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Seventeen glass vessels and twenty glass beads recovered from the excavations at the ancient 

city of Malindi and the archaeological site of Mambrui in Kenya, east Africa were analysed 

using electron probe microanalysis (EPMA) and laser ablation-inductively coupled plasma-

mass spectrometry (LA-ICP-MS). The results show that all of the glass samples are soda-lime-

silica glass. They belong to the high alumina -plant ash glass type, characterised by high 

alumina and relatively low calcium contents, widely distributed in eastern (10th – 16th 

centuries AD) and southern Africa (13th - 15th centuries AD), Central Asia (9th – 14th centuries 

AD) and southeast Asia (12th – 13th centuries AD), made with plant ashes and sands. This is an 

understudied glass type for which previous research has indicated there were three types. 

When compared with published research on such glasses using Zr, Ti, Ba, Cr, La, Li, Cs, Na2O, 

MgO and CaO we have identified at least four different compositional groups of v-Na-Al glass: 

Types A, B, C and D. By comparing the results with contemporary v-Na-Al glass vessels and 

beads from Central Asia, Africa, and southeast Asia we show that most of the Malindi and 

Mambrui glass share similar characteristics to the compositions of Mapungubwe Oblate and 

some of the Madagascar glass beads from southern Africa. They belong to Type A v-Na-Al 

glass which is characterised by an elevated level of Ti and Ba and a relatively high ratios of 

Cr/La, relatively low Zr concentrations and low ratios of Zr/Ti. Differences in Zr, Li, MgO and 

Na2O concentrations in Type A glass indicates that there are subgroups which might derive 

from different glass workshop(s) specialising in Type A v-Na-Al glass production. Comparison 

with the chemical compositions of glass from Ghazni, Afghanistan and Termez, Uzbekistan, 

and by using lead isotope analysis, we suggest v-Na-Al glass was manufactured in Central Asia 

and possibly worked into vessels and beads there. 

 

Introduction 
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In recent years, large scale studies of African glass artefacts have been conducted using 

scientific methods such as LA-ICP-MS. These include the study of glass beads from southern 

Africa and east Africa, the studies by Marilee Wood and her colleagues of glass beads from 

Chibuene, southern Mozambique and from Zanzibar [1, 2] and the monumental study of 

southern African glass beads by Peter Robertshaw and his colleagues [3, 4]. Dussubieux and 

her colleagues [5, 6] published reviews of mineral soda alumina glass found in Africa and east 

Asia.  Two types of glass were identified which circulated in Africa: (1) mineral soda alumina 

(designated m-Na-Al) glass and (2) plant ash alumina glass (designated v-Na-Al).  

 

There is a general consensus that there are at least 5 m-Na-Al glass groups, based on the 

concentrations of U, Ba, Sr, Zr and Cs, circulating in eastern and southern Africa in the 9th – 

18th centuries AD [6]. It has been suggested that they were manufactured in India or in Sri 

Lanka. The low magnesia levels (< 1.5%) in m-Na-Al glass suggests that a mineral alkaline flux 

(e.g. reh) was used to make the glass, and the high alumina contents (c. 5% to 15%) suggests 

the use of a low quality sand [6].  

 

The other type of high alumina soda glass, v-Na-Al, was made with plant ashes. This glass was 

also found in the Indian Ocean region and in southeast Asia during the 9th – 16th centuries AD. 

High alumina plant ash glass was also found in Xinjiang, China but mainly dated to before the 

4th century AD [7]. Dussubieux et al. [6] and Robertshaw et al. [3, 4] have identified three 

types of v-Na-Al glass circulating in the Indian Ocean region. The first two types were found 

in beads from Mapungubwe, south Africa, Great Zimbabwe in Zimbabwe and Bosutwe in 

Botswana. The third glass type was used to make vessels. It has been found on the island of 
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Sumatra in Indonesia, Pengalan Bujang in Malaysia and Mtwapa in Kenya (Fig 1). A limited 

amount of research has therefore been carried out on v-Na-Al glass and it is the least 

understood type of glass in the Indian Ocean region. Moreover, it is still not certain where the 

three different types of v-Na-Al glasses identified so far were made.  

 

Fig 1. Locations of sites where v-Na-Al glass and low alumina soda plant ash glass have been 

found. V-Na-Al glass is found in: (1) Central Asia (9th – 14th centuries AD) -  Kuva and Aksiket 

in Uzbekistan, Ghazni in Afghanistan; (2) Kenya - Malindi, Mambrui (15th – 16th centuries AD) 

and Mtwapa (10th – 17th centuries AD); (3) Madagascar (13th – 14th centuries AD); (4) southern 
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Africa (13th – 15th centuries AD) - Mapungubwe, south Africa; (5) southeast Asia - Pengalan 

Bujang in Malaysia (12th – 13th centuries) and Sumatra in Indonesia (12th – 14th centuries AD). 

Low alumina soda glass is found in Nishapur in Iran (9th – 10th century AD) and Samarra (9th – 

10th century AD) in Iraq. (Photograph) courtesy of the U.S. Geological Survey: 

https://viewer.nationalmap.gov/advanced-viewer/viewer/index.html?extent=-

6583299.154%2C-4681356.4382%2C19578955.3912%2C6178816.5406%2C102100 

 

Thus, while chemical analyses have provided evidence for different types of African glass [4-

6, 8, 9], we believe, by including our new data, it is possible to refine the identification of 

African glass types by examining trace elements associated with silica (Zr, Ti, La and Cr) and 

alkalies (Cs and Li). This approach has recently been used by Henderson et al. [10] and 

Shortland et al. [11] to provide a provenance and distinguish between production zones for 

Middle Eastern plant ash glasses in the early Islamic and late Bronze Age periods respectively 

with some success. Moreover, by comparing with v-Na-Al glass of a broad date range it helps 

us to understand when and where v-Na-Al glass was used and how its chemical compositions 

changed over time.  

 

The present paper is part of a study on 9th – 16th centuries AD Malindi and Mambrui glass 

found in the excavations of Malindi and Mambrui by a joint archaeological team from Peking 

University and the National Museums of Kenya in 2010-2013. It focuses on 15th – 16th 

centuries AD glass vessels from Malindi and glass beads from Mambrui. A study of 9th – 15th 

centuries AD glass beads from Mambrui will be published elsewhere [12]. 

 

https://viewer.nationalmap.gov/advanced-viewer/viewer/index.html?extent=-6583299.154%2C-4681356.4382%2C19578955.3912%2C6178816.5406%2C102100
https://viewer.nationalmap.gov/advanced-viewer/viewer/index.html?extent=-6583299.154%2C-4681356.4382%2C19578955.3912%2C6178816.5406%2C102100
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Therefore, by analysing glass vessels and beads from 15th – 16th century AD Malindi and 

Mambrui in Kenya we aim to: 

 

 identify the raw materials that were used to produce these glasses. 

  compare their chemical compositions with published data for similar glass types and 

therefore to refine the identification of different types of the understudied type of 

glass.  

 suggest possible provenance(s) for v-Na-Al glass.  

 identify the possible sources of the lead using lead isotope analysis and thereby the 

location(s) of possible glass workshop(s) that manufactured high lead and tin opaque 

and opaque yellow glasses. 

 

Materials and methods 

Archaeological sites 

 

Malindi 

 

Between 2012 and 2013, Peking University and the National Museums of Kenya formed a 

joint archaeological team to excavate the Malindi Old Town in central Malindi, a coastal city 

on the Indian Ocean in eastern Kenya [13]. During the excavations, five areas, CA, CB, CC, CD 

and CE were excavated. The excavations recovered more than 500 Chinese ceramic sherds, 

more than 1200 Islamic pottery sherds and about 70,000 local earthenware sherds. European 
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ceramics and Indian earthenwares have also been found. Apart from ceramics, fragments of 

glass vessels were found. 

 

 

Fig 2. Excavated area of CA in Malindi, Kenya. Photo of the excavated Area CA in Malindi. 

Remains of the house foundations were found in Area CA, where all of the glass vessels were 

found. 

 

The analysis of imported and local ceramics and radiocarbon dating confirmed 6 stages of 

occupational history in the Malindi Old Town [14]. The relevant stage of occupation for this 

study is Stage 3 (AD 1370 – 1520). This is the period when Malindi reached its peak, and it is 

at this time that Zheng He’s fleet might have arrived in the Malindi area (early 15th century 

AD). The Portuguese led by Vasco da Gama had also landed at Malindi at the end of 15th 

century AD.  
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The settlement was extended southwards and included Areas CA, CB and CD. Houses made 

of stone mixed with lime, corallite and mud were also uncovered during the excavations and 

are dated after the 15th century AD (Fig 2) [14]. 

 

A large quantity of Chinese ceramics (e.g. Longquan celadon) and Islamic ceramics (e.g. 

sgraffito, black-on-yellow, monochrome blue-green glazed wares) were found in Areas B and 

D [13, 14]. There was a marked increase of Islamic ceramics in Malindi in this period, possibly 

due to an increase of trade with the Islamic east. All fragments (a total of seventeen) of glass 

vessels came from Area CA (where the houses were found) in trench 3 context 5. Curiously, 

no glass beads were found in Malindi. A number of Chinese and Islamic pottery were also 

found in this context. The dating of the ceramics suggests context 5 is dated to the 15th – early 

16th centuries AD [13]. 

 

Mambrui 

 

A detailed description of the site and its finds has been published elsewhere [13, 14]. Here 

we briefly describe the site of Mambrui and its finds in the 12th – 16th centuries AD when the 

majority of the v-Na-Al glass beads were imported to Mambrui.  

 

The archaeological site of Mambrui is located in the village of Mambrui, which is located 11km 

from the modern city of Malindi and was excavated between 2010 and 2013 by a joint 

archaeological team from Peking University and the National Museums of Kenya. Twelve 

areas (Areas A – M) were excavated and a large quantity of remains, including house 
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foundations, sanitary facilities, smelting and casting furnaces, walls and wells were discovered. 

The excavators were able to establish the functional areas of the settlement such as a central 

area, elite residences and craft-producing sectors [14].   

 

 

Fig 3. Excavated area of MA in Mambrui, Kenya. Excavation plan of Area MA in Mambrui. 

Most of the glass beads from Mambrui came from Area MA T12, 21 and 24. 
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A large quantity of artefacts was found, including more than 500 Chinese ceramic sherds, 

about 3000 Islamic pottery sherds, more than 130,000 local earthenware sherds and some 

Indian earthenware, iron slag, glass beads, and animal bones [14]. The majority of the glass 

beads came from Area MA trenches (T) 12, 21 and 24 contexts 2 – 4 (Fig 3). The associated 

Chinese ceramics suggests contexts 2-4 are dated to AD 1400 – AD 1520. However, glass 

vessels were not found at Mambrui. 

 

During the 12th – 13th centuries AD, the settlement of Mambrui expanded with its eastern 

boundary almost reaching the coastline, the Qubba Mosque was built and became the centre 

of the settlement. Elite stone-built residences and iron-making workshops were established 

near the mosque in Area E [14]. Maritime trade with countries such as China also grew 

substantially in this period and a substantial quantity of Chinese ceramics was imported to 

Mambrui. 

 

Between AD 1275 and AD 1435 Mambrui reached its peak and the settlement continued to 

expand eastward and southward covering 30 ha. Trade with the Islamic east and China 

flourished, with large quantities of Chinese and Islamic potteries imported to the settlement. 

The discovery of Chinese official blue-and-white and Longquan porcelains suggests the 

Chinese admiral Zheng He and his fleet might have arrived in Mambrui at this time [14]. 

 

But between AD 1435 and AD 1520, Mambrui began to decline. The settlement area shrank 

to 15 ha and a reduced amount of Chinese ceramics in this period suggests trade between 

Mambrui and China had also declined. This could be the result of the Chinese ban on maritime 

trade after the Ming Xuande emperor’s reign (AD 1426 – 1435) and a decision by the 
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Portuguese to maintain Malindi as a centre for maritime trade at the expense of Mambrui 

[14]. 

 

Glass samples 

 

All of the glass vessel fragments (a total of 17) from Malindi were selected for analysis. The 

glass beads were selected on the basis of shapes and colours and the authors tried to include 

all possible glass bead types present in the assemblage. All of the glass samples from the 

Malindi excavations were selected for electron microprobe analysis (EPMA-WDS) and trace 

element analysis using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-

MS). Based on the dating of the Chinese and Islamic ceramics found in the same context, Area 

CA context T3 (5), and radiocarbon dating, the glass vessels are dated to the 15th – early 16th 

centuries AD [13] (Figs 4A - 4E). They were coloured in various shades of green (Table 1). 

Twenty glass beads (Figs 4F - 4O) from the Mambrui excavations were selected only for trace 

element analysis using LA-ICP-MS. They are dated to the 15th – 16th centuries AD and various 

colours, including various shades of green, turquoise and yellow were selected for this study 

(Table 2). The glass samples are currently housed in the School of Archaeology and Museology 

in Peking University, China and permission is required for future access to the materials. All 

necessary permits were obtained for the described study, which complied with all relevant 

regulations. 
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Figure 4. Examples of glass vessels and glass beads from Malindi and Mambrui. (A) A 

fragment of a glass bowl (G01) from Malindi; (B) A fragment of glass vessel (G03) from Malindi; 

(C) Rim of a bottle (G14) from Malindi; (D) The base of a small phial (G18); (E) The base of a 

glass bowl (G20); (F) A truncated bicone from Malindi (B04); (G) An opaque turquoise oblate 

bead (B28); (H) An octagonal rectangular prismatic bead (B41); (I) An opaque yellow tubualr 

bead (B42); (J) An opaque yellow oblate bead (B45); (K) A brownish red spheroid bead (B50); 

(L) A green tubular bead (B52); (M)  A light green oblate bead (B59); (N) A green tubular bead 

(B60); (O) A green oblate bead (B64).   

 

Table 1. Description of the glass vessels from Malindi, Kenya. 

Specimen 

Numbers  

Area-

Context Date Vessel Forms Colour 

G01 CA-T3 (5) 15th – early 16th centuries AD  Bowl fragment Light green translucent 

G02 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G03 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G05 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 
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G06 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green transparent 

G07 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Green transparent 

G08 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G09 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G10 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G11 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G12 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Light green translucent 

G13 CA-T3 (5) 15th – early 16th centuries AD  Bowl fragment Green translucent 

G14 CA-T3 (5) 15th – early 16th centuries AD  Small bottle rim Green translucent 

G15 CA-T3 (5) 15th – early 16th centuries AD  Vessel fragment Dark green (‘black’) 

G16 CA-T3 (5) 15th – early 16th centuries AD  Small bottle rim Light green translucent 

G18 CA-T3 (5) 15th – early 16th centuries AD  Small phial base Green translucent 

G20 CA-T3 (5) 15th – early 16th centuries AD  Bowl base Yellow-green translucent 

They are in the forms of bottles and bowls and are coloured in various shades of green. 

 

Table 2. Description of the glass beads from Mambrui, Kenya. 

Specimen 

Numbers  Area-Context Date Shape Colour  

How it was 

made 

Length x 

diameter 

B04 Heka-1c-T4 AD 1400 - 1520 Truncated bicone  

Dark green 

opaque Wound 16mm x 6mm 

B28 MD-DT1 AD 1400 - 1520 Oblate Green  Drawn 

2.5mm x 

4.5mm 

B41 MA-T25 (2) AD 1400 - 1520 

Octagonal 

rectangular prismatic 

Turquoise 

opaque Drawn 25mm x 20mm 

B42 MA-T21 (3) AD 1400- 1520 Tube 

Yellow 

opaque Drawn 28mm x 14mm 
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B45 MA-T21:F4 AD 1400 - 1520 Oblate 

Yellow 

opaque Drawn 1mm x 3mm 

B50 T12 3 AD 1400 - 1520 Spheroid 

Brownish 

red opaque Wound 4mm x 4mm 

B52 MA-T24 (2) AD 1400 - 1520 Tube 

Green 

Translucent Drawn 4mm x 4mm 

B54 MA-T24 (2) AD 1400 - 1520 Tube 

Brownish 

red opaque Drawn 4mm x 2mm 

B57 MA-T24 (2) AD 1400 - 1520 Tube Green  Drawn 5mm x 4mm 

B58 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 5mm x 4mm 

B59 MA-T24 (2) AD 1400 - 1520 Oblate Light green  Drawn 5mm x 6mm 

B60 MA-T24 (2) AD 1400 - 1520 Tube Green  Drawn 6mm x 5mm 

B61 MA-T24 (2) AD 1400 - 1520 Tube Light green  Drawn 6mm x 8mm 

B63 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 4mm x 5mm 

B64 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 6mm x 5mm 

B65 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 4mm x 5mm 

B66 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 3mm x 7mm 

B67 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 3mm x 4mm 

B68 MA-T24 (2) AD 1400 - 1520 Spheroid Green  Wound 5mm x 4mm 

B72 MA-T24 (2) AD 1400 - 1520 Oblate Green  Drawn 3mm x 4mm 

All of the glass beads are wound and drawn beads and come in different shapes include oblate, 

spheroid, tube and bicone.  

 

Analytical methods 

 

Electron probe microanalysis 
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The glass samples were mounted in cold-setting epoxy resin, and then were ground and 

polished using standard sample preparation procedures down to a 0.02 μm final polishing 

solution. The samples were coated with a thin film of carbon of 25 μm prior to analysis, to 

allow the conduction of the electron beam. The polished samples were analysed by EPMA–

WDS, using a JEOL JXA- 8200 electron microprobe in the University of Nottingham Nanoscale 

and Microscale Research Centre (nmRC). Quantitative compositional analyses were carried 

out using the following analytical set-up: 20kV accelerating voltage, 50nA beam current and 

a 50 μm defocused beam. The counting times were 30s on the peak and 15s on the 

background to either side of the peak. A defocused beam is used to reduce the effect of the 

migration of alkalis within the samples [15]. The EPMA–WDS was calibrated against a 

combination of certified standard reference materials, including minerals (orthoclase, jadeite, 

pyrite, wollastonite and MgO), pure metals (Mn, Ti, Cu, Ag, V, Sb, Zn, Sn, Ni, Co., Cr and Zr) 

and synthetic standards (PbTe, GaP, InAs, KCl, BaF and SrF), and was corrected using phi-rho-

z model. The compositions of 22 elements were sought and were expressed as weight 

percentage oxides. Three areas of interest were analysed in each sample and the mean and 

standard deviation were calculated. So as to check the accuracy and precision of the EPMA–

WDS system and to monitor any drift in the instrument [16], six analyses of a secondary 

standard, Corning B, were included during the analytical run (two sets of analyses at the start 

and another two sets at the end of the sample run, and another two sets of analyses half way 

through the analytical run; for the results, see S1 Table). 

 

Laser ablation-inductively coupled plasma mass spectrometry 
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The glass samples from Malindi and Mambrui were mounted in cold-setting epoxy resin, and 

then were ground and polished using standard sample preparation procedures down to a 

0.02 μm final polishing solution. The polished samples were analysed by laser-ablation-

inductively coupled plasma mass spectrometry (LA-ICP-MS) in Beijing Createch Testing in 

Beijing, China to determine the major, minor and trace elements in the samples. A NewWave 

UP193 nm excimer system and an Analytikjena PlasmaQuant MS Elite model ICP-MS type 

were used. The laser was operated at an energy density of 2.04 J/cm2, a pulse frequency of 

10 Hz and with a beam diameter of 35 μm. Helium is advantageous as a carrier gas and was 

applied in this study [17]. Prior to analysis glass standard NIST SRM 610 was used to calibrate 

the instrument to achieve an optimal state. A 20s pre-ablation time was followed by 45s 

analytical time. Five external standards, NIST 610, NIST 612, BHVO-2G, BCR-2G and BIR-1G, 

were used for external calibration and to calculate the quantitative concentrations for forty-

nine elements. They were measured every ten sample sets (for the results, see S2 Table). We 

have adopted the procedure described by Liu et al. [17] in which by normalising the sum of 

all metal oxides to 100% and calibrating them against multiple reference materials with 

natural compositions, we can precisely determine major and trace elements without the need 

for applying internal standards. Certified values provided by NIST was limited to only a 

number of values, therefore concentrations from Pearce et al. [18] were used for other 

elements. The software ICPMSData Cal. was used to process the data (including correction of 

instrument sensitivity drift, calculation of element contents). We have used the Si values from 

the EPMA to calibrate the LA-ICP-MS data for the Malindi glass vessels and the oxides of the 

glass beads are normalised to 100% assuming that the sum of their concentrations in weight 

percent in glass is equal to 100% [19]. 
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Lead isotope analysis 

 

Lead isotope ratios were measured using a multi-collector inductively coupled plasma mass 

spectrometer (MC-ICP-MS) of the type VG Elemental in the School of Earth and Space at 

Peking University. Small fragments of samples were taken from the glass beads and were 

dissolved in nitric acid, leaching lead into the solutions. The clear solution is then diluted with 

deionised water. We used ICP-AES to measure the lead contents in the solutions which are 

then diluted down to the tolerance limit (1 ug/I) of the instrument. Finally, the thalium (Tl) 

standard SRM997 were then added into the solutions [18, 19]. Repeated analyses of SRM981 

were conducted during the analytical run to check the accuracy and precision of the 

instrument (at the start and end of each sample set) (for the result, see S3 Table).  

 

Results and discussion 

 

Results 

 

Chemical analysis 

 

The full EPMA and LA-ICP-MS results are given in S5 Table and the means and standard 

deviations for selected oxides and elements in the glass samples are presented in Table 4. S4 

Table presents reduced compositions for all samples which are indicated with a * in all graphs 

and tables where applicable. For the glass vessels, we have used the EPMA results for the 
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major and some minor element oxides (Na2O, SiO2, CaO, MgO, K2O and Al2O3) and the LA-ICP-

MS results for other minor and for trace elements. For the glass beads, we have used the LA-

ICP-MS results for the major, minor and trace elements. The glasses are all of a soda-lime-

silica glass type. The high concentrations of K2O* (2.34% - 4.75%) and MgO* (3.17% - 5.13%) 

in the glasses suggest plant ash was the primary alkali flux. All glasses have high 

concentrations of Al2O3* (3.28% - 9.96%), which suggests that impure sand was the main silica 

source [8, 20 (p. 114)]. The CaO* and SiO2* contents vary between 3.94% and 7.90% and 

between 54.24% and 68% respectively. 

 

Table 4. The means and standard deviations of Malindi glass vessels and Mambrui glass 

beads. 

Elements Malindi glass vessels 

(n=17) 

Green Mambrui glass 

beads (excluding 

B04) (n=14) 

Opaque red 

Mambrui 

glass beads 

(n=2) 

SiO2 61.89% ± 1.49% 61.73% ± 1.33% 60.90 ± 0.56 

Na2O 15.86% ± 0.93% 16.30% ± 1.14% 15.25 ± 0.63 

CaO 5.48% ± 1.02% 5.59% ± 0.95% 5.47 ± 0.38 

MgO 4.41% ± 0.30% 4.51% ± 0.54% 3.82 ± 0.02 

K2O 3.10% ± 0.28% 3.11% ± 0.56% 3.74 ± 0.38 

Al2O3 5.67% ± 0.39% 5.61% ± 0.29% 5.55 ± 0.26 

FeO 1.15% ± 0.22% 1.32% ± 0.49% 2.47 ± 0.62 

MnO 0.08% ± 0.03% 0.07% ± 0.02% 0.09 ± 0.05 
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P2O5 0.42% ± 0.12% 0.40% ± 0.07% 0.42 ± 0 

Ti (ppm) 2081 ± 430 2125 ± 432 1828 ± 370 

Li (ppm) 8 ± 2 11 ± 4 12 ± 0.6 

B (ppm) 146 ± 14 163 ± 21 147 ± 8 

Cr (ppm) 23 ± 5 22 ± 3 19 ± 7 

Co (ppm) 14 ± 22 82 ± 177 13 ± 9 

Cu (ppm) 599 ± 629 6906 ± 2330 11133 ± 363 

Zn (ppm) 90 ± 126 50 ± 26 135 ± 124 

Sr (ppm) 377 ± 56 365 ± 49 369 ± 23 

Zr (ppm) 69 ± 10 70 ± 13 67 ± 9 

Sn (ppm) 293 ± 547 178 ± 157 657 ± 382 

Sb (ppm) 6 ± 8 13 ± 5 17 ± 13 

Cs (ppm) 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0 

Ba (ppm) 417 ± 21 406 ± 15 412 ± 15 

La (ppm) 6 ± 1 6 ± 1 6 ± 1 

Pb (ppm) 1363 ± 2111 554 ± 729 4011 ± 2995 

U (ppm) 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 

The results are displayed according to glass forms and colours. Single samples are not listed. 

Only selected oxides (in wt %) and elements (in ppm) are presented here. 

 

The high concentrations of alumina, potash and magnesia, and the relatively low level of 

calcium in some glasses show that they belong to the high alumina-plant ash (v-Na-Al) glass 

[4, 8, 9, 21, 22]. 
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Two glass beads, B04 and B42, are notably different from other glass vessels and beads. B04 

has a higher concentration of Al2O3* (9.96%) and trace elements associated with the silica 

source such as Zr (112.67 ppm), Ti (4912.78 ppm), Nd (21.09 ppm), La (25.11 ppm), V (50.75 

ppm) and Cr (46.24 ppm). On the other hand, B42 has a rather low concentration of Al2O3* 

(3.28%), Ba (165.22 ppm) and Sr (255.72 ppm) as well as an elevated level of La (15 ppm), Nd 

(12.09 ppm) and V (30.14 ppm) that are associated with the silica source. This suggests B04 

and B42 were manufactured with sand sources different from other glass samples in the 

assemblage. Therefore, glass beads B04 and B42 will be excluded from further discussion in 

this paper which focuses solely on v-Na-Al glass. 

 

Generally speaking, the chemical compositions of most of the vessel and bead glasses from 

both sites is quite homogenous which could suggest a single source (S4 Table). Apart from 

glass beads B04 and B42, it is noted that a number of glass beads and glass vessels have 

elevated levels of Na2O* (>16%) and CaO* (>6%) (S4 Table). The main compositional 

difference between the vessels and beads is the elements associated with coloration and 

opacification, Sn, Sb, Co, Cu and Pb, which are higher in the beads (Table 4). 

 

The limited compositional variation includes trace elements associated with the silica used.  

There is a fairly low compositional difference between the glass vessels and beads related to 

the sand source used. They all have a relatively low concentration of Zr (avg. 69 ppm for both 

groups) and Ti (avg. 2081 ppm and 2084 ppm) and the two elements in the beads and vessels 

are positively correlated. Levels of Cr and La are also relatively low (avg. 23 ppm and 21 ppm; 

avg. 6 ppm for both groups respectively), but the concentrations of Ba are relatively high, with 

averages of 417 ppm and 407 ppm in the vessels and beads respectively.  
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The glass vessels and the majority of the glass beads are coloured in variety of green hues, 

ranging from light to dark green (Tables 1 and 2). All of the glass vessels have high 

concentrations of FeO* (0.76% - 1.61%), which is most likely derived from the impurities of 

sands. The green colour is produced by the presence of iron in the glass often as mixed ferric 

(Fe3+) and ferrous (Fe2+) ions [24, 25]. 

 

The opaque red glass bead (B50) contains high levels of Cu (11390 ppm) and FeO* (2.09%). 

The iron in the glass helps to reduce the copper cation, and by heat treating the glass the 

copper particles can be ‘struck’ from the glass matrix, imparting a red colour [26]. The high 

concentrations of lead (6128 ppm) and tin (927 ppm) shows that a tin-based opacifier is 

present. Glass bead B41 contains a high concentration of Cu (14145 ppm): cupric oxide (CuO) 

is present in the glass and produces a turquoise blue colour [25]. Elevated to high 

concentrations of lead and elevated to high concentrations of tin in B41, B45 and B50 suggest 

that a tin-based opacifier (lead stannate) is present [5]. The level of lead in these beads vary 

between 6128 ppm and 75783 ppm and the levels of tin between 927 ppm and 28864 ppm. 

Further examination with an SEM with BSE imaging and XRD would help to investigate this 

further. 

 

Lead isotope analysis 

 

Four glass beads, B41, B45 and B50 from Mambrui were selected for lead isotope analysis 

because of their high lead contents (for the full results, see S6 Table). The lead contents were 

most likely introduced into the glass beads as colourants and opacifiers. Therefore, the lead 
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isotope result reflects the production area of the colourants and opacifiers [27]. The lead 

isotope results show that the glass beads have relatively homogenous lead isotope ratios: 

208Pb/206Pb ratios ranging from 2.0694 - 2.0945, 207Pb/206Pb ratios between 0.8362 and 0.8445 

and 206Pb/204Pb ratios between 18.531 - 18.686. 

 

Discussion 

 

The glass vessels from Malindi and the glass beads from Mambrui can be confirmed as plant 

ash high alumina (v-Na-Al) glass, which has been found in Central Asia [28], southeast Asia 

(e.g. the Island of Sumatra in Indonesia and Malaysia), Mtwapa in Kenya and southern Africa, 

with rare examples occurring in the west [29]. It is characterised by high Al2O3 and relatively 

low SiO2 and CaO [4, 8, 9, 21, 22]. It is dated to the 9th – 16th centuries AD and it became more 

common in southeast Asia during the 12th – 13th centuries AD and in Africa during the 13th – 

16th centuries AD [8, 9, 21, 22]. 

 

Despite a lack of analytical research on sub-Saharan African glass vessels, considerable 

progress has been made on African glass beads, with v-Na-Al glass beads having been found 

in southern Africa (Mapungubwe and Zimbabwe beads series, and Madagascar). A 

comparison between our data and published compositions can shed light on the raw 

materials, production zones and provenance of Malindi and Mambrui glass. By comparing 

with v-Na-Al glasses of a broad date range, the authors believe that it will help us to 

understand when and where v-Na-Al glass were used and how their chemical compositions 

changed overtime. Without looking at v-Na-Al glass from an earlier time period, it is difficult 
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to redefine v-Na-Al glass groups in a way that puts the Malindi and Mambrui glass into a wider 

developmental context.  

 

While lower alumina soda plant ash glass from the Middle East has been found in Africa, which 

suggests a glass-trading network between Africa and the Middle East existed as early as the 

8th century AD [2, 4], the high concentrations of Al2O3 in the Malindi and Mambrui glass means 

(averages of 5.67% and 5.55% respectively) rules out the possibility that they were made in 

western Asia in centres such as Damascus in Syria, Tyre in Lebanon, Banias in Palestine, al-

Raqqa in Syria, Samarra in Iraq, Nishapur in Iran. Plant ash glass from these centres contains 

relatively low concentrations of Al2O3 of between 0.5% and 3.5%, with some containing up to 

c. 4% [10, 30, 31 - 34] (Fig 5). The trace elements of such Middle Eastern glasses are also 

distinct from v-Na-Al glass (see below). 

 

Fig 5. A biplot of Al2O3 versus MgO/CaO for Malindi glass vessels and Mambrui glass beads 

with relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia and 

low alumina soda glass from the Middle East. The data is displayed according to 

compositional groups and sites. Data are from Mtwapa [8]; Mapungubwe Oblate series and 

Zimbabwe series from southern Africa [4]; Pengalan Bujang [9]; Ghazni [23]; Kuva and 

Akhsiket [28]; Nishapur, Samarra and Cairo [10]. It shows that Malindi, Mambrui, v-Na-Al and 

Central Asian glasses are distinguishable from Middle Eastern plant ash glass from Nishapur, 

Samarra and Cairo with higher levels of Al2O3.  

 

Plant ash  
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It has been demonstrated by Barkoudah and Henderson [35] and Henderson [20] that the 

levels of MgO and CaO in plants are primarily determined by the geology of the environment 

where the plants were grown; while the alkali levels (particularly K2O and Na2O) in the plants 

are determined by the physiology of plant species and plant genera [20, 35]. Trace elements 

such as Rb, Li and Cs tend to be associated with the source of alkalies used in glasses [10]. 

 

Fig 5, a plot of Al2O3 versus MgO/CaO, shows that the Malindi glass vessels and Mambrui glass 

beads have similar ratios of MgO/CaO and are similar to the Zimbabwe bead series, a group 

of Mapungubwe Oblate series with low MgO/CaO ratio and the beads from Madagascar. 

What distinguishes between these African glasses compositionally is their Na2O levels (Fig 6). 

The Malindi and Mambrui glass and the Zimbabwe series have a higher concentration of Na2O 

(avg. 15.86%, 16.08% and 14.56% respectively) compared to the Mapungubwe Oblate series 

and the Madagascar glass beads (avg. 13.47% and 13.01% respectively), which may suggest 

different plant species and/or genera from different geological environments were used to 

produce Malindi and Mambrui glasses. Trace element analysis also suggests that different 

sources of plants were used. Fig 7 shows that Malindi and Mambrui glasses are 

distinguishable from southern African and Madagascar glass beads, some with lower Li/K 

ratios. 
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Fig 6. A biplot of MgO versus Na2O for Malindi glass vessels and Mambrui glass beads with 

relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia: Mtwapa 

[8]; Mapungubwe Oblate series and Zimbabwe series from southern Africa [4]; Pengalan 

Bujang [9] and Ghazni [23]. The figure shows that the Malindi glass vessels and Mambrui glass 

beads have higher Na2O than the Mapungubwe Oblate glass beads, which might reflect the 

use of different sources of plant ashes. 
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Fig 7. A biplot of Cs/K versus Li/K for Malindi glass vessels and Mambrui glass beads with 

relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia. The data is 

displayed according to compositional groups and sites. Data are from Mtwapa [8]; 

Mapungubwe Oblate series and Zimbabwe series from southern Africa [4]; Pengalan Bujang 

[9] and Ghazni [23]. It can be seen that Malindi and Mambrui glasses are distinguishable from 

Mapungubwe Oblate glass beads with lower Li/K ratios. This suggests different plant species 

and/or genera from different geological environments were used to produce Malindi and 

Mambrui glasses. 

 

The Malindi and Mambrui glass appears to be different from the glass vessels from Mtwapa 

in Kenya, a settlement on the southern Kenyan coast where v-Na-Al glass vessels were found 

[8]. Much of the Mtwapa glass has higher concentrations of soda and/or magnesia than the 

Malindi and Mambrui glass (Fig 6). It also has a generally higher MgO/CaO ratios than the 

Malindi and Mambrui glass (Fig 5), which means a different type of plant ash, characterised 
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by a relatively high soda and magnesia contents was used to produce the Mtwapa glass 

vessels. The same applies to the southeast Asian glass from Pengalan Bujang in Malaysia, most 

of which contains lower MgO/CaO ratios and higher levels of Na2O (avg. 17.68%) than the 

Malindi and Mambrui glass (Figs 5 and 6). Surprisingly, a group of glass from Pengalan Bujang 

has the same or similar Li/K and Cs/K ratios to the Malindi and Mambrui glass (Fig 7).  

 

Sand source 

 

The high concentrations of Al2O3 (>5%) in v-Na-Al glass, along with high concentrations of 

impurities such as TiO2 and FeO, shows that an impure sand was used to produce this type of 

glass. However, using major and minor elements (e.g. SiO2, Al2O3 and FeO) to distinguish 

between different sand sources proves difficult. Trace elements such as Zr, Ti, Ba, Cr and La, 

which derive mainly from the siliceous matrices (quartz/sand and clay) of glass, are 

increasingly used to distinguish between different sand sources and provide further insights 

into the raw materials used in glassmaking [10, 11, 35].    

 

Zr, Ti, Ba, Cr and La can be found in various minerals in rocks or sediments such as zircon (Zr), 

rutile (Ti), ilmenite (Ti), monazite (La), chromite (Cr) and barite (Ba). The variation of their 

concentrations reflects the local geology of the sand precursors and allows us to differentiate 

sand sources used to make glass [36, 37]. 

 

We can distinguish between different groups of v-Na-Al glasses using Ba versus Zr. Fig 8 shows 

that the Malindi and Mambrui glasses plot closely to the Mapungubwe Oblate series, which 

also has low concentrations of Ba (avg. 486 ppm) and Zr (avg. 119 ppm). They are markedly 
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different from the Zimbabwe series, which is characterised by higher concentrations of Zr 

(avg. 200 ppm) and mainly higher Ba (avg. 635 ppm) (Fig 8). Trace elemental ratios (Cr/La 

versus 1000Zr/Ti) also show that the Malindi and Mambrui glasses plot close to the 

Mapungubwe Oblate series, with lower ratios of 1000Zr/Ti than the Zimbabwe series (45.15 

– 131.33) but similar Cr/La ratios (Fig 9). However, looking at Fig 10, a biplot of Zr versus Ti, it 

can be seen that the Malindi and Mambrui glass has a rather low level of Zr (avg. 69 ppm for 

both groups) compared to the Mapungubwe Oblate series (avg. 119.10 ppm).  

 

Fig 8. A biplot of Ba versus Zr for Malindi glass vessels and Mambrui glass beads with 

relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia. The data is 

plotted according to compositional groups and sites. Data are from Mtwapa [8]; 

Mapungubwe Oblate series and Zimbabwe series from southern Africa [4]; Pengalan Bujang 

[9] and Ghazni [23]. It shows that the Malindi and Mambrui glasses have similar level of Ba to 

the Mapungubwe Oblate glass beads but that the difference in Zr concentrations reflects local 

variations in the mineralogy of the sands used. The difference in the levels of Ba between the 

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00

B
a

Zr

Ba vs. Zr

Malindi glass vessels

Mambrui glass beads

Mtwapa

Madagascar

Mapungubwe Oblate series

Zimbabwe series

Pengkalan Bujang

Ghazni, Afghanistan

Samarra

Damascus

Nishapur

Cairo



29 
 

Malindi and Mambrui glass beads and glasses from Mtwapa in Kenya and Pengalan Bujan in 

Malaysia suggests the use of different sand sources. 

 

Fig 9. A biplot of 1000Zr/Ti versus Cr/La for Malindi glass vessels and Mambrui glass beads 

with relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia. The 

data is displayed according to compositional groups and sites. Data are from Mtwapa [8]; 

Mapungubwe Oblate series and Zimbabwe series from southern Africa [4]; Pengalan Bujang 

[9] and Ghazni [23]. It can be seen that Malindi and Mambrui glasses plot close to the 

Mapungubwe Oblate glass beads with low 1000Zr/Ti and Cr/La. They can be distinguished 

from the Zimbabwe series glass beads that have high 1000Zr/Ti ratios but similar Cr/La ratios. 
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Fig 10. A biplot of Zr versus Ti for Malindi glass vessels and Mambrui glass beads with 

relevant 9th – 16th centuries AD v-Na-Al glass found in Africa and southeast Asia. The data is 

displayed according to compositional groups and sites. Data are from Mtwapa [8]; 

Mapungubwe Oblate series and Zimbabwe series from southern Africa [4]; Pengalan Bujang 

[9] and Ghazni [23]. The figure shows that the Malindi and Mambrui glasses plots close to the 

Mapungubwe Oblate series with low Zr and Ti concentrations. The low level of Zr in Malindi 

and Mambrui glass compared to the Mapungubwe Oblate series suggests that the former was 

produced using a similar sand source to the latter but that the difference in Zr concentrations 

reflects local variations in the mineralogy of the sands used. They also share a similar 

characteristic to Ghazni glass from Afghanistan. 

 

We suggest that the Malindi and Mmabrui glasses were produced using a similar sand source 

to the Mapungubwe Oblate series glass beads but that the differences in Zr concentrations 

reflects local variations in the mineralogy of the sands used. The Zimbabwe series appears to 
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have been produced with an entirely different source of sands characterised by higher 

concentrations of Zr and Ba and lower ratios of 1000Zr/Ti. 

 

Further comparison with Mtwapa glass vessels also shows a marked difference from the two 

Kenyan glass assemblages. The majority of Mtwapa glass has a lower concentration of Ba and 

an elevated level of Zr (avg. 112 ppm) [8]. Fig 9 also shows that Mtwapa glass has lower Cr/La 

ratios (1.20 – 2.52) and higher 1000Ti/La ratios (57.83 – 98.47) than Malindi and Mambrui 

glasses. This therefore shows that it is unlikely that Malindi and Mambrui glasses were 

produced using the same raw materials as Mtwapa glass. 

 

The Malindi and Mambrui glasses are distinct from southeast Asian glass vessels from 

Pengalan Bujang in Malaysia. Most of the Malaysian glass is characterised by a relatively low 

level of Ti (1136 ppm), much lower Ba (179 ppm) and higher 1000Zr/Ti ratios compared to the 

Malindi glass (Fig 8, Fig 9, Fig 10). This suggests they were produced from sand sources with 

different mineralogical contents in different locations. 

 

Therefore, there is a high probability that the Malindi and Mambrui glasses share a similar 

glassmaking tradition to the Mapungubwe Oblate series. They are characterised by an 

elevated level of Ti and Ba and most have overlapping of Cr/La ratios, and lower ratios of 

1000Zr/Ti. However, the Mapungubwe oblate bead compositions display a considerably 

wider compositional variation. The differences in the concentration of Zr, Li/K, CaO and Na2O 

suggests that the Kenyan glasses are a subgroup of the Mapungubwe Oblate beads 

compositions and that they may have come from a different glass workshop which specialised 

in the production of this particular v-Na-Al compositional group. 
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Compositional groups of v-Na-Al glass 

 

Based on the analysis above and previous research on v-Na-Al glass, the authors have 

tentatively identified four possible compositional groups of v-Na-Al glass dating to between 

the 9th and 16th centuries AD. These have been compared with previous analytical research 

on v-Na-Al glass by Robertshaw et al. [4] and Dussubieux and Kusimba [8], which was mostly 

based on major and minor elements or by comparing their results with a relatively limited 

number of glass assemblages.  

 

What we have done here is to define compositional groups by using Zr, Ti, Ba, Cr and La 

associated with sand sources as discriminators (Table 5). Published compositional results for 

comparable glasses with no trace element results have been excluded due to the difficulty of 

dividing groups using major and minor elements only. 

 

Table 5. The means and standard deviations of different high alumina-plant ash glass types 

in Africa and southeast Asia dating to between the 9th and 16th centuries AD. 

 Type A Type B Type C Type D 

 

Malindi 
glass vessel 

Mamrbui 
glass 

beads 
Mapungubwe 
Oblate series Madagascar 

Zimbabwe 
series Mtwapa 

Pengalan 
Bujang 

Date 
15th – 16th 

century 

15th – 
16th 

century 
13th – 14th 

century 
13th – 14th 

century 
14th – 15th 

century 
10th – 17th 
centuries 

12th – 13th 
century 

NaO 
15.86% ± 

0.93% 
16.08% ± 

1.11% 
12.40% ± 

2.09% 
13.01% ± 

1.84% 
14.56% ± 

2.89% 
18.78% ± 

1.27% 
17.68% ± 

1.02 

MgO 
4.41% ± 
0.30% 

4.33% ± 
0.59% 

5.28% ± 
1.84% 

3.92% ± 
0.50% 

4.01% ± 
0.74% 

5.28% ± 
0.44% 

4.54% ± 
0.72% 

Al2O3 
5.67% ± 
0.39% 

5.55% ± 
0.41% 

7.18% ± 
1.43% 

4.96% ± 
1.20% 

6.51% ± 
1.14% 

5.73% ± 
0.68% 

4.95% ± 
0.58% 
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K2O 
3.10% ± 
0.28% 

3.15% ± 
0.55% 

3.30% ± 
0.58% 

3.12% ± 
0.77% 

3.54% ± 
0.60% 

2.72% ± 
0.29% 

2.53% ± 
0.23% 

CaO 
5.48% ± 
1.02% 

5.50% ± 
0.87% 

6.13% ± 
1.73% 

4.29% ± 
0.72% 

6.54% ± 
1.30% 

5.08% ± 
0.47% 

4.02% ± 
0.43% 

Ti 2081 ± 430 
2084 ± 

418 2556 ± 688 2020 ± 723 
2370 ± 

407 
1532 ± 

270 
1136 ± 

180 

Sr 377 ± 56 361 ± 46 489 ± 120 352 ± 125 487 ± 104 400 ± 92 283 ± 35 

Zr 69 ± 10 69 ± 12 119 ± 25 110 ± 52 200 ± 38 112 ± 12 94 ± 14 

Ba 417 ± 21 407 ± 30 486 ± 126 353 ± 191 635 ± 174 679 ± 816 179 ± 69 

1000Zr/Ti 34 ± 3 34 ± 3 48 ± 15 56 ± 24 86 ± 16 75 ± 10 84 ± 15 

Cr/La 3.72 ± 0.54 
3.53 ± 
0.65 3.88 ± 1.51 3.99 ± 2.71 

3.63 ± 
1.28 

2.00 ± 
0.32 

1.57 ± 
0.45 

Only selected major oxides and trace elements associated with sand and plant ash sources 

are presented here.  

 

(1) Type A – consists of 15th – 16th century AD Malindi glass vessels and Mambrui glass beads, 

glass beads from 13th – 14th century AD Madagascar [3] and the 13th – 14th century AD 

Mapungubwe Oblate series [4]. This group is characterised by elevated levels of Ti and Ba and 

relatively high Cr/La ratios, but with low 1000Zr/Ti ratios. It is likely that these glasses were 

manufactured in the same glassmaking tradition and appeared in the 13th – 14th centuries AD 

in southern and eastern Africa. But by the 15th – 16th centuries AD, a subgroup of Type A was 

found in Malindi and Mambrui and seems to have replaced the earlier subgroup of Type A 

glass.  

 

Although their overall characteristics remain the same, we have noticed some glass 

compositional differences between the Malindi and Mambrui glass on the one hand, and the 

earlier the Mapungubwe Oblate series and Madagascar beads on the other hand. It has been 

noted above that different plant species/genera and/or plants from different geological 

locations might have been used to produce the Malindi and Mambrui glass assemblages, 

based on the differences in the concentrations of NaO, MgO, Li and CaO. Moreover, the 



34 
 

somewhat lower Zr concentrations (Fig 10) and 1000Zr/Ti ratios (Fig 9) probably indicates 

local variations in the mineralogical characteristics of the sands used and suggests that they 

were made in different workshops in different geological locations from the Madagascan 

glass beads and the beads constituting the Mapungubwe Oblate series. Therefore, the 

authors believe the Malindi and Mambrui glasses represent a subgroup of Type A. 

 

(2) Type B – 14th – 15th century AD Zimbabwe series: Despite the use of a compositionally 

similar plant ash to make especially the Malindi and Mambrui glass, Type B has the highest 

concentrations of Zr and Ba out of all other groups and a relatively high ratio of Cr/La. A 

distinctive sand source must have been used to produce the glass in this group.  

 

(3) Type C – 10th – 17th centuries AD Mtwapa glass vessels: this group has lower levels of Ba 

and Ti than Types A and B and lower concentrations of Zr than Type B. Mtwapa glass vessels 

also have lower Cr/La ratios than Types A and B indicating that sand sources with different 

mineralogical signatures were used to produce Type C. The higher levels of Na2O in Type C 

shows that a distinctive plant genera/species was used. Current evidence suggests this type 

of v-Na-Al glass was only used to make glass vessels and can only be found in Mtwapa in Kenya 

[8].  

 

(4) Type D – 12th – 13th century AD Pengalan Bujang: similar to Type C, this group has lower 

concentrations of Ba and Ti than Types A and B as well as lower concentrations of Zr than 

Type B. What distinguishes Type D from Type C is the concentrations of CaO, MgO, Ti, Sr and 

the Cr/La ratios. Type D has lower concentrations of CaO, MgO, Ti and Sr than Type C, and 

higher Cr/La ratios. This shows that different plant ashes and sand sources were used to make 



35 
 

it. This type of v-Na-Al glass has only been found in Malaysia and does not seem to have been 

used in Africa. Only glass vessels were made with this glass type [9]. 

 

The provenance of v-Na-Al glasses 

 

While we can identify different compositional groups of v-Na-Al glass, the provenance of v-

Na-Al glass remains elusive. The lack of archaeological evidence for primary glass workshop(s) 

that fused plant ash and sand to make v-Na-Al glass means we are still unable to provenance 

individual compositional group of v-Na-Al glass. There is no conclusive evidence to suggest 

that v-Na-Al glass was manufactured in eastern and southern Africa; in Shanga, eastern Africa, 

only evidence for glass bead making was found [38]. It is assumed that these glass artefacts 

were manufactured outside Africa and imported from regions that were known to have 

produced v-Na-Al glass. Possible sources are Central Asia, such as Kuva and Akhsiket in 

eastern Uzbekistan, suggested by Dussubieux and Kusimba [8], Then-Obluska and Dussubieux 

[39] and Carter et al. [40]; India and southeast Asia have also previously been suggested as 

the possible production regions for v-Na-Al glass [4, 8, 22, 28, 41]. However, the lack of 

archaeological and archaeometric data on sub-Saharan African glass means that we cannot 

fully rule out the possibility that v-Na-Al glass could have been made and/or worked into glass 

vessels and beads in Africa, although this seems unlikely. 

 

Recent analytical research on glass from Termez in southern Uzbekistan (Henderson 

unpublished), Kuva and Akhsiket (a primary production glass centre) in eastern Uzbekistan 

[28, 42] and Ghazni in Afghanistan [23] may provide some clues about the provenance of v-

Na-Al glass. The Uzbek and Afghan glasses are characterised by elevated levels of Al2O3, high 



36 
 

MgO as well as relatively low ratios of Cr/La and 1000Zr/Ti [23, 28, 34]. They are different 

from Middle Eastern plant ash glass which generally has higher Cr/La and lower levels of Al2O3 

[10].    

 

Looking at the major and minor elements, some of the Kuva and Akhsiket glasses and a small 

number of Ghazni glass have high concentrations of Al2O3 similar to v-Na-Al glasses from 

Africa and southeast Asia [23, 28]. However, it should also be noted that some Central Asian 

including Ghazni glasses have Al2O3 below 4% [28, 42, Henderson pers. comm.] and may 

reflect different production zones within it. It is also noted that some of these high Al2O3 

Ghazni, Kuva and Akhsiket glasses have K2O below 4%, similar to v-Na-Al glass (Table 5). 

Henderson et al. [7] suggest the plants used to make the Uzbek glasses grew on a contrasting 

geology to those used to make other Central Asian glasses with high K2O.  

 

The Kuva and Ghazni glasses have similarly high MgO/CaO ratios to Type A, while most of the 

Akhsiket glass has lower levels of MgO than the majority of the v-Na-Al glass [23, 28]. However, 

the Na2O concentrations of the Kuva and Ghazni glass are significantly higher than most Type 

A glasses comparable to Types C and D, while most of the Akhsiket glass has similar 

concentrations of Na2O to Type A glasses [23, 28].  

 

Further, trace element analysis reveals similarities between the Central Asian, including 

Ghazni and v-Na-Al glasses. It can be seen in Fig 9 that the majority of the Ghazni glass has 

especially low ratios of 1000Zr/Ti and Cr/La similar to v-Na-Al glass. The Termez and Ghazni 

glasses fall within the area of the Mtwapa and Pengalan Bujang glass (Fig 9). The Ghazni glass 
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also has rather low levels of Ba (Fig 8) and Sr. The levels of B in Ghazni glass, which is 

associated with the alkali source, are also relatively high (>190ppm) [23]. 

 

Fiorentino et al. [23] suggest the glass vessels and bracelets from Ghazni in Afghanistan 

belong to the so-called Mesopotamian type 1 compositional group, which includes glasses 

from Veh Ardasir, Samarra and Ctesiphon in Iraq and Nishapur in Iran [23].  

 

However, while most v-Na-Al, Central Asian and the Ghazni glasses may have similar 

MgO/CaO ratios and Na2O level to glass assemblages from the area consisting of modern day 

Iran and Iraq, Cs/K and Li/K ratios in v-Na-Al glasses and some Ghazni glasses have significantly 

lower Li/K ratios than Nishapur and Samarra glasses [10]. Although low Cs/K and Li/K ratios 

can be found in glass from the Levantine region and Egypt such as some 12th - 14th century 

AD glass vessels from Damascus and Beirut [10], some Central Asian glasses contain distinctly 

lower levels.  

 

Because Levantine and Egyptian glasses have low Al2O3 levels, it is very unlikely that v-Na-Al, 

Central Asian and the Ghazni glasses were made in the region, or in the Mesopotamian region. 

Moreover, v-Na-Al glass and the Ghazni glass contain higher B levels than found in 

Mesopotamian and Levantine glasses [10, 23]. 

 

Furthermore, v-Na-Al glass, Central Asian glass from Ghazni are distinguishable from Nishapur 

and Samarra glasses based on the ratios of 1000Zr/Ti and Cr/La. Nishapur and Samarra glasses 

generally have higher 1000Zr/Ti and Cr/La ratios than v-Na-Al glass, Central Asian glass and 

the Ghazni glass [10]. Low Zr/Ti ratios appears to be a distinctive characteristic of Ghazni 
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glasses; glasses from Samarra, Nishapur, Damascus and Cairo all have higher values. Low 

1000Zr/Ti and Cr/La ratios are found in 12th – 14th century AD Beirut colorless vessel glasses 

(Beirut samples 54 and 55) [10]. Both are distinctive because they contain more than 4% K2O 

(4.04% and 4.1% respectively) which in any case suggests a Central Asian origin [43].  While 

these 2 glasses have similarly low Cr/La ratios of c. 2, their 1000Zr/Ti values are higher than 

the Malindi and Mambrai glasses at c. 50 and therefore similar to Ghazni glasses. Moreover, 

143Nd/144Nd and 87Sr/86Sr signatures for these 2 glasses are distinctive [43].  

 

Therefore, our analysis shows that the Ghazni glass is compositionally similar to v-Na-Al glass 

and Central Asian glass and it is unlikely to have been made in Iraq or Iran as was suggested 

by Fiorentino et al. [23] or in the Levantine and Egyptian regions. Trace element analyses 

suggests v-Na-Al and the Ghazni glass came from Central Asia. The Ghazni glass may well 

belong to a type of v-Na-Al glass circulating in Central Asia including Afghanistan. 

 

Lead isotope analysis suggests opaque and opaque yellow glass from Mambrui might have 

been produced with lead-tin opacifiers and colourants originating from Turkey and the Middle 

East such as Iran. Glass beads, B41, B45 and B50, fall within a range of 2.0694 – 2.0945 for 

208Pb/206Pb and within a range of 0.8362 – 0.8445 for 207Pb/206Pb, which is similar to a tin-lead 

ore from Giresun in northeastern Turkey, a lead ore found in Khaneh Sormeh in Isfahan, Iran, 

Nakhlak mine in Iran and two glazes from Farinjal in Afghanistan (Fig 11) [44, 45]. The 

206Pb/204Pb ratios of these four beads also suggest the origin of the lead contents in the glass 

might have come from these regions which share similar lead isotope ratios (Fig 12) [44].   
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Fig 11. Lead isotope ratios 208Pb/206Pb and 207Pb/206Pb of glass beads from Mambrui, ores 

from Iran and Afghanistan and artefacts from Afghanistan, India, Indonesia, Cambodia and 

Iran. Data are from Phum Snay [46]; Lead from Anguran and Arak-Kashan, Anguran mine, 

Khaneh Sormeh, Nakhlak mine and various Iranian ores [44]; Farinjal ores and glazes and a 

sherd of Ghazni glaze [45]; Elazig and Giresun [47]. It is noted that the Mambrui glass beads 

with high lead contents have similar lead isotope ratios to lead ores from Khaneh Sormeh, 

Nakhlak mines and Kouchke in Iran, and a tin-lead ore from Giresun in northeastern Turkey. 
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Fig 12. Lead isotope ratios 206Pb/204Pb and 207Pb/206Pb of glass beads from Mambrui, ores 

from Iran and Afghanistan and artefacts from Afghanistan, India, Indonesia, Cambodia and 

Iran. Data are from Phum Snay [46]; Lead from Anguran and Arak-Kashan, Anguran mine, 

Khaneh Sormeh, Nakhlak mine and various Iranian ores [44]; Farinjal ores and glazes and a 

sherd of Ghazni glaze [45]; Elazig and Giresun [47]. It is noted that the Mambrui glass beads 

with high lead contents have similar lead isotope ratios to lead ores from Khaneh Sormeh, 

Nakhlak mines and Kouchke in Iran, and a tin-lead ore from Giresun in northeastern Turkey.
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At present, we can rule out the possibility that the high tin and lead glass beads were 

produced with lead sources from southeast Asia such as the Song Toh lead mine in Thailand 

[46] (Fig 11 and Fig 12), which has different lead isotope ratios from the Mambrui glass beads. 

 

However, a disadvantage of lead isotope analysis is that it is difficult to separate between 

regions with similar lead isotopic ratios, thus making it difficult to rule out regions with similar 

isotopic ratios. Moreover, we cannot rule out the possibility that tin-based opacified glass of 

different origins was recycled and the isotopic signatures of the opacifiers have been 

distorted. Therefore, at this stage, we can only suggest the source for the lead used in the 

beads most likely came from regions in Asia Minor and the Middle East, such as Turkey and 

Iran and can safely rule out regions in southeast Asia and south Asia. 

 

The authors intend to analyse the Malindi and Mmabrui glass further using Sr and Nd isotope 

in order to investigate its provenance in more detail [48]. In recent years, radiogenic isotopes 

(e.g. Sr and Nd isotopes) are proven to be effective to in provenancing ancient glass and 

sources of sand raw materials [49, 50, 51].   

 

Conclusion 

 

Based on the EPMA and LA-ICP-MS analyses, the glass analysed here from Malindi and 

Mambrui in Kenya can be classified as the plant ash high alumina glass type. This type of glass 

is mostly found in Africa and southeast Asia in the 9th – 16th centuries AD. Combining our 
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results, especially for Cr, La, Ti, Zr, Ba, Cs and Li, with published research on v-Na-Al glass, we 

have reviewed the existing compositional characteristics of v-Na-Al glass and are able to 

identify at least 4 types, of which the Kenyan glass belongs to Type A. The similarity between 

Central Asian glass from Uzbekistan, v-Na-Al and the Ghazni glass in Afghanistan indicates 

strongly that v-Na-Al glass of type A was manufactured in Central Asia. Lead isotope analysis 

further suggests lead-tin opacifiers and colourants came from ores in Turkey and/or Middle 

East such as Iran.  

 

Our results also reveal a complex glass trading network across Central Asia, south Asia and 

Africa in the 9th – 16th centuries AD. While the glass vessels (along with their contents) could 

have been traded directly from Central Asia, where plant ash glass vessels are known to have 

been made, to Africa to sites such as Malindi and Mtwapa, there is very little evidence that 

Central Asian glass was traded directly to Africa. We therefore believe that Central Asian glass 

could have reached Africa via India, where a thriving glass industry existed in the 9th – 16th 

centuries AD.  

 

There is ample historical and archaeological evidence to support this trading network. 

Cultural and trading relationships between Central Asia and India are well attested in 

historical and archaeological records. For instance, the conquest of India by people from 

Central Asia in the 10th – 13th centuries AD led to the growth of caravan trade between India 

and the Muslim East. Coins of the Delhi Sultanate are found in Central Asia [52, 53]. By the 

13th century AD, Delhi became a melting pot of Indo-Muslim culture in India. Scientists and 

poets from Otyrar, Samarkand, Bukhara and Balh found a ‘new Motherland in India and 

enriched its culture by their work and increased its glory’ [53]. 
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Indian-Central Asian relations continued into the 16th century AD. The establishment of the 

Mughal Empire in northern India encouraged and intensified cultural and trading contacts 

with Central Asia. Indian merchants from northern India started trading in the north to 

Afghanistan, Iran, Central Asia and Kazakhstan [53]. Therefore, it is not impossible that v-Na-

Al glass from Central Asia was exported to India, where glass bead making was most 

renowned in the 9th – 16th centuries AD. It was from India where Central Asian v-Na-Al glass 

and (recycled) opacifiers and colourants from Asia Minor and/or Middle East such as Iran 

were made into beads and subsequently exported to Africa. But further archaeological and 

scientific investigations on v-Na-Al glass are needed to provide more evidence to support this 

hypothesis. 

 

Indian glass beads were prized by locals in Africa from the 9th – 16th centuries AD. Portuguese 

records indicate that locals in Africa were unwilling to accept European-made beads and 

demanded beads that were made in India [54]. Glass beads, such as the East Coast Indo-

Pacific series, are said to have been manufactured in northern India and traded to east African 

coastal cities such as Shanga in the 10th – 13th centuries AD [55]. Glass beads from India 

continued to be exported to Africa before European beads took over the market in the 17th 

century AD. Therefore, we believe that Central Asian glass could have been traded directly to 

India where Central Asian glass was manufactured into glass beads, which were then traded 

to Africa. But so far there are no v-Na-Al glass has ever been found in India, further 

archaeological and scientific researches on Indian glass and v-Na-Al glass are needed to 

further support this hypothesis and to ascertain whether v-Na-Al glass was used to make glass 

beads in India. 
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