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Abstract 

 

The blood brain barrier (BBB) is central to the neurovascular unit (NVU) where it 

creates a semi-permeable barrier between neuronal tissue and the vascular networks 

that feed the brain. In neurodegenerative conditions and ischaemic stroke, the BBB 

becomes compromised and as a result its permeability increases. This not only 

exacerbates neuronal damage at the site of injury but also causes unwanted 

extravasation of peripheral immune cells into the brain, fuelling the overactivation of 

the immune response. Endocannabinoids and phytocannabinoids have both displayed 

neuroprotective effects, attenuating damage in a range of models including 

Parkinson’s, Huntington’s, amyloid lateral sclerosis and ischaemic stroke. The current 

study aimed to investigate the neuroprotective properties of emerging 

phytocannabinoids; specifically focusing on the BBB and NVU in the context of 

ischaemic stroke pathophysiology. 

 

A four-cell blood brain barrier model was constructed consisting of; human brain 

microvascular endothelial cells (HBMECs), astrocytes, pericytes and neurons. Cells 

were cultured on collagen coated transwell inserts and permeability was assessed 

using transepithelial resistance (TEER). A systematic review was conducted to examine 

work on the neuroprotective properties of minor phytocannabinoids, aside from 

cannabidiol (CBD) and delta 9-tetrahydrocannabinol (Δ9-THC). Following on from this, 

in vitro experiments were conducted using minor phytocannabinoids with the most 

neuroprotective potential; cannabidivarin (CBDV), cannabigerol (CBG) and 

cannabidiolic acid (CBDA). Inserts or monocultures (four cell model and pericyte, 

HBMECs and neuronal monolayers) were subjected to either a 4 h oxygen-glucose 

deprivation (OGD) protocol or an 8 h OGD (astrocyte monocultures), to model 

ischaemic stroke in vitro. Media was analysed for various chemokines and cytokines 

using enzyme-linked immunoassays or multiplex assays. 
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From the systematic review, emerging phytocannabinoids cannabidivarin (CBDV) and 

cannabigerol (CBG) were found to display efficacy in various neurogenerative 

conditions and of the limited available mechanistic data, were found to mediate some 

of their effects through peroxisome proliferator-activated receptor gamma (PPARy). 

Data showed CBDV (300 nM-10 µM) attenuated MCP-1 levels in HBMEC monolayers, 

as well as reducing IL-6 (30 nM, 1 µM and 10 µM; p<0.05) and VEGF (10 nM- 10 µM; 

p<0.01) levels in astrocyte monocultures post OGD. CBG (10 nM-3 µM; p<0.0001) also 

reduced levels of IL-6 secreted by astrocytes and decreased levels of DNA damage 

response proteins including Chk1, Chk2, H2A.X and p53 post OGD. Neither CBG, nor 

CBDV reduced levels of IL-6, VEG or IL-8 in pericytes compared to the vehicle control 

post OGD. Cannabidiolic acid (CBDA) was also investigated and was found to decrease 

IL-6 in pericyte monocultures which was mediated, at least in part, by 5-HT1A 

activation. In a four-cell model of the BBB, CBDA offset increases in permeability vs the 

vehicle control and offered direct protection to neurons, as shown by a lack of 

propidium iodide (PI) staining in CBDA treated cells, indicating live cells are present. 

 

Data presented in this thesis show minor phytocannabinoids CBDV, CBG and CBDA 

provide protection against OGD mediated damage, with CBDA also offering protection 

against increases in permeability of the BBB post OGD. These novel data warrant 

further investigation into the neuroprotective properties of phytocannabinoids, 

particularly in ischaemic stroke. 

 

 

 

 

 

 

 

 

 



 
 

10 

Table of Contents 
Acknowledgements ........................................................................................................... 4 

COVID-19 impact............................................................................................................... 5 

Conferences....................................................................................................................... 6 

Internships ........................................................................................................................ 6 

Publications ....................................................................................................................... 7 

Abstract ............................................................................................................................. 8 

1. General Introduction ............................................................................................... 17 

1.1Prevalence of Neurological disorders with a focus on ischaemic stroke .............. 17 

1.2 Pathophysiology of ischaemic stroke and reperfusion injury .............................. 18 

1.3 The blood brain barrier (BBB) and neurovascular unit (NVU) .............................. 22 
1.3.1 Impact of ageing on the BBB and NVU .......................................................... 24 
1.3.2 Consequences of ischaemia-reperfusion on BBB physiology ........................ 25 

1.4Endocannabinoids and the endocannabinoid system ........................................... 27 
1.4.1 Endocannabinoid system and neuroprotection ............................................ 28 

1.5 Phytocannabinoids ............................................................................................... 29 
1.5.1 Other targets for cannabinoids ..................................................................... 29 
1.5.2 Phytocannabinoids, ischaemic stroke and neuroprotection ......................... 35 

1.6 Summary ............................................................................................................... 37 

1.7 Thesis aims ............................................................................................................ 37 
1.7.1 Rationale ........................................................................................................ 37 
1.7.2 Objectives ...................................................................................................... 38 

2. General Methods .................................................................................................... 40 

Cell culture .................................................................................................................. 40 

Oxygen-glucose derivation (OGD) protocol ................................................................ 42 

Sample collection; media and lysates ......................................................................... 42 

Phytocannabinoids ..................................................................................................... 43 

Antagonists ................................................................................................................. 43 

Microplate spectrophotometer .................................................................................. 43 

Bicinchoninic acid (BCA) assay .................................................................................... 44 

Enzyme-linked immunoassays (ELISA) ........................................................................ 44 

Multiplex immunoassays ............................................................................................ 45 

Cell Viability assay ....................................................................................................... 46 

LDH Assay .................................................................................................................... 47 



 
 

11 

Transepithelial resistance (TEER) ............................................................................... 48 

Propidium Iodide (PI) Staining .................................................................................... 49 

Statistical Analysis ...................................................................................................... 49 

3.A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells ................ 51 

3.1 Four-cell model method development and supplemental information .............. 51 

4.A Systematic Review of Minor Phytocannabinoids with Promising Neuroprotective 
Potential ......................................................................................................................... 55 

5.Protective Effects of Cannabidivarin (CBDV) and Cannabigerol (CBG) on Cells of the 
Blood-Brain Barrier under Ischaemic Conditions ............................................................ 57 

5.1 Supplemental information ........................................................................................ 59 

6.CBDA modulates blood brain barrier (BBB) in vitro post oxygen-glucose deprivation 61 

6.1 Introduction .............................................................................................................. 63 

6.2 Materials and Methods ............................................................................................ 65 

6.3 Results ....................................................................................................................... 68 

6.3.1 The effects of CBDA and CBD in a 4-cell BBB model ......................................... 68 

6.3.2 Pericyte monocultures ...................................................................................... 72 

6.3.3. Neuronal monocultures ................................................................................... 76 

6.4 Supplemental information ........................................................................................ 80 

6.5 Discussion ................................................................................................................. 82 

References ...................................................................................................................... 86 

7.An Analysis of Endocannabinoid Concentrations and Mood Following Singing and 
Exercise in Healthy Volunteers. ...................................................................................... 91 

8.General Discussion ....................................................................................................... 93 

8.1 Study Limitations and directions for future study ............................................... 98 

8.2 Overall conclusions ............................................................................................. 101 

9.Appendix .................................................................................................................... 102 

Professional internship reflective statement ........................................................... 102 

A systematic review of cannabidiol dosing in clinical populations............................... 105 

A systematic review on the pharmacokinetics of cannabidiol in humans.................... 107 

10. General references .................................................................................................. 109 
 
 

 



 
 

12 

Tables and Figures 

Listed below are the tables and figures that correspond to those in the introduction 

(Chapter 1), methods (Chapter 2) and Chapter 6 which are not within the included 

manuscripts. 

 
Figures 
 
Figure 1.1: Diapedesis of a peripheral neutrophil into the central nervous system (CNS). 
IL-8 acts as a chemoattractant, whilst adhesion molecules VCAM-1 and ICAM-1 
facilitate the attachment to the endothelium…………………………………………………….…pg.23 
 
Figure 1.2. A schematic of the tight junctional proteins including Zonnula occludins (ZO-
1,2,3), junctional adhesion molecules (JAMs), claudins 3,5 and occludin that are 
present    between endothelial cells which form the blood-brain barrier (BBB)……pg. 25 
 
Figure 2.1: Conversion of resazurin to resorufin, this process occurs in mitochondria of 
metabolically active cells and correlates to cell viability……………………………………….pg. 49 
 
Figure 6.1 The effects of CBD (A) and CBDA (B) on permeability (transepithelial 
resistance, TEER in vitro model of the BBB post 4 h oxygen-glucose deprivation (OGD) 
and a subsequent 20 h reperfusion period. TEER was measured at the same intervals 
prior to medium change/ sampling. Compounds were applied prior to OGD, post OGD 
and at 24 and 48 h post OGD after TEER measurement and medium sampling (depicted 
by black arrows). Data are given as means with error bars representing S.E.M. n= 6 
inserts based on 3 experimental repeats. Statistical analysis was conducted using a 
two-way ANOVA and multiple comparisons were adjusted for by Turkey’s statistical 
hypothesis test. * denotes a significant difference compared to control (p<0.05), $ 
denotes a significant difference between 300 nM CBD and 1 µM CBD (p<0.05)……pg. 69 
 
Figure 6.2. The effects of CBD (A) and CBDA (B) on IL-6 secretion in an in vitro model of 
the BBB post 4 h oxygen-glucose deprivation (OGD) and a subsequent 20 h reperfusion 
period. Medium was sampled before OGD, post OGD and at 24 h intervals before drug 
reapplication. Compounds were applied prior to OGD, post OGD and at 24 and 48 h 
post OGD after TEER measurement and medium sampling (depicted by black arrows). 
Data are given as means with error bars representing S.E.M. n= 6 inserts based on 3 
experimental repeats. Statistical analysis was conducted using a two-way ANOVA and 
multiple comparisons were adjusted for by Turkey’s statistical hypothesis test. * 



 
 

13 

denotes a significant difference compared to control (p<0.05), $ denotes a significant 
difference between 300 nM CBD and 1 µM CBD (p<0.05)……………………………….……pg. 70 
 
Figure 6.3. Fluorescence and light microscope images of neurons from the 4-cell BBB 
model stained with propidium iodide at 72 h post 4 h OGD. PI s excluded from live cells 
but can bind to double stranded DNA of dead or dying cells, thus red staining is 
proportional to the number of dying cells. 1 μM CBDA (B, D) protected neurons against 
OGD induced cell death as shown in vehicle control wells (A, C). Images were obtained 
at 20× objective…………………………………………………………………………………………………...pg. 71 
 
Figure 6.4. The effects of CBDA on pericyte cytokine signalling. CBDA attenuated IL-6 
secretion (A) 10 µM CBDA increased VEGF secretion (B) but had no effect on ICAM-1 
(C). 10 nM-1 µM (C) and increased secretion of IL-8 (D), n=6-10 from 3 experimental 
repeats. Data are given as means with error bars representing S.E.M. normalised to 
total protein and expressed as a % change from the normoxia vehicle (vehicle N). Data 
was analysed using a one-way ANOVA and multiple comparisons were adjusted for by 
Dunnett’s statistical hypothesis test. * denotes a significant difference compared to 
vehicle normoxia  (p<0.05), $ denotes a significant difference to vehicle OGD………pg.73 
 
Figure 6.5. Effect of 1 µM CBDA on IL-6 secretion alongside a range of antagonists; 
AM251 (A; 100 nM), AM630 (A; 100 nM), capsazepine (A; 1 µM), GW6471 (A; 100 nM), 
WAY-100635 (A; 300 nM), O1918 (A; 1 µM), GW9962 (B;100 nM), SB366791 (B; 1 µM) 
and CID16020646 (B; 1 µM). 5-HT1A antagonist WAY-100,635 blocked the effects of 
CBDA on IL-6 secretion (A,B) n=6-10 from 3 experimental repeats. Data are given as 
means with error bars representing S.E.M. normalised to total protein and expressed 
as a % change from the normoxia vehicle (vehicle N). Data was analysed using a one-
way ANOVA and multiple comparisons were adjusted for by Dunnett’s statistical 
hypothesis test. * denotes a significant difference compared to vehicle normoxia 
(p<0.05), $ denotes a significant difference to vehicle OGD………..…………………………pg.74 
 
Figure 6.6. The effects of CBDA on pericyte monoculture protein levels 24 h post 4 h 
OGD, determined using a BCA. Data are given as means with error bars representing 
S.E.M. Data was analysed using a one-way ANOVA and multiple comparisons were 
adjusted for by Dunnett’s statistical hypothesis test, comparing to vehicle normoxia 
(vehicle N) or vehicle OGD…………………………………..………………………………………………pg.75 
 
Figure 6.7. The effects of CBDA and CBD on levels of heat shock proteins in neuronal 
monocultures post OGD. A-J .A multiplex HSP protein assay (Milliplex™, 48-615MAG, 
EMD Millipore ) was used to detect changes in HSP levels (HSP-27 total, HSP 27, HSP 
60, HSP 70 and HSP 90 respectively) in 24 h samples following treatment with CBDA 



 
 

14 

and CBD (10 nM-1 μM) following a 4 h OGD protocol (n=5-6). Data are given as means 
with error bars representing S.E.M. normalised to total protein and expressed as a % 
change from the normoxia vehicle (vehicle N). Data was analysed using a one-way 
ANOVA and multiple comparisons were adjusted for by Dunnett’s statistical hypothesis 
test. * denotes a significant difference compared to vehicle normoxia (p<0.05), $ 
denotes a significant difference to vehicle OGD………………………………………………….…pg.77 
 
Figure 6.8. The effects of CBDA and CBD (10 nM-1 μM) on DNA damage proteins in 
neuronal monocultures post OGD. A multiplex DNA damage protein assay (Milliplex™, 
48-615MAG, EMD Millipore) was used to detect changes in levels of ATR (Total), Chk1 
(Ser345), Chk2 (Thr68), H2A.X (Ser139), MDM2 (total), p21 (Total), p53 (Ser15) 
respectively in 24 h medium samples following treatment with CBDA and CBD and an 4 
h OGD protocol (A-N). Data are given as means with error bars representing S.E.M. 
(n=6 from 2 experimental repeats). Data was analysed by One-way ANOVA. Multiple 
comparisons were adjusted for by Dunnett’s statistical hypothesis test………………pg.78 
 
Figure 6.9. The effects of CBDA and CBD (10 nM-1 μM) on neuronal monocultures 
subjected to a 4 h OGD protocol. Following treatment with CBDA and CBD an LDH assay 
was used to detect changes in NADH (A,B) and a multiplex cytokine panel was used to 
detect changes in MCP-1 (C,D) in 24 h medium samples following treatment with CBDA 
and CBD. Data are given as means with error bars representing S.E.M. (n=4 from 1 
experimental repeat). Data were analysed by one-way ANOVA. Multiple comparisons 
were adjusted for by Dunnett’s statistical hypothesis test. * denotes a significant 
difference compared to vehicle normoxia (Vehicle N) (p<0.05), $ denotes a significant 
difference to vehicle OGD………………………………………………………………………………..……pg.79 
 
Figure 6.10. The effects of CBDA on neuronal monoculture protein levels 24 h post 4 h 
OGD, determined using a BCA. Data are given as means with error bars representing 
S.E.M. Data was analysed using a one-way ANOVA and multiple comparisons were 
adjusted for by Dunnett’s statistical hypothesis test, comparing to vehicle normoxia 
(vehicle N) or vehicle OGD……………………………………………………………………………………pg.79 

 

 

 

 

 

 



 
 

15 

Tables 
 

Table I: Summary of the different TRP channels activated by endo and 

phytocannabinoids; TRP channels of vallinoid type (TRPV1,2,3,4), ankyrin type (TRPA1), 

melastatin type (TRPM8). Endocannabinoids; anandamide (AEA) and 

oleoylethanolamide (OEA). Phytocannabinoids; cannabidiol (CBD), delta-9 

tetrahydrocannabinol (Δ9-THC), cannabidivarin (CBDV, cannabigerol (CBG), 

cannabigerolic acid (CBGA), cannabigerovarin (CBGV), cannabichromene (CBC), 

cannabinol (CBN) and tetrahydrocannabidivarin (THCV)………………………………………pg.33 

 

Table II: Raw data from ELISA of pericyte cell culture medium. Note that these values 

are taken as an average from experimental repeats with cells at different passages and 

have not been normalised to total protein……………………………………………………………pg. 59 

 

Table III: Raw data from ELISA of astrocyte cell culture medium. Note that these values 

are taken as an average from experimental repeats with cells at different passages and 

have not been normalised to total protein. …………………………………………………………pg. 60 

 

Table IV: Raw data from ELISA of human brain microvascular endothelial cell (HBMEC) 

cell culture medium. Note that these values are taken as an average from experimental 

repeats with cells at different passages and have not been normalised to total 

protein………………………………………………………………………………………………………………….pg.60 

 

Table V: Raw average transepithelial resistance (TEER) values measured in ohms per 

cm2 obtained from experiments depicted in Figure 6.1. …………………………………….pg. 80 

 

Table VI: Raw data from VEGF ELISA of pericyte cell culture medium. Note that these 

values are taken as an average from experimental repeats with cells at different 

passages and have not been normalised to total protein. ………………………….………..pg. 80 

 



 
 

16 

Table VII: Raw data from IL-6 ELISA of pericyte cell culture medium. Note that these 

values are taken as an average from experimental repeats with cells at different 

passages and have not been normalised to total protein………………………………………pg.80 

 

Table VIII: Raw data from ICAM-1 ELISA of pericyte cell culture medium. Note that 

these values are taken as an average from experimental repeats with cells at different 

passages and have not been normalised to total protein…………………………………….pg. 81 

 

Table IX: Raw data from IL-5 ELISA of pericyte cell culture medium. Note that these 

values are taken as an average from experimental repeats with cells at different 

passages and have not been normalised to total protein……….…………………………….pg. 81 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

17 

1. General Introduction 

1.1 Prevalence of Neurological disorders with a focus on ischaemic 

stroke 

Globally, neurological disorders such as ischaemic stroke and dementia accounted for 

250.7 million disability adjusted life years in 2015, an increase of 7.45% over the past 

25 years (Cao et al., 2007; Feigin et al., 2019). Of these, stroke is the third leading 

cause of death worldwide; in 2015 6.24 million deaths were reported listing stroke as 

the cause and this number is predicted to rise to 7.8 million deaths by 2030 (Gorelick, 

2019; Lewandowski and Barsan, 2001; Strong et al., 2007). Furthermore, the risk of 

suffering a stroke doubles every 10 years after the age of 55, with around three-

quarters of all strokes occurring in individuals over the age of 65. Similarly, the 

prevalence of dementia in the over 65s is 0.8%, increasing to 28.5% in those aged ≥90 

(Van Der Flier and Scheltens, 2005; Yousufuddin and Young, 2019). As of mid 2019, in 

the UK there are 18.5% of people over 65 and 2.5% aged over 85, with the proportion 

of people over 65 expected to grow to 24.6% by 2045 (Park, 2019). These conditions 

are highly debilitating and place enormous burden on healthcare systems, which is 

only predicted to worsen as the population continues to age and the number at risk of 

suffering from these conditions increases (Feigin et al., 2019).  

 

In recent years, there has been a gradual decline in stroke mortality, thought to be as a 

result of a greater awareness of the risk factors associated with stroke including 

smoking, cardiac disease, physical inactivity, obesity, diabetes, high blood pressure and 

stress (Mozaffarian et al., 2016). Despite this, strokes are still a major public health 

problem exhibiting poor prognosis, high morbidity and mortality, as well as being a key 

cause of chronic adult disability which directly correlates with long term financial 

burden (Moretti et al., 2015). Currently, the only licenced, evidence-based treatments 

for ischaemic stroke are intravenous thrombolysis treatment with tissue-type 

plasminogen activator (tPA) or endovascular thrombectomy (EVT) (Douglas et al., 

2020). Both aim to restore blood flow, mitigate damage and reduce the infarct volume, 
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however administration is crucially time dependent and not always effective (Bai and 

Lyden, 2015). Recent evidence, however, has led to an extension in the time for a 

viable mechanical clot removal, which may be up to 24 h in certain patients (Douglas et 

al., 2020). Aside from these, no other treatments exist for ischaemic stroke patients 

and there are no interventions that can help with inevitable tissue damage, which is 

inversely proportional to functional recovery. Furthermore, there are several risks 

associated with reperfusion of hypoperfused tissue including post-reperfusion 

haemorrhage, reperfusion injury and haemorrhagic transformation (Bai and Lyden, 

2015). Novel compounds in development for ischaemic stroke have failed to show 

suitable efficacy and potency at both phase 2 and phase 3 clinical trials, either because 

they were found to be toxic to humans or no more efficacious than placebo (Schmidt-

Pogoda et al., 2020). In light of the above, there is a clear need for novel treatments 

for ischaemic stroke as well as therapies to better manage post stoke effects. 

1.2 Pathophysiology of ischaemic stroke and reperfusion injury 

The World Health Organisation (WHO) defines ischaemic stroke as ‘rapidly developing 

signs of focal/global disturbance in cerebral function’ (Howard, 2016). The brain is 

particularly vulnerable to ischaemia due to its high energy dependence and in order to 

maintain normal levels of cellular metabolism it requires 20% of total oxygen and 25% 

of total glucose consumption (Howarth et al., 2012). Therefore, due to the high 

metabolic demand of neuronal tissue, the obstruction of cerebral blood supply causes 

rapid energy depletion with ATP reserves used within minutes. To compensate for the 

absence of oxygen anaerobic glycolysis continues to produce ATP together with lactic 

acid. Early tissue acidosis begins to occur as lactic acid levels rise, causing localised 

tissue damage and inhibition of further ATP production. As a result, ATP dependent ion 

pumps quickly become dysregulated causing cytosolic sodium levels to increase and 

potassium ions to escape to the interstitial space, water then begins to enter cells via 

osmosis resulting in hydroponic cell swelling and oedema (Krause and Edvinsson, 

2002). Ionic imbalances (including high levels of Ca2+ and Na2+) and high levels of 

adenosine diphosphate (ADP) trigger mitochondrial dysfunction and the generation of 
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harmful reactive oxygen species (ROS), hydroxyl radicals (OH-), superoxide (O2- ), as 

well as the particularly damaging peroxynitrite (ONOO-) (Doyle et al., 2008). Oxidative 

stress causes passive DNA damage, including nucleotide base modification as well as 

single and double strand DNA breaks (Chen et al., 1997; Li et al., 2018). 

 

Under physiological conditions the levels of glutamate are carefully regulated, however 

critical ionic imbalances and uncontrolled elevations in Ca2+ as a result of ischaemia-

reperfusion results in membrane depolarisation and the reversal of glutamate 

transporters present in neurones and glial cells (Banati et al., 1993; Nishizawa, 2001). 

Excess extracellular glutamate overstimulates neurons causing a glutamate efflux along 

a concentration gradient and its accumulation within the extracellular spaces of neural 

tissue (Siegal and Sapru, 2011). Increases in Ca2+ ions also activate Ca2+ dependent 

enzymes such as caspases and calpain, a non-lysosomal cysteine protease (Reviewed in 

Momeni, 2011).  

 

Calpains are an abundant family of proteases and early studies have reported the 

presence of calpain mRNA in glia and in the cell body and dendrites of neurons 

(Hamakubo et al., 1986; Perlmutter et al., 1990). More recent studies have implicated 

their activation in post-ischaemic neuronal damage (Bevers and Neumar, 2008; Cao et 

al., 2007) and recent studies have shown calpain inhibitors may offer protection 

against ischaemic damage (Hoang et al., 2011; Potz et al., 2017), but the mechanisms 

in which calpains contribute to ischaemia-reperfusion injury remains to be fully 

elucidated. 

 

During the acute inflammatory phase of ischaemia-reperfusion, a plethora of pro-

inflammatory signals are released in response to oxidative stress, glutamate release 

and tissue damage. These include pro-inflammatory cytokines such as IL-6, IL-8, TNF-⍺ 

and IL-1β as well as adhesion molecules such as ICAM-1, VCAM-1 and MIP-1-⍺, all of 

which are responsible for initiating acute inflammatory phase responses during the 

initial onset of ischaemia (Huang, Upadhyay and Tamargo, 2006; Kriz, 2006; Amantea 
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et al., 2009). TNF-⍺ mediates the early inflammatory response by stimulating the 

synthesis of IL-6 and IL-1. In addition, IL-6 and IL-1 stimulate the vascular endothelium 

increasing the expression of ICAM-1, P-selectin and E-selectin (Chiang et al., 1994; 

Huang et al., 2006). This in turn promotes leukocyte adherence to the endothelium 

and increases endothelial permeability. Meanwhile, IL-8 acts as a potent 

chemoattractant of neutrophils and mediates the diapedesis of peripheral leukocytes 

into the CNS, see Figure 1.1 (Baggiolini et al., 1993; Pieper et al., 2013). Clinically, 

elevations in these cytokines have been found to correlate with stroke severity and 

generally a poorer patient prognosis (Pan and Kastin, 2007; Shaafi et al., 2014). 

 

Reperfusion of hypoperfused tissue is necessary to prevent further damage and 

reinstate normal levels of cellular respiration. However, paradoxically the return of 

blood flow brings with it the potential for further damage to already fragile neuronal 

tissue, hindering neuronal repair mechanisms and overall limiting recovery (Del Zoppo 

and Mabuchi, 2003). The damaging effects of reperfusion injury have been observed in 

animal models of acute stroke and have been linked to increases in infarct volume as 

well as early opening of the BBB. Pivotal features of reperfusion injury include, 

oxidative stress, mitochondrial dysfunction, inflammation and BBB breakdown, which 

is closely followed by peripheral immune cell infiltration (L and X, 2016). Furthermore, 

studies have found that acute ischaemic stroke patients exhibit elevations in 

malondialdehyde (MDA), a marker of oxidative stress as well as reduced antioxidant 

capacity (Menon et al., 2020; Milanlioglu et al., 2016).  

 

In response to elevated levels of ROS and pro-inflammatory cytokines generated 

during ischaemia-reperfusion, stored P-selectin is translocated to the cell surface of 

endothelial cells. Post-reperfusion, levels of P-selectin peak at around 6 h and causes 

rapid activation of the endothelium promoting the adherence and rolling of peripheral 

leukocytes. Meanwhile, the activated endothelium synthesises E-selectin which 

facilitates immune cell infiltration across the BBB. The pathological importance of 
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integrins in cerebral ischaemia has been highlighted in several studies (Huang et al., 

2000).  

 

Once blood flow returns to hypoperfused tissue, oxygen becomes a catalyst for 

xanthine oxidase to convert hypoxanthine to uric acid producing superoxide, which is 

subsequently converted to hydrogen peroxide and the hydroxyl radical (Granger, 

1988). These additional elevations in ROS, together with those generated during 

ischaemia, cause lipid and protein peroxidation and the release of fatty acids from 

cellular membranes generating various eicosanoids such as thromboxanes, 

prostaglandins and leukotrienes. In particular, thromboxane-A2 contributes to platelet 

aggregation and blood vessel constriction, exacerbating damage and contributing to 

the no-flow phenomenon. In support of this, studies have shown that antagonising the 

thromboxane-A2 receptor led to a reduction in microglia and macrophage activation in 

mice, as well as the attenuation of pro-inflammatory cytokines (Yan et al., 2016). 

Figure 1.1: Diapedesis of a peripheral neutrophil into the central nervous system (CNS). IL-8 acts as a 

chemoattractant, whilst increased expression of adhesion molecules by human brain microvascular 

endothelial cells (HBMECs), such vascular cell adhesion molecule (VCAM)-1 and (intracellular adhesion 

molecule (ICAM)-1, facilitate the attachment to the endothelium. Created by the author. 
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1.3 The blood brain barrier (BBB) and neurovascular unit (NVU) 

Delicate neuronal tissue is protected by the blood brain barrier (BBB), a specialised 

structure formed by microvascular endothelial cells, pericytes and astrocytes (Abbott 

et al., 2006, 2010). These cells, together with microglia, neurons and various matrix 

components form what is known as the neurovascular unit (NVU)(Blanchette and 

Daneman, 2015; McConnell et al., 2017). The BBB restricts the movement of blood-

borne components into the CNS, maintaining its immune privilege status as well as 

preventing the entry of xenobiotics.  

 

Endothelial cells form the vascular component of the BBB, they help to maintain 

angiogenesis and vasodilation, secreting growth factors such as vascular endothelial 

growth factor (VEGF) and vasodilators such as nitric oxide (NO), ensuring neurons have 

adequate blood flow to meet metabolic demand. Structurally brain endothelial cells 

differ from endothelial cells found in the periphery; they lack fenestrations 

(Fenstermacher et al., 1988), have low pinocytotic activity and a larger mitochondrial 

content (Oldendorf et al., 1977; Stewart et al., 1994), which is essential to maintain the 

large number of ATP dependent transporters. Endothelial cells are also connected by 

specialised tight junctional proteins (TJs) namely, occludins, claudins, zonula occludins 

(ZO) and junctional adhesion molecule (JAMS), see Figure 1.2 (reviewed in Schoknecht 

et al., 2015). TJs maintain low paracellular permeability allowing only small polar 

molecules to cross the barrier unrestricted whilst transporter proteins, namely glucose 

transporter 1 (GLUT-1) and various solute carrier proteins (SLCs), facilitate the entry of 

essential larger molecules such as glucose and amino acids into the CNS (Pardridge et 

al., 1990; Stewart et al., 1994; Zlokovic, 1995 and reviewed in Barar et al., 2016). 

Additionally, efflux transporter proteins such as P-glycoprotein (P-gp) and breast 

cancer resistance protein (BCRP), which are present in the luminal side of the 

endothelium, function to prevent the entry of harmful solutes into the brain (Abbott et 

al., 2010). Pericytes provide mechanical support to endothelial cells, wrapping around 

the endothelium via peg and socket style arrangements covering 70-80% of the 

capillary surface (Allt and Lawrenson, 2001; Armulik et al., 2005; Bell et al., 2010; 
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Zimmermann, 1923). These cells are part of the vascular smooth muscle lineage and in 

the brain they secrete vasoactive substances to generate functional responses to 

changes in the BBB microenvironment (Dore-Duffy, 2008; Von Tell et al., 2006). 

Specifically, these cells help endothelial cells regulate blood flow, capillary diameter, 

angiogenesis as well as supporting the stability of the vasculature (Peppiatt et al., 

2006).  

 
 

Figure 1.2. A schematic of the tight junctional proteins including zonnula occludins (ZO-1,2,3), junctional 

adhesion molecules (JAMs), claudins 3,5 and occludin that are present between endothelial cells which 

form the blood-brain barrier (BBB). Created by the author. 

 

Astrocytes are supportive glial cells and their end feet envelope both pericytes and 

endothelial cells, enabling crosstalk between the vascular component of the BBB and 

neurons. They form connections with all neuronal synapses and although they do not 

propagate impulses themselves, they help to regulate neuronal excitability playing a 

key role in neurotransmitter homeostasis (Ransom and Ransom, 2012). Astrocytes also 

provide metabolic support for neurons and express transporters for glutamate, GABA, 

and glycine to facilitate rapid reuptake of neurotransmitters from the synaptic cleft. 

Glutamate is a major excitatory neurotransmitter and must be removed rapidly from 
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the extracellular space to prevent excitotoxicity and astrocytes conduct glutamate 

reuptake against a concentration gradient using ATP, sodium-dependent glutamate 

transporters. (Sattler and Rothstein, 2006; Seifert et al., 2006; Sofroniew and Vinters, 

2010).  

 

Microglial cells are resident immune cells of the CNS, participating in immune 

surveillance, neuronal plasticity and CNS homeostasis which is governed by neuronal-

glial crosstalk (da Fonseca et al., 2014; Tremblay et al., 2011). Microglia migrate to the 

brain parenchyma during embryogenesis where they closely associate themselves with 

the brain microvasculature, participating in BBB development and angiogenesis (Alliot 

et al., 1999; Nayak et al., 2014). Normally the activation state of microglia is tightly 

controlled; they are either directed to the ameboid pro-inflammatory M1 phenotype 

or the anti-inflammatory, ramified M2 phenotype (Kettenmann et al., 2011). The M1 

phenotype secrete a variety of proinflammatory mediators such as IL-6 and TNF-⍺ to 

signal to nearby cells of the presence of tissue injury and recruit immune cells. 

Conversely, the M2 phenotype governs anti-inflammatory mechanisms, immune 

surveillance, tissue repair and regeneration, as well as contributing extensively to 

synaptic plasticity and remodelling (Benarroch, 2013). 

1.3.1 Impact of ageing on the BBB and NVU 

Since ischaemic stroke occurs predominantly in the elderly, it is important to recognise 

age-related changes that occur within the NVU. Neuronal loss, cellular senescence, 

oxidative stress and impaired cellular metabolism occur as part of the natural aging 

process, but as they accumulate there are consequences to the normal physiology of 

the brain and NVU.  Thus, not only is the prevalence of neurogenerative conditions and 

ischaemic stroke increased with age, but the capacity of the brain to cope with such 

diseases is also diminished. Senile endothelial cells exhibit reduced secretion of growth 

factors which impairs the ability of the brain microvasculature to maintain 

angiogenesis with age (Lähteenvuo and Rosenzweig, 2012). Pericytes also undergo 

morphological changes with aging which contribute to BBB impairment and 

exacerbation of damage by neurodegeneration and ischaemia. In the retina of aging 
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rats, Hughes et al., (2006) found increases in ⍺-smooth muscle actin as well as 

alterations in the length and orientation of desmin, features typically found pericyte 

senescence. Bell and collegues (2010) showed that there is pericyte loss with aging in 

platelet-derived growth factor receptor (PDGFR)-𝛽 deficient mice, which led to 

microvascular reductions, diminished cerebral blood flow and BBB breakdown. Senile 

astrocytes exhibit marked hypertrophy, increased expression of glial fibrillary acid 

protein (GFAP), decreased density of glucose and glutamate-aspartate transporters 

(GLUT-1 and GLAST), as well as a increases in levels of aquaporin-4 (Berciano et al., 

1995; Ferrer, 2017; Nichols et al., 1993; Owasil et al., 2020; Peinado et al., 1998). 

Therefore, senile astrocytes less equipped to maintain normal physiology and mitigate 

CNS pathologies and are more vulnerable to damage. 

1.3.2 Consequences of ischaemia-reperfusion on BBB physiology 

Ischaemia generates large amounts free radicals triggering oxidative stress, lipid 

peroxidation, protein dysfunction as well as directly downregulating TJs and activating 

MMPs which degrade extracellular matrix (Haorah et al., 2007; Li et al., 2018; 

Schreibelt et al., 2007). Moreover, under normal physiological conditions endothelial 

cells limit immune cell infiltration into the CNS, however post ischaemic BBB 

breakdown, together with increased expression of chemokines and adhesion 

molecules, enables uncontrolled infiltration of peripheral leukocytes into the CNS 

where they secrete matrix metalloproteinases (MMPs) and additional proinflammatory 

mediators, further exacerbating BBB breakdown (Gidday et al., 2005). Following 

ischaemia there is also a significant degree of pericyte loss and remaining pericytes 

have an increased expression of vascular endothelial growth factor (VEGF), which is 

known to contribute to increases in BBB permeability and correlates to poor prognosis 

in stroke patients (Bai et al., 2015; Escudero et al., 2020). Both of these 

pathophysiological responses have been shown to be detrimental to the BBB function 

as even a modest (20%) loss of pericyte coverage induces vascular changes at the BBB. 

Pericyte loss is linked to abnormal astrocyte polarization, increased endothelial 

transcytosis flux and ultimately compromised BBB integrity (Armulik et al., 2010; Bell 

et al., 2010).  
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During ischaemia, damaged neurons stimulate the proliferation of astrocytes 

bordering the lesion, as well as the activation of astrocytes in the ischaemic core 

(Barreto et al., 2011; Popa-Wagner et al., 2007). This process, known as astrogliosis, 

triggers alterations in morphology including hyperplasia and hypertrophy, increases in 

the expression of filament proteins such as GFAP and nestin, as well as stimulating the 

secretion of proinflammatory cytokines such as TNF-⍺, IL-1𝛽 and IL-6 (Chiang et al., 

1994; Herx and Yong, 2001; Li and Chopp, 1999; Liu and Chopp, 2016; Sims and Yew, 

2017). Hypertrophic astrocytes exhibit elongated processes which envelope the 

ischaemic region in an attempt to contain the damaged tissue, preventing its spread to 

the penumbral region which is potentially salvageable (Kajihara et al., 2001). After a 

few days post ischaemia, astrocytes begin to form a glial scar which consists of reactive 

astrocytes and extracellular matrix components such as chrondroitin proteoglycans 

(CSPGs) and whilst the scar reduces in size over time, interwoven astrocytic end feet 

and higher levels of GFAP remain present (Sims and Yew, 2017). The development of a 

glial scar can be both beneficial and counterproductive (reviewed in Ferrer, 2017), 

whilst it offers protection to the surrounding salvageable and healthy tissue it can also 

hinder neuronal repair mechanisms. Reactive astrocytes are protective against nitric 

oxide toxicity post ischaemia (Chen et al., 2001) and astrocyte ablation prolonged 

infiltration of CD45-positive leukocytes and the failure of the BBB (Bush et al., 1999). In 

addition, Li and colleagues found that mice lacking in characteristic reactive astrocyte 

markers, GFAP and vimentin, exhibited larger infarct volumes and a 44% lower uptake 

of glutamate vs WT controls, highlighting the protective role of reactive astrocytes in 

ischaemia (Li et al., 2008). On the other hand, prolonged astrocyte activation post 

stroke can increase neuronal damage via excitotoxic damage, increases in 

proinflammatory cytokines, as well as contributing to enhanced BBB permeability and 

preventing axonal sprouting (Li et al., 2014; Silver and Miller, 2004).  

 

Post insult, microglia are rapidly activated by excitotoxic signalling and undergo 

morphological changes to their M1 phenotype. In the acute phase, they secrete a 
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plethora of proinflammatory cytokines and nitric oxide which stimulates surrounding 

cells and recruits other microglia to the site of injury, causing a cycle of uncontrolled 

activation, which can lead to additional tissue damage (Jolivel et al., 2015; Taylor and 

Sansing, 2013). Likewise, quantitative evidence has showed that 24 h post insult,  the 

ischaemic core exhibits marked changes in microglia including increased CD11b 

expression, shorter processes and amoeboid morphology (Morrison and Filosa, 2013). 

Excessive, microglial activation can disrupt BBB integrity post stroke, 

downregulating/redistributing tight-junctional proteins and reorganising the actin 

cytoskeleton (da Fonseca et al., 2014). Despite the clear role of microglia in facilitating 

damage post ischaemia, studies have shown that the absence  of microglia results in a 

larger infarct size and the deletion of microglia can adversely affect the integrity of the 

BBB (Dudvarski Stankovic et al., 2016; Szalay et al., 2016). Thus, some degree of 

microglial activation is necessary to minimise post-stroke injury, but this must be 

adequately controlled to prevent further tissue damage. 

1.4  Endocannabinoids and the endocannabinoid system 

The endocannabinoid system consists of the cannabinoid receptors (CB1 and CB2), 

endogenous lipid ligands that activate them and the enzymes involved in their 

synthesis and degradation. CB1 was first cloned in 1990, followed by CB2 in 1993 which 

shares only 44% homology to CB1 (Howlett et al., 2002; Munro et al., 1993). Both 

receptors are G-protein coupled receptors part of the G1/0 family and as such their 

activation inhibits adenylyl cyclase, a key regulatory enzyme responsible for a diverse 

range of cellular responses, whilst positively activating mitogen-activated protein 

kinases (Pertwee and Ross, 2002). The distribution of the cannabinoid receptors varies 

throughout the body, while CB1 receptors are abundant in the CNS, CB2 receptors are 

present but expressed at a significantly lower level (Howlett et al., 2002; Pertwee, 

1997). CB1 receptors are present within the cortex, basal ganglia, hippocampus and 

cerebellum where they are localised to axon terminals and terminal axon segments 

(Herkenham et al., 1990). Aside from the CNS, CB1 receptors are also found in 

reproductive tissues, the gastrointestinal (GI) tract, heart, lungs and bladder (Pertwee, 
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1997). On the other hand, CB2 receptors are expressed by immune cells such as 

resident microglia where they play a role in orchestrating the immune response, 

including the release of pro-inflammatory cytokines.  

 

Shortly after CB1 and CB2 were discovered, the two most studied endocannabinoids 

anandamide (AEA) and 2-arachidonylglycerol (2-AG) were identified from pig brain and 

canine gut respectively (Devane et al., 1992; Mechoulam et al., 1995). They are 

synthesised on demand via the enzymatic hydrolysis of precursors derived from 

phospholipid bilayers in response to cellular stimuli, specifically elevations in 

intracellular calcium. Synthesis of 2-AG occurs when phospholipase C is converted to 

diacylglycerol, which is then converted to 2-AG via the enzyme diacylglycerol (DAG) 

lipase. Conversely, AEA is produced from the phospholipid N-acylphosphadiyl 

ethanolamide. AEA is also synthesised by the same route as two other major 

endocannabinoids oleoylthanolamide (OEA) and palmitoylethanolamide (PEA), which 

in general, are found in higher concentrations than AEA (Di Marzo et al., 2005). 

Altogether these compounds are known as the N-acylethanolamines (NAGEs) and are 

known to exert anti-inflammatory effects. The enzymes fatty acid amide hydrolase 

(FAAH) and monoacylglycerol lipase (MAG-lipase) hydrolase AEA (as well as OEA and 

PEA) and 2-AG respectfully (Reviewed in Di Marzo et al., 2005).  

1.4.1 Endocannabinoid system and neuroprotection 

Modulation of the endocannabinoid system can illicit neuronal plasticity, 

neuroprotection and neurotoxicity, indeed endocannabinoids are known to regulate 

mood, synaptic excitability, hypokinesia and analgesia due to their activity at CB1 and 

other receptors such as 5-HT1A, TRPV1 (Cristino et al., 2020). Moderate increases in 

endocannabinoids post exercise, particularly AEA and 2-AG, may be correlated with 

improvements in neuronal plasticity (Heyman et al., 2012; Raichlen et al., 2012; 

Sparling et al., 2003). Heyman et al., (2012) found that increases in AEA in cyclists was 

positively correlated with increases in brain derived neurotrophic factor (BDNF), and 

our group showed that singing increased levels of PEA, OEA and AEA and cycling also 
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increased levels of OEA in healthy volunteers (Stone et al., 2018). Thus, elevations in 

endocannabinoids post exercise could be linked to the positive effects of physical 

activity on cognitive function and mood. Endocannabinoids and endocannabinoid 

receptors are also affected post neuronal injury, for example in a model of stroke CB1 

knockout mice exhibited higher post-ischaemic mortality, greater infarct sizes and 

worse neurological function and studies in humans have found increased levels of AEA 

in stroke and PD patients (Naccarato et al., 2010; Parmentier-Batteur et al., 2002; 

Pisani et al., 2010; Schäbitz et al., 2002). 

1.5 Phytocannabinoids  

Phytocannabinoids are compounds that are naturally present in the cannabis sativa 

herb, with cannabidiol (CBD) and delta 9-tetrahydrocannabinol (Δ9-THC) being the 

most widely studied. Δ9-THC was first identified in by Gaoni and Mechoulam, (1964) 

and later synthesised in 1967 by the same group (Mechoulam et al., 1967). Initial 

studies on cannabis focused on the analgesic and sedative properties of THC (Paton, 

1973) and its psychoactive effects (Pertwee, 1988), which were later found to be 

mediated by its action at CB1 receptors. CBD was first identified in 1963 (Mechoulam 

and Shvo, 1963) and unlike Δ9-THC it has little affinity for CB1 receptors, thus displaying 

no psychotropic activity. Since its discovery, CBD has shown efficacy in a plethora of 

conditions largely due to its promiscuity at different receptors; acting as an 

antioxidant, anti-inflammatory and anticancer agent, as well as displaying anxiolytic 

and anti-convulsant properties (Pisanti et al., 2017; Russo and Marcu, 2017). Other 

phytocannabinoids were discovered not long after Δ9-THC and CBD, including 

cannabigerol (CBG) which was first identified in 1964 (Gaoni and Mechoulam, 1964) 

cannabichromene (CBC) in 1966 (Gaoni and Mechoulam, 1966), cannabidivarin and 

THCV in 1970 (Gill, Paton and Pertwee 1970, Vollner, Bienieke and Korte 1969).  

1.5.1 Other targets for cannabinoids 

Cannabinoids can also modulate a wide range of other receptors aside from the 

cannabinoid receptors, CB1 and CB2. They have also been shown to activate 
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peroxisome proliferator activated receptors (PPARs), serotonin receptors and transient 

receptor potential (TRP) channels, as well as orphan GPRs such as GPR55, GPR18 and 

GPR119 (De Petrocellis and Di Marzo, 2010). 

 

PPARs are ligand activated transcription factors that are part of the nuclear hormone 

superfamily and are divided into three subtypes; PPAR⍺, PPARδ and PPAR𝛾. They are 

expressed in almost every cell in the body and are responsible for regulating different 

aspects of gene expression, primarily those involved in fatty acid metabolism and 

inflammation (reviewed in Pistis and O’Sullivan, 2017). Upon activation, for example by 

hormonal or environmental stimuli, PPARs bind to the retinoid X receptor (RXR) 

forming a heterodimer. This triggers the recruitment of coactivators such as PGC-1⍺ or 

E1AS binding protein p300 which have histone acetylase activity (Marion-Letellier et 

al., 2016). The PPAR-RXR heterodimer complex binds along with a cofactor to regions 

of DNA known as peroxisome proliferator response elements (PPREs) which are 

present on the promotor regions of target genes (Berger and Moller, 2002; Osumi et 

al., 1991). It has been deduced that the acetylation of histone proteins alters the 

organisation of the tightly packed chromatin, thus enabling RNA polymerase II to bind 

and imitate gene transcription. In the absence of a stimulus, heterodimers are 

associated with a co-repressor complex which blocks gene transcription (Ziouzenkova 

and Plutzky, 2004). PPAR⍺ is predominantly involved in regulating lipid and lipoprotein 

metabolism and its expression is relatively high in cardiomyocytes, hepatocytes, the 

kidney, brown adipose tissue, the GI tract (enterocytes) and immune cell types 

including monocytes and microglia (Herkenham et al., 1990; Marion-Letellier et al., 

2016; Mottillo et al., 2012). PPARδ expression is ubiquitous but varies from tissue to 

tissue and can be altered in disease states. PPARy is expressed in brown and white 

adipose tissue, the pancreas, large intestine and various immune cells and its 

activation mediates inhibition of helper T-cells responses, as well as having a role in 

glucose metabolism, regulation of fatty acid storage, adipocyte differentiation, insulin 

sensitivity and cell growth (Tyagi et al., 2011). All PPAR isoforms have a central role in 

mediating the inflammatory response. In general, PPARs have large, complex ligand 
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binding domains which enables them to bind a wide range of ligands, including their 

natural ligands such as fatty acids and eicosanoids (Gervois et al., 2000; Krey et al., 

1997). Not surprisingly, as cannabinoids are lipid-based molecules, a number of 

endocannabinoids and phytocannabinoids have been shown to bind and/or activate 

different PPAR isoforms (O’Sullivan, 2016). PPAR⍺ has been shown to be activated by 

the endocannabinoid like N-acylethanolamines OEA and PEA at concentrations 

achieved under normal physiology (Fu et al., 2003). Further, Sun et al., (2007) 

confirmed that OEA, PEA and AEA bind to the PPAR⍺ binding domain. THC was found 

to increase the activity of PPAR𝛾 (O’Sullivan et al., 2005) and the ability of THC to bind 

to PPAR𝛾 was later confirmed by Granja et al., (2012). Emerging evidence has also 

supported the interaction of PPAR𝛾 with other phytocannabinoids such as 

cannabigerol (CBG) and tetrahydrocannabidiolic acid (THCA) and that interaction with 

this receptor mediates some of their protective effects (Stone et al., 2020). 

 

Transient receptor potential (TRP) channels are a group of membrane spanning 

proteins comprised of four subunits and six transmembrane helices (S1-S6). There are 

six subfamilies of TRP channels; vallinoid type (TRPV), ankyrin type (TRPA), melastatin 

type (TRPM), polycystin type (TRPP), canonical type (TRPC) and mucolipin (TRPML), 

which are further divided into different isoforms. TRP channels are predominantly 

expressed in nociceptive sensory neurons where they mediate the transduction of a 

number of chemical and physical stimuli, including but not limited to pain, pH and 

temperature sensation (Reviewed in Zheng, 2013). Following exposure to a stimulus 

they can gate both mono and divalent cations, including Ca2+, however the full 

mechanisms associated with TRP activation have yet to be fully understood (Gees et 

al., 2010). TRP channels, specifically TRPV1, TRPA1, TRPV4, have been implicated in the 

pathogenesis of several neurodegenerative disorders and ischaemic stroke (Huang et 

al., 2020; Miyanohara et al., 2015; Pires and Earley, 2018). TRPV4 channels expressed 

in astrocytes form complexes with AQP4, contributing to osmotic homeostasis, 

however under ischaemic conductions TRPV4 channels can become overactivated 

causing osmotic swelling and potentiating injury (Jo et al., 2015). Excessive TRPV1 
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activation has also been implicated in exacerbating neuronal injury in ischaemic stroke 

and interestingly, TRPV1 antagonist capsazepine was found to reduce neurological 

deficits and infarct volume in mice post middle cerebral artery occlusion (MCAO) 

(Miyanohara et al., 2015).  

 

To date research has found that endocannabinoids, phytocannabinoids and synthetic 

cannabinoids can activate TRPV1,2,3,4, TRPA1 and TRM8, either as agonists or 

antagonists, with the majority of research focused on their activation of TRPV1 (Muller 

et al., 2019). Table I provides a summary of the roles of the different TRP channels that 

are activated by cannabinoids. 
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Table I: Summary of the different TRP channels activated by endo and phytocannabinoids; TRP 

channels of vallinoid type (TRPV1,2,3,4), ankyrin type (TRPA1), melastatin type (TRPM8). 

Endocannabinoids; anandamide (AEA) and oleoylethanolamide (OEA). Phytocannabinoids; 

cannabidiol (CBD), delta-9 tetrahydrocannabinol (Δ9-THC), cannabidivarin (CBDV, cannabigerol 

(CBG), cannabigerolic acid (CBGA), cannabigerovarin (CBGV), cannabichromene (CBC), 

cannabinol (CBN) and tetrahydrocannabidivarin (THCV). 

TRP 
Channel 

Location Role in normal/pathophysiology Activation by 
cannabinoids   

TRPV1 All major classes of 
nociceptive neurons, 
detected in: dorsal root 
ganglion (DRG), 
trigeminal ganglion (TG) 
and nodose ganglion 
(NG).(Nilius et al., 2008) 

• Responsible for strong burning 
sensations and cutaneous pain. 

• Analgesia can be evoked if these 
channels are desensitised  

• Histaminergic itch. 

(Shim et al., 2007) 

AEA  with a binding affinity 
similar to capsaicin (Zygmunt et 
al., 1999). OEA (Ahern, 2003). 
Activated by CBD, CBG and 
CBC,  CBDV can also activate 
and desensitise (Iannotti et al., 
2014; Ligresti et al., 2006).  
 

TRPV2; 
50% 
sequence 
homology 
to TRPV1 

Medium and large 
diameter sensory 
neurons. Heart, GI tract, 
smooth muscle. 
Highly expressed in 
macrophages. (Nilius et 
al., 2008) 

• Insensitive to protons but can be 
activated by high temperatures (>52 
°C) and inflammation.  

• Chronic pain 
• Mechano-sensor in vascular smooth 

muscle cells. (Nilius et al., 2008) 

Not activated by 
endocannabinoids, mainly 
activated by 
phytocannabinoids. Activated 
by CBD (EC50 3.7 μM), THC and 
CBN (Maréchal and Zou, 2013; 
Muller et al., 2019) 

TRPV3; 
43% 
sequence 
homology 
to TRPV1 

Present in the DRG, 
trigmental ganglia. 
Testis, skin 
(keratinocytes), tongue. 

• Responsible for pain and itch 
sensations. 

• Thermosensor between 33-39°C. 
Becomes sensitized in repeated heat 
application. 

Not activated by 
endocannabinoids. CBD and 
THCV were both able to 
activate TRPV3, CBGV and 
CBGA were found to 
desensitise TRPV3 (De 
Petrocellis et al., 2012) 

TRPV4; 
>40% 
sequence 
homology 
to TRPV1 

CNS, epithelial cells, 
osteoblasts, blood 
vessels (including 
cerebral). Astrocytes 
and microglia 
(Benfenati et al., 2007) 

• Role in vascular function  
• Osmotic pressure in the brain. 
• Skin barrier function and nociception 
• Responds to 25-34 °C (Nilius et al., 

2008) 

CBDV and THCV evoked a Ca2+ 
response in TRPV4 expressing 
cells. Desensitised by CBN, 
CBGV, CBGA, CBG (De 
Petrocellis et al., 2012) 

TRPA1 A subset of peripheral 
sensory neurons. Dorsal 
root, vagal and 
trigeminal ganglion 
neurons. 
(Baraldi et al., 2010) 

• Activated by compounds in mustard, 
garlic etc. and  by temperatures below 
17°C (Bandell et al., 2004; Baraldi et 
al., 2010) 

• Important role in neuropathic pain, 
hyperalgesia, inflammatory pain. 

AEA exhibits a high efficacy.  
CBC (EC50 90 nM), CBD ( EC50 

110 nM), CBN ( EC50 180 nM).  
(De Petrocellis et al., 2008, 
2011, 2012) 

TRPM8 Primary afferent 
neurons (Story et al., 
2003). 

• Activated below 27°C in response to 
cooling compounds, menthol eucalyptus. 
•  Involved in androgen receptor positive 
prostate cancers  

Antagonised by AEA and 
phytocannabinoids 
including  CBD, CBG, THC, and 
THCA  (De Petrocellis et al., 
2007, 2008) 
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Serotonin receptors, otherwise known as 5-hydroxytryptamine (5-HT) receptors are 

involved in the regulation of mood, manifestation of anxiety and depression, as well as 

immune and cardiovascular regulation. Most 5-HT receptors are metabotropic and are 

coupled to G-proteins which mediate their signal transduction. Cannabinoids have 

been shown to modulate the 5-HT1A subtype of these receptors, having effects such as 

neuroprotection, reducing the stress response and acting as anti-emetics. 5-HT1A 

receptors are widely distributed in the brain and areas associated with modulating 

stress and anxiety, such as the raphe nuclei. Resstel et al., (2009) found that CBD (10-

20 mg.kg-1) decreased stress induced cardiovascular responses which was blocked by 

WAY100635, a 5-HT1A receptor antagonist. At low doses (5-10 mg.kg-1) CBD is  an 

effective antiemetic in different models of nausea (Kwiatkowska et al., 2004; Rock et 

al., 2008). Studies have shown that CBDs acidic precursor, cannabidiolic acid (CBDA 

0.1/0.5 mg.kg-1, i.p) acts as a more potent anti-emetic than CBD, reducing nausea in 

three different models in mice, an effect mediated through the 5-HT1A (Bolognini et al., 

2013). CBG has been found to act as a 5-HT1A receptor antagonist (Cascio et al., 2010) 

and recently CBGs neuroprotective effects against rotenone induce neurotoxicity were 

mediated partly by interaction with 5-HT1A receptors (Echeverry et al., 2020).  

 

GPR55/ GPR18 

Despite having a low sequence homology to CB1 (13.4%) and CB2 (14.4%), orphan 

GPCR, GPR55 was postulated to be a third cannabinoid receptor because of its 

activation by some cannabinoid like compounds. It was first identified in 1999 

(Sawzdargo et al., 1999) and is expressed on immune cells, including monocytes, NK 

and microglial cells and is present in both the CNS and the GI tract (Ryberg et al., 

2009). An accumulating body of evidence implicates GPR55 in neuronal 

hyperexcitability and epilepsy, corroborated by recent findings indicating that GPR55 

expression is elevated in the epileptic hippocampus (Gray and Whalley, 2020; 

Rosenberg et al., 2018). Ryberg et al., (2007) showed that cannabidiol displayed 

antagonist properties at GPR55 and that anandamide stimulated GTPγS binding with 

an EC50 of 18 nM. CBDs action at GPR55 has been proposed to meditate its 
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antiepileptic effects; Kaplan and colleagues (2017) found that GPR55 was responsible 

for CBDs effects on increasing inhibitory neuronal excitability. Despite these promising 

advances regarding the biological roles of GPR55 and its cannabinoid ligands, the link 

between the role of GPR55 and other pathologies that affect the CNS, such as 

neuroinflammation, remains unclear. Saliba et al., (2018) found that activation of 

GPR55 by antagonists mediated protective effects in microglial cells and Hill et al., 

(2018) found that GPR55 activation led to an increase in the proliferation rate of 

human neuronal stem cells in vitro.  

 

GPR18, another orphan GPCR, has been found to be activated by Δ9-THC and abnormal 

cannabidiol. Early studies showed GPR18 is richly expressed in the testis and spleen 

(Gantz et al., 1997) and was later found to also be expressed in peripheral leukocytes, 

microglia and lymph nodes (McHugh, 2012). GPR18 is also involved in the action of N-

arachidonoylglycine, the carboxylic metabolite of anandamide, in the modulation of 

the immune response and the cross talk between microglia and neurons (Burstein et 

al., 2011).  

1.5.2 Phytocannabinoids, ischaemic stroke and neuroprotection 

Accumulating evidence supports the neuroprotective effects of phytocannabinoids in 

various models of neurodegeneration and neurological dysfunction (Cristino et al., 

2020; Fernández-Ruiz et al., 2013). Due to their lipophilic nature they readily penetrate 

the BBB (Deiana et al., 2012) and recently Brzozowska et al., (2016) found that CBD 

was not a substrate for P-gp or BCRP, thus these transporters do not limit CBD uptake 

into the brain. Preclinical studies on Δ9-THC and CBD have been conducted in models 

of AD, PD, ALS, MS, traumatic brain injury (TBI) and stroke. In an animal model of AD, 3 

mg.kg Δ9-THC + COX-2 inhibitor was shown to reduce amyloid beta plaques (Maroon 

and Bost, 2018). In vitro CBD attenuated the damaging effects of amyloid beta (AB) 

peptide and in a murine model of AD CBD attenuated reactive gliosis and decreased 

the production of pro-inflammatory mediators (Esposito et al., 2006, 2007; Iuvone et 

al., 2004). Similarly, CBD improved signs of EAE in mice due to its capability to suppress 
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the immune response; including microglial activity and T-cell proliferation (Kozela et 

al., 2010). In PD patients, CBD decreased PD associated psychosis symptoms and 

improved patient well-being (Chagas et al., 2014; Zuardi et al., 2009). In ischaemia, Δ9-

THC and CBD have also displayed neuroprotective effects in various in vitro and in vivo 

models (Alvarez et al., 2008; Castillo et al., 2010; Louw et al., 2000; Zani et al., 2007). 

Pre-treatment with CBD (100 and 200 ng/rat) for five days prior to initiating a 60 

minute MCAO resulted in a significant decrease in infarct size (Khaksar and Bigdeli, 

2017). Ceprián et al., (2017) found that CBD administration ameliorated excitotoxic 

associated damage and improved neurological outcome post MCAO. Other 

phytocannabinoids have also exhibited neuroprotective potential (Reviewed in Stone 

et al., 2020), CBDV and Δ9-THCV have displayed efficacy an antiepileptics (Amada et al., 

2013; Hill et al., 2010, 2013; Ma et al., 2008), CBG as an anti-neuroinflammatory agent 

(Carrillo-Salinas et al., 2014; Rodríguez-Cueto et al., 2018) and Δ9-THCA as a 

neuroprotectant (Nadal et al., 2017).  

 

Clinical studies assessing the therapeutic potential of cannabinoids and neurological 

disorders have been predominantly in epilepsy, MS and Parkinson’s. In a human trial 

with MS patients, Δ9-THC ameliorated urinary incontinence, spasticity and tremors in 

MS, but no effect on disease progression was observed (Baker et al., 2000; Freeman et 

al., 2006; Zajicek et al., 2003). So far, CBD alone (Epidiolex, GW Pharmaceuticals, 

Cambridge, UK) and as a 1:1 formulation with Δ9-THC (Sativex, GW Pharmaceuticals, 

Cambridge, UK) are the only licenced cannabis-based medicines and are prescribed to 

treat Dravet syndrome and Lennox-Gastaut syndrome, both rare forms of childhood 

epilepsy. There are, however phase 3 trials in the pipeline to assess whether CBD oil is 

effective in ALS (Urbi et al., 2019), as well as phase 2 trials to assess the efficacy of 

Sativex in spasticity associated with motor neuron disease and multiple sclerosis (MS) 

(Markovà et al., 2019; Riva et al., 2019). The aforementioned findings emphasise the 

neuroprotective potential of cannabinoids, the role of the endocannabinoid system in 

neurological disease and the clinical translatability of these compounds. 
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1.6 Summary  

Most therapies targeting stroke and other neurodegenerative conditions have only 

targeted neurons in order to preserve functionality. However, from the high number of 

failed neuroprotective agents, it is clear that protecting neurons alone is insufficient to 

improve neurological outcome in these conditions. Various compounds have displayed 

efficacy in animal models of ischaemic stroke, however there has been little success 

when these compounds reach clinical development (Schmidt-Pogoda et al., 2020). 

O’Collins et al., (2006) highlighted the importance of only taking worthy drugs to 

clinical trial and only if the animal study data is robust, valid and relevant to the clinical 

cause. In order to be a successful treatment in conditions such as ischaemic stroke, 

multiple facets of the disease need to be targeted. The unique pharmacology of 

cannabinoids makes them particularly desirable as novel therapies as they can 

potentially target multiple areas of dysfunction, as well as modulate different cells that 

constitute the NVU. 

1.7 Thesis aims 

1.7.1 Rationale 

In vitro models to simulate stroke are useful tools to screen neuroprotective agents 

and determine which compounds look the most promising to be taken to in vivo 

studies (Antonic et al., 2012). We aimed to develop a more clinically relevant four-cell 

NVU model consisting of primary human cells to model ischaemic stroke in vitro using 

a previously described oxygen-glucose deprivation (OGD) protocol (Hind et al., 2015, 

2016). Using OGD to model stroke exhibits the majority of effects associated with in 

vivo ischaemia-reperfusion injury and is therefore a relevant methodology to simulate 

stroke in vitro (Holloway and Gavins, 2016). Secondly, we aimed to gain insight into the 

neuroprotective properties of CBG, CBDV and CBDA or lack thereof and to establish 

whether these compounds may be useful as potential treatments for ischaemic stroke. 

CBG and CBDV effects in ischaemia are largely unknown but were found to be 

protective in several pre-clinical models of other neurodegenerative diseases (based 
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on the results of our systematic review; Chapter 4). In light of these data, we 

hypothesised that CBDV and CBG would also prove to be protective in a model of 

ischaemic stroke. CBDA has been found to exhibit similar biological and 

pharmacological properties to CBD, but is significantly overlooked compared to its 

neutral derivative (Reviewed in Formato et al., 2020). Given that previous work from 

our group found CBD prevented increases in BBB permeability in an OGD model (Hind 

et al., 2016), we hypothesised that CBDA may also be protective against BBB 

permeability, perhaps by a similar mechanism to CBD. 

1.7.2 Objectives 

Therefore, the aim of this thesis was to assess the neuroprotective properties of minor 

phytocannabinoids, CBG, CBDV and CBDA, on cells of the NVU and to assess whether 

CBDA, like CBD, was able to modulate BBB permeability in an in vitro model of 

ischaemic stroke. To achieve this, we set out to test CBG, CBDV and CBDA in 

monocultures of cells of the NVU and to test CBDA in a BBB model of our own design. 

To simulate ischaemic stroke in vitro we used an oxygen-glucose deprivation (OGD) 

protocol.  

 

Specifically, our objectives were as follows: 

1. To develop a more clinically relevant in vitro BBB model comprised of primary 

human cells to study permeability. 

Based on evidence from previous studies on CBD, results from our systematic review 

and the wider literature: 

2. To investigate the neuroprotective properties of minor phytocannabinoids, 

CBG, CBDV and CBDA in cells of the NVU using an OGD protocol. 

3. To investigate whether CBDA modulates BBB permeability when administered 

before an OGD protocol.  

4. To explore the potential mechanisms of action by which CBDV, CBG and CBDA 

mediate their protective properties following outcomes from aims 2 and 3. 
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In addition to my central thesis aims, during my PhD studies we also investigated the 

levels of endocannabinoids on volunteers who underwent exercise activities and 

singing. This provided additional lab training, academic publication writing and clinical 

study design experience. Specific aims of this project were: 

 

1. To assess whether different activities influenced mood as measured by visual 

analogue score (VAS) questionnaire. 

2. To establish whether changes in mood were correlated with levels of circulating 

endocannabinoids, namely anandamide, 2-AG, OEA and PEA. 
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2. General Methods 

Cell culture 

All cell culture work was performed under sterile conditions within a biological class II 

cabinet (HEPA filtered). Personal protective equipment (PPE) was worn during cell 

culture and aseptic technique was used throughout. Surfaces were disinfected with 1% 

distel, followed by 70% ethanol. Each item was disinfected with 70% ethanol before 

placing in the safety cabinet. Cell cultures were maintained in an incubator; 37°C with 

5% CO2 and 95% air. 

Cell types 

Primary cell cultures included human astrocytes (HA; SC-1800), human pericytes (HP; 

SC-1200), human brain microvascular endothelial cells (HBMECs; SC-1000) and human 

neurons (HN; SC-1520). All cells were purchased from Caltagmedsystems (UK), 

originally sourced from Sciencell (USA) in vials of 1x10^6 cells per mL. In order to 

prevent de-differentiation, cells were not used beyond passage 6, as per 

manufacturer’s recommendations. 

Specialised medium 

Cells were maintained in their respective recommended specialised medium 

purchased from Caltagmedsystems (UK), originally sourced from Sciencell (USA). Media 

was supplied as a basal phenol red formula containing essential nutrients along with a 

bullet pack consisting of foetal bovine serum (FBS), 10,000 units/mL penicillin and 

streptomycin (pen-strep, 1% final volume). Endothelial cell medium was supplemented 

with 5% FBS, pericyte and astrocyte medium were supplemented with 1% FBS. 

Neuronal medium was not supplemented with FBS. A growth supplement mix specific 

to each cell type was added to each of the different media (Caltagmedsystems (UK). 

These were originally formulated and sourced from Sciencell (USA). 

Revival, Sub-culturing and cryopreservation 

To initiate cell cultures vials of cells in freezing medium containing 5% 

dimethylsulfoxide (DMSO) were removed from liquid nitrogen storage and gently 
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thawed in a water bath at 37°C. Once vial contents were approximately 50-75% 

thawed they were pipetted into T75 cell culture flask (75cm2) containing 13 mL of the 

appropriate pre-warmed medium. The flask was then placed in an incubator (37°C, 5% 

CO2) and the cells were allowed to adhere to the flask surface for a minimum of 6 h 

before replacing the medium. Upon reaching 80-90% confluency cells were passaged 

depending on each cell types doubling number and experimental demand. Typically, 

astrocytes and HBMECs were passaged in a 1:3 ratio of cells to fresh medium and 

pericytes in a 1:5 ratio cells to fresh medium. Cells were either passaged into new 

flasks (to increase cell populations), into cell culture plates or inserts, or cryopreserved 

for future use.  

 

Cells were passaged as follows: medium was aspirated and discarded; 8 mL of pre-

warmed phosphate buffered saline (PBS, Gibco) was used to rinse the cell monolayer 

to remove any excess medium containing FBS. This was then aspirated and discarded 

and 2 mL of trypsin-EDTA (0.25% in 1x PBS) was pipetted into the T75 flask. For 

HBMECs 2 mL StemPro™ accutase (Gibco, ThermoFisher Scientific) was used instead of 

trypsin. The flask was gently rocked from side to side to ensure full coverage of the 

cells with Trypsin-EDTA, then placed into the cell culture incubator (37°C, 5% CO2) for 

1-2 minutes. The flasks were removed from the incubator and firmly tapped. The flasks 

were observed under a light microscope to ensure cells were detached. If cells were 

still adhering to the flask, cells were placed back in the incubator for 1-2 minutes and 

the process repeated until cells were detached. Once cell detachment was confirmed, 

5-7 mL of cell culture medium was added to neutralise the trypsin. Media was rinsed 

over any remaining cells left on the bottom of the flask and repeated to ensure the 

maximum number of cells were re-suspended in the media. Then medium was 

aliquoted into a falcon tube. Cells were centrifuged at 1000 rpm (320 xg) for 5 minutes 

to form a cell pellet. The supernatant was carefully aspirated and discarded. The cell 

pellet was gently re-suspended in 1 mL of medium. The cell suspension was 

subsequently diluted further to the desired split ratio (i.e 3 mL for a 1:3 ratio, 1 mL into 
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each T75 flask), to be seeded into cell culture plates (i.e 12 mL, 500 µL each well for a 

24 well plate), or to be cryopreserved for later use. 

 

To cryopreserve cells, cells were pelleted in the procedure described above, then 

resuspended in their recommended medium containing 5% DMSO. DMSO acts as a 

cryopreservative, preventing unwanted crystals forming in the freezing process and 

preserves cell viability. Then the cell suspension was aliquoted into 1 or 2 mL cryovials 

and placed on ice for 10 minutes before being transferred to a Mr Freeze 

cryocontainer to be stored at -80°C overnight, cooling at approximately 1 °C /minute. 

The following day cryovials were transferred to liquid nitrogen for long term storage 

until required. 

Oxygen-glucose derivation (OGD) protocol 

To simulate ischaemia in vitro, an oxygen-glucose deprivation (OGD) protocol was 

followed (Hind et al., 2015, 2016). Normal cell culture medium (specific to each cell 

type, detailed previously) was removed and replaced with glucose-free RPMI medium 

(ThermoFisher, UK). Cell culture plate were placed in an anaerobe BD GasPack (UK) for 

4 h for HBMECs, pericytes and neuron or 8 h for astrocytes and placed back into the 

cell culture incubator (37°C, 5% CO2). Following this, plates were removed from the 

anaerobic bags and glucose-free medium was aspirated and replaced with normal cell 

culture medium. Cell culture plates were then returned to the cell culture incubator for 

either a 20 h or 16 h reperfusion period.  

Sample collection; media and lysates 

Post OGD experiments, medium samples were collected from cell culture plates into 1 

mL Eppendorf tubes and analysed immediately or stored at -80°C until subsequent 

analysis. During analysis all samples were kept on ice (approximately 4°C) to minimise 

sample degradation. Once cell medium had been removed, cell monolayers were 

gently washed with 1X PBS. Ice cold RIPA buffer (Sigma-Aldrich R0278) containing 

pierce protease and phosphatase inhibitors (inhibitor cocktail Thermo Fisher: A32959) 
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was added to each well. Cell culture plates were then placed on a plate shaker in the 

cold room (4°C) for 30-60 minutes to lyse the cells. The cell lysis mixture was then 

either immediately analysed, or frozen at -80°C and stored in liquid nitrogen. 

Phytocannabinoids 

Cannabidiol (CBD) was purchased from Tocris, UK. Cannabidiolic acid (CBDA) was 

purchased from Sigma, UK. Cannabigerol (CBG) and cannabidivarin (CBDV) were gifts 

from STI pharmaceuticals, UK. CBD, CBG and CBDV were dissolved in 100% ethanol at 

stock concentrations of 10 mM and CBDA was dissolved in 100% acetonitrile at a stock 

of 10 mM. All stocks were stored at -20°C. Fresh dilutions were prepared daily as 

required. 

Antagonists 

All antagonists were purchased from Tocris, UK and were used at the following 

concentrations AM251 (100 nM), AM630 (100 nM), GW6471 (100 nM), GW9962 (100 

nM), (S)-WAY 100135 (300 nM), capsazepine (1 µM), O1918 (1 µM), CID16020046 (1 

µM), SB366791 (1 µM) (Hind et al., 2016). All antagonists except for (S)-WAY 100135 

were dissolved in dimethyl sulfoxide (DMSO), (S)-WAY 100135 was dissolved in 

deionised water. All antagonists were prepared as stock solutions of 10 mM and stored 

at -20°C. Dilutions were prepared fresh as required. 

Microplate spectrophotometer 

A microplate spectrophotometer (Thermo Scientific, UK) with SkanIt Software was 

used to colorimetrically measure optical density to determine protein concentration. 

illuminating samples and measure the light intensity returned relative to its specific 

wavelength. A standard curve was created using samples at known protein 

concentrations. Samples of unknown protein concentrations were determined using 

the equation of the line created by the standard curve, unknowns were interpolated 

from the standard curve using Prism software (GraphPad, USA).  
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Bicinchoninic acid (BCA) assay  

A bicinchoninic acid (BCA) assay was performed on cell lysates to quantify the amount 

of protein present. This was to enable normalisation of data from multiplex and ELISA 

assays to compensate for any cell variation between wells. An 8-point standard curve 

was constructed using samples of known concentrations of BSA protein (0-2 mg/mL). 

10 µL of sample or standard was pipetted into a clear, flat bottomed 96 well plate 

(Griener, UK). A solution of Cu2+ and BCA was prepared at a 1:50 ratio and 100 µL 

added to respective wells. This was incubated for 20 minutes at 37°C and for a further 

10 mins at room temperature before reading absorbance at 562 nm using VarioskanTM 

LUX platereader, (Thermofisher, UK) using SkanIt Software. Unknowns were 

interpolated from the 8-point standard curve in µg/mL using Prism Software 

(GraphPad, USA).  

Enzyme-linked immunoassays (ELISA) 

Human DUOset sandwich enzyme-linked immunosorbent assays (ELISAs) were used to 

measure the presence and concentration of secreted cellular proteins and used as per 

the manufacturer’s instructions. The following kits were used over the course of the 

project: vascular cell adhesion molecule-1 (DY809), human intracellular adhesion 

molecule-1 (DY720), interleukin-8 (DY208), monocyte chemoattractant protein-1 

(DY279) and interleukin-6 (DY206).  To assay: clear, flat-bottomed, high-binding 96-

well microplates (Greiner Bio-One, 655061) were incubated with capture antibody (see 

specific kit for details on concentrations used) diluted in 1xPBS overnight at room 

temperature. The next day plates were washed 3x with wash buffer (0.05% TWEEN in 

PBS) and blotted on clean absorbent towels to remove excess liquid. Next, 300 µL of 

blocking solution (1% BSA in PBS) was added to the wells for 1 h at room temperature 

to prevent any non-specific binding of protein to the plate wells. The supplied standard 

was reconstituted and diluted, then an 8-point standard curve was constructed by 

serial dilution. Quality controls were prepared at low and high concentrations based on 

the standard curve. The plates were washed again, 3x with wash buffer and after the 
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third wash plates were blotted on absorbent towels. 100 µL of standard, QC or 

samples was pipetted into the plate and incubated for 2 h at room temperature to 

allow the protein of interest to bind to the capture antibody coated on the plate 

bottom. After this incubation step plates were washed 3x again with wash buffer and 

blotted on absorbent paper, then a biotinylated secondary antibody solution (1% BSA 

in PBS, see specific kit for concentration details) was added to the wells and incubated 

for 1 h at room temperature. Plates were washed with wash buffer and blotted, and 

horseradish peroxidase (HRP; prepared in 1% BSA in 1X PBS) was added to the wells 

and plates were incubated at room temperature for 20 minutes. For this step and the 

last step plates were wrapped in foil as these steps are light sensitive. Following a final 

wash with wash buffer and blotting of the plates, a colour forming solution (which 

consisted of mixing equal amounts of colour reagent A (H2O2) and reagent B (3,3’,5,5’-

tetramethylbenzidine, TMB) was added to the plates and incubated at room 

temperature for a further 20 minutes. Stop solution consisting of 2N sulphuric acid 

(H2SO4) was added to each well to end the reaction. Optical density was determined 

using a spectrophotometer at the wavelengths 450 nm and 570 nm. Readings were 

determined by subtracting values at 570 nm from 450 nm. Sample concentrations 

were determined by extrapolating unknowns from the 8-point standard curve 

comprised of known concentrations. A plate wash was conducted between each step 

to prevent any non-specific binding of excess protein and ensure consistency and 

robust data each time the kit was performed. Fresh reagents were prepared every 

three months or as required. In every plate, QCs were included to ensure inter and 

intra batch consistency and were deemed acceptable if their interpolated values were 

within a variance of <15% of the desired concentration. 

Multiplex immunoassays  

Multiplex immunoassays enable the simultaneous detection of more than one analyte 

within an individual sample where fifty distinct coloured beads can be created from 

the combination of two fluorescent dyes which are then pre-coated with capture 

antibody. Luminex xMAP® technology and a MAGPIXTM analysing system from Merck 
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Millipore were used alongside a MILLIPLEX MAP DNA Damage/Genotoxicity Magnetic 

Bead Panel kit (48-621MAG) to detect DNA damage response (DDR) proteins: ataxia-

telangiectasia mutated (ATR-Total), checkpoint kinases 1, 2 (Chk,1 Ser345 and Chk2, 

Thr68), histone family member X (H2AX, Ser139), mouse double minute 2 homolog 

(MDM2, total), cyclin-dependent kinase inhibitor 1 (p21, total), tumour protein (p53, 

Ser15). Internally labelled fluorescent dyes with magnetite encapsulated functional 

polymer outer coating with a surface of carboxyl groups to enable covalent coupling of 

ligands. Samples and the beads were pipetted into the supplied black, clear bottomed 

96 well plates. Plates were incubated overnight on a plate shaker at a speed in which 

beads were in a constant motion but avoiding splashing (as per manufacturer’s 

recommendations) and in the absence of light to enable antibody-analyte binding. The 

next day a mixture of specific biotinylated secondary antibodies were added. The 

biotinylated secondary antibodies bind to the analytes of interest, forming an 

antibody-antigen sandwich. Following this, phycoerythrin (PE)-conjugated streptavidin 

was added to bind the biotinylated detection antibodies. Samples were either re-

suspended in sheath fluid or assay buffer depending on manufacturer’s instructions for 

individual kits before reading on the MAGPIXTM analysing system. The system uses two 

distinct light emitting diodes (LEDs): one to classify the bead based on its fluorescence 

and determine the analyte being detected and one to determine level of analyte 

bound by the extent of the PE signal. Depending on the specifications for individual 

kits, mean fluorescent intensity (MFI) data were exported into PRISM software 

(GraphPad, USA) and if required, interpolated from a standard curve of known 

concentrations to determine concentration of unknowns (cytokine panel kits). All data 

were normalised to total protein determined by a BCA assay. 

Cell Viability assay 

A resazurin reduction assay was performed to determine astrocyte viability. 10 µL of 

resesazurin was added directly to cells cultured in 96 well plates and incubated for 4 h 

in the cell culture incubator (37°C, 5% CO2). Viable cells (i.e those that are 
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metabolically active) are able to convert resazurin substrate, which is deep blue in 

colour, to resorufin product which is both pink in colour and fluorescent, see figure 2.1. 

 

 

 

Figure 2.1: Conversion of resazurin to resorufin, this process occurs in mitochondria of metabolically 

active cells and correlates to cell viability. 

 

After a 4 h incubation period, the resorufin product was measured using a microplate 

fluorometer (VarioskanTM LUX, Thermofisher, UK) with filters set to 560 nm excitation 

and 590 nm emission. The accumulation of product is proportional to the number of 

viable cells in each well. 

LDH Assay 

A colorimetric lactate dehydrogenase (LDH) assay was used to evaluate cytotoxicity 

(Abcam, UK). LDH is a stable cytosolic enzyme present in all cell types and if cell 

membrane integrity is compromised (i.e. as a result of damage), LDH is rapidly 

excreted into the extracellular space. Therefore, the LDH quantification is a reliable 

measure of cellular apoptosis and necrosis in cultured cells. Cell culture medium or 

standard was pipetted into a 96 well plate (Griener, UK) and WST substrate mix was 

added, as per manufacturer’s instructions. If LDH is present in the sample NAD is 

reduced to NADH, which then reacts with the WST substrate mix. Optical density of the 
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sample was read at 450 nm using a plate reader (VarioskanTM LUX, Thermofisher, UK) 

every 15 minutes up to 1 h. The yellow colour generated is proportional to the number 

of damaged (lysed) cells and LDH activity was determined by interpolating unknown 

values from a standard curve of known NADH concentrations. 

Transepithelial resistance (TEER) 

Transepithelial resistance (TEER) is a useful, relatively non-invasive technique and is 

used to evaluate barrier integrity of cells grown in a four-cell culture model (REF). The 

tips of STX-3 chopstick electrodes were firstly placed in 70% ethanol for 5 minutes, 

then placed into endothelial cell culture medium to equilibrate for 15 minutes. When 

cells reached full confluency, the four-cell model cell culture plates were removed 

from the cell culture incubator, sterilised with 70% ethanol and placed inside the 

biological safety cabinet. Plate lids were removed, and the electrodes were placed 

either side of the cell layer, ensuring the shorter electrode was placed in the upper 

compartment (apical) and the longer electrode was placed in the lower compartment 

(basolateral). The ohmic resistance of the inserts was determined by applying a current 

to STX-3 chopstick electrodes (which have silver chloride pellets for passing 

current)(Srinivasan et al., 2015).The resistance of the monolayer was then measured 

and calculated according to Ohm’s law using an Epithelial Voltohmmeter (EVOM™, 

World Precision Instruments). A background ‘blank’ well containing medium but no 

cells was used as a control and measured. Each experimental well was measured twice 

and an average of the two readings was calculated. The blank well was subtracted 

from the average reading and multiplied by the surface area (SA) of the insert (1.12). 

An equation summarising this is shown below: 

 

TEER reported in Ohms (Ω.cm2) = ((R1+R2*)/2) x SA**(cm2) 

 

Where * is the measured reading in Ohms (Ω) and **SA is specific to the model of insert 

used in cm2. 
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In order to ensure reproducible TEER measurements, the electrodes were placed in the 

same location in each well for every measurement. Particular care was also taken 

when placing electrodes into each well as to not disturb the cell monolayer on the 

apical surface of the insert, or the coverslip containing neurons on the plate bottom. 

For details on full BBB methodology, refer to Chapter 3 (Stone et al., 2019). 

Propidium Iodide (PI) Staining  

A life/death assay utilising propidium iodide (PI) staining was conducted to determine 

the fraction of dead neurons post OGD. At 72 h post OGD, neurons were washed with 

1X PBS and incubated with a 100 μL/mL solution of PI prepared in PBS for 1-2 minutes 

at room temperature in the absence of light. As PI is a membrane impermeant dye, it is 

excluded from live cells but can bind to double stranded DNA of dead or dying cells by 

intercalating between base pairs. Images were obtained immediately using a Nikon DS-

Fi1 digital camera linked to an upright fluorescence microscope (Nikon Eclipse 50i) with 

a 20x objective. Images were visually assessed to determine proportion of dead cells.  

Statistical Analysis 

Statistical analysis was conducted using GraphPad prism software (USA), versions 7-8. 

Data were tested for normality using the D’Agostino & Pearson omnibus normality test 

to determine whether a non-parametric (non-normal data) or parametric test (normal 

data) were to be applied. In general, when data compared three or more groups, e.g 

vehicle vs various drug concentrations, a one-way analysis of variance (ANOVA) test 

was used. Multiple comparisons were adjusted using Dunnett’s or Sidak’s statistical 

tests. If a data set was looking a response affected by two independent factors, e.g 

TEER measurement and time, then a two-way ANOVA was used and multiple 

comparisons adjusted for using Turkey’s statistical test. Typically, data are presented 

as mean ± standard error of the mean (SEM) of two or three experimental repeats, 

unless stated otherwise. Data were considered significant if p-values were p<0.05. 
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A Novel Transwell Blood Brain
Barrier Model Using Primary
Human Cells
Nicole L. Stone*, Timothy J. England and Saoirse E. O’Sullivan
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Nottingham, United Kingdom

Structural alterations and breakdown of the blood brain barrier (BBB) is often a primary
or secondary consequence of disease, resulting in brain oedema and the transport
of unwanted substances into the brain. It is critical that effective in vitro models
are developed to model the in vivo environment to aid in clinically relevant research,
especially regarding drug screening and permeability studies. Our novel model uses only
primary human cells and includes four of the key cells of the BBB: astrocytes, pericytes,
brain microvascular endothelial cells (HBMEC) and neurons. We show that using a larger
membrane pore size (3.0 µM) there is an improved connection between the endothelial
cells, astrocytes and pericytes. Compared to a two and three cell model, we show
that when neurons are added to HBMECs, astrocytes and pericytes, BBB integrity was
more sensitive to oxygen-glucose deprivation evidenced by increased permeability and
markers of cell damage. Our data also show that a four cell model responds faster
to the barrier tightening effects of glucocorticoid dexamethasone, when compared to
a two cell and three cell model. These data highlight the important role that neurons
play in response to ischaemia, particularly how they contribute to BBB maintenance
and breakdown. We consider that this model is more representative of the interactions
at the neurovascular unit than other transwell models and is a useful method to study
BBB physiology.

Keywords: blood-brain barrier, transwell, in vitro, BBB model, BBB permeability, primary human cells, stroke

INTRODUCTION

The blood brain barrier (BBB) is a unique interface that separates the peripheral blood supply and
neuronal tissue. Structurally, the BBB is comprised of specialized brain microvascular endothelial
cells (HBMECs), perivascular cells (pericytes) and astrocytes (Abbott et al., 2006, 2010). Neurons
and microglia also contribute to the maintenance of the BBB and form what is known as the
neurovascular unit (NVU) (Abbott et al., 2006). Pericytes contribute 22–32% of the cerebral
vasculature and together with vascular smooth muscle cells and endothelial cells they maintain
vascular function (Martini and Bartholomew, 2017). In the CNS, pericytes are present at a higher
ratio to HBMECs in the brain compared to the periphery and recent studies have shown the
extensive role of pericytes in BBB development and maintenance (Kacem et al., 1998; Armulik
et al., 2011; Sweeney et al., 2016). As well as o�ering mechanical support, they also regulate
vessel contractility, endothelial proliferation, blood flow and angiogenesis (Bergers and Song, 2005;
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Dore-Du�y, 2008). Pericytes have also been shown to secrete
angiogenic factors such as vascular endothelial growth factor
(VEGF), that support endothelial cell survival and proliferation
(Darland et al., 2003). In pathologies such as ischaemic stroke,
large gaps can develop between adjacent pericytes, increasing
barrier permeability and vessel leakage. These alterations in
pericyte morphology, coupled with an upregulation in the
expression of adhesion molecules and leukocyte integrin ligands,
contribute to the extravasation of peripheral leukocytes into
the brain following ischaemic insult (Pieper et al., 2013).
Thus, pericytes play a large role in cerebral vascular function
under normal physiological conditions as well as vascular
dysfunction in hypoxia.

Several studies have also highlighted the roles of neurons and
glia in BBB development and maintenance. Neural progenitor
cells present in the ventricular neuroepithelium have been
shown to aid endothelial cell recruitment during early BBB
development, which is largely governed by the Wnt signaling
pathway (Risau et al., 1986). Specifically, Wnt signaling in early
CNS development is responsible for vascular stabilization and
angiogenesis (Liebner et al., 2008). Further to this, early neuronal
signaling has been shown to be essential for the maturation of
the BBB, specifically, tight junction (TJ) organization. A study
carried out using rat microvascular endothelial cells and neuronal
progenitor cells, showed that in the presence of neural progenitor
cells, endothelial cells established regular TJ formation including:
claudin 5, zonula occludens (ZO-1) and occludin (Weidenfeller
et al., 2007). After maturation, maintenance of the BBB and
preservation of brain homeostasis is largely dependent on
adequate perfusion to neuronal tissue and neuronal signaling
to cerebral vessels, a process known as hyperaemia (Attwell
et al., 2010). Studies have shown that neuronal-astrocyte crosstalk
is important for appropriate vessel contractility and blood
flow, depending on metabolic demand (Zonta et al., 2003;
Attwell et al., 2010; Macvicar and Newman, 2015). In cerebral
ischaemia, astrocytes sense elevations in Ca2+ ions and increases
in extracellular glutamate released by neurons and respond
accordingly, secreting a range of vasoactive substances to help
mitigate the e�ects of the blood vessel occlusion (Macvicar and
Newman, 2015). Altogether, interactions between both neural
and vascular cells within the NVU is considered to be paramount
in BBB functionality because together they induce and strengthen
barrier properties; helping to maintain its key features including
low paracellular permeability and functional tightness (Abbott
et al., 2010). Breakdown of the BBB in conditions such as
ischaemic stroke can lead to severe consequences to brain
homeostasis, therefore, modeling these interactions is necessary
to understand the complex signaling networks between these cell
types and how they are influenced in disease states.

To date, a number of BBB models have been developed
ranging from HBMEC monolayers to more sophisticated
spheroid and chip style models, see Table 1. After the successful
isolation of brain endothelial cells, the first, most simplistic
BBB models were developed utilizing HBMECs as a single
monolayer in the abluminal side of transwell inserts, see Table 1
(Borges et al., 1994; Hartz et al., 2010). Later addition of other
BBB cell types (namely astrocytes and pericytes), led to the

development of co-culture transwell systems which exhibited
greater barrier strength, exhibited by higher transepithelial
resistance (TEER) and lower permeability than single HBMEC
models, see Figure 1. More recent transwell systems typically use
three cell types originating from either bovine, porcine or rodent
origin, see Table 1 (Gaillard et al., 2000; Nakagawa et al., 2009;
Thomsen et al., 2015).

Whilst modeling using non-human cells is cheaper and easier
to obtain, they are not comparable to human cells, with many
studies showing key di�erences in morphology and function,
particularly their sensitivity to glutamate and expression of e�ux
transporter proteins (Oberheim et al., 2009; Warren et al., 2009;
Zhang et al., 2016). More complex BBB models are also available,
such as spheroid or microfluidic models and o�er a closer
representation of the in vivo environment. However, these set
ups are di�cult and expensive to assemble (Ruck et al., 2015).
Therefore, there is a need to develop a multicellular transwell
model that incorporates multiple NVU cell types to study their
interactions, particularly the role of neurons and their influence
on barrier strength in both physiological and disease states.
Transwell systems still o�er a distinct advantage in that they are
relatively easy to setup and control, as well as o�ering a range of
endpoints to study. Measuring TEER in these types of models is
commonplace as it provides a reliable, non-invasive quantitative
measure of barrier integrity, enabling repeated measurements
to be taken over the desired time period with minimal damage
to cells (Srinivasan et al., 2015). Further to this, transwell
models enable access to both the apical and basolateral (basal)
compartments for drug application andmedium sampling as well
as being able to visualize cells over the course of the experiment.

Our aim was therefore to create a novel four cell human
BBB model to study changes in permeability post oxygen-glucose
deprivation (OGD) and for use in in vitro pharmacology. We
initially focused on model development, refining a protocol first
outlined by Hind (2014) by optimizing the inserts themselves,
insert coating, cell seeding densities and cell culture timelines.
Finally, we incorporated a method of seeding neurons on plastic
coverslips which were placed on the bottom of 12 well cell culture
plates. Thus, our model maintains the ease of the transwell
setup but utilizes four primary human cells, making it a closer
representation of the human in vivo environment.

MATERIALS AND METHODS

Primary cells (astrocytes, pericytes, HBMECs, and neurons)
and specialized cell culture medium (astrocyte medium,
pericyte medium, endothelial cell medium, and neuronal
medium) were obtained from ScienCell, United States
supplied by Caltag Medsystems, United Kingdom. Poly-L-
lysine and porcine fibronectin were also obtained from ScienCell,
United States supplied by Caltag Medsystems, United Kingdom.
Collagen coated inserts, 3.0 µm, 12 mm were obtained from
Corning, United Kingdom. Plastic coverslips (Thermanox R�

13 mm diameter), Accutase dissociation reagent and glucose
free RPMI medium were obtained from Thermo Fisher
Scientific, United Kingdom.
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TABLE 1 | Different models of the blood brain barrier; their features, advantages, and disadvantages.

Model type Typical components Advantages Limitations Representative of
BBB phenotype

References

Single-cell transwell
systems
(non-co-culture)

A monolayer of HBMECs
cultured in the apical
compartment of the
transwell insert.

Very easy to set up.
Minimal cost.
Low labor intensity.
Useful if wanting to study
endothelial cells alone.

TEER is typically low. Cobblestone appearance of
HBMECs, barrier formation.
Little information on the
impact of additional cell
types.

Borges et al., 1994;

Hartz et al., 2010

Co-culture /multicellular
transwell systems

HBMECs cultured on the apical
side of the transwell insert and
astrocytes and/or pericytes
cultured on the underside of
the transwell insert.

Time and cost effective.
Higher TEER.
Greater barrier stability.

Some models are not
fully in contact.

Closer representation of the
BBB with the addition of
important cell types. Able to
study interactions between
cell types and how they
influence BBB phenotype.

Hind, 2014; Wang
et al., 2015;
Appelt-Menzel
et al., 2017

Spheroid 3D organization of cells typically
using matrigel.
Typically consists of HBMECs
and astrocytes and/or pericytes
with some models containing
neuronal cell types.

3D Cell model.
No scaffold.
Reduced
de-differentiation.

Cannot measure
permeability with
this model.
Expensive and greater
skill required.

Microvessels wrap around
endothelial cells and
provide structural support.
Helps to induce tight
junction proteins. Closely
represents the in vivo set
up with cells in direct
contact with each other.
Applications include:
cancer drug and
neurotoxicity screening.

Cho et al., 2017;
Nzou et al., 2018

Microfluidic systems/3D
chip-style models

3D organization of cells with the
added benefit of a “flow”
system to mimic cerebral blood
flow. Typically consists of
HBMECs and astrocytes and/or
pericytes with some models
containing neuronal cell types.

Advantage of mimicking
sheer stress which is
essential for HBMECs
optimum phenotype.

Difficult to set up and
maintain adequate
flow unless linked to
a computer system.

Useful to assess the impact
of blood flow on cell
development and optimum
phenotype.
Also useful in studying cell
migration and metastatic
progression.

Yeon et al., 2012;
Wang et al., 2017

HBMECs = human brain microvascular endothelial cells, TGF� = transforming growth factor beta, TEER = transepithelial resistance, BBB = blood brain barrier.

FIGURE 1 | Schematic representation of the BBB model development. (A) A co-culture cell model containing HBMECs and astrocytes. (B) HBMECs seeded on the
apical side, astrocytes seeded on the underside of the insert and pericytes seeded on the plate bottom. (C) HBMECs seeded on the apical side of the insert,
pericytes seeded on the underside of the insert and astrocytes seeded on the plate bottom. (D) HBMECs seeded on the apical side of the insert with mixed culture
of astrocytes and pericytes on the underside of the insert. (E) HBMECs seeded on the apical side of the insert with mixed culture of astrocytes and pericytes on the
underside of the insert and neurons seeded on a poly-L-lysine coated coverslip on the plate bottom.
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Cells were maintained in a humidified incubator (37�C,
5% CO2). Astrocytes and pericytes were cultured and used
between passages 4 and 6. Human brain microvascular
endothelial cells (HBMECs) were used between passages 3 and
5 and neurons were used at passage 1. During subculture,
flasks containing HBMECs were coated with 2 µg·cm2 of
fibronectin before reviving or splitting cells as per manufacturers
recommendations. Cells were passaged at 80–90% confluency.
Inserts contained 1.2 mL of medium in the basolateral
compartment and 800 µL in the apical compartment.

STX-3 probes and Ohms meter were obtained from World
Precision Instruments, United Kingdom. Dexamethasone was
obtained from Sigma, United Kingdom and dissolved in DMSO
at a stock concentration of 10 mM and subsequently diluted in
cell culture medium. GasPakTM EZ anaerobe container systems
were obtained from BD, United Kingdom.

Model Validation
Our model was based on an initial co-culture set up established
by Hind (2014) and previous models by Allen and Bayraktutan
(2009). Our model was modified and developed in a number
of preliminary experiments including comparison of insert
pore sizes, insert coating, cell organization and addition of
multiple cell types.

Pore Size, Insert Size and Coating
Initially, pore sizes of Corning, United Kingdom inserts were
compared (0.4 µm vs. 3.0 µm) as well as cell culture plates
(12 well vs. 24 well). This was to determine the best initial setup
that provided the highest and most stable barrier resistance,
as well as giving the best cell contact. During protocol
development, we found addition of pericytes in the smaller 24
well plates yielded poor results and insu�cient TEER, suggesting
inadequate barrier formation. Possibly as a result of inadequate
cellular growth in such a small surface area and environment.
Therefore, 24 well plates were switched back to 12 well plates,
which resulted in substantially higher TEER readings. Following
work carried out by Niego and Medcalf (2013), we also found
that inserts with a 3.0 µm pore size had higher TEER values
than 0.4 µm inserts, suggesting that increased contact between
the cells in the apical and basolateral sides of the insert resulted
in greater barrier strength, see Figure 2A.

Addition of Multiple Cell Types and
Cell Positioning
Despite these improvements on the co-culture model, the
need for additional cell types was critical to create a closer
representation of the in vivo BBB. We established three di�erent
set ups as shown in Figure 1. In one, astrocytes were seeded on
the basolateral side of the inserts and pericytes on the bottom of
the culture dish (Figure 1B), in another pericytes were seeded on
the basolateral of the inserts whilst astrocytes were seeded on the
bottom of the culture dish (Figure 1C) and finally the last set up
involved a mixed culture of astrocytes and pericytes seeded on
the basolateral side of the insert (Figure 1D). In all models tested,
HBMECs were seeded in the apical side of the transwell insert.

FIGURE 2 | Model protocol development (A) measured transepithelial
resistance (TEER) as a marker of barrier tightness comparing a 12 well plate
transwell set up vs. a 24 well plate transwell set up and insert pore size
3.0 µm vs. 0.4 µm. HBMECs seeded on the apical side of the insert,
astrocytes underneath and pericytes on the plate bottom. (B) The
organization of cells was optimized by comparing the TEER generated by a
mixed culture of astrocytes and pericytes, pericytes or astrocytes alone on the
underside of transwell inserts and astrocytes or pericytes on the cell culture
plate bottom. HBMECs were seeded on the apical side of the insert. Data
given as mean ± SEM, n = 4–6 from two experimental repeats. Statistical
analysis conducted using 2-way ANOVA with Turkey’s multiple comparisons
test, ⇤⇤P < 0.01 and ⇤⇤⇤P < 0.001 mixed culture astrocytes and pericytes vs.
pericytes underside the insert and astrocytes on plate bottom. #P < 0.05
mixed culture astrocytes and pericytes vs. astrocytes underside the insert and
pericytes on plate bottom.

The final set up o�ered a closer replication of the organization
held at the in vivo BBB, as cells would be in direct contact allowing
them to exchange vital growth factors required for cellular growth
and development. We found that mixed culture of pericytes
and astrocytes exhibited significantly higher TEER values when
compared to the set-up with pericytes seeded on the plate bottom
and astrocytes underneath the insert or astrocytes on the plate
bottom and pericytes underneath the insert on days 3 and 4,
P < 0.05 and P < 0.01, respectively (Figure 2B). Furthermore,
this set up was also considered the most stable, as shown by
steadier TEER readings and was altogether more physiologically
relevant. This set up was therefore taken forward in subsequent
four cell protocol development.

To test the viability of adding neurons to the model,
we originally seeded neurons on the bottom of the 12 well
plate in which the inserts were hung. This, however, was
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not feasible as the TEER probes touched the bottom of
the plate causing unwanted damage to the cells. Therefore,
we decided to utilize coverslips that could be positioned
on the plate bottom, but not take up the entirety of the
well, allowing the probe to sit where the cells were not
present. After testing both poly-L-lysine coated glass and plastic
coverslips, we found that plastic coverslips coated were the most
e�ective in neuronal adhesion and this method was used in
the final model.

Four Cell Method Overview
After optimization, our four cell BBB model consisted of four
major NVU cell types arranged in a transwell permeability set-up
(see Figure 1E). The assembly of this involves seeding di�erent
cell types at di�erent times on the apical and basolateral sides
of the transwell insert. During this time, neurons are seeded
on plastic coverslips placed on the bottom of a separate 12
well plate to develop neurite before putting both parts of the
model together on the final day of model establishment. Cell
culture medium in both compartments was replaced every other
day and the final set up was left to equilibrate for 2 days
before commencing experiments. Greater than 85% of inserts are
feasible for use in experiments and the model remained viable
for up to 5 days.

Insert Coating and Astrocyte Seeding

On day one, the basolateral side of transwell inserts were
coated with poly-L-Lysine and astrocytes were seeded on the
basolateral side of the inserts, see Figure 3. Briefly, 3.0 µm,
12 mm collagen coated inserts (Corning, United Kingdom) were
carefully removed from outer packaging and placed into 12 well
cell culture plates using sterile forceps. A solution of poly-L-
Lysine (2 µg/cm2) was prepared in sterile water, homogenously
mixed and carefully pipetted using a Pasteur pipette to just cover
the basolateral of the insert, see Figures 4A,i. Plates containing
inserts were then returned to the incubator, 37�C, 5% CO2
for 1 h as per supplier recommendations. After 1 h, plates
were removed from the incubator and washed twice with sterile
water to remove any residual poly-L-lysine. All remaining liquid
was removed by careful aspiration. Transwell inserts were then
flipped inside the plate and the lid removed (Figure 4B). On
the newly coated inserts, 100 µL of astrocyte cell suspension
in astrocyte medium (3.13 ⇥ 105 cells) was pipetted quickly

onto the basolateral side of the transwell and the lid carefully
replaced (see Figures 4C,ii). Plates were returned to the cell
culture incubator for 2–3 h for the cells to adhere. After this
time, transwell inserts were reverted and any excess medium was
removed by aspiration. Medium was topped up in the apical
and basolateral compartments, see Figure 4iii. Again, plates were
returned to the incubator.

Pericyte Seeding

On day 2, plates were removed from the incubator and the
astrocyte medium was removed with care so as to not disturb the
layer of cells on the basolateral side of the insert. Inserts were then
inverted again and 100 µL of 6.25 ⇥ 104 pericyte cell suspension
was added to the astrocyte cell layer on the basolateral side of the
transwell inserts, giving an approximate ratio of 5:1 astrocytes to
pericytes (Pardridge, 1999). Plate lids were quickly replaced and
returned to the incubator for 2–3 h. After this time, transwell
inserts were reverted and any excess medium was removed by
aspiration and a mixture of astrocyte and pericyte medium (1:1)
was added to the apical and basolateral compartments.

HBMEC Seeding

Once astrocytes and pericytes reached 90% confluency (approxi-
mately day 4 from model initiation, see Figure 3), the
astrocyte:pericyte (1:1) medium in the apical compartment was
removed and 100 µL of HBMEC cell suspension (7.5 ⇥ 104)
in HBMEC medium was added to the apical compartment of
transwell inserts and cells were left to adhere for a minimum of
5 h, then medium was topped up to 700 µL with endothelial cell
medium and plates returned to the incubator.

Neuronal Seeding

On the same day as HBMEC seeding, plastic coverslips (13 mm
diameter) were coated with poly-L-lysine and placed in the
cell culture incubator for a minimum of 1 h, as per supplier
recommendations. Plates containing coverslips were carefully
removed from the incubator and coverslips were washed twice
with sterile water and left to air dry in the cell culture hood.
Following this, cryopreserved neurons were revived into 3 mL
of neuronal medium (to give a total cell suspension of 4 mL)
and 100 µL of cell suspension was added to each coverslip (thus
seeded at a density of approximately 2.5 ⇥ 104 cells per cm2

within the optimum range according to the manufacturer’s

FIGURE 3 | Timeline showing stages of model establishment. On day 1, inserts were coated and astrocyte seeded on the basolateral side of transwell inserts and
on day 3 pericytes were seeded on the basolateral side of inserts to form a mixed culture. On day 6 HBMECs were seeded on the apical side of inserts and neurons
were seeded on coated plastic coverslips in a separate 12 well plate. On day 10/11, inserts are carefully lifted out of their current plate and placed into the second
12 well plate containing the neurons seeded on coverslips. After 2 days, TEER measurements are taken to ensure adequate barrier formation. ⇤ In our lab OGD
experiments were commenced at this point and were viable for 4–5 days.
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FIGURE 4 | Model setup (A–D) and (i–v). (A/i) Inserts are placed into 12 well plate, coated with poly-L-lysine and washed, ensuring all of the liquid is removed.
(B/ii) Inserts are carefully flipped inside the plate and the plate removed. 100 µL of relevant cell suspension is carefully placed on the underside of the insert.
(C/ii) The bottom of the cell culture plate acts as a “lid” and is replaced as quickly as possible, plates are then returned to the incubator for the cells to adhere for
3–4 h. (iv) In a separate 12 well plate, coverslips are placed in the bottom of the culture dish, coated with poly-L-lysine and seeded with neuronal cell suspension.
(v) Once all cells have been seeded on transwells, inserts are carefully transferred to plates containing neurons on coverslips.
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recommendations) (Figures 4D,iv). Medium was topped up
after 2 h and half of the medium replaced every 2–3 days.
After light microscope observation, neurons began showing
extensive neurite growth at approximately day 5. At this point
HBMECs will have almost formed a confluent monolayer above
the astrocytes and pericytes. Transwells were then carefully lifted
out of their current 12 well plate using sterile forceps and
placed into the 12 well plate containing the neuronal coverslips.
Fresh HBMEC medium was applied to the apical compartment
and a mix of pericyte, astrocyte and neuronal medium (1:1:2,
respectively) was added to the basolateral compartment. This was
to maintain a low concentration of fetal bovine serum optimum
for neuronal maintenance, whilst also preserving growth of
astrocytes and pericytes. As all cells were confluent and the
barrier was adequately formed, conditions were able to be
maintained in the di�erent compartments.

Oxygen-Glucose Deprivation
(OGD) Protocol
An oxygen-glucose deprivation (OGD) protocol was used
to increase barrier permeability, simulating the e�ects of
ischaemic stroke in vitro (Hind et al., 2015, 2016). Normal
cell culture medium was removed from transwell inserts
and replaced with glucose free RPMI medium (Thermo
Fisher Scientific, United Kingdom) and placed in a 0% O2
environment (GasPakTM anaerobe pouch Beckton Dickinson,
Oxford, United Kingdom) for 20 min to ensure anaerobic
conditions for a further 4 h. There was no initial pre-
conditioning period. Reperfusion was initiated by removing
plates from the anaerobe pouch and returning cells to their
normal medium (HBMEC medium in the apical compartment
and in the basolateral compartment a mix of pericyte, astrocyte
and neuronal medium, 1:1:2, respectively). TEER was measured
at baseline (0 h), immediately post OGD (4 h), 24, 48, and 72 h.

Evaluation of Barrier Integrity

Transepithelial resistance (TEER) was measured prior to
commencing OGD experiments to ensure model barrier
integrity; inserts should exhibit a TEER value of �45 �/cm2

(Figure 4v). Light microscope observation was also carried out
to ensure cell confluency and successful neurite formation. To
ensure consistency, TEER measures should always be read at
least 24 h after a medium change. Briefly, STX3 electrodes were
sterilized by placing the tips of the probe in 70% ethanol, and
then equilibrated for 15 min in endothelial cell culture medium
at room temperature. The STX probe was then connected
to an EVOM2 meter (Both World Precision Instruments,
United Kingdom) and inserted into the transwell insert. The
electrode has two parts that are uneven in length, the longer part
of the electrode was placed so it gently touched the bottom of
the cell culture plate, whilst the shorter electrode rested slightly
above the insert dish, not quite making contact the HBMEC
cell layer. Care should be taken to avoid disrupting the neurons
on the bottom of the cell plate, see technical comments and
limitations. As TEER values are very susceptible to change, it is
important to keep the electrode upright and avoid tilting as
this can cause fluctuation in the TEER values. A background

reading for an insert with just cell culture medium was taken
and subtracted from each reading (readings were repeated twice
to ensure reproducibility), this was then multiplied by 1.12 to
address the cell culture insert area (cm2) (Hind, 2014).

Dexamethasone Protocol
Dexamethasone is a synthetic glucocorticoid and several groups
have shown that is able to artificially improve barrier strength
(Shi and Zheng, 2005; Pyrgos et al., 2010; Hind, 2014). Therefore,
we used dexamethasone as a positive control to investigate any
potential di�erence in the response of the three versus four
cell model to a drug application. Baseline TEER readings were
recorded and medium replaced, then dexamethasone was added
to the apical compartment of the transwell insert, giving a final
concentration of 1 µM. TEER was measured at 2, 4, and 24 h.

Data Analysis
Data analysis was carried out using GraphPad prism software
(La Jolla, CA, United States). Data are presented as mean ± SEM
and analyzed using two-way ANOVA, followed by Sidak’s
or Turkey’s multiple comparisons test. ⇤P < 0.05 was
considered significant.

Technical Comments and Limitations
A critical step for setting up the four cellular model is timing
and the revival and seeding of human neurons. Addition of the
cells at incorrect timings will result in the model not working
as e�ectively and TEER values will be lower than anticipated.
We have therefore outlined a timeline for setting the model up
(Figure 2), steps 4 and 5 can vary depending on the time taken for
barrier formation to take place and for neurons to form neurite.
Improper technique when seeding neurons on the coverslips will
result in a lack of uniformity and inadequate neurite formation.
Ensure coverslips are adequately air dried and neuronal cell
suspension is carefully but adequately mixed during the revival
and seeding process. Avoid removing neurons from the incubator
for long periods.

When taking TEER values, ensure that the larger part of
the STX probe does not touch the neurons cultured on the
coverslip. This is especially important if multiple readings are
beingmade (recommended). Utilization of neurons after primary
experiments have been completed is also possible. Staining can
be done on the coverslips using a variety of techniques including
propidium iodide (PI) and DAPI staining, neurons can be lysed
and intracellular assays can be performed.

RESULTS

Protocol Development
During BBB model development various set ups were compared
including; insert pore size, plate size, and cell organization.
Figure 2 highlights stages in protocol development and their
respective TEER values, prior to the addition of neurons into
the model. Figure 2A shows that a larger pore size (3.0 µm)
exhibited greater barrier integrity (as shown by greater TEER
readings) than the smaller pore size (0.4 µm). Furthermore, the

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 June 2019 | Volume 13 | Article 230

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00230 June 4, 2019 Time: 18:4 # 8

Stone et al. Transwell Blood Brain Barrier Model

12 well inserts displayed considerably greater TEER readings
than the 24 well inserts. Continuing model development using
12 3.0 µm inserts, Figure 2B compares three di�erent cell
culture set-ups days after model establishment. On days three
and four, the inserts containing a mixed culture of astrocytes and
pericytes displayed significantly higher TEER readings than set-
ups containing astrocytes or pericytes seeded on the underside
of the inserts or the cell culture plate bottom, P < 0.05 and
P < 0.01, respectively.

OGD Model Simulation
To assess the e�ect of having di�erent cells present, changes
in TEER from models D and E shown in Figure 1, were
compared following an OGD protocol. Figure 5A highlights
the di�erent responses of a three cell and four cell model in
response to a 4 h OGD protocol, followed by a reperfusion
period. The three-cell mode exhibited approximately a 30%
drop in TEER from baseline after 4 h OGD. This contrasts
to the four-cell model which exhibited a 50% drop in TEER
post OGD and was significantly di�erent to the three-cell
model P < 0.05. After OGD, when reperfusion was initiated,
TEER was able to return to baseline in the three-cell model,
however, BBB permeability only marginally recovered by 20%
in the four-cell model. This was significantly di�erent at 24 h
(P < 0.01) but not 48 or 72 h. Images 5B and C show

FIGURE 5 | (A) Effect of a 4 h oxygen-glucose deprivation (OGD) protocol on
transepithelial resistance (TEER) as a marker of barrier tightness in a three cell
model (HBMECs, astrocytes, and pericytes) and a four cell model (HBMECs,
astrocytes, pericytes, and neurons). Neuronal images taken from the four cell
model (B) before OGD 40⇥ and (C) neuronal images immediately post OGD
40⇥. Data given as mean ± SEM, n = 3–6 from two experimental repeats,
calculated as a % change from baseline TEER readings. Statistical analysis
was conducted using 2-way ANOVA with Sidak’s multiple comparisons test,
⇤P < 0.05 and ⇤⇤P < 0.01 was considered significant.

light microscope images of neurons in the four-cell model
before and immediately after the OGD protocol, respectively.
In Figure 5C neuronal clumping is clearly visible along with
apparent neurite fragmentation compared to Figure 5B showing
healthy neurons prior to OGD.

Dexamethasone Application
Dexamethasone increased barrier tightness in all three models, as
shown by increases in TEER and exhibiting overall significance
as a result of drug interaction in the three cell and four cell
model, P < 0.05. The two-cell model was the most unstable
out of the three models, as shown by greater fluctuations and
variability in TEER measurements (Figure 6A). The three-cell
model was considerably more stable but di�erences in TEER
between dexamethasone treated and control were only observed
after 2 h (Figure 6B). The four-cell model was the fastest to
exhibit an increase in barrier tightness (i.e., increased TEER)
as a result of dexamethasone application (Figure 6C) and
this reached significance compared to the vehicle control at 2
and 24 h (P < 0.05).

DISCUSSION

The BBB can be compromised in a range of di�erent conditions,
including but not limited to ischaemic stroke, Alzheimer’s
disease, cancer, and multiple sclerosis (MS). Research into
these disorders that a�ect the BBB is plagued by translational
di�culty, resulting in many potential compounds and/or
therapies failing to surpass phase I/II clinical trials. This is
at least partly due to a lack of suitable in vitro models that
can predict drug e�ectiveness pre-clinically. Most, if not all,
current BBB models exhibit “pitfalls” whether that be cost,
time or resources. Models that o�er the closest representation
of the BBB are often complex and expensive to replicate,
adding to the cost of the drug screening process. To help
improve the translatability of in vitro data, we developed a
transwell style model that incorporates four primary human
cell types, representing the NVU more than other BBB models
currently available. We found that our novel four-cell model
was superior in modeling ischaemic stroke and drug application
in vitro compared to a three-cell and a two-cell model as shown
through changes in TEER as a measure of barrier integrity and
dexamethasone application.

Implications for Drug Testing
The e�ect of dexamethasone was assessed in three transwell
models; a two cell, three cell and four cell model. Greater
instability in barrier strength and a slower response was
exhibited by the two-cell model after dexamethasone application.
This could also suggest that models containing just two
cell types, in this case astrocytes and HBMECs, would also
react di�erently to other drug applications and are therefore
are not su�cient to truly model drug interactions at the
BBB. Whilst the three-cell model shared the same trend in
increasing barrier strength, it exhibited more stable TEER
values compared to the two-cell model and dexamethasone
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FIGURE 6 | The effect of dexamethasone on transepithelial resistance (TEER)
as a measure of barrier tightness in (A) a two cell (astrocytes and HBMECs),
(B) three cell (astrocytes, HBMECs, and pericytes), and (C) four cell model
(astrocytes, HBMECs, pericytes, and neurons). Dexamethasone (1 µM) was
added to the luminal side and used as positive control that is known to
decrease permeability, thus increase TEER. Data represented as
mean ± SEM, n = 4 from two experimental repeats. Statistical analysis was
conducted using 2-way ANOVA with Sidak’s multiple comparisons test,
⇤P < 0.05 was considered significant.

treated wells were overall significantly di�erent to the vehicle
control. Also, by introducing pericytes (generating a three
cell model) there was a large increase in baseline TEER
from 30 to 40 �, again highlighting the role of pericytes
in strengthening vascular stability at the BBB and the need
for their presence in BBB models (Bergers and Song, 2005;
Dohgu et al., 2005; Nakagawa et al., 2007; Ferland-McCollough
et al., 2017) Interestingly, the four-cell model exhibited a
significant increase in barrier tightness (as shown by an increase
in TEER) compared to the vehicle control at just 2 h after
dexamethasone application. Although neurons in this model
do not directly interact with the BBB, neurons have been
shown to secrete a number of vasoactive substances, including

VEGF, which influence barrier forming properties and early
angiogenesis (Engelhardt, 2003; Eichmann and Thomas, 2013).
These comparison data highlight the variations in data obtained
from models containing di�erent cell types and the impact this
can have on drug screening. This stresses the importance of
having a more representative BBB model containing additional
cells present at the NVU.

Implications for Protocol Testing
Currently there are a wide range of in vitro BBB models
available, but despite promising developments in modeling
the BBB, there are still gaps in model design, primarily the
inability to include all cell types present in the NVU. Whilst
most transwell systems incorporate astrocytes and HBMECs,
only more recent studies have introduced pericytes or neurons
into these model designs. To gain a better understanding
of how these cells contribute to the breakdown of the BBB
in ischaemic conditions, we subjected our three cell and
four cell models to an OGD protocol and measured TEER
overtime to assess changes in barrier integrity. Interestingly,
we found that with the presence of neurons our model
exhibited a larger decrease in TEER compared to the three-
cell model, which only contained astrocytes, pericytes and
HBMECs. Similarly, whilst the three-cell model was able to
recover 24 h post OGD the four-cell model only marginally
recovered by approximately 20%, highlighting the role of
and sensitivity of neurons in the level of damage ensued by
the OGD protocol. Altogether, we have shown that with the
addition of neurons our model became more vulnerable to
damage; exhibiting a greater loss of barrier strength shown by
a decrease in TEER, supporting previous work which showed
that ischaemic neurons disrupt the endothelial barrier through
increasing VEGF secretion (Li et al., 2014). Thus, omitting
neurons from a BBB modeling stroke would underestimate the
damage caused and contribution of neurons to the breakdown of
the BBB post ischaemia.

Limitations and Future Development
Although our model now includes four cell present in the
NVU, our model does not incorporate flow which is an
important feature to maintain the BBB phenotype in vitro.
Studies have shown that sheer stress is critical to increase
cell longevity and influence cell phenotype, regulate BBB
transport, preventing de-di�erentiation (Desai et al., 2002;
Chiu et al., 2005; Partyka et al., 2017). Culturing HBMECs
under physiological shear stress, is particularly important in
a ischaemic stroke setting because there is an interruption in
blood flow. Microfluidic systems that mimic physiological flow
have the advantage in that they can simulate continuous flow
improving translation to the environment (Partyka et al., 2017;
Wang et al., 2017).

Equally, there is increasing evidence of the role of microglial
cells in BBB breakdown. These resident brain immune cells
have been shown to release pro-inflammatory mediators that
increase barrier permeability and reduce levels of certain TJs,
thus playing a key role in BBB breakdown in pathological states
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(da Fonseca et al., 2014; Shigemoto-Mogami et al., 2018)
Therefore, future work should assess whether additional cells and
shear stress can be incorporated into transwell style models.

CONCLUSION

The overall function of the NVU is the perfusion of brain tissue
to supply neurons with essential nutrients and the ability of
neurons to regulate this blood flow. Glia, namely astrocytes, act
as mediators between the vascular and neural compartments (Lo
et al., 2015). Pericytes provide an extra level of communication
between the endothelia and astrocytes as well as serving a
prominent immune function (Darland et al., 2003; Armulik
et al., 2011; Kovac et al., 2011). During cerebral ischaemia, these
complex interactions are disrupted, and homeostasis is lost as a
consequence of functional, morphological andmetabolic changes
within the NVU (Lo et al., 2015). It is important to model how
these cells interact in both normoxic and ischaemic conditions to
study the pathophysiology of ischaemic stroke. Finally, transwell
systems o�er noticeable advantages over the more complex
models as they maintain the ease simpler cell culture set up

and often use minimal resources. We believe our model o�ers a
closer representation of the BBB, whilst maintaining the ease of a
transwell setup.
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3.1 Four-cell model method development and supplemental information 

During model development there were several challenges that required many 

troubleshooting experiments and method validation. Cells were required to be 

passaged on specific days to seed cells onto the inserts and the model itself could only 

be used for a maximum of five days. This posed several logistical issues, and some 

cultures were lost during the process of finding optimal days to passage for model set-

up. Overall, the model development was very challenging, and it is important to 

appreciate it has limited applications given the expense of using primary human 

neurons, complex assembly, and the finite lifespan of the model in culture. The model 

is aimed for use only after preliminary screening of compounds has been completed 

and lead compounds have been identified. 

 

Cell morphology was difficult to assess due to the material and coating of the transwell 

inserts and staining of individual cell types on the inserts was not possible due to the 

porous nature of the inserts. Whilst the increase in TEER is suggestive of barrier 

development, interactions between individual cell types were not assessed and could 

merely have been endothelial cells blocking the transwell pores. In vitro OGD protocols 

to model stroke have been adapted and used by numerous research groups because it 

recapitulates many of the cellular pathways associated with ischaemia-reperfusion 

injury (Holloway and Gavins, 2016). Specifically, the OGD protocol used in this study 

was based on previous work conducted by Hind and colleagues (Hind et al., 2015, 

2016) and was found to successfully increase barrier permeability, as well as increase 

levels of damage and inflammatory markers. It is worth noting that the OGD protocol 

oxygen conditions are classed as ‘anoxia’ not ‘hypoxia’, effectively modelling a ‘worst-

case’ scenario. Therefore, it would be useful for future studies to perform experiments 

with varying levels of hypoxia, for example between 0.5 and 2% oxygen, to model the 

in vivo environment more closely and to ascertain whether different levels of hypoxia 

affect the degree of BBB permeability. Despite these caveats, the model enabled 
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assessment barrier permeability under both physiological and pathophysiological 

conditions and could be used for a range of applications in drug discovery. 
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2. A Systematic Review of Minor Phytocannabinoids with 

Promising Neuroprotective Potential 

 

The following chapter is presented in its final manuscript format and is published in 

The British Journal of Pharmacology (Stone et al., 2020). 

 

Statement of author contributions: NS contributed significantly to the concept and 

design of the systematic review with help from SOS. NS performed the primary search 

and data extraction; XM conducted the secondary search and reviewed the extracted 

data. NS prepared and formatted figures and drafted the manuscript with input by all 

authors. 

 

Citation: STONE, NL, MURPHY, AJ, ENGLAND, TJ, O'SULLIVAN, SE. A systematic review 

of minor phytocannabinoids with promising neuroprotective potential. Br J Pharmacol. 

2020; 177: 4330– 4352. https://doi.org/10.1111/bph.15185 
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Embase and PubMed were systematically searched for articles addressing

the neuroprotective properties of phytocannabinoids, apart from cannabidiol

and Δ9-tetrahydrocannabinol, including Δ9-tetrahydrocannabinolic acid,

Δ9-tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, cannabichromene,

cannabichromenic acid, cannabichromevarin, cannabigerol, cannabigerolic acid,

cannabigerivarin, cannabigerovarinic acid, cannabichromevarinic acid, can-

nabidivarinic acid, and cannabinol. Out of 2,341 studies, 31 articles met inclusion

criteria. Cannabigerol (range 5 to 20 mg!kg−1) and cannabidivarin (range 0.2 to

400 mg!kg−1) displayed efficacy in models of Huntington's disease and epilepsy. Can-

nabichromene (10–75 mg!kg−1), Δ9-tetrahydrocannabinolic acid (20 mg!kg−1), and
tetrahydrocannabivarin (range 0.025–2.5 mg!kg−1) showed promise in models of

seizure and hypomobility, Huntington's and Parkinson's disease. Limited mechanistic

data showed cannabigerol, its derivatives VCE.003 and VCE.003.2, and

Δ9-tetrahydrocannabinolic acid mediated some of their effects through PPAR-γ, but
no other receptors were probed. Further studies with these phytocannabinoids, and

their combinations, are warranted across a range of neurodegenerative disorders.

K E YWORD S

Alzheimer's, epilepsy, Huntington's, neurodegeneration, neuroprotection, phytocannabinoids

1 | INTRODUCTION

According to the World Health Organization (WHO), neurodegenera-

tive diseases will be the second most prevalent cause of death by

2040 (Gammon, 2014). The cellular mechanisms of these diseases

typically overlap with neuronal dysfunction and a common thread is

neuronal cell death, regardless of definitive clinical presentations.

Typically, neurodegenerative diseases are categorized as amyloidoses,

which includes Alzheimer's disease and British familial dementia; syn-

ucleinopathies, which includes Lewy body disorders such as

Parkinson's; and proteinopathies, which includes amyotrophic lateral

sclerosis and tauopathies (Kovac, 2018). Other common neurological

disorders include epilepsy and stroke, characterized by recurring,

unprovoked seizures and vascular pathology, respectively. Recently,

stroke was reclassified as a neurological disease by the International

Classification of Disease (ICD) 11, highlighting that while strokes pre-

dominantly have a vascular origin, the neurological consequences are

often severe (Shakir, 2018).

Current treatments for neurodegenerative and neurological con-

ditions are often limited and usually rely on managing symptoms

Abbreviations: 3-NP, 3-nitropropionic acid; 6-OHDA, 6-hydroxydopamine; Δ9-THCA, Δ9-

tetrahydrocannabinolic acid; Δ9-THCV, Δ9-tetrahydrocannabivarin; BBB, blood–brain barrier;

CBC, cannabichromene; CBCA, cannabichromenic acid; CBCV, cannabichromevarin; CBDA,

cannabidiolic acid; CBDV, cannabidivarin; CBDVA, cannabidivarinic acid; CBG, cannabigerol;

CBGA, cannabigerolic acid; CBGV, cannabigerivarin; CBGVA, cannabigerovarinic acid; CBM,

cannabis-based medicine; CBN, cannabinol; CNCVA, cannabichromevarinic acid; MS, multiple

sclerosis; RTT, Rett syndrome; TBZ, tetrabenazine; VMAT, vesicular monoamine transporter.
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rather than having a significant effect on delaying disease progression

(Kiaei, 2013). For example, Huntington disease is managed with

tetrabenazine (TBZ) 75–200 mg per day to alleviate chorea (involun-

tary movement), but because it acts as a vesicular monoamine

transporter (VMAT) inhibitor, interfering with both 5-HT and

dopamine degradation, patients can develop neuropsychiatric symp-

toms along with other side effects (Hayden, Leavitt, Yasothan, &

Kirkpatrick, 2009; Kaur, Kumar, Jamwal, Deshmukh, &

Gauttam, 2016; Wyant, Ridder, & Dayalu, 2017). Other first-line treat-

ments, for example, L-Dopa in Parkinson's disease, often cause side

effects and do not delay disease progression. Finally, cholinesterase

inhibitors such as donepezil are only minimally effective in improving

cognition for the treatment of Alzheimer's disease. In light of this,

there is clearly an urgent need to develop new therapies with more

tolerable side effect profiles to combat these debilitating conditions

and increase the quality of life of the ageing population.

Over 120 different phytocannabinoids have been isolated

from Cannabis sativa (ElSohly & Gul, 2015). Of these,

Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the

most abundant and widely studied. Δ9-THC is responsible for the

psychoactive effects of cannabis, which are mediated through

the cannabinoid CB1 receptor (Pertwee, 2008). Δ9-THC also inter-

acts with other targets including transient receptor potential (TRP)

channels, the orphan G-protein receptor, GPR55, and peroxisome

proliferator-activated receptors (PPARs; Pertwee & Cascio, 2015).

CBD has also been shown to modulate a wide range of pharmaco-

logical targets including 5-HT1A receptors, PPARγ and TRPV1

channels, but has no psychotropic effects because it does not acti-

vate central CB1 receptors (see Ibeas Bih et al., 2015, and Russo &

Marcu, 2017). Interaction with these targets has given CBD status

as a neuroprotectant, anti-inflammatory agent and antioxidant

(Fernandez-Ruiz et al., 2013; Maroon & Bost, 2018). These

features, along with its favourable safety profile in humans (Millar

et al., 2019; World Health Organization, 2017) has made CBD, in

many respects, a more desirable drug candidate than Δ9-THC. CBD

has shown promise in several animal models of neurodegeneration

as well as clinical trials for Parkinson's, Alzheimer's and

amyotrophic lateral sclerosis (Iuvone, Esposito, de Filippis,

Scuderi, & Steardo, 2009). Furthermore, a fixed combination of

CBD and Δ9-THC (1:1) is currently licenced by GW Pharmaceuti-

cals under the brand name Sativex® to treat pain and spasticity

associated with multiple sclerosis (MS), and Epidiolex® (pure CBD)

is licensed to treat Lennox–Gastaut syndrome and Dravet

syndrome, which are severe forms of childhood epilepsy. Other

cannabis-based medicines (CBMs) are also under development. GW

Pharmaceuticals has four compounds (structures are not disclosed)

in the pipeline for neurological conditions including glioblastoma,

schizophrenia and neonatal hypoxic-ischaemic encephalopathy

(GW Pharmaceuticals, 2019).

Phytocannabinoids are highly unique compounds, they are pro-

miscuous in action, modulating a range of pharmacological targets as

well as exhibiting high antioxidant capability due to their phenolic

structures and the presence of hydroxyl groups (Borges et al., 2013;

Hampson, Grimaldi, Axelrod, & Wink, 1998; Yamaori, Ebisawa,

Okushima, Yamamoto, & Watanabe, 2011). These features, along with

their lipophilicity and ability to act as anti-inflammatory agents, makes

them desirable therapeutic candidates for the treatment of CNS disor-

ders, as they can effectively cross the blood–brain barrier (BBB), mod-

ulate the immune response, and target the many aspects of

neurodegeneration (Deiana et al., 2012). These characteristics have

been well established for Δ9-THC and CBD but are less well known

for some of the minor constituents of the plant. Thus, in order to

understand the full therapeutic potential of Cannabis sativa, the phar-

macology of the lesser-known components of the plant should be elu-

cidated (Turner, Williams, Iversen, & Whalley, 2017). Given the wide-

ranging neuroprotective effects of Δ9-THC and CBD already

established, it is not unreasonable to suggest other phytocannabinoids

may exhibit similar or more potent neuroprotective properties. There-

fore, the aim of this systematic review was to collate all available data

on the neuroprotective effects of Δ9-tetrahydrocannabinolic acid

(Δ9-THCA), Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabidiolic acid

(CBDA), cannabidivarin (CBDV), cannabichromene (CBC),

cannabichromenic acid (CBCA), cannabichromevarin (CBCV),

cannabigerol (CBG), cannabigerolic acid (CBGA), cannabigerivarin

(CBGV), cannabigerovarinic acid (CBGVA), cannabichromevarinic acid

(CBCVA), cannabidivarinic acid (CBDVA), and cannabinol (CBN).

These phytocannabinoids were selected based on their abundance in

the plant, ease of synthesis, efficacy in other fields (e.g., as anticancer

agents or treatments for inflammatory bowel disease), and similarities

in their structure to CBD and Δ9-THC (which have already shown

promise as a neuroprotectants and displayed safety in humans) and

are therefore more likely to have neuroprotective potential and

exhibit human translatability.

2 | METHODS

2.1 | Data sources and search strategy

An electronic search was conducted using the search engines PubMed

and Embase from its inception to June 2019. This was carried out in

accordance with the PRISMA (Preferred Reporting Items for System-

atic Reviews and Meta-Analyses) guidelines (Moher, Liberati, &

Tetzlaff, 2009; Shamseer et al., 2015; Tóth, Schumacher, Castro, &

Perkins, 2010) Search terms included Δ9-tetrahydrocannabinolic acid,

Δ9-tetrahydrocannabivarin, cannabidiolic acid, cannabidivarin, can-

nabichromene, cannabichromenic acid, cannabichromevarin, can-

nabigerol, cannabigerolic acid, cannabigerivarin, cannabigerovarinic

acid, cannabichromevarinic acid, cannabidivarinic acid and cannabinol

(and their corresponding abbreviations), phytocannabinoids, neuro-

vascular unit, pericytes, neurons, astrocytes, human brain microvascu-

lar endothelial cells, brain, neuroinflammation, hyperexcitability,

neurodegeneration, Huntington's, Alzheimer's, Parkinson's, epilepsy,

and stroke. Two independent reviewers carried out the searches by

November 2019, and the reference lists of the final papers were hand

searched for any additional studies.
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2.2 | Eligibility and exclusion criteria

Conference abstracts and review articles were excluded. No

restrictions were applied to type of study, publication year, or

language. Inclusion criteria were as follows: an original, peer

reviewed article that involved the application of emerging

phytocannabinoids in an in vivo or in vitro model of neu-

rodegeneration or neuronal damage. Studies that looked at two

derivatives of CBG, known as VCE-003 or VCE-002.3 were also

included because current research is focused on these compounds,

based on their increased affinity for PPARγ. Studies that assessed

CBD, Δ9-THC, Δ9-THC:CBD 1:1 (Sativex®), or similar combinations

of phytocannabinoids (i.e., different ratios of phytocannabinoids)

were excluded from this review. After duplicates and irrelevant

articles were removed, the full text was obtained for the remaining

articles, and studies were examined for data regarding Δ9-THCA,

Δ9-THCV, CBDA, CBDV, CBC, CBCA, CBCV, CBG, CBGA, CBGV,

CBGVA, CBCVA, CBDVA, and CBN application in an in vitro and/or

in vivo model of neuroprotection or neuronal damage. Dose and

route of administration were extracted from in vivo studies and

where possible range and average were calculated. If studies

reported mechanistic data, this was also described in Section 3.

3 | RESULTS

The preliminary search retrieved 2,341 studies, which after duplicates

were removed left 1,851. A total of 107 cannabinoid studies were

retrieved; once exclusion criteria were applied, 26 articles were

considered to be potentially relevant and their full texts obtained.

After additional screening (including reviewing reference lists for any

potential studies), 28 studies were included in this review; see

Figure 1. Table 1 summarizes the in vitro data included in this review,

and Table 2 summarizes the in vivo data.

Within the 28 studies, the neuroprotective models were epilepsy

(n = 7), Huntington's disease (n = 6), Parkinson's (n = 4), amyotrophic

lateral sclerosis (n = 3), neuroprotection (not disease specific, n = 2),

multiple sclerosis (MS; n = 1), Rett syndrome (n = 2), neuroinflammation

(n = 1), Alzheimer's (n = 1), and oxidative stress (n = 1). Fifteen papers

studiedCBGor its derivatives, five studies usedCBN, eight studies used

CBDV, and four studies used CBC. Only two studies used Δ9-THCV,

and three used Δ9-THCA. CBDA was only included in one study. No

data on the neuroprotective effects of CBGA, CBGV, CBCA, CBCV,

CBCVA, CBGVA, or CBDVA were identified. Figure 2 shows some of

the minor phytocannabinoids structures with CBD and Δ9-THC for

reference, and Table 3 summarises the neurological conditions for

which emerging cannabinoids have shown therapeutic potential.

3.1 | Cannabigerol (CBG) and its derivatives

Nine studies included in vitro data, and eight included in vivo data on

CBG and its derivatives that are formed by the oxidation of CBG

(Carrillo-Salinas et al., 2014; Díaz-Alonso et al., 2016; García

et al., 2018). VCE-003 and VCE-003.2 have displayed increased

affinity for PPARγ, thus maintaining their anti-inflammatory properties

while having little affinity for CB1 and CB2 receptors (VCE-003

Ki > 40 μM for CB1 and Ki > 1.76 μM CB2, Granja et al., 2012, and

VCE-003.2 Ki > 40 μM for both CB1 and CB2, García et al., 2018). All

studies except one reported a positive effect of CBG, VCE-003, or

VCE-002.3, compared with control in the disease model being

studied. In an in vivo model, using 3-nitropropionic acid (3-NP)

to induce Huntington's disease, CBG (10 mg!kg−1 per day i.p.)

significantly attenuated the up-regulation of COX-2, iNOS, IL-6, and

TNF-α (Valdeolivas et al., 2015). CBG treatment also prevented

3-NP-induced neuronal loss, recovered catalase, SOD and GSH, com-

pared with control, and down-regulating genes that were directly

associated with Huntington's disease including sgkl, Cd44, and nor-

malized levels of huntingtin-associated protein-1. Aggregation of

mutant Huntingtin protein was diminished, and motor deficits such as

hindlimb clasping and dystonia and general locomotor activity were

also improved (Valdeolivas et al., 2015). Hill et al. (2014) assessed the

anti-convulsant potential of CBG (50–200 mg!kg−1 i.p.) when

F IGURE 1 Overview of methodology used in the search process,
identification, screening, eligibility, and inclusion
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administered prior to the initiation of pentylenetetrazole (PTZ)

seizures; however, despite being able to block Nav channel activity,

CBG had no effect on seizure severity. No antagonist experiments

were conducted in these studies, but Valdeolivas et al. (2015) did

show that CBG dose-dependently activated PPARγ in cultured striatal

cells (WT and mutant huntingtin; supplementary data). Four studies

reported that the CBG derivatives VCE-003 (5 mg!kg−1 i.p.) and

VCE-003.2 (10 mg!kg−1 p.o./i.p.) successfully reduced immune cell

activation in macrophages, microglia, and infiltrating neutrophils in

models of EAE (to model MS) and Huntington's and LPS-induced

Parkinson's disease (PD; Aguareles et al., 2019; Carrillo-Salinas

et al., 2014; Díaz-Alonso et al., 2016; García et al., 2018). In the in vivo

Parkinson's disease model, García et al. (2018) found that PPARγ
antagonist T0070907 (5 mg!kg−1) blocked VCE-003.2-mediated

decreases inTNF-α, IL-1β, and iNOS mRNA levels, but no other antag-

onists were investigated. In a follow-up study by the same group,

20 mg!kg−1 (but not 10 mg!kg−1) oral VCE-003.2 promoted a trend

towards recovery in the basal ganglia of LPS-lesioned mice and was

associated with decreases in IL-1β gene expression, lysosomal-

associated membrane protein-1 (LAMP-1), and glial fibrillary acidic

protein (GFAP) immunostaining (Burgaz et al., 2019). Orally dosed

VCE-003.2 (10 mg!kg−1) promoted neurogenesis in mice subjected to

mutant Huntingtin expression in a Huntington's disease model

(Aguareles et al., 2019). In another model of Huntington's disease

VCE-003.2 (10 mg!kg−1 i.p.) prevented neuronal loss, indicated by

increases in Nissl and NeuN staining and at the same dose improved

RotaRod performance and reduced astrogliosis in mice, measured by

attenuated levels of GFAP and ionized calcium binding adaptor mole-

cule 1 (Iba-1; Díaz-Alonso et al., 2016). Rodríguez-Cueto et al. (2018)

found that VCE-003.2 10 mg!kg−1 i.p. successfully improved neuro-

pathological deterioration and normalized CB2 receptor and IL-1β
levels, in an experimental model of amyotrophic lateral sclerosis, but

again no mechanisms of action were probed.

In vitro, Schubert et al. (2019) reported that CBG (100 nM)

prevented MC65 neurons from accumulating toxic amyloid β (Aβ) pro-
tein in an Alzhiemer's disease model. CBG also preserved neuronal

trophic factors in primary rat cortical neurons (EC50 1.5 μM) and

prevented oxytosis in mouse HT22 hippocampal nerve cells (EC50

1.9 μM). Although no mechanisms were explored in this study, neither

MC65 neurons nor HT22 cells express CB1 or CB2 receptors, leading

the authors to conclude that these effects were mediated indepen-

dently of these receptors. In N2a cells, VCE-003.2 (10 and 25 μM)

prevented excitotoxicity induced by glutamate and in models of LPS

induced Parkinson's disease and amyotrophic lateral sclerosis (García

et al., 2018; Rodríguez-Cueto et al., 2018). Similarly, VCE-003

(0.1–25 μM) dose dependently protected neuronal cells in a model of

MS, while VCE-003.2 (500 nM) promoted neuronal differentiation

when dosed for 21 days in an in vitro model of Huntington's disease,

but no antagonist experiments were conducted to explain these

effects (Aguareles et al., 2019; Granja et al., 2012). In a model of neu-

roinflammation, pretreatment with CBG (7.5 μM) improved viability in

cells treated medium from LPS-stimulated macrophages and, while

F IGURE 2 Structured and pharmacological profiles of
some of the minor phytocannabinoids with cannabidiol
(CBD) and tetrahydrocannabidiol (∆9-THC) included for
reference: ∆9-tetrahydrocannabinolic acid (∆9-THCA), ∆9-
tetrahydrocannabinolic (∆9-THCV), cannabidivarin (CBDV),
cannabidiolic acid (CBDA), cannabichromene (CBC),
cannabigerol (CBG), and cannabinol (CBN)
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authors reported that CBG treatment resulted in PPARγ down-

regulation, no direct mechanistic probing was conducted (Gugliandolo,

Pollastro, Grassi, Bramanti, & Mazzon, 2018). Granja et al. (2012) and

Carrillo-Salinas et al. (2014) found that treatment with VCE-003

(1 and 2.5 μM and 1, 10, and 25 μM) blocked the secretion of a

number pro-inflammatory mediators including IL-6, TNF-α, IL-1β, and
CCL3 in macrophages and primary microglia. VCE-003.2 also

attenuated TNF-α and L-1β secretion but from BV2 mouse microglial

cells (5 μM) and astroglial cells (1 and 5 μM; Díaz-Alonso et al., 2016;

García et al., 2018; Rodríguez-Cueto et al., 2018). Díaz-Alonso

et al. (2016) and García et al. (2018) deduced that VCE-003.2 did not

mediate its protective effects via CB1 or CB2 receptors due to poor

binding affinity (Ki > 40 μM) and both groups found that VCE-003.2

was an agonist at PPARγ (IC50 of 1.2 μM).

3.2 | Cannabidivarin (CBDV)

All in vivo cannabidivarin (CBDV) studies evaluated the anti-epileptic

properties of the compound in models of Rett syndrome and MES

seizures (Amada, Yamasaki, Williams, & Whalley, 2013; Hill

et al., 2012; Hill et al., 2013; Vigli et al., 2018; Zamberletti

et al., 2019). Doses in these studies ranged from 0.2 to 400 mg!kg−1

per day in rodents with efficacy in reducing tremors was observed

between 2 and 200 mg!kg−1 per day. Two studies reported that

200 mg!kg−1 i.p. CBDV significantly decreased PTZ seizure severity

and mortality in rats (A. J. Hill et al., 2012; Hill et al., 2013). Hill

et al. (2012) found that 90% of animals remained seizure free at a

dose of 200 mg!kg−1 CBDV i.p. per day; however, lower concentra-

tions of CBDV were ineffective (0.2 mg!kg), and CBDV had no

effect on the severity of pilocarpine convulsions at any tested

concentration (50–200 mg!kg−1 per day). CBDV (400 mg!kg−1 oral

gavage) suppressed PTZ seizures, significantly decreasing seizure

severity but had no effect on expression of epilepsy related genes

(Amada et al., 2013). Another study reported that 20 mg!kg−1

i.p. CBDV dosed for 14 days improved brain weight in Rett

syndrome (RTT) mice, compared with WT mice, but had no effect

on neurotrophin levels (Vigli et al., 2018). None of these in vivo

studies conducted antagonist experiments to further elucidate the

anticonvulsant effects of CBDV.

In HEK293 cells transfected with TRPV1, 2, and 3 channels,

CBDV caused a concentration-dependent bidirectional current at

TRPV1 channels similar to capsaicin, and capsazepine (TRPV1 channel

antagonist) blocked this effect. Furthermore, 5'-iodoresiniferatoxin

(5'-IRTX), a selective antagonist of TRPV1 channels counteracted the

effect of CBDV in the duration but not amplitude of neuronal burst.

These data suggest that CBDV acts as an agonist at these channels,

but some of CBDVs effects are mediated independently of this chan-

nel. However, no other antagonists were tested to establish which

receptors were responsible for the other effects of CBDV (Iannotti

et al., 2014). Hill et al. (2012) reported that CBDV (10 and 100 μM)

decreased the amplitude and duration of local field potentials in hip-

pocampal brain slices, with an anti-epileptiform effect observed in theT
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CA1 region (100 μM). CBDV also showed efficacy in an in vitro model

of Alzheimer's disease, preventing oxytosis and energy loss in HT22

cells (EC50 1.1 μM and 90 nM, respectively), as well as reducing Aβ
toxicity (EC50 100 nM) and trophic withdrawal (EC50 350 nM);

however, no mechanistic data were reported to determine how these

effects were mediated (Schubert et al., 2019).

3.3 | Cannabichromene (CBC)

In a model of electroshock seizure, CBC (10–75 mg!kg−1 i.p. per day)

significantly depressed motor activity during the first 10-min interval,

but subsequently only the highest dose was effective (Davis &

Hatoum, 1983). In vitro, Shinjyo and Di Marzo (2013) found that 1μM
CBC increased viability of adult nestin-positive neuronal stem cells

when applied in medium without growth factors (B27 medium), by

inducing ERK phosphorylation. No antagonist data were presented in

these studies.

3.4 | Cannabinol (CBN)

Only one in vivo study assessed CBN (5 mg!kg−1 per day) in an

SOD1 model of amyotrophic lateral sclerosis. CBN delayed motor

abnormalities at Day 17 in the chronic treatment regimen,

compared with vehicle control, but disease progression was not

affected (Weydt et al., 2005). In a model of Huntington's disease,

Aiken et al. (2004) found that CBN reduced LDH activity in PC12

cells (20 and 100 μM), but the authors did not investigate the

mechanism(s) of this effect. CBN displayed potent antioxidant

activity in primary cerebral granule cells under oxidative stress

conditions; however, no antagonist data were presented on this

cannabinoid (Marsicano et al., 2002).

3.5 | Δ9-THCV

Male Sprague–Dawley rats and CB2 receptor knockout mice were

dosed with 2 mg!kg−1 per day Δ9-THCV over a period of 14 days in a

model of Parkinson's disease, induced by 6-hydroxydopamine

(6-OHDA) or LPS (García et al., 2011). Δ9-THCV reduced slow motor

movements induced by 6-OHDA and enhanced mean velocity of

movement with a potency similar to rimonabant. Chronic Δ9-THCV

dosing reduced microglial activation and preserved nigrostriatal dopa-

minergic neurons after 6-OHDA application and in the LPS model of

Parkinson's disease, Δ9-THCV preserved TH positive neurons,

mirroring the effects of the CB2 receptor agonist HU-308. Thus,

authors speculated that Δ9-THCV mediated at least some of its

effects in the LPS model via CB2 receptors (García et al., 2011). Also,

2 mg!kg−1 Δ9-THCV blocked the effects of the CB1 receptor agonist,

CP55,940, suggesting it acts as an antagonist at this receptor. How-

ever, no data were presented assessing if such antagonistic properties

of Δ9-THCV at CB1 receptors mediated its protective effects in the

6-OHDA or LPS models of Parkinson's disease. Hill et al. (2010) stud-

ied Δ9-THCV in a seizure model induced by 80 mg!kg−1 PTZ and

found that at a dose of 0.25 mg!kg−1 i.p. Δ9-THCV, with 33% of

animals having a complete absence of seizures. Although no direct

mechanistic probing was investigated, receptor binding assays were

performed on rat cortical membranes, and Δ9-THCV was found to act

as a CB1 receptor ligand (CB1 Ki " 290 nM; [3H]SR141716A displace-

ment but no agonist stimulation using [35S] GTPγS binding; Hill

et al., 2010).

3.6 | Δ9-THCA

In an acute 3-NP model of Huntington's disease, Nadal et al. (2017)

observed a significant improvement in hindlimb dystonia (uncontrolla-

ble hindlimb muscle contraction) and locomotor activity in male,

C57BL/6 mice treated with Δ9-THCA (20 mg!kg−1 per day i.p.). Δ9-

THCA also prevented astrogliosis and microgliosis and attenuated the

up-regulation of pro-inflammatory mediators induced by 3-NP. These

effects were blocked when mice were co-administered with the

PPARγ antagonist T0070903 (with the exception of IL-6; Nadal

et al., 2017). In vitro, N2a cells infected with the huntingtin polyQ

repeats resulted in toxicity, which was significantly reduced by treat-

ment with ∆9-THCA, as well as decreased expression of inflammatory

mediators: TNF-α, iNOS, IL-6, and COX-2. Δ9-THCA also improved

neuronal viability post-serum deprivation, and this effect was

prevented by GW9662, a PPARγ antagonist. No other antagonists

were used in this study (Nadal et al., 2017).

Δ9-THCA (0.01–10 μM) displayed no pro-survival effect on

dopaminergic neurons but had a significant, positive effect on cell

count (123%) when compared to the control, in an in vitro model of

Parkinson's disease (Moldzio et al., 2012).

4 | DISCUSSION

To our knowledge, this is the first systematic review on the neuro-

protective effects of lesser-known, minor phytocannabinoids in

various models of neurological disease. Data obtained from our search

revealed that CBG, VCE.003, VCE.003.2, and CBDV were the

most promising candidates as neuroprotectants, while Δ9-THCV,

Δ9-THCA, CBC, and CBN have limited but encouraging data as

neuroprotectants. CBG, VCE.003, VCE.003.2, and Δ9-THCA mediated

their neuroprotective effects at least in part by the nuclear receptor

PPARγ. CBDV was found to mediate some of its antiepileptic effects

via TRPV1 channels, and Δ9-THCV was found to be a CB1 receptor

ligand and a possible CB2 receptor agonist, but no experiments were

conducted to establish whether its neuroprotective action was

mediated by CB1 or CB2 receptors. No other receptors were investi-

gated, and no studies assessed the neuroprotective potential of

CBDA, CBGA, CBGV, CBCV, CBGVA, or CBDVA.

CBG was first isolated in 1964 by the same group that reported

the structure of Δ9-THC (Gaoni & Mechoulam, 1964). It exhibited
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antioxidant and anti-inflammatory properties, while displaying no

psychotropic effects, as it is a poor CB1 receptor agonist (Gauson

et al., 2007; Navarro et al., 2018; Rosenthaler et al., 2014). CBG is a

partial agonist at CB2 receptors, a potent α2-adrenoceptor agonist

(EC50 0.2 nM) and a moderate 5-HT1A receptor antagonist, as well as

interacting with various TRP isoforms including TRPV1 and 2 channels

(Cascio, Gauson, Stevenson, Ross, & Pertwee, 2010; De Petrocellis

et al., 2012). Studies included here show that these compounds have

significant anti-inflammatory effects, including attenuating cytokine

release and decreasing the activation of immune cells, an effect

observed in both in vitro and in vivo models.

CBG and its derivatives were particularly effective in models of

Huntington's disease, targeting multiple facets of the disease including

gene expression, easing motor symptoms, reducing microglial

activation, and attenuating the inflammatory response. Huntington's

disease pathophysiology, like other neurodegenerative disorders,

exhibits uncontrolled microglial activation, which is a key part of the

neuroinflammatory response. In early stages of this disease, PET

imaging has revealed marked microglial activation, which was corre-

lated with impairments of neuronal activity (Tai et al., 2007). Micro-

glial activation along with increases in pro-inflammatory mediators

has also been detected in post-mortem Huntington's disease brains

(Palpagama, Waldvogel, Faull, & Kwakowsky, 2019). Interestingly,

microglial mediated neuroinflammation was suppressed with the acti-

vation of CB2 receptors (Ehrhart et al., 2005). However, given VCE-

003 and VCE.003.2's protective effects were likely to be CB1 and CB2

receptor-independent, their effects on microglial activation are likely

to be via a different mechanism, possibly through the activation of

PPARγ, which has an important role in regulating the inflammatory

response, especially in the CNS (see Bright, Kanakasabai, Chearwae, &

Chakraborty, 2008; Villapol, 2018). It is also worth noting that micro-

glial activation can be protective, preserving neurons by secreting

anti-inflammatory cytokines such as IL-4 and IL-10 as well as various

trophic factors (see Le, Wu, & Tang, 2016, and Pöyhönen, Er, Doma-

nskyi, & Airavaara, 2019). In line with these observations, there effec-

tively needs to be a balancing act between enabling some degree of

microglial activation to protect neurons, while limiting their over-

activation that would ultimately lead to damage. Given that the symp-

toms of Huntington's disease are currently managed using VMAT

inhibitors (such as TBZ) to decrease levels of monoamines, it would be

useful to assess whether CBG and its derivates have any efficacy as

VMAT inhibitors, or whether their protective effects in models of

Huntington's disease are independent of this mechanism. If the latter

is the case, future studies should investigate low-dose VMATs

(to minimize neuropsychiatric side effects) together with CBG or its

derivatives as an adjuvant therapy to assess if there is an additive, or

even synergistic, protective effect of these compounds.

Long-term dose tolerability and a lack of accumulation in tissue

are both essential features of neuroprotective agents as these drugs

are typically taken for life after disease onset. In a study conducted by

Deiana et al. (2012), CBG was found to have similar PK profiles in rats

and mice but exhibited slower brain penetration in mice. Both animals

also had higher concentrations of CBG following i.p. injection

compared to oral administration, but interestingly in rats, this did not

equate to higher concentrations in brain tissue (Deiana et al., 2012).

From the results in our review, treatment with CBG, VCE-003, and

VCE.003.2 was well tolerated and ranged from just 3 days to 10 weeks

with two studies dosing CBG orally and seven studies dosing intraper-

itoneally. Deiana et al. (2012) reported that animals tolerated CBG

better after i.p. administration, compared with the oral route. In

humans, i.p. dosing is not a viable means of regular administration,

and all drugs given orally have a larger side effect profile. Moreover,

patients receiving certain oral therapies for neurological conditions,

such as levodopa for Parkinson's disease, must also take medications

to minimize peripheral effects (Fahn, 2008). Therefore, dose

formulation and route of administration for these compounds should

be carefully assessed, based on thorough ADME profiling and feasibil-

ity of long-term dosing.

CBG exhibited positive effects in two Huntington's disease

models, despite one study using oral and the other i.p., administration.

Of note, CBD has already been trialled in Huntington's disease

patients; CBD (10 mg!kg−1; 700 mg average daily dose) was given for

6 weeks and resulted in a consistent plasma level of 5.9–11 ng!mL-1.

Once treatment had stopped, elimination was between 2 and 5 days,

suggesting CBD did not accumulate and remain in plasma longer than

5 days in these Huntington's disease patients (Consroe et al., 1991).

Further studies should elucidate whether CBG and its derivatives dis-

play efficacy in humans and clarify whether their activation of PPARγ
corresponds to their neuroprotective properties and if other receptors

are involved. More data are also needed on the PK profiles of CBG

and its derivatives in older mice and larger mammals and to establish

whether it exhibits a similar elimination to CBD in humans. These fac-

tors would aid in the translation of this compound as a treatment for

neurodegenerative conditions.

Cannabidivarin (CBDV) is a structural analogue of CBD, with the

molecule shortened by two methylene bridges (Morales, Hurst, &

Reggio, 2017; Vollner, Bieniek, & Korte, 1969). From our search, in vivo

studies consistently reported 200 mg!kg−1 i.p. CBDV having anti-

epileptic effects and a 400 mg!kg−1 oral dose also showing promise.

Like CBD, CBDV is a agonist at TRPV1/2 and TRPA1 channels, and

an antagonist at TRPM8 channels, which may explain similarities in

their neuroprotective properties, particularly the action of CBDV as

an agonist at TRPV1 channels (De Petrocellis et al., 2011; Iannotti

et al., 2014; Scutt & Williamson, 2007). In our review, studies showed

that CBDV did not affect neurotrophic levels or epilepsy-related gene

expression. Thus, it can be assumed that CBDV mediates its protec-

tive effects independent of these pathways (Amada et al., 2013; Vigli

et al., 2018). Deiana et al. (2012) reported that CBDV was rapidly

absorbed in mice and rats, but there was a higher drug concentration

in plasma and brain following oral treatment in rats compared to mice.

Furthermore, while i.p. injection resulted in similar PK profiles in the

two species, brain concentrations in rats were higher. This brings into

question the differences in the amount of CBDV delivered to the

brain in the studies conducted in mice compared with rats presented

in this review and whether this influenced study outcomes. Only two

studies reported chronic CBDV dosing both in models of Rett
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syndrome, highlighting the need for future studies to assess the long-

term tolerability of CBDV as an anti-epileptic agent and how different

species exhibit different bioavailability of this compound, as these will

both affect the translatability of CBDV to humans.

Although out of the scope of this review, it is worth noting that

CBDV has already been trialled as an anti-convulsant by GW Pharma-

ceuticals in a phase IIa, placebo-controlled study of 162 adult patients

(clinical trial number: NCT02369471/NCT02365610). The drug

GWP42006 (which contains CBDV as its main ingredient) was dose

titrated (over 2 weeks) up to a 800 mg twice daily dose for a 6-week

stable treatment period. However, focal seizures were inadequately

controlled with this dose and GWP42006 displayed no difference in

efficacy to the placebo control group (Schultz, 2018). While this may

cast doubt on the translatability of the evidence presented in this

review, it is worth highlighting that the maximum dose in humans

from the GW study would be considerably less than if the same dose

regimens as the in vivo studies were followed for a 60-kg human. Fur-

thermore, Morano et al. (2020) have suggested that the inability of

CBDV to control seizures was in part due to an extremely high

response from the placebo group and that the use of purified CBDV

may have also influenced the study outcome. Therefore, it is impor-

tant to exercise caution when extrapolating the findings from the

in vitro and in vivo data presented here and what doses may be effec-

tive in clinical trials.

Cannabichromene (CBC) was first isolated in 1966 by Gaoni and

Mechoulam and is a non-psychotropic cannabinoid that does not

interact with CB1 receptors (Gaoni & Mechoulam, 1966). CBC is an

agonist at CB2 receptors and TRP channels, acting potently at TRPA1

as well as displaying some activity at TRPV3 and TRPV4 channels

(Cascio & Pertwee, 2015; De Petrocellis et al., 2008, 2011; de

Petrocellis et al., 2012; Udoh, Santiago, Devenish, McGregor, &

Connor, 2019). CBC (0.001–1 μM) exhibited promising anti-

inflammatory effects in an in vitro model of colitis, decreasing LPS

increased nitrite levels and attenuating IFN-γ and IL-10 secretion in

peritoneal macrophages (Romano et al., 2013). More recently CBC

acted as a CB2 receptor agonist in AtT20 cells transfected with these

receptors and was confirmed by application of the CB2 receptor

antagonist AM630, which blocked the effects of CBC (Udoh

et al., 2019). We found only two papers related to neuroprotective

effects of CBC; in vivo CBC suppressed motor activity while in vitro

CBC improved viability of neural stem cells (Davis & Hatoum, 1983;

Shinjyo & Di Marzo, 2013). The anti-inflammatory effects of CBC may

play a pivotal role in its ability to act as a neuroprotectant, as inflam-

mation and overactivation of the immune response are important fea-

tures of neurodegenerative conditions.Thus, further research should

assess this compound in neuro-inflammatory conditions, where it may

have potential.

Cannabinol (CBN) is an oxidation product of ∆9-THC and was

the first cannabinoid to be discovered and isolated (Wood, Spivey, &

Easterfield, 1899). Like ∆9-THC, it has been shown to activate CB1

receptors (Ki 211.2 nM) but with lower potency, as well as acting as

an agonist at TRPV2 channels (Rhee et al., 1997; Russo &

Marcu, 2017). CBN (1 mg!mL−1) was recently shown to reduce

mechanical sensitization and sensitivity of afferent muscle fibres in

an in vivo model of myofascial pain, but no mechanism of action

was investigated (Wong & Cairns, 2019). From our search, limited

data showed that CBN decreased cell damage and acted as a potent

antioxidant in a cell-based Huntington's disease model (Aiken et al.,

2004). The antioxidant activity of CBN is a characteristic feature of

cannabinoids, which as previously mentioned, is thought to be due

to the presence of the phenolic ring and carboxyl moieties, as well

as the ability to increase antioxidant defences. CBD has already

shown extensive antioxidant properties, including increasing the

levels and activity of antioxidants, capturing ROS, and transforming

them into less active forms, as well as activating nuclear erythroid

2-related factor (NrF2) that governs the transcription of many anti-

oxidant genes (see Atalay, Jarocka-karpowicz, &

Skrzydlewskas, 2020). Oxidative stress is a key feature of neurode-

generative disorders including Parkinson's and Alzheimer's disease.

In the latter condition, Aβ deposits contain a significant number of

binding sites for biometals (zinc, copper, and iron) that contribute to

oxidative stress in patients (Huang, Zhang, & Chen, 2016; Kozlowski

et al., 2009). Furthermore, Alzheimer's disease patients have

decreased levels of antioxidant enzymes and increased products of

oxidative stress, such as peroxidised lipids and oxidized proteins in

brain tissue (Kim et al., 2006; Sultana et al., 2011). Also, large

amounts of ROS are generated by reactive microglial cells, with

studies showing superoxide produced by microglia directly contrib-

uting to the death of dopaminergic neurons in Parkinson's disease

(Hernandes, Café-Mendes, & Britto, 2013). It is clear that more

information is needed on the pharmacology of CBN, especially its

antioxidant potential. Moreover, the ability of CBDV, CBG, CBC,

and CBN to reduce Aβ deposits in vitro is also noteworthy and it is

clearly of interest to examine the antioxidant and anti-inflammatory

potential of these compounds in Alzheimer's disease models in vivo

and whether these compounds act through mechanisms, similar to

those of CBD.

∆9-THCV is a homologue of ∆9-THC differing by just a propyl

side chain, and studies have suggested that ∆9-THCV acts as a CB1

receptor agonist, sharing properties with ∆9-THC, albeit with less

potency (Gill, Paton, & Pertwee, 1970; Pertwee, 2008). They exhibit

similarities in their in vivo effects such as inducing catalepsy in mice

and ∆9-THC-like effects in humans (Gill et al., 1970; Hollister, 1974).

We found two studies where ∆9-THCV showed promise as an anti-

epileptic agent and protected neurons in two models of Parkinson's

disease, while García et al. (2011) suggested ∆9-THCV mediated some

of its protective effects by acting at CB1 and CB2 receptors, the possi-

ble mechanisms of action of ∆9-THCV was largely unexplored (García

et al., 2011; Hill et al., 2010). In an earlier study, ∆9-THCV displaced

[3H]CP55940 from specific sites in mouse brain and CHO-hCB2 cell

membranes (Ki values 75.4 nM and 62.8 nM, respectively), and along

with data from GTPγS-binding experiments, the authors concluded

∆9-THCV acted as a CB1 and CB2 receptor antagonist (Thomas

et al. 2005). Other groups have shown ∆9-THCV can block CB1 recep-

tor activity in murine cerebellar slices and, at 5.8 μM, increased GABA

release from neurons, sharing the same properties as AM251, a CB1
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receptor antagonist (Ma, Weston, Whalley, & Stephens, 2008;

Pertwee, 2008). Thus, while there is evidence to suggest ∆9-THCV

mediates some of its protective effects via CB1 and CB2 receptors,

the data remain largely unclear, and there is also a lack of investigation

into the potential of ∆9-THCV to act at other known cannabinoid

targets.

Microglial activation and the presence of neuroinflammatory fac-

tors are well known characteristics of Parkinson's disease and well

documented among patients (Mogi et al., 1994; Qian et al., 2011).

Moreover, studies have demonstrated that microglial overactivation

leads to deleterious effects and the exacerbation of the immune

response, especially the release of pro-inflammatory mediators. As

observed with the CBG derivative VC-003.2, microglial activation was

decreased by ∆9-THCV, inducing a protective effect by dampening

the immune response. Studies have already demonstrated the ability

of CBD to modulate the immune response by acting an agonist of

PPARγ and altering NF-κB signalling, which is up-regulated in both

microglia and astrocytes of Parkinson's disease patients. Furthermore,

activation of PPARγ leads to inhibition of NF-κB signalling and

decreases mRNA levels of proinflammatory mediators TNF-a, IL-1β,
IL-6, and iNOS (Vallée, Lecarpentier, Guillevin, & Vallée, 2017). There-

fore, it would be of interest to determine whether ∆9-THCV is able to

reduce microglial activation through the same mechanism as CBD,

involving the activation of PPARγ.
Limited pharmacokinetic data on Δ9-THCV have shown it exhibits

rapid absorption in rats and mice when administered either i.p. or

orally but is rapidly eliminated when orally administered (<1.5 h) com-

pared to i.p administration where its elimination rate is >5 h (Deiana

et al., 2012). Interestingly, Δ9-THCV exhibited extensive brain pene-

tration (exceeding plasma levels), regardless of the route of adminis-

tration, meaning it can effectively cross the BBB. At 24 h, Δ9-THCV

was no longer detected, suggesting that it exhibits a lack of accumula-

tion in brain tissue (Deiana et al., 2012). Altogether, these features,

along with evidence collected in this study, support Δ9-THCV as a

neuroprotective agent. However, clearly, more data with Δ9-THCV

are needed, especially to assess safety after chronic dosing and

whether this compound exhibits tolerance with long-term use.

∆9-THCA is the acidic precursor of ∆9-THC, and competition

binding assays revealed that this compound was unable to achieve

displacement of [3H]-CP55,940 (CB1 and CB2 receptor agonist) up to

10 μM, suggesting ∆9-THCA exhibits poor affinity for CB1 or CB2

receptors (McPartland et al., 2017). Results from this study also

showed that ∆9-THCA has little efficacy at these receptors as it

exhibited no inhibition of forskolin-mediated cAMP, compared to ∆9-

THC that acted as an agonist in this assay. Our search revealed that

∆9-THCA had anti-inflammatory effects that improved neural viability

in a model of Huntington's disease, but interestingly, it did not affect

the survival of dopaminergic neurons in a model of Parkinson's dis-

ease (Moldzio et al., 2012; Nadal et al., 2017). In a recent study,

Anderson, Low, Banister, McGregor, and Arnold (2019) reported that

∆9-THCA had extremely poor brain penetration (an optimistic brain–

plasma ratio of 0.15) in both vehicles tested. Furthermore, studies

have shown that ∆9-THCA has poor stability and rapidly

decarboxylates to ∆9-THC, bringing into question whether the ability

of ∆9-THCA to act as a neuroprotectant in the studies presented here

is actually due to nearly unavoidable contamination with ∆9-THC

(Anderson et al., 2019; McPartland et al., 2017). Overall, these data

warrant further investigation into ∆9-THCA as a potential neuro-

protective and anti-inflammatory agent, but with caution, and such

studies should include purity data on ∆9-THCA to enhance the

robustness of the experimental data.

There were no studies identified in this review that looked at the

potential neuroprotective effects of other cannabinoid varins or their

acidic forms such as CBGV, CBGVA, CBDVA, CBCV, and CBCVA. This

may be due to the lack of commercial availability of these compounds

due to their low concentrations in the plant, costly synthetic production

or that these compounds are not very stable. CBDA was only used in

one study on Huntington's disease, where it had no protective effects.

This compound, however, has shown promise in other conditions

including breast cancer migration, inflammatory pain and nausea

(Bolognini et al., 2013; Rock, Limebeer, & Parker, 2018; Takeda

et al., 2012), with groups suggesting that CBDA is 1,000 times more

potent at the 5-HT1A receptor than CBD (Bolognini et al., 2013). Activa-

tion of the 5-HT1A receptor is protective both in vitro in Parkinsonian

models and in vivo in models of hypoxia ischaemia (Miyazaki

et al., 2013; Pazos et al., 2013). Although Anderson et al. (2019) con-

cluded that CBDA displayed poor brain penetration in an oil-based for-

mulation, uptake was increased when CBDA was formulated in a

Tween-based vehicle. Also, CBDA was anti-convulsant at 10 and

30mg!kg−1 displaying greater potency compared toCBD (100mg!kg−1).
These data support CBDA's efficacy in the brain, as well as highlighting

its potential as an anticonvulsant (Anderson et al., 2019). Considering

these points, CBDA may be also protective in conditions such as

ischaemic stroke and Parkinson's disease and warrants further investi-

gation. Recent studies have also shown that CBDA, CBGV, and CBGA

interact with various TRP channel isoforms including TRPV1, TRPV2,

TRPA1, and TRPM8 channels. Of note, CBGV and CBGA were also

potent desensitizers of TRPV3 and TRPV4 channels, respectively

(De Petrocellis et al., 2012). While the extent of the role of TRP chan-

nels in neuroprotection has yet to be fully understood, these receptors

are involved in a wide range of neurological disorders. For example,

TRPA1-deficient mice were more likely to sustain damage post ischae-

mia and TRPA1 channel activation in Alzheimer's disease may have a

crucial role in regulating astrocyte-mediated inflammation (Lee

et al., 2016; Pires & Earley, 2018). Conversely, TRPV1 channel activity

has been implicated in epilepsy having a role in neuronal excitability and

synaptic transmission (Nazıroglu, 2015). Therefore, CBDA, CBGV, and

CBGA interactions at TRP channels may be beneficial in conditions that

involve these channels in their pathophysiology.

Translatability of these data and the viability of minor

phytocannabinoids as neuroprotectants will also rely on understand-

ing and perhaps manipulating their bioavailability and pharmacokinetic

properties. In a recent systematic review conducted by our group, Mil-

lar, Stone, Yates, and O'Sullivan (2018) highlighted discrepancies

regarding CBD bioavailability, Cmax, Tmax, and half-life (t1/2) in humans

depending on the route of administration and formulation and
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whether CBD was dosed in a fed or fasted state. That being said,

studies conducted in piglets (Garberg et al., 2017) and rodents

(Hammell et al., 2016; Long et al., 2012) have shown a dose-

dependent relationship between CBD administration and brain and

plasma concentrations. Limited data extracted by Millar et al. (2018)

showed that administration of CBD in humans also led to dose-

dependent increases in plasma concentrations, suggesting the same

may apply to brain concentrations in man.

Information on the human metabolites of CBD, ∆9-THC, and

other phytocannabinoids is scarce, with the majority of research

focusing on the extensive first pass metabolism of CBD and the iden-

tification of its urinary metabolites. Of interest, a patent filed by

Mechoulam et al. (2010) described that two major metabolites of

CBD, 7-hydroxy (7-OH) CBD and 7-carboxy (7-COOH), are both anti-

inflammatory and dose dependently inhibit TNF-а, NO, and ROS.

However, these data have yet to be confirmed in academic studies or

found to be true of other phytocannabinoids. In addition, the cyto-

chrome P450 (CYP) superfamily is responsible for metabolizing 60%–

80% of CNS-acting drugs, 23% by CYP3A4 and 38% CYP2C19, both

of which accept CBD as a substrate (Cacabelos, 2010; Iffland &

Grotenhermen, 2017). Altogether, these findings highlight that there

are major gaps in the ADME of phytocannabinoids, as well as a lack of

identification of metabolites and whether they have biological effects.

In phase II trials, the minor phytocannabinoids presented in this

review will, in all likelihood, be used alongside current therapies to see

if they can augment survival of neurons and/or symptom burden,

rather than being used as a single agent. In light of the above, it will

be essential to consider the interactions that these compounds may

have when administered in conjunction with conventional drug thera-

pies (where they exist) and to establish potential synergistic or delete-

rious effects. Looking forward, initial ADME data will be essential to

determine whether these compounds have true clinical potential and

for their subsequent formulation and administration.

5 | CONCLUSIONS

This review aimed to collate and summarise all current data on the

neuroprotective potential of phytocannabinoids other than ∆9-THC

and CBD. Despite the lack of studies available in this area, we found

that all phytocannabinoids tested displayed neuroprotective proper-

ties in a range of disorders. CBG and its derivatives displayed signifi-

cant anti-inflammatory effects and were particularly effective in

Huntington's disease models. CBDV, ∆9-THCV, and CBC were effec-

tive as anti-seizure agents, while CBN displayed antioxidant activity

and ∆9-THCA had anti-inflammatory effects. CBG and ∆9-THCA, like

CBD, mediate their anti-inflammatory effects through PPARγ. Many

of the studies were screening studies that conducted no mechanistic

probing, suggesting that research into these compounds is still in its

early stages. Extensive pharmacokinetic and pharmacodynamic data in

larger mammals are also necessary on these compounds, given that all

in vivo studies in this review were conducted in mice and rats. This

would provide more evidence for the facilitation of these compounds

as therapies in humans. Further studies are required to investigate the

full neuroprotective potential of these compounds particularly the

mechanisms underlying their protective effects, as well as exploring

whether their combinations may enhance their capabilities as

neuroprotectants. While we have focused on a select number of

minor phytocannabinoids, based predominantly on their shared physi-

cal and biological similarities to CBD, there are over

100 phytocannabinoids and terpenes present in the Cannabis plant

that could potentially display neuroprotective potential.

5.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (http://www.guidetopharmacology.org), and are perma-

nently archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander, Christopoulos et al., 2019; Alexander, Cidlowski et al.,

2019; Alexander, Fabbro et al., 2019; Alexander, Mathie, et al., 2019).
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Protective Effects of Cannabidivarin and Cannabigerol
on Cells of the Blood–Brain Barrier
Under Ischemic Conditions
Nicole L. Stone,1,* Timothy J. England,1,2 and Saoirse E. O’Sullivan2,3

Abstract
Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic
stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuro-
protective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood–brain barrier
(BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes.
Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model is-
chemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte
cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate
to study receptor mechanisms.
Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH),
whereas CBDV (10 nM–10 lM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV
(300 nM–10 lM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes,
CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage
markers. Antagonists for CB1, CB2, PPAR-c, PPAR-a, 5-HT1A, and TRPV1 had no effect on CBG (3 lM) or CBDV
(1 lM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of
CBDV, but no molecular target was identified for CBG.
Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells
that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance
our understanding of the protective effects of CBG and CBDV and warrant further investigation into these com-
pounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and
CBDV and their corresponding mechanisms of action.

Keywords: blood–brain barrier; cannabidivarin; cannabigerol; cannabinoids; ischemia; neuroprotection

Introduction
The blood–brain barrier (BBB) is a unique interface
that separates the central nervous system (CNS) and
the periphery, protecting the brain from damaging
components found in general circulation, namely pe-
ripheral leukocytes, macromolecules, and xenobiot-
ics.1,2 The barrier itself is formed by microvascular

endothelial cells, which are encompassed by pericytes,
and altogether surrounded by astrocyte end feet, which
cover 99% of BBB endothelia.3 Cerebral ischemia–
reperfusion (IR) initiates a plethora of inflammatory
signaling pathways, cytotoxic glutamate release, and
oxidative stress, all of which contribute to increases
in BBB permeability.4 This loss of BBB integrity
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ultimately causes uncontrolled immune infiltration
into the CNS that perpetuates neuronal injury and hin-
ders poststroke recovery. Although administration of
tissue plasminogen activator (tPA) and mechanical
thrombectomy are effective licensed therapies to dis-
solve or remove the culpable clot, at present, there
are no available approved therapies that mitigate post-
stroke injury.5

Cannabidiol (CBD), one of the chemicals found in
Cannabis sativa, has displayed a range of neuroprotec-
tive qualities, preventing neuronal loss,6,7 attenuating
astrocyte reactivity,8 and dampening the neuroinflam-
matory response.9 Unlike delta9-tetrahydrocannabinol
(D9-THC), CBD does not activate the central cannabi-
noid receptors, CB1 or CB2, but activates a plethora of
other targets including PPAR-c, TRPV1, and 5-HT1A

receptors.10–13 CBD has formulations (alone and with
D9-THC) licensed by GW pharmaceuticals to treat
rare childhood epilepsies and spasticity associated
with multiple sclerosis. The protective effects of CBD
in stroke models has been well documented,14 specifi-
cally CBD has been shown to reduce infarct volume,15,16

reduce glutamate toxicity,9,17 attenuate mitochondrial
dysfunction18 and glial activation.6,19 In a co-culture
BBB model CBD preserved barrier integrity after oxygen-
glucose deprivation (OGD), which was mediated at
least in part by PPAR-c and 5-HT1A receptors.12

Cannabigerol (CBG) and cannabidivarin (CBDV)
are neutral cannabinoids present in cannabis and stud-
ies have found these compounds share similar pharma-
cological characteristics to CBD. Like CBD, they do not
produce feelings of euphoria and display antioxidant
and anti-inflammatory properties, as well as interacting
with a range of target proteins including TRPV1,13

PPAR-c,20 5-HT1A, and CB2.21 Recently our group
conducted a systematic review focusing on the neu-
roprotective properties of minor phytocannabinoids
(other than D9-THC or CBD) and found that CBG
and CBDV show efficacy in models of Huntington’s
disease, Alzheimer’s, and epilepsy, with CBG mediating
its protective effects through PPAR-c activation,22 the
same mechanism by which we have shown that CBD
protects BBB integrity.12 However, despite these com-
pounds having neuroprotective effects in other models,
no studies have been conducted to test whether CBG
or CBDV are protective in IR injury.

In light of the above, we hypothesized these com-
pounds may exhibit protective properties at the
BBB in a stroke model. To test this, we treated cells of
the BBB with CBG or CBDV in vitro before an OGD

protocol and measured various proinflammatory cyto-
kines, adhesion molecules, and cell damage markers.

Materials and Methods
Materials
CBG and CBDV were kindly gifted by STI pharmaceu-
ticals. Both compounds were dissolved in 100% ethanol
to 10 mM and were stored at !20!C. AM251, AM630,
GW6471, GW9962, O1918, CID16020046, SB366791
(Tocris, United Kingdom) were dissolved in dimethyl
sulfoxide as stock solutions of 10 mM. (S)-WAY100135
was dissolved in deionized water. Antagonists were stored
at !20!C and dilutions were made fresh as required.

General cell culture
Human brain microvascular endothelial cells (HBMECs),
astrocytes, and pericytes (passages 3–6) were grown in
their respective medium and maintained at 37!C in a
humidified incubator supplemented with 5% CO2.
HBMECs were cultured on fibronectin-coated plastic-
ware (2 lg/cm2), as per supplier recommendations.
Primary cells and medium were purchased from Scien-
Cell, United Kingdom.

OGD protocol
To simulate ischemic conditions, normal medium was
replaced with glucose free RPMI medium (Gibco,
United Kingdom) containing either CBG or CBDV
(10 nM to 10 lM), alongside a vehicle control (0.01%
ethanol). Cell culture plates were then placed in an
anoxic bag (BD GasPak", anaerobe) for 4 h (8 h for
astrocyte experiments) plus an additional 20 min to en-
sure anaerobic conditions. For vehicle normoxia, etha-
nol (0.01%) was added to the respective medium of
each cell type (ScienCell) and maintained in normal
oxygenated conditions. After OGD, medium was
aspirated and replaced with each cell types respective
medium (ScienCell) containing the relevant concentra-
tions of CBG or CBDV for a 20-h/16-h reperfusion pe-
riod. At 24 h, the medium was sampled, and cells were
lysed with RIPA buffer containing protease and phos-
phatase inhibitors (Sigma, United Kingdom; Thermo-
Fisher, United Kingdom). Medium and lysates were
stored at !80!C for future analysis.

Total protein
To quantify total protein, a bicinchoninic acid (BCA)
protein assay was performed on cell lysates. A working
reagent of copper II sulfate and BCA (Sigma-Aldrich)
was prepared in a 1:50 ratio and added to wells. After
a 30-min incubation at 37!C, plates were read at
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562 nm. Unknowns were extrapolated from a standard
curve of known concentrations of bovine serum album.
Unless otherwise stated, all secreted and intracellular
proteins were normalized to total protein.

Enzyme-linked immunosorbent assay
Medium samples were analyzed for various proinflamma-
tory cytokines including interleukin (IL)-6, IL-8, and adhe-
sion molecules including intracellular adhesion molecule
(ICAM)-1, vascular endothelial growth factor (VEGF),
monocyte chemoattractant protein (MCP)-1 using duo-
set enzyme-linked immunosorbent assay (ELISA) by
R&D systems, United Kingdom (DY206, DY208, DY720,
DY293B, and DY279). Raw values at 570 nm were sub-
tracted from values obtained at 450 nm, sample concentra-
tions were determined by extrapolating unknowns from
the 8-point standard curve (known concentrations).

Lactate dehydrogenase assay
A lactate dehydrogenase (LDH) assay was performed
to determine nonspecific damage induced by the
OGD protocol. A standard curve of known concen-
tration of nicotinamide adenine dinucleotide was
constructed as per manufacturer’s instructions. Fifty
microliters of standard or sample was aliquoted into
a 96-well plate and 50 lL of assay mix was added.
Plate absorbance was read at 450 nm and unknown
values were obtained from a standard curve.

DNA damage/genotoxicity assay
Astrocyte lysates post-OGD were analyzed using the
Milliplex DNA damage/Genotoxicity multiplex as-
say kit (Millipore, 48–621MAG) to detect changes in
DNA damage markers ataxia-telangiectasia mutated
(ATR-Total), checkpoint kinases 1, 2 (Chk1, Ser345
and Chk2, and Thr68), histone family member X
(H2A.X, Ser139), mouse double minute 2 homolog
(MDM2, total), cyclin-dependent kinase inhibitor 1
(p21, total), tumour protein (p53, Ser15). Kits were
performed according to manufacturer’s instructions.

Statistical analysis
All data are represented as the mean –standard error of
the mean, data were assessed for normality using the
D’Agostino–Pearson normality test and subsequently
analyzed using one-way analysis of variance with Dun-
nett’s post hoc analysis. All statistical analyses were
conducted using GraphPad prism (7/8) (Version 7.01;
GraphPad Software, Inc.), comparing either vehicle
normoxia or vehicle OGD with all other treatments.
A value of p < 0.05 was considered significant.

Results
HBMEC monocultures
Protein levels from HBMEC lysates were significantly
lower post-OGD compared with vehicle normoxia
wells ( p < 0.001). This was not affected by pretreatment
with CBDV or CBG (Supplementary Fig. S1C, F).

IL-6, ICAM-1, and MCP-1 were significantly in-
creased in cell culture medium 24 h after 4-h OGD
compared with normoxia vehicle ( p < 0.05; Fig. 1A–
F). Pretreatment with CBG (10 nM–10 lM) displayed
an overall trend to decrease IL-6 and 100 nM,
300 nM, and 10 lM CBG-treated wells were not statis-
tically significant to vehicle normoxia (Fig. 1A). CBG
pretreatment did not alter ICAM-1 and MCP-1 secre-
tion in response to OGD (Fig. 1B, C).

Pretreatment with CBDV (10 nM–1 lM and 10 lM)
did not attenuate IL-6 levels 24-h post-OGD. However,
3 lM CBDV was not significantly different from
vehicle normoxia (Figure 1D). Pretreatment with 3
and 10 lM CBDV significantly increased levels of
ICAM-1 24-h post-OGD ( p < 0.05, Fig. 1E). CBDV
(100 nM–10 lM) concentration-dependently reduced
levels of MCP-1, an effect that was significantly differ-
ent to vehicle OGD at 3 and 10 lM ( p < 0.05; Fig. 1F).

Pericyte monocultures
Protein levels from pericyte monocultures were not
significantly altered by the OGD protocol or drug treat-
ment (Supplementary Fig. S1A, D). A 4-h OGD in-
creased levels of IL-6, VEGF, and IL-8 measured in
cell culture medium 24-h post-OGD (Fig. 2A–F).

In pericyte monocultures, neither CBG nor CBDV
(10 nM–3 lM) altered IL-6 levels post-OGD; however,
both compounds increased IL-6 levels at 10 lM
( p < 0.0001; Fig. 2A, D). Pretreatment with CBG and
CBDV (10 nM–10 lM) did not alter levels of VEGF
(Fig. 2B, E).

At the lowest and highest concentrations tested,
CBG pretreatment increased IL-8 levels compared
with vehicle normoxia and vehicle OGD ( p < 0.05;
Fig. 2C). At 100 and 300 nM, CBG did not alter in-
creased levels of IL-8 produced by OGD (Fig. 2C).
CBDV did not affect IL-8 levels post-OGD, although
there was a trend to produce an increase in IL-8 at
10 lM (Fig. 2F).

Astrocyte monocultures
IL-6 levels were not statistically different to vehicle nor-
moxia 24 h after 4-h OGD (70.03 pg$mL normoxia vs.
65.29 pg$mL OGD, data not shown), but levels of IL-6
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FIG. 1. The effects of CBG and CBDV on HBMEC monocultures. Medium was analyzed for IL-6 (A, D),
ICAM-1 (B, E), and MCP-1 (C, F) 24 h after 4-h OGD. Data were normalized to total protein (calculated using
a BCA assay) and are given as a % change from the normoxia vehicle presented as means with error bars
representing SEM. n = 6–9 from three experimental repeats. *, Significant difference compared with
vehicle normoxia (vehicle N) (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). $p < 0.05, $$p < 0.01,
$$$p < 0.001, and $$$$p < 0.0001) significant difference to vehicle OGD, one-way ANOVA with Dunnett’s post
hoc analysis. ANOVA, analysis of variance; BCA, bicinchoninic acid; CBDV, cannabidivarin; CBG, cannabigerol;
HBMEC, human brain microvascular endothelial cell; ICAM-1, intracellular adhesion molecule-1; IL-6,
interleukin-6; MCP-1, monocyte chemoattractant protein-1; OGD, oxygen-glucose deprivation; SEM, standard
error of the mean.
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FIG. 2. The effects of CBDV and CBG on pericyte monocultures. Medium 24 h after 4-h OGD was analyzed
for IL-6, VEGF, and IL-8 (A–F). Data were normalized to total protein and are given as a % change from the
normoxia vehicle, presented as means with error bars representing SEM. n = 6–9 from 3 experimental
repeats. *, Significant difference compared with vehicle normoxia (vehicle N) (*p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001). $p < 0.05, $$p < 0.01, $$$p < 0.001, and $$$$p < 0.0001) significant difference
to vehicle OGD, one-way ANOVA with Dunnett’s post hoc analysis. VEGF, vascular endothelial growth factor.
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were significantly increased 24 h after 8-h OGD
( p < 0.01; Figure 3A and C). Therefore, subsequent ex-
periments in astrocytes were conducted using an 8-h
OGD protocol.

An 8-h protocol significantly decreased protein
levels in astrocyte cell lysates ( p < 0.01 versus vehicle
normoxia; Supplementary Fig. S1B, E). Treatment
with 10 lM CBG decreased protein content com-
pared with both vehicle OGD and vehicle normoxia
( p < 0.0001; Supplementary Fig. S1B). Pretreatment
with CBDV did not prevent the decrease in pro-
tein content caused by the 8-h OGD protocol ( p <
0.05 vs. vehicle normoxia); however, 30 nM, 1 and
10 lM CBDV did not exhibit a significant differ-
ence compared with vehicle normoxia (Supplemen-
tary Figure S1E).

Pretreatment with CBG 10 nM–3 lM attenuated astro-
cytic IL-6 levels ( p > 0.0001 vs. vehicle OGD; Fig. 3A);
however, at 10 lM CBG significantly increased IL-6
(Supplementary Fig. S2A). CBDV reduced levels of IL-6
compared with vehicle OGD at 30 nM ( p < 0.05), 1 lM
( p < 0.01), and 10 lM ( p < 0.05; Fig. 3C). CBDV at
300 nM and 3 lM also appeared to decrease IL-6 levels,
exhibiting no statistical difference to vehicle normoxia.

Astrocytic VEGF levels were significantly increased
post-OGD ( p < 0.0001; Fig. 3B, D). CBG pretreatment
appeared to attenuate VEGF levels at 100 nM and
3 lM, but this did not reach significance to vehicle
OGD (Fig. 3B). Conversely, 10 lM CBG significantly
increased VEGF compared with both vehicle normoxia
and vehicle OGD ( p < 0.001; Supplementary Fig. S2B).
Pretreatment with CBDV (10 nM–10 lM) decreased

FIG. 3. The effects of CBG and CBDV on astrocyte monocultures. (A-D) Medium 24 h after 8-h OGD were
analyzed for IL-6 and VEGF. Data were normalized to total protein and are given as a % change from the
normoxia vehicle, presented as means with error bars representing SEM. n = 5–9 from 3 experimental
repeats. *, Significant difference compared with vehicle normoxia (vehicle N) (*p < 0.05, **p < 0.01,
***p < 0.001, and ****p < 0.0001). $p < 0.05, $$p < 0.01, $$$p < 0.001, and $$$$p < 0.0001) significant difference
to vehicle OGD, one-way ANOVA with Dunnett’s post hoc analysis.
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VEGF levels in a concentration-dependent manner. At
10 lM this was not significantly different to vehicle
normoxia and significantly different to vehicle OGD
( p < 0.0001; Fig. 3D).

LDH was significantly elevated in astrocyte medium
post-OGD ( p < 0.01; Fig. 4A, C). Pretreatment with 1
and 3 lM CBG significantly attenuated LDH activity
( p < 0.05; Fig. 4A); however, at 10 lM CBG signifi-
cantly increased LDH activity (Supplementary Fig. S2C).
CBDV exhibited a biphasic concentration response, de-
creasing LDH activity at lower (10 nM; p < 0.01) and
higher concentrations ( p < 0.05; 1 and 3 lM), but in-
creasing levels at 100 nM ( p < 0.001; Fig. 4C).

None of the antagonists tested blocked CBG (3 lM)-
mediated decreases in LDH; however, application of
CID1602 (antagonist for GPR55) appeared to potenti-
ate the effects of CBG ( p < 0.001; 3 lM CBG + CID1602
vs. vehicle OGD; Fig. 4B). In the presence of an-
tagonists for GPR55, CID1602 and O1918, CBDV
(1 lM)-mediated decreases in LDH were no longer
significantly different to vehicle OGD (Fig. 4D). In
addition, SB366791 appeared to potentiate the LDH-
reducing effects of CBDV ( p < 0.01; 1 lM CBDV
SB366791 vs. vehicle OGD, Fig. 4D).

As CBDV and CBG reduced cell damage in astro-
cytes, we next investigated whether these compounds

FIG. 4. The effects of CBG and CBDV treatment alone (A, B) and with antagonists (C, D) on LDH release
from astrocyte monocultures. Medium 24 h after 8-h OGD were analyzed LDH. Data were normalized to
total protein and are given as a % change from the normoxia vehicle, presented as means with error bars
representing SEM. n = 5–6 from 3 experimental repeats. *, Significant difference compared with vehicle
normoxia (vehicle N) (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). $p < 0.05, $$p < 0.01, $$$p < 0.001,
and $$$$p < 0.0001) significant difference to vehicle OGD, one-way ANOVA with Dunnett’s post hoc analysis.
LDH, lactate dehydrogenase.
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(at the most efficacious lower and higher concentrations
tested) influenced levels of DNA damage proteins. Lev-
els of DNA damage proteins, ATR, Chk1, Chk2,
H2A.X, and p53 were increased in astrocyte cell lysates
24 h after 8-h OGD. MDM2 showed a trend for in-
creasing post-OGD, but levels of p21 were not affected
(Fig. 5A–N). Application of CBG (1 lM) before OGD
significantly reduced levels of Chk1 and Chk2 com-
pared with OGD vehicle ( p > 0.01, p < 0.05; Fig. 5B,
C). In addition, CBG pretreatment at 10 nM, 1 lM,
and 3 lM decreased H2A.X levels that displayed
trend for increasing post-OGD ( p > 0.05; Fig. 5D). Lev-
els of p53 were also increased post-OGD ( p > 0.05) and
attenuated by CBG in a concentration-dependent man-
ner that was significant at 1 lM ( p > 0.05; Fig. 5K). By
contrast, CBDV (10 nM, 100 nM) increased levels of
ATR (p > 0.0001, p < 0.01; Fig. 5E) as well as increas-
ing levels of Chk1 at 100 nM (p < 0.05) and Chk2 at
10 nM (p < 0.01; Fig.5F). CBDV (100 nM and 1 lM)
also increased levels of H2A.X, p53 and MDM2
(p < 0.05; Fig. 5H, L, N).

Discussion
In this study we assessed whether non-euphoric phyto-
cannabinoids CBG and CBDV protected cells of the
BBB in a cellular model of ischemic stroke. Despite
promising preclinical data, drugs developed for one
or more of the hallmarks of stroke have failed once
they have reached clinical trials.23,24 Poor translational
efficacy is likely to stem from the multifactorial patho-
physiology of ischemic stroke and complicating factors
among elderly patients, which are often overlooked
in ischemic stroke modeling.25 These points empha-
size the need to generate new, effective therapies
for patients, which target multiple aspects of stroke
pathogenesis.26

CBD has been widely studied as a neuroprotectant,
partly because of its promiscuous pharmacology, toler-
able safety profile in humans and absence of euphoric
effects.10,27,28 However, other phytocannabinoids are be-
ginning to gain significant interest as therapeutic agents.
CBG has displayed prominent anti-inflammatory and
antioxidant capabilities20,29,30 and the antiepileptic
properties of CBDV have been well documented.31–33

Recently, CBDV has been shown to reduce inflamma-
tory cytokine release in a model of intestinal inflam-
mation.34 Our results demonstrate that CBDV and
CBG exhibit protective properties against OGD-induced
damage in astrocytes and HBMECs, modulating a range
of biochemical parameters measured post-OGD. For

CBDV, its cytoprotective effects appeared to partially in-
volve GPR55, but a target for CBG was not identi-
fied. These data warrant their further investigation
into these compounds as neuroprotectants and to assess
their clinical applicability, specifically, their efficacy in
in vivo models of ischemic stroke and whether they
are protective when applied post-OGD.

Post-cerebral ischemia and elevated levels of proin-
flammatory cytokine IL-6 are associated with increased
neuronal cell necrosis and are correlated with stroke se-
verity, increases in mortality rate, poor performance,
and functional disability.35–38 In this study, CBG and
CBDV significantly decreased levels of IL-6 in astro-
cytes, suggesting that like CBD, CBDV and CBG may
offer protection against inflammation caused by ische-
mic stroke.12 Increases in IL-6 post-ischemia have also
been implicated in BBB breakdown and tight junc-
tion remodeling, including reduced expression of VE-
cadherin, occludin, and claudin-5.39 Although there
was a trend for CBDV and CBG to attenuate IL-6 levels
in HBMECs, more pronounced reductions in IL-6 were
observed in astrocytes. Astrocytes provide biochemical
and mechanical support that help to maintain the BBB,
as well as providing neurovascular crosstalk between
neurons and cerebral blood vessels.40 Unlike in mono-
culture, in vivo, astrocyte endfeet are in direct contact
with endothelial cells; thus, modulating the astrocyte
inflammatory response in situ may act to preserve
BBB integrity indirectly by soluble factors secreted by
astrocytes or by preserving normal astrocyte function.

Mice lacking the receptor for adhesion molecule,
MCP-1 (CCR2), have significantly reduced infarct sizes
together with reduced BBB permeability and similarly,
MCP-1 knockout mice have a reduced influx of hema-
togenic cells from systemic circulation and improved
neurological outcome.41,42 Bonifa!cić et al. found a rela-
tionship between patients with poor outcomes 90 days
after stroke and elevated levels of MCP-1 and a recent
meta-analysis revealed that higher baseline circulating
levels of MCP-1 correlated with a higher risk of ische-
mic stroke.43,44 Our data show that CBDV concentra-
tion dependently decreased levels of MCP-1 secreted
by HBMECs when applied at the same time as initiating
OGD, suggesting that CBDV might offer protection
against MCP-1-related damage post-stroke and/or
offer protection in individuals at a higher risk of ische-
mic stroke. These data are also consistent with that of a
recent study showing that CBDV treatment attenuated
MCP-1 mRNA levels in colonic tissue post-colitis.34 Of
interest, this study also showed that CBDV was able to
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FIG. 5. The effects of CBG and CBDV on DNA damage markers (ATR [A,E] , Chk1 [B,F] , Chk2 [C,G] , H2A.X
[D,H] , MDM2 [I,L] , p21 [J,M] , and p53 [K,N] from astrocyte cell lysates, 24 h after 8-h OGD. Data were
normalized to total protein and are given as MFI as a % change from the normoxia vehicle (vehicle N);
means with error bars represent SEM. n = 6–8 from 3 experimental repeats. *, Significant difference
compared with vehicle normoxia (vehicle N) (*p < 0.05, **p < 0.01). $p < 0.05, $$p < 0.01 significant difference
to vehicle OGD, one-way ANOVA with Dunnett’s post hoc analysis. MFI, mean fluorescent intensity.
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reduce intestinal permeability, an effect that may be
replicated at the BBB, but this has yet to be investigated.

We also measured VEGF secreted by pericytes and
astrocytes post-OGD reperfusion as elevations in
VEGF are correlated with increased endothelial barrier
permeability post-ischemia.45–47 Li and co-authors
found that astrocyte-derived VEGF mediated endo-
thelial barrier disruption, which was associated with
decreases in occludin and claudin-5.47 Interestingly,
whilst CBG and CBDV did not affect pericyte-derived
VEGF, CBDV decreased VEGF secretion in astrocytes
in a concentration-dependent manner and CBG
exhibited a trend for decreasing VEGF at 100 nM and
3 lM. As VEGF is known to facilitate BBB opening
these compounds may offer protection against BBB
breakdown post-ischemia; however, the mechanisms
in which these compounds decrease VEGF remains
to be elucidated.

During IR injury cells undergo a combination of ap-
optosis and necrosis, causing various cellular compo-
nents to be released into the extracellular space. One
of these components, LDH, is often used as a marker
of cell damage. Previous studies have shown that IR
models cause LDH leakage into cell culture medium48,49

and clinically, LDH has been trialled as a marker of
ischemic severity.50,51 Pretreatment with CBDV and
CBG offset increases in LDH, suggesting both com-
pounds mitigate cellular damage produced by OGD
reperfusion. Application of receptor antagonists revealed
that CBDV appeared to mediate its effects on LDH lev-
els by GPR55; however, none of the antagonists tested
blocked the effect of CBG. This could be explained by
the nonspecific antioxidant properties of cannabinoids,
namely owing to their phenolic rings and hydroxyl
moieties.17,52 Indeed, previous studies have shown
that CBD increases antioxidant enzymes in BV2 micro-
glial cells,53 as well as attenuating oxidative stress
and increasing mitochondrial bioenergetics in OGD
reperfusion-damaged neurons.18 Similarly, CBD, CBDV,
and CBG were able to prevent oxytosis in a preclinical
drug screen for Alzheimer’s disease and CBG exhibited
antioxidant capacity in neuroblastoma cells.54,55 More
data are clearly needed on the specific and nonspecific
mechanisms in which these compounds mediate their
protective effects, particularly whether their antioxi-
dant status is responsible for reducing cell damage in
the context of ischemia.

Ischemia is a pathophysiological stressor and as a
consequence, nonspecific single- and double-strand
DNA breaks (ssDNA/dsDNA breaks) and replication-

associated DNA damage responses (DDRs) occur. DNA
damage can activate the DDR pathway and DDR re-
sponse proteins ATR, Chk1, Chk2, H2A.X, MDM2,
p21 and p53 that govern elements of DNA repair, cell
cycle arrest, apoptotic and necrotic cell death.56–59

These processes are central in IR injury and early stud-
ies found that neurons are the first to exhibit signs of
DNA damage (0.5–8 h reperfusion) followed by astro-
cytes (24 h reperfusion).60 Thus, we next investigated
the effect of CBDV and CBG on DDR proteins post-
OGD in astrocytes.

In support of previous studies, our OGD protocol
(and subsequent reperfusion period) increased levels
of almost all measured DDR proteins in astrocyte
monoculture lysates.61 In stroke patients, Huttner
and colleagues found evidence of ATM/ATR activity
in the penumbra of cortical neurons 7–10 days post-
ischemia.62 Studies have also shown p53 activation is
implicated in ischemia-induced neuronal cell death,
with elevated levels of p53 also present in reactive as-
trocytes and microglia.63,64 Ahn and colleagues found
that inhibition of p53 by pifithrin-a reduced OGD-
induced cell death in cultured astrocytes, and as a sec-
ondary effect reduced elevated levels of glutamate and
glial fibrillary acidic protein (GFAP), which were also
increased post-OGD.65 To our knowledge, this is the
first study to show that CBG pretreatment reduced lev-
els of Chk1, Chk2, H2A.X, and p53 in astrocytes post-
OGD. It is likely that these decreases in DNA damage
proteins were caused indirectly, possibly because of the
overall reductions in cellular damage and inflamma-
tion, as well as the known antioxidant properties of
CBG that have both been demonstrated in other stud-
ies.20,66 Nevertheless, direct modulation of these pro-
teins should not be ruled out particularly as PPAR-c,
a known target for phytocannabinoids, has been impli-
cated in ATM signaling and the DDR.67

Pretreatment with CBDV significantly increased ex-
pression of the majority of DNA damage proteins in as-
trocytes and exhibited a trend for increasing p21. CBD
was recently found to increase protein expression of
ATM and p21, but not p53 in an in vitro model of gas-
tric cancer, suggesting CBD promotes cell cycle arrest
at the G0–G1 phase.68 Our data suggest that CBDV
acts in a similar manner; however, it is important to
emphasize that p21 has roles in both enhancing and
inhibiting apoptosis depending on the type of stressor;
thus, generating this response in a cancer cell model
will be different to responses of astrocytes subjected
to OGD. Low dose N-methyl-D-aspartate (NMDA) to
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simulate ischemic preconditioning was shown to increase
MDM2 protein expression, preventing p53 stabilization
in mouse cortical neurons and ischemia-induced apopto-
tic cell death.69 CBDV significantly increased levels of
MDM2, which is a key protein involved in p53 deg-
radation and thus promotion of cell survival. Future
studies should clarify the implications of CBDVs abil-
ity to increase levels of DNA damage proteins in ische-
mia and establish whether modulating DNA damage
and repair in astrocytes can influence post-stroke in-
jury and recovery.

Conclusions
This study provides novel data on the neuroprotective
and anti-inflammatory properties of CBG and CBDV
in an in vitro model of IR. These data, together with ev-
idence from other studies, corroborate the protective
properties of these compounds and further studies
are needed to elucidate the mechanism of action of
CBG and CBDV and whether they can modulate
BBB permeability in more clinically relevant in vivo
models of ischemic stroke. There is lack of effective
treatments for ischemic stroke, a condition that will in-
crease in prevalence in coming years, to which canna-
binoids may offer a unique therapeutic strategy.
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Abbreviations Used
D9-THC¼ delta9-tetrahydrocannabinol
ANOVA¼ analysis of variance

BBB¼ blood–brain barrier
BCA¼ bicinchoninic acid

CBDV¼ cannabidivarin
CBG¼ cannabigerol
CNS¼ central nervous system
DDR¼DNA damage response

ELISA¼ enzyme-linked immunosorbent assay
GFAP¼ glial fibrillary acidic protein

HA¼human astrocytes
HBMECs¼human brain microvascular endothelial cells

ICAM-1¼ intracellular adhesion molecule-1
IR¼ ischaemia–reperfusion

LDH¼ lactate dehydrogenase
MCP-1¼monocyte chemoattractant protein-1

MFI¼mean fluorescent intensity
NMDA¼N-methyl-D-aspartate

OGD¼ oxygen-glucose deprivation
TEER¼ trans epithelial resistance
VEGF¼ vascular endothelial growth factor

VCAM-1¼ vascular adhesion molecule
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3.1 Supplemental information 
 
 

IL-6  
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 
66.09 191.10 226.59 1037.36 

285.33 509.77 

SD 11.46 80.32 71.53 359.27 55.13 168.85 
SEM 3.82 23.19 20.65 103.71 18.38 56.28 

 

VEGF 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 121.53 225.47 249.61 201.46 208.37 188.32 
SD 

43.75 57.84 131.13 101.97 105.88 57.92 
SEM 

14.58 19.28 43.71 33.99 35.29 19.30 
 

IL-8 (pg.mL) Vehicle 
normoxia 

Vehicle OGD CBG 
10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 1792.51 
2565.71 

 
2688.87 2673.21 2716.32 5258.47 

SD 759.68 485.39 
 

875.53 
 

865.50 
 170.40 

 
876.31 

SEM 287.13 183.46 291.84 288.00 98.38 505.94 
 

Table II: Raw data from ELISA of pericyte cell culture medium. Note that these values are taken 

as an average from experimental repeats with cells at different passages and have not been 

normalised to total protein. 
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IL-6 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 
66.09 191.10 226.59 1037.36 

121.25 167.12 

SD 
11.46 80.32 71.53 359.27 

21.78 43.50 

SEM 
3.82 23.19 20.65 103.71 

8.89 12.76 

 

VEGF 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 98.5 253.6 249.69 232.61 273.47 190.55 
SD 

60.4 84.82 59.80 170.75 66.78 51.12 
SEM 

16.75 28.27 19.93 56.92 27.26 29.87 
 

Table III: Raw data from ELISA of astrocyte cell culture medium. Note that these values are 

taken as an average from experimental repeats with cells at different passages and have not 

been normalised to total protein. 

IL-6 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 
248.15 457.63 453.34 189.71 228.72 397.39 

SD 55.16 243.32 263.86 119.89 73.79 248.87 
SEM 24.67 86.03 87.95 48.95 24.60 82.96 

 

MCP-1 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
 10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV  
10 µM 

Mean 2304.50 3573.39 4756.84 3088.78 6861.55 3433.11 
SD 

1050.72 1150.08 1878.69 1663.37 4206.34 1614.60 
SEM 

350.24 383.36 626.23 743.88 1717.23 659.16 
 

ICAM-1 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBG 
10 nM 

CBG 
10 µM 

CBDV 
10 nM 

CBDV 
10 µM 

Mean 520.69 882.82 799.72 645.74 362.35 333.93 
SD 

342.50 448.88 422.61 295.39 72.88 85.87 
SEM 

139.82 183.25 172.53 120.59 29.75 35.06 
 

Table IV: Raw data from ELISA of human brain microvascular endothelial cell (HBMEC) cell 

culture medium. Note that these values are taken as an average from experimental repeats 

with cells at different passages and have not been normalised to total protein. 
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4. CBDA modulates blood brain barrier (BBB) in vitro post 

oxygen-glucose deprivation 

 

Abstract 

Background and purpose 

Cannabidiol (CBD) has demonstrated a plethora neuroprotective effects and previously 

our group showed CBD reduced blood-brain barrier (BBB) permeability in an in vitro 

model of ischaemic stroke. We aimed to investigate whether CBD’s acidic precursor, 

cannabidiolic acid (CBDA), also reduced BBB permeability and protected cells against 

oxygen-glucose deprivation (OGD) induced damage. 

 

Experimental Approach 

Human brain microvascular endothelial cells (HBMECs), pericytes, astrocytes and 

neurons were grown in a four-cell transwell style BBB model. Pericytes and neurons 

were also grown in monoculture. Oxygen-glucose deprivation (OGD) was used to 

model ischaemia. Medium was analysed for proinflammatory mediators and heat 

shock proteins post OGD. Propidium iodide staining was also conducted in neurons to 

evaluate neuronal cell death. Mechanisms of action were probed in pericytes using 

appropriate receptor antagonists. 

 

Results 

CBDA 3 PM prevented an increase in permeability post OGD between 4 h (post OGD) 

and 24 h (p<0.05). CBDA (1 PM) also protected neurons from OGD induced damage as 

shown by propidium iodide staining and by visual assessment using a light microscope 

(72 h post OGD). 

 

In pericyte monocultures, CBDA (10 nM- 1 PM) attenuated increases in interleukin 6 

(IL-6) 24 h post 4 h OGD (p<0.01). CBDA did not modulate levels of VEGF, ICAM-1 but 

increased IL-8 at 10 PM (p<0.001). The 5-HT1A antagonist, WAY-100635, inhibited 
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CBDAs ability to reduce IL-6 secretion. CBDA (100 nM) also reduced levels of 

HSP27(ps78) and HSP90 in neuronal monocultures. 

Conclusions and implications  

These data suggest that CBDA, like CBD, displays anti-inflammatory and 

neuroprotective properties, as well as modulating BBB permeability in a four-cell 

model. CBDA appears to mediate some of its anti-inflammatory effects in pericytes in a 

similar mechanism to CBD; via the 5-HT1A receptor. Overall, further research is 

warranted into CBDAs neuroprotective effects in in vivo models of ischaemic stroke 

and to elucidate potential interactions at other receptors. 
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6.1 Introduction 

The development and maintenance of the BBB is governed by specialised cell types 

namely human brain microvascular cells (HBMECs), astrocytes and pericytes. 

Collectively they regulate the formation of tight junctions, barrier polarization, 

paracellular permeability and expression of transporter proteins, which are 

characteristic features of the BBB (Abbott, 2002; Abbott et al., 2010). The BBB also has 

significant interaction with surrounding cells, namely neurons and microglia, and 

altogether form the neurovascular unit (NVU) (Reviewed in Iadecola, 2017; McConnell 

et al., 2017). Crosstalk between neurons and the cells of BBB is essential for functional 

hyperaemia, BBB maintenance, immune responses and metabolic waste clearance 

(Nippert, Biesecker and Newman, 2018). In addition, pericytes are key players in 

regulating cerebral blood flow as well as tight junction formation and maintenance in 

HBMECS (Bell et al., 2010; Daneman et al., 2010).  

 

Ischaemia-reperfusion (IR) ensues significant damage upon the BBB, specifically 

oxidative stress, glutamate release and immune cell activation, which stimulate the 

release of pro-inflammatory cytokines, disruption of endothelial cell tight-junctional 

complexes, as well as increases in the expression of adhesion molecules. These 

pathological mechanisms increase BBB permeability and facilitate leukocyte infiltration 

into the CNS, perpetuating neuronal damage in the potentially salvageable penumbral 

region. Only two treatments, tissue plasminogen activator (tPA) and surgical clot 

removal, are licenced to treat ischaemic stroke (Minnerup et al., 2012). Recently it was 

reported in a study where patients were receiving thrombolysis treatment, good 

functional outcome decreased by 75% for every 1% increase in BBB permeability 

measured 5 days post stroke (Nadareishvili et al., 2019). Currently, there are no 

successful treatments to mitigate BBB permeability which can dramatically affect 

neurological outcome and functional recovery post stroke. 

 

Cannabidiol (CBD) does not activate the cannabinoid receptors CB1 and CB2 but can 

activate a plethora of other pharmacological targets (Russo and Marcu, 2017). CBD 
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possesses significant anti-inflammatory, antioxidant and neuroprotective properties 

(Esposito et al., 2007; Ruiz-Valdepeñas et al., 2011) and studies have shown CBD 

protects against hypoxia induced neuronal cell damage (Alvarez et al., 2008; Castillo et 

al., 2010; Lafuente et al., 2011). At the BBB, CBD mediates its protective effects at least 

in part through the activation of TRPV2, A2A, PPARy and 5-HT1A (Mecha et al., 2013; 

Hind, England and O’Sullivan, 2016; Luo et al., 2019). Despite extensive interest in CBD, 

data on CBDs acidic precursor cannabidiolic acid (CBDA, particularly its neuroprotective 

effects, is extremely limited (Formato et al., 2020; Stone et al., 2020). CBDA has 

displayed efficacy as an anti-hyperalgesic, antiemetic, an antiepileptic, an anti-cancer 

agent and as an inhibitor and down-regulator of the cyclooxygenase enzyme, COX-2 

(Takeda et al., 2008; E M Rock and Parker, 2017; Rock, Limebeer and Parker, 2018; 

Anderson et al., 2019) Bolognini et al., (2013) showed that CBDA is 1000 times more 

potent than CBD as an antiemetic, via activation of 5-HT1A. Additionally, CBDA has been 

shown to activate various transient receptor ion channels, albeit with a lower potency 

than CBD (De Petrocellis et al., 2008). Given these data it is possible that CBDA acts 

similarly to CBD in other conditions, such as ischaemic stroke. Recently Anderson et al., 

(2019) characterised the pharmacokinetics and CNS penetration of acidic 

phytocannabinoids and the poor brain: plasma ratio of CBDA was positively improved 

by administration with a Tween 80 vehicle, highlighting that CBDA can penetrate the 

brain when administered in the right formulation.  

 

In light of the above, together with previous data generated by our group, we 

hypothesised that CBDA may also be protective at the BBB through a similar 

mechanism to CBD. The aim of this study was to assess the effects of pre-treatment 

with CBDA in pericyte and neuronal cell monocultures and an in vitro BBB model 

(Stone et al., 2018). BBB permeability was assessed using transepithelial resistance 

(TEER) and levels various cytokines and chemokines were assessed in cell culture 

medium. Possible mechanisms were probed using appropriate receptor antagonists. 
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6.2 Materials and Methods 

 
Permeability experiments 
 
HBMECs, astrocytes, pericytes and neurons were grown in a contact four-cell model in 

their respective media (ScienCell, UK). HBMECs were seeded in the apical side of 

collagen coated 3.0 µm pore polytetrafluoroethylene membrane Transwell inserts (12 

well type; Corning Costar, USA). Astrocytes and pericytes were seeded as a mixed 

culture on the underside of the insert. Neurons were cultured on poly-L-lysine coated 

coverslips which were placed on the cell culture well bottom. For full methodology see 

Stone et al., (2018). Cells were grown to confluency and the resistance across the 

membrane was measured using STX-3 chopstick electrodes linked to an epithelial 

voltohmeter (World Precision Instruments, UK). These measurements were used to 

evaluate barrier integrity. For monoculture experiments pericytes and neurons (P3-P5 

and P1 respectively, ScienCell, UK) were cultured until confluency in 24 well cell culture 

plates or 48 well plates for neurons. 

 

OGD protocol 
 
To simulate ischaemic conditions, medium was replaced with glucose free RPMI 

medium (Gibco, UK) containing increasing concentrations of cannabidiolic acid (CBDA) 

or cannabidiol (CBD), alongside a vehicle control (0.01% acetonitrile or ethanol) and 

then placed in an anoxic bag (BD, anaerobe) for 4 h plus an additional 20 minutes to 

ensure anaerobic conditions (Hind et al., 2015;2016). For normoxic conditions, the 

same concentrations were applied but these were prepared in normal pericyte or 

neuronal medium (Sciencell, UK) and maintained in normal oxygenated conditions. 

After 4 h OGD, medium was aspirated and replaced with normal pericyte or neuronal 

medium containing the relevant concentrations of CBDA or CBD for a 20 h reperfusion 

period. At 24 h, medium from both conditions (OGD and normoxia) was sampled and 

cells were lysed with RIPA buffer containing protease and phosphatase inhibitors. 

Medium and lysates were stored at -80qC for future analysis. 
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Antagonist experiments 
 
Pericytes (P3-P5) were cultured until confluency in 24 well cell culture plates. For OGD 

conditions the medium was replaced with glucose free RPMI medium (Gibco, UK) 

containing relevant antagonists, AM251 (100 nM), AM630 (100 nM), GW6471 (100 

nM), GW9962 (100 nM), (S)-WAY 100135 (300 nM), O1918 (1 µM), capsazepine (1 

µM), CID16020046 (1 µM), SB366791 (1 µM). CBDA 1 PM alone and a vehicle control 

(0.01% acetonitrile). After 15 minutes, CBDA 1 PM was applied to the antagonist 

treated wells and then placed in an anoxic bag (0% O2) for 4 h (BD, anaerobe). After 4 

h, medium was replaced with normal pericyte medium containing the relevant 

antagonists and 15 minutes later CBDA 1 PM was applied to the antagonist treated 

wells. 

 

At 24 h, medium from both conditions (OGD and normoxia) was sampled and cells 

were lysed with RIPA buffer containing protease and phosphatase inhibitors. Medium 

and lysates were stored at -80qC for future analysis. 

 
Biochemical analysis 
 
Medium samples were analysed for Interleukin-6 (IL-6) a pro-inflammatory mediator, 

intracellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), vascular endothelial 

growth factor (VEGF) using duo-set ELISA by affymetrix and R&D systems, UK. Data 

obtained from monolayer experiments were normalised to total protein using a 

bicinchoninic acid (BCA) assay (Sigma-Aldrich, UK). 

 

Propidium Iodide (PI) Staining  
 
At 72 h post OGD, neurons were washed with 1X PBS and incubated with a 100 μL/mL 

solution of PI prepared in PBS for 1-2 minutes at room temperature in the absence of 

light. PI is excluded from live cells but binds to double stranded DNA of dead or dying 

cells, thus the red staining is proportional to the number of dying cells. Images were 

obtained immediately using a Nikon DS-Fi1 digital camera linked to an upright 
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fluorescence microscope (Nikon Eclipse 50i) with a 20x objective. Images were visually 

assessed to determine proportion of dead cells.  

 

Materials 
 
CBDA was obtained from Sigma, UK and CBD from Tocris, UK. CBDA was dissolved in 

100% acetonitrile and CBD in 100% ethanol to a stock concentration of 10 mM and 

were stored at -20qC. AM251, AM630, GW6471, capsazapine, GW9962, O1918, 

CID16020046, SB366791 (Tocris, UK) were dissolved in dimethyl sulfoxide as stock 

solutions of 10 mM. (S)‐WAY100635 was dissolved in deionised water. Antagonists 

were stored at -20°C and dilutions were made fresh as required. 

Statistical Analysis 
 
Data are represented as the mean ± S.E.M, data were assessed for normality using the 

D'Agostino-Pearson normality test and subsequently analysed using one-way ANOVA 

with Dunnett's post hoc analysis. All statistical analyses were conducted using 

GraphPad prism (7/8) (Version 7.01; GraphPad Software Inc.), comparing either vehicle 

normoxia or vehicle OGD with all other treatments. TEER and IL-6 data from BBB 

model were analysed using two-way ANOVA with Turky’s multiple comparisons test. A 

p value of <0.05 was considered significant. 
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6.3 Results 

6.3.1 The effects of CBDA and CBD in a 4-cell BBB model  

Subjecting co-cultures to a 4 h OGD increased permeability, as shown by decrease in 

TEER (0 h-4 h), measured immediately post OGD (Figure 6.1 A, B). Pre-treatment with 

CBD displayed a trend to prevent permeability increases between 4 h and 24 h post 

OGD, but this did not achieve statistical significance (Figure 6.1A). There was a 

significant difference between treatment with 300 nM CBD and 1 µM CBD at 48 h and 

72 h. CBDA (300 nM-3 PM) exhibited a trend to decrease permeability between 4 h 

and 24 h post OGD and was significant at 3 PM (p<0.05; Figure 6.1B). There was a 

trend for CBD (3 PM) and CBDA (1 PM) to decrease levels of IL-6 at 24 h and 48 h but 

this did not reach significance (Figure 6.2A,B). 

 

CBDA prevented cell death in neurons present in the 4-cell model which had been 

subjected to 4 h OGD; as shown by fewer PI-stained neuronal nuclei vs vehicle control 

wells, Figure 6.3.  

 



 
 

69 

 

  

Figure 6.1. The effects of CBD (A) and CBDA (B) on permeability (transepithelial resistance, TEER in 
vitro model of the BBB post 4 h oxygen-glucose deprivation (OGD) and a subsequent 20 h 
reperfusion period. TEER was measured at the same intervals prior to medium change/ sampling. 
Compounds were applied prior to OGD, post OGD and at 24 and 48 h post OGD after TEER 
measurement and medium sampling (depicted by black arrows). Data are given as means with error 
bars representing S.E.M. n= 6 inserts based on 3 experimental repeats. Statistical analysis was 
conducted using a two-way ANOVA and multiple comparisons were adjusted for by Turkey’s 
statistical hypothesis test. * denotes a significant difference compared to control (p<0.05), $ 
denotes a significant difference between 300 nM CBD and 1 µM CBD (p<0.05).  
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Figure 6.2. The effects of CBD (A) and CBDA (B) on IL-6 secretion in an in vitro model of the BBB post 4 
h oxygen-glucose deprivation (OGD) and a subsequent 20 h reperfusion period. Medium was sampled 
before OGD, post OGD and at 24 h intervals before drug reapplication. Compounds were applied 
prior to OGD, post OGD and at 24 and 48 h post OGD after TEER measurement and medium sampling 
(depicted by black arrows). Data are given as means with error bars representing S.E.M. n= 6 inserts 
based on 3 experimental repeats. Statistical analysis was conducted using a two-way ANOVA and 
multiple comparisons were adjusted for by Turkey’s statistical hypothesis test. * denotes a significant 
difference compared to control (p<0.05), $ denotes a significant difference between 300 nM CBD and 
1 µM CBD (p<0.05).  
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Figure 6.3. Fluorescence and light microscope images of neurons from the 4-cell BBB model stained 
with propidium iodide at 72 h post 4 h OGD. PI s excluded from live cells but can bind to double 
stranded DNA of dead or dying cells, thus red staining is proportional to the number of dying cells. 1 
μM CBDA (B, D) protected neurons against OGD induced cell death as shown in vehicle control wells 
(A, C). Images were obtained at 20× objective. 
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6.3.2 Pericyte monocultures 

In pericytes, IL-6, VEGF and ICAM-1 levels, but not IL-8, rose significantly 24 h post 4 h 

OGD compared to the normoxia vehicle (p≤0.01; Figure 6.4A-D). Pre-treatment with 

CBDA (10 nM, 100 nM and 1 μM) significantly decreased IL-6 secretion in pericytes 24 

h post OGD compared to OGD vehicle (p<0.01; Figure 6.4A). 10 μM CBDA exhibited a 

trend for decreasing IL-6 but this did not reach significance. CBDA (10 nM- 1 μM) did 

not modulate levels of VEGF but exhibited a slight trend to further increase VEGF at 10 

μM (Figure 6.4B). CBDA (10 nM- 10 μM) had no effect on levels of elevated levels of 

ICAM-1 (Figure 6.4C), but significantly increased IL-8 at 10 μM (p<0.01; Figure 6.4D). 

  

BCA results showed that there was no significant difference in protein levels in OGD 

conditions 24 h post OGD between vehicle and CBDA treated cells (6.6).  

 

Application of 5-HT1A antagonist, WAY-100,635, under OGD conditions inhibited CBDA 

mediated reduction in IL-6 secretion in 24 h post OGD samples (p<0.01 normoxia 

vehicle vs WAY+CBDA 1 μM; Figure 6.5A). All other antagonists tested did not block 

CBDAs ability to reduce IL-6 secretion (Figure 6.5A,B), however PPAR⍺ anatagonist, 

GW6471, appeared to potentiate CBDAs effects (p<0.0001 vs vehicle OGD and p<0.05 

vs vehicle normoxia; Figure 6.5A). 
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Figure 6.4. The effects of CBDA on pericyte cytokine signalling. CBDA attenuated IL-6 secretion (A) 10 µM 
CBDA increased VEGF secretion (B) but had no effect on ICAM-1 (C). 10 nM-1 µM (C) and increased secretion 
of IL-8 (D), n=6-10 from 3 experimental repeats. Data are given as means with error bars representing S.E.M. 
normalised to total protein and expressed as a % change from the normoxia vehicle (vehicle N). Data was 
analysed using a one-way ANOVA and multiple comparisons were adjusted for by Dunnett’s statistical 
hypothesis test. * denotes a significant difference compared to vehicle normoxia  (p<0.05), $ denotes a 
significant difference to vehicle OGD.  
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Figure 6.5. Effect of 1 µM CBDA on IL-6 secretion alongside a range of antagonists; AM251 (A; 100 nM), 
AM630 (A; 100 nM), capsazepine (A; 1 µM), GW6471 (A; 100 nM), WAY-100635 (A; 300 nM), O1918 (A; 1 
µM), GW9962 (B;100 nM), SB366791 (B; 1 µM) and CID16020646 (B; 1 µM). 5-HT1A antagonist WAY-
100,635 blocked the effects of CBDA on IL-6 secretion (A,B) n=6-10 from 3 experimental repeats. Data are 
given as means with error bars representing S.E.M. normalised to total protein and expressed as a % 
change from the normoxia vehicle (vehicle N). Data was analysed using a one-way ANOVA and multiple 
comparisons were adjusted for by Dunnett’s statistical hypothesis test. * denotes a significant difference 
compared to vehicle normoxia (p<0.05), $ denotes a significant difference to vehicle OGD.  
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Figure 6.6. The effects of CBDA on pericyte monoculture protein levels 24 h post 4 h OGD, 
determined using a BCA. Data are given as means with error bars representing S.E.M. 
Data was analysed using a one-way ANOVA and multiple comparisons were adjusted for 
by Dunnett’s statistical hypothesis test, comparing to vehicle normoxia (vehicle N) or 
vehicle OGD.  
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6.3.3. Neuronal monocultures 

In neuronal monocultures, levels of heat shock proteins (HSP), HSP 27 (ps78) and HSP 

90⍺ increased in OGD samples vs normoxia control (p<0.05; Figure 6.7D,H). Levels of 

HSP27 (total) and HSP60 exhibited a trend for being increased post OGD but this did 

not reach significance (Figure 6.7A,B,E,F). CBDA (100 nM) significantly decreased 

HSP27 (ps78) and HSP90 (p>0.05) and exhibited a trend for decreasing HSP27 (total) 

(Figure 6.7B,D,H).CBDA also displayed a trend to decrease HSP60 at all concentrations 

(Figure 6.7F). CBD (100 nM, 1 µM) displayed a trend to decreases HSP27 (total) (Figure 

6.7A) but not HSP27(ps78). CBD also exhibited a trend to decrease HSP60 at 1 µM 

(Figure 6.7E) and HSP90⍺ at 10 nM and 1 µM, but this did not reach significance 

(Figure 6.7G). 

 

Levels of DNA damage markers were not significantly altered 24 h post OGD and were 

not affected by either CBDA or CBD treatment (Figure 6.8).  

 

Exposing neuronal monocultures to a 4 h OGD protocol significantly increased MCP-1 

in 24 h post OGD medium samples and exhibited a trend to increase NADH (Figure 

6.9). Neither CBDA nor CBD significantly decreased levels of NADH post OGD (Figure 

6.9A,B). CBD (100 nM, 1 PM) and CBDA (1 PM) significantly reduced levels of MCP-1 in 

24 h medium samples (p>0.05; Figure 6.9C,D).  

 

Whilst there was a trend for neuronal protein levels to decrease post OGD, this did not 

reach significance nor were protein levels significantly affected by CBD or CBDA (Figure 

6.10). 
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 Figure 6.7. The effects of CBDA and CBD on levels of heat shock proteins in neuronal monocultures post 
OGD. A-J A multiplex HSP protein assay (Milliplex™, 48-615MAG, EMD Millipore ) was used to detect 
changes in HSP levels (HSP-27 total, HSP 27, HSP 60, HSP 70 and HSP 90 respectively) in 24 h samples 
following treatment with CBDA and CBD (10 nM-1 μM) following a 4 h OGD protocol (n=5-6). Data are 
given as means with error bars representing S.E.M. normalised to total protein and expressed as a % 
change from the normoxia vehicle (vehicle N). Data was analysed using a one-way ANOVA and multiple 
comparisons were adjusted for by Dunnett’s statistical hypothesis test. * denotes a significant 
difference compared to vehicle normoxia (p<0.05), $ denotes a significant difference to vehicle OGD.  
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Figure 6.8. The effects of CBDA and CBD (10 nM-1 μM) on DNA damage proteins in neuronal 
monocultures post OGD. A multiplex DNA damage protein assay (Milliplex™, 48-615MAG, EMD 
Millipore) was used to detect changes in levels of ATR (Total), Chk1 (Ser345), Chk2 (Thr68), H2A.X 
(Ser139), MDM2 (total), p21 (Total), p53 (Ser15) respectively in 24 h medium samples following 
treatment with CBDA and CBD and an 4 h OGD protocol (A-N). Data are given as means with error 
bars representing S.E.M. (n=6 from 2 experimental repeats). Data was analysed by One-way 
ANOVA. Multiple comparisons were adjusted for by Dunnett’s statistical hypothesis test.  
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Figure 6.9. The effects of CBDA and CBD (10 nM-1 μM) on neuronal monocultures subjected to a 4 h 
OGD protocol. Following treatment with CBDA and CBD an LDH assay was used to detect changes in 
NADH (A,B) and a multiplex cytokine panel was used to detect changes in MCP-1 (C,D) in 24 h medium 
samples following treatment with CBDA and CBD. Data are given as means with error bars 
representing S.E.M. (n=4 from 1 experimental repeat). Data were analysed by one-way ANOVA. 
Multiple comparisons were adjusted for by Dunnett’s statistical hypothesis test. * denotes a significant 
difference compared to vehicle normoxia (Vehicle N) (p<0.05), $ denotes a significant difference to 
vehicle OGD.  

Figure 6.10. The effects of CBDA on neuronal monoculture protein levels 24 h post 4 h OGD, 
determined using a BCA. Data are given as means with error bars representing S.E.M. Data was 
analysed using a one-way ANOVA and multiple comparisons were adjusted for by Dunnett’s 
statistical hypothesis test, comparing to vehicle normoxia (vehicle N) or vehicle OGD.  
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6.4 Supplemental information 
  

Baseline (0h) post OGD (4h) 24 h post OGD 48 h post OGD 72 h post OGD  
Mean SD Mean SD Mean  SD Mean  SD Mean  SD 

Vehicle 
CBDA 

39.67 3.46 28.56 4.56 29.68 9.48 25.85 4.99 22.03 8.31 

CBDA 
300 nM 

41.72 3.45 32.01 8.20 32.76 8.22 27.53 5.04 26.32 6.93 

CBDA 1 
µM 

44.88 6.46 35.04 7.95 35.60 13.77 35.52 6.04 28.00 8.76 

CBDA 3 
µM 

34.25 7.90 35.00 5.45 34.72 11.72 33.23 5.78 25.11 5.57 

Vehicle 
CBD 

38.19 8.22 26.66 7.19 23.97 6.40 26.88 3.31 18.82 5.29 

300 nM 
CBD 

44.15 4.89 26.69 9.06 22.68 9.76 53.76 2.40 34.72 3.98 

CBD 1 
µM 

36.49 5.43 28.56 5.59 30.15 6.34 56.93 4.43 43.49 5.38 

CBD 3 
µM 

33.32 3.51 28.65 11.70 27.16 12.10 53.95 5.21 39.57 7.22 

 
Table V: Raw average transepithelial resistance (TEER) values measured in ohms per cm2 

obtained from experiments depicted in Figure 6.1. 

VEGF 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBDA 10 
nM 

CBDA 100 
nM 

CBDA 1 uM CBDA 10 
uM 

Mean 118.87 553.46 483.29 471.65 414.39 443.12 

SD 40.14 150.30 97.01 130.54 104.27 73.32 
 

Table VI: Raw data from VEGF ELISA of pericyte cell culture medium. Note that these values are 

taken as an average from experimental repeats with cells at different passages and have not 

been normalised to total protein. 

 

IL-6 (pg.mL) Vehicle 
normoxia 

Vehicle 
OGD 

CBDA 10 
nM 

CBDA 100 
nM 

CBDA 1 uM CBDA 10 
uM 

Mean 121.53 225.47 249.61 201.46 208.37 188.32 
SD 

43.75 57.84 131.13 101.97 105.88 57.92 
 

Table VII: Raw data from IL-6 ELISA of pericyte cell culture medium. Note that these values are 

taken as an average from experimental repeats with cells at different passages and have not 

been normalised to total protein. 
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ICAM-1 
(pg.mL) 

Vehicle 
normoxia 

Vehicle 
OGD 

CBDA 10 
nM 

CBDA 100 
nM 

CBDA 1 uM CBDA 10 
uM 

Mean 
75.94 452.93 466.26 403.67 433.33 466.47 

SD 15.44 92.86 47.14 90.00 73.94 82.16 
 

Table VIII: Raw data from ICAM-1 ELISA of pericyte cell culture medium. Note that these values 

are taken as an average from experimental repeats with cells at different passages and have 

not been normalised to total protein. 

 

IL-8 (pg.mL) Vehicle 
normoxia 

Vehicle 
OGD 

CBDA 10 
nM 

CBDA 100 
nM 

CBDA 1 uM CBDA 10 
uM 

Mean 
1705.32 

2039.62 
 

1877.85 
 

1925.97 
 

1909.49 
 

1822.18 
 

SD 158.84 
 

448.01 
 

291.84 
 

452.47 
 

547.47 
 

239.34 
 

 

Table IX: Raw data from IL-8 ELISA of pericyte cell culture medium. Note that these values are 

taken as an average from experimental repeats with cells at different passages and have not 

been normalised to total protein. 
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6.5 Discussion 
 

BBB breakdown is one of the major consequences of ischaemic stroke and is 

accompanied with unwanted infiltration of noxious substances and peripheral immune 

cell into the brain, which perpetuates neuronal injury (Reviewd in W. Zhang et al., 

2020). Pathological processes that mediate BBB disruption post ischaemia have been 

found to be positively modulated by cannabidiol, including oxidative stress, 

mitochondrial dysfunction, inflammation, DNA and cellular damage (Iuvone et al., 

2004; Ryan et al., 2009; Pazos et al., 2013; Ceprián et al., 2017; Sun et al., 2017). In this 

study we demonstrate that like CBD, CBDA decreases BBB permeability when given 

prior to OGD. We also found CBDA displays anti-inflammatory effects in pericytes and 

exhibits neuroprotective properties in our BBB model and in neuronal monocultures. 

Our data add to the limited knowledge on the biological properties of CBDA and 

further investigation is needed into the neuroprotective properties of this compound, 

particularly in ischaemic stroke.  

 

Pericytes are pivotal in the regulation, maintenance and integrity of the BBB and 

pericyte loss has drastic consequences to the BBB (Nakagawa et al., 2007; Daneman et 

al., 2010). During ischaemia-reperfusion (IR), pericytes secrete a range of pro-

inflammatory mediators including IL-6, IL-8, ICAM-1 and VCAM-1 (Balabanov, 

Beaumont and Dore-Duffy, 1999; Pieper, Pieloch and Galla, 2013; Rustenhoven et al., 

2016). Specifically, elevations in ICAM-1, VCAM-1 and IL-8 post ischaemia are known to 

aid the adhesion and diapedesis of leukocytes across the endothelial barrier 

(Stanimirovic et al., 1997). VEGF also has a significant role in post stroke injury and 

recovery, with mixed conclusions on its role at the BBB. Interestingly, Zechariah and 

colleagues (2013) found that VEGF treatment prior to MCA occlusion reduced infarct 

volume and when pre-treated for 21 days VEGF promoted pericyte coverage of 

endothelial cells. To our knowledge this is the first study to demonstrate pre-treatment 

with CBDA attenuated levels of IL-6 in pericytes post OGD, which was blocked by 5-

HT1A receptor antagonist WAY-100635. This supports data from other studies showing 
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CBDA acts as a 5-HT1A receptor agonist (Bolognini et al., 2013; E. M. Rock and Parker, 

2017), but contrast to findings from a recent study which showed CBDA increased IL-6 

and PPARγ protein levels in mouse prefrontal cortex (Alegre-Zurano, Martín-Sánchez 

and Valverde, 2020). CBD has been shown to attenuate VEGF secretion in experimental 

diabetes (El-Remessy et al., 2006) and in a BBB model subjected to OGD (Hind, England 

and O’Sullivan, 2016). However, in HBMEC monocultures under normal conditions, 

CBD was found to increase VEGF which was inhibited by PPARy antagonist GW9662 

(Hind, England and O’Sullivan, 2016). Interestingly, CBDA (10 µM) appeared to increase 

VEGF levels post OGD in pericytes, but this was not tested in our BBB model nor did we 

determine CBDAs mechanism of action. Rajesh et al., (2007) found that CBD decreased 

levels of ICAM-1 and VCAM-1 in endothelial cells under high glucose conditions and 

Hind and colleagues (2016) found CBD decreased levels of VCAM-1 in normoxic 

conditions, an effect also blocked by PPARy antagonist GW9662. Unlike CBD, in our 

model CBDA had little effect on ICAM-1 levels and did not decrease VEGF at any 

concentration tested. These data suggest that whilst CBDA and CBD share some 

pharmacological targets, CBDA does not modulate levels of the same proteins in 

pericytes under OGD conditions in the same manner as CBD in endothelial cells. Thus, 

it will be important for future studies to assess differences between CBD and CBDA on 

inflammatory cytokine secretion in multiple cell types and to fully elucidate CBDAs 

mechanisms of action. 

 

Preserving BBB integrity is vital to protect salvageable neuronal tissue and enhance the 

probability of positive neurological outcomes post ischaemia. In the present study 

CBDA (3 µM) reduced BBB permeability and prevented neuronal cell death in our BBB 

model post OGD. These findings build upon previous data from our group which 

showed that 10 PM CBD was effective at decreasing BBB permeability in a co-culture 

BBB model, mediated through 5-HT1A and PPARy (Hind et al., 2016). Recently Mori et 

al., (2017) found that CBD improved cognitive function and preserved the number of 

nissel stained neurons in mice subjected to bilateral common carotid artery occlusion 

(BCCAO). In addition, CBD reduced glial activation in the hippocampus, decreasing the 
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number of Iba-1 and GFAP positive cells. Future studies should assess whether CBDA 

can attenuate glial activation and other inflammatory markers, as well as investigate 

whether CBDA can modulate BBB permeability in vivo. 

 

HSPs are typically referred to as chaperone proteins, helping to stabilise existing 

proteins and prevent their degradation. Some HSPs are expressed constitutively, but 

many are induced as a result of cellular stress, for example during hypoxia or 

neurological disease (Latchman, 2005; Luo et al., 2010). Our data support that from an 

early study by Wagstaff and colleagues (1996) which found elevations in HSP70, HSP27 

and HSP60 mRNA 8 h and 24 h post middle cerebral artery occlusion (MCAO) in rats. 

Similarly, HSP70 and HSP90 were overexpressed in myocardial ischaemia-reperfusion 

injury (Nishizawa et al., 1996), which was later found to be triggered by elevations in 

reactive oxygen species (Nishizawa et al., 1999). Recently, Zhang et al., (2020) found 

that decreases in HSP90 expression reduced infarct volume, attenuated neuronal 

apoptosis, and reduced levels of pro-inflammatory cytokines IL-6, TNF-⍺ and IL-1β in a 

murine model of cerebral ischaemia reperfusion injury. On the other hand, HSP27 is 

considered to be protective against cellular stresses, namely thermal and ischaemic 

stress (Latchman, 2005; Stetler et al., 2008). Endothelial specific HSP27 overexpression 

was also able to attenuate I/R induced BBB disruption, but not the severity of the 

initial insult (Shi et al., 2017). We found that both CBD and CBDA modulated levels of 

several HSPs in neuronal lysates 24 h post OGD, with 100 nM CBDA significantly 

decreasing levels of HSP27 (total) and HSP90⍺. However, at the lowest and highest 

concentrations tested, CBDA appeared to increase HSP27, while still decreasing HSP90. 

CBD also showed a trend for decreasing HSP60 and HSP90 at the highest concentration 

tested, which is contrast with a study conducted by Scott and colleagues (2015) 

showing CBD 10 µM enhanced the expression of HSP40,60, 70 and 90 in glioma cell 

lines, suggesting that CBD appears to exhibit different effects depending on the 

pathology being investigated. Thus, it will be important for future studies to establish 

whether CBD or CBDA attenuate HSP levels in in vivo models of ischaemia and whether 

this is protective. The antioxidant properties of phytocannabinoids have been well 
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documented (Hampson et al., 1998; Borges et al., 2013; Schubert et al., 2019) and may 

be partly responsible for meditating the effects of CBD and CBDA on levels of heat 

shock proteins, as oxidative stress is a known regulator of HSP expression. Moreover, 

as modulation in HSP expression has been linked to alterations in pro-inflammatory 

mediators, this could be another route in which phytocannabinoids mediate their 

protective effects and warrants further investigation.  

 

The role of DNA damage and BBB disruption post ischaemia is not fully understood, 

however emerging evidence has shown that vascular endothelial cells and astrocytes 

are targets for oxidative DNA damage. Interestingly we did not see any significant 

changes in DNA damage proteins in neuronal monoculture lysates 24 h post OGD and 

neither CBD nor CBDA significantly affected the levels of these proteins. This may be 

due to the DNA damage response being activated earlier as irreversible damage has 

been detected within 20 minutes of ischaemia (Ordy et al., 1993).  

 
Overall conclusions 
 
In this study we have shown that CBDA is able to decrease BBB permeability when 

given before an OGD, in a four-cell contact model consisting of HBMECs, astrocytes, 

pericytes and neurons. This was achieved at a lower concentration (3 µM) compared to 

CBD (10 µM) in a previous study (Hind, England and O’Sullivan, 2016). CBDA also 

decreased the secretion of IL-6 after a 4 h OGD protocol in pericyte monocultures and 

attenuated heat shock proteins in neuronal monocultures. To our knowledge, no study 

has assessed the effects of CBDA on BBB permeability and its ability to act as a 

neuroprotectant in a stroke model. We acknowledge that we have only looked at a 

select number of biological markers associated with IR injury and future studies should 

assess whether CBDA can modulate other aspects of post stroke injury, particularly in 

glial cells, as well as fully establish CBDAs mechanism of action. Overall, these pilot 

data suggest that like CBD, CBDA is protective in an in vitro model of ischaemic stroke. 
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The euphoric feeling described after running is, at least in part, due to increased
circulating endocannabinoids (eCBs). eCBs are lipid signaling molecules involved in
reward, appetite, mood, memory and neuroprotection. The aim of this study was
to investigate whether activities other than running can increase circulating eCBs.
Nine healthy female volunteers (mean 61 years) were recruited from a local choir.
Circulating eCBs, haemodynamics, mood and hunger ratings were measured before and
immediately after 30 min of dance, reading, singing or cycling in a fasted state. Singing
increased plasma levels of anandamide (AEA) by 42% (P < 0.05), palmitoylethanolamine
(PEA) by 53% (P < 0.01) and oleoylethanolamine (OEA) by 34% (P < 0.05) and improved
positive mood and emotions (P < 0.01), without affecting hunger scores. Dancing did
not affect eCB levels or hunger ratings, but decreased negative mood and emotions
(P < 0.01). Cycling increased OEA levels by 26% (P < 0.05) and tended to decrease
how hungry volunteers felt, without affecting mood. Reading increased OEA levels by
28% (P < 0.01) and increased the desire to eat. Plasma AEA levels were positively
correlated with how full participants felt (P < 0.05). Plasma OEA levels were positively
correlated with positive mood and emotions (P < 0.01). All three ethanolamines were
positively correlated with heart rate (HR; P < 0.0001). These data suggest that activities
other than running can increase plasma eCBs associated with changes in mood or
appetite. Increases in eCBs may underlie the rewarding and pleasurable effects of singing
and exercise and ultimately some of the long-term beneficial effects on mental health,
cognition and memory.

Keywords: endocannabinoids, anandamide, human, clinical, high, mood, singing and dancing

Abbreviations: 2-AG, 2-arachidonoylglycerol; AEA, anandamide; BBB, bloodbrain barrier; BDNF, brain derivedneurotrophic
factor; eCBs, endocannabinoids; LC-ESI-MS-MS, electrospray ionization liquid chromatography/mass spectrometry; OEA,
oleoylethanolamine; PEA, palmitoylethanolamine.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 269

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2018.00269
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2018.00269&domain=pdf&date_stamp=2018-11-26
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full
https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00269/full
https://loop.frontiersin.org/people/627558/overview
https://loop.frontiersin.org/people/407280/overview
https://loop.frontiersin.org/people/616681/overview
https://loop.frontiersin.org/people/639386/overview
https://loop.frontiersin.org/people/622112/overview
https://loop.frontiersin.org/people/308914/overview
https://creativecommons.org/licenses/by/4.0/
mailto:mbzso@nottingham.ac.uk
https://doi.org/10.3389/fnbeh.2018.00269
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Stone et al. Endocannabinoids in Cycling, Dancing and Singing

INTRODUCTION

The classic ‘‘runners high’’ is described as the sense of well-being
and mood elevation associated with moderate distance running.
Other typical indicators include a decrease in anxious thinking
(anxiolytic), positive emotions/mood (euphoria), reduced pain
perception (analgesia) and a feeling of increased endurance
(Sparling et al., 2003; Dietrich and McDaniel, 2004; Tsatsoulis
and Fountoulakis, 2006; Raichlen et al., 2012). To explain
these positive effects post-exercise, attention was directed to
the endocannabinoid (eCB) system, and a number of groups
have found significant correlations between physical activity,
mood and elevated eCB levels. Interestingly, the majority of
studies have only observed significant rises in the first identified
eCB, anandamide (AEA; Sparling et al., 2003; Heyman et al.,
2012; Raichlen et al., 2013), whilst the reports analyzing
2-arachidonylglycerol (2-AG) levels post-exercise have been less
clear. Heyman et al. (2012) reported no change in circulating
2-AG levels after cycling. However, Brellenthin et al. (2017)
showed that 2-AG and AEA were significantly increased in
a study analyzing the effects of preferred (self-selected) and
prescribed (70%–75% of max) exercise on eCB levels and mood.

The eCB system consists of the cannabinoid receptors
1 and 2 (CB1 and CB2), eCBs, and the enzymes that are
responsible for their synthesis and breakdown (Devane et al.,
1992; Mechoulam et al., 1995; De Petrocellis and Di Marzo,
2009). AEA and 2-AG are partial agonists of CB1 and CB2,
whilst palmitoylethanolamine (PEA) and oleoylethanolamine
(OEA) share similar synthesis and degradation mechanisms,
without directly interacting with these receptors themselves
(Hansen et al., 2000; Okamoto et al., 2004). Instead, these
molecules interact with other receptors, primarily peroxisome
proliferator-activated receptor alpha (PPAR-a) and transient
receptor potential cation channel subfamily V member 1
(TRPV1; Ahern, 2003; Fu et al., 2003; Lo Verme et al., 2005a,b;
Karwad et al., 2017). eCB signaling mediates a number of
physiological and psychological processes including emotional
responses, cognition, memory, motor behavior, feeding and
energy consumption (Berger and Motl, 2000; Cota et al., 2003;
Cota, 2007; Brellenthin et al., 2017). Studies have also established
prominent roles of eCB signaling in the positive reinforcement
in reward driven activities such as masturbation, arousal, binge-
eating and social interactions in humans (Klein et al., 2012;
Monteleone et al., 2015, 2017; Fuss et al., 2017).

Singing and dancing, especially as a group activity, are
associated with positive mood in humans (Zajenkowski et al.,
2015; Pearce et al., 2016; Tarr et al., 2016; Schladt et al., 2017).
However, little has been studied to elucidate how these positive
emotions are mediated. Recently, Hahn et al. (2017) studied
the relationship between song practice and the eCB system in
European starlings. They found a significant positive correlation
between conditioned place preference (a measure of reward
and song production), the number of songs a bird produced
and the expression of CB1 in areas of the brain associated
with reward, primarily the ventral tegmental area. Therefore
suggesting a role for eCB signaling in singing and reward (Hahn
et al., 2017; Riters et al., 2017). In humans, singing has been

studied as a therapy for long-term disorders such as Alzheimer’s
(to improve cognition, memory and long-term pain), chronic
obstructive pulmonary disease, as well as to improve mood in
conditions such as anxiety and depression (Reagon et al., 2016;
Kang et al., 2017). Similarly, dancing has been explored as a
potential therapy for cognitive and emotional dysfunction in
conditions such as depression, dementia and Parkinson’s. In a
systematic review of 11 studies, Kiepe et al. (2012) found that
depression and psychological distress were reduced by dance
therapy in patients suffering from Parkinson’s, diabetes, breast
cancer or heart failure. Dance therapy in a group of 60 students
also significantly reduced depression over a period of 12 weeks
(Akandere and Demir, 2011). To date, no study has assessed
singing or dancing and whether they modulate eCB levels in
humans and whether that correlates to an improvedmood. Given
that mood is central in the measure of overall psychological well-
being, low intensity activities that can positively modulate mood
could be useful therapeutic tools in numerous conditions such
as depression, anxiety and stress, especially if a patient cannot
undertake moderate/higher intensity exercise.

The purpose of this study was to investigate whether activities
other than running can give you a measurable ‘‘high’’ through
changes in circulating eCBs levels. We examined activities that
are associated with euphoria (singing and dancing) as well as an
exercise regime other than running (cycling), with the hypothesis
that these activities would increase plasma eCB levels. Quiet
reading was used as a control condition. A secondary objective
of this study was to establish whether there was a link between
cycling, dancing, singing and reading with regards to mood and
hunger ratings.

MATERIALS AND METHODS

Participants
All procedures were approved by the University of Nottingham
Faculty of Health Sciences ethics committee, and were carried
out according to the declaration of Helsinki. Nine healthy
post-menopausal female volunteers (age range 55–67, mean
61 years) were recruited from a local choir as people who
enjoyed singing and exercise. The inclusion criteria were that
volunteers be non-smokers, in good physical health, accustomed
to singing in a group, and also enjoy exercise. Volunteers gave
written informed consent prior to participation. Themedications
taken included antihypertensives (n = 2), antacids (n = 2),
antidepressants/anti-anxiety medication (n = 2), HRT (n = 1),
and an inhaler for asthma (n = 1).

Subjects arrived fasted (feeding affects plasma eCB levels;
Monteleone et al., 2012) with no consumption of caffeine and
this was verbally confirmed on arrival at the study facility.
Participants were also asked to refrain from any exercise prior
to attending the laboratory. Volunteers were unaware of the
activity they were to perform on a given day until all baseline
measurements were made to avoid any anticipatory effects.

Study Days
Subjects came to the test site on four occasions between
8 am and 10 am in loose fitting sportswear. Each day,
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individuals were asked to complete two questionnaires before
and after completing the activity. A visual analog scale (VAS)
questionnaire was used to assess how hungry subjects were
feeling on a scale of 1–10, using the questions ‘‘how hungry
do you feel?’’, ‘‘how full are you?’’, ‘‘how much food could you
eat?’’ and ‘‘how strong is your desire to eat?’’. A positive and
negative affect schedule (PANAS) questionnaire was used to
assess subject’s mood before and after each activity using the
following scoring system: 1 = ‘‘very slightly or not at all,’’ 2 = ‘‘a
little,’’ 2 = ‘‘moderately,’’ 4 = ‘‘quite a bit’’ and 5 = ‘‘extremely;’’
Watson et al., 1988; Crawford and Henry, 2004). Positive affect
score was calculated by adding the positive emotional responses
and the negative affect score was calculated based on the addition
of the negative affect scores.

Blood pressure was measured by oscillometry with the
participant seated according to the British Hypertension Society
guidelines, and heart rate (HR) was taken prior to commencing
the activity and immediately after finishing the activity. Blood
pressure and HR measurements were taken as the average over
three (pre-activity) or 2 (post-activity) measurements. Blood
draws (approximately 5 mL) were taken before commencing
the activity and immediately after finishing the activity into
pre-chilled K2-EDTA (Ethylenediaminetetraacetic acid) tubes
and immediately placed on ice. After collection, blood was
centrifuged at 2,000 g for 15 min at 4�C, plasma was removed
and aliquoted, and immediately snap frozen in liquid nitrogen.
Samples were stored at �80�C until subsequent analysis.

After the baseline measurements were made, volunteers were
informed of the activity they were to perform. On day 1,
volunteers did a supervised 30 min dance exercise class preceded
by a 5 min warm up, to upbeat music. On day 2, volunteers did
30 min of supervised quiet reading (of boiler and dishwasher
catalogs) to classical music. On day 3, volunteers for 30 min choir
practice led by their choral director. On day 4, volunteers did a
30 min spin class (cycling) with a qualified instructor from the
University of Nottingham Sports facility, with a 5 min warm up
to upbeat music. All activities were performed as a group.

eCB Quantification
eCB analysis was based on the method as described by
Richardson et al. (2007). Samples were thawed and 100 µL
of internal standard of 2-AG-d8 (10 µM) and 15 µL of
AEA-d8 (28 µM) were added to a 0.4 mL aliquot of each
plasma sample or blank sample (0.4 mL water) vortexed briefly.
Ethyl acetate:hexane (9:1 v/v) was added to each sample and
subjected for a slow vortex (10 min) and centrifuged for
13,000 rpm, 10 min, 4�C. The supernatants were transferred
and the procedure was repeated. Supernatants were then
pooled and evaporated using a centrifugal evaporator.
Prior to analysis, each sample extract was reconstituted in
100 µL of acetonitrile (ACN). Standards for AEA, 2-AG, PEA,
OEA, N-(2-hydroxyethyl)-9Z-octadecenamide), arachidonyl
ethanolamide-d8 (N-(2-Hydroxyethyl)-5Z, 8Z, 11Z, 14Z-
eicosatetraenamide-d8, AEA-d8) and 2-arachidonyl glycerol-d8
(2-AG-d8, (5Z, 8Z, 11Z, 14Z)-5, 8, 11, 14-Eicosatetraenoic acid-
d8, 2-hydroxy-1-(hydroxymethyl)ethyl ester-d8) were purchased
from Cambridge BioSciences, UK.

Following sample preparation, 10 µL of final sample
extract was analyzed using liquid chromatography electrospray
ionisation mass spectrometry (LC-ESI-MS/MS). The HPLC
system used was a modular Shimadzu Vp series LC (Shimadzu,
Milton Keynes, UK), with pumps, chilled autosampler and
column oven. The HPLC column used was an ACE 3 C8
(100 ⇥ 2.1 mm, 3 mm) with guard column. The mobile phase A
was water with 1 g/L ammonium acetate and 0.1% formic acid
and mobile phase B was ACN with 1 g/L ammonium acetate
and 0.1% formic acid pre-dissolved in 10% H2O. The flow rate
was 300 µL/min. The MS system used was a SCIEX 4000 QTrap
triple quadrupole mass spectrometer (Sciex, Warrington, UK)
operated in electrospray positive multiple reaction monitoring
mode. Quantification was performed using Analyst 1.6 and
identification of each compound in plasma was confirmed by
LC retention times of each standard and precursor and product
ion m/z ratios. The peak area of each analyte is compared to a
known amount of standard to determine the amount of target
compound present.

2-AG in these samples were below the limit of quantification
with ourmethodology in the plasma samples and the data has not
been reported.

Statistical Analysis
Data is presented as a scatter plot with mean ± SEM. Data sets
were compared by paired Student’s t-test pre and post-activity.
Correlations between plasma eCBs levels and hunger ratings,
cardiovascular parameters or mood pre and post-activities were
analyzed by linear regression. A quality control check was
performed by a separate researcher on data entry.

RESULTS

All but one of the participants completed the study in full;
one participant was unable to finish the cycling activity and
did not have a final blood draw or complete the surveys. Thus
nine participates were in the final comparison, except for the
cycling activity where n = 8.

Haemodynamics
Thirty minutes of dancing significantly increased HR
(t(8) = 4.894, P < 0.01, Figure 1A) and decreased diastolic
blood pressure (t(8) = 2.764, P < 0.05, Figure 1I). Thirty
minutes of reading caused a small but significant reduction
in HR (t(8) = 3.736, P < 0.01, Figure 1B). Thirty minutes of
singing increased systolic blood pressure (t(8) = 5.66, P < 0.001,
Figure 1G). Thirty minutes of cycling significantly increased
HR (t(7) = 7.314, P < 0.001, Figure 1D) and decreased diastolic
blood pressure (t(7) = 2.567, P < 0.05, Figure 1L).

Hunger Scores
The only significant change in hunger and appetite scores were
observed after 30 min of reading when volunteers reported
a significantly higher desire to eat (Figure 2N). Volunteers
tended to have reduced hunger ratings after dancing, singing and
cycling (Figure 2), but this only reached near significance for
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FIGURE 1 | Changes in cardiovascular parameters (heart rate, HR; A–D), systolic blood pressure (E–H) and diastolic blood pressure (I–L) before and after 30 min
activity (dancing, reading, singing or cycling) in nine healthy female volunteers. Data is presented as a scatter plot with mean ± SEM. Data sets were compared by
paired Student’s t-test pre and post-activity (⇤P < 0.05, ⇤⇤P < 0.01 and ⇤⇤⇤P < 0.001).

the question ‘‘how hungry do you feel?’’ immediate post-cycling
(t(7) = 2.348, P = 0.0512, Figure 2D).

Mood Scores
Dancing decreased negative mood and emotions (t(8) = 3.671,
P < 0.01, Figure 3E), while reading decreased positive mood
and emotions (t(8) = 5.751, P < 0.001, Figure 3B). Only singing
was found to significantly improve positive mood and emotions
(t(8) = 4.951, P < 0.01, Figure 3C) and also tended to decrease
negative mood and emotions (eight out of nine volunteers
reported a lower NAS post-singing, Figure 3E). Cycling has no
effect on mood ratings.

Plasma Levels of Endocannabinoids
Dancing had no effect on circulating levels of eCBs measured
immediately the activity, although there was a trend for AEA and
OEA levels to be increased (Figures 4A,E). Thirty minutes of
reading significantly increased plasma OEA levels (t(8) = 4.586,
P < 0.01, Figure 4F) and tended to increase PEA levels
(t(8) = 2.02, P = 0.078, Figure 4J). Singing significantly increased
the plasma levels of all eCBs measurable; AEA (t(8) = 3.049,
P < 0.05, Figure 4C), OEA (t(8) = 4.81, P < 0.01, Figure 4G)
and PEA (t(8) = 3.319, P < 0.05, Figure 4K). OEA levels were also
increased after 30 min cycling (t(6) = 3.594, P < 0.05, Figure 4H).

At baseline (before activities started) across all 4 days, there
was a significant positive correlation between plasma OEA levels
and the rating for ‘‘how much food could you eat?’’ (r2 = 0.2226,
F = 9.16, P < 0.01) and positive mood and emotions (r2 = 0.1355,

F = 5.172, P < 0.05). Resting HR was positively correlated with
both plasma AEA (r2 = 0.3363, F = 16.72, P < 0.001) and PEA
(r2 = 0.169, F = 6.711, P < 0.05) levels.

Across all days and time points (pre- and post-activity),
plasma AEA levels were positively correlated with the rating for
‘‘how full are you?’’ (r2 = 0.0626, F = 4.472, P < 0.05, Figure 5A),
and plasma OEA levels tended to be positively correlated with
the rating for ‘‘how much food could you eat?’’ (r2 = 0.0404,
F = 2.821, P = 0.097, Figure 5B) and ‘‘how strong is your desire
to eat?’’ (r2 = 0.04624, F = 3.248, P = 0.076, Figure 5C) and with
increased ratings for positive mood and emotion (r2 = 0.1269,
F = 9.879, P < 0.01, Figure 5D). All three ethanolamines were
positively correlated with HR (AEA: r2 = 0.4394, F = 53.3,
P < 0.0001, Figure 5E; OEA: r2 = 0.2639, F = 24.37, P < 0.0001,
Figure 5F and PEA: r2 = 0.2093, F = 18, P < 0.0001, Figure 5G).

DISCUSSION

It is well reported that running is correlated with mood elevation.
These positive effects have been attributed to an evolutionary
trait, where positive re-enforcement ultimately led to increased
food foraging, survival and subsequent passing of relevant genes
to offspring and have recently been attributed, at least in part,
to increases in eCBs (Bramble and Lieberman, 2004; Raichlen
et al., 2012). Our study aimed to examine whether activities other
than running also increase eCBs and enhance mood. We have
shown for the first time that singing significantly increases levels
of AEA, OEA and PEA in healthy post-menopausal females and
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FIGURE 2 | Changes in hunger and appetite scores as assessed using a visual analog scale (VAS) (1–10) before and after 30 min activity (dancing (A,E,L,M),
reading (B,F,J,N), singing (C,G,K,O) or cycling (D,H,L,P) in nine healthy female volunteers. Data is presented as a scatter plot with mean ± SEM. Data sets were
compared by paired Student’s t-test pre and post-activity (⇤P < 0.05).

enhanced mood. Dancing (on mood) and cycling (on eCBs) also
had positive effects in this group. Although singing was the most
beneficial activity in this study, this is likely to reflect the fact
that the volunteers were recruited from local choirs and already
find this an enjoyable activity. These data provide biochemical
evidence of an increase in novel signaling messengers known
to improve mood, reduce stress and anxiety, enhance memory,
protect brain function and reduce pain.

Singing, in particular group singing, has been associated with
an increase in positive mood and improved immune function
in humans (Kreutz et al., 2004; Schladt et al., 2017). Choir
singing also enables social interactions, exhibiting a greater
benefit to mood than singing alone (Schladt et al., 2017). Our
results also demonstrate that singing increases mood, and also
for the first time that singing increasing circulating levels of
AEA, OEA and PEA. As AEA is a partial agonist of CB1
and has full agonist activity at TRPV1, an increase in the

levels of AEA post activity could therefore facilitate increases
in positive emotions, as well as anxiolytic and analgesic effects
(Chapman et al., 2009; Starowicz et al., 2012). Levels of OEA
post activity were correlated with a decrease in hunger and
desire to eat. This supports previous data that OEA attenuates
food consumption and increase lipolysis and energy expenditure
(Lo Verme et al., 2005a,b). In vivo studies conducted in mice
have also suggested beneficial neuroprotective effects of OEA,
this protective effect could potentially be translated to humans
and warrants further study (Galan-Rodriguez et al., 2009; Zhou
et al., 2012; Yang et al., 2015). An abundance of evidence
has supported PEA as a potential therapy for neurological
and inflammatory disorders, particularly those associated with
pain (Costa et al., 2008; Keppel Hesselink, 2012; Esposito
and Cuzzocrea, 2013). PEA has also been taken into clinical
trials, whereby 600 mg of PEA was shown to be effective
in various pain states, without exhibiting any safety issues
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FIGURE 3 | Changes in postive (PAS, A–D) and negative (NAS, E–H) mood and emotions before and after 30 min activity (dancing, reading, singing or cycling) in
nine healthy female volunteers. Data is presented as a scatter plot with mean ± SEM. Data sets were compared by paired Student’s t-test pre and post-activity
(⇤⇤P < 0.01, ⇤⇤⇤P < 0.001).

FIGURE 4 | Plasma endocannabinoid levels (AEA, anandamide, A–D; OEA, oleoylethanolamine, E–H; PEA, palmitoylethanolamine, I–L) before and after 30 min
activity (dancing, reading, singing or cycling) in nine healthy female volunteers. Data is presented as a scatter plot with mean ± SEM. Data sets were compared by
paired Student’s t-test pre and post-activity (⇤P < 0.05, ⇤⇤P < 0.01).

(Hesselink and Hekker, 2012). Therefore, it could be beneficial
to increase levels of PEA via activities such as singing, to
promote neuroprotection, analgesia and reduce inflammation.
It is also important to note that increasing OEA and PEA can
indirectly increase AEA responses by the entourage effect by
competitive inhibition of AEA degradation by fatty acid amide
hydrolase (FAAH; Di Marzo et al., 2001; Costa et al., 2008; Ho

et al., 2008). Overall, singing could be a valuable activity in
patient populations that suffer with dysfunctions in psychological
well-being and struggle to participate in aerobic/moderate
intensity exercise.

Cycling resulted in a significant increase in OEA, and in
a trend for increases in both AEA and PEA. These changes
corresponded with a decrease in participants desire to eat and
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FIGURE 5 | Correlations between plasma eCBs levels and appetite (A–C), mood (D) and HR (E–G) in healthy female volunteers when measured pre or
post-activities and analyzed by linear regression.

how hungry they felt. These data are consistent with results from
a previous study where plasma OEA levels were significantly
increased after 30 min of cycling in 16 male non-smokers with
a mean age of 22.9 years (Cedernaes et al., 2016). Our data did
not show that cycling positively affected mood (no increase in
PAS or decrease in NAS). Brellenthin et al. (2017) showed that
acute aerobic exercise (both prescribed and preferred) resulted
in positive mood outcomes in individuals capable of a range
of levels of physical activity, as well as showing modulation of
the eCB system. Interestingly, the group that undertook their
‘‘preferred exercise’’ had the best effect in reducing anxiety and
improving mood. In the present study, singing by participants
recruited from a choir support these observations, suggesting
that the eCB system is not only responsible for the motivation
for exercise (i.e., reward driven), but also the pleasure associated
with an activity that an individual enjoys. It would also have
been interesting if another group had been included (i.e. not
recruited from a choir) to directly assess the concept of preferred
vs. prescribed activity and to confirm that carrying out an activity
that is ‘‘pleasurable’’ to an individual is an important factor in
the psychological benefits of exercise and other related activities.
Subjects were also not asked to rate how much they enjoyed each
of the activities, this would have been an interesting endpoint to
assess to what degree the participant’s moods were influenced
by how much they liked a particular activity and should be
considered in future study. These factors would also have
provided further evidence to why individuals in this study failed
to experience positive mood changes or significant increases in
AEA post cycling; compared with the study by Heyman et al.
(2012) where increases in AEA were seen in well-trained cyclists,
who presumably enjoy cycling.

Exercise intensity may be another factor explaining the lack
of AEA increases in our participants. Brellenthin et al. (2017)
showed that the greatest increases in 2-AG and AEA were seen
in the higher intensity exercise group. Sparling et al. (2003) also
showed significant increases in AEA when participants reached
70%–80% max HR. According to Gulati et al. (2010), maximum
HR for women is calculated as 206�(0.88 ⇥ age of patient). As

the average age of our participants was 61 years, their average
maximum HR (max HR) is approximately 154 bpm, meaning
their 70%–80% max HR should be 107–123 bpm. Cycling was
the only activity that almost reached this (average 102 bpm
immediately post exercise) and dancing resulted in an average
HR of 95 bpm (immediately post exercise). This could suggest
that our activities may not have been intense enough to elicit
significant changes in circulating eCBs.

A number of studies have shown that dance is an effective
therapy in improving mood (including mild depression),
enhancing social interactions, boosting self-confidence, as well
as improving physical activity (Akandere and Demir, 2011; Kiepe
et al., 2012; Meekums et al., 2015). In one study, dancing caused
an increase in plasma serotonin levels and a decrease in negative
psychological symptoms in a group of 20 female adolescents
with mild depression, compared to 20 control subjects (Jeong
et al., 2005). We found post activity that there was a significant
decrease in negative emotions following 30 min of dancing. It
should be acknowledged that the decrease in negative emotions
could also be because this was the activity undertaken on day 1
and participants had higher NAS scores before starting the study.
Although there was a trend in increasing levels of AEA and
OEA levels post-activity, this did not reach significance. Our
results suggest that dancing did not effectively increase eCB levels
or improve mood, however this could be because they were
unfamiliar with the class, therefore not finding it as enjoyable as
singing as this wasmore familiar to them, or that the class was not
at a high enough intensity to produce changes in eCB levels. It
should also be noted that our participants were older than those
previously studied, and there could be an age-related decline in
the eCB response to exercise.

Reading was used as a control activity to assess baseline
eCB levels and mood. We found that reading was the only
activity that increased participants desire to eat but had little
impact on overall fullness or actual hunger and was correlated
to increases in OEA post activity. Reading also decreased the
ratings for positive mood and emotions. In hindsight, because
subjects were unaware of the task, the activity set-up looked
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like they were about to take an exam, which may have resulted
in unforeseen heightened anxiety levels. Recent studies have
implicated the eCB system as a possible mediator of hedonic
vs. homeostatic eating response to the consumption of food
(as a reward) as well as acute stress and anxiety (Matias et al.,
2006; Monteleone et al., 2015, 2017). Dlugos et al. (2012)
showed that AEA, PEA and OEA were all increased in serum
in response to stress. They also found that higher levels of
AEA at baseline, associated with decreased levels of anxiety.
Furthermore, a common phenomenon is that typically negative
emotions, particularly boredom, stress and depressive emotions
increase our desire to eat in order to increase positive emotions
(Koball et al., 2012; Yau and Potenza, 2013; Moynihan et al.,
2015). These factors could explain the elevated levels of OEA post
activity and lower PAS scores.

A limitation of our study is that participants already had
very low negative affect scores and high positive affect scores.
This suggests that the individuals that took part in the study
were generally happy and positive and there was therefore little
room for mood to be further improved. It would therefore be
interesting in future work to see the effects of these same activities
on individuals that exhibit depressive, or anxious behavior in
order to see greater differences in negative emotional responses.
Intensity of a physical activity has also been shown to influence
exercise induced increases in eCB levels. Raichlen et al. (2013)
built on previous work showing that eCBs follow a U-shaped
curve, with moderate level activity resulting in the biggest
increase in eCB levels (Berger and Motl, 2000). This trend in
eCB levels is also correlated with mood as the positive emotional
state post exercise is not experienced at very low or very high
intensities (Berger and Motl, 2000). As all the participants were
unfamiliar to the activities they carried out, a lot of their focus
would have been on ‘‘mastering’’ the class rather than actually
enjoying it in the moment.

It can also not be overlooked that this study only recruited
healthy female volunteers. Evidence from animal studies has
already shown distinct sexual dimorphism in the eCB system,
particularly in CB1 expression and activation (Reich et al., 2009;
Mateos et al., 2011; Dias-Rocha et al., 2018). Limited preliminary
evidence from human studies have also shown variations in the
eCB system between males and females (Cupini et al., 2006; Hill
et al., 2008). Thus future study should look to establish whether

the effects observed in this study translate to male participants as
well as females.

In conclusion, we found that activities other than running
(singing, dancing and cycling) can increase plasma eCB levels.
Singing was the only activity to increase plasma levels of AEA
and improve positive mood outcomes, suggesting that singing
in this group of volunteers was able to produce an endogenous
‘‘high.’’ This is interesting as the participants were recruited
from a choir, suggesting that the enjoyment of an activity may
influence their feeling of reward and the eCB response. This
preliminary evidence suggests that activities like singing could
be recommended to individuals suffering from mood disorders
such as anxiety and depression, as well as a potential therapy
for neurological and inflammatory disorders. Future research
should consider an individual’s preference to a particular activity,
as this could be an important factor in influencing the eCB
system, as well as being a factor in deciding appropriate
therapy.
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8. General Discussion 

 

In neuropathological conditions such as ischaemic stroke, Alzheimer’s and Parkinson’s, 

the BBB becomes compromised, exacerbating the detrimental effects these diseases 

have on CNS homeostasis (Rosenberg, 2012; Zhang et al., 2020). Key studies and 

comprehensive reviews have shown that CBD and Δ9-THC  display efficacy in a range of 

neurological disorders, including ischaemic stroke, as well as offering protection at the 

BBB (Cristino et al., 2020; Hayakawa et al., 2010). However, the neuroprotective 

properties of minor phytocannabinoids remain to be fully elucidated. In light of the 

results obtained from a systematic review conducted in Chapter 4 (Stone et al., 2020), 

we hypothesised that CBG and CBDV would also prove to be protective in ischaemic 

stroke. Experiments were performed to determine the effects of CBDV and CBG on 

cells of the NVU subjected to OGD (Chapter 5). CBDA has been found to exhibit similar 

biological properties to CBD and acts more potently than CBD as an antiemetic via the 

activation of 5-HT1A (Rock and Parker, 2013). Given these data and that of previous 

work from our group (Hind et al., 2016), we hypothesised that CBDA may also reduce 

BBB permeability, perhaps by the same mechanism as CBD. In Chapter 6, experiments 

were performed to assess CBDAs ability to modulate BBB permeability post OGD. In 

addition to the central thesis aims, a clinical study was conducted to investigate 

endocannabinoids and their ability to influence mood and is presented as an additional 

chapter (Chapter 7). Altogether, the results presented in this thesis add to the growing 

body of evidence on the anti-inflammatory and neuroprotective properties of 

phytocannabinoids, as well as the importance of endocannabinoids in exercise and the 

regulation of mood.  

 

To protect the brain, the BBB must remain impenetrable to harmful agents such as 

xenobiotics and peripheral immune cells, whilst enabling the selective transport of 

essential nutrients (Abbott et al., 2006, 2010). In ischaemic stroke, oxidative stress, 

inflammatory cytokine release and immune cell activation contribute to BBB 

disruption, which can lead to oedema and haemorrhagic transformation, altogether 
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exacerbating neuronal injury (reviewed in L and X, 2016). It is worth noting, however, 

that whilst BBB disruption is generally associated with a worse outcome for patients, it 

enables the possibility of greater drug penetration into the CNS (Borlongan and 

Emerich, 2003). Modelling the BBB in vitro is important tool to study the crosstalk 

between cells of the NVU under normal and pathological conditions. Following 

rigorous model development conducted in Chapter 3, we generated a model which 

incorporated four primary human cell types that constitute the NVU (Stone et al., 

2019), which was based on a previous model developed by our group (Hind, 2014). 

Results showed that our OGD model was effective to stimulate cellular responses 

associated with in vivo ischaemia-reperfusion injury.  

 

In Chapter 4 we conducted a systematic review to gather all available published data 

on minor phytocannabinoids (excluding '9-THC and CBD) and their neuroprotective 

effects. Evidence presented in our review found that CBDV and CBG exhibited anti-

inflammatory, antioxidant, anti-excitotoxic and anticonvulsant properties in various 

models of neurodegeneration (Stone et al., 2020). In agreement with this and 

supporting our hypothesis, in Chapter 5 we demonstrated that CBDV and CBG 

exhibited anti-inflammatory effects in astrocytes and HBMECs subjected to OGD. 

Specifically, both CBG and CBDV attenuated IL-6 secretion in astrocytes and to a lesser 

extent in HBMECs. These data are consistent with findings in other studies where CBG 

was found to decrease expression of IL-6 in an in vivo model of Huntington’s disease 

(Valdeolivas et al., 2015), while CBDV decreased IL-6 in a mouse model of colitis 

(Pagano et al., 2019). Interestingly, while CBDV and CBG did not affect levels of IL-6 in 

pericytes, CBDA decreased IL-6 in pericytes post OGD, suggesting that these 

compounds may exhibit different mechanisms of action in different cell types. 

 

IL-6 increases endothelial permeability, promotes TJ remodelling (Maruo et al., 1992) 

and is correlated with poor outcomes in ischaemic stroke patients (Hotter et al., 2019; 

Shaafi et al., 2014). As these compounds were found to attenuate IL-6 secretion, they 

may also offer protection against TJ disruption caused by ischaemia, however, the 
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direct effects of CBG, CBDV and CBDA on TJ expression and localisation have yet to be 

investigated.  

 

To our knowledge, this is the first study to report that CBDV reduced levels of MCP-1 in 

HBMECs and attenuated levels of astrocyte derived VEGF post OGD. In addition, we 

found that both CBDA and CBD were effective in decreasing levels of MCP-1, however 

this was only conducted in one experiment and would need to be repeated to confirm 

the validity of these data. Our data corroborate findings the literature; in a viral model 

of multiple sclerosis (MS) CBD was found to mitigate MCP-1 secretion in astrocytes 

(Mecha et al., 2013) and recently CBDV was found to attenuate MCP-1 in a model of 

colitis (Pagano et al., 2019). As CBDV and CBDA exhibit a similar chemical structure to 

CBD, differing in just a shortened propyl side chain and a carboxylic acid group 

respectively, it is not surprising that they share similar biological and pharmacological 

properties. Interestingly, both CBDV and CBDA did not affect levels of VEGF in 

pericytes, but CBDV attenuated levels of VEGF in astrocytes. Therefore, it would be 

valuable to determine whether CBDA can also attenuate VEGF levels in astrocytes post 

OGD. Given that MCP-1 is associated with microglial activation and increases in 

endothelial permeability (Stamatovic et al., 2005, 2009; Yang et al., 2011), these 

preliminary data suggest that CBDV and CBDA may help prevent immune over-

activation and endothelial permeability post OGD. As CBDV also reduced levels of VEGF 

and in another study was found to reduce intestinal permeability (Pagano et al., 2019) 

this compound may be particularly promising in preventing BBB disruption and future 

in vivo experiments should be undertaken to clarify this potential. 

 

In Chapter 5, we also investigated the effects of CBDV and CBG on cellular and DNA 

damage in astrocytes. Both compounds reduced cell damage, which for CBDV 

appeared to be partially blocked by antagonists for GPR55 and GPR18, but CBGs 

effects were not inhibited by any of the antagonists tested. CBG and CBDV have 

displayed antioxidant capabilities in preclinical models of neurodegeneration (Di 

Giacomo et al., 2020; Schubert et al., 2019) and given that CBDVs and CBGs effects 
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were not clearly blocked by any of the antagonists tested, it was postulated that the 

non-specific antioxidant properties may be largely responsible for these effects. We 

next investigated whether CBG and CBDV would also protect against DNA damage in 

astrocytes. Interestingly, while CBG decreased levels of DDR proteins, including Chk1, 

H2AX and p53, elevated in astrocytes post OGD, CBDV increased levels of ATR, Chk1, 

H2AX, MDM2 and p53, but exhibited a trend for decreasing ATR and Chk1 at higher 

concentrations. In Chapter 6, CBDA and CBD were assessed for their ability to protect 

against DNA damage in neurons, but neither the compounds nor the OGD protocol 

altered levels of any of the measured DDR proteins. We concluded that this may be 

due to the DDR pathway being activated earlier in neurons compared to astrocytes 

because they are more susceptible to ischaemia associated damage (Becerra-Calixto 

and Cardona-Gómez, 2017; Chen et al., 1997; Ordy et al., 1993). Thus, it may be of 

interest to ascertain whether CBD or CBDA can influence the DDR pathway at earlier 

time points in neurons and in astrocytes.  

 

CBDs acidic precursor, CBDA, has a similar chemical structure and studies have shown 

these compounds share pharmacological traits (reviewed in Formato et al., 2020). 

Using the BBB model we developed in Chapter 3, we demonstrated for the first time 

that CBDA pre-treatment prevented changes in permeability caused by OGD. 

Moreover, we found CBDAs ability to reduce IL-6 in pericytes was mediated by 5-HT1A 

receptor activation (refer to Chapter 6). These data are similar to previous data 

generated by our group, showing CBD reduced permeability via PPARy and 5-HT1A  

(Hind et al., 2016; Mishima et al., 2005). In light of the above, it is likely that CBDA, like 

CBD, exerts its effects on BBB permeability partly by acting as an agonist of 5-HT1A, 

however unfortunately this was not confirmed in this study. Future studies should 

assess whether CBDA can also modulate inflammatory cytokine release and BBB 

permeability in in vivo models of ischaemic stroke, as well as clarify whether CBDAs 

neuroprotective properties are due to its action as a 5-HT1A agonist.  
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In neuronal monocultures, we found that CBDA (100 nM) modulated levels of heat 

shock proteins, reducing HSP60, HSP90⍺ and HSP27 whilst exhibiting a trend for 

increasing HSP27 total, HSP60 and 90 at higher concentrations. The multifaceted roles 

of HSPs in ischaemia-reperfusion injury have been increasingly recognised (Leak et al., 

2013; Shi et al., 2017; E Zhang et al., 2020). Zhang and colleagues (2020) found that 

HSP protein expression and elevated levels of proinflammatory cytokines post 

ishcaemia-reperfusion injury were associated with downregulated phosphatidylinositol 

3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamysin (mTOR) 

signalling. In an in vivo model of MS, Giacoppo and colleagues (2017) reported that 

CBD was able to restore the PI3K/AKT/mTOR pathway, increasing phosphorlyation of 

PI3K, Akt and mTOR and was associated with decreases in pro-inflammatory 

mediators, enhanced BDNF expression and upregulation of PPARy. Given that CBDA 

modulated levels of HSPs and reduced proinflammatory cytokine release post OGD, it 

is possible that like CBD, CBDAs mechanism of action may involve manipulation of the 

PI3K/Akt/mTOR signalling pathway, but this remains to be investigated.  

 

Endocannabinoids have been implicated in neuronal plasticity and neuroprotection, as 

well as being elevated in neuropathological conditions (Hillard, 2008; Naccarato et al., 

2010). Specifically, AEA was found to protect neurons in a model of CNS inflammation 

(Eljaschewitsch et al., 2006), OEA (10 µM) reduced BBB permeability induced by a 4 h 

OGD protocol in vitro, and in vivo reduced infarct volume and attenuated neurological 

dysfunction mediated by PPAR⍺ activation (Hind et al., 2015; Zhou et al., 2012). In 

addition, administration of PEA was found to be protective in an in vivo model of 

traumatic brain injury (TBI) (Ahmad et al., 2012). In Chapter 7, we found that singing 

increased levels of AEA, PEA and OEA as well as improving positive mood and 

emotions. Levels of OEA were also linked with participants desire to eat, overall hunger 

and mood (Stone et al., 2018). Heyman et al., (2012) found that cycling increased levels 

of AEA, which was positively correlated with BDNF and Brellenthin et al., (2017) found 

AEA,2-AG, OEA and PEA were increased after aerobic exercise and for AEA and 2-AG 

this was correlated with improvements in mood, including depression. Given these 
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data and that presented in our study, influencing levels of endocannabinoids through 

exercise and other activities such as signing could have significant benefits on neuronal 

plasticity, as well as potentially offer neuroprotection, but this remains to be fully 

investigated. Collectively, these data build on existing knowledge on the role of 

endocannabinoids in the regulation of appetite, mood and reward and highlight their 

therapeutic potential in neuroprotection and mental health. 

8.1 Study Limitations and directions for future study 

Despite the positive data on the neuroprotective properties of these compounds, this 

study is limited to their effects in vitro. Whilst primary human cells offer closer 

modelling to human physiology than animal derived cells or immortalised cell lines, 

they were likely taken from a mixture of donor sources namely surgical specimens, 

foetal tissues and post-mortem donors, which differ from healthy adult physiology. It is 

also important to recognise that ischaemic stroke occurs in elderly patients and it is 

well known that aged cells undergo marked changes in their phenotype (Cai et al., 

2017). Therefore, whilst the cells used in our four-cell model and monoculture 

experiments are more representative of the human BBB than immortalised cell lines or 

animal cells, they are unlikely to provide full representation of the pathophysiological 

environment present in ischaemic stroke patients. Therefore, it is paramount that 

future studies assess the neuroprotective properties of these compounds in aged 

animals and animals with comorbidities to confirm their clinical potential.  

 

Our method of measuring permeability, whilst producing stable readings, was not able 

to run continuously and therefore involved moving cultures in and out of incubators to 

measure TEER at specific time points. It would be interesting for future studies to 

possibly incorporate techniques such as electric cell-substrate impedance sensing 

(ECIS) to monitor changes in permeability post OGD and the effects of 

phytocannabinoids in real time (Anchan et al., 2019). The importance of cerebral blood 

flow and the effects of shear stress on endothelial cell physiology has been well 

established (Desai et al., 2002; Partyka et al., 2017). Our model did not incorporate 
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flow and therefore the effects of shear stress were not accounted for. Thus, it may be 

necessary for future studies to develop a method incorporating flow to be more 

representative of BBB physiology. 

 

The influence of overactive microglia and peripheral immune cells in potentiating post 

stroke injury has been well characterised (Shigemoto-Mogami et al., 2018; Szalay et al., 

2016; Taylor and Sansing, 2013). Microglia have also been shown to express 

cannabinoid receptors including CB2 and GPR55 (Saliba et al., 2018). It is worth noting 

that CB2 mRNA expression levels are elevated post ischaemia and CB2 receptor 

activation has been shown to be protective, specifically reducing IL-6, LDH and 

glutamate-mediated neurodegeneration (Contartese et al., 2012; Wang et al., 2018; Yu 

et al., 2015). Our model did not incorporate microglia, nor did we assess the effects of 

CBDV, CBG or CBDA on microglial monocultures. Studies have shown CBG protected 

stimulated macrophages against oxidative stress via a CB2 dependent mechanisms and 

protected motor neurons against medium taken from lipopolysaccharide (LPS) 

stimulated macrophages (Giacoppo, Gugliandolo, et al., 2017; Gugliandolo et al., 

2018). Recently Zamberletti and co-authors (2019) found that CBDV restored CB2 

expression and reduced microglial activation in rats exposed to valproic acid (VPA). 

However, CBDA has not been investigated in the context of neuroinflammation or 

whether it can influence immune cell activation. Thus, it would be interesting to see if 

CBDV, CBG or CBDA modulate microglial activation in preclinical models of ischaemic 

stroke. 

 

Phytocannabinoids exhibit a complex pharmacology and future experiments are 

needed to generate a more comprehensive picture of CBDVs, CBGs and CBDAs 

biological effects and their corresponding mechanisms of action. It is worth mentioning 

that Pagano et al., (2019) found CBDVs ability to reduce intestinal permeability and 

inflammatory cytokine release was mediated by TRPA1 receptors, which were not 

probed in our panel of antagonists. Pires and Earley, (2018) found that mitochondrial 

derived ROS stimulate TRPA1 dependent Ca2+ influx in cerebral arteries during hypoxia, 
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whilst Araújo and colleagues (2017) found that LDH release induced by OGD in chick 

retina was reversed by TRPA1 antagonist, HC-030031. These points support the role of 

TRPA1 receptors in hypoxia and ischaemia and it is possible that CBDVs protective 

effects and perhaps CBG and CBDA, in our model may be due to their interaction at 

TRPA1 receptors, which should be investigated in future studies.  

 

Inflammation and oxidative stress facilitate the breakdown of TJs post ischaemia, 

significantly contributing to BBB breakdown. Future experiments could analyse 

changes in TJ expression post ischaemia by analysing mRNA levels in BBB insert lysates 

or by immunocytochemistry. The direct influence of phytocannabinoids on TJ 

expression and localisation could also be examined. Whilst we concluded that CBG and 

CBDVs protection against cell damage was likely to be due to their antioxidant effects, 

direct measurement of oxidative stress was not conducted and could be assessed in 

future study.  

 

Looking forward, the pharmacokinetics (PK) of minor phytocannabinoids also need to 

be fully established before confirming clinical translatability (Stone et al., 2020). CBD 

has shown great promise as a neuroprotectant, partly due to its tolerability and safety 

in humans and its ability to cross the BBB (Millar et al., 2018). We found that despite 

evidence of CBDs efficacy in various disorders, there was an absence of PK data on CBD 

particularly regarding CBDs bioavailability in man (Millar et al., 2018, 2019). Likewise, it 

is paramount for PK data on minor phytocannabinoids, CBDA, CBG and CBDV to be 

generated in order for these compounds to be fully considered as therapeutic options 

in man. Limited PK data on these compounds in rodents presented in Deiana et al., 

(2012) and Anderson et al., (2019) demonstrate that CBDA, CBDV and CBG readily 

penetrate the brain, corroborating their potential as clinical neuroprotectants. 

Currently, CBDV is in clinical trials for autism spectrum disorder (phase 2, clinical trial 

identifier: NCT03849456) and was taken into clinical trials for epilepsy but did not 

meet the primary end point in controlling focal seizures (clinical trial identifier: 

NCT02365610). However, it is worth noting that the percentage of serious adverse 
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effects (SAEs) were low and reported adverse effects (AEs) were of mild to moderate 

severity, altogether suggesting CBDV was well tolerated in humans (dose-titrated up to 

800 mg per day)(Morano et al., 2020). Considering the novel data presented in this 

thesis, together with evidence from the aforementioned studies, CBDA, CBDV and CBG 

are promising neuroprotectants and should be explored further in in vivo models of 

ischaemic stroke and perhaps other neurological disorders.   

8.2 Overall conclusions 

This thesis examined the protective effects of phytocannabinoids on cells of the NVU 

and successfully developed a four-cell BBB model. Using an OGD protocol to simulate 

ischaemic stroke in vitro, pre-treatment with CBG, CBDV and CBDA attenuated multiple 

aspects of OGD induced damage, including elevated levels of proinflammatory 

cytokines, adhesion molecules, heat shock proteins, as well as cellular and DNA 

damage. Furthermore, CBDA reduced BBB permeability and protected neurons in a 

four-cell BBB model subjected to OGD. In addition, manipulation of the 

endocannabinoid system by activities such as singing may pose a novel therapeutic 

avenue in various neurological disorders. The results presented in this study, together 

with the existing literature, suggest CBDA, CBG and CBDV may offer protection in 

ischaemic stroke, particularly against IL-6 and VEGF/MCP-1 induced increases in BBB 

permeability and cell damage. Overall, these novel data add to the growing body of 

evidence on the biological effects of phytocannabinoids and their potential as 

neuroprotective agents, particularly in conditions which implicate BBB dysfunction. 
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9. Appendix 

Professional internship reflective statement 

Note to examiners: 

A mandatory 3-month placement for DTP PhD students was carried out between 

February and May 2019. A brief, reflective statement on the internship and the skills 

developed is included to enable readers to recognise the range of PhD training that 

was experienced as a BBSRC doctoral student. This professional internship was 

completely separate to the PhD studies and was undertaken to develop different skills 

that could be useful in future endeavours. 

 

I accepted an internship at the scientific consultancy company Blossom Medical, under 

the supervision of a wonderful mentor, Dr Andy Yates. During the three months I 

learned a variety of new skills including, drug marketing, legislation, R&D and business 

development. I gained knowledge of the cannabidiol (CBD) commercial market and 

companies responsible for CBD’s novel food legislation. I also learned about the centre 

of medicinal cannabis (CMC) which promotes the widespread access to cannabis-based 

medicines (CBMs), as well as the education of various regulatory bodies and medical 

professionals on medical cannabis use. 

 

I wanted to establish whether I would pursue a career outside of lab-based research, 

either in scientific business development or legislation. I also wanted to build my 

corporate skills, such as interacting in business meetings, professional conduct and 

liaising with individuals with a range of skills and backgrounds. Shadowing Dr Andy 

Yates enabled me to partake in all of these and gain insight into the variety of projects 

he was involved with as a scientific consultant. Also, there was a range in the urgency 

of the tasks I was set meaning I had to be quick to delve into a piece of work if 

something was required promptly- sometimes within 1-2hrs. This helped me to 

develop my time management skills and ability to prioritise tasks in accordance with 

deadlines. 
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Whilst it was very insightful and invaluable experience, I did miss working in the lab 

and the practical side of science. I realised that I still wanted to increase my scientific 

skills and experience, possibly to pursue an academic career or a lab-based job in 

industry.  However, I did appreciate the different career possibilities outside academia 

and the variety of job opportunities for someone with the breadth of skills I have 

developed over the course of my PhD. Overall, I thoroughly enjoyed my professional 

internship, it enabled me to be part of life outside PhD study and academic life whilst 

learning different intrapersonal skills and knowledge of scientific industry and the 

business sector. 
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The following chapter is presented in its final manuscript format and is published in 

British Journal of Clinical Pharmacology (Millar et al., 2019). 
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Aims: Cannabidiol (CBD) is a cannabis‐derived medicinal product with potential

application in a wide‐variety of contexts; however, its effective dose in different

disease states remains unclear. This review aimed to investigate what doses have

been applied in clinical populations, in order to understand the active range of CBD

in a variety of medical contexts.

Methods: Publications involving administration of CBD alone were collected by

searching PubMed, EMBASE and ClinicalTrials.gov.

Results: A total of 1038 articles were retrieved, of which 35 studies met inclusion

criteria covering 13 medical contexts. Twenty‐three studies reported a significant

improvement in primary outcomes (e.g. psychotic symptoms, anxiety, seizures), with

doses ranging between <1 and 50 mg/kg/d. Plasma concentrations were not pro-

vided in any publication. CBD was reported as well tolerated and epilepsy was the

most frequently studied medical condition, with all 11 studies demonstrating positive

effects of CBD on reducing seizure frequency or severity (average 15 mg/kg/d within

randomised controlled trials). There was no signal of positive activity of CBD in small

randomised controlled trials (range n = 6–62) assessing diabetes, Crohn's disease,

ocular hypertension, fatty liver disease or chronic pain. However, low doses (average

2.4 mg/kg/d) were used in these studies.

Conclusion: This review highlights that CBD has a potential wide range of activity

in several pathologies. Pharmacokinetic studies as well as conclusive phase III trials to

elucidate effective plasma concentrations within medical contexts are severely lack-

ing and highly encouraged.

KEYWORDS

cannabidiol, cannabinoid, dose, dosing, therapeutics

1 | INTRODUCTION

Cannabidiol (CBD) is a non‐intoxicating major constituent of the

Cannabis sativa plant that has been increasing in interest due to its

potentially diverse range of therapeutic properties and its favourable

safety and tolerability profile.1 Side effects are generally mild and

infrequent, such as sleepiness, diarrhoea or increased temperature.

It is also reported that clinically significant drug‐interactions pose a
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low risk.2 There is no evidence for dependency or abuse potential

with CBD use, as concluded by the World Health Organisation Expert

Committee on Drug Dependence.1 The purported effects of CBD

include analgesic, anti‐inflammatory, antioxidant, anxiolytic, anticon-

vulsant and cytotoxic effects, which are mediated through signalling

mechanisms including the cannabinoid receptor 1 (weak agonist),

the cannabinoid receptor 2 (inverse agonist), the serotonin 1a

receptor (5‐HT1A), G protein‐coupled receptor 55 (GPR55), G

protein‐coupled receptor 18 (GPR18) and the transient receptor

potential cation channel subfamily V member 1 (TRPV1) receptors,

amongst others.3

Clinically, CBD is being investigated in multiple disease states

including neurodegeneration, anxiety disorder, orphan childhood

diseases with a prevalence of <5 in 10 000 individuals (e.g. tuberous

sclerosis complex) and addiction (ongoing trials in cannabis and

cocaine craving).4-6 Epidiolex has recently become the first Food and

Drug Administration‐approved CBD medicine, indicated for use in

Lennox–Gastaut or Dravet syndrome (childhood epilepsy) by oral

administration. Sativex is an oromucosal spray containing both CBD

and δ‐9‐tetrahydrocannibinol, which is licenced in the EU and Canada

for the treatment of multiple sclerosis associated spasticity. At the

time of writing, there are 49 clinical trials registered on clinicaltrials.

gov investigating CBD alone (either not yet recruiting, recruiting or

active) and there have been at least a further 100 clinical trials

previously registered containing CBD, indicating a significant clinical

interest with an ongoing need to ensure that human volunteers

engaged in these trials are given doses that are optimised for efficacy

and safety. Surprisingly, none of the 49 currently registered trials have

explicitly included a study design to investigate the dose‐ranging

efficacy of CBD.

Hemp‐derived CBD is commercially available and is currently used

as a health and food supplement commonly for anxiety and pain

relief. This market represents a flourishing industry expected to rise

financially and globally.7 However, the blurred lines between CBD

as a licensed medicine and CBD as an over‐the‐counter remedy

contribute to the overall lack of understanding of what dose of

CBD may be considered therapeutic. This is further hampered by

the lack of standardisation in over‐the‐counter CBD products and

their unregulated labelled doses.

Despite the prevalence of CBD use and current hype, guidance

on dose recommendations has not advanced and is not clear, addi-

tionally hampered by the striking lack of accessible pharmacokinetic

and bioavailability data of CBD in humans.8 No published study to

date has reported the absolute oral bioavailability of CBD in

humans.8 Limited dose‐determination studies have left a paucity in

data surrounding desired plasma concentrations to achieve minimum

effective doses. Additionally, the lack of information on the role of

different formulations and routes of administration on absorption

are also apparent. The aim of this review was to comprehensively

collate all published data relating to CBD administration in clinical

populations to describe the range of CBD doses assessed across

different pathological states.

2 | METHODS

2.1 | Search strategy

The systematic review was carried out in accordance with PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta‐

Analyses) guidelines. A systematic search of PubMed, EMBASE

(including MEDLINE) and clinicaltrials.gov was conducted to retrieve

all articles reporting CBD administration in clinical populations using

‘CBD or Cannabidiol’ as search terms. Searches were restricted to

‘humans’ and ‘clinical trials and case reports’ in PubMed and EMBASE,

with no restrictions on clinicaltrials.gov. The searches were carried out

by 8 August 2018 by 2 independent researchers.

2.2 | Eligibility criteria

The titles and abstracts of retrieved studies were examined by 2

independent researchers, and inappropriate articles were rejected.

Inclusion criteria were as follows: an original, peer‐reviewed published

paper that involved administration of CBD to a clinical population, or

reported on clinicaltrials.gov, and included an outcome measurement

to assess the efficacy of CBD i.e. improvement in disease. Exclusion

criteria were: administration in healthy participants only; CBD

administered in combination with other cannabinoids such as with δ‐

9‐tetrahydrocannibinol or as whole cannabis extracts; article not in

English; no stated concentration of CBD used; or no statistical results

reported. The reference lists of included studies were hand‐searched

for additional relevant studies.

What is already known about this subject
• Due to its favourable toxicity and side effect profile,

cannabidiol is under increasing investigation in the

commercial and medical industry to treat many clinical

indications.

What this study adds
• This study identifies the wide active dosing range of

cannabidiol (<1 to 50 mg/kg/d) within a variety of

medical conditions including epilepsy, anxiety and graft‐

vs‐host disease.

• This review indicates that studies that used higher doses

tended to have better therapeutic outcomes compared to

lower doses overall.

• This study identifies a strong existing need for dose‐

ranging clinical studies to be conducted in which plasma

concentrations can provide a better indication of the

therapeutic range of cannabidiol.
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2.3 | Data acquisition and analysis

The included articles were analysed, and the following data extracted:

sample size, clinical population/medical context; study design and

length; administration route of CBD; source of CBD; dose of CBD;

side effects; and primary outcome results. All data entry was checked

by an additional independent researcher. Risk of bias of the 15

randomised controlled trials was assessed using the 2011 Cochrane

Collaboration's tool for assessing risk of bias.

As this review included studies of participants of all ages (from

infants to adults), dosing is reported in mg/kg of body weight to

allow for comparison. Where not available as mg/kg (24 studies),

dose was converted for adults using an average adult body weight

of 62 kg.9 In only 1 publication, a case report on a child, an average

child weight of 40 kg had to be used to convert reported mg/d dose

into mg/kg/d.10

A positive effect of CBD was determined by the presence of a sig-

nificant improvement in primary end points(s) or outcomes reported

compared to placebo or baseline. A lack of positive effect was deter-

mined if no significant improvements were reported. Mixed findings

were reported for example in case reports wherein some patients

improved, others did not, or where a primary outcome was not speci-

fied (exploratory study) and in which some endpoints improved while

others worsened (1 study) or remained unchanged.

3 | RESULTS

The initial search yielded 1038 records, from which 896 abstracts

were reviewed, and 35 articles were included in the final analysis,

comprising a total number of 1223 participants. A flow chart of arti-

cle retrieval and selection is presented in Figure 1. Fifteen studies

were randomised controlled trials (RCTs), 8 were clinical trials but

not both randomised and controlled in design (for example open‐label

trials), and 12 articles were case reports/series. A description of each

study is presented in tables 1–3 according to study design. Results of

the risk of bias assessment of the RCTs are presented in Figure 2. A

component of blinding was included in 74% of the RCTs . No study

was reported with a high risk of selection bias, detection bias, or

reporting bias. Overall, most information was from studies at low risk

of bias. No study reported plasma concentrations of CBD. All studies

reported oral administration of CBD, either as an oral solution

(n = 11), capsules (n = 13), spray/sublingual (n = 4), or orally but

unspecified (n = 6).

Of the 15 RCTs, the range of doses investigated varied from

<1 mg/kg up to 20 mg/kg per day (average 9 mg/kg/d).11-19,21-25

Seven RCTs reported CBD efficacy (average dose 14 mg/kg/

d),11-13,16,19,20,24 7 studies describe neutral effects of CBD (average

dose 5 mg/kg/d)14,15,17,21-23,25 and 1 study showed both positive

and negative outcomes.18 In the remaining 8 clinical trials of various

FIGURE 1 Flow chart of study retrieval and
selection
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TABLE 1 Summary of included studies: randomised controlled trials

Study

Clinical

population Total n Design Trial length

CBD dose (mg) and

approx. mg/kg/da
Route of

admin. CBD source

Resultsb: Primary

endpoint(s) + effect Side effects

McGuire, 2018

(NCT02006628)11
Schizophrenia,

adults

88 Phase II exploratory

double‐blind,
parallel‐group, RCT.
Add‐on therapy to

anti‐psychotic
drugs.

8 wk 1000 mg/d (16.7 mg/

kg/d)

Oral solution GW Positive psychotic

symptoms reduced.

Negative, overall

and general

psychotic symptoms

unchanged. Higher

proportion of CBD

treated patients

rated as improved.

No differences in

functionality. No

significant

improvement in

cognitive function

except for motor

speed. Overall

reported as clinically

significant

improvements with

CBD.

Yes Rates of adverse

events similar

between CBD and

placebo groups

Thiele, 2018

(NCT02224690)12
Seizures

(Lennox–
Gastaut

syndrome),

ages 2–55 y

171 Double‐blind, phase III,

RCT. Add‐on
therapy to AEDs.

14 wk 20 mg/kg/d Oral solution GW Monthly frequency of

drop seizures

decreased by a

median of 43.9% in

the CBD group,

significantly more

than in the placebo

group

Yes Diarrhoea,

somnolence,

pyrexia, decreased

appetite, vomiting

Devinsky, 2018

(NCT02224560)13
Lennox–

Gastaut

syndrome

(epilepsy),

ages 2–55 y

225 Phase III, double‐blind,
RCT. Add‐on
therapy to AEDs.

14 wk 10 or 20 mg/kg/d Oral solution GW Significantly greater

reduction in CBD

groups in drop

seizure frequency

than in placebo

Yes 9% taking CBD had

elevated liver

aminotransferases.

Somnolence,

decreased

appetite,

diarrhoea, upper

respiratory tract

infection, pyrexia,

vomiting.

(Continues)
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TABLE 1 (Continued)

Study

Clinical

population Total n Design Trial length

CBD dose (mg) and

approx. mg/kg/da
Route of

admin. CBD source

Resultsb: Primary

endpoint(s) + effect Side effects

Boggs, 2018

(NCT00588731)14
Schizophrenia,

adults

36 Double‐blind, parallel
group, RCT. Add‐on
therapy to anti‐
psychotic drugs.

6 wk 600 mg/d (10 mg/kg/

d)

Oral

capsules

STI No effect on cognition

or symptoms

No Similar rates between

placebo and CBD,

with exception of

sedation which

was higher in CBD

group.

Naftali, 2017

(NCT01037322)15
Crohn's disease,

adults

19 RCT 8 wk 20 mg/d (0.3 mg/kg/d) Orally,

sublingual

On‐site No difference in

disease index

No None observed

Devinsky, 2017

(NCT02091375)16
Treatment

resistant

Dravet

syndrome

(epilepsy),

aged 2–18 y

120 Double‐blind, RCT.
Add‐on therapy to

AEDs.

14 wk 20 mg/kg/d Oral solution GW Reduction in

frequency of

convulsive seizures

compared to

baseline,

significantly greater

reduction than with

placebo

Yes Diarrhoea, vomiting,

fatigue, pyrexia,

somnolence,

abnormal results

on liver‐function:
tests were higher

in the CBD group

than placebo

Jadoon, 2016

(NCT01217112)17
Type 2 diabetes

patients,

adults

62 Double‐blind, RCT 13 wk 200 mg/d (3.3 mg/kg/

d)

Oral GW No change in HDL‐
cholesterol

concentrations or

glycaemic control.

No Well tolerated

Chagas, 201418 Parkinson's

disease,

adults

21 Double‐blind
exploratory RCT.

Add‐on therapy to

anti‐Parkinson's
drugs.

6 wk 75 or 300 mg/d (1.25

or 5 mg/kg/d)

Oral

capsules

THC No effect on motor

and general

symptoms; 300‐mg

dose improved well‐
being and quality of

life scores.

Mixed None reported

Leweke, 201219 Schizophrenia,

adults

42 Phase II, double‐blind,
parallel‐group, RCT

4 wk 800 mg/d (max:

13.3 mg/kg/d)

NA NA Significant

improvement of

psychotic symptoms

compared to

baseline

Yes Well tolerated

Bergamaschi, 201120 Generalised

SAD, adults

24 Double‐blind, RCT Acute 600 mg (10 mg/kg) Oral capsule STI and THC Reduction in anxiety,

cognitive

impairment,

discomfort in

speech

performance. Alert

factors in

anticipatory speech

were also reduced.

Yes None reported

(Continues)
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TABLE 1 (Continued)

Study

Clinical

population Total n Design Trial length

CBD dose (mg) and

approx. mg/kg/da
Route of

admin. CBD source

Resultsb: Primary

endpoint(s) + effect Side effects

Tomida, 200621 Ocular

hypertension,

adults

6 Double‐blind, 4‐way

cross‐over, RCT
Acute 20 or 40 mg (0.3 or

0.7 mg/kg)

Oromucosal

spray

GW 20 mg of CBD was

ineffective, while

40 mg slightly

increased

intraocular pressure.

No Mild—e.g. oral

discomfort.

Notcutt, 200422 Chronic pain,

adults

24 Double‐blind, 4‐way

cross‐over, RCT.
Add‐on therapy to

pain medication.

8 wk Approx. 9 sprays/d,

equivalent of

22.5 mg/d (0.4 mg/

kg/d)

Sublingual

spray

GW Symptom control or

sleep duration was

not improved with

CBD; however,

sleep quality was.

No Mid—drowsiness, dry

mouth

Consroe, 199123 Huntington's

disease,

adults

15 Double‐blind, cross‐
over, RCT

6 wk 10 mg/kg/d Oral

capsules

US NIDA CBD was ineffective No Similar between CBD

and placebo

Cunha, 198024 Epilepsy, adults 15 Double‐blind, RCT
study. Add‐on
therapy to AEDs.

Up to

4.5 months

200–300 mg/d (5 mg/

kg/d)

Oral

capsules

NA All but 1 patient

improved condition

Yes Well tolerated

*NCT0128463425 Fatty liver

disease,

adults

25 Partially‐blinded,
phase II, RCT

8 wk 200, 400 or 800 mg/d

(3.3, 6.7, or

13.3 mg/kg/d)

Oral

capsules

GW No differences in liver

triglyceride levels

No Similar between CBD

and placebo

aIf not supplied, mg/kg/d was calculated based on average adult weight of 62 kg to enable comparisons.
bSignificant compared to placebo/control (P < .05) unless stated otherwise.

*Registered clinical trial identifier: not published in any peer‐reviewed journal but results available from clinicaltrials.gov.

AEDs, anti‐epileptic drugs; CBD, cannabidiol; GW, GW Pharmaceuticals; HDL, high density lipoprotein; NA, not available; NIDA, National Institute on Drug Abuse; RCT, randomised controlled trial; SAD, social
anxiety disorder; STI, STI Pharmaceuticals; THC, THC Pharm.
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TABLE 2 Summary of included studies: clinical studies

Study Clinical population Total n Design Trial length

CBD dose (mg) and

approx. mg/kg/da Route of admin. CBD source

Resultsb: Primary

endpoint(s) + effect Side effects

Rosenberg, 201726 Epilepsy, 1–30 y 48 Open label clinical

study

12 wk 2–5 mg/kg/d titrated

up to 50 mg/kg/d

or intolerance

Oral solution or by

gastric tube

GW Improvement in

quality of life as well

as some cognitive

functions (memory

and control)

Yes Somnolence,

drowsiness,

fatigue

Devinsky, 201627 Drug‐resistant
epilepsy, ages

1–30 y

137 Prospective, open‐
label trial

12 wk 2–5 mg/kg/d, up‐
titrated to 25 or

50 mg/kg/d

Oral solution or

gastric tube

GW Monthly motor

seizures reduced by

a median of 35.5%

from baseline

Yes Somnolence, fatigue,

diarrhoea,

decreased

appetite, weight

loss, status

epilepticus (6%).

Hess, 201628 Drug‐resistant
epilepsy in

tuberous sclerosis

complex, 2–31 y

18 Prospective study 6–12 months 5 mg/kg/d titrated

up to 50 mg/kg/d

if tolerated

Oral solution GW Decreased seizure

frequency

Yes Drowsiness, ataxia,

diarrhoea

Yeshurun, 2015

(NCT01385124)29
Cell transplant,

(GVHD), adults

48 Prospective, phase II

clinical trial

37‐day 300 mg/d

(5 mg/kg/d)

Oral solution STI No patients developed

acute GVHD.

Significantly

reduced risk ratio

compared to

historical case

controls.

Yes None reported

Crippa, 20115 Generalised SAD,

adults

10 Double‐blind,
placebo‐controlled
study

Acute 400 mg (6.7 mg/kg) Oral capsule THC Reduced subjective

anxiety

Yes None reported

Hallak, 201030 Schizophrenia, adults 28 Placebo‐controlled
study

Acute 300 or 600 mg (5 or

10 mg/kg)

Oral capsules Gift No beneficial effects

on selective

attention

No None reported

Zuardi, 200931 Psychosis in

Parkinson's

disease, adults

6 Open‐label pilot
study

4 wk 150 mg/d, increased

by 150 mg each

week to a total of

400 mg/d

(6.7 mg/kg/d)

Oral capsule THC Decrease in psychotic

symptoms and

Parkinson's disease

rating compared to

baseline

Yes None reported

Consroe, 198632 Dystonic movement

disorder, adults

5 Preliminary open

pilot study

6 wk 100–600 mg/d,

increased weekly

(1.7–10 mg/kg/d)

Oral capsules NA Dose‐related
improvement in

dystonia disability

Yes Mild—drop in

standing blood

pressure

aIf not supplied, mg/kg/d was calculated based on average adult weight of 62 kg to enable comparisons.
bSignificant compared to placebo/control (P < .05) unless stated otherwise.

CBD, cannabidiol; GW, GW Pharmaceuticals; GVHD, graft‐vs‐host disease; STI, STI Pharmaceuticals; SAD, social anxiety disorder; THC, THC Pharm.
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TABLE 3 Summary of included studies: case studies

Study Clinical population Total n Design Trial length

CBD dose (mg) and

approx. mg/kg/da Route of admin. CBD source

Resultsb: Primary

endpoint(s) + effect Side effects

Kaplan, 201733 Refractory seizures in

Sturge–Weber

syndrome, children

5 Case‐series 14 wk 5–25 mg/kg/d Oral solution GW Decreases in seizure

frequency

Yes Mild

Warren, 201734 Brain tumour related

epilepsy, aged 17–
40 y

3 Case series 2–10 mo 10–50 mg/kg/d Oral GW Improvement in

seizure frequency

(n = 2) and severity

(n = 3)

Yes Diarrhoea

Gofshteyn, 201735 Febrile infection‐
related epilepsy

syndrome, children

7 Open‐label
case

series

Acute and up to

48 weeks

15–25 mg/kg/d Oral solution GW Improvements in

frequency and

duration of seizures

Yes Dizziness,

decreased

appetite,

weight loss

Shannon, 201610 Anxiety and insomnia

in PTSD, child

1 Case report 5 mo 25 mg/d (0.6 mg/kg/d) Oral capsule

and spray

CannaVest

Corp

Increased sleep quality

and duration, and

decreased anxiety

secondary to PTSD

Yes None observed

Saade, 201536 Seizures, 10‐month

old infant

1 Case report 6 mo 25 mg/kg/d Oral solution GW Substantial reductions

in seizures

Yes None reported

Chagas, 201437 RBD in Parkinson's

disease, adults

4 Case series 6 wk 75 mg/d

(1.25 mg/kg/d)

NA NA Substantial reduction

in RBD‐associated
events compared to

baseline

Yes None reported

Crippa, 201338 Cannabis dependency,

adult

1 Case report 10 d 300 mg/d increased to

600 mg/d (5–
10 mg/kg/d)

Oral capsule THC Absence of withdrawal

symptoms

Yes None reported

Zuardi, 201039 Bipolar disorder, adults 2 Case series 30 d 600 mg/d increased to

1200 mg/d (20 mg/

kg/d)

Oral STI and THC CBD was ineffective

for manic episode

No None observed

Zuardi, 199540 Schizophrenia, adult 1 Case report 4 wk 1500 mg/d

(25 mg/kg/d)

Oral capsules NA Improvements in

psychiatric ratings

Yes Well tolerated;

none reported

Zuardi, 200641 Treatment‐resistant
schizophrenia,

adults

3 Case series 30 d 40 mg/d, increased to

1280 mg/d

(21.3 mg/kg/d)

Oral GW 1 patient showed mild

improvement to

baseline and

discontinuing

treatment worsened

symptoms

No Well tolerated;

none observed

(Continues)
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study design, 7 studies reported CBD positively (average dosing

23 mg/kg/d)5,26-29,31,32 and 1 study was neutral (8 mg/kg/d).30

Within the 12 case studies and case series, 9 described positive

effects of CBD (average dosing 16 mg/kg/d),10,33-38,40,43 2 were

neutral (average dosing 21 mg/kg/d)39,41 and 1 study described

mixed results (3 mg/kg/d).42

Epilepsy was the most frequently studied medical condition, with all

11 studies describing beneficial effects of CBD in reducing the severity

or frequency of seizures.12,13,16,24,26-28,33-36 Within the 4 conducted

RCTs (n = 531), an average dosing of 15 mg/kg/d was used where

CBD was administered successfully as an add‐on therapy to usual

anti‐epileptic drugs.12,13,16,24 Significant improvements were observed

compared to placebo as an add‐on therapy. Within the other 3 clinical

trials of prospective open‐label design (n = 203), CBD was adminis-

tered at an average dosing of 42 mg/kg/d and significant improve-

ments in quality of life and seizure frequency compared to baseline

were observed.26-28 3 case series and 1 case report (total n = 16)

reported beneficial effects of CBD on seizure frequency, duration

and severity with an average administered dose of 21 mg/kg/d.33-36

Seven studies were conducted in the context of schizophrenia and

bipolar disorder. Within the RCTs, 2 conducted with an average dosingT
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of 15 mg/kg/d over 4 or 8 weeks reported positive reductions in psy-

chotic or psychiatric symptoms and a better side effect profile

(n = 130).11,19 One of these compared CBD against an active control

(amisulpride), and the other as an add‐on therapy to usual medication

compared to placebo as an add‐on therapy. However, a third RCT

employing CBD as an add‐on therapy did not report any improve-

ments in cognition or symptoms of schizophrenia after a lower aver-

age dose of 10 mg/kg/d over 6 weeks (n = 36).14 An acute dose of

5 or 10 mg/kg/d did not improve selective attention in a placebo‐

controlled trial of 28 schizophrenia patients.30 A number of case

studies have also been conducted by Zuardi and colleagues in this

medical context. In 2 patients with bipolar disease, 20 mg/kg/d was

ineffective in treating manic episodes.39 CBD was similarly unable to

improve symptoms in 3 schizophrenia patients, although 1 patient

described mild improvement.41 Another case report described

improvement in psychiatric ratings following an average dose of

25 mg/kg/d over 4 weeks.40

Results are mixed within Parkinson's disease studies. Within an

RCT in 21 patients, 1.25 or 5 mg/kg/d CBD had no effect on motor

and general symptoms. However, the 5 mg/kg/d dose improved

well‐being and quality of life scores.18 The remaining studies are case

studies in which CBD decreased psychotic symptoms and Parkinson's

disease ratings (n = 6; 7 mg/kg/d),31 improved rapid eye movement

sleep behaviour disorder (n = 4; 1 mg/kg/d),37 decreased dyskinesia

with 2 to 3 mg/kg/d doses (n = 1), but exaggerated Parkinson's disease

symptoms with 5 and 7 mg/kg/d doses.42

CBD did not change therapeutic outcome variables in a double‐

blind RCT in Huntington disease patients compared to placebo

(n = 15; 10 mg/kg/d for 6 weeks),23 but improved dystonia disability

in an open pilot study (n = 5; 10 mg/kg/d for 6 weeks),32 and improved

spasm frequency and severity in a case report in 1 patient with Meige

syndrome (7 mg/kg/d).43

Within the RCTs, CBD did not significantly change the primary

outcomes in diabetes (n = 62), Crohn's disease (n = 19), ocular hyper-

tension (n = 6), chronic pain (mostly neuropathic; n = 24), or fatty liver

disease (n = 25).15,17,21,22,25 However, an average dose of 2.4 mg/kg/d

(range 0.3–13.3 mg/kg/d) was used in these studies, which is very low

in the clinical and clinical trial setting compared to other studies. Low

doses (10 mg/kg) did, however, produce positive responses in

generalised social anxiety disorder (SAD) in a double‐blind RCT in 24

patients.20 Likewise, in another double‐blind placebo‐controlled study,

a dose of 6.7 mg/kg reduced subjective anxiety in 10 adults with gen-

eralised SAD.5 Additionally, in a case report in a child, 0.6 mg/kg/d

increased sleep quality and duration, and decreased anxiety secondary

to PTSD.10

Lastly, it was found that doses of 5 mg/kg/d prevented occurrence

of graft‐vs‐host disease in a phase II clinical trial (n = 48) and

5–10 mg/kg/d doses have been shown in a case report to remove

withdrawal symptoms from a patient with cannabis dependency.29,38

Within studies that compared CBD against a placebo or control

(n = 17 publications), only 1 compared CBD against an active control

(and a greater clinical improvement and side effect profile was

observed with CBD against amisulpride), 8 compared CBD against a

placebo (monotherapy), and 8 studies compared CBD as an add‐on

therapy (adjunctive to antipsychotic medication, antiepileptic medica-

tion, anti‐Parkinson medication or pain medication) against placebo.

Analysis of these data revealed that a greater proportion of studies

reported a beneficial effect of CBD in the add‐on therapy group

compared to the monotherapy group (n = 6 and n = 2 respectively).

However, higher doses were used overall within the add‐on therapy

group compared to the monotherapy group (average 11 and

6 mg/kg/d, respectively) and, due to such a small data set and hetero-

geneity of studies, we did not perform any further analysis.

4 | DISCUSSION

To our knowledge, this is the first study to compile and compare all

publications in which CBD was administered to clinical populations.

The aim of this systematic review was to better understand the range

of doses of CBD used in clinical studies. In total, 13 medical contexts

were included in this review amongst 35 studies including clinical trials

and case reports. A positive effect of CBD was reported in 66% of

studies, covering disorders including schizophrenia, SAD, epilepsy,

cannabis dependency and graft‐vs‐host disease, with doses ranging

between <1 and 50 mg/kg/d (i.e. <62–3100 mg/d for an adult).

Although we acknowledge that these results mix widely heteroge-

neous studies, it appears well founded to highlight the differences in

average dosing for positive effect studies against those without posi-

tive effects, which is confirmed when analysing studies per medical

context within each study design format. This suggests that CBD

potentially displays a wide therapeutic range, and variable minimum

doses are required for effect depending on primary outcomes

assessed and the population group. However, it is vital to note that

no conclusions can be drawn on the efficacy of CBD as larger phase

III and conclusive efficacy trials have not been conducted, with excep-

tion of epilepsy. A number of phase III clinical trials are registered on

clinicaltrials.gov, which should provide more evidence in the coming

years in the contexts of pain, anxiety, Crohn's disease, bipolar disorder,

Fragile X syndrome, epilepsy and more.

CBD is increasingly popular, both as a food and health supplement

and as a licensed medicine. Within this review, 51% of studies have

been published in the last 5 years (since 2013); however, the included

articles span over decades, with prominent publications first appearing

in the 1980s and early 1990s.24,40 Despite its long history of sole

administration to patients, there is surprisingly little published about

the pharmacokinetic properties of CBD, particularly its bioavailability,

making it difficult to estimate true effective doses.8 Historically, there

is a striking lack of dose‐ranging studies and, looking forward, there

are no registered trials on clinicaltrials.gov including specific dose‐

ranging investigations in their study design. Ideally, this review would

have compared plasma concentrations of CBD in order to more

accurately estimate therapeutic concentrations, but, due to the lack

of reporting, this was not possible.

Different effective plasma concentrations of CBD may be required

for achieving different endpoints across clinical populations, which is a
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recognised trait in a number of other drugs and diseases. For example,

aspirin (acetylsalicylic acid) is used at low doses for antiplatelet ther-

apy, and at higher doses as an analgesic agent.44,45 With CBD, lower

doses may be effective in anxiety relief, while higher doses may be

required for effective reduction in epileptic seizures. In studies where

there are good rationales for CBD use (e.g. Crohn's disease and

chronic pain46,47), neutral results may be secondary to subtherapeutic

dosing, and dose‐escalation trials with embedded pharmacokinetic

studies are the next logical step.15,22 Studies in this review using

higher doses concluded that CBD was generally well‐tolerated with

the most frequent side effects including drowsiness, nausea, somno-

lence, fatigue and vomiting.

Among the clinical trial records retrieved from clinicaltrials.gov,

only 60% of completed trials had results uploaded and available. This

may represent a significant publication bias and is suggestive of disre-

gard for the priority of publication of negative results, which is a well‐

recognised problem.48 Unfortunately, this may potentially skew the

findings presented in this review and so should be interpreted with

caution and is acknowledged as a limitation. We also acknowledge

that despite all routes of administration being oral, there may be fur-

ther bias introduced between studies as one dose cannot be directly

compared to another due to lack of standardisation of formulations

and pharmacokinetic activity, including differences in bioavailability

between an oral spray and an oral capsule.

Future studies should also consider the safety of drug interactions

with CBD. CBD is a known inhibitor of the cytochrome P450 (CYP)

system49 and can therefore increase plasma concentrations of medi-

cines already in use, in particular antiepileptic drugs. Indeed, this has

been reported in a number of publications investigating concomitant

use of CBD and antiepileptic drugs.50 Similarly, CYP inhibitors are

predicted to increase CBD plasma concentrations which should be

equally monitored. Where possible, further well designed trials with

CBD may disentangle whether CBD offers unique therapeutic poten-

tial in addition to benefits seen when used as an add‐on treatment.

5 | CONCLUSION

Although larger confirmatory and efficacy clinical trials examining dos-

ing in more detail for each medical context is required, this review sum-

marises that CBD appears to offer a wide‐range of activity between 1

and 50 mg/kg/d, and there was a tendency of studies with positive

outcomes to have used higher doses of CBD. We recommend pharma-

cokinetic dosing schedules in subsequent trials to consider this range

along with safety data and individual patient requirements. Finally,

we implore all completed trial results to be made readily available so

the research community can progress and learn from equally important

positive and negative outcomes for the ultimate benefit of patients.
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Background: Cannabidiol is being pursued as a therapeutic treatment for multiple

conditions, usually by oral delivery. Animal studies suggest oral bioavailability is low, but

literature in humans is not sufficient. The aim of this review was to collate published data

in this area.

Methods: A systematic search of PubMed and EMBASE (including MEDLINE) was

conducted to retrieve all articles reporting pharmacokinetic data of CBD in humans.

Results: Of 792 articles retireved, 24 included pharmacokinetic parameters in

humans. The half-life of cannabidiol was reported between 1.4 and 10.9 h after

oromucosal spray, 2–5 days after chronic oral administration, 24 h after i.v., and 31 h

after smoking. Bioavailability following smoking was 31% however no other studies

attempted to report the absolute bioavailability of CBD following other routes in humans,

despite i.v formulations being available. The area-under-the-curve and Cmax increase

in dose-dependent manners and are reached quicker following smoking/inhalation

compared to oral/oromucosal routes. Cmax is increased during fed states and in lipid

formulations. Tmax is reached between 0 and 4 h.

Conclusions: This review highlights the paucity in data and some discrepancy in

the pharmacokinetics of cannabidiol, despite its widespread use in humans. Analysis

and understanding of properties such as bioavailability and half-life is critical to future

therapeutic success, and robust data from a variety of formulations is required.

Keywords: pharmacokinetics, endocannabinoid system, bioavailability, CMAX, TMAX, half life, plasma clearance,

volume of distribution

INTRODUCTION

The Cannabis sativa plant contains more than a hundred phytocannabinoid compounds,
including the non-psychotomimetic compound cannabidiol (CBD) (Izzo et al., 2009).
CBD has attracted significant interest due to its anti-inflammatory, anti-oxidative and
anti-necrotic protective effects, as well as displaying a favorable safety and tolerability
profile in humans (Bergamaschi et al., 2011), making it a promising candidate in many
therapeutic avenues including epilepsy, Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis. GW pharmaceuticals have developed an oral solution of pure CBD
(Epidiolex R⃝) for the treatment of severe, orphan, early-onset, treatment-resistant epilepsy
syndromes, showing significant reductions in seizure frequency compared to placebo in
several trials (Devinsky et al., 2017, 2018a; Thiele et al., 2018). Epidiolex R⃝ has recently
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received US Food and Drug Administration (FDA) approval
(GW Pharmaceuticals, 2018). CBD is also being pursued in
clinical trials in Parkinson’s disease, Crohn’s disease, society
anxiety disorder, and schizophrenia (Crippa et al., 2011; Leweke
et al., 2012; Chagas et al., 2014; Naftali et al., 2017), showing
promise in these areas. Additionally, CBD is widely used as a
popular food supplement in a variety of formats for a range of
complaints. It is estimated that the CBD market will grow to
$2.1 billion in the US market in consumer sales by 2020 (Hemp
Business, 2017).

From previous investigations including animal studies, the
oral bioavailability of CBD has been shown to be very low
(13–19%) (Mechoulam et al., 2002). It undergoes extensive first
pass metabolism and its metabolites are mostly excreted via
the kidneys (Huestis, 2007). Plasma and brain concentrations
are dose-dependent in animals, and bioavailability is increased
with various lipid formulations (Zgair et al., 2016). However,
despite the breadth of use of CBD in humans, there is little
data on its pharmacokinetics (PK). Analysis and understanding
of the PK properties of CBD is critical to its future use
as a therapeutic compound in a wide range of clinical
settings, particularly regarding dosing regimens and routes
of administration. Therefore, the aim of this systematic
review was to collate and analyse all available CBD PK
data recorded in humans and to highlight gaps in the
literature.

METHODS

Search Strategy
The systematic review was carried out in accordance with
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (Moher et al., 2009). A systematic
search of PubMed and EMBASE (including MEDLINE) was
conducted to retrieve all articles reporting pharmacokinetic
data of CBD in humans. Search terms included: CBD,
cannabidiol, Epidiolex, pharmacokinetics, Cmax, plasma
concentrations, plasma levels, half-life, peak concentrations,
absorption, bioavailability, AUC, Tmax, Cmin, and apparent
volume of distribution. No restrictions were applied to
type of study, publication year, or language. The searches
were carried out by 14 March 2018 by two independent
researchers.

Eligibility Criteria
The titles and abstracts of retrieved studies were examined by
two independent researchers, and inappropriate articles were
rejected. Inclusion criteria were as follows: an original, peer-
reviewed paper that involved administration of CBD to humans,
and included at least one pharmacokinetic measurement as listed
in the search strategy.

Data Acquisition
The included articles were analyzed, and the following data
extracted: sample size, gender, administration route of CBD,
source of CBD, dose of CBD, and any pharmacokinetic details.
Where available, plasma mean or median Cmax (ng/mL) were

plotted against CBD dose (mg). Similarly, mean or median Tmax

and range, and mean or median area under the curve (AUC0−t)
and SD were plotted against CBD dose (mg). The source/supplier
of the CBD was also recorded. No further statistical analysis
was possible due to sparsity of data and heterogeneity of
populations used. All studies were assessed for quality using an
amended version of the National Institute for Health (NIH),
National Heart, Lung and Blood Institute, Quality Assessment
Tool for Before-After (Pre-Post) Studies with No Control Group
(National Institute for Health, 2014). A sample size of ≤10 was
considered poor, between 11 and 19 was considered fair, and≥20
was considered good (Ogungbenro et al., 2006).

Definitions of PK Parameters
Tmax: Time to the maximum measured plasma concentration.
Cmax: Maximum measured plasma concentration over the time
span specified.
t1/2: Final time taken for the plasma concentration to be reduced
by half.
AUC0−t: The area under the plasma concentration vs. time curve,
from time zero to “t.”
AUC0−inf: The area under the plasma concentration vs. time
curve from zero to t calculated as AUC0−t plus the extrapolated
amount from time t to infinity.
Kel: The first-order final elimination rate constant.

RESULTS

In total, 792 records were retrieved from the database searching,
24 of which met the eligibility criteria (Figure 1). Table 1
summarizes each included study. Routes of administration
included intravenous (i.v.) (n = 1), oromucosal spray (n = 21),
oral capsules (n = 13), oral drops (n = 2), oral solutions (n = 1),
nebuliser (n = 1), aerosol (n = 1), vaporization (n = 1),
and smoking (n = 8). CBD was administered on its own in 9
publications, and in combination with THC or within a cannabis
extract in the remainder. One study was conducted in children
with Dravet syndrome, while the remainder were conducted in
healthy adult volunteers (Devinsky et al., 2018b). Overall, the
included studies were of good quality (Supplementary Table 1).
However, many studies had small sample sizes. Additionally,
not all studies included both males and females, and frequent
cannabis smokers were included in a number of studies. Thus,
interpretation and extrapolation of these results should be done
with caution.

Cmax, Tmax, and Area Under the Curve
Within the 25 included studies, Cmax was reported on 58
occasions (for example within different volunteer groups or doses
in a single study), Tmax on 56 occasions and area under the curve
(AUC0−t) on 45 occasions. These data from plasma/blood are
presented in Figures 2A–C. The AUC0−t and Cmax of CBD is
dose-dependent, and Tmax occurs between 0 and 5 h, but does
not appear to be dose-dependent.
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FIGURE 1 | Flow chart for study retrieval and selection.

Oromucosal Drops/Spray
A number of trials in humans were conducted by Guy
and colleagues to explore administration route efficiency of
sprays, an aerosol, and a nebuliser containing CBD or CBD
and THC (CBD dose 10 or 20mg) (Guy and Flint, 2004;
Guy and Robson, 2004a,b). Oromucosal spray, either buccal,
sublingual, or oropharyngeal administration, resulted in mean
Cmax between 2.5 and 3.3 ng/mL and mean Tmax between 1.64
and 4.2 h. Sublingual drops resulted in similar Cmax of 2.05
and 2.58 ng/mL and Tmax of 2.17 and 1.67 h, respectively. Other

oromucosal single dose studies reported Cmax and Tmax values
within similar ranges (Karschner et al., 2011; Atsmon et al.,
2017b).

Minimal evidence of plasma accumulation has been reported
by chronic dosing studies over 5–9 days (Sellers et al., 2013;
Stott et al., 2013a). Cmax appears to be dose-dependent. A dose
of 20 mg/day resulted in a mean Cmax of 1.5 ng/mL and mean
AUC0−t of 6.1 h × ng/mL while 60 mg/day equated to a mean
Cmax of 4.8 ng/mL and AUC0−t was 38.9 h × ng/mL (Sellers
et al., 2013). In another study, Cmax increased dose-dependently
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from 0.4 to 1.2 and 2.2 ng/mL following 5, 10, and 20mg
single doses, respectively, and from 0.5 to 1.1 and 3.2 ng/mL,
respectively following chronic dosing over 9 consecutive days
(Stott et al., 2013a). There was a significant increase in time-
dependent exposure during the chronic treatment.MeanAUC0−t

for the single doses were 0.8, 4.5, 9.9, and 2.5, 6.7, and 20.3 for
the chronic dosing schedule, respectively. Tmax does not appear
to be dose-dependent, nor affected by acute or chronic dosing
schedules.

Stott et al. reported an increase in CBD bioavailability under
fed vs. fasted states in 12 men after a single 10mg dose of CBD
administered through an oromucosal spray which also contained
THC (Stott et al., 2013a,b). Mean AUC and Cmax were 5- and 3-
fold higher during fed conditions compared to fasted (AUC0−t

23.1 vs. 4.5; Cmax 3.7 vs. 1.2 ng/mL). Tmax was also delayed under
the fed state (4.0 vs. 1.4 h).

In children, Devinsky et al. reported mean AUC as 70, 241,
722, and 963 h × ng/mL in groups receiving 2.5, 5, 10, and 20
mg/Kg/day of CBD in oral solution (Devinsky et al., 2018b).

Oral Intake
Cmax and AUC following oral administration also appears to
be dose dependent. A dose of 10mg CBD resulted in mean
Cmax of 2.47 ng/mL at 1.27 h, and a dose of 400 or 800mg
co-administered with i.v. fentanyl (a highly potent opioid) to
examine its safety resulted in a mean Cmax of 181 ng/mL (at 3.0 h)
and 114 ng/mL (at 1.5 h) for 400mg, and 221 ng/mL (at 3.0 h) and
157 ng/mL (at 4.0 h) for 800mg, in 2 sessions, respectively (Guy
and Robson, 2004b; Manini et al., 2015). A dose of 800mg oral
CBD in a study involving 8 male and female cannabis smokers,
reported a mean Cmax of 77.9 ng/mL and mean Tmax of 3.0 h
(Haney et al., 2016). Although, an increase in dose corresponds
with an increase in Cmax, the Cmax between the higher doses of
CBD does not greatly differ, suggesting a saturation effect (e.g.,
between 400 and 800mg).

One hour after oral capsule administration containing 5.4mg
CBD in males and females, mean Cmax was reported as
0.93 ng/mL (higher for female participants than male) (Nadulski
et al., 2005a). A subset (n = 12) consumed a standard breakfast
meal 1 h after the capsules, which slightly increased mean
Cmax to 1.13 ng/mL. CBD remained detectable for 3–4 h after
administration (Nadulski et al., 2005b).

Cherniakov et al. examined the pharmacokinetic differences
between an oromucosal spray and an oral capsule with piperine
pro-nanolipospheres (PNL) (both 10mg CBD) in 9 men. The
piperine-PNL oral formulation had a 4-fold increase in Cmax

(2.1 ng/mL vs. 0.5 ng/mL), and a 2.2-fold increase in AUC0−t

(6.9 vs. 3.1 h × ng/mL), while Tmax was decreased (1.0 vs. 3.0 h)
compared to the oromucosal spray (Cherniakov et al., 2017a).
This group further developed self-emulsifying formulations and
reported again an increased bioavailability and increased Cmax

within a shorter time compared to a reference spray (Atsmon
et al., 2017a,b).

Intravenous Administration
The highest plasma concentrations of CBD were reported
by Ohlsson et al. following i.v. administration of 20mg of
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FIGURE 2 | (A) Mean or median Tmax (h) and range against CBD dose

(mg) (B) mean or median area under the curve (AUC0-t) (h × ng/mL) and

SD against CBD dose (mg) and (C) plasma mean or median concentration

max (Cmax; ng/mL) against CBD dose (mg). It was not possible to

present error bars for Cmax as SD and SEM were both reported in the

data. IV, intravenous; SD, standard deviation; SEM, standard error of the

mean.

deuterium-labeled CBD. Mean plasma CBD concentrations
were reported at 686 ng/mL (3min post-administration), which
dropped to 48 ng/mL at 1 h.

Controlled Smoking and Inhalation
After smoking a cigarette containing 19.2mg of deuterium-
labeled CBD, highest plasma concentrations were reported as
110 ng/mL, 3min post dose, which dropped to 10.2 ng/ml 1 h
later (Ohlsson et al., 1986). Average bioavailability by the smoked
route was 31% (Ohlsson et al., 1986). A nebuliser resulted in
a Cmax of 9.49 ng/mL which occurred at 0.6 h, whereas aerosol
administration produced Cmax (2.6 ng/mL) at 2.35 h (Guy and
Flint, 2004). In 10 male and female usual, infrequent cannabis
smokers, Cmax was 2.0 ng/mL at 0.25 h after smoking a cigarette
containing 2mg of CBD (Schwope et al., 2011). CBD was
detected in 60% of whole blood samples and in 80% of plasma
samples at observed Cmax, and no longer detected after 1.0 h.
A study in 14 male and female cannabis smokers reported
15.4% detection in frequent smokers with no CBD detected in
occasional smokers in whole blood analysis (Desrosiers et al.,
2014). In plasma however, there was a 53.8 and 9.1% detection
in the frequent and occasional groups, with corresponding Cmax

of 1.1 ng/mL in the frequent group, and below limits of detection
in the occasional group.

Half-Life
The mean half-life (t1/2) of CBD was reported as 1.1 and 2.4 h
following nebuliser and aerosol administration (20mg) (Guy and
Flint, 2004), 1.09 and 1.97 h following single oral administration
(10 and 20mg) (Guy and Flint, 2004; Guy and Robson, 2004b),
2.95 and 3.21 h following 10mg oral lipid capsules (Atsmon
et al., 2017a,b), between 1.44 and 10.86 h after oromucosal spray
administration (5–20mg) (Guy and Robson, 2004b; Sellers et al.,
2013; Stott et al., 2013a,b; Atsmon et al., 2017b), 24 h after i.v.
infusion, 31 h after smoking (Ohlsson et al., 1986), and 2–5 days
after chronic oral administration (Consroe et al., 1991).

Elimination Rate
Mean elimination rate constant (Kel [1/h]) has been reported as
0.148 in fasted state, and 0.155 in fed state after 10mg CBD was
administered in an oromucosal spray also containing THC (Stott
et al., 2013a,b). After single doses of 5 and 20mg CBD, mean
Kel (1/h) was reported as 0.173 and 0.123 (Stott et al., 2013a).
Following 20mg CBD administration through a nebuliser and
pressurized aerosol, mean Kel was reported as 0.98 and 0.43,
respectively, while 20mg CBD administered as sublingual drops
was reported as 0.37 (Guy and Flint, 2004).

Plasma Clearance
Plasma apparent clearance, CL/F (L/h) has been reported to range
from 2,546 to 4,741 in a fasted stated following 10mg CBD
administered via oromucosal spray (Stott et al., 2013a,c). This
value decreases to 533 following the same concentration in a fed
state (Stott et al., 2013b). A plasma apparent clearance of 3,252
and 3,783 was reported following 5 and 20mg single doses of
CBD via oromucosal spray (Stott et al., 2013a). Ohlsson et al.
reported plasma apparent clearance as 74.4 L/h following i.v.
injection (Ohlsson et al., 1986).
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Volume of Distribution
Mean apparent volume of distribution (V/F [L]) was reported
as 2,520 L following i.v. administration (Ohlsson et al., 1986).
Following single acute doses through oromucosal spray
administration, apparent volume of distribution was reported as
26,298, 31,994, and 28,312 L (Stott et al., 2013a).

DISCUSSION

The aim of this study was to review and analyse all available
PK data on CBD in humans. Only 8 publications reported
PK parameters after administering CBD on its own, and the
others were in combination with THC/cannabis. Only 1 study
reported the bioavailability of CBD in humans (31% following
smoking). From the analysis of these papers, the following
observations were made; peak plasma concentrations and area
under the curve (AUC) are dose-dependent and show minimal
accumulation; Cmax is increased and reached faster following i.v.,
smoking or inhalation; Cmax is increased and reached faster after
oral administration in a fed state or in a pro-nanoliposphere
formulation; Tmax does not appear to be dose-dependent; and
half-life depends on dose and route of administration. Overall,
considerable variation was observed between studies, although
they were very heterogeneous, and further work is warranted.

Human studies administering CBD showed that the AUC0−t

and Cmax are dose-dependent, and Tmax mostly occurred
between 1 and 4 h. Animal studies in piglets, mice, and rats
also all demonstrate a dose-dependent relationship between CBD
and both plasma and brain concentrations (Long et al., 2012;
Hammell et al., 2016; Garberg et al., 2017), suggesting that
human brain concentrations will also be dose-dependent. Ten
publications in this review reported the half-life of CBD which
ranged from 1 h to 5 days and varies depending on the dose
and route of administration. Very limited data was available for
detailed analysis on the elimination rate, apparent clearance or
distribution of CBD in humans.

Plasma levels of CBD were increased when CBD was
administered with food or in a fed state, or when a meal is
consumed post-administration. Oral capsules with piperine pro-
nanolipospheres also increased AUC and Cmax. This is also
demonstrated in animal studies; co-administration of lipids with
oral CBD increased systemic availability by almost 3-fold in
rats (Zgair et al., 2016) and a pro-nanoliposphere formulation
increased oral bioavailability by about 6-fold (Cherniakov et al.,
2017b). As CBD is a highly lipophilic molecule, it is logical
that CBD may dissolve in the fat content of food, increasing
its solubility, and absorption and therefore bioavailability as
demonstrated by numerous pharmacological drugs (Winter et al.,
2013). Thus, it may be advisable to administer CBD orally in a fed
state to allow for optimal absorption.

Only one study used intravenous administration of CBD
and reported PK details, which could be a beneficial route
of administration in some acute indications. Results from
other routes such as rectal, transdermal, or intraperitoneal
have also not been published in humans, although transdermal
CBD gel and topical creams have been demonstrated to be

successful in animal studies (Giacoppo et al., 2015; Hammell
et al., 2016). Interestingly, intraperitoneal (i.p.) injection of
CBD corresponded to higher plasma and brain concentrations
than oral administration in mice, however in rats, similar
concentrations were observed for both administration routes,
and brain concentrations were in fact higher following oral
compared to i.p. route (Deiana et al., 2012). No published data
exists on the tissue distribution of CBD in humans. Although
plasma levels of CBD do not show accumulation with repeated
dosing, it is possible that there may be tissue accumulation.

Only one study in this review was conducted in children
(n = 34) (Devinsky et al., 2018b). Children (4–10 years) with
Dravet syndrome were administered an oral solution of CBD and
AUC was reported to increase dose-dependently. It is important
to emphasize the statement that children are not small adults,
and there are many differences in their pharmacokinetic and
pharmacodynamic profiles. Absorption, excretion, metabolism,
and plasma protein binding are generally reduced in children
compared to adults, and apparent volume of distribution is
generally increased (Fernandez et al., 2011). These parameters
need to be explored fully for CBD in order to understand and
advise dose adjustments.

Within the adult studies, inter- and intra-subject variability
was observed in studies, and it remains to be seen whether
i.v. and other routes of administration that by-pass initial
metabolism will alleviate this issue. Interestingly, although each
of the subject’s weight was taken into account, none of the
studies addressed subject fat content as a factor in their exclusion
criteria; as muscle can weigh more than the same proportion
of fat. It is well-known that cannabinoids are highly lipophilic
compounds and accumulate in fatty tissue which can then be
released gradually (Gunasekaran et al., 2009). It may be of
benefit in future study to either put in place more stringent
exclusion criteria and measure subject fat content or assess
the possible accumulation of CBD in fatty tissue. Differences
in metabolism, distribution and accumulation in fat, and in
biliary and renal elimination may be responsible for prolonged
elimination half-life and variable pharmacokinetic outcomes.
CBD use is widespread and has been recommended for use
by the FDA in childhood-onset epilepsy. CBD also displays
therapeutic promise in other disorders such as schizophrenia
and post-traumatic stress disorder. If we are to understand the
actions of CBD in those disorders and increase the success
rate for treatment, these groups of patients and their distinct
characteristics must be assessed as they may not be comparable
to a healthy volunteer population.

A systematic review in 2014 concluded that CBD generally
has a low risk of clinically significant drug-interactions (Stout
and Cimino, 2014). A few studies in the current review
included examination of drug-drug interactions with CBD.
GW Pharmaceuticals performed a clinical trial investigating the
pharmacokinetic interaction between CBD/THC spray (sativex)
and rifampicin (cytochrome P450 inducer), ketoconazole, and
omeprazole (cytochrome P450 inhibitors) (Stott et al., 2013c).
Authors concluded overall that CBD in combination with the
drugs were well-tolerated, but consideration should be noted
when co-administering with other drugs using the CYP3A4
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pathway. Caution is also advised with concomitant use of CBD
and substrates of UDP-glucuronosyltransferases UGT1A9 and
UGT2B7, and other drugs metabolized by the CYP2C19 enzyme
(Al Saabi et al., 2013; Jiang et al., 2013). Manini et al. co-
administered CBD with i.v. fentanyl (a high potency opioid)
which was reported as safe and well-tolerated (Manini et al.,
2015). In a number of trials with CBD in children with severe
epilepsy, clobazam concentrations increased when CBD was co-
administered and dosage of clobazam had to be reduced in some
patients in one study (Geffrey et al., 2015; Devinsky et al., 2018b).
Gaston and colleagues performed a safety study in adults and
children in which CBD was administered with commonly-used
anti-epileptic drugs (AEDs) (Gaston et al., 2017).Most changes in
AED concentrations were within acceptable ranges but abnormal
liver function tests were reported in those taking valproate and
authors emphasized the importance of continued monitoring of
AED concentrations and liver function during treatment with
CBD.

Limitations of this review should be acknowledged. Different
population types including healthy and patient populations and
cannabis naïve or not were all grouped together which may
impede generalizability. The proportions of men and women in
each study were also not uniform, and it is still being elucidated
whether men and women have distinct pharmacokinetic profiles
with regards to cannabinoids (Fattore and Fratta, 2010). One
study suggested that the PK of CBD was different in their
female volunteers (Nadulski et al., 2005a). It should also be
mentioned that CBD is currently not an approved product with
a pharmacopeia entry so using different sources of CBD that are
subject to different polymeric forms, different particle sizes, and
different purities may also affect the PK profiles observed. It is
important for future work that researchers record the source of
the CBD material used so that results have the highest chance of
being replicated. Despite a thorough search of the two databases
chosen, the addition of more databases may have widened the
search to increase the number of results and hence improve the

reliability and validity of the findings. However, the review was
carried out by two independent reviewers, and searches generated
were analyzed separately and then compared.

In conclusion, this review demonstrates the lack of research
in this area, particularly in routes of administration other than
oral. An absence of studies has led to failure in addressing the
bioavailability of CBD despite intravenous formulations being
available. This is of critical importance due to the popularity
of CBD products and will help interpret other PK values.
Standardized and robust formulations of CBD and their PK data
are required for both genders, with consideration of other factors
such as adiposity, genetic factors that might influence absorption
and metabolism, and the effects of disease states.
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