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Abstract

The neonatal brain undergoes rapid development after birth, including the

growth and maturation of the white matter fibre bundles that connect brain re-

gions. Diffusion MRI (dMRI) is a unique tool for mapping these bundles in vivo,

providing insight into factors that impact the development of white matter and how

its maturation influences other developmental processes. However, most studies of

neonatal white matter do not use specialised analysis tools, instead using tools that

have been developed for the adult brain.

However, the neonatal brain is not simply a small adult brain, as differences

in geometry and tissue decomposition cause considerable differences in dMRI con-

trast. In this thesis, methods are developed to map white matter connections dur-

ing this early stage of neurodevelopment. First, two contrasting approaches are

explored: ROI-constrained protocols for mapping individual tracts, and the genera-

tion of whole-brain connectomes that capture the developing brain’s full connectivity

profile. The impact of the gyral bias, a methodological confound of tractography, is

quantified and compared with the equivalent measurements for adult data.

These connectomes form the basis for a novel, data-driven framework, in which

they are decomposed into white matter bundles and their corresponding grey matter

terminations. Independent component analysis and non-negative matrix factorisa-

tion are compared for the decomposition, and are evaluated against in-silico sim-

ulations. Data-driven components of dMRI tractography data are compared with

manual tractography, and networks obtained from resting-state functional MRI.

The framework is further developed to provide corresponding components between

groups and individuals. The data-driven components are used to generate cortical

parcellations, which are stable across subjects.

Finally, some future applications are outlined that extend the use of these

methods beyond the context of neonatal imaging, in order to bridge the gap between

functional and structural analysis paradigms, and to chart the development of white

matter throughout the lifespan and across species.
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3

Introduction

During the months after birth, the human brain undergoes a period of rapid devel-

opment and growth, increasing in size by around 1% each day during the first three

months of life (Holland et al., 2014). Many complex processes drive this growth,

including synaptogenesis, growth of axons and dendrites, and myelination of the

subcortical white matter (Kostović et al., 2019). This occurs concurrently with fi-

bre pruning, which then continues into adolescence (Huttenlocher and Dabholkar,

1997). These processes are impacted by prematurity (Batalle et al., 2017; Anjari

et al., 2007) and the early life environment (Lautarescu et al., 2020; Rifkin-Graboi

et al., 2015), and in turn have downstream effects on later outcomes (Counsell et al.,

2008; Ball et al., 2015; Girault et al., 2019).

Post-mortem dissection provides valuable ground-truth data about the early

growth and maturation of brain connections (Kinney et al., 1988). However, in order

to study the longitudinal impacts of early life experiences on brain development, and

the links between brain structure and function, we need tools that can be used to

image the brain non-invasively and in vivo. Magnetic Resonance Imaging (MRI) has

been used for biomedical imaging since the 1970s (Mansfield and Maudsley, 1977;

Lauterbur, 1974). MRI is an ideal modality for imaging neonates because it does

not use harmful ionising radiation, and provides multiple contrasts that allow us

to study different aspects of development. One of these is diffusion MRI (dMRI),

which measures the diffusive motion of water molecules to provide information about

their environment. For example, a molecule in the ventricles will diffuse freely in

all directions, whereas a water molecule in the fibrous white matter will be more

likely to diffuse parallel to the orientation of the fibre bundle than perpendicular

to it. Using this information to trace the likely route of white matter fibre bundles

through the brain is called tractography. This has been crucial for mapping early

white matter development, for example in elucidating the asynchronous maturation
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trajectories of different tracts (Dubois et al., 2008b).

However, the analysis paradigms used to study neonatal white matter have been

mainly based on the analysis pipelines developed for adult brains. As we can see from

figure 1.1, there are substantial differences when imaging adult and neonatal brains,

including tissue composition, relative resolution, image contrast and morphological

differences. This means that standard approaches are not necessarily suited to the

specific challenges associated with imaging the neonatal brain. In this thesis, we

devise new methods that are tailored for mapping the brain and its connectional

architecture during this unique period of development.

Figure 1.1: A comparison between representative neonatal and adult brains. Top: pial
surface reconstruction, bottom: fractional anisotropy maps from diffusion MRI.

1.1 Organisation of the Thesis

This thesis is organised into seven chapters. The next two chapters of the thesis

provide a background on the current methods used to map early white matter de-

velopment and the main findings to date. The following three chapters describe

the new contributions of the thesis: first exploring tractography approaches in the

neonatal brain, devising new protocols for tract delineation, but also for whole-brain
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connectomes in a large neonatal cohort; then the development of a new, data-driven

framework for mapping white matter connections and grey matter networks from

dMRI data. The final chapter provides an overview and some ideas for future work.

Chapter 2 introduces and explains the concepts of structural and functional

connectivity in the brain, and the techniques available to measure them, with par-

ticular focus on diffusion MRI. An overview is given of the physical basis for dMRI,

different methods for modelling fibre orientations, as well as the different tractogra-

phy techniques that are used to map white matter bundles.

Chapter 3 outlines how brain imaging has been used to chart the early devel-

opment of structural connectivity in neonates. It details the key findings, and the

unique challenges of studying this population. It also discusses the advantages of

population-level, or “Big Data” projects, such as the developing Human Connectome

Project.

Chapter 4 begins the section of original work, exploring different tractography

approaches to map neonatal white matter, from standardised tractography protocols

to whole brain connectomes. It describes a new set of tractography protocols that

have been developed, which facilitate the mapping of 42 white matter tracts. It also

explores different ways of generating whole brain connectomes, and the impact of

the gyral bias on these, which is an important confound for mapping connections in

adult brains.

Chapter 5 introduces data-driven methods for extracting white matter tracts

and their corresponding grey matter networks from whole-brain connectomes. Two

approaches are compared: independent component analysis and non-negative ma-

trix factorisation, using both simulated data and in vivo neonatal MRI data. A new

method for non-negative dual regression is introduced, to generate subject-level ver-

sions of the group-level structural connectivity patterns. Data-driven white matter

bundles are validated against results from standard tractography protocols, and

their corresponding grey matter networks are compared to resting-state networks
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from functional MRI.

Chapter 6 provides further analysis and applications of the non-negative ap-

proach outlined in the previous chapter. Subject-level components are compared

against the group-level maps, and the stability of the results are assessed across

different subject groups. The grey matter networks are used to generate a novel

cortical parcellation scheme, based on structural connectivity. The reliability and

validity of the parcellations are assessed.

Chapter 7 summarises the findings of the thesis, and outlines some future

applications for the methods that have been developed.

1.2 Software

Routines for data-driven connectivity mapping with Independent Component Anal-

ysis (ICA) or Non-Negative Matrix Factorisation (NMF) can be found on GitHub:

(https://github.com/ethompson93/Data-driven-tractography), including code for re-

gressing group components to individuals. Standardised neonatal tractography pro-

tocols are also available on GitHub: (https://github.com/ethompson93/baby-XTRACT).

Statistical analysis and new data-driven tractography methods were imple-

mented using the Python programming language (version 3.7.2) (Python Software

Foundation, https://www.python.org). Connectome Workbench (version 1.3.2), de-

veloped by the Van Essen Laboratory at Washington University, was used for pro-

cessing of surface data, and for visualisation of data on the cortical surface. The

FMRIB software library, FSL (version 6.0.3) was used for all other processing of

imaging data, including probabilistic tractography (Jenkinson et al., 2012). FSL’s

image viewer, FSLeyes, was used for the visualisation of volumetric data.

https://github.com/ethompson93/Data-driven-tractography
https://github.com/ethompson93/baby-XTRACT
https://www.python.org
https://zenodo.org/record/3937147
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2.1 What is Structural Connectivity?

The human brain contains around 86 billion neurons (Herculano-Houzel, 2009),

which are connected via synapses to form a complex network that facilitates the rich

and varied functioning of the brain. We can broadly divide the brain into two tissue

types: grey matter and white matter. Grey matter is mostly composed of neuronal

cell bodies and is located in the cerebral cortex, the folded layer of grey matter

surrounding the cerebral hemispheres, and the subcortical grey matter structures.

The grey matter is where functional processing takes place, as neurons respond to

electro-chemical stimuli from other neurons, organs in the body, or sensory input.

The white matter mainly consists of myelinated axons. An axon connects the

cell body to the axon terminals, where the neuron can form a synaptic connec-

tion with another cell, as illustrated in figure 2.1. It is these axons that form the

structural connections in the brain, transmitting electrical impulses, known as axon

potentials, from one neuron to the next. Although individual axons are only up

to a few micrometers in diameter, they group together in thousands to form large

macroscopic bundles, or white matter tracts, which connect functional brain regions

(Walhovd et al., 2014). Connections between different brain regions are crucial for

integration and information transfer, analogous to the wiring in a computer that

links the different components together. Figure 2.1 also shows the myelin sheath

that encloses the axon. Myelin is a fatty substance that encloses the axons and

insulates them from each other, increasing the speed at which information can be

transmitted.

A major goal of modern neuroscience is the mapping of the connectome, a

comprehensive description of the connections between different brain regions (Sporns

et al., 2005). Mapping the connectome requires the definition of nodes and edges.

At the microscopic level, nodes would be individual neurons and edges individual

axons. At the macroscopic systems level, nodes can be thought of as discrete brain
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Figure 2.1: A schematic diagram of a neuron. (Reproduced from vecteezy.com)

regions and edges the white matter bundles that link them. Different tools can

be used to study the brain’s structural connectome at these different length scales,

such as post-mortem histology for connections between individual neurons (at the

microscale) or neuronal tracers for neural assembles (at the mesoscale). However,

non-invasive measurement of connections between brain structures is only possible

at the macroscale with diffusion MRI (dMRI) (Jbabdi et al., 2015).

2.2 What is Functional Connectivity?

Neurons in the brain are constantly communicating with each other via electro-

chemical signals called action potentials. Groups of neurons activate or deactivate

together to perform different functions, and these networks can be measured “at

rest” when the subject is not attending to a task (Biswal et al., 1995). Two regions

are assumed to be functionally connected if their measured spontaneous (resting)

activity profiles exhibit some statistical dependence (Aertsen et al., 1989; Friston

et al., 1993). Reversing this definition, if the temporal profile of the activity of dif-

ferent regions exhibit similarities, they are thought to be part of the same network

and therefore structurally connected. This indirect, yet powerful, way of describing
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connections is called functional connectivity.

The electromagnetic fields induced by these synchronised neuronal currents

can be measured directly on the scalp using electroencephalography (EEG) or mag-

netoencephalography (MEG), or indirectly through the alterations in blood flow

induced by neuronal activity in the case of functional MRI (fMRI). Specifically,

following activation in a brain region there is a local drop in the vascular concen-

tration of deoxyhaemoglobin. This arises because the increase in cerebral blood

flow outweighs oxygen metabolism following brain activity. As deoxyhaemoglobin

is paramagnetic, this leads to a difference in susceptibility between the blood ves-

sel and the surrounding tissue, which can be measured with MRI (Buxton, 2013).

This is referred to as the blood oxygenation level-dependent (BOLD) signal (Ogawa

et al., 1990). fMRI enables researchers to measure activity across the whole brain

completely non-invasively, without the need for ionising radiation.

Functional and structural connectivity can be seen as complementary approaches

to estimate the connectome, as regions that are connected by white matter pathways

are likely to have statistical dependence in their functional activity. Therefore, struc-

tural connections can be inferred between pairs of regions with strong correlations

between their functional activity profiles (Jbabdi et al., 2015). However, statistical

dependence in functional activity does not guarantee a direct structural connection

between regions: intermediate connections or a common input can cause two regions

to have correlated activity when in fact they are not directly connected. Physio-

logical noise can also affect the BOLD signal and introduce spurious correlations

between brain regions (Jbabdi et al., 2015).

This thesis focuses on structural connectivity, and how we can use diffusion

MRI to map its developmental trajectory in the neonatal brain. The next section

overviews the theory and methods typically used to analyse diffusion MRI data,

which can be used to explore the development of the brain connectome in vivo.
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2.3 Diffusion MRI

Prior to the invention of MRI, researchers were limited to post-mortem methods

for studying brain anatomy. Gross dissection was first used to identify macroscopic

brain structures and to differentiate between grey and white matter. The invention

of the microscope by Hans and Zacharius Janssen in 1590 paved the way for cell

theory and allowed scientists to see individual nerve fibres for the first time (Catani

et al., 2013b), and later, staining techniques developed by Golgi and Cajal elucidated

the cell structure of the neuron for the first time (Morecraft et al., 2013; Glickstein,

2006). More recently, histo-chemical tracer studies in non-human primates have

been used to visualise connections at the resolution of single cells (Morecraft et al.,

2013). At the microscale, the introduction of electron microscopy in the 1950s has

enabled the quantification of white matter structure, such as myelin thickness and

axon density (Walhovd et al., 2014).

The invasive methods described above have brought about huge advances in our

understanding of brain anatomy. However, dMRI is the only tool that can measure

the white matter structure of the brain non-invasively and in vivo. Although dMRI

is an indirect method, the ability to image structural connectivity in the living

brain opens a much wider field of research than would be possible with invasive

methods alone. For example, dMRI facilitates longitudinal studies; studies of the

effect of environmental factors on brain structure; and multi-modal investigations of

the relationship between brain structure and function. In addition, dMRI allows us

to study the very early development of structural connections in the neonatal brain,

which is the subject of this thesis. The following sections provide an introduction

to the physics underlying the phenomenon of nuclear magnetic resonance (NMR),

and the basic principles of MRI. This is followed by an overview of diffusion and

how we can use MRI to measure diffusive motion of water molecules, and then use

this information to reconstruct white matter pathways in the brain.
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2.3.1 Basic concepts of Magnetic Resonance Imaging

Protons have an intrinsic quantum mechanical property called “spin”, which means

that they have a magnetic dipole moment. This causes them to behave like tiny

bar-magnets that will tend to align to an external magnetic field. When there is

no magnetic field present, an ensemble of spins will be randomly aligned, and so

their overall net magnetisation will be zero. However, when a magnetic field is

applied, which we call B0, the spins align with the field and precess around it. The

frequency at which the spins precess is called the Larmor frequency ω, and is given

by the following equation:

ω = γB (2.1)

Where γ is the gyromagnetic ratio (42.58 MHz/T for protons), and B is the

magnitude of the applied field. In other words, the frequency of the precession is

proportional to the strength of the applied field. The spins precess at the same

speed but with different phases, so the transverse components of the magnetisation

cancel out, yielding a net magnetisation vector M in the sample aligned to B0.

To induce magnetic resonance, a second magnetic field B1 is applied, perpen-

dicular to B0, this time as a radio frequency pulse with frequency ω. This transfers

energy to the protons and introduces phase coherence in the precession of the spins,

introducing a component of the magnetic field in the transverse plane to B0, rotat-

ing with a frequency ω (Bloch, 1946). When a coil is placed around the sample, the

oscillating magnetic field induces a proportional current in the coil as a consequence

of Faraday’s law, which forms the magnetic resonance signal.

In time, M returns to its original orientation. This is caused by two processes:

T1 relaxation and T2 relaxation, sometimes referred to as spin-lattice and trans-

verse relaxation, respectively (Bloch, 1946; Purcell et al., 1946). Energy is released

through interactions between the spins and their environment, which causes M to
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return to its original orientation with a time constant T1. T2 relaxation results from

the magnetic dipole of each spin interacting with the B0 field, which causes local

inhomogeneities in the magnetic field. This has the net effect that the spins become

dephased, reducing the transverse component of M. Additional inhomogeneities in

the magnetic field, due to scanner itself or due to susceptibility differences in the

sample, contribute to a quicker dephasing of the signal than would occur from T2

processes alone (Bloembergen et al., 1948), this observed transverse relaxation is

called T2*. T1 and T2 relaxation coefficients vary across tissue types, which is the

basis for tissue contrast in structural MRI.

Figure 2.2: A pulse sequence diagram of a spin echo sequence.

Relaxation processes can be probed using the spin echo sequence, one of the

basic and most widely used pulse sequences for MRI (Hahn, 1950). The pulse

sequence is shown in figure 2.2. It starts with a 90◦ radio frequency pulse B1 that

flips M into the transverse plane (the angular values describe the angle through

which M is rotated relative to B0). The spins begin to dephase during the time τ ,

after which a 180◦ pulse is applied. This rephasing pulse reverses the T2* processes,

so that an echo signal can be read out at the echo time, TE = 2∗τ after the original

90◦ pulse.

The measured signals provide information about the T1 and T2 relaxation prop-

erties of the sample, but to reconstruct an image we need some way of differentiating

the signals from different locations. This is achieved by applying spatially-varying

magnetic field gradients across the sample. A magnetic field gradient causes the
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spins at different locations to precess at slightly different frequencies, thereby en-

coding spatial information into the measured signal (Mansfield and Maudsley, 1977).

2.3.2 Diffusion of Water Molecules

Diffusion MRI uses the phenomenon of diffusion to introduce extra contrast into a

spin-echo experiment. But what is diffusion? Diffusion is the random, thermally-

driven motion of particles in a fluid. Freely diffusing water molecules undergo ran-

dom Brownian motion, with a mean-squared diffusion distance 〈r2〉 (Einstein, 1905):

〈r2〉 = 2D∆ (2.2)

Where D is the diffusion coefficient of the medium, and ∆ is the time over

which the diffusion occurs. D depends on the size of the diffusing particles, their

temperature, and the microstructural properties of the environment. It is this de-

pendence that enables us to probe the microstructure of the brain using diffusion

MRI. In a medium in which particles can diffuse freely, equation 2.2 gives rise to

a Gaussian distribution of displacements, with a width proportional to D (D. C.

Alexander, 2006). However, in biological tissues, diffusion is restricted by interac-

tions with tissue compartments and macromolecules, so that the measured diffusion

coefficient is much lower than it would be in free water (Beaulieu, 2002). We call

this the apparent diffusion coefficient (ADC) (Le Bihan et al., 1986).

In the brain, water molecules diffuse in a way that is determined by their local

tissue environment. This is illustrated schematically in figure 2.3. For example,

water molecules in the cerebro-spinal fluid in the ventricles can diffuse freely and

isotropically. Water molecules in the white matter, on the other hand, have much

more hindered motion, particularly along the axes perpendicular to the axons.
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Figure 2.3: Illustration of diffusion profiles in different brain tissues. The boxes show
illustrative trajectories of water molecules (yellow) in the presence of different cell types
(blue). Axons are illustrated by blue cylinders, and cell bodies by blue circles.

2.3.3 Using MRI to Measure Diffusion

As described above, the diffusion of water molecules in the brain is dependent on

their local tissue environment. Using MRI pulse sequences that are sensitive to

diffusion, we can infer the structural properties of the underlying tissue.

In 1965, Stejskal and Tanner introduced the pulsed gradient spin echo sequence,

a modification of the spin echo sequence in figure 2.2, in which two diffusion-encoding

gradient pulses G(t) are applied after the initial excitation pulse, either side of the

180◦ refocussing pulse. Each gradient pulse lasts for time δ, separated by a time

interval of ∆, as shown in figure 2.4. The gradients G can be applied in any direction

[Gx(t), Gy(t), Gz(t)], which determines the direction of the diffusive motion that will

be measured.

From equation 2.1, the phase accumulated during the first pulse by a spin

located at position x1 along the direction of G(t), is given by:
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Figure 2.4: A diagram of the pulsed gradient spin echo sequence used to obtain diffusion-
weighted MRI images. Gdiff describes a diffusion-encoding gradient along an arbitrary
direction.

φ1 = −
∫ ∞
0

ω(t)dt

= − γx1

∫ ∞
0

G(t)dt

(2.3)

We can introduce the term q, which summarises the experimental parameters:

q = γ

∫ ∞
0

G(t)dt (2.4)

So that the expression for the change in phase simplifies to φ1 = −q · x1.

When the 180◦ pulse is applied, the phase change induced by the first pulse is

reversed. Therefore, a spin that has remained stationary over the time interval ∆

will experience no net change in phase. However, a spin that moves during this time

to position x2, will experience a net phase change given by:

φ = φ2 − φ1

= − q · (x2 − x1)

(2.5)
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In other words, the spin experiences a change in phase proportional to its

displacement along the direction of the applied gradient. When this effect is averaged

over the random displacement of the spins present in an imaging voxel, it leads to

phase dispersion and attenuation of the observed signal, compared to the signal that

would have been measured without the application of diffusion-sensitising gradients,

i.e. G = 0. This attenuation is proportional to the displacement of the spins along

the gradient direction, during the time period between the two pulses.

The signal attenuation attributed to diffusion can be expressed as a function of

the diffusion weighting q:

E(q) =
S(q)

S0

(2.6)

Here, S0 is the signal measured in the absence of any diffusion encoding gra-

dients. This baseline allows us to disregard the signal dependence on other factors.

The signal attenuation is linked to the diffusion propagator P (r, τ) via a Fourier

transform (Stejskal and Tanner, 1965):

E(q, τ) =

∫
P (r, τ) · e−iq·rdr (2.7)

The diffusion propagator P (r, τ), is a Green’s function that describes the prob-

ability for a given particle to diffuse by a displacement r in a time τ (Stejskal and

Tanner, 1965). This indicates a reciprocal relationship between the strength of the

magnetic field gradients and the length scales of the measured diffusion.

2.3.4 The Diffusion Tensor

For simple isotropic Gaussian diffusion, the signal attenuation will also have a Gaus-

sian profile. Placing a Gaussian diffusion propagator P with a variance proportional

to D (equation 2.2) into equation 2.7, results in a signal attenuation:
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E = e−bD (2.8)

We have introduced another term b, sometimes called the “b-value”, which

reflects the strength and timing of the diffusion gradients from the pulsed spin

echo sequence: b = f(q,∆, δ), where the exact relationship depends on the shape

of the gradients used (Stejskal and Tanner, 1965). For anisotropic diffusion, the

scalar diffusion coefficient D is replaced by a diffusion tensor D (i.e. the Gaussian

propagator with a scalar variance is replaced by a covariance matrix proportional to

a tensor D), and the measured attenuation depends on the direction of the diffusion

encoding gradients g:

E(q) = e−bg
T ·D·g (2.9)

Given sufficient measurements with different gradient directions g, we can solve

this equation to calculate the diffusion tensor, D (Basser et al., 1994). D can be

estimated from the data using multiple linear least squares (Basser et al., 1994), or

non-linear methods (Koay et al., 2006).

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.10)

The diagonal terms describe the diffusion coefficients along each of the coordinate

axes. The off-diagonal terms are the covariance terms, and are symmetric about

the diagonal (Dij = Dji). Thus, there are six unique terms in the tensor. The

coordinate axes (x, y, z) are the axes defined by the scanner gradients, but these

may not provide the most useful reference frame to describe the diffusion profile.

Instead, we can diagonalise the tensor to obtain its eigenvalues λi, for i = 1, 2, 3.
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The eigenvalues describe the diffusion along the tensor eigenvectors εi, which are

given by the eigenvector relationship: Dεi = λiεi. The eigenvectors provide a new

coordinate system that defines the principal axes of diffusion, with the corresponding

eigenvalues giving the apparent diffusivities along each axis.

Figure 2.5: Illustration of two diffusion tensor ellipsoids. The left represents anisotropic
diffusion, in which λ1 >> λ2, λ3. The right represents isotropic diffusion, in which λ1 ≈
λ2 ≈ λ3.

A convenient way to visualise the information contained in the diffusion tensor

is by considering the effective diffusion ellipsoid (Basser, 1995). This is an ellipsoid

with axes of length
√
λi, oriented along the directions given by εi. In a physical

sense, it is the surface encompassing the locations to which a spin is equally likely

to diffuse within a given time period τ . Two such ellipsoids are illustrated in figure

2.5. The prolate effective diffusion ellipsoid describes anisotropic diffusion, whereas

the spherical effective diffusion ellipsoid describes isotropic diffusion.

Figure 2.6 shows an example of diffusion tensors in real MRI data. The en-

larged segment covers three different tissue types: the white matter of the corpus

callosum, cerebrospinal fluid in the ventricles, and grey matter in the thalamus.

The ellipsoids in the white matter are highly anisotropic, and all oriented with their

principal diffusion direction aligned to the orientation of the white matter fibres.

The ellipsoids in the cerebrospinal fluid (CSF) are large and isotropic, reflecting the

free motion of the water molecules there. The ellipsoids in the grey matter are still
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Figure 2.6: Examples of diffusion tensors calculated from real MRI data. The effective
diffusion ellipsoids are overlaid on a fractional anisotropy map in the enlarged segment.
The ellipsoids are colour coded according to their principal diffusion direction (red: medial-
lateral, green: anterior-posterior, blue: superior-inferior).

fairly isotropic, but much smaller in size, as the cell bodies restrict the magnitude

of the diffusion in this region.

Scalar Invariants of the Diffusion Tensor

From the eigenvalues of the diffusion tensor several parameters can be derived that

describe various aspects of the diffusion profile. These are often used to characterise

microstructural properties of the underlying tissue. One of the most commonly used

is fractional anisotropy (FA), which is the normalised variance of the tensor eigen-

values (Pierpaoli and Basser, 1996) (where λ̂ is the mean of the three eigenvalues):

FA =

√
3

2

√(
λ1 − λ̂

)2
+
(
λ2 − λ̂

)2
+
(
λ3 − λ̂

)2
√
λ21 + λ22 + λ23

(2.11)

FA reflects the level of anisotropy in the diffusion profile of a given voxel. If the

diffusion in a given voxel is strongly anisotropic, the FA value will be close to one,

whereas for a voxel in which the diffusion is isotropic, such as in the CSF, the FA

value will be close to zero. The FA map in figure 2.7 shows the higher values in the
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white matter, and low values in the grey matter and the ventricles. FA is a useful

metric, as it reflects axonal ordering (Pierpaoli and Basser, 1996), axonal density

(Takahashi et al., 2002) and the degree of myelination in a voxel (S.-K. Song et al.,

2002). It has also been shown to be sensitive to microstructural changes during

development (Cohen et al., 2016; Dubois et al., 2008b; Geng et al., 2012).

Figure 2.7: Images derived from DTI in an axial slice from a single adult subject. From
left to right: no diffusion weighting, fractional anisotropy map, mean diffusivity map, FA
colour coded according to the principal direction of the diffusion tensor (red: medial-lateral,
green: anterior-posterior, blue: superior-inferior).

The mean diffusivity (MD) (also called the apparent diffusion coefficient) is

the average of the eigenvalues of the diffusion tensor, a scalar measure of the bulk

diffusivity in a voxel (Basser and Pierpaoli, 1996):

MD =
λ1 + λ2 + λ3

3
(2.12)

MD reflects the amount of hindrance to diffusion within a voxel. As shown in

figure 2.7, MD is highest in the CSF, where diffusion is less restricted, but does not

show as much contrast between grey and white matter as FA.

Scalar invariants of the diffusion tensor are convenient to use because they are

rotationally invariant and give insight into the intrinsic properties of the tissue (Pier-

paoli and Basser, 1996). However, they are not specific measures of microstructure

so care must be taken not to over-interpret their relationship to myelination or “fibre
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integrity” (Jones et al., 2013).

2.3.5 Modelling Crossing Fibres - Beyond the Diffusion Ten-

sor

Although the tensor model is a powerful and simple way to characterise tissue struc-

ture, it fails in regions with crossing fibres, since it only describes one major ori-

entation for each voxel. More than 90% of voxels in white matter are estimated

to contain crossing fibre populations (Jeurissen et al., 2013), so this drawback seri-

ously limits the accuracy of the diffusion tensor for mapping fibre pathways, leading

to false negatives in tractography and inaccurate fibre reconstructions. More com-

plex models are required to characterise the complex fibre architecture in the brain.

These are more computationally intensive than DTI and require data to be acquired

over many gradient directions and often at different b-values, in order to obtain the

necessary angular resolution. These protocols can be classified as High Angular

Resolution Diffusion Imaging (HARDI) protocols (Tuch et al., 2002).

There are two broad approaches for modelling fibre orientations: non-parametric

methods and parametric methods (D. C. Alexander, 2006). Non-parametric ap-

proaches, such as the diffusion propagator or spherical deconvolution, estimate the

fibre orientations directly from the data, exploiting the Fourier relationship between

the diffusion propagator and the measured signal. Parametric approaches use an

explicit biophysical model for the fibre orientation distribution function (fODF) and

fit the model parameters from the data. These are discussed in more detail below.

Diffusion Propagator Techniques and Spherical Deconvolution

As shown in equation 2.7, there is a Fourier relationship between the diffusion prop-

agator and the diffusion-weighted MR signal. Therefore, the propagator P (r, τ) can

be estimated directly via an inverse Fourier transform of the diffusion weighted signal
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S(q, τ). Once the diffusion propagator has been estimated, the diffusion orientation

distribution function (dODF) can be calculated as its radial projection Ψ(u, τ):

Ψ(u, τ) =

∫ ∞
0

P (ru, τ)r2 dr (2.13)

Where the displacement vector r is separated into a unit direction vector u and

its length r. The orientations of the fibre populations are assumed to coincide with

the peaks of the dODF.

Diffusion Spectrum Imaging (DSI) was the first method presented to estimate

P (ru, τ) in this fashion, by sampling q-space over a Cartesian grid (Wedeen et al.,

2005). However, this comprehensive sampling leads to long acquisition times, which

has limited the use of DSI (Dell’Acqua and Tournier, 2019). Similarly to DSI,

Q-ball imaging aims to estimate the dODF directly from the dMRI data (Tuch,

2004). Q-ball imaging uses a more time-efficient HARDI protocol, in which q-space

is sampled over a sphere (i.e. with a constant b-value). This means that the Funk-

Radon transform can be used to recover the dODF, rather than the full Fourier

Transform. This is much simpler to implement but neglects the r2 term in the dODF,

which reduces its angular resolution relative to DSI (Aganj et al., 2010; Dell’Acqua

and Tournier, 2019). Despite this, Q-ball imaging has been widely adopted and

many extensions have been proposed, including using a spherical harmonic basis to

improve reconstruction times (Descoteaux et al., 2007; Hess et al., 2006). Other

non-parametric methods include persistent angular structure (PAS) (Jansons and

D. C. Alexander, 2003) and diffusion orientation transform (Özarslan et al., 2006).

Diffusion ODF methods assume that directions of maximum diffusivity coincide

with fibre orientations. If one is interested in orientations, approaches exist that

estimate the fibre ODF directly. These are based on a spherical deconvolution

approach, in which the measured diffusion signal S is the convolution of the fibre

orientation distribution function F and the fibre response function R (Anderson,
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2005; Tournier et al., 2004; Tournier et al., 2007):

S(θ, φ) = F (θ, φ)⊗R(θ) (2.14)

The diffusion signal is the summation of the signal contributions of different

fibre populations, as illustrated in figure 2.8. The fibre response function can be

based on an axially symmetric tensor model (Dell’Acqua et al., 2007), a perfectly

symmetric tensor (Behrens et al., 2007), or drawn from a canonical fibre distribution

from the data itself (Tournier et al., 2004; Tax et al., 2014).

Figure 2.8: Signals from two fibre populations (S1 and S2) can be summed to produce the
measured diffusion signal Stot, which is also the convolution of the fibre response function
with the fODF. Reproduced from (Dell’Acqua and Tournier, 2019).

The fODF is then obtained by deconvolving the measured signal with the fibre

response function. The spherical harmonic basis set is usually used to reconstruct

the signal, which is Fourier series over the surface of the sphere (Anderson, 2005;

Tournier et al., 2004). The deconvolution can be solved using a constrained spher-

ical deconvolution (CSD) approach (Tournier et al., 2007) or the Richardson-Lucy

algorithm (Dell’Acqua et al., 2010). Multi-tissue multi-shell CSD is an extension of

the original CSD approach for multi-shell data (Jeurissen et al., 2014). It exploits

the varying dependencies of the different tissue types on the b-value, which allows

separate compartments to be modelled for each tissue type, each with a different

response function. This improves the precision of ODF estimates and reduces spu-

rious peaks in the fODF for voxels containing grey matter or CSF (Jeurissen et al.,

2014).
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More sophisticated approaches use information from neighbouring voxels to

improve the accuracy of the estimates, by informing asymmetric fODFs (Bastiani

et al., 2017; Reisert et al., 2012) and fibre continuity (Reisert and Kiselev, 2011).

Although these methods are not yet widely used, they show promising avenues for

increasing the accuracy of fODFs, by helping to differentiate between ambiguous

fibre geometries (Dell’Acqua and Tournier, 2019).

Non-parametric approaches have the advantage of being model free. By calcu-

lating the diffusion ODF or the fibre ODF, they are aiming to capture the signal

shape, rather than making any assumptions about how the underlying microstruc-

ture influences or generates the diffusion-weighted signal.

Parametric Methods

This set of methods are sometimes referred to as mixture or multi-compartment

models, because the signal is modelled as a mixture of separate compartments (D. C.

Alexander et al., 2019). These compartments can correspond to distinct fibre pop-

ulations (sometimes referred to as fixels (R. E. Smith et al., 2012)), or to isotropic

diffusion in the CSF and grey matter. The model parameters are then chosen that

best describe the measured data, which provide estimates of the underlying tissue

structure. Typically, these parameters include the orientation of the fibre popula-

tions (described by spherical angles θ and φ), and their volume fraction f .

A natural extension of the diffusion tensor model is the multi-tensor model,

first demonstrated by Tuch et al. (2002). This model is based on three assumptions:

1) the inhomogeneity in the diffusion signal is made up of a finite number of discrete

compartments; 2) the exchange between the compartments is negligible; and 3) the

diffusion within each compartment is Gaussian (Tuch et al., 2002). Therefore, the

diffusion signal can be expressed as a finite sum of the signals from each of the i

Gaussian compartments, each comprising a volume fraction fi of the voxel:
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S(g) = S(0)

[
N∑
i=1

fi exp
(
−bgTDig

)]
(2.15)

Where S(g) is the signal corresponding to the diffusion-weighted gradient with

direction g and b-value b, and S(0) is the signal in the absence of any diffusion-

encoding gradients. This model is not identifiable in general, at least from data

obtained in standard acquisitions (Scherrer et al., 2016), therefore constrained ver-

sions of it have been proposed. The ball and stick model is a multi-tensor model,

except that the tensors modelling the fibres have their second and third eigenvalues

reduced to zero (i.e. perfectly anisotropic “sticks”), while partial volume is rep-

resented as a spherical tensor (i.e. a perfectly anisotropic “ball”) (Behrens et al.,

2003). The advantage of reducing the model parameters in this way is that more

fibre populations can robustly be modelled from the data. Given N anisotropic

compartments, or “sticks”, each with volume fraction fi and orientation given by

vi, the signal equation for the ball and stick model is:

S(g) = S(0)

[(
1−

N∑
i=1

fi

)
exp(−bd) +

N∑
i=1

fi exp
(
−bd (g · vi)2

)]
(2.16)

The multi-tensor and ball and stick models belong to the family of methods

that parameterise the orientation information as a discrete set of fibre populations

(Assaf and Basser, 2005; Hosey et al., 2008; Scherrer et al., 2016). To provide more

flexibility in the fODF, some methods model a discrete set of fibre populations with

dispersion associated with each one, which leads to a continuous fODF (Jian et al.,

2007; Kaden et al., 2007; Sotiropoulos et al., 2012; Zhang et al., 2012). Other

methods, more similar to the non-parametric approaches described above, model

the fODF as a continuous distribution (Jian and Vemuri, 2007; Dell’Acqua et al.,

2007; Tournier et al., 2007), parameterised by a fixed number of coefficients.

A number of extensions of the ball and stick model are used in this thesis,
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they are therefore reviewed here briefly. The method by Jbabdi et al. (2012) was

developed specifically for multi-shell data. The use of multi-shell data allows us to

combine information from the high SNR at low b-values with the improved angu-

lar contrast of high b-values. However, the original ball and stick model overfits

to multi-shell data, in that extra fibre orientations are fit to account for the non-

monoexponential signal decay at higher b-values. The solution proposed by Jbabdi

et al. (2012) uses a Gamma distribution of diffusivities to model a continuous distri-

bution of diffusion coefficients. The Gamma distribution has a shape parameter α

and a scale parameter 1
β
. This model gives a signal for a diffusion encoding gradient

with direction g and a b-value bk:

S(bk,g) = S(0)

[(
1−

N∑
i=1

fi

)(
β

β + bk

)α
+

N∑
i=1

fi

(
β

β + bk(g · vi)2)

)α]
(2.17)

Using this model on multi-shell data was shown to reduce the amount of spu-

rious fibre estimates, particularly at the interface between white and grey matter,

while the only adding one additional scalar parameter to the regular ball and stick

model (Jbabdi et al., 2012).

Another extension of the ball and stick model especially suited to dMRI data

from the neonatal brain is presented in (Sotiropoulos et al., 2016). This uses

the Gamma distribution approach from (Jbabdi et al., 2012), to characterise the

isotropic diffusion. Instead of a stick compartment, the fibre response function is

the signal attenuation from an axially symmetric tensor, or “zeppelin”, which bet-

ter characterises the lower anisotropy in the developing brain (Bastiani et al., 2019;

Panagiotaki et al., 2012). The tensor has eigenvalues λ1 � λ2, λ2 = λ3, and a

principal diffusion direction v. However, due to the variety of maturational states

in the different tracts in this age group (covered further in chapter 3), a single fi-

bre response function is not appropriate. Instead, the tensor is allowed to vary in
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shape between voxels. Specifically, λR, the ratio of the major and minor axes of the

tensor, is a model parameter that is estimated on a voxel-by-voxel basis. The use

of voxel-specific fibre response kernels facilitates the estimation of fibre crossings in

white matter regions with low anisotropy. Combining the Gamma distribution of

isotropic diffusivities with the new convolution kernel gives the following expression

for the signal, (where λm is the mean of the tensor eigenvalues):

S(bk,g) = S(0)

[(
1−

N∑
i=1

fi

)(
β

β + bk

)α
+

N∑
i=1

fiexp

(
−bk

3λm
2λR + 1

(
(1− λR) (g · vi)2 + λR

))]
(2.18)

We fit these two models to a neonatal dataset from the developing Human

Connectome Project (figure 2.9). Focussing on the centrum semiovale, we can see

that the stick response kernel is unable to resolve the crossing fibre configurations,

whereas the zeppelin response kernel supports the multiple fibre populations required

to describe this complex fibre architecture. Furthermore, the average anisotropic

volume fraction estimated by the stick model is much lower than for the zeppelin

model, which indicates that the stick model is failing to capture the diffusion contrast

in these neonatal data.

As with all models, both deterministic and stochastic inference approaches can

be used to estimate the model parameters. Bayesian inference (and Markov-Chain

Monte-Carlo sampling) is used to estimate the parameters of this model (Behrens et

al., 2003). This asks what parameters best fit the model, given the evidence from the

data, and some prior knowledge about the parameters. For example, in the above

model, λR has a Gaussian prior, whose mean and standard deviation are estimated

from the data. Bayesian modelling provides a probability density function, called

the posterior distribution, associated with each of the estimated parameters, which
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Figure 2.9: Comparison of fibre orientations estimated using the stick and zeppelin (axi-
ally symmetric tensor) response kernels, in the same neonatal dataset. The zoomed-in por-
tion is indicated in the T2 weighted image on the left. Fibre orientations are coloured ac-
cording to their orientations (red: medial-lateral, green: anterior-posterior, blue: superior-
inferior).

helps to quantify their uncertainty. It also allows online “model selection” using

Automatic Relevance Determination (ARD) priors (Behrens et al., 2007). ARD are

shrinkage priors applied to volume fractions fi (where i ≥ 2) that a-priori penalise

the existence of more than one fibre compartment. Multiple fibres are included in

the model (i.e. fibre crossings), only when these are strongly supported by the data.

Overall, parametric methods have the advantage over non-parametric methods

that they can provide a more concise characterisation of the fODF via parameters

that provide a phenomenological representation of the signal. Furthermore, they can

directly model the fODF peaks, which are relevant for tractography applications.

2.3.6 Tractography

Tractography describes the process of using information about local fibre orienta-

tions (i.e. fODFs) derived from dMRI to map white matter connections in the brain

(Mori et al., 1999). The estimated fibre trajectories are called “streamlines”, which

are tracked through the vector field formed by the orientation estimates. Mathe-

matically, a streamline r(s) is a curve of arc length s, tangent to the orientation field



Chapter 2. Diffusion MRI 31

at each point v, as illustrated in figure 2.10. This can be expressed mathematically

as follows:

dr(s)

ds
= v[r(s)] (2.19)

This is an ordinary differential equation that can be solved by integration, with

streamlines starting at a seed point, r(0) = r0:

r(s) =

∫
0

v[r(s)]ds (2.20)

The integration is carried out numerically. The simplest method is Euler inte-

gration, in which the following procedure is iterated for each step ri along the path,

separated by step size δ (Conturo et al., 1999):

ri+1 = ri + δv(ri) (2.21)

In practise, higher order methods such as Runge-Kutta are more commonly

used as they are less susceptible to integration errors (Basser et al., 2000). The step

size δ in these algorithms is typically smaller than the voxel size, so interpolation is

needed to ensure smoothly varying estimates of fibre orientation. Most algorithms

use trilinear interpolation, which reduces interpolation errors compared to nearest-

neighbour interpolation (Conturo et al., 1999). Streamlines are propagated through

the vector field of orientation estimates until a stopping criterion is reached, such

as low amplitude in the fODF or high streamline curvature (Jeurissen et al., 2019).

These criteria are based on the anatomical plausibility of the fibres and aim to

reduce false positives.

There are many different approaches to tractography (Jeurissen et al., 2019).

We briefly overview here the difference between the two most commonly used types,

deterministic and probabilistic.
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Figure 2.10: Diagram showing how streamlines are propagated through the vector field of
fibre orientation estimates (colour coded here according to their direction). The streamline
begins at the seed point and continues tangentially to the fibre orientations.

Deterministic vs. Probabilistic

Tractography estimates the spatial distribution of paths least-hindered to diffusion

from the seed point (Behrens et al., 2014). The type of estimation (deterministic

or stochastic) is the difference between the two main types of tractography. Deter-

ministic tracking returns a point estimate of this spatial distribution. Probabilistic

returns a spatial histogram of the path distribution (i.e. most likely paths and

associated uncertainty around them). An example of the difference between the

deterministic and probabilistic approach is illustrated in figure 2.11, where both

have been applied in the same dataset with the same seed. Both outputs cover spa-

tially similar regions of the brain, however the deterministic output is a binary map,

whereas the probabilistic output is a probability map. If a deterministic approach is

taken, the resultant streamline map is a binary descriptor of the presence or absence

of a diffusion path, given the data.

Probabilistic tractography, on the other hand, provides a probability distribu-

tion on the most probable location of the underlying fibre bundle (Behrens et al.,

2007). This provides a quantitative estimate of the uncertainty in the estimated

trajectory. Many streamlines are propagated from each seed point to build a distri-
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Figure 2.11: Results from deterministic (Yeh et al., 2013) and probabilistic (Behrens
et al., 2007) tractography algorithms. Streamlines were seeded from the same seed ROI in
the brainstem in both cases, in a single adult subject. Probabilistic results are displayed as
a maximum intensity projection.

bution on the trajectory of the tract. There are two ways to generate and interpret

these distributions. Firstly, the local trajectory of the individual streamlines can

be drawn from a new ODF called the uncertainty orientation distribution function

(uODF). This characterises the uncertainty in the fibre orientation due to noise and

model errors and it is estimated by stochastic inference measures, such as Bayesian

inference of the ball and stick model described above. Propagating streamlines

according to the uODF yields a final distribution that indicates the measurement

uncertainty in the fibre trajectory (Behrens et al., 2007). Alternatively, the path-

ways can be drawn from the fODF, (Tournier et al., 2012), in which case the results

are assumed to reflect the underlying dispersion of the white matter fibres them-

selves, under the strong assumption that the width of the fODF truly encodes fibre

dispersion. We should point out that the width of the fODF is typically much larger

that the respective uODF, so results from the latter approach yield considerably

higher dispersion (Jeurissen et al., 2011).

Using Tractography to Map Connections in the Brain

There are different ways to use tractography algorithms to probe structural connec-

tivity, depending on the application. To map specific fibre bundles, it is common
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to use an “in-vivo dissection” approach, in which regions of interest (ROIs) are de-

lineated to specify the streamlines that are included (Catani et al., 2002). This can

either be an ROI that encompasses the whole tract, or seed and target ROIs that

specify the route that the streamlines must take to be included in the tract, com-

bined with rules to minimise false positives and constrain the tractography based

on anatomical plausibility (Warrington et al., 2020). Examples of the applications

of this approach include surgery planning (Romano et al., 2009) or to examine vari-

ation in tract microstructure or geometry across different subjects (Dubois et al.,

2008b; Thiebaut de Schotten et al., 2011b). The advantage of this approach is that

bundles can be accurately reproduced by incorporating prior anatomical knowledge

into the protocols. The protocols can be determined on a subject-by-subject basis,

to ensure good alignment to individual data (Conturo et al., 1999). This however is

prohibitively time-consuming, especially for large data-sets such as the Human Con-

nectome Projects (Hughes et al., 2017; Van Essen et al., 2013b; Howell et al., 2019).

Alternatively, protocols can be defined in a template space and then registered to

the individual data to generate subject-level results (Catani and Schotten, 2008;

Yendiki, 2011; Warrington et al., 2020). This has been shown to generate results

that are robust across subjects, while still respecting the differences in individual

anatomy.

An alternative approach is to seed streamlines across the brain to sample the

whole connectome, the comprehensive matrix of brain connections. The resultant

connectivity matrix can be used to examine global properties, through for example

graph-based analyses (Bullmore and Sporns, 2009; Bassett and Bullmore, 2006), or

as a basis for data-driven methods, which aim to identify white matter bundles from

whole brain connectivity data in an unsupervised fashion. One way to do this is by

using clustering techniques (Garyfallidis et al., 2012), such as hierarchical clustering

(Siless et al., 2018; Ding et al., 2003) and spectral clustering (O’Donnell and Westin,

2007), to identify fibre bundles from the whole-brain connectivity data.
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Matrix decomposition methods can also be applied to the connectivity matrix

to decompose it into a set of data-driven components. This is a commonly used

technique for the analysis of fMRI data, where Independent Component Analysis

(ICA) is typically applied to the matrix of functional timecourses to yield a set

of functional networks in grey matter (Mckeown et al., 1998). In the context of

structural connectivity, ICA has been applied to tractography data seeded from

the thalamus (O’Muircheartaigh et al., 2011) and throughout the whole brain (L.

Wu et al., 2015) to map white matter bundles and their corresponding grey matter

networks (O’Muircheartaigh and Jbabdi, 2017; Mars et al., 2019). These networks

have shown to be sensitive to changes in structural connectivity brought about by

disease (L. Wu et al., 2015), and robust across subject groups (O’Muircheartaigh

and Jbabdi, 2017).

2.3.7 Summary

This chapter provides an overview of the concepts of structural and functional con-

nectivity in the brain and the tools used to measure them, with particular focus

on diffusion MRI, the only method available to measure white matter connections

non-invasively and in vivo. The basic physics underlying dMRI has been described,

followed by the methods used to estimate tissue microstructure and fibre orientations

from the data. In particular, a parametric method for fibre orientation modelling

has been described that is especially suited to this age-group (see section 2.3.5).

This will be used in the work presented in Part III (Original Research), because it is

able to estimate fibre crossings even in areas of low anisotropy, which are prevalent

in the neonatal brain. We have also given an overview of tractography, and some

of the different ways that tractography algorithms can be used map white matter

connections in the brain. The focus of the rest of the thesis will be the application

of these methods to the neonatal brain. The next chapter provides an overview of

tractography studies in neonates, and subsequent chapters describe work done to
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address some of the existing problems in this context.
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In the previous chapter, the basic principles of MRI and MRI-based mapping

of brain connectivity were presented. We described how diffusion MRI provides

unique opportunities to study brain organisation non-invasively and in vivo. In this

chapter, existing literature is presented on early white matter development and how

dMRI can be used to probe the growth and maturation of structural connections in

the brain during this important period.

3.1 The Early Development of Structural

Connectivity - Insights from Ex Vivo Studies

The maturation of the human brain comprises many processes that occur asyn-

chronously from shortly after conception until well into early adulthood (figure 3.1).

Post-mortem studies have shown that certain white matter bundles have formed as

early as 12 weeks post-menstrual age (PMA) (Radoš et al., 2006). The limbic fibres

are the first to be established, followed by the projection and callosal fibres during

the early preterm period (26 - 30 weeks PMA) (Kostović et al., 2019). During the

late preterm period (31 - 36 weeks PMA), the longer commissural and association

fibres develop, so that by full term all the long range fibre bundles are in place

(Kostović et al., 2019). In the months after birth there is an overproduction of neu-

rons and synapses, followed by an elimination of redundant connections by cellular

apoptosis and axonal pruning in response to early life experiences (Huttenlocher and

Dabholkar, 1997; Kostović and Jovanov-Milošević, 2006). Myelination occurs from

the second trimester through to adolescence, improving the conduction of the nerve

impulse for more efficient information transfer. At 20 weeks PMA microstructural

myelin is present in the central limbic regions, and by 40 weeks there is mature

myelin in the cerebellum and external capsule (Kinney et al., 1988; Brody et al.,

1987). The myelination process is asynchronous across different regions, follow-

ing a central-to-peripheral and posterior-to-anterior trajectory. It also reflects the
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neurodevelopmental hierarchy. For example, myelination occurs earlier and more

rapidly in the sensory regions than in the motor regions (Dubois et al., 2014). Fig-

ure 3.1 illustrates the timeline of these complex maturational processes that occur

during brain development.

Figure 3.1: Timeline of the different maturational processes in the human brain. Time
axis is in post-conceptional weeks (before birth), postnatal months (until 24 months), and
postnatal years (after 2 years). The color intensity in each bar corresponds to the rate
of developmental changes. The spatial progression across brain regions is illustrated using
synaptogenesis (blue bar) as an example, illustrated by the blue curves above the time axis.
Reproduced with permission from (Ouyang et al., 2019).

3.2 Using dMRI to Map Early Brain Develop-

ment In Vivo

Although post-mortem studies provide an accurate and valuable insight into the

early development of structural connectivity, in vivo imaging is required to answer

questions about longitudinal development, the impacts of early life factors on brain

development, and the diagnosis of neurodevelopmental disorders. Diffusion MRI has

been used in previous studies to map brain connections and organisation in neonates,

from delineating white matter bundles and their microstructure to mapping whole

brain connectomes. A representative set of related studies is overviewed here.
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3.2.1 Delineating Tracts

A simple approach for tract delineation is to define a white matter atlas, from which

template tract ROIs can be registered to individual subjects’ data. A multi-contrast

MRI atlas for neonates was developed by Oishi et al. (2011), based on the JHU-MNI

adult atlas (Oishi et al., 2008). The atlas includes T1-weighted, T2-weighted and

DTI contrasts, and was constructed using data from 25 subjects scanned between 38

and 41 weeks PMA. The segmentation includes 38 cerebral white matter structures

that were manually delineated. A downside of this approach is that it only assigns

one label to each voxel, when in reality there can be several different fibre bundles

present in a given voxel (Jeurissen et al., 2013). To deal with this issue, a multi-label

white matter atlas was developed by Ratnarajah and Qiu (2014). Generated from

a training set of 20 subjects, each voxel is classified using a multi-label k-nearest

neighbour algorithm in Riemannian diffusion tensor space. However, these atlas-

based approaches do not provide in principle the same accuracy as tractography, as

they do not model the trajectory of white matter pathways based on the subject-

specific directional information from dMRI.

A number of tractography studies of the neonatal brain exist. Due to the

challenges associated with scanning neonates (see also next section), most of these

tractography studies have used DTI, due to their shorter acquisition requirements

compared to HARDI protocols (Hüppi and Dubois, 2006; Ouyang et al., 2019).

However, as described in the previous chapter, the diffusion tensor model can lead

to inaccurate tractography because it cannot identify multiple fibre populations

within a voxel. Recent developments, such as multiband imaging, have enabled

HARDI data to be acquired in shorter time frames, so more recent studies have

been able to take advantage of the better angular resolution afforded by HARDI

data for fibre orientation modelling (Anblagan et al., 2015; Bastiani et al., 2019;

Zöllei et al., 2019).

Many neonatal tractography studies have relied on manual segmentation, either
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of the whole bundle (Partridge et al., 2004; Huang et al., 2006) or manual placement

of ROIs to constrain tractography on a subject-by-subject basis (Dubois et al.,

2008b; Liu et al., 2010; Kaur et al., 2014; Cohen et al., 2016; Akazawa et al.,

2016). This ensures an accurate characterisation of individual anatomy, but is labour

intensive, especially for large numbers of subjects or many white matter tracts. Some

alternative approaches to manual segmentation are described below, which provide

automated tractography in neonatal subjects.

The University of North Carolina-Utah National Alliance for Medical Imaging

Computing (UNC-Utah NA-MIC) framework provides an end-to-end toolbox for

tractography analysis of neonates and infants (Verde et al., 2014). The framework

generates a study-specific atlas, in which users interactively define protocols for

deterministic tractography. Interactive fibre cleaning steps allow the user to refine

the results. This has been used in many studies (Geng et al., 2012; Gupta et al.,

2015; S. J. Lee et al., 2017; Rasmussen et al., 2017; Swanson et al., 2018), but

does not provide a canonical set of ROIs for the tractography step so these may be

defined differently across studies.

A variety of methods have been used to map white matter bundles using proba-

bilistic tractography. Anblagan et al. (2015) used probabilistic neighbourhood trac-

tography, a method that uses reference tracts to automatically delineate seed points

in individual subjects’ data, and then uses maximum likelihood to retain streamlines

that are closely matched to the reference. A standardised set of neonatal tractogra-

phy protocols were defined by Bastiani et al. (2019), using the tractography recipes

from the AutoPtx toolbox for probabilistic tractography (De Groot et al., 2013).

Another automated probabilistic tractography tool (TRACULInA) was developed

by Zöllei et al. (2019). This method uses global tractography, and tracts are seg-

mented based on a Bayesian approach, using their anatomical neighbourhood as a

prior.
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3.2.2 Estimating Tract Microstructure

At a global level, the neonatal brain has a higher water content and lower myelination

than the adult brain, leading to lower anisotropy in the diffusion signal and higher

diffusivity overall (Dubois et al., 2014). These properties can be seen in figure 3.2,

which also illustrates the rapid increases in FA and reduction in MD during this

period. In particular, FA is shown to increase in the internal capsule and the corpus

callosum, while MD decreases are especially prominent in the frontal white matter.

Figure 3.2: Average FA and MD maps illustrating the microstructural changes across the
neonatal period. Ages are given in postmenstrual weeks at scan. Each map is the average
of 20 subjects. Data were obtained from the public data release of the developing Human
Connectome Project.

Many studies have used tracts as ROIs and computed average DTI metrics

within each bundle as measures of tract maturity. These studies have supported the

findings from histology, describing maturation occurring over a central-to-peripheral

and a posterior-to-anterior trajectory (Dubois et al., 2014). Various models have

been developed to characterise the maturational sequence of the different fibre bun-

dles. For example, Dubois et al. (2008b) defined four relative stages of maturation,

by comparing both the rates of change and the absolute values of DTI metrics in

each tract against the average across all tracts, and between infants and adults. In

this model, the anterior limb of the internal capsule and the cingulum were found

to be the least mature, while the cortico-spinal tract was the most mature bun-

dle. Sadeghi et al. (2017) used nonlinear mixed effects modelling to look at the
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maturation of white matter bundles during the first two years of life, and to assess

the maturational differences between twins and singletons. Changes in DTI metrics

were described by a Gompertz function, which parameterises the asymptote, delay

and speed of the maturation. Only small differences were found between twins and

singletons, in the delay parameter of axial diffusivity in the anterior limb of the

internal capsule and anterior corona radiata.

Tract-based spatial statistics (TBSS) is another method for analysing microstruc-

tural measures across subject groups, in which data is projected onto a mean FA

tract skeleton (S. M. Smith et al., 2006). This method has been used to study

microstructural changes in neonates using specific neonatal FA templates (Anjari

et al., 2007; Ball et al., 2010; Counsell et al., 2008). However, a drawback of TBSS

is a lack of anatomical specificity. Tract-specific analysis is a similar approach that

instead uses individual tract skeletons, which was used by Pecheva et al. (2017) to

study microstructural changes in tracts with age at scan.

More sophisticated microstructure models can be used to assess white mat-

ter maturation, such as the Neurite Orientation Dispersion and Density Imaging

(NODDI) model, which models the density of neurites (dendrites and axons) and

their orientation dispersion, disentangling these two factors that contribute to FA

(Zhang et al., 2012; Dean et al., 2017). For example, recent work by Batalle et al.

(2019) uses the NODDI model to investigate changes in cortical microstructure such

as dendritic arborisation and neurite growth. Other work has used this method to

measure the impact of clinical encephalopathy on neonatal white matter (Kansagra

et al., 2016).

Lateralisation of tract volume and microstructural measures has also been ex-

plored. The arcuate fasciculus, which is associated with language processing, is left

lateralised in neonates (Dubois et al., 2009; Liu et al., 2010), as it is in adults, al-

though this finding was not replicated in a separate study (J. W. Song et al., 2015).

Some studies have also indicated left lateralisation in the maturation and volume
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of the cortico-spinal tract (Dubois et al., 2009; Liu et al., 2010), the inferior longi-

tudinal fasciculus (J. W. Song et al., 2015; Cohen et al., 2016), and the cingulum

(J. W. Song et al., 2015; Cohen et al., 2016).

3.2.3 Whole Brain Connectivity Analysis

More recently, improvements in tractography methods and data acquisition have

enabled the use of dMRI to investigate whole-brain connectivity in neonates. Graph

based analysis can be applied to structural connectivity data to understand the

network properties of brain organisation (Bullmore and Sporns, 2009). This requires

the definition of nodes and edges, with an edge representing the connection between a

pair of nodes. Nodes are often defined according to parcellations and edges represent

connectivity measures between them. The number of streamlines connecting two

nodes is a common metric for the strength of a structural connection, and can

be normalised with respect to the total number of streamlines or the node size

(Hagmann et al., 2008; Sotiropoulos and Zalesky, 2019). Microstructural measures

can also be used as a proxy for connection efficiency (Heuvel et al., 2015; Ball et al.,

2015).

Small world topology is a commonly used measure, as it facilitates both inte-

grated and segregated processing. It is characterised by high levels of local clustering,

with short paths that globally link all nodes (Bassett and Bullmore, 2006). Small

world topology is present at birth, even in preterm subjects, and the small world

property increases with age (Yap et al., 2011; Tymofiyeva et al., 2013; Ratnarajah

et al., 2013; Brown et al., 2014; Heuvel and Hulshoff Pol, 2010). Local efficiency of

the network structure increases with age, but global efficiency remains similar from

birth to two years (Yap et al., 2011). The left hemisphere has higher structural

efficiency than the right (Ratnarajah et al., 2013), which aligns with findings from

functional data that indicate left lateralisation of language networks emerges during

the first year (Emerson et al., 2016).
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Rich club organisation is also observed in neonatal brain networks. This consists

of a backbone of well-connected hubs, in which connectivity is resilient to the removal

of any individual hub. It is thought to be the basis for efficient global information

transfer (Ball et al., 2014). Rich club architecture was also observed in preterm

infants scanned at 31 weeks PMA (Ball et al., 2014). This was characterised by

a network of densely connected hub regions in the deep grey matter and frontal

and parietal cortices. There is an increase in connectivity between the core hubs

and the rest of the brain between 31 and 41 weeks PMA, mainly in the fronto-

parietal regions (Ball et al., 2014; Heuvel et al., 2015). This is in line with the

microstructural maturation over the same period (Kinney et al., 1988). Increases in

network integration were also observed in another study that studied changes from

birth through to adulthood (Tymofiyeva et al., 2013).

Network analysis has provided useful insight into the early development of

structural connectivity. However, the definition of nodes in these populations is not

straightforward, due to high inter-subject variability and the lack of well-validated

templates. The approach taken for some of the earlier work in this field was to non-

linearly register adult atlases to the data (Yap et al., 2011; Fan et al., 2011; Lewis

et al., 2014). This made it easier to interpret the connectivity measures assigned

to different areas and facilitated cross-subject comparisons. However, due to the

significant differences in anatomy between adults and babies, this approach is likely

to lead to registration errors and inaccurate characterisation of different regions.

The multi-contrast neonatal atlas detailed above (Oishi et al., 2011) is better suited

to this population, and has been used to define nodes in several studies (Ratnarajah

et al., 2013; Brown et al., 2014; Heuvel et al., 2015).

Overall, graph theoretical analysis promises new insights into brain organisation

and the potential for new biomarkers that cannot be characterised by other methods

(Ball et al., 2014). However, the results can be very sensitive to the initial choice of

nodes and it is difficult to link some of the measures to the underlying neurobiology,
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so care must be taken with their interpretation (Hallquist and Hillary, 2018).

3.2.4 Impact of External Factors on Structural Connectivity

In vivo imaging studies further allow us to investigate the impact of early environ-

mental factors on white matter development. Factors such as breastfeeding (Deoni

et al., 2013), increased fatty acid levels (Tam et al., 2016), and even music (Sa de

Almeida et al., 2020) have been shown to have a positive effect on white matter

maturation, whereas infants with chronic lung disease have significantly reduced FA

in several tracts (Ball et al., 2010). Antenatal maternal anxiety is also linked to

reduced FA in areas related to emotional functioning (Rifkin-Graboi et al., 2015).

Premature birth is a risk factor for many neurodevelopmental disorders, and

so it is important to understand how this affects brain development (Johnson and

Marlow, 2014). Many studies have probed the effect of premature birth on white

matter development (Pannek et al., 2014). For example, it was found that premature

birth has a significant impact on the strength of thalamocortical connections (Ball

et al., 2013) and that this reduced connectivity had a downstream effect on cognitive

scores at two years (Ball et al., 2015).

Furthermore, measures of white matter development can be used to predict

later outcomes. A deep-learning approach has been used to predict cognitive scores

at two years from whole-brain tractography connectomes (Girault et al., 2019).

Connections within the frontal lobe, and between the frontal lobe and the rest of

the brain were found to be most important for prediction. This illustrates the

potential for biomarkers based on early structural connectivity measures.
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3.3 The Challenges of Imaging Early Brain De-

velopment In Vivo

Despite significant efforts and progress overviewed in the previous sections, imaging

early brain development brings its own unique set of challenges. At a practical level,

it is difficult to ensure that a baby stays asleep throughout the scanning process, and

even if this is achieved, motion remains a significant problem for neonatal imaging

(Barkovich et al., 2019). This is a particular issue for dMRI and can cause issues

such as signal drop-out and spin history effects (Bastiani et al., 2019). Reductions

in scan duration, dedicated ear protection, and specially designed protocols with

graduated noise have all been used as approaches to deal with this issue (Cordero-

Grande et al., 2018; Hutter et al., 2018a). Another practical consideration is that

standard head coils designed for adults are too big to achieve good signal-to-noise

ratio (SNR) on a baby (the neonatal brain is typically one third of the volume of

the adult brain (Holland et al., 2014)). Therefore, the use of specially designed head

coils provides a large improvement in SNR for neonatal imaging (Hughes et al., 2017;

Lopez Rios et al., 2018). The small neonatal head size also means that a high image

resolution is required to avoid partial voluming effects.

The microstructural characteristics of the neonatal brain, such as low myelina-

tion and high water content, lead to a very different image contrast compared to

the adult brain. The immature fibre architecture also reduces the diffusion contrast,

which hinders tractography. Structurally, the cortical folding of the neonatal brain

is not as developed as in the adult brain (Dubois et al., 2008a). Moreover, these fac-

tors develop rapidly during the weeks and months after birth (Dubois et al., 2014),

which makes it difficult to define a single representative template. Thus, multiple

templates have been proposed that characterise the neonatal brain on a week-by-

week basis (Kuklisova-Murgasova et al., 2012; Serag et al., 2012; Schuh et al., 2018),

including the example shown in figure 3.3.
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Figure 3.3: T2-weighted atlases from different timepoints during the neonatal period
(Serag et al., 2012), displayed alongside an adult atlas. Changes in image contrast, gyri-
fication and brain size can be seen over the four month period shown.

3.4 Big Data Projects

The last decade has seen the advent of “big data” neuroimaging projects, such as

the UK Biobank (Miller et al., 2016) and the Human Connectome Project (HCP)

(Van Essen et al., 2013b), that aim to acquire high quality data from large cohorts

(1000s of participants). The data acquired from these projects is made available to

the wider research community as a resource to help further our understanding of the

brain. More recently, several such projects have been started with a focus on the

neonatal period (Hughes et al., 2017; Howell et al., 2019). By optimising scanning

hardware, protocols, and analysis pipelines for neonates, they aim to address some of

the challenges of imaging this population that are described in the previous section.
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3.4.1 The Developing Human Connectome Project

The developing Human Connectome Project (dHCP) aims to create a dynamic map

of human brain connectivity during the first weeks of life (Hughes et al., 2017). To

date, over 800 neonatal and over 250 fetal MRI scans have been acquired. Neonates

were scanned between 24 and 45 weeks PMA. Structural, functional and diffusion

MRI have all been collected, with scanning protocols tailored for the unique chal-

lenges of this population.

A number of MRI acquisition developments have been made for the dHCP

to mitigate some of the problems associated with imaging neonates, including a

specialised neonatal head coil and a dedicated MR compatible trolley to minimise

disturbance when placing the babies in the scanner (Hughes et al., 2017).

The effects of motion can also be reduced by minimising scan times and avoiding

abrupt changes in noise levels. Functional and diffusion data were acquired for the

dHCP using a multiband EPI sequence designed to have reduced noise and scan

length compared to standard sequences (Hutter et al., 2018a), while maintaining

image quality and SNR. In addition, a novel multi-shell HARDI protocol has been

developed (Hutter et al., 2018b), which incorporates multiband capacity to reduce

scanning times, and has flexible sampling of both diffusion and phase encoding to

maximise the usability of data even after loss due to motion or scan disruption.

Reconstruction methods have also been developed to cope with within-plane and

through-plane motion (Cordero-Grande et al., 2018).

Preprocessing pipelines have been developed for the dHCP that are specifically

tailored to data from this challenging population (Bastiani et al., 2019; Makropoulos

et al., 2018; Fitzgibbon et al., 2019). The cortical surface reconstruction pipeline

builds upon the segmentation and cortical surface extraction techniques from the

adult HCP (Makropoulos et al., 2018), using tools from FreeSurfer (Fischl, 2012).

However, the pipeline has been tailored to specific contrasts and resolution of the

developing brain, yielding more accurate segmentation than other neonatal seg-
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mentation models. The functional preprocessing pipeline incorporates motion and

susceptibility distortion corrections, boundary based registration of functional to

structural data, and ICA denoising (Fitzgibbon et al., 2019). Diffusion preprocess-

ing and quality control is detailed in (Bastiani et al., 2019). The dMRI data were

simultaneously corrected for eddy currents, susceptibility induced distortions, and

motion, both within volumes and across volumes (Andersson and Sotiropoulos, 2016;

Andersson et al., 2017). This provides a state-of-the-art distortion correction, which

helps to mitigate some of the issues with data quality described above. Automated

quality control is built into both the functional and diffusion pipelines.

3.4.2 The Baby Connectome Project

The Baby Connectome Project (BCP) is one of the US NIH Lifespan Connectome

Projects, building on the approach of the Human Connectome Project (HCP) (Van

Essen et al., 2013b). Its primary aim is to characterise brain and behavioural devel-

opments in 500 typically developing infants during the first five years of life (Howell

et al., 2019). As far as possible, the scans and behavioural tests replicate those used

for the young adult HCP, although necessary changes have been made to suit the

needs of the younger subjects in the BCP.

One of the main features of the BCP is the hybrid longitudinal and cross-

sectional study design. 285 subjects will be scanned between four and six times,

from shortly after birth, until 44 months. The remainder (215 subjects) will be

scanned once, between the ages of 3 and 60 months. The dense longitudinal sampling

improves the ability to detect non-linear trajectories in functional and structural

development (Howell et al., 2019).

The structural and functional imaging parameters are mainly similar to those of

the other HCP projects. However, the dMRI acquisition parameters were modified

for this age range. A six-shell sampling scheme was chosen, as this was found

to facilitate the reconstruction of local fibre orientations with increased accuracy,
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compared to the three-shell scheme used for the dHCP (Howell et al., 2019).

3.4.3 Aims of this Work

The projects described above will provide a wealth of high-quality data to the neona-

tal imaging community, but improved analysis methods tailored to this early phase

of development are needed to make the most of these data. In the next chapters,

new frameworks are presented for mapping brain connectivity from diffusion MRI

data in the neonatal brain.

First, in chapter 4, a new and extensive set of tractography protocols are defined

for the neonatal brain. These describe a much larger set of tracts than existing pro-

tocols, and can be used for reproducible analysis of tract maturation. The protocols

are generalisable across the lifespan, ensuring seamless links between the analysis

of neonatal and adult brain connectivity. Different methods are then compared for

generating whole-brain connectomes for the neonatal brain. We focus on the impact

of the gyral bias on these, as this is an important confound for adult tractography

that has not yet been explored in the developing brain.

In chapter 5, a novel data-driven approach is devised to simultaneously extract

white matter bundles and grey matter networks from these whole-brain connec-

tomes. This method is protocol-free, so does not rely on a particular template or

any prior assumptions about the rapidly changing neonatal anatomy. In chapter

6, the stability of these results are explored, and we demonstrate how the group-

level results can be mapped onto individual subjects or subgroups. This approach

can also be used to generate parcellations of the neonatal cortex that are based on

structural connectivity.

The final chapter summarises these methods and provides an outline of their

potential future applications. The frameworks developed provide a springboard for a

combined analysis of neonatal brain connectivity with adults and other non-human

primates, while still being sensitive to the neonatal anatomy, which will be useful
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for exploring the ontogeny and phylogeny of white matter connections. They also

provide routes to joint analysis of structural and functional connectivity in the brain.
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Foreword

This chapter presents two complementary approaches for mapping white matter

connections in the neonatal brain: ROI-based tracking of individual tracts, and the

generation of whole-brain connectivity matrices. First, a new set of tractography

protocols is presented, that allow us to reliably map 42 white matter tracts in the

neonatal brain. The protocols are defined to be functionally consistent with an

existing set of protocols for the adult human and the macaque (Warrington et al.,

2020), which aids comparison between these groups. The results are used to analyse

changes in microstructure across different tracts over the neonatal period.

We then explore the impact of the gyral bias on neonatal connectomes. The

gyral bias is a methodological confound of tractography, which causes streamlines

to be over-represented at the gyral crowns, compared to the sulcal walls and fundi.

Results are compared between two different seeding strategies, and between neonates

and adults, to determine the optimal seeding strategy to use in future work.
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4.1 Introduction

Tractography has been a valuable tool for elucidating many details of early white

matter development and the complex factors that impact the development of white

matter pathways, as demonstrated in the previous chapter. In this chapter, tra-

ditional tractography approaches are extended and explored in two ways, relevant

for connectivity mapping in the neonatal brain. Firstly, automated tractography

protocols are developed for major white matter bundle reconstruction, tailored to

neonatal brain anatomy. Secondly, the fidelity of whole-brain connectome mapping

approaches are further explored in newborns with respect to the gyral bias, a major

confound in connectome mapping of the adult brain.

Many of the studies referenced in the previous chapter have used ROI-based

tractography protocols to map individual white matter tracts. However, in most

of these studies ROIs are delineated on a subject-by-subject basis (Dubois et al.,

2008b; Liu et al., 2010; Kaur et al., 2014; Cohen et al., 2016; Akazawa et al., 2016),

which is time consuming for large cohorts. Even with neuroanatomists who have ex-

tensive training in the anatomy of this difficult population, there is some inter-rater

variability in manually delineated tracts (Kaur et al., 2014). Standardised tractog-

raphy protocols facilitate the consistent and reproducible extraction of white matter

bundles for large numbers of subjects, using prior anatomical knowledge to reduce

false positives in fibre tracking (Catani et al., 2002; Wakana et al., 2004). However

there is no widely used set of protocols that can be used to map a comprehensive

set of white matter tracts in neonates.

We have developed and present a set of automated tractography protocols for

42 white matter tracts in the neonatal brain, building upon a library of protocols

that has recently been devised and used in large cohorts of subjects (Warrington

et al., 2020). These protocols (XTRACT for X-species TRACTography) have been

designed to be generalisable across adult humans and macaques. We adjust, aug-
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ment and test them for the neonatal brain, ensuring correspondence with their adult

counterparts. We then use them on data from the developing Human Connectome

Project, to examine early changes in tract microstructure. The consistency between

these neonatal tractography protocols and those for the adult human and macaque

means that they will provide a valuable resource for the study of changes in struc-

tural connectivity across the lifespan and evolutionary development.

The second part of this chapter is concerned with mapping the whole connec-

tome in the neonatal brain. There are many different choices to be made during the

data processing that can affect the results and introduce bias. We specifically exam-

ine the effects of different streamline seeding strategies on the gyral bias. The gyral

bias is a major confound for adult brain connectomes and describes the tendency

of tractography streamlines to terminate preferentially at the gyral crowns rather

than the gyral walls or sulcal fundi (Van Essen et al., 2013b; Schilling et al., 2018).

When this was first observed, it was thought to reflect the underlying anatomy (Nie

et al., 2012; Chen et al., 2013), however comparisons with tracer results from the

macaque (Van Essen et al., 2013a) and histology (Schilling et al., 2018) have shown

that this is a tendency intrinsic to tractography itself (Van Essen et al., 2013a).

Analysis of the gyral bias is complicated by the fact that there is some innate

tendency towards the gyri to be expected in axonal terminations, based on the

geometry of the cortex (Van Essen et al., 2013b). This is partly because the cortex

tends to be thicker along the gyral crowns than the sulcal fundi. In addition, if

we look through a cross section of a gyrus, as in figure 4.1, and imagine wedge

shaped sections of equal volume in the cortical grey matter at the sulci and gyri,

we can see that the surface area bounding the white matter is greater relative to

the volume of the cortical grey matter at the sulcal fundi than it is at the gyral

crown. If a constant density of axons per unit of cortical volume is assumed, as has

been observed in histology (Van Essen et al., 2013b), then there must be a higher

density of axons terminating at the gyri than at the sulci, due to the smaller surface
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area available at the gyral crown. The fluctuations in streamline density due to this

effect can be predicted by calculating the cortical volume associated with each unit

of surface area of the white matter/grey matter boundary (WGB), and using this

method it has been demonstrated that the gyral bias in tractography exceeds the

predictions made based on anatomy alone (Van Essen et al., 2013b; Donahue et al.,

2016).

Figure 4.1: A diagram illustrating how cortical folding patterns introduce expected vari-
ations the density of axonal terminations at the cortex. The surface area of the WGB
bounding a wedge of cortex with equal volume is greater at the sulcal fundi than it is at
the gyral crown (yellow arrows). This accounts for some of the measured gyral bias, but
is not sufficient to explain the magnitude of the variation in streamline density across the
cortex that is observed in tractography.

Given that the cortical folding patterns in neonates are less mature than in

adults, we explore the effects of the gyral bias on tractography results in the neona-

tal brain with respect to the theoretically expected bias. Two seeding strategies

are compared: seeding from the white matter/grey matter boundary (WGB), and

seeding streamlines throughout the brain volume. Previous work has indicated that

whole-brain seeding leads to a larger effect of the gyral bias in adults compared to

WGB seeding (Van Essen et al., 2013b; Schilling et al., 2018), however the impact of

the gyral bias has not been measured in neonatal tractography before. Exploring the

effects of the gyral bias in the neonatal brain, where gyrification is less developed,

and comparing against adults, allows us to determine optimal seeding strategies for
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whole-brain connectomes and the extent to which gyral bias is an issue to consider

when interpreting neonatal connectome studies.

4.2 Methods: Automated Tractography Protocols

Automated tractography protocols provide a set of instructions for tractography,

to reconstruct white matter tracts in a reproducible way across subjects. These

instructions take the form of a set of masks in a standard space that provide logical

operations for the propagation and retention of streamlines, based on anatomical

knowledge. These masks are then warped to the subject’s native space to per-

form tractography. Figure 4.2 illustrates the different masks used in our protocols.

Streamlines all start at the seed mask, and only those which reach the target mask

are included in the final result (so streamline a is rejected because it does not prop-

agate through the target). An exclusion mask can be added to remove streamlines

that enter it, so streamline b is also rejected, despite reaching the target mask.

Streamlines c and d are included in the final result because they both propagate

from the seed mask to the target, without being impeded by any exclusion masks.

However, streamline c is cut short upon reaching the stop mask, which terminates

any streamlines which enter it.

Figure 4.2: Schematic diagram to illustrate the different masks used in the baby-
XTRACT protocols.
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In this work we use the 40-week template from a spatio-temporal neonatal atlas

developed by Schuh et al. (2018), as our standard space. The atlas was created using

a group-wise method applied to data from 275 healthy neonates scanned between 35

and 44 weeks PMA from the dHCP. The resultant atlases were shown to preserve

cortical details better than other atlases that are available for this age-group (Schuh

et al., 2018).

Protocols were defined in this standard space. Masks are transformed from

standard space to the subject’s native space using a non-linear registration warp

field (Avants et al., 2011). Tractography is performed in native space and the results

are directly resampled back to the standard space, to allow for between-subject

comparison and averaging. This process also minimises the resampling required.

4.2.1 Protocol Definitions

Tractography protocols were defined following the adult XTRACT protocols de-

veloped by Warrington et al. (2020), hence we refer to them collectively as baby-

XTRACT protocols. The underlying idea is that all these protocols (human adult,

macaque and human neonate) use equivalent functional definitions, while preserving

the shape and size differences across these diverse brains. To define the protocols, a

non-linear warp field was used to roughly align the adult XTRACT protocol masks

to a 40 week PMA neonatal template (Schuh et al., 2018). Using the adult protocols

as a starting point, the registered masks were then manually redrawn to ensure good

alignment and correspondence to the neonatal anatomy. Seed and target masks were

enforced to have equal volumes in each hemiphere, for bilateral tracts, to avoid ar-

tificial lateralisation. Some additional changes were made to the protocols, based

on preliminary results, in order to optimise the results for the neonatal anatomy, as

described below.

A list of the tracts included in the protocols is shown below in table 4.1. Some

of the protocols use a reverse-seeding approach, in which the protocol is run twice,
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with the roles of the seed and target masks exchanged. The resultant streamline

distributions are then added together.

Category Tract Name Bilateral
Reverse
Seeding

Adjustments to
Adult Protocols

Association

Superior longitudinal fasciculus 1,
2 and 3 (SLF1, SLF2, SLF3)

X
Additional exclusions,

larger seed masks

Arcuate fasciculus (AF) X X
Change to target position,

additional exclusion

Middle longitudinal fasciculus
(MdLF)

X X

Inferior longitudinal fasciculus
(ILF)

X X

Inferior fronto-occipital fasciculus
(IFO)

X X

Uncinate fasciculus (UF) X
Frontal aslant tract (FA) X
Vertical occipital fasciculus
(VOF)

X X

Commissural

Middle cerebellar peduncle
(MCP)

X

Splenium of the corpus callosum
(FMA)

X

Genu of the corpus callosum
(FMI)

X

Anterior commissure (AC) X Additional exclusion

Limbic
Cingulum subsections: tempo-
ral, dorsal and peri-genual (CBT,
CBD, CBP)

X

Fornix (FX) X Changes to exclusions

Projection

Corticospinal tract (CST) X
Anterior thalamic radiation
(ATR)

X Additional exclusion

Superior thalamic radiation
(STR)

X

Acoustic radiation (AR) X X
Optic radiation (OR) X X

Table 4.1: Forty-two tracts included in baby-XTRACT

The sections below describe the protocol for each tract in detail. With the

exception of the commissural tracts, all protocols include the midline sagittal plane

as an exclusion mask to restrict fibres to the ipsilateral hemisphere.

Association Fibres

Superior Longitudinal Fasciculus (SLF) 1/2/3 : The superior longitudinal fasci-

culus is a longitudinal parieto-frontal tract associated with visuospatial attention
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(Thiebaut de Schotten et al., 2011a). It can be separated into three bundles: a dor-

sal superior longitudinal fasciculus SLF1, middle SLF2 and ventral SLF3. The three

branches of the SLF are reconstructed using an extension of the approach taken by

Thiebaut de Schotten et al. (2011a). In each case a coronal plane in the region of

the central sulcus within the frontal/parietal cortex is used as a seed along with

two target masks. Frontally, target masks for the first, second, and third branches

of the SLF were coronal sections through the superior, middle, and inferior frontal

gyri, respectively, placed at the level of the posterior end of the genu of the corpus

callosum. Posteriorly, a large coronal target mask in the superior parietal lobule,

immediately posterior to the margin of the cingulate gyrus is used for SLF1. For

SLF2 and SLF3, the second target masks are placed in the angular gyrus and supra-

marginal gyrus respectively. In each case, seed placement reflects the placement of

the second target whilst being moved anteriorly into the region of the central sulcus.

For each protocol, an axial exclusion mask was placed underneath the parietal cortex

and one blocking subcortical areas prevented leaking into ventrally oriented fibres.

A coronal exclusion mask through subcortical areas posterior to the caudal end of

the genu of the corpus callosum prevented leaking into ventral longitudinal tracts.

The SLFs are still maturing during the neonatal period (Dubois et al., 2014), which

makes them challenging to delineate in this age-group. Therefore, extra exclusion

masks were added compared to the adult protocols, to help constrain the tractog-

raphy. For each branch, the target masks for each of the other SLF branches were

also included as exclusion masks. An additional exclusion mask was also placed in

the cingulate gyrus for the SLF1, to prevent leakage into this region. The seed and

target masks were also increased in size compared to the adult masks, which made

the results more robust.

Arcuate Fasciculus (AF): The arcuate fasciculus connects Broca’s area and

Wernike’s area, and is associated with language functioning (Eichert et al., 2019).

The AF was reconstructed with a seed in the supramarginal gyrus (SMG), a tempo-
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ral target mask was in the white matter encompassing the superior temporal gyrus

(STG) and middle temporal gyrus (MTG), and an anterior target at the level of the

ventral premotor cortex, posterior to the inferior frontal gyrus (IFG) and anterior

to the precentral sulcus. An axial target mask was placed in the parietal-temporal

white matter posterior to the caudal end of the Sylvian fissure. An additional axial

plane was placed in the IFG. The anterior target was moved posteriorly to be closer

to the seed than in the adult protocol, as we found that this improved our ability

to segment the frontal part of this bundle. An axial exclusion mask was also added

for the neonatal protocols to prevent fibres running through the internal capsule.

Middle/Inferior Longitudinal Fasciculus (MdLF, ILF): The middle and inferior

longitudinal fasciculi are tracts within the lateral posterior cortex of the temporal

lobe. The MdLF was seeded in the anterior part of the superior frontal gyrus (SFG)

(Makris et al., 2008), and ILF in the middle and inferior temporal gyri. For the

MdLF, large axial and coronal planes covering the white matter in the temporo-

parietal-occipital junction were used as targets, based on anatomical descriptions

from Makris et al. (2013). For ILF, a coronal plane in middle and inferior temporal

gyrus is used as a target. For both protocols, exclusion masks were placed axially

through the brainstem, coronally through the fornix, axially through the cingulum

bundle posterior to the corpus callosum and through the entire frontal cortex. In

addition, the seed mask of MdLF served as an exclusion mask for ILF and vice versa,

and the ILF target mask was used as an exclusion mask in the MdLF. Additionally,

for the ILF, a coronal exclusion mask was placed in the in the centrum semiovale

and an axial exclusion mask covering the white matter of the SMG was used.

Inferior Fronto-Occipital Fasciculus (IFO): In contrast to MdLF and ILF, the

inferior fronto-occipital fasciculus, also termed the extreme capsule fibre complex

(Mars et al., 2016), runs more medially and courses into the frontal cortex through

the extreme capsule. Extending the recipe of (Wakana et al., 2007), the seed was a

coronal plane through the anterior part of the occipital cortex, the target a coronal
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plane through the frontal cortex anterior to the genu of the corpus callosum. An

exclusion mask just behind the anterior commissure excluded all fibres except those

running through the extreme capsule.

Uncinate Fasciculus (UF): The uncinate fasciculus is a hook-shaped bundle

that connects the frontal lobe with the anterior temporal lobe. The tract was recon-

structed using a seed in the STG at the first location where the temporal and frontal

cortex are separated, a target through the ventral part of the extreme capsule, and

an exclusion mask layer between the seed and the target to force the curve. An

additional coronal exclusion mask prevented leaking into the fibres running longitu-

dinally through the temporal lobe.

Frontal Aslant (FA): The frontal aslant is a short tract running in the frontal

lobe between the posterior part of the inferior and superior frontal gyri (Catani et

al., 2012). The seed was placed sagittally in the white matter of the IFG, the target

axially in that of the SFG. A posterior coronal exclusion mask prevented leakage

into longitudinal fibres.

Vertical Occipital Fasciculus (VOF): The vertical occipital fasciculus runs in a

predominantly dorsal-ventral orientation in the occipital lobe. The original protocol

was adapted from Takemura et al. (2017). An axial seed mask was placed in the

lateral part of the ventral occipital white matter posterior to the anterior occipital

sulcus (Petrides et al., 2012). A larger axial target mask was placed dorsally at

the level of the lateral occipital sulcus. A coronal plane just posterior to the cor-

pus callosum served as an exclusion mask to prevent leakage into anterior-posterior

tracts.

Commissural Fibres

Middle Cerebellar Peduncle (MCP): The middle cerebellar peduncle connects the

cerebellum to the pons. This tract was seeded in the cerebellar white matter with a
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target in the opposite hemisphere (and their inverses). Exclusion masks were placed

sagitally along the cerebellar midline and axially through the thalamus.

Corpus Callosum Splenium (FMA) and Genu (FMI): Callosal connections to

the occipital lobe were constructed via the splenium of corpus callosum (forceps

major, FMA) and to the frontal lobe via the genu of corpus callosum (forceps minor,

FMI) using recipes based on those defined by Wakana et al. (2007). Seed and target

masks (and their inverse) for the FMA were defined as coronal sections through

the occipital lobe at the posterior end of the parietal occipital sulcus. The sagittal

exclusion mask was confined to the occipital cortex and the subcortex. Additional

exclusion masks though the inferior fronto-occipital white matter and a coronal plane

through the pons prevented leakages to longitudinal fibres. Seed and target masks

(and their inverse) for the FMI were defined as coronal sections through the frontal

lobe at the anterior end of the pregenual cingulate sulcus. The midsagittal exclusion

mask was interrupted at the level of the anterior third of the corpus callosum and an

additional coronal exclusion mask at the same level prevents posterior projections.

Anterior Commissure (AC): The anterior commissure connects the temporal

lobes of the two hemispheres across the midline. It was seeded in the left-right

oriented fibres on the midline, with a target mask covering the white matter lateral

to the globus pallidae. Stop masks were placed directly underneath and lateral to

the two amygdalae. A large axial exclusion mask was placed dorsal to the seed

through the entire subcortex. Compared to the adult protocols, an axial exclusion

mask was added covering the optic chiasm to prevent leakage into the optic nerve.

Limbic fibres

Cingulum subsections (CBT, CBP, CBD): The cingulum faciliates communication

between different parts of the limbic system. It projects from the cingulate gyrus

to the entorhinal cortex (Heilbronner and Haber, 2014). Protocols were defined for

three distinct sections of the cingulum, based on a recent segmentation by Heilbron-



Chapter 4. Methods: Automated Tractography Protocols 66

ner and Haber (2014). The temporal part (CBT) was seeded in the posterior part of

the temporal lobe at a section where the fibres of the cingulum are mostly oriented in

the anterior-posterior direction. The target was placed posteriorly to the amygdala

and stop masks were placed posteriorly and anteriorly to the seed and target masks,

respectively. An exclusion mask prevented leaking into the fornix. The dorsal seg-

ment (CBD) was seeded just above the posterior part of the corpus callosum and had

a target at the start of the genu of the corpus callosum. A sagittal exclusion mask

in the anterior limb of the internal capsule prevented leakage into the temporal lobe.

Finally, the peri-genual part of the cingulum bundle (CBP) was seeded anteriorly

above the corpus callosum and a target placed below the sub-genual callosum with

a stop mask placed inferior and anterior to the target. A callosal plane at the level

of the rostral end of the Sylvian fissure prevented leakage into the CBD.

Fornix (FX): The fornix connects the hippocampus with the mammillary bod-

ies, the anterior thalamic nuclei, and the hypothalamus (Catani et al., 2013a). The

tract was reconstructed using a seed in the body of the fornix at the level of the

middle of the corpus callosum and a target in the hippocampus. A callosal plane at

the anterior end of the occipital cortex prevented leakage into posterior tracts and

bilateral sagittal planes around the midline, at the level of the anterior tip of the

thalamus prevented lateral propagation to the anterior limb of the internal capsule.

These exclusion masks were reduced in size relative to the adult protocol as they

were found to hinder the fibre tracking. To prevent leakage into the cingulum, an

axial exclusion mask posterior to the splenium of the corpus callosum and a small

axial exclusion covering the parahippocampal gyrus region of the cingulum are also

used.

Projection Fibres

Corticospinal Tract (CST): The corticospinal, or pyramidal, tract extends from the

spinal cord through the midbrain and distributes to motor cortex, premotor cortex
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and somatosensory cortex. The tract is seeded from the pons with a large target

covering the motor, premotor and somatosensory cortices. An axial exclusion mask

is used to restrict tracking to the cerebral peduncle of the midbrain. In addition,

the exclusion mask includes two coronal planes, anterior and posterior to the target,

to exclude tracking to the prefrontal cortex and occipital cortex respectively and a

plane preventing leakage into the cerebellar peduncles.

Anterior and Superior Thalamic Radiations (ATR, STR): The anterior and

superior thalamic radiations connect the thalamus to the frontal lobe and pre-/post-

central gyrus respectively. The anterior thalamic radiation is seeded using a coronal

mask through the anterior part of the thalamus (Wakana et al., 2007) with coronal

target mask at the anterior thalamic peduncle. In addition, the exclusion mask

contains an axial plane covering the base of the midbrain, a coronal plane preventing

leakage via the posterior thalamic peduncle and a coronal plane preventing leakage

via the cingulum. A coronal stop mask covers the posterior part of the thalamus,

extending from the base of the midbrain to the callosal sulcus. An additional axial

exclusion mask was added, compared to the adult protocol, at the level of the

cingulate gyrus, to prevent contamination from fibres in the STR. The superior

thalamic radiation is seeded using a mask covering the whole thalamus and a target

axial plane covering the superior thalamic peduncle. An axial plane is used as a stop

mask ventrally to the thalamus. The exclusion mask includes two coronal planes,

anterior and posterior to the target, to exclude tracking to the prefrontal cortex and

occipital cortex respectively.

Acoustic Radiation (AR): The acoustic radiation connects the medial geniculate

nucleus (MGN) of the thalamus to the auditory cortex. It was seeded from the

transverse temporal gyrus with a target covering the MGN of the thalamus. The

exclusion mask consists of two coronal planes, anterior and posterior to the thalamus,

and an axial plane superior to the thalamus. In addition, the exclusion mask contains

the brainstem and a horizontal region covering the optic tract.
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Optic Radiation (OR): The optic radiation consists of fibres from the lateral

geniculate nucleus (LGN) of the thalamus to the primary visual cortex. It was

seeded in the LGN and the target mask consisted of a coronal plane through the

anterior part of the calcarine fissure. Exclusion masks consisted of an axial block

in the brainstem, a coronal block of fibres directly posterior to the LGN to select

fibres that curl around dorsally, and a coronal plane anterior to the seed to prevent

leakage into longitudinal fibres.

4.2.2 Data

The above protocols were applied to a large number of subjects to obtain neona-

tal tractography atlases. Diffusion MRI data were used from 489 subjects born at

median (range) 39.0 (24.6 – 42.3) and scanned at 40.4 (29.3 – 45.1) weeks post-

menstrual age, made available by the second data release of the developing Human

Connectome Project (Hughes et al., 2017). Briefly, data were acquired during nat-

ural sleep on a 3T Philips Achieva with a dedicated neonatal imaging system, in-

cluding a neonatal 32 channel head coil (Hughes et al., 2017; Hutter et al., 2018a).

Diffusion MRI data were acquired over a spherically optimised set of directions on

three shells (b = 400, 1000 and 2600 s/mm2). A total of 300 of volumes were ac-

quired per subject, including 20 with b = 0 s/mm2. For each volume, 64 interleaved

overlapping slices were acquired (in-plane resolution = 1.5 mm, thickness = 3 mm,

overlap = 1.5 mm). The data were then super-resolved along the slice direction to

achieve isotropic resolution of 1.5 mm3 (Kuklisova-Murgasova et al., 2012).

4.2.3 Model Fitting

Preprocessing was carried out according to the dHCP’s preprocessing pipeline (Bas-

tiani et al., 2019), as described in chapter 3. Fibre orientations were modelled (up

to 3 per voxel) with FSL’s BEDPOSTX, using a model-based deconvolution against
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a zeppelin response kernel, to accommodate for the low anisotropy inherent in data

from this age group (Bastiani et al., 2019; Sotiropoulos et al., 2016; Hernandez-

Fernandez et al., 2013) (see also chapter 3, figure 2.9).

4.2.4 Tractography and Atlases

Probabilistic tractography was performed using FSL’s PROBTRACKX (Behrens

et al., 2007; Hernandez-Fernandez et al., 2019), with streamlines seeded from and

constrained by the protocol masks, as described above. A curvature threshold of

±80◦ was used, the maximum number of streamline steps was 2000, and subsidiary

fibres were considered above a volume threshold of 1%. The step size was 0.5 mm.

The resultant path distributions were normalised by the total number of viable

streamlines.

When choosing the number of streamlines to propagate from each seed point,

there is a trade-off between using sufficient samples to map the full extent of the

tract, but not an unnecessarily high number to hinder the speed of the reconstruc-

tion. We began by using the same number of streamlines as in the adult protocols

(Warrington et al., 2020), but checked if they needed to be increased to account

for the difficulty of tracking some bundles in the neonatal brain. For this we used

data from ten subjects, all born and scanned at 40 weeks PMA, and the protocols

were run with the original number of streamlines per seed, and then repeated with

a higher number of streamlines for comparison (50,000). The correlations between

the resultant spatial maps from each method are shown below in figure 4.3.

These results indicate that the results for the SLFs and the fornix are altered by

using a greater number of streamlines. Visible inspection of the results confirmed

that using more streamlines improved the reconstruction of these tracts. Using

additional streamlines did not affect the results from the other tracts so the number

of streamlines were kept the same as in the adult protocols. Further analysis of the

SLFs showed that the SLF 2 would benefit from a further increase in streamlines
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Figure 4.3: Comparison of baby-XTRACT results with a large number of streamlines per
seed point (50,000), and the standard number from the adult protocols. Results are shown
from ten neonatal subjects, scanned at 40 weeks PMA.

per seed, so 100,000 were used for this tract. The final numbers used are shown in

table 4.2.

Tractography results from large groups of subjects were used to obtain tract

atlases, in the form of population percentage overlap. The normalised path distri-

butions for each tract were binarised at a threshold value of 0.1%. These binary

masks were then averaged across subjects. The resultant spatial maps describe the

percentage of subjects for which a given tract is present at a given voxel. Tract

atlases were generated for three different age-groups, composed of 70 subjects each,

with ages of 36-39 weeks, 39-42 weeks and 42-45 weeks PMA, as well as for the full

cohort of 489 subjects.

4.2.5 Comparison with Existing Protocols

The results from baby-XTRACT were compared against results from another set

of independently-defined tractography protocols for neonates (AutoPtx) (Bastiani

et al., 2019), which however does not ensure correspondence with adult tracts, is



Chapter 4. Methods: Automated Tractography Protocols 71

Tract Streamlines per Seed

Anterior commissure 5000
Arcuate fasciculus 10,000
Acoustic radiation 5000

Anterior thalamic radiation 1000
Cingulum (dorsal segment) 10,000

Cingulum (peri-genual) 10,000
Cingulum (temporal) 10,000
Cortico-spinal tract 3000
Frontal aslant tract 3000

Forceps major 500
Forceps minor 500

Fornix 50,000
Inferior longitudinal fasiculus 3000

Inferior fronto-occipital fasciculus 3000
Middle cerebellar peduncle 3000

Middle longitudinal fasciculus 5000
Optic radiation 10,000

Superior thalamic radiation 1000
Superior longitudinal fasciculus 1 50,000
Superior longitudinal fasciculus 2 100,000
Superior longitudinal fasciculus 3 50,000

Uncinate fasciculus 1000
Vertical occipital fasciculus 10,000

Table 4.2: Streamlines per seed used for each of the forty-two tracts in the baby-XTRACT
protocols

defined in an older neonatal template space, and contains only a subset of the

protocols developed here: the acoustic radiation, anterior thalamic radiation, cin-

gulum (dorsal and temporal segments), cortico-spinal tract, forceps minor, forceps

major, fornix, inferior fronto-occipital fasciculus, middle cerebellar peduncle, optic

radiation, superior thalamic radiation and the uncinate fasciculus. To perform the

comparison, the baby-XTRACT results were registered to the same template space

as the AutoPtx maps (Serag et al., 2012), using ANTs registration tools (Avants

et al., 2011) with B-spline interpolation. The Pearson’s correlation coefficient was

calculated between the corresponding tracts from each method, for each subject, to

assess the similarity of the results.
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4.2.6 Microstructural Analysis

FSL’s DTIFIT tool was used to fit the diffusion tensor model on the b = 1000 s/mm2

shell. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated from

the diffusion tensor in each voxel. The percentage average maps for each tract from

the whole group were thresholded at 30% and used as ROIs for the microstructural

analysis. Median FA and MD were calculated within binarised masks, registered

to each subjects’ native diffusion space. A general linear model was used to assess

the relationship between these metrics and the subjects’ gestational age at scan in

weeks, with the additional regressors included: birth weight (g), head circumference

at scan (cm), tract volume in native space (mm3), and data quality control (QC)

score (Bastiani et al., 2019). The QC score is the z-score average of the signal-to-

noise ratio and contrast-to-noise ratio of the subject’s dMRI data.

4.3 Methods: Gyral Bias

To explore the impact of the gyral bias, connectivity matrices were generated for

both neonatal and adult subjects using white matter/grey matter boundary (WGB)

seeding and whole brain seeding, which are compared in figure 4.4. The theoretically

expected bias (under a constant density per unit cortical volume, as described in the

Introduction and figure 4.1) was calculated and was compared with the measured

streamline density from tractography, as described in more detail below.

4.3.1 Data

Diffusion MRI data were used from 36 neonatal subjects and 36 young adult subjects,

obtained from the dHCP and the HCP, respectively. Neonatal subjects were scanned

at a median (range) age of 39 (37 - 44) weeks PMA. Neonatal dMRI data were

acquired as described in the previous section. The adult HCP data acquisition is

outlined in (Sotiropoulos et al., 2013; Van Essen et al., 2013b).



Chapter 4. Methods: Gyral Bias 73

Preprocessing and model fitting of the neonatal data were carried out as above.

The crossing fibre model from FSL’s BEDPOSTX was also fit to the adult data,

with fibre populations modelled as sticks of variable diffusivities (Jbabdi et al., 2012),

rather than the zeppelin model used for the neonates.

White matter and pial surfaces were obtained for adults and neonates using

the surface extraction pipelines from the developing and adult human connectome

projects (Makropoulos et al., 2018; Glasser et al., 2013). These both use information

from T1 and T2 weighted MRI to segment the different tissue types and fit a surface

mesh to the tissue boundaries.

4.3.2 Surface Alignment

Anatomical surfaces were aligned to ensure consistent seed points for tractography

across subjects, using multi-modal surface matching (MSM) (Robinson et al., 2014).

MSM is a surface-based registration tool that uses a discrete optimisation framework

to align surfaces with a flexible selection of similarity metrics (Robinson et al.,

2014). A specialised pipeline was used that has been developed to align neonatal

data to the dHCP surface templates (Bozek et al., 2018), which can be found here:

https://github.com/ecr05/dHCP template alignment. This uses a newer version of

MSM, which uses a regularisation term based on biomechanical models of tissue

deformation, leading to more anatomically plausible deformations than the first-

order regularisation penalties used in the original version (Robinson et al., 2018).

A non-linear transform between each neonatal surface’s native T2 space and the

40-week template was estimated with MSM, based on cortical folding. The native

surfaces were then resampled to the surface topology of the template (the FS LR32k

space). A rigid registration was then applied to align the surfaces to the subjects’

dMRI data.

https://github.com/ecr05/dHCP_template_alignment
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4.3.3 Predicted Bias

Under the assumption of constant axonal density per unit cortical volume, some of

the regional variation in streamline density at the WGB surface can be attributed to

cortical folding and the variation in cortical thickness across the cortex (Van Essen

et al., 2013a; Donahue et al., 2016) (figure 4.1 and Introduction). This expected

bias was predicted by calculating the cortical volume associated with each unit of

surface area of the WGB, using the HCP’s Connectome Workbench Tools (Marcus

et al., 2011). Specifically, the volume per-vertex between the WGB and the pial

surfaces was calculated, and the surface area associated with each vertex on the

WGB surface was calculated as one third of the area of each triangle it is a part of.

The ratio of these two quantities was calculated to give the predicted bias.

4.3.4 Tractography Bias

Fibre orientation estimates were used to carry out whole-brain probabilistic trac-

tography in subject-specific dMRI space for each subject. 64k x 64k connectomes

were obtained with two different seeding strategies, which are illustrated below in

figure 4.4.

WGB Seeding

10,000 streamlines were seeded from each vertex on the WGB. A visitation count was

recorded when a streamline terminated at another point on the WGB, connecting

two grey matter vertices.

Whole Brain Seeding

3000 streamlines were seeded from each voxel in a 2 mm downsampled whole brain

mask, with the WGB surface used as a target mask. In this case, if a streamline

propagated from a seed point in both directions hits the WGB at two locations,
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Figure 4.4: Schematic diagram illustrating the seeding strategies used for investigating
the impact of the gyral bias. Selected seed points shown in blue. Both diagrams would
result in a structural connection recorded between points A and B on the WGB. For WGB
seeding, streamlines are seeded on the WGB, and a connection is recorded between seed
points A and B, if a streamline from A hits the WGB at point B (or vice versa). In
the case of whole-brain seeding, streamlines are seeded throughout the brain volume. A
connection is recorded between points A and B if separate streamlines from a seed point
hit both A and B.

a visitation count is recorded in the row and column of the connectivity matrix

corresponding to these grey matter locations.

In both cases, the pial surface was used as a stop mask and streamlines were

allowed to cross the WGB no more than twice. The resultant connectivity matrices

were summed along their rows to give the density of streamlines terminating at each

point on the WGB.

Normalisation

All quantities (predicted bias and measured streamline densities) were normalised

with respect to their average values in zero curvature regions. This describes the

density in a given region compared to the average density in zero-curvature regions

for that method and enables easy comparison between the different methods. Zero

curvature regions were defined as those with curvature = 0± 0.025.
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4.4 Results

4.4.1 Automated Tractography Protocols

The tractography protocols were applied to 489 subjects from the dHCP. Percentage

averages were generated by binarising the thresholded maps for each subject, and

averaging across subjects to obtain atlases for three age groups, containing subjects

scanned at 36-39, 39-42 and 42-45 weeks PMA. The percentage average maps from

these groups are displayed in figure 4.5. All tracts are well characterised by the

protocols. The results are very similar between the three age groups, which indicates

that the protocols provide robust results over this age range.

In figure 4.6, results are displayed from two subjects in the 39 - 42 week age-

group. To illustrate the effect of data quality on the results, we show results from one

subject with a low QC score (9th percentile of the cohort), and another with a high

QC score (93rd percentile). The QC score is the z-score average of the signal-to-noise

ratio and contrast-to-noise ratio of the subject’s dMRI data. These subjects were

selected randomly to be representative of the variation in data quality across the

cohort. All the tracts are reproduced in both subjects, with only small differences

in the subject with low QC score, such as a reduction in the frontal projections of

the ATR. Overall, these results show that the protocols are robust to differences in

data quality.

Figure 4.7 shows qualitatively a key feature of these protocols; correspondence

with the adult brain, and even with a different non-human primate brain. The same

tractography definitions seem to be generalisable across these three very diverse

groups.

Comparison with Independently-Defined Protocols

To gain further evidence on the fidelity of these protocols, the results from the baby-

XTRACT protocols were compared with those from another recently-defined set of
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(a) 36 - 39 weeks (b) 39 - 42 weeks

(c) 42 - 45 weeks

Figure 4.5: Percentage average maps of the tracts from the baby-XTRACT protocols,
for different age groups within the cohort. The tracts are displayed as maximum intensity
projections, for ease of visualisation.
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(a) Subject with low data quality (b) Subject with high data quality

Figure 4.6: Baby-XTRACT results from two subjects, with QC scores at the lower and
higher end of the cohort, respectively. Tracts are displayed as maximum intensity projec-
tions.

protocols (Bastiani et al., 2019) (referred to as AutoPtx), on the same subjects.

Correlation scores between the spatial maps from the two approaches are shown

below in figure 4.8.

The two protocols give fairly similar results. Both protocols are defined relative

to different atlases, so some differences will be because of the inconsistencies between

the templates, or inaccuracies in the registration between them. In addition, seeds

and targets of bilateral tracts were ensured to have equal volumes in baby-XTRACT,

but not in AutoPtx, which may inform some of the inter-hemispheric differences. A

number of tracts had less agreement than others and differences in these protocols are

presented in detail in the Appendix. Summarising, we obtain reasonable similarity

with an independently-defined set of tracts, while baby-XTRACT protocols have

the advantage of inherent adult and cross-species correspondence.
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Figure 4.7: Comparison of group-average baby-XTRACT results with those from adult
humans and macaques. The adult and macaque tract atlases were obtained from (War-
rington et al., 2020). Results are displayed as maximum intensity projections.

Microstructural Analysis

The subject-level results were used as ROIs to investigate the changes in FA and

MD with age at scan in these tracts. All tracts showed a significant increase in

FA and reduction in MD over the age-range studied, even when corrected for birth

weight, head circumference, tract volume, and QC score. Scatter plots of FA and

MD against age at scan are shown below in figures 4.9 and 4.10. For bilateral tracts,

the tract in each hemisphere is given its own data point. The high values of MD in

the fornix for a few subjects of older ages are probably caused by partial voluming

effects, due to the tract’s proximity to the ventricles.

A linear regression analysis was performed, correcting for birth weight, head cir-
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Figure 4.8: Correlations between matching tracts from XTRACT and AutoPtx across
489 subjects, aged between 29.3 and 45.1 weeks PMA at scan.

cumference, tract volume, and QC score. The regression coefficients corresponding

to age at scan are plotted in figure 4.11. This reflects the asynchronous maturation

of different tracts (Dubois et al., 2008b).

In general, projection fibres are maturing more quickly over this period, followed

by commissural and association fibres, with limbic fibres showing the slowest rates

of maturation. This agrees with the trends shown in other studies (Dubois et al.,

2008b; Bastiani et al., 2019), and affirms that the results from baby-XTRACT can

capture accurate anatomical information.

4.4.2 Assessing the Impact of the Gyral Bias on the Neona-

tal Connectome

Whole-brain connectivity matrices were used to explore the impact of the gyral bias

in neonates and adults, and to compare two different seeding approaches: WGB

seeding and whole-brain seeding.
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Figure 4.9: Scatter plots of median tract FA against subjects’ age at scan (in weeks
PMA), with linear regression line overlaid. Plots are colour coded according to tract type.

Predicted Bias

First, the level of anatomically-justifiable bias as predicted by cortical geometry

alone was calculated as the cortical volume associated with each unit of surface

area of the WGB. Figure 4.12 shows the average predicted bias, for the adult and

neonatal subjects. The maps are normalised with respect to areas of zero curvature,

and then log-scaled.

Axonal density is predicted to be higher in the gyri than the sulci, with the

relative difference between them greater in adults than in neonates.

Measured Bias from Tractography

Connectivity matrices were generated for 36 adult and 36 neonatal subjects, seeding

streamlines both from the WGB and across the whole brain. Each of these matrices

were summed across their rows to give the streamline density at each vertex on the
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Figure 4.10: Scatter plots of median tract MD against subjects’ age at scan (in weeks
PMA), with linear regression line overlaid. Plots are colour coded according to tract type.

WGB, then normalised and log-scaled. The average maps are shown in figure 4.13.

They indicate a much larger bias towards gyral terminations in streamlines from

whole-brain seeding (note the different colour-scale on these maps).

To provide a more quantitative estimate of the gyral bias, the median predicted

bias and streamline density were calculated within the gyri and sulci. Gyri were

defined as regions in which the local curvature on the WGB exceeded the 66th

percentile, and sulci as regions in which the local curvature was less than the 33rd

percentile.

In general, as shown in figure 4.14, WGB seeding causes an overestimation of

the axonal density in the sulci, whereas whole brain seeding causes an overestimation

of the relative axonal density in the gyri. These effects are more pronounced in the

adult brain, where gyrification is higher.

Spatial correlation was calculated between the predicted and measured density

maps, to see how the spatial patterns compared between the empirical predictions
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(a) Fractional Anisotropy (b) Mean Diffusivity

Figure 4.11: Bar-charts of beta values from the GLM analysis corresponding to age at
scan. Bars are colour-coded accorded to tract type.

Figure 4.12: Log-scaled average predicted bias maps, based on the cortical volume per
unit area of the WGB.

and the measured streamline density. The results of this analysis are shown in figure

4.15.

The results indicate that the spatial patterns from WGB seeding are much more

closely aligned with prediction than the maps from whole brain seeding, in terms of

their spatial pattern. Correlations are similar between predicted and measured den-

sity for WGB seeding in adults and neonates, but the matching between prediction

and measurement is much less for whole brain seeding in neonates than in adults.

These results indicate that the type of seeding has significant downstream effects

for whole-brain connectome mapping in the neonatal brain, as in adults, and needs

to be carefully considered. WGB seeding results to less gyral bias than whole-brain
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Figure 4.13: Average streamline density maps using different seeding approaches, for
neonates and adults. Density values have been normalised relative to regions where curva-
ture = 0± 0.025, and log-scaled.
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Figure 4.14: Violin plots to compare the predicted and measured streamline density in
the gyri and sulci, for different seeding approaches

Figure 4.15: Violin plots of the correlation scores between the predicted and measured
streamline density, for neonates and adults

seeding, and this bias is smaller in magnitude with WGB seeding in neonates than

it is in adults.

4.5 Discussions

In this chapter, two different approaches have been explored for mapping white

matter connections in the neonatal brain: virtual dissection and whole brain con-

nectomes. These methods offer different and complementary insights into structural

connectivity.
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4.5.1 Standardised Protocols for Neonatal Tractography

First, a set of tractography protocols were developed that facilitate the standardised

mapping of 42 tracts in the neonatal brain. The results were consistent across

subjects of different ages and provided similar results, for a subset of tracts, to a set

of independently-defined protocols for neonates (Bastiani et al., 2019). A key benefit

of our protocols is that they are matched to the existing XTRACT protocols for the

adult human and the macaque (Warrington et al., 2020). This provides a valuable

resource for the comparison of homologous white matter tracts across species and

across the lifespan.

These protocols also provide a much more extensive set of tracts than has

previously been available for this age-group. Neonatal tractography studies have

tended to focus on the cortico-spinal tract, the corpus callosum, and the thalamic

radiations, while other pathways have been studied less frequently (Zöllei et al.,

2019). To the best of our knowledge, the three branches of the SLF have not been

identified in neonates before, so these protocols provide a unique opportunity to

study the early development of these pathways, which are important for visuospatial

processing (Thiebaut de Schotten et al., 2011a).

Microstructural metrics from DTI were used to compare the maturational tra-

jectories of the different tracts and also to provide indirect evidence on the fidelity of

the reconstructed tracts. Different fibre bundles are expected to have asynchronous

patterns of maturation, with the limbic tracts showing the slowest rates of change,

and the projection fibres the quickest (Dubois et al., 2008b). Using the baby-

XTRACT protocols we were able to replicate this expected behaviour. Furthermore,

extracting microstructure information using the corresponding adult tracts would

provide additional insight into the developmental trajectories of these tracts.

The protocols have been tested here on data from the dHCP, which is of very

high quality. In future, it would be useful to test how well these protocols are able to

map white matter tracts in more typical neonatal dMRI data, with lower resolution
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and SNR.

4.5.2 Investigating the Impact of the Gyral Bias on the

Neonatal Connectome

Tractography streamlines have been shown to preferentially terminate at the gyral

crowns, rather than the sulcal walls or fundi, a limitation that is particularly prob-

lematic when using tractography to map cortical connections at a high resolution

(Van Essen et al., 2013a; Schilling et al., 2018). This gyral bias has been charac-

terised in adult brains (Van Essen et al., 2013a; Schilling et al., 2018), but has not

been explored for newborn human brains. Characterising the gyral bias in neonates

allows us to measure its impact on connectivity estimates in this population where

gyrification is much less developed than in adults (Dubois et al., 2008a).

Connectivity matrices were generated using a surface registration method op-

timised for this age group (Robinson et al., 2018). The streamline density on the

cortical surface was compared for different seeding strategies, and between adults

and neonates. The bias in streamline termination towards the gyri was found to be

greater in adults, which is expected from their increased gyrification. Adults also

have more developed superficial white matter systems, which have been shown to

impede accurate detection of cortico-cortical connections with tractography (Rev-

eley et al., 2015). Seeding streamlines from the WGB was found to reduce the

impact of the gyral bias, compared to whole brain seeding, which is in agreement

with previous work (Van Essen et al., 2013a; Schilling et al., 2018). In addition,

a quantitative analysis of streamline density in different regions revealed that the

gyral bias from whole brain seeding is the result of an overestimation of connections

to the gyri, whereas WGB seeding overestimates the connections in the sulci.

One of the main reasons proposed for the gyral bias is that streamlines entering

a gyral blade have to make sharp angular turns if they are to terminate at the sulcal
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wall, which is penalised by the curvature thresholds in most tractography algorithms

(Van Essen et al., 2013a). Improving tractography techniques to mitigate the effects

of the gyral bias is an active area of research. The use of asymmetric fODFs has

been shown to generate streamlines that can curve more sharply to terminate at

the sulcal wall, compared to conventional fODFs (Y. Wu et al., 2020). Surface

enhanced tractography is another method that has been shown to reduce the gyral

bias in tractography (St-Onge et al., 2018). It uses a surface flow from the WGB

mesh to model the superficial white matter streamlines, which leads a more realistic

trajectory near the cortex. Nevertheless, our work suggests that the gyral bias

is an issue of smaller magnitude for neonatal tractography compared to the adult

counterpart (Figure 4.14), particularly when WGB seeding is used.

4.6 Concluding Remarks

Two contrasting approaches were explored for using tractography to map white mat-

ter connections in neonates. First, a set of standardised tractography protocols were

developed that provide a reliable mapping of 42 tracts in the neonatal brain. These

protocols were used to investigate microstructural maturation of these bundles, and

the results were in agreement with previous literature. An advantage of these proto-

cols is that they are consistently defined in line with protocols for the adult human

and macaque from the XTRACT framework (Warrington et al., 2020). This resource

can be used in future to investigate the development of structural connectivity, both

in terms of ontogeny (development across the lifespan) and phylogeny (evolutionary

development).

Whole-brain connectivity matrices were then used to explore the impact of the

gyral bias in neonates. The gyral bias is a methodological confound that leads to

tractography streamlines terminating preferentially at the gyral crowns, rather than

the sulcal walls or fundi. It was found that the gyral bias is less prevalent in neonates
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than in adults, and that its impact can be reduced by seeding streamlines from the

white matter/grey matter boundary, rather than from the brain volume. These

connectivity matrices form the basis of the work in the next chapter, in which a new

framework for data-driven tractography is developed.

4.7 Appendix

Specific Protocol Differences Between Baby-XTRACT and

AutoPtx

Below, specific differences in the protocols for the acoustic radiation, cingulum (dor-

sal segment), fornix, and optic radiation are detailed, which give rise to the discrep-

ancies observed in these tracts.

Acoustic Radiation

Both protocols seed the AR from the transverse temporal gyrus. However, the target

in the baby-XTRACT protocol is the medial geniculate nucleus of the thalamus,

whereas the target in the AutoPtx protocol covers the entire thalamus.

Figure 4.16: Comparison of baby-XTRACT and AutoPtx target masks for the acoustic
radiation, shown in blue.

Cingulum Bundle - Dorsal Segment

Seeds, targets and exclusion masks are the same in both protocols. However, Au-

toPtx uses additional stop masks to constrain the tractography, consisting of a ring
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surrounding the anterior section of the tract, a coronal plane posterior to the thala-

mus and an axial plane inferior to the anterior part of the tract.

Figure 4.17: Comparison of the exclusion and stop masks for the cingulum protocol from
baby-XTRACT and AutoPtx. Exclusion masks are shown in dark red, stop masks in red.

Fornix

The baby-XTRACT seed is in the body of the fornix at the level of the middle of

the corpus callosum, whereas the AutoPtx seed is larger and more anterior, lying

between the ventricles. The baby-XTRACT target is in the hippocampus and the

AutoPtx target is located in the crus of the fornix.

Figure 4.18: Comparison of baby-XTRACT and AutoPtx seed and target masks for
the fornix. The seed masks are shown on the top row, in green (white arrows on baby-
XTRACT), while the target masks are shown on the bottom row, in blue (yellow arrows
on baby-XTRACT).

Optic Radiation

Similarly to the acoustic radiation, the baby-XTRACT protocol has a more specific

thalamic mask than AutoPtx: the seed is in the lateral geniculate nucleus of the
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thalamus, whereas the AutoPtx seed is a coronal plane through the centre of the

thalamus. The target ROIs are both coronal planes through the anterior part of the

calcarine fissure, however in the AutoPtx protocol this plane just extends through

the occipital lobe, whereas in the baby-XTRACT protocol it covers the whole brain.

Figure 4.19: Comparison of baby-XTRACT and AutoPtx seed and target masks for the
optic radiation. The seed masks are shown in green, the target masks are shown in blue.
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Foreword

In this chapter we present a novel, data-driven technique for mapping white mat-

ter connections in the brain, with no prior assumptions or constraints placed on

their trajectories. Whole-brain connectivity matrices are decomposed into a set of

components and a mixing matrix, which describe linked cortical regions and the

white matter pathways that connect them. Two decomposition methods are com-

pared, both in simulated data and neonatal dMRI data: Independent Component

Analysis (ICA) and Non-negative Matrix Factorisation (NMF). We find that the

non-negativity constraints in NMF provide a more accurate characterisation of the

non-negative structural connectivity patterns found in the brain. When applied to

neonatal dMRI data, the results from the framework are shown to accurately repro-

duce white matter pathways, and the grey matter components show similarity to

resting-state networks from fMRI.



Chapter 5. Introduction 94

5.1 Introduction

The previous chapters have illustrated the benefits of the “virtual dissection” ap-

proach for mapping individual white matter bundles from neonatal diffusion MRI

data, using standardised regions of interest as seeds and targets to constrain tractog-

raphy. For example, the baby-XTRACT protocols that were developed in chapter

4 provide a robust set of 42 tracts with direct correspondence to similar protocols

for the adult human and macaque (Warrington et al., 2020).

Here, we present an alternative approach for mapping whole-brain connections

that does not require an a priori defined set of tracts and protocols, but extracts

networks and their underlying connecting patterns in a data-driven manner. This

paradigm can be particularly powerful when applied to the neonatal brain, where

the traditional virtual dissection approach can be challenging. Neonatal brains

are not simply small adult brains (Batalle et al., 2018). The rapid growth and

changes in brain morphology during the neonatal period, as well as fast alterations

in tissue composition that alter imaging contrast over time (Bastiani et al., 2019),

render it challenging to ensure correspondence between template-driven ROIs and

tractography protocols at different stages of development (Serag et al., 2012). Such

protocols also focus on long range fibres, neglecting the complex network of short

fibres that connect neighbouring gyri (Catani et al., 2012). They also require prior

anatomical knowledge for a specific set of tracts, which given the dynamic and

rapid changes that occur during this period are not straightforward to obtain. The

protocols defined in the previous chapter assume that they convey generalisable

information across the different stages of development. It is challenging to confirm

how reasonable such an assumption is.

An alternative is to use data-driven methods to identify connections from whole-

brain connectivity matrices, which are model-free and therefore expected to be more

immune to the challenges described above. Different data-driven methods include



Chapter 5. Introduction 95

clustering (Garyfallidis et al., 2012; Siless et al., 2018; Ding et al., 2003; O’Donnell

and Westin, 2007), graph-based methods (Bassett and Bullmore, 2006; Bullmore and

Sporns, 2009), or matrix decompositions, which will be the focus of this chapter.

Independent Component Analysis (ICA) has been a commonly used matrix decom-

position technique for identifying brain networks from resting-state functional MRI

(fMRI) data (Mckeown et al., 1998), and recent work has shown that it can also be

applied to data from tractography. Its first use in this context was to cluster trac-

tography data seeded from the thalamus, yielding a set of thalamic connections and

a thalamic parcellation (O’Muircheartaigh et al., 2011). L. Wu et al. (2015) applied

ICA to whole brain voxel-to-voxel connectivity matrices, resulting in a dual parcel-

lation of spatially independent sources and their corresponding connectivity profiles.

Although this method showed sensitivity to connectivity alterations in schizophre-

nia, the paired volumetric components are difficult to interpret. A different approach

was used by O’Muircheartaigh and Jbabdi (2017); using grey matter-to-whole brain

connectivity matrices, yielding pairs of components that correspond to white matter

bundles and their cortical terminations. The resultant connectivity patterns showed

strong spatial similarity to tracts from standard tractography protocols.

One limitation of applying ICA to tractography data is that the estimated inde-

pendent components and the respective mixing matrix can contain both positive and

negative values, whereas structural connectivity data are inherently non-negative.

This leads to challenges in the interpretation of negative weights. To address this

problem, an alternative data-driven method is presented in this chapter that can be

used to identify non-negative connectivity components. This approach is based on

Non-Negative Matrix Factorisation (NMF) (D. D. Lee and Seung, 1999). Like ICA,

NMF is an unsupervised technique that estimates a pre-defined number of compo-

nents from the data. However, the elements and their weights are constrained to

take non-negative values. Sparsity constraints in the decomposition allow identifia-

bility and further provide an indirect means of requiring independence between the



Chapter 5. Theory 96

estimated components. This results in a set of components whose weighted sum-

mation represents the whole system. Due to these advantageous properties, NMF

has been recently used to identify networks of structural covariance from MRI data

(Ball et al., 2019; Sotiras et al., 2015; Sotiras et al., 2017).

In this chapter, an NMF-based framework is devised for extracting connectivity

components from diffusion MRI data for the first time. This approach is used to

map patterns of structural connections in new-born babies, aged 37 to 44 weeks

post-menstrual age (PMA) at scan, using publicly-released data provided by the

developing Human Connectome Project (dHCP) (Hughes et al., 2017; Hutter et al.,

2018a). First, we describe the theory for decomposing whole-brain tractography-

induced connectivity matrices into grey matter networks and their corresponding

white matter bundles. Then, simulations are used to quantitatively evaluate the

behaviour of the method and assess its performance against Independent Component

Analysis (ICA). The validity and interpretability of the automatically detected white

matter patterns are measured against results from standard tractography protocols

(Bastiani et al., 2019), and the grey matter patterns against components obtained

from data-driven mapping of resting-state fMRI in the same subjects.

5.2 Theory

5.2.1 Matrix Decomposition with ICA and NMF

Let X be an M × N dense1 connectivity matrix, with Xij{i = 1 : M, j = 1 : N}

carrying information on the likelihood of structural connections existing between

locations i and j in the brain (figure 5.1). Without loss of generality, let us assume

that locations i represent the whole brain and comprise of all imaging voxels, and

that locations j represent grey matter and reside on the cortical white/grey matter

1By “dense” we refer to voxel-wise / vertex-wise representations rather than areal-wise nodes,
i.e. N and M are in the order of thousands.
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boundary (WGB) and in subcortical grey matter. Diffusion MRI tractography can

provide such a matrix if we seed streamlines from N seeds on the WGB and sub-

cortical nuclei, and record visitation counts to M voxels across the brain, such that

each column of X describes the connectivity profile of a grey matter location j. A

data-driven decomposition of X can identify K components based on similarity of

connectivity profiles, such that a (linear) combination of these components return

back X. Different numbers of components can be obtained depending on the de-

sired properties of the estimated components, and different methods can be used to

estimate the mixing of the components to reconstruct the input matrix.

Figure 5.1: Data-driven matrix decomposition methods applied to resting-state functional
MRI and structural connectivity data. a) N functional time-courses of length T are recorded
from points in the grey matter. We can apply a matrix decomposition technique, such as
ICA, to this matrix, yielding an T × K mixing matrix of time courses and a K × N
matrix of spatial components. b) an M × N connectivity matrix describes the likelihood
of structural connections existing between each of N grey matter seeds and M locations in
the brain. The equivalent decomposition applied to this matrix gives us an M ×K mixing
matrix of spatial maps, and a K ×N matrix of components in the grey matter.
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Independent Component Analysis (ICA) imposes statistical independence be-

tween the components to perform a linear decomposition. An observed matrix X

is represented as X = AS, where S is the independent sources matrix (each row k

corresponds to a component) and A the weights or mixing matrix (each column k

corresponds to the weights of source k). As this is an ill-posed problem in general,

ICA uses source independence to estimate an un-mixing matrix W, that best ap-

proximates A−1, to recover the original sources from the observed data: WX ≈ S.

This process is entirely driven by the statistical properties of the mixture, with no

prior knowledge of the mixing matrix or the signals. The first step of all ICA al-

gorithms is to centre and whiten the data, for normalisation. This can be achieved

with a Principal Component Analysis (PCA) (Wold et al., 1987) or singular value

decomposition (SVD) (De Lathauwer et al., 2000). Then we seek an orthogonal

rotation V to apply to the whitened data to optimise the statistical independence

of the estimated components. This cannot be done analytically but there are a

number of different methods of solving the problem iteratively. The FastICA al-

gorithm (Hyvärinen and Oja, 2000), which uses non-Gaussianity as a proxy for

independence, is one of the typically used algorithms. ICA has been used to identify

networks from resting-state fMRI data (Mckeown et al., 1998), where M = T , the

number of timepoints, and the decomposition results in K spatial maps (covering

all N brain voxels), each with a weight vector of length T (figure 5.1a). Each weight

wik represents how much component k contributes to activity recorded at time point

i. ICA has also been used recently in the case of dMRI tractography, where N is

the number of seed locations (O’Muircheartaigh and Jbabdi, 2017). In that case,

the decomposition provides K spatial maps (covering all N points on the grey mat-

ter), each representing a component with shared connectivity profile through white

matter, associated with a weight vector of length M . Each weight wik represents in

this case how much component k contributes to the connection patterns of voxel i.

Non-Negative Matrix Factorisation is an alternative decomposition technique,
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where a matrix X is factorised into the product of two matrices A and H, under the

constraint that all three contain only positive values (D. D. Lee and Seung, 1999).

This is more naturally suited for use with structural connectivity data, which is

inherently non-negative. In general, NMF is an ill-posed problem (as is ICA) and

there exist multiple solutions in most cases. The linear superposition of components,

combined with the non-negativity constraint, lead to an implicit sparsity constraint

in the algorithm (requesting a signal to be explained as a linear combination of

non-negative regressors will lead to many weights close to zero). Additional explicit

sparsity constraints can be applied to further constrain the solution space and im-

prove the identifiability of the decomposition (Hoyer, 2004). Specifically, the cost

function C to minimise is of the form:

C =
1

2
‖X−AH‖F + α1‖A‖L1 + α2‖H‖L1 (5.1)

where ‖X‖F is the Frobenius norm, ‖x‖L1 is the L1-norm, used to explicitly

promote sparsity, and α1 and α2 are tuning parameters that allow us to control the

degree of regularisation on the mixing matrix and component matrix, respectively.

Higher α values lead to more sparsity in the resultant decomposition. The NMF

can be initialised with a non-negative SVD, which has been shown to improve the

accuracy of the decompositions (Boutsidis and Gallopoulos, 2008). Most NMF al-

gorithms use a two-block coordinate descent approach to optimise C over A and H

alternatively, while keeping the other fixed. Each block is a convex problem that

can be solved using non-negative least squares (Cichocki and Phan, 2009).

5.3 Methods

The above frameworks were developed to map structural connectivity in the neonatal

brain. First, an overview is given of the data employed. A set of simulations is

then described that allows principled evaluation of the decomposition frameworks.
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Finally, the methods used to illustrate the benefits of this approach are described.

Data and Preprocessing

Structural and dMRI data were used from the dHCP. Diffusion MRI data were

acquired and preprocessed as outlined in the previous chapter. Cortical surface re-

construction was carried out from T2w structural images with an isotropic resolution

of 0.5 mm3, using a pipeline specifically adapted for neonatal structural MRI data

(Makropoulos et al., 2018). Data were considered from a group of 161 subjects born

at term age (94 male, 67 female). Median (range) birth age was 40.1 (37.1, 42.1)

postmenstrual weeks and age at scan 40.9 (37.4, 44.4) weeks.

Preprocessed data were further analysed to obtain structural connectivity ma-

trices. To ensure alignment between subjects, the anatomical surfaces were regis-

tered to a representative template space before performing tractography. First, a

surface registration pipeline was used, based on the multi-modal surface matching

(MSM) algorithm (Robinson et al., 2014; Robinson et al., 2018). Cortical folding

was used to drive the alignment of neonatal WGB, cortical mid-thickness, and pial

surfaces to the dHCP 40-week PMA surface templates (Bozek et al., 2018). This

aligned vertices on the WGB surface to ensure consistent seed points for tractog-

raphy across subjects. A previously computed non-linear volumetric registration

(Avants et al., 2011) was then applied to all MSM-derived surfaces to register them

to 40-week PMA volumetric template space (Serag et al., 2012). This step was

necessary to ensure that the tractography seeds were aligned to the target space,

because the volumetric and surface-based neonatal templates are not aligned (Bozek

et al., 2018; Serag et al., 2012).

5.3.1 Generating Connectivity Matrices

Once the surfaces were aligned, connectivity matrices X were obtained for each sub-

ject, by performing whole-brain probabilistic tractography using FSL (Behrens et
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al., 2007; Hernandez-Fernandez et al., 2019). Fibre orientations (up to 3 per voxel)

were estimated using a model-based deconvolution against a zeppelin response ker-

nel, to accommodate for the low anisotropy inherent in data from this age group

(Bastiani et al., 2019; Hernandez-Fernandez et al., 2013; Sotiropoulos et al., 2016)

(also, see figure 2.9). Subsequently, 10,000 streamlines were seeded from each of

58,551 vertices on the WGB of both hemispheres (average vertex spacing 1.2 mm,

excluding the medial wall) and from each of 2548 subcortical 2 mm3 voxels (bilat-

eral amygdala, caudate, hippocampus, putamen and thalamus), giving a total of

N = 61, 099 seeds. WGB seeding was used as this had been shown to reduce the

impact of the gyral bias on connectome estimation in this agegroup (see chapter 4).

Visitation counts were recorded between each seed point and each of M = 50, 272

voxels in a whole-brain mask with the ventricles removed, down-sampled to 2 mm3.

The pial surface was used as a termination mask to prevent streamlines from cross-

ing between gyri, and streamlines were not allowed to cross the WGB more than

twice (once at the seed point and again at termination), to reduce false positives

(Hernandez-Fernandez et al., 2019; R. E. Smith et al., 2012). All masks and sur-

faces (seeds, targets, exclusions) were defined in a 40 week PMA volumetric template

space (Serag et al., 2012), however tractography was carried out in native space with

results resampled directly to template space. Visitation counts were multiplied by

the length of the pathway to correct for compound uncertainty in the estimated

trajectories (O’Muircheartaigh and Jbabdi, 2017). The resulting dense matrices de-

scribe the likelihood of a white matter connection between each grey matter seed

and the rest of the brain. The connectivity matrices were normalised by the to-

tal number of viable streamlines in each subject before being averaged across the

group. Connectivity matrices were saved and averaged in a sparse format to reduce

computation time and memory requirements.
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5.3.2 Dimensionality Reduction and Back-Projection

Data-driven connection mapping was evaluated using both ICA and NMF. Large

M (i.e. a large number of imaging voxels) can pose computational and numerical

convergence challenges for ICA. Therefore, PCA was used to reduce the M × N

matrix X, into a P ×N matrix Xr of principal components. Applying ICA to this

reduced matrix results in a K×N set of components S, and a P ×K mixing matrix

in PCA space Ar. In order to obtain the mixing matrix in the original space of

M imaging voxels, the pseudoinverse of the component matrix S was obtained and

projected back onto the original data to obtain the tract space mixing matrix, i.e.

A = XS†, where S† denotes the pseudoinverse of S. This approach was followed

for the ICA analysis in both simulations and on real data, to cope with excessive

memory requirements of decomposing the full connectivity matrix. However, the

dimensionality reduction step was not necessary for NMF.

5.3.3 Simulations

The decomposition frameworks were evaluated (using NMF and ICA) in numerically

simulated data, before applying them to real data. We simulated datasets with a

known number of underlying sources, to observe how the behaviour of the decom-

positions over different model orders reflects the true dimensionality of the data.

The purpose of the simulations was to compare ICA and NMF in a situation where

the underlying sources in the data are known, and can be compared directly to the

derived components. Furthermore, the simulations allow us to analyse the impact

of different noise levels in the data, and adjusting the regularisation term in NMF,

where there is a known ground truth to validate the results.

To find a realistic generative distribution to use for our sources, the spatial

maps from standard tractography protocols in the neonatal brain (Bastiani et al.,

2019) were used to generate connectivity blueprints (Mars et al., 2018) as proxies
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Figure 5.2: Illustration of a back projection step to obtain a white matter mixing matrix
after data reduction by PCA. a) Data are first reduced to P principal components, and
ICA applied to the data in the reduced subspace. b) Independent components are regressed
onto the original data to obtain a mixing matrix in white matter space.
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for the source spatial maps in grey matter space. Several distributions were fit

to the intensities of these maps (unwrapped to 1D). It was found that log-beta

distributions best described the data. The sources were therefore drawn from log-

beta distributions, whose parameters in turn were drawn from Gaussian distributions

according to the fits to the measured data. These sources are random and sparse,

features that indirectly ensure a high degree of independence. Sources were scaled to

lie in the range 0 - 1. The mixing matrix was randomly generated, normalised so the

columns sum squared to 1. The simulated data, X were calculated as the product

of the mixing matrix A with the source matrix S. Zero-mean, additive Gaussian

noise was applied to that product via a logit transform, to maintain non-negativity.

Varying L1-norm Regularisation in NMF

The NMF decomposition can be regularised with L1-norm terms to promote spar-

sity in the components (see equation 5.1) (Févotte and Idier, 2011). NMF was first

tested on the simulated data with varying levels of regularisation to assess the ef-

fect of regularisation on the accuracy and robustness of the decomposition. Data

were simulated with K = 50 sources, and overall dimensions of N = 1200 and

M = 1000, with noise added with σ2 = 0.05 to best match the real data. The same

regularisation parameter was used for the mixing matrix and the components, i.e.

α1 = α2 = α, following the implementation in scikit-learn (Pedregosa et al., 2011).

NMF was applied with model orders from 1 to 100 and with regularisation param-

eters, α = 0, 0.1, 0.25, 0.5. This process was repeated with 100 noisy realisations of

the data in each case.

Varying Number of Sources

The simulations were performed with varying number of sources in the data to

check how this affects the results. The data were generated with σ2 = 0.05 and with

K = 25, 50 and 75 sources. ICA and NMF were applied with model orders from
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1 to 100. For NMF, a regularisation parameter of α = 0.1 was used (see Results

for justification). This was also repeated 100 times. ICA was first initialised with

a PCA with P = 100 components, as described in the Dimensionality Reduction

section.

Varying Noise Levels

Finally, the decompositions were tested on data with varying noise levels. Data were

simulated as above. Gaussian noise was added to the data with varying σ2 = 0.0005,

0.005, 0.05, and 0.5. 100 noisy realisations were generated in each case. The data

were decomposed with ICA and NMF, with model orders K from 1 to 100. ICA

was first initialised with a PCA with P = 100 components, as above.

Assessing Performance

Three different metrics were used to assess the success of the decompositions on

the simulated data: i) Reconstruction error: the sum of squared errors between the

reconstructed data after decomposition and the original data: i.e. Σ(X − AS)2.

This provides a measure of the information lost through the decomposition. ii)

Source-component correlation: the correlation between each original source and the

estimated components. The best-matched component to each source was identified

and the mean of the maximum correlation values for each component was considered.

This describes how well the decompositions have characterised the underlying signals

in the data, and is sensitive to overfitting, as redundant components that are not well

matched to sources will bring the value down. iii) Sparsity: Following the approach

in (Hoyer, 2004; Sotiras et al., 2015), we used a sparsity measure for the derived

components based on the relationship between the L1-norm and the L2-norm:

sparsity(x) =

√
N −

∑
|xi| /

√
Σx2i√

N − 1
(5.2)
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This returns values between 0 and 1, with 1 signifying a maximally sparse com-

ponent with only one non-zero element. This was calculated for each component

vector in S, and the mean value across all components is reported. Sparse compo-

nents are desirable because they provide an easily interpretable representation of the

data with minimal redundant information. In the case of NMF, sparsity constraints

also make results more reproducible, by constraining the solution space. For ICA,

sparsity can be thought of as a proxy for independence.

5.3.4 In Vivo Data Decompositions

For real data, the group-average tractography matrices were decomposed using ICA

and NMF, with a range of model orders K. ICA was initialised with regular PCA, in

which the first 500 components were retained (explaining 97% of the total variance).

ICA was applied to the reduced dataset using the FastICA algorithm (Hyvärinen

and Oja, 2000), with independence imposed in the seed domain. The pseudo-inverse

of this matrix was projected back onto the group-level connectivity matrix to yield

the corresponding components in target space. To deal with the sign ambiguity

of ICA, components that were negative in the long tail of their distribution were

sign-flipped, for consistency with the other methods (i.e. so that the main mass

of the distribution was in the positive valued domain). NMF was performed with

a coordinate descent algorithm (Cichocki and Phan, 2009), a Frobenius norm cost

function (see equation 5.1), and an L1-norm regularisation parameter α = 0.1. In

NMF, the matrix is decomposed directly into the M × K mixing matrix and the

K × N component matrix so there is no need for the back-projection step that

was carried out for ICA after the PCA. All decompositions were implemented using

scikit learn (Pedregosa et al., 2011). An NMF decomposition on a group average

matrix takes around 2 hours and 80 GB of RAM on a single CPU.
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5.3.5 Comparison to Tractography-Derived White Matter

Tracts

To assess the validity and interpretability of the extracted components, the au-

tomatically extracted white matter connectivity patterns were compared with re-

sults obtained from standard, template-driven tractography protocols, developed

for neonatal subjects, as described in (Bastiani et al., 2019). 28 tracts (13 bilateral)

were mapped in each subject. The tracts included in this analysis were: acoustic

radiation (AR), anterior thalamic radiation (ATR), cingulate gyrus part of cingu-

lum (CGC), parahippocampal part of cingulum (CGH), cortico-spinal tract (CST),

forceps minor (FMI), forceps major (FMA), fornix (FOR), inferior fronto-occipital

fasciculus (IFO), inferior longitudinal fasciculus (ILF), medial lemniscus (ML), pos-

terior thalamic radiation (PTR), superior longitudinal fasciculus (SLF), superior

thalamic radiation (STR), and uncinate fasciculus (UNC). These were registered to

a 40-week PMA template (Serag et al., 2012) and down sampled to 2 mm for com-

parison with the tract space representations of the data-driven components. Each

tract was averaged across all subjects, and the Pearson’s correlation coefficient was

calculated between each of the average tracts with each of the data-driven compo-

nents from the K = 100 decompositions. A one-to-one matching was performed

between the standard tractography results and the component maps, based on the

correlation scores.

5.3.6 Comparison with fMRI

The cortical patterns of structural connectivity from the NMF components were

compared with resting state networks from fMRI. For this analysis, a group of 55

subjects were selected, all born and scanned between 40 weeks and 41 weeks PMA

(i.e. all subjects within this age range who had both structural and functional

data available). The dHCP’s resting-state functional MRI data were acquired for
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15 minutes (TE/TR = 38/392 ms, 2300 volumes) with an acquired resolution of

2.15 mm isotropic. fMRI preprocessing was carried out as detailed in (Fitzgibbon et

al., 2019), with an automated pipeline including fieldmap preprocessing to estimate

susceptibility distortion; registration steps; susceptibility and motion correction; and

denoising with ICA-FIX.

The functional data were first mapped onto the cortical surface, broadly follow-

ing the fMRISurface pipeline outlined in (Glasser et al., 2013). The native WGB,

midthickness and pial surfaces were affine registered to the same space as the func-

tional data. The fMRI timeseries were then mapped onto the cortical surface using a

partial volume weighted, ribbon-constrained volume to surface mapping algorithm,

as implemented in HCP’s connectome workbench (Marcus et al., 2011). These data

were then downsampled from the native mesh and registered to the 32k resolution

template (using the same MSM transform as for the WGB surface used to seed trac-

tography). Spatial smoothing was applied over the cortical surface with a Gaussian

kernel, with FWHM = 2 mm.

Temporally-concatenated group-ICA was performed on the functional data us-

ing FSL’s Melodic (Beckmann and S. M. Smith, 2004), with Melodic’s Incremental

Group PCA (MIGP) for the PCA step (S. M. Smith et al., 2014). MIGP uses

an incremental approach to closely approximate PCA of very large datasets but

with a reduction in the amount of memory required. 50 independent components

were specified. NMF was performed on the group-averaged structural connectivity

matrices of the same group of subjects, with K = 50, for comparison. The simi-

larity between the resultant grey matter spatial maps was assessed using Pearson’s

correlation coefficient.



Chapter 5. Results 109

5.4 Results

5.4.1 Simulations

Simulations were performed to evaluate the performance of ICA and NMF decom-

positions on a synthetic dataset in which the underlying sources were known. First,

the degree of L1-norm regularisation in the NMF cost function was varied to find

an optimal value to use for later experiments. The effect of the number of sources

and the noise level in the data were then examined.

Varying L1-norm regularisation

Increasing the regularisation parameter α, increases sparsity, but also increases the

reconstruction error, as shown in figure 5.3. The NMF decomposition breaks down

for high regularisation (α = 0.5), with high error and very low source-component

correlation. Smaller amounts of regularisation improve the agreement between the

components and sources and reduce the reconstruction error at the cost of reducing

sparsity. A good middle-ground solution is shown (α = 0.1), balancing reconstruc-

tion accuracy and sparsity. A regularisation level of α = 0.1 was therefore used for

subsequent experiments.



Chapter 5. Results 110

Figure 5.3: Simulation experiment to assess the effect of L1-norm regularisation on
NMF. The degree of regularisation increases from left to right across the plots (α =
0.0, 0.1, 0.25, 0.5). Different metrics are shown from top to bottom: reconstruction error,
correlation between derived components and underlying sources, sparsity of components.
The true number of underlying sources (K = 50) is denoted by a vertical dashed line.
Noise variance was σ2 = 0.05. Results are shown averaged over 100 noisy realisations of
the data.

Varying numbers of sources

The decompositions were carried out on data with varying numbers of underlying

sources. Figure 5.4 shows that reconstruction error increases with the number of

sources, so more information is lost between the decomposition and the original data

as the data become more complex. For the source-component correlation, there are

two different regimes. When the number of components, N , is lower than the true

number of sources in the data, K, the average correlation between the components

and the true sources rises quickly for very low N , then plateaus until N = K. When

N > K, the extra components overfit to the noise and bring down the average
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correlation with the sources. NMF achieves overall very high correlations between

the reconstructed components and the true non-negative sources. NMF component

sparsity increases rapidly for low N , then increases more slowly once the number of

components exceeds the number of sources. In the case of ICA, sparsity reaches a

peak when the number of components is equal to the number of underlying sources,

then decreases.

Figure 5.4: Simulation results to show how decompositions vary with differing numbers
of underlying sources. The dotted vertical line shows the number of underlying sources
in each case (from left to right: K = 25, 50, 75). Results are shown from ICA and NMF
decompositions, in orange and blue, respectively. The noise variance σ2 = 0.05 and the
regularisation parameter for NMF α = 0.1.
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Varying SNR

Results from data with varying SNR are shown in figure 5.5. Overall, reconstruction

error increases with noise level. In general, reconstruction error decreases as the

model order approaches K, the true number of underlying sources, and then plateaus

for higher model orders. The mean correlation between the components and the

underlying non-negative sources increases as the number of components approaches

K, and then decreases as the models overfit to noise. The sparsity of the components

exhibits a relatively stable pattern for low and mid-levels of noise, but it becomes

considerably reduced in the high noise scenario (σ2 = 0.5).

Figure 5.5: Simulation results to assess the effect of varying noise levels on the ICA (or-
ange) and NMF (blue) decompositions. The noise level increases from left to right across
the plots (σ2 = 0.0005, 0.005, 0.05, 0.5). Different metrics are shown from top to bottom:
reconstruction error, correlation between derived components and underlying sources, spar-
sity of components. The true number of underlying sources (K = 50) is denoted by a
vertical dashed line.
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Figures 5.4 and 5.5 also enable us to compare the performances of ICA and

NMF on simulated, non-negative data. ICA has a consistently lower reconstruction

error than NMF, particularly when model order exceeds the number of true sources.

This could, however, signify that ICA is overfitting to noise more than NMF, par-

ticularly since ICA also exhibits a lower correlation between its components and the

underlying sources than NMF, at all model orders. This reflects the better suit-

ability of NMF for identifying inherently non-negative patterns within the data, in

contrast to ICA, which generates components that contain both positive and nega-

tive values. NMF also generates components with consistently higher sparsity than

those from ICA.

To summarise, the performance of ICA and NMF were evaluated on a simulated

dataset with non-negative sources. Based on the results of these simulations, an L1-

norm regularisation parameter of α = 0.1 was chosen for NMF to use on the real

data, as this promotes sparsity in the components, without compromising too much

accuracy in the reconstruction. NMF has a number of advantages over ICA for

non-negative data: it generates components that are more closely matched to the

real sources, with higher sparsity and potentially less overfitting to noise.

5.4.2 In Vivo Data Results

Comparison with Standard Tractography

To investigate the interpretability and validity of the extracted components, the

white matter components from both ICA and NMF were compared with the group-

averaged results from standard tractography protocols. A number of our data-

driven components exhibit strong spatial similarity to known white matter pathways

(figure 5.6). In fact, all the considered 28 tracts have well-matching components.

Both ICA and NMF are able to identify spatially separate regions of grey matter

(i.e. networks), along with their underlying white matter connections, for example
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in the forceps minor, the inferior longitudinal fasciculus and the various thalamic

projections.
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Figure 5.6: The full set of 28 tracts from the standardised protocols (Bastiani et al.,
2019), alongside their corresponding components from ICA and NMF. Data-driven com-
ponents are unthresholded to enable the comparison between the negative values in the
ICA components and the sparse, non-negative representations from NMF, whereas the
maps from standard protocols are lower thresholded at 0.001 for clearer visualisation of
the tract.
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The examples in figure 5.6 demonstrate the advantages of using NMF over

ICA. NMF components are inherently more sparse (ICA-derived spatial maps typ-

ically cover the whole brain) and by construction non-negative. The main body

of the anatomically relevant information conveyed by ICA components is present

with NMF decompositions but in an inherently non-negative manner. This suggests

that the NMF sparsity constraints effectively enforce independence in the compo-

sition, similarly to ICA. In addition, there are qualitative improvements of NMF

over ICA for a number of tracts. For instance, the NMF component corresponding

to the right IFO has a stronger peak in the occipital lobe than the equivalent ICA

component, and NMF has fewer false positive frontal projections in the left ILF.

Further detailed comparison between NMF and ICA components with differences

between matched pairs is shown in figure 5.7. These examples further illustrate that

the NMF results convey different information than the ICA results, even when the

latter are thresholded to only retain positive values (3rd column) or are thresholded

to retain the areas with the strongest weights (4th column). These examples also

suggest that different thresholds would be needed across the ICA components to

match the relevant information from NMF, as a high threshold that removes the

false projection in row a), for example, would remove the full extent of the tract in

row c).

The results in figure 5.8 explore how increasing the model order in the decom-

position affects the splitting of components. Equivalent components were identified

across model orders by calculating the correlations between their spatial maps. The

more coarse-grained connectivity patterns from the low dimensionality decomposi-

tions are broken down into more sparse, fine-grained spatial maps as the number of

components are increased. For example, the left panel of figure 5.8 shows an NMF

component and the associated white matter spatial map from the K = 5 decompo-

sition that delineates the left pyramidal tract. As the the number of components

is increased from K = 5 to K = 50, this bundle splits into sub-components that
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Figure 5.7: Examples of matched pairs of NMF and ICA components from the K = 100
decomposition that illustrate differences between the two methods. Components have all
been variance normalised for consistent scaling. a) In the right superior thalamic radiation,
there is a false positive anterior projection in the ICA component (green arrow) that is not
present in the NMF component. This is still present at a high threshold for ICA (white
arrow). b) In this component, corresponding to the left inferior longitudinal fasciculus,
there is an anterior projection in the ICA component that is not seen in the NMF result
(blue arrow). c) The ICA component has strong negative and positive aspects that obscure
the main part of the tract (green arrow). High thresholding, such as in the right column,
is too conservative and the tract itself is thresholded out (white arrow).

characterise different parts of corona radiata projections. An increase in sparsity

is also seen from the low to the higher order components, which agrees with the

quantitative results in figure 5.13.

Interpretability can be also illustrated for components that do not match any

tracts from the set reconstructed using standard tractography protocols. An exam-

ple is demonstrated in figure 5.9, where 10 components from the K = 100 NMF

decomposition have been identified as corresponding to different segments of the

corpus callosum. For each component, the grey matter (seed space) map is shown,

along with the WM spatial map (tract space).
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Figure 5.8: Similar components across different model orders, demonstrating the hi-
erarchical nature of the decomposition. Starting with a single component from a lower
dimensionality decomposition, we show components from higher model orders that have
high spatial correlation with the original component, in tract space (r > 0.5). Tract
space results are displayed as maximum intensity projections. Left: A component from
the K = 5 decomposition showing the left cortico-spinal tract, which is split into more
localised sub-components for higher K. Right: A component from the K = 10 decomposi-
tion that includes several different association fibres in the left hemisphere. At K = 200,
this has been split into the uncinate fasciculus, inferior longitudinal fasciculus and middle
longitudinal fasciculus.



Chapter 5. Results 123

Figure 5.9: Ten components from the K = 100 NMF decomposition that correspond to
segments of the corpus callosum. For each component, the grey matter (seed space) map
is shown, along with the white matter spatial map (tract space) rendered in 3D to aid
visualisation. All rendered white matter segments are shown together at the top.

In addition to these callosal bundles, additional components are seen at higher

model orders that do not have matching predefined tracts from the standard pro-

tocols. Examples of these “unassigned” NMF components are shown in figure 5.10.

Many of these components are bilateral, and show short range connections in the

frontal lobe, such as the fronto-marginal tract (bottom row, first two columns)

(Catani et al., 2012). Others may reflect false positive connections, such as the

thalamic loops in the fifth row.
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Figure 5.10: Unassigned components from the K = 50 NMF decomposition. One-to-one
matching was performed with the 28 standard tracts, leaving 22 unassigned components.
Four of these were callosal fibres, similar to those shown in figure 5.9, leaving 18 additional
components that we show here. The components in the left and centre columns are bilateral,
unpaired components are in the right column.

Comparison with fMRI

As an additional indirect validation, the grey matter maps from the NMF decompo-

sitions of the tractography data were compared with resting-state networks (RSNs)

obtained from fMRI data. Group-level ICA (K = 50) was performed on fMRI data

from 55 subjects and the resultant resting-state networks were compared to those

from a K = 50 NMF decomposition of the structural connectivity data from the

same subjects. Through visual inspection, 24 of the functional components were
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found to contain noise or artefacts, so were discarded. The similarity of the re-

maining 26 RSNs to our structural grey matter components was measured using

Pearson’s correlation coefficient, r, to identify the best matching pairs.

Most functional components were well matched to at least one structural com-

ponent, with the lowest correlation value between an RSN and a tractography com-

ponent being r = 0.2. Over half (14 out of the 26 networks identified) had a

correlation value r > 0.5 with their best-matched structural component. The corre-

lation matrix in figure 5.11 is sparse, which indicates that there is specificity in the

matching. Where RSNs were strongly associated with multiple structural compo-

nents, this was either a bilateral network split into the two hemispheres (e.g. figure

5.11b and c) or structural networks that overlapped with different regions of the

RSN (5.11a and d).

Figure 5.11: Left: correlation matrix between the fMRI RSNs and their 26 best-matched
tractography NMF components. Right: examples of the functional networks and their most
spatially similar grey matter components from structural NMF. These correspond to the
columns outlined in yellow on the correlation matrix. The corresponding white matter
patterns are shown as maximum intensity projections.
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Reconstruction Error and Sparsity

The reconstruction error and component sparsity were also computed for the in

vivo results. In line with the results from the simulations, reconstruction error

decreases with increasing numbers of components, with ICA having slightly higher

reconstruction accuracy than NMF (figure 5.12). Sparsity is much higher for NMF

than for ICA (figure 5.13). Sparsity increases rapidly from 5 to 50 components and

then plateaus after 100 components.

Figure 5.12: The reconstruction error in the ICA and NMF components.

Figure 5.13: The sparsity of the derived components, calculated according to equation
5.2.
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5.5 Discussion

A non-negative framework was developed for simultaneously mapping white matter

connections and corresponding grey matter networks from diffusion MRI data in

a data-driven manner. Non-Negative Matrix Factorisation (NMF) is a powerful

alternative to traditional tract delineation that has no parametric assumptions, no

dependence on predefined ROIs and masks in a template space, and is inherently

suited to the non-negative nature of tractography data.

This work falls within the family of other data-driven approaches for mapping

structural connections from whole-brain tractograms, such as (Garyfallidis et al.,

2012; O’Donnell and Westin, 2007; Siless et al., 2018). The approach extends these

efforts by allowing simultaneous reconstructions of white matter bundles, but also

the corresponding grey-matter networks that these bundles connect. Furthermore,

none of the previous data-driven approaches have been applied for mapping connec-

tions from diffusion MRI data of the neonatal brain, as shown here.

5.5.1 Validation using Simulations

Simulations were used to investigate the behaviour of the decompositions in con-

trolled scenarios, in which the ground truth was known. In order to generate re-

alistic simulations for such a decomposition framework, the sources were based on

the properties of the distributions learned from in vivo data, and mixed randomly

to generate synthetic data with a known number of components. First, the effect

of adding an L1-norm regularisation term to the objective function for NMF was

investigated (see equation 5.1). Increasing the regularisation reduces the accuracy

of the data reconstruction, but a small amount (α = 0.1) improves the correla-

tions between the sources and the components at lower model orders and promotes

component sparsity. Therefore, it was decided that an alpha value of 0.1 would be

used for subsequent work, as this was deemed to be a good compromise between
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higher component sparsity and source reproduction, with only a minimal impact

on reconstruction accuracy. Increasing the sparsity of components has been shown

to generate features that are inherently more independent, while constraining the

NMF solution space to make the decomposition more reliable (Hoyer, 2004).

The effect of different noise levels in the data was also investigated. As expected,

the reconstruction error of the decompositions increased with increasing noise, but

the correlation between components and true sources was fairly stable, particularly

at low model orders. Comparing the results from ICA and NMF, both were able

to reconstruct the original data (using the dot product of the mixing matrix and

component matrix) with good accuracy, but the components from ICA were less well

matched to the true non-negative sources themselves than those from NMF. This

is because the components from ICA contain negative values that are not found

in the real sources, although mutual cancellation of positive and negative values

in the components and mixing matrix allows the data matrix to be reconstructed

accurately.

5.5.2 In Vivo Results

White matter spatial maps of the NMF components show strong spatial similarity

to known white matter pathways (figures 5.6, 5.8, 5.9). Each of the 28 tracts that

were considered had a corresponding component from the K = 100 decomposition.

The tractography-matched patterns from ICA and NMF have similarities, as seen

in figure 5.6. This hints towards NMF being able to separate spatially indepen-

dent components, in an analogous manner to ICA, despite not having independence

constraints enforced explicitly. This is because the sparsity constraint on the NMF

decomposition implicitly promotes non-Gaussianity in the resultant components,

which is used as a proxy for independence in the FastICA algorithm (Hyvärinen

and Oja, 2000). Indeed, sparsity and independence criteria have previously been

shown to generate very similar basis sets across several different data types (Saito et
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al., 2000). Despite the overall similarity between the results from the two methods,

there are some noticeable differences between the spatial maps from ICA and NMF,

shown in figures 5.6 and 5.7. For example, the component corresponding to the for-

ceps major extends more strongly into the right hemisphere in the NMF component

than in the ICA component. In addition, the components from ICA corresponding

to the inferior longitudinal fasciculus extends into the frontal lobe, mixing with the

inferior fronto-occipital fasciculus, which is not seen in the NMF result. Figure 5.7

shows further examples and illustrates the effects different levels of thresholding on

the ICA results. These results show that a) the NMF results convey different infor-

mation than the ICA results, even when the latter are thresholded to only retain

positive values, and b) different ICA components would require different levels of

thresholding to match the results from NMF.

A range of model orders were explored from 5 to 200. The lower model orders

generate more distributed components that contain multiple white matter bundles,

whereas the higher model orders give more specificity, as shown in figure 5.8. The

components from lower model orders (eg. K = 5) are split into smaller constituent

parts for higher model orders, providing a component hierarchy as K increases.

There are also some tracts which are not so well-characterised by either method,

such as the acoustic radiation, which contains a mixture of the middle longitudinal

fasciculus, and the superior longitudinal fasciculus, which does not have separate

lobes in the grey matter components. However, it is worth noting that the data-

driven methods presented here are not meant to replace tractography for major

bundle delineation, particularly in cases where we have well-defined tractography

protocols. Instead, they can provide complementary ways to concurrently extract

grey matter and white matter connectivity patterns from all the data simultaneously,

particularly for cases where this delineation of bundles is challenging or incomplete.

This can potentially be a powerful novel way of summarising the information con-

tent of tractography data for applications other than bundle delineation, such as
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connectivity-driven functional localisation (for example (Mars et al., 2018)).

The grey matter maps of the NMF components were also shown to align well to

resting-state networks from fMRI. This provides further evidence that these data-

driven results are anatomically meaningful. It also highlights how this new frame-

work provides a similar analysis paradigm for structural connectivity to that com-

monly used for the analysis of fMRI data. This could provide a route to analyse

structural and functional connectivity data within a unified framework.

The sparsity and reconstruction error of the components were calculated, shown

in figures 5.13 and 5.12. Reconstruction error decreases and the sparsity of the com-

ponents increases, with increasing numbers of components. This reflects the higher

degree of freedom afforded by more components that permits a more detailed re-

construction of the original data, and components that are more tightly localised

around fine-grained regions of similar connectivity. NMF components are more

sparse than those from ICA, which indicates that the former is able to localise con-

nectivity patterns more effectively, disregarding redundant information and keeping

non-negativity in the reconstruction.

5.5.3 Decomposition Domain

In the results presented here, decompositions have been applied in the seed domain,

allowing white matter tract overlap. Decompositions were also applied to the trans-

pose of the connectivity matrix, X>, which meant decomposing (and in the case of

ICA enforcing independence) in the tract domain. ICA and NMF were performed

on the transpose of the group-average connectivity matrix, with K = 50. Figure

5.14 illustrates the similarity between the results from each method, which shows

that the ICA components are most affected by this change. Most NMF components

are nearly identical to the original results. This agrees with expectations, as in NMF

the sparsity and non-negativity constraints are enforced in both the mixing matrix

and the components (see equation 5.1).
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Figure 5.14: Correlations between decompositions applied to connectivity matrices in both
the (seed × white matter) and (white matter × seed) configuration. Highest Pearson’s r
is plotted for each component or column of the mixing matrix with the equivalent matrix
from the transposed decomposition.

5.6 Concluding Remarks

This chapter has demonstrated a data-driven framework for mapping white matter

connectivity patterns and their corresponding grey matter networks from neonatal

MRI data. This follows up previous work that has been done in adults using ICA

(O’Muircheartaigh and Jbabdi, 2017), and provides an alternative approach using

NMF that has improved interpretability. In simulations, NMF was shown to provide

a more accurate recovery of non-negative sources that ICA. Furthermore, the results

from neonatal MRI data show that the connectivity patterns are well matched to

tracts from standard tractography protocols, and provide additional information

about the terminations of these tracts in the grey matter. Nevertheless, we only

showed group results in this chapter. The following chapter presents a framework

for projecting group results to individual data. It further analyses the stability of

these decompositions across different subject groups, and shows how the grey matter

components can be used to parcellate the cortex into regions of similar structural

connectivity to the rest of the brain.
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Foreword

In this chapter we evaluate and extend the work presented in the previous chapter.

We investigate whether the data-driven patterns are reproducible across different

subject groups, and derive a new non-negative method for dual regression. This

provides a means of obtaining subject-level representations of the original group-

level components, while maintaining their advantageous non-negative properties.

The grey matter components are used to generate parcellations of the neonatal

cortex, in which vertices within a parcel share common connectivity patterns to the

rest of the brain. The reproducibility of these parcellations is also assessed, and

we show how the dual-regression framework can be used to generate parcellations

tailored to the connectivity profiles of individual subjects.
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6.1 Introduction

In the previous chapter a new framework was presented, in which whole-brain con-

nectivity matrices are decomposed into a set of white matter spatial maps and their

corresponding grey matter termination points, in a data-driven fashion. Two differ-

ent methods were compared for the decomposition: ICA and NMF. By comparing

these methods on a simulated dataset, it was found that NMF provides a more

accurate characterisation of non-negative signals, of the kind found in structural

connectivity data. NMF was applied to connectivity matrices from neonatal dMRI

data and was shown to generate white matter spatial maps and grey matter networks

that reflect anatomically relevant information.

In this chapter, the reproducibility of the NMF results across independent sub-

ject groups is investigated. Similarity is assessed in the NMF components between

two halves of the cohort and across groups with different numbers of subjects. That

way, the stability of our approach in providing connectivity estimates at the group-

level is assessed.

An approach is then devised that allows correspondence between group NMF

results and individual subjects’ data. The ability to derive subject-level components

provides a gateway to more individualised analysis of white matter development.

Our new method obtains subject-level projections of the group-level components, in

a way that maintains the non-negativity and sparsity of the original components.

The chapter concludes by presenting an application of the data-driven com-

ponents, which are used to generate cortical parcellations. The reproducibility and

clustering accuracy of the parcellation is assessed, relative to a benchmark of random

parcellations. Most existing cortical parcellation schemes for neonates are based on

cortical folding landmarks (Adamson et al., 2020; Gousias et al., 2012), so this new

connectivity-driven approach can provide additional insight into the organisation of

the neonatal cortex. It further provides an additional piece of evidence to indirectly
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validate the NMF approach.

6.2 Theory

6.2.1 From Group to Individual Subject Decompositions -

Non-Negative Dual Regression

When considering whole-brain tractography matrices X from multiple subjects (e.g.,

by averaging across subjects in the simplest case), the components and mixing ma-

trices will represent the group. A relevant question is whether these group compo-

nents can be projected to the data of individual subjects or other subgroups. This

has the important benefit of providing correspondence of components across a set

of subjects (such that the nth component represents the same network and bundle

across all considered subjects), compared to performing individual subject analysis

separately, which would not ensure such correspondence.

To solve this problem of group-subject correspondence in fMRI ICA, dual re-

gression frameworks have been proposed and used to generate subject-level repre-

sentations of the group components and mixing matrices (Beckmann et al., 2009;

Nickerson et al., 2017). Dual regression comprises of two steps:

i) Identify the subject-specific mixing matrix Ã from the group-level components

S, using the subject-level data matrix X̃:

X̃ = ÃS→ Ã = X̃S†

(where S† denotes the pseudoinverse of S)

ii) Find the subject-level components S̃, using the subject-specific mixing matrix

Ã:

X̃ = ÃS̃→ S̃ = Ã†X̃
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In previous work, this multivariate regression has been achieved by taking the

pseudoinverse of the group-level components and the subject-level mixing matrix

(O’Muircheartaigh and Jbabdi, 2017), as illustrated in figure 6.1.

Figure 6.1: Schematic illustration of the dual regression step used for ICA, that generates
subject-level representations of the group-level components. The group-level grey matter
components are first regressed onto the subject’s connectivity matrix to obtain the subject-
level representations of the components in white matter. The pseudoinverse of this mixing
matrix is then used to obtain the subject-level grey matter components.

Even though the above approach can be applied directly to NMF components

and mixing matrices, taking the pseudoinverse introduces negative values into the

components and their weights, which leads to mixed-sign subject-level representa-

tions of the original non-negative group-level components. Instead, a “non-negative

dual regression” technique has been developed and is presented for back projecting

NMF results, using non-negative least squares (NNLS) (Ling et al., 1977) for the

regression steps. NNLS solves an equation of the form argminx ||Bx − y||2 subject

to x ≥ 0, in which x and y are vectors, and B is a matrix. Thus, the optimisation

has to be performed separately for each target voxel in step (i) and each grey matter

seed in step (ii) (see figure 6.2), but this process can be parallelised to reduce com-

putation time. This provides an entirely non-negative framework for dual regression
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that retains the sparse characteristics of the group-level NMF components.

Figure 6.2: Schematic illustration of the non-negative dual regression step used for NMF,
which generates subject-level representations of the group-level components. The first equa-
tion is solved by non-negative least squares, using the group-level grey matter components
and the subject’s connectivity matrix to solve for each row in the subject-level mixing ma-
trix. This mixing matrix is then used to find the subject-level grey matter components by
the same method.

6.3 Methods

6.3.1 Split-half Reliability Analysis

A split-half analysis was performed on a cohort of 323 term-age subjects born at

term age (175 male, 148 female). Median (range) birth age was 40.1 (37.0, 42.3)
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postmenstrual weeks and age at scan was 40.9 (37.4, 44.4) weeks. ICA and NMF

were applied to the group-averaged connectivity matrices from each half of the cohort

with a number of model orders: K = 5, 10, 25, 50, 100, 200. For each value of K, a

one-to-one matching was performed of components across the split-half, based on

the Pearson’s correlation coefficients of their spatial maps, recording the correlation

coefficients of the matched pairs as a measure of their similarity. This was repeated

for the grey matter and white matter maps.

The consistency of the decompositions was also tested for subject groups of

different sizes. NMF was applied to a single subject’s connectivity matrix and

average matrices for groups of 5, 10, 50 and 100 subjects with K = 50. The resultant

components were compared with the results from split 1 of the main cohort.

6.3.2 Non-Negative Dual Regression

Group to Individual

Non-negative dual regression was applied to all subjects in split 1 of the cohort,

projecting the K = 50 group level components back on the subject-level data as

described in section 6.2. NMF was also applied directly to the individual subjects’

connectivity matrices for comparison. Dual regressed group components for a sub-

ject are expected to match in general components obtained from individual NMF

analysis of that subject. However, the ordering of the components across subjects

is preserved with non-negative dual regression.

Group to Subgroup

Dual regression can also be used to project components from one group to another.

The K = 50 group level components from split 1 of the cohort were projected

onto averaged connectivity matrices from four different groups, each containing 15

subjects of different age ranges (37-38, 39-40, 41-42 and 43-44 weeks PMA at scan).
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6.3.3 Cortical Parcellations

The grey matter components were used to generate cortical parcellations, in which

vertices were grouped according to their structural connectivity profiles. This was

done using a “winner-takes-all” approach (Behrens et al., 2003), where each vertex is

labelled according to its highest weighted component. This provides a hard cortical

parcellation, where vertices in a given parcel can be linked to a specific white matter

bundle.

The stability of the parcellations across subjects was assessed with a split-half

analysis, using the Dice coefficient between parcellations generated on each of the

split-halves as a similarity metric. Dice coefficients measure the overlap between

two clusters X and Y , normalised by the number of elements in each cluster:

Dice =
2|X ∩ Y |
|X|+ |Y |

(6.1)

In this case, |x| describes the number of vertices within a parcel, and |X ∩ Y |

the number of shared vertices between the two parcels considered. The Dice score

was recorded between each parcel and its highest matching parcel in the parcellation

from the other split.

The Silhouette score was used as a measure of how well the parcellations clus-

tered similarly connected vertices (Rousseeuw, 1987). Silhouette score was calcu-

lated using the mean within-cluster distance a and the mean nearest-cluster distance

b, with (1 - Pearson’s r) used as a distance metric:

Silhouette =
b− a

max(a, b)
(6.2)

This assesses a successful parcellation as one which groups vertices with similar

connectivity profiles, which are distinct from the connections in other parcels.

The group-level parcellations were benchmarked against random Voronoi par-

cellations of the same model order (Aurenhammer, 1991). Voronoi tesselations with
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N parcels were first generated over the surface of a sphere, by randomly distributing

N seed points across the sphere. Each vertex on the sphere was then labelled ac-

cording to its closest seed point on the spherical surface. The spherical parcellations

were then projected onto the cortical surface. The resultant parcellations have, by

definition, N spatially contiguous, randomly distributed regions, which provide a

good benchmark with which to compare our data-driven parcellations.

Subject-level parcellations were generated from the non-negative dual regressed

grey matter components from each subject in split 1 of the cohort. The variability

of these subject-level parcellations was assessed by calculating the Dice coefficient

between equivalent parcels in the subject-level and group-level parcellations.

6.4 Results

6.4.1 Assessing the Reproducibility of the Decompositions

To assess the reproducibility of the derived components, a split-half reliability anal-

ysis was performed for the ICA and NMF decompositions. Figure 6.3 presents

histograms of correlations between the best-matching components across the split-

halves, for both ICA and NMF. In all cases, the median correlation value lies above

0.8, which shows that both methods are robust across different subject groups. Even

if patterns are more variable for lower model orders (K < 25), both methods perform

similarly for higher K. Similar behaviour is observed for grey matter components

and white matter mixing matrices.

Having ascertained the reliability of the data-driven framework for a large group

of subjects, the stability of the components was explored for smaller groups. A

K = 50 decomposition was performed on a single subject’s data, and then for groups

of 5, 10, 50 and 100 subjects. A quantitative analysis of the similarity between the

small group-size results and the components from split 1 of the cohort is shown

in figure 6.4, from which we can see that components from groups of more than
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(a) White Matter Components (b) Grey Matter Components

Figure 6.3: Split-half reliability analysis for ICA and NMF. Pearson’s correlation scores
were calculated between the best-matched components in each split for the white matter
spatial maps (a) and the grey matter maps (b). The dotted lines on the violin plots indicate
the 25th and 75th percentiles and the median is represented by a dashed line.

ten subjects have very strong correspondence with the full cohort, while even the

single-subject results are reasonably similar.

(a) White Matter Components (b) Grey Matter Components

Figure 6.4: Boxplots illustrating the correlations between the white matter (a) and grey
matter (b) spatial maps from the K = 50 decompositions of groups with varying numbers
of subjects, compared to the results from 161 subjects in split 1.

Figure 6.5 shows some example components from these group-level decompo-

sitions, to illustrate visual similarities between them. This shows that the patterns

are robust even at the single-subject level, although the patterns are noisier with

fewer subjects.
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Figure 6.5: Two components and their corresponding white matter pathways from K = 50
group-level decompositions with varying numbers of subjects. Component 1 correlates well
with the tractography-delineated cortico-spinal tract, and component 2 with the inferior
longitudinal fasciculus.

Dual Regression Examples

Figure 6.6 compares the results from standard dual regression and non-negative

dual regression for an example component in two subjects. It demonstrates how

standard dual regression generates subject-level components with negative values

in both the grey matter components and the white matter mixing matrices, which

loses the interpretability of the non-negative group-level components. On the other

hand, the novel non-negative dual regression technique generates components that

have the advantageous sparsity and non-negativity of the group-level spatial maps,

whilst retaining the individual features of the different subjects.

The results from the non-negative dual regression to individual subjects were

compared with the single-subject NMF decompositions, as shown in figures 6.7 and
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Figure 6.6: Example dual regression results for a component from a K = 50 NMF
decomposition. On the left, the component has been dual regressed onto two subjects’ data
with the standard approach using the pseudoinverse. On the right, the component has been
dual regressed with our non-negative method that uses non-negative least squares.

6.8. There is a strong agreement between the component maps obtained from these

different approaches, which is reassuring and highlights the benefit of using non-

negative dual-regression against a group decomposition in ensuring consistency in

the components between subjects, but also preserving individual subject features.

A small number of cases (lower end of the depicted distribution in figure 6.7) exhibit

relatively lower agreement between the two sets of results. It is possible that imper-

fections in registration and/or alignment of the surfaces to the volumetric template

are reflected in these disagreements; but even in these cases (Subject B as repre-

sentative example), the spatial maps of the components do not look too dissimilar,

demonstrating the robustness of the approach.

Non-negative dual regression was also used to project the components from the

main group onto smaller subgroups of the cohort of different ages. Two example

components from these results are shown in figure 6.9. Even though the spatial maps

of the dual-regressed components are broadly similar across the different groups
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Figure 6.7: Swarm-plot of the median correlations between single-subject decompositions
and results from non-negative dual regression. Correlations were calculated for each of the
K = 50 components in the subjects from split 1 of the cohort.

for the presented examples, the results show slight variations in the branching of

both tracts between the 37-38 week and 43-44 week age groups (more confined for

the former). The results also demonstrate the feasibility of back-projecting group

components to subgroups, and the potential for subsequently exploring effects in

corresponding white and grey matter regions.

6.4.2 Parcellations

The grey matter components from NMF were used to generate hard parcellations

of the cortex, using a winner-takes-all approach. This process was carried out on

each of the split-half groups to assess how robust the parcellations are to different

groups of subjects. Figure 6.10 illustrates the parcellation results for different values

of K. There is high reproducibility of the parcels between the two split-halves,

and parcellation schemes are robust across different model orders. Figure 6.10 also

shows a subject-specific parcellation generated from the results of a non-negative

dual regression that demonstrates qualitatively how the group results correspond

to single subjects. In order to quantify the variability of these group parcellations

across subjects, the Dice coefficient was calculated between the equivalent parcels

in the group-level and subject-level parcellations. The average coefficient for each

parcel of the K = 100 parcellation is shown in figure 6.11, alongside two example
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Figure 6.8: Selected components from two representative example subjects from the co-
hort, Subject A (median correlation = 0.89, yellow star in figure 6.7), and Subject B
(median correlation = 0.83, red star in figure 6.7)). The component numbers are included
in the lower right corner of each box, to show how dual regression provides consistent
component ordering across subjects.

subject level parcellations, with the lowest and highest average (across parcels) Dice

coefficient, respectively. Most parcels are relatively stable across subjects (average

Dice coefficient > 0.7).

Split-Half Analysis

Figure 6.12 further quantifies the similarity between the group parcellations by show-

ing the distributions of Dice coefficients of matched parcels between the parcellations

from the two halves of the cohort. This was compared against distributions of Dice

coefficients obtained from the comparison of the split 1 parcellation with 100 random

Voronoi parcellations, each with the same number of parcels as the decomposition
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(a) forceps minor

(b) right anterior thalamic radiation

Figure 6.9: Example components from a group-level dual regression, where the K = 50
NMF components from split 1 of the cohort were projected onto groups of 15 subjects
scanned at different ages.

used. The parcellations generated using the NMF components are significantly more

consistent across subjects than the equivalent randomly generated parcellations.

Silhouette Score

To further gain insight into the quality of these parcellations, the mean Silhouette

score across parcels was calculated for the NMF-based parcellations at each model

order, and for each split-half of the cohort. The measure was also computed for 100

randomly generated Voronoi parcellations with the same number of parcels, as a

comparison. A Silhouette score measures the similarity of the data within a parcel,

relative to their dissimilarity to data in other parcels. Figure 6.13 shows that the
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Figure 6.10: Hard parcellations of the cortical surface from NMF, from each split-half of
the cohort and from dual regression of the group-level results onto a single subject. The left
hemisphere displayed only. Parcels are colour matched according to the correlation values
between the original grey matter components.

mean Silhouette score across parcels for the data-driven parcellations is consistently

higher than for the equivalent random parcellations. Furthermore, it shows that

the ability of the data-driven parcellations to identify meaningful clusters in the

data increases with increasing numbers of parcels. On the contrary, for random

parcellations, the Silhouette score peaks at K = 25, and then decreases for greater

values of K. This indicates that the data-driven parcellations provide a better

clustering of the data than random parcellations, even when the random parcellation

has spatial contiguity enforced.
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Figure 6.11: Left: variability of the K = 100 parcellation borders, colour coded according
to the average Dice coefficient between the group level parcellations with the subject level
parcellations from split 1 of the cohort (dark red: small overlap of parcel across subjects,
bright yellow: large overlap of parcel across subjects). Right: examples of subject-level
parcellations with low and high average Dice coefficient with the group parcellation.

6.5 Discussion

6.5.1 Reproducibility

Different analyses were performed to test how reproducible the data-driven compo-

nents were across subject groups. A split-half analysis showed that similar patterns

of connectivity could be obtained for large groups of subjects, as shown in figure 6.3.

Even for groups of subjects as small as 5, patterns can be obtained that strongly

resemble those from the larger groups (over 100 subjects). This shows that this

method can be applied to smaller datasets and still provide reliable information.

A new non-negative dual regression method was developed to obtain subject-

level representations of components obtained at the group level. Non-negative least

squares was used to perform the regression, instead of the pseudoinverse as is nor-

mally used (Beckmann et al., 2009; Nickerson et al., 2017). This provides subject-

level components that are sparse and non-negative like their group-level counter-

parts (figure 6.6). Subject-level maps derived from non-negative dual regression

were shown to be spatially similar to the results from NMF applied directly to the

connectivity matrices of individual subjects. Therefore, using non-negative dual

regression provides connectivity patterns that characterise the white matter con-

nections of the individual subject, with the advantage of providing a consistently
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Figure 6.12: Dice coefficients of matching parcels across the split-half analysis. For
comparison, the Dice coefficient was also calculated between one of the split’s NMF par-
cellations and 100 randomly generated Voronoi parcellations of the same model order.

ordered set of bundles across subjects for comparison. In addition, non-negative

dual regression can be used to project components from one group to another, as

well as from groups to individuals. This is demonstrated in figure 6.9, in which

group-level components have been projected onto different subgroups of the cohort

with different age ranges.

6.5.2 Parcellations

The grey matter maps of the NMF components were used to generate a connectivity-

based cortical parcellation scheme. Specifically, each vertex on the cortical mesh was

labelled according to the component with the strongest weighting at each point. This

leads to a parcellation in which clusters share similar patterns of structural connec-

tivity to the rest of the brain. Depending on the model order of the decomposition,

the parcellation can be coarse or more fine-grained (see figure 6.10). An advantage

of this approach is that it is entirely data-driven, so the parcellations are not bi-

ased by any subjective measures. It can also be used to generate subject specific

parcellations, by using the subject-level grey matter maps from dual regression.
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Figure 6.13: Mean Silhouette score across clusters for NMF and Voronoi parcellations
with model orders of 5, 10, 25, 50, 100 and 200.

The reproducibility of the parcellations was assessed with a split-half analysis,

using Dice coefficient as a similarity measure. The results were compared with a

benchmark of the Dice coefficient between one split and a set of randomly gener-

ated Voronoi parcellations. For all model orders, the data-driven parcellations were

more consistently similar than random parcellations. In addition, Silhouette score

was used as a measure of the parcel validity, and the performance of the NMF-based

parcellations was again compared against 100 random Voronoi parcellations. Silhou-

ette score measures the similarity of the connectivity profile of a given grey matter

vertex to others in its parcel, relative to the connectivity of vertices in other parcels.

The data-driven parcellations consistently scored higher on this measure than the

random parcellations (see figure 6.13).

Despite this evidence, validating a cortical parcellation is extremely challenging.

Existing schemes for the neonatal brain have been derived from manual segmentation

of high-resolution data (B. Alexander et al., 2017; B. Alexander et al., 2019), or

compared against expert manual segmentations (Adamson et al., 2020; Oishi et al.,

2011). While these are extremely useful pieces of work that stem from traditional

invasive parcellation approaches, they are based on gyral and sulcal landmarks.

These landmarks may not necessarily coincide with functional boundaries (see (Van
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Essen and Glasser, 2018) for a recent review). The hope is that connectivity patterns

can provide additional information that is closely linked to non-invasive functional

delineation, as shown in (Glasser et al., 2016). The NMF framework presented

here may be extremely useful for providing another connectivity-based modality, in

addition for instance to functional connectivity approaches, and further augment

multi-modal parcellations.

Impact of Gyral Bias

Figure 6.14: Our group-level NMF parcellation overlaid on the dHCP’s 40-week PMA
sulcal depth template (Bozek et al., 2018) (blue for sulcal fundi, red for gyral crowns).
There is no consistent pattern for parcellation boundaries to follow sulci or gyri, which
indicates that our parcellation is not driven (at least to a large degree) by the gyral bias.

It has been shown that tractography streamlines are biased towards termina-

tions in the gyri rather than the sulci (Schilling et al., 2018; Van Essen et al., 2013a),

although the effects of this “gyral bias” can be minimised by seeding from the cor-

tical surface rather than the whole brain (Donahue et al., 2016; Schilling et al.,

2018), as done here. In Chapter 4 it was shown that the effects of gyral bias are

less prevalent in neonates than in adults due to the less developed cortical folding.

Therefore, less direct influence of such biases in the NMF results in the neonatal
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brain would be expected. In fact, the parcellation borders did not show a consistent

overlap with sulcal fundi or gyral crowns, as shown in figure 6.14.

6.5.3 Limitations and Future Work

The decomposition framework presented here uses whole-brain tractography data

and its performance can therefore be challenged by tractography limitations, which

are important to keep in mind when interpreting results. Tractography is an indirect

measure of anatomy that is prone to identifying false positive connections (Maier-

Hein et al., 2017). False positives in tractography can be demonstrated in two ways:

first, in a noisy fashion, causing false paths that are inconsistent either spatially

or across subjects; these are less likely to be major drivers of data-driven decom-

positions. Secondly, in a biased fashion, i.e. consistent false positives that have a

certain spatial extent and are reproducible across subjects. These can form the basis

of extracted components in NMF, even at the group level. A future application of

this framework might be to denoise structural connectivity matrices by removing

these components, in a similar manner to ICA-based denoising methods for fMRI

(Salimi-Khorshidi et al., 2014). However, a number of indirect validations have been

performed in chapters 5 and 6 to gain confidence in the validity and interpretability

of the results. NMF decompositions, without any constraints or anatomical knowl-

edge imposed, identified patterns that resembled constrained tractography results

in white matter and patterns obtained from an independent modality (rfMRI) in

grey matter, and allowed whole-brain connectivity-based parcellations that were

reproducible across subjects.

Given the similarity of the structural grey matter networks to those from fMRI,

and the common use of data-driven methods to analyse functional data, the work

presented here provides a convenient framework for multi-modal analysis of fMRI

and dMRI. This could take the form of joint analysis of structural and functional

components, or data-fusion approaches in which NMF is applied to concatenated
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structural and functional data. In future this could be used to better understand

the links between the development of structural and functional connectivity in the

brain.

Another route for future work would be the comparison of data-driven com-

ponents across age-groups and species. An ICA-based data-driven framework has

already been used to identify structural connections in the chimpanzee (Mars et al.,

2019), where a lack of prior knowledge about brain anatomy makes standard trac-

tography approaches difficult. Using data-driven methods would provide a common

reference space for both grey matter and white matter connectivity patterns that

can be used to compare between groups, without any bias or constraints from prior

knowledge. These ideas are explored further in the next chapter.

6.6 Concluding Remarks

This chapter extends the work in the previous chapter, in which a data-driven frame-

work was developed for mapping white matter bundles and grey matter networks

in the neonatal brain. The resultant patterns of connectivity were found to be

robust across different subject groups, even for smaller numbers of subjects. A

non-negative approach for dual regression was then demonstrated, which provides

subject-level representations of the group-level components, without compromising

the advantageous non-negative properties of NMF. The results from non-negative

dual regression were shown to accurately characterise the individual subjects’ con-

nectivity patterns. Finally, the grey matter NMF components were used to generate

a connectivity-based parcellation of the neonatal cortex. This parcellation was also

shown to be robust and to provide a meaningful clustering of the grey matter ac-

cording to structural connectivity.
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7.1 Summary and Conclusions

This thesis considers different methods for mapping white matter connections in the

neonatal brain, using dMRI tractography. During the neonatal period, the structural

connections in the brain grow and mature rapidly. These processes are sensitive to

preterm birth and environmental factors (Deoni et al., 2013; Batalle et al., 2017;

Lautarescu et al., 2020), and can influence later outcomes (Counsell et al., 2008;

Ball et al., 2015; Girault et al., 2019). It is therefore important to have analysis

tools that are robust and sensitive to subtle changes in white matter development,

if we are to disentangle these complex relationships.

In the Original Research section, different approaches were presented that pro-

vide new ways to map white matter connections in the neonatal brain, using methods

that are specifically tailored to the challenges of this unique population. High-quality

data were used from the developing Human Connectome Project, alongside specially

developed preprocessing schemes that are optimised for this age group (Bastiani et

al., 2019). This allows us to map white matter connections in the neonatal brain

with unprecedented detail and accuracy.

There is a lack of standardised protocols that can be used across different

studies to map a comprehensive set of white matter tracts in neonates. To address

this problem, automated tractography protocols were developed in chapter 4 to map

42 white matter tracts in the neonatal brain. A key advantage of these protocols

is that they have been developed to be compatible with tractography protocols for

the same tracts in the adult human and macaque brains. The protocols were robust

across different ages and data quality, and were used to generate probabilistic tract

atlases from 489 subjects.

The second part of chapter 4 explored the impact of the gyral bias, a method-

ological confound that causes the tractography streamlines to preferentially termi-

nate at the gyral crowns, rather than the sulcal walls or fundi. It was found that
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the gyral bias has less impact on the neonatal connectome than it does in adults,

due to the lower level of gyrification in this age group. We also found that its effects

on whole-brain connectivity matrices can be mitigated by seeding streamlines from

the white matter/grey matter boundary (WGB), rather than throughout the brain

volume.

These whole-brain tractography matrices formed the basis of the work pre-

sented in chapter 5, in which a framework was presented for decomposing whole

brain tractography data into components describing white matter connections and

their associated cortical terminations and networks. This data-driven approach pro-

vides an alternative to the manually-defined tractography protocols described in the

previous chapter and opens new, exciting ways to map connectivity in the brain.

We explored and compared two methods for the decomposition, Independent Com-

ponent Analysis (ICA) and Non-Negative Matrix Factorisation (NMF). NMF was

found to better characterise the non-negative signals in simulated data, similar to

those in the structural connectome. When applied to real data, the NMF white mat-

ter components were shown to resemble a large number of white matter bundles,

while the corresponding grey matter components showed similarity to resting-state

functional networks, as measured with fMRI.

In chapter 6, this data-driven approach was further augmented by a non-

negative dual regression method, which allows the components from a group of

subjects to be projected onto data from an individual subject, or another group of

subjects, while retaining the advantageous non-negative properties of the original

decomposition. Furthermore, the stability of the components was assessed across

subjects. Results indicated that the patterns are robust even in small groups of as

few as ten subjects. As further evidence of the anatomical relevance of these com-

ponents, we used them to produce the first connectivity-based atlas of the neonatal

cortex, which was shown to be stable across subjects and groups.

In summary, this thesis has developed novel approaches for mapping brain or-
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ganisation, which can provide new insight into the development of white matter

connections. There is a broad scope for applying these methods to further popula-

tions and applications, some of which will be overviewed in the following section.

7.2 Future Directions

The analysis methods that have been developed in the preceding chapters enable

new, exciting opportunities for further exploration of brain connectivity and or-

ganisation. Not only can these be applied to further our understanding of early

neurodevelopment, but also in a wide range of other contexts; whether this be

understanding the evolutionary context of the connectome, or developing more ac-

curate subject alignment and cortical parcellation schemes. The following section

outlines the main opportunities.

7.2.1 Cross-Modal Connectivity Analysis: Fusing Diffusion

MRI and Resting-State Functional MRI

The new data-driven approach developed here for structural connectivity and diffu-

sion MRI data mirrors a common analysis pipeline for resting-state functional MRI

data, in which ICA is applied to matrix of functional time-series to yield a set of

grey matter components and their associated time courses (Mckeown et al., 1998).

These resting-state networks are consistent across subjects and correspond to pat-

terns of task-related functional activation (S. M. Smith et al., 2009). In neonates,

resting state networks have also been identified that correspond to those found in

adults (Doria et al., 2010; Fransson et al., 2007). The connection strength within

these networks increases with age during the first years of life (Lin et al., 2008; Gao

et al., 2011)

Using a parallel analysis technique for structural connectivity data provides op-

portunities to explore the links between structure and function (during development



Chapter 7. Future Directions 158

and beyond). The structural components from our NMF approach are obtained in

the same grey matter space as the functional networks, which provides a convenient

route for joint analysis and detailed comparison of structural and functional com-

ponents in the shared grey matter space. Figure 5.11 shows an initial comparison

of the grey matter components across the two modalities, however, more detailed

analysis could explore how the structure-function relationship changes with age or

between different groups. Networks from one modality could be used to constrain

the analysis of another, by looking at the structural connections between the nodes

of a functional network, or vice versa.

Importantly, the data-driven approach presented here can form the basis for de-

vising a data fusion approach to access the joint information in the two modalities.

For example, joint decomposition of the concatenated structural connectomes and

functional time courses would yield a set of joint structural and functional compo-

nents. The structural and functional components could also be used as features for

other methods, such as linked-ICA (Groves et al., 2011), which aim to derive shared

components across modalities that explain inter-subject variation in the data. Such

data fusion approaches may provide greater sensitivity to inter-subject variation

than post-hoc comparison of separate analyses. As dMRI and fMRI have comple-

mentary information on long-range connectivity (but have independent sources of

error), such an approach has the potential to identify patterns in a more robust way

than independent unimodal analyses.

7.2.2 Applications of Non-Negative Dual Regression

In chapter 6, a non-negative dual regression framework was developed to back project

the data-driven structural components onto the data of individual subjects, or of

different subgroups. This provides a subject-level (or different group-level) repre-

sentation of the original group-level components. For example, figure 7.1a shows

one of the group-level components dual regressed onto groups containing subjects
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of different ages. Visual comparison of these components shows differences in the

components across the age range. However, statistical analysis provides a more

quantitative route to assess these changes. The spatial maps obtained from our

approach can be compared across groups of subjects to look for group differences,

using a general linear model (GLM). This approach models the measured data as a

linear combination of the explanatory variables (EVs), which are encoded in a de-

sign matrix. Such an approach has been followed before for fMRI ICA components

(Beckmann et al., 2009; Nickerson et al., 2017). Using non-negative dual regression

would provide a similar analysis paradigm for structural components for the first

time, as illustrated in figure 7.1.

(a) Dual regression (b) GLM analysis

Figure 7.1: Schematic diagram illustrating the statistical analysis of dual-regressed struc-
tural components, with a general linear model.

Although the example in figure 7.1 is demonstrated on the white matter spatial

maps, it could also be applied to investigate the inter-subject variability in the grey

matter structural networks. In the context of neonatal development, this statistical

framework could be used to examine changes in structural connectivity with age, or

as a result of preterm birth. Beyond this, it could be used to measure the alterations

in brain connectivity brought about by aging and disease.
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7.2.3 Exploring the Ontogeny and Phylogeny of Brain Con-

nections

The methods presented in chapters 4 - 6 not only facilitate the mapping of white

matter connections in the neonatal brain, but also provide routes for joint analy-

sis of connectivity across different age groups and across different primate species.

Comparative anatomy studies with non-human primates provide an insight into the

phylogeny, or evolutionary development of white matter connections, whereas map-

ping white matter bundles across the the lifespan allows us to study their ontogeny,

in development and aging.

Connectivity Fingerprinting

How are brain connections linked to brain function? And why are they good probes

of functional specialisation? A basic tenet in neuroscience is that the pattern of

extrinsic connections of a brain region to the rest of the brain is tightly linked to its

functional role in the brain network (Passingham et al., 2002). Connections govern

the way information flows in and out of a region, therefore areas that have distinct

functionality will have a distinct pattern of connections and vice versa. Connectivity

patterns can even be used to predict the location and shape of functional activation

in individuals, for example in response to faces (Saygin et al., 2012). This idea of

unique connectivity signatures or fingerprints underpins brain connectivity research

studies to a large extent.

The frameworks and methodology presented here provide novel ways to map

and utilise connectivity fingerprints. A corollary of the above idea is that if we can

identify similar connection patterns, we can then establish relationships between

functionally equivalent regions, even across diverse brains, such as from humans and

non-human primates (Mars et al., 2018). The baby-XTRACT protocols described

in chapter 4 help in this direction because they are consistent with tractography
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protocols for the adult human and macaque brain (Warrington et al., 2020). The

protocols have been designed to map tracts that are homologous across species and

age-groups. These results can also be used to generate grey matter “connectivity

fingerprints”, the patterns of connections (in terms of white matter tracts) belonging

to each cortical area.

The process of extracting such connectivity patterns is shown in figure 7.2. The

same tracts can be identified in each diverse group (e.g. neonates, adults, macaques),

using standardised protocols that are as consistent as possible between species. Trac-

tography results are unwrapped to 1-D, yielding a (whole brain × tracts) matrix.

Taking a (whole brain × cortex) connectivity matrix (i.e. the connectomes used for

data-driven tractography in chapter 5), a dot product of the two matrices will yield

a (tracts × cortex) connectivity matrix, as shown in figure 7.2. The rows of this

matrix give the cortical termination patterns of each tract, whereas the columns

provide the connectivity fingerprints of each of the grey matter locations.

Figure 7.2: Connectivity fingerprints are calculated by taking the dot product of a cortex-
to-whole brain connectivity matrix with a matrix of tractography maps, unwrapped to 1D.

A selection of the tractography results and their associated cortical termination

patterns are shown in figure 7.3, alongside those from the adult human and macaque.

These results show how the XTRACT protocols can be used to map consistent

patterns of connectivity in these diverse populations, in both the grey and white

matter.



Chapter 7. Future Directions 162

Figure 7.3: Cross-species comparison of tracts and cortical termination patterns from the
XTRACT protocols. Adult human and macaque results were obtained from (Warrington
et al., 2020).

The connectivity fingerprints can be thought of as discrete probability distri-

butions and can be compared using standard metrics of distribution similarity. For

instance, Kullback-Leibler divergence (KL divergence) (Kullback and Leibler, 1951)

can be used as a measure of the relative entropy between two probability distri-

butions. Normalising the connectivity fingerprint of each grey matter location to

sum to one yields a probability distribution describing the likelihood of each tract’s

contribution to its connectivity profile. KL divergence can then be used to compare

each vertex’s connectivity profile with that of each vertex from the other group. A

schematic representation of this process is shown in figure 7.4, comparing the con-

nectivity fingerprint matrix from neonatal subjects N , with that of adult subjects A.
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Mars et al. (2018) used this approach to identify homologue areas between human

and non-human primates. The same idea can be used to study neurodevelopment

and correspondences between the neonatal and the adult brain.

Figure 7.4: Schematic diagram illustrating how Kullback-Leibler divergence can be used
to compare connectivity profiles of different groups. The connectivity profiles of different
vertices are expressed in terms of the contributions of the different tracts, which can then
be compared using KL divergence.

Data-Driven Components

In the previous section the connectivity fingerprints were described in terms of

manually-defined landmarks: white matter tracts obtained using functionally equiv-

alent tractography protocols (i.e. baby-XTRACT and XTRACT protocols). This

has two limitations: firstly, a set of such optimised protocols needs to exist, which

may not always be the case; secondly, these protocols have a limited number of

tracts, which may not be adequate for all patterns and regions that can depend on

other tracts that are not represented in the protocols.

An alternative for exploration of connectivity patterns across species and age-
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groups would be to use data-driven white matter components as reference landmarks.

Our NMF framework provides an ideal avenue for this type of analysis, as it gener-

ates both white matter tracts and their matched grey matter cortical terminations,

without the need for manually-defined protocols. Furthermore, the data-driven com-

ponents are derived from the fully sampled connectome, so describe both long-range

and short-range fibre bundles that may not characterised by standard protocols, de-

pending on the dimensionality of the decomposition. Early results comparing NMF

components from neonates and adults indicate that the NMF components will pro-

vide a valuable basis for connectivity analysis across the lifespan. A selection of

matched components, shown in figure 7.5, show very strong similarity across these

two distinct groups.

Figure 7.5: Comparison of data-driven NMF components from adult and neonatal sub-
jects. Adult data were acquired from the HCP.

In addition, data-driven methods are advantageous for studying connectivity

in species where our knowledge of the brain anatomy is incomplete. For example,

ICA decomposition of connectivity matrices has been used to study white matter

connections in the chimpanzee, a species for which there are no modern atlases of

the neocortex (Mars et al., 2019).
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7.2.4 Connectivity-Based Alignment and Parcellation

Connectivity-based features have recently been used to improve methods for between-

subject cortical alignment and cortical parcellation. Surface-based registration pro-

vides a more natural approach for alignment of features on the cortex than volu-

metric registration, but previous methods have relied on cortical folding to drive the

registration. Including connectivity information in addition to geometric features

has been shown to improve the alignment of functionally homologous brain regions

between subjects (Robinson et al., 2014; Robinson et al., 2018). However, to date

only fMRI have been used for this purpose on a large scale.

Another domain in which multiple modalities can provide complementary infor-

mation is brain parcellation. Parcellating the cortex into neurobiologically distinct

regions has been a major goal of neuroscience for over a century (Van Essen and

Glasser, 2018). A multi-modal parcellation developed by Glasser et al. (2016) was a

ground-breaking effort in this direction, incorporating functional connectivity data

alongside information about myelination and cortical thickness to generate a par-

cellation that is robust and provides neuroanatomically precise delineation of 180

areas in each hemisphere. As described above, areas of functional specialisation can

be identified through their structural connectivity fingerprint, and so NMF features

may provide an additional insight into brain organisation that can build upon these

methods.

The new NMF framework presented in chapter 5 provides data-driven struc-

tural connectivity information on the cortex that could be incorporated into these

schemes in future, to provide additional information and improve accuracy. Figure

7.6 shows how structural connectivity components from NMF could be combined

with information from other modalities to drive both parcellation and surface-based

registration.
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Figure 7.6: Schematic diagram illustrating how complementary information from differ-
ent modalities can be used to inform cortical parcellation schemes or surface-based regis-
tration. Multi-modal parcellation taken from (Glasser et al., 2016).

7.3 Final Remarks

In this thesis, analytical techniques have been developed to map white matter con-

nectivity in a flexible and robust manner, based on the unique challenges of neonatal

brain development. In this final chapter we have discussed how these methods can

be applied beyond the field of neonatal imaging, to map both the ontogeny and phy-

logeny of brain connections, as well as to explore the links between brain structure

and function.

The proliferation of “Big Data” projects provide a wealth of high quality data

for the research community, to improve our understanding of typical brain function

throughout the lifespan and also how brain health deviates from this trajectory

in disease. New analysis approaches are needed to make the most of these data

and to combine the complementary information provided by different modalities.

Computational advances mean that data-driven methods and large datasets can now

be used widely to probe new questions that would not be accessible with traditional
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approaches. This thesis contributes in this direction, by extending a framework of

reproducible tractography protocols, and by introducing new data-driven methods

for connectivity mapping.
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