
	Experimental Framework
	Problem Domains
	One-Dimensional Bin Packing (BP)
	Permutation Flow Shop (FS)
	Personnel Scheduling (PS)
	Maximum Satisfiability (SAT)
	Euclidean Travelling Salesman Problem (TSP)
	Vehicle Routing with Time Windows (VRPTW)
	0-1 Knapsack Problem (KP)
	Max Cut Problem (MAC)
	Quadratic Assignment Problem (QAP)

	Methods of Analysis
	Parameter Tuning
	Approaches to Parameter Tuning
	Tuning Methodologies

	Move Acceptance Methods
	Adaptive Iteration Limited List-based Threshold Accepting (AILLA)
	Adaptive Iteration Limited Threshold Accepting (AILTA)
	Great Deluge (GD)
	Improving or Equal (IE)
	Naïve Acceptance (NA)
	Simulated Annealing (SA)
	Simulated Annealing with Reheating (SARH)
	Threshold Accepting (TA)

	Summary

	On the Cross-domain Performance of Move Acceptance Methods
	Introduction
	An analysis of the performance of move acceptance methods for cross-domain search
	Bin Packing
	Flow Shop
	Personnel Scheduling
	Maximum Satisfiability
	Travelling Salesman Problem
	Vehicle Routing with Time Windows Problem
	0-1 Knapsack Problem
	Max Cut Problem
	Quadratic Assignment Problem
	Per-domain Performance Observations
	Cross-domain Results and Observations

	On the Effectiveness of Parameter Tuning versus Choice of Move Acceptance Method for Cross-domain Search
	Results for Parameter Tuning Effects
	Results for Choice of the Move Acceptance Method Effects
	Observations of parameter tuning and choice of the move acceptance method effects

	Summary

	The History-based Adaptive Multi-Stage Threshold Accepting Algorithm
	Introduction
	History-based Adaptive Multi-Stage Threshold Accepting
	HAMSTA Parameters
	IE Stage
	AM Stage
	HTA Stage
	History-based Threshold Accepting
	Parameter Adaptation

	Experimentation
	Cross-Domain Parameter Tuning

	Experimental Results
	Trace Analysis
	A Comparison to the State-of-the-Art
	Summary

	Conclusions and Future Work
	Context
	Summary of Work
	Local Search Metaheuristics and Cross-domain Search
	On the Cross-domain Performance of Move Acceptance Methods
	The History-based Adaptive Multi-Stage Threshold Accepting Algorithm

	Future Work

	Appendices
	Online Supplementary Data
	Results and Pairwise Comparisons of HAMSTA to the Benchmark Move Acceptance Methods

