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Abstract

Efflux pumps are an essential mechanism for bacteria that can account for antibiotic

resistance. If an efflux pump can expel an antibiotic so that its concentration within

the cell is below a killing threshold the bacteria can become resistant to the antibiotic.

Efflux pumps may be specific or they may pump various different substances and com-

pounds. The latter is one main reason that many efflux pumps are linked with multi

drug resistance (MDR). In particular overexpression of the AcrAB−TolC efflux pump

system is commonly linked with MDR in both Escherichia coli (E. coli) and Salmonella.

We look at the complex gene regulation network (GRN) central to controlling the efflux

pump genes acrAB and acrEF in Salmonella and their resulting effect on intracellular

antibiotic concentration. By using mathematical modelling, we first represent the gene

regulatory network solely, we present a model in the form of a system of ordinary differ-

ential equations (ODEs). Using time dependent asymptotic analysis, we can examine in

detail the behaviour of the efflux system on various different timescales before analysing

asymptotically approximated steady states. In our second model, we produce a spatial

model governing the diffusion and efflux of antibiotic in Salmonella, via the efflux pumps

AcrAB, AcrEF, MdsAB and MdtAB. Using parameter fitting techniques on experimental

data, we are able to establish the behaviour of multiple Salmonella strains, which enables

us to produce efflux profiles for each individual efflux pump system. In our final model,

by using insights from our asymptotic analysis we produce a multiscale model, combining

our ODE and PDE models. This model implements a feedback mechanism between the

intracellular antibiotic concentration and components of the GRN, enabling us to model

the behaviour of the bacteria in response to antibiotic. By performing parameter sensi-

tivity analysis, we are then able to look into various different methods to inhibit efflux

pumps, preventing expulsion of antibiotic to counter MDR.



ACKNOWLEDGEMENTS

Firstly, I would like to thank my University of Birmingham supervisor Dr Sara Jabbari.

Your support and guidance throughout my research have gone beyond all measure and I

have the utmost admiration and respect for you. I would also like to thank my University

of Nottingham supervisor Professor John King. I am so appreciative to have had the

opportunity to work with someone so incredibly knowledgeable. I am very grateful to

the collaboration of the University of Birmingham and the University of Nottingham to

provide me with a joint scholarship and thank EPSRC for funding my research. I would

like to thank my experimental collaborators, of special note Dr Jessica Blair, it has been

an absolute pleasure working with you. I would like to thank all of my friends, many from

the University of Birmingham Swimming Club, for supporting me through this journey.

Finally, I would like to thank my parents Sharon and Lawrence, sister Sophie and partner

Joel. I am sure you will all be ecstatic that I am one step closer to getting a “job”!!



CONTENTS

1 Introduction 1

1.1 Antibiotic resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gram-Negative bacteria including Salmonella . . . . . . . . . . . . . . . . 2

1.3 Efflux pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Gene regulatory networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Antibiotic adjuvants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Previous mathematical models of efflux pumps and gene regulatory networks 8

2 Model formulation 15

2.1 Model schematic & reactions . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Modelling activation and inhibition of gene transcription . . . . . . . . . . 20

2.2.1 One protein and one binding site . . . . . . . . . . . . . . . . . . . 20

2.2.2 Two proteins with one binding site each . . . . . . . . . . . . . . . 22

2.2.3 Two sets of two proteins binding to one binding site for each set . . 24

2.3 Ordinary differential equation models . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Time-dependent asymptotic analysis 35

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Nondimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Parameter grouping sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



3.4 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Asymptotic analysis for ε→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Asymptotic analysis of the wild-type dynamics . . . . . . . . . . . . . . . . 43

3.6.1 Timescale 1: mRNA transcription . . . . . . . . . . . . . . . . . . . 45

3.6.2 Timescale 2: Protein translation . . . . . . . . . . . . . . . . . . . . 51

3.6.3 Timescale 3: SoxS and EnvR translation . . . . . . . . . . . . . . . 54

3.6.4 Timescale 4: acrAB mRNA transcription . . . . . . . . . . . . . . . 57

3.6.5 Timescale 5: AcrAB translation . . . . . . . . . . . . . . . . . . . . 60

3.6.6 Timescale 6: mRNA degradation and full protein translation . . . . 63

3.6.7 Timescale 7: Degradation of RamA, inhibition of acrAB and acrEF 67

3.6.8 Timescale 8: AcrEF degradation . . . . . . . . . . . . . . . . . . . 71

3.6.9 Timescale 9: final timescale, protein degradation . . . . . . . . . . . 75

3.6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Asymptotic analysis of the mutant dynamics . . . . . . . . . . . . . . . . . 81

3.7.1 Timescale 1: mRNA transcription . . . . . . . . . . . . . . . . . . . 81

3.7.2 Timescale 2: protein translation . . . . . . . . . . . . . . . . . . . . 84

3.7.3 Timescale 3: SoxS and EnvR translation . . . . . . . . . . . . . . . 87

3.7.4 Timescale 4: acrAB mRNA transcription . . . . . . . . . . . . . . . 90

3.7.5 Timescale 5: AcrAB translation . . . . . . . . . . . . . . . . . . . . 93

3.7.6 Timescale 6: mRNA degradation and full protein translation . . . . 96

3.7.7 Timescale 7: activation of acrAB by RamA . . . . . . . . . . . . . 99

3.7.8 Timescale 8: ramA mRNA reaching steady state . . . . . . . . . . . 103

3.7.9 Timescale 9: degradation of RamA protein . . . . . . . . . . . . . . 107

3.7.10 Timescale 10: full protein degradation, with all proteins reaching

steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.7.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.8 Steady State Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



4 A spatial model of substrate efflux 121

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Cell model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.3 Model Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5 Parametrisation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6 Parametrisation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.7.1 Zero far field boundary condition . . . . . . . . . . . . . . . . . . . 149

4.7.2 No-flux boundary condition . . . . . . . . . . . . . . . . . . . . . . 157

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5 Spatial Model Improvements 166

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Bound ethidium bromide model formulation . . . . . . . . . . . . . . . . . 167

5.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.2.2 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.2.3 Variable Efflux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4 Parametrisation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.6 Improving the wild-type fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.6.1 Variable Efflux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.6.2 Substrate Dependent Efflux . . . . . . . . . . . . . . . . . . . . . . 192



5.7 Compartmental Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6 Multiscale Model 207

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2 GRN Model Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.4 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.4.1 Wild-type strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.4.2 EST strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.4.3 RamR mutant strain . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.4.4 EST RamR mutant strain . . . . . . . . . . . . . . . . . . . . . . . 230

6.5 Network Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7 Conclusions 246

List of References 254



LIST OF FIGURES

1.1 The differences in structure between Gram-negative and Gram-positive

bacteria between the plasma membrane and the capsule. On the left we ex-

hibit Gram-Negative with its double membrane structure, whereas on the

right we have the Gram-Positive singular membrane structure. Recreated

from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The AcrAB-TolC system common in E. coli and Salmonella, exhibiting

proton motive force. Reproduced from [70]. . . . . . . . . . . . . . . . . . . 4

1.3 Processes of gene regulation and protein synthesis. We exhibit here a gene

in the DNA (blue helix) being transcribed to mRNA (red strand), the

mRNA is then translated to create a protein (orange chain). Here both

mRNA and protein undergo degradation. We also exhibit by the dashed

lines the potential activation or inhibition from a protein within the system

upon the transcription and translation processes. . . . . . . . . . . . . . . 6



1.4 The GRN governing the expression of acrAB in Salmonella. We represent

activator genes in green, repressor genes are coloured red and the efflux

genes in blue. The shapes along the lines with text in italics are the genes

themselves, with shapes under the top line being lesser underlying regu-

lators. The other shapes without text are the proteins produced by the

genes. If a protein is on the same line before a gene, it is either activat-

ing or repressing the gene’s transcription. We note the yellow enzyme Lon

Protease, this enzyme degrades RamA protein. Finally, the dashed lines

show the processes that are limited when the triangular protein RamR is

bound. This network has been reproduced from [10]. . . . . . . . . . . . . 7

2.1 A schematic diagram exhibiting the regulation of acrAB expression. In

the rectangles we have the genes involved in this network, the shapes first

linked out from these genes are the proteins produced by them (we omit

most mRNA stages for simplicity). The two shapes not linked to the genes

are the enzyme Lon Protease and the translation activator CsrA. Solid

lines capture the behaviour of both the wild-type and RamR variant, while

the dashed line is relevant only for the wild-type. The dotted line shows

potential inhibition of acrR expression whilst finally the dashed dotted line

represents our link between expression of both efflux pumps. Here the rates

ki for i = 1, ..., 7 are rates of transcription, whereas mi are rates of translation. 19

2.2 One protein with one binding site. Here we exhibit the protein X binding

to the site at rate α1 and unbinding from the site at rate β1. . . . . . . . . 21

2.3 Two proteins with two distinct binding sites. Here we exhibit the protein

X binding to a site at rate α1 and unbinding from the site at rate β1. We

also have a different shape protein Y binding to a different binding site at

rate α2 and unbinding from the site at rate β2. . . . . . . . . . . . . . . . . 23



2.4 Two sets of two proteins binding to one binding site for each set. Here we

exhibit the protein W binding to a site at rate α1 and unbinding from the

site at rate β1. This protein is in competition to bind for the same site as

protein X which binds to the site at rate α2 and unbinds from the site at

rate β2. We also have a different shape protein Y binding to a different

binding site at rate α3 and unbinding from the site at rate β3. This protein

is in competition to bind for the same site as protein Z which binds to the

site at rate α4 and unbinds from the site at rate β4. . . . . . . . . . . . . . 26

2.5 Plots of numerical simulations of the GRN model (2.41)-(2.54) using ode45

in MATLAB. For each mRNA and protein, we exhibit the differences be-

tween the wild-type and the RamR mutant strains. We limit the time of

the simulations to 300 minutes. . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Numerical simulations of the nondimensionalised model (3.23)-(3.36) with

down regulated initial conditions of 0.01 for all variables. We use ε = 0.01

and all other parameters are unity. . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Asymptotic approximations on timescale 1 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε), so we expect the asymptotics to be

accurate around T = ε = 0.01. For reference, the subsequent timescale

has time at O(ε
1
2 ). Most figures are still at initial condition, as no reaction

terms have come into their equations at leading order. . . . . . . . . . . . . 50

3.3 Asymptotic approximations on timescale 2 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε
1
2 ), so we expect the asymptotics to be

accurate around T = ε
1
2 = 0.1. For reference, the previous and subsequent

timescales have time at O(ε) and O(ε
1
4 ) respectively. . . . . . . . . . . . . . 53

3.4 Asymptotic approximations on timescale 3 for the wild-type dynamics

(ε = 0.01). On this timescale, time is O(ε
1
4 ) ≈ 0.3162, so we expect the

asymptotics to be accurate around T = ε
1
4 . For reference, the previous and

subsequent timescales have time at O(ε
1
2 ) and O(ε

1
6 ) respectively. . . . . . 56



3.5 Asymptotic approximations on timescale 4 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε
1
6 ), so we expect the asymptotics to

be accurate around T = ε
1
6 ≈ 0.4642. For reference, the previous and

subsequent timescales have time at O(ε
1
4 ) and O(ε

1
8 ) respectively. Note we

depict the simulations over a longer period of time than earlier timescales. 59

3.6 Asymptotic approximations on timescale 5 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε
1
8 ), so we expect the asymptotics to

be accurate around T = ε
1
8 ≈ 0.5623. For reference, the previous and

subsequent timescales have time at O(ε
1
6 ) and O(1) respectively. . . . . . . 62

3.7 Asymptotic approximations on timescale 6 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(1), so we expect the asymptotics to

be accurate around T = 1. For reference, the previous and subsequent

timescales have time at O(ε
1
8 ) and O(ε−

1
2 ) respectively. Note we depict the

simulations over a longer period of time than earlier timescales. . . . . . . 66

3.8 Asymptotic approximations on timescale 7 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε−
1
2 ), so we expect the asymptotics to be

accurate around T = ε−
1
2 = 10. For reference, the previous and subsequent

timescales have time at O(1) and O(ε−1φ−1δ−1) respectively. Disparities in

these simulations can be reduced by reducing the value of ε. . . . . . . . . 70

3.9 Asymptotic approximations on timescale 8 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε−1φδ), so we expect the asymptotics to

be accurate around T = ε−1φδ ≈ 14.2188. For reference, the previous and

subsequent timescales have time at O(ε−
1
2 ) and O(ε−1) respectively. In (o)

and (p), we exhibit the solutions of AcrAB and AcrEF with ε = 0.0001 to

prove the validity of the asymptotic approximations. Note we depict the

simulations over a longer period of time than earlier timescales. . . . . . . 74



3.10 Asymptotic approximations on timescale 9 for the wild-type dynamics (ε =

0.01). On this timescale, time is O(ε−1), so we expect the asymptotics to

be accurate around T = ε−1 = 100. For reference, the previous timescale

has time at O(ε−1φ−1δ−1). Note we depict the simulations over a longer

period of time than earlier timescales. . . . . . . . . . . . . . . . . . . . . . 77

3.11 Schematic diagrams showing the order in which processes appear at leading

order in the asymptotic analysis for the wild-type case. We show these

processes in timescale order, starting from initial processes and finishing

at steady state in (e). As we evolve the schematic, we insert and remove

arrows or lines depending on which terms enter or leave the leading order

balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.12 Asymptotic approximations on timescale 1 for the mutant dynamics (ε =

0.01). On this timescale, time is O(ε), so we expect the asymptotics to

be accurate around T = ε = 0.01. For reference, the subsequent timescale

has time at O(ε
1
2 ). Most figures are still at initial condition, as no reaction

terms have come into their equations at leading order. . . . . . . . . . . . . 83

3.13 Asymptotic approximations on timescale 2 for the mutant dynamics (ε =

0.01). On this timescale, time is O(ε
1
2 ), so we expect the asymptotics to be

accurate around T = ε
1
2 = 0.1. For reference, the previous and subsequent

timescales have time at O(ε) and O(ε
1
4 ) respectively. . . . . . . . . . . . . . 86

3.14 Asymptotic approximations on timescale 3 for the mutant dynamics (ε =

0.01). On this timescale, time is O(ε
1
4 ), so we expect the asymptotics to

be accurate around T = ε
1
4 ≈ 0.3162. For reference, the previous and

subsequent timescales have time at O(ε
1
2 ) and O(ε

1
6 ) respectively. . . . . . 89



3.15 Asymptotic approximations on timescale 4 for the mutant dynamics (ε =

0.01). On this timescale, time is O(ε
1
6 ), so we expect the asymptotics to

be accurate around T = ε
1
6 ≈ 0.4642. For reference, the previous and

subsequent timescales have time at O(ε
1
4 ) and O(ε

1
8 ) respectively. Note we

depict the simulations over a longer period of time than earlier timescales. 92

3.16 Asymptotic approximations on timescale 5 for the mutant dynamics (ε =

0.01). On this timescale, time is O(ε
1
8 ), so we expect the asymptotics to

be accurate around T = ε
1
8 ≈ 0.5623. For reference, the previous and

subsequent timescales have time at O(ε
1
6 ) and O(1) respectively. . . . . . . 95

3.17 Asymptotic approximations on timescale 6 for the mutant dynamics (ε =

0.01). On this timescale, time is O(1), so we expect the asymptotics to

be accurate around T = 1. For reference, the previous and subsequent

timescales have time at O(ε
1
8 ) and O(1 + 1

2κ
φ−1) respectively. Disparities

in these simulations can be reduced by reducing the value of ε. . . . . . . . 98

3.18 Asymptotic approximations on timescale 7 for the mutant dynamics (ε =

0.01). On this timescale, time is O(1+ 1
2κ
φ−1), so we expect the asymptotics

to be accurate around T = 1 + 1
2κ
φ−1 ≈ 4.7257. For reference, the previous

and subsequent timescales have time at O(1) and O(1 + 1
κ
φ−1) respectively. 102

3.19 Asymptotic approximations on timescale 8 for the mutant dynamics(ε =

0.01). On this timescale, time is O(1+ 1
κ
φ−1), so we expect the asymptotics

to be accurate around T = 1 + 1
κ
φ−1 ≈ 8.4513. For (o) and (p) we have

set ε = 0.0001 to show the validity of the asymptotic approximations for

acrAB mRNA and protein. For reference, the previous and subsequent

timescales have time at O(1 + 1
2κ
φ−1) and O(ε−

1
2 (1 + 1

κ
φ−1) respectively. . 106



3.20 Figures showing asymptotic approximations using timescale 9 to the full

solutions for ε = 0.01. Here the time scaling is O(ε−
1
2 (1 + 1

κ
φ−1)), so

we expect the asymptotics to be accurate around T = ε−
1
2 (1 + 1

κ
φ−1) ≈

84.5132. For reference, the previous and subsequent timescales have time

at O(1 + 1
κ
φ−1) and O(ε−1(1 + 1

κ
φ−1) respectively. . . . . . . . . . . . . . . 109

3.21 Asymptotic approximations on timescale 10 (ε = 0.01). On this timescale,

time is O(ε−1(1 + 1
κ
φ−1)), so we expect the asymptotics to be accurate

around T = ε−1(1 + 1
κ
φ−1)) ≈ 845.1322. For reference, the previous

timescale has time at O(ε−
1
2 (1 + 1

κ
φ−1) respectively. . . . . . . . . . . . . . 112

3.22 Schematic diagrams showing the order in which processes appear at lead-

ing order in the asymptotic analysis for the mutant case. We show these

processes in timescale order, starting from initial processes and finishing

at steady state in (e). As we evolve the schematic, we insert and remove

arrows or lines depending on which terms enter or leave the leading order

balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.23 Box plots showing the relative sensitivity of nondimensional parameters

on the combined asymptotic approximated steady states of AcrAB and

AcrEF. In (a) we denote the sensitivity in the wild-type case whereas in

(b) we denote the mutant case. For (b), mutations to RamR protein results

in more parameters involved in our steady state approximation. . . . . . . 117

4.1 A schematic of the single cell efflux model. The solid circle denotes our

membrane boundary at the distance from the centre RM , whilst the dotted

line denotes our outer boundary at distance RB. We place our model

equations in the intracellular and extracellular regions where they apply. . 124



4.2 A schematic showing the processes involved at the membrane RM with

small finite thickness δ. We show fictitious points R−M and R+
M that are

part of the intracellular and extracellular space respectively. We show

the process of efflux of substrate from the intracellular space direct to the

extracellular space through the RND efflux pumps. In addition we exhibit

diffusion of substrate in both directions through each membrane from the

intracellular and extracellular spaces into the periplasm. . . . . . . . . . . 127

4.3 Simulations of the cell model with a zero far field outer boundary condition,

with RM = 2µm and RB = 10µm. We exhibit the distribution profiles on

the left, with resulting averaged intracellular concentrations on the right.

In simulation (a) P = 0µm,X = 0µm, (b) P = 0.1µm,X = 0µm, (c)

P = 0µm,X = 0.1µm and (d) P = 0.1µm,X = 0.1µm. . . . . . . . . . . . 137

4.4 Simulations of the cell model with a no flux outer boundary condition

with RM = 2µm and RB = 4µm. We exhibit the distribution profiles on

the left, with resulting averaged intracellular concentrations on the right.

In simulation (a) P = 0µm,X = 0µm, (b) P = 0.1µm,X = 0µm, (c)

P = 0µm,X = 0.1µm and (d) P = 0.1µm,X = 0.1µm. . . . . . . . . . . . 138

4.5 Experiments taken upon the wild-type strain consisting of 18 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 141

4.6 Experiments taken upon the A knockout strain consisting of 19 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 142

4.7 Experiments taken upon the E knockout strain consisting of 6 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 143



4.8 Experiments taken upon the S knockout strain consisting of 6 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 143

4.9 Experiments taken upon the T knockout strain consisting of 6 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 144

4.10 Experiments taken upon the AE knockout strain consisting of 6 assays. In

each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 144

4.11 Experiments taken upon the AEST knockout strain consisting of 17 assays.

In each individual assay we have plotted the mean (solid line) and standard

deviation (shaded error bar) of three technical repeats. . . . . . . . . . . . 145

4.12 Normalised efflux assay data, for each plot we have the mean of the assays

(solid line) and standard deviation (shaded error bar). We have combined

(a) Wild-type, (b) A Knockout and (c) AEST knockout. We have split the

data of each strain into three time regions, only including the assays that

reach the maximum time point. . . . . . . . . . . . . . . . . . . . . . . . . 146

4.13 Normalised efflux assay data, for each plot we have the mean of the assays

(solid line) and standard deviation (shaded error bar). We have combined

(a) E knockout, (b) S knockout, (c) T knockout and (d) ST knockout.

For (d) we have split the data for the strain into two time regions, only

including the assays that reach the maximum time point. . . . . . . . . . . 147

4.14 Parameter fitting results of the model with a zero far field boundary condi-

tion to the AEST knockout data. In (a) we show the fit to the assays that

reach long time, (b) the assays that reach medium time and (c) all assays

shown upon short time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



4.15 Parameter fitting results of the model with a zero far field boundary condi-

tion to the individual knockout strains after fixing AEST parameters (4.44).

We exhibit the A knockout strain in (a) long time, (b) medium time and

(c) short time. The rest of the strains are exhibited as (d) E knockout, (e)

S knockout and (f) T knockout. . . . . . . . . . . . . . . . . . . . . . . . . 153

4.16 Comparison of the estimated wild-type efflux constant (4.55) applied to

our model with a zero far field boundary condition to the wild-type data

after fixing AEST parameters (4.44). In (a) we show the fit to the assays

that reach long time, (b) the assays that reach medium time and (c) all

assays in the short time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.17 Parameter fitting results of the model with a zero far field boundary con-

dition to the wild-type data after fixing our AEST parameters (4.44) and

using a parameter fitted efflux rate constant (4.56). In (a) we show the fit

to the assays that reach long time, (b) the assays that reach medium time

and (c) all assays in the short time. . . . . . . . . . . . . . . . . . . . . . . 156

4.18 Parameter fitting results of the model with a no flux outer boundary con-

dition to the AEST knockout data. In (a) we show the fit to the assays

that reach long time, (b) the assays that reach medium time and (c) all

assays in the short time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.19 Parameter fitting results of the model with a no flux outer boundary condi-

tion to the individual knockout strains having fixed our AEST parameters

(4.57). We exhibit the A knockout strain in (a) long time, (b) medium

time and (c) short time. The rest of the strains are exhibited as such (d)

E knockout, (e) S knockout and (f) T knockout. . . . . . . . . . . . . . . . 160



4.20 Comparing our estimated wild-type efflux constant (4.59) in our model

with a no flux outer boundary condition to the wild-type data with fixed

AEST parameters (4.57). In (a) we show the fit to the assays that reach

long time, (b) the assays that reach medium time and (c) all assays in the

short time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.21 Parameter fitting results of the model with a no flux outer boundary con-

dition to the wild-type data using using (4.57) having fixed our AEST

parameters (4.57). In (a) we show the fit to the assays that reach long

time, (b) the assays that reach medium time and (c) all assays in the short

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.1 A schematic of the bound ethidium bromide model. The solid line repre-

sents our cell membrane at radius RM , whereas the dashed line represents

our outer boundary at radius RB. We have placed our equations where

they apply in the intracellular and extracellular space. . . . . . . . . . . . . 168

5.2 Simulations of the bound ethidium bromide model with a no flux far field

outer boundary condition and RM = 2µm. We exhibit bound and unbound

distribution profiles, with averaged intracellular concentrations below. We

vary permeability, efflux, unbinding and binding rates. In (a) we have

P,X = 0 and α, β = 0.1. In (b) we have P,X = 0 and α = 0.1, β = 0.01. . 175

5.3 Further simulations of the bound ethidium bromide model with a no flux far

field outer boundary condition and RM = 2µm. In simulation (a) we have

P,X = 0 and α = 0.01, β = 0.1. In simulation (b) we have P = 1, X = 0

and α, β = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Final set of simulations of the bound ethidium bromide model with a no

flux far field outer boundary condition. In simulation (a) we have P =

1, X = 1 and α, β = 0.1. In simulation (b) we have P = 1, X = 1 and

α = 0.1, β = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



5.5 Parameter fitting results of the bound ethidium bromide model to the

AEST knockout data. In (a) we show the fit to the assays that reach

long time, (b) the assays that reach medium time and (c) all assays in the

short time. Finally in (d) and (e) we demonstrate the distribution profiles

for both concentrations upon fitting to the long time data. . . . . . . . . . 181

5.6 Parameter fitting results of the bound ethidium bromide model to the wild-

type strain data having fixed our AEST parameters (5.17). In (a) we

show the fit to the assays that reach long time, (b) the assays that reach

medium time and (c) all assays in the short time. Finally in (d) and (e) we

demonstrate the distribution profiles for both concentrations upon fitting

to the long time data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.7 Parameter fitting results of the bound ethidium bromide model to both the

AEST knockout and wild-type data simultaneously, comparing against the

AEST data. In (a) we show the fit to the assays that reach long time, (b)

the assays that reach medium time and (c) all assays in the short time.

Finally in (d) and (e) we demonstrate the distribution profiles for both

concentrations upon fitting to the long time data. . . . . . . . . . . . . . . 185

5.8 Parameter fitting results of the model to both the AEST knockout and

wild-type data simultaneously, comparing against the wild-type data. In

(a) we show the fit to the assays that reach long time, (b) the assays that

reach medium time and (c) all assays in the short time. Finally in (d) and

(e) we demonstrate the distribution profiles for both concentrations upon

fitting to the long time data . . . . . . . . . . . . . . . . . . . . . . . . . . 186



5.9 Parameter fitting results of the bound ethidium bromide model with vari-

able efflux to the wild-type strain data, fixing AEST parameters from

(5.20). In (a) we show the fit to the assays that reach long time, (c)

the assays that reach medium time and (d) all assays in the short time. In

(b) we exhibit the resulting efflux profile, with (e) and (f) demonstrating

the distribution profiles for both concentrations upon fitting to the long

time data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.10 Parameter fitting results of the bound ethidium bromide model with vari-

able efflux using the top 100 fits to the AEST data and fitting to the

wild-type data, shown against the AEST knockout data. In (a) we show

the fit to the assays that reach long time, (b) the assays that reach medium

time and (c) all assays in the short time. Finally in (d) and (e) we demon-

strate the distribution profiles for both concentrations upon fitting to the

long time data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.11 Parameter fitting results of the bound ethidium bromide model with vari-

able efflux using the top 100 fits to the AEST data and fitting to the

wild-type data, shown against the wild-type data. In (a) we show the fit

to the assays that reach long time, (c) the assays that reach medium time

and (d) all assays in the short time. In (b) we exhibit the resulting efflux

profile, with (e) and (f) demonstrating the distribution profiles for both

concentrations upon fitting to the long time data . . . . . . . . . . . . . . 191

5.12 Parameter fitting results of the bound ethidium bromide model with vari-

able efflux dependent on substrate using the top 100 fits to the AEST data

and fitting to the wild-type data, shown against the AEST data. In (a) we

show the fit to the assays that reach long time, (b) the assays that reach

medium time and (c) all assays in the short time. Finally in (d) and (e) we

demonstrate the distribution profiles for both concentrations upon fitting

to the long time data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



5.13 Parameter fitting results of the bound ethidium bromide model with vari-

able efflux dependent on substrate using the top 100 fits to the AEST data

and fitting to the wild-type data, shown against the wild-type data. In

(a) we show the fit to the assays that reach long time, (c) the assays that

reach medium time and (d) all assays in the short time. In (b) we exhibit

the resulting efflux profile, with (e) and (f) demonstrating the distribution

profiles for both concentrations upon fitting to the long time data. . . . . . 194

5.14 Parameter fitting results of the bound ethidium bromide model to the data

of individual knockouts, having fixed AEST parameters (5.24). In (a),

(b) and (c) we show the model fitting to the A knockout, firstly to long

time and then testing against medium and short time data respectively. In

(d) we show the resulting efflux variable. In (e) we show the fit to the E

knockout and resulting efflux parameter (f). . . . . . . . . . . . . . . . . . 196

5.15 Further parameter fitting results of the bound ethidium bromide model to

the data of individual knockouts, having fixed AEST parameters (5.24). In

(a) we show the S knockout with resulting efflux parameter in (b). In (c)

we show the T knockout with resulting efflux parameter in (d). Finally, in

(e) we show the AE knockout with resulting efflux parameter in (f). . . . 197

5.16 Compiled efflux profiles from our parameter fitting results of the ethidium

bromide model with substrate dependent efflux. In (a) we show the profiles

of our efflux knockout strains, in (b) we show the profiles of our estimated

individual efflux profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.17 Efflux profiles from our parameter fitting results of the ethidium bromide

model with substrate dependent efflux. Here we show the profiles of our

estimated efflux profiles for AcrAB and AcrEF, with strain results for ST

(MdsAB and MdtAB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



5.18 Simulations comparing the compartmental ODE and spatial PDE model.

In (a) we exhibit simulations using the AEST optimal parameters, whilst

in (b) we use the optimal wild-type parameters. . . . . . . . . . . . . . . . 203

5.19 Simulations comparing the compartmental ODE and spatial PDE model

with slower substrate diffusion (by a factor of 100). In (a) we exhibit

simulations using the AEST optimal parameters, whilst in (b) we use the

optimal wild-type parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.20 Parameter variation plots exhibiting the RMSE between the ODE and PDE

models for all concentrations, varying the log of diffusion parameters DI

and DE. In (a) we exhibit a 3D mesh and (b) a contour plot. . . . . . . . . 204

6.1 Updated GRN model schematic incorporating simplifications drawn from

the time dependent asymptotic analysis, updates from broadened knowl-

edge of the GRN mechanisms and updates to incorporate dependence on

internal substrate concentration. The solid lines represent original mecha-

nisms from our previous GRN model. The dashed lines represent updates

based on recent information about the network from biological experiments.

The dot dashed lines represent updates to include GRN influence by the

internal substrate concentration from our spatial PDE model. . . . . . . . 209

6.2 A schematic of a section of the GRN model, demonstrating the interactions

that involve H-NS. This includes the proteins AcrAB and H-NS, and the

genes envR and acrEF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 Our multiscale model of the wild-type strain, run for the time course of

the wild-type data. In (a) we show the concentration of mRNAs over

time, (b) we show the concentration of proteins. In (c) we exhibit the

substrate concentration over time against the experimental data and (d)

the corresponding efflux rate X, with efflux rate contributed by AcrAB

(AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST). . . . . . . . 221



6.4 Our multiscale model of the EST strain (acrAB knockout, k4,m4, Bm(0), B(0) =

0), run for the time course of the EST data. In (a) we show the concentra-

tion of mRNAs over time, (b) we show the concentration of proteins. In (c)

we exhibit the substrate concentration over time against the experimental

data and (d) the corresponding efflux rate X, with efflux rate contributed

by AcrAB (AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST). . 222

6.5 Our multiscale model showing a RamR mutant strain (µ,R(0) = 0), run

for the time course of the wild-type data. In (a) we show the concentration

of mRNAs over time, (b) we show the concentration of proteins. In (c)

we exhibit the substrate concentration over time compared against the

simulation from the wild-type strain and (d) the corresponding efflux rate

X, with efflux rate contributed by AcrAB (AB), AcrEF (EF) and the sum

of MdsAB and MdtAB (ST). . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.6 Our multiscale model showing the RamR mutant EST strain (k4,m4, Bm(0),

B(0), µ, R(0) = 0), run for the time course of the EST data. In (a) we show

the concentration of mRNAs over time, (b) we show the concentration of

proteins. In (c) we exhibit the substrate concentration over time compared

against the simulation from the EST case and (d) the corresponding efflux

rate X, with efflux rate contributed by AcrAB (AB), AcrEF (EF) and the

sum of MdsAB and MdtAB (ST). . . . . . . . . . . . . . . . . . . . . . . . 224

6.7 Our multi scale model showing the intracellular bound substrate concen-

tration over time for all strains. In (a) we show time dependent plots

of all strains, in (b) we approximate the AUC of the strains in (a) using

the trapezium rule, to show the overall relative substrate exposure. The

wild-type strain is simulated using all parameters values in Table 6.2, the

EST case has k4,m4 = 0, RamR mutant µ = 0, and EST RamR mutant

k4,m4, µ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225



6.8 Box plots showing the relative sensitivity of parameters involved in the

GRN for the wild-type strain, varying parameters in the region [0, 10P ∗],

where P ∗ is the default parameter value. In (a) we depict the dissociation

and saturation constants, in (b) we depict the various transcription and

translation rates related to mRNAs and proteins. . . . . . . . . . . . . . . 227

6.9 Box plots showing the relative sensitivity of parameters involved in the

GRN for the EST strain, varying parameters in the region [0, 10P ∗], where

P ∗ is the default parameter value. In (a) we depict the dissociation and

saturation constants, in (b) we depict the various transcription and trans-

lation rates related to mRNAs and proteins. . . . . . . . . . . . . . . . . . 228

6.10 Box plots showing the relative sensitivity of parameters involved in the

GRN for the RamR mutant strain, varying parameters in the region [0, 10P ∗],

where P ∗ is the default parameter value. In (a) we depict the dissociation

and saturation constants, in (b) we depict the various transcription and

translation rates related to mRNAs and proteins. . . . . . . . . . . . . . . 230

6.11 Box plots showing the relative sensitivity of parameters involved in the

GRN for the EST RamR mutant strain, varying parameters in the region

[0, 10P ∗], where P ∗ is the default parameter value. In (a) we depict the

dissociation and saturation constants, in (b) we depict the various tran-

scription and translation rates related to mRNAs and proteins. . . . . . . . 231

6.12 Plots exhibiting the effects of varying ramA expression (default parameter

value k2 = 10) on the intracellular bound substrate over time. In (a)

we have the wild-type strain, (b) the EST strain, (c) the RamR mutant

strain and (d) the EST RamR mutant strain. Finally in (e) we exhibit the

difference in AUC between the manipulated parameter value simulation to

the default parameter value simulation for each strain. . . . . . . . . . . . 233



6.13 Plots exhibiting the effects of varying acrR expression (default parameter

value k3 = 10) on the intracellular bound substrate over time. In (a)

we have the wild-type strain, (b) the EST strain, (c) the RamR mutant

strain and (d) the EST RamR mutant strain. Finally in (e) we exhibit the

difference in AUC between the manipulated parameter value simulation to

the default parameter value simulation for each strain. . . . . . . . . . . . 234

6.14 Plots exhibiting the effects of varying envR expression (default parameter

value k5 = 10) on the intracellular bound substrate over time. In (a)

we have the wild-type strain, (b) the EST strain, (c) the RamR mutant

strain and (d) the EST RamR mutant strain. Finally in (e) we exhibit the

difference in AUC between the manipulated parameter value simulation to

the default parameter value simulation for each strain. . . . . . . . . . . . 235

6.15 Plots exhibiting the effects of varying RamA dissociation with ramA and

acrAB (default parameter value KA1 = 2) on the intracellular bound sub-

strate over time. In (a) we have the wild-type strain, (b) the EST strain, (c)

the RamR mutant strain and (d) the EST RamR mutant strain. Finally in

(e) we exhibit the difference in AUC between the manipulated parameter

value simulation to the default parameter value simulation for each strain. 238

6.16 Plots exhibiting the effects of varying EnvR dissociation with acrAB and

acrEF (default parameter value KE = 20.2) on the substrate over time. In

(a) we have the wild-type strain, (b) the EST strain, (c) the RamR mutant

strain and (d) the EST RamR mutant strain. Finally in (e) we exhibit the

difference in AUC between the manipulated parameter value simulation to

the default parameter value simulation for each strain. . . . . . . . . . . . 239



6.17 Plots exhibiting the effects of varying H-NS dissociation with envR and

acrEF (default parameter value KH = 1) on the substrate over time. In

(a) we have the wild-type strain, (b) the EST strain, (c) the RamR mutant

strain and (d) the EST RamR mutant strain. Finally in (e) we exhibit the

difference in AUC between the manipulated parameter value simulation to

the default parameter value simulation for each strain. . . . . . . . . . . . 240

6.18 Plots exhibiting the effects of varying substrate desaturation with ramR

and ramA (via Lon Protease) (default parameter value KI = 0.3) on the

substrate over time. In (a) we have the wild-type strain, (b) the EST

strain, (c) the RamR mutant strain and (d) the EST RamR mutant strain.

Finally in (e) we exhibit the difference in AUC between the manipulated

parameter value simulation to the default parameter value simulation for

each strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.19 Plots exhibiting the effects of varying ramA and envR expression (default

parameter values k2 = 10, k5 = 10) on the bound intracellular substrate

over time. In (a) we have the wild-type strain, (b) the EST strain, (c) the

RamR mutant strain and (d) the EST RamR mutant strain. Finally in

(e) we exhibit the difference in AUC between the each of the manipulated

parameter value simulations to the default parameter value simulation for

the strains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243



LIST OF TABLES

2.1 Variables used in our GRN model along with their respective units. . . . . 31

2.2 A table of parameters used in our GRN model and their estimated values.

Those with estimates gained from references are noted in the reference

column. The remainder have been chosen through investigation and dis-

cussion with the Piddock laboratory (University Of Birmingham) to give

biologically plausible results. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Nondimensionalised parameter groupings and their orders of magnitude. . 41

3.2 The scalings for each variable required on each timescale for the wild-

type asymptotic analysis. These scalings are in relation to our nondi-

mensionalised variables in (3.2)-(3.15). We have φ = ln(1/ε)−1 and δ =

ln(ln(1/ε))−1 which are explained in the timescales in which they fea-

ture. We note that production of most mRNAs dominates on the earlier

timescales with protein production dominating the later timescales. . . . . 44

3.3 The scalings for each variable required on each timescale for the mu-

tant asymptotic analysis. These scalings are in relation to our nondimen-

sionalised variables in (3.2)-(3.15) Here we have κ = 1
2
(−1 +

√
1 + 4θ),

φ = ln(1/ε)−1 and δ = ln(ln(1/ε))−1 as explained in the timescales in

which they feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 A summary of the strains involved in the experiments. We list each strain’s

active efflux pumps as well as their corresponding efflux rate constant. . . . 140



4.2 All parameters used in our single cell model and their respective units. If

we vary a parameter we will list it as “Not Set” in the “Value” column,

otherwise if the parameter is not varied we list its fixed value. . . . . . . . 149

5.1 All parameters used in our bound ethidium bromide model and their re-

spective units. If we vary a parameter we will list it as “Not Set” in the

“Value” column, otherwise if the parameter is not varied we list its fixed

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1 Variables used in our multiscale model along with their respective units. . . 215

6.2 Parameters used in our multiscale model with their estimated values and

units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3 A summary of the strains involved in this section. We list each strain’s

active efflux pumps and any mutations to their GRNs. . . . . . . . . . . . 216

6.4 Initial condition values for strains involved in this section. . . . . . . . . . 217



LIST OF ABBREVIATIONS

AMR Antimicrobial resistance

AUC Area under curve

DNA Deoxyribonucleic acid

EPI Efflux pump inhibitor

FTCS Forward time centered space

GRN Gene regulatory network

H-NS Histone-like nucleoid-structuring protein

MDR Multiple drug resistance

mRNA Messenger ribonucleic acid

ODE Ordinary differential equation

PDE Partial differential equation

QSS Quasi steady state

RND Resistance nodulation division

TA Transcriptional Activator



CHAPTER 1

INTRODUCTION

1.1 Antibiotic resistance

Antibiotics are a type of drug that are used to treat bacterial infections, by interfering

with the growth or an essential mechanism for survival of the bacteria. These essential

mechanisms can include maintaining the structure of the cell envelope, protein production

and DNA replication [86]. The World Health Organisation (WHO) has declared antibiotic

resistance a crisis that must be dealt with the utmost urgency. Antibiotic resistance is

reaching alarming levels, with treatment options for various infections becoming ineffective

[64, 65]. The use of antibiotics has been prevalent since the discovery of penicillin by

Alexander Fleming in the early twentieth century [23]. However, the widespread use of

antibiotics has exerted selection pressures on bacteria, causing mutant strains that are

antibiotic resistant. There are currently 17 classes of antibiotics, but for each of these a

mechanism for resistance has emerged [23]. Whilst the development of new antibiotics

is a possibility for treating these resistant bacteria, the discovery of new antibiotics has

massively slowed within the twenty first century, with the possibility of a post antibiotic

era in the coming years [2]. Thus, there is massive importance to look into alternative and

novel treatments for fighting bacterial infections. In February 2017, the WHO released a

priority list of antibiotic resistant bacteria in need of new antibiotics. Enterobacteriaceae,

which is a large family of Gram-Negative bacteria including Salmonella and Escherichia
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coli (E. coli) were marked in the first priority group, labelling their carbapenem and

cephalosporin resistant strains as a critical priority for new antibiotics to be sought.

Salmonella resistant to fluoroquinolone was marked as a high priority in the second group

[100].

1.2 Gram-Negative bacteria including Salmonella

Gram-negative bacteria are a group of bacteria that are defined by the Gram staining

method of differentiating bacteria. The Gram staining method determines whether a

bacteria is Gram-positive or Gram-negative by detecting peptidoglycan in the bacteria’s

cell wall. Gram-negative bacteria’s cell walls are much thinner meaning they contain

much less peptidoglycan [7]. This is not the only difference, as Gram-positive and Gram-

negative bacteria vary in many of their structures between the plasma membrane and the

capsule as shown in Figure 1.1. The main noticeable difference is the inclusion of the

outer membrane in Gram-negative bacteria.

Salmonella is a genus of rod shaped pathogenic bacteria that is Gram-negative. There

are two species in this genus, Salmonella enterica and Salmonella bongori [1]. This type

of bacteria is one of the main causes of intestinal infections from food, most commonly

from poultry products. In most cases of infection, antibiotics are not needed, however for

Salmonella typhi which causes Typhoid fever, antibiotics are necessary [80]. Salmonella

typhi can transmit from human to human by the fecal to oral route, and hence bad

sanitation is a leading cause of transmission [81]. Salmonella typhi not only infects the

intestines, but has developed to grow in tissues of other organs. Due to overuse of many

different types of antibiotics, multi drug resistant (MDR) strains have developed, most

prominently in South Asia and Africa. Large mortality rates are highly prominent in

developing countries in these regions, due to poor sanitation and the high prevelance of

immunodeficiency diseases [80].
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Periplasm

Cytoplasm

Inner Membrane

Outer Membrane

Gram-Negative Gram-Positive

Peptidoglycan
Thick Cell WallThin Cell Wall

Proteins

Figure 1.1: The differences in structure between Gram-negative and Gram-positive bacte-
ria between the plasma membrane and the capsule. On the left we exhibit Gram-Negative
with its double membrane structure, whereas on the right we have the Gram-Positive sin-
gular membrane structure. Recreated from [7].

1.3 Efflux pumps

Efflux pumps are an essential mechanism for bacteria that can account for antibiotic resis-

tance. However, they are not exclusive to bacteria as they are found in all three domains

of life: Eukaryota, Bacteria and Archaea [82]. Efflux pumps are transport proteins found

on the cell membrane that expel substances into the external surrounding environment.

If an efflux pump can expel an antibiotic so that its concentration within the cell is below

a killing threshold the bacteria can become resistant to the antibiotic. Efflux pumps may

be specific or they may pump various different substances and compounds. The latter

is one main reason that many efflux pumps are linked with MDR. Many bacteria that

confer MDR exhibit overexpression of efflux pumps. Overexpression is often caused by

mutations of local gene repressors or changes to transcriptional regulators that affect the

production of proteins associated with efflux [97].
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Many efflux pumps that exhibit MDR are part of the resistance nodulation division

(RND) family [32]. This family of efflux pumps found in Gram-Negative bacteria, span

both membranes meaning they can expel a substance straight from the cell’s cytoplasm to

the outside of the cell. In particular, a member of this family is the AcrAB-TolC system

which is common between both E. coli and Salmonella. We exhibit this system in Figure

1.2. The AcrAB-TolC system is tripartite, composed of the transporter protein AcrB, the

accessory protein AcrA and an outer membrane protein TolC [26]. The efflux of drugs

and other substances through the AcrAB-TolC system is induced by proton motive force.

Proton motive force is caused by hydrogen ions moving from the bacteria’s periplasm to

the cytoplasm, this movement causes an electrochemical gradient that drives transport

of the drug through the efflux pump, expelling the drug or other undesired substances

from the bacteria [68]. From genomic analysis, it has been shown that Salmonella strains

contain five RND efflux pump systems, AcrAB, AcrAD, AcrEF, MdsAB and MdtAB [41].

Of special note is the efflux pump system AcrEF-TolC, which is highly homologous to

the AcrAB-TolC system. Various studies have shown that strains deficient in AcrAB

commonly exhibit upregulation of AcrEF [12, 104].

AcrA AcrA

AcrB

Periplasm

H+

Cytoplasm

Drug Inner Membrane

Outer Membrane

TolC

Figure 1.2: The AcrAB-TolC system common in E. coli and Salmonella, exhibiting proton
motive force. Reproduced from [70].
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1.4 Gene regulatory networks

In response to environmental stimuli, bacteria are able to control expression of certain

genes via gene regulatory networks (GRNs) [34]. This includes altering the expression of

efflux pump genes in response to a certain antibiotic. In order for a gene to be expressed, it

must undergo the processes of transcription (messenger ribonucleic acid [mRNA] synthesis

from a deoxyribonucleic acid [DNA] template) and translation (protein synthesis from

mRNA by ribosomes). In bacteria, translation in most cases takes place as soon as

transcription of mRNA occurs. This is due to the lack of a nuclear membrane and the high

instability and degradation of mRNA molecules. In addition, one strand of mRNA can be

translated multiple times before it is degraded. For these reasons it means that bacteria

can quickly adapt to changes in environmental stimuli [71]. Certain genes however cannot

simply be expressed as they may be part of a regulatory network, where they need to be

activated by another gene’s activator protein or repression by a repressor protein must

be removed for transcription to occur. Repressor proteins bind to an operator site of a

certain gene, which blocks transcription, whereas activator proteins bind to the promoter

site of a certain gene, which promotes the initiation of gene transcription. We exhibit

these processes in Figure 1.3. All bacteria have complicated networks of genes controlling

gene expression, which enable the bacteria to change their behaviour depending on which

genes are expressed [101].
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Transcription Translation

Degradation Degradation

Activation/Inhibition

∅ ∅

Figure 1.3: Processes of gene regulation and protein synthesis. We exhibit here a gene
in the DNA (blue helix) being transcribed to mRNA (red strand), the mRNA is then
translated to create a protein (orange chain). Here both mRNA and protein undergo
degradation. We also exhibit by the dashed lines the potential activation or inhibition
from a protein within the system upon the transcription and translation processes.

Gram-negative bacteria express a significant number of efflux pumps on their cell mem-

branes. This causes them to be naturally resistant to various antibiotics. Overexpression

of these efflux pumps often confers MDR. However, regulation of efflux pump expression

is complicated and it is therefore important to understand the processes governing it. In

Figure 1.4, we look at the regulation of AcrAB, these are two of the proteins that form

the AcrAB-TolC system. In our first chapter, we use mathematical modelling techniques

to represent this GRN with a system of ordinary differential equations (ODEs). This will

further our understanding of the regulation of these genes and hence the AcrAB-TolC

system, enabling us to look into inhibition to counter MDR.
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ramR ramA acrR acrA acrB

marR marA

soxS

rob

soxR

Lon Protease

Figure 1.4: The GRN governing the expression of acrAB in Salmonella. We represent
activator genes in green, repressor genes are coloured red and the efflux genes in blue.
The shapes along the lines with text in italics are the genes themselves, with shapes
under the top line being lesser underlying regulators. The other shapes without text are
the proteins produced by the genes. If a protein is on the same line before a gene, it
is either activating or repressing the gene’s transcription. We note the yellow enzyme
Lon Protease, this enzyme degrades RamA protein. Finally, the dashed lines show the
processes that are limited when the triangular protein RamR is bound. This network has
been reproduced from [10].

1.5 Antibiotic adjuvants

Due to the emergence of MDR pathogens and lack of new antibiotic discovery, novel

treatment methods have been sought. Antibiotic adjuvants are molecular compounds

that are used in combination with antibiotics, to enhance the activity of the antibiotic

against the pathogen [102]. There are many forms of adjuvants that include anti-virulence

and anti-resistance drugs. Anti-virulence drugs operate by disarming certain mechanisms

of the bacteria, rather than killing them [6]. In addition, anti-virulence drugs do not

directly prevent bacterial growth. These factors are thought to put less evolutionary

pressure on the bacteria and thus have a low chance of contributing to the emergence

of new resistant strains [72]. There are various different anti-virulence drug strategies,

including reducing bacterial adhesion to host cells, inhibiting toxins, and disrupting gene

regulation conferring determinants of virulence [73]. Virulence is defined as the ability of
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a pathogen to infect and cause damage to its host [16]. There are many determinants of

virulence in bacteria including: quantity of bacteria, entry route to the host, virulence

factors (gene products that enhance virulence potential) and host defence mechanisms

[67]. Notably, it has been shown that AcrB defective mutant Salmonella showed reduced

virulence as a result of the lack of efflux pump activity [95]. For a comprehensive study

linking various efflux pumps and virulence see [3, 68].

Anti-resistance drugs are also used to enhance the activity of an antibiotic against the

pathogen, however, they operate by targeting the pathogen’s mechanisms of resistance

[102]. Examples of anti-resistance drugs include β-lactamase inhibitors, drugs that affect

membrane permeability and efflux pump inhibitors (EPIs) [53]. Notably, EPIs inhibit

the action of efflux pumps, they can target efflux pumps directly (efflux inhibitors), or

can be used indirectly to target gene expression (efflux modulators) [35]. Their main

purpose is to increase the intracellular concentration of antibiotic, such that the bacteria

is unable to survive [84]. The development of novel EPIs is considered a promising strategy

with the ability to make a bacterium more sensitive to antibiotics and reverse MDR [87],

particularly the development of EPIs to treat Gram-negative infections [13].

1.6 Previous mathematical models of efflux pumps

and gene regulatory networks

Firstly, it must be noted that there are no known mathematical models that consider

wider GRNs that control efflux pump expression. Current models only consider the efflux

pump gene with a maximum of two regulatory genes. Thus, in this section we will look

to models of GRNs that control expression of different mechanisms, as well as looking

into models of efflux pump function. We begin by discussing general efflux pump models,

moving onto larger scale models that include efflux and finally, discussing various different

methods of modelling GRNs.

Michelson and Slate [57] present a model of the p-glycoprotein pump, associated with
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MDR in cancer patients. This pump is energy dependent, meaning it relies on the process

of dephosphorylation of adenosine triphosphate (ATP) to adenosine diphosphate (ADP)

to function. This is different to the proton motive force driving the AcrAB efflux pump.

They formulate a combined partial differential equation (PDE) and ODE model for the

concentration of drug within the system, relating it to the concentrations of ATP and

ADP using Michaelis-Menten Kinetics. They run simulations of the model, with different

initial conditions of ATP and ADP. Their findings show that the pump is much more

effective at pumping the drug out of the system from an initial state that contains ATP

and ADP than an initial state of ATP depletion. However, they also showed that depleting

a cell completely of ATP would not be enough to be an effective method for blocking drug

efflux.

Michelson and Slate [58] also expand on their previous model of the p-glycoprotein

pump, in this case including the presence of an inhibitor that prevents the drug from

binding to the pump. Three situations, competitive inhibition (multiple molecules are able

to bind to the efflux pump binding site), non-competitive inhibition (only the inhibitor

is able to bind to the efflux pump binding site) with inhibitor efflux and non-competitive

inhibition without inhibitor efflux were modelled. In the competitive case it was shown

that by decreasing the size of the dissociation constant of this inhibitor binding to the

pump, there was increased overall drug exposure. There were larger differences in drug

exposure with a larger initial concentration of drug, with little differences in drug exposure

for smaller initial concentration of drug. For the non-competitive cases, firstly with efflux

of the inhibitor, the drug exposure is slightly more than the competitive case. For the

case with no efflux of the inhibitor the drug exposure is further increased for inhibitors

that have a high affinity to bind. Thus, this shows that a non competitive inhibitor that

cannot be effluxed itself would be the most effective treatment method for blocking drug

efflux.

Yi et al. [103] develop a single cell model that encompasses drug delivery and efflux

simultaneously to look into MDR of cancer cells. In this model a cell is impaled with
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a diffusional microburet which can deliver a drug into the cell by controlled diffusion.

Efflux is modelled through active transport using Michaelis-Menten equations, building

from Michelson and Slate [57, 58]. Efflux is also modelled through passive transport,

simulations of this model show that passive transport can have a large effect on the cells’

intracellular concentration of the drug at steady state.

Perez et al. [66] use an ODE model efflux in E. coli by TetB, a member of the major

facilitator superfamily of efflux pumps. This type of efflux pump spans one membrane

and is responsible for resistance to tetracycline antibiotics. In this model, we have dif-

fusion through two membranes of the antibiotic into the cytoplasm, with efflux from the

cytoplasm to the periplasm. By finding the steady states of the model, binding constants

for the pump were found as well constants relating to the pump efficiency.

Diao et al. [25] produce an ODE model of a yeast efflux pump found in Saccharomyces

cerevisiae. They model the negative feedback loop of a regulator, efflux pump and inducer

(a substrate of the efflux pump). Charlebois et al. [18] also produce an ODE model of

the efflux pump in Saccharomyces cerevisiae. Here a more complex model is produced,

consisting of three genes that are part of a drug resistance network involved with efflux

pump expression.

Nagano and Nikaido [60] present an ODE model of antibiotic efflux in E. coli, from the

AcrAB-TolC efflux pump system. This model includes the enzyme β-lactamase located in

the periplasm, which breaks down the antibiotic. They assume efflux transport undergoes

Michaelis-Menten kinetics, with diffusion into the cell given by Fick’s law. By using

parameter fitting techniques, they are able to find various binding coefficients for various

antibiotics with AcrB. Lim and Nikaido [51] continue this work, extending the study to

find binding coefficients for various different penicillins.

The AcrAB-TolC efflux pump system and genes that govern the system’s expression

have been the topic of other mathematical models. Rossi et al. [79] experimentally ma-

nipulated the degradation of MarA (a known activator of acrAB expression) in E. coli, to

see the resulting effects on downstream genes. A generic mathematical model was formu-
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lated consisting of three genes: an activator and two downstream genes. This ODE model

showed that activators with a long half life had an advantage by increasing the coordina-

tion of the downstream genes. The analytical results were replicated experimentally with

marA and downstream genes inaA and acrAB.

Langevin and Dunlop [48] exhibit an ODE population model of E. coli undergoing

stress from two diverse chemicals, the antibiotic chloramphenicol and the jet biofuel pre-

cursor pinene. Both of these chemicals can be effluxed by the AcrAB-TolC system. Ex-

periments are taken on different strains of bacteria (wild-type and acrAB knock outs),

introducing chemical stressors as step functions at different rates. The experiments look

into the cost of efflux pumps, and show that at certain low levels of antibiotic the bacteria

without efflux pumps is more likely to survive. The mathematical model created has

two species competing against each other consuming a substrate. By parameter fitting

techniques the model is able to show agreement to the experimental data. Conclusions

were then able to be made to find the conditions where expressing the AcrAB-TolC efflux

pump would be more beneficial. It is shown that the benefit of efflux pumps is highly

dependent on the rate of stress introduction.

None of the above models, take into account the wider system of genes governing the

regulation of the proteins that make up these efflux pumps. Thus, they do not have

the potential to ascertain the complete switch dynamics of the cell in response to the

antibiotic. To fully model this behaviour, we would need to include the wider GRN

governing these pumps. We now look into various methods of modelling GRNs. We

include a selection to showcase a variety of techniques but our review is by no means

exhaustive. See also [44], for example, for a more complete overview and review of some

of these methods.

Glass and Kauffman [36] were the first to present a Boolean model of GRNs. Here,

they propose modelling genes as switches of expression where they can be active (1) or

inactive (0). All genes in the network undergo regulation functions which change their

value depending on whether a gene is an activator or repressor and the current state of
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expression. Although this type of modelling is limited due to the level of the detail, it

was found useful for proving the existence of steady states. If a steady state is found for a

discrete model, then a corresponding steady state should be approached by a homologous

continuous model. In addition, oscillatory behaviour in a homologous continuous model,

will have a closed cyclic path in the discrete model.

Shmulevich et al. [85] expand on the work of Glauss and Kauffman to produce a

probabilistic Boolean model of GRNs. In this model, genes can have multiple regulation

functions, with the choice of regulation function being probabilistic. This type of model

has been proven useful when not enough is biologically known about the GRN and how

certain genes interact with each other. One of the downsides of these Boolean models

is that experiments on GRNs do not produce discrete valued measurements and do not

have discontinuous jumps between states at certain time steps. Thus discrete models lose

detail and accuracy when data is discretised to fit them. An alternative is to model these

networks continuously.

Weaver et al. [96] present a linear model of GRNs. In this model, each gene’s ex-

pression level depends on a summation of the levels of its regulators. In this model this

summation is scaled in order to limit the concentration to be between 0 and 1. This

squashed function is then multiplied by maximal expression levels from data to provide a

realistic fit. One of the issues of this model is the low level of detail and little information

that can be extracted from it, including analysis of the processes in the network.

Nachman et al. [59] increase the level of detail in their model of GRNs by delving

deeper into transcription, including transcriptional factors that can bind to the promoter

site of a gene. They start by modelling one singular gene, deriving equations that model

the effects of having one or multiple regulators. They construct a differential equation

governing mRNA concentration, including transcriptional and degradation terms. By

applying and fitting this to data, they show that transcriptional rate parameters can be

gained. One issue with this model is transcriptional factors are likely to be proteins also

in the system, and equations governing their behaviour have not been defined.
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Li et al. [50] model the GRN governing the cell division cycle in the bacterium

Caulobacter crescentus. This bacterium can be divided into types, a mobile swarmer

cell or an immobile stalked cell. The stalked cell is able to replicate the division cycle

and it is on this that the model focuses. The process is centred around the expression

of three proteins CtrA, GcrA, and DnaA. To model this process, a system of 16 ODEs

were derived to model a simplified version of the cycle. These ODEs contain 44 parame-

ters, however in this model the size of these were determined by trial and error. Despite

this, the model has proved to be very accurate, matching up to experimental data of the

wild-type strain and 16 mutant strains.

Tian and Burrage [89] develop a general technique for producing stochastic models of

GRNs. This technique involves introducing Poisson random variables into ODE models.

Their method showed that they are able to include stochastic elements into robust ODE

models, without deriving equations from first principles. They applied this technique to

various existing ODE models of GRNs and ran simulations of the models. From this, they

were able to demonstrate the effect of noise on these networks.

Davidson et al. [22] model the regulatory network governing extra-cellular protease

(exoprotease) production in the Gram-positive bacterium Bacillus subtilis. They investi-

gate the role of the two regulators DegU and Spo0A, however the model itself is centered

on the auto-regulation of DegU, which includes phosphorylation processes. An ODE sys-

tem consisting of 6 differential equations and 14 parameters is produced to determine the

dynamics of exoprotease expression. Steady state analysis was implemented on the model

which revealed three different zones of responses from the system.

Finally, Jabbari et al. [42] produce a model of the agr operon that governs quorum

sensing in Staphylococcus aureus. They produce a system of 12 ODEs with 17 parame-

ters. However as data upon these parameter sizes were not yet available at the time, they

nondimensionalised their model. This took away the dependence on specific parameter

values, resulting in 11 parameter groupings where approximate sizes could be given de-

pendent on the size of certain reactions in relation to each other. They perform a series
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of time dependent asymptotic analyses upon the nondimensionalised system. Doing this

provided insights to the behaviour of the system on various different timescales. This

enabled them to produce a step by step breakdown of the dominant processes that govern

the GRN that control the quorum sensing process.

These GRN models are only a small sample of possible GRN models in bacteria, there

are even more GRN models that we have not considered in Eukaryota. Here, we have

covered a large range of mathematical models from literature and we will use ideas from

these papers in our methodology. In Chapter 2, we formulate a mathematical model of

the GRN governing the AcrAB-TolC system, using ODEs to provide a sufficient amount

of detail and insights into the network. We could have instead opted for a PDE model,

however as there is little data on the spatial dynamics of the gene products within the

GRN, we use ODEs to reduce the number of unknown parameters in the model. We

ran simulations of the ODE model, using parameters from the biology of the network

and consultations with the Piddock Laboratory (University Of Birmingham) to produce

realistic results. In Chapter 3, we nondimensionalise our model to reduce the dependency

on specific parameter values. We are then able to complete a set of time dependent

asymptotic analyses to simplify our model into a step by step breakdown of the GRN.

In chapters 4 and 5, we formulate a PDE model to model the effect of various efflux

pumps in Salmonella (including AcrAB-TolC) on expelling a substrate ethidium bromide.

We implement parameter fitting techniques on the model using experimental data in

order to ascertain efflux profiles of each efflux pump system. Finally in Chapter 6, we

produce a multiscale model by combining our GRN and substrate models. This enables

us to make predictions on manipulating the GRN, displaying the resulting effects on

the spatial dynamics of the substrate. By producing this final model, we are able to

target and highlight areas of the GRN that the intracellular substrate concentration is

most sensitive. We are then able to hypothesise new treatment methods that keep the

intracellular concentration above a killing threshold to combat MDR.
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CHAPTER 2

MODEL FORMULATION

2.1 Model schematic & reactions

To formulate our model of the GRN governing acrAB expression, we must first delve into

the processes governing the GRN. We exhibit a detailed schematic of the GRN in Figure

2.1. We note that in this network, we also include the homologue of acrAB, acrEF. Ex-

perimentally, this efflux pump gene expression has been shown to become more prevalent

when there is less production of AcrAB or the acrAB genes are deleted, inactivated, or

when the protein is produced, but non-functional [95].

We will consider two strains of Salmonella Typhimurium (S. Typhimurium) in this

model. Firstly a wild-type strain, this is a typical strain of S. Typhimurium that we

would expect to encounter in a natural population. Secondly, we consider the strain

S. Typhimurium (SL1344), this strain displays MDR as a consequence of a ramR::aph

mutation in the ramR gene, resulting in production of a non-functional RamR protein

[77]. For simplicity, we will refer to this strain as the RamR variant or mutant strain.

To consider as much of the GRN around efflux as possible, we assume that the strains

are subject to stress, e.g. antibiotic or oxidative stress. We detail the steps involved in

acrAB and acrEF regulation shown in Figure 2.1 below, exhibiting the processes involved

in the wild-type case before explaining the differences in processes of the MDR-associated

RamR variant [10, 98].
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Wild-type strain:

• Expression of ramR results in the production of the RamR protein, which can bind

to the ramA operator site, the network’s main transcriptional activator [77].

• Expression of the ramA gene is repressed by bound RamR protein, less RamA is

produced compared to the variant below.

• We assume that the cell is stressed and thus secondary transcriptional activators

soxS, marA and rob are expressed constitutively resulting in production of SoxS,

MarA and Rob protein [63].

• We assume that the gene envR/acrS (which for simplicity, we will refer to as envR

for the rest of this thesis) is expressed constitutively, resulting in production of

EnvR.

• EnvR protein binds to the operator region of acrEF inhibiting its expression [38].

• The acrR gene is expressed resulting in production of AcrR protein which shares

the same site as EnvR protein in binding to the inhibitor region of the acrAB gene,

both inhibiting its expression [52].

• RamA protein shares the same site with SoxS to bind to the acrAB promoter region,

activating its expression.

• Post transcription of acrAB, the RNA protein CsrA acts as a stabiliser of translation

of acrAB mRNA into AcrAB protein [75].
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RamR variant (mutant) strain:

• Mutations in ramR cause a conformational change to RamR protein meaning it is

unable to bind to the ramA operator site. Therefore inhibition of ramA expression

is lost in this mutant.

• The ramA gene is expressed more highly than in the wild-type resulting in higher

concentrations of RamA protein.

• RamA is regulated post-translationally through degradation by the enzyme Lon

Protease [76].

• RamA binds to its own promoter site and activates its transcription.

• A high concentration of RamA protein (compared to the wild-type) shares the same

site with SoxS to bind to the acrAB promoter region, activating its expression.

• Transcription of the acrAB gene occurs at a high rate compared to the wild-type

case, due to the high RamA protein concentration compared to the wild-type.

We note that whilst the processes upon ramA regulation are only listed in the RamR

mutant strain, they may still occur in the wild-type strain. However we expect the effect

from these processes to be minimal due to the lower concentration of RamA in the strain.

Furthermore, mathematically each of the secondary transcriptional activators (secondary

TAs) soxS, marA and rob would have equivalent representations. Thus for simplicity,

we group these activators together and refer to them as soxS or secondary TAs for the

remainder of the work.

It has been shown experimentally that with decreased acrAB expression, greater

expression of the homologue efflux pump gene acrEF occurs (which operates similarly

to acrAB) [12]. This may be through known mechanisms in the network, for example

through the repressor envR. However, since these mechanisms have not yet been fully elu-

cidated, we capture this behaviour in the model by a simple direct link between AcrAB
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levels and expression of acrEF, noting that this is an area where extra detail can be in-

corporated in future work. Finally, we note that RamA protein is believed to be capable

of binding at the acrR gene, however no effect on acrR transcription has yet been demon-

strated. We nevertheless include this in our model under the assumption that RamA

inhibits acrR transcription to explore the potential effects upon efflux pump expression.
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2.2 Modelling activation and inhibition of gene tran-

scription

In order to model our biological system mathematically, we must look into the kinetics

of how activator proteins activate or repressor proteins inhibit a gene by binding to an

operator site. In the following subsections, we model all situations that are present in our

GRN.

2.2.1 One protein and one binding site

The first situation that we model is one protein and one binding site that the protein

can reversibly bind to. We show this in Figure 2.2. In order to model this and further

situations, we look into the proportion of time that a protein is bound or unbound to a

binding site. Our aim is to obtain equations for these time proportions in terms of the

protein concentrations and their binding and unbinding rates. To be able to do this, we

introduce the following notation:

Φ: Proportion of time that the binding site is empty (all proteins are unbound),

ΦX: Proportion of time that the binding site is occupied by protein X (protein X is

bound).

We could also alternatively consider these proportions of time as probabilities. Since

we are dealing with proportions, it follows that all proportions of time must add up to

unity

ΦX(t) + Φ(t) = 1. (2.1)
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X

α1 β1

Figure 2.2: One protein with one binding site. Here we exhibit the protein X binding to
the site at rate α1 and unbinding from the site at rate β1.

Using the law of mass action which states that “The rate of a chemical reaction is

directly proportional to the product of the concentration or active masses of the reacting

substances” [83], we can construct ordinary differential equations (ODEs) for each pro-

portion of time. In this case we are interested in the change of the proportion of time

that protein X is bound:

dΦX

dt
= α1XΦ− β1ΦX . (2.2)

By assuming that there is enough protein in the system that all proportions of time are

at quasi-steady state (QSS) [14], and by using equation (2.1) we obtain

0 = α1X(1− ΦX)− β1ΦX . (2.3)

Rearranging, we can find our desired equation for ΦX and also for Φ by using (2.1)

ΦX =
X

X +KX

, Φ =
KX

X +KX

, (2.4)

whereKX =
β1

α1

is the dissociation constant for protein X. We comment that the behaviour

of these constants are such that as KX → 0, Φ→ 0 and ΦX → 1, conversely as KX →∞,

Φ → 1 and ΦX → 0. We must now apply these equations to an ODE for the rate of

change of an arbitrary gene’s mRNA, which we denote as Gm. Note that mRNA will

undergo degradation at some rate, which we include in the following equations as δm.
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Protein X is an activator protein binding to a promoter site.

In this case, we assume that there is a high level of transcription of the gene’s mRNA when

the activator protein is bound. It is often the case that there is a small basal transcription

rate (kb) regardless of whether protein X is bound. It is particularly useful to include this

basal rate when a gene is self activating: by including this rate we reduce the risk that

the gene quickly reaches steady state at zero. Thus the equation we achieve is as follows

dGm

dt
= k1ΦX + kb − δmGm, (2.5)

= k1
X

X +KX

+ kb − δmGm. (2.6)

Protein X is a repressor protein binding to an operator site.

In this case, we assume that if a repressor is bound, there will be no transcription. This

means we must look at when there is no protein bound for transcription to occur. Thus

in this case the equation we achieve is as follows

dGm

dt
= k1Φ− δmGm, (2.7)

= k1
KX

X +KX

− δmGm. (2.8)

2.2.2 Two proteins with one binding site each

In this situation, we model two proteins with one binding site each that the protein can

reversibly bind to, we show this in Figure 2.3. As there is an extra protein and an extra

binding site in this case, we must introduce some new notation:

ΦX: Proportion of time that the binding site is occupied by protein X (protein X is

bound),

ΦY : Proportion of time that the binding site is occupied by protein Y (protein Y is

bound),
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ΦXY : Proportion of time that the binding sites are both occupied (proteins X and Y are

bound).

X

α1 β1

Y

α2 β2

Figure 2.3: Two proteins with two distinct binding sites. Here we exhibit the protein
X binding to a site at rate α1 and unbinding from the site at rate β1. We also have a
different shape protein Y binding to a different binding site at rate α2 and unbinding from
the site at rate β2.

Using the the law of mass action, we can find equations for the rate of change of all

proportions of time that proteins are bound to any of the binding sites

dΦX

dt
= α1XΦ + β2ΦXY − β1ΦX − α2Y ΦX , (2.9)

dΦY

dt
= α2Y Φ + β1ΦXY − β2ΦY − α1XΦY , (2.10)

dΦXY

dt
= α1XΦY + α2Y ΦX − β1ΦXY − β2ΦXY . (2.11)

By assuming that there is enough protein in the system that all proportions of time are

at quasi-steady state (dΦX
dt

= 0, dΦY
dt

= 0 and dΦXY
dt

= 0), and by using a similar equation

to (2.1) that all time proportions must add to unity, we obtain:

0 = α1X(1− ΦX − ΦY − ΦXY ) + β2ΦXY − β1ΦX − α2Y ΦX , (2.12)

0 = α2Y (1− ΦX − ΦY − ΦXY ) + β1ΦXY − β2ΦY − α1XΦY , (2.13)

0 = α1XΦY + α2Y ΦX − β1ΦXY − β2ΦXY . (2.14)
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We now have a simultaneous system of equations which we can solve for to achieve

Φ =
KXKY

KXKY +KYX +KXY +XY
, (2.15)

ΦX =
KYX

KXKY +KYX +KXY +XY
, (2.16)

ΦY =
KXY

KXKY +KYX +KXY +XY
, (2.17)

ΦXY =
XY

KXKY +KYX +KXY +XY
, (2.18)

whereKX =
β1

α1

andKY =
β2

α2

are dissociation constants for proteins X and Y respectively.

Protein X is an activator protein binding to a promoter site and protein Y is
a repressor protein binding to an operator site.

In this case, we assume that there is no transcription if the repressor protein Y is bound

to the site. We also have a higher transcription rate when only protein X is bound. In

addition we could include a basal transcription rate that is active regardless of whether

protein X is bound. Thus the equation we achieve is as follows

dGm

dt
= k1ΦX + kb − δmGm, (2.19)

= k1
KYX

(KX +X)(KY + Y )
+GC − δmGm. (2.20)

2.2.3 Two sets of two proteins binding to one binding site for
each set

In this situation, we model two sets each consisting of two proteins and one binding site.

Within each set, the proteins share the same binding site that they can reversibly bind.

We display this in Figure 2.4. As there are two extra proteins in this case, we introduce

some new notation:

ΦW : Proportion of time that the binding site is occupied by protein W (protein W is

bound),
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ΦX: Proportion of time that the binding site is occupied by protein X (protein X is

bound),

ΦY : Proportion of time that the binding site is occupied by protein Y (protein Y is

bound),

ΦZ: Proportion of time that the binding site is occupied by protein Z (protein Z is bound),

ΦWY : Proportion of time that the binding sites are both occupied (proteins W and Y are

bound),

ΦWZ: Proportion of time that the binding sites are both occupied (proteins W and Z are

bound).

ΦXY : Proportion of time that the binding sites are both occupied (proteins X and Y are

bound).

ΦXZ: Proportion of time that the binding sites are both occupied (proteins X and Z are

bound).

Using the the law of mass action, we can find equations for the rate of change of all

proportions of time that proteins are bound to any of the binding sites

dΦW

dt
= α1WΦ + β3ΦWY + β4ΦWZ − β1ΦW − α3Y ΦW − α4ZΦW , (2.21)

dΦX

dt
= α2XΦ + β3ΦXY + β4ΦWZ − β2ΦX − α3Y ΦX − α4ZΦX , (2.22)

dΦY

dt
= α1Y Φ + β1ΦWY + β2ΦXY − β3ΦY − α1WΦY − α2XΦY , (2.23)

dΦZ

dt
= α2ZΦ + β1ΦWZ + β2ΦXZ − β4ΦZ − α1WΦZ − α2XΦZ , (2.24)

dΦWY

dt
= α1WΦY + α3Y ΦW − β1ΦWY − β3ΦWY , (2.25)

dΦWZ

dt
= α1WΦZ + α4ZΦW − β1ΦWZ − β4ΦWZ , (2.26)

dΦXY

dt
= α2XΦY + α3Y ΦX − β2ΦXY − β3ΦXY , (2.27)

dΦXZ

dt
= α2XΦZ + α4ZΦX − β2ΦXZ − β4ΦXZ . (2.28)
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W α1 β1
Y

X Z
α2 β2

α3 β3

α4 β4

Figure 2.4: Two sets of two proteins binding to one binding site for each set. Here we
exhibit the protein W binding to a site at rate α1 and unbinding from the site at rate
β1. This protein is in competition to bind for the same site as protein X which binds to
the site at rate α2 and unbinds from the site at rate β2. We also have a different shape
protein Y binding to a different binding site at rate α3 and unbinding from the site at
rate β3. This protein is in competition to bind for the same site as protein Z which binds
to the site at rate α4 and unbinds from the site at rate β4.

By assuming that there is enough protein in the system that all proportions of time

are at quasi-steady state and by using a similar equation to (2.1) (now Φ = 1 − ΦW −

ΦX −ΦY −ΦZ −ΦWY −ΦWZ −ΦXY −ΦXZ) we have a simultaneous system of equations

that can be solved to obtain

Φ =
KWKXKYKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.29)

ΦW =
WKXKYKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.30)

ΦX =
XKWKYKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.31)

ΦY =
Y KXKWKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.32)

ΦZ =
ZKXKWKY

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.33)

ΦWY =
WYKXKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.34)
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ΦWZ =
WZKXKY

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.35)

ΦXY =
XYKWKZ

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.36)

ΦXZ =
XZKWKY

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
, (2.37)

where KW =
β1

α1

, KX =
β2

α2

, KY =
β3

α3

and KZ =
β4

α4

are dissociation constants for

proteins W, X, Y and Z respectively.

Protein W and X are activator proteins binding to a promoter site and proteins
Y and Z are repressor proteins binding to an operator site.

In this case, we assume that there is no transcription if either of the repressor proteins Y

or Z is bound to the site. We also have a higher transcription rate when either W or X

is bound. In addition we could include a basal transcription rate that is active regardless

of whether protein W or X is bound. Thus the equation we achieve is as follows

dGm

dt
= k1(ΦW + ΦX) + kb − δmGm, (2.38)

= k1
KYKZ(XKW +WKX)

(KXW +KWX +KXKW )(Y KZ + ZKY +KZKY )
+ kb − δmGm. (2.39)
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2.3 Ordinary differential equation models

In this section we produce a model of the GRN in Figure 2.1. In section 1.6 we compared

various different modelling techniques for GRNs. We choose to use a system of ordinary

differential equations (ODEs) to provide a sufficient level of detail and insights into the

network. For GRNs, the principal processes affecting mRNA and proteins are transcrip-

tion, translation and degradation. We exhibit this in equation (2.40). Here Gm and G

represent mRNA and protein respectively associated with an arbitrary gene. We note

that transcription and translation terms may be affected by the concentrations of other

proteins, with translation terms always being reliant on the same gene’s mRNA [24].

dGm

dt︸ ︷︷ ︸
Rate of change

of mRNA
concentration

= k︸︷︷︸
Transcription

− δGm︸︷︷︸
Degradation

.
dG

dt︸︷︷︸
Rate of change

of protein
concentration

= mGm︸ ︷︷ ︸
Translation

− δG︸︷︷︸
Degradation

. (2.40)

The equations for the GRN model are as follows:

dRm

dt
= k1 − δmRm, (2.41)

dAm
dt

= k2
KRA

(A+KA1)(R +KR)
+ k′2 − δmAm, (2.42)

dCm
dt

= k3
KA2

A+KA2

− δmCm, (2.43)

dBm

dt
= k4

KE2KC(KSA+KA1S)

(KCE +KE2KC +KE2C)(KA1KS +KA1S +KSA)
− δmBm, (2.44)

dSm
dt

= k5 − δmSm, (2.45)

dEm
dt

= k6 − δmEm, (2.46)

dFm
dt

= k7
KE1

KE1 + E
− δmFm, (2.47)

dR

dt
= µ(m1Rm − δpR), (2.48)

dA

dt
= m2Am − δpA− d1LA, (2.49)

dC

dt
= m3Cm − δpC, (2.50)

28



dB

dt
=

TC
TC +KTC

m4Bm − δpB, (2.51)

dS

dt
= m5Sm − δpS, (2.52)

dE

dt
= m6Em − δpE, (2.53)

dF

dt
= m7

KBFm
B +KB

− δpF. (2.54)

We note that all of the differential equations have linear terms regarding degradation,

which we group as the same rate for mRNAs and proteins respectively (δm and δp). RamA,

SoxS and MarA are the only proteins that we know of that undergo enzyme degradation

in the GRN, all degraded by Lon Protease. The secondary TA Rob however does not

experience this degradation [30]. Since we have grouped together SoxS, MarA and Rob

together, we opt not to include this additional enzyme degradation, instead only including

enzyme degradation for RamA in equation (2.49).

In the case of transcription and translation, the terms are not so straightforward. In

equation (2.42), we exhibit the activation of ramA transcription by its own protein, whilst

being repressed by RamR protein at the ramA operator site, derived from (2.20). In equa-

tion (2.43), we have the potential repression of transcription of acrR mRNA transcription

by RamR protein, derived from (2.8). In equation (2.44), we see the effect of the activator

protein RamA and the underlying activators Rob, SoxS and MarA (which we group as

one variable S) binding to a promoter site to activate transcription of acrAB mRNA,

whilst the proteins AcrR and EnvR bind to an operator site to repress acrAB mRNA

transcription, derived from (2.20). In equation (2.47), we have the repression of tran-

scription of acrEF mRNA transcription by EnvR protein, derived from (2.8). In equation

(2.51), we see the activation effect from CsrA in the translation terms for AcrAB, derived

from (2.6). Furthermore in equation (2.54), by including AcrAB in the translation term,

we are able to include the link between AcrAB and AcrEF concentrations, derived from

(2.8). Finally, we incorporate the RamR variant via a mutant coefficient (µ) in equation

(2.48). By setting this value to zero, we can replicate the case of mutated RamR as this
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results in no translation of ramR mRNA. Conversely by setting this value to one we have

full translation, but also degradation of RamR protein.

We denote all of the variables and parameters used to run simulations of our GRN

model in Table 2.1 and Table 2.2. We note that our model does not contain a signal (such

as an antibiotic or toxic substrate) that activates the GRN. Instead, we have chosen our

model to focus solely on the GRN to first greater understand the processes within the

network, leaving the introduction of an explicit signal for later work in Chapters 4-6. For

our simulations, we have chosen initial conditions of all mRNA and protein variables to be

very small (0.01nM), such that the system starts from a down-regulated state. Here, we

are making the assumption that there is at least a low concentration of mRNA and protein

of all genes at all times in the system. Whilst a down-regulated initial state may not be

the case in all scenarios (genes also involved with other cellular processes may already be

up regulated), we have chosen these initial conditions in order to show a greater potential

of processes within the GRN. We exhibit the notation for these conditions in (2.55) for

the mRNA and protein of an arbitrary gene:

Gm(0) = Gm0, G(0) = G0. (2.55)

2.3.1 Simulations

By using estimated parameter values shown in Table 2.2, we produce numerical simu-

lations of the GRN model for both wild-type and RamR mutant strains using ode45 in

MATLAB, exhibited in Figure 2.5. Where possible we have been guided by data in the

experimental literature for parameter values. Remaining parameters are chosen to give

biologically plausible results. We note that between strains, we have identical simulations

of both mRNA and protein for soxS and envR. This is expected as the expression of these

genes are constitutive in both strains. We see sizeable differences in the concentrations

of RamR (Figure 2.5(h)) between both strains due to the mutation of this protein in the

RamR mutant strain. We see resulting increased expression of ramA, producing larger
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Variables Description Units

Rm Concentration of ramR mRNA nM
R Concentration of RamR nM
Am Concentration of ramA mRNA nM
A Concentration of RamA nM
Cm Concentration of acrR mRNA nM
C Concentration of AcrR nM
Bm Concentration of acrAB mRNA nM
B Concentration of AcrAB nM
Sm Concentration of rob, soxS and marA mRNA nM
S Concentration of Rob, SoxS and MarA nM
Em Concentration of envR mRNA nM
E Concentration of EnvR nM
Fm Concentration of acrEF mRNA nM
F Concentration of AcrEF nM

Table 2.1: Variables used in our GRN model along with their respective units.

Parameter Description Estimate Units Reference

k1 Transcription Rate of ramR mRNA 30 nM min−1

m1 Translation Rate of RamR 1 min−1 [93]
k2 Transcription Rate of ramA mRNA 1 nM min−1

m2 Translation Rate of RamA 1 min−1 [93]
k3 Transcription Rate of acrR mRNA 10 nM min−1

m3 Translation Rate of AcrR 1 min−1 [93]
k4 Transcription Rate of acrAB mRNA 1 nM min−1

m4 Translation Rate of AcrAB 1 min−1 [93]
k5 Transcription Rate of rob, soxS and marA mRNA 1 nM min−1

m5 Translation Rate of Rob, SoxS and MarA 1 min−1 [93]
k6 Transcription Rate of envR mRNA 10 nM min−1

m6 Translation Rate of EnvR 1 min−1 [93]
k7 Transcription Rate of acrEF mRNA 0.1 nM min−1

m7 Translation Rate of AcrEF 1 min−1 [93]
k′2 Lower Transcriptional Rate of RamA 0.01 nM min−1

δm Degradation Rate of mRNA 1 min−1 [74]
δp Degradation Rate of proteins 0.02 min−1 [40]
d1L Degradation caused by Lon Protease 0.37 min−1 [76]
KR Dissociation Constant of RamR 65.8 nM [8]
KA1

Dissociation Constant of RamA with ramA and acrAB 2 nM
KA2

Dissociation Constant of RamA with acrR 2 nM
KC Dissociation Constant of AcrR 20.2 nM [8]
KE1 Dissociation Constant of EnvR with acrEF 20.2 nM
KE2 Dissociation Constant of EnvR with acrAB 20.2 nM
KS Dissociation Constant of rob, soxS and marA 200 nM
KTC Dissociation Constant of CsrA 0.02 nM
KB Chemical Signals Constant of AcrAB 1 nM
TC Concentration of CsrA 1 nM
µ Mutation Coefficient 0 or 1 N/A

Table 2.2: A table of parameters used in our GRN model and their estimated values.
Those with estimates gained from references are noted in the reference column. The
remainder have been chosen through investigation and discussion with the Piddock labo-
ratory (University Of Birmingham) to give biologically plausible results.
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concentrations of mRNA and protein (Figures 2.5(b) and (i)) in the RamR mutant strain.

Since we have a higher concentration of RamA in the RamR variant, we see inhibition of

acrR expression, resulting in lower concentrations of mRNA and protein (Figures 2.5(c)

and (j)) in the RamR variant strain. We see a resulting larger concentration of acrAB

mRNA and protein (Figures 2.5(d) and (k)) in the RamR variant strain with a lower

concentration of the homologue efflux pump protein AcrEF (Figure 2.5(n)) compared to

the wild-type. These simulations clearly exhibit the potential of the RamR mutant strain

to display MDR, with the steady state concentration for AcrAB (Figure 2.5(k)), the main

efflux pump in the GRN, being over four times larger in the mutant strain than the wild-

type. This results in the combined efflux of both AcrAB and AcrEF concentrations being

much larger in the RamR mutant strain, even with the increased concentration of AcrEF

in the wild-type strain.
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2.4 Discussion

In this chapter, we have formulated an ODE model of the GRN. We started our model

formulation by listing the processes governing the expression of the efflux pump genes

acrAB and acrEF. In order to assist detailing the processes within the network, we

introduced two strains of Salmonella, namely a wild-type and a RamR variant. By first

listing the processes of the wild-type strain, we displayed the differences in the RamR

variant, highlighting areas of the network that causes the RamR variant strain to confer

MDR.

We have then exhibited our method for deriving our ODEs. By modelling the propor-

tion of time that a protein is bound to a gene binding site, we can formulate equations

of gene expression based on whether the binding protein is an activator or repressor. We

have detailed our derivations for all binding processes that feature within the GRN. By

using these derivations, we have then detailed our ODE model for the GRN, consisting

of fourteen differential equations and twenty nine parameters.

Finally, we have run numerical simulations of our model, using a combination of

parameter values from data as well as estimates drawn from investigation and discussion

with the Piddock laboratory (University Of Birmingham). This has enabled us to view the

behaviour of the network and an overview of how the genes within the network interact,

starting from basal initial conditions of concentration.

This model does however have limitations. One downside of the model is that it is too

complex to yield analytically tractable solutions. In addition, results are dependent on

parameter values, making it difficult to draw strong conclusions from the model. In the

next chapter, we will use asymptotic techniques to break the full solution into separate

timescales. This analysis should reduce the dependency on precise parameter values and

give us analytical solutions for various different timescales, enabling us to draw stronger

conclusions from further analysis into the network.
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CHAPTER 3

TIME-DEPENDENT ASYMPTOTIC ANALYSIS

3.1 Motivation

As shown in the previous chapter, the GRN we are modelling is complex and thus in

order to look into effective inhibition techniques to combat efflux pump expression, the

processes within the system need to be fully analysed. With our previous model, we do

not have a full set of analytically solvable solutions or steady states. Thus we are limited

in the analysis we can conduct on the model without using numerical simulations.

In this chapter, we will use a series of asymptotic analyses to approximate these steady

state values and gain analytical solutions for the variables on intermediate timescales. This

analysis will enable us to show the effect upon variables at different timescales by varying

parameters in the GRN. We will conduct two full asymptotic analyses for the wild-type

and mutant strains, separate analysis for each strain is needed as the steps involved to

reach each timescale will differ. By discovering the behaviour on each timescale, we are

able to see the dominant processes involved in the GRN between both strains. By deriving

the asymptotically approximated steady states, we will also be able to compare different

strategies to inhibit efflux expression that will be most effective for individual strains.
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3.2 Nondimensional model

We nondimensionalise the model from Chapter 2 by using the following variable scalings:

Rm =
k1

δm
R∗m, Sm =

k5

δm
S∗m, A =KAA

∗, E =KE2E
∗,

Am =
k2

δm
A∗m, Em =

k6

δm
E∗m, C =KCC

∗, F =
k7m7

δ2
m

F ∗, (3.1)

Cm =
k3

δm
C∗m, Fm =

k7

δm
F ∗m, B =

k4

δm
B∗, t =

1

δm
T,

Bm =
k4

δm
B∗m, R =KRR

∗, S =KSS
,.

here the asterisks denote nondimensional variables. We have chosen these scalings in or-

der to simplify our system of equations and create nondimensional parameters over which

we have insight into their relative sizes. We note that these have the added effect of sim-

plifying the somewhat complex transcription and translation terms. Substituting these

scalings (dropping the asterisks) reduces the model to the following system of equations,

dRm

dT
= 1−Rm, (3.2)

dAm

dT
=

A

(A+ 1) (R + 1)
+ α− Am, (3.3)

dCm

dT
=

λ

A+ λ
− Cm, (3.4)

dBm

dT
=

A+ S

(1 + S + A) (1 + E + C)
−Bm,

(3.5)

dSm

dT
= 1− Sm, (3.6)

dEm

dT
= 1− Em, (3.7)

dFm

dT
=

η

η + E
− Fm (3.8)

dR

dT
= µρRm − µ∆R (3.9)

dA

dT
= θ Am −∆A− υ A, (3.10)

dC

dT
= γ Cm −∆C, (3.11)

dB

dT
= β Bm −∆B, (3.12)

dS

dT
= σ Sm −∆S, (3.13)

dE

dT
= ξ Em −∆E, (3.14)

dF

dT
=

Fm
ωB + 1

−∆F. (3.15)
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The nondimensionalised parameter groupings that have emerged are as follows

∆ =
δp
δm
, θ =

k2m2

δ2
mKA

, σ =
k5m5

δ2
mKS

, β =
m4TC

δm (TC +KTC )
,

ρ =
k1m1

δ2
mKR

, υ =
d1L

δm
, η =

KE1

KE2

, ξ =
k6m6

δ2
mKE2

,

α =
k′2
k2

, γ =
k3m3

δ2
mKC

, λ =
KA1

KA2

, ω =
k4

δmKB

.

We assume that all mRNAs and proteins are initially present at a low concentration

to monitor how the system upregulates. Thus, we choose low value generic dimensionless

initial conditions as follows

Rm(0) = Am(0) = Cm(0) = Bm(0) = Sm(0) = Em(0) = Fm(0) = 0.01,

R(0) = A(0) = C(0) = B(0) = S(0) = E(0) = F (0) = 0.01. (3.16)

From here on we will refer to these initial conditions with the following notation (similar

to the previous chapter). For any gene G, we will refer to the mRNA initial condition as

Gm0 and the protein initial condition as G0.

3.3 Parameter grouping sizes

By using information about the size of certain parameters compared to others, we can esti-

mate relative parameter sizes within the nondimensional groupings. We start by choosing

a parameter grouping that we know to be small (and denote it having the value ε):

α =
k′2
k2

= ε. (3.17)

The grouping α is the ratio of a low basal rate of transcription to the higher transcription

rate of ramA mRNA. We now assign the remaining parameter groupings an order of
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magnitude relative to (3.17). We assume that

∆ =
δp
δm

= O(ε), (3.18)

i.e. mRNA degradation occurs at a much faster rate than the degradation of proteins. We

do not know all of the exact degradation rates for the mRNAs and proteins of genes within

the network. However, in a similar Gram-negative bacteria E. coli it was observed that

80% of 4,288 mRNAs had half-lives between 3 and 8 minutes [9], whereas for proteins, the

vast majority have half-lives of between 5 and 20 hours [54]. In Salmonella, on a study

of 870 proteins, the calculated median half-life was 99.30 minutes [94]. For individual

proteins within the GRN, it has been shown for RamA in a mutant strain with no Lon

Protease, there was very little observable degradation within 10 minutes, indicating that

the protein is highly stable [76]. Finally, in E. coli it has also been observed that AcrA

and AcrB lasted for approximately six days [17].

At O(ε
1
2 ) we have the following parameter groupings

υ =
d1L

δm
, σ =

k5m5

δ2
mKS

, ξ =
k6m6

δ2
mKE2

. (3.19)

Having υ = O(ε
1
2 ) follows from (3.18), as the rate of degradation of RamA by Lon protease

(d1L) is larger than the natural rate of protein degradation (δp) [76]. Thus, we expect

this grouping to be a larger order of magnitude than ∆. For σ, as the secondary TAs

are all underlying activators, we expect that the dissociation constant is relatively large,

(furthermore by setting this grouping to this size we obtain the most realistic behaviour).

Finally, for ξ the transcription and translation rates for EnvR should be small as this is a

repressor of the homologue efflux pump system AcrEF, and thus we expect this grouping

to be the same size as σ which governs similar underlying genes.
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Finally, we have the parameter groupings that we choose to be O(1). Firstly,

λ =
KA1

KA2

, η =
KE1

KE2

, ω =
k4

δmKB

. (3.20)

For λ, the dissociation constants that make up this grouping correspond to the same

proteins, but binding to different binding sites. With no evidence to the contrary, we

make the assumption that the constants are roughly equal. For η, there is contradictory

evidence in the literature over whether EnvR preferentially binds acrAB, acrEF or both

equally [38, 37]. As a result, we also assume these dissociation constants are roughly equal

and explore variations to this choice in the parameter sensitivity section. As for ω, we

know very little about the chemical signals that cause activation of AcrEF, and hence we

keep this as O(1) for simplicity. The rest of the O(1) parameter groupings are as follows

θ =
k2m2

δ2
mKA

, ρ =
k1m1

δ2
mKR

, γ =
k3m3

δ2
mKC

, β =
m4TC

δm (TC +KTC )
. (3.21)

The groupings in (3.21) correspond to the expression of RamA, RamR, AcrR and AcrAB

respectively. These four proteins constitute the primary TAs and the central pathway

for the GRN, and thus it is not unreasonable to assume that expression of their genes

is relatively high and the respective dissociation constants are likely to be smaller. It

has also been shown experimentally in a wild-type Salmonella strain, that expression of

ramA and acrAB was higher than soxS, marA and acrEF [99]. Therefore, we expect these

groupings to be the largest in order. Testing more subtle differences in size did not bring

significant variations to the behaviour of the model. In Table 3.1, we summarise all of the

above parameter grouping sizes, chosen for definiteness. We could alternatively choose

another size for the intermediate scaling between O(ε) and O(1), however in the following

analysis soxS (σ) and envR (ξ) translation appear together independently on the same

timescale. Therefore, whilst the time scaling to reach this timescale may change, we do

not expect change in the order of the following processes in the analysis. In addition,

the remaining parameter refers to RamA degradation (υ) which will primarily affect the
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steady states of variables, the dependence on this parameter scaling is therefore covered

in the sensitivity analysis in Section 3.8. The parameters below are therefore scaled as

follows

∆ =ε∆′, θ =θ′, σ =ε
1
2σ′,

ρ =ρ′, υ =ε
1
2υ′, η =η′, (3.22)

α =εα′, γ =γ′, λ =λ′,

β =β′, ξ =ε1/2ξ′, ω =ω′,

where the parameters with primes are taken to be O(1). By substituting these into our

nondimensional model and dropping primes, we obtain the following system of equations,

where all parameters are O(1):

dRm

dT
= 1−Rm, (3.23)

dAm

dT
=

A

(A+ 1) (R + 1)
+ εα− Am, (3.24)

dCm

dT
=

λ

A+ λ
− Cm, (3.25)

dBm

dT
=

A+ S

(1 + S + A) (1 + E + C)
−Bm,

(3.26)

dSm

dT
= 1− Sm, (3.27)

dEm

dT
= 1− Em, (3.28)

dFm

dT
=

η

η + E
− Fm, (3.29)

dR

dT
= µρRm − µε∆R, (3.30)

dA

dT
= θ Am − ε∆A− ε1/2υ A, (3.31)

dC

dT
= γ Cm − ε∆C, (3.32)

dB

dT
= β Bm − ε∆B, (3.33)

dS

dT
= ε1/2σ Sm − ε∆S, (3.34)

dE

dT
= ε1/2ξ Em − ε∆E, (3.35)

dF

dT
=

Fm
ωB + 1

− ε∆F, (3.36)

with initial conditions (3.16). We will follow some numerical simulations of the model

with a time-dependent asymptotic analysis in order to extract the dominant behaviours

over time. Throughout our simulations, we take ε = 0.01, and all other parameters as

unity.
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Nondimensional Parameter Size

α, δ O(ε)

υ, σ, ξ O(ε
1
2 )

ρ, θ, γ, β, η, λ, ω O(1)

Table 3.1: Nondimensionalised parameter groupings and their orders of magnitude.

3.4 Numerical simulation

We exhibit a numerical simulation of (3.16) and (3.23)-(3.36) in Figure 3.1 showing both

the wild-type and RamR variant cases. For both cases, we see the rapid production of

mRNA (a)-(g), reaching steady state very quickly for most variables. The efflux genes’

mRNAs (d) and (g) reach steady state more slowly due to being affected by regulatory

protein concentrations. All proteins (h)-(n) reach steady state at a later timescale than

the mRNA. These simulations enable us to exhibit the differences between mutant and

wild-type strains, caused by the mutation to RamR protein (h). This mutation causes

overexpression of ramA mRNA (b) and protein (i) which in turn causes lower concentra-

tions of acrR mRNA (c) and protein (j). These concentrations combined result in a higher

concentration of acrAB mRNA (d) and protein (k), which itself causes lower expression

of AcrEF (n). We note that the steady state concentration of AcrAB is significantly

higher in the mutant case than the wild-type case. Unless otherwise stated, these are the

numerical simulations that we match our asymptotic approximations to in the following

sections.
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3.5 Asymptotic analysis for ε→ 0

We now exploit asymptotic analyses to break down the full solution into smaller timescales

to investigate how the system evolves over time. For an insight into various asymptotic

techniques and methods, some used in this section, see [45]. Variable scalings on each

timescale are obtained by first finding the long-term behaviour of each variable on the

previous timescale. Once this long-term or near blow up behaviour is found, we can

identify the scalings based on how each variable behaves compared to our time variable

T . For example if a nondimensionalised variable G behaves on the previous timescale as

follows

G ∼ T as T →∞,

then to move to the next timescale we must scale G in the same way that we do for T .

The scalings to reach each timescale mathematically appear in a set sequence, where new

behaviour entering the leading order balance determines the scaling for T . These scalings

could also be revealed by analysing the correction terms for the asymptotic approximations

on each timescale. In Section 3.6.1, we exhibit both methods of revealing the scalings

to reach the next timescale. Throughout the next sections, we will draw comparisons

between the numerical solutions and asymptotic approximations. In all figures asymptotic

approximations will be shown in circles, whereas the numerical simulations will be shown

as solid lines. We take ε = 0.01 unless otherwise stated.

3.6 Asymptotic analysis of the wild-type dynamics

We begin with the wild-type case where RamR protein is not mutated (i.e µ = 1). We

denote the variable scalings for each timescale in Table 3.2. Here the scalings are given

in relation to the original nondimensionalised variables in (3.1).
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3.6.1 Timescale 1: mRNA transcription

On this initial timescale all variables must be scaled to O(ε) to reflect their initial condi-

tions. We thus take the following scalings

T = εT̂ , Rm = εR̂m, Am = εÂm, Cm = εĈm, Bm = εB̂m,

Sm = εŜm, Em = εÊm, Fm = εF̂m, R = εR̂, A = εÂ,

C = εĈ, B = εB̂, S = εŜ, E = εÊ, F = εF̂ . (3.37)

Using these scalings, the system of equations rescaled for the first timescale is

dR̂m

dT̂
= 1− εR̂m,

dÂm

dT̂
=

εÂ

(εÂ+ 1)(εR̂ + 1)
+ εα− εÂm,

dĈm

dT̂
=

λ

εÂ+ λ
− εĈm,

dB̂m

dT̂
=

εÂ+ εŜ

(1 + εŜ + εÂ)(1 + εÊ + εĈ)
− εB̂m,

dŜm

dT̂
= 1− εŜm,

dÊm

dT̂
= 1− εÊm,

dF̂m

dT̂
=

η

η + εÊ
− εF̂m,

dR̂

dT̂
= µρ εR̂m − ε2µ∆R̂,

dÂ

dT̂
= θ εÂm − ε

3
2υÂ− ε2∆Â,

dĈ

dT̂
= γ εĈm − ε2∆Ĉ,

dB̂

dT̂
= β εB̂m − ε2∆B̂,

dŜ

dT̂
= ε3/2σ Ŝm − ε2∆Ŝ,

dÊ

dT̂
= ε3/2ξ Êm − ε2∆Ê,

dF̂

dT̂
=

εF̂m

εωB̂ + 1
− ε2∆F̂ . (3.38)

At leading order, we have the following system of equations

dR̂m

dT̂
= 1,

dÂm

dT̂
= 0,

dĈm

dT̂
= 1,

dB̂m

dT̂
= 0,

dR̂

dT̂
= 0,

dÂ

dT̂
= 0,

dĈ

dT̂
= 0,

dB̂

dT̂
= 0,
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dŜm

dT̂
= 1,

dÊm

dT̂
= 1,

dF̂m

dT̂
= 1,

dŜ

dT̂
= 0,

dÊ

dT̂
= 0,

dF̂

dT̂
= 0. (3.39)

The ODE system has now been reduced and we can extract the dominant behaviour

on this timescale. Solving the reduced model subject to the initial conditions gives the

following asymptotic approximations on this timescale:

R̂m = T̂ +Rm0, R̂ = R0, Âm = Am0, Â = A0,

Ĉm = T̂ + Cm0, Ĉ = C0, B̂m = Bm0, B̂ = B0,

Ŝm = T̂ + Sm0, Ŝ = S0, Êm = T̂ + Em0, Ê = E0,

F̂m = T̂ + Fm0, F̂ = F0. (3.40)

We plot the asymptotic approximations of all variables on this timescale against the nu-

merical solutions in Figure 3.2. As expected, we see the transcription of various gene’s

mRNA occurring first with protein levels remaining at their initial value. The transcrip-

tion of ramA and acrAB mRNA are currently not active due to there being insufficient

levels of activator protein bound to their promoter sites to achieve any level of transcrip-

tion at leading order. We have now analysed this first timescale and must determine the

scalings necessary to reach the next timescale. We now demonstrate two possible methods

for revealing these scalings.

Method 1: Analysing the leading order balance

In this method, we determine the scalings for each variable by first analysing their long

term behaviour on the current timescale. We can then look at which new terms will first

enter the leading order balance on the next timescale to reveal the exact scaling. For this
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timescale, as T̂ →∞ we have

R̂m, Ĉm, Ŝm, Êm, F̂m ∼ T̂ , (3.41)

with every other variable still constant at their initial condition. We now propose a new

time scaling to reach the next timescale:

T̂ = δ(ε)Ť , (3.42)

where δ(ε) is a function of ε. Since we are scaling forwards in time, we must have that

δ(ε) > 1. Substituting this scaling (3.42) into the solutions (3.40) for our variables that

evolve on this timescale . We have

R̂m = δ(ε)Ť +Rm0, Ĉm = δ(ε)Ť + Cm0, Ŝm = δ(ε)Ť + Sm0,

Êm = δ(ε)Ť + Em0, F̂m = δ(ε)Ť + Fm0. (3.43)

Notably, we have terms of O(δ(ε)) > O(1), in order for these terms to be O(1) on the

subsequent timescale, we must then take the following variable scalings

R̂m = δ(ε)Řm, Ĉm = δ(ε)Čm, Ŝm = δ(ε)Šm, Êm = δ(ε)Ěm, F̂m = δ(ε)F̌m. (3.44)

Using the combination of scalings (3.42)-(3.44), our system of equations (3.38) become

dŘm

dŤ
= 1− εδ(ε)Řm,

1

δ(ε)

dÂm

dŤ
=

εÂ

(εÂ+ 1)(εR̂ + 1)
+ εα− εÂm,

dČm

dŤ
=

λ

εÂ+ λ
− εδ(ε)Čm,

1

δ(ε)

dB̂m

dŤ
=

εÂ+ εŜ

(1 + εŜ + εÂ)(1 + εÊ + εĈ)
− εB̂m,

1

δ(ε)

dR̂

dŤ
= εδ(ε)µρ Řm − ε2µ∆R̂, (3.45)

1

δ(ε)

dÂ

dŤ
= εθ Âm − ε

3
2υ Â− ε2∆Â,

1

δ(ε)

dĈ

dŤ
= εδ(ε)γ Čm − ε2∆Ĉ, (3.46)

1

δ(ε)

dB̂

dŤ
= εβ B̂m − ε2∆B̂,
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dŠm

dŤ
= 1− εδ(ε)Šm,

dĚm

dŤ
= 1− εδ(ε)Ěm,

dF̌m

dŤ
=

η

η + εÊ
− εδ(ε)F̌m,

1

δ(ε)

dŜ

dŤ
= ε

3
2 δ(ε)σ Šm − ε2∆Ŝ,

1

δ(ε)

dÊ

dŤ
= ε

3
2 ξ Ěm − ε2∆Ê,

1

δ(ε)

dF̂

dŤ
=
εδ(ε)F̌m

εωB̂ + 1
− ε2∆F̂ . (3.47)

We can see from this system of equations that the smallest scaling δ(ε) that brings

in a new term to the leading order balance is δ(ε) = ε−
1
2 . This scaling brings in RamR,

AcrR and AcrEF translation in equations (3.45), (3.46) and (3.47) respectively.

Method 2: Analysing the correction term

In this method, we look at the behaviour of the correction terms on the current timescale

to determine the time scaling to reach the subsequent timescale. For all 14 of our variables

we take the following asymptotic expansions, with notation for a gene mRNA Gm and

protein G.

Gm = gm0 + ε
1
2 gm1 + εgm2 + ..., G = g0 + ε

1
2 g1 + εg2 + ... . (3.48)

In addition to the leading order system of equations (3.39) and solutions (3.40), the first

non trivial correction terms are defined by the following system of equations

dr̂m2

dT̂
= −rm0,

dâm2

dT̂
= a0 + α− am0,

dĉm2

dT̂
= −a0

λ
− cm0,

db̂m2

dT̂
= a0 + s0 − bm0,

dŝm2

dT̂
= −sm0,

dêm2

dT̂
= −em0,

d f̂ m2

dT̂
= −e0

η
− fm0,

dr̂ 0

dT̂
= µρrm0,

dâ0

dT̂
= θam0,

dĉ0

dT̂
= γcm0,

db̂0

dT̂
= βbm0,

dŝ0

dT̂
= σsm0,

dê0

dT̂
= ξem0,

d f̂ 0

dT̂
= fm0. (3.49)
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Solving this system of equations we have:

R̂m ∼ T̂ +Rm0 + ε

(
−1

2
T̂ 2 −Rm0T̂

)
, R̂ ∼ R0 + ε

(
1

2
µρT̂ 2 + µρRm0T̂

)
,

Âm ∼ Am0 + ε
(

(A0 + α− Am0)T̂
)
, Â ∼ A0 + ε

(
θAm0T̂

)
,

Ĉm ∼ T̂ + Cm0 + ε

(
−1

2
T̂ 2 −

(
A0

λ
+ Cm0

)
T̂

)
, Ĉ ∼ C0 + ε

(
1

2
γT̂ 2 + γCm0T̂

)
,

B̂m ∼ Bm0 + ε
(

(A0 + S0 −Bm0)T̂
)
, B̂ ∼ B0 + ε

(
βBm0T̂

)
,

Ŝm ∼ T̂ + Sm0 + ε

(
−1

2
T̂ 2 − Sm0T̂

)
, Ŝ ∼ S0 + ε

3
2

(
1

2
σT̂ 2 + σSm0T̂

)
,

Êm ∼ T̂ + Em0 + ε

(
−1

2
T̂ 2 − Em0T̂

)
, Ê ∼ E0 + ε

3
2

(
1

2
ξT̂ 2 + ξEm0T̂

)
,

F̂m ∼ T̂ + Fm0 + ε

(
−1

2
T̂ 2 −

(
E0

η
+ Fm0

)
T̂

)
, F̂ ∼ F0 + ε

(
1

2
T̂ 2 + Fm0T̂

)
. (3.50)

For the variables that have not evolved at leading order, we can see that the correction

terms for R̂, Ĉ and F̂ become O(1) when T̂ = O(ε−
1
2 ). Since this is the smallest possible

time scaling to bring in correction terms, this gives us our time scaling T̂ = ε−
1
2 Ť to

reach the next timescale. The variables Ŝ and Ê become leading order at T̂ = O(ε−
3
4 )

whilst the variables Âm, Â, B̂m and B̂ become leading order at T̂ = O(ε−1), which gives us

insight into potential scalings for future timescales past the subsequent timescale. For the

variables that have evolved at leading order, applying the scaling T̂ = ε−
1
2 Ť , the leading

order terms become O(ε−
1
2 ). For these terms to be O(1) on the subsequent timescale we

must also apply the following variable scalings

R̂m = ε−
1
2 Řm, Ĉm = ε−

1
2 Čm, Ŝm = ε−

1
2 Šm, Êm = ε−

1
2 Ěm, F̂m = ε−

1
2 F̌m. (3.51)

Notably, both methods return the same scalings as they are mathematically set in sequence

and cannot be chosen. For brevity, we omit the steps involved in these methods for the

subsequent timescales.
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3.6.2 Timescale 2: Protein translation

We move onto the second timescale, here protein translation occurs for RamR, AcrR and

AcrEF in equations (3.53)-(3.55). We take the following scalings based on the variables

on the previous timescale’s long-term behaviour

T̂ = ε−
1
2 Ť , R̂m = ε−

1
2 Řm, Ĉm = ε−

1
2 Čm,

Ŝm = ε−
1
2 Šm, Êm = ε−

1
2 Ěm, F̂m = ε−

1
2 F̌m. (3.52)

After rescaling, the system of equations for the second timescale is

dŘm

dŤ
= 1− ε

1
2 Řm,

dÂm

dŤ
=

ε
1
2 Â

(εÂ+ 1)(εR̂ + 1)
+ ε

1
2α− ε

1
2 Âm,

dČm

dŤ
=

λ

εÂ+ λ
− ε

1
2 Čm,

dB̂m

dŤ
=

ε
1
2 Â+ ε

1
2 Ŝ

(1 + εŜ + εÂ)(1 + εÊ + εĈ)
− ε

1
2 B̂m,

dŠm

dŤ
= 1− ε

1
2 Šm,

dĚm

dŤ
= 1− ε

1
2 Ěm,

dF̌m

dŤ
=

η

η + εÊ
− ε

1
2 F̌m,

dR̂

dŤ
= µρ Řm − ε

3
2µ∆R̂, (3.53)

dÂ

dŤ
= ε

1
2 θ Âm − ευ Â− ε

3
2 ∆Â,

dĈ

dŤ
= γ Čm − ε

3
2 ∆Ĉ, (3.54)

dB̂

dŤ
= ε

1
2β B̂m − ε

3
2 ∆B̂,

dŜ

dŤ
= ε

1
2σ Šm − ε

3
2 ∆Ŝ,

dÊ

dŤ
= ε

1
2 ξ Ěm − ε

3
2 ∆Ê,

dF̂

dŤ
=

F̌m

εωB̂ + 1
− ε

3
2 ∆F̂ . (3.55)

At leading order, we have the following system of equations

dŘm

dŤ
= 1,

dÂm

dŤ
= 0,

dČm

dŤ
= 1,

dR̂

dŤ
= µρ Řm,

dÂ

dŤ
= 0,

dĈ

dŤ
= γ Čm,
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dB̂m

dŤ
= 0,

dŠm

dŤ
= 1,

dĚm

dŤ
= 1,

dF̌m

dŤ
= 1,

dB̂

dŤ
= 0,

dŜ

dŤ
= 0,

dÊ

dŤ
= 0,

dF̂

dŤ
= F̌m. (3.56)

Solving this reduced system of ODEs and matching to the long-term dominant be-

haviour on the previous timescale gives the following asymptotic approximations

Řm = Ť , R̂ =
µρ

2
Ť 2 +R0 Âm = Am0, Â = A0,

Čm = Ť , Ĉ =
γ

2
Ť 2 + C0, B̂m = Bm0, B̂ = B0,

Šm = Ť , Ŝ = S0, Ěm = Ť , Ê = E0,

F̌m = Ť , F̂ =
1

2
Ť 2 + F0. (3.57)

We plot these asymptotic approximations against the numerical solutions in Figure 3.3.

We see the translation of some of the genes transcribed on the previous timescale appear-

ing at leading order on this timescale. This is expected as bacteria have fast translation

processes, such that translation occurs as soon as the gene is transcribed. The transla-

tion is not present for EnvR and the underlying activators which agrees with what we

might expect from biological intuition as these are a homologue gene and secondary TAs

respectively, thus we expect lower expression of these genes.
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3.6.3 Timescale 3: SoxS and EnvR translation

On this third timescale protein translation occurs at leading order for the rest of the

proteins for which transcription of their corresponding mRNA occurred on timescale 1 in

equations (3.59)-(3.60). We take the following scalings:

Ť = ε−
1
4 T̄ , Řm = ε−

1
4 R̄m, Čm = ε−

1
4 C̄m,

Šm = ε−
1
4 S̄m, Ěm = ε−

1
4 Ēm, F̌m = ε−

1
4 F̄m,

R̂ = ε−
1
2 R̄, Ĉ = ε−

1
2 C̄, F̂ = ε−

1
2 F̄ . (3.58)

The system of equations rescaled for the third timescale is

dR̄m

dT̄
= 1− ε

1
4 R̄m,

dÂm

dT̄
=

ε
1
4 Â

(εÂ+ 1)(ε
1
2 R̄ + 1)

+ ε
1
4α− ε

1
4 Âm,

dC̄m

dT̄
=

λ

εÂ+ λ
− ε

1
4 C̄m,

dB̂m

dT̄
=

ε
1
4 Â+ ε

1
4 Ŝ

(1 + εŜ + εÂ)(1 + εÊ + ε
1
2 C̄)
− ε

1
4 B̂m,

dS̄m

dT̄
= 1− ε

1
4 S̄m,

dĒm

dT̄
= 1− ε

1
4 Ēm,

dF̄m

dT̄
=

η

η + εÊ
− ε

1
4 F̄m,

dR̄

dT̄
= µρ R̄m − ε

5
4µ∆R̄,

dÂ

dT̄
= ε

1
4 θ Âm − ε

3
4υ Â− ε

5
4 ∆Â,

dC̄

dT̄
= γ C̄m − ε

5
4 ∆C̄,

dB̂

dT̄
= ε

1
4β B̂m − ε

5
4 ∆B̂,

dŜ

dT̄
= σ S̄m − ε

5
4 ∆Ŝ, (3.59)

dÊ

dT̄
= ξ Ēm − ε

5
4 ∆Ê, (3.60)

dF̄

dT̄
=

F̄m

εωB̂ + 1
− ε

5
4 ∆F̄ .

At leading order, we have the following system of equations

dR̄m

dT̄
= 1,

dÂm

dT̄
= 0,

dC̄m

dT̄
= 1,

dR̄

dT̄
= µρ R̄m,

dÂ

dT̄
= 0,

dC̄

dT̄
= γ C̄m,
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dB̂m

dT̄
= 0,

dS̄m

dT̄
= 1,

dĒm

dT̄
= 1,

dF̄m

dT̄
= 1,

dB̂

dT̄
= 0,

dŜ

dT̄
= σS̄m,

dÊ

dT̄
= ξĒm,

dF̄

dT̄
= F̄m. (3.61)

Taking this leading order balance, solving and matching to the long-term dominant

behaviour on the previous timescale gives the following asymptotic approximations

R̄m = T̄ , R̄ =
µρ

2
T̄ 2, Âm = Am0, Â = A0,

C̄m = T̄ , C̄ =
γ

2
T̄ 2, B̂m = Bm0, B̂ = B0,

S̄m = T̄ , Ŝ =
σ

2
T̄ 2 + S0, Ēm = T̄ , Ê =

ξ

2
T̄ 2 + E0,

F̄m = T̄ , F̄ =
1

2
T̄ 2. (3.62)

We plot these asymptotic approximations against the numerical solutions in Figure 3.4.

On this timescale, we see the translation of all mRNAs that were previously transcribed on

the earlier timescales. This makes logical sense as we expect rapid translation in response

to changes at the transcriptional level.
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3.6.4 Timescale 4: acrAB mRNA transcription

For this timescale, transcription of the efflux pump gene acrAB emerges in equation

(3.64). We take the following scalings:

T̄ = ε−
1
12 T̃ , R̄m = ε−

1
12 R̃m, C̄m = ε−

1
12 C̃m, S̄m = ε−

1
12 S̃m,

Ēm = ε−
1
12 Ẽm, F̄m = ε−

1
12 F̃m, R̄ = ε−

1
6 R̃, C̄ = ε−

1
6 C̃,

Ŝ = ε−
1
6 S̃, Ê = ε−

1
6 Ẽ, F̄ = ε−

1
6 F̃ . (3.63)

After rescaling, the system of equations for the fourth timescale is

dR̃m

dT̃
= 1− ε

1
6 R̃m,

dÂm

dT̃
=

ε
1
6 Â

(εÂ+ 1)(ε
1
3 R̃ + 1)

+ ε
1
6α− ε

1
6 Âm,

dC̃m

dT̃
=

λ

εÂ+ λ
− ε

1
6 C̃m,

dB̂m

dT̃
=

ε
1
6 Â+ S̃

(1 + ε
5
6 S̃ + εÂ)(1 + ε

5
6 Ẽ + ε

1
3 C̃)
− ε

1
6 B̂m,

(3.64)

dS̃m

dT̃
= 1− ε

1
6 S̃m,

dẼm

dT̃
= 1− ε

1
6 Ẽm,

dF̃m

dT̃
=

η

η + ε
5
6 Ẽ
− ε

1
6 F̃m,

dR̃

dT̃
= µρ R̃m − ε

7
6µ∆R̃,

dÂ

dT̃
= ε

1
6 θ Âm − ε

2
3υ Â− ε

7
6 ∆Â,

dC̃

dT̃
= γ C̃m − ε

7
6 ∆C̃,

dB̂

dT̃
= ε

1
6β B̂m − ε

7
6 ∆B̂,

dS̃

dT̃
= σ S̃m − ε

7
6 ∆S̃,

dẼ

dT̃
= ξ Ẽm − ε

7
6 ∆ Ẽ,

dF̃

dT̃
=

F̃m

εωB̂ + 1
− ε

7
6 ∆F̃ .

At leading order, we have the following system of equations

dR̃m

dT̃
= 1,

dÂm

dT̃
= 0,

dC̃m

dT̃
= 1,

dR̃

dT̃
= µρ R̃m,

dÂ

dT̃
= 0,

dC̃

dT̃
= γ C̃m,
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dB̂m

dT̃
= S̃,

dS̃m

dT̃
= 1,

dẼm

dT̃
= 1,

dF̃m

dT̃
= 1,

dB̂

dT̃
= 0,

dS̃

dT̃
= σS̃m,

dẼ

dT̃
= ξẼm,

dF̃

dT̃
= F̃m. (3.65)

Solving this leading order system of ODEs and matching to the dominant behaviour

on the previous timescale gives us

R̃m = T̃ , R̃ =
µρ

2
T̃ 2, Âm = Am0, Â = A0,

C̃m = T̃ , C̃ =
γ

2
T̃ 2, B̂m =

σ

6
T̃ 3 +Bm0, B̂ = B0,

S̃m = T̃ , S̃ =
σ

2
T̃ 2, Ẽm = T̃ , Ẽ =

ξ

2
T̃ 2,

F̃m = T̃ , F̃ =
1

2
T̃ 2. (3.66)

We plot these asymptotic approximations against the full solution in Figure 3.5. This

is the first timescale on which the efflux gene acrAB is transcribed. We notice that this

is being driven by the secondary TAs binding to the promoter site of acrAB.
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3.6.5 Timescale 5: AcrAB translation

We move onto the fifth timescale, here the translation term for AcrAB appears in the

leading order balance in equation (3.68). We take the following scalings based on the

variables on the previous timescale’s long-term behaviour

T̄ = ε−
1
24T ′, R̄m = ε−

1
24R′m, C̄m = ε−

1
24C ′m, S̄m = ε−

1
24S ′m,

Ēm = ε−
1
24E ′m, F̄m = ε−

1
24F ′m, R̄ = ε−

1
12R′, C̄ = ε−

1
12C ′,

Ŝ = ε−
1
12S ′, Ê = ε−

1
12E ′, F̄ = ε−

1
12F ′, B̂m = ε−

1
8B′m. (3.67)

The system of equations rescaled for the fifth timescale is

dR′m
dT ′

= 1− ε
1
8R′m,

dÂm

dT ′
=

ε
1
8 Â

(εÂ+ 1)(ε
1
4R′ + 1)

+ ε
1
8α− ε

1
8 Âm,

dC ′m
dT ′

=
λ

εÂ+ λ
− ε

1
8C ′m,

dB ′m
dT ′

=
ε

1
4 Â+ S ′

(1 + ε
3
4S ′ + εÂ)(1 + ε

3
4E ′ + ε

1
4C ′)

− ε
1
8B′m,

dS ′m
dT ′

= 1− ε
1
8S ′m,

dE ′m
dT ′

= 1− ε
1
8E ′m,

dF ′m
dT ′

=
η

η + ε
3
4E ′
− ε

1
8F ′m,

dR′

dT ′
= µρR′m − ε

9
8µ∆R′,

dÂ

dT ′
= ε

1
8 θ Âm − ε

5
8υ Â− ε

9
8 ∆Â,

dC ′

dT ′
= γ C ′m − ε

9
8 ∆C ′,

dB̂

dT ′
= β B′m − ε

9
8 ∆ B̂, (3.68)

dS ′

dT ′
= σ S ′m − ε

9
8 ∆S ′,

dE ′

dT ′
= ξ E ′m − ε

9
8 ∆E ′,

dF ′

dT ′
=

F ′m

εωB̂ + 1
− ε

9
8 ∆F ′.

At leading order, we have the following system of equations

dR′m
dT ′

= 1,

dÂm

dT ′
= 0,

dC ′m
dT ′

= 1,

dR′

dT ′
= µρR′m,

dÂ

dT ′
= 0,

dC ′

dT ′
= γ C ′m,
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dB ′m
dT ′

= S ′,

dS ′m
dT ′

= 1,

dE ′m
dT ′

= 1,

dF ′m
dT ′

= 1,

dB̂

dT ′
= βB′m,

dS ′

dT ′
= σS ′m,

dE ′

dT ′
= ξE ′m,

dF ′

dT ′
= F ′m. (3.69)

Solving this leading order system and matching to the long-term dominant behaviour

on the previous timescale gives the following asymptotic approximations

R′m = T ′, R′ =
µρ

2
T ′2, Âm = Am0, Â = A0,

C ′m = T ′, C ′ =
γ

2
T ′2, B′m =

σ

6
T ′3, B̂ =

βσ

24
T ′4 +B0,

S ′m = T ′, S ′ =
σ

2
T ′2, E ′m = T ′, E ′ =

ξ

2
T ′2,

F ′m = T ′, F ′ =
1

2
T ′2. (3.70)

The above asymptotic approximations are plotted against the full solution in Figure

3.6. In this timescale, we have translation of AcrAB at the leading order, we note that

this is being driven here by the secondary TA. We note there is disparity between the

approximations and numerics. We could eliminate this by matching to additional orders

of behaviour on the previous timescale, however for simplicity in solutions for the latter

timescales, we have opted not to do so. We also note that these discrepancies decrease

when ε→ 0.
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3.6.6 Timescale 6: mRNA degradation and full protein transla-
tion

For this timescale, mRNA degradation and expression of ramA enters the leading order

balance in all mRNA equations and (3.72). We take the following variable scalings

T ′ = ε−
1
8T †, R′m = ε−

1
8R†m, C ′m = ε−

1
8C†m, S ′m = ε−

1
8S†m, E ′m = ε−

1
8E†m,

F ′m = ε−
1
8F †m, R′ = ε−

1
4R†, C ′ = ε−

1
4C†, S ′ = ε−

1
4S†, E ′ = ε−

1
4E†,

F ′ = ε−
1
4F †, B′m = ε−

3
8B†m, B̂ = ε−

1
2B†. (3.71)

After rescaling, the system of equations for the sixth timescale is

dR†m
dT †

= 1−R†m,

dÂm

dT †
=

Â

(εÂ+ 1)(R† + 1)
+ α− Âm,

dC †m
dT †

=
λ

εÂ+ λ
− C†m,

dB †m
dT †

=
ε

1
2 Â+ S†

(1 + ε
1
2S† + εÂ)(1 + ε

1
2E† + C†)

−B†m,

dS †m
dT †

= 1− S†m,

dE †m
dT †

= 1− E†m,

dF †m
dT †

=
η

η + ε
1
2E†
− F †m,

dR†

dT †
= µρR†m − εµ∆R†,

dÂ

dT †
= θ Âm − ε

1
2υ Â− ε∆Â, (3.72)

dC †

dT †
= γ C†m − ε∆C†,

dB †

dT †
= β B†m − ε∆B†,

dS †

dT †
= σ S†m − ε∆S†,

dE †

dT †
= ξ E†m − ε∆E†,

dF †

dT †
=

F †m

ε
1
2ωB† + 1

− ε∆F †.

At leading order, we have the following system of equations

dR†m
dT †

= 1−R†m,

dÂm

dT †
=

Â

R† + 1
+ α− Âm,

dC †m
dT †

= 1− C†m,

dR†

dT †
= µρR†m,

dÂ

dT †
= θÂm,

dC †

dT †
= γ C†m,
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dB †m
dT †

=
S†

1 + C†
−B†m,

dS †m
dT †

= 1− S†m,

dE †m
dT †

= 1− E†m,

dF †m
dT †

= 1− F †m,

dB †

dT †
= βB†m,

dS †

dT †
= σS†m,

dE †

dT †
= ξE†m,

dF †

dT †
= F †m. (3.73)

Solving and matching to the long-term dominant behaviour on the previous timescale

gives the following asymptotic approximations

R†m = 1− e−T † , R† = µρ(T † − e−T † − 1), C†m = 1− e−T † , C† = γ(T † − e−T † − 1),

B†m =
σT †

γT † + 1
, B† =

βσ

γ

(
T † − ln(T †γ + 1)

γ

)
, S†m = 1− e−T † , S† = σ(T † − e−T † − 1),

E†m = 1− e−T † , E† = ξ(T † − e−T † − 1), F †m = 1− e−T † , F † = T † − e−T † − 1,

(3.74)

while the behaviour for both ramA mRNA (Âm) and RamA protein (Â) depends on the

relationship between the parameters µ,θ and ρ. If
θ

µρ
6= 1 we have

Âm =
(µρA0 − θ (α + A0))

(
T †µρ+ 1

) θ
µρ +

(
T †µρ+ 1

)
θ α

(µρ− θ)(µρT † + 1)
,

Â =
(µρA0 − θ (α + A0))

(
T †µρ+ 1

) θ
µρ +

(
T †µρ+ 1

)
θ α

µρ− θ
. (3.75)

In this case we have different long term blow up behaviour depending on whether
θ

µρ
< 1

or
θ

µρ
> 1, detailed below. For the case where

θ

µρ
= 1 we have

Âm = α ln
(
T † + 1

)
+ A0 + α, Â =

(
α ln

(
T † + 1

)
+ A0

) (
T † + 1

)
. (3.76)

Here we have taken the case where θ = 1, µ = 1, ρ = 1 for simplicity of displaying the

solutions.
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We can see that we have three cases of long-term behaviour for both ramA mRNA

(Âm) and RamA protein (Â). We exhibit the relation between this long-term behaviour

and our parameter groupings as follows

Âm ∼


CA for θ

µρ
< 1,

ln(T †) for θ
µρ

= 1,

T †
θ
µρ
−1

for θ
µρ
> 1,

(3.77) Â ∼


T †, for θ

µρ
< 1,

T † ln(T †) for θ
µρ

= 1,

T †
θ
µρ for θ

µρ
> 1,

(3.78)

where here CA is a constant. We note that the parameter θ relates to RamA production,

whilst ρ relates to RamR production. Since RamR is a repressor of ramA expression, we

might expect its rate of production to dominate, thus we note that the case
θ

µρ
< 1 is the

most biologically plausible and use the resulting behaviour to move to the next timescale.

For all future numerical simulations, we set θ = 0.5 to satisfy this inequality.

We plot these asymptotic approximations against the full solution in Figure 3.7. This

is the first timescale where the ramA gene is expressed at leading order, this is due to

there being little RamA protein in the system to activate its own expression. We note we

have transcription of ramA mRNA and translation of RamR coming into this timescale.

In addition to this we have degradation terms for all mRNAs, this is causing the mRNAs

to level off and reach steady state. In addition to this, the local repressor of acrAB (AcrR)

is bound to the operator site of acrAB which is in effect limiting the transcription of this

gene. For acrAB mRNA we have a slight mismatch of the approximation to the solution,

we could prevent this by matching to lower orders of behaviour on the previous timescale

(or reduce the discrepancy with a smaller value of ε). However, we have chosen not to do

this for simplicity of solutions on this and further timescales.
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3.6.7 Timescale 7: Degradation of RamA, inhibition of acrAB
and acrEF

For this timescale, we have a change of the terms involved in transcription of acrAB and

acrEF, with new terms emerging at leading order in equations (3.80) and (3.81). We also

have RamA degradation entering the leading order balance in equation (3.82). We take

the following variable scalings:

T † = ε−
1
2T ‡, R† = ε−

1
2R‡, C† = ε−

1
2C‡, B† = ε−

1
2B‡,

S† = ε−
1
2S‡, E† = ε−

1
2E‡, F † = ε−

1
2F ‡, Â = ε−

1
2A‡. (3.79)

The system of equations rescaled for the seventh timescale is

ε
1
2
dR†m
dT ‡

= 1−R†m,

ε
dÂm

dT ‡
=

A‡

(ε
1
2A‡ + 1)(ε−

1
2R‡ + 1)

+ ε
1
2α− ε

1
2 Âm,

ε
1
2
dC†m
dT ‡

=
λ

ε
1
2A‡ + λ

− C†m,

ε
dB†m
dT ‡

=
ε

1
2A‡ + S‡

(1 + S‡ + ε
1
2A‡)(1 + E‡ + ε−

1
2C‡)

− ε
1
2B†m,

(3.80)

ε
1
2
dS†m
dT ‡

= 1− S†m,

ε
1
2
dE†m
dT ‡

= 1− E†m,

ε
1
2
dF †m
dT ‡

=
η

η + E‡
− F †m, (3.81)

dR‡

dT ‡
= µρR†m − ε

1
2µ∆R‡,

dA‡

dT ‡
= θ Âm − υ A‡ − ε

1
2 ∆A‡,

(3.82)

dC ‡

dT ‡
= γ C†m − ε

1
2 ∆C‡,

dB ‡

dT ‡
= β B‡m − ε

1
2 ∆B‡,

dS ‡

dT ‡
= σ S†m − ε

1
2 ∆S‡,

dE ‡

dT ‡
= ξ E†m − ε

1
2 ∆E‡,

dF ‡

dT ‡
=

F †m
ωB‡ + 1

− ε
1
2 ∆F ‡.

At leading order, we have the following system of equations

R†m = 1,

Âm =
A‡

R‡
+ α,

C†m = 1,

dR‡

dT ‡
= µρR†m,

dA‡

dT ‡
= θÂm − υ A‡,

dC ‡

dT ‡
= γ C†m,
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B†m =
S‡

(1 + S‡)C‡
,

S†m = 1,

E†m = 1,

F †m =
η

η + E‡
,

dB ‡

dT ‡
= βB†m,

dS ‡

dT ‡
= σS†m,

dE ‡

dT ‡
= ξE†m,

dF ‡

dT ‡
=

F †m
ωB‡ + 1

. (3.83)

Solving the leading order balance and matching to the long-term dominant behaviour

on the previous timescale gives the following asymptotic approximations

R†m = 1, R‡ = µρT ‡, Âm =
αυµρT ‡

υµρT ‡ − θ
, A‡ =

θαµρT ‡

υµρT ‡ − θ
,

C†m = 1, C‡ = γT ‡, B†m =
σ

γ(σT ‡ + 1)
, S†m = 1,

S‡ = σT ‡, E†m = 1, E‡ = ξT ‡, F †m =
η

η + ξT ‡
,

B‡ =
β

γ
ln(σT ‡ + 1), F ‡ =

ηγ

βωξ
ln(βω ln(ξT ‡ + η) + γ). (3.84)

We plot asymptotic approximations of those variables that evolve on this timescale against

the numerical solutions in Figure 3.8. On this timescale, we have repressor proteins dom-

inating the transcription terms for acrAB and acrEF. With lower levels of transcription,

degradation dominates and the concentrations of the mRNAs lower. We note that in this

wild-type case RamA production occurs late compared to other proteins (starting on the

previous timescale) and is quickly degraded to achieve only low levels in comparison to

other proteins in the system. On this timescale, all other mRNAs have reached steady

state and AcrAB and AcrEF grow logarithmically. With logarithmic behaviour for both

B‡ and F ‡, we must justify the scalings we take to the next timescale. Suppose we scale
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our variable as T ‡ = ε−αT � then

B‡ ∼ ln(T ‡), (3.85)

∼ ln(ε−αT �),

∼ α ln(1/ε) + ln(T �),

∼ ln(1/ε) + ln(T �).

This means that moving to the next timescale, we should scale B‡ by ln(1/ε). We can

apply a similar process again supposing we scale our variable as T ‡ = ε−αT � then

F ‡ ∼ ln(ln(T ‡)), (3.86)

∼ ln(ln(ε−αT �)),

∼ ln(α ln(1/ε) + ln(T �)),

∼ ln(α ln(1/ε)(1 +
ln(T �)

α ln(1/ε)
)),

∼ ln(α) + ln(ln(1/ε)) + ln(1 +
ln(T �)

α ln(1/ε)
),

∼ ln(α) + ln(ln(1/ε)) + ln(
ln(T �)

α ln(1/ε)
),

∼ ln(ln(1/ε)) + ln(ln(T �)).

This means that moving to the next timescale, we should scale F ‡ by ln(ln(1/ε)).
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3.6.8 Timescale 8: AcrEF degradation

On this timescale, degradation of AcrEF emerges in equation (3.88). We take the following

scalings:

T ‡ = ε−
1
2 ln(1/ε)−1 ln(ln(1/ε))−1T �, R‡ = ε−

1
2 ln(1/ε)−1 ln(ln(1/ε))−1R�,

C‡ = ε−
1
2 ln(1/ε)−1 ln(ln(1/ε))−1C�, S‡ = ε−

1
2 ln(1/ε)−1 ln(ln(1/ε))−1S�,

E‡ = ε−
1
2 ln(1/ε)−1 ln(ln(1/ε))−1E�, B†m = ε

1
2 ln(1/ε) ln(ln(1/ε))B�m,

F †m = ε
1
2 ln(1/ε) ln(ln(1/ε))F �m, B‡ = ln(1/ε)B�,

F ‡ = ln(ln(1/ε))F �. (3.87)

For simplicity in presentation, we choose to express the log functions as φ = ln(1/ε)−1

and δ = ln(ln(1/ε))−1. Using these scalings, the system of equations rescaled for the

eighth timescale is

εφ−1δ−1dR
†
m

dT �
= 1−R†m,

ε
3
2φ−1δ−1 dÂm

dT �
=

A‡

(ε
1
2A‡ + 1)(ε−1φδR� + 1)

+ ε
1
2α− ε

1
2 Âm,

εφ−1δ−1dC
†
m

dT �
=

λ

ε
1
2A‡ + λ

− C†m,

ε2φ−2δ−2dB
�
m

dT �
=

ε
1
2A‡ + ε−

1
2φδS�

(1 + ε−
1
2φδS� + ε

1
2A‡)(1 + ε−

1
2φδE� + ε−1φδC�)

− εφ−1δ−1B�m,

εφ−1δ−1dS
†
m

dT �
= 1− S†m,

εφ−1δ−1dE
†
m

dT �
= 1− E†m,

ε
3
2φ−2δ−2dF

�
m

dT �
=

η

η + ε−
1
2φδE�

− ε
1
2φ−1δ−1F �m,

dR�

dT �
= µρR†m − φδµ∆R�,

ε
1
2φ−1δ−1 dA‡

dT �
= θÂm − υ A‡ − ε

1
2 ∆A‡,

dC �

dT �
= γ C†m − φδ∆C�,

φ−1δ−1 dB�

dT �
= δ−1βB�m −∆B�,

dS �

dT �
= σS†m − φδ∆S�,

dE �

dT �
= ξE†m − φδ∆E�,

φ−1δ−1 dF �

dT �
=

F �m
ωB� + φ

−∆F �.

(3.88)
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At leading order, we have the following system of equations

R†m = 1,

Âm = α,

C†m = 1,

B�m =
S�

(ε
1
2φ−1δ−1 + S�)C�

,

S†m = 1,

E†m = 1,

F �m =
η

ε
1
2φ−1δ−1η + E�

,

dR�

dT �
= µρR†m,

A‡ =
θ

υ
Âm,

dC �

dT �
= γ C†m,

dB�

dT �
= 0,

dS �

dT �
= σS†m,

dE �

dT �
= ξE†m,

dF �

dT �
= 0. (3.89)

To be able to match to the logarithmic behaviour on the previous timescale, we

must go to second order for B and F . By taking the expansions B = b0 + φb1... and

F = f0 + φδf1 + ... , we have the following equations

db�1
dT �

= βB�m, (3.90)
df �1
dT �

=
F �m
ωb�0
−∆f �0 . (3.91)

Solving and matching to the long-term dominant behaviour on the previous timescale

gives the following asymptotic approximations

R†m = 1, R� = µρT �, Âm = α,

A‡ =
θα

υ
, C†m = 1, C� = γT �,

S†m = 1, S� = σT �, E†m = 1,

E� = ξT �, B�m =
σ

γ(ε
1
2φ−1δ−1 + σT �)

, F �m =
η

ε
1
2φ−1δ−1η + ξT �

,

B� =
β

2γ
+ φ

β

γ
(ln(σT � + ε

1
2φ−1δ−1) + ln(φδ)),

F � =
ηγ

βωξ
+ δ

ηγ

βωξ
ln(βω) + φδ(

ηγ

βωξ
ln(ξT � + ε

1
2φ−1δ−1) +

ηγ

βωξ
ln(φδ) + γ). (3.92)
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We plot these asymptotic approximations against the full solution in Figure 3.9. We

include the second order terms to show the logarithmic behaviour of AcrAB and AcrEF.

We note there is disparity in fit for the plots of AcrAB and AcrEF, therefore we include

additional plots (Figure 3.9 (o) and (p)) with a smaller value of ε to prove the accuracy

of the asymptotic approximations.
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3.6.9 Timescale 9: final timescale, protein degradation

We move onto the final timescale, here degradation for all proteins that were not already

at steady state emerge in the leading order balance. We take the following final scalings

based on the variables of the previous timescale’s long-term behaviour

T � = ln(1/ε) ln(ln(1/ε))T+, R� = ln(1/ε) ln(ln(1/ε))R+,

C� = ln(1/ε) ln(ln(1/ε))C+, S� = ln(1/ε) ln(ln(1/ε))S+,

E� = ln(1/ε) ln(ln(1/ε))E+, B�m = ln(1/ε)−1 ln(ln(1/ε))−1B+
m,

F �m = ln(1/ε)−1 ln(ln(1/ε))−1F+
m . (3.93)

Our system of equations rescaled for the ninth timescale is

ε
dR†m
dT +

= 1−R†m,

ε
3
2

dÂm

dT +
=

A‡

(ε
1
2A‡ + 1)(ε−1R+ + 1)

+ ε
1
2α− ε

1
2 Âm,

ε
dC†m
dT +

=
λ

A+ + λ
− C†m,

ε2
dB+

m

dT +
=

A+ + ε−
1
2S+

(1 + ε−
1
2S+ + A+)(1 + ε−

1
2E+ + ε−1C+)

− εB+
m,

ε
dS†m
dT +

= 1− S†m,

ε
dE†m
dT +

= 1− E†m,

ε
3
2
dF+

m

dT +
=

η

η + ε−
1
2E+

− ε
1
2F+

m ,

dR+

dT +
= µρR†m − µ∆R+,

ε
1
2

dA‡

dT +
= θ Âm − υ A‡ − ε

1
2 ∆A‡,

dC +

dT +
= γ C†m −∆C+,

dB�

dT +
= βφB+

m −∆B�,

dS +

dT +
= σ S†m −∆S+,

dE +

dT +
= ξ E†m −∆E+,

dF �

dT +
=

φδF+
m

(ωB� + φ)
−∆F �.

(3.94)

Here, the terms φ = ln(1/ε)−1 and δ = ln(ln(1/ε))−1 have emerged from logarithmic

behaviour on previous timescales. With the value of ε = 0.01, these terms are effectively

O(1), so we include them in the leading order balance. Matching to the long-term domi-

nant behaviour on the previous timescale gives the following asymptotic approximations
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R†m = 1,

Âm = α,

C†m = 1,

B+
m =

1

C+
,

S†m = 1,

E†m = 1,

F+
m =

η

E+
,

dR+

dT +
= µρR†m − µ∆R+,

A‡ =
θ

υ
Âm,

dC +

dT +
= γ C†m −∆C+,

dB�

dT +
= φβB+

m −∆B�,

dS +

dT +
= σS†m −∆S+,

dE +

dT +
= ξE†m −∆E+,

dF �

dT +
=

φδF+
m

(ωB� + φ)
−∆F �. (3.95)

This system of ODEs can be solved, matching to the long-term dominant behaviour

on the previous timescale gives the following asymptotic approximations

R†m = 1, R+ =
ρ

∆
(1− e−µ∆T+

), Âm = α, A‡ =
θα

υ
,

C†m = 1, C+ =
γ

∆
(1− e−∆T+

), S†m = 1, S+ =
σ

∆
(1− e−∆T+

),

E†m = 1, E+ =
ξ

∆
(1− e−∆T+

) B+
m =

∆

γ(1− e−∆T+)
, F+

m =
η∆

ξ(1− e−∆T+)
,

B� =
φβ

γ
(1 + ln(γ(e∆T+ − 1))e−∆T+

), F � =
δηγ

ξ(βω + γ)
(1 +

γ

βω
e−∆T+

). (3.96)

On this final timescale, we see all proteins reaching a steady state as their degradation

terms appear at leading order. We note that the approximated steady states match closely

to the numerics. Thus we should be able to draw strong conclusions by performing steady

state analysis on the approximations.

76



0
20

0
40

0
60

0
80

0
10

00
0

0.
2

0.
4

0.
6

0.
81

1.
2

(a
)

0
20

0
40

0
60

0
80

0
10

00
0.

01

0.
01

2

0.
01

4

0.
01

6

0.
01

8

0.
02

(b
)

0
20

0
40

0
60

0
80

0
10

00
0

0.
2

0.
4

0.
6

0.
81

(c
)

0
20

0
40

0
60

0
80

0
10

00
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(d
)

0
20

0
40

0
60

0
80

0
10

00
0

0.
2

0.
4

0.
6

0.
81

1.
2

(e
)

0
20

0
40

0
60

0
80

0
10

00
0

0.
2

0.
4

0.
6

0.
81

1.
2

(f
)

0
20

0
40

0
60

0
80

0
10

00
0

0.
2

0.
4

0.
6

0.
81

(g
)

0
20

0
40

0
60

0
80

0
10

00
0

2040608010
0

(h
)

0
20

0
40

0
60

0
80

0
10

00
0.

01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

(i
)

0
20

0
40

0
60

0
80

0
10

00
0

2040608010
0

(j
)

0
20

0
40

0
60

0
80

0
10

00
01234567

(k
)

0
20

0
40

0
60

0
80

0
10

00
02468

10
(l

)

0
20

0
40

0
60

0
80

0
10

00
02468

10
(m

)

0
20

0
40

0
60

0
80

0
10

00
02468

10
(n

)

F
ig

u
re

3.
10

:
A

sy
m

p
to

ti
c

ap
p
ro

x
im

at
io

n
s

on
ti

m
es

ca
le

9
fo

r
th

e
w

il
d
-t

y
p

e
d
y
n
am

ic
s

(ε
=

0.
01

).
O

n
th

is
ti

m
es

ca
le

,
ti

m
e

is
O

(ε
−

1
),

so
w

e
ex

p
ec

t
th

e
as

y
m

p
to

ti
cs

to
b

e
ac

cu
ra

te
ar

ou
n
d
T

=
ε−

1
=

10
0.

F
or

re
fe

re
n
ce

,
th

e
p
re

v
io

u
s

ti
m

es
ca

le
h
as

ti
m

e
at
O

(ε
−

1
φ
−

1
δ−

1
).

N
ot

e
w

e
d
ep

ic
t

th
e

si
m

u
la

ti
on

s
ov

er
a

lo
n
ge

r
p

er
io

d
of

ti
m

e
th

an
ea

rl
ie

r
ti

m
es

ca
le

s.

77



3.6.10 Summary

In Figure 3.11 we exhibit the leading order processes in timescale order from our asymp-

totic analysis for the wild-type case. We detail the order of dominant processes shown in

the schematics. As predicted by the analysis:

• Genes that are not highly regulated by proteins are expressed, resulting in their

mRNA transcription and protein translation.

• If produced subject to the relevant stress, SoxS (the secondary TAs) does not signif-

icantly increase acrAB expression but the asymptotic analysis reveals that it may

effect the timescale on which expression of acrAB first occurs.

• When produced, RamR inhibits ramA expression, preventing RamA from achieving

activation of acrAB at leading order. AcrR also lowers (but does not shut off

entirely) transcription of acrAB.

• EnvR binds to the promoter site of acrEF repressing its transcription.

• Degradation of all proteins brings the system to a steady state. The system would

remain at this state with efflux proteins present until the relevant stress is removed

from the cells, at which point the system would revert to a state of basal efflux.

We note that at steady state, the local repressors of the efflux pumps (acrR and envR)

have been expressed to a large enough concentration that they are dominant in the leading

order processes and are the only gene products impacting efflux pump expression. We can

see at this point the system is reduced to four genes affecting efflux pump expression, and

thus at steady state for this case we should focus on these genes as potential inhibition

targets. This concludes the wild-type asymptotic analysis. We have broken down the

system into nine timescales. For each of these timescales we have obtained full analytical

solutions.
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Ĉ
m

ε
Ĉ
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Ř
m

ε
R̂

ε
Â
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Â

ε
1 2
Č
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Â
m

ε
Â
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3.7 Asymptotic analysis of the mutant dynamics

In this section we take the case where RamR protein is mutated (i.e µ = 0). We remind

ourselves that this mutation results in a strain that displays MDR. Therefore, we expect

the dynamics to be different to the wild-type case. In order to gain further insight into

the behaviour of this strain, we must consequently undertake a new series of asymptotic

analysis. We denote the scalings we must take in order to reach each timescale in Table

3.3.

3.7.1 Timescale 1: mRNA transcription

As with the wild-type case, on this first initial timescale we address the issue of the

systems initial conditions of all variables being O(ε). We must take the following scalings

T = εT̂ , Rm = εR̂m, Am = εÂm, Cm = εĈm, Bm = εB̂m,

Sm = εŜm, Em = εÊm, Fm = εF̂m, R = εR̂, A = εÂ,

C = εĈ, B = εB̂, S = εŜ, E = εÊ, F = εF̂ . (3.97)

Using these scalings, our system of equations rescaled for the first timescale is

dR̂m

dT̂
= 1− εR̂m,

dÂm

dT̂
=

εÂ

(εÂ+ 1)(εR̂ + 1)
+ εα− εÂm,

dĈm

dT̂
=

λ

εÂ+ λ
− εĈm,

dB̂m

dT̂
=

εÂ+ εŜ

(1 + εŜ + εÂ)(1 + εÊ + εĈ)
− εB̂m,

dŜm

dT̂
= 1− εŜm,

dÊm

dT̂
= 1− εÊm,

dF̂m

dT̂
=

η

η + εÊ
− εF̂m,

dR̂

dT̂
= 0,

dÂ

dT̂
= θ εÂm − ε

3
2υÂ− ε2∆Â,

dĈ

dT̂
= γ εĈm − ε2∆Ĉ,

dB̂

dT̂
= β εB̂m − ε2∆B̂,

dŜ

dT̂
= ε3/2σ Ŝm − ε2∆Ŝ,

dÊ

dT̂
= ε3/2ξ Êm − ε2∆Ê,

dF̂

dT̂
=

εF̂m

εωB̂ + 1
− ε2∆F̂ . (3.98)
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At leading order, we have the following system of equations

dR̂m

dT̂
= 1,

dÂm

dT̂
= 0,

dĈm

dT̂
= 1,

dB̂m

dT̂
= 0,

dŜm

dT̂
= 1,

dÊm

dT̂
= 1,

dF̂m

dT̂
= 1,

dR̂

dT̂
= 0,

dÂ

dT̂
= 0,

dĈ

dT̂
= 0,

dB̂

dT̂
= 0,

dŜ

dT̂
= 0,

dÊ

dT̂
= 0,

dF̂

dT̂
= 0. (3.99)

This system of ODEs can be solved analytically and as there is no previous timescale,

we match these solutions to our initial conditions to give the following asymptotic ap-

proximations

R̂m = T̂ +Rm0, R̂ = R0, Âm = Am0, Â = A0,

Ĉm = T̂ + Cm0, Ĉ = C0, B̂m = Bm0, B̂ = B0,

Ŝm = T̂ + Sm0, Ŝ = S0, Êm = T̂ + Em0, Ê = E0,

F̂m = T̂ + Fm0, F̂ = F0. (3.100)

We plot these asymptotic approximations against the numerical solutions in Figure 3.12.

As expected, we see the transcription of various gene’s mRNA occurring first. The tran-

scription of ramA and acrAB mRNA are currently not active due to there being very

little activator protein bound to their promoter sites to get a high level of transcription.

As there is no translation of RamR protein, we see our asymptotic approximation already

encompasses the full behaviour of this protein. We note that the behaviour of almost

all variables on this timescale are almost identical to the wild-type timescale 1 (Section

3.6.1), with the exception of RamR protein.
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3.7.2 Timescale 2: protein translation

For this timescale, we take the following scalings:

T̂ = ε−
1
2 Ť , R̂m = ε−

1
2 Řm, Ĉm = ε−

1
2 Čm,

Ŝm = ε−
1
2 Šm, Êm = ε−

1
2 Ěm, F̂m = ε−

1
2 F̌m. (3.101)

These scalings result in the translation terms for AcrR and AcrEF entering the leading

order balance in equations (3.102)-(3.103). We note that this timescale has the same time

scaling as Timescale 2 on the wild-type analysis. Our system of equations rescaled for the

second timescale is

dŘm

dŤ
= 1− ε

1
2 Řm,

dÂm

dŤ
=

ε
1
2 Â

(εÂ+ 1)(εR̂ + 1)
+ ε

1
2α− ε

1
2 Âm,

dČm

dŤ
=

λ

εÂ+ λ
− ε

1
2 Čm,

dB̂m

dŤ
=

ε
1
2 Â+ ε

1
2 Ŝ

(1 + εŜ + εÂ)(1 + εÊ + εĈ)
− ε

1
2 B̂m,

dŠm

dŤ
= 1− ε

1
2 Šm,

dĚm

dŤ
= 1− ε

1
2 Ěm,

dF̌m

dŤ
=

η

η + εÊ
− ε

1
2 F̌m,

dR̂

dŤ
= 0,

dÂ

dŤ
= ε

1
2 θ Âm − ευ Â− ε

3
2 ∆Â,

dĈ

dŤ
= γ Čm − ε

3
2 ∆Ĉ, (3.102)

dB̂

dŤ
= ε

1
2β B̂m − ε

3
2 ∆B̂,

dŜ

dŤ
= ε

1
2σ Šm − ε

3
2 ∆Ŝ,

dÊ

dŤ
= ε

1
2 ξ Ěm − ε

3
2 ∆Ê,

dF̂

dŤ
=

F̌m

εωB̂ + 1
− ε

3
2 ∆F̂ . (3.103)

At leading order, we have the following system of equations

dŘm

dŤ
= 1,

dÂm

dŤ
= 0,

dČm

dŤ
= 1,

dR̂

dŤ
= 0,

dÂ

dŤ
= 0,

dĈ

dŤ
= γ Čm,
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dB̂m

dŤ
= 0,

dŠm

dŤ
= 1,

dĚm

dŤ
= 1,

dF̌m

dŤ
= 1,

dB̂

dŤ
= 0,

dŜ

dŤ
= 0,

dÊ

dŤ
= 0,

dF̂

dŤ
= F̌m. (3.104)

Solving this reduced system of ODEs and matching to the long-term dominant be-

haviour on the previous timescale gives the following asymptotic approximations

Řm = Ť , R̂ = R0 Âm = Am0, Â = A0,

Čm = Ť , Ĉ =
γ

2
Ť 2 + C0, B̂m = Bm0, B̂ = B0,

Šm = Ť , Ŝ = S0, Ěm = Ť , Ê = E0,

F̌m = Ť , F̂ =
1

2
Ť 2 + F0. (3.105)

We plot these asymptotic approximations against the numerical solutions in Figure 3.13.

As expected, we see the fast translation of the genes transcribed on the previous timescale.

However, as RamR protein is mutated and is not produced in a form that affects any other

gene in the network, we see no translation from ramR mRNA. The translation is not

present for EnvR and the secondary TAs as these are a homologue gene and underlying

activators respectively, thus we expect less expression of these genes.
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3.7.3 Timescale 3: SoxS and EnvR translation

We move onto the third timescale, we take the following scalings based on the variables

on the previous timescale’s long term behaviour

Ť = ε−
1
4 T̄ , Řm = ε−

1
4 R̄m, Čm = ε−

1
4 C̄m,

Šm = ε−
1
4 S̄m, Ěm = ε−

1
4 Ēm, F̌m = ε−

1
4 F̄m,

Ĉ = ε−
1
2 C̄, F̂ = ε−

1
2 F̄ . (3.106)

These scalings result in the rest of the translation terms for all mRNAs that are under-

going transcription entering the leading order balance in equations (3.107)-(3.108). We

note that this timescale coincides with timescale 3 on the wild-type asymptotic analysis.

The system of equations rescaled for the third timescale is

dR̄m

dT̄
= 1− ε

1
4 R̄m,

dÂm

dT̄
=

ε
1
4 Â

(εÂ+ 1)(ε
1
2 R̄ + 1)

+ ε
1
4α− ε

1
4 Âm,

dC̄m

dT̄
=

λ

εÂ+ λ
− ε

1
4 C̄m,

dB̂m

dT̄
=

ε
1
4 Â+ ε

1
4 Ŝ

(1 + εŜ + εÂ)(1 + εÊ + ε
1
2 C̄)
− ε

1
4 B̂m,

dS̄m

dT̄
= 1− ε

1
4 S̄m,

dĒm

dT̄
= 1− ε

1
4 Ēm,

dF̄m

dT̄
=

η

η + εÊ
− ε

1
4 F̄m,

dR̄

dT̄
= 0,

dÂ

dT̄
= ε

1
4 θ Âm − ε

3
4υ Â− ε

5
4 ∆Â,

dC̄

dT̄
= γ C̄m − ε

5
4 ∆C̄,

dB̂

dT̄
= ε

1
4β B̂m − ε

5
4 ∆B̂,

dŜ

dT̄
= σ S̄m − ε

5
4 ∆Ŝ, (3.107)

dÊ

dT̄
= ξ Ēm − ε

5
4 ∆Ê, (3.108)

dF̄

dT̄
=

F̄m

εωB̂ + 1
− ε

5
4 ∆F̄ .

At leading order, we have the following system of equations

dR̄m

dT̄
= 1,

dÂm

dT̄
= 0,

dC̄m

dT̄
= 1,

dR̂

dT̄
= 0,

dÂ

dT̄
= 0,

dC̄

dT̄
= γ C̄m,
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dB̂m

dT̄
= 0,

dS̄m

dT̄
= 1,

dĒm

dT̄
= 1,

dF̄m

dT̄
= 1,

dB̂

dT̄
= 0,

dŜ

dT̄
= σS̄m,

dÊ

dT̄
= ξĒm,

dF̄

dT̄
= F̄m. (3.109)

We solve the leading order system of ODEs and match to the long term dominant

behaviour on the previous timescale, giving us the following asymptotic approximations

R̄m = T̄ , R̂ = R0, Âm = Am0, Â = A0,

C̄m = T̄ , C̄ =
γ

2
T̄ 2, B̂m = Bm0, B̂ = B0,

S̄m = T̄ , Ŝ =
σ

2
T̄ 2 + S0, Ēm = T̄ , Ê =

ξ

2
T̄ 2 + E0,

F̄m = T̄ , F̄ =
1

2
T̄ 2. (3.110)

We plot these asymptotic approximations against the numerical solutions in Figure

3.14. Following from the previous timescale, here we introduce the fast translation of the

secondary TAs and EnvR.
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3.7.4 Timescale 4: acrAB mRNA transcription

For this timescale, we have transcription of acrAB mRNA entering the leading order

balance in equation (3.112). We take the following scalings:

T̄ = ε−
1
12 T̃ , R̄m = ε−

1
12 R̃m, C̄m = ε−

1
12 C̃m, S̄m = ε−

1
12 S̃m,

Ēm = ε−
1
12 Ẽm, F̄m = ε−

1
12 F̃m, C̄ = ε−

1
6 C̃, Ŝ = ε−

1
6 S̃,

Ê = ε−
1
6 Ẽ, F̄ = ε−

1
6 F̃ . (3.111)

This timescale occurs at the same time as timescale 4 on the wild-type analysis. After

rescaling, the system of equations for the fourth timescale is

dR̃m

dT̃
= 1− ε

1
6 R̃m,

dÂm

dT̃
=

ε
1
6 Â

(εÂ+ 1)(ε
1
3 R̃ + 1)

+ ε
1
6α− ε

1
6 Âm,

dC̃m

dT̃
=

λ

εÂ+ λ
− ε

1
6 C̃m,

dB̂m

dT̃
=

ε
1
6 Â+ S̃

(1 + ε
5
6 S̃ + εÂ)(1 + ε

5
6 Ẽ + ε

1
3 C̃)
− ε

1
6 B̂m,

(3.112)

dS̃m

dT̃
= 1− ε

1
6 S̃m,

dẼm

dT̃
= 1− ε

1
6 Ẽm,

dF̃m

dT̃
=

η

η + ε
5
6 Ẽ
− ε

1
6 F̃m,

dR̃

dT̃
= 0,

dÂ

dT̃
= ε

1
6 θ Âm − ε

2
3υ Â− ε

7
6 ∆Â,

dC̃

dT̃
= γ C̃m − ε

7
6 ∆C̃,

dB̂

dT̃
= ε

1
6β B̂m − ε

7
6 ∆B̂,

dS̃

dT̃
= σ S̃m − ε

7
6 ∆S̃,

dẼ

dT̃
= ξ Ẽm − ε

7
6 ∆ Ẽ,

dF̃

dT̃
=

F̃m

εωB̂ + 1
− ε

7
6 ∆F̃ .

At leading order, we have the following system of equations

dR̃m

dT̃
= 1,

dÂm

dT̃
= 0,

dC̃m

dT̃
= 1,

dR̂

dT̃
= 0,

dÂ

dT̃
= 0,

dC̃

dT̃
= γ C̃m,
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dB̂m

dT̃
= S̃,

dS̃m

dT̃
= 1,

dẼm

dT̃
= 1,

dF̃m

dT̃
= 1,

dB̂

dT̃
= 0,

dS̃

dT̃
= σS̃m,

dẼ

dT̃
= ξẼm,

dF̃

dT̃
= F̃m. (3.113)

Taking this leading order balance, solving and matching to the long-term dominant

behaviour on the previous timescale gives the following asymptotic approximations

R̃m = T̃ , R̂ = R0, Âm = Am0, Â = A0,

C̃m = T̃ , C̃ =
γ

2
T̃ 2, B̂m =

σ

6
T̃ 3 +Bm0, B̂ = B0,

S̃m = T̃ , S̃ =
σ

2
T̃ 2, Ẽm = T̃ , Ẽ =

ξ

2
T̃ 2,

F̃m = T̃ , F̃ =
1

2
T̃ 2. (3.114)

We plot these asymptotic approximations against the full solution in Figure 3.15. This

is the first timescale where our efflux gene acrAB is transcribed. We notice that this is

being driven by the underlying regulators Rob, SoxS and MarA binding to the promoter

site of acrAB.
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3.7.5 Timescale 5: AcrAB translation

For this timescale, we take the following scalings based on the variables on the previous

timescale’s long term behaviour

T̄ = ε−
1
24T ′, R̄m = ε−

1
24R′m, C̄m = ε−

1
24C ′m, S̄m = ε−

1
24S ′m,

Ēm = ε−
1
24E ′m, F̄m = ε−

1
24F ′m, C̄ = ε−

1
12C ′, Ŝ = ε−

1
12S ′,

Ê = ε−
1
12E ′, F̄ = ε−

1
12F ′, B̂m = ε−

1
8B′m (3.115)

These scaling result in AcrAB translation terms entering the leading order balance in

equation (3.116). We note that this timescale matches the same time scaling as timescale

5 in the wild-type asymptotic analysis.The system of equations rescaled for the fifth

timescale is

dR′m
dT ′

= 1− ε
1
8R′m,

dÂm

dT ′
=

ε
1
8 Â

(εÂ+ 1)(ε
1
4R′ + 1)

+ ε
1
8α− ε

1
8 Âm,

dC ′m
dT ′

=
λ

εÂ+ λ
− ε

1
8C ′m,

dB ′m
dT ′

=
ε

1
4 Â+ S ′

(1 + ε
3
4S ′ + εÂ)(1 + ε

3
4E ′ + ε

1
4C ′)

− ε
1
8B′m,

dS ′m
dT ′

= 1− ε
1
8S ′m,

dE ′m
dT ′

= 1− ε
1
8E ′m,

dF ′m
dT ′

=
η

η + ε
3
4E ′
− ε

1
8F ′m,

dR′

dT ′
= 0,

dÂ

dT ′
= ε

1
8 θ Âm − ε

5
8υ Â− ε

9
8 ∆Â,

dC ′

dT ′
= γ C ′m − ε

9
8 ∆C ′,

dB̂

dT ′
= β B′m − ε

9
8 ∆ B̂, (3.116)

dS ′

dT ′
= σ S ′m − ε

9
8 ∆S ′,

dE ′

dT ′
= ξ E ′m − ε

9
8 ∆E ′,

dF ′

dT ′
=

F ′m

εωB̂ + 1
− ε

9
8 ∆F ′.

At leading order, we have the following system of equations

dR′m
dT ′

= 1,

dÂm

dT ′
= 0,

dC ′m
dT ′

= 1,

dR̂

dT ′
= 0,

dÂ

dT ′
= 0,

dC ′

dT ′
= γ C ′m,
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dB ′m
dT ′

= S ′,

dS ′m
dT ′

= 1,

dE ′m
dT ′

= 1,

dF ′m
dT ′

= 1,

dB̂

dT ′
= βB′m,

dS ′

dT ′
= σS ′m,

dE ′

dT ′
= ξE ′m,

dF ′

dT ′
= F ′m. (3.117)

This system of ODEs can be solved, matching to the long term dominant behaviour

on the previous timescale gives the following asymptotic approximations

R′m = T ′, R̂ = R0, Âm = Am0, Â = A0,

C ′m = T ′, C ′ =
γ

2
T ′2, B′m =

σ

6
T ′3, B̂ =

βσ

24
T ′4 +B0,

S ′m = T ′, S ′ =
σ

2
T ′2, E ′m = T ′, E ′ =

ξ

2
T ′2,

F ′m = T ′, F ′ =
1

2
T ′2. (3.118)

We plot these asymptotic approximations against the full solution in Figure 3.16. In

this timescale, we have translation of AcrAB, we note that this is still being driven by

the underlying regulators Rob, SoxS and MarA. We note that this is the last timescale

that displays almost identical behaviour (apart from RamR protein) to the respective

timescale on the wild-type asymptotic analysis.
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3.7.6 Timescale 6: mRNA degradation and full protein transla-
tion

We move onto the sixth timescale, here mRNA degradation and expression of ramA appear

at leading order in all mRNA equations and (3.120). We take the following variable

scalings

T ′ = ε−
1
8T †, R′m = ε−

1
8R†m, C ′m = ε−

1
8C†m, S ′m = ε−

1
8S†m, E ′m = ε−

1
8E†m,

F ′m = ε−
1
8F †m, C ′ = ε−

1
4C†, S ′ = ε−

1
4S†, E ′ = ε−

1
4E†, F ′ = ε−

1
4F †,

B′m = ε−
3
8B†m, B̂ = ε−

1
2B†. (3.119)

This is the last timescale that matches on time scalings compared to the corresponding

number timescale on the wild-type analysis. Using these scalings, our system of equations

rescaled for the sixth timescale is

dR†m
dT †

= 1−R†m,

dÂm

dT †
=

Â

(εÂ+ 1)(εR̂ + 1)
+ α− Âm,

dC †m
dT †

=
λ

εÂ+ λ
− C†m,

dB †m
dT †

=
ε

1
2 Â+ S†

(1 + ε
1
2S† + εÂ)(1 + ε

1
2E† + C†)

−B†m,

dS †m
dT †

= 1− S†m,

dE †m
dT †

= 1− E†m,

dF †m
dT †

=
η

η + ε
1
2E†
− F †m,

ε
dR̂

dT †
= 0,

dÂ

dT †
= θ Âm − ε

1
2υ Â− ε∆Â, (3.120)

dC †

dT †
= γ C†m − ε∆C†,

dB †

dT †
= β B†m − ε∆B†,

dS †

dT †
= σ S†m − ε∆S†,

dE †

dT †
= ξ E†m − ε∆E†,

dF †

dT †
=

F †m

ε
1
2ωB† + 1

− ε∆F †.

At leading order, we have the following system of equations
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dR†m
dT †

= 1−R†m,

dÂm

dT †
= Â+ α− Âm,

dC †m
dT †

= 1− C†m,

dR̂

dT †
= 0,

dÂ

dT †
= θÂm,

dC †

dT †
= γ C†m,

dB †m
dT †

=
S†

1 + C†
−B†m,

dS †m
dT †

= 1− S†m,

dE †m
dT †

= 1− E†m,

dF †m
dT †

= 1− F †m,

dB †

dT †
= βB†m,

dS †

dT †
= σS†m,

dE †

dT †
= ξE†m,

dF †

dT †
= F †m. (3.121)

Solving and matching to the long term dominant behaviour on the previous timescale

gives the following asymptotic approximations

R†m = 1− e−T † , R̂ = R0, C†m = 1− e−T † , C† = γ(T † − e−T † − 1),

B†m =
σT †

γT † + 1
, B† =

βσ

γ

(
T † − ln(T †γ + 1)

γ

)
, S†m = 1− e−T † , S† = σ(T † − e−T † − 1),

E†m = 1− e−T † , E† = ξ(T † − e−T † − 1), F †m = 1− e−T † , F † = T † − e−T † − 1,

Âm =

(√
1 + 4 θα +

√
1 + 4 θA0 + 2A0θ + α + A0

)
e

(−1+
√

1+4 θ)T†

2

2
√

1 + 4 θ
− α,

Â =

(
(α + A0)

√
1 + 4 θ + (2 θ + 1)A0 + α

)
e

(−1+
√

1+4 θ)T†

2

2
√

1 + 4 θ
. (3.122)

We plot asymptotic approximations of those variables that evolve on this timescale against

the numerical solutions in Figure 3.17. In this timescale, we have most of the mRNAs’

asymptotic approximations reaching near steady state as their degradation takes effect.

The only mRNA not reaching steady state is ramA mRNA, which is exhibiting exponential

growth. There is the same exponential growth for RamA protein, both of these growth

behaviours are caused by the positive feedback loop with the ramA gene upon itself. In

contrast to the wild-type system, without any presence of RamR protein to repress this

feedback loop, we see rapidly increasing expression of ramA.
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3.7.7 Timescale 7: activation of acrAB by RamA

For this timescale, we require the following values φ = ln(1/ε)−1 and κ = 1
2
(−1+

√
1 + 4θ),

resulting from the logarithmic and exponential behaviour on the previous timescale re-

spectively. Activation of acrAB mRNA transcription via RamA protein now appears in

equation (3.124). We take the following variable scalings:

T † =
1

2κ
ln(1/ε) + T ‡, Âm = ε−

1
2A‡m, Â = ε−

1
2A‡, C† = ln(1/ε)C‡,

B† = ln(1/ε)B‡, S† = ln(1/ε)S‡, E† = ln(1/ε)E‡, F † = ln(1/ε)F ‡. (3.123)

This timescale takes place between timescale 6 and timescale 7 (Sections 3.6.6-3.6.7)

of the wild-type asymptotic analysis. The system of equations rescaled for the seventh

timescale is

dR†m
dT ‡

= 1−R†m,

dA‡m
dT ‡

=
A‡

(ε
1
2A‡ + 1)(εR̂ + 1)

+ ε
1
2α− A‡m,

dC †m
dT ‡

=
λ

ε
1
2A‡ + λ

− C†m,

dB †m
dT ‡

=
A‡ + φ−1S‡

(1 + ε
1
2φ−1S‡ + ε

1
2A‡)(1 + ε

1
2φ−1E‡ + φ−1C‡)

−B†m,

(3.124)

dS †m
dT ‡

= 1− S†m,

dE †m
dT ‡

= 1− E†m,

dF †m
dT ‡

=
η

η + ε
1
2φ−1E‡

− F †m,

ε
dR̂

dT ‡
= 0,

dA‡

dT ‡
= θ A‡m − ε

1
2υ A‡ − ε∆A‡,

φ−1 dC ‡

dT ‡
= γ C†m − εφ−1∆C‡,

φ−1 dB ‡

dT ‡
= β B†m − εφ−1∆B‡,

φ−1 dS ‡

dT ‡
= σ S†m − εφ−1∆S‡,

φ−1 dE ‡

dT ‡
= ξ E†m − εφ−1∆E‡,

φ−1 dF ‡

dT ‡
=

F †m

ε
1
2φ−1ωB‡ + 1

− εφ−1∆F ‡.

At leading order, we have the following system of equations

dR†m
dT ‡

= 1−R†m,

dA‡m
dT ‡

= A‡ − A‡m,

dC †m
dT ‡

= 1− C†m,

dR̂

dT ‡
= 0,

dA‡

dT ‡
= θA‡m,

dC ‡

dT ‡
= φγ C†m,
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dB †m
dT ‡

=
A‡ + φ−1S‡

1 + φ−1C‡
−B†m,

dS †m
dT ‡

= 1− S†m,

dE †m
dT ‡

= 1− E†m,

dF †m
dT ‡

= 1− F †m,

dB ‡

dT ‡
= φβB†m,

dS ‡

dT ‡
= φσS†m,

dE ‡

dT ‡
= φξE†m,

dF ‡

dT ‡
= φF †m. (3.125)

We solve the leading order system of ODEs and match to the long term dominant

behaviour on the previous timescale, giving us the following asymptotic approximations

R†m = 1− e−T ‡ , R̂ = R0, C†m = 1− e−T ‡

C‡ = φγ
(
T ‡ − e−T ‡ − 1

)
, B†m =

A0e
θT ‡ + φ−1σT ‡

φ−1γT ‡ + 1
, S†m = 1− e−T ‡ ,

S‡ = φσ
(
T ‡ − e−T ‡ − 1

)
, E†m = 1− e−T ‡ , F †m = 1− e−T ‡ ,

E‡ = φξ
(
T ‡ − e−T ‡ − 1

)
, F ‡ = φ(T ‡ − e−T ‡ − 1),

A‡m =

(
A0

√
1 + 4 θ + 2Am0θ + A0

) (
−1 +

√
1 + 4 θ

)
e

(−1+
√

1+4 θ)T‡

2

4θ
√

1 + 4 θ
,

A‡ =

(
A0

√
1 + 4 θ + 2Am0θ + A0

)
e

(−1+
√

1+4 θ)T‡

2

2
√

1 + 4 θ
,

B‡ =
β φA0

γ
e−

θ
γ Ei

(
1, θ T +

θ

γ

)
+
β φσ T

γ
− β φσ ln (Tγ φ θ + φ θ)

γ2
. (3.126)

Notably here we have the function Ei that represents the exponential integral func-

tion. In order to move to the next timescale we must determine the long term dominant

behaviour in terms of elementary functions by taking their series expansions at infinity.

For the exponential integral function as z →∞ we have [29]

Ei(z) =
1

z
ez
(

1 +O

(
1

z

))
. (3.127)

We plot asymptotic approximations of those variables that evolve on this timescale

against the numerical solutions in Figure 3.18. In this timescale we still have exponential
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growth of ramA mRNA and RamA protein caused by the positive feedback of the ramA

gene. This growth has resulted in activation of acrAB mRNA which now exhibits long

term exponential growth. This is being translated to AcrAB protein which now also ex-

hibits long term exponential growth. This behaviour varies from the wild-type analysis,

where there is no direct activation of acrAB mRNA from RamA on any timescale. Com-

paratively, this results in a larger concentration of acrAB mRNA in the mutant analysis.
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3.7.8 Timescale 8: ramA mRNA reaching steady state

For this timescale, the limitation of ramA activating its own expression enters the leading

order balance in equation (3.129). We take the following scalings based on the variables

on the previous timescale’s long term behaviour

T ‡ =
1

2κ
ln(1/ε) + T �, A‡m = ε−

1
2A�m, A‡ = ε−

1
2A�,

B†m = ε−
1
2 ln(1/ε)−1B�m, C‡ = ln(1/ε)C�, S‡ = ln(1/ε)S�,

B‡ = ε−
1
2 ln(1/ε)−1B� E‡ = ln(1/ε)E�, F ‡ = ln(1/ε)F �. (3.128)

Comparatively, this timescale takes place between timescale 6 and timescale 7 (Sec-

tions 3.6.6-3.6.7) of the wild-type asymptotic analysis. The system of equations rescaled

for the eighth timescale is

dR†m
dT �

= 1−R†m,

dA�m
dT �

=
A�

(A� + 1)(εR̂ + 1)
+ εα− A�m,

(3.129)

dC †m
dT �

=
λ

A� + λ
− C†m,

φ
dB�m
dT �

=
A� + ε

1
2φ−2S�

(1 + ε
1
2φ−2S� + A�)(1 + ε

1
2φ−2E� + φ−2C�)

− φB�m,

dS †m
dT �

= 1− S†m,

dE †m
dT �

= 1− E†m,

dF †m
dT �

=
η

η + ε
1
2φ−2E�

− F †m,

ε
dR̂

dT �
= 0,

dA�

dT �
= θ A�m − ε

1
2υ A� − ε∆A�,

φ−2 dC �

dT �
= γ C†m − εφ−2∆C�,

dB�

dT �
= φβ B�m − ε∆B�,

φ−2 dS �

dT �
= σ S†m − εφ−2∆S�,

φ−2 dE �

dT �
= ξ E†m − εφ−2∆E�,

φ−2 dF �

dT �
=

F †m
ωB� + 1

− εφ−2∆F �.

At leading order, we have the following system of equations

dR†m
dT �

= 1−R†m,

dA�m
dT �

=
A�

A� + 1
− A�m,

dC †m
dT �

=
λ

A� + λ
− C†m,

dR̂

dT �
= 0,

dA�

dT �
= θA�m,

dC �

dT �
= φ2γ C†m,

103



dB †m
dT �

= φ−1 A�

(1 + A�)(1 + φ−2C�)
−B�m,

dS †m
dT �

= 1− S†m,

dE †m
dT �

= 1− E†m,

dF †m
dT �

= 1− F †m,

dB�

dT �
= φβB�m,

dS �

dT �
= φ2σS†m,

dE �

dT �
= φ2ξE†m,

dF �

dT �
= φ2 F †m

ωB� + 1
. (3.130)

Taking this leading order balance, solving and matching to the long-term dominant

behaviour on the previous timescale gives the following asymptotic approximations

R†m = 1− e−T � , R̂ = R0, C†m = 1− e−T �

C� =
φ2γ λ ln (θ T � + λ)

θ
, F †m = 1− e−T � , S†m = 1− e−T � ,

S� = φ2σ
(
T � − e−T � − 1

)
, E†m = 1− e−T � , E� = φ2ξ

(
T � − e−T � − 1

)
,

A�m =

W

(
(A0

√
1+4θ+2Am0 θ+A0)eθT

�

2
√

1+4θ

)
W

(
(A0

√
1+4θ+2Am0 θ+A0)eθT�

2
√

1+4θ

)
+ 1

, A� = W

((
A0

√
1 + 4θ + 2Am0θ + A0

)
eθT

�

2
√

1 + 4θ

)
,

B�m =
φ−1θT �

(1 + θT �)(1 + γ λ ln(θ T �+λ)
θ

)
,

B� =
β

γ
e−

θ
γλEi

(
1, ln(θT + λ) +

θ

γλ

)
− β

γ
ln (γλ ln(θT + λ) + θ) ,

F � =
φ2

βω

(
γ

2θ
ln2(θT � + λ) +

1

λ
ln(θT � + λ)

)
. (3.131)

Notably here we have the functions W that represents the Lambert W function. In

order to move to the next timescale we must determine the long term dominant behaviour

in terms of elementary functions by taking their series expansions at infinity. For the

Lambert W function as z →∞ we have [19]

W(z) = ln(z) +O(ln(ln(z))). (3.132)

We plot asymptotic approximations of those variables that evolve on this timescale

against the numerical solutions in Figure 3.19. In this timescale the ramA gene’s positive
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feedback has been limited, causing at long term the gene’s mRNA to approach steady state

and the gene’s protein to have linear growth. This change of behaviour of RamA from

exponential growth causes acrAB mRNA and protein to no longer display exponential

behaviour. Notably this behaviour is not present in the wild-type analysis as the ramA

gene positive feedback loop is not present at leading order on any timescale. We note

that we have disparity of fit for both acrAB mRNA and protein. Therefore, we include

additional plots (Figure 3.19 (o) and (p)) with a smaller value of ε (ε = 0.0001) to prove

the accuracy of the asymptotic approximations. Disparities in other simulations could

also be reduced by a smaller ε value.
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3.7.9 Timescale 9: degradation of RamA protein

We move onto the ninth timescale, here degradation of RamA protein caused by Lon

Protease enters the leading order balance as well as EnvR repression of acrEF in equations

(3.134)-(3.135). We take the following scalings based on the variables on the previous

timescale’s long term behaviour

T � = ε−
1
2T+, A� = ε−

1
2A+, S� = ε−

1
2S+,

E� = ε−
1
2E+, B�m = ln(1/ε)−1B+

m, B� = ε−
1
2 ln(1/ε)−1B+,

C†m = ε
1
2C+

m, C� = ln(1/ε)C+, F � = ln(1/ε)2F+. (3.133)

In relation to the wild-type asymptotic analysis, this timescale transpires between

timescale 8 and timescale 9 (Sections 3.6.8-3.6.9) . The system of equations rescaled for

the ninth timescale is

ε
1
2

dR†m
dT +

= 1−R†m,

ε
1
2
dA�m
dT +

=
ε−

1
2A+

(ε−
1
2A+ + 1)(εR̂ + 1)

+ εα− A�m,

ε
dC +

m

dT +
=

λ

ε−
1
2A+ + λ

− ε
1
2C+

m,

ε
1
2φ2 dB+

m

dT +
=

ε−
1
2A+ + φ−2S+

(1 + φ−2S+ + ε−
1
2A+)(1 + φ−2E+ + φ−3C+)

− φ2B+
m,

ε
1
2

dS †m
dT +

= 1− S†m,

ε
1
2

dE †m
dT +

= 1− E†m,

ε
1
2

dF †m
dT +

=
η

η + φ−2E+
− F †m, (3.134)

ε
3
2

dR̂

dT +
= 0,

dA+

dT +
= θ A�m − υ A+ − ε

1
2 ∆A+,

(3.135)

φ−3 dC +

dT +
= γ C+

m − ε
1
2φ−3∆C+,

dB+

dT +
= φβ B+

m − ε
1
2 ∆B+,

φ−2 dS +

dT +
= σ S†m − ε

1
2phi−2∆S+,

φ−2 dE +

dT +
= ξ E†m − ε

1
2φ−2∆E+,

φ−4 dF +

dT +
=

F †m

φωB+ + ε
1
2

− ε
1
2φ−4∆F+.

At leading order, we have the following system of equations

R†m = 1,

A�m = 1,

dR̂

dT +
= 0,

dA+

dT +
= θA�m − υA+,
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C+
m =

λ

A+
,

B+
m = φ−2 1

(1 + φ−2E+ + φ−3C+)
,

S†m = 1,

E†m = 1,

F †m =
η

η + φ−2E+
,

dC +

dT +
= φ3γ C+

m,

dB+

dT +
= φβB+

m,

dS +

dT +
= φ2σS†m,

dE +

dT +
= φ2ξE†m,

dF +

dT +
= φ3 F †m

ωB+
. (3.136)

Solving and matching to the long term dominant behaviour on the previous timescale

gives the following asymptotic approximations

A� =
θ

υ
(1− e−υT+

), A�m = 1, R†m = 1, R̂ = R0,

C+
m =

λυ

θ(1− e−υT+)
, C+ =

φ3γλυ

θ
T+, S†m = 1, S+ = φ2σT+,

B+
m =

1

φ2(1 + ξT+ + γλυ
θ
T+)

, E†m = 1, E+ = φ2ξT+, F †m =
η

η + ξT+
,

B+ =
β φ2θ ln ((φ3γ λ υ + φ3θ ξ)T+ + φ3θ)

φ3γ λ υ + φ3θ ξ
, F+ =

φ4η(γλυ + θξ)

ωξβθ
ln(φ3 ln(T+ + 1)).

(3.137)

We plot asymptotic approximations of those variables that evolve on this timescale against

the numerical solutions in Figure 3.20. In this timescale we have RamA protein reach-

ing steady state from degradation via Lon Protease. With this, we have acrR mRNA

also reaching steady state. With less RamA protein due to degradation, the repressors

dominate expression of acrAB, causing its inhibition. We also have EnvR protein causing

inhibition of acrEF mRNA. This inhibition of mRNAs causes logarithmic behaviour for

both AcrAB and AcrEF. Comparatively to the wild-type analysis, for both strains we

see the emergence of repressor proteins on the latter timescales. Interestingly though

however is the repression of acrR mRNA transcription by RamA, which is not present in

the wild-type analysis.
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3.7.10 Timescale 10: full protein degradation, with all proteins
reaching steady state

For this timescale, we use δ = ln(ln(1/ε))−1, emerging from the logarithmic behaviour on

the previous timescale. On this timescale protein degradation emerges for the rest of our

proteins. We take the following variable scalings:

T+ = ε−
1
2 T̆ , C+ = ε−

1
2 C̆, S+ = ε−

1
2 S̆,

E+ = ε−
1
2 Ĕ, B+

m = ε
1
2 B̆m, F †m = ε

1
2 F̆m,

B+ = ln(1/ε)B̆, F+ = ln(ln(1/ε))F̆ . (3.138)

Comparatively, this timescale takes place after timescale 9 (Section 3.6.9) of the wild-

type asymptotic analysis. The system of equations rescaled for the tenth timescale is

ε
dR†m

dT̆
= 1−R†m,

ε
dA�m

dT̆
=

ε−
1
2A+

(ε−
1
2A+ + 1)(εR̂ + 1)

+ εα− A�m,

ε
3
2

dC +
m

dT̆
=

λ

ε−
1
2A+ + λ

− ε
1
2C+

m,

ε
3
2φ2 dB̆m

dT̆
=

ε−
1
2A+ + ε−

1
2φ−2S̆

(1 + ε−
1
2φ−2S̆ + ε−

1
2A+)(1 + ε−

1
2φ−2Ĕ + ε−

1
2φ−3C̆)

− ε
1
2φ2B̆m,

ε
dS †m

dT̆
= 1− S†m,

ε
dE †m

dT̆
= 1− E†m,

ε
3
2

dF̆m

dT̆
=

η

η + ε−
1
2φ−2Ĕ

− ε
1
2 F̆m,

ε2
dR̂

dT̆
= 0,

ε
1
2

dA+

dT̆
= θ A�m − υ A+ − ε

1
2 ∆A+,

φ−3 dC̆

dT̆
= γ C+

m − φ−3∆C̆,

dB̆

dT̆
= φ2β B̆m −∆ B̆,

φ−2 dS̆

dT̆
= σ S†m − φ−2∆ S̆,

φ−2 dĔ

dT̆
= ξ E†m − φ−2∆ Ĕ,

φ−4δ−1 dF̆

dT̆
=

F̆m

φωB̆ + ε
1
2

− φ−4δ−1∆F̆ .

(3.139)

At leading order, we have the following system of equations

R†m = 1,
dR̂

dT̆
= 0,
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A�m = 1, A+ =
θ

υ
A�m,

C+
m =

λ

A+
,

dC̆

dT̆
= φ3γ C+

m −∆C̆,

B̆m = φ−2 1

(φ−2Ĕ + φ−3C̆)
,

dB̆

dT̆
= φ2βB̆m −∆B̆,

S†m = 1,
dS̆

dT̆
= φ2σS†m −∆S̆,

E†m = 1,
dĔ

dT̆
= φ2ξE†m −∆Ĕ,

F̆m =
η

φ−2Ĕ
,

dF̆

dT̆
= φ4δ

F̆m

ωB̆
−∆F̆ . (3.140)

This system of ODEs can be solved, matching to the long term dominant behaviour

on the previous timescale gives the following asymptotic approximations.

R†m = 1, R̂ = R0, A+
m = 1,

A+ =
θ

υ
, C̆ = φ3γλυ

∆θ
(1− e−∆T̆ ), C+

m =
λυ

θ
,

B̆m =
1

φ2( ξ
∆

+ γλυ
∆θ

)(1− e−∆T̆ )
, B̆ =

βθ

γλυ + θξ
(1− e−∆T̆ ), S†m = 1,

S̆ = φ2 σ

∆
(1− e−∆T̆ ), Ĕ = φ2 ξ

∆
(1− e−∆T̆ ), E†m = 1,

F̆m =
η

ξ
∆

(1− e−∆T̆ )
, F̆ =

φ4δη (γ λ υ + θξ)

ξωβθ
(1− e−∆T̆ ). (3.141)

We plot asymptotic approximations of those variables that evolve on this timescale against

the numerical solutions in Figure 3.21. In this timescale we have all variables reaching

steady state. We note that compared to the wild-type analysis, the steady state values

for RamA and AcrAB are much larger in the mutant strain. Due to disparity in the

asymptotic approximations of some variables, we have included the second order terms in

the asymptotic approximations (we could instead use a smaller value for ε) obtained via

Van Dyke’s rule [91].
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3.7.11 Summary

In Figure 3.22 we exhibit the leading order processes in timescale order from our asymp-

totic analysis for the mutant case. We note that the schematics are not on identical

timescales to the wild-type case as the scalings to reach each of the timescales are dif-

ferent. Here we detail the differences in the order of dominant processes shown in the

schematics compared to the wild-type case. As predicted by the analysis:

• In this case, functional RamR is not produced. This allows the positive feedback

loop on ramA expression to dominate at leading order, resulting in high production

of RamA and activation of acrAB expression.

• Any activation by secondary TAs (that may occur under the appropriate stress) is

overshadowed by RamA and relegated to lower order behaviour. RamA also lowers

AcrR levels, yielding higher expression of acrAB in the analysis.

• RamA is regulated by degradation through the Lon protease, allowing AcrR and

EnvR to dominate acrAB expression.

• Degradation of all proteins brings the system to a steady state.

At steady state, as expected this mutant strain also has RamA dominating the be-

haviour (in addition to those considered in the wild type strain). The analysis therefore

identifies ramA, acrR, envR, acrAB and acrEF as the most likely potential targets for

efflux pump inhibition. In regards to the other timescales, this breakdown highlights the

importance of the positive feedback loop of ramA. With the release of ramA expression

in this mutant case, various different interactions between genes and proteins become

dominant. In particular, we see direct and indirect activation of acrAB, with the latter

as a result of its local repressor, acrR, itself being inhibited (by RamA). It is interesting

to note that the direct activation from RamA only dominates at leading order prior to

steady state and without undergoing our time-dependent analysis we may have not iden-

tified this key mechanism in the activation of the efflux pump genes under this parameter
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set. Reducing the activation from RamA may be enough to minimise early expression of

acrAB, enabling the antibiotic to kill bacteria before its efflux pumps are overexpressed.

For example, an efflux inhibiting adjuvant targeting RamA may be more successful if ad-

ministered with or before antibiotic. It is also important to note that in the wild-type case

we see no leading order activation processes caused by RamA (though this will be present

at lower orders). Thus whilst choosing ramA as an inhibition target seems plausible, this

may only revert the GRN to the wild-type case rather than knocking out efflux expres-

sion entirely. This concludes the mutant asymptotic analysis. We have broken down the

system into ten timescales. For each of these timescales we have obtained full analytical

solutions.
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3.8 Steady State Analysis

Upon reaching the final timescale, all of our variables attain a steady state. For the full

nondimensionalised model it is not possible to derive a set of analytically solvable steady

states. However, in both wild-type and mutant cases we can achieve analytical expressions

for the asymptotic approximation of the steady states. We know from our GRN that

reducing the concentration of the main efflux pump protein AcrAB results in increased

concentration of the homologue efflux pump protein AcrEF. Thus we must consider both

efflux pump protein concentrations simultaneously. We perform a sensitivity analysis

of the sum of the asymptotic approximations of the steady states of AcrAB (including

second order terms) and AcrEF, the proteins that form the efflux pump complexes (i.e.

this reflects the total efflux “power” of the bacteria). By conducting this analysis we hope

to identify potential targets for efflux inhibition. Here, we use relative sensitivity in order

to draw comparisons on how much individually changing a parameter affects the overall

efflux. We define our equation for the relative sensitivity as

ς =
d(B̄ + F̄ )

dP
, (3.142)

where d(B̄ + F̄ ) represents the change of the efflux pump genes steady state and dP

represents the change of the nondimensional parameter being varied.

To conduct our sensitivity analysis, we vary all our nondimensional parameters in a

bounded parameter space. For both wild-type and mutant strains, the space is bounded

to the range of ε
1
5 to ε−

1
5 to maintain consistency with the parameter sizes used in the

asymptotic analysis. By using a Latin hypercube method of sampling, we choose 10000

points in the parameter space for each parameter and find the relative sensitivity for each

point. The resulting relative sensitivities are then plotted on box plots in order for us to

view the distribution of sensitivity. We exhibit the results of the sensitivity analysis in

Figure 3.23.
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Figure 3.23: Box plots showing the relative sensitivity of nondimensional parameters on
the combined asymptotic approximated steady states of AcrAB and AcrEF. In (a) we
denote the sensitivity in the wild-type case whereas in (b) we denote the mutant case.
For (b), mutations to RamR protein results in more parameters involved in our steady
state approximation.

We can see from the wild-type case (a), that the parameter to which efflux is most

sensitive is η, here all points correspond to the same value as this grouping only affects

AcrEF and does so linearly. Our next most sensitive parameter is ξ, which also has the

largest spread of sensitivity of all parameters in this case. We note that our most sensitive

parameter groupings η and ξ relate to the binding coefficients of EnvR to the two efflux

pump genes, and the expression of envR respectively. Since both of these parameters

involve envR mRNA or protein, the analysis suggests that this gene could be a possible

target for inhibition of efflux in this case. Our next most sensitive parameter is ω relating

to the link between the concentration of AcrAB and activation/repression of acrEF the

homologue efflux pump gene. Unfortunately as we do not know the full mechanisms

involved causing this link, this does not provide a realistic target for inhibition. However,

this does lead us to believe that with more biological knowledge of this link there could

be a potential inhibition target worth pursuing. Finally with similar sensitivities are
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γ (acrR expression) and β (acrAB expression). Since the former of these parameters

has a relatively low sensitivity compared to other parameters, the analysis predicts that

this may not be a target worth pursuing. The latter is an expected target, relating to

direct expression of one of the efflux pump genes. It is interesting to note that some

parameters in the system (that do not affect the efflux pump genes directly) provide a

greater sensitivity than β, that is directly related to AcrAB concentration.

In the mutant case (b), it comes to note that we have double the amount of parameters

that affect the efflux pump steady states compared to the wild-type case. This is partially

due to including second order terms, however it is only the parameters ∆ and σ that do

not appear at leading order. With only one change in the GRN (to RamR protein),

the change in the amount of parameters demonstrates the unpredictability and sensitive

nature of this network. We note that here, the parameter to which the steady state of

efflux proteins is most sensitive is ξ (envR expression). Additionally we also see high

sensitivity to the parameter η (EnvR binding affinity). This similarity with the wild-

type system further highlights the case for targeting the gene envR for inhibiting efflux.

Our next most sensitive parameter is β (acrAB expression) which differs from the wild-

type case where it was one of the least sensitive parameters. This could be due to the

overexpression of acrAB in this mutant case. The parameters λ (RamA binding affinity),

θ (ramA expression), υ (RamA degradation from Lon Protease), γ (acrR expression) and

ω (AcrAB and acrEF link) all show a degree of sensitivity, meaning that any of these

parameters could prove to be a realistic target to inhibit efflux. However it is interesting

to note that parameters associated with ramA, which is over expressed in this mutant

case, is not the most sensitive target for inhibiting efflux. The rest of the parameters

∆ (degradation of mRNA and proteins) and σ (soxS mRNA expression) have a low

sensitivity in this case, which we should expect as these parameters are only prevalent

in the second order terms. Thus the analysis suggests that these parameters may not be

realistic targets for inhibiting efflux.
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3.9 Discussion

Antimicrobial resistance is a topic with ever increasing importance. With the threat to

human health worsening as more bacteria evolve resistance to antibiotics, it is clear we

must urgently seek novel treatment methods in order to combat antibiotic resistance.

By delving into GRNs governing resistance mechanisms, it is possible to identify certain

targets to potentially prevent resistance in bacteria. We believe that our asymptotic

analysis has given us useful insights into the network governing efflux pump expression.

We first nondimensionalised our model, resulting in nondimensional parameter group-

ings. By using information from the biology of the network and consultations with the

Piddock Laboratory (University Of Birmingham), we were able to estimate sizes for these

parameter groupings and focus on relative parameter sizes rather than absolute parame-

ter values. We performed two independent series of time dependent asymptotic analyses,

modelling the dynamics of the wild-type and mutant strains. This enabled us to break

down our nondimensional model (which does not have a full set of analytical solutions)

onto various timescales, exhibiting the order of dominant processes within the network. In

both cases on the early timescales, genes that are not highly regulated are transcribed and

quickly translated. On the middle timescales we see translated proteins inhibiting and

activating expression of other genes within the network. Finally on the later timescales

we have degradation of proteins bringing the system to a steady state. We noted that

for the mutant strain, as non-functional RamR is produced, the expression of ramA and

resulting reactions feature heavily in the dominant processes within the network. This

ultimately results in a steady state where more genes are active at leading order than

the wild-type case. Notably RamA only directly affected acrAB expression on the middle

timescales, whereas on the later timescales acrAB expression was affected indirectly. This

leads us to believe that if we were to choose ramA as an inhibition target, the timing of

an adjuvant in relation to antibiotic administration could be crucial.

After achieving asymptotically approximated steady states for the system in both

strains. We have performed parameter sensitivity analysis upon the steady state values.
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This enabled us to determine which parameter groupings the strains are most sensitive

to for inhibiting efflux. We saw that amongst both strains, the most sensitive parameters

were linked to the gene envR. This closely aligned with the biology of the network as

the gene’s protein is capable of directly inhibiting both acrAB and acrEF expression.

Many other parameter groupings displayed reasonable sensitivity and hence showed us

multiple inhibitory targets. It was interesting to note the sensitivity of the link between

the concentration of AcrAB and the activation / repression of acrEF. Although we do

not know the full biology behind this mechanism, this sensitivity gives us strong reason

to further delve into the processes causing this link.
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CHAPTER 4

A SPATIAL MODEL OF SUBSTRATE EFFLUX

4.1 Motivation

The Resistance-Nodulation-Division (RND) family of transporters are common to extrude

a range of antibiotics and can account for multi drug resistance (MDR) [69]. From genomic

analysis, it has been shown that Salmonella strains contain five RND efflux pump systems.

Various antibiotics have been shown to be substrates of multiple of these efflux pump

systems [61]. Thus inhibition of one of the efflux pump systems could mean that substrate

extrusion will be picked up by another efflux pump system.

In the previous chapters we have modelled and analysed the GRN governing expression

of two members of the RND family of transporters. This model has given us useful insights

into potential inhibitory targets for the aforementioned efflux pumps. However, our model

does not consider the link between efflux pump gene expression and the resulting effects

on substrate concentration. In this chapter we will consider a cellular model of substrate

efflux governed by multiple members of the RND family, with the aim of linking this model

to our gene regulatory model in further chapters. We will attempt to parametrise this

model in order for us to replicate the experimental data. By successfully parametrising our

model, we will then be able to conduct analysis into the role of efflux upon the bacterial

cell and its environment.
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4.2 Experimental Protocol

We base our mathematical model upon experiments completed by the Blair laboratory,

based at the University of Birmingham [56]. Cultures of Salmonella are adjusted to an

optical density (measured at a wavelength of 600nm, OD600) of the value 0.2 and are

placed into standard 96 well plates. Salmonella are rod shaped bacteria and generally

range between 2-5µm long and 0.5-1.5µm wide [4]. Individual cultures are loaded with

high concentrations of ethidium bromide (a substrate of multiple RND efflux pumps).

At this stage, an efflux inhibitor is present which prevents proton motive force of the

RND efflux pumps, resulting in substrate accumulation. Ethidium bromide is a DNA-

intercalating agent that fluoresces when it is bound to DNA [28]. Due to this fluorescing,

the concentration of ethidium bromide within a culture can be approximated. Once the

cells are washed to remove extracellular substrate the fluorescence is measured. The

cells are then re energized so that the efflux pumps begin to extrude the substrate. The

fluorescence is then monitored and measured over various time points [11]. Experiments

have taken place on various different cultures of Salmonella, including a wild-type case

and various cases with efflux gene knock outs. By comparing multiple experiments, we

are able to see the effects of the efflux pump systems. For these experiments four RND

efflux pumps have been considered: AcrAB, AcrEF, MdsAB and MdtAB. All of these

efflux pump proteins share the same outer membrane protein TolC, with MdtAB having

the ability to also form a system with the outer membrane protein MdtC [61].

4.3 Cell model formulation

We choose to model these experiments using partial differential equations (PDEs). Whilst

currently the spatial effects may not have a huge bearing on the results, by choosing PDEs

it gives us the potential to apply the model to situations where spatial effects could be more

important, such as in vivo experiments. To formulate our model, we assume that each

cell in a population acts identically. We also assume that the concentration of ethidium
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bromide is evenly distributed in the population such that every cell has an identical initial

concentration of ethidium bromide. We assume this distributed concentration of ethidium

bromide is independent to each cell, meaning that if the substrate has been expelled into

the extracellular space, it can only diffuse back into the original cell. Since we do not

know the correlation between fluorescence of ethidium bromide and the concentration of

ethidium bromide within the culture, we assume a directly proportional relation between

the two. By making these assumptions, we are able to model the full culture population

via a single cell model where that cell displays the typical behaviour of all cells in the

population. We exhibit a schematic of our single cell model in Figure 4.1. To model the

cell, we follow a similar method to Carr and Pontrelli [15]. We use spherical coordinates to

model an axisymmetric spherical cell with radius RM surrounded by extracellular (outside

of a cell) space with an outer boundary of radius RB. At the cell radius (RM), we have

a thin permeable membrane which contains all of the efflux pump systems that expel

substrate from the intracellular (inside of a cell) space to the extracellular space. This

limit to the amount of extracellular space is represented by the outer boundary radius

(RB). The equations for this model are as follows

∂cI
∂t

= DI

(
∂2cI
∂r2

+
2

r

∂cI
∂r

)
,

∂cE
∂t

= DE

(
∂2cE
∂r2

+
2

r

∂cE
∂r

)
. (4.1)

Here we have split the ethidium bromide into two concentrations for intracellular (cI) and

extracellular (cE) concentration under the assumption that the ethidium bromide diffuses

at a different rate within the intracellular space (with coefficient DI) to the extracellular

space (with coefficient DE) [20].
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Figure 4.1: A schematic of the single cell efflux model. The solid circle denotes our
membrane boundary at the distance from the centre RM , whilst the dotted line denotes
our outer boundary at distance RB. We place our model equations in the intracellular
and extracellular regions where they apply.

4.3.1 Boundary Conditions

The first boundary conditions for our system is

DI
∂cI
∂r

∣∣∣∣
r=0

= 0. (4.2)

Here we assume axisymmetric properties of the cell for the intracellular concentration.

Our secondary boundary condition is at the membrane RM , which we demonstrate in

Figure 4.2. We choose to model our membrane with small but finite thickness δ, with the

fictitious points R−M and R+
M being the intracellular and extracellular membrane points

respectively. We can see that we have both diffusion and efflux through the membrane

and thus the total flux through the membrane will be a combination of both diffusive

flux and advective flux (via efflux). Via Fick’s law [33], we can calculate the diffusive flux
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through the membrane:

JD = −DM∇c(RM , T ), (4.3)

= −DM
c(R+

M , T )− c(R−M , T )

δ
,

= −DM
cE(RM , T )− cI(RM , T )

δ
,

=
DM

δ
(cI(RM , T )− cE(RM , T )).

Here DM denotes the diffusion coefficient inside the membrane. In regards to the advective

flux, this is proportional to the concentration times the volume flow from efflux X [46]

JA = X c(R−M , T ), (4.4)

= X cI(RM , T ).

Therefore the total flux through the membrane is

J = JD + JA, (4.5)

= P (cI(RM , T )− cE(RM , T )) +X cI(RM , T ).

Here P =
DM

δ
is a mass transfer coefficient related to the permeability of the mem-

brane. Finally, we require continuity of flux at the membrane and therefore the boundary

condition at R = RM can be written as

− DI
∂cI
∂r

∣∣∣∣
r=RM

= − DE
∂cE
∂r

∣∣∣∣
r=RM

= (P +X) cI(RM , t)− P cE(RM , t). (4.6)

In summation, this condition encompasses flux continuity between the intracellular and

extracellular space, with interface conditions that characterise the properties of the mem-

brane which we assume are constant for the full duration of our simulations [21]. If we set

X = 0 such that there is no efflux, we can see that as P → 0 this condition becomes a no

flux boundary condition (which is expected with no membrane permeability), in contrast
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as P →∞ we approach cI(RM , t) = cE(RM , t) which models the case with no membrane.

In addition to the above boundary conditions, we have the outer boundary condition (at

r = RB). There are two methods by which we choose to model this:

1. We assume that the culture is surrounded by enough extracellular space that the

substrate dissipates. Here we set the outer boundary to be at the far field where

the concentration is always zero,

cE(RB, t)→ 0 as RB →∞. (4.7)

2. We assume that the extracellular space is limited, such that substrate expelled out

of the cell will always be within range to diffuse back in. Here we set the outer

boundary to be a closer boundary with no flux,

DE
∂cE
∂r

∣∣∣∣
r=RB

= 0. (4.8)

Whilst we expect the extracellular space to be limited meaning our secondary boundary

condition would be more relevant to the experiments, we do not know the extent of

the extracellular space in comparison to the individual cell and thus our first boundary

condition would provide a simpler model for numerical simulations in the case of a large

extracellular space [31].
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Intracellular Space Extracellular Space

Substrate Efflux

Substrate Diffusion

Periplasm

Figure 4.2: A schematic showing the processes involved at the membrane RM with small
finite thickness δ. We show fictitious points R−M and R+

M that are part of the intracellular
and extracellular space respectively. We show the process of efflux of substrate from the
intracellular space direct to the extracellular space through the RND efflux pumps. In
addition we exhibit diffusion of substrate in both directions through each membrane from
the intracellular and extracellular spaces into the periplasm.

4.3.2 Initial Conditions

As the cultures are washed to remove extracellular substrate before the initial fluorescence

is measured, we assume that there is no substrate in the extracellular space initially. In

regards to the intracellular space, we assume that all substrate fluoresces. The initial

conditions for the model are therefore

cI(r, 0) = C0 cE(r, 0) = 0, (4.9)

where here C0 denotes a constant for the initial intracellular concentration of substrate.
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4.3.3 Model Solution

We adopt the method of separation of variables to obtain a solution to this PDE model,

adopting an approach that has been used to solve similar spherical models [43]. By

proposing separated solutions ci(r, t) = Fi(r)Gi(t) for i = I, E and substituting into (4.1)

we obtain

FiG
′
i = Di

(
F ′′i Gi +

2

r
F ′iGi

)
, (4.10)

which rearranges to

1

Di

G′i
Gi

=
F ′′i
Fi

+
2

r

F ′i
Fi
. (4.11)

We set both sides equal to a negative constant

1

Di

G′i
Gi

= −λ2
i ,

F ′′i
Fi

+
2

r

F ′i
Fi

= −λ2
i , (4.12)

admitting the following general solutions

FI(r) = k1
cos(λI r)

r
+ k2

sin(λI r)

r
, GI(t) = e−DIλ

2
I t, (4.13)

FE(r) = k3
cos(λE r)

r
+ k4

sin(λE r)

r
, GE(t) = e−DEλ

2
Et. (4.14)

By setting GI(t) = GE(t) such that λE =

√
DE

DI

λI , the boundary conditions (4.2)-(4.8)

(using the no flux outer boundary condition) become:

F ′I(0) = 0, (4.15)

−DIF
′
I(RM) = (P +X)FI(RM)− P FE(RM), (4.16)

−DEF
′
E(RM) = (P +X)FI(RM)− P FE(RM), (4.17)

F ′E(RB) = 0. (4.18)
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From the boundary condition (4.15), we get k1 = 0, giving us the updated solution

FI(r) = k2
sin(λI r)

r
, (4.19)

The remaining boundary conditions (4.16)-(4.18) leave us with a system of equations with

unknown constants k2, k3, k4. To find a non trivial solution of this system of equations we

require the determinant of a coefficient matrix of system to be non zero. We can use this

condition to determine an infinite set of eigenvalues λI,n (n = 1, 2, ...) with the following

eigenfunctions and time solutions

FI,n(r) = k2,n
sin(λI,n r)

r
, (4.20)

FE,n(r) = k3,n

cos(
√

DE
DI
λI,n r)

r
+ k4,n

sin(
√

DE
DI
λI,n r)

r
, (4.21)

GI,n(t) = GE,n(t) = e−DIλ
2
I,nt. (4.22)

The general solution to (4.1) is therefore

ci(r, t) =
∞∑
n=1

ai,nFi,n(r)e−DI(λI,n)2t. (4.23)

Here i = I, E and the constants ai,n are Fourier coefficients that are determined by the

initial conditions (4.9). Notably this solution is only valid if the parameters P and X

are constant. In Section 5, we introduce variable efflux X and thus this general solution

will not be valid for the models presented in the section. Furthermore, to solve the

determinant matrix to find the unknown coefficients and eigenvalues we must employ the

use of numerical methods. In this thesis we have instead opted to use finite difference

numerical methods to produce numerical simulations of the model, which can be utilised

on both models in this section as well as Section 5.
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4.4 Numerical Method

In order to produce numerical simulations of the model, we use a combination of finite

difference methods [49, 92]. We discretise both time and space into a finite grid with

spacing ∆t and ∆r respectively, resulting in the coordinates ri = i∆r and tn = n∆t

for i = 0, 1, ..., R (where R =
RB

∆r
) and for n = 0, 1, ..., T . We then use forwards time

centralised space (FTCS) scheme to approximate our model as

cn+1
I,i − cnI,i

∆t
= DI

(
cnI,i+1 − 2cnI,i + cnI,i−1

∆r2
+

2

ri

cnI,i+1 − cnI,i−1

2∆r

)
+O(∆t) +O(∆x2),

cn+1
E,i − cnE,i

∆t
= DE

(
cnE,i+1 − 2cnE,i + cnE,i−1

∆r2
+

2

ri

cnE,i+1 − cnE,i−1

2∆r

)
+O(∆t) +O(∆x2).

(4.24)

Here cnI,i and cnE,i denote the intracellular and extracellular concentrations respectively.

Discarding the truncation error terms and solving (4.24) for cn+1
I,i and cn+1

E,i gives

cn+1
I,i = cnI,i +DI∆t

(
cnI,i+1 − 2cnI,i + cnI,i−1

∆r2
+

2

ri

cnI,i+1 − cnI,i−1

2∆r

)
,

cn+1
E,i = cnE,i +DE∆t

(
cnE,i+1 − 2cnE,i + cnE,i−1

∆r2
+

2

ri

cnE,i+1 − cnE,i−1

2∆r

)
. (4.25)

The model discretisation simplifies to

cn+1
I,i = θI

(
1 +

∆r

ri

)
cnI,i+1 + (1− 2θI) c

n
I,i + θI

(
1− ∆r

ri

)
cnI,i−1,

cn+1
E,i = θE

(
1 +

∆r

ri

)
cnE,i+1 + (1− 2θE) cnE,i + θE

(
1− ∆r

ri

)
cnE,i−1. (4.26)

where

θI =
DI∆t

∆r2
, θE =

DE∆t

∆r2
. (4.27)

These discretisations will apply to all spatial points not at the boundaries, which

we must incorporate using different approximations. For the point r0 = 0, we need to
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consider the singularity from the term
2

r

∂c

∂r
. We use L’Hopital’s rule to approximate this

term:

lim
r→0

1

r

∂cI
∂r

=
∂2cI
∂r2

(4.28)

substituting this approximation into equation (4.25) we have

cn+1
I,0 − cnI,0

∆t
= 3DI

(
cnI,1 − 2cnI,0 + cnI,−1

∆r2

)
. (4.29)

We now discretise the no flux boundary condition using central difference, involving a

ghost point (a point out of the concentration’s spatial domain) cnI,−1

cnI,1 − cnI,−1

2∆r
= 0, (4.30)

achieving cnI,−1 = cnI,1. We can then substitute this into (4.29) to achieve the discretisation

for this boundary point

cn+1
I,0 = (1− 6θ)cnI,0 + 6θcnI,1. (4.31)

For our outer boundary condition (the coordinate rR = RB) we have two possibilities of

boundary condition, a far field boundary condition and a no flux boundary condition.

The far field condition is simply a perfect sink condition

cnE,R = 0. (4.32)

For the no flux boundary condition, we follow a similar method to the boundary at r0,

discretising the no flux boundary condition using central difference

cnE,R+1 − cnE,R−1

2∆r
= 0, (4.33)

obtaining cnE,R+1 = cnE,R−1, which substituting into (4.26) simplifies to

cn+1
E,R = (1− 2θE)cnE,R + 2θEc

n
E,R−1. (4.34)
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Finally we have our membrane boundary condition which we define to be at the point

rM = RM . We discretise this boundary condition using central difference

−DI

cnI,M+1 − cnI,M−1

∆r
= (P +X)cnI,M − PcnE,M ,

−DE

cnE,M+1 − cnE,M−1

∆r
= (P +X)cnI,M − PcnE,M . (4.35)

By solving this condition as a system of simultaneous equations, we are able to find

equations for the ghost points of each of the concentrations cnI,M+1 and cnE,M−1. These are

ghost points as cI does not exist in the extracellular space and cE does not exist in the

intracellular space.

cnI,M+1 =
2P∆r

DI

cnE,M −
2(P +X)∆r

DI

cnI,M + cnI,M−1

= λIc
n
E,M − ηIcnI,M + cnI,M−1, (4.36)

cnE,M−1 = −2P∆r

DI

cnE,M +
2(P +X)∆r

DI

cnI,M + cnE,M+1,

= −λEcnE,M + ηEc
n
I,M + cnE,M+1, (4.37)

where here we have used the following for simplicity in presentation

λI =
2P∆r

DI

, ηI =
2(P +X)∆r

DI

, (4.38)

λE =
2P∆r

DE

, ηE =
2(P +X)∆r

DE

. (4.39)

Now that we have these equations, we can apply them to our finite difference method by
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substituting into equations (4.26)

cn+1
I,M = θI λI

(
1 +

∆r

ri

)
cnE,M +

(
1− 2 θI − ηI θI −

ηI θI ∆r

ri
,

)
cnI,M + 2 θI c

n
I,M−1,

cn+1
E,i = θE ηE

(
1 +

∆r

ri

)
cnI,M +

(
1− 2 θE − λE θE −

λE θE ∆r

ri

)
cnE,M + 2 θE c

n
E,M+1.

(4.40)

Thus by collating our approximations our full finite difference method to approximate

our model is represented in equation (4.41). We implement this method in MATLAB

to produce various different simulations of our model. Unless otherwise stated we set

our spatial step ∆r = 0.1µm, with membrane at radius 2µm. Furthermore in order to

maintain stability of our finite difference method we set ∆t =
∆r2

4DMAX

, where DMAX =

max(DI , DE) [78]. The model has also been tested at different resolutions using smaller

values for ∆r, the size of ∆r here provides a sufficient degree of accuracy whilst not taking

an extensive time to produce simulations.
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cn
+

1
I
,i

=

            (1
−

6θ
I
)c
n I
,i

+
6θ

I
cn I
,i

+
1
,

i
=

0,

θ I

( 1
+

∆
r

r i

) cn I
,i

+
1

+
(1
−

2θ
I
)
cn I
,i

+
θ I

( 1
−

∆
r

r i

) cn I
,i
−

1
,

i
=

1,
..
.,
M
−

1,

θ I
λ
I

( 1
+

∆
r

r i

) cn E
,i

+

( 1
−

2
θ I
−
η I
θ I
−
η I
θ I

∆
r

r i
,) cn I

,i
+

2
θ I
cn I
,i
−

1
,
i

=
M
,

cn
+

1
E
,i

=

            θ E
η E

( 1
+

∆
r

r i

) cn I
,i

+

( 1
−

2
θ E
−
λ
E
θ E
−
λ
E
θ E

∆
r

r i

) cn E
,i

+
2
θ E
cn E

,i
+

1
,
i

=
M
,

θ E

( 1
+

∆
r

r i

) cn E
,i

+
1

+
(1
−

2θ
E

)
cn E

,i
+
θ E

( 1
−

∆
r

r i

) cn E
,i
−

1
,

i
=
M

+
1,
..
.,
R
−

1,

(1
−

2θ
E

)c
n E
,i

+
2θ

E
cn E

,i
−

1
,

i
=
R
.

(4
.4

1)
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4.4.1 Numerical Simulations

As we are modelling the Salmonella cells as spheres rather than rods, we choose a cell

radius (2µm) that yields a similar spherical volume and surface area to the maximum

cylindrical volume and surface area of Salmonella’s typical rod shaped dimensions.

We exhibit simulations of the single cell model with a zero far field outer boundary in

Figure 4.3. Here we have set the far field boundary (at 10µm) to be far enough from the

membrane (at 2µm). We also set the initial intracellular concentration to be 1 mol/µm3.

For simplicity, we have set the diffusivity coefficients of the intracellular and extracellular

substrate to be identical (0.1µm2s−1).

In Figure 4.3 (a), we can see the results of an impermeable membrane with no efflux.

We see no transfer of substrate from the intracellular space, with a uniform distribu-

tion throughout for all time. In (b), we see the introduction of a permeable membrane.

Here we can immediately see that substrate is able to diffuse across the membrane. This

results in a decrease in the intracellular concentration. The rate of expulsion from the

intracellular space slows as time gets larger, as the membrane surrounding extracellular

concentrations become similar to the intracellular concentration. In (c), we see an im-

permeable membrane with active efflux pumps. Whilst being similar to the simulations

in (b), we note that substrate is not free to diffuse back into the intracellular space once

being expelled. This results in almost all substrate being expelled from the intracellular

space, even with higher extracellular concentrations surrounding the membrane. In (d)

we exhibit a permeable membrane with active efflux pumps. In this simulation, we see

a combination of the characteristics of simulations (b) and (c). Whilst the efflux pumps

expel a large concentration of substrate, some substrate is able to diffuse back into the

intracellular space through the permeable membrane. We note that in the latter sim-

ulations (b), (c) and (d) the extracellular concentration dissipates due to the zero far

field boundary condition. Thus the system will only reach steady state once there is zero

concentration in all regions.

We exhibit simulations of the single cell model with a no flux outer boundary in
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Figure 4.4. Here we have set the outer boundary (at 4µm) to be close to the membrane

(at 2µm). We note that the simulations in each case are similar to those in Figure 4.3.

We see however with the introduction of a no flux boundary, the simulations approach

steady state as time grows. In Figure 4.4 (b) the substrate is free to diffuse across the

membrane. However as the extracellular space is limited and is not depleting, we see

the intracellular and extracellular concentrations approaching steady state at the same

concentration. In (c) we see the impermeable membrane with active efflux; here the

extracellular concentration approaches a steady state but is unable to diffuse back into

the cell. Thus we see the intracellular concentration being completely expelled via the

cell’s efflux pumps. Finally in (d) we see the mixture of diffusion and expulsion via efflux

pumps, with a steady state being approached for both intracellular and extracellular

concentrations. However, we note that the intracellular concentration steady state is

higher than the intracellular concentration in (c), due to the membrane permeability

enabling substrate to diffuse back in from the extracellular to the intracellular space.
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Figure 4.3: Simulations of the cell model with a zero far field outer boundary condition,
with RM = 2µm and RB = 10µm. We exhibit the distribution profiles on the left,
with resulting averaged intracellular concentrations on the right. In simulation (a) P =
0µm,X = 0µm, (b) P = 0.1µm,X = 0µm, (c) P = 0µm,X = 0.1µm and (d) P =
0.1µm,X = 0.1µm. 137
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Figure 4.4: Simulations of the cell model with a no flux outer boundary condition with
RM = 2µm and RB = 4µm. We exhibit the distribution profiles on the left, with resulting
averaged intracellular concentrations on the right. In simulation (a) P = 0µm,X = 0µm,
(b) P = 0.1µm,X = 0µm, (c) P = 0µm,X = 0.1µm and (d) P = 0.1µm,X = 0.1µm.
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4.5 Parametrisation Data

Experiments have taken place on various different cultures of Salmonella, with various

efflux pump knockouts as described in Section 4.2. We detail the strains used in the

experiments as:

• Wild-type strain; in this strain we have all four efflux pump systems active.

• AcrAB knockout strain (A Knockout); in this strain we have only AcrEF, MdsAB

and MdtAB active.

• AcrEF knockout strain (E Knockout); in this strain we have only AcrAB, MdsAB

and MdtAB active.

• MdsAB knockout strain (S Knockout); in this strain we have only AcrAB, AcrEF

and MdtAB active.

• MdtAB knockout strain (T Knockout); in this strain we have only AcrAB, AcrEF

and MdsAB active.

• AcrAB and AcrEF knockout strain (AE Knockout); in this strain we have only

MdsAB and MdtAB active.

• Full RND knockout strain (AEST Knockout); in this strain we have none of our

four efflux pumps active. Thus the only transfer of substrate will be through the

cell membrane or through other lesser efflux pump systems.

We summarise all of these strains and their corresponding efflux parameters in Table

4.1. In regards to efflux parameter notation, we list the efflux pumps that are still active

in the subscript (e.g. A knockout would be noted by XEST ). We include each strain’s

efflux parameter in the following parameter fitting exercises by modifying the membrane

boundary condition for each strain:

− DI
∂cI
∂r

∣∣∣∣
r=RM

= − DE
∂cE
∂r

∣∣∣∣
r=RM

= (P +XI)cI(RM , t)− PcE(RM , t), (4.42)
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Strain Name Active Efflux Pumps Efflux Constant

Wild-type AcrAB, AcrEF, MdsAB, MdtAB XAEST

A Knockout AcrEF, MdsAB, MdtAB XEST

E Knockout AcrAB, MdsAB, MdtAB XAST

S Knockout AcrAB, AcrEF, MdtAB XAET

T Knockout AcrAB, AcrEF, MdsAB XAES

AE Knockout MdsAB, MdtAB XST

AEST Knockout N/A N/A

Table 4.1: A summary of the strains involved in the experiments. We list each strain’s
active efflux pumps as well as their corresponding efflux rate constant.

here XI denotes the efflux for the strain of which the pump(s) I are active. This enables

us to find the corresponding efflux value for each strain through multiple parameter fitting

exercises.

For each experiment with a given strain, we have multiple assays (biological repeats).

Within these individual assays, we have technical repeats for each strain. The mean and

standard deviations are found of these technical repeats and we plot these in Figures 4.5-

4.11. Under advice from the Blair laboratory, we have taken each assay’s initial data point

to be the start of the final peak of fluorescence. This is due to unknown experimental

errors upon measuring fluorescence on very early time points. Fluorescence for each assay

is measured in arbitrary units. In order to combine the data from all assays we normalise

our data by dividing the fluorescence over time by the peak initial fluorescence. In Figures

4.12 and 4.13, we show the results of normalising our data. As not all assays run for the

same length of time, we split our combinations into three time periods (short, medium and

long time). Whilst the short time plots include data of all assays, the medium and long

time plots are restricted to the assays that reach the final time point on the corresponding

plot.
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Figure 4.5: Experiments taken upon the wild-type strain consisting of 18 assays. In each
individual assay we have plotted the mean (solid line) and standard deviation (shaded
error bar) of three technical repeats.

141



0 50 100

 4

 5

 6
102

0 50 100
 0

 2

 4
102

0 50
 0

 2

 4
102

0 50

0.5

1  
103

0 50
 0

 5

102

0 50
 0

 5

102

0 50

4

6
104

0 100 200
0

1

2

104

0 50 100

5

10

104

0 50 100
0

5

104

0 100

5

10
104

0 50 100
0

5

104

0 50 100
0

1

2
104

0 50 100

 4

 5

 6

102

0 50 100
 0

 1

 2

102

0 50
 0

 2

 4
102

0 50
 0

 5

102

0 50
 0

 5

102

0 50
 0

 5

102

Figure 4.6: Experiments taken upon the A knockout strain consisting of 19 assays. In each
individual assay we have plotted the mean (solid line) and standard deviation (shaded
error bar) of three technical repeats.
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Figure 4.7: Experiments taken upon the E knockout strain consisting of 6 assays. In each
individual assay we have plotted the mean (solid line) and standard deviation (shaded
error bar) of three technical repeats.
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Figure 4.8: Experiments taken upon the S knockout strain consisting of 6 assays. In each
individual assay we have plotted the mean (solid line) and standard deviation (shaded
error bar) of three technical repeats.
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Figure 4.9: Experiments taken upon the T knockout strain consisting of 6 assays. In each
individual assay we have plotted the mean (solid line) and standard deviation (shaded
error bar) of three technical repeats.
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Figure 4.10: Experiments taken upon the AE knockout strain consisting of 6 assays.
In each individual assay we have plotted the mean (solid line) and standard deviation
(shaded error bar) of three technical repeats.
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Figure 4.11: Experiments taken upon the AEST knockout strain consisting of 17 assays.
In each individual assay we have plotted the mean (solid line) and standard deviation
(shaded error bar) of three technical repeats.
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Figure 4.12: Normalised efflux assay data, for each plot we have the mean of the assays
(solid line) and standard deviation (shaded error bar). We have combined (a) Wild-type,
(b) A Knockout and (c) AEST knockout. We have split the data of each strain into three
time regions, only including the assays that reach the maximum time point.
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Figure 4.13: Normalised efflux assay data, for each plot we have the mean of the assays
(solid line) and standard deviation (shaded error bar). We have combined (a) E knockout,
(b) S knockout, (c) T knockout and (d) ST knockout. For (d) we have split the data for
the strain into two time regions, only including the assays that reach the maximum time
point.

4.6 Parametrisation Methods

We employ the use of the function fminsearch in MATLAB to obtain our parameter

estimates. The function uses the Nelder-Mead simplex method (described in [47]) to

minimize a given objective function starting from initial parameter guesses. In order to

obtain these parameter guesses, we use a latin hypercube method of sampling as described

by McKay in [55]. By establishing realistic upper and lower parameter bounds, we create

a parameter space from which a range of initial parameter guesses are chosen. We use

this sampling method in order to choose a well-spread distribution of initial parameter

guesses (something that is not guaranteed from using a random method of sampling).
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Our objective function that we attempt to minimise is as follows:

f =
1

tmax

∫ tmax

0

| y(t)− I(t)) | dt (4.43)

where

I(t) =
1

4
3
πR3

M

∫∫∫
V

r2 sin(θ) cI(r, t) dr dθ dφ

=
3

R3
M

∫ RM

0

r2 cI(r, t) dr.

Here y denotes the experimental data, I denotes the averaged intracellular concentration

of substrate, RM denotes the distance from the cell centre to the cell membrane and tmax is

the maximum time for the simulations. We have opted to divide our objective function by

the amount of data points in the corresponding assay to which we are fitting. This gives

us a comparison point between the accuracy of fits to different strains that differ in assay

length. In addition we have applied a constraint to our parameters to be non-negative,

we have included this by ensuring that the absolute value of each parameter is taken

through every iteration of finding the objective function. We note that our data values are

measured in relative fluorescence and our model in concentration. However, as we have

assumed a directly proportional relationship between the fluorescence and intracellular

concentration of substrate, we choose to model in terms of relative concentration so we

can directly fit the model to the data. Finally, we list all parameters used in this model,

noting the parameters being varied in Table 4.2. For simplicity in presentation, we will

omit the units of each fitted parameter in our following optimal parameter sets.

4.7 Results

As in our numerical simulations in section 4.4, for the following we set the cell to have

a radius of 2µm. Since we do not know the link between fluorescence and concentration
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Parameter Description Value Units

RM Membrane Radius 2 µm
RB Outer Boundary Radius Not Set µm
P Permeability Mass Transfer Coefficient Not Set µmmin−1

XAEST Efflux Conversion Constant For Wild-type Case Not Set µmmin−1

XEST Efflux Conversion Constant For A Knockout Case Not Set µmmin−1

XAST Efflux Conversion Constant For E Knockout Case Not Set µmmin−1

XAST Efflux Conversion Constant For S Knockout Case Not Set µmmin−1

XAES Efflux Conversion Constant For T Knockout Case Not Set µmmin−1

XST Efflux Conversion Constant For AE Knockout Case Not Set µmmin−1

DI Diffusion Coefficient Of Intracellular Substrate Not Set µm2min−1

DE Diffusion Coefficient Of Extracellular Substrate Not Set µm2min−1

Table 4.2: All parameters used in our single cell model and their respective units. If we
vary a parameter we will list it as “Not Set” in the “Value” column, otherwise if the
parameter is not varied we list its fixed value.

of substrate, we assume that the fluorescence is directly proportional to the averaged

internal concentration of ethidium bromide such that the relative fluorescence and relative

concentration of substrate is equivalent. By modelling in terms of relative concentration,

we can then produce a fit to the relative fluorescence. For the parameter fitting exercises in

this chapter, unless otherwise stated we have taken 1000 sets of initial parameter guesses,

finding the local minimum objective function and corresponding optimised parameters

for each parameter set. By then comparing the resulting objective functions, we have

been able to deduce the optimal set of fitted parameters. We have taken the step sizing

∆r = 0.25 and ∆t =
∆r2

4DMAX

for efficiency to reduce the time taken to run parameter

fits of all of the samples whilst maintaining small enough step sizes to produce accurate

simulations. For all parameter fits, we fit to the long time data only, withholding the

short time and medium time assays for testing of the accuracy of the fit.

4.7.1 Zero far field boundary condition

We first run exercises upon our model with a zero far field boundary condition. For the

simulations in this subsection, we have taken our far field boundary to be at a radius of

10µm.
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AEST knockout

In order to start fitting our model to the data, we initially fit to the data where no RND

efflux pumps are active in the strain. Whilst there is the possibility of less significant efflux

pump systems being active in this case, we choose to assume that the efflux contributed

from these pumps will be negligible compared to the efflux caused by the RND efflux

pumps and membrane permeability. Thus by initially fitting to this data we can construct

a base for the diffusion parameters and membrane permeability as these should not vary

between experiments. We plot the optimal parameter fit in Figure 4.14 which corresponds

with the following parameters:

[DI , DE, P ] = [2.45× 10−2, 1.01× 10−2, 2.72× 10−2], (4.44)

given to three significant figures and resulting in an objective function of 8.07× 10−4. We

note that in general the fit for long time is reasonable, with the model residing within

the standard deviation error bars for the majority of long time. We do however note

that whilst the data appears to be reaching some kind of steady state, the model does

not encapsulate this and by the end of the simulation the concentration appears to be

decreasing faster than in the data. When comparing to the (b) medium time and (c)

short time assays, we can see that the early time behaviour is missing. Quite prominently

the data suggests a delay in the decreasing of concentration, however there is no delay in

the model as the concentration clearly undershoots this.
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Figure 4.14: Parameter fitting results of the model with a zero far field boundary condition
to the AEST knockout data. In (a) we show the fit to the assays that reach long time,
(b) the assays that reach medium time and (c) all assays shown upon short time.

151



Individual efflux knockouts

By fixing our optimal parameters from the AEST knockout case, we can continue to find

the remaining efflux parameters from the other strains. As a reminder for efflux parameter

notation, we list the efflux pumps that are active in the subscript. For the following fits,

we include the individual pump knockouts, meaning in each strain three other RND efflux

pumps will be active. We exhibit the optimal fits in Figure 4.15 with the corresponding

parameters:

[XEST , XAST , XAET , XAES] = [2.50× 10−2, 6.68, 0.729, 0.718], (4.45)

given to 3 significant figures and a combined objective function of 2.16× 10−2. We note

that whilst the fit for the A knockout is similar to the data, the E, S and T knockouts are

not reasonable fits and exhibit largely different dynamics to the data. As the A knockout

corresponds to the strain containing a knockout of the most dominant efflux pump AcrAB-

TolC, we expect this case to be the closest to the AEST knockout in that we expect little

efflux, which could explain the closeness of fit. Whilst this case does provide the most

realistic fit, the key dynamics are missing, with the model not approaching a steady state

at long time and no delay of decrease of concentration in the early time.
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Figure 4.15: Parameter fitting results of the model with a zero far field boundary condition
to the individual knockout strains after fixing AEST parameters (4.44). We exhibit the
A knockout strain in (a) long time, (b) medium time and (c) short time. The rest of the
strains are exhibited as (d) E knockout, (e) S knockout and (f) T knockout.
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Wild-type strain

Since we have estimated parameters for efflux of the individual knockouts, if we assume

that all efflux is additive, we can use simultaneous equations to find efflux parameters for

the individual pumps. From these individual parameters, we can produce an approxima-

tion for the efflux parameter for the wild-type strain. If we assume that

XE +XS +XT = XEST , (4.46)

XA +XS +XT = XAST , (4.47)

XA +XE +XT = XAET , (4.48)

XA +XE +XS = XAES, (4.49)

XA +XE +XS +XT = XAEST , (4.50)

then we can solve for

XA =
1

3
(XAST +XAET +XAES − 2XEST ), (4.51)

XE =
1

3
(XEST +XAET +XAES − 2XAST ), (4.52)

XS =
1

3
(XEST +XAST +XAES − 2XAET ), (4.53)

XT =
1

3
(XEST +XAST +XAET − 2XAES). (4.54)

Using the optimal parameters from our individual knockouts strains (XEST , XAST , XAET , XAES)

we are able to find the efflux values of our individual efflux pumps (XA, XE, XS, XT ) and

combine them to estimate the efflux in the wild-type case:

[XA, XE, XS, XT , XAEST ] = [2.69,−3.96, 1.99, 2.00, 2.72], (4.55)

given to three significant figures. We plot our model with the estimated wild-type param-

eter in Figure 4.16. It is clear to note that in the long time the simulated efflux is larger

than measured in the data, with the concentration reaching null values at long time. We
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also note that the individual efflux value for XE is negative, this leads us to believe that

in this model efflux from each individual pump is not additive as negative efflux is not

possible.
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Figure 4.16: Comparison of the estimated wild-type efflux constant (4.55) applied to our
model with a zero far field boundary condition to the wild-type data after fixing AEST
parameters (4.44). In (a) we show the fit to the assays that reach long time, (b) the assays
that reach medium time and (c) all assays in the short time.

Since our estimated efflux parameter does not provide a realistic fit, we run a parameter

fit for the wild-type efflux parameter. We plot this in Figure 4.17 with the corresponding

parameter:

[XAEST ] = [0.247], (4.56)

given to three significant figures and an objective function of 4.50×10−3. Here we note that

the fit at long time is better than our previous estimated parameter, with the concentration
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not reaching null values. However, again like the individual knockouts the dynamics of

the data is missing, especially shown against the short time assays. Finally, we note that

the efflux parameter is less than those fitted of the individual knockouts. We believe this

to be because we are fitting to a longer time region in this wild-type data compared to

the individual knockout data. In addition compared to the individual efflux knockouts

in Figure 4.15, we see that at longer time the individual knockout fits would likely hit

null values quicker than the wild-type case, which should not be possible as the wild-type

case is where efflux should be at a maximum compared to other strains as all pumps are

active.
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Figure 4.17: Parameter fitting results of the model with a zero far field boundary condition
to the wild-type data after fixing our AEST parameters (4.44) and using a parameter fitted
efflux rate constant (4.56). In (a) we show the fit to the assays that reach long time, (b)
the assays that reach medium time and (c) all assays in the short time.
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4.7.2 No-flux boundary condition

Whilst the fit for the zero far field boundary condition model was reasonable in the AEST

knockout case, the model failed to capture the dynamics of all cases with efflux. Given

that one element of this was the model’s failure to reach a steady state (guided by our

results of section 4.7.1) we now fit our model with a no-flux outer boundary condition.

For the following fits we also vary the position of the extracellular boundary (RB), by

using 125 initial parameter guesses into fminsearch for each integer between 3µm and

10µm inclusive, resulting in 1000 sets of optimal parameters.

AEST knockout

As with the zero far field boundary model, we set our baseline parameters in the AEST

knockout case where we assume that efflux is not active. We plot the optimal fit in Figure

4.18, with corresponding parameters:

[RB, DI , DE, P ] = [4, 0.102, 7.00× 10−2, 9.42× 10−3], (4.57)

given to 3 significant figures and an objective function of 7.2 × 10−4. We note that in

regards to the objective function, the fit here is better than the previous model for this

strain in Section 4.7.1. However we note that the fit is still very similar and is notably

still missing the early and mid time dynamics, with only a small improvement to the long

term dynamics.
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Figure 4.18: Parameter fitting results of the model with a no flux outer boundary condition
to the AEST knockout data. In (a) we show the fit to the assays that reach long time,
(b) the assays that reach medium time and (c) all assays in the short time.

Individual efflux knockouts

For the individual efflux knockouts, we again follow the method used in Section 4.7.1. By

fixing our parameters gained from the AEST knockout case, we are able to find the efflux

parameters for our individual efflux knockout strains. We plot these fits in Figure 4.19

and the corresponding parameters are:

[XEST , XAST , XAET , XAES] = [6.54× 10−3, 4.94× 10−2, 4.10× 10−2 4.07× 10−2], (4.58)
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given to 3 significant figures and a combined objective function of 1.56× 10−2. We note

that the combined objective function is immediately improved compared to the zero far

field boundary model. Our fit for the A knockout model in (a) still undershoots the data

in the long term, however it is closer to reaching a steady state than the previous model.

Again we note that the early dynamics are missing in the short and medium time. The

fits for the E, S and T knockouts (d)-(f) are also improved compared to section 4.7.1, with

the model approaching a steady state that fits within the standard error of the data.
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Figure 4.19: Parameter fitting results of the model with a no flux outer boundary condition
to the individual knockout strains having fixed our AEST parameters (4.57). We exhibit
the A knockout strain in (a) long time, (b) medium time and (c) short time. The rest of
the strains are exhibited as such (d) E knockout, (e) S knockout and (f) T knockout.
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Wild-type strain

By following the method in Section 4.7.1, we are able to estimate the efflux parameters

for each of the individual efflux pumps. We plot our estimated wild-type efflux in Figure

4.20, with the following corresponding parameters

[XA, XE, XS, XT , XAEST ] = [3.94×10−2,−3.54×10−3, 4.90×10−3, 5.18×10−3, 4.59×10−2],

(4.59)

given to three significant figures. We note that the estimated wild-type parameter (XAEST )

causes the model to undershoot the data, however the model does approach a steady state

as the experimental data suggests. Again early dynamics are missing as there is no delay

in concentration decreasing and past this delay the decrease in concentration is not fast

enough to encapsulate the behaviour shown by the data. In addition, as for the individual

efflux values, our parameter for efflux by AcrEF (XE) is again negative. This again leads

us to believe that for our current model the individual efflux parameters are not additive

and may differ from strain to strain. Since our estimated efflux parameter again does not

provide a realistic fit, we run a parameter fit for the wild-type efflux parameter in Figure

4.21 with the corresponding parameter:

[XAEST ] = [3.57× 10−2], (4.60)

given to three significant figures and an objective function of 3.48×10−3. This parameter

is similar to our estimated wild-type efflux parameter and the resulting model has similar

dynamics. Whilst in the long time the model reaches a steady state, the early dynamics

exhibited by the data are still missing.
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Figure 4.20: Comparing our estimated wild-type efflux constant (4.59) in our model with
a no flux outer boundary condition to the wild-type data with fixed AEST parameters
(4.57). In (a) we show the fit to the assays that reach long time, (b) the assays that reach
medium time and (c) all assays in the short time.
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Figure 4.21: Parameter fitting results of the model with a no flux outer boundary condition
to the wild-type data using using (4.57) having fixed our AEST parameters (4.57). In (a)
we show the fit to the assays that reach long time, (b) the assays that reach medium time
and (c) all assays in the short time.

4.8 Discussion

We have formulated a spatial model that encapsulates the behaviour of substrate concen-

tration of a single cell, demonstrating the physical effects of efflux pump activity upon

substrate concentration. By making assumptions on the far field boundary conditions

for this model, we have created a single cell model that can potentially encapsulate the

behaviour of a Salmonella culture.

By using finite difference methods, we have discretised our domain and produced

numerical solutions for our model. These simulations have presented insights into the
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behaviour of the mass transfer coefficients, showing clear differences between the coeffi-

cient related to efflux and the coefficient related to permeability. By producing likewise

simulations for the model with differing outer boundary conditions (zero far field and

no flux), we have been able to show the effects these give to our model. With the zero

far field boundary condition, we see the intracellular concentration more likely to fully

deplete. In the long term, the model with this boundary condition would achieve a steady

state of fully depleted concentration in all space, unless we have no transfer of substrate

through the membrane. This would physically represent a Salmonella population that

has plentiful extracellular space, such that once substrate is expelled from the cells it

disperses and does not diffuse back into the population. With the no flux condition, the

system may reach a non zero steady state. Since there is no depletion at the far field, at

long time both intracellular and extracellular concentrations will reach steady state. This

represents physically a Salmonella population that has limited extracellular space, such

that we see diffusion of expelled substrate back into the cell.

We have implemented parameter fitting techniques for the efflux model to experimental

data consisting of various different strains with different efflux pumps active. By varying

the extracellular boundary condition, we have been able to fit two versions of the model

to the data. Whilst the zero far field boundary model provided a reasonable fit to the

AEST knockout data, the flaws in the model were realised upon adding efflux. Not only

were efflux dynamics missing upon early time, upon long time the model concentration

would keep on decreasing when the data suggests an approach to a steady state. In

regards to the no flux boundary model, we saw better fits across all strains, shown by the

objective functions of each of the fits. Whilst again, short time dynamics were missing

upon our fits, the long time fits were improved in all strains. The model in all fits appeared

to reach or be approaching a steady state at long time. Whilst the fits would give a

reasonable approximation to modelling the experimental data, it is clear that our model

needs adaptation to encapsulate the data better and primarily the short and medium time

dynamics. In the next chapter, we will attempt to adapt our existing model to greater
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encapsulate the dynamics of the data.
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CHAPTER 5

SPATIAL MODEL IMPROVEMENTS

5.1 Motivation

In the previous chapter we have modelled our efflux data via a single cell model, including

variations upon the model’s extracellular boundary condition. However, when attempting

to fit the model to data, flaws were exhibited. Early time and medium time dynamics

in particular did not correspond with the data. It is clear that our current model is

oversimplified and needs adaptation.

As stated in the previous model, ethidium bromide is a DNA-intercalating agent that

fluoresces when it is bound to DNA. Due to this fluorescing, the concentration of ethidium

bromide within a culture can be approximated. However in our previous model, we have

made assumptions that the fluorescence is directly proportional to the concentration of

ethidium bromide. In reality, we will have two states of ethidium bromide; bound ethidium

bromide that is fluorescing and unbound ethidium bromide that is not fluorescing. In

addition, as we know from our gene regulatory model the expression of efflux pump genes

is not constant. In our previous model, we have taken efflux to be constant and to be fully

expressed from the start of the assay, when in reality this may not be the case. This may

be a reason for the disparity in results for strains that included efflux. By considering

these aspects we adapt our previous model with the hope of finding a better fit to our

data.
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5.2 Bound ethidium bromide model formulation

We formulate our model in a manner similar to the previous model by again assuming

that each cell acts identically. We also assume that the concentration of ethidium bro-

mide is evenly distributed in the population such that every cell has an identical initial

concentration of ethidium bromide. We assume this distributed concentration of ethid-

ium bromide is independent to each cell, meaning that if the substrate has been expelled

into the extracellular space, it can only diffuse back into the original cell. In this model

however we consider ethidium bromide in two states. The first state is ethidium bromide

that fluoresces because it is bound to DNA, we will further refer to this state as bound

ethidium bromide. In this state the ethidium bromide cannot pass through the cell mem-

brane via efflux or diffusion. The second state is ethidium bromide that is not bound

to DNA. We will further refer to this state as unbound ethidium bromide. In this state,

ethidium bromide does not fluoresce but can move freely through the cell membrane via

efflux or diffusion. Since one state is bound, we assume that the two states will diffuse

at different rates and hence apply a different diffusion coefficient for each state. Again

similar to the previous model, we do not know the correlation between fluorescence of

ethidium bromide and the concentration of bound ethidium bromide within the culture,

we thus assume a directly proportional relation between the two.
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Figure 5.1: A schematic of the bound ethidium bromide model. The solid line represents
our cell membrane at radius RM , whereas the dashed line represents our outer boundary
at radius RB. We have placed our equations where they apply in the intracellular and
extracellular space.

We exhibit a schematic of our model in Figure 5.1. Again, we use spherical coordinates

to model an axisymmetric spherical cell with radius RM surrounded by extracellular space

with an outer boundary of radius RB. At the cell radius, we have a thin permeable

membrane which contains all of our efflux pump systems that expel unbound substrate

from the intracellular to the extracellular space. The equations for this model are as

follows

∂cB
∂t

= DB∇2cB − αcB + βcI , (5.1)

∂cI
∂t

= DI∇2cI + αcB − βcI , (5.2)

∂cE
∂t

= DE∇2cE. (5.3)

Here cB denotes the bound concentration of substrate, cI denotes the intracellular un-

bound concentration of substrate and cE denotes the extracellular unbound concentration

of substrate. The intracellular ethidium bromide undergoes DNA binding at rate β and
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unbinding at rate α. We assume that there is always a sufficient concentration of DNA

that is well mixed throughout the cell such that ethidium bromide is able to bind at all

times.

5.2.1 Boundary Conditions

The first boundary conditions are

DB
∂cB
∂r

∣∣∣∣
r=0

= 0, DI
∂cI
∂r

∣∣∣∣
r=0

= 0, (5.4)

− DI
∂cI
∂r

∣∣∣∣
r=RM

= − DE
∂cE
∂r

∣∣∣∣
r=RM

= (P +X)cI(RM , t)− PcE(RM , t), (5.5)

DB
∂cB
∂r

∣∣∣∣
r=RM

= 0. (5.6)

Similar to the previous model, we assume axisymmetry of the cell, resulting in two bound-

ary conditions at the cell centre for both bound and unbound ethidium bromide concentra-

tions. We also uphold flux continuity between the intracellular and extracellular space for

the unbound substrate. The bound ethidium bromide however, cannot pass through the

membrane via either efflux or diffusion, thus we introduce the no flux boundary condition

(5.6).

In addition to the above boundary conditions, we have the outer boundary condition.

After analysing parameter fitting results from the previous model we discount the zero

far field boundary condition. Thus we assume that the extracellular space is limited, such

that substrate expelled out of the cell will always be within range to diffuse back in. Here

we set the outer boundary to be a closer boundary with no flux,

DE
∂cE
∂r

∣∣∣∣
r=RB

= 0. (5.7)
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5.2.2 Initial Conditions

As with the previous model, we assume that there is no substrate in the extracellular

space. In regards to the intracellular space, we do not know the ratio of unbound to bound

substrate, thus we introduce the parameter γ into our initial conditions that will define

the ratio of unbound to bound substrate. The initial conditions for each concentration

are as follows

cB(r, 0) = CB0, cI(r, 0) = γ CB0, cE(r, 0) = 0, (5.8)

where CB0 is the initial concentration of bound substrate.

5.2.3 Variable Efflux

In our previous model, we chose our rate of efflux to be constant. In reality we know that

the rate of efflux is not likely to be constant as expression of the proteins that constitute

the efflux pumps can vary. We model efflux as a simple efflux pump formation model with

the following equation and initial condition

dX

dt
= φ− δX, X(0) = X0, (5.9)

where φ is our efflux pump formation rate, δ is our efflux pump degradation rate and X0

is a constant determining the initial rate of efflux. In addition, the formation of efflux

could be dependent upon the antibiotic concentration within the cell, we could model this

as

dX

dt
= φI I − δX, X(0) = X0, I(t) =

1

RM

∫ RM

0

cB(r, t)dr, (5.10)

where φI is the efflux pump formation rate dependent on substrate concentration and I

is the averaged intracellular concentration of substrate. We will consider both cases of
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efflux in our simulations, hoping to give us further insights into the dynamics of efflux

over the course of the experiments.

5.3 Numerical Method

We follow a similar method for discretisation as used on the previous model in Section 4.4.

In the interests of brevity, we omit most trivial steps, only exhibiting the main differences

in the FTCS numerical method. By introducing the notation:

θB =
DB∆t

∆r2
, θI =

DI∆t

∆r2
, θE =

DE∆t

∆r2
, (5.11)

the model discretisation in this case simplifies to:

cn+1
B,i = θB

(
1 +

∆r

ri

)
cnB,i+1 + (1− 2θB − α∆t) cnB,i + θB

(
1− ∆r

ri

)
cnB,i−1 + β∆tcnI,i,

(5.12)

cn+1
I,i = θI

(
1 +

∆r

ri

)
cnI,i+1 + (1− 2θI − β∆t) cnI,i + θI

(
1− ∆r

ri

)
cnI,i−1 + α∆tcnB,i,

(5.13)

cn+1
E,i = θE

(
1 +

∆r

ri

)
cnE,i+1 + (1− 2θE) cnE,i + θE

(
1− ∆r

ri

)
cnE,i−1. (5.14)

In regards to our boundary conditions, we omit our conditions due to following similar

discretisation to the boundary conditions in Section 4.4. By collating our approximations

our full finite difference method to approximate our model is represented in equation

(5.15). We implement this method in MATLAB to produce various different simulations

of our model. Unless otherwise stated we set our spatial step ∆r = 0.1 with RM = 2µm.

Again, in order to maintain stability of our finite difference method we set ∆t =
∆r2

4DMAX

,

where DMAX = max(DI , DE, DB).
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5.3.1 Numerical Simulations

For the following simulations, we choose our cell radius to be 2µm, with a far field

boundary at 4µm. We set the diffusivity of unbound ethidium bromide to be equal

at DI , DE = 1µm2 min−1, whilst we set the bound ethidium bromide to have diffusivity of

DB = 0.1µm2 min−1. Finally, we set the initial intracellular concentrations of bound and

unbound ethidium bromide to be equal at 1 mol /m3. We exhibit various simulations of

our bound ethidium bromide model, exhibiting various features of the model’s dynamics

in Figures 5.2-5.4. In these simulations, we vary membrane permeability, efflux rate and

finally the binding and unbinding rates of the intracellular ethidium bromide.

In Figure 5.2 (a), we see the results of an impermeable membrane with no efflux

and equal binding and unbinding coefficients. We see no transfer of substrate from the

intracellular space, with a uniform distribution of both concentrations throughout for all

time due to equal rates of binding and unbinding. In (b), we maintain an impermeable

membrane, however here the unbinding rate dominates the binding rate. We see the

bound substrate concentration decrease over time and unbound substrate concentration

increase until both concentrations reach a steady state.

In Figure 5.3 (a), we maintain an impermeable membrane, however here the binding

rate dominates the unbinding rate. We see the opposite to the previous simulations, with

the bound substrate concentration increasing until reaching steady state. In (b), we set

the binding and unbinding rates to be equal but introduce a permeable membrane. We

can see here that the unbound substrate concentration quickly disperses into the extra-

cellular space until a steady state is reach between the unbound and bound substrate

concentrations. We note that on very early time the bound substrate concentration has

a delay upon unbinding, with the bound substrate concentration only reaching a max-

imum unbinding rate when the unbound intracellular concentration has decreased and

reached steady state. When the unbound substrate concentration has reached its lowest

point, we see the greatest decrease of bound substrate concentration, due to there being

the minimal intracellular unbound substrate concentration available to form bound sub-
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strate concentration. Finally at long time both concentrations reach a steady state as the

unbound substrate concentration has fully dispersed and unbound and bound substrate

concentrations have reached an equilibrium point.

In Figure 5.4 (a), we introduce efflux to the permeable membrane. We note that the

simulation is similar to Figure 5.3 (b), however with the efflux rate only expelling unbound

substrate concentration from the intracellular to extracellular space, the intracellular and

extracellular concentrations reach different steady states at long time. Due to introducing

efflux the unbound intracellular substrate concentration reaches a steady state lower than

achieved via diffusion through the membrane alone (i.e. Figure 5.3 (b)). This has a

resulting effect on the bound substrate concentration as we reach a lower concentration

and equilibrium point between both concentrations at long time. Finally in (b), we

maintain our efflux values but exhibit a case of the unbinding rate dominating the binding

rate. Again, we have similar dynamics to the previous simulation, however instead of the

intracellular and extracellular concentrations reaching an equilibrium at the same steady

state concentration, we see the bound substrate concentration continuing to unbind and

almost fully depleting at long time.

We can compare the dynamics of these simulations to the previous single cell model

(with no flux outer boundary condition) simulations in Section 4.4.1 by comparing the

intracellular bound concentration of substrate in this model against the concentration of

intracellular substrate of the single cell model. By comparing the cases with active efflux

(Figure 5.4 against Figure 4.4 (c) and (d)), it is notable that the long term dynamics

are very similar, with the concentration of substrate appearing to reach a steady state

in both models. However, the main differences are noted upon the early and mid time

dynamics, with the bound ethidium bromide model having a delay in decrease of substrate

concentration during early dynamics. A maximum decrease of substrate concentration is

then reached which then slows upon mid time. This is promising as our parameter fitting

results with the previous model showed that the long term dynamics matched, however

the model was not able to replicate the early and mid time dynamics of the data.
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Figure 5.2: Simulations of the bound ethidium bromide model with a no flux far field
outer boundary condition and RM = 2µm. We exhibit bound and unbound distribution
profiles, with averaged intracellular concentrations below. We vary permeability, efflux,
unbinding and binding rates. In (a) we have P,X = 0 and α, β = 0.1. In (b) we have
P,X = 0 and α = 0.1, β = 0.01. 175
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Figure 5.3: Further simulations of the bound ethidium bromide model with a no flux far
field outer boundary condition and RM = 2µm. In simulation (a) we have P,X = 0 and
α = 0.01, β = 0.1. In simulation (b) we have P = 1, X = 0 and α, β = 0.1.
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Figure 5.4: Final set of simulations of the bound ethidium bromide model with a no
flux far field outer boundary condition. In simulation (a) we have P = 1, X = 1 and
α, β = 0.1. In simulation (b) we have P = 1, X = 1 and α = 0.1, β = 0.01.
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5.4 Parametrisation Methods

We follow similar methods to our previous parameter fitting exercises in Section 4.6. We

again employ the use of the function fminsearch in MATLAB with a latin hypercube

method of sampling to produce initial parameter guesses, with the only difference being

our objective function. Our objective function that we are attempting to minimise for

this model using our initial parameter guesses in fminsearch is as follows:

f =
1

tmax

∫ tmax

0

| y(t)− I(t)) | dt (5.16)

where

I(t) =
3

R3
M

∫ RM

0

r2 cB(r, t) dr.

Here y denotes the experimental data, I denotes the averaged intracellular concentration

of the bound substrate, RM denotes the distance from the cell centre to the cell membrane

and tmax is the maximum time for the simulations. Again, we note that our data values are

measured in relative fluorescence and our model in concentration. However, as we have

assumed a directly proportional relationship between the fluorescence and intracellular

bound concentration of substrate, we choose to model in terms of relative concentration

so we can directly fit the model to the data. We list all parameters used in this model,

noting the parameters being varied and their respective units in Table 5.1. For simplicity

in presentation, we will omit the units of each fitted parameter in our following optimal

parameter sets.

5.5 Results

As with our previous parameter fitting methods, we set the cell to have a radius of 2µm.

We have taken the step sizing ∆r = 0.25 and ∆t =
∆r2

4DMAX

. For most parameter fitting

exercises we have taken 1000 sets of initial parameter guesses, finding the optimal case,
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Parameter Description Value Units

RM Membrane Radius 2 µm
RB Outer Boundary Radius Not Set µm
P Permeability Mass Transfer Coefficient Not Set µmmin−1

XAEST Efflux Conversion Constant For Wild-type Case Not Set µmmin−1

XEST Efflux Conversion Constant For A Knockout Case Not Set µmmin−1

XAST Efflux Conversion Constant For E Knockout Case Not Set µmmin−1

XAST Efflux Conversion Constant For S Knockout Case Not Set µmmin−1

XAES Efflux Conversion Constant For T Knockout Case Not Set µmmin−1

XST Efflux Conversion Constant For AE Knockout Case Not Set µmmin−1

DB Diffusion Coefficient Of Bound Substrate 0 µm2min−1

DI Diffusion Coefficient Of Unbound Intracellular Substrate Not Set µm2min−1

DE Diffusion Coefficient Of Unbound Extracellular Substrate Not Set µm2min−1

α Unbinding Rate Of Bound Substrate Not Set min−1

β Binding Rate Of Unbound Substrate Not Set min−1

γ Initial Ratio Of Unbound To Bound Substrate Concentrations Not Set N/A

Table 5.1: All parameters used in our bound ethidium bromide model and their respective
units. If we vary a parameter we will list it as “Not Set” in the “Value” column, otherwise
if the parameter is not varied we list its fixed value.

fitting to the long time data only. We withhold the short time and medium time assays for

testing of the accuracy of the fit. For simplicity of our parameter fitting exercises, we set

our bound ethidium bromide diffusion rate to be zero (DB = 0) reducing the number of

parameters in the following fits. This is under the assumption that the bound molecules

will be large compared to unbound molecules such that the diffusion will be negligible

compared to the unbound state. Initially, we will consider efflux to be constant for all

parameter fitting exercises in this section. We do this in order for us to gain more insights

firstly into the binding dynamics by drawing comparisons against the single cell model in

Chapter 4.

AEST knockout

We follow parameter fitting exercises to the AEST knockout strain with the previous

models in Sections 4.7.1 and 4.7.2 by continuing to assume that there is no efflux in this

case. We plot the optimal parameter fit in Figure 5.5 which has the following parameters:

[RB, DI , DE, P, α, β, γ] = [4, 5.26, 6.47× 10−3, 6.63, 9.15× 10−2, 2.38× 10−2, 39.4], (5.17)
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given to three significant figures and resulting in an objective function of 1.23× 10−4. We

note that in Figure 5.5 (a) the fit is near perfect, with almost all of the model fitting within

the standard error of the data. The model differs in very early time, where the bound

substrate concentration increases and peaks before decreasing. We can see from (d) and

(e) that with a high initial unbound substrate concentration (caused by the fitted ratio

γ), that the binding process dominates over unbinding. Over time the unbound substrate

concentration diffuses out of the cell into the extracellular space, resulting in a lower

intracellular unbound substrate concentration. At this point the unbinding processes

dominate as the unbound substrate cannot bind when it is situated in the extracellular

space. Finally, as the expulsion of intracellular unbound substrate concentration slows,

this means that both intracellular concentrations appear to reach an equilibrium with its

unbinding and binding processes. This results in a near steady state of bound substrate

concentration at the end of the simulation. Testing the fit including the medium and short

time assays in (b) and (c), shows improved results to the previous model in Section 4.7.2.

Whilst the model may not fit within the standard error of the data for both medium and

short time, the model closely mimics the dynamics of the data.
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Figure 5.5: Parameter fitting results of the bound ethidium bromide model to the AEST
knockout data. In (a) we show the fit to the assays that reach long time, (b) the assays
that reach medium time and (c) all assays in the short time. Finally in (d) and (e) we
demonstrate the distribution profiles for both concentrations upon fitting to the long time
data.
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Wild-type strain

Similar to the previous model, we fix our optimal parameters from the AEST knockout

case, as we assume these should not vary in each strain. Since our individual knockout

cases did not give insight into predicting the wild-type case in Chapter 4, we skip param-

eter fitting to the individual knockout cases instead immediately providing a parameter

fit to the wild-type case. We will instead use our individual knockout cases in later pa-

rameter fitting exercises to help ascertain estimates of individual efflux parameters. We

plot our optimal fit for the wild-type strain in Figure 5.6, with the corresponding optimal

parameter

[XAEST ] = [37.5], (5.18)

given to three significant figures and resulting in an objective function value of 3.65×10−3.

We note that although the earlier dynamics are improved, the overall objective function of

this fit is larger than the best fit to this wild-type strain of the previous model in Section

4.7.2. As with the AEST knockout case, a high initial unbound substrate concentration

causes a delay on early time in the decreasing of bound substrate concentration. The

efflux parameter is comparatively much larger than the permeability parameter, however

even with this large efflux rate, our bound substrate concentration cannot unbind quickly

enough to follow the dynamics of the data. We can see from the distribution profile in

(e) the intracellular concentration is expelled extremely rapidly such that there is a large

localised concentration in the extracellular space close to the membrane of the cell. The

bound intracellular concentration decreases until the bound and unbound intracellular

concentrations have reached an equilibrium point. We note that although the model’s

bound substrate concentration steady state does not fit in the standard error of the data

at long term in (a), the model still achieves a steady state. It is clear from this parameter

fit that the optimal parameters fixed from the AEST knockout case do not provide realistic

dynamics to the wild-type case.
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Figure 5.6: Parameter fitting results of the bound ethidium bromide model to the wild-
type strain data having fixed our AEST parameters (5.17). In (a) we show the fit to the
assays that reach long time, (b) the assays that reach medium time and (c) all assays in
the short time. Finally in (d) and (e) we demonstrate the distribution profiles for both
concentrations upon fitting to the long time data
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AEST knockout and wild-type strain

Since the previous optimal parameters for the AEST knockout case did not provide a

base for a realistic fit to the wild-type case, we now produce fits for both cases simultane-

ously. For this parameter fitting exercise, we minimise the combined sum of the objective

functions calculated for each data set. We plot the optimal parameter fits for the AEST

knockout in Figure 5.7 and wild-type strain in Figure 5.8 using the following parameters:

[RB, DI , DE, P, α, β, γ,XAEST ] = [4, 7.44, 1.65, 2.00× 10−2, 1.32, 0.86, 1.75, 5.70× 10−2],

(5.19)

given to three significant figures and resulting in a combined objective function of 2.58×

10−3. We can immediately see that the fit to the wild-type case (Figure 5.8) has much

improved, with the majority of the model fitting within the standard error of the data in

(a). In terms of parameters, the binding and unbinding rates are much faster enabling the

bound substrate concentration to unbind and therefore be expelled from the intracellular

space at a faster rate. We also have a lower initial concentration of unbound substrate

concentration (γ), which in turn results in smaller permeability (P ) and efflux activity

parameters XAEST . We thus now do not see a spike in the external unbound substrate

concentration at early time near the membrane. Whilst the fit for the wild-type case has

improved, further shown by comparing to the test data of short time and medium time

assays (b) and (c), we have compromised the fit for the AEST knockout (Figure 5.7).

In (a)-(c) we now have a large peak upon early time where the intracellular unbound

substrate concentration is still at high concentrations such that binding is dominating.

We also have reduced similarities in behaviour in the long term as (although the model

still fits within the region of standard error for the data) the model looks as though it

will hit a steady state much earlier than the data suggests and at a higher concentration.

184



0 50 100 150
0.2

0.4

0.6

0.8

1

1.2(a)

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2(b)

0 10 20 30 40 50
0.4

0.6

0.8

1

(c)

(d) (e)

Figure 5.7: Parameter fitting results of the bound ethidium bromide model to both the
AEST knockout and wild-type data simultaneously, comparing against the AEST data. In
(a) we show the fit to the assays that reach long time, (b) the assays that reach medium
time and (c) all assays in the short time. Finally in (d) and (e) we demonstrate the
distribution profiles for both concentrations upon fitting to the long time data.
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Figure 5.8: Parameter fitting results of the model to both the AEST knockout and wild-
type data simultaneously, comparing against the wild-type data. In (a) we show the fit to
the assays that reach long time, (b) the assays that reach medium time and (c) all assays
in the short time. Finally in (d) and (e) we demonstrate the distribution profiles for both
concentrations upon fitting to the long time data
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5.6 Improving the wild-type fit

Whilst simultaneous parameter fits have improved our fit for modelling the dynamics of

the wild-type case, it is clear that the efflux knockout is compromised. Thus it is possible

that we are not encapsulating the effect of efflux with our constant efflux parameter. For

the next parameter fits, we look into improving the fits for the wild-type case upon the

model with no bound substrate diffusion and variable efflux.

5.6.1 Variable Efflux

AEST Optimal Parameters

Initially, as these parameters provided a realistic fit to the AEST case, we fix the following

parameters from the AEST knockout

[RB, DI , DE, P, α, β, γ] = [4, 5.26, 6.47× 10−3, 6.63, 9.15× 10−2, 2.38× 10−2, 39.4], (5.20)

given to three significant figures and resulting in an objective function of 1.23× 10−4. We

then fit our efflux parameters. Since we do not know the initial condition of efflux, we

include this in the parameter fit. Our following fitted parameters are:

[X0, φ, δ] = [149, 0.31, 0.085], (5.21)

given to three significant figures and resulting in an objective function of 7.58 × 10−4.

We plot the optimal fit in Figure 5.9. We note that here with variable efflux, the overall

objective function has significantly decreased. This is mainly due to the increased accuracy

of replicating the data’s steady state in (a). Whilst we note here the long term dynamics

are much improved, the short term dynamics are still not being encapsulated. The initial

condition of efflux is set to a very large value causing the model to undershoot the data.
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Figure 5.9: Parameter fitting results of the bound ethidium bromide model with variable
efflux to the wild-type strain data, fixing AEST parameters from (5.20). In (a) we show
the fit to the assays that reach long time, (c) the assays that reach medium time and (d)
all assays in the short time. In (b) we exhibit the resulting efflux profile, with (e) and (f)
demonstrating the distribution profiles for both concentrations upon fitting to the long
time data.
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Combined Optimal Parameters

Since the optimal AEST parameters did not produce a realistic fit for the wild-type case

upon early and mid time, we now produce fits for the wild-type case by considering each

of the top 100 sets of parameters for the fit to the AEST data. Then by combining their

objective functions, we choose a case that is optimal and realistic to both the AEST and

wild-type cases. The parameters we fix from the AEST data are

[RB, DI , DE, P, α, β, γ] = [4, 6.13× 10−2, 1.14× 10−2, 4.26× 10−2, 0.21, 3.44× 10−2, 6.15],

(5.22)

given to three significant figures and resulting in an objective function of 2.15 × 10−4.

This results in the following parameters when fitting to the wild-type case:

[X0, φ, δ] = [86.9, 9.17× 10−3, 0.34], (5.23)

given to three significant figures and resulting in an objective function of 4.55× 10−4. We

plot the fits for the AEST and wild-type case in Figures 5.10 and 5.11 respectively. We

note here, we have made barely any compromise to the fit to the AEST data but have

achieved a much more realistic fit for the wild-type case. For the wild-type (Figure 5.11),

the short time behaviour is much improved, with the model only just undershooting the

data. In regards to the efflux dynamics in (b) we note that the initial condition of efflux

is initially very large and greatly decreases over time.
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Figure 5.10: Parameter fitting results of the bound ethidium bromide model with variable
efflux using the top 100 fits to the AEST data and fitting to the wild-type data, shown
against the AEST knockout data. In (a) we show the fit to the assays that reach long time,
(b) the assays that reach medium time and (c) all assays in the short time. Finally in (d)
and (e) we demonstrate the distribution profiles for both concentrations upon fitting to
the long time data.
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Figure 5.11: Parameter fitting results of the bound ethidium bromide model with variable
efflux using the top 100 fits to the AEST data and fitting to the wild-type data, shown
against the wild-type data. In (a) we show the fit to the assays that reach long time, (c)
the assays that reach medium time and (d) all assays in the short time. In (b) we exhibit
the resulting efflux profile, with (e) and (f) demonstrating the distribution profiles for
both concentrations upon fitting to the long time data
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5.6.2 Substrate Dependent Efflux

Combined Optimal Parameters

It is clear from the previous fits that not only is efflux unlikely to be constant, the optimal

fits start with a high level of efflux that decreases over time. We note that the efflux rate

very closely matches the concentration of internal antibiotic, thus we produce a fit to a

model where the rate of efflux is dependent on the internal antibiotic concentration using

(5.10). As with the previous fit, we consider each of the 100 best sets of parameters for

the AEST case for the wild-type case, finding the minimal combined objective function.

The parameters we choose from the AEST data are

[RB, DI , DE, P, α, β, γ] = [4, 2.30, 1.01, 1.47× 10−2, 0.22, 8.89× 10−2, 2.59], (5.24)

given to three significant figures and resulting in an objective function of 2.44 × 10−4.

Fitting to the wild-type we achieve the parameters

[X0, φ, δ] = [4.00× 10−2, 7.99× 10−2, 0.60], (5.25)

given to three significant figures and resulting in an objective function of 3.76 × 10−4.

We plot the resulting parameter fits in Figures 5.12 and 5.13. We note again that there

is barely any compromise in regards to fitting to the AEST knockout data (Figure5.12).

However the fit to the wild-type case is much improved (Figure 5.13). We note that

the long term dynamics are well approximated in (a), whilst the short term dynamics

are further encapsulated with a small delay in the initial decrease of bound substrate

concentration. We can see that the time course of the efflux rate is very different in (b)

to previous fits. The initial condition of efflux is small, however there is a sharp increase

in efflux before decreasing to reach a steady state. We note that we have seen similar

behaviour to this when simulating the protein expression of these efflux pumps in our

GRN model in Chapter 2.
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Figure 5.12: Parameter fitting results of the bound ethidium bromide model with variable
efflux dependent on substrate using the top 100 fits to the AEST data and fitting to the
wild-type data, shown against the AEST data. In (a) we show the fit to the assays that
reach long time, (b) the assays that reach medium time and (c) all assays in the short time.
Finally in (d) and (e) we demonstrate the distribution profiles for both concentrations
upon fitting to the long time data.
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Figure 5.13: Parameter fitting results of the bound ethidium bromide model with variable
efflux dependent on substrate using the top 100 fits to the AEST data and fitting to the
wild-type data, shown against the wild-type data. In (a) we show the fit to the assays
that reach long time, (c) the assays that reach medium time and (d) all assays in the
short time. In (b) we exhibit the resulting efflux profile, with (e) and (f) demonstrating
the distribution profiles for both concentrations upon fitting to the long time data.
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Individual Efflux Knockouts

Since we have found parameters that encapsulate the behaviour of the two most extreme

cases (AEST knockout and wild-type) we fix the AEST parameters (5.24) and fit new

efflux parameters for each case of efflux knockouts. For notation, we list all fitted param-

eters as XG0, φG and δG together with their corresponding objective function θG, where

G represents the efflux pumps that are active in that case. The parameters we achieve

are

[XEST0, φEST , δEST , θEST ] = [8.99× 10−3, 4.89× 10−3, 0.26, 4.53× 10−4], (5.26)

[XAST0, φAST , δAST , θAST ] = [1.35× 10−2, 4.18× 10−2, 0.24, 6.15× 10−4], (5.27)

[XAET0, φAET , δAET , θAET ] = [7.01× 10−8, 4.30× 10−2, 0.32, 6.53× 10−4], (5.28)

[XAES0, φAES, δAES, θAES] = [7.87× 10−8, 3.42× 10−2, 0.25, 9.53× 10−4], (5.29)

[XST0, φST , δST , θST ] = [2.12× 10−4, 1.57× 10−4, 2.94× 10−2, 1.30× 10−3], (5.30)

given to three significant figures and resulting in a combined objective function of 3.98×

10−3. Notably we have very small values for XAET0 and XAES0 which could depend on

the resolution of the numerical method. These initial conditions however have been tested

these at value zero and have obtained similar results. We plot the resulting fits in Figures

5.14 and 5.15. We can immediately see that for each efflux knockout case, the dynamics

are closely matched with the majority of the model fitting within the standard error of the

data. It is also interesting to note that nearly all efflux profiles (barring the AE knockout)

start off at a low value, then rapidly increase before decreasing to a steady state value

(Figure 5.14 (d), (f), Figure 5.15 (b) and (d)). The efflux profile for the AE knockout in

Figure 5.15 (e) and (f) we note has a very different efflux profile to the other cases. This

could be due to the fact that in this case only the efflux pumps MdsAB and MdtAB are

active, these are both lesser efflux pumps compared to AcrAB and AcrEF and we should
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expect less efflux and hence a lesser or no initial peak of efflux caused by these pumps.
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Figure 5.14: Parameter fitting results of the bound ethidium bromide model to the data
of individual knockouts, having fixed AEST parameters (5.24). In (a), (b) and (c) we
show the model fitting to the A knockout, firstly to long time and then testing against
medium and short time data respectively. In (d) we show the resulting efflux variable. In
(e) we show the fit to the E knockout and resulting efflux parameter (f).
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Figure 5.15: Further parameter fitting results of the bound ethidium bromide model to
the data of individual knockouts, having fixed AEST parameters (5.24). In (a) we show
the S knockout with resulting efflux parameter in (b). In (c) we show the T knockout with
resulting efflux parameter in (d). Finally, in (e) we show the AE knockout with resulting
efflux parameter in (f).
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In Figure 5.16 (a) we show all of our fitted efflux profiles compiled onto one plot.

Similar to Section 4.7.1, we assume that efflux from each individual efflux pump is the

same from strain to strain (when said efflux pump is active) and is additive, we can find

the level of efflux from each efflux pump by solving a system of simultaneous equations.

In (b) we plot the individual efflux variables derived under this assumption.
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0.1(b)

Figure 5.16: Compiled efflux profiles from our parameter fitting results of the ethidium
bromide model with substrate dependent efflux. In (a) we show the profiles of our efflux
knockout strains, in (b) we show the profiles of our estimated individual efflux profiles.

We can see that this puts the value from the efflux pump AcrEF (XE) to be negative.

We know this is not possible and thus the assumption made above must not be correct.

However, we know from our GRN model that if AcrAB levels are high AcrEF levels are

low and there is a switch between these pumps. Thus we make another assumption that

there is no AcrEF (XE = 0) when AcrAB (XA) is active and also group MdsAB and

MdtAB as one pump (XS + XT = XST ), due to both pumps not being involved in our

GRN model. Thus our simultaneous equations to be solved are

XA +XST = XAST , (5.31)

XE +XST = XEST , (5.32)
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which results in the efflux values

XA = XAST −XST , (5.33)

XE = XEST −XST . (5.34)

We plot these values in Figure 5.17, showing the efflux profile for AcrEF only when

AcrAB is not active. All profiles are now positive which could possibly suggest that there

is interplay between the efflux pumps and that when a pump is knocked out, there is a

noticeable effect upon the other pumps in the cell. In addition the behaviour for the two

main efflux pumps is very similar, showing an early increase before rapidly decreasing to

reach a steady state. These factors could be due to many mechanisms, however our GRN-

model efflux proteins (AcrAB and AcrEF) do exhibit similar behaviour to these efflux

profiles. Therefore the interaction of genes that govern expression of the efflux pumps

could be prominent in determining the efflux profiles of the RND pumps. Thus the GRN

behaviour may provide a pivotal role in substrate efflux over long time and determining

the spatial distribution of substrate concentration within the Salmonella cells and their

environment.
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Figure 5.17: Efflux profiles from our parameter fitting results of the ethidium bromide
model with substrate dependent efflux. Here we show the profiles of our estimated efflux
profiles for AcrAB and AcrEF, with strain results for ST (MdsAB and MdtAB).
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5.7 Compartmental Model

In the previous subsections, we have produced a PDE model and applied parameter fitting

techniques on the spatial average of the intracellular concentration to fit to experimental

data. An alternative approach however, could have been taken utilising compartmental

models using ODEs. In this section, we compartmentalise our model (5.1)-(5.3) and

compare the differences in simulations between the ODE and PDE models. In order to

compartmentalise our PDE model we must first define our spatial average

c̄i =
1

V

∫∫∫
V

r2 sin(θ) ci(r, t) dr dθ dφ

=
3

(R3
max −R3

min)

∫ Rmax

Rmin

r2 ci(r, t) dr, (5.35)

which has the time derivative

∂c̄i
∂t

=
3

(R3
max −R3

min)

∫ Rmax

Rmin

r2 ∂ci
∂t

dr, (5.36)

where i = B, I, E. If we take the volume integral of our equation for bound ethidium

bromide (5.1) we have

1

V

∫∫∫
V

r2 sin(θ)
∂cB
∂t

dr dθ dφ =
1

V

∫∫∫
V

r2 sin(θ) (DB∇2cB − αcB + βcI) dr dθ dφ,

(5.37)

which by substituting (5.35) and (5.36), simplifies to

∂c̄B
∂t

=
1

V

∫∫∫
V

r2 sin(θ)DB∇2cB dr dθ dφ− αc̄B + βc̄I (5.38)

=
3

R3
M

[
DB r

2∂cB
∂r

]RM
0

− αc̄B + βc̄I , (5.39)

=
3

RM

DB
∂cB
∂r

∣∣∣∣
r=RM

− αc̄B + βc̄I , (5.40)
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Now by using the no flux boundary condition at r = RM for bound ethidium bromide

(5.6), we have

dc̄B
dt

= −αc̄B + βc̄I . (5.41)

Next, we assume that all rates of diffusion are much faster compared to other reaction rates

such that the concentrations within the compartments are constantly uniform (c̄i = ci),

we can write:

dcB
dt

= −αcB + βcI . (5.42)

Now following the same method for the unbound ethidium bromide (5.2), we achieve

∂c̄I
∂t

=
3

RM

DI
∂cB
∂r

∣∣∣∣
r=RM

− αc̄B + βc̄I , (5.43)

In this case, we substitute our membrane boundary condition for unbound intracellular

ethidium bromide at r = RM (5.5), to get

∂c̄I
∂t

=
3

RM

(−(P +X)cI(RM , t) + PcE(RM , t))− αc̄B + βc̄I , (5.44)

We again assume that the compartment concentrations are uniform (hence c̄i = ci and

ci(RM , t) = ci), thus we can write:

dcI
dt

=
3P

RM

cE −
3(P +X)

RM

cI + αcB − βcI , (5.45)

Finally we apply this method to the extracellular ethidium bromide (5.3), giving us

∂c̄E
∂t

=
3

(R3
B −R3

M)

(
DE R

2
B

∂cB
∂r

∣∣∣∣
r=RB

−DE R
2
M

∂cB
∂r

∣∣∣∣
r=RM

)
. (5.46)

In this case, we use our boundary conditions for the extracellular ethidium bromide. We

have a no flux boundary at r = RB (5.7), and the membrane condition at r = RM (5.5).
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Substituting and assuming that the compartment concentrations are uniform gives us

dcE
dt

=
3R2

M(P +X)

(R3
B −R3

M)
cI −

3R2
MP

(R3
B −R3

M)
cE. (5.47)

We have now derived our compartmental model and the corresponding ODE equations

are as follows

dcB
dt

= −αcB + βcI , (5.48)

dcI
dt

=
3P

RM

cE −
3(P +X)

RM

cI + αcB − βcI , (5.49)

dcE
dt

=
3R2

M(P +X)

(R3
B −R3

M)
cI −

3R2
MP

(R3
B −R3

M)
cE. (5.50)

We note that this model retains the majority of the parameters from the PDE model,

however there is no dependence on the diffusion coefficients DB, DI and DE. In Figure

5.18, we exhibit the simulations comparing the ODE and PDE models, using the optimal

parameters for the AEST and wild-type cases in Section 5.6.2. We can see from the

simulations that for the chosen parameters the ODE model encapsulates the behaviour

of the PDE model well, with little difference in their simulations. In Figure 5.19 however,

we exhibit the simulations with slower diffusion rates (by a factor of 100). We can see

that there are large differences between the model simulations, with the ODE model not

being able to encapsulate the changes in behaviour to the PDE model. In Figure 5.20, we

exhibit a parameter variation plot comparing the root mean square error (RMSE) of all

concentrations between ODE and PDE models, using the optimal wild-type parameters.

We can see that when either diffusion rate is small enough, the assumption of a uniform

concentration within the compartments fails and thus the behaviour in the ODE model

does not match up to the behaviour in the PDE model. Therefore, whilst for the optimal

parameters chosen the ODE model may be sufficient, if we were to model a different

substrate that diffuses differently we may not encapsulate the substrate’s full behaviour.

In addition if we were to introduce a synthetic molecule to try to combat substrate efflux

202



the ODE model may not be sufficient i.e. a molecule that binds to the substrate affecting

its diffusion dynamics. For these reasons, we continue using the PDE model for the

remaining sections.
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Figure 5.18: Simulations comparing the compartmental ODE and spatial PDE model. In
(a) we exhibit simulations using the AEST optimal parameters, whilst in (b) we use the
optimal wild-type parameters.
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Figure 5.19: Simulations comparing the compartmental ODE and spatial PDE model
with slower substrate diffusion (by a factor of 100). In (a) we exhibit simulations using
the AEST optimal parameters, whilst in (b) we use the optimal wild-type parameters.
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Figure 5.20: Parameter variation plots exhibiting the RMSE between the ODE and PDE
models for all concentrations, varying the log of diffusion parameters DI and DE to greater
show the differences in RMSE for small values of diffusion. In (a) we exhibit a 3D mesh
and (b) a contour plot.

5.8 Discussion

We have adapted our previous spatial model to greater encapsulate the dynamics of sub-

strate expulsion of a single cell by including the binding dynamics of ethidium bromide.

By using finite difference methods, we have discretised our domain and produced numeri-

cal solutions for both concentrations of bound and unbound ethidium bromide, including

the interplay between both concentrations. We have produced multiple simulations, vary-

ing parameters to best present insights into the model. Whilst the long term dynamics

are similar to the original model, it is shown that the short and medium term dynamics

have changed. By introducing two states of ethidium bromide we have caused the fluo-

rescing intracellular substrate concentration to decrease more slowly at early time, with

the depreciation depending on the binding and unbinding rates as well as the membrane

permeability and efflux parameters.

We have then implemented parameter fitting techniques using our more in depth

bound ethidium bromide model. Upon initial parameter fitting exercises, it was shown

that although the model fitted well to the AEST knockout data, it struggled to model
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the wild-type dynamics when including an efflux parameter. We have conducted joint

parameter fitting exercises, minimising a combined objective function for both data sets.

Whilst the fit for the wild-type case was much improved, the fit for the AEST knockout

was compromised, with a greater peak at initial concentration and the model appearing

to reach a steady state at a higher concentration than the data suggests.

It is clear that the efflux behaviour in the model was not fully accurate, with the

constant efflux parameter unable to fully replicate the dynamics of the drop in substrate

concentration seen in the data. By including efflux as a variable instead, we have been

able to improve our model fits for both cases of knockout and wild-type, with the model

demonstrating the difference in dynamics between both cases. By again fitting to both

cases simultaneously with a joint objective function, we have further been able to improve

our fits, with minimal compromise to the fit of the AEST case. Furthermore, we have

produced fits where efflux is dependent on the internal substrate. This has provided us

with our optimal fits and also interesting profiles for our efflux variables. We noted that

the efflux profiles are similar to simulations of the expression of genes in our GRN model,

leading us to believe that gene expression could be the cause of this efflux profile on this

time period. This suggests that combining our GRN model with our spatial model is an

appropriate next step and will enable us to make predictions about adaptations to the

GRN and how they could affect the antibiotic concentration within the cell. In addition,

we have compartmentalised our model, simplifying our existing PDE model into an ODE

model. Whilst the ODE model provided good simulations with our optimal parameters,

we have shown the limitations of the ODE model for modelling different substrates or

manipulations. Therefore in the following sections we opt to use our PDE model rather

than the compartmental ODE model.

205



CHAPTER 6

MULTISCALE MODEL

6.1 Introduction

In the previous chapters, we have constructed two independent models. The first in Chap-

ter 2, is a model of the GRN governing the expression of efflux proteins that constitute

the efflux pumps AcrAB and AcrEF for a Salmonella cell. The second model in Chapter

5, is a spatial model of substrate efflux from a Salmonella culture, exhibiting the efflux

caused by four RND efflux pumps AcrAB, AcrEF, MdsAB and MdtAB. Upon parameter

fitting of the spatial model, we were able to gain insights into the efflux dynamics over

time when a culture was subject to a stressor, namely Ethidium Bromide. From multiple

parameter fitting exercises, it was shown that these dynamics in the spatial model were

similar to the expression of efflux pump proteins in the GRN model. It was also shown

that substrate dependent efflux best captured the dynamics of the data, agreeing with

our knowledge that bacteria can react to their environment. One way that we already

know bacteria can do this is by varying expression of genes that control aspects of the

bacterial behaviour. In this chapter, we will combine the GRN model with the spatial

model, in order to create a multiscale model of the Salmonella population and its envi-

ronment. This model will enable us to draw hypotheses on manipulating aspects of the

GRN and the resulting effect upon substrate concentration in a culture. By creating this

multiscale model, we have a more realistic and complete model that should capture more

of the important aspects of the population’s behaviour than the previous models.
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6.2 GRN Model Adaptation

Following our asymptotic analysis in Chapter 3, we have identified the genes that dominate

processes within the network. Thus for simplicity, in this section we use this analysis

to create a simplified version of the GRN in Chapter 2. One change is to remove the

secondary TAs soxS, marA and rob. Our asymptotic analysis concluded that once ramA

is expressed, these secondary TAs did not produce a noticeable effect at long time on the

expression of the efflux pump genes. The second change to the network is to remove the

post transcriptional activator CsrA. Since this protein was not linked to other mechanisms

within the network, mathematically we can easily incorporate the effect of this protein

by altering the translation rate of acrAB mRNA. Thus for simplicity, we choose to omit

this protein from the network.

Since our initial construction of the GRN, the knowledge of the mechanisms within

the network has been broadened [27]. In order for our model to fully encapsulate the

new mechanisms within the network, we further adapt our GRN model. We exhibit our

updated network in Figure 6.1, with the following changes exhibited by dashed lines:

• RamA activates acrEF as well as acrAB [5].

• The link between the expression of acrAB and acrEF, is governed by heat-stable

nucleoid-structuring protein (H-NS) [62].

In regards to the first change, previously the expression of acrEF was only governed

by EnvR. Thus we should see new interesting dynamics to the network with acrEF now

also being dependent on the activator protein RamA to be transcribed. In regards to the

second change, we have replaced our theoretical link between both efflux pumps in our

previous GRN model with the molecule H-NS. We exhibit the interactions that involve

H-NS in Figure 6.2. When H-NS is active, it inhibits expression of both envR and acrEF

[12]. H-NS is believed to be involved in the experimentally observed switching dynamics

of the two efflux pumps, such that acrEF expression is activated when acrAB expression

is low. We include these switching dynamics by assuming that a high concentration of
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AcrAB will activate the molecule H-NS, hence inhibiting the expression of both acrEF

and envR. To include this into our model we assume that the variable H-NS will vary

between 1 (when active) and 0 (when inactive). We represent the variable for H-NS

through the following equation

dH

dt
= khB(1−H)−mhH, (6.1)

where kh is the activation rate of H-NS linked to AcrAB concentration and mh is the

deactivation rate of H-NS. For simplicity, we take (6.1) to be in quasi steady state, with

KH =
mh

kh
:

H =
B

B +KH

. (6.2)

AcrAB

envR acrEF

H-NS

Figure 6.2: A schematic of a section of the GRN model, demonstrating the interactions
that involve H-NS. This includes the proteins AcrAB and H-NS, and the genes envR and
acrEF.

From our parameter fitting exercises, we achieved the best results when efflux was

dependent upon the substrate concentration. To combine the two models, rather than

choosing the substrate concentration to have a direct effect upon the expression of both

efflux pumps, we choose to target the areas in the network that are most likely to be

affected by a stressor, backed up by consultations with the Blair group and Piddock

group at the University of Birmingham. We plot our updated GRN model that has

substrate concentration as a signal in Figure 6.1, with the following changes exhibited by

209



dot dashed lines:

• The internal substrate concentration inhibits expression of ramR [39].

• The internal substrate concentration inhibits the concentration of Lon Protease

within the cell [39].

In regards to the first change, ramR is the local repressor of ramA, the primary activator

of both efflux pumps. By targeting ramR, we should see an indirect effect upon ramA

expression. For the second change, by targeting Lon Protease concentration, we indirectly

affect RamA concentration by altering the protein’s degradation. In regards to the efflux

of the substrate, we assume that efflux will correspond with both translation of AcrAB

and AcrEF. We incorporate this by assuming that the efflux rate is proportional to the

combined concentrations of these efflux pump proteins. In addition, since both MdsAB

and MdtAB (which were both involved in the experiments) and their corresponding genes

are not involved in this GRN, we include their corresponding efflux rates from their

parameter fitted equations in the previous chapter. The equations for the combined GRN

model are as follows:

dRm

dt
= k1

KI

KI + I
− δmRm, (6.3)

dAm
dt

= k2
KRA+KRKA

(A+KA1)(R +KR)
− δmAm, (6.4)

dCm
dt

= k3
KA2

A+KA2

− δmCm, (6.5)

dBm

dt
= k4

KE2KCA

(KCE +KE2KC +KE2C)(KA1 + A)
− δmBm, (6.6)

dEm
dt

= k5
KH

KH +B
− δmEm, (6.7)

dFm
dt

= k6
KHKE1A

(KH +B)(KE1 + E)(KA3 + A)
− δmFm, (6.8)

dR

dt
= µ(m1Rm − δpR), (6.9)

dA

dt
= m2Am − δpA− d1

KI

KI + I
A, (6.10)

dC

dt
= m3Cm − δpC, (6.11)
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dB

dt
= m4Bm − δpB, (6.12)

dE

dt
= m5Em − δpE, (6.13)

dF

dt
= m6Fm − δpF, (6.14)

dXST

dt
= φST I − δSTXST , (6.15)

∂cB
∂t

= DB∇2cB − αcB + βcI , (6.16)

∂cI
∂t

= DI∇2cI + αcB − βcI , (6.17)

∂cE
∂t

= DE∇2cE, (6.18)

I(t) =
3

R3
M

∫ RM

0

r2 cB(r, t) dr. (6.19)

Here I denotes the averaged internal concentration of bound substrate. As the mRNAs

and proteins in the GRN only exist in the intracellular space, for simplicity of reducing

the number of unknown parameters we have opted to not include spatial effects on these

variables. In regards to our GRN equations, these have been modified compared to our

model equations in Chapter 2. Firstly by using insights into the asymptotic analysis we

have adapted equations (6.6) and (6.12). From the former we have removed activation

from SoxS (also removing soxS mRNA and SoxS entirely from the model) whilst the

latter we have removed CsrA from the translation terms of acrAB. By using updates from

further knowledge into the GRN, we have updated equations (6.7) and (6.8), including

the assumption that H-NS must not be active for mRNA transcription in both equations,

whilst including dependence on RamA concentration on the latter. In addition, we have

modified our basal ramA transcription rate in (6.4). Rather than including a standard

basal transcription rate regardless of whether a protein is bound to the promoter region

of ramA, we have chosen to only include transcription in the times where RamA or no

proteins are bound to the promoter region. Finally, we have included the GRN influence

from internal bound substrate by regulating ramR mRNA transcription in (6.3) and

regulating Lon Protease degradation in (6.10). Whilst MdsAB and MdtAB do not feature

within the GRN we include their rate of efflux in (6.15), this is in order for us to replicate
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the full dynamics of the spatial model shown from the parameter fitting results in Chapter

5. The boundary conditions used in the above model are

DB
∂cB
∂r

∣∣∣∣
r=0

= 0, DI
∂cI
∂r

∣∣∣∣
r=0

= 0, (6.20)

DI
∂cI
∂r

∣∣∣∣
r=RM

= DE
∂cE
∂r

∣∣∣∣
r=RM

=

(
P +

B + F

XC

+XST

)
cI(RM , t)− PcE(RM , t), (6.21)

DB
∂cB
∂r

∣∣∣∣
r=RM

= 0, DE
∂cE
∂r

∣∣∣∣
r=RB

= 0. (6.22)

The first set of boundary conditions (6.20) represent axisymmetry in both angular di-

mensions for bound and unbound substrate. The boundary condition (6.21) represents

our membrane boundary condition for unbound substrate. In this boundary condition

we set our efflux rate X =
B + F

XC

+ XST . We have included the efflux rate of MdsAB

and MdtAB directly as XST in this equation, however for AcrAB (B) and AcrEF (F)

we link their concentrations to their efflux rates by assuming a directly proportional re-

lationship, dividing both concentrations by an efflux rate constant XC . The final set of

boundary conditions (6.22) represents no flux boundary conditions, for bound substrate

at the membrane and unbound substrate at the outer boundary. The initial conditions

for each concentration are as follows

cB(r, 0) =


CB0, 0 ≤ r ≤ RM ,

0, RM < r ≤ RB,

cI(r, 0) =


γ CB0, 0 ≤ r ≤ RM ,

0, RM < r ≤ RB,

(6.23)

where CB0 is the initial concentration of bound substrate. These initial conditions denote

the concentrations for bound and unbound substrate. We express the initial condition

for the unbound substrate as a ratio of the bound substrate using γ. In regards to the

initial conditions for the GRN and efflux we have down-regulated initial conditions for the

mRNAs and proteins of all repressor genes (ramR, acrR and envR). For the mRNAs and

212



proteins of the remaining genes (ramA, acrAB and acrEF ), we will estimate their initial

conditions in order to replicate the experiments. In the experiments, the cell has had a

short amount of time to react to the substrate before the first measurement is taken and

thus we should expect some activation of expression of the efflux genes and their activator

genes. This behaviour is also shown in the parameter fitted efflux dynamics, as the initial

conditions for the efflux rates of individual pumps are not fully down regulated. Finally,

the initial condition for the efflux rate of MdsAB and MdtAB follows from our fitted

initial condition in the previous chapter. The notation for the initial conditions are then

as follows:

Rm(0) = Cm(0) = Em(0) = Gm0, R(0) = C(0) = E(0) = G0, XST (0) = XST0, (6.24)

Am(0) = Am0, Bm(0) = Bm0, Fm(0) = Fm0, (6.25)

A(0) = A0, B(0) = B0, F (0) = F0. (6.26)

We will provide the exact values in the following section. We list all of the variables and

parameters used in our model in Tables 6.1 and 6.2. In all future simulations, we will be

using the finite difference method in Chapter 5 to approximate our model, using spatial

step ∆r = 0.25 and time step ∆t =
∆r2

4DMAX

, where DMAX = max(DI , DE, DB).

6.3 Numerical Simulations

In this section, we will exhibit numerical simulations of the multiscale model, attempting

to replicate similar results from fitting to the same data used in Chapter 5. As we have

assumed a directly proportional relationship between the fluorescence and intracellular

bound concentration of substrate, we again model our substrate in terms of relative con-

centration so we can compare the model directly against the data. Since we have data

for both wild-type and EST knockout strains, we compare the model against the data of

these strains using parameter values from Table 6.2. We have aimed to keep parameters

as similar as possible to those in the previous GRN model in Chapter 2 and have main-
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Variables Description Units

Rm Concentration of ramR mRNA nM
R Concentration of RamR nM
Am Concentration of ramA mRNA nM
A Concentration of RamA nM
Cm Concentration of acrR mRNA nM
C Concentration of AcrR nM
Bm Concentration of acrAB mRNA nM
B Concentration of AcrAB nM
Em Concentration of envR mRNA nM
E Concentration of EnvR nM
Fm Concentration of acrEF mRNA nM
F Concentration of AcrEF nM
X Combined efflux rate of all pumps µmmin−1

XST Efflux rate of MdsAB and MdtAB µmmin−1

cB Relative concentration of bound substrate N/A
cI Relative concentration of unbound substrate N/A
N Averaged intracellular concentration of bound substrate N/A

Table 6.1: Variables used in our multiscale model along with their respective units.

Parameter Description Estimate Units

k1 Transcription Rate of ramR mRNA 10 nMmin−1

m1 Translation Rate of RamR 1 min−1

k2 Transcription Rate of ramA mRNA 10 nMmin−1

m2 Translation Rate of RamA 1 min−1

k3 Transcription Rate of acrR mRNA 10 nMmin−1

m3 Translation Rate of AcrR 1 min−1

k4 Transcription Rate of acrAB mRNA 10 nMmin−1

m4 Translation Rate of AcrAB 1 min−1

k5 Transcription Rate of envR mRNA 10 nMmin−1

m5 Translation Rate of EnvR 1 min−1

k6 Transcription Rate of acrEF mRNA 10 nMmin−1

m6 Translation Rate of AcrEF 1 min−1

δm Degradation Rate of mRNA 1 min−1

δp Degradation Rate of proteins 0.05 min−1

d1L Degradation caused by Lon Protease 0.37 min−1

KR Dissociation Constant of RamR 6.58 nM
KA1

Dissociation Constant of RamA with ramA and acrAB 2 nM
KA2 Dissociation Constant of RamA with acrR 2 nM
KA3 Dissociation Constant of RamA with acrEF 60 nM
KC Dissociation Constant of AcrR 20.2 nM
KE1

Dissociation Constant of EnvR with acrEF 20.2 nM
KE2

Dissociation Constant of EnvR with acrAB 20.2 nM
KI Saturation Constant of Substrate 0.3 nM
KH Dissociation Constant of H-NS 1 nM
µ Mutation Coefficient 0 or 1 N/A
P Permeability Mass Transfer Coefficient 0.01 µmmin−1

XC Efflux Conversion Constant 500 nMminµm−1

DB Diffusion Coefficient Of Bound Substrate 0 µm2min−1

DI Diffusion Coefficient Of Unbound Intracellular Substrate 2.30 or 1 µm2min−1

DE Diffusion Coefficient Of Unbound Extracellular Substrate 1.01 µm2min−1

RM Membrane Radius 2 µm
RB Outer Boundary Radius 4 µm
α Unbinding Rate Of Bound Substrate 0.22 min−1

β Binding Rate Of Unbound Substrate 0.09 min−1

φST Increase In MdsAB And MdtAB Efflux Rate 1.57× 10−4 µmmin−1

δST Decrease In MdsAB And MdtAB Efflux Rate 2.94× 10−2 µmmin−1

Table 6.2: Parameters used in our multiscale model with their estimated values and units.
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tained the fitted spatial parameters from Chapter 5. We opt not to compare against the

data of the remaining strains: AST (AcrAB, MdsAB and MdtAB), AET (AcrAB, AcrEF

and MdtAB), AES (AcrAB, AcrEF and MdsAB), ST (MdsAB and MdtAB). We do not

use this data as the first three strains (which have AcrAB active) do not hugely differ in

dynamics to the wild-type strain. Furthermore for the last strain, the genes that govern

MdsAB and MdtAB do not feature within our GRN. For comparing against the data for

the EST strain, we have knocked out acrAB in the GRN by setting k4,m4 = 0. Although

we do not have the data for any RamR mutant strain, we will run simulations to predict

the behaviour of the strain by mutating RamR in the GRN, setting µ = 0. Recall that

this mutation is known for causing the strain to confer MDR. In total we simulate four

strains: wild-type, EST knockout, RamR mutant and EST RamR mutant, detailing them

in Table 6.3.

Strain Name Active Efflux Pumps Mutations

Wild-type AcrAB, AcrEF, MdsAB, MdtAB N/A
EST AcrEF, MdsAB, MdtAB N/A

RamR Mutant AcrAB, AcrEF, MdsAB, MdtAB RamR
EST RamR mutant AcrEF, MdsAB, MdtAB RamR

Table 6.3: A summary of the strains involved in this section. We list each strain’s active
efflux pumps and any mutations to their GRNs.
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For the following simulations, we set down-regulated initial conditions for the repressor

mRNAs and proteins (Gm0 = G0 = 0.01nM) and set the initial condition for the efflux

rate of MdsAB and MdtAB from the parameter fitting results (XST0 = 2.12× 10−4nM).

For the mRNAs and proteins of the remaining genes ramA, acrAB and acrEF, their initial

conditions will vary depending on the strain we are modelling. To choose these initial

conditions, we first run a simulation for each strain with down-regulated initial conditions

for all mRNAs and proteins (Am0 = A0 = Bm0 = B0 = Fm0 = F0 = 0.01nM). For the

wild-type and RamR mutant strains, we expect acrEF expression to be down-regulated

as acrAB is active, so we maintain the initial conditions Fm0 = F0 = 0.01nM. For the

EST and EST RamR mutant strains, the gene acrAB is knocked out entirely so we set

Bm0 = B0 = 0. For the remaining variables, in the wild-type and EST strains, we choose

the initial condition of the variables to be half of the maximum value over the full time

course in the down-regulated simulation i.e. the system has had a short period of time

to react from a down-regulated state. For the RamR mutant and EST RamR mutant

strains, we choose the initial condition of the variables to be the steady state values in

the down-regulated simulation i.e. with RamR mutated there is always high expression of

ramA and acrAB or acrEF. In addition, as RamR is mutated in the latter two strains, we

set the initial condition of RamR protein R(0) = 0nM. We display these initial conditions

in Table 6.4. We produce simulations using these initial conditions in Figures 6.3-6.6

for the wild-type strain, EST (AcrAB knockout) strain, RamR mutant strain and EST

RamR mutant strain respectively.

Strain Name Am0 (nM) A0 (nM) Bm0 (nM) B0 (nM) Fm0 (nM) F0 (nM) G0 (nM) R(0) (nM)

Wild-type 3.6256 12.1458 3.1665 36.9524 0.01 0.01 0.01 0.01

EST 3.5985 12.2401 0 0 0.4798 3.5434 0.01 0.01

RamR Mutant 10 25.3726 5.0964 102.0014 0.01 0.01 0.01 0

EST RamR mutant 10 33.5428 0 0 0.3297 6.7758 0.01 0

Table 6.4: Initial condition values for strains involved in this section.
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For the wild-type strain mRNAs (Figure 6.3 (a)) and proteins (Figure 6.3(b)), at early

time we see low concentrations of ramR mRNA and RamR as the gene is inactive in the

presence of a high internal substrate concentration. This in turn allows fast expression

of ramA, resulting in large concentrations of RamA protein, activating the expression of

the efflux pump gene acrAB. Since the local efflux repressor acrR is inhibited by a large

concentration of RamA, we see higher expression of acrAB. This leads to an increase in

efflux rate (Figure 6.3(d)) and resulting expulsion of substrate from within the cell (Figure

6.3(c)). Once the intracellular bound substrate concentration is sufficiently low, we see

increased activation of ramR expression resulting in inhibition of the expression of the

network’s main activator ramA. The local efflux repressor acrR is able to express at a

faster rate due to a lower concentration of RamA. The lower concentration of RamA and

larger AcrR concentration result in less acrAB expression both indirectly and directly

respectively. This results in a decrease in efflux rate and results in an equilibrium be-

tween the transfer of intracellular and extracellular substrate. We note that the model

comparison to the data (Figure 6.3(c)) is not perfect, with mid time dynamics appear-

ing outside the standard error of the data. However, we have opted not to largely differ

our GRN parameter choices from Chapter 2 by manually editing parameters as little as

possible. Alternatively, we could run new parameter fitting exercises including the GRN

parameters, however due to the high number of parameters within the network compared

to the available data, there will likely be many non identifiable parameters.

We show the simulation of the EST strain in Figure 6.4. For (a) and (b), we note

that for all time there is no expression of acrAB due to the gene being knocked out in

this strain. Without the presence of AcrAB in this strain, there is no activation of H-NS

meaning that both envR and acrEF can be expressed freely. Thus at early time, similar

to the wild-type strain, with low concentrations of ramR mRNA and RamR due to a high

internal substrate concentration, we see activation of ramA expression, with RamA this

time activating expression of acrEF. Due to the difference in the dissociation constants of

RamA with acrEF and acrAB, we see less acrEF expression compared to the expression
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of acrAB in the wild-type strain (Figure 6.3(a) and (b)). The expression of acrEF is also

reduced by the constitutive expression of envR and hence we see a lower efflux rate (Figure

6.4 (d)) than in the wild-type strain (Figure 6.3 (d)). Thus substrate is expelled from the

intracellular space at a slower rate (Figure 6.4 (c)). There is also less expression of ramR

due to a higher intracellular substrate concentration, which reaches an equilibrium steady

state with the extracellular substrate at a higher concentration than that of the wild-type

strain. We note that we have achieved a good model fit to the data in this case (Figure

6.4 (c)), with almost all of the model fitting within the standard error of the data.

We show the simulation of the RamR mutant strain in Figure 6.5, exhibited against

the simulation of the wild-type strain in 6.5 (c) as a comparison (recall that there is

no experimental data for this strain). Following from Chapter 2, we have assumed that

RamR protein is mutated and thus there is no functional RamR in the system (Figure 6.5

(a) and (b)). This means that there is no inhibition of ramA expression, resulting in large

concentrations of RamA activating acrAB expression. This results in a large efflux rate

(Figure 6.5 (d)), comparatively larger than the wild-type strain (Figure 6.3 (d)). As the

intracellular bound concentration of substrate decreases (Figure 6.5 (c)), we see increased

degradation of RamA caused by an increased concentration of Lon Protease. At long

time we see both concentrations of RamA and AcrAB reach steady state, with almost all

substrate expelled from the intracellular space. Compared to the wild-type strain (Figure

6.5 (c)), we can see that there is less feedback from the internal substrate concentration

within the GRN on mid and long time. Mainly, the intracellular bound substrate reaches

a steady state that is below the concentration shown by the wild-type, clearly exhibiting

the strains ability to display MDR.

We show the simulation of the RamR mutant EST strain in Figure 6.6, exhibited

against the EST strain simulation for comparison in Figure 6.6 (c). Similar to the previous

strain there is no restriction upon expression of ramA due to no presence of RamR (Figure

6.6 (a) and (b)). However in this strain as acrAB is knocked out, we see RamA activating

acrEF expression. Whilst early time does not hugely differ from the normal EST strain,
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we see that with a higher RamA concentration, the concentration of AcrEF achieves a

higher steady state. This results in an efflux rate (Figure 6.6 (d)) similar to the wild-type

case (Figure 6.3 (d)) and a steady state of intracellular bound substrate concentration

(Figure 6.6 (c)) lower than the normal EST strain (Figure 6.4 (c)) i.e. this strain is

predicted to have a higher efflux capability.
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Figure 6.3: Our multiscale model of the wild-type strain, run for the time course of the
wild-type data. In (a) we show the concentration of mRNAs over time, (b) we show
the concentration of proteins. In (c) we exhibit the substrate concentration over time
against the experimental data and (d) the corresponding efflux rate X, with efflux rate
contributed by AcrAB (AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST).
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Figure 6.4: Our multiscale model of the EST strain (acrAB knockout,
k4,m4, Bm(0), B(0) = 0), run for the time course of the EST data. In (a) we show
the concentration of mRNAs over time, (b) we show the concentration of proteins. In
(c) we exhibit the substrate concentration over time against the experimental data and
(d) the corresponding efflux rate X, with efflux rate contributed by AcrAB (AB), AcrEF
(EF) and the sum of MdsAB and MdtAB (ST).
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Figure 6.5: Our multiscale model showing a RamR mutant strain (µ,R(0) = 0), run
for the time course of the wild-type data. In (a) we show the concentration of mRNAs
over time, (b) we show the concentration of proteins. In (c) we exhibit the substrate
concentration over time compared against the simulation from the wild-type strain and
(d) the corresponding efflux rate X, with efflux rate contributed by AcrAB (AB), AcrEF
(EF) and the sum of MdsAB and MdtAB (ST).
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Figure 6.6: Our multiscale model showing the RamR mutant EST strain (k4,m4, Bm(0),
B(0), µ, R(0) = 0), run for the time course of the EST data. In (a) we show the con-
centration of mRNAs over time, (b) we show the concentration of proteins. In (c) we
exhibit the substrate concentration over time compared against the simulation from the
EST case and (d) the corresponding efflux rate X, with efflux rate contributed by AcrAB
(AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST).
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Finally, in Figure 6.7, we compare the substrate expulsion of all strains. In (a) we plot

all time dependent simulations of the strains on one plot. In (b) we use the trapezium

rule (function “trapz” in MATLAB) to approximate the area under the curve (AUC) of

each strain simulated in (a). The AUC shows us the overall relative substrate exposure

over the simulated time course [90]. Immediately we can clearly see the benefits of the

RamR mutation for both strains as there is a clear reduction in substrate over all time for

strains with this mutation over their counterparts (Figure 6.7(b)). It is also interesting

to note that at steady state the EST RamR mutant achieves a similar value to that of

the wild-type strain (Figure 6.7(a)). This shows that even with acrAB knocked out, the

strain (which has mutated RamR) is able to compensate by using the secondary pump

system acrEF to achieve similar efflux in the long term to that of the wild-type. Finally

we note that, initially, the wild-type strain and RamR mutant display similar levels of

efflux (albeit the RamR mutant exhibiting slightly faster expulsion). However in the long

term, the RamR mutant maintains high levels of efflux, almost eliminating all substrate

from the intracellular space. This clearly shows the advantages of the RamR mutation,

the strain is able to prevent large concentrations of intracellular substrate and this is a

huge contributor to its ability to exhibit MDR.
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Figure 6.7: Our multi scale model showing the intracellular bound substrate concentration
over time for all strains. In (a) we show time dependent plots of all strains, in (b) we
approximate the AUC of the strains in (a) using the trapezium rule, to show the overall
relative substrate exposure. The wild-type strain is simulated using all parameters values
in Table 6.2, the EST case has k4,m4 = 0, RamR mutant µ = 0, and EST RamR mutant
k4,m4, µ = 0.
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6.4 Parameter Sensitivity

Similar to analysis in previous chapters, we conduct a sensitivity analysis of the parameters

in our model. Here our equation for the relative sensitivity is

S =
δĪ

δP
, (6.27)

where δĪ represents the change of bound intracellular substrate concentration steady state

for the simulated strain, and δP represents the change of the parameter being varied. If

we define P ∗ to be the default parameter value for the current parameter being varied,

we then vary the parameter in the space [0, 10P ∗]. By using a Latin hypercube method

of sampling, we choose 10000 points in the parameter space and apply these to each

individual parameter, finding the relative sensitivity for each point. We choose to omit

the parameters primarily involved in the spatial distribution of substrate, only varying

parameters involved in the GRN, since this is the mechanism we wish to target. We also

choose to omit the degradation parameters, since these are mostly universal to all of the

genes. Hence varying these parameters would involve targeting all genes simultaneously

which is not only an unrealistic target but will exhibit similar behaviour to preventing

the whole network from being expressed.

6.4.1 Wild-type strain

We exhibit the parameter sensitivity results using the steady state for the wild-type strain

with box plots in Figure 6.8. In (a) we denote the dissociation and saturation constants

involved in the model, we can immediately see that the dissociation constant related to

RamR (KR) is the most sensitive. By varying this parameter we should see direct effects

on the activation of ramA transcription. It is interesting to note that the sensitivity of

this parameter is larger than that of any of the dissociations constants related to RamA

(KAi). Thus in this strain, targeting ramA expression via a repressor to reduce the genes

expression may be a more effective method than targeting the RamA binding process to

the promoter regions of various other genes in the network. However, we must note that
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the sensitivity of all RamA dissociation constants are still significant, with the dissociation

with ramA and acrAB (KA1) showing more sensitivity than the dissociation with acrR

(KA2) and acrEF (KA3). This is expected, as in this wild-type strain we have normal

levels of acrAB expression, so we should expect lower expression of acrEF and hence a

smaller sensitivity upon parameters related to it. We note that the other two parameters

with notable significance, are related to AcrR (KC) and substrate (KI). The first of

these is expected due to direct inhibition of expression of the efflux pump gene acrAB.

Regarding KI , we do not know the full mechanisms behind how the substrate interacts

with the network, but this could provide insight for potential further research. We show

transcription and translation rates in (b). We note that for each individual gene the

transcription rates show similar sensitivity to the translation rates. Thus when targeting

gene expression, both transcription and translation seem to be feasible targets. It is clear

that the wild-type system is the most sensitive to the expression of four genes, namely

ramR and ramA, acrR and acrAB. This gives us clear insights into the most important

genes to target when inhibiting efflux in a wild-type strain. The other genes are envR

and acrEF, with the strain exhibiting little sensitivity to either. This again is expected,

as with no major restrictions upon acrAB expression we expect H-NS to be prevalent and

the expression of envR and acrEF to be minimal.
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Figure 6.8: Box plots showing the relative sensitivity of parameters involved in the GRN
for the wild-type strain, varying parameters in the region [0, 10P ∗], where P ∗ is the default
parameter value. In (a) we depict the dissociation and saturation constants, in (b) we
depict the various transcription and translation rates related to mRNAs and proteins.
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6.4.2 EST strain

We exhibit the parameter sensitivity results using the steady state for the EST strain in

Figure 6.9. As expected due to the gene being knocked out, we can immediately see that

all parameters involved with acrAB have lost all sensitivity. In (a) the most sensitive

parameter is the dissociation of RamA with acrEF (KA3). This is expected as AcrEF is

the only active efflux pump in this strain. Compared to the wild-type strain (Figure 6.8),

we can see decreased sensitivity to the dissociation of RamR (KR). This could be due

to RamA having a smaller activation effect on acrEF expression than acrAB expression,

thus inhibition of ramA expression from RamR would have less of an effect. We also

see increased sensitivity of the dissociation of EnvR from acrAB and acrEF. With envR

being constitutively expressed in this case, we should expect higher sensitivity from this

local repressor. In (b) we note the most sensitive parameters are related to the expression

of ramR, ramA, envR and acrEF. The strain shows similar sensitivities to all of these

genes and thus targeting any of their expressions should be a viable target for inhibiting

efflux. Notably however, the strain is most sensitive to envR and acrEF, leading us to

believe that repressing acrEF expression directly or via envR may be a more effective

target than preventing activation of the gene’s expression.
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Figure 6.9: Box plots showing the relative sensitivity of parameters involved in the GRN
for the EST strain, varying parameters in the region [0, 10P ∗], where P ∗ is the default
parameter value. In (a) we depict the dissociation and saturation constants, in (b) we
depict the various transcription and translation rates related to mRNAs and proteins.
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6.4.3 RamR mutant strain

We exhibit the parameter sensitivity results using the steady state for the RamR mutant

strain in Figure 6.10. Immediately, compared to the wild-type strain (Figure 6.8) we can

see that all of the parameters relating to ramR (KR, k1 and m1) all have no sensitivity

due to the mutations of RamR. Additionally the sensitivity of the desaturation constant

relating to substrate (KI) is reduced, which could be due to the substrate only now having

an effect on Lon Protease concentration due to the mutations of RamR. In (a) we can see

that the dissociation of RamA with acrR (KA2) is the most sensitive, this is interesting

to note as our time dependent asymptotic analysis uncovered this link as one of the

key mechanisms for activating efflux in this mutant strain. The other RamA dissociation

parameters range of sensitivity are both decreased compared to the wild-type strain, which

could be due to the higher concentration of RamA in this strain, such that large activation

will occur regardless of the dissociation constant. We note the sensitivity of dissociation

related to acrEF (KA3) is minimal, which is expected due to high acrAB expression in this

strain. We also see an increase in the dissociation of H-NS (KH), which could be due to a

higher concentration of RamA. If H-NS does not inhibit acrEF expression so strongly, we

would see higher activation of acrEF expression through large concentrations of RamA. In

(b), we can see that the most sensitive parameters are related to the expression of ramA,

acrR and acrAB. The strain is most sensitive to acrAB expression, which we would expect

as it is direct expression of one of the efflux pumps, which is over-expressed in this strain.

Interestingly, there is increased sensitivity to changes in envR expression compared to the

wild-type (Figure 6.8). Whilst we have hardly any expression of envR in this strain, the

sensitivity increase here could be due to the overexpression of acrAB. We note that both

RamR mutant and wild-type strains exhibit similar sensitivity to changes in ramA and

acrR expression, even with the differences within their GRNs.
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Figure 6.10: Box plots showing the relative sensitivity of parameters involved in the GRN
for the RamR mutant strain, varying parameters in the region [0, 10P ∗], where P ∗ is the
default parameter value. In (a) we depict the dissociation and saturation constants, in (b)
we depict the various transcription and translation rates related to mRNAs and proteins.

6.4.4 EST RamR mutant strain

We exhibit the parameter sensitivity results using the steady state for the EST RamR

mutant strain in Figure 6.11. As there are multiple manipulations to the genes in this

network, we can see that the amount of parameters that exhibit sensitivity has decreased

compared to the wild-type strain. As expected, all parameters relating to acrAB and

ramR are fully insensitive. Compared to the EST strain (6.9), we can see in (a) that the

most sensitive parameter is the dissociation constant of EnvR from acrEF and acrAB

(KE). This could be due to the overexpression of acrEF in this strain and hence the

local repressor would be likely to exhibit higher sensitivity. We note that the dissociation

of RamA with acrEF (KA3) has reduced in this strain, which could be due to a higher

concentration of RamA in the system and hence large activation is likely to occur regard-

less of the dissociation constant. In (b) we can see that the parameters related to the

expression of all genes have become much more sensitive compared to the EST strain,

with the strain most sensitive to changes in envR and acrEF expression. Again, this

leads us to believe that repressing acrEF expression may be a more effective target than

preventing activation of the gene’s expression.
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Figure 6.11: Box plots showing the relative sensitivity of parameters involved in the GRN
for the EST RamR mutant strain, varying parameters in the region [0, 10P ∗], where P ∗ is
the default parameter value. In (a) we depict the dissociation and saturation constants,
in (b) we depict the various transcription and translation rates related to mRNAs and
proteins.

6.5 Network Manipulation

While the parameter sensitivity analysis has given us insight into the sensitivity of the

substrate at steady state, it is important to note that we do not know the effects caused

by manipulating parameters through the rest of the timecourse. Therefore we take the

parameters to which the model is most sensitive in the above analysis and plot relevant

time dependent simulations. As we would like to repress efflux expression for all strains,

we omit parameters relating to ramR expression, as RamR is not present in our mutant

strains. In addition we also omit direct acrAB and acrEF expression through transcrip-

tion and translation, due to them both being trivial targets to vary efflux expression. For

each parameter, we either multiply or divide the original parameter by a factor of ten, in

order to exhibit a proportionally sizeable manipulation from the original parameter value.

To exhibit our manipulations, for each strain we plot a simulation with default parameter

values against a simulation with manipulated parameter values. We find the AUC for

both of these simulations using the trapezium rule (function “trapz” in MATLAB) and

plot the difference between AUC for both default and manipulated simulations.
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Firstly, we show the effects of varying gene expression through transcription, demon-

strated by Figures 6.12-6.14. In Figure 6.12, we can see the effects of decreasing expression

of ramA. We note that a decrease in efflux is universal between all strains i.e. the intra-

cellular substrate increases. This is further highlighted in Figure 6.12 (e) as the change

in overall substrate exposure is large for all strains. However, we note that when it comes

to the EST strain (Figure 6.12 (b)), the steady state is hardly altered compared to the

normal simulation. This highlights the importance of time dependent simulations as there

is a sizeable difference in mid time dynamics which is missed by the parameter sensitivity

analysis.

In Figure 6.13, we can see the effects of increasing expression of acrR. Notably we see

no effects in either of the EST strains (Figure 6.13 (b), (d) and (e)). This is expected as

AcrR is the local repressor of acrAB, which is not present in these strains. Noticeable

differences to efflux dynamics is however shown in the wild-type and RamR mutant strains,

with an increase in intracellular substrate concentration over all time.

In Figure 6.14, we can see the effects of increasing expression of envR. Similar to

ramA, we can see notable differences to the efflux dynamics in all strains, shown by

notable differences to the substrate exposure (Figure 6.14 (e)). However, barring the EST

RamR mutant strain (Figure 6.14 (d)), there is very little difference to the steady states of

all manipulated strains. This clearly differs from the early and mid time dynamics, with

sizeable differences compared to the default simulations. Thus, this may give us insights

into how envR expression effects the long term dynamics: the analysis leads us to believe

that there are only large changes to the steady state of substrate concentration when a

large concentration of AcrEF is present. In comparison between all three manipulations

(Figures 6.12-6.14), acrR expression is only a viable target for inhibiting efflux in strains

with acrAB expression. We can see that varying ramA expression has the largest effect

upon the long term dynamics of substrate concentration in the majority of the strains,

whereas interestingly varying envR expression has the largest effect on the early and mid

time dynamics of substrate concentration.
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Figure 6.12: Plots exhibiting the effects of varying ramA expression (default parameter
value k2 = 10) on the intracellular bound substrate over time. In (a) we have the wild-
type strain, (b) the EST strain, (c) the RamR mutant strain and (d) the EST RamR
mutant strain. Finally in (e) we exhibit the difference in AUC between the manipulated
parameter value simulation to the default parameter value simulation for each strain.
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Figure 6.13: Plots exhibiting the effects of varying acrR expression (default parameter
value k3 = 10) on the intracellular bound substrate over time. In (a) we have the wild-
type strain, (b) the EST strain, (c) the RamR mutant strain and (d) the EST RamR
mutant strain. Finally in (e) we exhibit the difference in AUC between the manipulated
parameter value simulation to the default parameter value simulation for each strain.
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Figure 6.14: Plots exhibiting the effects of varying envR expression (default parameter
value k5 = 10) on the intracellular bound substrate over time. In (a) we have the wild-
type strain, (b) the EST strain, (c) the RamR mutant strain and (d) the EST RamR
mutant strain. Finally in (e) we exhibit the difference in AUC between the manipulated
parameter value simulation to the default parameter value simulation for each strain.
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In regards to the dissociation and saturation constants, we only vary the parameters

KA1 , KE, KH and KI since these parameters are connected to multiple genes. With

dissociation constants that are connected to singular genes, we should expect similar

results to directly varying the target gene’s expression as per the previous manipulations.

In Figure 6.15, we can see the effects of varying RamA dissociation from ramA and acrAB.

Interestingly whilst this manipulation has changed the dynamics of the wild-type strain

(Figure 6.15(a)), the RamR mutant strain (Figure 6.15(b)) has only very small reductions

in efflux over all time periods (further shown by total exposure in Figure 6.15(e)). This

could be due to the overexpression of ramA in this strain meaning there is plenty of RamA

to activate acrAB expression regardless of the dissociation constant. When it comes to

the EST strains (Figure 6.15(b) and (d)), we note that there is only a minute difference in

dynamics to the normal simulations. Whilst this is expected for the activation of acrAB

expression (since the gene is not present), this gives us insight into the self activating

nature of ramA expression. These results suggest that the effect of this is minimal and

does not play a huge part in the network.

In Figure 6.16, we can see the effects of varying EnvR dissociation from acrAB and

acrEF. Notably, the manipulations to all strains do not differ hugely from varying the

direct expression of envR in Figure 6.14, again exhibiting larger effects in the early time

dynamics. Thus targeting the expression of the gene and the protein produced appear to

be viable targets.

In Figure 6.17, we can see the effects of varying H-NS dissociation from envR and

acrEF. For the EST strains (Figure 6.17 (b) and (d)), we can clearly see no effect upon

the efflux over time, further shown by the total substrate exposure (Figure 6.17 (e)).

This is expected as with no AcrAB in the system we should expect fully inactive H-NS

regardless of its dissociation constant. In regards to the wild-type and RamR strains

(Figure 6.17 (a) and (c)), we can see a minimal effect on efflux. Since increasing the

dissociation of H-NS alleviates the inhibition of acrEF expression, this agrees with the

view that if acrAB is active, then the expression of acrEF has little effect upon the overall
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efflux, matching experimental results.

In Figure 6.18, we can see the effects of varying the saturation of substrate with ramR

and ramA (via Lon Protease degradation). Whilst it is clear there are differences in all

strains, the effect upon efflux and substrate exposure (Figure 6.17 (e)) is minimal. Notably

both RamR mutant strains (6.18 (c) and (d)) provide a smaller difference in efflux to their

counterparts (Figure 6.18 (a) and (b)). This is most likely due to mutated RamR in these

strains, such that there is less feedback from intracellular concentration upon the GRN.

Comparatively between all manipulations, we can see that the dissociation constants

relating to ramA and envR are the most sensitive for affecting substrate concentration,

and thus have the most potential for inhibiting efflux.
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Figure 6.15: Plots exhibiting the effects of varying RamA dissociation with ramA and
acrAB (default parameter value KA1 = 2) on the intracellular bound substrate over time.
In (a) we have the wild-type strain, (b) the EST strain, (c) the RamR mutant strain and
(d) the EST RamR mutant strain. Finally in (e) we exhibit the difference in AUC between
the manipulated parameter value simulation to the default parameter value simulation
for each strain.

237



0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2(a)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2(b)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2(c)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2(d)

Wild-type
EST

RamR Mutant

EST RamR Mutant
0

5

10

15

20(e)

Figure 6.16: Plots exhibiting the effects of varying EnvR dissociation with acrAB and
acrEF (default parameter value KE = 20.2) on the substrate over time. In (a) we have the
wild-type strain, (b) the EST strain, (c) the RamR mutant strain and (d) the EST RamR
mutant strain. Finally in (e) we exhibit the difference in AUC between the manipulated
parameter value simulation to the default parameter value simulation for each strain.
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Figure 6.17: Plots exhibiting the effects of varying H-NS dissociation with envR and
acrEF (default parameter value KH = 1) on the substrate over time. In (a) we have the
wild-type strain, (b) the EST strain, (c) the RamR mutant strain and (d) the EST RamR
mutant strain. Finally in (e) we exhibit the difference in AUC between the manipulated
parameter value simulation to the default parameter value simulation for each strain.
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Figure 6.18: Plots exhibiting the effects of varying substrate desaturation with ramR and
ramA (via Lon Protease) (default parameter value KI = 0.3) on the substrate over time.
In (a) we have the wild-type strain, (b) the EST strain, (c) the RamR mutant strain and
(d) the EST RamR mutant strain. Finally in (e) we exhibit the difference in AUC between
the manipulated parameter value simulation to the default parameter value simulation
for each strain.
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Whilst manipulating one parameter did provide notable changes to the efflux dynamics

of the strains, our results show that in order to provide broader changes, further manipu-

lations are needed. It was shown from varying the dissociation constants of proteins that

the results did not hugely differ from varying the expression of genes that produce these

proteins. In addition the only expression of genes that had notable change to all strains

were the expression of ramA and envR. In Figure 6.19, we show the effects of varying

both ramA expression and envR expression. The combination of manipulations has clear

effects on the dynamics in all strains, although the EST strains (Figure 6.19 (b) and (d))

do show a lesser change in dynamics to the wild-type and RamR mutant strains (Figure

6.19 (a) and (c)). In addition, the total substrate exposure (6.19 (e)) has similar dif-

ferences in exposure for one manipulation in all strains, however multiple manipulations

have larger effects to the wild-type and RamR mutant strains than the EST and EST

RamR mutant strains. These differences are likely due to there being one efflux pump

already inactive in the latter strains. In both RamR mutant strains (Figure 6.19 (c) and

(d)) however, we see much larger changes to the dynamics compared to their non mutant

counterparts (Figure 6.19 (a) and (b)). This is a useful insight as the RamR mutation

has been proven to cause MDR. We note that in all strains there is a notable difference in

the mid time dynamics, with the efflux rate of substrate slowed. Thus, in regards to an

antibiotic substrate, the slowing of efflux time may be crucial. If cells within the culture

cannot expel enough antibiotic at a fast enough rate, the antibiotic may have already

caused irreversible damage to the cells and hence the cells may die even if they are able to

pump out enough antibiotic to a low enough concentration that would normally be under

a killing threshold, thus preventing MDR in the strain.
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Figure 6.19: Plots exhibiting the effects of varying ramA and envR expression (default
parameter values k2 = 10, k5 = 10) on the bound intracellular substrate over time. In (a)
we have the wild-type strain, (b) the EST strain, (c) the RamR mutant strain and (d)
the EST RamR mutant strain. Finally in (e) we exhibit the difference in AUC between
the each of the manipulated parameter value simulations to the default parameter value
simulation for the strains.
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6.6 Discussion

By combining our two previous models of a GRN and substrate efflux, we have created

a multi scale model that better encapsulates the behaviour of how a Salmonella culture

expresses genes in order to react to a substrate stressor. Firstly, by using information

from further studies into the network as well as insights from the asymptotic analysis

in Chapter 3, we have adapted and simplified our GRN model from Chapter 2. Using

this updated GRN model, we combine the model with our spatial model on substrate

efflux from Chapter 5 to create a multi scale model. We have achieved this by linking

the concentration of efflux pumps with the efflux rate in our spatial model, as well as the

substrate having effects upon expression of ramR and degradation of RamA. By keeping

our parameters as similar as possible to our previous GRN model simulations, we have

recreated the efflux dynamics fitted to our spatial model for the wild-type and EST strains.

This has enabled us to run simulations of the model, in order to exhibit the effect of the

substrate upon the expression and behaviour of genes within the GRN. In addition to the

wild-type and EST strains, we have also simulated potential RamR mutant counterparts

in order to see the effect of mutations in the GRN to the spatial dynamics of substrate.

Similar to previous chapters, we have produced a parameter sensitivity analysis on

parameters in the GRN using the steady state of the intracellular substrate. We have

completed sensitivity analysis for all four simulated strains, in order for us to identify

targets for inhibiting efflux for each strain. By taking these parameters forward, we have

produced time dependent simulations in order for us to show the effect of varying these

parameters on the full time course. Whilst the long term behaviour was expected from

the parameter sensitivity analysis, we gained important insights with certain genes having

a larger effect upon short and mid time efflux behaviour. Comparing the manipulations

on all strains, we have identified the genes ramA and envR as the most viable targets

for inhibiting efflux. This is due to the strains displaying the most sensitivity to the

parameters linked with these genes. We have exhibited the effects of manipulating both

genes across all strains, with sizeable effects shown to the efflux dynamics. Thus, by
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creating this multi scale model, it has enabled us to identify the potentially most important

genes in the network to inhibit efflux and combat MDR.

In summary, whilst our GRN model in Chapter 2, gave us insight into the interplay

of genes that govern efflux, it did not give us insights into how the expression of these

genes affect the Salmonella cell and population. In addition, the spatial model in 5 gave

us insights into how a Salmonella population expels substrate, however it did not give

us insights into how the cells activate mechanisms in order to react to the substrate. By

combining these two models we can manipulate any part of the GRN and find the resulting

larger scale effect upon substrate dynamics. Conversely, we can alter the spatial dynamics

of substrate surrounding and within a population and find the smaller scale reaction of

cells by gene expression. This model provides a useful tool for achieving new hypotheses

on new and existing strains, enabling us to identify new biological experiments to help

further our knowledge and combat MDR.
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CHAPTER 7

CONCLUSIONS

With the ever growing threat of antibiotic resistance, MDR Salmonella strains have been

listed as a high priority for where new treatment methods are required [100]. One of the

main defensive mechanisms used by Salmonella is efflux pumps that can expel multiple

different antibiotics from the cytoplasm of the cell. The AcrAB-TolC and the AcrEF-TolC

systems have been identified as major efflux pumps that contribute to MDR [10]. Inhibi-

tion of these efflux pump systems is a potential method to combat antibiotic resistance in

bacteria, preventing the bacteria from being able to expel antibiotics via active transport

[68]. However, inhibition of these efflux pumps is a complex process, as the regulation

of these efflux pumps are governed by complex gene regulation networks and inhibition

of one efflux pump system can cause up regulation of another efflux pump system [12].

These GRNs contain multiple different genes and proteins that interact with each other’s

expression, ultimately leading to the expression of the genes that produce structural ef-

flux pump proteins when the cell is under stress. The genes within these networks vary in

expression between different strains, with overexpression of efflux pump genes being com-

mon in mutant MDR strains [97]. In this thesis, we have produced multiple mathematical

models to investigate strains of Salmonella, including wild-type and MDR strains. These

models have ranged from the cellular scale of gene regulation to the population scale

of antibiotic distribution within bacterial strains and their environments. By modelling

these strains on multiple scales, we have gained many insights into the role of efflux in
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causing MDR.

Our first model in Chapter 2 models the intracellular processes of gene regulation

governing the expression of the efflux pump genes acrAB and acrEF. For this model, we

consider two strains: a wild-type strain and a mutant strain. Both of these strains consist

of the same genes governing efflux pump expression, however the latter has non-functional

RamR protein which indirectly causes overexpression of efflux pump genes. Thus in order

for an inhibition adjuvant to antibiotic treatment to be developed, the GRN processes

must be fully understood. For the inhibition to be effective, it must be able to repress the

efflux pump systems in multiple different strains. We produce simulations of this model,

starting from a down regulated state. Whilst this model gave us basic insights into how a

cell reacts to a constant stressor via gene expression, the combination of a large number

of parameters and multiple indistinct parameter values meant we were unable to draw

firm conclusions from the model simulations.

In Chapter 3, we have applied asymptotic techniques to reduce the need for specific

parameter values for the model in Chapter 2. This approach enabled us to complete

a series of time dependent asymptotic analyses upon the wild-type and mutant cases,

revealing nine and ten timescales respectively. We see mRNA transcription being domi-

nant on the early timescales, with protein translation closely following for those mRNAs.

As protein levels increase, inhibition of relevant transcription begins, decreasing certain

mRNA concentrations. Finally, degradation comes into effect bringing all variables to

steady state. By doing this process, we have broken down our nondimensional model

(which does not have a full set of analytical solutions) into a step by step model of each

dominant process. Thus, we are left with simplified models of our system, only taking

into effect the dominant behaviours that control the GRN.

By performing this asymptotic analysis, we have also achieved asymptotic approxima-

tions to the steady states of the system, which were not analytically solvable in our full

model. On most timescales we have full analytical solutions for each variable’s behaviour,

enabling us to see the full breakdown of how each variable acts and how step by step
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the system evolves over time. By performing parameter variations upon the steady state

values, we have been able to identify certain parameter groupings that have the most

effect on the expression of efflux genes in both the wild-type and mutant case. For both

cases, it was shown that both η and ξ relating to the binding affinity of EnvR to the two

efflux pump genes and envR expression exhibited some of the strongest sensitivities, thus

showing evidence for the gene envR to be a potential inhibition target. This is biologically

plausible as envR is the local repressor of the efflux gene acrEF but also can repress the

gene acrAB. As this gene affects both pumps directly, by targeting envR we may be able

to maximise inhibition of both efflux pumps. Notably however, the processes of EnvR

repression on the efflux pump genes were only dominant on the latter timescales. On early

timescales these repression processes did not appear at leading order. This may show the

limitations of envR as an inhibition target, with the gene more likely to affect the long

term behaviour only.

Most other parameters exhibited a reasonable relative sensitivity, providing evidence

that multiple genes could provide realistic inhibitory targets. Perhaps more importantly

however, was the sensitivity of ω relating to the link between the concentration of AcrAB

and the activation / repression of acrEF. Notably, this link appeared as a dominant

process in both strains on the latter timescales. Whilst we do not currently know the full

biological details of this link, the sensitivity of this parameter grouping suggests that it

could provide a possible efflux inhibition target. This provides a strong case to delve into

and further understand the mechanisms linking the various efflux pumps, as they could

provide the key to inhibiting efflux.

Whilst exploring the steady state analysis has provided plentiful insights into efflux

inhibition targets at the system’s long term behaviour, it is important to note that this

does not fully encompass the system’s earlier behaviour. By summarising the asymptotic

analysis showing the dominant behaviour on all timescales, we are able to exhibit a step

by step breakdown of the system. With this summary, we were able to distinguish easier

the differences of behaviour between the wild-type and mutant cases. In particular we
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noted the importance of ramA in the mutant case, with direct and indirect activation of

acrAB through RamA. Whilst at steady state the indirect activation (via AcrR) is still

prevalent, at leading order in the mathematical analysis the direct activation is not and

appears to be an important factor in early activation of acrAB expression. This has given

us reasonable grounds to consider ramA as a potential inhibition target, targeting acrAB

expression directly at early time, and indirectly at long time. Although this gene may not

be one of the most sensitive targets at long term behaviour, the step by step breakdown

shows that the early interactions of the gene are of huge significance. Thus by targeting

ramA, we may provide a method for inhibiting early efflux expression enough so that an

antibiotic can kill the bacteria before its efflux pumps become fully active. The analysis

has therefore also revealed the possible importance of effective timing of efflux inhibition

and how this may vary between targets.

Although this model gave us insight into how genes interplay starting from a down-

regulated state, it did not consider how a change in antibiotic concentration could itself

affect the network. In Chapters 4 and 5, we produce models of the distribution of an

antibiotic concentration within and surrounding a Salmonella population. In these models

we consider an antibiotic that is a substrate of four efflux pumps: AcrAB, AcrEF, MdsAB

and MdtAB. Notably two of these efflux pumps are apparent in our GRN model in

Chapter 2. We produced these models in order to replicate experimental data of ethidium

bromide efflux assays. This data consists of experiments taken upon a wild-type strain of

Salmonella and various efflux pump knockout strains. By replicating this data, we hoped

to achieve insights into the dynamics of the four efflux pump systems.

We started with a simplistic model in Chapter 4, formulating a PDE model of sub-

strate concentration of a spherical cell and surrounding extracellular space. We produced

numerical simulations of the model by discretising the domain using finite difference meth-

ods. By then using parameter fitting techniques, we were able to fit the model to each of

the Salmonella strains by varying the efflux parameter X. Initially, we proposed differing

outer boundary conditions for the model (zero far field and no flux). Whilst the parameter
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fitting results for this model did not show strong alignment to the data for both boundary

conditions, it was shown that for the long time behaviour, having a no flux boundary con-

dition produced fits that aligned better to the data. This gave us reason to believe that

in the experiments, the extracellular space is limited enough such that expelled substrate

(via either efflux or diffusion) is constantly diffusing back into the strains. In addition, it

was interesting to note the disparity between the reasonable fits to the AEST knockout

strain (all efflux pumps knockout) against the substandard fits to any strain with efflux

active. Furthermore, in fits to all strains, the model could not replicate the early time

dynamics that were shown by the data. These results made it clear that the current

model was missing essential dynamics and thus needed adaptation to fully encapsulate

the behaviour exhibited by the strains.

In Chapter 5, we formulated a model improving on the model in Chapter 4. As the

early dynamics of the strain were not present in the previous model, we firstly introduced

binding dynamics of the substrate. Ethidium bromide is a DNA-intercalating agent that

fluoresces when bound to DNA and thus is found within the cell in two states (bound and

unbound), by including these binding dynamics the model was expanded into a system

of PDEs. Parameter fitting techniques immediately displayed the improvements to the

model, with the model being able to replicate early and intermediate time behaviours,

producing a near perfect fit of data of the AEST strain. The model showed improvements

on the wild-type strain compared to the previous model. However it was clear that the

constant efflux parameter was incapable of encapsulating the behaviour of strains that

had active efflux. Therefore we adapted our efflux parameter to be variable, defined by a

simple formation and deformation ODE. Parameter fitting results showed the model better

replicated the dynamics of the wild-type strain with strong alignment to the experimental

data on all time scales. However, the efflux variable now showed unrealistic behaviour,

with the efflux depleting very quickly and only present for a short period of the experiment.

By making the increase of efflux dependent on the intracellular substrate concentration,

not only did we achieve more realistic efflux dynamics, we achieved fits with stronger
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alignment to the data. This lead us to believe that the strains have some feedback

mechanism involving the rate of efflux and the internal substrate concentration.

By using the optimal parameters for the most extreme cases: AEST (no active efflux)

and wild-type (full efflux), we were able to produce fits for the efflux pump knockout

strains. This enabled us to produce efflux profiles for each strain, which after making

assumptions we used to estimate the efflux profile of each individual efflux pump system.

We noted that these efflux profiles displayed similarities to the behaviour of our efflux

pump variables in our model in Chapter 2. This gave us good reason to believe that the

feedback mechanism between the internal substrate concentration and efflux could be the

result of the regulation of genes within a GRN.

In Chapter 6, we produced a multiscale model, linking the models in Chapters 2

and 5 to simulate a GRN feedback mechanism. By using new knowledge from further

studies into the network, we were able to adapt our GRN model from Chapter 2. In

addition, by using insights gained from the asymptotic analysis in Chapter 3, we further

adapted the GRN, simplifying the model by removing elements that were not influential

in the dominant processes revealed by the asymptotic analysis. Lastly, by linking the

intracellular substrate to certain mechanisms of the GRN (repressing ramR expression

and Lon Protease degradation), we were able to combine our ODE and PDE models, using

similar finite difference methods from Chapter 5 to produce numerical simulations. For

this model, we compared wild-type, EST (AcrAB knockout) strains and respective RamR

mutant counterparts. By using the final fitted parameters in Chapter 5, we compare our

model to the data of the wild-type and EST strains, maintaining as many parameter

values as possible from Chapter 2. We then simulated the RamR mutant counterparts

strains by manipulating the GRN, enabling us to predict how these strains behave in the

presence of a substrate stressor.

Similar to our asymptotic analysis in Chapter 3, we performed parameter sensitiv-

ity analysis varying GRN parameters, this time however measuring the difference to the

steady state of the intracellular substrate concentration. Taking forwards the most sen-
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sitive parameters for all of the strains from this analysis, we performed time dependent

simulations showing the effects of manipulating these parameters. These simulations en-

abled us to exhibit the effects on the dynamics of substrate efflux throughout the full time

course of the simulations. It was shown that the genes ramA and envR were the most

viable targets for inhibiting efflux in all strains, which aligned with our results from the

asymptotic analysis in Chapter 3. Therefore experimenting with an inhibition adjuvant

that targets processes involving these genes could prove useful to inhibiting efflux.

We have only displayed some of the many capabilities that this multiscale model

provides in Chapter 6. By creating this model we have provided a basis for understanding

MDR in Salmonella with multiple opportunities for further research. The model provides

the ability to target or manipulate any area of the GRN or cell spatial structure to

achieve new hypotheses on how the culture will react to the substrate. Manipulations

could be achieved by the addition of new variables into the model, such as including the

dynamics of an adjuvant that targets the GRN, or a synthetic molecule that slows efflux

activity or alters membrane permeability. In addition to this further research, another

clear extension to this thesis would be extending the time dependent asymptotic analysis

from Chapter 3 to incorporate all elements of the multiscale model. By breaking down

the GRN model to multiple different timescales, we demonstrated the increased volume

of information we were able to obtain from the analysis. If we were to apply this method

to the multiscale model, we would be able to obtain more in depth information of the

workings of the bacteria, with the ability to determine which genes are the most influential

on the expulsion of substrate at various different timescales.

There are of course many other areas where we could expand this model, one of these

being the inclusion of stochastic events. This could be incorporated through multiple

processes in the model, for example: gene expression, degradation, binding dynamics and

substrate diffusion. Specifically for gene expression, we could consider the effects caused

by intrinsic (process that affect singular genes) and extrinsic noise (global processes that

could affect multiple genes). As the concentration for specific genes within our GRN are
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low, we therefore have a low copy number of mRNAs and proteins. These concentrations

are therefore susceptible to intrinsic noise as the fluctuations in the processes affecting

these molecules can not be assumed as negligible (which is the case in larger concentra-

tions). In regards to extrinsic noise we have not considered cell growth, death and changes

to the physical environment in our models, which could have effects on the gene expression

of all or individual cells within the population [88]. In addition, cell growth and death

could be linked to the expression of efflux pump genes. Not only through their link to

the antibiotic concentration, the production of the efflux pump proteins could be costly

to the population and prevent or reduce the ability for cells to produce other essential

survival mechanisms.

We believe that this work has provided useful insights into the mechanisms behind

MDR in Salmonella. In the multiscale model, we have created a basis with positive capa-

bilities for future research, we hope that the success of this model will inspire the creation

of other GRN and efflux models for different bacterial species. With the hypotheses we

have generated on potential inhibitory targets and pathways, this should provide evidence

for further investigation of certain areas of the network. We hope the analysis will also

inspire potential therapies to be tested experimentally in order to produce new strategies

against efflux related MDR bacteria.
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[86] Sköld, O. (2011) Antibiotics and antibiotic resistance. John Wiley & Sons.
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