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Abstract: Information about urban land use is important for urban planning and sustainable devel-
opment. The emergence of geospatial big data (GBD), increased the availability of remotely sensed
(RS) data and the development of new methods for data integration to provide new opportunities
for mapping types of urban land use. However, the modes of RS and GBD integration are diverse
due to the differences in data, study areas, classifiers, etc. In this context, this study aims to sum-
marize the main methods of data integration and evaluate them via a case study of urban land
use mapping in Hangzhou, China. We first categorized the RS and GBD integration methods into
decision-level integration (DI) and feature-level integration (FI) and analyzed their main differences
by reviewing the existing literature. The two methods were then applied for mapping urban land
use types in Hangzhou city, based on urban parcels derived from the OpenStreetMap (OSM) road
network, 10 m Sentinel-2A images, and points of interest (POI). The corresponding classification
results were validated quantitatively and qualitatively using the same testing dataset. Finally, we
illustrated the advantages and disadvantages of both approaches via bibliographic evidence and
quantitative analysis. The results showed that: (1) The visual comparison indicates a generally better
performance of DI-based classification than FI-based classification; (2) DI-based urban land use
mapping is easy to implement, while FI-based land use mapping enables the mixture of features;
(3) DI-based and FI-based methods can be used together to improve urban land use mapping, as
they have different performances when classifying different types of land use. This study provides
an improved understanding of urban land use mapping in terms of the RS and GBD integration
strategy.

Keywords: urban land use; remote sensing; geospatial big data; decision-level integration; feature-
level integration; Hangzhou

1. Introduction

China has undergone rapid urbanization since the early 1980s, shown as substantial
urban expansion and dynamics in urban land use and structure [1]. The timely and
accurate urban land use information is important for guiding urban planning and land
use management [2]. Remote sensing (RS) techniques were widely used to update urban
land use information over the past few decades, by referring to the differences in aspects of
texture, spectrum, and context among urban land use categories [3,4]. However, due to the
high similarity among urban land use categories in physical attributes, it is hard to identify
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the complexity and diversity of urban internal structures [5,6], especially in cities with high-
density populations and buildings, such as Hangzhou, Beijing, Shanghai, and Shenzhen [7].
Mixed-use land and shadows from high-rise buildings also pose great challenges for the RS
data classification. Big data are defined partly by their large size and their characteristics, in
particular their volume, variety, and velocity [8]. Much of this big data are geo-referenced,
or can be geo-referenced, leading to geospatial big data (GBD). The emergence of GBD [9],
such as mobile phone positioning data [10,11], points-of-interest (POI) [12], social media
data [13–15], traffic trajectory data [16], and geotagged photographs [17–19], provides
new opportunities to delineate human dimensions in an urban environment [20]. These
multi-sourced data contain abundant human activity information, compensating for the
lack of socioeconomic attributes of the RS data [21].

The integration of the space-based RS data and the time-based GBD can improve the
existing urban land use maps by providing more detailed socioeconomic information and
finer spatio-temporal resolution [22–24]. Promising progress was made on the applications
of integrated RS and GBD on urban land use mapping at different scales and regions [25–29].
For example, Liu et al. [30] collected six features (spatial, texture, spatial envelope, rotation-
invariant from RS images, Tencent real-time user density, and POI) to identify the urban
land use type within each land use parcel. Jia et al. [31] classified RS data and mobile
phone positioning data separately and then fused the two results by using a decision fusion
strategy for categorizing urban land use. However, it is still challenging to integrate RS
and GBD for urban land use mapping because of the modality gap (i.e., the differences in
spatial data quality, technical format, and data structure) and heterogeneity in the data [32].

In this context, the main goal of this study is to propose the general framework by
summarizing the RS and GBD integration approaches used in urban land use mapping and
illustrate the advantages and disadvantages by applying them to map the urban land use
situation in Hangzhou city, China. To our knowledge, this is the first study to summarize
the existing efforts of integrating RS and GBD for urban land use mapping and analyzing
their differences.

2. Related Work of RS and GBD Integration Used in Urban Land Use Mapping

Based on the literature review of previous studies, we categorize the various methods
of RS and GBD integration used in urban land use mapping into decision-level integration
(DI) and feature-level integration (FI) by considering the data integration modes (e.g.,
integration timing or integration method). A general framework is proposed, as shown in
Figure 1, to demonstrate and differentiate the two approaches. Briefly, the main difference
between DI-based and FI-based urban land use mapping is that DI combines the classifica-
tion results of the RS and GBD, whereas FI integrates the features extracted from the RS
and GBD for classification.

2.1. DI-Based Urban Land Use Mapping

The DI-based urban land use mapping processes the RS and GBD independently
with different models and methods and combines the RS-based and GBD-based results for
further generating the urban land use map. The DI-based method was first introduced by
Chang et al. [33] and provides an efficient way for mapping urban land use in Kunming
City by integrating POI data and Landsat images. Since then, a series of studies have
followed that method. For example, Song et al. [34] further developed the method by fully
exploring GBD (Weibo POI, Baidu POI) for more in-depth information and combining them
with RS data (Landsat images, Gaofen). Tu et al. [35] fused landscape metrics (i.e., total
class area, patch density, number of patches, and Shannon’s diversity index) taken from
RS and human activity metrics (i.e., the density of human activities in different functional
zones) extracted from mobile phone positioning data for classifying urban functional zones
by hierarchical clustering. Jia et al. [31] integrated RS-based urban land cover maps and
GBD-based urban land use maps for mapping urban land use through decision fusion
strategy (i.e., certain fusion rules for classifying different urban land use categories). Zhao
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et al. [28] generated land cover types by training RS images with the semantic elements
derived from OpenStreetMap (OSM) data, then identified each building through semantic
classification by using POI. Xu et al. [36] extracted geographic information from RS and
functional distribution from GBD (Gaode POI), then combined them by assigning different
weights for urban land use mapping in China. In the DI-based method, the RS and GBD
features are calculated and processed separately, avoiding the feature conflicting issues.
Furthermore, it has the advantage of easy implementation. In summary, the RS and GBD
features reflecting disparate attributes and dimensions are processed through independent
methods, then fused by certain models (e.g., cross-correlation, decision fusion strategy).
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Feature-level integration (FI).

2.2. FI-Based Urban Land Use Mapping

In the FI-based method, the features are first extracted from the RS and GBD and
are then fused into the integrated feature sets and put into a classifier for urban land
use classification. For example, Zhang et al. [37] extracted the features from the RS and
GBD (i.e., spectral features, texture features, landscape metrics, density, spatial patterns
of POI, and the density of geotagged Weibo posts), based on which urban land use types
were determined and fused to train the classifiers for final mapping. Zhang et al. [27]
evaluated the performances of the RS and GBD features and their cross-correlations for
classifying urban functions by using a Random Forest (RF) model. Shi et al. [29] extracted



Remote Sens. 2021, 13, 1579 4 of 17

RS features from ZY-3, Landsat8, Sentinel-1A, and GBD (e.g., Wechat user density) for
identifying urban land use. Cao et al. [32] proposed a novel framework that extracted
the RS-based and GBD-based features (e.g., temporal features from user-visit data) for
recognizing urban land use through deep learning. Zhang et al. [25] extracted the RS and
GBD features to construct a sparse topic model for identifying representative zones with
distinct patterns, then trained these zones to recognize urban functional zones using the
deep forest model. Compared to the DI-based approach, the FI-based approach provides
a more integrative way of processing the features derived from both RS data and GBD.
The RS-based and GBD-based features were fully used for the mining of the urban land
use information. However, the modality gap (i.e., differences in data quality, data formats,
scales, and timestamps between RS data and GBD) between the RS and GBD features is
still a challenging issue.

3. Case Study
3.1. Study Site

Based on the general framework, a detailed methodological framework was designed
for testing the two approaches (DI and FI) by using Hangzhou city as a case study. The
case study was carried out in Hangzhou city, the capital of Zhejiang Province in China,
which is one of the representative cities of urban expansion, population growth, economic
development, and land use changes [38,39]. We selected the area surrounded by the third
ring (i.e., the Hangzhou belt highway) as our study site, which is located in the northeast of
Hangzhou city (Figure 2c). Besides, the green spaces in the West Lake ecological zone and
the croplands in the northeast region were removed to ensure that our study site had the
main functional areas related to urban human activities, including institutions, residences,
businesses, and open space.
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3.2. Data Source and Preprocessing

Sentinel-2 is a high-resolution (10 m), multi-spectral, remote-sensing satellite [40,41].
In this paper, the data were integrated from 1 January to 31 December 2019 as mean
composites after removing clouds using the Sentinel-2 Quality Assurance (QA) band [42].

OpenStreetMap (OSM) is a collaborative project providing free editable maps across
the world (https://www.openstreetmap.org, accessed on 14 December 2019). The creation
and growth of OSM data have mainly been promoted by users and GIS experts [43]. The
high accuracy and free accessibility of OSM in urban areas have been confirmed by many
researchers so far [44]. The weekly updated OSM data is very important for capturing the
rapid development of urban areas. The OSM road network data are in vector format and
contain different classes of roads with different road sizes [45,46]. It was proposed as a
promising candidate for quick and robust delineations of urban structures and socioeco-
nomic patterns since it is gradually being used to understand Chinese cities [47]. Thus, it is
reliable to generate urban land use parcels using the OSM road network data.

As a prominent example of the GBD that attracts the most users, POI contain abun-
dant information including land use category, geographic location, and other features
(e.g., address, telephone, and postcode) [36]. A total number of 28,898 available records of
POI within Hangzhou city in 2019 was collected via application programming interfaces
(APIs) provided by Gaode Map Services. The urban land use classification system used
for aggregating initial POI types were shown in Table 1 (https://lbs.amap.com, accessed
on 14 December 2019). Moreover, according to previous research, the urban area could be
divided into six categories, including institution, residence, commercial land, industrial
land, open space, and transportation [25,36]. Since we have excluded the road and river
layers for generating urban parcels, there are five categories left. We further combined the
commercial and industrial land into business as both have the nature of the business, and
the business level meets the classification requirements of this paper. Therefore, the urban
classification system used in this study consists of four categories: institution, residence,
business, and open space.

Table 1. The framework used for aggregating initial Gaode POI types.

Gaode POI Classification Urban Land Use Classification

Governmental organization

Institution
Medical service

Finance and Insurance service
Sports and Recreation
Culture and Education

Daily life service
ResidenceCommercial house

Commercial service

Business
Shopping

Food and Beverages
Enterprises

Accommodation service

Tourist attraction Open space

3.3. Methods

The case study was carried out with the assumption that a parcel divided by urban
road networks is homogeneous in terms of urban land use function [44,48]. Quantitatively
illustrating the differences between DI-based and FI-based methods requires the following
steps: (1) extracting urban land parcels based on the road network and river data (Figure 3a)
and preparing training and validation parcels (Figure 3b); (2) generating urban land use
maps by using DI-based (Figure 3c) and FI-based methods, respectively, (Figure 3d) and
evaluating the two based on validation datasets; (3) analyzing the differences between the

https://www.openstreetmap.org
https://lbs.amap.com
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two methods in terms of quantitative and qualitative assessment of resulting maps and
their data processing modes. The detailed procedures are presented below.
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Figure 3. This is a figure. Schemes follow the same formatting. Research methodological framework of mapping urban
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road network and river data; (b) Collection of testing and training parcels; (c) DI-based urban land use mapping (DI);
(d) FI-based urban land use mapping.

3.3.1. Urban Parcel Generation

The study area was segmented into urban parcels based on the method of the auto-
mated identification and characterization of parcels (AICP) [47]. Specifically, roads less
than 100 m and roads inside communities were considered as redundant information and
manually removed. The road network and river layer were then used for generating road
buffers and river buffers. The buffer widths of the road and river were determined based
on their respective classes according to the Ministry of Housing and Urban-Rural Develop-
ment (MoHURD) [49] and the actual situation in Hangzhou city (Table 2). The river layer
was delineated by visual interpretation based on Google Earth, and the preprocessing of
the road network and buffer generation were conducted by using ArcMap 10.2.

Table 2. The road and river levels and their corresponding buffer sizes used in this study.

Classes Road Descriptions Road
Widths (m) River Descriptions River

Widths (m)

Level 1 Trunk, primary,
motorway, railway 40 Main rivers 50

Level 2 Secondary 20 Intermediate rivers 20

Level 3 Tertiary, unclassified,
residential, service, others 10 Small rivers 10
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3.3.2. Training and Testing Parcel Collection

We selected parcels for preparing the training and testing parcels, of which the land
use types were identified by using the Baidu map, Baidu street view, and a field survey
(Figures 4 and 5). The hybrid satellite map of Baidu map presents a top view of the
urban landscape with high-resolution satellite imagery and names of ground features,
which were further inspected or confirmed using Baidu street view as it contains high-
resolution photos and allows multiple perspectives [50,51]. An example was presented in
Figure 4 to illustrate the top view of an institution and residence in the Baidu map and their
corresponding Baidu street views. We determined the parcel type while different types of
street views were observed for the same parcel, and there is no predominant characteristic
referring to the rules in essential urban land use categories in China (EULUC-China) [52].
To be more specific, we recorded a list of items, including the geolocations, classification
types, landmark buildings and facilities, and mixed land use situation and their estimated
proportions for each urban parcel. Finally, a total of 700 training parcels were identified,
including 175 institution parcels, 175 residence parcels, 175 business parcels, and 175 open
space parcels. These parcels were selected using stratified random sampling, with an equal
sample size (175) for each land use class. Following the approach discussed by Stehmen
and Foody [53], we selected 550 parcels for testing. These 550 parcels were selected using
simple random sampling from the list of parcels. For each parcel, the land use class was
determined by visual interpretation based on the Baidu map. The 550 parcels included
85 institution parcels, 225 residence parcels, 156 business parcels, and 84 open space parcels.
The training parcels were used for training the RF classifiers in FI-based classification,
while testing parcels were used for accuracy assessment in both DI-based and FI-based
classification, respectively.
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Figure 4. Illustration of the institution and residence parcels in Baidu map and Baidu street view:
(a) represents the institution parcel in Baidu map; (b–e) represent the four perspectives of institution
parcel in Baidu street view; (f) represents the residence parcel in Baidu map; and (g–j) represent the
four perspectives of residence parcel in Baidu street view. The Chinese labels for (a,f) represent the
name of POIs.
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the spatial distribution of training and testing parcels; (b,d,f,h) represents the Baidu map image for institution, residence,
business, and open space, respectively; and (c,e,g,i) represent the Baidu street view for the institution, residence, business,
and open space, respectively. The Chinese labels for (b,d,f,h) represent the name of POIs.

3.3.3. DI-Based Urban Land Use Mapping

The DI-based urban land use mapping integrated the results of the RS and GBD
classification based on integration rules (Figure 3c). First, the Sentinel-2 image was classified
for producing the impervious and pervious classes (Figure 6a). Specifically, the training
samples identified by visual interpretation based on Google Earth and a field survey were
put into the RF classifier for the classification of the impervious and pervious surface. The
impervious surface is characterized by the artificial structures that are covered by water-
resistant materials, while the pervious surface is the opposite [54]. The classification result
was then overlaid with the urban parcels to generate the built-up and non-built-up parcels
(Figure 6b). In this study, urban parcels with impervious surfaces were defined as built-up,
otherwise, the parcels were labeled as non-built-up. This step was carried out under the
assumption that built-up parcels require at least partially impervious surfaces [33]. The
non-built-up parcels were further classified as open space, while built-up parcels were
used for further analysis.
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Finally, the type of each built-up parcel was determined according to a modified
method [55]. The method consists of two parts: the frequency density calculation, and
the weight calculation. In general, the main type in each parcel was determined after
comparing the final frequency density ratios of four types of the POI, and the highest ratio
of POI is considered as the final type. The final frequency density ratios were determined
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by multiplying the initial frequency density ratio and the weight of each types’ POI.
Specifically, the initial frequency density ratios of the four types’ POI were calculated by
using Equations (1)–(3).

Fi =
ni
Ni

, i = 1, 2, 3, 4 (1)

where i represents the type of POI, which are institution, residence, business, or open space.
ni demonstrates the quantity of type i in a parcel. Ni represents the total quantity of type i
in all parcels. Fi demonstrates the frequency density which equals the ratio of ni to Ni.

Ci =
Fi

∑4
1 Fi

× 100%, i = 1, 2, 3, 4 (2)

where Ci represents the initial ratio of type i’s frequency density to the sum of all four
types’ frequency density.

The initial frequency density ratios of the four types’ POI were then respectively
multiplied with their weights since various types of POI have different recognition degrees.
The weight of institution, residence, business, and open space POI was defined as 2, 1,
1.5, and 2.5, referring to the construction area and the actual situation. The type in each
parcel was determined as the one with the highest ratio and the final urban land use map
was obtained. The open space parcels produced by the calculation of POI were further
combined with the non-built-up parcels as the final open space parcels.

Di = Ci × Wi × 100%, i = 1, 2, 3, 4 (3)

where Di represents the final frequency density ratio which equals the initial ratio of type
i’s frequency density multiplying the weight of each types’ POI. W1 = 2, W2 = 1, W3 =
1.5, W4 = 2.5.

3.3.4. FI-Based Urban Land Use Mapping

The FI-based classification used 18 features derived from the RS and GBD, including
eight spectral features, four textural features, and six density features (Table 3). Textural
features indicate the adjacency relationships between the gray levels of pixels to char-
acterize the texture of an image [37,56]. In this study, the textural features (i.e., angular
second moment, contrast, dissimilarity, and entropy) were extracted by computing Gray
Level Co-Occurrence Matrix (GLCM) that contain rich information on spatial structure
and landscapes [57]. The near-infrared (NIR) band from the Sentinel image was used for
computing the spectral and textural features, as it contains a negative correlation between
built-up and vegetation [58–60]. Moreover, density features from POI help to present
the differences in spatial patterns among different types of parcels. The Kernel Density
Estimation (KDE) tool in ArcMap 10.2 was utilized to generate four layers of kernel density
of the four land use types of POI, respectively. In FI-based classification, the RF model was
trained using all the above-mentioned features 100 times to attenuate the uncertainties and
get more stable accuracies. All of the operations in the FI-based classification were realized
using the Google Earth Engine (GEE) platform.

Table 3. Spectral and textural features from RS, and density features from GBD used in FI-based
classification.

Feature Types Indices

Spectral features

Enhanced Vegetation Index (EVI), Normal Difference Built-up
Index (NDBI), Normal Difference Vegetation Index (NDVI),

Normal Difference Water Index (NDWI), mean, standard
deviation, kurtosis, skewness

Textural features Angular second moment, contrast, dissimilarity, and entropy
Density features Minimum, maximum, range, sum, mean and standard deviation
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3.3.5. Analysis of the DI-Based and FI-Based Classification

To understand the differences between DI-based and FI-based urban land use mapping
and describe their advantages and disadvantages, we first evaluated the results derived
from the two methods by computing the overall accuracy (OA), user’s accuracy (UA),
and producer’s accuracy (PA) based on the confusion matrix [61]. Approximately 95%
confidence intervals of OA, UA, and PA were also calculated based on the equations
proposed by Card [62] (Supplementary Materials). In the estimation procedure for DI and
FI methods, we used a proportion of the number of parcels in each category, relative to all
categories in the DI and FI classification results, and denoted this as wj, following Olofsson,
et al. [63], and Stehmen and Foody [53]. The column refers to the classified map category
while the row refers to the true category based on the reference data (see the Supplementary
Materials). For DI, No Data parcels refer to the parcels without POI values that were not
involved in the confusion matrix. We then implemented the visual analysis of the DI-based
and FI-based urban land use maps. Furthermore, we evaluated the implementation of the
two methods by discussing their advantages and disadvantages.

4. Results
4.1. Quantitative Performance of DI-Based and FI-Based Urban Land Use Mapping

Table 4 showed the confusion matrix of the pervious and impervious map. The
estimated OA (±95% confidence interval) is 0.971 ± 0.007. The estimated UA and PA of
the impervious surface are 0.975 ± 0.008 and 0.986 ± 0.005. Table 5 presents the confusion
matrix of DI-based classification. The estimated OA for DI-based urban land use map
is 0.635 ± 0.049. Note that the residence and open space were classified relatively well,
with the estimated UA of 0.728 ± 0.069 and 0.714 ± 0.140, respectively. For institution and
business, they have relatively lower UA (0.512 ± 0.140 and 0.522 ± 0.095). Table 6 presents
the confusion matrix of FI-based classification. The estimated OA for FI-based classification
results is 0.569 ± 0.041 (Table 6). It can be noted that the residence and open space in
FI-based classification can be classified relatively well, with the UA of 0.631 ± 0.059 and
0.640 ± 0.111, respectively.

Table 4. Confusion matrix of the impervious and pervious surface extraction results. UA: users accuracy; PA: producers
accuracy; OA: overall accuracy; π_j is the class proportion according to the classified map.

Map Category

Class Pervious Impervious Total PA OA

True
Category

Pervious 0.240 0.018 0.258 0.928 ± 0.022 0.971 ± 0.007
Impervious 0.010 0.732 0.742 0.986 ± 0.005

Total (πj) 0.250 0.750 1.000
UA 0.958 ± 0.018 0.975 ± 0.008

Table 5. Confusion matrix of DI-based classification results (I: Institution; R: Residence; B: Business; O: Open Space). UA:
users accuracy; PA: producers accuracy; OA: overall accuracy; π_j is the class proportion according to the classified map.

Map Category

Class I R B O Total PA OA

True
Category

I 0.071 0.029 0.042 0.014 0.156 0.453 ± 0.107 0.635 ± 0.049
R 0.015 0.326 0.072 0.008 0.421 0.774 ± 0.055
B 0.034 0.065 0.157 0.010 0.265 0.591 ± 0.082
O 0.019 0.029 0.029 0.081 0.158 0.514 ± 0.102

Total (πj) 0.138 0.448 0.300 0.113 1.000
UA 0.512 ± 0.140 0.728 ± 0.069 0.522 ± 0.095 0.714 ± 0.140
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Table 6. Confusion matrix of FI-based classification results (I: Institution; R: Residence; B: Business; O: Open Space). UA:
users accuracy; PA: producers accuracy; OA: overall accuracy; π_j is the class proportion according to the classified map.

Map Category

Class I R B O Total PA OA

True
Category

I 0.071 0.030 0.025 0.016 0.142 0.496 ± 0.092 0.569 ± 0.041
R 0.020 0.291 0.108 0.019 0.439 0.663 ± 0.045
B 0.036 0.112 0.124 0.012 0.284 0.436 ± 0.062
O 0.008 0.028 0.015 0.084 0.135 0.620 ± 0.094

Total (πj) 0.135 0.462 0.272 0.130 1.000
UA 0.523 ± 0.114 0.631 ± 0.059 0.453 ± 0.080 0.640 ± 0.111

4.2. Qualitative Performance of DI-Based and FI-Based Urban Land Use Mapping

Figure 7 presents the urban land use maps derived from DI-based and FI-based
methods in Hangzhou city. Overall, there is a difference in the number of each urban
land use type, and the spatial distribution of the four land use types is not similar. In the
DI-based map, the residence parcels were mainly distributed in the city center, while the
open space parcels were distributed around Hangzhou city. The distribution of urban land
uses in the DI-based map was visually consistent with the actual urban land use referring
to the Baidu map. In the FI-based resulting map, the distribution of each land use type was
more widely spread out across the study area than that in the DI resulting map. No-value
parcels only exist in the resultant map from the DI-based classification, where the built-up
parcels determined from the RS images are further labeled based on POI (see Section 3.3.3).
No-value parcels arise where there is no POI data within the built-up parcel to support this
labeling. On the contrary, the FI-based classification integrates features from both RS and
GBD before land use classification could be classified, as each parcel contains features at
least from RS data.
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Figure 8 presents a visual comparison of the urban land use maps derived from DI-
based and FI-based methods and the corresponding Baidu map in four subareas. The four
subareas A, B, C, and D are dominated by institution, residence, business and opens space,
respectively. Overall, the visual comparison indicates a generally better performance of
the DI-based classification than the FI-based classification. For example, some institution
parcels were classified as residence for the FI-based classification in subarea A. In subarea
B, some residence parcels were misclassified as business by the FI-based classification. The
FI-based result map misclassified business parcels as residence parcels in subarea C. For
subarea D, the open space parcel was wrongly classified as a residence parcel.



Remote Sens. 2021, 13, 1579 12 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

RS and GBD before land use classification could be classified, as each parcel contains fea-
tures at least from RS data.  

 
Figure 7. Illustration of the (a) DI-based and (b) FI-based urban land use maps in Hangzhou city. 

Figure 8 presents a visual comparison of the urban land use maps derived from DI-
based and FI-based methods and the corresponding Baidu map in four subareas. The four 
subareas A, B, C, and D are dominated by institution, residence, business and opens space, 
respectively. Overall, the visual comparison indicates a generally better performance of 
the DI-based classification than the FI-based classification. For example, some institution 
parcels were classified as residence for the FI-based classification in subarea A. In subarea 
B, some residence parcels were misclassified as business by the FI-based classification. 
The FI-based result map misclassified business parcels as residence parcels in subarea C. 
For subarea D, the open space parcel was wrongly classified as a residence parcel. 

 
Figure 8. Classification results of DI and FI methods and testing samples in the test regions. Subar-
eas A, B, C, and D were selected randomly in Hangzhou city, and each region was shown with DI-
based classification, FI-based classification, and Baidu map. The Chinese labels for the subfigure of 
right column represent the name of POIs. 

Figure 8. Classification results of DI and FI methods and testing samples in the test regions. Subareas
A, B, C, and D were selected randomly in Hangzhou city, and each region was shown with DI-based
classification, FI-based classification, and Baidu map. The Chinese labels for the subfigure of right
column represent the name of POIs.

5. Discussion

This study implemented the DI-based and FI-based methods for mapping urban
land use types in Hangzhou city, based on the same urban land use classification system
(Table 1), the same data sources (i.e., Sentinel-2A, OSM road networks, and POI), and the
same training and validation urban parcels (Figure 5). In our study, the only difference
between these two approaches is the manner and timing for integrating the RS features
and GBD features (Figures 1 and 3). It should be noted that the objective of this study is
not to quantitatively compare the performance of the two methods but to illustrate their
advantages and disadvantages by applying them to the mapping of the urban land use
situation in Hangzhou city. The results in this study, which show that DI-based classification
performs better than FI-based classification, may not apply to other circumstances [36,64].
Given that our study area is located in eastern China, where the diversity of urban land
use types has a higher level of complexity than other regions in China, our mapping result
is probably not representative of other regions. It should be noted that different data
sources, selected features, classifiers, training samples, or land use types may also lead to
different results. According to the process of the integration methods, these differences
can be summarized into four types: (1) different urban road networks in different regions
might lead to different urban parcel unit; (2) The variety of GBD in different regions
lead to different mapping results; (3) The number of mixed parcels in different regions
varies depending on the tiers of cities; (4) The availability of RS data greatly varies in
different cities due to the coverage of clouds and cloud shadows that might be another
factor affecting the application of the proposed methods.
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5.1. Summary of the Advantages and Disadvantages of the Two Methods

In our study, for the DI-based method, the pervious and impervious surfaces map was
overlaid with urban parcels for generating built-up and non-built-up parcels, and then they
were classified into the four urban land use types by calculating the frequency density and
weight of the four types of POI. For the FI-based classification, the RS and GBD features
were combined to train the RF model for urban land use mapping based on the training
parcels. Some advantages and disadvantages could be identified through the analysis of
classification results and the above-mentioned process:

• DI-based urban land use mapping is easy to implement, avoids feature integration,
and accompanies conflicting issues. However, it depends largely on the quality and
quantity of the GBD in each urban parcel (it depended on POI data in our case study)
which might cause the missing value and misclassification for some urban parcels
(Figures 7 and 8). For example, Zhao et al. [28] indicated that inaccurate POI will
produce incorrect labels, as the classification results are directly generated from POI.
Furthermore, the classes used in this paper might not match well with the POI classes
considering that DI-based classification is based on labeling parcels based on POI.
Reclassifying POI classes according to the nomenclature of land use types can result
in some uncertainties of urban land use classification. For example, certain POI could
be associated with more than one type of urban land use;

• The FI-based land use mapping enables the mixture of features from RS and GBD,
however, the implementation has challenges due to the modality gap [20,32] between
the RS and GBD, such as the spatial data quality, technical format, and data structure.
Moreover, both feature selection and feature integration in the FI-based classification
can contribute to different mapping results. In this study, spectral features and textural
features derived from the Sentinel-2 image were integrated with the density features
derived from POI for mapping urban land use (Table 3). Accordingly, these features
have multiple backgrounds and thus can have various understandings of urban land
use mapping, leading to different classification results [65]. The performance of the
FI-based classification is probably related to the complexity of urban parcels. To be
more specific, a single urban parcel can comprise different urban land uses, such as
office buildings, residential buildings, and shopping centers. Therefore, the differences
in features among urban parcels might be hard to distinguish.

5.2. The Improved Method for Urban Land Use Mapping

Given the framework (Figure 1), quantitative and qualitative assessments (Tables 5
and 6, Figures 7 and 8) of the two methods, it is possible to highlight some points for
improving the DI-based and FI-based urban land use mapping. First, very-high-resolution
(VHR) satellite images provide abundant information about geographical objects in terms
of geometrical features and spatial patterns [28], which can provide more detailed RS
information (e.g., textual, contextual, and spectral information) [37]. Second, the generation
of urban parcels relied on the OSM road network, which contains unbalanced classes that
are unevenly distributed, leading to heterogeneous urban land use parcels in terms of parcel
area and spatial pattern [66]. The accuracy of the urban parcels created based on OSM
can be further improved by combining different data sources, and the veracity of urban
parcels should be validated. Third, different GBD features have different contributions to
the classification of different land use types according to Zhang et al. [37]. Evaluating the
optimal size of the GBD set is a topic for future research. Fourth, the training and testing
parcels used in this study were identified through the Baidu map, Baidu street view, and a
field survey, which are promising to validate urban land use parcels [67]. However, it is
inevitable for parcels to contain multiple land use types. A better classification performance
would be expected from the adoption of an independent land use map from the local
government and urban planners [68]. Fifth, the RF model was used for mapping built-up
in DI-based classification and training urban land use parcels in the FI-based classification.
However, we need to improve the RF model with transfer learning capability for mapping
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the urban land use of any region with high accuracy and a different data source. To be
more specific, the transfer learning model can be used as a pre-trained model, which might
help increase the classification accuracy. Furthermore, how to integrate GBD into the RF
model is a worthwhile question to discuss, since there is a significant difference between
RS and GBD [39]. Sixth, the two methods can be used together to improve urban land
use maps as they have different performances in classifying different types of land use.
For example, the FI-based method can be used for classifying very different urban land
use types, such as open space land and industrial land, while the DI-based method can be
utilized for classifying urban land use types with very little difference in the RS features
but have a significant difference in GBD features, such as commercial land and industrial
land.

6. Conclusions

With the increase in RS and GBD, integrating the two types of data was widely used
in urban land use mapping in recent years as it provides an opportunity to characterize
both physical and socioeconomic attributes of urban land. For the first time, this study
summarized the diverse methods of RS and GBD integration used in essential urban land
use mapping and categorized them into two types, including the DI-based and FI-based
methods. A general framework was proposed for explaining the main differences in
the process of the two methods. Taking Hangzhou city, China as a case study, we then
applied the two methods to produce the urban land use maps consisting of the institution,
residence, business, and open space, based on the OSM road network, Sentinel-2 data, and
Gaode POI, and highlighted the differences in classification results and the process of the
DI-based and FI-based methods. On this basis, future studies should pay more attention to
the integration methods, and further apply the methods to more specific classification-type
scenarios, data sources, and other regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13081579/s1, Table S1: Contingency table for accuracy assessment, Table S2: Contingency
table for accuracy assessment in terms of proportion of numbers, Table S3: Contingency table for
evaluating map accuracy of DI-based classification results (I: Institution; R: Residence; B: Business;
O: Open Space), Table S4: Contingency table for evaluating map accuracy of FI-based classification
results (I: Institution; R: Residence; B: Business; O: Open Space).
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