
Research Article
A Dynamic Opposite Learning Assisted Grasshopper
Optimization Algorithm for the Flexible Job
Scheduling Problem

Yi Feng,1 Mengru Liu ,1 Yuqian Zhang ,2 and Jinglin Wang3

1Dalian University of Technology, Dalian, China
2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
3University of Nottingham Ningbo China, Ningbo, China

Correspondence should be addressed to Yuqian Zhang; yq.zhang1@siat.ac.cn

Received 6 August 2020; Revised 21 September 2020; Accepted 26 November 2020; Published 30 December 2020

Academic Editor: Dan Selisteanu

Copyright © 2020 Yi Feng et al.)is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Job shop scheduling problem (JSP) is one of the most difficult optimization problems in manufacturing industry, and flexible job
shop scheduling problem (FJSP) is an extension of the classical JSP, which further challenges the algorithm performance. In FJSP,
a machine should be selected for each process from a given set, which introduces another decision element within the job path,
making FJSP be more difficult than traditional JSP. In this paper, a variant of grasshopper optimization algorithm (GOA) named
dynamic opposite learning assisted GOA (DOLGOA) is proposed to solve FJSP.)e recently proposed dynamic opposite learning
(DOL) strategy adopts the asymmetric search space to improve the exploitation ability of the algorithm and increase the possibility
of finding the global optimum. Various popular benchmarks from CEC 2014 and FJSP are used to evaluate the performance of
DOLGOA. Numerical results with comparisons of other classic algorithms show that DOLGOA gets obvious improvement for
solving global optimization problems and is well-performed when solving FJSP.

1. Introduction

Global optimization has become an important research topic
in scientific research and engineering applications. Neural
network training [1, 2], path planning [3, 4], industrial
design [5, 6], and many other complex problems hope to use
optimization algorithms to achieve optimum solutions.
Global optimization algorithms mainly consist of two
classes: deterministic mathematical programming method
[7–10] and metaheuristic algorithms (MAs) [11–14]. MAs
have simple structure and strong adaptability, which is very
advantageous in solving complex problems [15, 16]. In re-
cent decades, inspired by nature, MAs with many different
characteristics have been proposed by researchers. Glover
et al. proposed tabu search (TS) [17] by simulating the
feature that human has memory function. Simulated
annealing algorithm (SA) [18] was proposed by simulating
the industrial annealing process of high temperature object.

Based on Darwin’s evolution theory and Mendel’s genetics,
Holland and John proposed genetic algorithm (GA) [19] for
the first time in the 1970s. Dorigo and Sttzle proposed ant
colony optimization (ACO) [20] based on the study of ant
colony behavior. Inspired by the foraging behavior of birds,
American psychologist Kennedy and electrical engineer
Eberhart proposed particle swarm optimization (PSO) in
1995 [13]. In addition to these classical algorithms, some
new MAs have been proposed in recent years, such as grey
wolf optimizer (GWO) [21], moth flame optimization
(MFO) [22], firefly algorithm (FA) [23], teaching-learning-
based optimization (TLBO) [24, 25] competitive swarm
optimization (CSO) [26, 27], dragonfly algorithm (DA) [28],
whale optimization algorithm (WOA) [29], and pigeon-
inspired optimization [30].

)e grasshopper optimization algorithm (GOA) is a
recently proposed new MA. It was inspired by the foraging
behavior of grasshopper and proposed by Saremi et al. in

Hindawi
Complexity
Volume 2020, Article ID 8870783, 19 pages
https://doi.org/10.1155/2020/8870783

mailto:yq.zhang1@siat.ac.cn
https://orcid.org/0000-0003-4864-5337
https://orcid.org/0000-0002-5443-1960
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8870783

2017 [31].)e algorithm has simple principle and distinctive
features and demonstrated good performance in solving
optimization problems. As soon as the algorithm was
proposed, scholars applied it to different optimization
problems. Mirjalili et al. applied GOA to the multiobjective
optimization problem in 2017 [32]. Tumuluru and Ravi used
GOA to update the weight of the deep confidence neural
network and applied it to the classification of cancer in 2017
[33]. Aljarah et al. used GOA for feature selection and
support vector machine optimization for solving feature
selection task in 2018 [34].

In addition to the original GOA, many variants have
emerged for the improvements of the algorithm perfor-
mance. In 2017, Wu et al. proposed an adaptive grasshopper
optimization algorithm (AGOA) and applied it to the UAV
tracking trajectory optimization problem [35]. In 2018,
Ewees et al. proposed an improved version of the grass-
hopper optimization algorithm based on the opposition-
based learning strategy called OBLGOA for solving
benchmark optimization functions and engineering prob-
lems [36]. Although the existing method has greatly im-
proved GOA, there is still a large probability of falling into
local optimum.)is paper adopts the DOL strategy pro-
posed by Xu et al. [37] to improve the optimization per-
formance of GOA.)e search space of DOL strategy is
asymmetric and dynamic, which greatly improves the
probability of GOA to obtain the optimal solution and
avoids it falling into local optimum to some extent.

)e job shop scheduling problem (JSP) [38] is a famous
NP hard problem in the discrete manufacturing system, and
flexible job shop scheduling problem (FJSP) is an extension
of the classical JSP [39, 40]. In FJSP, there may be more than
one machine for the same process, so two subproblems
should be considered when solving FJSP: the machine se-
lection (MS) and the operations sequencing (OS) [41]. Al-
though there is only one more step than JSP to assign a series
of optional machines to a specified process, it is much more
difficult to get optimal solution to the FJSP in polynomial
time. Intelligent optimization algorithm can obtain the
approximate solution with better quality in a short time, due
to which an increasing number of intelligent optimization
algorithms are used to solve FJSP.)e literature shows that
many swarm intelligent optimization algorithms such as GA
[42–44], TS [45, 46], and artificial bee colony algorithm
(ABC) [47, 48] have been successfully applied to FJSP and
obtained good results.)ough numerous approaches have
been proposed for solving the given problem, the complex
FJSP problem calls for more competitive solvers for solving
the problem. In order to further test the performance of
DOLGOA, we use DOLGOA algorithm to solve FJSP.

)e main contribution of this paper is as follows:

(1) An encoding scheme FJSP is discussed in detail, and
the mathematical model and constrains are given

(2) A new variant of GOA by adopting a dynamic op-
posite learning strategy is proposed to improve the
exploitation ability of GOA and increase the possi-
bility of finding the global optimum

(3) Various popular benchmarks from CEC 2014 and
FJSP are used to evaluate the performance of
DOLGOA by comparing with other classic
algorithms

In this paper, we introduce the background in Section 1,
then the problem description of FJSP is discussed in Section
2, and followed by the GOA algorithm and DOL strategy
which are demonstrated in Section 3.)en, the DOLGOA is
proposed in Section 4.)e experiment and discussion are
given in Section 5 with the comparison of other algorithms.
Finally, Section 6 concludes the paper.

2. Problem Formulation

In the FJSP, we assume that there are N jobs to be processed
and M usable machines in a workshop, where each job
contains multiple operations, and each operation can be
processed by a series of specified machines. Each machine
can only serve one process at a time, the purpose of opti-
mization is to arrange the machines according to the process
requirements to minimize the maximal completion time
Cmax. In order to express the problem more clearly, we use
notations as follows:

i: the ith job
j: the jth operation of the corresponding job
k: the kth machine
pi: the total number of operations for job i

Bijk: beginning time of operation j of job i on machine
k

Pijk: processing time of operation j of job i on machine
k

Cijk: completion time of operation j of job i onmachine
k

Ci: completion time for job
Cmax: maximal completion time
Objective function: minimize Cmax

)e constraints of FJSP can be expressed as follows:

(i) All machines are available at time zero, and all jobs
can start at time zero:

Bijk ≥ 0,

Cijk ≥ 0.
(1)

(ii) Processing time of each operation on the corre-
sponding machine is definite, and the transmission
time is ignored:

Ci ≥Cij, ∀j ∈ 1, pi􏼂 􏼃,

Cmax ≥Ci, ∀i ∈ [1, N].
(2)

(iii) Jobs are independent of each other and cannot be
inserted or cancelled by force:

2 Complexity

Sijk + Pijk � Cijk,

􏽘
k

Sijk ≥ 􏽘
k

Ci(j−1)k.
(3)

(iv) Each machine can only process one job at a time:

Bik + Pik ≤B(i+1)k, ∀j ∈ 1, pi􏼂 􏼃. (4)

(v) Each operation of a job can only be processed by one
machine at a time:

Bij + Pij ≤Bi(j+1), ∀k ∈ [1, M]. (5)

3. Algorithm Preliminaries

3.1. Grasshopper Optimization Algorithm. GOA optimiza-
tion algorithm is a featured intelligent optimization algo-
rithm based on population, which is inspired by the foraging
behavior of grasshopper population.)e grasshoppers’
position constitutes the solution space, and the optimal
grasshopper’s position corresponds to the optimal solution.
Grasshopper is always moving during the foraging process,
so the position is constantly changing. During each iteration,
the optimal position will be updated if a better position is
found until the iteration termination condition is satisfied.

)e mathematical model employed to simulate the
swarming behavior of grasshoppers is shown as follows:

Xi � Si + Gi + Ai, (6)

where Xi defines the position of the ith grasshopper, Si is social
interaction,Gi is the influence of gravity on the ith grasshopper,
and Ai is the influence of wind on the ith grasshopper.
However, in order to provide random behavior, the equation
can be written as Xi � r1Si + r2Gi + r3Ai, where r1, r2, and r3
is a random number between [0, 1]:

Si � 􏽘
N

j�1,j≠ i

s dij􏼐 􏼑􏽣dij, (7)

where dij is the distance between the ith and the jth
grasshopper, calculated as dij � |xj − xi|, s is a function to
define the strength of social forces, which is shown in
equation (8), and 􏽣dij � ((xj − xi)/dij) is a unit vector from
the ith grasshopper to the jth grasshopper.

)e function s, which defines the strength of social
forces, is calculated as follows:

s(r) � fe
(− r/ı)

− e
− r

, (8)

where f is the strength of attraction and l is the scale of
attraction length.

)e G component in equation (6) is calculated as follows:

Gi � −g 􏽢eg, (9)

where g is the gravitational constant and 􏽢eg is a unit vector
towards the center of Earth.

)eA component in equation (6) is calculated as follows:

Ai � − u 􏽢ew, (10)

where u is an offset constant and 􏽢ew is the unit vector along
the direction of wind.

Substituting S, G, and A in equation (6), this equation
can be expressed as follows:

Xi � 􏽘
N

j�1,j≠ i

s xj − xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xj − xi

dij

− g 􏽢eg + u 􏽢ew, (11)

where s(r) � fe(− r/l) − e− r and N is the number of
grasshoppers.

However, this mathematical model cannot be used di-
rectly to solve the optimization problems mainly because the
grasshoppers quickly reach their comfort zone and the
swarm does not converge to the specified point. In order to
solve the optimization problem, the modified form of this
equation is as follows:

X
d
i � c 􏽘

N

j�1,j≠ i

c
ubd − lbd

2
s x

d
j − x

d
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xj − xi

dij

⎛⎝ ⎞⎠ + 􏽣Td,

(12)

where ubd is the upper bound of the dth dimension, lbd is the
lower bound of the dth dimension, s(r) � fe(− r/l) − e− r, 􏽣Td

is the value of dth dimension of the target (best solution
found so far), and c is a decreasing coefficient of comfort
zone, repulsion zone, and attraction zone, as defined in
equation (13). Note that S is almost similar to the component
S in equation (6). However, we do not consider the gravity
(no G component) and assume that the wind direction is
always toward a target (􏽣Td). According to equation (12), the
next position of the grasshopper is determined according to
its current position, the position of the target, and the
position of all other grasshoppers:

c � cmax − l
cmax − cmin

L
, (13)

where cmax is the maximum value, cmin is the minimum
value, l is the current iteration number, and L is the max-
imum iteration number. In this paper, we take 1 and 0.00001
for cmax and cmin, respectively.

3.2. Oppositional-Based Learning (OBL). Opposition-based
learning (OBL) [49] is one of the most successful learning
strategies and is widely used in the effective learning phase to
enhance the search capability of population-based algo-
rithms. When finding the solution X of a given problem,
OBL makes the candidate solution more likely to approach
the optimal solution by simultaneously computing the
current X and the inverse solution of X.

3.2.1. Opposite Number. X is a real number in [a, b], where a
and b are the boundaries of X. XO is the opposite number of
X, which can be defined as follows:

X
O

� a + b − X. (14)

Complexity 3

3.2.2. Opposite Point. Assume that X � (X1, X2, . . . , XD) is
a point in a D-dimensional space, and Xj ∈ [aj, bj], where
j� 1 :D and aj and bj are the low and high boundaries of the
current population respectively, which change with itera-
tion. A D-dimension opposite point is defined as follows:

X
O
j � aj + bj − Xj, j � 1: D. (15)

3.3.Dynamic-Opposite Learning (DOL). On the basis of OBL
strategy, many new ideas such as quasi-opposite-based
learning (QOBL) [50] and quasi-reflection-based learning
(QRBL) [51] are proposed, and the quasi-opposite number
in QOBL and the quasi-reflection number in QRBL are both
closer to the global optimum than the opposite number in
OBL. However, if there is a local optimum in the search
space, all strategies including OBL, QOBL, and QRBL tend
to converge the search space to the local optimal location.
Concerning this problem, a dynamic opposite learning
(DOL) strategy is proposed in [37], which can improve the
probability of convergence to the global optimum while
avoiding falling into the local optimum.

In order to avoid the situation of falling into the local
optimum in the space from the current number to the opposite
number in OBL theory, a random opposite number XRO was
proposed, and XRO � rand∗XO, rand ∈ [0, 1]. We can see
thatXRO can be not only betweenX andXO but also greater or
less than X or XO. DOL strategy is formulated by randomly
selecting a DOL number XDO between X and XRO. When
XRO ∈ [a, b], XDO � X + rand(XRO − X); otherwise, if XRO

exceeds the range of [a, b], it is necessary to check whether the
number obtained by DOL has a boundary: if
X + rand(XRO − X) ∈ [a, b], XDO is equal to
X + rand(XRO − X); otherwise, XDO should be reset as a
random number between a and b. Although XRO can enhance
the diversity of the search space, the search space may shrink
along with the iteration, which will lead to the deterioration of
the exploitation capability. In light of this, a positive weighting
factorw is used to balance the region and diversity of the search
space.)e mathematical model of DOL can be described as
follows.

3.3.1. Dynamic Opposite Number. X is a real number in [a,
b], where a and b are the boundaries of X.)e dynamic
opposite number XDO can be defined as equation (16), where
a and b are the boundaries and rand is a random number
between 0 and 1. Moreover, w is a positive weighting factor,
and XO is the opposite number defined as equation (14):

X
DO

� X + w∗ rand∗ rand∗X
O

− X􏼐 􏼑. (16)

3.3.2. Dynamic Opposite Point. X � (X1, X2, . . . , XD) is a
point in a D-dimensional space, and Xj ∈ [aj, bj], where
j� 1 :D and aj and bj are the low and high boundaries of the
current population, respectively, which change with itera-
tion. A D-dimension dynamic opposite point is defined as
follows:

X
DO
j � Xj + w∗ rand∗X

O
j − Xj􏼐 􏼑, j � 1: D, (17)

where rand is a random number between 0 and 1, w is a
positive weighting factor, and XO

j is the opposite point
defined as equation (15).

3.3.3. DOL-Based Optimization. Assume that
X � (X1, X2, . . . , XD) is a point in a D-dimensional space,
and Xj ∈ [aj, bj], where j� 1 :D and aj and bj are the low
and high boundaries of the current population, respectively,
which change with iteration. Dynamic opposite point XDO �

(XDO
1 , XDO

2 , . . . , XDO
D) is defined according to equation (17)

and is updated by X in each generation. X should be
replaced by XDO if the fitness of XDO is better than X.
Otherwise, X stays the same. It is important to note thatXDO

j

should be in [aj, bj], otherwise, XDO
j needs to be redefined as

a random number in this interval.

4. DOL-Based GOA Algorithm

Conventional GOA algorithm has limitation in the exploitation
ability, which calls for novel strategies in enhancing the solution
diversity. In this section, an algorithm named DOLGOA is
proposed, which applies DOL strategy to GOA algorithm in
accelerating the convergence speed and preventing the algo-
rithm from falling into local optimal. DOL strategy contributes
to GOA mainly in two aspects, including population initiali-
zation and generation jumping.

4.1. DOLPopulation Initialization.)e DOL initialization is
shown as follows:

X
DO
i,j � Xi,j + r1i ∗ r2i ∗ aj + bj − Xi,j􏼐 􏼑 − Xi,j􏼐 􏼑, (18)

whereXi,j is the randomly generated initial population andXDO
i,j

is the population obtained by DOL strategy. N is the population
size, i represents the ith individual (i � 1, 2, . . . , Np), j rep-
resents the jth dimension (j � 1, 2, . . . , D), and r1i and r2i are
two random numbers in [0, 1]. In DOL initialization, the
weighting factor w is set as 1.

To ensure the effectiveness of DOL, boundary detection
is also required:

X
DO
i,j � rand aj, bj􏼐 􏼑, if X

DO
i,j < aj orX

DO
i,j > bj. (19)

In the initialization step, the optimal individual is se-
lected from the new population consisting of Xi,j and XDO

i,j .

4.2. DOL Generation Jumping. In each iteration, if the se-
lected probability (random number between [0, 1]) is
smaller than the jump rate (Jr), the population will be
updated through DOL strategy.)e DOL jump process is
shown as follows:

X
DO
i,j � Xi,j + w∗ r3i ∗ r4i ∗ aj + bj − Xi,j􏼐 􏼑 − Xi,j􏼐 􏼑,

(20)

where XDO
i,j also needs to meet the boundary conditions. In

order to lock the new candidate objects generated by DOL

4 Complexity

into a smaller search space, we dynamically update the
boundary [aj, bj] as follows:

aj � min Xi,j􏼐 􏼑,

bj � max Xi,j􏼐 􏼑.
(21)

In DOL generation jumping step, the optimal individ-
uals are selected from the new population consisting of Xi,j

and XDO
i,j .

4.3. DOLGOA Algorithm Steps. When DOL population
initialization and generation jumping are added, a new GOA
variant, named dynamic opposite learning assisted GOA
(DOLGOA), is proposed. In order to visualize the concrete
algorithm, the steps of DOLGOA algorithm are described in
Algorithm 1.)e procedure of DOLGOA is shown in
Figure 1.

4.4. Encoding and Decoding. To solve FJSP with DOLGOA,
we encode the problem. In the FJSP, we define three vari-
ables X, T1, and T2, all of which are matrix withm rows and
n columns, where m is the total number of jobs and n is the
maximum number of operations.

)e specific meaning of these three variables is shown as
follows:

(i) X represents the machine number used in each
operation, and the initial value of X is randomly
selected from the set of alternative machines.

(ii) T1 represents the beginning time of each process,
and T2 represents the completion time of each
process.)e values of T1 and T2 depend on X.

(iii) We treat each X as an individual and randomly
generate Np individuals X at initialization time to
form a population with Np number of individuals.

In addition, the decoding process can be expressed as
follows:

(1) For each individual X, we calculate the beginning
time T1 and completion time T2 of the first process
for each job

(2))en, calculate the arrangement of the remaining
operations, where the beginning time of one oper-
ation is equal to the completion time of the previous
one which is processed on the samemachine, and the
completion time of each operation T2 is equal to the
sum of the corresponding starting time T1 and
processing time

(3) Calculate the maximum completion time of each
individual X, which is equal to the completion time
of the last operation of the whole work

(4) With the goal of minimizing the maximum com-
pletion time, DOLGOA was used to select the op-
timal individual X, that is, the optimal machine
allocation strategy

(5) Calculate the T1 and T2 corresponding to each
procedure in the optimal strategy, and then draw the
Gantt chart.)e number i on the Gantt chart rep-
resents the ith job, and the tth i represents the tth
process of the ith job

5. Experiment and Discussion

5.1. Benchmark Function. In this section, we use 23
benchmark test functions to evaluate the performance of
DOLGOA.)ese 23 benchmark functions are derived from
CEC2014 and are shown in Table 1.)ey include 3 unimodal
functions, 13 multimodal functions, 6 hybrid functions, and
1 composite function. Unimodal functions are supposed to
test the exploitation capability of DOLGOA because it has no
local optimum in the searching space. On the contrary,
multimodal functions have many local optimum and are
used for exploration capability test of DOLGOA. In order to
better mimic real search spaces, we also use hybrid functions
and composite functions to test the performance of the
algorithm.

5.2. Parameter Settings.)e 23 test functions above were
used to test and compare DOLGOA with four other algo-
rithms, including GOA, GWO, TLBO, and Jaya.)e pa-
rameter settings for these experiments are listed in Table 2.

For DOLGOA algorithm, weight factor w and jump rate
Jr are two important parameters, and their analysis is shown
in Table 3. We divide w and Jr into ten levels and analyze the
effects of w and Jr on the optimization results by using
orthogonal experiment [52]. For every pair of w and Jr, we
run the corresponding algorithm 10 times and record the
average results in Table 3. As shown in Table 3, when w � 5
and Jr � 0.9, DOLGOA gets the best result.)erefore, w � 5
and Jr � 0.9 are the most appropriate parameter settings.

In addition, the total number of individuals for all tests is
100.)e function evaluations (FES) is set as 300,000, and all
tests were executed 10 times.

5.3. Unimodal/Multimodal Test Functions and6eir Analysis.
Unimodal functions and multimodal functions are used to
test the exploitation and exploration capability of DOLGOA.
)e mean and standard values of the result under these
functions are shown in Table 4.

It can be seen that DOLGOA and GOA algorithms are
superior to other algorithms in unimodal test functions
F1–F3. Especially in terms of F1 and F3, DOLGOA is greatly
improved on the basis of original GOA, which indicates that
DOL strategy can improve the exploitation of individuals
and help them converge to the global optimum in asym-
metric space.

Multimodal functions contain multiple local optimum,
which are used to test the exploration capability of DOL-
GOA under various local optimal conditions. It can be seen
from F4–F16 that compared with other algorithms, GOA
and DOLGOA algorithms show better exploration capa-
bility, especially on F5, F12, and F13, and DOLGOA has the
best performance.

Complexity 5

5.4. Analysis of Hybrid and Composition Test Functions.
)e hybrid function combines both unimodal and multimodal
functions to better simulate the real search space.When dealing
with the hybrid function, it needs to balance the exploitation
ability and exploration ability, which requires higher require-
ments on the algorithm.)e mean and standard values of all
hybrid and composition test functions are shown in Table 5.

As can be seen from the table, DOLGOA performs
very well in hybrid functions, especially in F17, F20, F21,
and F22. On the composition function F23, the result of
DOLGOA is not worse than other algorithms, which
indicates that DOLGOA can well balance the exploitation
and exploration capability in practical application.

5.5. Statistical Test Results. Two independent-sample T tests
are applied to test whether there is a significant difference in the
mean value of the two samples.)e t values are shown in
Table 6, and the P values are shown in Table 7, which is marked
as “+” and “−”.

Set 0.05 as the level of significance: t(30)0.05 � 2.0423.
When t< 2.0423, it indicates P> 0.05, and P is marked as
“+” in Table 7. In this case, the null hypothesis is eligible
and accepted, which means there is no significant dif-
ference between the two algorithms. On the contrary,
when t> 2.0423, P< 0.05 is indicated, and P is marked as
“−” in Table 7; the null hypothesis is rejected, which
means the two algorithms are significantly different. In
Table 7, “Same” means the total number of DOLGOA that
is not significantly different from other algorithms, and
“Better” means the total number of DOLGOA that is
significantly different from other algorithms.

From Tables 6 and 7, it can be seen that, for most test
functions, DOLGOA shows significant difference from other
algorithms, which means that DOL greatly improves the
performance of GOA.

5.6. Analysis of Convergence.)e convergence trends of all
algorithms for unimodal and multimodal test functions are

(1) Randomly generate an initial population X;
(2) for i � 1; i≤Np; i + + do
(3) r1i � rand(0, 1), r2i � rand(0, 1);
(4) for j � 1; j≤D; j + + do
(5) XDO

ij � Xij + r1i ∗ (r2i ∗ (aj + bj − Xij) − Xij);
(6) Check the boundaries;
(7) end for
(8) end for
(9) Select N number of the fittest individuals from X∪XDO;
(10) Set G � 0;
(11) while G≤maximal iteration do
(12) Evaluate all learners by the fitness function f(.);
(13) if G � 1 then
(14) Sort individuals by the fitness value to get the best grasshopper Xbest in the first population;
(15) else
(16) for i � 1; i≤Np; i + + do
(17) Update the position of the individuals Xi according to update mechanism (equation (12));
(18) Check the boundaries;
(19) Evaluate the fitness values of the new individuals X′;
(20) if f(Xi

′)<f(Xbest) then
(21) Replace Xbest with Xi

′;
(22) end if
(23) end for
(24) end if
(25) G + +;
(26) if rand< Jr then
(27) for i � 1; i≤Np; i + + do
(28) r3i � rand(0, 1), r4i � rand(0, 1);
(29) for j � 1; j≤D; j + + do
(30) aj � min(Xi,j), bj � max(Xi,j);

(31) XDO
i,j � Xi,j + w∗ r3i ∗ (r4i ∗ (aj + bj − Xi,j) − Xi,j);

(32) Check boundaries;
(33) end for
(34) end for
(35) Select N number of the fittest individuals from X∪XDO;
(36) G + +;
(37) end if
(38) end while

ALGORITHM 1:)e DOLGOA algorithm.

6 Complexity

shown in Figures 2 and 3, respectively, and the convergence
trends of all algorithms for hybrid function and composite
function are shown in Figure 4.

As can be seen from the figure, the convergence result of
DOLGOA is the best for most of the test functions, which
indicates that DOLGOA has good exploration capability to
avoid falling into the local optimum.)e convergence curve
of DOLGOA eventually tends to the optimal value, thanks to
the exploitation capability of the DOL strategy.

5.7. Application to FJSP. In addition to the test on numerical
benchmark functions, DOLGOA is adopted to solve the FJSP to
further evaluate its performance.)e purpose of FJSP in this
paper is to minimize the maximal completion time.We analyze

the performance of DOLGOA by comparing with GOA, PSO,
Jaya, DE , GWO [53–56], HTS/TA, ITS, and ISA. Some of the
data of these experiments are adopted from the literature [57].
)ese algorithms are implemented on 21 different problems,
which are classified into three classes: small (SFJS01–SFJS10),
medium (MFJS01–MFJS10), and large ((LFJS01)) size FJSP
problems.)e data of small and medium size experiments is
adopted from the literature [57], and the data of the large size
experiment is adopted from the literature [58]. Table 1 shows
the parameter settings of these optimization algorithms. To
eliminate the randomness, each problem implements 10 in-
dependent runs. Table 8 shows the experimental results of these
algorithms in small and medium size experiments, and the
results with ∗ are the best solution results of the corresponding
problem.

Start

Generate an initial Np population X and DOL population initialization X & XDO.

Calculate the fitness of X & XDO.

Select N best individuals from the sorted population X & XDO.

Select N best individuals from the sorted population X & XDO.

Yes

Yes

Yes

No

No

No

Iter = 1?

Sort individuals by the fitness value to
get the best grasshopper in the first

population

Update the position of grasshoppers by
the equation (12), and evaluate the fitness

values of the new individuals

There is a
better solution?

Update the best grasshopper

DOL generation jumping

Iter = Max_iter?

End

Iter = Iter + 1

Figure 1:)e flowchart of DOLGOA algorithm.

Complexity 7

It can be seen that DOLGOA obtains the best results for
14 problems. Although DOLGOA does not get the best
results in other medium size problems, the difference is not

significant from the best results. From Table 8, we can see
that almost all algorithms can get the best result for small size
FJSP, but as the scale of the problem gets larger, the

Table 3:)e analysis of w and Jr.

DOLGOA w � 1 w � 2 w � 3 w � 4 w= 5 w � 6 w � 7 w � 8 w � 9 w � 10
Jr� 0.1 5.68E+ 06 8.08E+ 06 9.04E+ 06 1.13E+ 07 4.98E+ 06 3.16E+ 06 8.49E+ 06 8.23E+ 06 7.78E+ 06 1.06E+ 07
Jr� 0.2 1.39E+ 07 5.65E+ 06 1.06E+ 07 8.21E+ 06 4.33E+ 06 4.56E+ 06 2.09E+ 06 5.58E+ 06 6.16E+ 06 3.02E+ 06
Jr� 0.3 2.25E+ 06 2.59E+ 06 8.37E+ 06 6.23E+ 06 9.51E+ 06 4.18E+ 06 4.69E+ 06 3.14E+ 06 4.63E+ 06 2.28E+ 06
Jr� 0.4 6.06E+ 06 2.62E+ 06 6.35E+ 06 1.98E+ 06 7.11E+ 06 5.48E+ 06 6.07E+ 06 5.37E+ 06 7.52E+ 06 8.97E+ 06
Jr� 0.5 4.69E+ 06 2.45E+ 06 5.14E+ 06 3.53E+ 06 4.22E+ 06 1.84E+ 06 5.63E+ 06 7.82E+ 06 4.79E+ 06 6.35E+ 06
Jr� 0.6 5.62E+ 06 1.17E+ 07 7.51E+ 06 4.16E+ 06 3.17E+ 06 2.59E+ 06 3.19E+ 06 1.82E+ 06 1.55E+ 06 7.45E+ 06
Jr� 0.7 6.57E+ 06 3.74E+ 06 5.18E+ 06 2.25E+ 06 3.91E+ 06 9.26E+ 06 6.98E+ 06 3.54E+ 06 3.26E+ 06 6.74E+ 06
Jr� 0.8 1.54E+ 06 7.66E+ 06 8.43E+ 06 3.67E+ 06 5.07E+ 06 2.82E+ 06 2.10E+ 06 3.08E+ 06 3.60E+ 06 2.35E+ 06
Jr� 0.9 3.90E+ 06 6.37E+ 06 3.47E+ 06 3.90E+ 06 1.11E + 06 4.90E+ 06 1.56E+ 06 8.06E+ 06 6.84E+ 06 1.60E+ 06
Jr� 1 2.40E+ 06 3.34E+ 06 4.59E+ 06 2.57E+ 06 2.23E+ 06 1.40E+ 06 1.94E+ 06 1.55E+ 06 3.38E+ 06 4.14E+ 06

Table 1: Benchmark functions provided by CEC 2014 test set.

Label Functions Optimum Dims Character
F1 High conditioned elliptic 100 30 Unimodal
F2 Bent cigar 200 30 Unimodal
F3 Discus 300 30 Unimodal
F4 Rosenbrock 400 30 Multimodal
F5 Ackely 500 30 Multimodal
F6 Weierstrass 600 30 Multimodal
F7 Griewank 700 30 Multimodal
F8 Rastrigin 800 30 Multimodal
F9 Rotated rastrigin 900 30 Multimodal
F10 Schwefel 1000 30 Multimodal
F11 Rotated schwefel 1100 30 Multimodal
F12 Katsuura 1200 30 Multimodal
F13 HappyCat 1300 30 Multimodal
F14 HGBat 1400 30 Multimodal
F15 Expanded griewank plus rosenbrock 1500 30 Multimodal
F16 Expanded scaffer 1600 30 Multimodal
F17 HF1 1700 30 Hybrid
F18 HF2 1800 30 Hybrid
F19 HF3 1900 30 Hybrid
F20 HF4 2000 30 Hybrid
F21 HF5 2100 30 Hybrid
F22 HF6 2200 30 Hybrid
F23 CF1 2300 30 Composition

Table 2:)e parameters settings of optimization algorithms.

Parameters Value
Size of population 100
Total generation number for test functions 3000
Total generation number for FJSP 200
Times conducting the experiment 10
cmax of GOA (maximum value) 1
cmin of GOA (minimum value) 0.00001
c of GOA (decreasing coefficient) cmax − iter∗ ((cmax − cmin)/Maxiter)
Jr of DOLGOA 1
w of DOLGOA 4
Inerita weight of PSO 0.9 − 0.4∗ (G/Gm)

Scale factor of DE 0.5
Crossover constant of DE 0.5

8 Complexity

advantage of DOLGOA becomes more apparent. For the 10
medium size FJSPs, DOLGOA obtains the best results on
four of them, and the results are much better than GOA.)is
demonstrates that DOL strategy improves the exploitation
capability of the algorithm, which makes DOLGOA more
effective for solving FJSP. Figure 5 shows the mean

convergence curve of the makespan in MFJS03 of the six
algorithms in 10 separate runs. Figure 6 shows the con-
vergence curve of the makespan in MFJS09 of six algorithms
in 10 independent runs. It can be seen that DOLGOA
obtains the best result. Figures 7 and 8 illustrate the Gantt
charts of the optimal solutions obtained by DOLGOA in a

Table 4:)e mean and standard value of unimodal/multimodal test functions.

Algorithms DOLGOA GOA GWO TLBO Jaya

F1 Mean 1.11E+ 06 1.17E+ 07 5.71E+ 07 1.27E+ 08 4.70E+ 06
Std 4.32E + 06 9.91E+ 06 3.26E+ 07 8.84E+ 07 1.27E+ 06

F2 Mean 5.66E+ 03 3.79E + 03 1.73E+ 09 2.25E+ 10 4.73E+ 08
Std 4.38E+ 03 2.21E+ 03 9.04E+ 08 6.61E+ 09 1.43E+ 08

F3 Mean 2.75E − 02 4.30E+ 02 2.13E+ 04 3.63E+ 04 2.87E+ 04
Std 2.28E − 02 1.89E+ 02 7.27E+ 03 5.82E+ 03 4.28E+ 03

F4 Mean 1.05E+ 02 1.04E + 02 3.09E+ 02 2.57E+ 03 2.12E+ 02
Std 6.07E+ 01 6.55E+ 01 1.84E+ 02 1.53E+ 03 1.40E + 01

F5 Mean 2.00E+ 01 2.00E + 01 2.09E+ 01 2.04E+ 01 2.09E+ 01
Std 9.33E− 04 1.95E − 06 6.04E− 02 1.43E− 01 5.19E− 02

F6 Mean 1.59E+ 01 1.71E+ 01 1.29E + 01 2.69E+ 01 2.24E+ 01
Std 2.09E + 00 5.52E+ 00 3.85E+ 00 3.89E+ 00 4.18E+ 00

F7 Mean 2.91E− 02 1.32E − 02 7.38E+ 00 2.61E+ 02 5.68E+ 00
Std 3.15E− 02 1.51E− 02 4.22E+ 00 8.86E+ 01 1.76E+ 00

F8 Mean 1.10E+ 02 1.10E+ 02 8.41E+ 01 1.91E+ 02 1.83E+ 02
Std 3.50E+ 01 2.65E+ 01 1.48E + 01 3.18E+ 01 1.45E + 01

F9 Mean 1.06E+ 02 6.50E + 01 7.82E+ 01 2.16E+ 02 1.84E+ 02
Std 1.95E+ 01 2.40E+ 01 8.74E − 02 2.21E+ 01 1.60E+ 01

F10 Mean 2.45E+ 03 3.49E+ 03 2.09E + 03 5.02E+ 03 5.03E+ 03
Std 6.29E+ 02 3.02E + 02 6.41E+ 02 3.65E+ 02 8.82E+ 02

F11 Mean 2.85E+ 03 2.96E+ 03 2.09E + 03 5.04E+ 03 6.23E+ 03
Std 6.49E+ 02 5.70E + 02 6.25E+ 02 3.71E+ 02 4.48E+ 02

F12 Mean 1.65E− 01 5.26E− 01 1.87E+ 00 1.13E+ 00 2.39E+ 00
Std 7.88E − 02 2.47E− 01 1.03E+ 00 3.46E− 01 2.71E − 01

F13 Mean 3.92E− 01 4.21E− 01 4.21E− 01 3.88E+ 00 5.89E− 01
Std 9.92E− 02 8.89E− 02 7.52E − 02 4.79E− 01 1.01E− 01

F14 Mean 2.29E− 01 2.21E− 01 1.03E+ 01 9.67E+ 01 2.79E− 01
Std 6.40E− 02 2.98E − 02 1.62E+ 01 1.52E+ 01 2.10E− 02

F15 Mean 7.03E+ 00 6.87E + 00 2.21E+ 01 8.24E+ 03 2.20E+ 01
Std 2.04E+ 00 9.11E− 01 9.62E+ 00 8.24E+ 03 1.75E+ 00

F16 Mean 1.18E+ 01 1.15E+ 01 1.09E + 01 1.15E+ 01 1.26E+ 01
Std 5.11E− 01 6.85E− 01 4.16E − 01 3.96E− 01 2.09E− 01

Best num 5 7 5 0 0

Table 5:)e mean and standard value of hybrid test functions.

Algorithms DOLGOA GOA GWO TLBO Jaya

F17 Mean 3.89E + 04 8.39E+ 05 9.13E+ 05 7.88E+ 05 2.79E+ 05
Std 2.11E + 04 1.06E+ 06 1.03E+ 06 6.08E+ 05 1.38E+ 05

F18 Mean 2.95E+ 03 5.90E+ 03 8.69E+ 06 2.17E+ 03 7.73E+ 05
Std 2.94E+ 03 3.81E+ 03 1.56E+ 07 2.92E + 03 3.06E+ 05

F19 Mean 1.50E+ 01 1.37E+ 01 4.51E+ 01 5.37E+ 01 1.20E + 01
Std 1.97E+ 00 4.99E+ 00 2.33E+ 01 2.77E+ 01 1.39E+ 00

F20 Mean 1.71E+ 02 3.10E+ 02 1.06E+ 04 5.49E+ 03 1.04E+ 03
Std 2.67E + 01 1.00E+ 02 2.17E+ 03 6.47E+ 03 9.24E+ 02

F21 Mean 2.05E + 04 1.30E+ 05 2.51E+ 05 2.51E+ 04 4.14E+ 04
Std 8.65E + 03 7.83E+ 04 3.33E+ 05 1.27E+ 04 9.43E+ 03

F22 Mean 2.40E + 02 4.64E+ 02 2.49E+ 02 5.03E+ 02 3.85E+ 02
Std 1.48E + 02 2.25E+ 02 1.01E+ 02 1.44E+ 02 7.13E+ 01

F23 Mean 2.00E + 02 3.21E+ 02 3.32E+ 02 2.00E + 02 3.25E+ 02
Std 1.18E − 05 4.80E+ 00 8.01E+ 00 2.03E− 13 2.94E+ 00

Best num 5 0 0 2 1

Complexity 9

Table 6:)e t values of DOLGOA and other algorithms.

GOA GWO TLBO Jaya

DOLGOA

F1 1.56E+ 01 1.20E+ 02 2.83E+ 02 7.32E− 01
F2 4.26E+ 00 3.95E+ 06 5.14E+ 07 1.08E+ 06
F3 1.89E+ 05 9.35E+ 06 1.60E+ 07 1.26E+ 07
F4 2.91E− 01 3.35E+ 01 4.06E+ 02 1.75E+ 02
F5 7.37E− 01 1.00E+ 04 4.45E+ 03 9.86E+ 03
F6 5.73E+ 00 1.39E+ 01 5.29E+ 01 3.11E+ 02
F7 5.05E+ 00 2.33E+ 03 8.29E+ 04 1.79E+ 03
F8 1.89E− 02 7.39E+ 00 2.04E+ 01 2.08E+ 01

DOLMFO

F9 2.14E+ 01 1.46E+ 01 5.61E+ 01 3.94E+ 01
F10 1.65E+ 01 5.80E+ 00 4.08E+ 01 4.10E+ 01
F11 1.72E+ 00 1.17E+ 01 3.37E+ 01 5.20E+ 01
F12 4.58E+ 01 2.17E+ 02 1.22E+ 02 2.83E+ 02
F13 3.02E+ 00 2.94E+ 00 3.52E+ 02 1.99E+ 01
F14 1.21E+ 00 1.58E+ 03 1.51E+ 04 7.86E+ 00
F15 7.55E− 01 7.37E+ 01 4.03E+ 04 7.33E+ 01
F16 6.32E+ 00 1.87E+ 01 5.79E+ 00 1.45E+ 01
F17 3.78E+ 02 4.13E+ 02 3.54E+ 02 1.14E+ 02
F18 1.00E+ 01 2.95E+ 04 2.67E+ 00 2.61E+ 03
F19 6.96E+ 00 1.52E+ 02 1.95E+ 02 1.54E+ 01
F20 5.18E+ 01 3.92E+ 03 1.98E+ 03 3.27E+ 02
F21 1.26E+ 02 2.67E+ 02 5.25E+ 00 2.41E+ 01
F22 1.51E+ 01 5.88E− 01 1.77E+ 01 9.75E+ 00
F23 1.02E+ 08 1.12E+ 08 1.50E+ 01 1.06E+ 08

FES ×105

10

9.5

9

8.5

8

7.5

7

6.5

lo
g1

0
(m

ea
n

fit
ne

ss
)

High conditioned elliptic

0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(a)

lo
g1

0
(m

ea
n

fit
ne

ss
)

12
11
10

9
8
7
6
5
4
3

Bent cigar

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(b)

lo
g1

0
(m

ea
n

fit
ne

ss
)

Discus

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

7
6
5
4
3
2
1
0

–1
–2

(c)

Figure 2:)e convergence trends of all algorithms on unimodal functions.

10 Complexity

lo
g1

0
(m

ea
n

fit
ne

ss
)

5

4.5

4

3.5

3

2.5

2

FES

Rosenbrock

×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(a)

lo
g1

0
(m

ea
n

fit
ne

ss
)

1.315

1.32

1.325

1.33

1.335

1.31

1.305

1.3

FES

Ackley

×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(b)

lo
g1

0
(m

ea
n

fit
ne

ss
)

1.4

1.5

1.6

1.7

1.3

1.2

1.1

Weierstrass

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(c)

lo
g1

0
(m

ea
n

fit
ne

ss
)

4

3

2

1

0

–1

–2

Griewank

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(d)

lo
g1

0
(m

ea
n

fit
ne

ss
)

2.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2
1.9

Rastrigin

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(e)

lo
g1

0
(m

ea
n

fit
ne

ss
)

3

2.2

2.4

2.6

2.8

2

1.8

Rotated rastrigin

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(f)

lo
g1

0
(m

ea
n

fit
ne

ss
)

4

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Schwefel

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(g)

lo
g1

0
(m

ea
n

fit
ne

ss
)

4

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Rotated Schwefel

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(h)

lo
g1

0
(m

ea
n

fit
ne

ss
)

1

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

Katsuura

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(i)

Figure 3: Continued.

Complexity 11

lo
g1

0
(m

ea
n

fit
ne

ss
)

1.2

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

Happycat

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(j)

lo
g1

0
(m

ea
n

fit
ne

ss
)

3

–1

–0.5

0

0.5

1

1.5

2

2.5

HGBat

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(k)

lo
g1

0
(m

ea
n

fit
ne

ss
)

8

0

1

2

3

4

5

6

7

Expanded griewank’s plus rosenbrock

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(l)

lo
g1

0
(m

ea
n

fit
ne

ss
)

1.16

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Expanded scaffer

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(m)

Figure 3:)e convergence trends of all algorithms on multimodal functions.

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF1

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

9
8.5

8
7.5

7
6.5

6
5.5

5
4.5

(a)

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF2

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

10

9

8

7

6

5

4

3

(b)

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF3

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

3.5

3

2.5

2

1.5

1

(c)

Figure 4: Continued.

12 Complexity

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF4

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

8

7

6

5

4

3

2

(d)

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF5
8.5

8
7.5

7
6.5

6
5.5

5
4.5

4

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(e)

lo
g1

0
(m

ea
n

fit
ne

ss
)

HF6
5

4.5

4

3.5

3

2.5

2

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

(f)

lo
g1

0
(m

ea
n

fit
ne

ss
)

CF1

FES ×105
0 0.5 1 1.5 2.0 2.5 3.0

DOLGOA
GOA
GWO

TLBO
Jaya

3.3

3.1
3.2

3
2.9
2.8
2.7
2.6
2.5
2.4
2.3

(g)

Figure 4:)e convergence trends of all algorithms on hybrid and composition functions.

Table 7:)e P values of DOLGOA and other algorithms.

GOA GWO TLBO Jaya

DOLGOA

F1 − − − +
F2 − − − −

F3 − − − −

F4 + − − −

F5 − − − −

F6 − − − −

F7 − − − −

F8 + − − −

F9 − − − −

F10 − − − −

F11 + − − −

F12 − − − −

DOLMFO

F13 − − − −

F14 + − − −

F15 + − − −

F16 − − − −

F17 − − − −

F18 − − − −

F19 − − − −

F20 − − − −

F21 − − − −

F22 − + − −

F23 − − − −

Better 18 22 23 22
Same 5 1 0 1

Complexity 13

featured run for problem MFJS03 and MFJS10, respectively.
We can see that the shortest completion time solved by
DOLGOA algorithm is 489 and 1517 for MFJS03 and
MFJS10, respectively. Figure 9 shows the convergence curve
of the average results of ten runs obtained by DOLGOA for
the large size experiments. In addition, Figure 10 shows the
Gantt chart of the optimal solutions obtained by DOLGOA
for the large size experiments. In the large size problem
LFJS01, there are 15 jobs to be processed by 10 machines in a

workshop, where each job consists of 2–4 processes and each
process can only be completed by several specifiedmachines.
It can be seen that DOLGOA can assign a series of optional
machines to a specified process to obtain the best solution.
As shown in Figure 7, the optimal solution obtained by
DOLGOA for LFJS01 is 31. In Table 9, we list the compu-
tational time of these 6 algorithms to solve FJSP, and all the
simulations run on an Intel(R) Core(TM) i5-9400F CPU@
2.90GHz PC and the Matlab(R) 2019a software platform.

1600

1550

1500

1450

1400

1350

1300

1250

M
ak

es
pa

n
(s

)

MFJS09

0 50 100 150 200
Iteration

DOLGOA
GOA
PSO

Jaya
DE
GWO

Figure 6: Convergence results of MFJS09 for all the compared algorithms.

0 50 100 150 200
Iteration

680

660

640

620

600

580

560

540

520

500

480

M
ak

es
pa

n
(s

)

MFJS03

DOLGOA
GOA
PSO

Jaya
DE
GWO

Figure 5: Convergence results of MFJS03 for all the compared algorithms.

14 Complexity

3

3 5

166

1 2

2

5

53

4 1

6

4

4

2

400 5003002000 100
0

1

2

3

4

5

6

7

Figure 7: Gantt chart of an optimal solution to MFJS03 obtained by DOLGOA.

7 2 1 12

10811918253

8 10 3 5 3 9 11

4121065774

8

2

4

1 3 5

6 9 2 1

7 11 12 12

10 6 9 11 4 6

800 1000 16001200400 600200 14000
0

1

2

3

4

5

6

7

8

Figure 8: Gantt chart of an optimal solution to MFJS10 obtained by DOLGOA.

42

41

40

39

38

37

36

35

34

M
ak

es
pa

n
(s

)

F21

0 50 100 150 200
Iteration

Figure 9: Convergence results on LFJS01.

Complexity 15

6

3 15 151 3

1

2

3

12

5 7 13 3 8

4111282118

4

10 14

13

11

8

12 10 15 2 14 10

11 14 4 13 5

14 9 10 5 2

6 5 7 9

9 15 4 1 13 9 1 12

1510 20 255 30 350
0

1

2

3

4

5

6

7

8

9

10

Figure 10: Gantt chart on LFJS01.

Table 8:)e statistical results obtained by algorithms for solving FJSP.

Algorithms DOLGOA GOA PSO Jaya DE GWO HTS/TA ITS ISA
MFJS01 481 482 484 490 469∗ 481 503 584 518
MFJS02 456∗ 463 466 457 456∗ 467 494 544 494
MFJS03 491∗ 538 531 505 495 494 540 606 611
MFJS04 653 651 646 620 600 562∗ 660 870 798
MFJS05 593 613 614 558 538 508∗ 633 729 706
MFJS06 643∗ 749 756 708 682 651 741 876 889
MFJS07 1093 1092 1100 1009 990 933∗ 999 1127 1307
MFJS08 997∗ 1100 1108 1022 1025 1009 1000 1352 1437
MFJS09 1263 1347 1366 1291 1286 1271 1158∗ 1219 1218
MFJS10 1517 1567 1592 1458∗ 1488 1500 1511 1737 1733
SFJS01 66∗ 66∗ 66∗ 66∗ 66∗ 66∗ 66∗ 66∗ 66∗
SFJS02 107∗ 107∗ 107∗ 107∗ 107∗ 107∗ 107∗ 107∗ 107∗
SFJS03 221∗ 221∗ 221∗ 221∗ 221∗ 221∗ 221∗ 221∗ 231
SFJS04 355∗ 355∗ 355∗ 355∗ 355∗ 355∗ 355∗ 390 375
SFJS05 119∗ 119∗ 119∗ 119∗ 119∗ 119∗ 119∗ 137 137
SFJS06 320∗ 320∗ 320∗ 320∗ 320∗ 320∗ 320∗ 320∗ 336
SFJS07 397∗ 397∗ 397∗ 397∗ 397∗ 397∗ 397∗ 397∗ 397∗
SFJS08 253∗ 253∗ 253∗ 253∗ 253∗ 253∗ 253∗ 253∗ 254
SFJS09 210∗ 210∗ 210∗ 210∗ 210∗ 210∗ 210∗ 218 228
SFJS10 533∗ 533∗ 533∗ 533∗ 533∗ 533∗ 533∗ 624 570
Best num 14 10 10 11 12 13 11 6 3

Table 9:)e CPU time periods obtained by algorithms for solving FJSP.

Algorithms DOLGOA GOA PSO Jaya DE GWO
MFJS01 6.89 7.53 6.88 4.19 4.18 3.02
MFJS02 6.54 7.81 6.66 4.75 4.26 3.03
MFJS03 7.18 8.20 7.86 5.34 4.86 3.38
MFJS04 7.75 8.52 8.73 5.91 5.45 3.82
MFJS05 7.82 8.51 8.63 6.00 5.50 3.85
MFJS06 8.55 9.06 9.92 6.68 6.16 4.34
MFJS07 10.31 10.57 12.85 8.33 8.37 5.74
MFJS08 11.13 11.16 14.30 8.87 9.02 6.25
MFJS09 12.68∗ 12.28 16.66 10.44 10.57 7.46
MFJS10 13.68 12.99 18.24 10.88 11.34 7.85

16 Complexity

6. Conclusion

In this paper, a new variant of GOA named DOLGOA is
proposed, which embeds DOL strategy into GOA to prevent it
from falling into local optimum.)e asymmetric and dynamic
nature of DOL helps DOLGOA possess better exploitation and
exploration capabilities than GOA.)e performance of the
proposed DOLGOA algorithm is evaluated in 23 benchmarks
from CEC2014, and the proposed algorithm is applied in 21
FJSP problems. Comprehensive results show that DOLGOA
behaves the best when solving numerical benchmarks and is
well-performed for FJSP problems in different scales.)e
proposed algorithm is promising to be applied in solving
various engineering optimization problems.

Data Availability

)e data used to support the findings of the study are
available from the corresponding author upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is researchworkwas supported by theNational Key Research
and Development Project under Grant 2018YFB1700500.

References

[1] C. Jin and H. Wu, “A neural networks training algorithm
based on adaptive genetic algorithm,” Control & Automation,
vol. 10, no. 1, pp. 49–51, 2005.

[2] A. Likas, D. A. Karras, and I. E. Lagaris, “Neural network
training and simulation using a multidimensional optimi-
zation system,” International Journal of Computer Mathe-
matics, vol. 67, no. 1-2, 1998.

[3] O. Castillo, L. Trujillo, and P. Melin, “Multiple objective
genetic algorithms for path-planning optimization in au-
tonomous mobile robots,” Soft Computing, vol. 11, no. 3,
pp. 269–279, 2007.

[4] M. L. Cummings, J. J. Marquez, and N. Roy, “Human-au-
tomated path planning optimization and decision support,”
International Journal of Human-Computer Studies, vol. 70,
no. 2, pp. 116–128, 2012.

[5] T. Bhatia and L. T. Biegler, “Dynamic optimization in the
design and scheduling of multiproduct batch plants,” In-
dustrial & Engineering Chemistry Research, vol. 35, no. 7,
pp. 2234–2246, 1996.

[6] V. V. Toropov, L. F. Alvarez, and O. M. Querin, “Applications
of GA and GP to industrial design optimization and inverse
problems,” Advances of Soft Computing in Engineering,
vol. 512, pp. 133–189, 2010.

[7] D. Bongartz and A. Mitsos, “Deterministic global optimiza-
tion of process flowsheets in a reduced space using Mccor-
mick relaxations,” Journal of Global Optimization, vol. 69,
no. 4, pp. 761–796, 2017.

[8] J. W. Gillard, “Deterministic global optimization: an intro-
duction to the diagonal approach,” Optimization Methods &
Software, vol. 34, no. 1, pp. 1-2, 2018.

[9] A. M. Niziolek, O. Onel, and C. A. Floudas, “Municipal solid
waste to liquid transportation fuels, olefins, and aromatics:
process synthesis and deterministic global optimization,”
Computers & Chemical Engineering, vol. 102, pp. 169–187,
2017.

[10] Y. D. Sergeyev and D. E. Kvasov, “Deterministic global
optimization,” Springer Optimization & Its Applications,
vol. 37, Springer, Berlin, Germany.

[11] D. Chen, F. Zou, Z. Li, J. Wang, and S. Li, “An improved
teaching-learning-based optimization algorithm for solving
global optimization problem,” Information Sciences, vol. 297,
pp. 171–190, 2015.

[12] S. Das and P.N. Suganthan, “Differential evolution: a survey of
the state-of-the-art,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 1, pp. 4–31, 2011.

[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95—International Conference on Neural
Networks, Perth, Australia, 2002.

[14] J. J. Q. Yu and V. O. K. Li, “A social spider algorithm for global
optimization,” Applied Soft Computing, vol. 30, pp. 614–627,
2015.

[15] O. Serrano-Prez, M. G. Villarreal-Cervantes, J. C. Gonzlez-
Robles, and A. Rodrguez-Molina, “Meta-heuristic algorithms
for the control tuning of omnidirectional mobile robots,”
Engineering Optimization, vol. 52, no. 2, pp. 325–342, 2020.

[16] P. Zou, Z. Zhou, Y.-Y. Wan, G.-L. Chen, and J. Gu, “New
meta-heuristic for combinatorial optimization problems:
intersection based scaling,” Journal of Computer Ence and
Technology, vol. 19, no. 6, pp. 740–751, 2004.

[17] F. Glover, M. Laguna, and R. Mart, “Tabu search,” General
Information, vol. 106, no. 2, pp. 221–225, 1997.

[18] C. R. Hwang, “Simulated annealing: theory and applications,”
Acta Applicandae Mathematica, vol. 12, no. 1, pp. 108–111,
1988.

Table 9: Continued.

Algorithms DOLGOA GOA PSO Jaya DE GWO
SFJS01 3.75 5.70 2.23 1.19 1.36 0.97
SFJS02 3.59 5.32 2.21 1.16 1.34 1.00
SFJS03 4.23 5.58 2.84 1.53 1.67 1.33
SFJS04 4.19 5.72 2.98 1.53 1.75 1.33
SFJS05 4.21 5.81 3.06 4.19 1.70 1.31
SFJS06 5.02 6.22 4.33 4.75 2.52 1.95
SFJS07 5.31 6.53 4.67 5.34 2.86 1.99
SFJS08 5.13 6.65 4.49 5.91 2.67 1.91
SFJS09 5.08 6.51 4.45 6.00 2.56 1.95
SFJS10 5.78 6.95 5.89 6.68 3.35 2.51

Complexity 17

[19] J. H. Holland and H. John, “Genetic algorithms and the
optimal allocation of trials,” SIAM Journal on Computing,
vol. 2, no. 2, pp. 88–105, 1973.

[20] M. Dorigo and T. Sttzle, Ant Colony Optimization 6eory,
2004.

[21] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[22] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-Based Sys-
tems, vol. 89, pp. 228–249, 2015.

[23] X. S. Yang and X. She, “Firefly algorithm, stochastic test
functions and design optimisation,” International Journal of
Bio-Inspired Computation, vol. 2, no. 2, pp. 78–84, 2010.

[24] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-
learning-based optimization: a novel method for constrained
mechanical design optimization problems,” Computer-Aided
Design, vol. 43, no. 3, pp. 303–315, 2011.

[25] Z. Yang, K. Li, Q. Niu, Y. Xue, and A. Foley, “A self-learning
TLBO based dynamic economic/environmental dispatch
considering multiple plug-in electric vehicle loads,” Journal of
Modern Power Systems and Clean Energy, vol. 2, no. 4,
pp. 298–307, 2014.

[26] Y. Wang, Z. Yang, M. Mourshed, Y. Guo, Q. Niu, and X. Zhu,
“Demand side management of plug-in electric vehicles and
coordinated unit commitment: a novel parallel competitive
swarm optimization method,” Energy Conversion and Man-
agement, vol. 196, pp. 935–949, 2019.

[27] Z. Yang, M. Mourshed, K. Liu, X. Xu, and S. Feng, “A novel
competitive swarm optimized rbf neural network model for
short-term solar power generation forecasting,” Neuro-
computing, vol. 397, pp. 415–421, 2020.

[28] S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic op-
timization technique for solving single-objective, discrete, and
multi-objective problems,” Neural Computing and Applica-
tions, vol. 27, no. 4, pp. 1053–1073, 2016.

[29] G. Hou, L. Gong, Z. Yang, and J. Zhang, “Multi-objective
economic model predictive control for gas turbine system
based on quantum simultaneous whale optimization algo-
rithm,” Energy Conversion and Management, vol. 207, Article
ID 112498, 2020.

[30] Z. Yang, K. Liu, J. Fan, Y. Guo, Q. Niu, and J. Zhang, “A novel
binary/real-valued pigeon-inspired optimization for eco-
nomic/environment unit commitment with renewables and
plug-in vehicles,” Science China Information Sciences, vol. 62,
no. 7, p. 70213, 2019.

[31] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper optimi-
sation algorithm: theory and application,” Advances in En-
gineering Software, vol. 105, pp. 30–47, 2017.

[32] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah,
“Grasshopper optimization algorithm for multi-objective
optimization problems,” Applied Intelligence, vol. 48,
pp. 805–820, 2018.

[33] P. Tumuluru and B. Ravi, “Goa-based DBN: grasshopper
optimization algorithm-based deep belief neural networks for
cancer classification,” International Journal of Applied Engi-
neering Research, vol. 12, no. 24, pp. 14218–14231, 2017.

[34] I. Aljarah, A. M. Al-Zoubi, H. Faris, M. A. Hassonah,
S. Mirjalili, and H. Saadeh, “Simultaneous feature selection
and support vector machine optimization using the grass-
hopper optimization algorithm,” Cognitive Computation,
vol. 10, pp. 478–495, 2018.

[35] J. Wu, H. Wang, N. Li et al., “Distributed trajectory opti-
mization for multiple solar-powered uavs target tracking in

urban environment by adaptive grasshopper optimisation
algorithm,” Aerospace Science & Technology, vol. 70,
pp. 497–510, 2017.

[36] A. A. Ewees, M. Abd Elaziz, and E. H. Houssein, “Improved
grasshopper optimization algorithm using opposition-based
learning,” Expert Systems with Applications, vol. 112,
pp. 156–172, 2018.

[37] Y. Xu, Z. Yang, X. Li, H. Kang, and X. Yang, “Dynamic
opposite learning enhanced teaching-learning-based opti-
mization,” Knowledge-Based Systems, vol. 188, Article ID
104966, 2020.

[38] B. J. Park, H. R. Choi, and H. S. Kim, “A hybrid genetic
algorithm for the job shop scheduling problem,” Computers &
Industrial Engineering, vol. 167, no. 4, pp. 77–95, 2003.

[39] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic al-
gorithm for the flexible job-shop scheduling problem,”
Computers & Operations Research, vol. 35, no. 10, pp. 3202–
3212, 2011.

[40] W. Xia and Z. Wu, “An effective hybrid optimization ap-
proach for multi-objective flexible job-shop scheduling
problems,” Computers & Industrial Engineering, vol. 48, no. 2,
pp. 409–425, 2005.

[41] V. Lal, C. An, and D. Durai, “A survey on various optimi-
zation techniques with respect to flexible job shop schedul-
ing,” International Journal of Scientific and Research
Publications, vol. 4, no. 2, 2014.

[42] M. Mohamed El-Amine, B. Bouziane, and A. Nassima,
“Hybrid genetic algorithm for flexible job-shop scheduling
problem,” Computers & Structures, vol. 10, no. 3, pp. 267–274,
2014.

[43] C. Gutiérrez and I. Garcı́a-Magariño, “Modular design of a
hybrid genetic algorithm for a flexible jobcshop scheduling
problem,” Knowledge-Based Systems, vol. 24, no. 1, pp. 102–
112, 2011.

[44] D. Lei, “A genetic algorithm for flexible job shop scheduling
with fuzzy processing time,” International Journal of Pro-
duction Research, vol. 48, no. 10–12, pp. 2995–3013, 2010.

[45] J.-q. Li, Q.-k. Pan, and Y.-C. Liang, “An effective hybrid Tabu
search algorithm for multi-objective flexible job-shop
scheduling problems,” Computers & Industrial Engineering,
vol. 59, no. 4, pp. 647–662, 2010.

[46] X. Li and L. Gao, “An effective hybrid genetic algorithm and
Tabu search for flexible job shop scheduling problem,” In-
ternational Journal of Production Economics, vol. 174,
pp. 93–110, 2016.

[47] L. Wang, G. Zhou, Y. Xu, and M. Liu, “A hybrid artificial bee
colony algorithm for the fuzzy flexible job-shop scheduling
problem,” International Journal of Production Research,
vol. 51, no. 11-12, pp. 3593–3608, 2013.

[48] L. Wang, G. Zhou, Y. Xu, S. Wang, and M. Liu, “An effective
artificial bee colony algorithm for the flexible job-shop
scheduling problem,” International Journal of Advanced
Manufacturing Technology, vol. 60, no. 1–4, pp. 303–315, 2012.

[49] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca,
“Enhancing particle swarm optimization using generalized
opposition-based learning,” Information Sciences, vol. 181,
no. 20, pp. 4699–4714, 2011.

[50] C. Zhang, Z. Ni, Z. Wu, and L. Gu, “A novel swarm model
with quasi-oppositional particle,” in Proceedings of the 2009
International Forum on Information Technology &
Applications, Chengdu, China, May 2009.

[51] A. Saha, P. Das, and A. K. Chakraborty, “Quasi-reflection
based symbiotic organisms search algorithm for solving static

18 Complexity

optimal power flow problem,” Scientia Iranica, vol. 26, no. 3,
2018.

[52] C. Yan, S. Li, L. Yang, and L. He, “Investigation of fef process
liquid phase migration using orthogonal design of experi-
ments,” Rapid Prototyping Journal, vol. 25, no. 2, 2018.

[53] M. Akhshabi, M. Akhshabi, and J. Khalatbari, “A particle
swarm optimization algorithm for solving flexible job-shop
scheduling problem,” Journal of Basic and Applied Scientific
Research, vol. 1, no. 12, pp. 3240–3244, 2011.

[54] R. H. Caldeira and A. Gnanavelbabu, “Solving the flexible job
shop scheduling problem using an improved jaya algorithm,”
Computers & Industrial Engineering, vol. 137, Article ID
106064, 2019.

[55] T. Jiang and C. Zhang, “Application of grey wolf optimization
for solving combinatorial problems: job shop and flexible job
shop scheduling cases,” IEEE Access, vol. 6, pp. 26231–26240,
2018.

[56] Y. Yuan and H. Xu, “Flexible job shop scheduling using
hybrid differential evolution algorithms,” Computers & In-
dustrial Engineering, vol. 65, no. 2, pp. 246–260, 2013.

[57] P. Fattahi, M. Saidi Mehrabad, and F. Jolai, “Mathematical
modeling and heuristic approaches to flexible job shop
scheduling problems,” Journal of Intelligent Manufacturing,
vol. 18, no. 3, pp. 331–342, 2007.

[58] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality
approach for flexible job-shop scheduling problems: hy-
bridization of evolutionary algorithms and fuzzy logic,”
Mathematics and Computers in Simulation, vol. 60, no. 3–5,
pp. 245–276, 2002.

Complexity 19

